clang  10.0.0svn
ParseExprCXX.cpp
Go to the documentation of this file.
1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expression parsing implementation for C++.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Parse/Parser.h"
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclTemplate.h"
19 #include "clang/Sema/DeclSpec.h"
21 #include "clang/Sema/Scope.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include <numeric>
24 
25 using namespace clang;
26 
28  switch (Kind) {
29  // template name
30  case tok::unknown: return 0;
31  // casts
32  case tok::kw_const_cast: return 1;
33  case tok::kw_dynamic_cast: return 2;
34  case tok::kw_reinterpret_cast: return 3;
35  case tok::kw_static_cast: return 4;
36  default:
37  llvm_unreachable("Unknown type for digraph error message.");
38  }
39 }
40 
41 // Are the two tokens adjacent in the same source file?
42 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
44  SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
45  SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
46  return FirstEnd == SM.getSpellingLoc(Second.getLocation());
47 }
48 
49 // Suggest fixit for "<::" after a cast.
50 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
51  Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
52  // Pull '<:' and ':' off token stream.
53  if (!AtDigraph)
54  PP.Lex(DigraphToken);
55  PP.Lex(ColonToken);
56 
57  SourceRange Range;
58  Range.setBegin(DigraphToken.getLocation());
59  Range.setEnd(ColonToken.getLocation());
60  P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
62  << FixItHint::CreateReplacement(Range, "< ::");
63 
64  // Update token information to reflect their change in token type.
65  ColonToken.setKind(tok::coloncolon);
66  ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
67  ColonToken.setLength(2);
68  DigraphToken.setKind(tok::less);
69  DigraphToken.setLength(1);
70 
71  // Push new tokens back to token stream.
72  PP.EnterToken(ColonToken, /*IsReinject*/ true);
73  if (!AtDigraph)
74  PP.EnterToken(DigraphToken, /*IsReinject*/ true);
75 }
76 
77 // Check for '<::' which should be '< ::' instead of '[:' when following
78 // a template name.
79 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
80  bool EnteringContext,
81  IdentifierInfo &II, CXXScopeSpec &SS) {
82  if (!Next.is(tok::l_square) || Next.getLength() != 2)
83  return;
84 
85  Token SecondToken = GetLookAheadToken(2);
86  if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
87  return;
88 
89  TemplateTy Template;
91  TemplateName.setIdentifier(&II, Tok.getLocation());
92  bool MemberOfUnknownSpecialization;
93  if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
94  TemplateName, ObjectType, EnteringContext,
95  Template, MemberOfUnknownSpecialization))
96  return;
97 
98  FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
99  /*AtDigraph*/false);
100 }
101 
102 /// Parse global scope or nested-name-specifier if present.
103 ///
104 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
105 /// may be preceded by '::'). Note that this routine will not parse ::new or
106 /// ::delete; it will just leave them in the token stream.
107 ///
108 /// '::'[opt] nested-name-specifier
109 /// '::'
110 ///
111 /// nested-name-specifier:
112 /// type-name '::'
113 /// namespace-name '::'
114 /// nested-name-specifier identifier '::'
115 /// nested-name-specifier 'template'[opt] simple-template-id '::'
116 ///
117 ///
118 /// \param SS the scope specifier that will be set to the parsed
119 /// nested-name-specifier (or empty)
120 ///
121 /// \param ObjectType if this nested-name-specifier is being parsed following
122 /// the "." or "->" of a member access expression, this parameter provides the
123 /// type of the object whose members are being accessed.
124 ///
125 /// \param EnteringContext whether we will be entering into the context of
126 /// the nested-name-specifier after parsing it.
127 ///
128 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
129 /// indicates whether this nested-name-specifier may be part of a
130 /// pseudo-destructor name. In this case, the flag will be set false
131 /// if we don't actually end up parsing a destructor name. Moreorover,
132 /// if we do end up determining that we are parsing a destructor name,
133 /// the last component of the nested-name-specifier is not parsed as
134 /// part of the scope specifier.
135 ///
136 /// \param IsTypename If \c true, this nested-name-specifier is known to be
137 /// part of a type name. This is used to improve error recovery.
138 ///
139 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
140 /// filled in with the leading identifier in the last component of the
141 /// nested-name-specifier, if any.
142 ///
143 /// \param OnlyNamespace If true, only considers namespaces in lookup.
144 ///
145 /// \returns true if there was an error parsing a scope specifier
146 bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
147  ParsedType ObjectType,
148  bool EnteringContext,
149  bool *MayBePseudoDestructor,
150  bool IsTypename,
151  IdentifierInfo **LastII,
152  bool OnlyNamespace) {
153  assert(getLangOpts().CPlusPlus &&
154  "Call sites of this function should be guarded by checking for C++");
155 
156  if (Tok.is(tok::annot_cxxscope)) {
157  assert(!LastII && "want last identifier but have already annotated scope");
158  assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
160  Tok.getAnnotationRange(),
161  SS);
162  ConsumeAnnotationToken();
163  return false;
164  }
165 
166  if (Tok.is(tok::annot_template_id)) {
167  // If the current token is an annotated template id, it may already have
168  // a scope specifier. Restore it.
169  TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
170  SS = TemplateId->SS;
171  }
172 
173  // Has to happen before any "return false"s in this function.
174  bool CheckForDestructor = false;
175  if (MayBePseudoDestructor && *MayBePseudoDestructor) {
176  CheckForDestructor = true;
177  *MayBePseudoDestructor = false;
178  }
179 
180  if (LastII)
181  *LastII = nullptr;
182 
183  bool HasScopeSpecifier = false;
184 
185  if (Tok.is(tok::coloncolon)) {
186  // ::new and ::delete aren't nested-name-specifiers.
187  tok::TokenKind NextKind = NextToken().getKind();
188  if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
189  return false;
190 
191  if (NextKind == tok::l_brace) {
192  // It is invalid to have :: {, consume the scope qualifier and pretend
193  // like we never saw it.
194  Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
195  } else {
196  // '::' - Global scope qualifier.
197  if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
198  return true;
199 
200  HasScopeSpecifier = true;
201  }
202  }
203 
204  if (Tok.is(tok::kw___super)) {
205  SourceLocation SuperLoc = ConsumeToken();
206  if (!Tok.is(tok::coloncolon)) {
207  Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
208  return true;
209  }
210 
211  return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
212  }
213 
214  if (!HasScopeSpecifier &&
215  Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
216  DeclSpec DS(AttrFactory);
217  SourceLocation DeclLoc = Tok.getLocation();
218  SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
219 
220  SourceLocation CCLoc;
221  // Work around a standard defect: 'decltype(auto)::' is not a
222  // nested-name-specifier.
224  !TryConsumeToken(tok::coloncolon, CCLoc)) {
225  AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
226  return false;
227  }
228 
229  if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
230  SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
231 
232  HasScopeSpecifier = true;
233  }
234 
235  // Preferred type might change when parsing qualifiers, we need the original.
236  auto SavedType = PreferredType;
237  while (true) {
238  if (HasScopeSpecifier) {
239  if (Tok.is(tok::code_completion)) {
240  // Code completion for a nested-name-specifier, where the code
241  // completion token follows the '::'.
242  Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext,
243  ObjectType.get(),
244  SavedType.get(SS.getBeginLoc()));
245  // Include code completion token into the range of the scope otherwise
246  // when we try to annotate the scope tokens the dangling code completion
247  // token will cause assertion in
248  // Preprocessor::AnnotatePreviousCachedTokens.
249  SS.setEndLoc(Tok.getLocation());
250  cutOffParsing();
251  return true;
252  }
253 
254  // C++ [basic.lookup.classref]p5:
255  // If the qualified-id has the form
256  //
257  // ::class-name-or-namespace-name::...
258  //
259  // the class-name-or-namespace-name is looked up in global scope as a
260  // class-name or namespace-name.
261  //
262  // To implement this, we clear out the object type as soon as we've
263  // seen a leading '::' or part of a nested-name-specifier.
264  ObjectType = nullptr;
265  }
266 
267  // nested-name-specifier:
268  // nested-name-specifier 'template'[opt] simple-template-id '::'
269 
270  // Parse the optional 'template' keyword, then make sure we have
271  // 'identifier <' after it.
272  if (Tok.is(tok::kw_template)) {
273  // If we don't have a scope specifier or an object type, this isn't a
274  // nested-name-specifier, since they aren't allowed to start with
275  // 'template'.
276  if (!HasScopeSpecifier && !ObjectType)
277  break;
278 
279  TentativeParsingAction TPA(*this);
280  SourceLocation TemplateKWLoc = ConsumeToken();
281 
283  if (Tok.is(tok::identifier)) {
284  // Consume the identifier.
285  TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
286  ConsumeToken();
287  } else if (Tok.is(tok::kw_operator)) {
288  // We don't need to actually parse the unqualified-id in this case,
289  // because a simple-template-id cannot start with 'operator', but
290  // go ahead and parse it anyway for consistency with the case where
291  // we already annotated the template-id.
292  if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
293  TemplateName)) {
294  TPA.Commit();
295  break;
296  }
297 
298  if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId &&
300  Diag(TemplateName.getSourceRange().getBegin(),
301  diag::err_id_after_template_in_nested_name_spec)
302  << TemplateName.getSourceRange();
303  TPA.Commit();
304  break;
305  }
306  } else {
307  TPA.Revert();
308  break;
309  }
310 
311  // If the next token is not '<', we have a qualified-id that refers
312  // to a template name, such as T::template apply, but is not a
313  // template-id.
314  if (Tok.isNot(tok::less)) {
315  TPA.Revert();
316  break;
317  }
318 
319  // Commit to parsing the template-id.
