clang 20.0.0git
ParseDecl.cpp
Go to the documentation of this file.
1//===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Declaration portions of the Parser interfaces.
10//
11//===----------------------------------------------------------------------===//
12
23#include "clang/Parse/Parser.h"
26#include "clang/Sema/Lookup.h"
28#include "clang/Sema/Scope.h"
29#include "clang/Sema/SemaCUDA.h"
32#include "clang/Sema/SemaObjC.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/ADT/StringSwitch.h"
37#include <optional>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// C99 6.7: Declarations.
43//===----------------------------------------------------------------------===//
44
45/// ParseTypeName
46/// type-name: [C99 6.7.6]
47/// specifier-qualifier-list abstract-declarator[opt]
48///
49/// Called type-id in C++.
51 AccessSpecifier AS, Decl **OwnedType,
52 ParsedAttributes *Attrs) {
53 DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
54 if (DSC == DeclSpecContext::DSC_normal)
55 DSC = DeclSpecContext::DSC_type_specifier;
56
57 // Parse the common declaration-specifiers piece.
58 DeclSpec DS(AttrFactory);
59 if (Attrs)
60 DS.addAttributes(*Attrs);
61 ParseSpecifierQualifierList(DS, AS, DSC);
62 if (OwnedType)
63 *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
64
65 // Move declspec attributes to ParsedAttributes
66 if (Attrs) {
68 for (ParsedAttr &AL : DS.getAttributes()) {
69 if (AL.isDeclspecAttribute())
70 ToBeMoved.push_back(&AL);
71 }
72
73 for (ParsedAttr *AL : ToBeMoved)
74 Attrs->takeOneFrom(DS.getAttributes(), AL);
75 }
76
77 // Parse the abstract-declarator, if present.
78 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), Context);
79 ParseDeclarator(DeclaratorInfo);
80 if (Range)
81 *Range = DeclaratorInfo.getSourceRange();
82
83 if (DeclaratorInfo.isInvalidType())
84 return true;
85
86 return Actions.ActOnTypeName(DeclaratorInfo);
87}
88
89/// Normalizes an attribute name by dropping prefixed and suffixed __.
90static StringRef normalizeAttrName(StringRef Name) {
91 if (Name.size() >= 4 && Name.starts_with("__") && Name.ends_with("__"))
92 return Name.drop_front(2).drop_back(2);
93 return Name;
94}
95
96/// returns true iff attribute is annotated with `LateAttrParseExperimentalExt`
97/// in `Attr.td`.
99#define CLANG_ATTR_LATE_PARSED_EXPERIMENTAL_EXT_LIST
100 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
101#include "clang/Parse/AttrParserStringSwitches.inc"
102 .Default(false);
103#undef CLANG_ATTR_LATE_PARSED_EXPERIMENTAL_EXT_LIST
104}
105
106/// returns true iff attribute is annotated with `LateAttrParseStandard` in
107/// `Attr.td`.
109#define CLANG_ATTR_LATE_PARSED_LIST
110 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
111#include "clang/Parse/AttrParserStringSwitches.inc"
112 .Default(false);
113#undef CLANG_ATTR_LATE_PARSED_LIST
114}
115
116/// Check if the a start and end source location expand to the same macro.
118 SourceLocation EndLoc) {
119 if (!StartLoc.isMacroID() || !EndLoc.isMacroID())
120 return false;
121
123 if (SM.getFileID(StartLoc) != SM.getFileID(EndLoc))
124 return false;
125
126 bool AttrStartIsInMacro =
128 bool AttrEndIsInMacro =
130 return AttrStartIsInMacro && AttrEndIsInMacro;
131}
132
133void Parser::ParseAttributes(unsigned WhichAttrKinds, ParsedAttributes &Attrs,
134 LateParsedAttrList *LateAttrs) {
135 bool MoreToParse;
136 do {
137 // Assume there's nothing left to parse, but if any attributes are in fact
138 // parsed, loop to ensure all specified attribute combinations are parsed.
139 MoreToParse = false;
140 if (WhichAttrKinds & PAKM_CXX11)
141 MoreToParse |= MaybeParseCXX11Attributes(Attrs);
142 if (WhichAttrKinds & PAKM_GNU)
143 MoreToParse |= MaybeParseGNUAttributes(Attrs, LateAttrs);
144 if (WhichAttrKinds & PAKM_Declspec)
145 MoreToParse |= MaybeParseMicrosoftDeclSpecs(Attrs);
146 } while (MoreToParse);
147}
148
149/// ParseGNUAttributes - Parse a non-empty attributes list.
150///
151/// [GNU] attributes:
152/// attribute
153/// attributes attribute
154///
155/// [GNU] attribute:
156/// '__attribute__' '(' '(' attribute-list ')' ')'
157///
158/// [GNU] attribute-list:
159/// attrib
160/// attribute_list ',' attrib
161///
162/// [GNU] attrib:
163/// empty
164/// attrib-name
165/// attrib-name '(' identifier ')'
166/// attrib-name '(' identifier ',' nonempty-expr-list ')'
167/// attrib-name '(' argument-expression-list [C99 6.5.2] ')'
168///
169/// [GNU] attrib-name:
170/// identifier
171/// typespec
172/// typequal
173/// storageclass
174///
175/// Whether an attribute takes an 'identifier' is determined by the
176/// attrib-name. GCC's behavior here is not worth imitating:
177///
178/// * In C mode, if the attribute argument list starts with an identifier
179/// followed by a ',' or an ')', and the identifier doesn't resolve to
180/// a type, it is parsed as an identifier. If the attribute actually
181/// wanted an expression, it's out of luck (but it turns out that no
182/// attributes work that way, because C constant expressions are very
183/// limited).
184/// * In C++ mode, if the attribute argument list starts with an identifier,
185/// and the attribute *wants* an identifier, it is parsed as an identifier.
186/// At block scope, any additional tokens between the identifier and the
187/// ',' or ')' are ignored, otherwise they produce a parse error.
188///
189/// We follow the C++ model, but don't allow junk after the identifier.
190void Parser::ParseGNUAttributes(ParsedAttributes &Attrs,
191 LateParsedAttrList *LateAttrs, Declarator *D) {
192 assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
193
194 SourceLocation StartLoc = Tok.getLocation();
195 SourceLocation EndLoc = StartLoc;
196
197 while (Tok.is(tok::kw___attribute)) {
198 SourceLocation AttrTokLoc = ConsumeToken();
199 unsigned OldNumAttrs = Attrs.size();
200 unsigned OldNumLateAttrs = LateAttrs ? LateAttrs->size() : 0;
201
202 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
203 "attribute")) {
204 SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
205 return;
206 }
207 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
208 SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
209 return;
210 }
211 // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
212 do {
213 // Eat preceeding commas to allow __attribute__((,,,foo))
214 while (TryConsumeToken(tok::comma))
215 ;
216
217 // Expect an identifier or declaration specifier (const, int, etc.)
218 if (Tok.isAnnotation())
219 break;
220 if (Tok.is(tok::code_completion)) {
221 cutOffParsing();
224 break;
225 }
226 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
227 if (!AttrName)
228 break;
229
230 SourceLocation AttrNameLoc = ConsumeToken();
231
232 if (Tok.isNot(tok::l_paren)) {
233 Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
234 ParsedAttr::Form::GNU());
235 continue;
236 }
237
238 bool LateParse = false;
239 if (!LateAttrs)
240 LateParse = false;
241 else if (LateAttrs->lateAttrParseExperimentalExtOnly()) {
242 // The caller requested that this attribute **only** be late
243 // parsed for `LateAttrParseExperimentalExt` attributes. This will
244 // only be late parsed if the experimental language option is enabled.
245 LateParse = getLangOpts().ExperimentalLateParseAttributes &&
247 } else {
248 // The caller did not restrict late parsing to only
249 // `LateAttrParseExperimentalExt` attributes so late parse
250 // both `LateAttrParseStandard` and `LateAttrParseExperimentalExt`
251 // attributes.
252 LateParse = IsAttributeLateParsedExperimentalExt(*AttrName) ||
254 }
255
256 // Handle "parameterized" attributes
257 if (!LateParse) {
258 ParseGNUAttributeArgs(AttrName, AttrNameLoc, Attrs, &EndLoc, nullptr,
259 SourceLocation(), ParsedAttr::Form::GNU(), D);
260 continue;
261 }
262
263 // Handle attributes with arguments that require late parsing.
264 LateParsedAttribute *LA =
265 new LateParsedAttribute(this, *AttrName, AttrNameLoc);
266 LateAttrs->push_back(LA);
267
268 // Attributes in a class are parsed at the end of the class, along
269 // with other late-parsed declarations.
270 if (!ClassStack.empty() && !LateAttrs->parseSoon())
271 getCurrentClass().LateParsedDeclarations.push_back(LA);
272
273 // Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it
274 // recursively consumes balanced parens.
275 LA->Toks.push_back(Tok);
276 ConsumeParen();
277 // Consume everything up to and including the matching right parens.
278 ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true);
279
280 Token Eof;
281 Eof.startToken();
282 Eof.setLocation(Tok.getLocation());
283 LA->Toks.push_back(Eof);
284 } while (Tok.is(tok::comma));
285
286 if (ExpectAndConsume(tok::r_paren))
287 SkipUntil(tok::r_paren, StopAtSemi);
289 if (ExpectAndConsume(tok::r_paren))
290 SkipUntil(tok::r_paren, StopAtSemi);
291 EndLoc = Loc;
292
293 // If this was declared in a macro, attach the macro IdentifierInfo to the
294 // parsed attribute.
295 auto &SM = PP.getSourceManager();
296 if (!SM.isWrittenInBuiltinFile(SM.getSpellingLoc(AttrTokLoc)) &&
297 FindLocsWithCommonFileID(PP, AttrTokLoc, Loc)) {
298 CharSourceRange ExpansionRange = SM.getExpansionRange(AttrTokLoc);
299 StringRef FoundName =
300 Lexer::getSourceText(ExpansionRange, SM, PP.getLangOpts());
301 IdentifierInfo *MacroII = PP.getIdentifierInfo(FoundName);
302
303 for (unsigned i = OldNumAttrs; i < Attrs.size(); ++i)
304 Attrs[i].setMacroIdentifier(MacroII, ExpansionRange.getBegin());
305
306 if (LateAttrs) {
307 for (unsigned i = OldNumLateAttrs; i < LateAttrs->size(); ++i)
308 (*LateAttrs)[i]->MacroII = MacroII;
309 }
310 }
311 }
312
313 Attrs.Range = SourceRange(StartLoc, EndLoc);
314}
315
316/// Determine whether the given attribute has an identifier argument.
318#define CLANG_ATTR_IDENTIFIER_ARG_LIST
319 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
320#include "clang/Parse/AttrParserStringSwitches.inc"
321 .Default(false);
322#undef CLANG_ATTR_IDENTIFIER_ARG_LIST
323}
324
325/// Determine whether the given attribute has an identifier argument.
327attributeStringLiteralListArg(const llvm::Triple &T, const IdentifierInfo &II) {
328#define CLANG_ATTR_STRING_LITERAL_ARG_LIST
329 return llvm::StringSwitch<uint32_t>(normalizeAttrName(II.getName()))
330#include "clang/Parse/AttrParserStringSwitches.inc"
331 .Default(0);
332#undef CLANG_ATTR_STRING_LITERAL_ARG_LIST
333}
334
335/// Determine whether the given attribute has a variadic identifier argument.
337#define CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
338 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
339#include "clang/Parse/AttrParserStringSwitches.inc"
340 .Default(false);
341#undef CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
342}
343
344/// Determine whether the given attribute treats kw_this as an identifier.
346#define CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
347 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
348#include "clang/Parse/AttrParserStringSwitches.inc"
349 .Default(false);
350#undef CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
351}
352
353/// Determine if an attribute accepts parameter packs.
355#define CLANG_ATTR_ACCEPTS_EXPR_PACK
356 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
357#include "clang/Parse/AttrParserStringSwitches.inc"
358 .Default(false);
359#undef CLANG_ATTR_ACCEPTS_EXPR_PACK
360}
361
362/// Determine whether the given attribute parses a type argument.
364#define CLANG_ATTR_TYPE_ARG_LIST
365 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
366#include "clang/Parse/AttrParserStringSwitches.inc"
367 .Default(false);
368#undef CLANG_ATTR_TYPE_ARG_LIST
369}
370
371/// Determine whether the given attribute takes identifier arguments.
373#define CLANG_ATTR_STRICT_IDENTIFIER_ARG_AT_INDEX_LIST
374 return (llvm::StringSwitch<uint64_t>(normalizeAttrName(II.getName()))
375#include "clang/Parse/AttrParserStringSwitches.inc"
376 .Default(0)) != 0;
377#undef CLANG_ATTR_STRICT_IDENTIFIER_ARG_AT_INDEX_LIST
378}
379
380/// Determine whether the given attribute takes an identifier argument at a
381/// specific index
383 size_t argIndex) {
384#define CLANG_ATTR_STRICT_IDENTIFIER_ARG_AT_INDEX_LIST
385 return (llvm::StringSwitch<uint64_t>(normalizeAttrName(II.getName()))
386#include "clang/Parse/AttrParserStringSwitches.inc"
387 .Default(0)) &
388 (1ull << argIndex);
389#undef CLANG_ATTR_STRICT_IDENTIFIER_ARG_AT_INDEX_LIST
390}
391
392/// Determine whether the given attribute requires parsing its arguments
393/// in an unevaluated context or not.
395#define CLANG_ATTR_ARG_CONTEXT_LIST
396 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
397#include "clang/Parse/AttrParserStringSwitches.inc"
398 .Default(false);
399#undef CLANG_ATTR_ARG_CONTEXT_LIST
400}
401
402IdentifierLoc *Parser::ParseIdentifierLoc() {
403 assert(Tok.is(tok::identifier) && "expected an identifier");
405 Tok.getLocation(),
406 Tok.getIdentifierInfo());
407 ConsumeToken();
408 return IL;
409}
410
411void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
412 SourceLocation AttrNameLoc,
413 ParsedAttributes &Attrs,
414 IdentifierInfo *ScopeName,
415 SourceLocation ScopeLoc,
416 ParsedAttr::Form Form) {
417 BalancedDelimiterTracker Parens(*this, tok::l_paren);
418 Parens.consumeOpen();
419
421 if (Tok.isNot(tok::r_paren))
422 T = ParseTypeName();
423
424 if (Parens.consumeClose())
425 return;
426
427 if (T.isInvalid())
428 return;
429
430 if (T.isUsable())
431 Attrs.addNewTypeAttr(&AttrName,
432 SourceRange(AttrNameLoc, Parens.getCloseLocation()),
433 ScopeName, ScopeLoc, T.get(), Form);
434 else
435 Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
436 ScopeName, ScopeLoc, nullptr, 0, Form);
437}
438
440Parser::ParseUnevaluatedStringInAttribute(const IdentifierInfo &AttrName) {
441 if (Tok.is(tok::l_paren)) {
442 BalancedDelimiterTracker Paren(*this, tok::l_paren);
443 Paren.consumeOpen();
444 ExprResult Res = ParseUnevaluatedStringInAttribute(AttrName);
445 Paren.consumeClose();
446 return Res;
447 }
448 if (!isTokenStringLiteral()) {
449 Diag(Tok.getLocation(), diag::err_expected_string_literal)
450 << /*in attribute...*/ 4 << AttrName.getName();
451 return ExprError();
452 }
454}
455
456bool Parser::ParseAttributeArgumentList(
457 const IdentifierInfo &AttrName, SmallVectorImpl<Expr *> &Exprs,
458 ParsedAttributeArgumentsProperties ArgsProperties) {
459 bool SawError = false;
460 unsigned Arg = 0;
461 while (true) {
463 if (ArgsProperties.isStringLiteralArg(Arg)) {
464 Expr = ParseUnevaluatedStringInAttribute(AttrName);
465 } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
466 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
467 Expr = ParseBraceInitializer();
468 } else {
470 }
472
473 if (Tok.is(tok::ellipsis))
474 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
475 else if (Tok.is(tok::code_completion)) {
476 // There's nothing to suggest in here as we parsed a full expression.
477 // Instead fail and propagate the error since caller might have something
478 // the suggest, e.g. signature help in function call. Note that this is
479 // performed before pushing the \p Expr, so that signature help can report
480 // current argument correctly.
481 SawError = true;
482 cutOffParsing();
483 break;
484 }
485
486 if (Expr.isInvalid()) {
487 SawError = true;
488 break;
489 }
490
491 if (Actions.DiagnoseUnexpandedParameterPack(Expr.get())) {
492 SawError = true;
493 break;
494 }
495
496 Exprs.push_back(Expr.get());
497
498 if (Tok.isNot(tok::comma))
499 break;
500 // Move to the next argument, remember where the comma was.
501 Token Comma = Tok;
502 ConsumeToken();
503 checkPotentialAngleBracketDelimiter(Comma);
504 Arg++;
505 }
506
507 if (SawError) {
508 // Ensure typos get diagnosed when errors were encountered while parsing the
509 // expression list.
510 for (auto &E : Exprs) {
512 if (Expr.isUsable())
513 E = Expr.get();
514 }
515 }
516 return SawError;
517}
518
519unsigned Parser::ParseAttributeArgsCommon(
520 IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
521 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
522 SourceLocation ScopeLoc, ParsedAttr::Form Form) {
523 // Ignore the left paren location for now.
524 ConsumeParen();
525
526 bool ChangeKWThisToIdent = attributeTreatsKeywordThisAsIdentifier(*AttrName);
527 bool AttributeIsTypeArgAttr = attributeIsTypeArgAttr(*AttrName);
528 bool AttributeHasVariadicIdentifierArg =
530
531 // Interpret "kw_this" as an identifier if the attributed requests it.
532 if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
533 Tok.setKind(tok::identifier);
534
535 ArgsVector ArgExprs;
536 if (Tok.is(tok::identifier)) {
537 // If this attribute wants an 'identifier' argument, make it so.
538 bool IsIdentifierArg = AttributeHasVariadicIdentifierArg ||
539 attributeHasIdentifierArg(*AttrName);
540 ParsedAttr::Kind AttrKind =
541 ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax());
542
543 // If we don't know how to parse this attribute, but this is the only
544 // token in this argument, assume it's meant to be an identifier.
545 if (AttrKind == ParsedAttr::UnknownAttribute ||
546 AttrKind == ParsedAttr::IgnoredAttribute) {
547 const Token &Next = NextToken();
548 IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
549 }
550
551 if (IsIdentifierArg)
552 ArgExprs.push_back(ParseIdentifierLoc());
553 }
554
555 ParsedType TheParsedType;
556 if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
557 // Eat the comma.
558 if (!ArgExprs.empty())
559 ConsumeToken();
560
561 if (AttributeIsTypeArgAttr) {
562 // FIXME: Multiple type arguments are not implemented.
564 if (T.isInvalid()) {
565 SkipUntil(tok::r_paren, StopAtSemi);
566 return 0;
567 }
568 if (T.isUsable())
569 TheParsedType = T.get();
570 } else if (AttributeHasVariadicIdentifierArg ||
572 // Parse variadic identifier arg. This can either consume identifiers or
573 // expressions. Variadic identifier args do not support parameter packs
574 // because those are typically used for attributes with enumeration
575 // arguments, and those enumerations are not something the user could
576 // express via a pack.
577 do {
578 // Interpret "kw_this" as an identifier if the attributed requests it.
579 if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
580 Tok.setKind(tok::identifier);
581
582 if (Tok.is(tok::identifier) && attributeHasStrictIdentifierArgAtIndex(
583 *AttrName, ArgExprs.size())) {
584 ArgExprs.push_back(ParseIdentifierLoc());
585 continue;
586 }
587
588 ExprResult ArgExpr;
589 if (Tok.is(tok::identifier)) {
590 ArgExprs.push_back(ParseIdentifierLoc());
591 } else {
592 bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
594 Actions,
597 nullptr,
599
600 ExprResult ArgExpr(
602
603 if (ArgExpr.isInvalid()) {
604 SkipUntil(tok::r_paren, StopAtSemi);
605 return 0;
606 }
607 ArgExprs.push_back(ArgExpr.get());
608 }
609 // Eat the comma, move to the next argument
610 } while (TryConsumeToken(tok::comma));
611 } else {
612 // General case. Parse all available expressions.
613 bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
615 Actions,
618 nullptr,
620 EK_AttrArgument);
621
622 ExprVector ParsedExprs;
624 attributeStringLiteralListArg(getTargetInfo().getTriple(), *AttrName);
625 if (ParseAttributeArgumentList(*AttrName, ParsedExprs, ArgProperties)) {
626 SkipUntil(tok::r_paren, StopAtSemi);
627 return 0;
628 }
629
630 // Pack expansion must currently be explicitly supported by an attribute.
631 for (size_t I = 0; I < ParsedExprs.size(); ++I) {
632 if (!isa<PackExpansionExpr>(ParsedExprs[I]))
633 continue;
634
635 if (!attributeAcceptsExprPack(*AttrName)) {
636 Diag(Tok.getLocation(),
637 diag::err_attribute_argument_parm_pack_not_supported)
638 << AttrName;
639 SkipUntil(tok::r_paren, StopAtSemi);
640 return 0;
641 }
642 }
643
644 ArgExprs.insert(ArgExprs.end(), ParsedExprs.begin(), ParsedExprs.end());
645 }
646 }
647
648 SourceLocation RParen = Tok.getLocation();
649 if (!ExpectAndConsume(tok::r_paren)) {
650 SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
651
652 if (AttributeIsTypeArgAttr && !TheParsedType.get().isNull()) {
653 Attrs.addNewTypeAttr(AttrName, SourceRange(AttrNameLoc, RParen),
654 ScopeName, ScopeLoc, TheParsedType, Form);
655 } else {
656 Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
657 ArgExprs.data(), ArgExprs.size(), Form);
658 }
659 }
660
661 if (EndLoc)
662 *EndLoc = RParen;
663
664 return static_cast<unsigned>(ArgExprs.size() + !TheParsedType.get().isNull());
665}
666
667/// Parse the arguments to a parameterized GNU attribute or
668/// a C++11 attribute in "gnu" namespace.
669void Parser::ParseGNUAttributeArgs(
670 IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
671 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
672 SourceLocation ScopeLoc, ParsedAttr::Form Form, Declarator *D) {
673
674 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
675
676 ParsedAttr::Kind AttrKind =
677 ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax());
678
679 if (AttrKind == ParsedAttr::AT_Availability) {
680 ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
681 ScopeLoc, Form);
682 return;
683 } else if (AttrKind == ParsedAttr::AT_ExternalSourceSymbol) {
684 ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
685 ScopeName, ScopeLoc, Form);
686 return;
687 } else if (AttrKind == ParsedAttr::AT_ObjCBridgeRelated) {
688 ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
689 ScopeName, ScopeLoc, Form);
690 return;
691 } else if (AttrKind == ParsedAttr::AT_SwiftNewType) {
692 ParseSwiftNewTypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
693 ScopeLoc, Form);
694 return;
695 } else if (AttrKind == ParsedAttr::AT_TypeTagForDatatype) {
696 ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
697 ScopeName, ScopeLoc, Form);
698 return;
699 } else if (attributeIsTypeArgAttr(*AttrName)) {
700 ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, ScopeName,
701 ScopeLoc, Form);
702 return;
703 } else if (AttrKind == ParsedAttr::AT_CountedBy ||
704 AttrKind == ParsedAttr::AT_CountedByOrNull ||
705 AttrKind == ParsedAttr::AT_SizedBy ||
706 AttrKind == ParsedAttr::AT_SizedByOrNull) {
707 ParseBoundsAttribute(*AttrName, AttrNameLoc, Attrs, ScopeName, ScopeLoc,
708 Form);
709 return;
710 } else if (AttrKind == ParsedAttr::AT_CXXAssume) {
711 ParseCXXAssumeAttributeArg(Attrs, AttrName, AttrNameLoc, EndLoc, Form);
712 return;
713 }
714
715 // These may refer to the function arguments, but need to be parsed early to
716 // participate in determining whether it's a redeclaration.
717 std::optional<ParseScope> PrototypeScope;
718 if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
719 D && D->isFunctionDeclarator()) {
720 DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
721 PrototypeScope.emplace(this, Scope::FunctionPrototypeScope |
724 for (unsigned i = 0; i != FTI.NumParams; ++i) {
725 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
727 }
728 }
729
730 ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
731 ScopeLoc, Form);
732}
733
734unsigned Parser::ParseClangAttributeArgs(
735 IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
736 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
737 SourceLocation ScopeLoc, ParsedAttr::Form Form) {
738 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
739
740 ParsedAttr::Kind AttrKind =
741 ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax());
742
743 switch (AttrKind) {
744 default:
745 return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc,
746 ScopeName, ScopeLoc, Form);
747 case ParsedAttr::AT_ExternalSourceSymbol:
748 ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
749 ScopeName, ScopeLoc, Form);
750 break;
751 case ParsedAttr::AT_Availability:
752 ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
753 ScopeLoc, Form);
754 break;
755 case ParsedAttr::AT_ObjCBridgeRelated:
756 ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
757 ScopeName, ScopeLoc, Form);
758 break;
759 case ParsedAttr::AT_SwiftNewType:
760 ParseSwiftNewTypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
761 ScopeLoc, Form);
762 break;
763 case ParsedAttr::AT_TypeTagForDatatype:
764 ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
765 ScopeName, ScopeLoc, Form);
766 break;
767
768 case ParsedAttr::AT_CXXAssume:
769 ParseCXXAssumeAttributeArg(Attrs, AttrName, AttrNameLoc, EndLoc, Form);
770 break;
771 }
772 return !Attrs.empty() ? Attrs.begin()->getNumArgs() : 0;
773}
774
775bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
776 SourceLocation AttrNameLoc,
777 ParsedAttributes &Attrs) {
778 unsigned ExistingAttrs = Attrs.size();
779
780 // If the attribute isn't known, we will not attempt to parse any
781 // arguments.
784 // Eat the left paren, then skip to the ending right paren.
785 ConsumeParen();
786 SkipUntil(tok::r_paren);
787 return false;
788 }
789
790 SourceLocation OpenParenLoc = Tok.getLocation();
791
792 if (AttrName->getName() == "property") {
793 // The property declspec is more complex in that it can take one or two
794 // assignment expressions as a parameter, but the lhs of the assignment
795 // must be named get or put.
796
797 BalancedDelimiterTracker T(*this, tok::l_paren);
798 T.expectAndConsume(diag::err_expected_lparen_after,
799 AttrName->getNameStart(), tok::r_paren);
800
801 enum AccessorKind {
802 AK_Invalid = -1,
803 AK_Put = 0,
804 AK_Get = 1 // indices into AccessorNames
805 };
806 IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
807 bool HasInvalidAccessor = false;
808
809 // Parse the accessor specifications.
810 while (true) {
811 // Stop if this doesn't look like an accessor spec.
812 if (!Tok.is(tok::identifier)) {
813 // If the user wrote a completely empty list, use a special diagnostic.
814 if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
815 AccessorNames[AK_Put] == nullptr &&
816 AccessorNames[AK_Get] == nullptr) {
817 Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
818 break;
819 }
820
821 Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
822 break;
823 }
824
825 AccessorKind Kind;
826 SourceLocation KindLoc = Tok.getLocation();
827 StringRef KindStr = Tok.getIdentifierInfo()->getName();
828 if (KindStr == "get") {
829 Kind = AK_Get;
830 } else if (KindStr == "put") {
831 Kind = AK_Put;
832
833 // Recover from the common mistake of using 'set' instead of 'put'.
834 } else if (KindStr == "set") {
835 Diag(KindLoc, diag::err_ms_property_has_set_accessor)
836 << FixItHint::CreateReplacement(KindLoc, "put");
837 Kind = AK_Put;
838
839 // Handle the mistake of forgetting the accessor kind by skipping
840 // this accessor.
841 } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
842 Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
843 ConsumeToken();
844 HasInvalidAccessor = true;
845 goto next_property_accessor;
846
847 // Otherwise, complain about the unknown accessor kind.
848 } else {
849 Diag(KindLoc, diag::err_ms_property_unknown_accessor);
850 HasInvalidAccessor = true;
851 Kind = AK_Invalid;
852
853 // Try to keep parsing unless it doesn't look like an accessor spec.
854 if (!NextToken().is(tok::equal))
855 break;
856 }
857
858 // Consume the identifier.
859 ConsumeToken();
860
861 // Consume the '='.
862 if (!TryConsumeToken(tok::equal)) {
863 Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
864 << KindStr;
865 break;
866 }
867
868 // Expect the method name.
869 if (!Tok.is(tok::identifier)) {
870 Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
871 break;
872 }
873
874 if (Kind == AK_Invalid) {
875 // Just drop invalid accessors.
876 } else if (AccessorNames[Kind] != nullptr) {
877 // Complain about the repeated accessor, ignore it, and keep parsing.
878 Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
879 } else {
880 AccessorNames[Kind] = Tok.getIdentifierInfo();
881 }
882 ConsumeToken();
883
884 next_property_accessor:
885 // Keep processing accessors until we run out.
886 if (TryConsumeToken(tok::comma))
887 continue;
888
889 // If we run into the ')', stop without consuming it.
890 if (Tok.is(tok::r_paren))
891 break;
892
893 Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
894 break;
895 }
896
897 // Only add the property attribute if it was well-formed.
898 if (!HasInvalidAccessor)
899 Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
900 AccessorNames[AK_Get], AccessorNames[AK_Put],
901 ParsedAttr::Form::Declspec());
902 T.skipToEnd();
903 return !HasInvalidAccessor;
904 }
905
906 unsigned NumArgs =
907 ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
908 SourceLocation(), ParsedAttr::Form::Declspec());
909
910 // If this attribute's args were parsed, and it was expected to have
911 // arguments but none were provided, emit a diagnostic.
912 if (ExistingAttrs < Attrs.size() && Attrs.back().getMaxArgs() && !NumArgs) {
913 Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
914 return false;
915 }
916 return true;
917}
918
919/// [MS] decl-specifier:
920/// __declspec ( extended-decl-modifier-seq )
921///
922/// [MS] extended-decl-modifier-seq:
923/// extended-decl-modifier[opt]
924/// extended-decl-modifier extended-decl-modifier-seq
925void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs) {
926 assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
927 assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
928
929 SourceLocation StartLoc = Tok.getLocation();
930 SourceLocation EndLoc = StartLoc;
931
932 while (Tok.is(tok::kw___declspec)) {
933 ConsumeToken();
934 BalancedDelimiterTracker T(*this, tok::l_paren);
935 if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
936 tok::r_paren))
937 return;
938
939 // An empty declspec is perfectly legal and should not warn. Additionally,
940 // you can specify multiple attributes per declspec.
941 while (Tok.isNot(tok::r_paren)) {
942 // Attribute not present.
943 if (TryConsumeToken(tok::comma))
944 continue;
945
946 if (Tok.is(tok::code_completion)) {
947 cutOffParsing();
950 return;
951 }
952
953 // We expect either a well-known identifier or a generic string. Anything
954 // else is a malformed declspec.
955 bool IsString = Tok.getKind() == tok::string_literal;
956 if (!IsString && Tok.getKind() != tok::identifier &&
957 Tok.getKind() != tok::kw_restrict) {
958 Diag(Tok, diag::err_ms_declspec_type);
959 T.skipToEnd();
960 return;
961 }
962
963 IdentifierInfo *AttrName;
964 SourceLocation AttrNameLoc;
965 if (IsString) {
966 SmallString<8> StrBuffer;
967 bool Invalid = false;
968 StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
969 if (Invalid) {
970 T.skipToEnd();
971 return;
972 }
973 AttrName = PP.getIdentifierInfo(Str);
974 AttrNameLoc = ConsumeStringToken();
975 } else {
976 AttrName = Tok.getIdentifierInfo();
977 AttrNameLoc = ConsumeToken();
978 }
979
980 bool AttrHandled = false;
981
982 // Parse attribute arguments.
983 if (Tok.is(tok::l_paren))
984 AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
985 else if (AttrName->getName() == "property")
986 // The property attribute must have an argument list.
987 Diag(Tok.getLocation(), diag::err_expected_lparen_after)
988 << AttrName->getName();
989
990 if (!AttrHandled)
991 Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
992 ParsedAttr::Form::Declspec());
993 }
994 T.consumeClose();
995 EndLoc = T.getCloseLocation();
996 }
997
998 Attrs.Range = SourceRange(StartLoc, EndLoc);
999}
1000
1001void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
1002 // Treat these like attributes
1003 while (true) {
1004 auto Kind = Tok.getKind();
1005 switch (Kind) {
1006 case tok::kw___fastcall:
1007 case tok::kw___stdcall:
1008 case tok::kw___thiscall:
1009 case tok::kw___regcall:
1010 case tok::kw___cdecl:
1011 case tok::kw___vectorcall:
1012 case tok::kw___ptr64:
1013 case tok::kw___w64:
1014 case tok::kw___ptr32:
1015 case tok::kw___sptr:
1016 case tok::kw___uptr: {
1017 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1018 SourceLocation AttrNameLoc = ConsumeToken();
1019 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1020 Kind);
1021 break;
1022 }
1023 default:
1024 return;
1025 }
1026 }
1027}
1028
1029void Parser::ParseWebAssemblyFuncrefTypeAttribute(ParsedAttributes &attrs) {
1030 assert(Tok.is(tok::kw___funcref));
1031 SourceLocation StartLoc = Tok.getLocation();
1032 if (!getTargetInfo().getTriple().isWasm()) {
1033 ConsumeToken();
1034 Diag(StartLoc, diag::err_wasm_funcref_not_wasm);
1035 return;
1036 }
1037
1038 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1039 SourceLocation AttrNameLoc = ConsumeToken();
1040 attrs.addNew(AttrName, AttrNameLoc, /*ScopeName=*/nullptr,
1041 /*ScopeLoc=*/SourceLocation{}, /*Args=*/nullptr, /*numArgs=*/0,
1042 tok::kw___funcref);
1043}
1044
1045void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
1046 SourceLocation StartLoc = Tok.getLocation();
1047 SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
1048
1049 if (EndLoc.isValid()) {
1050 SourceRange Range(StartLoc, EndLoc);
1051 Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
1052 }
1053}
1054
1055SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
1056 SourceLocation EndLoc;
1057
1058 while (true) {
1059 switch (Tok.getKind()) {
1060 case tok::kw_const:
1061 case tok::kw_volatile:
1062 case tok::kw___fastcall:
1063 case tok::kw___stdcall:
1064 case tok::kw___thiscall:
1065 case tok::kw___cdecl:
1066 case tok::kw___vectorcall:
1067 case tok::kw___ptr32:
1068 case tok::kw___ptr64:
1069 case tok::kw___w64:
1070 case tok::kw___unaligned:
1071 case tok::kw___sptr:
1072 case tok::kw___uptr:
1073 EndLoc = ConsumeToken();
1074 break;
1075 default:
1076 return EndLoc;
1077 }
1078 }
1079}
1080
1081void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
1082 // Treat these like attributes
1083 while (Tok.is(tok::kw___pascal)) {
1084 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1085 SourceLocation AttrNameLoc = ConsumeToken();
1086 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1087 tok::kw___pascal);
1088 }
1089}
1090
1091void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) {
1092 // Treat these like attributes
1093 while (Tok.is(tok::kw___kernel)) {
1094 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1095 SourceLocation AttrNameLoc = ConsumeToken();
1096 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1097 tok::kw___kernel);
1098 }
1099}
1100
1101void Parser::ParseCUDAFunctionAttributes(ParsedAttributes &attrs) {
1102 while (Tok.is(tok::kw___noinline__)) {
1103 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1104 SourceLocation AttrNameLoc = ConsumeToken();
1105 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1106 tok::kw___noinline__);
1107 }
1108}
1109
1110void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
1111 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1112 SourceLocation AttrNameLoc = Tok.getLocation();
1113 Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1114 Tok.getKind());
1115}
1116
1117bool Parser::isHLSLQualifier(const Token &Tok) const {
1118 return Tok.is(tok::kw_groupshared);
1119}
1120
1121void Parser::ParseHLSLQualifiers(ParsedAttributes &Attrs) {
1122 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1123 auto Kind = Tok.getKind();
1124 SourceLocation AttrNameLoc = ConsumeToken();
1125 Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, Kind);
1126}
1127
1128void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
1129 // Treat these like attributes, even though they're type specifiers.
1130 while (true) {
1131 auto Kind = Tok.getKind();
1132 switch (Kind) {
1133 case tok::kw__Nonnull:
1134 case tok::kw__Nullable:
1135 case tok::kw__Nullable_result:
1136 case tok::kw__Null_unspecified: {
1137 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1138 SourceLocation AttrNameLoc = ConsumeToken();
1139 if (!getLangOpts().ObjC)
1140 Diag(AttrNameLoc, diag::ext_nullability)
1141 << AttrName;
1142 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1143 Kind);
1144 break;
1145 }
1146 default:
1147 return;
1148 }
1149 }
1150}
1151
1152static bool VersionNumberSeparator(const char Separator) {
1153 return (Separator == '.' || Separator == '_');
1154}
1155
1156/// Parse a version number.
1157///
1158/// version:
1159/// simple-integer
1160/// simple-integer '.' simple-integer
1161/// simple-integer '_' simple-integer
1162/// simple-integer '.' simple-integer '.' simple-integer
1163/// simple-integer '_' simple-integer '_' simple-integer
1164VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
1165 Range = SourceRange(Tok.getLocation(), Tok.getEndLoc());
1166
1167 if (!Tok.is(tok::numeric_constant)) {
1168 Diag(Tok, diag::err_expected_version);
1169 SkipUntil(tok::comma, tok::r_paren,
1171 return VersionTuple();
1172 }
1173
1174 // Parse the major (and possibly minor and subminor) versions, which
1175 // are stored in the numeric constant. We utilize a quirk of the
1176 // lexer, which is that it handles something like 1.2.3 as a single
1177 // numeric constant, rather than two separate tokens.
1178 SmallString<512> Buffer;
1179 Buffer.resize(Tok.getLength()+1);
1180 const char *ThisTokBegin = &Buffer[0];
1181
1182 // Get the spelling of the token, which eliminates trigraphs, etc.
1183 bool Invalid = false;
1184 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
1185 if (Invalid)
1186 return VersionTuple();
1187
1188 // Parse the major version.
1189 unsigned AfterMajor = 0;
1190 unsigned Major = 0;
1191 while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
1192 Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
1193 ++AfterMajor;
1194 }
1195
1196 if (AfterMajor == 0) {
1197 Diag(Tok, diag::err_expected_version);
1198 SkipUntil(tok::comma, tok::r_paren,
1200 return VersionTuple();
1201 }
1202
1203 if (AfterMajor == ActualLength) {
1204 ConsumeToken();
1205
1206 // We only had a single version component.
1207 if (Major == 0) {
1208 Diag(Tok, diag::err_zero_version);
1209 return VersionTuple();
1210 }
1211
1212 return VersionTuple(Major);
1213 }
1214
1215 const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
1216 if (!VersionNumberSeparator(AfterMajorSeparator)
1217 || (AfterMajor + 1 == ActualLength)) {
1218 Diag(Tok, diag::err_expected_version);
1219 SkipUntil(tok::comma, tok::r_paren,
1221 return VersionTuple();
1222 }
1223
1224 // Parse the minor version.
1225 unsigned AfterMinor = AfterMajor + 1;
1226 unsigned Minor = 0;
1227 while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
1228 Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
1229 ++AfterMinor;
1230 }
1231
1232 if (AfterMinor == ActualLength) {
1233 ConsumeToken();
1234
1235 // We had major.minor.
1236 if (Major == 0 && Minor == 0) {
1237 Diag(Tok, diag::err_zero_version);
1238 return VersionTuple();
1239 }
1240
1241 return VersionTuple(Major, Minor);
1242 }
1243
1244 const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
1245 // If what follows is not a '.' or '_', we have a problem.
1246 if (!VersionNumberSeparator(AfterMinorSeparator)) {
1247 Diag(Tok, diag::err_expected_version);
1248 SkipUntil(tok::comma, tok::r_paren,
1250 return VersionTuple();
1251 }
1252
1253 // Warn if separators, be it '.' or '_', do not match.
1254 if (AfterMajorSeparator != AfterMinorSeparator)
1255 Diag(Tok, diag::warn_expected_consistent_version_separator);
1256
1257 // Parse the subminor version.
1258 unsigned AfterSubminor = AfterMinor + 1;
1259 unsigned Subminor = 0;
1260 while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
1261 Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
1262 ++AfterSubminor;
1263 }
1264
1265 if (AfterSubminor != ActualLength) {
1266 Diag(Tok, diag::err_expected_version);
1267 SkipUntil(tok::comma, tok::r_paren,
1269 return VersionTuple();
1270 }
1271 ConsumeToken();
1272 return VersionTuple(Major, Minor, Subminor);
1273}
1274
1275/// Parse the contents of the "availability" attribute.
1276///
1277/// availability-attribute:
1278/// 'availability' '(' platform ',' opt-strict version-arg-list,
1279/// opt-replacement, opt-message')'
1280///
1281/// platform:
1282/// identifier
1283///
1284/// opt-strict:
1285/// 'strict' ','
1286///
1287/// version-arg-list:
1288/// version-arg
1289/// version-arg ',' version-arg-list
1290///
1291/// version-arg:
1292/// 'introduced' '=' version
1293/// 'deprecated' '=' version
1294/// 'obsoleted' = version
1295/// 'unavailable'
1296/// opt-replacement:
1297/// 'replacement' '=' <string>
1298/// opt-message:
1299/// 'message' '=' <string>
1300void Parser::ParseAvailabilityAttribute(
1301 IdentifierInfo &Availability, SourceLocation AvailabilityLoc,
1302 ParsedAttributes &attrs, SourceLocation *endLoc, IdentifierInfo *ScopeName,
1303 SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1304 enum { Introduced, Deprecated, Obsoleted, Unknown };
1305 AvailabilityChange Changes[Unknown];
1306 ExprResult MessageExpr, ReplacementExpr;
1307 IdentifierLoc *EnvironmentLoc = nullptr;
1308
1309 // Opening '('.
1310 BalancedDelimiterTracker T(*this, tok::l_paren);
1311 if (T.consumeOpen()) {
1312 Diag(Tok, diag::err_expected) << tok::l_paren;
1313 return;
1314 }
1315
1316 // Parse the platform name.
1317 if (Tok.isNot(tok::identifier)) {
1318 Diag(Tok, diag::err_availability_expected_platform);
1319 SkipUntil(tok::r_paren, StopAtSemi);
1320 return;
1321 }
1322 IdentifierLoc *Platform = ParseIdentifierLoc();
1323 if (const IdentifierInfo *const Ident = Platform->Ident) {
1324 // Disallow xrOS for availability attributes.
1325 if (Ident->getName().contains("xrOS") || Ident->getName().contains("xros"))
1326 Diag(Platform->Loc, diag::warn_availability_unknown_platform) << Ident;
1327 // Canonicalize platform name from "macosx" to "macos".
1328 else if (Ident->getName() == "macosx")
1329 Platform->Ident = PP.getIdentifierInfo("macos");
1330 // Canonicalize platform name from "macosx_app_extension" to
1331 // "macos_app_extension".
1332 else if (Ident->getName() == "macosx_app_extension")
1333 Platform->Ident = PP.getIdentifierInfo("macos_app_extension");
1334 else
1335 Platform->Ident = PP.getIdentifierInfo(
1336 AvailabilityAttr::canonicalizePlatformName(Ident->getName()));
1337 }
1338
1339 // Parse the ',' following the platform name.
1340 if (ExpectAndConsume(tok::comma)) {
1341 SkipUntil(tok::r_paren, StopAtSemi);
1342 return;
1343 }
1344
1345 // If we haven't grabbed the pointers for the identifiers
1346 // "introduced", "deprecated", and "obsoleted", do so now.
1347 if (!Ident_introduced) {
1348 Ident_introduced = PP.getIdentifierInfo("introduced");
1349 Ident_deprecated = PP.getIdentifierInfo("deprecated");
1350 Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
1351 Ident_unavailable = PP.getIdentifierInfo("unavailable");
1352 Ident_message = PP.getIdentifierInfo("message");
1353 Ident_strict = PP.getIdentifierInfo("strict");
1354 Ident_replacement = PP.getIdentifierInfo("replacement");
1355 Ident_environment = PP.getIdentifierInfo("environment");
1356 }
1357
1358 // Parse the optional "strict", the optional "replacement" and the set of
1359 // introductions/deprecations/removals.
1360 SourceLocation UnavailableLoc, StrictLoc;
1361 do {
1362 if (Tok.isNot(tok::identifier)) {
1363 Diag(Tok, diag::err_availability_expected_change);
1364 SkipUntil(tok::r_paren, StopAtSemi);
1365 return;
1366 }
1367 IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1368 SourceLocation KeywordLoc = ConsumeToken();
1369
1370 if (Keyword == Ident_strict) {
1371 if (StrictLoc.isValid()) {
1372 Diag(KeywordLoc, diag::err_availability_redundant)
1373 << Keyword << SourceRange(StrictLoc);
1374 }
1375 StrictLoc = KeywordLoc;
1376 continue;
1377 }
1378
1379 if (Keyword == Ident_unavailable) {
1380 if (UnavailableLoc.isValid()) {
1381 Diag(KeywordLoc, diag::err_availability_redundant)
1382 << Keyword << SourceRange(UnavailableLoc);
1383 }
1384 UnavailableLoc = KeywordLoc;
1385 continue;
1386 }
1387
1388 if (Keyword == Ident_deprecated && Platform->Ident &&
1389 Platform->Ident->isStr("swift")) {
1390 // For swift, we deprecate for all versions.