320  TPA.Commit();
321  TemplateTy Template;
323  getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
324  EnteringContext, Template, /*AllowInjectedClassName*/ true)) {
325  if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
326  TemplateName, false))
327  return true;
328  } else
329  return true;
330 
331  continue;
332  }
333 
334  if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
335  // We have
336  //
337  // template-id '::'
338  //
339  // So we need to check whether the template-id is a simple-template-id of
340  // the right kind (it should name a type or be dependent), and then
341  // convert it into a type within the nested-name-specifier.
342  TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
343  if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
344  *MayBePseudoDestructor = true;
345  return false;
346  }
347 
348  if (LastII)
349  *LastII = TemplateId->Name;
350 
351  // Consume the template-id token.
352  ConsumeAnnotationToken();
353 
354  assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
355  SourceLocation CCLoc = ConsumeToken();
356 
357  HasScopeSpecifier = true;
358 
359  ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
360  TemplateId->NumArgs);
361 
363  SS,
364  TemplateId->TemplateKWLoc,
365  TemplateId->Template,
366  TemplateId->TemplateNameLoc,
367  TemplateId->LAngleLoc,
368  TemplateArgsPtr,
369  TemplateId->RAngleLoc,
370  CCLoc,
371  EnteringContext)) {
372  SourceLocation StartLoc
373  = SS.getBeginLoc().isValid()? SS.getBeginLoc()
374  : TemplateId->TemplateNameLoc;
375  SS.SetInvalid(SourceRange(StartLoc, CCLoc));
376  }
377 
378  continue;
379  }
380 
381  // The rest of the nested-name-specifier possibilities start with
382  // tok::identifier.
383  if (Tok.isNot(tok::identifier))
384  break;
385 
386  IdentifierInfo &II = *Tok.getIdentifierInfo();
387 
388  // nested-name-specifier:
389  // type-name '::'
390  // namespace-name '::'
391  // nested-name-specifier identifier '::'
392  Token Next = NextToken();
393  Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(),
394  ObjectType);
395 
396  // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
397  // and emit a fixit hint for it.
398  if (Next.is(tok::colon) && !ColonIsSacred) {
399  if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, IdInfo,
400  EnteringContext) &&
401  // If the token after the colon isn't an identifier, it's still an
402  // error, but they probably meant something else strange so don't
403  // recover like this.
404  PP.LookAhead(1).is(tok::identifier)) {
405  Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
406  << FixItHint::CreateReplacement(Next.getLocation(), "::");
407  // Recover as if the user wrote '::'.
408  Next.setKind(tok::coloncolon);
409  }
410  }
411 
412  if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
413  // It is invalid to have :: {, consume the scope qualifier and pretend
414  // like we never saw it.
415  Token Identifier = Tok; // Stash away the identifier.
416  ConsumeToken(); // Eat the identifier, current token is now '::'.
417  Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
418  << tok::identifier;
419  UnconsumeToken(Identifier); // Stick the identifier back.
420  Next = NextToken(); // Point Next at the '{' token.
421  }
422 
423  if (Next.is(tok::coloncolon)) {
424  if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
425  !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, IdInfo)) {
426  *MayBePseudoDestructor = true;
427  return false;
428  }
429 
430  if (ColonIsSacred) {
431  const Token &Next2 = GetLookAheadToken(2);
432  if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
433  Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
434  Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
435  << Next2.getName()
437  Token ColonColon;
438  PP.Lex(ColonColon);
439  ColonColon.setKind(tok::colon);
440  PP.EnterToken(ColonColon, /*IsReinject*/ true);
441  break;
442  }
443  }
444 
445  if (LastII)
446  *LastII = &II;
447 
448  // We have an identifier followed by a '::'. Lookup this name
449  // as the name in a nested-name-specifier.
450  Token Identifier = Tok;
451  SourceLocation IdLoc = ConsumeToken();
452  assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
453  "NextToken() not working properly!");
454  Token ColonColon = Tok;
455  SourceLocation CCLoc = ConsumeToken();
456 
457  bool IsCorrectedToColon = false;
458  bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
459  if (Actions.ActOnCXXNestedNameSpecifier(
460  getCurScope(), IdInfo, EnteringContext, SS, false,
461  CorrectionFlagPtr, OnlyNamespace)) {
462  // Identifier is not recognized as a nested name, but we can have
463  // mistyped '::' instead of ':'.
464  if (CorrectionFlagPtr && IsCorrectedToColon) {
465  ColonColon.setKind(tok::colon);
466  PP.EnterToken(Tok, /*IsReinject*/ true);
467  PP.EnterToken(ColonColon, /*IsReinject*/ true);
468  Tok = Identifier;
469  break;
470  }
471  SS.SetInvalid(SourceRange(IdLoc, CCLoc));
472  }
473  HasScopeSpecifier = true;
474  continue;
475  }
476 
477  CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
478 
479  // nested-name-specifier:
480  // type-name '<'
481  if (Next.is(tok::less)) {
482  TemplateTy Template;
484  TemplateName.setIdentifier(&II, Tok.getLocation());
485  bool MemberOfUnknownSpecialization;
486  if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
487  /*hasTemplateKeyword=*/false,
488  TemplateName,
489  ObjectType,
490  EnteringContext,
491  Template,
492  MemberOfUnknownSpecialization)) {
493  // If lookup didn't find anything, we treat the name as a template-name
494  // anyway. C++20 requires this, and in prior language modes it improves
495  // error recovery. But before we commit to this, check that we actually
496  // have something that looks like a template-argument-list next.
497  if (!IsTypename && TNK == TNK_Undeclared_template &&
498  isTemplateArgumentList(1) == TPResult::False)
499  break;
500 
501  // We have found a template name, so annotate this token
502  // with a template-id annotation. We do not permit the
503  // template-id to be translated into a type annotation,
504  // because some clients (e.g., the parsing of class template
505  // specializations) still want to see the original template-id
506  // token.
507  ConsumeToken();
508  if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
509  TemplateName, false))
510  return true;
511  continue;
512  }
513 
514  if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
515  (IsTypename || isTemplateArgumentList(1) == TPResult::True)) {
516  // We have something like t::getAs<T>, where getAs is a
517  // member of an unknown specialization. However, this will only
518  // parse correctly as a template, so suggest the keyword 'template'
519  // before 'getAs' and treat this as a dependent template name.
520  unsigned DiagID = diag::err_missing_dependent_template_keyword;
521  if (getLangOpts().MicrosoftExt)
522  DiagID = diag::warn_missing_dependent_template_keyword;
523 
524  Diag(Tok.getLocation(), DiagID)
525  << II.getName()
526  << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
527 
529  getCurScope(), SS, Tok.getLocation(), TemplateName, ObjectType,
530  EnteringContext, Template, /*AllowInjectedClassName*/ true)) {
531  // Consume the identifier.
532  ConsumeToken();
533  if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
534  TemplateName, false))
535  return true;
536  }
537  else
538  return true;
539 
540  continue;
541  }
542  }
543 
544  // We don't have any tokens that form the beginning of a
545  // nested-name-specifier, so we're done.
546  break;
547  }
548 
549  // Even if we didn't see any pieces of a nested-name-specifier, we
550  // still check whether there is a tilde in this position, which
551  // indicates a potential pseudo-destructor.
552  if (CheckForDestructor && Tok.is(tok::tilde))
553  *MayBePseudoDestructor = true;
554 
555  return false;
556 }
557 
558 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS, bool isAddressOfOperand,
559  Token &Replacement) {
560  SourceLocation TemplateKWLoc;
561  UnqualifiedId Name;
562  if (ParseUnqualifiedId(SS,
563  /*EnteringContext=*/false,
564  /*AllowDestructorName=*/false,
565  /*AllowConstructorName=*/false,
566  /*AllowDeductionGuide=*/false,
567  /*ObjectType=*/nullptr, &TemplateKWLoc, Name))
568  return ExprError();
569 
570  // This is only the direct operand of an & operator if it is not
571  // followed by a postfix-expression suffix.
572  if (isAddressOfOperand && isPostfixExpressionSuffixStart())
573  isAddressOfOperand = false;
574 
575  ExprResult E = Actions.ActOnIdExpression(
576  getCurScope(), SS, TemplateKWLoc, Name, Tok.is(tok::l_paren),
577  isAddressOfOperand, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false,
578  &Replacement);
579  if (!E.isInvalid() && !E.isUnset() && Tok.is(tok::less))
580  checkPotentialAngleBracket(E);
581  return E;
582 }
583 
584 /// ParseCXXIdExpression - Handle id-expression.
585 ///
586 /// id-expression:
587 /// unqualified-id
588 /// qualified-id
589 ///
590 /// qualified-id:
591 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
592 /// '::' identifier
593 /// '::' operator-function-id
594 /// '::' template-id
595 ///
596 /// NOTE: The standard specifies that, for qualified-id, the parser does not
597 /// expect:
598 ///
599 /// '::' conversion-function-id
600 /// '::' '~' class-name
601 ///
602 /// This may cause a slight inconsistency on diagnostics:
603 ///
604 /// class C {};
605 /// namespace A {}
606 /// void f() {
607 /// :: A :: ~ C(); // Some Sema error about using destructor with a
608 /// // namespace.
609 /// :: ~ C(); // Some Parser error like 'unexpected ~'.
610 /// }
611 ///
612 /// We simplify the parser a bit and make it work like:
613 ///
614 /// qualified-id:
615 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
616 /// '::' unqualified-id
617 ///
618 /// That way Sema can handle and report similar errors for namespaces and the
619 /// global scope.
620 ///
621 /// The isAddressOfOperand parameter indicates that this id-expression is a
622 /// direct operand of the address-of operator. This is, besides member contexts,
623 /// the only place where a qualified-id naming a non-static class member may
624 /// appear.
625 ///
626 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
627  // qualified-id:
628  // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
629  // '::' unqualified-id
630  //
631  CXXScopeSpec SS;
632  ParseOptionalCXXScopeSpecifier(SS, nullptr, /*EnteringContext=*/false);
633 
634  Token Replacement;
636  tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
637  if (Result.isUnset()) {
638  // If the ExprResult is valid but null, then typo correction suggested a
639  // keyword replacement that needs to be reparsed.
640  UnconsumeToken(Replacement);
641  Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
642  }
643  assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
644  "for a previous keyword suggestion");
645  return Result;
646 }
647 
648 /// ParseLambdaExpression - Parse a C++11 lambda expression.
649 ///
650 /// lambda-expression:
651 /// lambda-introducer lambda-declarator[opt] compound-statement
652 /// lambda-introducer '<' template-parameter-list '>'
653 /// lambda-declarator[opt] compound-statement
654 ///
655 /// lambda-introducer:
656 /// '[' lambda-capture[opt] ']'
657 ///
658 /// lambda-capture:
659 /// capture-default
660 /// capture-list
661 /// capture-default ',' capture-list
662 ///
663 /// capture-default:
664 /// '&'
665 /// '='
666 ///
667 /// capture-list:
668 /// capture
669 /// capture-list ',' capture
670 ///
671 /// capture:
672 /// simple-capture
673 /// init-capture [C++1y]
674 ///
675 /// simple-capture:
676 /// identifier
677 /// '&' identifier
678 /// 'this'
679 ///
680 /// init-capture: [C++1y]
681 /// identifier initializer
682 /// '&' identifier initializer
683 ///
684 /// lambda-declarator:
685 /// '(' parameter-declaration-clause ')' attribute-specifier[opt]
686 /// 'mutable'[opt] exception-specification[opt]
687 /// trailing-return-type[opt]
688 ///
689 ExprResult Parser::ParseLambdaExpression() {
690  // Parse lambda-introducer.
691  LambdaIntroducer Intro;
692  if (ParseLambdaIntroducer(Intro)) {
693  SkipUntil(tok::r_square, StopAtSemi);
694  SkipUntil(tok::l_brace, StopAtSemi);
695  SkipUntil(tok::r_brace, StopAtSemi);
696  return ExprError();
697  }
698 
699  return ParseLambdaExpressionAfterIntroducer(Intro);
700 }
701 
702 /// Use lookahead and potentially tentative parsing to determine if we are
703 /// looking at a C++11 lambda expression, and parse it if we are.
704 ///
705 /// If we are not looking at a lambda expression, returns ExprError().
706 ExprResult Parser::TryParseLambdaExpression() {
707  assert(getLangOpts().CPlusPlus11
708  && Tok.is(tok::l_square)
709  && "Not at the start of a possible lambda expression.");
710 
711  const Token Next = NextToken();
712  if (Next.is(tok::eof)) // Nothing else to lookup here...
713  return ExprEmpty();
714 
715  const Token After = GetLookAheadToken(2);
716  // If lookahead indicates this is a lambda...
717  if (Next.is(tok::r_square) || // []
718  Next.is(tok::equal) || // [=
719  (Next.is(tok::amp) && // [&] or [&,
720  After.isOneOf(tok::r_square, tok::comma)) ||
721  (Next.is(tok::identifier) && // [identifier]
722  After.is(tok::r_square)) ||
723  Next.is(tok::ellipsis)) { // [...
724  return ParseLambdaExpression();
725  }
726 
727  // If lookahead indicates an ObjC message send...
728  // [identifier identifier
729  if (Next.is(tok::identifier) && After.is(tok::identifier))
730  return ExprEmpty();
731 
732  // Here, we're stuck: lambda introducers and Objective-C message sends are
733  // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a
734  // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of
735  // writing two routines to parse a lambda introducer, just try to parse
736  // a lambda introducer first, and fall back if that fails.
737  LambdaIntroducer Intro;
738  {
739  TentativeParsingAction TPA(*this);
740  LambdaIntroducerTentativeParse Tentative;
741  if (ParseLambdaIntroducer(Intro, &Tentative)) {
742  TPA.Commit();
743  return ExprError();
744  }
745 
746  switch (Tentative) {
747  case LambdaIntroducerTentativeParse::Success:
748  TPA.Commit();
749  break;
750 
751  case LambdaIntroducerTentativeParse::Incomplete:
752  // Didn't fully parse the lambda-introducer, try again with a
753  // non-tentative parse.
754  TPA.Revert();
755  Intro = LambdaIntroducer();
756  if (ParseLambdaIntroducer(Intro))
757  return ExprError();
758  break;
759 
760  case LambdaIntroducerTentativeParse::MessageSend:
761  case LambdaIntroducerTentativeParse::Invalid:
762  // Not a lambda-introducer, might be a message send.
763  TPA.Revert();
764  return ExprEmpty();
765  }
766  }
767 
768  return ParseLambdaExpressionAfterIntroducer(Intro);
769 }
770 
771 /// Parse a lambda introducer.
772 /// \param Intro A LambdaIntroducer filled in with information about the
773 /// contents of the lambda-introducer.
774 /// \param Tentative If non-null, we are disambiguating between a
775 /// lambda-introducer and some other construct. In this mode, we do not
776 /// produce any diagnostics or take any other irreversible action unless
777 /// we're sure that this is a lambda-expression.
778 /// \return \c true if parsing (or disambiguation) failed with a diagnostic and
779 /// the caller should bail out / recover.
780 bool Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
781  LambdaIntroducerTentativeParse *Tentative) {
782  if (Tentative)
783  *Tentative = LambdaIntroducerTentativeParse::Success;
784 
785  assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
786  BalancedDelimiterTracker T(*this, tok::l_square);
787  T.consumeOpen();
788 
789  Intro.Range.setBegin(T.getOpenLocation());
790 
791  bool First = true;
792 
793  // Produce a diagnostic if we're not tentatively parsing; otherwise track
794  // that our parse has failed.
795  auto Invalid = [&](llvm::function_ref<void()> Action) {
796  if (Tentative) {
797  *Tentative = LambdaIntroducerTentativeParse::Invalid;
798  return false;
799  }
800  Action();
801  return true;
802  };
803 
804  // Perform some irreversible action if this is a non-tentative parse;
805  // otherwise note that our actions were incomplete.
806  auto NonTentativeAction = [&](llvm::function_ref<void()> Action) {
807  if (Tentative)
808  *Tentative = LambdaIntroducerTentativeParse::Incomplete;
809  else
810  Action();
811  };
812 
813  // Parse capture-default.
814  if (Tok.is(tok::amp) &&
815  (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
816  Intro.Default = LCD_ByRef;
817  Intro.DefaultLoc = ConsumeToken();
818  First = false;
819  if (!Tok.getIdentifierInfo()) {
820  // This can only be a lambda; no need for tentative parsing any more.
821  // '[[and]]' can still be an attribute, though.
822  Tentative = nullptr;
823  }
824  } else if (Tok.is(tok::equal)) {
825  Intro.Default = LCD_ByCopy;
826  Intro.DefaultLoc = ConsumeToken();
827  First = false;
828  Tentative = nullptr;
829  }
830 
831  while (Tok.isNot(tok::r_square)) {
832  if (!First) {
833  if (Tok.isNot(tok::comma)) {
834  // Provide a completion for a lambda introducer here. Except
835  // in Objective-C, where this is Almost Surely meant to be a message
836  // send. In that case, fail here and let the ObjC message
837  // expression parser perform the completion.
838  if (Tok.is(tok::code_completion) &&
839  !(getLangOpts().ObjC && Tentative)) {
840  Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
841  /*AfterAmpersand=*/false);
842  cutOffParsing();
843  break;
844  }
845 
846  return Invalid([&] {
847  Diag(Tok.getLocation(), diag::err_expected_comma_or_rsquare);
848  });
849  }
850  ConsumeToken();
851  }
852 
853  if (Tok.is(tok::code_completion)) {
854  // If we're in Objective-C++ and we have a bare '[', then this is more
855  // likely to be a message receiver.
856  if (getLangOpts().ObjC && Tentative && First)
858  else
859  Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
860  /*AfterAmpersand=*/false);
861  cutOffParsing();
862  break;
863  }
864 
865  First = false;
866 
867  // Parse capture.
870  SourceLocation Loc;
871  IdentifierInfo *Id = nullptr;
872  SourceLocation EllipsisLocs[4];
873  ExprResult Init;
874  SourceLocation LocStart = Tok.getLocation();
875 
876  if (Tok.is(tok::star)) {
877  Loc = ConsumeToken();
878  if (Tok.is(tok::kw_this)) {
879  ConsumeToken();
880  Kind = LCK_StarThis;
881  } else {
882  return Invalid([&] {
883  Diag(Tok.getLocation(), diag::err_expected_star_this_capture);
884  });
885  }
886  } else if (Tok.is(tok::kw_this)) {
887  Kind = LCK_This;
888  Loc = ConsumeToken();
889  } else {
890  TryConsumeToken(tok::ellipsis, EllipsisLocs[0]);
891 
892  if (Tok.is(tok::amp)) {
893  Kind = LCK_ByRef;
894  ConsumeToken();
895 
896  if (Tok.is(tok::code_completion)) {
897  Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
898  /*AfterAmpersand=*/true);
899  cutOffParsing();
900  break;
901  }
902  }
903 
904  TryConsumeToken(tok::ellipsis, EllipsisLocs[1]);
905 
906  if (Tok.is(tok::identifier)) {
907  Id = Tok.getIdentifierInfo();
908  Loc = ConsumeToken();
909  } else if (Tok.is(tok::kw_this)) {
910  return Invalid([&] {
911  // FIXME: Suggest a fixit here.