1391 if (Changes[Deprecated].KeywordLoc.isValid()) {
1392 Diag(KeywordLoc, diag::err_availability_redundant)
1393 << Keyword
1394 << SourceRange(Changes[Deprecated].KeywordLoc);
1395 }
1396
1397 Changes[Deprecated].KeywordLoc = KeywordLoc;
1398 // Use a fake version here.
1399 Changes[Deprecated].Version = VersionTuple(1);
1400 continue;
1401 }
1402
1403 if (Keyword == Ident_environment) {
1404 if (EnvironmentLoc != nullptr) {
1405 Diag(KeywordLoc, diag::err_availability_redundant)
1406 << Keyword << SourceRange(EnvironmentLoc->Loc);
1407 }
1408 }
1409
1410 if (Tok.isNot(tok::equal)) {
1411 Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
1412 SkipUntil(tok::r_paren, StopAtSemi);
1413 return;
1414 }
1415 ConsumeToken();
1416 if (Keyword == Ident_message || Keyword == Ident_replacement) {
1417 if (!isTokenStringLiteral()) {
1418 Diag(Tok, diag::err_expected_string_literal)
1419 << /*Source='availability attribute'*/2;
1420 SkipUntil(tok::r_paren, StopAtSemi);
1421 return;
1422 }
1423 if (Keyword == Ident_message) {
1425 break;
1426 } else {
1427 ReplacementExpr = ParseUnevaluatedStringLiteralExpression();
1428 continue;
1429 }
1430 }
1431 if (Keyword == Ident_environment) {
1432 if (Tok.isNot(tok::identifier)) {
1433 Diag(Tok, diag::err_availability_expected_environment);
1434 SkipUntil(tok::r_paren, StopAtSemi);
1435 return;
1436 }
1437 EnvironmentLoc = ParseIdentifierLoc();
1438 continue;
1439 }
1440
1441 // Special handling of 'NA' only when applied to introduced or
1442 // deprecated.
1443 if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
1444 Tok.is(tok::identifier)) {
1446 if (NA->getName() == "NA") {
1447 ConsumeToken();
1448 if (Keyword == Ident_introduced)
1449 UnavailableLoc = KeywordLoc;
1450 continue;
1451 }
1452 }
1453
1454 SourceRange VersionRange;
1455 VersionTuple Version = ParseVersionTuple(VersionRange);
1456
1457 if (Version.empty()) {
1458 SkipUntil(tok::r_paren, StopAtSemi);
1459 return;
1460 }
1461
1462 unsigned Index;
1463 if (Keyword == Ident_introduced)
1464 Index = Introduced;
1465 else if (Keyword == Ident_deprecated)
1466 Index = Deprecated;
1467 else if (Keyword == Ident_obsoleted)
1468 Index = Obsoleted;
1469 else
1470 Index = Unknown;
1471
1472 if (Index < Unknown) {
1473 if (!Changes[Index].KeywordLoc.isInvalid()) {
1474 Diag(KeywordLoc, diag::err_availability_redundant)
1475 << Keyword
1476 << SourceRange(Changes[Index].KeywordLoc,
1477 Changes[Index].VersionRange.getEnd());
1478 }
1479
1480 Changes[Index].KeywordLoc = KeywordLoc;
1481 Changes[Index].Version = Version;
1482 Changes[Index].VersionRange = VersionRange;
1483 } else {
1484 Diag(KeywordLoc, diag::err_availability_unknown_change)
1485 << Keyword << VersionRange;
1486 }
1487
1488 } while (TryConsumeToken(tok::comma));
1489
1490 // Closing ')'.
1491 if (T.consumeClose())
1492 return;
1493
1494 if (endLoc)
1495 *endLoc = T.getCloseLocation();
1496
1497 // The 'unavailable' availability cannot be combined with any other
1498 // availability changes. Make sure that hasn't happened.
1499 if (UnavailableLoc.isValid()) {
1500 bool Complained = false;
1501 for (unsigned Index = Introduced; Index != Unknown; ++Index) {
1502 if (Changes[Index].KeywordLoc.isValid()) {
1503 if (!Complained) {
1504 Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
1505 << SourceRange(Changes[Index].KeywordLoc,
1506 Changes[Index].VersionRange.getEnd());
1507 Complained = true;
1508 }
1509
1510 // Clear out the availability.
1511 Changes[Index] = AvailabilityChange();
1512 }
1513 }
1514 }
1515
1516 // Record this attribute
1517 attrs.addNew(&Availability,
1518 SourceRange(AvailabilityLoc, T.getCloseLocation()), ScopeName,
1519 ScopeLoc, Platform, Changes[Introduced], Changes[Deprecated],
1520 Changes[Obsoleted], UnavailableLoc, MessageExpr.get(), Form,
1521 StrictLoc, ReplacementExpr.get(), EnvironmentLoc);
1522}
1523
1524/// Parse the contents of the "external_source_symbol" attribute.
1525///
1526/// external-source-symbol-attribute:
1527/// 'external_source_symbol' '(' keyword-arg-list ')'
1528///
1529/// keyword-arg-list:
1530/// keyword-arg
1531/// keyword-arg ',' keyword-arg-list
1532///
1533/// keyword-arg:
1534/// 'language' '=' <string>
1535/// 'defined_in' '=' <string>
1536/// 'USR' '=' <string>
1537/// 'generated_declaration'
1538void Parser::ParseExternalSourceSymbolAttribute(
1539 IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc,
1540 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1541 SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1542 // Opening '('.
1543 BalancedDelimiterTracker T(*this, tok::l_paren);
1544 if (T.expectAndConsume())
1545 return;
1546
1547 // Initialize the pointers for the keyword identifiers when required.
1548 if (!Ident_language) {
1549 Ident_language = PP.getIdentifierInfo("language");
1550 Ident_defined_in = PP.getIdentifierInfo("defined_in");
1551 Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration");
1552 Ident_USR = PP.getIdentifierInfo("USR");
1553 }
1554
1556 bool HasLanguage = false;
1557 ExprResult DefinedInExpr;
1558 bool HasDefinedIn = false;
1559 IdentifierLoc *GeneratedDeclaration = nullptr;
1560 ExprResult USR;
1561 bool HasUSR = false;
1562
1563 // Parse the language/defined_in/generated_declaration keywords
1564 do {
1565 if (Tok.isNot(tok::identifier)) {
1566 Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1567 SkipUntil(tok::r_paren, StopAtSemi);
1568 return;
1569 }
1570
1571 SourceLocation KeywordLoc = Tok.getLocation();
1572 IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1573 if (Keyword == Ident_generated_declaration) {
1574 if (GeneratedDeclaration) {
1575 Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword;
1576 SkipUntil(tok::r_paren, StopAtSemi);
1577 return;
1578 }
1579 GeneratedDeclaration = ParseIdentifierLoc();
1580 continue;
1581 }
1582
1583 if (Keyword != Ident_language && Keyword != Ident_defined_in &&
1584 Keyword != Ident_USR) {
1585 Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1586 SkipUntil(tok::r_paren, StopAtSemi);
1587 return;
1588 }
1589
1590 ConsumeToken();
1591 if (ExpectAndConsume(tok::equal, diag::err_expected_after,
1592 Keyword->getName())) {
1593 SkipUntil(tok::r_paren, StopAtSemi);
1594 return;
1595 }
1596
1597 bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn,
1598 HadUSR = HasUSR;
1599 if (Keyword == Ident_language)
1600 HasLanguage = true;
1601 else if (Keyword == Ident_USR)
1602 HasUSR = true;
1603 else
1604 HasDefinedIn = true;
1605
1606 if (!isTokenStringLiteral()) {
1607 Diag(Tok, diag::err_expected_string_literal)
1608 << /*Source='external_source_symbol attribute'*/ 3
1609 << /*language | source container | USR*/ (
1610 Keyword == Ident_language
1611 ? 0
1612 : (Keyword == Ident_defined_in ? 1 : 2));
1613 SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
1614 continue;
1615 }
1616 if (Keyword == Ident_language) {
1617 if (HadLanguage) {
1618 Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1619 << Keyword;
1621 continue;
1622 }
1624 } else if (Keyword == Ident_USR) {
1625 if (HadUSR) {
1626 Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1627 << Keyword;
1629 continue;
1630 }
1632 } else {
1633 assert(Keyword == Ident_defined_in && "Invalid clause keyword!");
1634 if (HadDefinedIn) {
1635 Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1636 << Keyword;
1638 continue;
1639 }
1641 }
1642 } while (TryConsumeToken(tok::comma));
1643
1644 // Closing ')'.
1645 if (T.consumeClose())
1646 return;
1647 if (EndLoc)
1648 *EndLoc = T.getCloseLocation();
1649
1650 ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(), GeneratedDeclaration,
1651 USR.get()};
1652 Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()),
1653 ScopeName, ScopeLoc, Args, std::size(Args), Form);
1654}
1655
1656/// Parse the contents of the "objc_bridge_related" attribute.
1657/// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1658/// related_class:
1659/// Identifier
1660///
1661/// opt-class_method:
1662/// Identifier: | <empty>
1663///
1664/// opt-instance_method:
1665/// Identifier | <empty>
1666///
1667void Parser::ParseObjCBridgeRelatedAttribute(
1668 IdentifierInfo &ObjCBridgeRelated, SourceLocation ObjCBridgeRelatedLoc,
1669 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1670 SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1671 // Opening '('.
1672 BalancedDelimiterTracker T(*this, tok::l_paren);
1673 if (T.consumeOpen()) {
1674 Diag(Tok, diag::err_expected) << tok::l_paren;
1675 return;
1676 }
1677
1678 // Parse the related class name.
1679 if (Tok.isNot(tok::identifier)) {
1680 Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1681 SkipUntil(tok::r_paren, StopAtSemi);
1682 return;
1683 }
1684 IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1685 if (ExpectAndConsume(tok::comma)) {
1686 SkipUntil(tok::r_paren, StopAtSemi);
1687 return;
1688 }
1689
1690 // Parse class method name. It's non-optional in the sense that a trailing
1691 // comma is required, but it can be the empty string, and then we record a
1692 // nullptr.
1693 IdentifierLoc *ClassMethod = nullptr;
1694 if (Tok.is(tok::identifier)) {
1695 ClassMethod = ParseIdentifierLoc();
1696 if (!TryConsumeToken(tok::colon)) {
1697 Diag(Tok, diag::err_objcbridge_related_selector_name);
1698 SkipUntil(tok::r_paren, StopAtSemi);
1699 return;
1700 }
1701 }
1702 if (!TryConsumeToken(tok::comma)) {
1703 if (Tok.is(tok::colon))
1704 Diag(Tok, diag::err_objcbridge_related_selector_name);
1705 else
1706 Diag(Tok, diag::err_expected) << tok::comma;
1707 SkipUntil(tok::r_paren, StopAtSemi);
1708 return;
1709 }
1710
1711 // Parse instance method name. Also non-optional but empty string is
1712 // permitted.
1713 IdentifierLoc *InstanceMethod = nullptr;
1714 if (Tok.is(tok::identifier))
1715 InstanceMethod = ParseIdentifierLoc();
1716 else if (Tok.isNot(tok::r_paren)) {
1717 Diag(Tok, diag::err_expected) << tok::r_paren;
1718 SkipUntil(tok::r_paren, StopAtSemi);
1719 return;
1720 }
1721
1722 // Closing ')'.
1723 if (T.consumeClose())
1724 return;
1725
1726 if (EndLoc)
1727 *EndLoc = T.getCloseLocation();
1728
1729 // Record this attribute
1730 Attrs.addNew(&ObjCBridgeRelated,
1731 SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1732 ScopeName, ScopeLoc, RelatedClass, ClassMethod, InstanceMethod,
1733 Form);
1734}
1735
1736void Parser::ParseSwiftNewTypeAttribute(
1737 IdentifierInfo &AttrName, SourceLocation AttrNameLoc,
1738 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1739 SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1740 BalancedDelimiterTracker T(*this, tok::l_paren);
1741
1742 // Opening '('
1743 if (T.consumeOpen()) {
1744 Diag(Tok, diag::err_expected) << tok::l_paren;
1745 return;
1746 }
1747
1748 if (Tok.is(tok::r_paren)) {
1749 Diag(Tok.getLocation(), diag::err_argument_required_after_attribute);
1750 T.consumeClose();
1751 return;
1752 }
1753 if (Tok.isNot(tok::kw_struct) && Tok.isNot(tok::kw_enum)) {
1754 Diag(Tok, diag::warn_attribute_type_not_supported)
1755 << &AttrName << Tok.getIdentifierInfo();
1756 if (!isTokenSpecial())
1757 ConsumeToken();
1758 T.consumeClose();
1759 return;
1760 }
1761
1762 auto *SwiftType = IdentifierLoc::create(Actions.Context, Tok.getLocation(),
1763 Tok.getIdentifierInfo());
1764 ConsumeToken();
1765
1766 // Closing ')'
1767 if (T.consumeClose())
1768 return;
1769 if (EndLoc)
1770 *EndLoc = T.getCloseLocation();
1771
1772 ArgsUnion Args[] = {SwiftType};
1773 Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, T.getCloseLocation()),
1774 ScopeName, ScopeLoc, Args, std::size(Args), Form);
1775}
1776
1777void Parser::ParseTypeTagForDatatypeAttribute(
1778 IdentifierInfo &AttrName, SourceLocation AttrNameLoc,
1779 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1780 SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1781 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1782
1783 BalancedDelimiterTracker T(*this, tok::l_paren);
1784 T.consumeOpen();
1785
1786 if (Tok.isNot(tok::identifier)) {
1787 Diag(Tok, diag::err_expected) << tok::identifier;
1788 T.skipToEnd();
1789 return;
1790 }
1791 IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1792
1793 if (ExpectAndConsume(tok::comma)) {
1794 T.skipToEnd();
1795 return;
1796 }
1797
1798 SourceRange MatchingCTypeRange;
1799 TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1800 if (MatchingCType.isInvalid()) {
1801 T.skipToEnd();
1802 return;
1803 }
1804
1805 bool LayoutCompatible = false;
1806 bool MustBeNull = false;
1807 while (TryConsumeToken(tok::comma)) {
1808 if (Tok.isNot(tok::identifier)) {
1809 Diag(Tok, diag::err_expected) << tok::identifier;
1810 T.skipToEnd();
1811 return;
1812 }
1813 IdentifierInfo *Flag = Tok.getIdentifierInfo();
1814 if (Flag->isStr("layout_compatible"))
1815 LayoutCompatible = true;
1816 else if (Flag->isStr("must_be_null"))
1817 MustBeNull = true;
1818 else {
1819 Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1820 T.skipToEnd();
1821 return;
1822 }
1823 ConsumeToken(); // consume flag
1824 }
1825
1826 if (!T.consumeClose()) {
1827 Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1828 ArgumentKind, MatchingCType.get(),
1829 LayoutCompatible, MustBeNull, Form);
1830 }
1831
1832 if (EndLoc)
1833 *EndLoc = T.getCloseLocation();
1834}
1835
1836/// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1837/// of a C++11 attribute-specifier in a location where an attribute is not
1838/// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1839/// situation.
1840///
1841/// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1842/// this doesn't appear to actually be an attribute-specifier, and the caller
1843/// should try to parse it.
1844bool Parser::DiagnoseProhibitedCXX11Attribute() {
1845 assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1846
1847 switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1848 case CAK_NotAttributeSpecifier:
1849 // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1850 return false;
1851
1852 case CAK_InvalidAttributeSpecifier:
1853 Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1854 return false;
1855
1856 case CAK_AttributeSpecifier:
1857 // Parse and discard the attributes.
1858 SourceLocation BeginLoc = ConsumeBracket();
1859 ConsumeBracket();
1860 SkipUntil(tok::r_square);
1861 assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1862 SourceLocation EndLoc = ConsumeBracket();
1863 Diag(BeginLoc, diag::err_attributes_not_allowed)
1864 << SourceRange(BeginLoc, EndLoc);
1865 return true;
1866 }
1867 llvm_unreachable("All cases handled above.");
1868}
1869
1870/// We have found the opening square brackets of a C++11
1871/// attribute-specifier in a location where an attribute is not permitted, but
1872/// we know where the attributes ought to be written. Parse them anyway, and
1873/// provide a fixit moving them to the right place.
1874void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributes &Attrs,
1875 SourceLocation CorrectLocation) {
1876 assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1877 Tok.is(tok::kw_alignas) || Tok.isRegularKeywordAttribute());
1878
1879 // Consume the attributes.
1880 auto Keyword =
1881 Tok.isRegularKeywordAttribute() ? Tok.getIdentifierInfo() : nullptr;
1883 ParseCXX11Attributes(Attrs);
1884 CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1885 // FIXME: use err_attributes_misplaced
1886 (Keyword ? Diag(Loc, diag::err_keyword_not_allowed) << Keyword
1887 : Diag(Loc, diag::err_attributes_not_allowed))
1888 << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1889 << FixItHint::CreateRemoval(AttrRange);
1890}
1891
1892void Parser::DiagnoseProhibitedAttributes(
1893 const ParsedAttributesView &Attrs, const SourceLocation CorrectLocation) {
1894 auto *FirstAttr = Attrs.empty() ? nullptr : &Attrs.front();
1895 if (CorrectLocation.isValid()) {
1896 CharSourceRange AttrRange(Attrs.Range, true);
1897 (FirstAttr && FirstAttr->isRegularKeywordAttribute()
1898 ? Diag(CorrectLocation, diag::err_keyword_misplaced) << FirstAttr
1899 : Diag(CorrectLocation, diag::err_attributes_misplaced))
1900 << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1901 << FixItHint::CreateRemoval(AttrRange);
1902 } else {
1903 const SourceRange &Range = Attrs.Range;
1904 (FirstAttr && FirstAttr->isRegularKeywordAttribute()
1905 ? Diag(Range.getBegin(), diag::err_keyword_not_allowed) << FirstAttr
1906 : Diag(Range.getBegin(), diag::err_attributes_not_allowed))
1907 << Range;
1908 }
1909}
1910
1911void Parser::ProhibitCXX11Attributes(ParsedAttributes &Attrs,
1912 unsigned AttrDiagID,
1913 unsigned KeywordDiagID,
1914 bool DiagnoseEmptyAttrs,
1915 bool WarnOnUnknownAttrs) {
1916
1917 if (DiagnoseEmptyAttrs && Attrs.empty() && Attrs.Range.isValid()) {
1918 // An attribute list has been parsed, but it was empty.
1919 // This is the case for [[]].
1920 const auto &LangOpts = getLangOpts();
1921 auto &SM = PP.getSourceManager();
1922 Token FirstLSquare;
1923 Lexer::getRawToken(Attrs.Range.getBegin(), FirstLSquare, SM, LangOpts);
1924
1925 if (FirstLSquare.is(tok::l_square)) {
1926 std::optional<Token> SecondLSquare =
1927 Lexer::findNextToken(FirstLSquare.getLocation(), SM, LangOpts);
1928
1929 if (SecondLSquare && SecondLSquare->is(tok::l_square)) {
1930 // The attribute range starts with [[, but is empty. So this must
1931 // be [[]], which we are supposed to diagnose because
1932 // DiagnoseEmptyAttrs is true.
1933 Diag(Attrs.Range.getBegin(), AttrDiagID) << Attrs.Range;
1934 return;
1935 }
1936 }
1937 }
1938
1939 for (const ParsedAttr &AL : Attrs) {
1940 if (AL.isRegularKeywordAttribute()) {
1941 Diag(AL.getLoc(), KeywordDiagID) << AL;
1942 AL.setInvalid();
1943 continue;
1944 }
1945 if (!AL.isStandardAttributeSyntax())
1946 continue;
1947 if (AL.getKind() == ParsedAttr::UnknownAttribute) {
1948 if (WarnOnUnknownAttrs)
1949 Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
1950 << AL << AL.getRange();
1951 } else {
1952 Diag(AL.getLoc(), AttrDiagID) << AL;
1953 AL.setInvalid();
1954 }
1955 }
1956}
1957
1958void Parser::DiagnoseCXX11AttributeExtension(ParsedAttributes &Attrs) {
1959 for (const ParsedAttr &PA : Attrs) {
1960 if (PA.isStandardAttributeSyntax() || PA.isRegularKeywordAttribute())
1961 Diag(PA.getLoc(), diag::ext_cxx11_attr_placement)
1962 << PA << PA.isRegularKeywordAttribute() << PA.getRange();
1963 }
1964}
1965
1966// Usually, `__attribute__((attrib)) class Foo {} var` means that attribute
1967// applies to var, not the type Foo.
1968// As an exception to the rule, __declspec(align(...)) before the
1969// class-key affects the type instead of the variable.
1970// Also, Microsoft-style [attributes] seem to affect the type instead of the
1971// variable.
1972// This function moves attributes that should apply to the type off DS to Attrs.
1973void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributes &Attrs,
1974 DeclSpec &DS, TagUseKind TUK) {
1975 if (TUK == TagUseKind::Reference)
1976 return;
1977
1979
1980 for (ParsedAttr &AL : DS.getAttributes()) {
1981 if ((AL.getKind() == ParsedAttr::AT_Aligned &&
1982 AL.isDeclspecAttribute()) ||
1983 AL.isMicrosoftAttribute())
1984 ToBeMoved.push_back(&AL);
1985 }
1986
1987 for (ParsedAttr *AL : ToBeMoved) {
1988 DS.getAttributes().remove(AL);
1989 Attrs.addAtEnd(AL);
1990 }
1991}
1992
1993/// ParseDeclaration - Parse a full 'declaration', which consists of
1994/// declaration-specifiers, some number of declarators, and a semicolon.
1995/// 'Context' should be a DeclaratorContext value. This returns the
1996/// location of the semicolon in DeclEnd.
1997///
1998/// declaration: [C99 6.7]
1999/// block-declaration ->
2000/// simple-declaration
2001/// others [FIXME]
2002/// [C++] template-declaration
2003/// [C++] namespace-definition
2004/// [C++] using-directive
2005/// [C++] using-declaration
2006/// [C++11/C11] static_assert-declaration
2007/// others... [FIXME]
2008///
2009Parser::DeclGroupPtrTy Parser::ParseDeclaration(DeclaratorContext Context,
2010 SourceLocation &DeclEnd,
2011 ParsedAttributes &DeclAttrs,
2012 ParsedAttributes &DeclSpecAttrs,
2013 SourceLocation *DeclSpecStart) {
2014 ParenBraceBracketBalancer BalancerRAIIObj(*this);
2015 // Must temporarily exit the objective-c container scope for
2016 // parsing c none objective-c decls.
2017 ObjCDeclContextSwitch ObjCDC(*this);
2018
2019 Decl *SingleDecl = nullptr;
2020 switch (Tok.getKind()) {
2021 case tok::kw_template:
2022 case tok::kw_export:
2023 ProhibitAttributes(DeclAttrs);
2024 ProhibitAttributes(DeclSpecAttrs);
2025 return ParseDeclarationStartingWithTemplate(Context, DeclEnd, DeclAttrs);
2026 case tok::kw_inline:
2027 // Could be the start of an inline namespace. Allowed as an ext in C++03.
2028 if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
2029 ProhibitAttributes(DeclAttrs);
2030 ProhibitAttributes(DeclSpecAttrs);
2031 SourceLocation InlineLoc = ConsumeToken();
2032 return ParseNamespace(Context, DeclEnd, InlineLoc);
2033 }
2034 return ParseSimpleDeclaration(Context, DeclEnd, DeclAttrs, DeclSpecAttrs,
2035 true, nullptr, DeclSpecStart);
2036
2037 case tok::kw_cbuffer:
2038 case tok::kw_tbuffer:
2039 SingleDecl = ParseHLSLBuffer(DeclEnd);
2040 break;
2041 case tok::kw_namespace:
2042 ProhibitAttributes(DeclAttrs);
2043 ProhibitAttributes(DeclSpecAttrs);
2044 return ParseNamespace(Context, DeclEnd);
2045 case tok::kw_using: {
2046 ParsedAttributes Attrs(AttrFactory);
2047 takeAndConcatenateAttrs(DeclAttrs, DeclSpecAttrs, Attrs);
2048 return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
2049 DeclEnd, Attrs);
2050 }
2051 case tok::kw_static_assert:
2052 case tok::kw__Static_assert:
2053 ProhibitAttributes(DeclAttrs);
2054 ProhibitAttributes(DeclSpecAttrs);
2055 SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
2056 break;
2057 default:
2058 return ParseSimpleDeclaration(Context, DeclEnd, DeclAttrs, DeclSpecAttrs,
2059 true, nullptr, DeclSpecStart);
2060 }
2061
2062 // This routine returns a DeclGroup, if the thing we parsed only contains a
2063 // single decl, convert it now.
2064 return Actions.ConvertDeclToDeclGroup(SingleDecl);
2065}
2066
2067/// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
2068/// declaration-specifiers init-declarator-list[opt] ';'
2069/// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
2070/// init-declarator-list ';'
2071///[C90/C++]init-declarator-list ';' [TODO]
2072/// [OMP] threadprivate-directive
2073/// [OMP] allocate-directive [TODO]
2074///
2075/// for-range-declaration: [C++11 6.5p1: stmt.ranged]
2076/// attribute-specifier-seq[opt] type-specifier-seq declarator
2077///
2078/// If RequireSemi is false, this does not check for a ';' at the end of the
2079/// declaration. If it is true, it checks for and eats it.
2080///
2081/// If FRI is non-null, we might be parsing a for-range-declaration instead
2082/// of a simple-declaration. If we find that we are, we also parse the
2083/// for-range-initializer, and place it here.
2084///
2085/// DeclSpecStart is used when decl-specifiers are parsed before parsing
2086/// the Declaration. The SourceLocation for this Decl is set to
2087/// DeclSpecStart if DeclSpecStart is non-null.
2088Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(
2089 DeclaratorContext Context, SourceLocation &DeclEnd,
2090 ParsedAttributes &DeclAttrs, ParsedAttributes &DeclSpecAttrs,
2091 bool RequireSemi, ForRangeInit *FRI, SourceLocation *DeclSpecStart) {
2092 // Need to retain these for diagnostics before we add them to the DeclSepc.
2093 ParsedAttributesView OriginalDeclSpecAttrs;
2094 OriginalDeclSpecAttrs.addAll(DeclSpecAttrs.begin(), DeclSpecAttrs.end());
2095 OriginalDeclSpecAttrs.Range = DeclSpecAttrs.Range;
2096
2097 // Parse the common declaration-specifiers piece.
2098 ParsingDeclSpec DS(*this);
2099 DS.takeAttributesFrom(DeclSpecAttrs);
2100
2101 ParsedTemplateInfo TemplateInfo;
2102 DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
2103 ParseDeclarationSpecifiers(DS, TemplateInfo, AS_none, DSContext);
2104
2105 // If we had a free-standing type definition with a missing semicolon, we
2106 // may get this far before the problem becomes obvious.
2107 if (DS.hasTagDefinition() &&
2108 DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
2109 return nullptr;
2110
2111 // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
2112 // declaration-specifiers init-declarator-list[opt] ';'
2113 if (Tok.is(tok::semi)) {
2114 ProhibitAttributes(DeclAttrs);
2115 DeclEnd = Tok.getLocation();
2116 if (RequireSemi) ConsumeToken();
2117 RecordDecl *AnonRecord = nullptr;
2118 Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(
2119 getCurScope(), AS_none, DS, ParsedAttributesView::none(), AnonRecord);
2120 Actions.ActOnDefinedDeclarationSpecifier(TheDecl);
2121 DS.complete(TheDecl);
2122 if (AnonRecord) {
2123 Decl* decls[] = {AnonRecord, TheDecl};
2124 return Actions.BuildDeclaratorGroup(decls);
2125 }
2126 return Actions.ConvertDeclToDeclGroup(TheDecl);
2127 }
2128
2129 if (DS.hasTagDefinition())
2131
2132 if (DeclSpecStart)
2133 DS.SetRangeStart(*DeclSpecStart);
2134
2135 return ParseDeclGroup(DS, Context, DeclAttrs, TemplateInfo, &DeclEnd, FRI);
2136}
2137
2138/// Returns true if this might be the start of a declarator, or a common typo
2139/// for a declarator.
2140bool Parser::MightBeDeclarator(DeclaratorContext Context) {
2141 switch (Tok.getKind()) {
2142 case tok::annot_cxxscope:
2143 case tok::annot_template_id:
2144 case tok::caret:
2145 case tok::code_completion:
2146 case tok::coloncolon:
2147 case tok::ellipsis:
2148 case tok::kw___attribute:
2149 case tok::kw_operator:
2150 case tok::l_paren:
2151 case tok::star:
2152 return true;
2153
2154 case tok::amp:
2155 case tok::ampamp:
2156 return getLangOpts().CPlusPlus;
2157
2158 case tok::l_square: // Might be an attribute on an unnamed bit-field.
2159 return Context == DeclaratorContext::Member && getLangOpts().CPlusPlus11 &&
2160 NextToken().is(tok::l_square);
2161
2162 case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
2163 return Context == DeclaratorContext::Member || getLangOpts().CPlusPlus;
2164
2165 case tok::identifier:
2166 switch (NextToken().getKind()) {
2167 case tok::code_completion:
2168 case tok::coloncolon:
2169 case tok::comma:
2170 case tok::equal:
2171 case tok::equalequal: // Might be a typo for '='.
2172 case tok::kw_alignas:
2173 case tok::kw_asm:
2174 case tok::kw___attribute:
2175 case tok::l_brace:
2176 case tok::l_paren:
2177 case tok::l_square:
2178 case tok::less:
2179 case tok::r_brace:
2180 case tok::r_paren:
2181 case tok::r_square:
2182 case tok::semi:
2183 return true;
2184
2185 case tok::colon:
2186 // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
2187 // and in block scope it's probably a label. Inside a class definition,
2188 // this is a bit-field.
2189 return Context == DeclaratorContext::Member ||
2190 (getLangOpts().CPlusPlus && Context == DeclaratorContext::File);
2191
2192 case tok::identifier: // Possible virt-specifier.
2193 return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
2194
2195 default:
2196 return Tok.isRegularKeywordAttribute();
2197 }
2198
2199 default:
2200 return Tok.isRegularKeywordAttribute();
2201 }
2202}
2203
2204/// Skip until we reach something which seems like a sensible place to pick
2205/// up parsing after a malformed declaration. This will sometimes stop sooner
2206/// than SkipUntil(tok::r_brace) would, but will never stop later.
2208 while (true) {
2209 switch (Tok.getKind()) {
2210 case tok::l_brace:
2211 // Skip until matching }, then stop. We've probably skipped over
2212 // a malformed class or function definition or similar.
2213 ConsumeBrace();
2214 SkipUntil(tok::r_brace);
2215 if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
2216 // This declaration isn't over yet. Keep skipping.
2217 continue;
2218 }
2219 TryConsumeToken(tok::semi);
2220 return;
2221
2222 case tok::l_square:
2223 ConsumeBracket();
2224 SkipUntil(tok::r_square);
2225 continue;
2226
2227 case tok::l_paren:
2228 ConsumeParen();
2229 SkipUntil(tok::r_paren);
2230 continue;
2231
2232 case tok::r_brace:
2233 return;
2234
2235 case tok::semi:
2236 ConsumeToken();
2237 return;
2238
2239 case tok::kw_inline:
2240 // 'inline namespace' at the start of a line is almost certainly
2241 // a good place to pick back up parsing, except in an Objective-C
2242 // @interface context.
2243 if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
2244 (!ParsingInObjCContainer || CurParsedObjCImpl))
2245 return;
2246 break;
2247
2248 case tok::kw_namespace:
2249 // 'namespace' at the start of a line is almost certainly a good
2250 // place to pick back up parsing, except in an Objective-C
2251 // @interface context.
2252 if (Tok.isAtStartOfLine() &&
2253 (!ParsingInObjCContainer || CurParsedObjCImpl))
2254 return;
2255 break;
2256
2257 case tok::at:
2258 // @end is very much like } in Objective-C contexts.
2259 if (NextToken().isObjCAtKeyword(tok::objc_end) &&
2260 ParsingInObjCContainer)
2261 return;
2262 break;
2263
2264 case tok::minus:
2265 case tok::plus:
2266 // - and + probably start new method declarations in Objective-C contexts.
2267 if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
2268 return;
2269 break;
2270
2271 case tok::eof:
2272 case tok::annot_module_begin:
2273 case tok::annot_module_end:
2274 case tok::annot_module_include:
2275 case tok::annot_repl_input_end:
2276 return;
2277
2278 default:
2279 break;
2280 }
2281
2283 }
2284}
2285
2286/// ParseDeclGroup - Having concluded that this is either a function
2287/// definition or a group of object declarations, actually parse the
2288/// result.
2289Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
2290 DeclaratorContext Context,
2291 ParsedAttributes &Attrs,
2292 ParsedTemplateInfo &TemplateInfo,
2293 SourceLocation *DeclEnd,
2294 ForRangeInit *FRI) {
2295 // Parse the first declarator.
2296 // Consume all of the attributes from `Attrs` by moving them to our own local
2297 // list. This ensures that we will not attempt to interpret them as statement
2298 // attributes higher up the callchain.
2299 ParsedAttributes LocalAttrs(AttrFactory);
2300 LocalAttrs.takeAllFrom(Attrs);
2301 ParsingDeclarator D(*this, DS, LocalAttrs, Context);
2302 if (TemplateInfo.TemplateParams)
2303 D.setTemplateParameterLists(*TemplateInfo.TemplateParams);
2304
2305 bool IsTemplateSpecOrInst =
2306 (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
2307 TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
2308 SuppressAccessChecks SAC(*this, IsTemplateSpecOrInst);
2309
2310 ParseDeclarator(D);
2311
2312 if (IsTemplateSpecOrInst)
2313 SAC.done();
2314
2315 // Bail out if the first declarator didn't seem well-formed.
2316 if (!D.hasName() && !D.mayOmitIdentifier()) {
2318 return nullptr;
2319 }
2320
2321 if (getLangOpts().HLSL)
2322 MaybeParseHLSLAnnotations(D);
2323
2324 if (Tok.is(tok::kw_requires))
2325 ParseTrailingRequiresClause(D);
2326
2327 // Save late-parsed attributes for now; they need to be parsed in the
2328 // appropriate function scope after the function Decl has been constructed.
2329 // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
2330 LateParsedAttrList LateParsedAttrs(true);
2331 if (D.isFunctionDeclarator()) {
2332 MaybeParseGNUAttributes(D, &LateParsedAttrs);
2333
2334 // The _Noreturn keyword can't appear here, unlike the GNU noreturn
2335 // attribute. If we find the keyword here, tell the user to put it
2336 // at the start instead.
2337 if (Tok.is(tok::kw__Noreturn)) {
2339 const char *PrevSpec;
2340 unsigned DiagID;
2341
2342 // We can offer a fixit if it's valid to mark this function as _Noreturn
2343 // and we don't have any other declarators in this declaration.
2344 bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
2345 MaybeParseGNUAttributes(D, &LateParsedAttrs);
2346 Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
2347
2348 Diag(Loc, diag::err_c11_noreturn_misplaced)
2349 << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
2350 << (Fixit ? FixItHint::CreateInsertion(D.getBeginLoc(), "_Noreturn ")
2351 : FixItHint());
2352 }
2353
2354 // Check to see if we have a function *definition* which must have a body.
2355 if (Tok.is(tok::equal) && NextToken().is(tok::code_completion)) {
2356 cutOffParsing();
2358 return nullptr;
2359 }
2360 // We're at the point where the parsing of function declarator is finished.
2361 //
2362 // A common error is that users accidently add a virtual specifier
2363 // (e.g. override) in an out-line method definition.
2364 // We attempt to recover by stripping all these specifiers coming after
2365 // the declarator.
2366 while (auto Specifier = isCXX11VirtSpecifier()) {
2367 Diag(Tok, diag::err_virt_specifier_outside_class)
2370 ConsumeToken();
2371 }
2372 // Look at the next token to make sure that this isn't a function
2373 // declaration. We have to check this because __attribute__ might be the
2374 // start of a function definition in GCC-extended K&R C.
2375 if (!isDeclarationAfterDeclarator()) {
2376
2377 // Function definitions are only allowed at file scope and in C++ classes.
2378 // The C++ inline method definition case is handled elsewhere, so we only
2379 // need to handle the file scope definition case.
2380 if (Context == DeclaratorContext::File) {
2381 if (isStartOfFunctionDefinition(D)) {
2382 // C++23 [dcl.typedef] p1:
2383 // The typedef specifier shall not be [...], and it shall not be
2384 // used in the decl-specifier-seq of a parameter-declaration nor in
2385 // the decl-specifier-seq of a function-definition.
2387 // If the user intended to write 'typename', we should have already
2388 // suggested adding it elsewhere. In any case, recover by ignoring
2389 // 'typedef' and suggest removing it.
2391 diag::err_function_declared_typedef)
2394 }
2395 Decl *TheDecl = nullptr;
2396
2397 if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
2398 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
2399 // If the declarator-id is not a template-id, issue a diagnostic
2400 // and recover by ignoring the 'template' keyword.
2401 Diag(Tok, diag::err_template_defn_explicit_instantiation) << 0;
2402 TheDecl = ParseFunctionDefinition(D, ParsedTemplateInfo(),
2403 &LateParsedAttrs);
2404 } else {
2405 SourceLocation LAngleLoc =
2406 PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
2407 Diag(D.getIdentifierLoc(),
2408 diag::err_explicit_instantiation_with_definition)
2409 << SourceRange(TemplateInfo.TemplateLoc)
2410 << FixItHint::CreateInsertion(LAngleLoc, "<>");
2411
2412 // Recover as if it were an explicit specialization.
2413 TemplateParameterLists FakedParamLists;
2414 FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
2415 0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc,
2416 std::nullopt, LAngleLoc, nullptr));
2417
2418 TheDecl = ParseFunctionDefinition(
2419 D,
2420 ParsedTemplateInfo(&FakedParamLists,
2421 /*isSpecialization=*/true,
2422 /*lastParameterListWasEmpty=*/true),
2423 &LateParsedAttrs);
2424 }
2425 } else {
2426 TheDecl =
2427 ParseFunctionDefinition(D, TemplateInfo, &LateParsedAttrs);
2428 }
2429
2430 return Actions.ConvertDeclToDeclGroup(TheDecl);
2431 }
2432
2433 if (isDeclarationSpecifier(ImplicitTypenameContext::No) ||
2434 Tok.is(tok::kw_namespace)) {
2435 // If there is an invalid declaration specifier or a namespace
2436 // definition right after the function prototype, then we must be in a
2437 // missing semicolon case where this isn't actually a body. Just fall
2438 // through into the code that handles it as a prototype, and let the
2439 // top-level code handle the erroneous declspec where it would
2440 // otherwise expect a comma or semicolon. Note that
2441 // isDeclarationSpecifier already covers 'inline namespace', since
2442 // 'inline' can be a declaration specifier.
2443 } else {
2444 Diag(Tok, diag::err_expected_fn_body);
2445 SkipUntil(tok::semi);
2446 return nullptr;
2447 }
2448 } else {
2449 if (Tok.is(tok::l_brace)) {
2450 Diag(Tok, diag::err_function_definition_not_allowed);
2452 return nullptr;
2453 }
2454 }
2455 }
2456 }
2457
2458 if (ParseAsmAttributesAfterDeclarator(D))
2459 return nullptr;
2460
2461 // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
2462 // must parse and analyze the for-range-initializer before the declaration is
2463 // analyzed.
2464 //
2465 // Handle the Objective-C for-in loop variable similarly, although we
2466 // don't need to parse the container in advance.
2467 if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
2468 bool IsForRangeLoop = false;
2469 if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
2470 IsForRangeLoop = true;
2471 EnterExpressionEvaluationContext ForRangeInitContext(
2473 /*LambdaContextDecl=*/nullptr,
2476
2477 // P2718R0 - Lifetime extension in range-based for loops.
2478 if (getLangOpts().CPlusPlus23) {
2479 auto &LastRecord = Actions.ExprEvalContexts.back();
2480 LastRecord.InLifetimeExtendingContext = true;
2481 }
2482
2483 if (getLangOpts().OpenMP)
2484 Actions.OpenMP().startOpenMPCXXRangeFor();
2485 if (Tok.is(tok::l_brace))
2486 FRI->RangeExpr = ParseBraceInitializer();
2487 else
2488 FRI->RangeExpr = ParseExpression();
2489
2490 // Before c++23, ForRangeLifetimeExtendTemps should be empty.
2491 assert(
2493 Actions.ExprEvalContexts.back().ForRangeLifetimeExtendTemps.empty());
2494
2495 // Move the collected materialized temporaries into ForRangeInit before
2496 // ForRangeInitContext exit.
2497 FRI->LifetimeExtendTemps = std::move(
2498 Actions.ExprEvalContexts.back().ForRangeLifetimeExtendTemps);
2499 }
2500
2501 Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2502 if (IsForRangeLoop) {
2503 Actions.ActOnCXXForRangeDecl(ThisDecl);
2504 } else {
2505 // Obj-C for loop
2506 if (auto *VD = dyn_cast_or_null<VarDecl>(ThisDecl))
2507 VD->setObjCForDecl(true);
2508 }
2509 Actions.FinalizeDeclaration(ThisDecl);
2510 D.complete(ThisDecl);
2511 return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
2512 }
2513
2514 SmallVector<Decl *, 8> DeclsInGroup;
2515 Decl *FirstDecl =
2516 ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo, FRI);
2517 if (LateParsedAttrs.size() > 0)
2518 ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
2519 D.complete(FirstDecl);
2520 if (FirstDecl)
2521 DeclsInGroup.push_back(FirstDecl);
2522
2523 bool ExpectSemi = Context != DeclaratorContext::ForInit;
2524
2525 // If we don't have a comma, it is either the end of the list (a ';') or an
2526 // error, bail out.
2527 SourceLocation CommaLoc;
2528 while (TryConsumeToken(tok::comma, CommaLoc)) {
2529 if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
2530 // This comma was followed by a line-break and something which can't be
2531 // the start of a declarator. The comma was probably a typo for a
2532 // semicolon.
2533 Diag(CommaLoc, diag::err_expected_semi_declaration)
2534 << FixItHint::CreateReplacement(CommaLoc, ";");
2535 ExpectSemi = false;
2536 break;
2537 }
2538
2539 // C++23 [temp.pre]p5:
2540 // In a template-declaration, explicit specialization, or explicit
2541 // instantiation the init-declarator-list in the declaration shall
2542 // contain at most one declarator.
2543 if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
2544 D.isFirstDeclarator()) {
2545 Diag(CommaLoc, diag::err_multiple_template_declarators)
2546 << TemplateInfo.Kind;
2547 }
2548
2549 // Parse the next declarator.
2550 D.clear();
2551 D.setCommaLoc(CommaLoc);
2552
2553 // Accept attributes in an init-declarator. In the first declarator in a
2554 // declaration, these would be part of the declspec. In subsequent
2555 // declarators, they become part of the declarator itself, so that they
2556 // don't apply to declarators after *this* one. Examples:
2557 // short __attribute__((common)) var; -> declspec
2558 // short var __attribute__((common)); -> declarator
2559 // short x, __attribute__((common)) var; -> declarator
2560 MaybeParseGNUAttributes(D);
2561
2562 // MSVC parses but ignores qualifiers after the comma as an extension.
2563 if (getLangOpts().MicrosoftExt)
2564 DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
2565
2566 ParseDeclarator(D);
2567
2568 if (getLangOpts().HLSL)
2569 MaybeParseHLSLAnnotations(D);
2570
2571 if (!D.isInvalidType()) {
2572 // C++2a [dcl.decl]p1
2573 // init-declarator:
2574 // declarator initializer[opt]
2575 // declarator requires-clause
2576 if (Tok.is(tok::kw_requires))
2577 ParseTrailingRequiresClause(D);
2578 Decl *ThisDecl = ParseDeclarationAfterDeclarator(D, TemplateInfo);
2579 D.complete(ThisDecl);
2580 if (ThisDecl)
2581 DeclsInGroup.push_back(ThisDecl);
2582 }
2583 }
2584
2585 if (DeclEnd)
2586 *DeclEnd = Tok.getLocation();
2587
2588 if (ExpectSemi && ExpectAndConsumeSemi(
2589 Context == DeclaratorContext::File
2590 ? diag::err_invalid_token_after_toplevel_declarator
2591 : diag::err_expected_semi_declaration)) {
2592 // Okay, there was no semicolon and one was expected. If we see a
2593 // declaration specifier, just assume it was missing and continue parsing.
2594 // Otherwise things are very confused and we skip to recover.
2595 if (!isDeclarationSpecifier(ImplicitTypenameContext::No))
2597 }
2598
2599 return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
2600}
2601
2602/// Parse an optional simple-asm-expr and attributes, and attach them to a
2603/// declarator. Returns true on an error.
2604bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
2605 // If a simple-asm-expr is present, parse it.
2606 if (Tok.is(tok::kw_asm)) {
2608 ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2609 if (AsmLabel.isInvalid()) {
2610 SkipUntil(tok::semi, StopBeforeMatch);
2611 return true;
2612 }
2613
2614 D.setAsmLabel(AsmLabel.get());
2615 D.SetRangeEnd(Loc);
2616 }
2617
2618 MaybeParseGNUAttributes(D);
2619 return false;
2620}
2621
2622/// Parse 'declaration' after parsing 'declaration-specifiers
2623/// declarator'. This method parses the remainder of the declaration
2624/// (including any attributes or initializer, among other things) and
2625/// finalizes the declaration.
2626///
2627/// init-declarator: [C99 6.7]
2628/// declarator
2629/// declarator '=' initializer
2630/// [GNU] declarator simple-asm-expr[opt] attributes[opt]
2631/// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer
2632/// [C++] declarator initializer[opt]
2633///
2634/// [C++] initializer:
2635/// [C++] '=' initializer-clause
2636/// [C++] '(' expression-list ')'
2637/// [C++0x] '=' 'default' [TODO]
2638/// [C++0x] '=' 'delete'
2639/// [C++0x] braced-init-list
2640///
2641/// According to the standard grammar, =default and =delete are function
2642/// definitions, but that definitely doesn't fit with the parser here.
2643///
2644Decl *Parser::ParseDeclarationAfterDeclarator(
2645 Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
2646 if (ParseAsmAttributesAfterDeclarator(D))
2647 return nullptr;
2648
2649 return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
2650}
2651
2652Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
2653 Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
2654 // RAII type used to track whether we're inside an initializer.
2655 struct InitializerScopeRAII {
2656 Parser &P;
2657 Declarator &D;
2658 Decl *ThisDecl;
2659 bool Entered;
2660
2661 InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl)
2662 : P(P), D(D), ThisDecl(ThisDecl), Entered(false) {
2663 if (ThisDecl && P.getLangOpts().CPlusPlus) {
2664 Scope *S = nullptr;
2665 if (D.getCXXScopeSpec().isSet()) {
2666 P.EnterScope(0);
2667 S = P.getCurScope();
2668 }
2669 if (ThisDecl && !ThisDecl->isInvalidDecl()) {
2670 P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl);
2671 Entered = true;
2672 }
2673 }
2674 }
2675 ~InitializerScopeRAII() {
2676 if (ThisDecl && P.getLangOpts().CPlusPlus) {
2677 Scope *S = nullptr;
2678 if (D.getCXXScopeSpec().isSet())
2679 S = P.getCurScope();
2680
2681 if (Entered)
2682 P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl);
2683 if (S)
2684 P.ExitScope();
2685 }
2686 ThisDecl = nullptr;
2687 }
2688 };
2689
2690 enum class InitKind { Uninitialized, Equal, CXXDirect, CXXBraced };
2691 InitKind TheInitKind;
2692 // If a '==' or '+=' is found, suggest a fixit to '='.
2693 if (isTokenEqualOrEqualTypo())
2694 TheInitKind = InitKind::Equal;
2695 else if (Tok.is(tok::l_paren))
2696 TheInitKind = InitKind::CXXDirect;
2697 else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2698 (!CurParsedObjCImpl || !D.isFunctionDeclarator()))
2699 TheInitKind = InitKind::CXXBraced;
2700 else
2701 TheInitKind = InitKind::Uninitialized;
2702 if (TheInitKind != InitKind::Uninitialized)
2703 D.setHasInitializer();
2704
2705 // Inform Sema that we just parsed this declarator.
2706 Decl *ThisDecl = nullptr;
2707 Decl *OuterDecl = nullptr;
2708 switch (TemplateInfo.Kind) {
2709 case ParsedTemplateInfo::NonTemplate:
2710 ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2711 break;
2712
2713 case ParsedTemplateInfo::Template:
2714 case ParsedTemplateInfo::ExplicitSpecialization: {
2715 ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
2716 *TemplateInfo.TemplateParams,
2717 D);
2718 if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl)) {
2719 // Re-direct this decl to refer to the templated decl so that we can
2720 // initialize it.
2721 ThisDecl = VT->getTemplatedDecl();
2722 OuterDecl = VT;
2723 }
2724 break;
2725 }
2726 case ParsedTemplateInfo::ExplicitInstantiation: {
2727 if (Tok.is(tok::semi)) {
2728 DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
2729 getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
2730 if (ThisRes.isInvalid()) {
2731 SkipUntil(tok::semi, StopBeforeMatch);
2732 return nullptr;
2733 }
2734 ThisDecl = ThisRes.get();
2735 } else {
2736 // FIXME: This check should be for a variable template instantiation only.
2737
2738 // Check that this is a valid instantiation
2739 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
2740 // If the declarator-id is not a template-id, issue a diagnostic and
2741 // recover by ignoring the 'template' keyword.
2742 Diag(Tok, diag::err_template_defn_explicit_instantiation)
2743 << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
2744 ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2745 } else {
2746 SourceLocation LAngleLoc =
2747 PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
2748 Diag(D.getIdentifierLoc(),
2749 diag::err_explicit_instantiation_with_definition)
2750 << SourceRange(TemplateInfo.TemplateLoc)
2751 << FixItHint::CreateInsertion(LAngleLoc, "<>");
2752
2753 // Recover as if it were an explicit specialization.
2754 TemplateParameterLists FakedParamLists;
2755 FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
2756 0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc,
2757 std::nullopt, LAngleLoc, nullptr));
2758
2759 ThisDecl =
2760 Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
2761 }
2762 }
2763 break;
2764 }
2765 }
2766
2769 switch (TheInitKind) {
2770 // Parse declarator '=' initializer.
2771 case InitKind::Equal: {
2772 SourceLocation EqualLoc = ConsumeToken();
2773
2774 if (Tok.is(tok::kw_delete)) {
2775 if (D.isFunctionDeclarator())
2776 Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2777 << 1 /* delete */;
2778 else
2779 Diag(ConsumeToken(), diag::err_deleted_non_function);
2780 SkipDeletedFunctionBody();
2781 } else if (Tok.is(tok::kw_default)) {
2782 if (D.isFunctionDeclarator())
2783 Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2784 << 0 /* default */;
2785 else
2786 Diag(ConsumeToken(), diag::err_default_special_members)
2787 << getLangOpts().CPlusPlus20;
2788 } else {
2789 InitializerScopeRAII InitScope(*this, D, ThisDecl);
2790
2791 if (Tok.is(tok::code_completion)) {
2792 cutOffParsing();
2794 ThisDecl);
2795 Actions.FinalizeDeclaration(ThisDecl);
2796 return nullptr;
2797 }
2798
2799 PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
2800 ExprResult Init = ParseInitializer();
2801
2802 // If this is the only decl in (possibly) range based for statement,
2803 // our best guess is that the user meant ':' instead of '='.
2804 if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
2805 Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
2806 << FixItHint::CreateReplacement(EqualLoc, ":");
2807 // We are trying to stop parser from looking for ';' in this for
2808 // statement, therefore preventing spurious errors to be issued.
2809 FRI->ColonLoc = EqualLoc;
2810 Init = ExprError();
2811 FRI->RangeExpr = Init;
2812 }
2813
2814 if (Init.isInvalid()) {
2816 StopTokens.push_back(tok::comma);
2817 if (D.getContext() == DeclaratorContext::ForInit ||
2818 D.getContext() == DeclaratorContext::SelectionInit)
2819 StopTokens.push_back(tok::r_paren);
2820 SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
2821 Actions.ActOnInitializerError(ThisDecl);
2822 } else
2823 Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2824 /*DirectInit=*/false);
2825 }
2826 break;
2827 }
2828 case InitKind::CXXDirect: {
2829 // Parse C++ direct initializer: '(' expression-list ')'
2830 BalancedDelimiterTracker T(*this, tok::l_paren);
2831 T.consumeOpen();
2832
2833 ExprVector Exprs;
2834
2835 InitializerScopeRAII InitScope(*this, D, ThisDecl);
2836
2837 auto ThisVarDecl = dyn_cast_or_null<VarDecl>(ThisDecl);
2838 auto RunSignatureHelp = [&]() {
2839 QualType PreferredType =
2841 ThisVarDecl->getType()->getCanonicalTypeInternal(),
2842 ThisDecl->getLocation(), Exprs, T.getOpenLocation(),
2843 /*Braced=*/false);
2844 CalledSignatureHelp = true;
2845 return PreferredType;
2846 };
2847 auto SetPreferredType = [&] {
2848 PreferredType.enterFunctionArgument(Tok.getLocation(), RunSignatureHelp);
2849 };
2850
2851 llvm::function_ref<void()> ExpressionStarts;
2852 if (ThisVarDecl) {
2853 // ParseExpressionList can sometimes succeed even when ThisDecl is not
2854 // VarDecl. This is an error and it is reported in a call to
2855 // Actions.ActOnInitializerError(). However, we call
2856 // ProduceConstructorSignatureHelp only on VarDecls.
2857 ExpressionStarts = SetPreferredType;
2858 }
2859
2860 bool SawError = ParseExpressionList(Exprs, ExpressionStarts);
2861
2862 if (SawError) {
2863 if (ThisVarDecl && PP.isCodeCompletionReached() && !CalledSignatureHelp) {
2865 ThisVarDecl->getType()->getCanonicalTypeInternal(),
2866 ThisDecl->getLocation(), Exprs, T.getOpenLocation(),
2867 /*Braced=*/false);
2868 CalledSignatureHelp = true;
2869 }
2870 Actions.ActOnInitializerError(ThisDecl);
2871 SkipUntil(tok::r_paren, StopAtSemi);
2872 } else {
2873 // Match the ')'.
2874 T.consumeClose();
2875
2876 ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2877 T.getCloseLocation(),
2878 Exprs);
2879 Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2880 /*DirectInit=*/true);
2881 }
2882 break;
2883 }
2884 case InitKind::CXXBraced: {
2885 // Parse C++0x braced-init-list.
2886 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2887
2888 InitializerScopeRAII InitScope(*this, D, ThisDecl);
2889
2890 PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
2891 ExprResult Init(ParseBraceInitializer());
2892
2893 if (Init.isInvalid()) {
2894 Actions.ActOnInitializerError(ThisDecl);
2895 } else
2896 Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true);
2897 break;
2898 }
2899 case InitKind::Uninitialized: {
2900 Actions.ActOnUninitializedDecl(ThisDecl);
2901 break;
2902 }
2903 }
2904
2905 Actions.FinalizeDeclaration(ThisDecl);
2906 return OuterDecl ? OuterDecl : ThisDecl;
2907}
2908
2909/// ParseSpecifierQualifierList
2910/// specifier-qualifier-list:
2911/// type-specifier specifier-qualifier-list[opt]
2912/// type-qualifier specifier-qualifier-list[opt]
2913/// [GNU] attributes specifier-qualifier-list[opt]
2914///
2915void Parser::ParseSpecifierQualifierList(
2916 DeclSpec &DS, ImplicitTypenameContext AllowImplicitTypename,
2917 AccessSpecifier AS, DeclSpecContext DSC) {
2918 ParsedTemplateInfo TemplateInfo;
2919 /// specifier-qualifier-list is a subset of declaration-specifiers. Just
2920 /// parse declaration-specifiers and complain about extra stuff.
2921 /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2922 ParseDeclarationSpecifiers(DS, TemplateInfo, AS, DSC, nullptr,
2923 AllowImplicitTypename);
2924
2925 // Validate declspec for type-name.
2926 unsigned Specs = DS.getParsedSpecifiers();
2927 if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2928 Diag(Tok, diag::err_expected_type);
2929 DS.SetTypeSpecError();
2930 } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
2931 Diag(Tok, diag::err_typename_requires_specqual);
2932 if (!DS.hasTypeSpecifier())
2933 DS.SetTypeSpecError();
2934 }
2935
2936 // Issue diagnostic and remove storage class if present.
2939 Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2940 else
2942 diag::err_typename_invalid_storageclass);
2944 }
2945
2946 // Issue diagnostic and remove function specifier if present.
2947 if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2948 if (DS.isInlineSpecified())
2949 Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2950 if (DS.isVirtualSpecified())
2951 Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2952 if (DS.hasExplicitSpecifier())
2953 Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2954 if (DS.isNoreturnSpecified())
2955 Diag(DS.getNoreturnSpecLoc(), diag::err_typename_invalid_functionspec);
2956 DS.ClearFunctionSpecs();
2957 }
2958
2959 // Issue diagnostic and remove constexpr specifier if present.
2960 if (DS.hasConstexprSpecifier() && DSC != DeclSpecContext::DSC_condition) {
2961 Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr)
2962 << static_cast<int>(DS.getConstexprSpecifier());
2963 DS.ClearConstexprSpec();
2964 }
2965}
2966
2967/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2968/// specified token is valid after the identifier in a declarator which
2969/// immediately follows the declspec. For example, these things are valid:
2970///
2971/// int x [ 4]; // direct-declarator
2972/// int x ( int y); // direct-declarator
2973/// int(int x ) // direct-declarator
2974/// int x ; // simple-declaration
2975/// int x = 17; // init-declarator-list
2976/// int x , y; // init-declarator-list
2977/// int x __asm__ ("foo"); // init-declarator-list
2978/// int x : 4; // struct-declarator
2979/// int x { 5}; // C++'0x unified initializers
2980///
2981/// This is not, because 'x' does not immediately follow the declspec (though
2982/// ')' happens to be valid anyway).
2983/// int (x)
2984///
2986 return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
2987 tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
2988 tok::colon);
2989}
2990
2991/// ParseImplicitInt - This method is called when we have an non-typename
2992/// identifier in a declspec (which normally terminates the decl spec) when
2993/// the declspec has no type specifier. In this case, the declspec is either
2994/// malformed or is "implicit int" (in K&R and C89).
2995///
2996/// This method handles diagnosing this prettily and returns false if the
2997/// declspec is done being processed. If it recovers and thinks there may be
2998/// other pieces of declspec after it, it returns true.
2999///
3000bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
3001 ParsedTemplateInfo &TemplateInfo,
3002 AccessSpecifier AS, DeclSpecContext DSC,
3003 ParsedAttributes &Attrs) {
3004 assert(Tok.is(tok::identifier) && "should have identifier");
3005
3007 // If we see an identifier that is not a type name, we normally would
3008 // parse it as the identifier being declared. However, when a typename
3009 // is typo'd or the definition is not included, this will incorrectly
3010 // parse the typename as the identifier name and fall over misparsing
3011 // later parts of the diagnostic.
3012 //
3013 // As such, we try to do some look-ahead in cases where this would
3014 // otherwise be an "implicit-int" case to see if this is invalid. For
3015 // example: "static foo_t x = 4;" In this case, if we parsed foo_t as
3016 // an identifier with implicit int, we'd get a parse error because the
3017 // next token is obviously invalid for a type. Parse these as a case
3018 // with an invalid type specifier.
3019 assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
3020
3021 // Since we know that this either implicit int (which is rare) or an
3022 // error, do lookahead to try to do better recovery. This never applies
3023 // within a type specifier. Outside of C++, we allow this even if the
3024 // language doesn't "officially" support implicit int -- we support
3025 // implicit int as an extension in some language modes.
3026 if (!isTypeSpecifier(DSC) && getLangOpts().isImplicitIntAllowed() &&
3028 // If this token is valid for implicit int, e.g. "static x = 4", then
3029 // we just avoid eating the identifier, so it will be parsed as the
3030 // identifier in the declarator.
3031 return false;
3032 }
3033
3034 // Early exit as Sema has a dedicated missing_actual_pipe_type diagnostic
3035 // for incomplete declarations such as `pipe p`.
3036 if (getLangOpts().OpenCLCPlusPlus && DS.isTypeSpecPipe())
3037 return false;
3038
3039 if (getLangOpts().CPlusPlus &&
3041 // Don't require a type specifier if we have the 'auto' storage class
3042 // specifier in C++98 -- we'll promote it to a type specifier.
3043 if (SS)
3044 AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
3045 return false;
3046 }
3047
3048 if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) &&
3049 getLangOpts().MSVCCompat) {
3050 // Lookup of an unqualified type name has failed in MSVC compatibility mode.
3051 // Give Sema a chance to recover if we are in a template with dependent base
3052 // classes.
3054 *Tok.getIdentifierInfo(), Tok.getLocation(),
3055 DSC == DeclSpecContext::DSC_template_type_arg)) {
3056 const char *PrevSpec;
3057 unsigned DiagID;
3058 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
3059 Actions.getASTContext().getPrintingPolicy());
3060 DS.SetRangeEnd(Tok.getLocation());
3061 ConsumeToken();
3062 return false;
3063 }
3064 }
3065
3066 // Otherwise, if we don't consume this token, we are going to emit an
3067 // error anyway. Try to recover from various common problems. Check
3068 // to see if this was a reference to a tag name without a tag specified.
3069 // This is a common problem in C (saying 'foo' instead of 'struct foo').
3070 //
3071 // C++ doesn't need this, and isTagName doesn't take SS.
3072 if (SS == nullptr) {
3073 const char *TagName = nullptr, *FixitTagName = nullptr;
3074 tok::TokenKind TagKind = tok::unknown;
3075
3076 switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
3077 default: break;
3078 case DeclSpec::TST_enum:
3079 TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break;
3081 TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
3083 TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
3085 TagName="__interface"; FixitTagName = "__interface ";
3086 TagKind=tok::kw___interface;break;
3088 TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
3089 }
3090
3091 if (TagName) {
3092 IdentifierInfo *TokenName = Tok.getIdentifierInfo();
3093 LookupResult R(Actions, TokenName, SourceLocation(),
3095
3096 Diag(Loc, diag::err_use_of_tag_name_without_tag)
3097 << TokenName << TagName << getLangOpts().CPlusPlus
3098 << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
3099
3100 if (Actions.LookupName(R, getCurScope())) {
3101 for (LookupResult::iterator I = R.begin(), IEnd = R.end();
3102 I != IEnd; ++I)
3103 Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
3104 << TokenName << TagName;
3105 }
3106
3107 // Parse this as a tag as if the missing tag were present.
3108 if (TagKind == tok::kw_enum)
3109 ParseEnumSpecifier(Loc, DS, TemplateInfo, AS,
3110 DeclSpecContext::DSC_normal);
3111 else
3112 ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
3113 /*EnteringContext*/ false,
3114 DeclSpecContext::DSC_normal, Attrs);
3115 return true;
3116 }
3117 }
3118
3119 // Determine whether this identifier could plausibly be the name of something
3120 // being declared (with a missing type).
3121 if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level ||
3122 DSC == DeclSpecContext::DSC_class)) {
3123 // Look ahead to the next token to try to figure out what this declaration
3124 // was supposed to be.
3125 switch (NextToken().getKind()) {
3126 case tok::l_paren: {
3127 // static x(4); // 'x' is not a type
3128 // x(int n); // 'x' is not a type
3129 // x (*p)[]; // 'x' is a type
3130 //
3131 // Since we're in an error case, we can afford to perform a tentative
3132 // parse to determine which case we're in.
3133 TentativeParsingAction PA(*this);
3134 ConsumeToken();
3135 TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
3136 PA.Revert();
3137
3138 if (TPR != TPResult::False) {
3139 // The identifier is followed by a parenthesized declarator.
3140 // It's supposed to be a type.
3141 break;
3142 }
3143
3144 // If we're in a context where we could be declaring a constructor,
3145 // check whether this is a constructor declaration with a bogus name.
3146 if (DSC == DeclSpecContext::DSC_class ||
3147 (DSC == DeclSpecContext::DSC_top_level && SS)) {
3149 if (Actions.isCurrentClassNameTypo(II, SS)) {
3150 Diag(Loc, diag::err_constructor_bad_name)
3151 << Tok.getIdentifierInfo() << II
3153 Tok.setIdentifierInfo(II);
3154 }
3155 }
3156 // Fall through.
3157 [[fallthrough]];
3158 }
3159 case tok::comma:
3160 case tok::equal:
3161 case tok::kw_asm:
3162 case tok::l_brace:
3163 case tok::l_square:
3164 case tok::semi:
3165 // This looks like a variable or function declaration. The type is
3166 // probably missing. We're done parsing decl-specifiers.
3167 // But only if we are not in a function prototype scope.
3168 if (getCurScope()->isFunctionPrototypeScope())
3169 break;
3170 if (SS)
3171 AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
3172 return false;
3173
3174 default:
3175 // This is probably supposed to be a type. This includes cases like:
3176 // int f(itn);
3177 // struct S { unsigned : 4; };
3178 break;
3179 }
3180 }
3181
3182 // This is almost certainly an invalid type name. Let Sema emit a diagnostic
3183 // and attempt to recover.
3184 ParsedType T;
3186 bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less);
3187 Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
3188 IsTemplateName);
3189 if (T) {
3190 // The action has suggested that the type T could be used. Set that as
3191 // the type in the declaration specifiers, consume the would-be type
3192 // name token, and we're done.
3193 const char *PrevSpec;
3194 unsigned DiagID;
3195 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
3196 Actions.getASTContext().getPrintingPolicy());
3197 DS.SetRangeEnd(Tok.getLocation());
3198 ConsumeToken();
3199 // There may be other declaration specifiers after this.
3200 return true;
3201 } else if (II != Tok.getIdentifierInfo()) {
3202 // If no type was suggested, the correction is to a keyword
3203 Tok.setKind(II->getTokenID());
3204 // There may be other declaration specifiers after this.
3205 return true;
3206 }
3207
3208 // Otherwise, the action had no suggestion for us. Mark this as an error.
3209 DS.SetTypeSpecError();
3210 DS.SetRangeEnd(Tok.getLocation());
3211 ConsumeToken();
3212
3213 // Eat any following template arguments.
3214 if (IsTemplateName) {
3215 SourceLocation LAngle, RAngle;
3216 TemplateArgList Args;
3217 ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle);
3218 }
3219
3220 // TODO: Could inject an invalid typedef decl in an enclosing scope to
3221 // avoid rippling error messages on subsequent uses of the same type,
3222 // could be useful if #include was forgotten.
3223 return true;
3224}
3225
3226/// Determine the declaration specifier context from the declarator
3227/// context.
3228///
3229/// \param Context the declarator context, which is one of the
3230/// DeclaratorContext enumerator values.
3231Parser::DeclSpecContext
3232Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) {
3233 switch (Context) {
3235 return DeclSpecContext::DSC_class;
3237 return DeclSpecContext::DSC_top_level;
3239 return DeclSpecContext::DSC_template_param;
3241 return DeclSpecContext::DSC_template_arg;
3243 return DeclSpecContext::DSC_template_type_arg;
3246 return DeclSpecContext::DSC_trailing;
3249 return DeclSpecContext::DSC_alias_declaration;
3251 return DeclSpecContext::DSC_association;
3253 return DeclSpecContext::DSC_type_specifier;
3255 return DeclSpecContext::DSC_condition;
3257 return DeclSpecContext::DSC_conv_operator;
3259 return DeclSpecContext::DSC_new;
3274 return DeclSpecContext::DSC_normal;
3275 }
3276
3277 llvm_unreachable("Missing DeclaratorContext case");
3278}
3279
3280/// ParseAlignArgument - Parse the argument to an alignment-specifier.
3281///
3282/// [C11] type-id
3283/// [C11] constant-expression
3284/// [C++0x] type-id ...[opt]
3285/// [C++0x] assignment-expression ...[opt]
3286ExprResult Parser::ParseAlignArgument(StringRef KWName, SourceLocation Start,
3287 SourceLocation &EllipsisLoc, bool &IsType,
3289 ExprResult ER;
3290 if (isTypeIdInParens()) {
3292 ParsedType Ty = ParseTypeName().get();
3293 SourceRange TypeRange(Start, Tok.getLocation());
3294 if (Actions.ActOnAlignasTypeArgument(KWName, Ty, TypeLoc, TypeRange))
3295 return ExprError();
3296 TypeResult = Ty;
3297 IsType = true;
3298 } else {
3300 IsType = false;
3301 }
3302
3304 TryConsumeToken(tok::ellipsis, EllipsisLoc);
3305
3306 return ER;
3307}
3308
3309/// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
3310/// attribute to Attrs.
3311///
3312/// alignment-specifier:
3313/// [C11] '_Alignas' '(' type-id ')'
3314/// [C11] '_Alignas' '(' constant-expression ')'
3315/// [C++11] 'alignas' '(' type-id ...[opt] ')'
3316/// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
3317void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
3318 SourceLocation *EndLoc) {
3319 assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) &&
3320 "Not an alignment-specifier!");
3321 Token KWTok = Tok;
3322 IdentifierInfo *KWName = KWTok.getIdentifierInfo();
3323 auto Kind = KWTok.getKind();
3324 SourceLocation KWLoc = ConsumeToken();
3325
3326 BalancedDelimiterTracker T(*this, tok::l_paren);
3327 if (T.expectAndConsume())
3328 return;
3329
3330 bool IsType;
3332 SourceLocation EllipsisLoc;
3333 ExprResult ArgExpr =
3334 ParseAlignArgument(PP.getSpelling(KWTok), T.getOpenLocation(),
3335 EllipsisLoc, IsType, TypeResult);
3336 if (ArgExpr.isInvalid()) {
3337 T.skipToEnd();
3338 return;
3339 }
3340
3341 T.consumeClose();
3342 if (EndLoc)
3343 *EndLoc = T.getCloseLocation();
3344
3345 if (IsType) {
3346 Attrs.addNewTypeAttr(KWName, KWLoc, nullptr, KWLoc, TypeResult, Kind,
3347 EllipsisLoc);
3348 } else {
3349 ArgsVector ArgExprs;
3350 ArgExprs.push_back(ArgExpr.get());
3351 Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1, Kind,
3352 EllipsisLoc);
3353 }
3354}
3355
3356void Parser::DistributeCLateParsedAttrs(Decl *Dcl,
3357 LateParsedAttrList *LateAttrs) {
3358 if (!LateAttrs)
3359 return;
3360
3361 if (Dcl) {
3362 for (auto *LateAttr : *LateAttrs) {
3363 if (LateAttr->Decls.empty())
3364 LateAttr->addDecl(Dcl);
3365 }
3366 }
3367}
3368
3369/// Bounds attributes (e.g., counted_by):
3370/// AttrName '(' expression ')'
3371void Parser::ParseBoundsAttribute(IdentifierInfo &AttrName,
3372 SourceLocation AttrNameLoc,
3373 ParsedAttributes &Attrs,
3374 IdentifierInfo *ScopeName,
3375 SourceLocation ScopeLoc,
3376 ParsedAttr::Form Form) {
3377 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
3378
3379 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3380 Parens.consumeOpen();
3381
3382 if (Tok.is(tok::r_paren)) {
3383 Diag(Tok.getLocation(), diag::err_argument_required_after_attribute);
3384 Parens.consumeClose();
3385 return;
3386 }
3387
3388 ArgsVector ArgExprs;
3389 // Don't evaluate argument when the attribute is ignored.
3390 using ExpressionKind =
3394 ExpressionKind::EK_AttrArgument);
3395
3396 ExprResult ArgExpr(
3398
3399 if (ArgExpr.isInvalid()) {
3400 Parens.skipToEnd();
3401 return;
3402 }
3403
3404 ArgExprs.push_back(ArgExpr.get());
3405 Parens.consumeClose();
3406
3407 ASTContext &Ctx = Actions.getASTContext();
3408
3409 ArgExprs.push_back(IntegerLiteral::Create(
3410 Ctx, llvm::APInt(Ctx.getTypeSize(Ctx.getSizeType()), 0),
3411 Ctx.getSizeType(), SourceLocation()));
3412
3413 Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
3414 ScopeName, ScopeLoc, ArgExprs.data(), ArgExprs.size(), Form);
3415}
3416
3417ExprResult Parser::ParseExtIntegerArgument() {
3418 assert(Tok.isOneOf(tok::kw__ExtInt, tok::kw__BitInt) &&
3419 "Not an extended int type");
3420 ConsumeToken();
3421
3422 BalancedDelimiterTracker T(*this, tok::l_paren);
3423 if (T.expectAndConsume())
3424 return ExprError();
3425
3427 if (ER.isInvalid()) {
3428 T.skipToEnd();
3429 return ExprError();
3430 }
3431
3432 if(T.consumeClose())
3433 return ExprError();
3434 return ER;
3435}
3436
3437/// Determine whether we're looking at something that might be a declarator
3438/// in a simple-declaration. If it can't possibly be a declarator, maybe
3439/// diagnose a missing semicolon after a prior tag definition in the decl
3440/// specifier.
3441///
3442/// \return \c true if an error occurred and this can't be any kind of
3443/// declaration.
3444bool
3445Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
3446 DeclSpecContext DSContext,
3447 LateParsedAttrList *LateAttrs) {
3448 assert(DS.hasTagDefinition() && "shouldn't call this");
3449
3450 bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
3451 DSContext == DeclSpecContext::DSC_top_level);
3452
3453 if (getLangOpts().CPlusPlus &&
3454 Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype,
3455 tok::annot_template_id) &&
3456 TryAnnotateCXXScopeToken(EnteringContext)) {
3458 return true;
3459 }
3460
3461 bool HasScope = Tok.is(tok::annot_cxxscope);
3462 // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
3463 Token AfterScope = HasScope ? NextToken() : Tok;
3464
3465 // Determine whether the following tokens could possibly be a
3466 // declarator.
3467 bool MightBeDeclarator = true;
3468 if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) {
3469 // A declarator-id can't start with 'typename'.
3470 MightBeDeclarator = false;
3471 } else if (AfterScope.is(tok::annot_template_id)) {
3472 // If we have a type expressed as a template-id, this cannot be a
3473 // declarator-id (such a type cannot be redeclared in a simple-declaration).
3474 TemplateIdAnnotation *Annot =
3475 static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
3476 if (Annot->Kind == TNK_Type_template)
3477 MightBeDeclarator = false;
3478 } else if (AfterScope.is(tok::identifier)) {
3479 const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
3480
3481 // These tokens cannot come after the declarator-id in a
3482 // simple-declaration, and are likely to come after a type-specifier.
3483 if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier,
3484 tok::annot_cxxscope, tok::coloncolon)) {
3485 // Missing a semicolon.
3486 MightBeDeclarator = false;
3487 } else if (HasScope) {
3488 // If the declarator-id has a scope specifier, it must redeclare a
3489 // previously-declared entity. If that's a type (and this is not a
3490 // typedef), that's an error.
3491 CXXScopeSpec SS;
3493 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
3494 IdentifierInfo *Name = AfterScope.getIdentifierInfo();
3495 Sema::NameClassification Classification = Actions.ClassifyName(
3496 getCurScope(), SS, Name, AfterScope.getLocation(), Next,
3497 /*CCC=*/nullptr);
3498 switch (Classification.getKind()) {
3499 case Sema::NC_Error:
3501 return true;
3502
3503 case Sema::NC_Keyword:
3504 llvm_unreachable("typo correction is not possible here");
3505
3506 case Sema::NC_Type:
3510 // Not a previously-declared non-type entity.
3511 MightBeDeclarator = false;
3512 break;
3513
3514 case Sema::NC_Unknown:
3515 case Sema::NC_NonType:
3520 case Sema::NC_Concept:
3521 // Might be a redeclaration of a prior entity.
3522 break;
3523 }
3524 }
3525 }
3526
3527 if (MightBeDeclarator)
3528 return false;
3529
3530 const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
3532 diag::err_expected_after)
3533 << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
3534
3535 // Try to recover from the typo, by dropping the tag definition and parsing
3536 // the problematic tokens as a type.
3537 //
3538 // FIXME: Split the DeclSpec into pieces for the standalone
3539 // declaration and pieces for the following declaration, instead
3540 // of assuming that all the other pieces attach to new declaration,
3541 // and call ParsedFreeStandingDeclSpec as appropriate.
3542 DS.ClearTypeSpecType();
3543 ParsedTemplateInfo NotATemplate;
3544 ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
3545 return false;
3546}
3547
3548/// ParseDeclarationSpecifiers
3549/// declaration-specifiers: [C99 6.7]
3550/// storage-class-specifier declaration-specifiers[opt]
3551/// type-specifier declaration-specifiers[opt]
3552/// [C99] function-specifier declaration-specifiers[opt]
3553/// [C11] alignment-specifier declaration-specifiers[opt]
3554/// [GNU] attributes declaration-specifiers[opt]
3555/// [Clang] '__module_private__' declaration-specifiers[opt]
3556/// [ObjC1] '__kindof' declaration-specifiers[opt]
3557///
3558/// storage-class-specifier: [C99 6.7.1]
3559/// 'typedef'
3560/// 'extern'
3561/// 'static'
3562/// 'auto'
3563/// 'register'
3564/// [C++] 'mutable'
3565/// [C++11] 'thread_local'
3566/// [C11] '_Thread_local'
3567/// [GNU] '__thread'
3568/// function-specifier: [C99 6.7.4]
3569/// [C99] 'inline'
3570/// [C++] 'virtual'
3571/// [C++] 'explicit'
3572/// [OpenCL] '__kernel'
3573/// 'friend': [C++ dcl.friend]
3574/// 'constexpr': [C++0x dcl.constexpr]
3575void Parser::ParseDeclarationSpecifiers(
3576 DeclSpec &DS, ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS,
3577 DeclSpecContext DSContext, LateParsedAttrList *LateAttrs,
3578 ImplicitTypenameContext AllowImplicitTypename) {
3579 if (DS.getSourceRange().isInvalid()) {
3580 // Start the range at the current token but make the end of the range
3581 // invalid. This will make the entire range invalid unless we successfully
3582 // consume a token.
3583 DS.SetRangeStart(Tok.getLocation());
3585 }
3586
3587 // If we are in a operator context, convert it back into a type specifier
3588 // context for better error handling later on.
3589 if (DSContext == DeclSpecContext::DSC_conv_operator) {
3590 // No implicit typename here.
3591 AllowImplicitTypename = ImplicitTypenameContext::No;
3592 DSContext = DeclSpecContext::DSC_type_specifier;
3593 }
3594
3595 bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
3596 DSContext == DeclSpecContext::DSC_top_level);
3597 bool AttrsLastTime = false;
3598 ParsedAttributes attrs(AttrFactory);
3599 // We use Sema's policy to get bool macros right.
3600 PrintingPolicy Policy = Actions.getPrintingPolicy();
3601 while (true) {
3602 bool isInvalid = false;
3603 bool isStorageClass = false;
3604 const char *PrevSpec = nullptr;
3605 unsigned DiagID = 0;
3606
3607 // This value needs to be set to the location of the last token if the last
3608 // token of the specifier is already consumed.
3609 SourceLocation ConsumedEnd;
3610
3611 // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
3612 // implementation for VS2013 uses _Atomic as an identifier for one of the
3613 // classes in <atomic>.
3614 //
3615 // A typedef declaration containing _Atomic<...> is among the places where
3616 // the class is used. If we are currently parsing such a declaration, treat
3617 // the token as an identifier.
3618 if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
3620 !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less))
3621 Tok.setKind(tok::identifier);
3622
3624
3625 // Helper for image types in OpenCL.
3626 auto handleOpenCLImageKW = [&] (StringRef Ext, TypeSpecifierType ImageTypeSpec) {
3627 // Check if the image type is supported and otherwise turn the keyword into an identifier
3628 // because image types from extensions are not reserved identifiers.
3629 if (!StringRef(Ext).empty() && !getActions().getOpenCLOptions().isSupported(Ext, getLangOpts())) {
3631 Tok.setKind(tok::identifier);
3632 return false;
3633 }
3634 isInvalid = DS.SetTypeSpecType(ImageTypeSpec, Loc, PrevSpec, DiagID, Policy);
3635 return true;
3636 };
3637
3638 // Turn off usual access checking for template specializations and
3639 // instantiations.
3640 bool IsTemplateSpecOrInst =
3641 (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
3642 TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
3643
3644 switch (Tok.getKind()) {
3645 default:
3646 if (Tok.isRegularKeywordAttribute())
3647 goto Attribute;
3648
3649 DoneWithDeclSpec:
3650 if (!AttrsLastTime)
3651 ProhibitAttributes(attrs);
3652 else {
3653 // Reject C++11 / C23 attributes that aren't type attributes.
3654 for (const ParsedAttr &PA : attrs) {
3655 if (!PA.isCXX11Attribute() && !PA.isC23Attribute() &&
3656 !PA.isRegularKeywordAttribute())
3657 continue;
3658 if (PA.getKind() == ParsedAttr::UnknownAttribute)
3659 // We will warn about the unknown attribute elsewhere (in
3660 // SemaDeclAttr.cpp)
3661 continue;
3662 // GCC ignores this attribute when placed on the DeclSpec in [[]]
3663 // syntax, so we do the same.
3664 if (PA.getKind() == ParsedAttr::AT_VectorSize) {
3665 Diag(PA.getLoc(), diag::warn_attribute_ignored) << PA;
3666 PA.setInvalid();
3667 continue;
3668 }
3669 // We reject AT_LifetimeBound and AT_AnyX86NoCfCheck, even though they
3670 // are type attributes, because we historically haven't allowed these
3671 // to be used as type attributes in C++11 / C23 syntax.
3672 if (PA.isTypeAttr() && PA.getKind() != ParsedAttr::AT_LifetimeBound &&
3673 PA.getKind() != ParsedAttr::AT_AnyX86NoCfCheck)
3674 continue;
3675 Diag(PA.getLoc(), diag::err_attribute_not_type_attr)
3676 << PA << PA.isRegularKeywordAttribute();
3677 PA.setInvalid();
3678 }
3679
3680 DS.takeAttributesFrom(attrs);
3681 }
3682
3683 // If this is not a declaration specifier token, we're done reading decl
3684 // specifiers. First verify that DeclSpec's are consistent.
3685 DS.Finish(Actions, Policy);
3686 return;
3687
3688 // alignment-specifier
3689 case tok::kw__Alignas:
3690 diagnoseUseOfC11Keyword(Tok);
3691 [[fallthrough]];
3692 case tok::kw_alignas:
3693 // _Alignas and alignas (C23, not C++) should parse the same way. The C++
3694 // parsing for alignas happens through the usual attribute parsing. This
3695 // ensures that an alignas specifier can appear in a type position in C
3696 // despite that not being valid in C++.
3697 if (getLangOpts().C23 || Tok.getKind() == tok::kw__Alignas) {
3698 if (Tok.getKind() == tok::kw_alignas)
3699 Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName();
3700 ParseAlignmentSpecifier(DS.getAttributes());
3701 continue;
3702 }
3703 [[fallthrough]];
3704 case tok::l_square:
3705 if (!isAllowedCXX11AttributeSpecifier())
3706 goto DoneWithDeclSpec;
3707
3708 Attribute:
3709 ProhibitAttributes(attrs);
3710 // FIXME: It would be good to recover by accepting the attributes,
3711 // but attempting to do that now would cause serious
3712 // madness in terms of diagnostics.
3713 attrs.clear();
3714 attrs.Range = SourceRange();
3715
3716 ParseCXX11Attributes(attrs);
3717 AttrsLastTime = true;
3718 continue;
3719
3720 case tok::code_completion: {
3723 if (DS.hasTypeSpecifier()) {
3724 bool AllowNonIdentifiers
3729 Scope::AtCatchScope)) == 0;
3730 bool AllowNestedNameSpecifiers
3731 = DSContext == DeclSpecContext::DSC_top_level ||
3732 (DSContext == DeclSpecContext::DSC_class && DS.isFriendSpecified());
3733
3734 cutOffParsing();
3736 getCurScope(), DS, AllowNonIdentifiers, AllowNestedNameSpecifiers);
3737 return;
3738 }
3739
3740 // Class context can appear inside a function/block, so prioritise that.
3741 if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
3742 CCC = DSContext == DeclSpecContext::DSC_class
3745 else if (DSContext == DeclSpecContext::DSC_class)
3747 else if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
3749 else if (CurParsedObjCImpl)
3751
3752 cutOffParsing();
3754 return;
3755 }
3756
3757 case tok::coloncolon: // ::foo::bar
3758 // C++ scope specifier. Annotate and loop, or bail out on error.
3759 if (getLangOpts().CPlusPlus &&
3760 TryAnnotateCXXScopeToken(EnteringContext)) {
3761 if (!DS.hasTypeSpecifier())
3762 DS.SetTypeSpecError();
3763 goto DoneWithDeclSpec;
3764 }
3765 if (Tok.is(tok::coloncolon)) // ::new or ::delete
3766 goto DoneWithDeclSpec;
3767 continue;
3768
3769 case tok::annot_cxxscope: {
3770 if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
3771 goto DoneWithDeclSpec;
3772
3773 CXXScopeSpec SS;
3774 if (TemplateInfo.TemplateParams)
3775 SS.setTemplateParamLists(*TemplateInfo.TemplateParams);
3777 Tok.getAnnotationRange(),
3778 SS);
3779
3780 // We are looking for a qualified typename.
3781 Token Next = NextToken();
3782
3783 TemplateIdAnnotation *TemplateId = Next.is(tok::annot_template_id)
3784 ? takeTemplateIdAnnotation(Next)
3785 : nullptr;
3786 if (TemplateId && TemplateId->hasInvalidName()) {
3787 // We found something like 'T::U<Args> x', but U is not a template.
3788 // Assume it was supposed to be a type.
3789 DS.SetTypeSpecError();
3790 ConsumeAnnotationToken();
3791 break;
3792 }
3793
3794 if (TemplateId && TemplateId->Kind == TNK_Type_template) {
3795 // We have a qualified template-id, e.g., N::A<int>
3796
3797 // If this would be a valid constructor declaration with template
3798 // arguments, we will reject the attempt to form an invalid type-id
3799 // referring to the injected-class-name when we annotate the token,
3800 // per C++ [class.qual]p2.
3801 //
3802 // To improve diagnostics for this case, parse the declaration as a
3803 // constructor (and reject the extra template arguments later).
3804 if ((DSContext == DeclSpecContext::DSC_top_level ||
3805 DSContext == DeclSpecContext::DSC_class) &&
3806 TemplateId->Name &&
3807 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS) &&
3808 isConstructorDeclarator(/*Unqualified=*/false,
3809 /*DeductionGuide=*/false,
3810 DS.isFriendSpecified())) {
3811 // The user meant this to be an out-of-line constructor
3812 // definition, but template arguments are not allowed
3813 // there. Just allow this as a constructor; we'll
3814 // complain about it later.
3815 goto DoneWithDeclSpec;
3816 }
3817
3818 DS.getTypeSpecScope() = SS;
3819 ConsumeAnnotationToken(); // The C++ scope.
3820 assert(Tok.is(tok::annot_template_id) &&
3821 "ParseOptionalCXXScopeSpecifier not working");
3822 AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename);
3823 continue;
3824 }
3825
3826 if (TemplateId && TemplateId->Kind == TNK_Concept_template) {
3827 DS.getTypeSpecScope() = SS;
3828 // This is probably a qualified placeholder-specifier, e.g., ::C<int>
3829 // auto ... Consume the scope annotation and continue to consume the
3830 // template-id as a placeholder-specifier. Let the next iteration
3831 // diagnose a missing auto.
3832 ConsumeAnnotationToken();
3833 continue;
3834 }
3835
3836 if (Next.is(tok::annot_typename)) {
3837 DS.getTypeSpecScope() = SS;
3838 ConsumeAnnotationToken(); // The C++ scope.
3841 Tok.getAnnotationEndLoc(),
3842 PrevSpec, DiagID, T, Policy);
3843 if (isInvalid)
3844 break;
3846 ConsumeAnnotationToken(); // The typename
3847 }
3848
3849 if (AllowImplicitTypename == ImplicitTypenameContext::Yes &&
3850 Next.is(tok::annot_template_id) &&
3851 static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
3853 DS.getTypeSpecScope() = SS;
3854 ConsumeAnnotationToken(); // The C++ scope.
3855 AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename);
3856 continue;
3857 }
3858
3859 if (Next.isNot(tok::identifier))
3860 goto DoneWithDeclSpec;
3861
3862 // Check whether this is a constructor declaration. If we're in a
3863 // context where the identifier could be a class name, and it has the
3864 // shape of a constructor declaration, process it as one.
3865 if ((DSContext == DeclSpecContext::DSC_top_level ||
3866 DSContext == DeclSpecContext::DSC_class) &&
3867 Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
3868 &SS) &&
3869 isConstructorDeclarator(/*Unqualified=*/false,
3870 /*DeductionGuide=*/false,
3871 DS.isFriendSpecified(),
3872 &TemplateInfo))
3873 goto DoneWithDeclSpec;
3874
3875 // C++20 [temp.spec] 13.9/6.
3876 // This disables the access checking rules for function template explicit
3877 // instantiation and explicit specialization:
3878 // - `return type`.
3879 SuppressAccessChecks SAC(*this, IsTemplateSpecOrInst);
3880
3881 ParsedType TypeRep = Actions.getTypeName(
3882 *Next.getIdentifierInfo(), Next.getLocation(), getCurScope(), &SS,
3883 false, false, nullptr,
3884 /*IsCtorOrDtorName=*/false,
3885 /*WantNontrivialTypeSourceInfo=*/true,
3886 isClassTemplateDeductionContext(DSContext), AllowImplicitTypename);
3887
3888 if (IsTemplateSpecOrInst)
3889 SAC.done();
3890
3891 // If the referenced identifier is not a type, then this declspec is
3892 // erroneous: We already checked about that it has no type specifier, and
3893 // C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the
3894 // typename.
3895 if (!TypeRep) {
3896 if (TryAnnotateTypeConstraint())
3897 goto DoneWithDeclSpec;
3898 if (Tok.isNot(tok::annot_cxxscope) ||
3899 NextToken().isNot(tok::identifier))
3900 continue;
3901 // Eat the scope spec so the identifier is current.
3902 ConsumeAnnotationToken();
3903 ParsedAttributes Attrs(AttrFactory);
3904 if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
3905 if (!Attrs.empty()) {
3906 AttrsLastTime = true;
3907 attrs.takeAllFrom(Attrs);
3908 }
3909 continue;
3910 }
3911 goto DoneWithDeclSpec;
3912 }
3913
3914 DS.getTypeSpecScope() = SS;
3915 ConsumeAnnotationToken(); // The C++ scope.
3916
3918 DiagID, TypeRep, Policy);
3919 if (isInvalid)
3920 break;
3921
3922 DS.SetRangeEnd(Tok.getLocation());
3923 ConsumeToken(); // The typename.
3924
3925 continue;
3926 }
3927
3928 case tok::annot_typename: {
3929 // If we've previously seen a tag definition, we were almost surely
3930 // missing a semicolon after it.