912  Diag(Tok.getLocation(), diag::err_this_captured_by_reference);
913  });
914  } else {
915  return Invalid([&] {
916  Diag(Tok.getLocation(), diag::err_expected_capture);
917  });
918  }
919 
920  TryConsumeToken(tok::ellipsis, EllipsisLocs[2]);
921 
922  if (Tok.is(tok::l_paren)) {
923  BalancedDelimiterTracker Parens(*this, tok::l_paren);
924  Parens.consumeOpen();
925 
927 
928  ExprVector Exprs;
929  CommaLocsTy Commas;
930  if (Tentative) {
931  Parens.skipToEnd();
932  *Tentative = LambdaIntroducerTentativeParse::Incomplete;
933  } else if (ParseExpressionList(Exprs, Commas)) {
934  Parens.skipToEnd();
935  Init = ExprError();
936  } else {
937  Parens.consumeClose();
938  Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
939  Parens.getCloseLocation(),
940  Exprs);
941  }
942  } else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
943  // Each lambda init-capture forms its own full expression, which clears
944  // Actions.MaybeODRUseExprs. So create an expression evaluation context
945  // to save the necessary state, and restore it later.
948 
949  if (TryConsumeToken(tok::equal))
951  else
953 
954  if (!Tentative) {
955  Init = ParseInitializer();
956  } else if (Tok.is(tok::l_brace)) {
957  BalancedDelimiterTracker Braces(*this, tok::l_brace);
958  Braces.consumeOpen();
959  Braces.skipToEnd();
960  *Tentative = LambdaIntroducerTentativeParse::Incomplete;
961  } else {
962  // We're disambiguating this:
963  //
964  // [..., x = expr
965  //
966  // We need to find the end of the following expression in order to
967  // determine whether this is an Obj-C message send's receiver, a
968  // C99 designator, or a lambda init-capture.
969  //
970  // Parse the expression to find where it ends, and annotate it back
971  // onto the tokens. We would have parsed this expression the same way
972  // in either case: both the RHS of an init-capture and the RHS of an
973  // assignment expression are parsed as an initializer-clause, and in
974  // neither case can anything be added to the scope between the '[' and
975  // here.
976  //
977  // FIXME: This is horrible. Adding a mechanism to skip an expression
978  // would be much cleaner.
979  // FIXME: If there is a ',' before the next ']' or ':', we can skip to
980  // that instead. (And if we see a ':' with no matching '?', we can
981  // classify this as an Obj-C message send.)
982  SourceLocation StartLoc = Tok.getLocation();
983  InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
984  Init = ParseInitializer();
985  if (!Init.isInvalid())
986  Init = Actions.CorrectDelayedTyposInExpr(Init.get());
987 
988  if (Tok.getLocation() != StartLoc) {
989  // Back out the lexing of the token after the initializer.
990  PP.RevertCachedTokens(1);
991 
992  // Replace the consumed tokens with an appropriate annotation.
993  Tok.setLocation(StartLoc);
994  Tok.setKind(tok::annot_primary_expr);
995  setExprAnnotation(Tok, Init);
997  PP.AnnotateCachedTokens(Tok);
998 
999  // Consume the annotated initializer.
1000  ConsumeAnnotationToken();
1001  }
1002  }
1003  }
1004 
1005  TryConsumeToken(tok::ellipsis, EllipsisLocs[3]);
1006  }
1007 
1008  // Check if this is a message send before we act on a possible init-capture.
1009  if (Tentative && Tok.is(tok::identifier) &&
1010  NextToken().isOneOf(tok::colon, tok::r_square)) {
1011  // This can only be a message send. We're done with disambiguation.
1012  *Tentative = LambdaIntroducerTentativeParse::MessageSend;
1013  return false;
1014  }
1015 
1016  // Ensure that any ellipsis was in the right place.
1017  SourceLocation EllipsisLoc;
1018  if (std::any_of(std::begin(EllipsisLocs), std::end(EllipsisLocs),
1019  [](SourceLocation Loc) { return Loc.isValid(); })) {
1020  // The '...' should appear before the identifier in an init-capture, and
1021  // after the identifier otherwise.
1022  bool InitCapture = InitKind != LambdaCaptureInitKind::NoInit;
1023  SourceLocation *ExpectedEllipsisLoc =
1024  !InitCapture ? &EllipsisLocs[2] :
1025  Kind == LCK_ByRef ? &EllipsisLocs[1] :
1026  &EllipsisLocs[0];
1027  EllipsisLoc = *ExpectedEllipsisLoc;
1028 
1029  unsigned DiagID = 0;
1030  if (EllipsisLoc.isInvalid()) {
1031  DiagID = diag::err_lambda_capture_misplaced_ellipsis;
1032  for (SourceLocation Loc : EllipsisLocs) {
1033  if (Loc.isValid())
1034  EllipsisLoc = Loc;
1035  }
1036  } else {
1037  unsigned NumEllipses = std::accumulate(
1038  std::begin(EllipsisLocs), std::end(EllipsisLocs), 0,
1039  [](int N, SourceLocation Loc) { return N + Loc.isValid(); });
1040  if (NumEllipses > 1)
1041  DiagID = diag::err_lambda_capture_multiple_ellipses;
1042  }
1043  if (DiagID) {
1044  NonTentativeAction([&] {
1045  // Point the diagnostic at the first misplaced ellipsis.
1046  SourceLocation DiagLoc;
1047  for (SourceLocation &Loc : EllipsisLocs) {
1048  if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) {
1049  DiagLoc = Loc;
1050  break;
1051  }
1052  }
1053  assert(DiagLoc.isValid() && "no location for diagnostic");
1054 
1055  // Issue the diagnostic and produce fixits showing where the ellipsis
1056  // should have been written.
1057  auto &&D = Diag(DiagLoc, DiagID);
1058  if (DiagID == diag::err_lambda_capture_misplaced_ellipsis) {
1059  SourceLocation ExpectedLoc =
1060  InitCapture ? Loc
1062  Loc, 0, PP.getSourceManager(), getLangOpts());
1063  D << InitCapture << FixItHint::CreateInsertion(ExpectedLoc, "...");
1064  }
1065  for (SourceLocation &Loc : EllipsisLocs) {
1066  if (&Loc != ExpectedEllipsisLoc && Loc.isValid())
1067  D << FixItHint::CreateRemoval(Loc);
1068  }
1069  });
1070  }
1071  }
1072 
1073  // Process the init-capture initializers now rather than delaying until we
1074  // form the lambda-expression so that they can be handled in the context
1075  // enclosing the lambda-expression, rather than in the context of the
1076  // lambda-expression itself.
1077  ParsedType InitCaptureType;
1078  if (Init.isUsable())
1079  Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1080  if (Init.isUsable()) {
1081  NonTentativeAction([&] {
1082  // Get the pointer and store it in an lvalue, so we can use it as an
1083  // out argument.
1084  Expr *InitExpr = Init.get();
1085  // This performs any lvalue-to-rvalue conversions if necessary, which
1086  // can affect what gets captured in the containing decl-context.
1087  InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
1088  Loc, Kind == LCK_ByRef, EllipsisLoc, Id, InitKind, InitExpr);
1089  Init = InitExpr;
1090  });
1091  }
1092 
1093  SourceLocation LocEnd = PrevTokLocation;
1094 
1095  Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
1096  InitCaptureType, SourceRange(LocStart, LocEnd));
1097  }
1098 
1099  T.consumeClose();
1100  Intro.Range.setEnd(T.getCloseLocation());
1101  return false;
1102 }
1103 
1105  SourceLocation &MutableLoc,
1106  SourceLocation &ConstexprLoc,
1107  SourceLocation &ConstevalLoc,
1108  SourceLocation &DeclEndLoc) {
1109  assert(MutableLoc.isInvalid());
1110  assert(ConstexprLoc.isInvalid());
1111  // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
1112  // to the final of those locations. Emit an error if we have multiple
1113  // copies of those keywords and recover.
1114 
1115  while (true) {
1116  switch (P.getCurToken().getKind()) {
1117  case tok::kw_mutable: {
1118  if (MutableLoc.isValid()) {
1119  P.Diag(P.getCurToken().getLocation(),
1120  diag::err_lambda_decl_specifier_repeated)
1122  }
1123  MutableLoc = P.ConsumeToken();
1124  DeclEndLoc = MutableLoc;
1125  break /*switch*/;
1126  }
1127  case tok::kw_constexpr:
1128  if (ConstexprLoc.isValid()) {
1129  P.Diag(P.getCurToken().getLocation(),
1130  diag::err_lambda_decl_specifier_repeated)
1132  }
1133  ConstexprLoc = P.ConsumeToken();
1134  DeclEndLoc = ConstexprLoc;
1135  break /*switch*/;
1136  case tok::kw_consteval:
1137  if (ConstevalLoc.isValid()) {
1138  P.Diag(P.getCurToken().getLocation(),
1139  diag::err_lambda_decl_specifier_repeated)
1141  }
1142  ConstevalLoc = P.ConsumeToken();
1143  DeclEndLoc = ConstevalLoc;
1144  break /*switch*/;
1145  default:
1146  return;
1147  }
1148  }
1149 }
1150 
1151 static void
1153  DeclSpec &DS) {
1154  if (ConstexprLoc.isValid()) {
1155  P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17
1156  ? diag::ext_constexpr_on_lambda_cxx17
1157  : diag::warn_cxx14_compat_constexpr_on_lambda);
1158  const char *PrevSpec = nullptr;
1159  unsigned DiagID = 0;
1160  DS.SetConstexprSpec(CSK_constexpr, ConstexprLoc, PrevSpec, DiagID);
1161  assert(PrevSpec == nullptr && DiagID == 0 &&
1162  "Constexpr cannot have been set previously!");
1163  }
1164 }
1165 
1167  SourceLocation ConstevalLoc,
1168  DeclSpec &DS) {
1169  if (ConstevalLoc.isValid()) {
1170  P.Diag(ConstevalLoc, diag::warn_cxx20_compat_consteval);
1171  const char *PrevSpec = nullptr;
1172  unsigned DiagID = 0;
1173  DS.SetConstexprSpec(CSK_consteval, ConstevalLoc, PrevSpec, DiagID);
1174  if (DiagID != 0)
1175  P.Diag(ConstevalLoc, DiagID) << PrevSpec;
1176  }
1177 }
1178 
1179 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1180 /// expression.