3931 if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
3932 goto DoneWithDeclSpec;
3933
3936 DiagID, T, Policy);
3937 if (isInvalid)
3938 break;
3939
3941 ConsumeAnnotationToken(); // The typename
3942
3943 continue;
3944 }
3945
3946 case tok::kw___is_signed:
3947 // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
3948 // typically treats it as a trait. If we see __is_signed as it appears
3949 // in libstdc++, e.g.,
3950 //
3951 // static const bool __is_signed;
3952 //
3953 // then treat __is_signed as an identifier rather than as a keyword.
3954 if (DS.getTypeSpecType() == TST_bool &&
3957 TryKeywordIdentFallback(true);
3958
3959 // We're done with the declaration-specifiers.
3960 goto DoneWithDeclSpec;
3961
3962 // typedef-name
3963 case tok::kw___super:
3964 case tok::kw_decltype:
3965 case tok::identifier:
3966 ParseIdentifier: {
3967 // This identifier can only be a typedef name if we haven't already seen
3968 // a type-specifier. Without this check we misparse:
3969 // typedef int X; struct Y { short X; }; as 'short int'.
3970 if (DS.hasTypeSpecifier())
3971 goto DoneWithDeclSpec;
3972
3973 // If the token is an identifier named "__declspec" and Microsoft
3974 // extensions are not enabled, it is likely that there will be cascading
3975 // parse errors if this really is a __declspec attribute. Attempt to
3976 // recognize that scenario and recover gracefully.
3977 if (!getLangOpts().DeclSpecKeyword && Tok.is(tok::identifier) &&
3978 Tok.getIdentifierInfo()->getName() == "__declspec") {
3979 Diag(Loc, diag::err_ms_attributes_not_enabled);
3980
3981 // The next token should be an open paren. If it is, eat the entire
3982 // attribute declaration and continue.
3983 if (NextToken().is(tok::l_paren)) {
3984 // Consume the __declspec identifier.
3985 ConsumeToken();
3986
3987 // Eat the parens and everything between them.
3988 BalancedDelimiterTracker T(*this, tok::l_paren);
3989 if (T.consumeOpen()) {
3990 assert(false && "Not a left paren?");
3991 return;
3992 }
3993 T.skipToEnd();
3994 continue;
3995 }
3996 }
3997
3998 // In C++, check to see if this is a scope specifier like foo::bar::, if
3999 // so handle it as such. This is important for ctor parsing.
4000 if (getLangOpts().CPlusPlus) {
4001 // C++20 [temp.spec] 13.9/6.
4002 // This disables the access checking rules for function template
4003 // explicit instantiation and explicit specialization:
4004 // - `return type`.
4005 SuppressAccessChecks SAC(*this, IsTemplateSpecOrInst);
4006
4007 const bool Success = TryAnnotateCXXScopeToken(EnteringContext);
4008
4009 if (IsTemplateSpecOrInst)
4010 SAC.done();
4011
4012 if (Success) {
4013 if (IsTemplateSpecOrInst)
4014 SAC.redelay();
4015 DS.SetTypeSpecError();
4016 goto DoneWithDeclSpec;
4017 }
4018
4019 if (!Tok.is(tok::identifier))
4020 continue;
4021 }
4022
4023 // Check for need to substitute AltiVec keyword tokens.
4024 if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
4025 break;
4026
4027 // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
4028 // allow the use of a typedef name as a type specifier.
4029 if (DS.isTypeAltiVecVector())
4030 goto DoneWithDeclSpec;
4031
4032 if (DSContext == DeclSpecContext::DSC_objc_method_result &&
4033 isObjCInstancetype()) {
4034 ParsedType TypeRep = Actions.ObjC().ActOnObjCInstanceType(Loc);
4035 assert(TypeRep);
4037 DiagID, TypeRep, Policy);
4038 if (isInvalid)
4039 break;
4040
4041 DS.SetRangeEnd(Loc);
4042 ConsumeToken();
4043 continue;
4044 }
4045
4046 // If we're in a context where the identifier could be a class name,
4047 // check whether this is a constructor declaration.
4048 if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
4050 isConstructorDeclarator(/*Unqualified=*/true,
4051 /*DeductionGuide=*/false,
4052 DS.isFriendSpecified()))
4053 goto DoneWithDeclSpec;
4054
4055 ParsedType TypeRep = Actions.getTypeName(
4056 *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), nullptr,
4057 false, false, nullptr, false, false,
4058 isClassTemplateDeductionContext(DSContext));
4059
4060 // If this is not a typedef name, don't parse it as part of the declspec,
4061 // it must be an implicit int or an error.
4062 if (!TypeRep) {
4063 if (TryAnnotateTypeConstraint())
4064 goto DoneWithDeclSpec;
4065 if (Tok.isNot(tok::identifier))
4066 continue;
4067 ParsedAttributes Attrs(AttrFactory);
4068 if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
4069 if (!Attrs.empty()) {
4070 AttrsLastTime = true;
4071 attrs.takeAllFrom(Attrs);
4072 }
4073 continue;
4074 }
4075 goto DoneWithDeclSpec;
4076 }
4077
4078 // Likewise, if this is a context where the identifier could be a template
4079 // name, check whether this is a deduction guide declaration.
4080 CXXScopeSpec SS;
4081 if (getLangOpts().CPlusPlus17 &&
4082 (DSContext == DeclSpecContext::DSC_class ||
4083 DSContext == DeclSpecContext::DSC_top_level) &&
4085 Tok.getLocation(), SS) &&
4086 isConstructorDeclarator(/*Unqualified*/ true,
4087 /*DeductionGuide*/ true))
4088 goto DoneWithDeclSpec;
4089
4091 DiagID, TypeRep, Policy);
4092 if (isInvalid)
4093 break;
4094
4095 DS.SetRangeEnd(Tok.getLocation());
4096 ConsumeToken(); // The identifier
4097
4098 // Objective-C supports type arguments and protocol references
4099 // following an Objective-C object or object pointer
4100 // type. Handle either one of them.
4101 if (Tok.is(tok::less) && getLangOpts().ObjC) {
4102 SourceLocation NewEndLoc;
4103 TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers(
4104 Loc, TypeRep, /*consumeLastToken=*/true,
4105 NewEndLoc);
4106 if (NewTypeRep.isUsable()) {
4107 DS.UpdateTypeRep(NewTypeRep.get());
4108 DS.SetRangeEnd(NewEndLoc);
4109 }
4110 }
4111
4112 // Need to support trailing type qualifiers (e.g. "id<p> const").
4113 // If a type specifier follows, it will be diagnosed elsewhere.
4114 continue;
4115 }
4116
4117 // type-name or placeholder-specifier
4118 case tok::annot_template_id: {
4119 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
4120
4121 if (TemplateId->hasInvalidName()) {
4122 DS.SetTypeSpecError();
4123 break;
4124 }
4125
4126 if (TemplateId->Kind == TNK_Concept_template) {
4127 // If we've already diagnosed that this type-constraint has invalid
4128 // arguments, drop it and just form 'auto' or 'decltype(auto)'.
4129 if (TemplateId->hasInvalidArgs())
4130 TemplateId = nullptr;
4131
4132 // Any of the following tokens are likely the start of the user
4133 // forgetting 'auto' or 'decltype(auto)', so diagnose.
4134 // Note: if updating this list, please make sure we update
4135 // isCXXDeclarationSpecifier's check for IsPlaceholderSpecifier to have
4136 // a matching list.
4137 if (NextToken().isOneOf(tok::identifier, tok::kw_const,
4138 tok::kw_volatile, tok::kw_restrict, tok::amp,
4139 tok::ampamp)) {
4140 Diag(Loc, diag::err_placeholder_expected_auto_or_decltype_auto)
4141 << FixItHint::CreateInsertion(NextToken().getLocation(), "auto");
4142 // Attempt to continue as if 'auto' was placed here.
4143 isInvalid = DS.SetTypeSpecType(TST_auto, Loc, PrevSpec, DiagID,
4144 TemplateId, Policy);
4145 break;
4146 }
4147 if (!NextToken().isOneOf(tok::kw_auto, tok::kw_decltype))
4148 goto DoneWithDeclSpec;
4149
4150 if (TemplateId && !isInvalid && Actions.CheckTypeConstraint(TemplateId))
4151 TemplateId = nullptr;
4152
4153 ConsumeAnnotationToken();
4154 SourceLocation AutoLoc = Tok.getLocation();
4155 if (TryConsumeToken(tok::kw_decltype)) {
4156 BalancedDelimiterTracker Tracker(*this, tok::l_paren);
4157 if (Tracker.consumeOpen()) {
4158 // Something like `void foo(Iterator decltype i)`
4159 Diag(Tok, diag::err_expected) << tok::l_paren;
4160 } else {
4161 if (!TryConsumeToken(tok::kw_auto)) {
4162 // Something like `void foo(Iterator decltype(int) i)`
4163 Tracker.skipToEnd();
4164 Diag(Tok, diag::err_placeholder_expected_auto_or_decltype_auto)
4166 Tok.getLocation()),
4167 "auto");
4168 } else {
4169 Tracker.consumeClose();
4170 }
4171 }
4172 ConsumedEnd = Tok.getLocation();
4173 DS.setTypeArgumentRange(Tracker.getRange());
4174 // Even if something went wrong above, continue as if we've seen
4175 // `decltype(auto)`.
4177 DiagID, TemplateId, Policy);
4178 } else {
4179 isInvalid = DS.SetTypeSpecType(TST_auto, AutoLoc, PrevSpec, DiagID,
4180 TemplateId, Policy);
4181 }
4182 break;
4183 }
4184
4185 if (TemplateId->Kind != TNK_Type_template &&
4186 TemplateId->Kind != TNK_Undeclared_template) {
4187 // This template-id does not refer to a type name, so we're
4188 // done with the type-specifiers.
4189 goto DoneWithDeclSpec;
4190 }
4191
4192 // If we're in a context where the template-id could be a
4193 // constructor name or specialization, check whether this is a
4194 // constructor declaration.
4195 if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
4196 Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
4197 isConstructorDeclarator(/*Unqualified=*/true,
4198 /*DeductionGuide=*/false,
4199 DS.isFriendSpecified()))
4200 goto DoneWithDeclSpec;
4201
4202 // Turn the template-id annotation token into a type annotation
4203 // token, then try again to parse it as a type-specifier.
4204 CXXScopeSpec SS;
4205 AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename);
4206 continue;
4207 }
4208
4209 // Attributes support.
4210 case tok::kw___attribute:
4211 case tok::kw___declspec:
4212 ParseAttributes(PAKM_GNU | PAKM_Declspec, DS.getAttributes(), LateAttrs);
4213 continue;
4214
4215 // Microsoft single token adornments.
4216 case tok::kw___forceinline: {
4217 isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
4218 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
4219 SourceLocation AttrNameLoc = Tok.getLocation();
4220 DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
4221 nullptr, 0, tok::kw___forceinline);
4222 break;
4223 }
4224
4225 case tok::kw___unaligned:
4226 isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
4227 getLangOpts());
4228 break;
4229
4230 case tok::kw___sptr:
4231 case tok::kw___uptr:
4232 case tok::kw___ptr64:
4233 case tok::kw___ptr32:
4234 case tok::kw___w64:
4235 case tok::kw___cdecl:
4236 case tok::kw___stdcall:
4237 case tok::kw___fastcall:
4238 case tok::kw___thiscall:
4239 case tok::kw___regcall:
4240 case tok::kw___vectorcall:
4241 ParseMicrosoftTypeAttributes(DS.getAttributes());
4242 continue;
4243
4244 case tok::kw___funcref:
4245 ParseWebAssemblyFuncrefTypeAttribute(DS.getAttributes());
4246 continue;
4247
4248 // Borland single token adornments.
4249 case tok::kw___pascal:
4250 ParseBorlandTypeAttributes(DS.getAttributes());
4251 continue;
4252
4253 // OpenCL single token adornments.
4254 case tok::kw___kernel:
4255 ParseOpenCLKernelAttributes(DS.getAttributes());
4256 continue;
4257
4258 // CUDA/HIP single token adornments.
4259 case tok::kw___noinline__:
4260 ParseCUDAFunctionAttributes(DS.getAttributes());
4261 continue;
4262
4263 // Nullability type specifiers.
4264 case tok::kw__Nonnull:
4265 case tok::kw__Nullable:
4266 case tok::kw__Nullable_result:
4267 case tok::kw__Null_unspecified:
4268 ParseNullabilityTypeSpecifiers(DS.getAttributes());
4269 continue;
4270
4271 // Objective-C 'kindof' types.
4272 case tok::kw___kindof:
4273 DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
4274 nullptr, 0, tok::kw___kindof);
4275 (void)ConsumeToken();
4276 continue;
4277
4278 // storage-class-specifier
4279 case tok::kw_typedef:
4281 PrevSpec, DiagID, Policy);
4282 isStorageClass = true;
4283 break;
4284 case tok::kw_extern:
4286 Diag(Tok, diag::ext_thread_before) << "extern";
4288 PrevSpec, DiagID, Policy);
4289 isStorageClass = true;
4290 break;
4291 case tok::kw___private_extern__:
4293 Loc, PrevSpec, DiagID, Policy);
4294 isStorageClass = true;
4295 break;
4296 case tok::kw_static:
4298 Diag(Tok, diag::ext_thread_before) << "static";
4300 PrevSpec, DiagID, Policy);
4301 isStorageClass = true;
4302 break;
4303 case tok::kw_auto:
4304 if (getLangOpts().CPlusPlus11 || getLangOpts().C23) {
4305 if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
4307 PrevSpec, DiagID, Policy);
4308 if (!isInvalid && !getLangOpts().C23)
4309 Diag(Tok, diag::ext_auto_storage_class)
4311 } else
4313 DiagID, Policy);
4314 } else
4316 PrevSpec, DiagID, Policy);
4317 isStorageClass = true;
4318 break;
4319 case tok::kw___auto_type:
4320 Diag(Tok, diag::ext_auto_type);
4322 DiagID, Policy);
4323 break;
4324 case tok::kw_register:
4326 PrevSpec, DiagID, Policy);
4327 isStorageClass = true;
4328 break;
4329 case tok::kw_mutable:
4331 PrevSpec, DiagID, Policy);
4332 isStorageClass = true;
4333 break;
4334 case tok::kw___thread:
4336 PrevSpec, DiagID);
4337 isStorageClass = true;
4338 break;
4339 case tok::kw_thread_local:
4340 if (getLangOpts().C23)
4341 Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName();
4342 // We map thread_local to _Thread_local in C23 mode so it retains the C
4343 // semantics rather than getting the C++ semantics.
4344 // FIXME: diagnostics will show _Thread_local when the user wrote
4345 // thread_local in source in C23 mode; we need some general way to
4346 // identify which way the user spelled the keyword in source.
4350 Loc, PrevSpec, DiagID);
4351 isStorageClass = true;
4352 break;
4353 case tok::kw__Thread_local:
4354 diagnoseUseOfC11Keyword(Tok);
4356 Loc, PrevSpec, DiagID);
4357 isStorageClass = true;
4358 break;
4359
4360 // function-specifier
4361 case tok::kw_inline:
4362 isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
4363 break;
4364 case tok::kw_virtual:
4365 // C++ for OpenCL does not allow virtual function qualifier, to avoid
4366 // function pointers restricted in OpenCL v2.0 s6.9.a.
4367 if (getLangOpts().OpenCLCPlusPlus &&
4368 !getActions().getOpenCLOptions().isAvailableOption(
4369 "__cl_clang_function_pointers", getLangOpts())) {
4370 DiagID = diag::err_openclcxx_virtual_function;
4371 PrevSpec = Tok.getIdentifierInfo()->getNameStart();
4372 isInvalid = true;
4373 } else {
4374 isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
4375 }
4376 break;
4377 case tok::kw_explicit: {
4378 SourceLocation ExplicitLoc = Loc;
4379 SourceLocation CloseParenLoc;
4381 ConsumedEnd = ExplicitLoc;
4382 ConsumeToken(); // kw_explicit
4383 if (Tok.is(tok::l_paren)) {
4384 if (getLangOpts().CPlusPlus20 || isExplicitBool() == TPResult::True) {
4386 ? diag::warn_cxx17_compat_explicit_bool
4387 : diag::ext_explicit_bool);
4388
4389 ExprResult ExplicitExpr(static_cast<Expr *>(nullptr));
4390 BalancedDelimiterTracker Tracker(*this, tok::l_paren);
4391 Tracker.consumeOpen();
4392
4393 EnterExpressionEvaluationContext ConstantEvaluated(
4395
4397 ConsumedEnd = Tok.getLocation();
4398 if (ExplicitExpr.isUsable()) {
4399 CloseParenLoc = Tok.getLocation();
4400 Tracker.consumeClose();
4401 ExplicitSpec =
4402 Actions.ActOnExplicitBoolSpecifier(ExplicitExpr.get());
4403 } else
4404 Tracker.skipToEnd();
4405 } else {
4406 Diag(Tok.getLocation(), diag::warn_cxx20_compat_explicit_bool);
4407 }
4408 }
4409 isInvalid = DS.setFunctionSpecExplicit(ExplicitLoc, PrevSpec, DiagID,
4410 ExplicitSpec, CloseParenLoc);
4411 break;
4412 }
4413 case tok::kw__Noreturn:
4414 diagnoseUseOfC11Keyword(Tok);
4415 isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
4416 break;
4417
4418 // friend
4419 case tok::kw_friend:
4420 if (DSContext == DeclSpecContext::DSC_class) {
4421 isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
4422 Scope *CurS = getCurScope();
4423 if (!isInvalid && CurS)
4424 CurS->setFlags(CurS->getFlags() | Scope::FriendScope);
4425 } else {
4426 PrevSpec = ""; // not actually used by the diagnostic
4427 DiagID = diag::err_friend_invalid_in_context;
4428 isInvalid = true;
4429 }
4430 break;
4431
4432 // Modules
4433 case tok::kw___module_private__:
4434 isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
4435 break;
4436
4437 // constexpr, consteval, constinit specifiers
4438 case tok::kw_constexpr:
4439 if (getLangOpts().C23)
4440 Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName();
4442 PrevSpec, DiagID);
4443 break;
4444 case tok::kw_consteval:
4446 PrevSpec, DiagID);
4447 break;
4448 case tok::kw_constinit:
4450 PrevSpec, DiagID);
4451 break;
4452
4453 // type-specifier
4454 case tok::kw_short:
4456 DiagID, Policy);
4457 break;
4458 case tok::kw_long:
4461 DiagID, Policy);
4462 else
4464 PrevSpec, DiagID, Policy);
4465 break;
4466 case tok::kw___int64:
4468 PrevSpec, DiagID, Policy);
4469 break;
4470 case tok::kw_signed:
4471 isInvalid =
4472 DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
4473 break;
4474 case tok::kw_unsigned:
4476 DiagID);
4477 break;
4478 case tok::kw__Complex:
4479 if (!getLangOpts().C99)
4480 Diag(Tok, diag::ext_c99_feature) << Tok.getName();
4482 DiagID);
4483 break;
4484 case tok::kw__Imaginary:
4485 if (!getLangOpts().C99)
4486 Diag(Tok, diag::ext_c99_feature) << Tok.getName();
4488 DiagID);
4489 break;
4490 case tok::kw_void:
4492 DiagID, Policy);
4493 break;
4494 case tok::kw_char:
4496 DiagID, Policy);
4497 break;
4498 case tok::kw_int:
4500 DiagID, Policy);
4501 break;
4502 case tok::kw__ExtInt:
4503 case tok::kw__BitInt: {
4504 DiagnoseBitIntUse(Tok);
4505 ExprResult ER = ParseExtIntegerArgument();
4506 if (ER.isInvalid())
4507 continue;
4508 isInvalid = DS.SetBitIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
4509 ConsumedEnd = PrevTokLocation;
4510 break;
4511 }
4512 case tok::kw___int128:
4514 DiagID, Policy);
4515 break;
4516 case tok::kw_half:
4518 DiagID, Policy);
4519 break;
4520 case tok::kw___bf16:
4522 DiagID, Policy);
4523 break;
4524 case tok::kw_float:
4526 DiagID, Policy);
4527 break;
4528 case tok::kw_double:
4530 DiagID, Policy);
4531 break;
4532 case tok::kw__Float16:
4534 DiagID, Policy);
4535 break;
4536 case tok::kw__Accum:
4537 assert(getLangOpts().FixedPoint &&
4538 "This keyword is only used when fixed point types are enabled "
4539 "with `-ffixed-point`");
4540 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec, DiagID,
4541 Policy);
4542 break;
4543 case tok::kw__Fract:
4544 assert(getLangOpts().FixedPoint &&
4545 "This keyword is only used when fixed point types are enabled "
4546 "with `-ffixed-point`");
4547 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec, DiagID,
4548 Policy);
4549 break;
4550 case tok::kw__Sat:
4551 assert(getLangOpts().FixedPoint &&
4552 "This keyword is only used when fixed point types are enabled "
4553 "with `-ffixed-point`");
4554 isInvalid = DS.SetTypeSpecSat(Loc, PrevSpec, DiagID);
4555 break;
4556 case tok::kw___float128:
4558 DiagID, Policy);
4559 break;
4560 case tok::kw___ibm128:
4562 DiagID, Policy);
4563 break;
4564 case tok::kw_wchar_t:
4566 DiagID, Policy);
4567 break;
4568 case tok::kw_char8_t:
4570 DiagID, Policy);
4571 break;
4572 case tok::kw_char16_t:
4574 DiagID, Policy);
4575 break;
4576 case tok::kw_char32_t:
4578 DiagID, Policy);
4579 break;
4580 case tok::kw_bool:
4581 if (getLangOpts().C23)
4582 Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName();
4583 [[fallthrough]];
4584 case tok::kw__Bool:
4585 if (Tok.is(tok::kw__Bool) && !getLangOpts().C99)
4586 Diag(Tok, diag::ext_c99_feature) << Tok.getName();
4587
4588 if (Tok.is(tok::kw_bool) &&
4591 PrevSpec = ""; // Not used by the diagnostic.
4592 DiagID = diag::err_bool_redeclaration;
4593 // For better error recovery.
4594 Tok.setKind(tok::identifier);
4595 isInvalid = true;
4596 } else {
4598 DiagID, Policy);
4599 }
4600 break;
4601 case tok::kw__Decimal32:
4603 DiagID, Policy);
4604 break;
4605 case tok::kw__Decimal64:
4607 DiagID, Policy);
4608 break;
4609 case tok::kw__Decimal128:
4611 DiagID, Policy);
4612 break;
4613 case tok::kw___vector:
4614 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
4615 break;
4616 case tok::kw___pixel:
4617 isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
4618 break;
4619 case tok::kw___bool:
4620 isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
4621 break;
4622 case tok::kw_pipe:
4623 if (!getLangOpts().OpenCL ||
4624 getLangOpts().getOpenCLCompatibleVersion() < 200) {
4625 // OpenCL 2.0 and later define this keyword. OpenCL 1.2 and earlier
4626 // should support the "pipe" word as identifier.
4628 Tok.setKind(tok::identifier);
4629 goto DoneWithDeclSpec;
4630 } else if (!getLangOpts().OpenCLPipes) {
4631 DiagID = diag::err_opencl_unknown_type_specifier;
4632 PrevSpec = Tok.getIdentifierInfo()->getNameStart();
4633 isInvalid = true;
4634 } else
4635 isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy);
4636 break;
4637// We only need to enumerate each image type once.
4638#define IMAGE_READ_WRITE_TYPE(Type, Id, Ext)
4639#define IMAGE_WRITE_TYPE(Type, Id, Ext)
4640#define IMAGE_READ_TYPE(ImgType, Id, Ext) \
4641 case tok::kw_##ImgType##_t: \
4642 if (!handleOpenCLImageKW(Ext, DeclSpec::TST_##ImgType##_t)) \
4643 goto DoneWithDeclSpec; \
4644 break;
4645#include "clang/Basic/OpenCLImageTypes.def"
4646 case tok::kw___unknown_anytype:
4648 PrevSpec, DiagID, Policy);
4649 break;
4650
4651 // class-specifier:
4652 case tok::kw_class:
4653 case tok::kw_struct:
4654 case tok::kw___interface:
4655 case tok::kw_union: {
4656 tok::TokenKind Kind = Tok.getKind();
4657 ConsumeToken();
4658
4659 // These are attributes following class specifiers.
4660 // To produce better diagnostic, we parse them when
4661 // parsing class specifier.
4662 ParsedAttributes Attributes(AttrFactory);
4663 ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
4664 EnteringContext, DSContext, Attributes);
4665
4666 // If there are attributes following class specifier,
4667 // take them over and handle them here.
4668 if (!Attributes.empty()) {
4669 AttrsLastTime = true;
4670 attrs.takeAllFrom(Attributes);
4671 }
4672 continue;
4673 }
4674
4675 // enum-specifier:
4676 case tok::kw_enum:
4677 ConsumeToken();
4678 ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
4679 continue;
4680
4681 // cv-qualifier:
4682 case tok::kw_const:
4683 isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
4684 getLangOpts());
4685 break;
4686 case tok::kw_volatile:
4687 isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
4688 getLangOpts());
4689 break;
4690 case tok::kw_restrict:
4691 isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
4692 getLangOpts());
4693 break;
4694
4695 // C++ typename-specifier:
4696 case tok::kw_typename:
4698 DS.SetTypeSpecError();
4699 goto DoneWithDeclSpec;
4700 }
4701 if (!Tok.is(tok::kw_typename))
4702 continue;
4703 break;
4704
4705 // C23/GNU typeof support.
4706 case tok::kw_typeof:
4707 case tok::kw_typeof_unqual:
4708 ParseTypeofSpecifier(DS);
4709 continue;
4710
4711 case tok::annot_decltype:
4712 ParseDecltypeSpecifier(DS);
4713 continue;
4714
4715 case tok::annot_pack_indexing_type:
4716 ParsePackIndexingType(DS);
4717 continue;
4718
4719 case tok::annot_pragma_pack:
4720 HandlePragmaPack();
4721 continue;
4722
4723 case tok::annot_pragma_ms_pragma:
4724 HandlePragmaMSPragma();
4725 continue;
4726
4727 case tok::annot_pragma_ms_vtordisp:
4728 HandlePragmaMSVtorDisp();
4729 continue;
4730
4731 case tok::annot_pragma_ms_pointers_to_members:
4732 HandlePragmaMSPointersToMembers();
4733 continue;
4734
4735#define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
4736#include "clang/Basic/TransformTypeTraits.def"
4737 // HACK: libstdc++ already uses '__remove_cv' as an alias template so we
4738 // work around this by expecting all transform type traits to be suffixed
4739 // with '('. They're an identifier otherwise.
4740 if (!MaybeParseTypeTransformTypeSpecifier(DS))
4741 goto ParseIdentifier;
4742 continue;
4743
4744 case tok::kw__Atomic:
4745 // C11 6.7.2.4/4:
4746 // If the _Atomic keyword is immediately followed by a left parenthesis,
4747 // it is interpreted as a type specifier (with a type name), not as a
4748 // type qualifier.
4749 diagnoseUseOfC11Keyword(Tok);
4750 if (NextToken().is(tok::l_paren)) {
4751 ParseAtomicSpecifier(DS);
4752 continue;
4753 }
4754 isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
4755 getLangOpts());
4756 break;
4757
4758 // OpenCL address space qualifiers:
4759 case tok::kw___generic:
4760 // generic address space is introduced only in OpenCL v2.0
4761 // see OpenCL C Spec v2.0 s6.5.5
4762 // OpenCL v3.0 introduces __opencl_c_generic_address_space
4763 // feature macro to indicate if generic address space is supported
4764 if (!Actions.getLangOpts().OpenCLGenericAddressSpace) {
4765 DiagID = diag::err_opencl_unknown_type_specifier;
4766 PrevSpec = Tok.getIdentifierInfo()->getNameStart();
4767 isInvalid = true;
4768 break;
4769 }
4770 [[fallthrough]];
4771 case tok::kw_private:
4772 // It's fine (but redundant) to check this for __generic on the
4773 // fallthrough path; we only form the __generic token in OpenCL mode.
4774 if (!getLangOpts().OpenCL)
4775 goto DoneWithDeclSpec;
4776 [[fallthrough]];
4777 case tok::kw___private:
4778 case tok::kw___global:
4779 case tok::kw___local:
4780 case tok::kw___constant:
4781 // OpenCL access qualifiers:
4782 case tok::kw___read_only:
4783 case tok::kw___write_only:
4784 case tok::kw___read_write:
4785 ParseOpenCLQualifiers(DS.getAttributes());
4786 break;
4787
4788 case tok::kw_groupshared:
4789 case tok::kw_in:
4790 case tok::kw_inout:
4791 case tok::kw_out:
4792 // NOTE: ParseHLSLQualifiers will consume the qualifier token.
4793 ParseHLSLQualifiers(DS.getAttributes());
4794 continue;
4795
4796 case tok::less:
4797 // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
4798 // "id<SomeProtocol>". This is hopelessly old fashioned and dangerous,
4799 // but we support it.
4800 if (DS.hasTypeSpecifier() || !getLangOpts().ObjC)
4801 goto DoneWithDeclSpec;
4802
4803 SourceLocation StartLoc = Tok.getLocation();
4804 SourceLocation EndLoc;
4805 TypeResult Type = parseObjCProtocolQualifierType(EndLoc);
4806 if (Type.isUsable()) {
4807 if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc,
4808 PrevSpec, DiagID, Type.get(),
4809 Actions.getASTContext().getPrintingPolicy()))
4810 Diag(StartLoc, DiagID) << PrevSpec;
4811
4812 DS.SetRangeEnd(EndLoc);
4813 } else {
4814 DS.SetTypeSpecError();
4815 }
4816
4817 // Need to support trailing type qualifiers (e.g. "id<p> const").
4818 // If a type specifier follows, it will be diagnosed elsewhere.
4819 continue;
4820 }
4821
4822 DS.SetRangeEnd(ConsumedEnd.isValid() ? ConsumedEnd : Tok.getLocation());
4823
4824 // If the specifier wasn't legal, issue a diagnostic.
4825 if (isInvalid) {
4826 assert(PrevSpec && "Method did not return previous specifier!");
4827 assert(DiagID);
4828
4829 if (DiagID == diag::ext_duplicate_declspec ||
4830 DiagID == diag::ext_warn_duplicate_declspec ||
4831 DiagID == diag::err_duplicate_declspec)
4832 Diag(Loc, DiagID) << PrevSpec
4834 SourceRange(Loc, DS.getEndLoc()));
4835 else if (DiagID == diag::err_opencl_unknown_type_specifier) {
4836 Diag(Loc, DiagID) << getLangOpts().getOpenCLVersionString() << PrevSpec
4837 << isStorageClass;
4838 } else
4839 Diag(Loc, DiagID) << PrevSpec;
4840 }
4841
4842 if (DiagID != diag::err_bool_redeclaration && ConsumedEnd.isInvalid())
4843 // After an error the next token can be an annotation token.
4845
4846 AttrsLastTime = false;
4847 }
4848}
4849
4851 Parser &P) {
4852
4854 return;
4855
4856 auto *RD = dyn_cast<RecordDecl>(DS.getRepAsDecl());
4857 // We're only interested in unnamed, non-anonymous struct
4858 if (!RD || !RD->getName().empty() || RD->isAnonymousStructOrUnion())
4859 return;
4860
4861 for (auto *I : RD->decls()) {
4862 auto *VD = dyn_cast<ValueDecl>(I);
4863 if (!VD)
4864 continue;
4865
4866 auto *CAT = VD->getType()->getAs<CountAttributedType>();
4867 if (!CAT)
4868 continue;
4869
4870 for (const auto &DD : CAT->dependent_decls()) {
4871 if (!RD->containsDecl(DD.getDecl())) {
4872 P.Diag(VD->getBeginLoc(), diag::err_count_attr_param_not_in_same_struct)
4873 << DD.getDecl() << CAT->getKind() << CAT->isArrayType();
4874 P.Diag(DD.getDecl()->getBeginLoc(),
4875 diag::note_flexible_array_counted_by_attr_field)
4876 << DD.getDecl();
4877 }
4878 }
4879 }
4880}
4881
4882/// ParseStructDeclaration - Parse a struct declaration without the terminating
4883/// semicolon.
4884///
4885/// Note that a struct declaration refers to a declaration in a struct,
4886/// not to the declaration of a struct.
4887///
4888/// struct-declaration:
4889/// [C23] attributes-specifier-seq[opt]
4890/// specifier-qualifier-list struct-declarator-list
4891/// [GNU] __extension__ struct-declaration
4892/// [GNU] specifier-qualifier-list
4893/// struct-declarator-list:
4894/// struct-declarator
4895/// struct-declarator-list ',' struct-declarator
4896/// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator
4897/// struct-declarator:
4898/// declarator
4899/// [GNU] declarator attributes[opt]
4900/// declarator[opt] ':' constant-expression
4901/// [GNU] declarator[opt] ':' constant-expression attributes[opt]
4902///
4903void Parser::ParseStructDeclaration(
4904 ParsingDeclSpec &DS,
4905 llvm::function_ref<Decl *(ParsingFieldDeclarator &)> FieldsCallback,
4906 LateParsedAttrList *LateFieldAttrs) {
4907
4908 if (Tok.is(tok::kw___extension__)) {
4909 // __extension__ silences extension warnings in the subexpression.
4910 ExtensionRAIIObject O(Diags); // Use RAII to do this.
4911 ConsumeToken();
4912 return ParseStructDeclaration(DS, FieldsCallback, LateFieldAttrs);
4913 }
4914
4915 // Parse leading attributes.
4916 ParsedAttributes Attrs(AttrFactory);
4917 MaybeParseCXX11Attributes(Attrs);
4918
4919 // Parse the common specifier-qualifiers-list piece.
4920 ParseSpecifierQualifierList(DS);
4921
4922 // If there are no declarators, this is a free-standing declaration
4923 // specifier. Let the actions module cope with it.
4924 if (Tok.is(tok::semi)) {
4925 // C23 6.7.2.1p9 : "The optional attribute specifier sequence in a
4926 // member declaration appertains to each of the members declared by the
4927 // member declarator list; it shall not appear if the optional member
4928 // declarator list is omitted."
4929 ProhibitAttributes(Attrs);
4930 RecordDecl *AnonRecord = nullptr;
4931 Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(
4932 getCurScope(), AS_none, DS, ParsedAttributesView::none(), AnonRecord);
4933 assert(!AnonRecord && "Did not expect anonymous struct or union here");
4934 DS.complete(TheDecl);
4935 return;
4936 }
4937
4938 // Read struct-declarators until we find the semicolon.
4939 bool FirstDeclarator = true;
4940 SourceLocation CommaLoc;
4941 while (true) {
4942 ParsingFieldDeclarator DeclaratorInfo(*this, DS, Attrs);
4943 DeclaratorInfo.D.setCommaLoc(CommaLoc);
4944
4945 // Attributes are only allowed here on successive declarators.
4946 if (!FirstDeclarator) {
4947 // However, this does not apply for [[]] attributes (which could show up
4948 // before or after the __attribute__ attributes).
4949 DiagnoseAndSkipCXX11Attributes();
4950 MaybeParseGNUAttributes(DeclaratorInfo.D);
4951 DiagnoseAndSkipCXX11Attributes();
4952 }
4953
4954 /// struct-declarator: declarator
4955 /// struct-declarator: declarator[opt] ':' constant-expression
4956 if (Tok.isNot(tok::colon)) {
4957 // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
4959 ParseDeclarator(DeclaratorInfo.D);
4960 } else
4961 DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
4962
4963 // Here, we now know that the unnamed struct is not an anonymous struct.
4964 // Report an error if a counted_by attribute refers to a field in a
4965 // different named struct.
4967
4968 if (TryConsumeToken(tok::colon)) {
4970 if (Res.isInvalid())
4971 SkipUntil(tok::semi, StopBeforeMatch);
4972 else
4973 DeclaratorInfo.BitfieldSize = Res.get();
4974 }
4975
4976 // If attributes exist after the declarator, parse them.
4977 MaybeParseGNUAttributes(DeclaratorInfo.D, LateFieldAttrs);
4978
4979 // We're done with this declarator; invoke the callback.
4980 Decl *Field = FieldsCallback(DeclaratorInfo);
4981 if (Field)
4982 DistributeCLateParsedAttrs(Field, LateFieldAttrs);
4983
4984 // If we don't have a comma, it is either the end of the list (a ';')
4985 // or an error, bail out.
4986 if (!TryConsumeToken(tok::comma, CommaLoc))
4987 return;
4988
4989 FirstDeclarator = false;
4990 }
4991}
4992
4993// TODO: All callers of this function should be moved to
4994// `Parser::ParseLexedAttributeList`.
4995void Parser::ParseLexedCAttributeList(LateParsedAttrList &LAs, bool EnterScope,
4996 ParsedAttributes *OutAttrs) {
4997 assert(LAs.parseSoon() &&
4998 "Attribute list should be marked for immediate parsing.");
4999 for (auto *LA : LAs) {
5000 ParseLexedCAttribute(*LA, EnterScope, OutAttrs);
5001 delete LA;
5002 }
5003 LAs.clear();
5004}
5005
5006/// Finish parsing an attribute for which parsing was delayed.
5007/// This will be called at the end of parsing a class declaration
5008/// for each LateParsedAttribute. We consume the saved tokens and
5009/// create an attribute with the arguments filled in. We add this
5010/// to the Attribute list for the decl.
5011void Parser::ParseLexedCAttribute(LateParsedAttribute &LA, bool EnterScope,
5012 ParsedAttributes *OutAttrs) {
5013 // Create a fake EOF so that attribute parsing won't go off the end of the
5014 // attribute.
5015 Token AttrEnd;
5016 AttrEnd.startToken();
5017 AttrEnd.setKind(tok::eof);
5018 AttrEnd.setLocation(Tok.getLocation());
5019 AttrEnd.setEofData(LA.Toks.data());
5020 LA.Toks.push_back(AttrEnd);
5021
5022 // Append the current token at the end of the new token stream so that it
5023 // doesn't get lost.
5024 LA.Toks.push_back(Tok);
5025 PP.EnterTokenStream(LA.Toks, /*DisableMacroExpansion=*/true,
5026 /*IsReinject=*/true);
5027 // Drop the current token and bring the first cached one. It's the same token
5028 // as when we entered this function.
5029 ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
5030
5031 // TODO: Use `EnterScope`
5032 (void)EnterScope;
5033
5034 ParsedAttributes Attrs(AttrFactory);
5035
5036 assert(LA.Decls.size() <= 1 &&
5037 "late field attribute expects to have at most one declaration.");
5038
5039 // Dispatch based on the attribute and parse it
5040 ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, nullptr, nullptr,
5041 SourceLocation(), ParsedAttr::Form::GNU(), nullptr);
5042
5043 for (auto *D : LA.Decls)
5044 Actions.ActOnFinishDelayedAttribute(getCurScope(), D, Attrs);
5045
5046 // Due to a parsing error, we either went over the cached tokens or
5047 // there are still cached tokens left, so we skip the leftover tokens.
5048 while (Tok.isNot(tok::eof))
5050
5051 // Consume the fake EOF token if it's there
5052 if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
5054
5055 if (OutAttrs) {
5056 OutAttrs->takeAllFrom(Attrs);
5057 }
5058}
5059
5060/// ParseStructUnionBody
5061/// struct-contents:
5062/// struct-declaration-list
5063/// [EXT] empty
5064/// [GNU] "struct-declaration-list" without terminating ';'
5065/// struct-declaration-list:
5066/// struct-declaration
5067/// struct-declaration-list struct-declaration
5068/// [OBC] '@' 'defs' '(' class-name ')'
5069///
5070void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
5073 "parsing struct/union body");
5074 assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
5075
5076 BalancedDelimiterTracker T(*this, tok::l_brace);
5077 if (T.consumeOpen())
5078 return;
5079
5080 ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
5082
5083 // `LateAttrParseExperimentalExtOnly=true` requests that only attributes
5084 // marked with `LateAttrParseExperimentalExt` are late parsed.
5085 LateParsedAttrList LateFieldAttrs(/*PSoon=*/true,
5086 /*LateAttrParseExperimentalExtOnly=*/true);
5087
5088 // While we still have something to read, read the declarations in the struct.
5089 while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
5090 Tok.isNot(tok::eof)) {
5091 // Each iteration of this loop reads one struct-declaration.
5092
5093 // Check for extraneous top-level semicolon.
5094 if (Tok.is(tok::semi)) {
5095 ConsumeExtraSemi(InsideStruct, TagType);
5096 continue;
5097 }
5098
5099 // Parse _Static_assert declaration.
5100 if (Tok.isOneOf(tok::kw__Static_assert, tok::kw_static_assert)) {
5101 SourceLocation DeclEnd;
5102 ParseStaticAssertDeclaration(DeclEnd);
5103 continue;
5104 }
5105
5106 if (Tok.is(tok::annot_pragma_pack)) {
5107 HandlePragmaPack();
5108 continue;
5109 }
5110
5111 if (Tok.is(tok::annot_pragma_align)) {
5112 HandlePragmaAlign();
5113 continue;
5114 }
5115
5116 if (Tok.isOneOf(tok::annot_pragma_openmp, tok::annot_attr_openmp)) {
5117 // Result can be ignored, because it must be always empty.
5119 ParsedAttributes Attrs(AttrFactory);
5120 (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs);
5121 continue;
5122 }
5123
5124 if (Tok.is(tok::annot_pragma_openacc)) {
5126 continue;
5127 }
5128
5129 if (tok::isPragmaAnnotation(Tok.getKind())) {
5130 Diag(Tok.getLocation(), diag::err_pragma_misplaced_in_decl)
5133 ConsumeAnnotationToken();
5134 continue;
5135 }
5136
5137 if (!Tok.is(tok::at)) {
5138 auto CFieldCallback = [&](ParsingFieldDeclarator &FD) -> Decl * {
5139 // Install the declarator into the current TagDecl.
5140 Decl *Field =
5141 Actions.ActOnField(getCurScope(), TagDecl,
5142 FD.D.getDeclSpec().getSourceRange().getBegin(),
5143 FD.D, FD.BitfieldSize);
5144 FD.complete(Field);
5145 return Field;
5146 };
5147
5148 // Parse all the comma separated declarators.
5149 ParsingDeclSpec DS(*this);
5150 ParseStructDeclaration(DS, CFieldCallback, &LateFieldAttrs);
5151 } else { // Handle @defs
5152 ConsumeToken();
5153 if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
5154 Diag(Tok, diag::err_unexpected_at);
5155 SkipUntil(tok::semi);
5156 continue;
5157 }
5158 ConsumeToken();
5159 ExpectAndConsume(tok::l_paren);
5160 if (!Tok.is(tok::identifier)) {
5161 Diag(Tok, diag::err_expected) << tok::identifier;
5162 SkipUntil(tok::semi);
5163 continue;
5164 }
5166 Actions.ObjC().ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
5167 Tok.getIdentifierInfo(), Fields);
5168 ConsumeToken();
5169 ExpectAndConsume(tok::r_paren);
5170 }
5171
5172 if (TryConsumeToken(tok::semi))
5173 continue;
5174
5175 if (Tok.is(tok::r_brace)) {
5176 ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
5177 break;
5178 }
5179
5180 ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
5181 // Skip to end of block or statement to avoid ext-warning on extra ';'.
5182 SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
5183 // If we stopped at a ';', eat it.
5184 TryConsumeToken(tok::semi);
5185 }
5186
5187 T.consumeClose();
5188
5189 ParsedAttributes attrs(AttrFactory);
5190 // If attributes exist after struct contents, parse them.
5191 MaybeParseGNUAttributes(attrs, &LateFieldAttrs);
5192
5193 // Late parse field attributes if necessary.
5194 ParseLexedCAttributeList(LateFieldAttrs, /*EnterScope=*/false);
5195
5196 SmallVector<Decl *, 32> FieldDecls(TagDecl->fields());
5197
5198 Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls,
5199 T.getOpenLocation(), T.getCloseLocation(), attrs);
5200 StructScope.Exit();
5201 Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getRange());
5202}
5203
5204/// ParseEnumSpecifier
5205/// enum-specifier: [C99 6.7.2.2]
5206/// 'enum' identifier[opt] '{' enumerator-list '}'
5207///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
5208/// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
5209/// '}' attributes[opt]
5210/// [MS] 'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
5211/// '}'
5212/// 'enum' identifier
5213/// [GNU] 'enum' attributes[opt] identifier
5214///
5215/// [C++11] enum-head '{' enumerator-list[opt] '}'
5216/// [C++11] enum-head '{' enumerator-list ',' '}'
5217///
5218/// enum-head: [C++11]
5219/// enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
5220/// enum-key attribute-specifier-seq[opt] nested-name-specifier
5221/// identifier enum-base[opt]
5222///
5223/// enum-key: [C++11]
5224/// 'enum'
5225/// 'enum' 'class'
5226/// 'enum' 'struct'
5227///
5228/// enum-base: [C++11]
5229/// ':' type-specifier-seq
5230///
5231/// [C++] elaborated-type-specifier:
5232/// [C++] 'enum' nested-name-specifier[opt] identifier
5233///
5234void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
5235 const ParsedTemplateInfo &TemplateInfo,
5236 AccessSpecifier AS, DeclSpecContext DSC) {
5237 // Parse the tag portion of this.
5238 if (Tok.is(tok::code_completion)) {
5239 // Code completion for an enum name.