1181 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
1182  LambdaIntroducer &Intro) {
1183  SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
1184  Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
1185 
1186  PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
1187  "lambda expression parsing");
1188 
1189 
1190 
1191  // FIXME: Call into Actions to add any init-capture declarations to the
1192  // scope while parsing the lambda-declarator and compound-statement.
1193 
1194  // Parse lambda-declarator[opt].
1195  DeclSpec DS(AttrFactory);
1197  TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
1198  Actions.PushLambdaScope();
1199 
1200  ParsedAttributes Attr(AttrFactory);
1201  SourceLocation DeclLoc = Tok.getLocation();
1202  if (getLangOpts().CUDA) {
1203  // In CUDA code, GNU attributes are allowed to appear immediately after the
1204  // "[...]", even if there is no "(...)" before the lambda body.
1205  MaybeParseGNUAttributes(D);
1206  }
1207 
1208  // Helper to emit a warning if we see a CUDA host/device/global attribute
1209  // after '(...)'. nvcc doesn't accept this.
1210  auto WarnIfHasCUDATargetAttr = [&] {
1211  if (getLangOpts().CUDA)
1212  for (const ParsedAttr &A : Attr)
1213  if (A.getKind() == ParsedAttr::AT_CUDADevice ||
1214  A.getKind() == ParsedAttr::AT_CUDAHost ||
1215  A.getKind() == ParsedAttr::AT_CUDAGlobal)
1216  Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position)
1217  << A.getAttrName()->getName();
1218  };
1219 
1220  // FIXME: Consider allowing this as an extension for GCC compatibiblity.
1221  const bool HasExplicitTemplateParams = Tok.is(tok::less);
1222  ParseScope TemplateParamScope(this, Scope::TemplateParamScope,
1223  /*EnteredScope=*/HasExplicitTemplateParams);
1224  if (HasExplicitTemplateParams) {
1226  ? diag::warn_cxx17_compat_lambda_template_parameter_list
1227  : diag::ext_lambda_template_parameter_list);
1228 
1229  SmallVector<NamedDecl*, 4> TemplateParams;
1230  SourceLocation LAngleLoc, RAngleLoc;
1231  if (ParseTemplateParameters(CurTemplateDepthTracker.getDepth(),
1232  TemplateParams, LAngleLoc, RAngleLoc)) {
1233  Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1234  return ExprError();
1235  }
1236 
1237  if (TemplateParams.empty()) {
1238  Diag(RAngleLoc,
1239  diag::err_lambda_template_parameter_list_empty);
1240  } else {
1242  LAngleLoc, TemplateParams, RAngleLoc);
1243  ++CurTemplateDepthTracker;
1244  }
1245  }
1246 
1247  TypeResult TrailingReturnType;
1248  if (Tok.is(tok::l_paren)) {
1249  ParseScope PrototypeScope(this,
1253 
1254  BalancedDelimiterTracker T(*this, tok::l_paren);
1255  T.consumeOpen();
1256  SourceLocation LParenLoc = T.getOpenLocation();
1257 
1258  // Parse parameter-declaration-clause.
1260  SourceLocation EllipsisLoc;
1261 
1262  if (Tok.isNot(tok::r_paren)) {
1264  CurTemplateDepthTracker.getOriginalDepth());
1265 
1266  ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
1267 
1268  // For a generic lambda, each 'auto' within the parameter declaration
1269  // clause creates a template type parameter, so increment the depth.
1270  // If we've parsed any explicit template parameters, then the depth will
1271  // have already been incremented. So we make sure that at most a single
1272  // depth level is added.
1273  if (Actions.getCurGenericLambda())
1274  CurTemplateDepthTracker.setAddedDepth(1);
1275  }
1276 
1277  T.consumeClose();
1278  SourceLocation RParenLoc = T.getCloseLocation();
1279  SourceLocation DeclEndLoc = RParenLoc;
1280 
1281  // GNU-style attributes must be parsed before the mutable specifier to be
1282  // compatible with GCC.
1283  MaybeParseGNUAttributes(Attr, &DeclEndLoc);
1284 
1285  // MSVC-style attributes must be parsed before the mutable specifier to be
1286  // compatible with MSVC.
1287  MaybeParseMicrosoftDeclSpecs(Attr, &DeclEndLoc);
1288 
1289  // Parse mutable-opt and/or constexpr-opt or consteval-opt, and update the
1290  // DeclEndLoc.
1291  SourceLocation MutableLoc;
1292  SourceLocation ConstexprLoc;
1293  SourceLocation ConstevalLoc;
1294  tryConsumeLambdaSpecifierToken(*this, MutableLoc, ConstexprLoc,
1295  ConstevalLoc, DeclEndLoc);
1296 
1297  addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);
1298  addConstevalToLambdaDeclSpecifier(*this, ConstevalLoc, DS);
1299  // Parse exception-specification[opt].
1301  SourceRange ESpecRange;
1302  SmallVector<ParsedType, 2> DynamicExceptions;
1303  SmallVector<SourceRange, 2> DynamicExceptionRanges;
1304  ExprResult NoexceptExpr;
1305  CachedTokens *ExceptionSpecTokens;
1306  ESpecType = tryParseExceptionSpecification(/*Delayed=*/false,
1307  ESpecRange,
1308  DynamicExceptions,
1309  DynamicExceptionRanges,
1310  NoexceptExpr,
1311  ExceptionSpecTokens);
1312 
1313  if (ESpecType != EST_None)
1314  DeclEndLoc = ESpecRange.getEnd();
1315 
1316  // Parse attribute-specifier[opt].
1317  MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
1318 
1319  SourceLocation FunLocalRangeEnd = DeclEndLoc;
1320 
1321  // Parse trailing-return-type[opt].
1322  if (Tok.is(tok::arrow)) {
1323  FunLocalRangeEnd = Tok.getLocation();
1324  SourceRange Range;
1325  TrailingReturnType =
1326  ParseTrailingReturnType(Range, /*MayBeFollowedByDirectInit*/ false);
1327  if (Range.getEnd().isValid())
1328  DeclEndLoc = Range.getEnd();
1329  }
1330 
1331  PrototypeScope.Exit();
1332 
1333  WarnIfHasCUDATargetAttr();
1334 
1335  SourceLocation NoLoc;
1337  /*HasProto=*/true,
1338  /*IsAmbiguous=*/false, LParenLoc, ParamInfo.data(),
1339  ParamInfo.size(), EllipsisLoc, RParenLoc,
1340  /*RefQualifierIsLvalueRef=*/true,
1341  /*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType,
1342  ESpecRange, DynamicExceptions.data(),
1343  DynamicExceptionRanges.data(), DynamicExceptions.size(),
1344  NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
1345  /*ExceptionSpecTokens*/ nullptr,
1346  /*DeclsInPrototype=*/None, LParenLoc, FunLocalRangeEnd, D,
1347  TrailingReturnType),
1348  std::move(Attr), DeclEndLoc);
1349  } else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
1350  tok::kw_constexpr, tok::kw_consteval) ||
1351  (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
1352  // It's common to forget that one needs '()' before 'mutable', an attribute
1353  // specifier, or the result type. Deal with this.
1354  unsigned TokKind = 0;
1355  switch (Tok.getKind()) {
1356  case tok::kw_mutable: TokKind = 0; break;
1357  case tok::arrow: TokKind = 1; break;
1358  case tok::kw___attribute:
1359  case tok::l_square: TokKind = 2; break;
1360  case tok::kw_constexpr: TokKind = 3; break;
1361  case tok::kw_consteval: TokKind = 4; break;
1362  default: llvm_unreachable("Unknown token kind");
1363  }
1364 
1365  Diag(Tok, diag::err_lambda_missing_parens)
1366  << TokKind
1367  << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1368  SourceLocation DeclEndLoc = DeclLoc;
1369 
1370  // GNU-style attributes must be parsed before the mutable specifier to be
1371  // compatible with GCC.
1372  MaybeParseGNUAttributes(Attr, &DeclEndLoc);
1373 
1374  // Parse 'mutable', if it's there.
1375  SourceLocation MutableLoc;
1376  if (Tok.is(tok::kw_mutable)) {
1377  MutableLoc = ConsumeToken();
1378  DeclEndLoc = MutableLoc;
1379  }
1380 
1381  // Parse attribute-specifier[opt].
1382  MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
1383 
1384  // Parse the return type, if there is one.