5240 cutOffParsing();
5242 DS.SetTypeSpecError(); // Needed by ActOnUsingDeclaration.
5243 return;
5244 }
5245
5246 // If attributes exist after tag, parse them.
5247 ParsedAttributes attrs(AttrFactory);
5248 MaybeParseAttributes(PAKM_GNU | PAKM_Declspec | PAKM_CXX11, attrs);
5249
5250 SourceLocation ScopedEnumKWLoc;
5251 bool IsScopedUsingClassTag = false;
5252
5253 // In C++11, recognize 'enum class' and 'enum struct'.
5254 if (Tok.isOneOf(tok::kw_class, tok::kw_struct) && getLangOpts().CPlusPlus) {
5255 Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
5256 : diag::ext_scoped_enum);
5257 IsScopedUsingClassTag = Tok.is(tok::kw_class);
5258 ScopedEnumKWLoc = ConsumeToken();
5259
5260 // Attributes are not allowed between these keywords. Diagnose,
5261 // but then just treat them like they appeared in the right place.
5262 ProhibitAttributes(attrs);
5263
5264 // They are allowed afterwards, though.
5265 MaybeParseAttributes(PAKM_GNU | PAKM_Declspec | PAKM_CXX11, attrs);
5266 }
5267
5268 // C++11 [temp.explicit]p12:
5269 // The usual access controls do not apply to names used to specify
5270 // explicit instantiations.
5271 // We extend this to also cover explicit specializations. Note that
5272 // we don't suppress if this turns out to be an elaborated type
5273 // specifier.
5274 bool shouldDelayDiagsInTag =
5275 (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
5276 TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
5277 SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
5278
5279 // Determine whether this declaration is permitted to have an enum-base.
5280 AllowDefiningTypeSpec AllowEnumSpecifier =
5281 isDefiningTypeSpecifierContext(DSC, getLangOpts().CPlusPlus);
5282 bool CanBeOpaqueEnumDeclaration =
5283 DS.isEmpty() && isOpaqueEnumDeclarationContext(DSC);
5284 bool CanHaveEnumBase = (getLangOpts().CPlusPlus11 || getLangOpts().ObjC ||
5285 getLangOpts().MicrosoftExt) &&
5286 (AllowEnumSpecifier == AllowDefiningTypeSpec::Yes ||
5287 CanBeOpaqueEnumDeclaration);
5288
5289 CXXScopeSpec &SS = DS.getTypeSpecScope();
5290 if (getLangOpts().CPlusPlus) {
5291 // "enum foo : bar;" is not a potential typo for "enum foo::bar;".
5293
5294 CXXScopeSpec Spec;
5295 if (ParseOptionalCXXScopeSpecifier(Spec, /*ObjectType=*/nullptr,
5296 /*ObjectHasErrors=*/false,
5297 /*EnteringContext=*/true))
5298 return;
5299
5300 if (Spec.isSet() && Tok.isNot(tok::identifier)) {
5301 Diag(Tok, diag::err_expected) << tok::identifier;
5302 DS.SetTypeSpecError();
5303 if (Tok.isNot(tok::l_brace)) {
5304 // Has no name and is not a definition.
5305 // Skip the rest of this declarator, up until the comma or semicolon.
5306 SkipUntil(tok::comma, StopAtSemi);
5307 return;
5308 }
5309 }
5310
5311 SS = Spec;
5312 }
5313
5314 // Must have either 'enum name' or 'enum {...}' or (rarely) 'enum : T { ... }'.
5315 if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
5316 Tok.isNot(tok::colon)) {
5317 Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
5318
5319 DS.SetTypeSpecError();
5320 // Skip the rest of this declarator, up until the comma or semicolon.
5321 SkipUntil(tok::comma, StopAtSemi);
5322 return;
5323 }
5324
5325 // If an identifier is present, consume and remember it.
5326 IdentifierInfo *Name = nullptr;
5327 SourceLocation NameLoc;
5328 if (Tok.is(tok::identifier)) {
5329 Name = Tok.getIdentifierInfo();
5330 NameLoc = ConsumeToken();
5331 }
5332
5333 if (!Name && ScopedEnumKWLoc.isValid()) {
5334 // C++0x 7.2p2: The optional identifier shall not be omitted in the
5335 // declaration of a scoped enumeration.
5336 Diag(Tok, diag::err_scoped_enum_missing_identifier);
5337 ScopedEnumKWLoc = SourceLocation();
5338 IsScopedUsingClassTag = false;
5339 }
5340
5341 // Okay, end the suppression area. We'll decide whether to emit the
5342 // diagnostics in a second.
5343 if (shouldDelayDiagsInTag)
5344 diagsFromTag.done();
5345
5346 TypeResult BaseType;
5347 SourceRange BaseRange;
5348
5349 bool CanBeBitfield =
5350 getCurScope()->isClassScope() && ScopedEnumKWLoc.isInvalid() && Name;
5351
5352 // Parse the fixed underlying type.
5353 if (Tok.is(tok::colon)) {
5354 // This might be an enum-base or part of some unrelated enclosing context.
5355 //
5356 // 'enum E : base' is permitted in two circumstances:
5357 //
5358 // 1) As a defining-type-specifier, when followed by '{'.
5359 // 2) As the sole constituent of a complete declaration -- when DS is empty
5360 // and the next token is ';'.
5361 //
5362 // The restriction to defining-type-specifiers is important to allow parsing
5363 // a ? new enum E : int{}
5364 // _Generic(a, enum E : int{})
5365 // properly.
5366 //
5367 // One additional consideration applies:
5368 //
5369 // C++ [dcl.enum]p1:
5370 // A ':' following "enum nested-name-specifier[opt] identifier" within
5371 // the decl-specifier-seq of a member-declaration is parsed as part of
5372 // an enum-base.
5373 //
5374 // Other language modes supporting enumerations with fixed underlying types
5375 // do not have clear rules on this, so we disambiguate to determine whether
5376 // the tokens form a bit-field width or an enum-base.
5377
5378 if (CanBeBitfield && !isEnumBase(CanBeOpaqueEnumDeclaration)) {
5379 // Outside C++11, do not interpret the tokens as an enum-base if they do
5380 // not make sense as one. In C++11, it's an error if this happens.
5382 Diag(Tok.getLocation(), diag::err_anonymous_enum_bitfield);
5383 } else if (CanHaveEnumBase || !ColonIsSacred) {
5384 SourceLocation ColonLoc = ConsumeToken();
5385
5386 // Parse a type-specifier-seq as a type. We can't just ParseTypeName here,
5387 // because under -fms-extensions,
5388 // enum E : int *p;
5389 // declares 'enum E : int; E *p;' not 'enum E : int*; E p;'.
5390 DeclSpec DS(AttrFactory);
5391 // enum-base is not assumed to be a type and therefore requires the
5392 // typename keyword [p0634r3].
5393 ParseSpecifierQualifierList(DS, ImplicitTypenameContext::No, AS,
5394 DeclSpecContext::DSC_type_specifier);
5395 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
5397 BaseType = Actions.ActOnTypeName(DeclaratorInfo);
5398
5399 BaseRange = SourceRange(ColonLoc, DeclaratorInfo.getSourceRange().getEnd());
5400
5401 if (!getLangOpts().ObjC && !getLangOpts().C23) {
5403 Diag(ColonLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type)
5404 << BaseRange;
5405 else if (getLangOpts().CPlusPlus)
5406 Diag(ColonLoc, diag::ext_cxx11_enum_fixed_underlying_type)
5407 << BaseRange;
5408 else if (getLangOpts().MicrosoftExt)
5409 Diag(ColonLoc, diag::ext_ms_c_enum_fixed_underlying_type)
5410 << BaseRange;
5411 else
5412 Diag(ColonLoc, diag::ext_clang_c_enum_fixed_underlying_type)
5413 << BaseRange;
5414 }
5415 }
5416 }
5417
5418 // There are four options here. If we have 'friend enum foo;' then this is a
5419 // friend declaration, and cannot have an accompanying definition. If we have
5420 // 'enum foo;', then this is a forward declaration. If we have
5421 // 'enum foo {...' then this is a definition. Otherwise we have something
5422 // like 'enum foo xyz', a reference.
5423 //
5424 // This is needed to handle stuff like this right (C99 6.7.2.3p11):
5425 // enum foo {..}; void bar() { enum foo; } <- new foo in bar.
5426 // enum foo {..}; void bar() { enum foo x; } <- use of old foo.
5427 //
5428 TagUseKind TUK;
5429 if (AllowEnumSpecifier == AllowDefiningTypeSpec::No)
5431 else if (Tok.is(tok::l_brace)) {
5432 if (DS.isFriendSpecified()) {
5433 Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
5435 ConsumeBrace();
5436 SkipUntil(tok::r_brace, StopAtSemi);
5437 // Discard any other definition-only pieces.
5438 attrs.clear();
5439 ScopedEnumKWLoc = SourceLocation();
5440 IsScopedUsingClassTag = false;
5441 BaseType = TypeResult();
5442 TUK = TagUseKind::Friend;
5443 } else {
5445 }
5446 } else if (!isTypeSpecifier(DSC) &&
5447 (Tok.is(tok::semi) ||
5448 (Tok.isAtStartOfLine() &&
5449 !isValidAfterTypeSpecifier(CanBeBitfield)))) {
5450 // An opaque-enum-declaration is required to be standalone (no preceding or
5451 // following tokens in the declaration). Sema enforces this separately by
5452 // diagnosing anything else in the DeclSpec.
5454 if (Tok.isNot(tok::semi)) {
5455 // A semicolon was missing after this declaration. Diagnose and recover.
5456 ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
5457 PP.EnterToken(Tok, /*IsReinject=*/true);
5458 Tok.setKind(tok::semi);
5459 }
5460 } else {
5462 }
5463
5464 bool IsElaboratedTypeSpecifier =
5466
5467 // If this is an elaborated type specifier nested in a larger declaration,
5468 // and we delayed diagnostics before, just merge them into the current pool.
5469 if (TUK == TagUseKind::Reference && shouldDelayDiagsInTag) {
5470 diagsFromTag.redelay();
5471 }
5472
5473 MultiTemplateParamsArg TParams;
5474 if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
5475 TUK != TagUseKind::Reference) {
5476 if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
5477 // Skip the rest of this declarator, up until the comma or semicolon.
5478 Diag(Tok, diag::err_enum_template);
5479 SkipUntil(tok::comma, StopAtSemi);
5480 return;
5481 }
5482
5483 if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
5484 // Enumerations can't be explicitly instantiated.
5485 DS.SetTypeSpecError();
5486 Diag(StartLoc, diag::err_explicit_instantiation_enum);
5487 return;
5488 }
5489
5490 assert(TemplateInfo.TemplateParams && "no template parameters");
5491 TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
5492 TemplateInfo.TemplateParams->size());
5493 SS.setTemplateParamLists(TParams);
5494 }
5495
5496 if (!Name && TUK != TagUseKind::Definition) {
5497 Diag(Tok, diag::err_enumerator_unnamed_no_def);
5498
5499 DS.SetTypeSpecError();
5500 // Skip the rest of this declarator, up until the comma or semicolon.
5501 SkipUntil(tok::comma, StopAtSemi);
5502 return;
5503 }
5504
5505 // An elaborated-type-specifier has a much more constrained grammar:
5506 //
5507 // 'enum' nested-name-specifier[opt] identifier
5508 //
5509 // If we parsed any other bits, reject them now.
5510 //
5511 // MSVC and (for now at least) Objective-C permit a full enum-specifier
5512 // or opaque-enum-declaration anywhere.
5513 if (IsElaboratedTypeSpecifier && !getLangOpts().MicrosoftExt &&
5514 !getLangOpts().ObjC) {
5515 ProhibitCXX11Attributes(attrs, diag::err_attributes_not_allowed,
5516 diag::err_keyword_not_allowed,
5517 /*DiagnoseEmptyAttrs=*/true);
5518 if (BaseType.isUsable())
5519 Diag(BaseRange.getBegin(), diag::ext_enum_base_in_type_specifier)
5520 << (AllowEnumSpecifier == AllowDefiningTypeSpec::Yes) << BaseRange;
5521 else if (ScopedEnumKWLoc.isValid())
5522 Diag(ScopedEnumKWLoc, diag::ext_elaborated_enum_class)
5523 << FixItHint::CreateRemoval(ScopedEnumKWLoc) << IsScopedUsingClassTag;
5524 }
5525
5526 stripTypeAttributesOffDeclSpec(attrs, DS, TUK);
5527
5528 SkipBodyInfo SkipBody;
5529 if (!Name && TUK == TagUseKind::Definition && Tok.is(tok::l_brace) &&
5530 NextToken().is(tok::identifier))
5531 SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
5532 NextToken().getIdentifierInfo(),
5533 NextToken().getLocation());
5534
5535 bool Owned = false;
5536 bool IsDependent = false;
5537 const char *PrevSpec = nullptr;
5538 unsigned DiagID;
5539 Decl *TagDecl =
5540 Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS,
5541 Name, NameLoc, attrs, AS, DS.getModulePrivateSpecLoc(),
5542 TParams, Owned, IsDependent, ScopedEnumKWLoc,
5543 IsScopedUsingClassTag,
5544 BaseType, DSC == DeclSpecContext::DSC_type_specifier,
5545 DSC == DeclSpecContext::DSC_template_param ||
5546 DSC == DeclSpecContext::DSC_template_type_arg,
5547 OffsetOfState, &SkipBody).get();
5548
5549 if (SkipBody.ShouldSkip) {
5550 assert(TUK == TagUseKind::Definition && "can only skip a definition");
5551
5552 BalancedDelimiterTracker T(*this, tok::l_brace);
5553 T.consumeOpen();
5554 T.skipToEnd();
5555
5556 if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
5557 NameLoc.isValid() ? NameLoc : StartLoc,
5558 PrevSpec, DiagID, TagDecl, Owned,
5559 Actions.getASTContext().getPrintingPolicy()))
5560 Diag(StartLoc, DiagID) << PrevSpec;
5561 return;
5562 }
5563
5564 if (IsDependent) {
5565 // This enum has a dependent nested-name-specifier. Handle it as a
5566 // dependent tag.
5567 if (!Name) {
5568 DS.SetTypeSpecError();
5569 Diag(Tok, diag::err_expected_type_name_after_typename);
5570 return;
5571 }
5572
5574 getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
5575 if (Type.isInvalid()) {
5576 DS.SetTypeSpecError();
5577 return;
5578 }
5579
5580 if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
5581 NameLoc.isValid() ? NameLoc : StartLoc,
5582 PrevSpec, DiagID, Type.get(),
5583 Actions.getASTContext().getPrintingPolicy()))
5584 Diag(StartLoc, DiagID) << PrevSpec;
5585
5586 return;
5587 }
5588
5589 if (!TagDecl) {
5590 // The action failed to produce an enumeration tag. If this is a
5591 // definition, consume the entire definition.
5592 if (Tok.is(tok::l_brace) && TUK != TagUseKind::Reference) {
5593 ConsumeBrace();
5594 SkipUntil(tok::r_brace, StopAtSemi);
5595 }
5596
5597 DS.SetTypeSpecError();
5598 return;
5599 }
5600
5601 if (Tok.is(tok::l_brace) && TUK == TagUseKind::Definition) {
5602 Decl *D = SkipBody.CheckSameAsPrevious ? SkipBody.New : TagDecl;
5603 ParseEnumBody(StartLoc, D);
5604 if (SkipBody.CheckSameAsPrevious &&
5605 !Actions.ActOnDuplicateDefinition(TagDecl, SkipBody)) {
5606 DS.SetTypeSpecError();
5607 return;
5608 }
5609 }
5610
5611 if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
5612 NameLoc.isValid() ? NameLoc : StartLoc,
5613 PrevSpec, DiagID, TagDecl, Owned,
5614 Actions.getASTContext().getPrintingPolicy()))
5615 Diag(StartLoc, DiagID) << PrevSpec;
5616}
5617
5618/// ParseEnumBody - Parse a {} enclosed enumerator-list.
5619/// enumerator-list:
5620/// enumerator
5621/// enumerator-list ',' enumerator
5622/// enumerator:
5623/// enumeration-constant attributes[opt]
5624/// enumeration-constant attributes[opt] '=' constant-expression
5625/// enumeration-constant:
5626/// identifier
5627///
5628void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
5629 // Enter the scope of the enum body and start the definition.
5630 ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
5632
5633 BalancedDelimiterTracker T(*this, tok::l_brace);
5634 T.consumeOpen();
5635
5636 // C does not allow an empty enumerator-list, C++ does [dcl.enum].
5637 if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
5638 Diag(Tok, diag::err_empty_enum);
5639
5640 SmallVector<Decl *, 32> EnumConstantDecls;
5641 SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
5642
5643 Decl *LastEnumConstDecl = nullptr;
5644
5645 // Parse the enumerator-list.
5646 while (Tok.isNot(tok::r_brace)) {
5647 // Parse enumerator. If failed, try skipping till the start of the next
5648 // enumerator definition.
5649 if (Tok.isNot(tok::identifier)) {
5650 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
5651 if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
5652 TryConsumeToken(tok::comma))
5653 continue;
5654 break;
5655 }
5656 IdentifierInfo *Ident = Tok.getIdentifierInfo();
5657 SourceLocation IdentLoc = ConsumeToken();
5658
5659 // If attributes exist after the enumerator, parse them.
5660 ParsedAttributes attrs(AttrFactory);
5661 MaybeParseGNUAttributes(attrs);
5662 if (isAllowedCXX11AttributeSpecifier()) {
5663 if (getLangOpts().CPlusPlus)
5665 ? diag::warn_cxx14_compat_ns_enum_attribute
5666 : diag::ext_ns_enum_attribute)
5667 << 1 /*enumerator*/;
5668 ParseCXX11Attributes(attrs);
5669 }
5670
5671 SourceLocation EqualLoc;
5672 ExprResult AssignedVal;
5673 EnumAvailabilityDiags.emplace_back(*this);
5674
5675 EnterExpressionEvaluationContext ConstantEvaluated(
5677 if (TryConsumeToken(tok::equal, EqualLoc)) {
5679 if (AssignedVal.isInvalid())
5680 SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
5681 }
5682
5683 // Install the enumerator constant into EnumDecl.
5684 Decl *EnumConstDecl = Actions.ActOnEnumConstant(
5685 getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs,
5686 EqualLoc, AssignedVal.get());
5687 EnumAvailabilityDiags.back().done();
5688
5689 EnumConstantDecls.push_back(EnumConstDecl);
5690 LastEnumConstDecl = EnumConstDecl;
5691
5692 if (Tok.is(tok::identifier)) {
5693 // We're missing a comma between enumerators.
5695 Diag(Loc, diag::err_enumerator_list_missing_comma)
5697 continue;
5698 }
5699
5700 // Emumerator definition must be finished, only comma or r_brace are
5701 // allowed here.
5702 SourceLocation CommaLoc;
5703 if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
5704 if (EqualLoc.isValid())
5705 Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
5706 << tok::comma;
5707 else
5708 Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
5709 if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
5710 if (TryConsumeToken(tok::comma, CommaLoc))
5711 continue;
5712 } else {
5713 break;
5714 }
5715 }
5716
5717 // If comma is followed by r_brace, emit appropriate warning.
5718 if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
5720 Diag(CommaLoc, getLangOpts().CPlusPlus ?
5721 diag::ext_enumerator_list_comma_cxx :
5722 diag::ext_enumerator_list_comma_c)
5723 << FixItHint::CreateRemoval(CommaLoc);
5724 else if (getLangOpts().CPlusPlus11)
5725 Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
5726 << FixItHint::CreateRemoval(CommaLoc);
5727 break;
5728 }
5729 }
5730
5731 // Eat the }.
5732 T.consumeClose();
5733
5734 // If attributes exist after the identifier list, parse them.
5735 ParsedAttributes attrs(AttrFactory);
5736 MaybeParseGNUAttributes(attrs);
5737
5738 Actions.ActOnEnumBody(StartLoc, T.getRange(), EnumDecl, EnumConstantDecls,
5739 getCurScope(), attrs);
5740
5741 // Now handle enum constant availability diagnostics.
5742 assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
5743 for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
5745 EnumAvailabilityDiags[i].redelay();
5746 PD.complete(EnumConstantDecls[i]);
5747 }
5748
5749 EnumScope.Exit();
5750 Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getRange());
5751
5752 // The next token must be valid after an enum definition. If not, a ';'
5753 // was probably forgotten.
5754 bool CanBeBitfield = getCurScope()->isClassScope();
5755 if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
5756 ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
5757 // Push this token back into the preprocessor and change our current token
5758 // to ';' so that the rest of the code recovers as though there were an
5759 // ';' after the definition.
5760 PP.EnterToken(Tok, /*IsReinject=*/true);
5761 Tok.setKind(tok::semi);
5762 }
5763}
5764
5765/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
5766/// is definitely a type-specifier. Return false if it isn't part of a type
5767/// specifier or if we're not sure.
5768bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
5769 switch (Tok.getKind()) {
5770 default: return false;
5771 // type-specifiers
5772 case tok::kw_short:
5773 case tok::kw_long:
5774 case tok::kw___int64:
5775 case tok::kw___int128:
5776 case tok::kw_signed:
5777 case tok::kw_unsigned:
5778 case tok::kw__Complex:
5779 case tok::kw__Imaginary:
5780 case tok::kw_void:
5781 case tok::kw_char:
5782 case tok::kw_wchar_t:
5783 case tok::kw_char8_t:
5784 case tok::kw_char16_t:
5785 case tok::kw_char32_t:
5786 case tok::kw_int:
5787 case tok::kw__ExtInt:
5788 case tok::kw__BitInt:
5789 case tok::kw___bf16:
5790 case tok::kw_half:
5791 case tok::kw_float:
5792 case tok::kw_double:
5793 case tok::kw__Accum:
5794 case tok::kw__Fract:
5795 case tok::kw__Float16:
5796 case tok::kw___float128:
5797 case tok::kw___ibm128:
5798 case tok::kw_bool:
5799 case tok::kw__Bool:
5800 case tok::kw__Decimal32:
5801 case tok::kw__Decimal64:
5802 case tok::kw__Decimal128:
5803 case tok::kw___vector:
5804#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
5805#include "clang/Basic/OpenCLImageTypes.def"
5806
5807 // struct-or-union-specifier (C99) or class-specifier (C++)
5808 case tok::kw_class:
5809 case tok::kw_struct:
5810 case tok::kw___interface:
5811 case tok::kw_union:
5812 // enum-specifier
5813 case tok::kw_enum:
5814
5815 // typedef-name
5816 case tok::annot_typename:
5817 return true;
5818 }
5819}
5820
5821/// isTypeSpecifierQualifier - Return true if the current token could be the
5822/// start of a specifier-qualifier-list.
5823bool Parser::isTypeSpecifierQualifier() {
5824 switch (Tok.getKind()) {
5825 default: return false;
5826
5827 case tok::identifier: // foo::bar
5828 if (TryAltiVecVectorToken())
5829 return true;
5830 [[fallthrough]];
5831 case tok::kw_typename: // typename T::type
5832 // Annotate typenames and C++ scope specifiers. If we get one, just
5833 // recurse to handle whatever we get.
5835 return true;
5836 if (Tok.is(tok::identifier))
5837 return false;
5838 return isTypeSpecifierQualifier();
5839
5840 case tok::coloncolon: // ::foo::bar
5841 if (NextToken().is(tok::kw_new) || // ::new
5842 NextToken().is(tok::kw_delete)) // ::delete
5843 return false;
5844
5846 return true;
5847 return isTypeSpecifierQualifier();
5848
5849 // GNU attributes support.
5850 case tok::kw___attribute:
5851 // C23/GNU typeof support.
5852 case tok::kw_typeof:
5853 case tok::kw_typeof_unqual:
5854
5855 // type-specifiers
5856 case tok::kw_short:
5857 case tok::kw_long:
5858 case tok::kw___int64:
5859 case tok::kw___int128:
5860 case tok::kw_signed:
5861 case tok::kw_unsigned:
5862 case tok::kw__Complex:
5863 case tok::kw__Imaginary:
5864 case tok::kw_void:
5865 case tok::kw_char:
5866 case tok::kw_wchar_t:
5867 case tok::kw_char8_t:
5868 case tok::kw_char16_t:
5869 case tok::kw_char32_t:
5870 case tok::kw_int:
5871 case tok::kw__ExtInt:
5872 case tok::kw__BitInt:
5873 case tok::kw_half:
5874 case tok::kw___bf16:
5875 case tok::kw_float:
5876 case tok::kw_double:
5877 case tok::kw__Accum:
5878 case tok::kw__Fract:
5879 case tok::kw__Float16:
5880 case tok::kw___float128:
5881 case tok::kw___ibm128:
5882 case tok::kw_bool:
5883 case tok::kw__Bool:
5884 case tok::kw__Decimal32:
5885 case tok::kw__Decimal64:
5886 case tok::kw__Decimal128:
5887 case tok::kw___vector:
5888#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
5889#include "clang/Basic/OpenCLImageTypes.def"
5890
5891 // struct-or-union-specifier (C99) or class-specifier (C++)
5892 case tok::kw_class:
5893 case tok::kw_struct:
5894 case tok::kw___interface:
5895 case tok::kw_union:
5896 // enum-specifier
5897 case tok::kw_enum:
5898
5899 // type-qualifier
5900 case tok::kw_const:
5901 case tok::kw_volatile:
5902 case tok::kw_restrict:
5903 case tok::kw__Sat:
5904
5905 // Debugger support.
5906 case tok::kw___unknown_anytype:
5907
5908 // typedef-name
5909 case tok::annot_typename:
5910 return true;
5911
5912 // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
5913 case tok::less:
5914 return getLangOpts().ObjC;
5915
5916 case tok::kw___cdecl:
5917 case tok::kw___stdcall:
5918 case tok::kw___fastcall:
5919 case tok::kw___thiscall:
5920 case tok::kw___regcall:
5921 case tok::kw___vectorcall:
5922 case tok::kw___w64:
5923 case tok::kw___ptr64:
5924 case tok::kw___ptr32:
5925 case tok::kw___pascal:
5926 case tok::kw___unaligned:
5927
5928 case tok::kw__Nonnull:
5929 case tok::kw__Nullable:
5930 case tok::kw__Nullable_result:
5931 case tok::kw__Null_unspecified:
5932
5933 case tok::kw___kindof:
5934
5935 case tok::kw___private:
5936 case tok::kw___local:
5937 case tok::kw___global:
5938 case tok::kw___constant:
5939 case tok::kw___generic:
5940 case tok::kw___read_only:
5941 case tok::kw___read_write:
5942 case tok::kw___write_only:
5943 case tok::kw___funcref:
5944 return true;
5945
5946 case tok::kw_private:
5947 return getLangOpts().OpenCL;
5948
5949 // C11 _Atomic
5950 case tok::kw__Atomic:
5951 return true;
5952
5953 // HLSL type qualifiers
5954 case tok::kw_groupshared:
5955 case tok::kw_in:
5956 case tok::kw_inout:
5957 case tok::kw_out:
5958 return getLangOpts().HLSL;
5959 }
5960}
5961
5962Parser::DeclGroupPtrTy Parser::ParseTopLevelStmtDecl() {
5963 assert(PP.isIncrementalProcessingEnabled() && "Not in incremental mode");
5964
5965 // Parse a top-level-stmt.
5966 Parser::StmtVector Stmts;
5967 ParsedStmtContext SubStmtCtx = ParsedStmtContext();
5968 ParseScope FnScope(this, Scope::FnScope | Scope::DeclScope |
5971 StmtResult R = ParseStatementOrDeclaration(Stmts, SubStmtCtx);
5972 if (!R.isUsable())
5973 return nullptr;
5974
5975 Actions.ActOnFinishTopLevelStmtDecl(TLSD, R.get());
5976
5977 if (Tok.is(tok::annot_repl_input_end) &&
5978 Tok.getAnnotationValue() != nullptr) {
5979 ConsumeAnnotationToken();
5980 TLSD->setSemiMissing();
5981 }
5982
5983 SmallVector<Decl *, 2> DeclsInGroup;
5984 DeclsInGroup.push_back(TLSD);
5985
5986 // Currently happens for things like -fms-extensions and use `__if_exists`.
5987 for (Stmt *S : Stmts) {
5988 // Here we should be safe as `__if_exists` and friends are not introducing
5989 // new variables which need to live outside file scope.
5991 Actions.ActOnFinishTopLevelStmtDecl(D, S);
5992 DeclsInGroup.push_back(D);
5993 }
5994
5995 return Actions.BuildDeclaratorGroup(DeclsInGroup);
5996}
5997
5998/// isDeclarationSpecifier() - Return true if the current token is part of a
5999/// declaration specifier.
6000///
6001/// \param AllowImplicitTypename whether this is a context where T::type [T
6002/// dependent] can appear.
6003/// \param DisambiguatingWithExpression True to indicate that the purpose of
6004/// this check is to disambiguate between an expression and a declaration.
6005bool Parser::isDeclarationSpecifier(
6006 ImplicitTypenameContext AllowImplicitTypename,
6007 bool DisambiguatingWithExpression) {
6008 switch (Tok.getKind()) {
6009 default: return false;
6010
6011 // OpenCL 2.0 and later define this keyword.
6012 case tok::kw_pipe:
6013 return getLangOpts().OpenCL &&
6015
6016 case tok::identifier: // foo::bar
6017 // Unfortunate hack to support "Class.factoryMethod" notation.
6018 if (getLangOpts().ObjC && NextToken().is(tok::period))
6019 return false;
6020 if (TryAltiVecVectorToken())
6021 return true;
6022 [[fallthrough]];
6023 case tok::kw_decltype: // decltype(T())::type
6024 case tok::kw_typename: // typename T::type
6025 // Annotate typenames and C++ scope specifiers. If we get one, just
6026 // recurse to handle whatever we get.
6027 if (TryAnnotateTypeOrScopeToken(AllowImplicitTypename))
6028 return true;
6029 if (TryAnnotateTypeConstraint())
6030 return true;
6031 if (Tok.is(tok::identifier))
6032 return false;
6033
6034 // If we're in Objective-C and we have an Objective-C class type followed
6035 // by an identifier and then either ':' or ']', in a place where an
6036 // expression is permitted, then this is probably a class message send
6037 // missing the initial '['. In this case, we won't consider this to be
6038 // the start of a declaration.
6039 if (DisambiguatingWithExpression &&
6040 isStartOfObjCClassMessageMissingOpenBracket())
6041 return false;
6042
6043 return isDeclarationSpecifier(AllowImplicitTypename);
6044
6045 case tok::coloncolon: // ::foo::bar
6046 if (!getLangOpts().CPlusPlus)
6047 return false;
6048 if (NextToken().is(tok::kw_new) || // ::new
6049 NextToken().is(tok::kw_delete)) // ::delete
6050 return false;
6051
6052 // Annotate typenames and C++ scope specifiers. If we get one, just
6053 // recurse to handle whatever we get.
6055 return true;
6056 return isDeclarationSpecifier(ImplicitTypenameContext::No);
6057
6058 // storage-class-specifier
6059 case tok::kw_typedef:
6060 case tok::kw_extern:
6061 case tok::kw___private_extern__:
6062 case tok::kw_static:
6063 case tok::kw_auto:
6064 case tok::kw___auto_type:
6065 case tok::kw_register:
6066 case tok::kw___thread:
6067 case tok::kw_thread_local:
6068 case tok::kw__Thread_local:
6069
6070 // Modules
6071 case tok::kw___module_private__:
6072
6073 // Debugger support
6074 case tok::kw___unknown_anytype:
6075
6076 // type-specifiers
6077 case tok::kw_short:
6078 case tok::kw_long:
6079 case tok::kw___int64:
6080 case tok::kw___int128:
6081 case tok::kw_signed:
6082 case tok::kw_unsigned:
6083 case tok::kw__Complex:
6084 case tok::kw__Imaginary:
6085 case tok::kw_void:
6086 case tok::kw_char:
6087 case tok::kw_wchar_t:
6088 case tok::kw_char8_t:
6089 case tok::kw_char16_t:
6090 case tok::kw_char32_t:
6091
6092 case tok::kw_int:
6093 case tok::kw__ExtInt:
6094 case tok::kw__BitInt:
6095 case tok::kw_half:
6096 case tok::kw___bf16:
6097 case tok::kw_float:
6098 case tok::kw_double:
6099 case tok::kw__Accum:
6100 case tok::kw__Fract:
6101 case tok::kw__Float16:
6102 case tok::kw___float128:
6103 case tok::kw___ibm128:
6104 case tok::kw_bool:
6105 case tok::kw__Bool:
6106 case tok::kw__Decimal32:
6107 case tok::kw__Decimal64:
6108 case tok::kw__Decimal128:
6109 case tok::kw___vector:
6110
6111 // struct-or-union-specifier (C99) or class-specifier (C++)
6112 case tok::kw_class:
6113 case tok::kw_struct:
6114 case tok::kw_union:
6115 case tok::kw___interface:
6116 // enum-specifier
6117 case tok::kw_enum:
6118
6119 // type-qualifier
6120 case tok::kw_const:
6121 case tok::kw_volatile:
6122 case tok::kw_restrict:
6123 case tok::kw__Sat:
6124
6125 // function-specifier
6126 case tok::kw_inline:
6127 case tok::kw_virtual:
6128 case tok::kw_explicit:
6129 case tok::kw__Noreturn:
6130
6131 // alignment-specifier
6132 case tok::kw__Alignas:
6133
6134 // friend keyword.
6135 case tok::kw_friend:
6136
6137 // static_assert-declaration
6138 case tok::kw_static_assert:
6139 case tok::kw__Static_assert:
6140
6141 // C23/GNU typeof support.
6142 case tok::kw_typeof:
6143 case tok::kw_typeof_unqual:
6144
6145 // GNU attributes.
6146 case tok::kw___attribute:
6147
6148 // C++11 decltype and constexpr.
6149 case tok::annot_decltype:
6150 case tok::annot_pack_indexing_type:
6151 case tok::kw_constexpr:
6152
6153 // C++20 consteval and constinit.
6154 case tok::kw_consteval:
6155 case tok::kw_constinit:
6156
6157 // C11 _Atomic
6158 case tok::kw__Atomic:
6159 return true;
6160
6161 case tok::kw_alignas:
6162 // alignas is a type-specifier-qualifier in C23, which is a kind of
6163 // declaration-specifier. Outside of C23 mode (including in C++), it is not.
6164 return getLangOpts().C23;
6165
6166 // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
6167 case tok::less:
6168 return getLangOpts().ObjC;
6169
6170 // typedef-name
6171 case tok::annot_typename:
6172 return !DisambiguatingWithExpression ||
6173 !isStartOfObjCClassMessageMissingOpenBracket();
6174
6175 // placeholder-type-specifier
6176 case tok::annot_template_id: {
6177 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
6178 if (TemplateId->hasInvalidName())
6179 return true;
6180 // FIXME: What about type templates that have only been annotated as
6181 // annot_template_id, not as annot_typename?
6182 return isTypeConstraintAnnotation() &&
6183 (NextToken().is(tok::kw_auto) || NextToken().is(tok::kw_decltype));
6184 }
6185
6186 case tok::annot_cxxscope: {
6187 TemplateIdAnnotation *TemplateId =
6188 NextToken().is(tok::annot_template_id)
6189 ? takeTemplateIdAnnotation(NextToken())
6190 : nullptr;
6191 if (TemplateId && TemplateId->hasInvalidName())
6192 return true;
6193 // FIXME: What about type templates that have only been annotated as
6194 // annot_template_id, not as annot_typename?
6195 if (NextToken().is(tok::identifier) && TryAnnotateTypeConstraint())
6196 return true;
6197 return isTypeConstraintAnnotation() &&
6198 GetLookAheadToken(2).isOneOf(tok::kw_auto, tok::kw_decltype);
6199 }
6200
6201 case tok::kw___declspec:
6202 case tok::kw___cdecl:
6203 case tok::kw___stdcall:
6204 case tok::kw___fastcall:
6205 case tok::kw___thiscall:
6206 case tok::kw___regcall:
6207 case tok::kw___vectorcall:
6208 case tok::kw___w64:
6209 case tok::kw___sptr:
6210 case tok::kw___uptr:
6211 case tok::kw___ptr64:
6212 case tok::kw___ptr32:
6213 case tok::kw___forceinline:
6214 case tok::kw___pascal:
6215 case tok::kw___unaligned:
6216
6217 case tok::kw__Nonnull:
6218 case tok::kw__Nullable:
6219 case tok::kw__Nullable_result:
6220 case tok::kw__Null_unspecified:
6221
6222 case tok::kw___kindof:
6223
6224 case tok::kw___private:
6225 case tok::kw___local:
6226 case tok::kw___global:
6227 case tok::kw___constant:
6228 case tok::kw___generic:
6229 case tok::kw___read_only:
6230 case tok::kw___read_write:
6231 case tok::kw___write_only:
6232#define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
6233#include "clang/Basic/OpenCLImageTypes.def"
6234
6235 case tok::kw___funcref:
6236 case tok::kw_groupshared:
6237 return true;
6238
6239 case tok::kw_private:
6240 return getLangOpts().OpenCL;
6241 }
6242}
6243
6244bool Parser::isConstructorDeclarator(bool IsUnqualified, bool DeductionGuide,
6246 const ParsedTemplateInfo *TemplateInfo) {
6247 RevertingTentativeParsingAction TPA(*this);
6248 // Parse the C++ scope specifier.
6249 CXXScopeSpec SS;
6250 if (TemplateInfo && TemplateInfo->TemplateParams)
6251 SS.setTemplateParamLists(*TemplateInfo->TemplateParams);
6252
6253 if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
6254 /*ObjectHasErrors=*/false,
6255 /*EnteringContext=*/true)) {
6256 return false;
6257 }
6258
6259 // Parse the constructor name.
6260 if (Tok.is(tok::identifier)) {
6261 // We already know that we have a constructor name; just consume
6262 // the token.
6263 ConsumeToken();
6264 } else if (Tok.is(tok::annot_template_id)) {
6265 ConsumeAnnotationToken();
6266 } else {
6267 return false;
6268 }
6269
6270 // There may be attributes here, appertaining to the constructor name or type
6271 // we just stepped past.
6272 SkipCXX11Attributes();
6273
6274 // Current class name must be followed by a left parenthesis.
6275 if (Tok.isNot(tok::l_paren)) {
6276 return false;
6277 }
6278 ConsumeParen();
6279
6280 // A right parenthesis, or ellipsis followed by a right parenthesis signals
6281 // that we have a constructor.
6282 if (Tok.is(tok::r_paren) ||
6283 (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
6284 return true;
6285 }
6286
6287 // A C++11 attribute here signals that we have a constructor, and is an
6288 // attribute on the first constructor parameter.
6289 if (getLangOpts().CPlusPlus11 &&
6290 isCXX11AttributeSpecifier(/*Disambiguate*/ false,
6291 /*OuterMightBeMessageSend*/ true)) {
6292 return true;
6293 }
6294
6295 // If we need to, enter the specified scope.
6296 DeclaratorScopeObj DeclScopeObj(*this, SS);
6297 if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
6298 DeclScopeObj.EnterDeclaratorScope();
6299
6300 // Optionally skip Microsoft attributes.
6301 ParsedAttributes Attrs(AttrFactory);
6302 MaybeParseMicrosoftAttributes(Attrs);
6303
6304 // Check whether the next token(s) are part of a declaration
6305 // specifier, in which case we have the start of a parameter and,
6306 // therefore, we know that this is a constructor.
6307 // Due to an ambiguity with implicit typename, the above is not enough.
6308 // Additionally, check to see if we are a friend.
6309 // If we parsed a scope specifier as well as friend,
6310 // we might be parsing a friend constructor.
6311 bool IsConstructor = false;
6312 ImplicitTypenameContext ITC = IsFriend && !SS.isSet()
6315 // Constructors cannot have this parameters, but we support that scenario here
6316 // to improve diagnostic.
6317 if (Tok.is(tok::kw_this)) {
6318 ConsumeToken();
6319 return isDeclarationSpecifier(ITC);
6320 }
6321
6322 if (isDeclarationSpecifier(ITC))
6323 IsConstructor = true;
6324 else if (Tok.is(tok::identifier) ||
6325 (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
6326 // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
6327 // This might be a parenthesized member name, but is more likely to
6328 // be a constructor declaration with an invalid argument type. Keep
6329 // looking.
6330 if (Tok.is(tok::annot_cxxscope))
6331 ConsumeAnnotationToken();
6332 ConsumeToken();
6333
6334 // If this is not a constructor, we must be parsing a declarator,
6335 // which must have one of the following syntactic forms (see the
6336 // grammar extract at the start of ParseDirectDeclarator):
6337 switch (Tok.getKind()) {
6338 case tok::l_paren:
6339 // C(X ( int));
6340 case tok::l_square:
6341 // C(X [ 5]);
6342 // C(X [ [attribute]]);
6343 case tok::coloncolon:
6344 // C(X :: Y);
6345 // C(X :: *p);
6346 // Assume this isn't a constructor, rather than assuming it's a
6347 // constructor with an unnamed parameter of an ill-formed type.
6348 break;
6349
6350 case tok::r_paren:
6351 // C(X )
6352
6353 // Skip past the right-paren and any following attributes to get to
6354 // the function body or trailing-return-type.
6355 ConsumeParen();
6356 SkipCXX11Attributes();
6357
6358 if (DeductionGuide) {
6359 // C(X) -> ... is a deduction guide.
6360 IsConstructor = Tok.is(tok::arrow);
6361 break;
6362 }
6363 if (Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
6364 // Assume these were meant to be constructors:
6365 // C(X) : (the name of a bit-field cannot be parenthesized).
6366 // C(X) try (this is otherwise ill-formed).
6367 IsConstructor = true;
6368 }
6369 if (Tok.is(tok::semi) || Tok.is(tok::l_brace)) {
6370 // If we have a constructor name within the class definition,
6371 // assume these were meant to be constructors:
6372 // C(X) {
6373 // C(X) ;
6374 // ... because otherwise we would be declaring a non-static data
6375 // member that is ill-formed because it's of the same type as its
6376 // surrounding class.
6377 //
6378 // FIXME: We can actually do this whether or not the name is qualified,
6379 // because if it is qualified in this context it must be being used as
6380 // a constructor name.
6381 // currently, so we're somewhat conservative here.
6382 IsConstructor = IsUnqualified;
6383 }
6384 break;
6385
6386 default:
6387 IsConstructor = true;
6388 break;
6389 }
6390 }
6391 return IsConstructor;
6392}
6393
6394/// ParseTypeQualifierListOpt
6395/// type-qualifier-list: [C99 6.7.5]
6396/// type-qualifier
6397/// [vendor] attributes
6398/// [ only if AttrReqs & AR_VendorAttributesParsed ]
6399/// type-qualifier-list type-qualifier
6400/// [vendor] type-qualifier-list attributes
6401/// [ only if AttrReqs & AR_VendorAttributesParsed ]
6402/// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq
6403/// [ only if AttReqs & AR_CXX11AttributesParsed ]
6404/// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
6405/// AttrRequirements bitmask values.
6406void Parser::ParseTypeQualifierListOpt(
6407 DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed,
6408 bool IdentifierRequired,
6409 std::optional<llvm::function_ref<void()>> CodeCompletionHandler) {
6410 if ((AttrReqs & AR_CXX11AttributesParsed) &&
6411 isAllowedCXX11AttributeSpecifier()) {
6412 ParsedAttributes Attrs(AttrFactory);
6413 ParseCXX11Attributes(Attrs);
6414 DS.takeAttributesFrom(Attrs);
6415 }
6416
6417 SourceLocation EndLoc;
6418
6419 while (true) {
6420 bool isInvalid = false;
6421 const char *PrevSpec = nullptr;
6422 unsigned DiagID = 0;
6424
6425 switch (Tok.getKind()) {
6426 case tok::code_completion:
6427 cutOffParsing();
6429 (*CodeCompletionHandler)();
6430 else
6432 return;
6433
6434 case tok::kw_const:
6435 isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID,
6436 getLangOpts());
6437 break;
6438 case tok::kw_volatile:
6439 isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
6440 getLangOpts());
6441 break;
6442 case tok::kw_restrict:
6443 isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
6444 getLangOpts());
6445 break;
6446 case tok::kw__Atomic:
6447 if (!AtomicAllowed)
6448 goto DoneWithTypeQuals;
6449 diagnoseUseOfC11Keyword(Tok);
6450 isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
6451 getLangOpts());
6452 break;
6453
6454 // OpenCL qualifiers:
6455 case tok::kw_private:
6456 if (!getLangOpts().OpenCL)
6457 goto DoneWithTypeQuals;
6458 [[fallthrough]];
6459 case tok::kw___private:
6460 case tok::kw___global:
6461 case tok::kw___local:
6462 case tok::kw___constant:
6463 case tok::kw___generic:
6464 case tok::kw___read_only:
6465 case tok::kw___write_only:
6466 case tok::kw___read_write:
6467 ParseOpenCLQualifiers(DS.getAttributes());
6468 break;
6469
6470 case tok::kw_groupshared:
6471 case tok::kw_in:
6472 case tok::kw_inout:
6473 case tok::kw_out:
6474 // NOTE: ParseHLSLQualifiers will consume the qualifier token.
6475 ParseHLSLQualifiers(DS.getAttributes());
6476 continue;
6477
6478 case tok::kw___unaligned:
6479 isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
6480 getLangOpts());
6481 break;
6482 case tok::kw___uptr:
6483 // GNU libc headers in C mode use '__uptr' as an identifier which conflicts
6484 // with the MS modifier keyword.
6485 if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
6486 IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
6487 if (TryKeywordIdentFallback(false))
6488 continue;
6489 }
6490 [[fallthrough]];
6491 case tok::kw___sptr:
6492 case tok::kw___w64:
6493 case tok::kw___ptr64:
6494 case tok::kw___ptr32:
6495 case tok::kw___cdecl:
6496 case tok::kw___stdcall:
6497 case tok::kw___fastcall:
6498 case tok::kw___thiscall:
6499 case tok::kw___regcall:
6500 case tok::kw___vectorcall:
6501 if (AttrReqs & AR_DeclspecAttributesParsed) {
6502 ParseMicrosoftTypeAttributes(DS.getAttributes());
6503 continue;
6504 }
6505 goto DoneWithTypeQuals;
6506
6507 case tok::kw___funcref:
6508 ParseWebAssemblyFuncrefTypeAttribute(DS.getAttributes());
6509 continue;
6510 goto DoneWithTypeQuals;
6511
6512 case tok::kw___pascal:
6513 if (AttrReqs & AR_VendorAttributesParsed) {
6514 ParseBorlandTypeAttributes(DS.getAttributes());
6515 continue;
6516 }
6517 goto DoneWithTypeQuals;
6518
6519 // Nullability type specifiers.
6520 case tok::kw__Nonnull:
6521 case tok::kw__Nullable:
6522 case tok::kw__Nullable_result:
6523 case tok::kw__Null_unspecified:
6524 ParseNullabilityTypeSpecifiers(DS.getAttributes());
6525 continue;
6526
6527 // Objective-C 'kindof' types.
6528 case tok::kw___kindof:
6529 DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
6530 nullptr, 0, tok::kw___kindof);
6531 (void)ConsumeToken();
6532 continue;
6533
6534 case tok::kw___attribute:
6535 if (AttrReqs & AR_GNUAttributesParsedAndRejected)
6536 // When GNU attributes are expressly forbidden, diagnose their usage.
6537 Diag(Tok, diag::err_attributes_not_allowed);
6538
6539 // Parse the attributes even if they are rejected to ensure that error
6540 // recovery is graceful.
6541 if (AttrReqs & AR_GNUAttributesParsed ||
6542 AttrReqs & AR_GNUAttributesParsedAndRejected) {
6543 ParseGNUAttributes(DS.getAttributes());
6544 continue; // do *not* consume the next token!
6545 }
6546 // otherwise, FALL THROUGH!
6547 [[fallthrough]];
6548 default:
6549 DoneWithTypeQuals:
6550 // If this is not a type-qualifier token, we're done reading type
6551 // qualifiers. First verify that DeclSpec's are consistent.
6552 DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
6553 if (EndLoc.isValid())
6554 DS.SetRangeEnd(EndLoc);
6555 return;
6556 }
6557
6558 // If the specifier combination wasn't legal, issue a diagnostic.
6559 if (isInvalid) {
6560 assert(PrevSpec && "Method did not return previous specifier!");
6561 Diag(Tok, DiagID) << PrevSpec;
6562 }
6563 EndLoc = ConsumeToken();
6564 }
6565}
6566
6567/// ParseDeclarator - Parse and verify a newly-initialized declarator.
6568void Parser::ParseDeclarator(Declarator &D) {
6569 /// This implements the 'declarator' production in the C grammar, then checks
6570 /// for well-formedness and issues diagnostics.
6572 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
6573 });
6574}
6575
6576static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
6577 DeclaratorContext TheContext) {
6578 if (Kind == tok::star || Kind == tok::caret)
6579 return true;
6580
6581 // OpenCL 2.0 and later define this keyword.
6582 if (Kind == tok::kw_pipe && Lang.OpenCL &&
6583 Lang.getOpenCLCompatibleVersion() >= 200)
6584 return true;
6585
6586 if (!Lang.CPlusPlus)
6587 return false;
6588
6589 if (Kind == tok::amp)
6590 return true;
6591
6592 // We parse rvalue refs in C++03, because otherwise the errors are scary.
6593 // But we must not parse them in conversion-type-ids and new-type-ids, since
6594 // those can be legitimately followed by a && operator.
6595 // (The same thing can in theory happen after a trailing-return-type, but
6596 // since those are a C++11 feature, there is no rejects-valid issue there.)
6597 if (Kind == tok::ampamp)
6598 return Lang.CPlusPlus11 || (TheContext != DeclaratorContext::ConversionId &&
6599 TheContext != DeclaratorContext::CXXNew);
6600
6601 return false;
6602}
6603
6604// Indicates whether the given declarator is a pipe declarator.
6605static bool isPipeDeclarator(const Declarator &D) {
6606 const unsigned NumTypes = D.getNumTypeObjects();
6607
6608 for (unsigned Idx = 0; Idx != NumTypes; ++Idx)
6609 if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind)
6610 return true;
6611
6612 return false;
6613}
6614
6615/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
6616/// is parsed by the function passed to it. Pass null, and the direct-declarator
6617/// isn't parsed at all, making this function effectively parse the C++
6618/// ptr-operator production.
6619///
6620/// If the grammar of this construct is extended, matching changes must also be
6621/// made to TryParseDeclarator and MightBeDeclarator, and possibly to
6622/// isConstructorDeclarator.
6623///
6624/// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
6625/// [C] pointer[opt] direct-declarator
6626/// [C++] direct-declarator
6627/// [C++] ptr-operator declarator
6628///
6629/// pointer: [C99 6.7.5]
6630/// '*' type-qualifier-list[opt]
6631/// '*' type-qualifier-list[opt] pointer
6632///
6633/// ptr-operator:
6634/// '*' cv-qualifier-seq[opt]
6635/// '&'
6636/// [C++0x] '&&'
6637/// [GNU] '&' restrict[opt] attributes[opt]
6638/// [GNU?] '&&' restrict[opt] attributes[opt]
6639/// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
6640void Parser::ParseDeclaratorInternal(Declarator &D,
6641 DirectDeclParseFunction DirectDeclParser) {
6642 if (Diags.hasAllExtensionsSilenced())
6643 D.setExtension();
6644
6645 // C++ member pointers start with a '::' or a nested-name.
6646 // Member pointers get special handling, since there's no place for the
6647 // scope spec in the generic path below.
6648 if (getLangOpts().CPlusPlus &&
6649 (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) ||
6650 (Tok.is(tok::identifier) &&
6651 (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
6652 Tok.is(tok::annot_cxxscope))) {
6653 bool EnteringContext = D.getContext() == DeclaratorContext::File ||
6654 D.getContext() == DeclaratorContext::Member;
6655 CXXScopeSpec SS;
6656 SS.setTemplateParamLists(D.getTemplateParameterLists());
6657 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
6658 /*ObjectHasErrors=*/false, EnteringContext);
6659
6660 if (SS.isNotEmpty()) {
6661 if (Tok.isNot(tok::star)) {
6662 // The scope spec really belongs to the direct-declarator.
6663 if (D.mayHaveIdentifier())
6664 D.getCXXScopeSpec() = SS;
6665 else
6666 AnnotateScopeToken(SS, true);
6667
6668 if (DirectDeclParser)
6669 (this->*DirectDeclParser)(D);
6670 return;
6671 }
6672
6673 if (SS.isValid()) {
6674 checkCompoundToken(SS.getEndLoc(), tok::coloncolon,
6675 CompoundToken::MemberPtr);
6676 }
6677
6678 SourceLocation StarLoc = ConsumeToken();
6679 D.SetRangeEnd(StarLoc);
6680 DeclSpec DS(AttrFactory);
6681 ParseTypeQualifierListOpt(DS);
6682 D.ExtendWithDeclSpec(DS);
6683
6684 // Recurse to parse whatever is left.
6686 ParseDeclaratorInternal(D, DirectDeclParser);
6687 });
6688
6689 // Sema will have to catch (syntactically invalid) pointers into global
6690 // scope. It has to catch pointers into namespace scope anyway.
6692 SS, DS.getTypeQualifiers(), StarLoc, DS.getEndLoc()),
6693 std::move(DS.getAttributes()),
6694 /* Don't replace range end. */ SourceLocation());
6695 return;
6696 }
6697 }
6698
6699 tok::TokenKind Kind = Tok.getKind();
6700
6701 if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclarator(D)) {
6702 DeclSpec DS(AttrFactory);
6703 ParseTypeQualifierListOpt(DS);
6704
6705 D.AddTypeInfo(
6707 std::move(DS.getAttributes()), SourceLocation());
6708 }
6709
6710 // Not a pointer, C++ reference, or block.
6711 if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
6712 if (DirectDeclParser)
6713 (this->*DirectDeclParser)(D);
6714 return;
6715 }
6716
6717 // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
6718 // '&&' -> rvalue reference
6719 SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&.
6720 D.SetRangeEnd(Loc);
6721
6722 if (Kind == tok::star || Kind == tok::caret) {
6723 // Is a pointer.
6724 DeclSpec DS(AttrFactory);
6725
6726 // GNU attributes are not allowed here in a new-type-id, but Declspec and
6727 // C++11 attributes are allowed.
6728 unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
6729 ((D.getContext() != DeclaratorContext::CXXNew)
6730 ? AR_GNUAttributesParsed
6731 : AR_GNUAttributesParsedAndRejected);
6732 ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
6733 D.ExtendWithDeclSpec(DS);
6734
6735 // Recursively parse the declarator.
6737 D.getBeginLoc(), [&] { ParseDeclaratorInternal(D, DirectDeclParser); });
6738 if (Kind == tok::star)
6739 // Remember that we parsed a pointer type, and remember the type-quals.
6740 D.AddTypeInfo(DeclaratorChunk::getPointer(
6744 std::move(DS.getAttributes()), SourceLocation());
6745 else
6746 // Remember that we parsed a Block type, and remember the type-quals.
6747 D.AddTypeInfo(
6749 std::move(DS.getAttributes()), SourceLocation());
6750 } else {
6751 // Is a reference
6752 DeclSpec DS(AttrFactory);
6753
6754 // Complain about rvalue references in C++03, but then go on and build
6755 // the declarator.
6756 if (Kind == tok::ampamp)
6758 diag::warn_cxx98_compat_rvalue_reference :
6759 diag::ext_rvalue_reference);
6760
6761 // GNU-style and C++11 attributes are allowed here, as is restrict.
6762 ParseTypeQualifierListOpt(DS);
6763 D.ExtendWithDeclSpec(DS);
6764
6765 // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
6766 // cv-qualifiers are introduced through the use of a typedef or of a
6767 // template type argument, in which case the cv-qualifiers are ignored.
6770 Diag(DS.getConstSpecLoc(),
6771 diag::err_invalid_reference_qualifier_application) << "const";
6774 diag::err_invalid_reference_qualifier_application) << "volatile";
6775 // 'restrict' is permitted as an extension.
6778 diag::err_invalid_reference_qualifier_application) << "_Atomic";
6779 }
6780
6781 // Recursively parse the declarator.
6783 D.getBeginLoc(), [&] { ParseDeclaratorInternal(D, DirectDeclParser); });
6784
6785 if (D.getNumTypeObjects() > 0) {
6786 // C++ [dcl.ref]p4: There shall be no references to references.
6787 DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
6788 if (InnerChunk.Kind == DeclaratorChunk::Reference) {
6789 if (const IdentifierInfo *II = D.getIdentifier())
6790 Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
6791 << II;
6792 else
6793 Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
6794 << "type name";
6795
6796 // Once we've complained about the reference-to-reference, we
6797 // can go ahead and build the (technically ill-formed)
6798 // declarator: reference collapsing will take care of it.
6799 }
6800 }
6801
6802 // Remember that we parsed a reference type.
6804 Kind == tok::amp),
6805 std::move(DS.getAttributes()), SourceLocation());
6806 }
6807}
6808
6809// When correcting from misplaced brackets before the identifier, the location
6810// is saved inside the declarator so that other diagnostic messages can use
6811// them. This extracts and returns that location, or returns the provided
6812// location if a stored location does not exist.
6815 if (D.getName().StartLocation.isInvalid() &&
6816 D.getName().EndLocation.isValid())
6817 return D.getName().EndLocation;
6818
6819 return Loc;
6820}
6821
6822/// ParseDirectDeclarator
6823/// direct-declarator: [C99 6.7.5]
6824/// [C99] identifier
6825/// '(' declarator ')'
6826/// [GNU] '(' attributes declarator ')'
6827/// [C90] direct-declarator '[' constant-expression[opt] ']'
6828/// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
6829/// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
6830/// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
6831/// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
6832/// [C++11] direct-declarator '[' constant-expression[opt] ']'
6833/// attribute-specifier-seq[opt]
6834/// direct-declarator '(' parameter-type-list ')'
6835/// direct-declarator '(' identifier-list[opt] ')'
6836/// [GNU] direct-declarator '(' parameter-forward-declarations
6837/// parameter-type-list[opt] ')'
6838/// [C++] direct-declarator '(' parameter-declaration-clause ')'
6839/// cv-qualifier-seq[opt] exception-specification[opt]
6840/// [C++11] direct-declarator '(' parameter-declaration-clause ')'
6841/// attribute-specifier-seq[opt] cv-qualifier-seq[opt]
6842/// ref-qualifier[opt] exception-specification[opt]
6843/// [C++] declarator-id
6844/// [C++11] declarator-id attribute-specifier-seq[opt]
6845///
6846/// declarator-id: [C++ 8]
6847/// '...'[opt] id-expression
6848/// '::'[opt] nested-name-specifier[opt] type-name
6849///
6850/// id-expression: [C++ 5.1]
6851/// unqualified-id
6852/// qualified-id
6853///
6854/// unqualified-id: [C++ 5.1]
6855/// identifier
6856/// operator-function-id
6857/// conversion-function-id
6858/// '~' class-name
6859/// template-id
6860///
6861/// C++17 adds the following, which we also handle here:
6862///
6863/// simple-declaration:
6864/// <decl-spec> '[' identifier-list ']' brace-or-equal-initializer ';'
6865///
6866/// Note, any additional constructs added here may need corresponding changes
6867/// in isConstructorDeclarator.
6868void Parser::ParseDirectDeclarator(Declarator &D) {
6869 DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
6870
6871 if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
6872 // This might be a C++17 structured binding.
6873 if (Tok.is(tok::l_square) && !D.mayOmitIdentifier() &&
6874 D.getCXXScopeSpec().isEmpty())
6875 return ParseDecompositionDeclarator(D);
6876
6877 // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
6878 // this context it is a bitfield. Also in range-based for statement colon
6879 // may delimit for-range-declaration.
6881 *this, D.getContext() == DeclaratorContext::Member ||
6882 (D.getContext() == DeclaratorContext::ForInit &&
6884
6885 // ParseDeclaratorInternal might already have parsed the scope.
6886 if (D.getCXXScopeSpec().isEmpty()) {
6887 bool EnteringContext = D.getContext() == DeclaratorContext::File ||
6888 D.getContext() == DeclaratorContext::Member;
6889 ParseOptionalCXXScopeSpecifier(
6890 D.getCXXScopeSpec(), /*ObjectType=*/nullptr,
6891 /*ObjectHasErrors=*/false, EnteringContext);
6892 }
6893
6894 // C++23 [basic.scope.namespace]p1:
6895 // For each non-friend redeclaration or specialization whose target scope
6896 // is or is contained by the scope, the portion after the declarator-id,
6897 // class-head-name, or enum-head-name is also included in the scope.
6898 // C++23 [basic.scope.class]p1:
6899 // For each non-friend redeclaration or specialization whose target scope
6900 // is or is contained by the scope, the portion after the declarator-id,
6901 // class-head-name, or enum-head-name is also included in the scope.
6902 //
6903 // FIXME: We should not be doing this for friend declarations; they have
6904 // their own special lookup semantics specified by [basic.lookup.unqual]p6.
6905 if (D.getCXXScopeSpec().isValid()) {
6907 D.getCXXScopeSpec()))
6908 // Change the declaration context for name lookup, until this function
6909 // is exited (and the declarator has been parsed).
6910 DeclScopeObj.EnterDeclaratorScope();
6911 else if (getObjCDeclContext()) {
6912 // Ensure that we don't interpret the next token as an identifier when
6913 // dealing with declarations in an Objective-C container.
6914 D.SetIdentifier(nullptr, Tok.getLocation());
6915 D.setInvalidType(true);
6916 ConsumeToken();
6917 goto PastIdentifier;
6918 }
6919 }
6920
6921 // C++0x [dcl.fct]p14:
6922 // There is a syntactic ambiguity when an ellipsis occurs at the end of a
6923 // parameter-declaration-clause without a preceding comma. In this case,
6924 // the ellipsis is parsed as part of the abstract-declarator if the type
6925 // of the parameter either names a template parameter pack that has not
6926 // been expanded or contains auto; otherwise, it is parsed as part of the
6927 // parameter-declaration-clause.
6928 if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
6929 !((D.getContext() == DeclaratorContext::Prototype ||
6930 D.getContext() == DeclaratorContext::LambdaExprParameter ||
6931 D.getContext() == DeclaratorContext::BlockLiteral) &&
6932 NextToken().is(tok::r_paren) && !D.hasGroupingParens() &&
6934 D.getDeclSpec().getTypeSpecType() != TST_auto)) {
6935 SourceLocation EllipsisLoc = ConsumeToken();
6936 if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
6937 // The ellipsis was put in the wrong place. Recover, and explain to
6938 // the user what they should have done.
6939 ParseDeclarator(D);
6940 if (EllipsisLoc.isValid())
6941 DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
6942 return;
6943 } else
6944 D.setEllipsisLoc(EllipsisLoc);
6945
6946 // The ellipsis can't be followed by a parenthesized declarator. We
6947 // check for that in ParseParenDeclarator, after we have disambiguated
6948 // the l_paren token.
6949 }
6950
6951 if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id,
6952 tok::tilde)) {
6953 // We found something that indicates the start of an unqualified-id.
6954 // Parse that unqualified-id.
6955 bool AllowConstructorName;
6956 bool AllowDeductionGuide;
6957 if (D.getDeclSpec().hasTypeSpecifier()) {
6958 AllowConstructorName = false;
6959 AllowDeductionGuide = false;
6960 } else if (D.getCXXScopeSpec().isSet()) {
6961 AllowConstructorName = (D.getContext() == DeclaratorContext::File ||
6962 D.getContext() == DeclaratorContext::Member);
6963 AllowDeductionGuide = false;
6964 } else {
6965 AllowConstructorName = (D.getContext() == DeclaratorContext::Member);
6966 AllowDeductionGuide = (D.getContext() == DeclaratorContext::File ||
6967 D.getContext() == DeclaratorContext::Member);
6968 }
6969
6970 bool HadScope = D.getCXXScopeSpec().isValid();
6971 SourceLocation TemplateKWLoc;
6972 if (ParseUnqualifiedId(D.getCXXScopeSpec(),
6973 /*ObjectType=*/nullptr,
6974 /*ObjectHadErrors=*/false,
6975 /*EnteringContext=*/true,
6976 /*AllowDestructorName=*/true, AllowConstructorName,
6977 AllowDeductionGuide, &TemplateKWLoc,
6978 D.getName()) ||
6979 // Once we're past the identifier, if the scope was bad, mark the
6980 // whole declarator bad.
6981 D.getCXXScopeSpec().isInvalid()) {
6982 D.SetIdentifier(nullptr, Tok.getLocation());
6983 D.setInvalidType(true);
6984 } else {
6985 // ParseUnqualifiedId might have parsed a scope specifier during error
6986 // recovery. If it did so, enter that scope.
6987 if (!HadScope && D.getCXXScopeSpec().isValid() &&
6989 D.getCXXScopeSpec()))
6990 DeclScopeObj.EnterDeclaratorScope();
6991
6992 // Parsed the unqualified-id; update range information and move along.
6994 D.SetRangeBegin(D.getName().getSourceRange().getBegin());
6995 D.SetRangeEnd(D.getName().getSourceRange().getEnd());
6996 }
6997 goto PastIdentifier;
6998 }
6999
7000 if (D.getCXXScopeSpec().isNotEmpty()) {
7001 // We have a scope specifier but no following unqualified-id.
7002 Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()),
7003 diag::err_expected_unqualified_id)
7004 << /*C++*/1;
7005 D.SetIdentifier(nullptr, Tok.getLocation());
7006 goto PastIdentifier;
7007 }
7008 } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
7009 assert(!getLangOpts().CPlusPlus &&
7010 "There's a C++-specific check for tok::identifier above");
7011 assert(Tok.getIdentifierInfo() && "Not an identifier?");
7012 D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
7013 D.SetRangeEnd(Tok.getLocation());
7014 ConsumeToken();
7015 goto PastIdentifier;
7016 } else if (Tok.is(tok::identifier) && !D.mayHaveIdentifier()) {
7017 // We're not allowed an identifier here, but we got one. Try to figure out
7018 // if the user was trying to attach a name to the type, or whether the name
7019 // is some unrelated trailing syntax.
7020 bool DiagnoseIdentifier = false;
7021 if (D.hasGroupingParens())
7022 // An identifier within parens is unlikely to be intended to be anything
7023 // other than a name being "declared".
7024 DiagnoseIdentifier = true;
7025 else if (D.getContext() == DeclaratorContext::TemplateArg)
7026 // T<int N> is an accidental identifier; T<int N indicates a missing '>'.
7027 DiagnoseIdentifier =
7028 NextToken().isOneOf(tok::comma, tok::greater, tok::greatergreater);
7029 else if (D.getContext() == DeclaratorContext::AliasDecl ||
7030 D.getContext() == DeclaratorContext::AliasTemplate)
7031 // The most likely error is that the ';' was forgotten.
7032 DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::semi);
7033 else if ((D.getContext() == DeclaratorContext::TrailingReturn ||
7034 D.getContext() == DeclaratorContext::TrailingReturnVar) &&
7035 !isCXX11VirtSpecifier(Tok))
7036 DiagnoseIdentifier = NextToken().isOneOf(
7037 tok::comma, tok::semi, tok::equal, tok::l_brace, tok::kw_try);
7038 if (DiagnoseIdentifier) {
7039 Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
7041 D.SetIdentifier(nullptr, Tok.getLocation());
7042 ConsumeToken();
7043 goto PastIdentifier;
7044 }
7045 }
7046
7047 if (Tok.is(tok::l_paren)) {
7048 // If this might be an abstract-declarator followed by a direct-initializer,
7049 // check whether this is a valid declarator chunk. If it can't be, assume
7050 // that it's an initializer instead.
7051 if (D.mayOmitIdentifier() && D.mayBeFollowedByCXXDirectInit()) {
7052 RevertingTentativeParsingAction PA(*this);
7053 if (TryParseDeclarator(true, D.mayHaveIdentifier(), true,
7054 D.getDeclSpec().getTypeSpecType() == TST_auto) ==
7055 TPResult::False) {
7056 D.SetIdentifier(nullptr, Tok.getLocation());
7057 goto PastIdentifier;
7058 }
7059 }
7060
7061 // direct-declarator: '(' declarator ')'
7062 // direct-declarator: '(' attributes declarator ')'
7063 // Example: 'char (*X)' or 'int (*XX)(void)'
7064 ParseParenDeclarator(D);
7065
7066 // If the declarator was parenthesized, we entered the declarator
7067 // scope when parsing the parenthesized declarator, then exited
7068 // the scope already. Re-enter the scope, if we need to.
7069 if (D.getCXXScopeSpec().isSet()) {
7070 // If there was an error parsing parenthesized declarator, declarator
7071 // scope may have been entered before. Don't do it again.
7072 if (!D.isInvalidType() &&
7074 D.getCXXScopeSpec()))
7075 // Change the declaration context for name lookup, until this function
7076 // is exited (and the declarator has been parsed).
7077 DeclScopeObj.EnterDeclaratorScope();
7078 }
7079 } else if (D.mayOmitIdentifier()) {
7080 // This could be something simple like "int" (in which case the declarator
7081 // portion is empty), if an abstract-declarator is allowed.
7082 D.SetIdentifier(nullptr, Tok.getLocation());
7083
7084 // The grammar for abstract-pack-declarator does not allow grouping parens.
7085 // FIXME: Revisit this once core issue 1488 is resolved.
7086 if (D.hasEllipsis() && D.hasGroupingParens())
7087 Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
7088 diag::ext_abstract_pack_declarator_parens);
7089 } else {
7090 if (Tok.getKind() == tok::annot_pragma_parser_crash)
7091 LLVM_BUILTIN_TRAP;
7092 if (Tok.is(tok::l_square))
7093 return ParseMisplacedBracketDeclarator(D);
7094 if (D.getContext() == DeclaratorContext::Member) {
7095 // Objective-C++: Detect C++ keywords and try to prevent further errors by
7096 // treating these keyword as valid member names.
7098 !Tok.isAnnotation() && Tok.getIdentifierInfo() &&
7101 diag::err_expected_member_name_or_semi_objcxx_keyword)
7102 << Tok.getIdentifierInfo()
7103 << (D.getDeclSpec().isEmpty() ? SourceRange()
7104 : D.getDeclSpec().getSourceRange());
7105 D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
7106 D.SetRangeEnd(Tok.getLocation());
7107 ConsumeToken();
7108 goto PastIdentifier;
7109 }
7111 diag::err_expected_member_name_or_semi)
7112 << (D.getDeclSpec().isEmpty() ? SourceRange()
7113 : D.getDeclSpec().getSourceRange());
7114 } else {
7115 if (Tok.getKind() == tok::TokenKind::kw_while) {
7116 Diag(Tok, diag::err_while_loop_outside_of_a_function);
7117 } else if (getLangOpts().CPlusPlus) {
7118 if (Tok.isOneOf(tok::period, tok::arrow))
7119 Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
7120 else {
7121 SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
7122 if (Tok.isAtStartOfLine() && Loc.isValid())
7123 Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
7124 << getLangOpts().CPlusPlus;
7125 else
7127 diag::err_expected_unqualified_id)
7128 << getLangOpts().CPlusPlus;
7129 }
7130 } else {
7132 diag::err_expected_either)
7133 << tok::identifier << tok::l_paren;
7134 }
7135 }
7136 D.SetIdentifier(nullptr, Tok.getLocation());
7137 D.setInvalidType(true);
7138 }
7139
7140 PastIdentifier:
7141 assert(D.isPastIdentifier() &&
7142 "Haven't past the location of the identifier yet?");
7143
7144 // Don't parse attributes unless we have parsed an unparenthesized name.
7145 if (D.hasName() && !D.getNumTypeObjects())
7146 MaybeParseCXX11Attributes(D);
7147
7148 while (true) {
7149 if (Tok.is(tok::l_paren)) {
7150 bool IsFunctionDeclaration = D.isFunctionDeclaratorAFunctionDeclaration();
7151 // Enter function-declaration scope, limiting any declarators to the
7152 // function prototype scope, including parameter declarators.
7153 ParseScope PrototypeScope(this,
7155 (IsFunctionDeclaration
7157
7158 // The paren may be part of a C++ direct initializer, eg. "int x(1);".
7159 // In such a case, check if we actually have a function declarator; if it
7160 // is not, the declarator has been fully parsed.
7161 bool IsAmbiguous = false;
7162 if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
7163 // C++2a [temp.res]p5
7164 // A qualified-id is assumed to name a type if
7165 // - [...]
7166 // - it is a decl-specifier of the decl-specifier-seq of a
7167 // - [...]
7168 // - parameter-declaration in a member-declaration [...]
7169 // - parameter-declaration in a declarator of a function or function
7170 // template declaration whose declarator-id is qualified [...]
7171 auto AllowImplicitTypename = ImplicitTypenameContext::No;
7172 if (D.getCXXScopeSpec().isSet())
7173 AllowImplicitTypename =
7175 else if (D.getContext() == DeclaratorContext::Member) {
7176 AllowImplicitTypename = ImplicitTypenameContext::Yes;
7177 }
7178
7179 // The name of the declarator, if any, is tentatively declared within
7180 // a possible direct initializer.
7181 TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
7182 bool IsFunctionDecl =
7183 isCXXFunctionDeclarator(&IsAmbiguous, AllowImplicitTypename);
7184 TentativelyDeclaredIdentifiers.pop_back();
7185 if (!IsFunctionDecl)
7186 break;
7187 }
7188 ParsedAttributes attrs(AttrFactory);
7189 BalancedDelimiterTracker T(*this, tok::l_paren);
7190 T.consumeOpen();
7191 if (IsFunctionDeclaration)
7193 TemplateParameterDepth);
7194 ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
7195 if (IsFunctionDeclaration)
7197 PrototypeScope.Exit();
7198 } else if (Tok.is(tok::l_square)) {
7199 ParseBracketDeclarator(D);
7200 } else if (Tok.isRegularKeywordAttribute()) {
7201 // For consistency with attribute parsing.
7202 Diag(Tok, diag::err_keyword_not_allowed) << Tok.getIdentifierInfo();
7203 bool TakesArgs = doesKeywordAttributeTakeArgs(Tok.getKind());
7204 ConsumeToken();
7205 if (TakesArgs) {
7206 BalancedDelimiterTracker T(*this, tok::l_paren);
7207 if (!T.consumeOpen())
7208 T.skipToEnd();
7209 }
7210 } else if (Tok.is(tok::kw_requires) && D.hasGroupingParens()) {
7211 // This declarator is declaring a function, but the requires clause is
7212 // in the wrong place:
7213 // void (f() requires true);
7214 // instead of
7215 // void f() requires true;
7216 // or
7217 // void (f()) requires true;
7218 Diag(Tok, diag::err_requires_clause_inside_parens);
7219 ConsumeToken();
7220 ExprResult TrailingRequiresClause = Actions.CorrectDelayedTyposInExpr(
7221 ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true));
7222 if (TrailingRequiresClause.isUsable() && D.isFunctionDeclarator() &&
7223 !D.hasTrailingRequiresClause())
7224 // We're already ill-formed if we got here but we'll accept it anyway.
7225 D.setTrailingRequiresClause(TrailingRequiresClause.get());
7226 } else {
7227 break;
7228 }
7229 }
7230}
7231
7232void Parser::ParseDecompositionDeclarator(Declarator &D) {
7233 assert(Tok.is(tok::l_square));
7234
7235 TentativeParsingAction PA(*this);
7236 BalancedDelimiterTracker T(*this, tok::l_square);
7237 T.consumeOpen();
7238
7239 if (isCXX11AttributeSpecifier())
7240 DiagnoseAndSkipCXX11Attributes();
7241
7242 // If this doesn't look like a structured binding, maybe it's a misplaced
7243 // array declarator.
7244 if (!(Tok.is(tok::identifier) &&
7245 NextToken().isOneOf(tok::comma, tok::r_square, tok::kw_alignas,
7246 tok::l_square)) &&
7247 !(Tok.is(tok::r_square) &&
7248 NextToken().isOneOf(tok::equal, tok::l_brace))) {
7249 PA.Revert();
7250 return ParseMisplacedBracketDeclarator(D);
7251 }
7252
7254 while (Tok.isNot(tok::r_square)) {
7255 if (!Bindings.empty()) {
7256 if (Tok.is(tok::comma))
7257 ConsumeToken();
7258 else {
7259 if (Tok.is(tok::identifier)) {
7261 Diag(EndLoc, diag::err_expected)
7262 << tok::comma << FixItHint::CreateInsertion(EndLoc, ",");
7263 } else {
7264 Diag(Tok, diag::err_expected_comma_or_rsquare);
7265 }
7266
7267 SkipUntil(tok::r_square, tok::comma, tok::identifier,
7269 if (Tok.is(tok::comma))
7270 ConsumeToken();
7271 else if (Tok.isNot(tok::identifier))
7272 break;
7273 }
7274 }
7275
7276 if (isCXX11AttributeSpecifier())
7277 DiagnoseAndSkipCXX11Attributes();
7278
7279 if (Tok.isNot(tok::identifier)) {
7280 Diag(Tok, diag::err_expected) << tok::identifier;
7281 break;
7282 }
7283
7286 ConsumeToken();
7287
7288 ParsedAttributes Attrs(AttrFactory);
7289 if (isCXX11AttributeSpecifier()) {
7291 ? diag::warn_cxx23_compat_decl_attrs_on_binding
7292 : diag::ext_decl_attrs_on_binding);
7293 MaybeParseCXX11Attributes(Attrs);
7294 }
7295
7296 Bindings.push_back({II, Loc, std::move(Attrs)});
7297 }
7298
7299 if (Tok.isNot(tok::r_square))
7300 // We've already diagnosed a problem here.
7301 T.skipToEnd();
7302 else {
7303 // C++17 does not allow the identifier-list in a structured binding
7304 // to be empty.
7305 if (Bindings.empty())
7306 Diag(Tok.getLocation(), diag::ext_decomp_decl_empty);
7307
7308 T.consumeClose();
7309 }
7310
7311 PA.Commit();
7312
7313 return D.setDecompositionBindings(T.getOpenLocation(), Bindings,
7314 T.getCloseLocation());
7315}
7316
7317/// ParseParenDeclarator - We parsed the declarator D up to a paren. This is
7318/// only called before the identifier, so these are most likely just grouping
7319/// parens for precedence. If we find that these are actually function
7320/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
7321///
7322/// direct-declarator:
7323/// '(' declarator ')'
7324/// [GNU] '(' attributes declarator ')'
7325/// direct-declarator '(' parameter-type-list ')'
7326/// direct-declarator '(' identifier-list[opt] ')'
7327/// [GNU] direct-declarator '(' parameter-forward-declarations
7328/// parameter-type-list[opt] ')'
7329///
7330void Parser::ParseParenDeclarator(Declarator &D) {
7331 BalancedDelimiterTracker T(*this, tok::l_paren);
7332 T.consumeOpen();
7333
7334 assert(!D.isPastIdentifier() && "Should be called before passing identifier");
7335
7336 // Eat any attributes before we look at whether this is a grouping or function
7337 // declarator paren. If this is a grouping paren, the attribute applies to
7338 // the type being built up, for example:
7339 // int (__attribute__(()) *x)(long y)
7340 // If this ends up not being a grouping paren, the attribute applies to the
7341 // first argument, for example:
7342 // int (__attribute__(()) int x)
7343 // In either case, we need to eat any attributes to be able to determine what
7344 // sort of paren this is.
7345 //
7346 ParsedAttributes attrs(AttrFactory);
7347 bool RequiresArg = false;
7348 if (Tok.is(tok::kw___attribute)) {
7349 ParseGNUAttributes(attrs);
7350
7351 // We require that the argument list (if this is a non-grouping paren) be
7352 // present even if the attribute list was empty.
7353 RequiresArg = true;
7354 }
7355
7356 // Eat any Microsoft extensions.
7357 ParseMicrosoftTypeAttributes(attrs);
7358
7359 // Eat any Borland extensions.
7360 if (Tok.is(tok::kw___pascal))
7361 ParseBorlandTypeAttributes(attrs);
7362
7363 // If we haven't past the identifier yet (or where the identifier would be
7364 // stored, if this is an abstract declarator), then this is probably just
7365 // grouping parens. However, if this could be an abstract-declarator, then
7366 // this could also be the start of function arguments (consider 'void()').
7367 bool isGrouping;
7368
7369 if (!D.mayOmitIdentifier()) {
7370 // If this can't be an abstract-declarator, this *must* be a grouping
7371 // paren, because we haven't seen the identifier yet.
7372 isGrouping = true;
7373 } else if (Tok.is(tok::r_paren) || // 'int()' is a function.
7374 (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
7375 NextToken().is(tok::r_paren)) || // C++ int(...)
7376 isDeclarationSpecifier(
7377 ImplicitTypenameContext::No) || // 'int(int)' is a function.
7378 isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function.
7379 // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
7380 // considered to be a type, not a K&R identifier-list.
7381 isGrouping = false;
7382 } else {
7383 // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
7384 isGrouping = true;
7385 }
7386
7387 // If this is a grouping paren, handle:
7388 // direct-declarator: '(' declarator ')'
7389 // direct-declarator: '(' attributes declarator ')'
7390 if (isGrouping) {
7391 SourceLocation EllipsisLoc = D.getEllipsisLoc();
7392 D.setEllipsisLoc(SourceLocation());
7393
7394 bool hadGroupingParens = D.hasGroupingParens();
7395 D.setGroupingParens(true);
7396 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
7397 // Match the ')'.
7398 T.consumeClose();
7399 D.AddTypeInfo(
7400 DeclaratorChunk::getParen(T.getOpenLocation(), T.getCloseLocation()),
7401 std::move(attrs), T.getCloseLocation());
7402
7403 D.setGroupingParens(hadGroupingParens);
7404
7405 // An ellipsis cannot be placed outside parentheses.
7406 if (EllipsisLoc.isValid())
7407 DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
7408
7409 return;
7410 }
7411
7412 // Okay, if this wasn't a grouping paren, it must be the start of a function
7413 // argument list. Recognize that this declarator will never have an
7414 // identifier (and remember where it would have been), then call into
7415 // ParseFunctionDeclarator to handle of argument list.
7416 D.SetIdentifier(nullptr, Tok.getLocation());
7417
7418 // Enter function-declaration scope, limiting any declarators to the
7419 // function prototype scope, including parameter declarators.
7420 ParseScope PrototypeScope(this,
7422 (D.isFunctionDeclaratorAFunctionDeclaration()
7424 ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
7425 PrototypeScope.Exit();
7426}
7427
7428void Parser::InitCXXThisScopeForDeclaratorIfRelevant(
7429 const Declarator &D, const DeclSpec &DS,
7430 std::optional<Sema::CXXThisScopeRAII> &ThisScope) {
7431 // C++11 [expr.prim.general]p3:
7432 // If a declaration declares a member function or member function
7433 // template of a class X, the expression this is a prvalue of type
7434 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
7435 // and the end of the function-definition, member-declarator, or
7436 // declarator.
7437 // FIXME: currently, "static" case isn't handled correctly.
7438 bool IsCXX11MemberFunction =
7439 getLangOpts().CPlusPlus11 &&
7440 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7441 (D.getContext() == DeclaratorContext::Member
7442 ? !D.getDeclSpec().isFriendSpecified()
7443 : D.getContext() == DeclaratorContext::File &&
7444 D.getCXXScopeSpec().isValid() &&
7445 Actions.CurContext->isRecord());
7446 if (!IsCXX11MemberFunction)
7447 return;
7448
7450 if (D.getDeclSpec().hasConstexprSpecifier() && !getLangOpts().CPlusPlus14)
7451 Q.addConst();
7452 // FIXME: Collect C++ address spaces.
7453 // If there are multiple different address spaces, the source is invalid.
7454 // Carry on using the first addr space for the qualifiers of 'this'.
7455 // The diagnostic will be given later while creating the function
7456 // prototype for the method.
7457 if (getLangOpts().OpenCLCPlusPlus) {
7458 for (ParsedAttr &attr : DS.getAttributes()) {
7459 LangAS ASIdx = attr.asOpenCLLangAS();
7460 if (ASIdx != LangAS::Default) {
7461 Q.addAddressSpace(ASIdx);
7462 break;
7463 }
7464 }
7465 }
7466 ThisScope.emplace(Actions, dyn_cast<CXXRecordDecl>(Actions.CurContext), Q,
7467 IsCXX11MemberFunction);
7468}
7469
7470/// ParseFunctionDeclarator - We are after the identifier and have parsed the
7471/// declarator D up to a paren, which indicates that we are parsing function
7472/// arguments.
7473///
7474/// If FirstArgAttrs is non-null, then the caller parsed those attributes
7475/// immediately after the open paren - they will be applied to the DeclSpec
7476/// of the first parameter.
7477///
7478/// If RequiresArg is true, then the first argument of the function is required
7479/// to be present and required to not be an identifier list.
7480///
7481/// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
7482/// (C++11) ref-qualifier[opt], exception-specification[opt],
7483/// (C++11) attribute-specifier-seq[opt], (C++11) trailing-return-type[opt] and
7484/// (C++2a) the trailing requires-clause.
7485///
7486/// [C++11] exception-specification:
7487/// dynamic-exception-specification
7488/// noexcept-specification
7489///
7490void Parser::ParseFunctionDeclarator(Declarator &D,
7491 ParsedAttributes &FirstArgAttrs,
7492 BalancedDelimiterTracker &Tracker,
7493 bool IsAmbiguous,
7494 bool RequiresArg) {
7495 assert(getCurScope()->isFunctionPrototypeScope() &&
7496 "Should call from a Function scope");
7497 // lparen is already consumed!
7498 assert(D.isPastIdentifier() && "Should not call before identifier!");
7499
7500 // This should be true when the function has typed arguments.
7501 // Otherwise, it is treated as a K&R-style function.
7502 bool HasProto = false;
7503 // Build up an array of information about the parsed arguments.
7505 // Remember where we see an ellipsis, if any.
7506 SourceLocation EllipsisLoc;
7507
7508 DeclSpec DS(AttrFactory);
7509 bool RefQualifierIsLValueRef = true;
7510 SourceLocation RefQualifierLoc;
7512 SourceRange ESpecRange;
7513 SmallVector<ParsedType, 2> DynamicExceptions;
7514 SmallVector<SourceRange, 2> DynamicExceptionRanges;
7515 ExprResult NoexceptExpr;
7516 CachedTokens *ExceptionSpecTokens = nullptr;
7517 ParsedAttributes FnAttrs(AttrFactory);
7518 TypeResult TrailingReturnType;
7519 SourceLocation TrailingReturnTypeLoc;
7520
7521 /* LocalEndLoc is the end location for the local FunctionTypeLoc.
7522 EndLoc is the end location for the function declarator.
7523 They differ for trailing return types. */
7524 SourceLocation StartLoc, LocalEndLoc, EndLoc;
7525 SourceLocation LParenLoc, RParenLoc;
7526 LParenLoc = Tracker.getOpenLocation();
7527 StartLoc = LParenLoc;
7528
7529 if (isFunctionDeclaratorIdentifierList()) {
7530 if (RequiresArg)
7531 Diag(Tok, diag::err_argument_required_after_attribute);
7532
7533 ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
7534
7535 Tracker.consumeClose();
7536 RParenLoc = Tracker.getCloseLocation();
7537 LocalEndLoc = RParenLoc;
7538 EndLoc = RParenLoc;
7539
7540 // If there are attributes following the identifier list, parse them and
7541 // prohibit them.
7542 MaybeParseCXX11Attributes(FnAttrs);
7543 ProhibitAttributes(FnAttrs);
7544 } else {
7545 if (Tok.isNot(tok::r_paren))
7546 ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, EllipsisLoc);
7547 else if (RequiresArg)
7548 Diag(Tok, diag::err_argument_required_after_attribute);
7549
7550 // OpenCL disallows functions without a prototype, but it doesn't enforce
7551 // strict prototypes as in C23 because it allows a function definition to
7552 // have an identifier list. See OpenCL 3.0 6.11/g for more details.
7553 HasProto = ParamInfo.size() || getLangOpts().requiresStrictPrototypes() ||
7554 getLangOpts().OpenCL;
7555
7556 // If we have the closing ')', eat it.
7557 Tracker.consumeClose();
7558 RParenLoc = Tracker.getCloseLocation();
7559 LocalEndLoc = RParenLoc;
7560 EndLoc = RParenLoc;
7561
7562 if (getLangOpts().CPlusPlus) {
7563 // FIXME: Accept these components in any order, and produce fixits to
7564 // correct the order if the user gets it wrong. Ideally we should deal
7565 // with the pure-specifier in the same way.
7566
7567 // Parse cv-qualifier-seq[opt].
7568 ParseTypeQualifierListOpt(
7569 DS, AR_NoAttributesParsed,
7570 /*AtomicAllowed*/ false,
7571 /*IdentifierRequired=*/false, llvm::function_ref<void()>([&]() {
7572 Actions.CodeCompletion().CodeCompleteFunctionQualifiers(DS, D);
7573 }));
7574 if (!DS.getSourceRange().getEnd().isInvalid()) {
7575 EndLoc = DS.getSourceRange().getEnd();
7576 }
7577
7578 // Parse ref-qualifier[opt].
7579 if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
7580 EndLoc = RefQualifierLoc;
7581
7582 std::optional<Sema::CXXThisScopeRAII> ThisScope;
7583 InitCXXThisScopeForDeclaratorIfRelevant(D, DS, ThisScope);
7584
7585 // C++ [class.mem.general]p8:
7586 // A complete-class context of a class (template) is a
7587 // - function body,
7588 // - default argument,
7589 // - default template argument,
7590 // - noexcept-specifier, or
7591 // - default member initializer
7592 // within the member-specification of the class or class template.
7593 //
7594 // Parse exception-specification[opt]. If we are in the
7595 // member-specification of a class or class template, this is a
7596 // complete-class context and parsing of the noexcept-specifier should be
7597 // delayed (even if this is a friend declaration).
7598 bool Delayed = D.getContext() == DeclaratorContext::Member &&
7599 D.isFunctionDeclaratorAFunctionDeclaration();
7600 if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
7601 GetLookAheadToken(0).is(tok::kw_noexcept) &&
7602 GetLookAheadToken(1).is(tok::l_paren) &&
7603 GetLookAheadToken(2).is(tok::kw_noexcept) &&
7604 GetLookAheadToken(3).is(tok::l_paren) &&
7605 GetLookAheadToken(4).is(tok::identifier) &&
7606 GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
7607 // HACK: We've got an exception-specification
7608 // noexcept(noexcept(swap(...)))
7609 // or
7610 // noexcept(noexcept(swap(...)) && noexcept(swap(...)))
7611 // on a 'swap' member function. This is a libstdc++ bug; the lookup
7612 // for 'swap' will only find the function we're currently declaring,
7613 // whereas it expects to find a non-member swap through ADL. Turn off
7614 // delayed parsing to give it a chance to find what it expects.