1385  if (Tok.is(tok::arrow)) {
1386  SourceRange Range;
1387  TrailingReturnType =
1388  ParseTrailingReturnType(Range, /*MayBeFollowedByDirectInit*/ false);
1389  if (Range.getEnd().isValid())
1390  DeclEndLoc = Range.getEnd();
1391  }
1392 
1393  WarnIfHasCUDATargetAttr();
1394 
1395  SourceLocation NoLoc;
1397  /*HasProto=*/true,
1398  /*IsAmbiguous=*/false,
1399  /*LParenLoc=*/NoLoc,
1400  /*Params=*/nullptr,
1401  /*NumParams=*/0,
1402  /*EllipsisLoc=*/NoLoc,
1403  /*RParenLoc=*/NoLoc,
1404  /*RefQualifierIsLvalueRef=*/true,
1405  /*RefQualifierLoc=*/NoLoc, MutableLoc, EST_None,
1406  /*ESpecRange=*/SourceRange(),
1407  /*Exceptions=*/nullptr,
1408  /*ExceptionRanges=*/nullptr,
1409  /*NumExceptions=*/0,
1410  /*NoexceptExpr=*/nullptr,
1411  /*ExceptionSpecTokens=*/nullptr,
1412  /*DeclsInPrototype=*/None, DeclLoc, DeclEndLoc, D,
1413  TrailingReturnType),
1414  std::move(Attr), DeclEndLoc);
1415  }
1416 
1417  // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1418  // it.
1419  unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope |
1421  ParseScope BodyScope(this, ScopeFlags);
1422 
1423  Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
1424 
1425  // Parse compound-statement.
1426  if (!Tok.is(tok::l_brace)) {
1427  Diag(Tok, diag::err_expected_lambda_body);
1428  Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1429  return ExprError();
1430  }
1431 
1432  StmtResult Stmt(ParseCompoundStatementBody());
1433  BodyScope.Exit();
1434  TemplateParamScope.Exit();
1435 
1436  if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
1437  return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
1438 
1439  Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1440  return ExprError();
1441 }
1442 
1443 /// ParseCXXCasts - This handles the various ways to cast expressions to another
1444 /// type.
1445 ///
1446 /// postfix-expression: [C++ 5.2p1]
1447 /// 'dynamic_cast' '<' type-name '>' '(' expression ')'
1448 /// 'static_cast' '<' type-name '>' '(' expression ')'
1449 /// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
1450 /// 'const_cast' '<' type-name '>' '(' expression ')'
1451 ///
1452 ExprResult Parser::ParseCXXCasts() {
1453  tok::TokenKind Kind = Tok.getKind();
1454  const char *CastName = nullptr; // For error messages
1455 
1456  switch (Kind) {
1457  default: llvm_unreachable("Unknown C++ cast!");
1458  case tok::kw_const_cast: CastName = "const_cast"; break;
1459  case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
1460  case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1461  case tok::kw_static_cast: CastName = "static_cast"; break;
1462  }
1463 
1464  SourceLocation OpLoc = ConsumeToken();
1465  SourceLocation LAngleBracketLoc = Tok.getLocation();
1466 
1467  // Check for "<::" which is parsed as "[:". If found, fix token stream,
1468  // diagnose error, suggest fix, and recover parsing.
1469  if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1470  Token Next = NextToken();
1471  if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1472  FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1473  }
1474 
1475  if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1476  return ExprError();
1477 
1478  // Parse the common declaration-specifiers piece.
1479  DeclSpec DS(AttrFactory);
1480  ParseSpecifierQualifierList(DS);
1481 
1482  // Parse the abstract-declarator, if present.
1483  Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
1484  ParseDeclarator(DeclaratorInfo);
1485 
1486  SourceLocation RAngleBracketLoc = Tok.getLocation();
1487 
1488  if (ExpectAndConsume(tok::greater))
1489  return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
1490 
1491  BalancedDelimiterTracker T(*this, tok::l_paren);
1492 
1493  if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1494  return ExprError();
1495 
1497 
1498  // Match the ')'.
1499  T.consumeClose();
1500 
1501  if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1502  Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1503  LAngleBracketLoc, DeclaratorInfo,
1504  RAngleBracketLoc,
1505  T.getOpenLocation(), Result.get(),
1506  T.getCloseLocation());
1507 
1508  return Result;
1509 }
1510 
1511 /// ParseCXXTypeid - This handles the C++ typeid expression.
1512 ///
1513 /// postfix-expression: [C++ 5.2p1]
1514 /// 'typeid' '(' expression ')'
1515 /// 'typeid' '(' type-id ')'
1516 ///
1517 ExprResult Parser::ParseCXXTypeid() {
1518  assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
1519 
1520  SourceLocation OpLoc = ConsumeToken();
1521  SourceLocation LParenLoc, RParenLoc;
1522  BalancedDelimiterTracker T(*this, tok::l_paren);
1523 
1524  // typeid expressions are always parenthesized.
1525  if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1526  return ExprError();
1527  LParenLoc = T.getOpenLocation();
1528 
1530 
1531  // C++0x [expr.typeid]p3:
1532  // When typeid is applied to an expression other than an lvalue of a
1533  // polymorphic class type [...] The expression is an unevaluated
1534  // operand (Clause 5).
1535  //
1536  // Note that we can't tell whether the expression is an lvalue of a
1537  // polymorphic class type until after we've parsed the expression; we
1538  // speculatively assume the subexpression is unevaluated, and fix it up
1539  // later.
1540  //
1541  // We enter the unevaluated context before trying to determine whether we
1542  // have a type-id, because the tentative parse logic will try to resolve
1543  // names, and must treat them as unevaluated.
1547 
1548  if (isTypeIdInParens()) {
1549  TypeResult Ty = ParseTypeName();
1550 
1551  // Match the ')'.
1552  T.consumeClose();
1553  RParenLoc = T.getCloseLocation();
1554  if (Ty.isInvalid() || RParenLoc.isInvalid())
1555  return ExprError();
1556 
1557  Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1558  Ty.get().getAsOpaquePtr(), RParenLoc);
1559  } else {
1560  Result = ParseExpression();
1561 
1562  // Match the ')'.
1563  if (Result.isInvalid())
1564  SkipUntil(tok::r_paren, StopAtSemi);
1565  else {
1566  T.consumeClose();
1567  RParenLoc = T.getCloseLocation();
1568  if (RParenLoc.isInvalid())
1569  return ExprError();
1570 
1571  Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1572  Result.get(), RParenLoc);
1573  }
1574  }
1575 
1576  return Result;
1577 }
1578 
1579 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1580 ///
1581 /// '__uuidof' '(' expression ')'
1582 /// '__uuidof' '(' type-id ')'
1583 ///
1584 ExprResult Parser::ParseCXXUuidof() {
1585  assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1586 
1587  SourceLocation OpLoc = ConsumeToken();
1588  BalancedDelimiterTracker T(*this, tok::l_paren);
1589 
1590  // __uuidof expressions are always parenthesized.
1591  if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1592  return ExprError();
1593 
1595 
1596  if (isTypeIdInParens()) {
1597  TypeResult Ty = ParseTypeName();
1598 
1599  // Match the ')'.
1600  T.consumeClose();
1601 
1602  if (Ty.isInvalid())
1603  return ExprError();
1604 
1605  Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1606  Ty.get().getAsOpaquePtr(),
1607  T.getCloseLocation());
1608  } else {
1611  Result = ParseExpression();
1612 
1613  // Match the ')'.
1614  if (Result.isInvalid())
1615  SkipUntil(tok::r_paren, StopAtSemi);
1616  else {
1617  T.consumeClose();
1618 
1619  Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1620  /*isType=*/false,
1621  Result.get(), T.getCloseLocation());
1622  }
1623  }
1624 
1625  return Result;
1626 }
1627 
1628 /// Parse a C++ pseudo-destructor expression after the base,
1629 /// . or -> operator, and nested-name-specifier have already been
1630 /// parsed.
1631 ///
1632 /// postfix-expression: [C++ 5.2]
1633 /// postfix-expression . pseudo-destructor-name
1634 /// postfix-expression -> pseudo-destructor-name
1635 ///
1636 /// pseudo-destructor-name:
1637 /// ::[opt] nested-name-specifier[opt] type-name :: ~type-name
1638 /// ::[opt] nested-name-specifier template simple-template-id ::
1639 /// ~type-name
1640 /// ::[opt] nested-name-specifier[opt] ~type-name
1641 ///
1642 ExprResult
1643 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
1644  tok::TokenKind OpKind,
1645  CXXScopeSpec &SS,
1646  ParsedType ObjectType) {
1647  // We're parsing either a pseudo-destructor-name or a dependent
1648  // member access that has the same form as a
1649  // pseudo-destructor-name. We parse both in the same way and let
1650  // the action model sort them out.
1651  //
1652  // Note that the ::[opt] nested-name-specifier[opt] has already
1653  // been parsed, and if there was a simple-template-id, it has
1654  // been coalesced into a template-id annotation token.
1655  UnqualifiedId FirstTypeName;
1656  SourceLocation CCLoc;
1657  if (Tok.is(tok::identifier)) {
1658  FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1659  ConsumeToken();
1660  assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1661  CCLoc = ConsumeToken();
1662  } else if (Tok.is(tok::annot_template_id)) {
1663  // FIXME: retrieve TemplateKWLoc from template-id annotation and
1664  // store it in the pseudo-dtor node (to be used when instantiating it).
1665  FirstTypeName.setTemplateId(
1667  ConsumeAnnotationToken();
1668  assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1669  CCLoc = ConsumeToken();
1670  } else {
1671  FirstTypeName.setIdentifier(nullptr, SourceLocation());
1672  }
1673 
1674  // Parse the tilde.