7615 Delayed = false;
7616 }
7617 ESpecType = tryParseExceptionSpecification(Delayed,
7618 ESpecRange,
7619 DynamicExceptions,
7620 DynamicExceptionRanges,
7621 NoexceptExpr,
7622 ExceptionSpecTokens);
7623 if (ESpecType != EST_None)
7624 EndLoc = ESpecRange.getEnd();
7625
7626 // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
7627 // after the exception-specification.
7628 MaybeParseCXX11Attributes(FnAttrs);
7629
7630 // Parse trailing-return-type[opt].
7631 LocalEndLoc = EndLoc;
7632 if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
7633 Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
7634 if (D.getDeclSpec().getTypeSpecType() == TST_auto)
7635 StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
7636 LocalEndLoc = Tok.getLocation();
7638 TrailingReturnType =
7639 ParseTrailingReturnType(Range, D.mayBeFollowedByCXXDirectInit());
7640 TrailingReturnTypeLoc = Range.getBegin();
7641 EndLoc = Range.getEnd();
7642 }
7643 } else {
7644 MaybeParseCXX11Attributes(FnAttrs);
7645 }
7646 }
7647
7648 // Collect non-parameter declarations from the prototype if this is a function
7649 // declaration. They will be moved into the scope of the function. Only do
7650 // this in C and not C++, where the decls will continue to live in the
7651 // surrounding context.
7652 SmallVector<NamedDecl *, 0> DeclsInPrototype;
7653 if (getCurScope()->isFunctionDeclarationScope() && !getLangOpts().CPlusPlus) {
7654 for (Decl *D : getCurScope()->decls()) {
7655 NamedDecl *ND = dyn_cast<NamedDecl>(D);
7656 if (!ND || isa<ParmVarDecl>(ND))
7657 continue;
7658 DeclsInPrototype.push_back(ND);
7659 }
7660 // Sort DeclsInPrototype based on raw encoding of the source location.
7661 // Scope::decls() is iterating over a SmallPtrSet so sort the Decls before
7662 // moving to DeclContext. This provides a stable ordering for traversing
7663 // Decls in DeclContext, which is important for tasks like ASTWriter for
7664 // deterministic output.
7665 llvm::sort(DeclsInPrototype, [](Decl *D1, Decl *D2) {
7666 return D1->getLocation().getRawEncoding() <
7668 });
7669 }
7670
7671 // Remember that we parsed a function type, and remember the attributes.
7672 D.AddTypeInfo(DeclaratorChunk::getFunction(
7673 HasProto, IsAmbiguous, LParenLoc, ParamInfo.data(),
7674 ParamInfo.size(), EllipsisLoc, RParenLoc,
7675 RefQualifierIsLValueRef, RefQualifierLoc,
7676 /*MutableLoc=*/SourceLocation(),
7677 ESpecType, ESpecRange, DynamicExceptions.data(),
7678 DynamicExceptionRanges.data(), DynamicExceptions.size(),
7679 NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
7680 ExceptionSpecTokens, DeclsInPrototype, StartLoc,
7681 LocalEndLoc, D, TrailingReturnType, TrailingReturnTypeLoc,
7682 &DS),
7683 std::move(FnAttrs), EndLoc);
7684}
7685
7686/// ParseRefQualifier - Parses a member function ref-qualifier. Returns
7687/// true if a ref-qualifier is found.
7688bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
7689 SourceLocation &RefQualifierLoc) {
7690 if (Tok.isOneOf(tok::amp, tok::ampamp)) {
7692 diag::warn_cxx98_compat_ref_qualifier :
7693 diag::ext_ref_qualifier);
7694
7695 RefQualifierIsLValueRef = Tok.is(tok::amp);
7696 RefQualifierLoc = ConsumeToken();
7697 return true;
7698 }
7699 return false;
7700}
7701
7702/// isFunctionDeclaratorIdentifierList - This parameter list may have an
7703/// identifier list form for a K&R-style function: void foo(a,b,c)
7704///
7705/// Note that identifier-lists are only allowed for normal declarators, not for
7706/// abstract-declarators.
7707bool Parser::isFunctionDeclaratorIdentifierList() {
7709 && Tok.is(tok::identifier)
7710 && !TryAltiVecVectorToken()
7711 // K&R identifier lists can't have typedefs as identifiers, per C99
7712 // 6.7.5.3p11.
7713 && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
7714 // Identifier lists follow a really simple grammar: the identifiers can
7715 // be followed *only* by a ", identifier" or ")". However, K&R
7716 // identifier lists are really rare in the brave new modern world, and
7717 // it is very common for someone to typo a type in a non-K&R style
7718 // list. If we are presented with something like: "void foo(intptr x,
7719 // float y)", we don't want to start parsing the function declarator as
7720 // though it is a K&R style declarator just because intptr is an
7721 // invalid type.
7722 //
7723 // To handle this, we check to see if the token after the first
7724 // identifier is a "," or ")". Only then do we parse it as an
7725 // identifier list.
7726 && (!Tok.is(tok::eof) &&
7727 (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)));
7728}
7729
7730/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
7731/// we found a K&R-style identifier list instead of a typed parameter list.
7732///
7733/// After returning, ParamInfo will hold the parsed parameters.
7734///
7735/// identifier-list: [C99 6.7.5]
7736/// identifier
7737/// identifier-list ',' identifier
7738///
7739void Parser::ParseFunctionDeclaratorIdentifierList(
7740 Declarator &D,
7742 // We should never reach this point in C23 or C++.
7743 assert(!getLangOpts().requiresStrictPrototypes() &&
7744 "Cannot parse an identifier list in C23 or C++");
7745
7746 // If there was no identifier specified for the declarator, either we are in
7747 // an abstract-declarator, or we are in a parameter declarator which was found
7748 // to be abstract. In abstract-declarators, identifier lists are not valid:
7749 // diagnose this.
7750 if (!D.getIdentifier())
7751 Diag(Tok, diag::ext_ident_list_in_param);
7752
7753 // Maintain an efficient lookup of params we have seen so far.
7754 llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
7755
7756 do {
7757 // If this isn't an identifier, report the error and skip until ')'.
7758 if (Tok.isNot(tok::identifier)) {
7759 Diag(Tok, diag::err_expected) << tok::identifier;
7760 SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
7761 // Forget we parsed anything.
7762 ParamInfo.clear();
7763 return;
7764 }
7765
7766 IdentifierInfo *ParmII = Tok.getIdentifierInfo();
7767
7768 // Reject 'typedef int y; int test(x, y)', but continue parsing.
7769 if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
7770 Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
7771
7772 // Verify that the argument identifier has not already been mentioned.
7773 if (!ParamsSoFar.insert(ParmII).second) {
7774 Diag(Tok, diag::err_param_redefinition) << ParmII;
7775 } else {
7776 // Remember this identifier in ParamInfo.
7777 ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
7778 Tok.getLocation(),
7779 nullptr));
7780 }
7781
7782 // Eat the identifier.
7783 ConsumeToken();
7784 // The list continues if we see a comma.
7785 } while (TryConsumeToken(tok::comma));
7786}
7787
7788/// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
7789/// after the opening parenthesis. This function will not parse a K&R-style
7790/// identifier list.
7791///
7792/// DeclContext is the context of the declarator being parsed. If FirstArgAttrs
7793/// is non-null, then the caller parsed those attributes immediately after the
7794/// open paren - they will be applied to the DeclSpec of the first parameter.
7795///
7796/// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
7797/// be the location of the ellipsis, if any was parsed.
7798///
7799/// parameter-type-list: [C99 6.7.5]
7800/// parameter-list
7801/// parameter-list ',' '...'
7802/// [C++] parameter-list '...'
7803///
7804/// parameter-list: [C99 6.7.5]
7805/// parameter-declaration
7806/// parameter-list ',' parameter-declaration
7807///
7808/// parameter-declaration: [C99 6.7.5]
7809/// declaration-specifiers declarator
7810/// [C++] declaration-specifiers declarator '=' assignment-expression
7811/// [C++11] initializer-clause
7812/// [GNU] declaration-specifiers declarator attributes
7813/// declaration-specifiers abstract-declarator[opt]
7814/// [C++] declaration-specifiers abstract-declarator[opt]
7815/// '=' assignment-expression
7816/// [GNU] declaration-specifiers abstract-declarator[opt] attributes
7817/// [C++11] attribute-specifier-seq parameter-declaration
7818/// [C++2b] attribute-specifier-seq 'this' parameter-declaration
7819///
7820void Parser::ParseParameterDeclarationClause(
7821 DeclaratorContext DeclaratorCtx, ParsedAttributes &FirstArgAttrs,
7823 SourceLocation &EllipsisLoc, bool IsACXXFunctionDeclaration) {
7824
7825 // Avoid exceeding the maximum function scope depth.
7826 // See https://bugs.llvm.org/show_bug.cgi?id=19607
7827 // Note Sema::ActOnParamDeclarator calls ParmVarDecl::setScopeInfo with
7828 // getFunctionPrototypeDepth() - 1.
7829 if (getCurScope()->getFunctionPrototypeDepth() - 1 >
7831 Diag(Tok.getLocation(), diag::err_function_scope_depth_exceeded)
7833 cutOffParsing();
7834 return;
7835 }
7836
7837 // C++2a [temp.res]p5
7838 // A qualified-id is assumed to name a type if
7839 // - [...]
7840 // - it is a decl-specifier of the decl-specifier-seq of a
7841 // - [...]
7842 // - parameter-declaration in a member-declaration [...]
7843 // - parameter-declaration in a declarator of a function or function
7844 // template declaration whose declarator-id is qualified [...]
7845 // - parameter-declaration in a lambda-declarator [...]
7846 auto AllowImplicitTypename = ImplicitTypenameContext::No;
7847 if (DeclaratorCtx == DeclaratorContext::Member ||
7848 DeclaratorCtx == DeclaratorContext::LambdaExpr ||
7849 DeclaratorCtx == DeclaratorContext::RequiresExpr ||
7850 IsACXXFunctionDeclaration) {
7851 AllowImplicitTypename = ImplicitTypenameContext::Yes;
7852 }
7853
7854 do {
7855 // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
7856 // before deciding this was a parameter-declaration-clause.
7857 if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
7858 break;
7859
7860 // Parse the declaration-specifiers.
7861 // Just use the ParsingDeclaration "scope" of the declarator.
7862 DeclSpec DS(AttrFactory);
7863
7864 ParsedAttributes ArgDeclAttrs(AttrFactory);
7865 ParsedAttributes ArgDeclSpecAttrs(AttrFactory);
7866
7867 if (FirstArgAttrs.Range.isValid()) {
7868 // If the caller parsed attributes for the first argument, add them now.
7869 // Take them so that we only apply the attributes to the first parameter.
7870 // We have already started parsing the decl-specifier sequence, so don't
7871 // parse any parameter-declaration pieces that precede it.
7872 ArgDeclSpecAttrs.takeAllFrom(FirstArgAttrs);
7873 } else {
7874 // Parse any C++11 attributes.
7875 MaybeParseCXX11Attributes(ArgDeclAttrs);
7876
7877 // Skip any Microsoft attributes before a param.
7878 MaybeParseMicrosoftAttributes(ArgDeclSpecAttrs);
7879 }
7880
7881 SourceLocation DSStart = Tok.getLocation();
7882
7883 // Parse a C++23 Explicit Object Parameter
7884 // We do that in all language modes to produce a better diagnostic.
7885 SourceLocation ThisLoc;
7886 if (getLangOpts().CPlusPlus && Tok.is(tok::kw_this)) {
7887 ThisLoc = ConsumeToken();
7888 // C++23 [dcl.fct]p6:
7889 // An explicit-object-parameter-declaration is a parameter-declaration
7890 // with a this specifier. An explicit-object-parameter-declaration
7891 // shall appear only as the first parameter-declaration of a
7892 // parameter-declaration-list of either:
7893 // - a member-declarator that declares a member function, or
7894 // - a lambda-declarator.
7895 //
7896 // The parameter-declaration-list of a requires-expression is not such
7897 // a context.
7898 if (DeclaratorCtx == DeclaratorContext::RequiresExpr)
7899 Diag(ThisLoc, diag::err_requires_expr_explicit_object_parameter);
7900 }
7901
7902 ParsedTemplateInfo TemplateInfo;
7903 ParseDeclarationSpecifiers(DS, TemplateInfo, AS_none,
7904 DeclSpecContext::DSC_normal,
7905 /*LateAttrs=*/nullptr, AllowImplicitTypename);
7906
7907 DS.takeAttributesFrom(ArgDeclSpecAttrs);
7908
7909 // Parse the declarator. This is "PrototypeContext" or
7910 // "LambdaExprParameterContext", because we must accept either
7911 // 'declarator' or 'abstract-declarator' here.
7912 Declarator ParmDeclarator(DS, ArgDeclAttrs,
7913 DeclaratorCtx == DeclaratorContext::RequiresExpr
7915 : DeclaratorCtx == DeclaratorContext::LambdaExpr
7918 ParseDeclarator(ParmDeclarator);
7919
7920 if (ThisLoc.isValid())
7921 ParmDeclarator.SetRangeBegin(ThisLoc);
7922
7923 // Parse GNU attributes, if present.
7924 MaybeParseGNUAttributes(ParmDeclarator);
7925 if (getLangOpts().HLSL)
7926 MaybeParseHLSLAnnotations(DS.getAttributes());
7927
7928 if (Tok.is(tok::kw_requires)) {
7929 // User tried to define a requires clause in a parameter declaration,
7930 // which is surely not a function declaration.
7931 // void f(int (*g)(int, int) requires true);
7932 Diag(Tok,
7933 diag::err_requires_clause_on_declarator_not_declaring_a_function);
7934 ConsumeToken();
7936 ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true));
7937 }
7938
7939 // Remember this parsed parameter in ParamInfo.
7940 const IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
7941
7942 // DefArgToks is used when the parsing of default arguments needs
7943 // to be delayed.
7944 std::unique_ptr<CachedTokens> DefArgToks;
7945
7946 // If no parameter was specified, verify that *something* was specified,
7947 // otherwise we have a missing type and identifier.
7948 if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
7949 ParmDeclarator.getNumTypeObjects() == 0) {
7950 // Completely missing, emit error.
7951 Diag(DSStart, diag::err_missing_param);
7952 } else {
7953 // Otherwise, we have something. Add it and let semantic analysis try
7954 // to grok it and add the result to the ParamInfo we are building.
7955
7956 // Last chance to recover from a misplaced ellipsis in an attempted
7957 // parameter pack declaration.
7958 if (Tok.is(tok::ellipsis) &&
7959 (NextToken().isNot(tok::r_paren) ||
7960 (!ParmDeclarator.getEllipsisLoc().isValid() &&
7962 Actions.containsUnexpandedParameterPacks(ParmDeclarator))
7963 DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
7964
7965 // Now we are at the point where declarator parsing is finished.
7966 //
7967 // Try to catch keywords in place of the identifier in a declarator, and
7968 // in particular the common case where:
7969 // 1 identifier comes at the end of the declarator
7970 // 2 if the identifier is dropped, the declarator is valid but anonymous
7971 // (no identifier)
7972 // 3 declarator parsing succeeds, and then we have a trailing keyword,
7973 // which is never valid in a param list (e.g. missing a ',')
7974 // And we can't handle this in ParseDeclarator because in general keywords
7975 // may be allowed to follow the declarator. (And in some cases there'd be
7976 // better recovery like inserting punctuation). ParseDeclarator is just
7977 // treating this as an anonymous parameter, and fortunately at this point
7978 // we've already almost done that.
7979 //
7980 // We care about case 1) where the declarator type should be known, and
7981 // the identifier should be null.
7982 if (!ParmDeclarator.isInvalidType() && !ParmDeclarator.hasName() &&
7983 Tok.isNot(tok::raw_identifier) && !Tok.isAnnotation() &&
7984 Tok.getIdentifierInfo() &&
7986 Diag(Tok, diag::err_keyword_as_parameter) << PP.getSpelling(Tok);
7987 // Consume the keyword.
7988 ConsumeToken();
7989 }
7990 // Inform the actions module about the parameter declarator, so it gets
7991 // added to the current scope.
7992 Decl *Param =
7993 Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator, ThisLoc);
7994 // Parse the default argument, if any. We parse the default
7995 // arguments in all dialects; the semantic analysis in
7996 // ActOnParamDefaultArgument will reject the default argument in
7997 // C.
7998 if (Tok.is(tok::equal)) {
7999 SourceLocation EqualLoc = Tok.getLocation();
8000
8001 // Parse the default argument
8002 if (DeclaratorCtx == DeclaratorContext::Member) {
8003 // If we're inside a class definition, cache the tokens
8004 // corresponding to the default argument. We'll actually parse
8005 // them when we see the end of the class definition.
8006 DefArgToks.reset(new CachedTokens);
8007
8008 SourceLocation ArgStartLoc = NextToken().getLocation();
8009 ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument);
8010 Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
8011 ArgStartLoc);
8012 } else {
8013 // Consume the '='.
8014 ConsumeToken();
8015
8016 // The argument isn't actually potentially evaluated unless it is
8017 // used.
8019 Actions,
8021 Param);
8022
8023 ExprResult DefArgResult;
8024 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
8025 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
8026 DefArgResult = ParseBraceInitializer();
8027 } else {
8028 if (Tok.is(tok::l_paren) && NextToken().is(tok::l_brace)) {
8029 Diag(Tok, diag::err_stmt_expr_in_default_arg) << 0;
8030 Actions.ActOnParamDefaultArgumentError(Param, EqualLoc,
8031 /*DefaultArg=*/nullptr);
8032 // Skip the statement expression and continue parsing
8033 SkipUntil(tok::comma, StopBeforeMatch);
8034 continue;
8035 }
8036 DefArgResult = ParseAssignmentExpression();
8037 }
8038 DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
8039 if (DefArgResult.isInvalid()) {
8040 Actions.ActOnParamDefaultArgumentError(Param, EqualLoc,
8041 /*DefaultArg=*/nullptr);
8042 SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
8043 } else {
8044 // Inform the actions module about the default argument
8045 Actions.ActOnParamDefaultArgument(Param, EqualLoc,
8046 DefArgResult.get());
8047 }
8048 }
8049 }
8050
8051 ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
8052 ParmDeclarator.getIdentifierLoc(),
8053 Param, std::move(DefArgToks)));
8054 }
8055
8056 if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
8057 if (!getLangOpts().CPlusPlus) {
8058 // We have ellipsis without a preceding ',', which is ill-formed
8059 // in C. Complain and provide the fix.
8060 Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
8061 << FixItHint::CreateInsertion(EllipsisLoc, ", ");
8062 } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
8063 Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
8064 // It looks like this was supposed to be a parameter pack. Warn and
8065 // point out where the ellipsis should have gone.
8066 SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
8067 Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
8068 << ParmEllipsis.isValid() << ParmEllipsis;
8069 if (ParmEllipsis.isValid()) {
8070 Diag(ParmEllipsis,
8071 diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
8072 } else {
8073 Diag(ParmDeclarator.getIdentifierLoc(),
8074 diag::note_misplaced_ellipsis_vararg_add_ellipsis)
8075 << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
8076 "...")
8077 << !ParmDeclarator.hasName();
8078 }
8079 Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
8080 << FixItHint::CreateInsertion(EllipsisLoc, ", ");
8081 }
8082
8083 // We can't have any more parameters after an ellipsis.
8084 break;
8085 }
8086
8087 // If the next token is a comma, consume it and keep reading arguments.
8088 } while (TryConsumeToken(tok::comma));
8089}
8090
8091/// [C90] direct-declarator '[' constant-expression[opt] ']'
8092/// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
8093/// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
8094/// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
8095/// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
8096/// [C++11] direct-declarator '[' constant-expression[opt] ']'
8097/// attribute-specifier-seq[opt]
8098void Parser::ParseBracketDeclarator(Declarator &D) {
8099 if (CheckProhibitedCXX11Attribute())
8100 return;
8101
8102 BalancedDelimiterTracker T(*this, tok::l_square);
8103 T.consumeOpen();
8104
8105 // C array syntax has many features, but by-far the most common is [] and [4].
8106 // This code does a fast path to handle some of the most obvious cases.
8107 if (Tok.getKind() == tok::r_square) {
8108 T.consumeClose();
8109 ParsedAttributes attrs(AttrFactory);
8110 MaybeParseCXX11Attributes(attrs);
8111
8112 // Remember that we parsed the empty array type.
8113 D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
8114 T.getOpenLocation(),
8115 T.getCloseLocation()),
8116 std::move(attrs), T.getCloseLocation());
8117 return;
8118 } else if (Tok.getKind() == tok::numeric_constant &&
8119 GetLookAheadToken(1).is(tok::r_square)) {
8120 // [4] is very common. Parse the numeric constant expression.
8121 ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
8122 ConsumeToken();
8123
8124 T.consumeClose();
8125 ParsedAttributes attrs(AttrFactory);
8126 MaybeParseCXX11Attributes(attrs);
8127
8128 // Remember that we parsed a array type, and remember its features.
8129 D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, ExprRes.get(),
8130 T.getOpenLocation(),
8131 T.getCloseLocation()),
8132 std::move(attrs), T.getCloseLocation());
8133 return;
8134 } else if (Tok.getKind() == tok::code_completion) {
8135 cutOffParsing();
8137 return;
8138 }
8139
8140 // If valid, this location is the position where we read the 'static' keyword.
8141 SourceLocation StaticLoc;
8142 TryConsumeToken(tok::kw_static, StaticLoc);
8143
8144 // If there is a type-qualifier-list, read it now.
8145 // Type qualifiers in an array subscript are a C99 feature.
8146 DeclSpec DS(AttrFactory);
8147 ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
8148
8149 // If we haven't already read 'static', check to see if there is one after the
8150 // type-qualifier-list.
8151 if (!StaticLoc.isValid())
8152 TryConsumeToken(tok::kw_static, StaticLoc);
8153
8154 // Handle "direct-declarator [ type-qual-list[opt] * ]".
8155 bool isStar = false;
8156 ExprResult NumElements;
8157
8158 // Handle the case where we have '[*]' as the array size. However, a leading
8159 // star could be the start of an expression, for example 'X[*p + 4]'. Verify
8160 // the token after the star is a ']'. Since stars in arrays are
8161 // infrequent, use of lookahead is not costly here.
8162 if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
8163 ConsumeToken(); // Eat the '*'.
8164
8165 if (StaticLoc.isValid()) {
8166 Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
8167 StaticLoc = SourceLocation(); // Drop the static.
8168 }
8169 isStar = true;
8170 } else if (Tok.isNot(tok::r_square)) {
8171 // Note, in C89, this production uses the constant-expr production instead
8172 // of assignment-expr. The only difference is that assignment-expr allows
8173 // things like '=' and '*='. Sema rejects these in C89 mode because they
8174 // are not i-c-e's, so we don't need to distinguish between the two here.
8175
8176 // Parse the constant-expression or assignment-expression now (depending
8177 // on dialect).
8178 if (getLangOpts().CPlusPlus) {
8179 NumElements = ParseArrayBoundExpression();
8180 } else {
8183 NumElements =
8185 }
8186 } else {
8187 if (StaticLoc.isValid()) {
8188 Diag(StaticLoc, diag::err_unspecified_size_with_static);
8189 StaticLoc = SourceLocation(); // Drop the static.
8190 }
8191 }
8192
8193 // If there was an error parsing the assignment-expression, recover.
8194 if (NumElements.isInvalid()) {
8195 D.setInvalidType(true);
8196 // If the expression was invalid, skip it.
8197 SkipUntil(tok::r_square, StopAtSemi);
8198 return;
8199 }
8200
8201 T.consumeClose();
8202
8203 MaybeParseCXX11Attributes(DS.getAttributes());
8204
8205 // Remember that we parsed a array type, and remember its features.
8206 D.AddTypeInfo(
8208 isStar, NumElements.get(), T.getOpenLocation(),
8209 T.getCloseLocation()),
8210 std::move(DS.getAttributes()), T.getCloseLocation());
8211}
8212
8213/// Diagnose brackets before an identifier.
8214void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
8215 assert(Tok.is(tok::l_square) && "Missing opening bracket");
8216 assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
8217
8218 SourceLocation StartBracketLoc = Tok.getLocation();
8219 Declarator TempDeclarator(D.getDeclSpec(), ParsedAttributesView::none(),
8220 D.getContext());
8221
8222 while (Tok.is(tok::l_square)) {
8223 ParseBracketDeclarator(TempDeclarator);
8224 }
8225
8226 // Stuff the location of the start of the brackets into the Declarator.
8227 // The diagnostics from ParseDirectDeclarator will make more sense if
8228 // they use this location instead.
8229 if (Tok.is(tok::semi))
8230 D.getName().EndLocation = StartBracketLoc;
8231
8232 SourceLocation SuggestParenLoc = Tok.getLocation();
8233
8234 // Now that the brackets are removed, try parsing the declarator again.
8235 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
8236
8237 // Something went wrong parsing the brackets, in which case,
8238 // ParseBracketDeclarator has emitted an error, and we don't need to emit
8239 // one here.
8240 if (TempDeclarator.getNumTypeObjects() == 0)
8241 return;
8242
8243 // Determine if parens will need to be suggested in the diagnostic.
8244 bool NeedParens = false;
8245 if (D.getNumTypeObjects() != 0) {
8246 switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
8252 NeedParens = true;
8253 break;
8257 break;
8258 }
8259 }
8260
8261 if (NeedParens) {
8262 // Create a DeclaratorChunk for the inserted parens.
8264 D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc),
8265 SourceLocation());
8266 }
8267
8268 // Adding back the bracket info to the end of the Declarator.
8269 for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
8270 const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
8271 D.AddTypeInfo(Chunk, TempDeclarator.getAttributePool(), SourceLocation());
8272 }
8273
8274 // The missing identifier would have been diagnosed in ParseDirectDeclarator.
8275 // If parentheses are required, always suggest them.
8276 if (!D.getIdentifier() && !NeedParens)
8277 return;
8278
8279 SourceLocation EndBracketLoc = TempDeclarator.getEndLoc();
8280
8281 // Generate the move bracket error message.
8282 SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
8284
8285 if (NeedParens) {
8286 Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
8287 << getLangOpts().CPlusPlus
8288 << FixItHint::CreateInsertion(SuggestParenLoc, "(")
8289 << FixItHint::CreateInsertion(EndLoc, ")")
8291 EndLoc, CharSourceRange(BracketRange, true))
8292 << FixItHint::CreateRemoval(BracketRange);
8293 } else {
8294 Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
8295 << getLangOpts().CPlusPlus
8297 EndLoc, CharSourceRange(BracketRange, true))
8298 << FixItHint::CreateRemoval(BracketRange);
8299 }
8300}
8301
8302/// [GNU] typeof-specifier:
8303/// typeof ( expressions )
8304/// typeof ( type-name )
8305/// [GNU/C++] typeof unary-expression
8306/// [C23] typeof-specifier:
8307/// typeof '(' typeof-specifier-argument ')'
8308/// typeof_unqual '(' typeof-specifier-argument ')'
8309///
8310/// typeof-specifier-argument:
8311/// expression
8312/// type-name
8313///
8314void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
8315 assert(Tok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual) &&
8316 "Not a typeof specifier");
8317
8318 bool IsUnqual = Tok.is(tok::kw_typeof_unqual);
8319 const IdentifierInfo *II = Tok.getIdentifierInfo();
8320 if (getLangOpts().C23 && !II->getName().starts_with("__"))
8321 Diag(Tok.getLocation(), diag::warn_c23_compat_keyword) << Tok.getName();
8322
8323 Token OpTok = Tok;
8324 SourceLocation StartLoc = ConsumeToken();
8325 bool HasParens = Tok.is(tok::l_paren);
8326
8330
8331 bool isCastExpr;
8332 ParsedType CastTy;
8333 SourceRange CastRange;
8335 ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
8336 if (HasParens)
8337 DS.setTypeArgumentRange(CastRange);
8338
8339 if (CastRange.getEnd().isInvalid())
8340 // FIXME: Not accurate, the range gets one token more than it should.
8341 DS.SetRangeEnd(Tok.getLocation());
8342 else
8343 DS.SetRangeEnd(CastRange.getEnd());
8344
8345 if (isCastExpr) {
8346 if (!CastTy) {
8347 DS.SetTypeSpecError();
8348 return;
8349 }
8350
8351 const char *PrevSpec = nullptr;
8352 unsigned DiagID;
8353 // Check for duplicate type specifiers (e.g. "int typeof(int)").
8356 StartLoc, PrevSpec,
8357 DiagID, CastTy,
8358 Actions.getASTContext().getPrintingPolicy()))
8359 Diag(StartLoc, DiagID) << PrevSpec;
8360 return;
8361 }
8362
8363 // If we get here, the operand to the typeof was an expression.
8364 if (Operand.isInvalid()) {
8365 DS.SetTypeSpecError();
8366 return;
8367 }
8368
8369 // We might need to transform the operand if it is potentially evaluated.
8371 if (Operand.isInvalid()) {
8372 DS.SetTypeSpecError();
8373 return;
8374 }
8375
8376 const char *PrevSpec = nullptr;
8377 unsigned DiagID;
8378 // Check for duplicate type specifiers (e.g. "int typeof(int)").
8381 StartLoc, PrevSpec,
8382 DiagID, Operand.get(),
8383 Actions.getASTContext().getPrintingPolicy()))
8384 Diag(StartLoc, DiagID) << PrevSpec;
8385}
8386
8387/// [C11] atomic-specifier:
8388/// _Atomic ( type-name )
8389///
8390void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
8391 assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
8392 "Not an atomic specifier");
8393
8394 SourceLocation StartLoc = ConsumeToken();
8395 BalancedDelimiterTracker T(*this, tok::l_paren);
8396 if (T.consumeOpen())
8397 return;
8398
8400 if (Result.isInvalid()) {
8401 SkipUntil(tok::r_paren, StopAtSemi);
8402 return;
8403 }
8404
8405 // Match the ')'
8406 T.consumeClose();
8407
8408 if (T.getCloseLocation().isInvalid())
8409 return;
8410
8411 DS.setTypeArgumentRange(T.getRange());
8412 DS.SetRangeEnd(T.getCloseLocation());
8413
8414 const char *PrevSpec = nullptr;
8415 unsigned DiagID;
8416 if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
8417 DiagID, Result.get(),
8418 Actions.getASTContext().getPrintingPolicy()))
8419 Diag(StartLoc, DiagID) << PrevSpec;
8420}
8421
8422/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
8423/// from TryAltiVecVectorToken.
8424bool Parser::TryAltiVecVectorTokenOutOfLine() {
8425 Token Next = NextToken();
8426 switch (Next.getKind()) {
8427 default: return false;
8428 case tok::kw_short:
8429 case tok::kw_long:
8430 case tok::kw_signed:
8431 case tok::kw_unsigned:
8432 case tok::kw_void:
8433 case tok::kw_char:
8434 case tok::kw_int:
8435 case tok::kw_float:
8436 case tok::kw_double:
8437 case tok::kw_bool:
8438 case tok::kw__Bool:
8439 case tok::kw___bool:
8440 case tok::kw___pixel:
8441 Tok.setKind(tok::kw___vector);
8442 return true;
8443 case tok::identifier:
8444 if (Next.getIdentifierInfo() == Ident_pixel) {
8445 Tok.setKind(tok::kw___vector);
8446 return true;
8447 }
8448 if (Next.getIdentifierInfo() == Ident_bool ||
8449 Next.getIdentifierInfo() == Ident_Bool) {
8450 Tok.setKind(tok::kw___vector);
8451 return true;
8452 }
8453 return false;
8454 }
8455}
8456
8457bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
8458 const char *&PrevSpec, unsigned &DiagID,
8459 bool &isInvalid) {
8460 const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
8461 if (Tok.getIdentifierInfo() == Ident_vector) {
8462 Token Next = NextToken();
8463 switch (Next.getKind()) {
8464 case tok::kw_short:
8465 case tok::kw_long:
8466 case tok::kw_signed:
8467 case tok::kw_unsigned:
8468 case tok::kw_void:
8469 case tok::kw_char:
8470 case tok::kw_int:
8471 case tok::kw_float:
8472 case tok::kw_double:
8473 case tok::kw_bool:
8474 case tok::kw__Bool:
8475 case tok::kw___bool:
8476 case tok::kw___pixel:
8477 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
8478 return true;
8479 case tok::identifier:
8480 if (Next.getIdentifierInfo() == Ident_pixel) {
8481 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
8482 return true;
8483 }
8484 if (Next.getIdentifierInfo() == Ident_bool ||
8485 Next.getIdentifierInfo() == Ident_Bool) {
8486 isInvalid =
8487 DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
8488 return true;
8489 }
8490 break;
8491 default:
8492 break;
8493 }
8494 } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
8495 DS.isTypeAltiVecVector()) {
8496 isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
8497 return true;
8498 } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
8499 DS.isTypeAltiVecVector()) {
8500 isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
8501 return true;
8502 }
8503 return false;
8504}
8505
8506TypeResult Parser::ParseTypeFromString(StringRef TypeStr, StringRef Context,
8507 SourceLocation IncludeLoc) {
8508 // Consume (unexpanded) tokens up to the end-of-directive.
8509 SmallVector<Token, 4> Tokens;
8510 {
8511 // Create a new buffer from which we will parse the type.
8512 auto &SourceMgr = PP.getSourceManager();
8513 FileID FID = SourceMgr.createFileID(
8514 llvm::MemoryBuffer::getMemBufferCopy(TypeStr, Context), SrcMgr::C_User,
8515 0, 0, IncludeLoc);
8516
8517 // Form a new lexer that references the buffer.
8518 Lexer L(FID, SourceMgr.getBufferOrFake(FID), PP);
8519 L.setParsingPreprocessorDirective(true);
8520
8521 // Lex the tokens from that buffer.
8522 Token Tok;
8523 do {
8524 L.Lex(Tok);
8525 Tokens.push_back(Tok);
8526 } while (Tok.isNot(tok::eod));
8527 }
8528
8529 // Replace the "eod" token with an "eof" token identifying the end of
8530 // the provided string.
8531 Token &EndToken = Tokens.back();
8532 EndToken.startToken();
8533 EndToken.setKind(tok::eof);
8534 EndToken.setLocation(Tok.getLocation());
8535 EndToken.setEofData(TypeStr.data());
8536
8537 // Add the current token back.
8538 Tokens.push_back(Tok);
8539
8540 // Enter the tokens into the token stream.
8541 PP.EnterTokenStream(Tokens, /*DisableMacroExpansion=*/false,
8542 /*IsReinject=*/false);
8543
8544 // Consume the current token so that we'll start parsing the tokens we
8545 // added to the stream.
8547
8548 // Enter a new scope.
8549 ParseScope LocalScope(this, 0);
8550
8551 // Parse the type.
8552 TypeResult Result = ParseTypeName(nullptr);
8553
8554 // Check if we parsed the whole thing.
8555 if (Result.isUsable() &&
8556 (Tok.isNot(tok::eof) || Tok.getEofData() != TypeStr.data())) {
8557 Diag(Tok.getLocation(), diag::err_type_unparsed);
8558 }
8559
8560 // There could be leftover tokens (e.g. because of an error).
8561 // Skip through until we reach the 'end of directive' token.
8562 while (Tok.isNot(tok::eof))
8564
8565 // Consume the end token.
8566 if (Tok.is(tok::eof) && Tok.getEofData() == TypeStr.data())
8568 return Result;
8569}
8570
8571void Parser::DiagnoseBitIntUse(const Token &Tok) {
8572 // If the token is for _ExtInt, diagnose it as being deprecated. Otherwise,
8573 // the token is about _BitInt and gets (potentially) diagnosed as use of an
8574 // extension.
8575 assert(Tok.isOneOf(tok::kw__ExtInt, tok::kw__BitInt) &&
8576 "expected either an _ExtInt or _BitInt token!");
8577
8579 if (Tok.is(tok::kw__ExtInt)) {
8580 Diag(Loc, diag::warn_ext_int_deprecated)
8581 << FixItHint::CreateReplacement(Loc, "_BitInt");
8582 } else {
8583 // In C23 mode, diagnose that the use is not compatible with pre-C23 modes.
8584 // Otherwise, diagnose that the use is a Clang extension.
8585 if (getLangOpts().C23)
8586 Diag(Loc, diag::warn_c23_compat_keyword) << Tok.getName();
8587 else
8588 Diag(Loc, diag::ext_bit_int) << getLangOpts().CPlusPlus;
8589 }
8590}
Defines the clang::ASTContext interface.
StringRef P
Provides definitions for the various language-specific address spaces.
static StringRef normalizeAttrName(const IdentifierInfo *Name, StringRef NormalizedScopeName, AttributeCommonInfo::Syntax SyntaxUsed)
Definition: Attributes.cpp:98
#define SM(sm)
Definition: Cuda.cpp:83
const Decl * D
Expr * E
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:1152
Defines the C++ template declaration subclasses.
#define X(type, name)
Definition: Value.h:143
llvm::MachO::RecordLoc RecordLoc
Definition: MachO.h:41
static bool IsAttributeLateParsedExperimentalExt(const IdentifierInfo &II)
returns true iff attribute is annotated with LateAttrParseExperimentalExt in Attr....
Definition: ParseDecl.cpp:98
static bool FindLocsWithCommonFileID(Preprocessor &PP, SourceLocation StartLoc, SourceLocation EndLoc)
Check if the a start and end source location expand to the same macro.
Definition: ParseDecl.cpp:117
static bool IsAttributeLateParsedStandard(const IdentifierInfo &II)
returns true iff attribute is annotated with LateAttrParseStandard in Attr.td.
Definition: ParseDecl.cpp:108
static bool attributeHasIdentifierArg(const IdentifierInfo &II)
Determine whether the given attribute has an identifier argument.
Definition: ParseDecl.cpp:317
static bool attributeTreatsKeywordThisAsIdentifier(const IdentifierInfo &II)
Determine whether the given attribute treats kw_this as an identifier.
Definition: ParseDecl.cpp:345
static bool attributeHasStrictIdentifierArgs(const IdentifierInfo &II)
Determine whether the given attribute takes identifier arguments.
Definition: ParseDecl.cpp:372
static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II)
Determine whether the given attribute requires parsing its arguments in an unevaluated context or not...
Definition: ParseDecl.cpp:394
static bool isValidAfterIdentifierInDeclarator(const Token &T)
isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the specified token is valid after t...
Definition: ParseDecl.cpp:2985
static bool attributeHasVariadicIdentifierArg(const IdentifierInfo &II)
Determine whether the given attribute has a variadic identifier argument.
Definition: ParseDecl.cpp:336
static bool attributeAcceptsExprPack(const IdentifierInfo &II)
Determine if an attribute accepts parameter packs.
Definition: ParseDecl.cpp:354
static bool isPipeDeclarator(const Declarator &D)
Definition: ParseDecl.cpp:6605
static bool attributeHasStrictIdentifierArgAtIndex(const IdentifierInfo &II, size_t argIndex)
Determine whether the given attribute takes an identifier argument at a specific index.
Definition: ParseDecl.cpp:382
static SourceLocation getMissingDeclaratorIdLoc(Declarator &D, SourceLocation Loc)
Definition: ParseDecl.cpp:6813
static void DiagnoseCountAttributedTypeInUnnamedAnon(ParsingDeclSpec &DS, Parser &P)
Definition: ParseDecl.cpp:4850
static bool VersionNumberSeparator(const char Separator)
Definition: ParseDecl.cpp:1152
static bool attributeIsTypeArgAttr(const IdentifierInfo &II)
Determine whether the given attribute parses a type argument.
Definition: ParseDecl.cpp:363
static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang, DeclaratorContext TheContext)
Definition: ParseDecl.cpp:6576
static ParsedAttributeArgumentsProperties attributeStringLiteralListArg(const llvm::Triple &T, const IdentifierInfo &II)
Determine whether the given attribute has an identifier argument.
Definition: ParseDecl.cpp:327
llvm::SmallVector< std::pair< const MemRegion *, SVal >, 4 > Bindings
static constexpr bool isOneOf()
This file declares semantic analysis for CUDA constructs.
This file declares facilities that support code completion.
SourceRange Range
Definition: SemaObjC.cpp:757
SourceLocation Loc
Definition: SemaObjC.cpp:758
This file declares semantic analysis for Objective-C.
This file declares semantic analysis for OpenMP constructs and clauses.
static bool isInvalid(LocType Loc, bool *Invalid)
Defines the clang::TokenKind enum and support functions.
@ Uninitialized
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:186
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:712
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2391
The result of parsing/analyzing an expression, statement etc.
Definition: Ownership.h:153
PtrTy get() const
Definition: Ownership.h:170
bool isInvalid() const
Definition: Ownership.h:166
bool isUsable() const
Definition: Ownership.h:168
Combines information about the source-code form of an attribute, including its syntax and spelling.
RAII class that helps handle the parsing of an open/close delimiter pair, such as braces { ....
SourceLocation getOpenLocation() const
SourceLocation getCloseLocation() const
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:74
bool isNotEmpty() const
A scope specifier is present, but may be valid or invalid.
Definition: DeclSpec.h:210
bool isValid() const
A scope specifier is present, and it refers to a real scope.
Definition: DeclSpec.h:215
SourceLocation getEndLoc() const
Definition: DeclSpec.h:85
bool isSet() const
Deprecated.
Definition: DeclSpec.h:228
void setTemplateParamLists(ArrayRef< TemplateParameterList * > L)
Definition: DeclSpec.h:87
bool isEmpty() const
No scope specifier.
Definition: DeclSpec.h:208
Represents a character-granular source range.
SourceLocation getBegin() const
Callback handler that receives notifications when performing code completion within the preprocessor.
ColonProtectionRAIIObject - This sets the Parser::ColonIsSacred bool and restores it when destroyed.
Represents a sugar type with __counted_by or __sized_by annotations, including their _or_null variant...
Definition: Type.h:3269
bool isRecord() const
Definition: DeclBase.h:2159
Captures information about "declaration specifiers".
Definition: DeclSpec.h:247
bool isVirtualSpecified() const
Definition: DeclSpec.h:645
bool setFunctionSpecExplicit(SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, ExplicitSpecifier ExplicitSpec, SourceLocation CloseParenLoc)
Definition: DeclSpec.cpp:1070
bool isTypeSpecPipe() const
Definition: DeclSpec.h:540
void ClearTypeSpecType()
Definition: DeclSpec.h:520
static const TSCS TSCS___thread
Definition: DeclSpec.h:266
static const TST TST_typeof_unqualType
Definition: DeclSpec.h:309
void setTypeArgumentRange(SourceRange range)
Definition: DeclSpec.h:590
bool SetTypePipe(bool isPipe, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, const PrintingPolicy &Policy)
Definition: DeclSpec.cpp:909
SourceLocation getPipeLoc() const
Definition: DeclSpec.h:619
static const TST TST_typename
Definition: DeclSpec.h:306
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclSpec.h:573
bool hasTypeSpecifier() const
Return true if any type-specifier has been found.
Definition: DeclSpec.h:688
bool SetStorageClassSpec(Sema &S, SCS SC, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, const PrintingPolicy &Policy)
These methods set the specified attribute of the DeclSpec and return false if there was no error.
Definition: DeclSpec.cpp:642
static const TST TST_char8
Definition: DeclSpec.h:282
static const TST TST_BFloat16
Definition: DeclSpec.h:289
void ClearStorageClassSpecs()
Definition: DeclSpec.h:512
bool SetConstexprSpec(ConstexprSpecKind ConstexprKind, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID)
Definition: DeclSpec.cpp:1129
static const TSCS TSCS__Thread_local
Definition: DeclSpec.h:268
bool SetTypeSpecWidth(TypeSpecifierWidth W, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, const PrintingPolicy &Policy)
These methods set the specified attribute of the DeclSpec, but return true and ignore the request if ...
Definition: DeclSpec.cpp:718
bool isNoreturnSpecified() const
Definition: DeclSpec.h:658
TST getTypeSpecType() const
Definition: DeclSpec.h:534
SourceLocation getStorageClassSpecLoc() const
Definition: DeclSpec.h:507
SCS getStorageClassSpec() const
Definition: DeclSpec.h:498
bool setModulePrivateSpec(SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID)
Definition: DeclSpec.cpp:1117
bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, const PrintingPolicy &Policy)
Definition: DeclSpec.cpp:857
bool SetTypeSpecSat(SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID)
Definition: DeclSpec.cpp:881
SourceRange getSourceRange() const LLVM_READONLY
Definition: DeclSpec.h:571
bool SetStorageClassSpecThread(TSCS TSC, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID)
Definition: DeclSpec.cpp:704
void SetRangeEnd(SourceLocation Loc)
Definition: DeclSpec.h:706
bool SetBitIntType(SourceLocation KWLoc, Expr *BitWidth, const char *&PrevSpec, unsigned &DiagID, const PrintingPolicy &Policy)
Definition: DeclSpec.cpp:968
static const TST TST_auto_type
Definition: DeclSpec.h:319
static const TST TST_interface
Definition: DeclSpec.h:304
static const TST TST_double
Definition: DeclSpec.h:291
static const TST TST_typeofExpr
Definition: DeclSpec.h:308
unsigned getTypeQualifiers() const
getTypeQualifiers - Return a set of TQs.
Definition: DeclSpec.h:613
void SetRangeStart(SourceLocation Loc)
Definition: DeclSpec.h:705
bool SetTypeAltiVecPixel(bool isAltiVecPixel, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, const PrintingPolicy &Policy)
Definition: DeclSpec.cpp:926
bool SetFriendSpec(SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID)
Definition: DeclSpec.cpp:1104
SourceLocation getNoreturnSpecLoc() const
Definition: DeclSpec.h:659
static const TST TST_union
Definition: DeclSpec.h:302
static const TST TST_char
Definition: DeclSpec.h:280
static const TST TST_bool
Definition: DeclSpec.h:297
static const TST TST_char16
Definition: DeclSpec.h:283
SourceLocation getExplicitSpecLoc() const
Definition: DeclSpec.h:651
SourceLocation getFriendSpecLoc() const
Definition: DeclSpec.h:824
static const TST TST_int
Definition: DeclSpec.h:285
SourceLocation getModulePrivateSpecLoc() const
Definition: DeclSpec.h:827
bool SetTypeSpecComplex(TSC C, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID)
Definition: DeclSpec.cpp:735
void UpdateTypeRep(ParsedType Rep)
Definition: DeclSpec.h:785
TSCS getThreadStorageClassSpec() const
Definition: DeclSpec.h:499
bool setFunctionSpecNoreturn(SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID)
Definition: DeclSpec.cpp:1089
bool hasAttributes() const
Definition: DeclSpec.h:868
static const TST TST_accum
Definition: DeclSpec.h:293
static const TST TST_half
Definition: DeclSpec.h:288
ParsedAttributes & getAttributes()
Definition: DeclSpec.h:870
SourceLocation getConstSpecLoc() const
Definition: DeclSpec.h:614
static const TST TST_ibm128
Definition: DeclSpec.h:296
void addAttributes(const ParsedAttributesView &AL)
Concatenates two attribute lists.
Definition: DeclSpec.h:864
static const TST TST_enum
Definition: DeclSpec.h:301
bool SetTypeAltiVecBool(bool isAltiVecBool, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, const PrintingPolicy &Policy)
Definition: DeclSpec.cpp:943
static const TST TST_float128
Definition: DeclSpec.h:295
void Finish(Sema &S, const PrintingPolicy &Policy)
Finish - This does final analysis of the declspec, issuing diagnostics for things like "_Complex" (la...
Definition: DeclSpec.cpp:1151
bool isInlineSpecified() const
Definition: DeclSpec.h:634
SourceLocation getRestrictSpecLoc() const
Definition: DeclSpec.h:615
static const TST TST_typeof_unqualExpr
Definition: DeclSpec.h:310
static const TST TST_class
Definition: DeclSpec.h:305
bool hasTagDefinition() const
Definition: DeclSpec.cpp:460
static const TST TST_decimal64
Definition: DeclSpec.h:299
unsigned getParsedSpecifiers() const
Return a bitmask of which flavors of specifiers this DeclSpec includes.
Definition: DeclSpec.cpp:469
void ClearFunctionSpecs()
Definition: DeclSpec.h:661
bool SetTypeQual(TQ T, SourceLocation Loc)
Definition: DeclSpec.cpp:1014
static const TST TST_wchar
Definition: DeclSpec.h:281
static const TST TST_void
Definition: DeclSpec.h:279
bool isTypeAltiVecVector() const
Definition: DeclSpec.h:535
void ClearConstexprSpec()
Definition: DeclSpec.h:838
static const char * getSpecifierName(DeclSpec::TST T, const PrintingPolicy &Policy)
Turn a type-specifier-type into a string like "_Bool" or "union".
Definition: DeclSpec.cpp:559
static const TST TST_float
Definition: DeclSpec.h:290
static const TST TST_atomic
Definition: DeclSpec.h:321
static const TST TST_fract
Definition: DeclSpec.h:294
bool SetTypeSpecError()
Definition: DeclSpec.cpp:960
SourceLocation getThreadStorageClassSpecLoc() const
Definition: DeclSpec.h:508
Decl * getRepAsDecl() const
Definition: DeclSpec.h:548
static const TST TST_float16
Definition: DeclSpec.h:292
static const TST TST_unspecified
Definition: DeclSpec.h:278
SourceLocation getAtomicSpecLoc() const
Definition: DeclSpec.h:617
SourceLocation getVirtualSpecLoc() const
Definition: DeclSpec.h:646
SourceLocation getConstexprSpecLoc() const
Definition: DeclSpec.h:833
CXXScopeSpec & getTypeSpecScope()
Definition: DeclSpec.h:568
bool isEmpty() const
isEmpty - Return true if this declaration specifier is completely empty: no tokens were parsed in the...
Definition: DeclSpec.h:701
static const TSCS TSCS_thread_local
Definition: DeclSpec.h:267
bool setFunctionSpecVirtual(SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID)
Definition: DeclSpec.cpp:1055
static const TST TST_decimal32
Definition: DeclSpec.h:298
bool SetTypeAltiVecVector(bool isAltiVecVector, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, const PrintingPolicy &Policy)
Definition: DeclSpec.cpp:894
TypeSpecifierWidth getTypeSpecWidth() const
Definition: DeclSpec.h:527
static const TST TST_char32
Definition: DeclSpec.h:284
bool setFunctionSpecInline(SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID)
Definition: DeclSpec.cpp:1029
static const TST TST_decimal128
Definition: DeclSpec.h:300
bool isTypeSpecOwned() const
Definition: DeclSpec.h:538
SourceLocation getInlineSpecLoc() const
Definition: DeclSpec.h:637
SourceLocation getUnalignedSpecLoc() const
Definition: DeclSpec.h:618
static const TST TST_int128
Definition: DeclSpec.h:286
SourceLocation getVolatileSpecLoc() const
Definition: DeclSpec.h:616
FriendSpecified isFriendSpecified() const
Definition: DeclSpec.h:818
bool hasExplicitSpecifier() const
Definition: DeclSpec.h:648
bool setFunctionSpecForceInline(SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID)
Definition: DeclSpec.cpp:1043
bool hasConstexprSpecifier() const
Definition: DeclSpec.h:834
void takeAttributesFrom(ParsedAttributes &attrs)
Definition: DeclSpec.h:873
static const TST TST_typeofType
Definition: DeclSpec.h:307
bool SetTypeSpecSign(TypeSpecifierSign S, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID)
Definition: DeclSpec.cpp:745
static const TST TST_auto
Definition: DeclSpec.h:318
@ PQ_FunctionSpecifier
Definition: DeclSpec.h:346
@ PQ_StorageClassSpecifier
Definition: DeclSpec.h:343
ConstexprSpecKind getConstexprSpecifier() const
Definition: DeclSpec.h:829
static const TST TST_struct
Definition: DeclSpec.h:303
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclBase.h:441
Kind
Lists the kind of concrete classes of Decl.
Definition: DeclBase.h:89
bool isInvalidDecl() const
Definition: DeclBase.h:594
SourceLocation getLocation() const
Definition: DeclBase.h:445
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclBase.h:437
Kind getKind() const
Definition: DeclBase.h:448
virtual SourceRange getSourceRange() const LLVM_READONLY
Source range that this declaration covers.
Definition: DeclBase.h:433
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1900
bool isInvalidType() const
Definition: DeclSpec.h:2714
SourceRange getSourceRange() const LLVM_READONLY
Get the source range that spans this declarator.
Definition: DeclSpec.h:2082
RAII object that enters a new expression evaluation context.
Represents an enum.
Definition: Decl.h:3840
Store information needed for an explicit specifier.
Definition: DeclCXX.h:1897
This represents one expression.
Definition: Expr.h:110
ExtensionRAIIObject - This saves the state of extension warnings when constructed and disables them.
An opaque identifier used by SourceManager which refers to a source file (MemoryBuffer) along with it...
Annotates a diagnostic with some code that should be inserted, removed, or replaced to fix the proble...
Definition: Diagnostic.h:71
static FixItHint CreateInsertionFromRange(SourceLocation InsertionLoc, CharSourceRange FromRange, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code from FromRange at a specific location.
Definition: Diagnostic.h:110
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string.
Definition: Diagnostic.h:134
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:123
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:97
One of these records is kept for each identifier that is lexed.
bool isCPlusPlusKeyword(const LangOptions &LangOpts) const
Return true if this token is a C++ keyword in the specified language.
tok::TokenKind getTokenID() const
If this is a source-language token (e.g.
const char * getNameStart() const
Return the beginning of the actual null-terminated string for this identifier.
bool isKeyword(const LangOptions &LangOpts) const
Return true if this token is a keyword in the specified language.
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
void revertTokenIDToIdentifier()
Revert TokenID to tok::identifier; used for GNU libstdc++ 4.2 compatibility.
StringRef getName() const
Return the actual identifier string.
static IntegerLiteral * Create(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l)
Returns a new integer literal with value 'V' and type 'type'.
Definition: Expr.cpp:977
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:461
bool requiresStrictPrototypes() const
Returns true if functions without prototypes or functions with an identifier list (aka K&R C function...
Definition: LangOptions.h:662
std::string getOpenCLVersionString() const
Return the OpenCL C or C++ for OpenCL language name and version as a string.
Definition: LangOptions.cpp:79
unsigned getOpenCLCompatibleVersion() const
Return the OpenCL version that kernel language is compatible with.
Definition: LangOptions.cpp:63
Lexer - This provides a simple interface that turns a text buffer into a stream of tokens.
Definition: Lexer.h:78
static StringRef getSourceText(CharSourceRange Range, const SourceManager &SM, const LangOptions &LangOpts, bool *Invalid=nullptr)
Returns a string for the source that the range encompasses.
Definition: Lexer.cpp:1024
static bool isAtStartOfMacroExpansion(SourceLocation loc, const SourceManager &SM, const LangOptions &LangOpts, SourceLocation *MacroBegin=nullptr)
Returns true if the given MacroID location points at the first token of the macro expansion.
Definition: Lexer.cpp:872
static bool isAtEndOfMacroExpansion(SourceLocation loc, const SourceManager &SM, const LangOptions &LangOpts, SourceLocation *MacroEnd=nullptr)
Returns true if the given MacroID location points at the last token of the macro expansion.
Definition: Lexer.cpp:894
static bool getRawToken(SourceLocation Loc, Token &Result, const SourceManager &SM, const LangOptions &LangOpts, bool IgnoreWhiteSpace=false)
Relex the token at the specified location.
Definition: Lexer.cpp:510
static std::optional< Token > findNextToken(SourceLocation Loc, const SourceManager &SM, const LangOptions &LangOpts)
Finds the token that comes right after the given location.
Definition: Lexer.cpp:1325
Represents the results of name lookup.
Definition: Lookup.h:46
This represents a decl that may have a name.
Definition: Decl.h:249
PtrTy get() const
Definition: Ownership.h:80
bool isSupported(llvm::StringRef Ext, const LangOptions &LO) const
RAII object that makes sure paren/bracket/brace count is correct after declaration/statement parsing,...
Represents a parameter to a function.
Definition: Decl.h:1722
static constexpr unsigned getMaxFunctionScopeDepth()
Definition: Decl.h:1777
ParsedAttr - Represents a syntactic attribute.
Definition: ParsedAttr.h:129
unsigned getMaxArgs() const
Definition: ParsedAttr.cpp:150
static const ParsedAttributesView & none()
Definition: ParsedAttr.h:838
void addAtEnd(ParsedAttr *newAttr)
Definition: ParsedAttr.h:848
void addAll(iterator B, iterator E)
Definition: ParsedAttr.h:880
void remove(ParsedAttr *ToBeRemoved)
Definition: ParsedAttr.h:853
SizeType size() const
Definition: ParsedAttr.h:844
ParsedAttributes - A collection of parsed attributes.
Definition: ParsedAttr.h:958
ParsedAttr * addNew(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, ArgsUnion *args, unsigned numArgs, ParsedAttr::Form form, SourceLocation ellipsisLoc=SourceLocation())
Add attribute with expression arguments.
Definition: ParsedAttr.h:991
void takeOneFrom(ParsedAttributes &Other, ParsedAttr *PA)
Definition: ParsedAttr.h:975
ParsedAttr * addNewPropertyAttr(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, IdentifierInfo *getterId, IdentifierInfo *setterId, ParsedAttr::Form formUsed)
Add microsoft __delspec(property) attribute.
Definition: ParsedAttr.h:1058
void takeAllFrom(ParsedAttributes &Other)
Definition: ParsedAttr.h:967
ParsedAttr * addNewTypeTagForDatatype(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, IdentifierLoc *argumentKind, ParsedType matchingCType, bool layoutCompatible, bool mustBeNull, ParsedAttr::Form form)
Add type_tag_for_datatype attribute.
Definition: ParsedAttr.h:1032
ParsedAttr * addNewTypeAttr(IdentifierInfo *attrName, SourceRange attrRange, IdentifierInfo *scopeName, SourceLocation scopeLoc, ParsedType typeArg, ParsedAttr::Form formUsed, SourceLocation ellipsisLoc=SourceLocation())
Add an attribute with a single type argument.
Definition: ParsedAttr.h:1045
Parser - This implements a parser for the C family of languages.
Definition: Parser.h:58
TypeResult ParseTypeName(SourceRange *Range=nullptr, DeclaratorContext Context=DeclaratorContext::TypeName, AccessSpecifier AS=AS_none, Decl **OwnedType=nullptr, ParsedAttributes *Attrs=nullptr)
ParseTypeName type-name: [C99 6.7.6] specifier-qualifier-list abstract-declarator[opt].
Definition: ParseDecl.cpp:50
DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Definition: Parser.cpp:81
SourceLocation ConsumeToken()
ConsumeToken - Consume the current 'peek token' and lex the next one.
Definition: Parser.h:549
DeclGroupPtrTy ParseOpenACCDirectiveDecl()
Placeholder for now, should just ignore the directives after emitting a diagnostic.
Sema & getActions() const
Definition: Parser.h:499
static TypeResult getTypeAnnotation(const Token &Tok)
getTypeAnnotation - Read a parsed type out of an annotation token.
Definition: Parser.h:878
void EnterScope(unsigned ScopeFlags)
EnterScope - Start a new scope.
Definition: Parser.cpp:420
ExprResult ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause)
Parse a constraint-logical-or-expression.
Definition: ParseExpr.cpp:380
bool ParseUnqualifiedId(CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors, bool EnteringContext, bool AllowDestructorName, bool AllowConstructorName, bool AllowDeductionGuide, SourceLocation *TemplateKWLoc, UnqualifiedId &Result)
Parse a C++ unqualified-id (or a C identifier), which describes the name of an entity.
SourceLocation ConsumeAnyToken(bool ConsumeCodeCompletionTok=false)
ConsumeAnyToken - Dispatch to the right Consume* method based on the current token type.
Definition: Parser.h:577
ExprResult ParseConstantExpression()
Definition: ParseExpr.cpp:233
bool TryConsumeToken(tok::TokenKind Expected)
Definition: Parser.h:557
Scope * getCurScope() const
Definition: Parser.h:503
SourceLocation getEndOfPreviousToken()
Definition: Parser.h:595
ExprResult ParseArrayBoundExpression()
Definition: ParseExpr.cpp:243
const TargetInfo & getTargetInfo() const
Definition: Parser.h:497
bool SkipUntil(tok::TokenKind T, SkipUntilFlags Flags=static_cast< SkipUntilFlags >(0))
SkipUntil - Read tokens until we get to the specified token, then consume it (unless StopBeforeMatch ...
Definition: Parser.h:1295
void SkipMalformedDecl()
SkipMalformedDecl - Read tokens until we get to some likely good stopping point for skipping past a s...
Definition: ParseDecl.cpp:2207
friend class ObjCDeclContextSwitch
Definition: Parser.h:65
ExprResult ParseAssignmentExpression(TypeCastState isTypeCast=NotTypeCast)
Parse an expr that doesn't include (top-level) commas.
Definition: ParseExpr.cpp:169
ExprResult ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast=NotTypeCast)
Definition: ParseExpr.cpp:223
const LangOptions & getLangOpts() const
Definition: Parser.h:496
ExprResult ParseExpression(TypeCastState isTypeCast=NotTypeCast)
Simple precedence-based parser for binary/ternary operators.
Definition: ParseExpr.cpp:132
@ StopBeforeMatch
Stop skipping at specified token, but don't skip the token itself.
Definition: Parser.h:1276
@ StopAtCodeCompletion
Stop at code completion.
Definition: Parser.h:1277
@ StopAtSemi
Stop skipping at semicolon.
Definition: Parser.h:1274
bool TryAnnotateTypeOrScopeToken(ImplicitTypenameContext AllowImplicitTypename=ImplicitTypenameContext::No)
TryAnnotateTypeOrScopeToken - If the current token position is on a typename (possibly qualified in C...
Definition: Parser.cpp:2000
ExprResult ParseUnevaluatedStringLiteralExpression()
ObjCContainerDecl * getObjCDeclContext() const
Definition: Parser.h:508
const Token & NextToken()
NextToken - This peeks ahead one token and returns it without consuming it.
Definition: Parser.h:873
SmallVector< TemplateParameterList *, 4 > TemplateParameterLists
Definition: Parser.h:517
bool TryAnnotateCXXScopeToken(bool EnteringContext=false)
TryAnnotateScopeToken - Like TryAnnotateTypeOrScopeToken but only annotates C++ scope specifiers and ...
Definition: Parser.cpp:2244
RAII object used to inform the actions that we're currently parsing a declaration.
A class for parsing a DeclSpec.
A class for parsing a declarator.
A class for parsing a field declarator.
void enterVariableInit(SourceLocation Tok, Decl *D)
Engages in a tight little dance with the lexer to efficiently preprocess tokens.
Definition: Preprocessor.h:137
bool isIncrementalProcessingEnabled() const
Returns true if incremental processing is enabled.
void EnterToken(const Token &Tok, bool IsReinject)
Enters a token in the token stream to be lexed next.
IdentifierInfo * getIdentifierInfo(StringRef Name) const
Return information about the specified preprocessor identifier token.
SourceManager & getSourceManager() const
StringRef getSpelling(SourceLocation loc, SmallVectorImpl< char > &buffer, bool *invalid=nullptr) const
Return the 'spelling' of the token at the given location; does not go up to the spelling location or ...
const LangOptions & getLangOpts() const
bool isCodeCompletionReached() const
Returns true if code-completion is enabled and we have hit the code-completion point.
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset=0)
Computes the source location just past the end of the token at this source location.
PrettyDeclStackTraceEntry - If a crash occurs in the parser while parsing something related to a decl...
A (possibly-)qualified type.
Definition: Type.h:941
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:1008
The collection of all-type qualifiers we support.
Definition: Type.h:319
void addAddressSpace(LangAS space)
Definition: Type.h:584
void addConst()
Definition: Type.h:447
static Qualifiers fromCVRUMask(unsigned CVRU)
Definition: Type.h:428
Represents a struct/union/class.
Definition: Decl.h:4141
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:41
bool isClassScope() const
isClassScope - Return true if this scope is a class/struct/union scope.
Definition: Scope.h:411
unsigned getFlags() const
getFlags - Return the flags for this scope.
Definition: Scope.h:262
@ FunctionPrototypeScope
This is a scope that corresponds to the parameters within a function prototype.
Definition: Scope.h:85
@ BlockScope
This is a scope that corresponds to a block/closure object.
Definition: Scope.h:75
@ FriendScope
This is a scope of friend declaration.
Definition: Scope.h:164
@ ControlScope
The controlling scope in a if/switch/while/for statement.
Definition: Scope.h:66
@ AtCatchScope
This is a scope that corresponds to the Objective-C @catch statement.
Definition: Scope.h:95
@ TemplateParamScope
This is a scope that corresponds to the template parameters of a C++ template.
Definition: Scope.h:81
@ CompoundStmtScope
This is a compound statement scope.
Definition: Scope.h:134
@ ClassScope
The scope of a struct/union/class definition.
Definition: Scope.h:69
@ FunctionDeclarationScope
This is a scope that corresponds to the parameters within a function prototype for a function declara...
Definition: Scope.h:91
@ FnScope
This indicates that the scope corresponds to a function, which means that labels are set here.
Definition: Scope.h:51
@ EnumScope
This scope corresponds to an enum.
Definition: Scope.h:122
@ DeclScope
This is a scope that can contain a declaration.
Definition: Scope.h:63
@ CTCK_InitGlobalVar
Unknown context.
Definition: SemaCUDA.h:121
void CodeCompleteAttribute(AttributeCommonInfo::Syntax Syntax, AttributeCompletion Completion=AttributeCompletion::Attribute, const IdentifierInfo *Scope=nullptr)
ParserCompletionContext
Describes the context in which code completion occurs.
@ PCC_LocalDeclarationSpecifiers
Code completion occurs within a sequence of declaration specifiers within a function,...
@ PCC_MemberTemplate
Code completion occurs following one or more template headers within a class.
@ PCC_Class
Code completion occurs within a class, struct, or union.
@ PCC_ObjCImplementation
Code completion occurs within an Objective-C implementation or category implementation.
@ PCC_Namespace
Code completion occurs at top-level or namespace context.
@ PCC_Template
Code completion occurs following one or more template headers.
void CodeCompleteTypeQualifiers(DeclSpec &DS)
void CodeCompleteAfterFunctionEquals(Declarator &D)
QualType ProduceConstructorSignatureHelp(QualType Type, SourceLocation Loc, ArrayRef< Expr * > Args, SourceLocation OpenParLoc, bool Braced)
void CodeCompleteOrdinaryName(Scope *S, ParserCompletionContext CompletionContext)
void CodeCompleteInitializer(Scope *S, Decl *D)
void CodeCompleteBracketDeclarator(Scope *S)
void CodeCompleteTag(Scope *S, unsigned TagSpec)
void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS, bool AllowNonIdentifiers, bool AllowNestedNameSpecifiers)
ParsedType ActOnObjCInstanceType(SourceLocation Loc)
The parser has parsed the context-sensitive type 'instancetype' in an Objective-C message declaration...
Definition: SemaObjC.cpp:744
void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, const IdentifierInfo *ClassName, SmallVectorImpl< Decl * > &Decls)
Called whenever @defs(ClassName) is encountered in the source.
void startOpenMPCXXRangeFor()
If the current region is a range loop-based region, mark the start of the loop construct.
NameClassificationKind getKind() const
Definition: Sema.h:3288
bool containsUnexpandedParameterPacks(Declarator &D)
Determine whether the given declarator contains any unexpanded parameter packs.
void ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc, SourceLocation ArgLoc)
ActOnParamUnparsedDefaultArgument - We've seen a default argument for a function parameter,...
@ LookupOrdinaryName
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc....
Definition: Sema.h:8999
void ActOnDefinedDeclarationSpecifier(Decl *D)
Called once it is known whether a tag declaration is an anonymous union or struct.
Definition: SemaDecl.cpp:5290
ExplicitSpecifier ActOnExplicitBoolSpecifier(Expr *E)
ActOnExplicitBoolSpecifier - Build an ExplicitSpecifier from an expression found in an explicit(bool)...
void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc, Expr *DefaultArg)
ActOnParamDefaultArgumentError - Parsing or semantic analysis of the default argument for the paramet...
TemplateParameterList * ActOnTemplateParameterList(unsigned Depth, SourceLocation ExportLoc, SourceLocation TemplateLoc, SourceLocation LAngleLoc, ArrayRef< NamedDecl * > Params, SourceLocation RAngleLoc, Expr *RequiresClause)
ActOnTemplateParameterList - Builds a TemplateParameterList, optionally constrained by RequiresClause...
SemaOpenMP & OpenMP()
Definition: Sema.h:1219
void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl, SourceRange BraceRange)
ActOnTagFinishDefinition - Invoked once we have finished parsing the definition of a tag (enumeration...
Definition: SemaDecl.cpp:18027
Decl * ActOnParamDeclarator(Scope *S, Declarator &D, SourceLocation ExplicitThisLoc={})
ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() to introduce parameters into fun...
Definition: SemaDecl.cpp:14880
TypeResult ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, const CXXScopeSpec &SS, const IdentifierInfo *Name, SourceLocation TagLoc, SourceLocation NameLoc)
SemaCUDA & CUDA()
Definition: Sema.h:1164
Decl * ActOnTemplateDeclarator(Scope *S, MultiTemplateParamsArg TemplateParameterLists, Declarator &D)
TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S)
isTagName() - This method is called for error recovery purposes only to determine if the specified na...
Definition: SemaDecl.cpp:639
void ActOnFinishFunctionDeclarationDeclarator(Declarator &D)
Called after parsing a function declarator belonging to a function declaration.
void ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, Expr *defarg)
ActOnParamDefaultArgument - Check whether the default argument provided for a function parameter is w...
ASTContext & Context
Definition: Sema.h:1002
void FinalizeDeclaration(Decl *D)
FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform any semantic actions neces...
Definition: SemaDecl.cpp:14516
void ActOnFinishTopLevelStmtDecl(TopLevelStmtDecl *D, Stmt *Statement)
Definition: SemaDecl.cpp:20067
SemaObjC & ObjC()
Definition: Sema.h:1204
DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType=nullptr)
Definition: SemaDecl.cpp:71
void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param)
This is used to implement the constant expression evaluation part of the attribute enable_if extensio...
ASTContext & getASTContext() const
Definition: Sema.h:600
bool isCurrentClassName(const IdentifierInfo &II, Scope *S, const CXXScopeSpec *SS=nullptr)
isCurrentClassName - Determine whether the identifier II is the name of the class type currently bein...
@ NC_Unknown
This name is not a type or template in this context, but might be something else.
Definition: Sema.h:3180
@ NC_VarTemplate
The name was classified as a variable template name.
Definition: Sema.h:3207
@ NC_NonType
The name was classified as a specific non-type, non-template declaration.
Definition: Sema.h:3190
@ NC_TypeTemplate
The name was classified as a template whose specializations are types.
Definition: Sema.h:3205
@ NC_Error
Classification failed; an error has been produced.
Definition: Sema.h:3182
@ NC_FunctionTemplate
The name was classified as a function template name.
Definition: Sema.h:3209
@ NC_DependentNonType
The name denotes a member of a dependent type that could not be resolved.
Definition: Sema.h:3198
@ NC_UndeclaredNonType
The name was classified as an ADL-only function name.
Definition: Sema.h:3194
@ NC_UndeclaredTemplate
The name was classified as an ADL-only function template name.
Definition: Sema.h:3211
@ NC_Keyword
The name has been typo-corrected to a keyword.
Definition: Sema.h:3184
@ NC_Type
The name was classified as a type.
Definition: Sema.h:3186
@ NC_OverloadSet
The name was classified as an overload set, and an expression representing that overload set has been...
Definition: Sema.h:3203
@ NC_Concept
The name was classified as a concept name.
Definition: Sema.h:3213
void ActOnStartFunctionDeclarationDeclarator(Declarator &D, unsigned TemplateParameterDepth)
Called before parsing a function declarator belonging to a function declaration.
ExprResult ActOnParenListExpr(SourceLocation L, SourceLocation R, MultiExprArg Val)
Definition: SemaExpr.cpp:7823
PrintingPolicy getPrintingPolicy() const
Retrieve a suitable printing policy for diagnostics.
Definition: Sema.h:908
SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, SourceLocation IILoc)
Determine whether the body of an anonymous enumeration should be skipped.
Definition: SemaDecl.cpp:19522
const LangOptions & getLangOpts() const
Definition: Sema.h:593
SemaCodeCompletion & CodeCompletion()
Definition: Sema.h:1159
@ ReuseLambdaContextDecl
Definition: Sema.h:6535
bool isUnexpandedParameterPackPermitted()
Determine whether an unexpanded parameter pack might be permitted in this location.
bool ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty, SourceLocation OpLoc, SourceRange R)
ActOnAlignasTypeArgument - Handle alignas(type-id) and _Alignas(type-name) .
Definition: SemaExpr.cpp:4682
bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T, UnexpandedParameterPackContext UPPC)
If the given type contains an unexpanded parameter pack, diagnose the error.
bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS)
NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name, SourceLocation NameLoc, const Token &NextToken, CorrectionCandidateCallback *CCC=nullptr)
Perform name lookup on the given name, classifying it based on the results of name lookup and the fol...
Definition: SemaDecl.cpp:858
bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D)
Determine if we're in a case where we need to (incorrectly) eagerly parse an exception specification ...
Decl * ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant, SourceLocation IdLoc, IdentifierInfo *Id, const ParsedAttributesView &Attrs, SourceLocation EqualLoc, Expr *Val)
Definition: SemaDecl.cpp:19548
DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef< Decl * > Group)
BuildDeclaratorGroup - convert a list of declarations into a declaration group, performing any necess...
Definition: SemaDecl.cpp:14746
bool isDeclaratorFunctionLike(Declarator &D)
Determine whether.
Definition: Sema.cpp:2742
bool ActOnDuplicateDefinition(Decl *Prev, SkipBodyInfo &SkipBody)
Perform ODR-like check for C/ObjC when merging tag types from modules.
Definition: SemaDecl.cpp:17976
DeclContext * CurContext
CurContext - This is the current declaration context of parsing.
Definition: Sema.h:1137
void RestoreNestedNameSpecifierAnnotation(void *Annotation, SourceRange AnnotationRange, CXXScopeSpec &SS)
Given an annotation pointer for a nested-name-specifier, restore the nested-name-specifier structure.
bool CheckTypeConstraint(TemplateIdAnnotation *TypeConstraint)
void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, Decl *EnumDecl, ArrayRef< Decl * > Elements, Scope *S, const ParsedAttributesView &Attr)
Definition: SemaDecl.cpp:19803
void ActOnTagStartDefinition(Scope *S, Decl *TagDecl)
ActOnTagStartDefinition - Invoked when we have entered the scope of a tag's definition (e....
Definition: SemaDecl.cpp:17962
void ActOnInitializerError(Decl *Dcl)
ActOnInitializerError - Given that there was an error parsing an initializer for the given declaratio...
Definition: SemaDecl.cpp:13742
TypeResult ActOnTypeName(Declarator &D)
Definition: SemaType.cpp:6340
TopLevelStmtDecl * ActOnStartTopLevelStmtDecl(Scope *S)
Definition: SemaDecl.cpp:20058
ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg, SourceLocation EllipsisLoc)
Invoked when parsing a template argument followed by an ellipsis, which creates a pack expansion.
DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, ArrayRef< Decl * > Group)
Definition: SemaDecl.cpp:14671
ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II, SourceLocation NameLoc, bool IsTemplateTypeArg)
Attempt to behave like MSVC in situations where lookup of an unqualified type name has failed in a de...
Definition: SemaDecl.cpp:590
ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec *SS=nullptr, bool isClassName=false, bool HasTrailingDot=false, ParsedType ObjectType=nullptr, bool IsCtorOrDtorName=false, bool WantNontrivialTypeSourceInfo=false, bool IsClassTemplateDeductionContext=true, ImplicitTypenameContext AllowImplicitTypename=ImplicitTypenameContext::No, IdentifierInfo **CorrectedII=nullptr)
If the identifier refers to a type name within this scope, return the declaration of that type.
Definition: SemaDecl.cpp:287
DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, TemplateTy Template, SourceLocation TemplateNameLoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, const ParsedAttributesView &Attr)
@ ConstantEvaluated
The current context is "potentially evaluated" in C++11 terms, but the expression is evaluated at com...
@ PotentiallyEvaluated
The current expression is potentially evaluated at run time, which means that code may be generated t...
@ Unevaluated
The current expression and its subexpressions occur within an unevaluated operand (C++11 [expr]p7),...
@ PotentiallyEvaluatedIfUsed
The current expression is potentially evaluated, but any declarations referenced inside that expressi...
DeclResult ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, const ParsedAttributesView &Attr, AccessSpecifier AS, SourceLocation ModulePrivateLoc, MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl, bool &IsDependent, SourceLocation ScopedEnumKWLoc, bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, bool IsTypeSpecifier, bool IsTemplateParamOrArg, OffsetOfKind OOK, SkipBodyInfo *SkipBody=nullptr)
This is invoked when we see 'struct foo' or 'struct {'.
Definition: SemaDecl.cpp:16957
Decl * ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, const ParsedAttributesView &DeclAttrs, RecordDecl *&AnonRecord)
ParsedFreeStandingDeclSpec - This method is invoked when a declspec with no declarator (e....
Definition: SemaDecl.cpp:4776
void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl, ArrayRef< Decl * > Fields, SourceLocation LBrac, SourceLocation RBrac, const ParsedAttributesView &AttrList)
Definition: SemaDecl.cpp:18795
SmallVector< ExpressionEvaluationContextRecord, 8 > ExprEvalContexts
A stack of expression evaluation contexts.
Definition: Sema.h:7930
bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name, SourceLocation NameLoc, CXXScopeSpec &SS, ParsedTemplateTy *Template=nullptr)
Determine whether a particular identifier might be the name in a C++1z deduction-guide declaration.
OpenCLOptions & getOpenCLOptions()
Definition: Sema.h:594
void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs)
ActOnFinishDelayedAttribute - Invoked when we have finished parsing an attribute for which parsing is...
Definition: SemaDecl.cpp:16208
void ActOnUninitializedDecl(Decl *dcl)
Definition: SemaDecl.cpp:13784
void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit)
AddInitializerToDecl - Adds the initializer Init to the declaration dcl.
Definition: SemaDecl.cpp:13224
void runWithSufficientStackSpace(SourceLocation Loc, llvm::function_ref< void()> Fn)
Run some code with "sufficient" stack space.
Definition: Sema.cpp:566
Decl * ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, Declarator &D, Expr *BitfieldWidth)
ActOnField - Each field of a C struct/union is passed into this in order to create a FieldDecl object...
Definition: SemaDecl.cpp:18193
void ActOnCXXForRangeDecl(Decl *D)
Definition: SemaDecl.cpp:14069
Decl * ActOnDeclarator(Scope *S, Declarator &D)
Definition: SemaDecl.cpp:6033
ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope=nullptr)
Definition: SemaExpr.cpp:3651
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false, bool ForceNoCPlusPlus=false)
Perform unqualified name lookup starting from a given scope.
void DiagnoseUnknownTypeName(IdentifierInfo *&II, SourceLocation IILoc, Scope *S, CXXScopeSpec *SS, ParsedType &SuggestedType, bool IsTemplateName=false)
Definition: SemaDecl.cpp:679
ExprResult HandleExprEvaluationContextForTypeof(Expr *E)
Definition: SemaExpr.cpp:17666
bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS)
Determine whether the identifier II is a typo for the name of the class type currently being defined.
ExprResult CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl=nullptr, bool RecoverUncorrectedTypos=false, llvm::function_ref< ExprResult(Expr *)> Filter=[](Expr *E) -> ExprResult { return E;})
Process any TypoExprs in the given Expr and its children, generating diagnostics as appropriate and r...
Encodes a location in the source.
bool isValid() const
Return true if this is a valid SourceLocation object.
UIntTy getRawEncoding() const
When a SourceLocation itself cannot be used, this returns an (opaque) 32-bit integer encoding for it.
This class handles loading and caching of source files into memory.
A trivial tuple used to represent a source range.
bool isInvalid() const
SourceLocation getEnd() const
SourceLocation getBegin() const
bool isValid() const
Stmt - This represents one statement.
Definition: Stmt.h:84
A RAII object used to temporarily suppress access-like checking.
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3557
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4708
Token - This structure provides full information about a lexed token.
Definition: Token.h:36
IdentifierInfo * getIdentifierInfo() const
Definition: Token.h:187
SourceLocation getEndLoc() const
Definition: Token.h:159
SourceLocation getLocation() const
Return a source location identifier for the specified offset in the current file.
Definition: Token.h:132
const char * getName() const
Definition: Token.h:174
unsigned getLength() const
Definition: Token.h:135
void setKind(tok::TokenKind K)
Definition: Token.h:95
SourceLocation getAnnotationEndLoc() const
Definition: Token.h:146
bool is(tok::TokenKind K) const
is/isNot - Predicates to check if this token is a specific kind, as in "if (Tok.is(tok::l_brace)) {....
Definition: Token.h:99
void * getAnnotationValue() const
Definition: Token.h:234
tok::TokenKind getKind() const
Definition: Token.h:94
bool isRegularKeywordAttribute() const
Return true if the token is a keyword that is parsed in the same position as a standard attribute,...
Definition: Token.h:126
bool isAtStartOfLine() const
isAtStartOfLine - Return true if this token is at the start of a line.
Definition: Token.h:276
void setEofData(const void *D)
Definition: Token.h:204
SourceRange getAnnotationRange() const
SourceRange of the group of tokens that this annotation token represents.
Definition: Token.h:166
void setLocation(SourceLocation L)
Definition: Token.h:140
bool isOneOf(tok::TokenKind K1, tok::TokenKind K2) const
Definition: Token.h:101
bool isNot(tok::TokenKind K) const
Definition: Token.h:100
bool isAnnotation() const
Return true if this is any of tok::annot_* kind tokens.
Definition: Token.h:121
const void * getEofData() const
Definition: Token.h:200
bool isObjCAtKeyword(tok::ObjCKeywordKind objcKey) const
Return true if we have an ObjC keyword identifier.
Definition: Lexer.cpp:61
void startToken()
Reset all flags to cleared.
Definition: Token.h:177
void setIdentifierInfo(IdentifierInfo *II)
Definition: Token.h:196
A declaration that models statements at global scope.
Definition: Decl.h:4430
void setSemiMissing(bool Missing=true)
Definition: Decl.h:4451
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:59
The base class of the type hierarchy.
Definition: Type.h:1829
The iterator over UnresolvedSets.
Definition: UnresolvedSet.h:35
Declaration of a variable template.
static const char * getSpecifierName(Specifier VS)
Definition: DeclSpec.cpp:1546
Defines the clang::TargetInfo interface.
const internal::VariadicAllOfMatcher< Attr > attr
Matches attributes.
TokenKind
Provides a simple uniform namespace for tokens from all C languages.
Definition: TokenKinds.h:25
bool isPragmaAnnotation(TokenKind K)
Return true if this is an annotation token representing a pragma.
Definition: TokenKinds.cpp:68
CharSourceRange getSourceRange(const SourceRange &Range)
Returns the token CharSourceRange corresponding to Range.
Definition: FixIt.h:32
The JSON file list parser is used to communicate input to InstallAPI.
TypeSpecifierType
Specifies the kind of type.
Definition: Specifiers.h:55
@ TST_auto
Definition: Specifiers.h:92
@ TST_bool
Definition: Specifiers.h:75
@ TST_unknown_anytype
Definition: Specifiers.h:95
@ TST_decltype_auto
Definition: Specifiers.h:93
bool doesKeywordAttributeTakeArgs(tok::TokenKind Kind)
ImplicitTypenameContext
Definition: DeclSpec.h:1883
@ OpenCL
Definition: LangStandard.h:66
@ CPlusPlus23
Definition: LangStandard.h:61
@ CPlusPlus20
Definition: LangStandard.h:60
@ CPlusPlus
Definition: LangStandard.h:56
@ CPlusPlus11
Definition: LangStandard.h:57
@ CPlusPlus14
Definition: LangStandard.h:58
@ CPlusPlus26
Definition: LangStandard.h:62
@ CPlusPlus17
Definition: LangStandard.h:59
llvm::PointerUnion< Expr *, IdentifierLoc * > ArgsUnion
A union of the various pointer types that can be passed to an ParsedAttr as an argument.
Definition: ParsedAttr.h:113
@ IK_TemplateId
A template-id, e.g., f<int>.
void takeAndConcatenateAttrs(ParsedAttributes &First, ParsedAttributes &Second, ParsedAttributes &Result)
Consumes the attributes from First and Second and concatenates them into Result.
Definition: ParsedAttr.cpp:314
Language
The language for the input, used to select and validate the language standard and possible actions.
Definition: LangStandard.h:23
DeclaratorContext
Definition: DeclSpec.h:1850
@ Result
The result type of a method or function.
TagUseKind
Definition: Sema.h:469
LLVM_READONLY bool isDigit(unsigned char c)
Return true if this character is an ASCII digit: [0-9].
Definition: CharInfo.h:114
MutableArrayRef< TemplateParameterList * > MultiTemplateParamsArg
Definition: Ownership.h:262
ExprResult ExprError()
Definition: Ownership.h:264
LangAS
Defines the address space values used by the address space qualifier of QualType.
Definition: AddressSpaces.h:25
int hasAttribute(AttributeCommonInfo::Syntax Syntax, const IdentifierInfo *Scope, const IdentifierInfo *Attr, const TargetInfo &Target, const LangOptions &LangOpts)
Return the version number associated with the attribute if we recognize and implement the attribute s...
Definition: Attributes.cpp:31
@ TNK_Type_template
The name refers to a template whose specialization produces a type.
Definition: TemplateKinds.h:30
@ TNK_Dependent_template_name
The name refers to a dependent template name:
Definition: TemplateKinds.h:46
@ TNK_Concept_template
The name refers to a concept.
Definition: TemplateKinds.h:52
@ TNK_Undeclared_template
Lookup for the name failed, but we're assuming it was a template name anyway.
Definition: TemplateKinds.h:50
ActionResult< ParsedType > TypeResult
Definition: Ownership.h:250
const FunctionProtoType * T
@ Parens
New-expression has a C++98 paren-delimited initializer.
ExceptionSpecificationType
The various types of exception specifications that exist in C++11.
@ EST_None
no exception specification
AccessSpecifier
A C++ access specifier (public, private, protected), plus the special value "none" which means differ...
Definition: Specifiers.h:120
@ AS_none
Definition: Specifiers.h:124
#define false
Definition: stdbool.h:26
Represents information about a change in availability for an entity, which is part of the encoding of...
Definition: ParsedAttr.h:48
VersionTuple Version
The version number at which the change occurred.
Definition: ParsedAttr.h:53
SourceLocation KeywordLoc
The location of the keyword indicating the kind of change.
Definition: ParsedAttr.h:50
SourceRange VersionRange
The source range covering the version number.
Definition: ParsedAttr.h:56
ParamInfo * Params
Params - This is a pointer to a new[]'d array of ParamInfo objects that describe the parameters speci...
Definition: DeclSpec.h:1425
unsigned NumParams
NumParams - This is the number of formal parameters specified by the declarator.
Definition: DeclSpec.h:1400
ParamInfo - An array of paraminfo objects is allocated whenever a function declarator is parsed.
Definition: DeclSpec.h:1330
One instance of this struct is used for each type in a declarator that is parsed.
Definition: DeclSpec.h:1248
enum clang::DeclaratorChunk::@225 Kind
static DeclaratorChunk getBlockPointer(unsigned TypeQuals, SourceLocation Loc)
Return a DeclaratorChunk for a block.
Definition: DeclSpec.h:1738
static DeclaratorChunk getFunction(bool HasProto, bool IsAmbiguous, SourceLocation LParenLoc, ParamInfo *Params, unsigned NumParams, SourceLocation EllipsisLoc, SourceLocation RParenLoc, bool RefQualifierIsLvalueRef, SourceLocation RefQualifierLoc, SourceLocation MutableLoc, ExceptionSpecificationType ESpecType, SourceRange ESpecRange, ParsedType *Exceptions, SourceRange *ExceptionRanges, unsigned NumExceptions, Expr *NoexceptExpr, CachedTokens *ExceptionSpecTokens, ArrayRef< NamedDecl * > DeclsInPrototype, SourceLocation LocalRangeBegin, SourceLocation LocalRangeEnd, Declarator &TheDeclarator, TypeResult TrailingReturnType=TypeResult(), SourceLocation TrailingReturnTypeLoc=SourceLocation(), DeclSpec *MethodQualifiers=nullptr)
DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function.
Definition: DeclSpec.cpp:161
static DeclaratorChunk getPipe(unsigned TypeQuals, SourceLocation Loc)
Return a DeclaratorChunk for a block.
Definition: DeclSpec.h:1748
static DeclaratorChunk getArray(unsigned TypeQuals, bool isStatic, bool isStar, Expr *NumElts, SourceLocation LBLoc, SourceLocation RBLoc)
Return a DeclaratorChunk for an array.
Definition: DeclSpec.h:1695
SourceLocation Loc
Loc - The place where this type was defined.
Definition: DeclSpec.h:1256
static DeclaratorChunk getMemberPointer(const CXXScopeSpec &SS, unsigned TypeQuals, SourceLocation StarLoc, SourceLocation EndLoc)
Definition: DeclSpec.h:1757
static DeclaratorChunk getParen(SourceLocation LParenLoc, SourceLocation RParenLoc)
Return a DeclaratorChunk for a paren.
Definition: DeclSpec.h:1773
static DeclaratorChunk getPointer(unsigned TypeQuals, SourceLocation Loc, SourceLocation ConstQualLoc, SourceLocation VolatileQualLoc, SourceLocation RestrictQualLoc, SourceLocation AtomicQualLoc, SourceLocation UnalignedQualLoc)
Return a DeclaratorChunk for a pointer.
Definition: DeclSpec.h:1664
static DeclaratorChunk getReference(unsigned TypeQuals, SourceLocation Loc, bool lvalue)
Return a DeclaratorChunk for a reference.
Definition: DeclSpec.h:1684
Wraps an identifier and optional source location for the identifier.
Definition: ParsedAttr.h:103
SourceLocation Loc
Definition: ParsedAttr.h:104
IdentifierInfo * Ident
Definition: ParsedAttr.h:105
static IdentifierLoc * create(ASTContext &Ctx, SourceLocation Loc, IdentifierInfo *Ident)
Definition: ParsedAttr.cpp:28
bool isStringLiteralArg(unsigned I) const
Definition: ParsedAttr.h:941
Describes how types, statements, expressions, and declarations should be printed.
Definition: PrettyPrinter.h:57
ExpressionKind
Describes whether we are in an expression constext which we have to handle differently.
Definition: Sema.h:6344
bool CheckSameAsPrevious
Definition: Sema.h:373
NamedDecl * New
Definition: Sema.h:375
Information about a template-id annotation token.
const IdentifierInfo * Name
FIXME: Temporarily stores the name of a specialization.
TemplateNameKind Kind
The kind of template that Template refers to.