1675  assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1676  SourceLocation TildeLoc = ConsumeToken();
1677 
1678  if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
1679  DeclSpec DS(AttrFactory);
1680  ParseDecltypeSpecifier(DS);
1681  if (DS.getTypeSpecType() == TST_error)
1682  return ExprError();
1683  return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1684  TildeLoc, DS);
1685  }
1686 
1687  if (!Tok.is(tok::identifier)) {
1688  Diag(Tok, diag::err_destructor_tilde_identifier);
1689  return ExprError();
1690  }
1691 
1692  // Parse the second type.
1693  UnqualifiedId SecondTypeName;
1694  IdentifierInfo *Name = Tok.getIdentifierInfo();
1695  SourceLocation NameLoc = ConsumeToken();
1696  SecondTypeName.setIdentifier(Name, NameLoc);
1697 
1698  // If there is a '<', the second type name is a template-id. Parse
1699  // it as such.
1700  if (Tok.is(tok::less) &&
1701  ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
1702  Name, NameLoc,
1703  false, ObjectType, SecondTypeName,
1704  /*AssumeTemplateId=*/true))
1705  return ExprError();
1706 
1707  return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1708  SS, FirstTypeName, CCLoc, TildeLoc,
1709  SecondTypeName);
1710 }
1711 
1712 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1713 ///
1714 /// boolean-literal: [C++ 2.13.5]
1715 /// 'true'
1716 /// 'false'
1717 ExprResult Parser::ParseCXXBoolLiteral() {
1718  tok::TokenKind Kind = Tok.getKind();
1719  return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1720 }
1721 
1722 /// ParseThrowExpression - This handles the C++ throw expression.
1723 ///
1724 /// throw-expression: [C++ 15]
1725 /// 'throw' assignment-expression[opt]
1726 ExprResult Parser::ParseThrowExpression() {
1727  assert(Tok.is(tok::kw_throw) && "Not throw!");
1728  SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
1729 
1730  // If the current token isn't the start of an assignment-expression,
1731  // then the expression is not present. This handles things like:
1732  // "C ? throw : (void)42", which is crazy but legal.
1733  switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
1734  case tok::semi:
1735  case tok::r_paren:
1736  case tok::r_square:
1737  case tok::r_brace:
1738  case tok::colon:
1739  case tok::comma:
1740  return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
1741 
1742  default:
1744  if (Expr.isInvalid()) return Expr;
1745  return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
1746  }
1747 }
1748 
1749 /// Parse the C++ Coroutines co_yield expression.
1750 ///
1751 /// co_yield-expression:
1752 /// 'co_yield' assignment-expression[opt]
1753 ExprResult Parser::ParseCoyieldExpression() {
1754  assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");
1755 
1756  SourceLocation Loc = ConsumeToken();
1757  ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
1759  if (!Expr.isInvalid())
1760  Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
1761  return Expr;
1762 }
1763 
1764 /// ParseCXXThis - This handles the C++ 'this' pointer.
1765 ///
1766 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1767 /// a non-lvalue expression whose value is the address of the object for which
1768 /// the function is called.
1769 ExprResult Parser::ParseCXXThis() {
1770  assert(Tok.is(tok::kw_this) && "Not 'this'!");
1771  SourceLocation ThisLoc = ConsumeToken();
1772  return Actions.ActOnCXXThis(ThisLoc);
1773 }
1774 
1775 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1776 /// Can be interpreted either as function-style casting ("int(x)")
1777 /// or class type construction ("ClassType(x,y,z)")
1778 /// or creation of a value-initialized type ("int()").
1779 /// See [C++ 5.2.3].
1780 ///
1781 /// postfix-expression: [C++ 5.2p1]
1782 /// simple-type-specifier '(' expression-list[opt] ')'
1783 /// [C++0x] simple-type-specifier braced-init-list
1784 /// typename-specifier '(' expression-list[opt] ')'
1785 /// [C++0x] typename-specifier braced-init-list
1786 ///
1787 /// In C++1z onwards, the type specifier can also be a template-name.
1788 ExprResult
1789 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1791  ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1792 
1793  assert((Tok.is(tok::l_paren) ||
1794  (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
1795  && "Expected '(' or '{'!");
1796 
1797  if (Tok.is(tok::l_brace)) {
1798  ExprResult Init = ParseBraceInitializer();
1799  if (Init.isInvalid())
1800  return Init;
1801  Expr *InitList = Init.get();
1802  return Actions.ActOnCXXTypeConstructExpr(
1803  TypeRep, InitList->getBeginLoc(), MultiExprArg(&InitList, 1),
1804  InitList->getEndLoc(), /*ListInitialization=*/true);
1805  } else {
1806  BalancedDelimiterTracker T(*this, tok::l_paren);
1807  T.consumeOpen();
1808 
1809  PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1810 
1811  ExprVector Exprs;
1812  CommaLocsTy CommaLocs;
1813 
1814  auto RunSignatureHelp = [&]() {
1815  QualType PreferredType = Actions.ProduceConstructorSignatureHelp(
1816  getCurScope(), TypeRep.get()->getCanonicalTypeInternal(),
1817  DS.getEndLoc(), Exprs, T.getOpenLocation());
1818  CalledSignatureHelp = true;
1819  return PreferredType;
1820  };
1821 
1822  if (Tok.isNot(tok::r_paren)) {
1823  if (ParseExpressionList(Exprs, CommaLocs, [&] {
1824  PreferredType.enterFunctionArgument(Tok.getLocation(),
1825  RunSignatureHelp);
1826  })) {
1827  if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
1828  RunSignatureHelp();
1829  SkipUntil(tok::r_paren, StopAtSemi);
1830  return ExprError();
1831  }
1832  }
1833 
1834  // Match the ')'.
1835  T.consumeClose();
1836 
1837  // TypeRep could be null, if it references an invalid typedef.
1838  if (!TypeRep)
1839  return ExprError();
1840 
1841  assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1842  "Unexpected number of commas!");
1843  return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1844  Exprs, T.getCloseLocation(),
1845  /*ListInitialization=*/false);
1846  }
1847 }
1848 
1849 /// ParseCXXCondition - if/switch/while condition expression.
1850 ///
1851 /// condition:
1852 /// expression
1853 /// type-specifier-seq declarator '=' assignment-expression
1854 /// [C++11] type-specifier-seq declarator '=' initializer-clause
1855 /// [C++11] type-specifier-seq declarator braced-init-list
1856 /// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
1857 /// brace-or-equal-initializer
1858 /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1859 /// '=' assignment-expression
1860 ///
1861 /// In C++1z, a condition may in some contexts be preceded by an
1862 /// optional init-statement. This function will parse that too.
1863 ///
1864 /// \param InitStmt If non-null, an init-statement is permitted, and if present
1865 /// will be parsed and stored here.
1866 ///
1867 /// \param Loc The location of the start of the statement that requires this
1868 /// condition, e.g., the "for" in a for loop.
1869 ///
1870 /// \param FRI If non-null, a for range declaration is permitted, and if
1871 /// present will be parsed and stored here, and a null result will be returned.
1872 ///
1873 /// \returns The parsed condition.
1874 Sema::ConditionResult Parser::ParseCXXCondition(StmtResult *InitStmt,
1875  SourceLocation Loc,
1877  ForRangeInfo *FRI) {
1878  ParenBraceBracketBalancer BalancerRAIIObj(*this);
1879  PreferredType.enterCondition(Actions, Tok.getLocation());
1880 
1881  if (Tok.is(tok::code_completion)) {
1883  cutOffParsing();
1884  return Sema::ConditionError();
1885  }
1886 
1887  ParsedAttributesWithRange attrs(AttrFactory);
1888  MaybeParseCXX11Attributes(attrs);
1889 
1890  const auto WarnOnInit = [this, &CK] {
1891  Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
1892  ? diag::warn_cxx14_compat_init_statement
1893  : diag::ext_init_statement)
1894  << (CK == Sema::ConditionKind::Switch);
1895  };
1896 
1897  // Determine what kind of thing we have.
1898  switch (isCXXConditionDeclarationOrInitStatement(InitStmt, FRI)) {
1899  case ConditionOrInitStatement::Expression: {
1900  ProhibitAttributes(attrs);
1901 
1902  // We can have an empty expression here.
1903  // if (; true);
1904  if (InitStmt && Tok.is(tok::semi)) {
1905  WarnOnInit();
1906  SourceLocation SemiLoc = Tok.getLocation();
1907  if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) {
1908  Diag(SemiLoc, diag::warn_empty_init_statement)
1909  << (CK == Sema::ConditionKind::Switch)
1910  << FixItHint::CreateRemoval(SemiLoc);
1911  }
1912  ConsumeToken();
1913  *InitStmt = Actions.ActOnNullStmt(SemiLoc);
1914  return ParseCXXCondition(nullptr, Loc, CK);
1915  }
1916 
1917  // Parse the expression.
1918  ExprResult Expr = ParseExpression(); // expression
1919  if (Expr.isInvalid())
1920  return Sema::ConditionError();
1921 
1922  if (InitStmt && Tok.is(tok::semi)) {
1923  WarnOnInit();
1924  *InitStmt = Actions.ActOnExprStmt(Expr.get());
1925  ConsumeToken();
1926  return ParseCXXCondition(nullptr, Loc, CK);
1927  }
1928 
1929  return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK);
1930  }
1931 
1932  case ConditionOrInitStatement::InitStmtDecl: {
1933  WarnOnInit();
1934  SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
1935  DeclGroupPtrTy DG =
1936  ParseSimpleDeclaration(DeclaratorContext::InitStmtContext, DeclEnd,
1937  attrs, /*RequireSemi=*/true);
1938  *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
1939  return ParseCXXCondition(nullptr, Loc, CK);
1940  }
1941 
1942  case ConditionOrInitStatement::ForRangeDecl: {
1943  assert(FRI && "should not parse a for range declaration here");
1944  SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
1945  DeclGroupPtrTy DG = ParseSimpleDeclaration(
1946  DeclaratorContext::ForContext, DeclEnd, attrs, false, FRI);
1947  FRI->LoopVar = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
1948  return Sema::ConditionResult();
1949  }
1950 
1951  case ConditionOrInitStatement::ConditionDecl:
1952  case ConditionOrInitStatement::Error:
1953  break;
1954  }
1955 
1956  // type-specifier-seq
1957  DeclSpec DS(AttrFactory);
1958  DS.takeAttributesFrom(attrs);
1959  ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_condition);
1960 
1961  // declarator
1962  Declarator DeclaratorInfo(DS, DeclaratorContext::ConditionContext);
1963  ParseDeclarator(DeclaratorInfo);
1964 
1965  // simple-asm-expr[opt]
1966  if (Tok.is(tok::kw_asm)) {
1967  SourceLocation Loc;
1968  ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1969  if (AsmLabel.isInvalid()) {
1970  SkipUntil(tok::semi, StopAtSemi);
1971  return Sema::ConditionError();
1972  }
1973  DeclaratorInfo.setAsmLabel(AsmLabel.get());
1974  DeclaratorInfo.SetRangeEnd(Loc);
1975  }
1976 
1977  // If attributes are present, parse them.
1978  MaybeParseGNUAttributes(DeclaratorInfo);
1979 
1980  // Type-check the declaration itself.
1982  DeclaratorInfo);
1983  if (Dcl.isInvalid())
1984  return Sema::ConditionError();
1985  Decl *DeclOut = Dcl.get();
1986 
1987  // '=' assignment-expression
1988  // If a '==' or '+=' is found, suggest a fixit to '='.
1989  bool CopyInitialization = isTokenEqualOrEqualTypo();
1990  if (CopyInitialization)
1991  ConsumeToken();
1992 
1993  ExprResult InitExpr = ExprError();
1994  if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1995  Diag(Tok.getLocation(),
1996  diag::warn_cxx98_compat_generalized_initializer_lists);
1997  InitExpr = ParseBraceInitializer();
1998  } else if (CopyInitialization) {
1999  PreferredType.enterVariableInit(Tok.getLocation(), DeclOut);
2000  InitExpr = ParseAssignmentExpression();
2001  } else if (Tok.is(tok::l_paren)) {
2002  // This was probably an attempt to initialize the variable.
2003  SourceLocation LParen = ConsumeParen(), RParen = LParen;
2004  if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
2005  RParen = ConsumeParen();
2006  Diag(DeclOut->getLocation(),
2007  diag::err_expected_init_in_condition_lparen)
2008  << SourceRange(LParen, RParen);
2009  } else {
2010  Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
2011  }
2012 
2013  if (!InitExpr.isInvalid())
2014  Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization);
2015  else
2016  Actions.ActOnInitializerError(DeclOut);
2017 
2018  Actions.FinalizeDeclaration(DeclOut);
2019  return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
2020 }
2021 
2022 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
2023 /// This should only be called when the current token is known to be part of
2024 /// simple-type-specifier.
2025 ///
2026 /// simple-type-specifier:
2027 /// '::'[opt] nested-name-specifier[opt] type-name
2028 /// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
2029 /// char
2030 /// wchar_t
2031 /// bool
2032 /// short
2033 /// int
2034 /// long
2035 /// signed
2036 /// unsigned
2037 /// float
2038 /// double
2039 /// void
2040 /// [GNU] typeof-specifier
2041 /// [C++0x] auto [TODO]
2042 ///
2043 /// type-name:
2044 /// class-name
2045 /// enum-name
2046 /// typedef-name
2047 ///
2048 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
2049  DS.SetRangeStart(Tok.getLocation());
2050  const char *PrevSpec;
2051  unsigned DiagID;
2052  SourceLocation Loc = Tok.getLocation();
2053  const clang::PrintingPolicy &Policy =
2054  Actions.getASTContext().getPrintingPolicy();
2055 
2056  switch (Tok.getKind()) {
2057  case tok::identifier: // foo::bar
2058  case tok::coloncolon: // ::foo::bar
2059  llvm_unreachable("Annotation token should already be formed!");
2060  default:
2061  llvm_unreachable("Not a simple-type-specifier token!");
2062 
2063  // type-name
2064  case tok::annot_typename: {
2065  if (getTypeAnnotation(Tok))
2066  DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
2067  getTypeAnnotation(Tok), Policy);
2068  else
2069  DS.SetTypeSpecError();
2070 
2071  DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2072  ConsumeAnnotationToken();
2073 
2074  DS.Finish(Actions, Policy);
2075  return;
2076  }
2077 
2078  // builtin types
2079  case tok::kw_short:
2080  DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID, Policy);
2081  break;
2082  case tok::kw_long:
2083  DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID, Policy);
2084  break;
2085  case tok::kw___int64:
2086  DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy);
2087  break;
2088  case tok::kw_signed:
2089  DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
2090  break;
2091  case tok::kw_unsigned:
2092  DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
2093  break;
2094  case tok::kw_void:
2095  DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
2096  break;
2097  case tok::kw_char:
2098  DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
2099  break;
2100  case tok::kw_int:
2101  DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
2102  break;
2103  case tok::kw___int128:
2104  DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
2105  break;
2106  case tok::kw_half:
2107  DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
2108  break;
2109  case tok::kw_float:
2110  DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
2111  break;
2112  case tok::kw_double:
2113  DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
2114  break;
2115  case tok::kw__Float16:
2116  DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy);
2117  break;
2118  case tok::kw___float128:
2119  DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
2120  break;
2121  case tok::kw_wchar_t:
2122  DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
2123  break;
2124  case tok::kw_char8_t:
2125  DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy);
2126  break;
2127  case tok::kw_char16_t:
2128  DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
2129  break;
2130  case tok::kw_char32_t:
2131  DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
2132  break;
2133  case tok::kw_bool:
2134  DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
2135  break;
2136 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
2137  case tok::kw_##ImgType##_t: \
2138  DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID, \
2139  Policy); \
2140  break;
2141 #include "clang/Basic/OpenCLImageTypes.def"
2142 
2143  case tok::annot_decltype:
2144  case tok::kw_decltype:
2145  DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
2146  return DS.Finish(Actions, Policy);
2147 
2148  // GNU typeof support.
2149  case tok::kw_typeof:
2150  ParseTypeofSpecifier(DS);
2151  DS.Finish(Actions, Policy);
2152  return;
2153  }
2154  ConsumeAnyToken();
2155  DS.SetRangeEnd(PrevTokLocation);
2156  DS.Finish(Actions, Policy);
2157 }
2158 
2159 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
2160 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
2161 /// e.g., "const short int". Note that the DeclSpec is *not* finished
2162 /// by parsing the type-specifier-seq, because these sequences are
2163 /// typically followed by some form of declarator. Returns true and
2164 /// emits diagnostics if this is not a type-specifier-seq, false
2165 /// otherwise.
2166 ///
2167 /// type-specifier-seq: [C++ 8.1]
2168 /// type-specifier type-specifier-seq[opt]
2169 ///
2170 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
2171  ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_type_specifier);
2172  DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
2173  return false;
2174 }
2175 
2176 /// Finish parsing a C++ unqualified-id that is a template-id of
2177 /// some form.
2178 ///
2179 /// This routine is invoked when a '<' is encountered after an identifier or
2180 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
2181 /// whether the unqualified-id is actually a template-id. This routine will
2182 /// then parse the template arguments and form the appropriate template-id to
2183 /// return to the caller.
2184 ///
2185 /// \param SS the nested-name-specifier that precedes this template-id, if
2186 /// we're actually parsing a qualified-id.
2187 ///
2188 /// \param Name for constructor and destructor names, this is the actual
2189 /// identifier that may be a template-name.
2190 ///
2191 /// \param NameLoc the location of the class-name in a constructor or
2192 /// destructor.
2193 ///
2194 /// \param EnteringContext whether we're entering the scope of the
2195 /// nested-name-specifier.
2196 ///
2197 /// \param ObjectType if this unqualified-id occurs within a member access
2198 /// expression, the type of the base object whose member is being accessed.
2199 ///
2200 /// \param Id as input, describes the template-name or operator-function-id
2201 /// that precedes the '<'. If template arguments were parsed successfully,
2202 /// will be updated with the template-id.
2203 ///
2204 /// \param AssumeTemplateId When true, this routine will assume that the name
2205 /// refers to a template without performing name lookup to verify.
2206 ///
2207 /// \returns true if a parse error occurred, false otherwise.
2208 bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
2209  SourceLocation TemplateKWLoc,
2210  IdentifierInfo *Name,
2211  SourceLocation NameLoc,
2212  bool EnteringContext,
2213  ParsedType ObjectType,
2214  UnqualifiedId &Id,
2215  bool AssumeTemplateId) {
2216  assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
2217 
2218  TemplateTy Template;
2220  switch (Id.getKind()) {
2224  if (AssumeTemplateId) {
2225  // We defer the injected-class-name checks until we've found whether
2226  // this template-id is used to form a nested-name-specifier or not.
2227  TNK = Actions.ActOnDependentTemplateName(
2228  getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
2229  Template, /*AllowInjectedClassName*/ true);
2230  if (TNK == TNK_Non_template)
2231  return true;
2232  } else {
2233  bool MemberOfUnknownSpecialization;
2234  TNK = Actions.isTemplateName(getCurScope(), SS,
2235  TemplateKWLoc.isValid(), Id,
2236  ObjectType, EnteringContext, Template,
2237  MemberOfUnknownSpecialization);
2238  // If lookup found nothing but we're assuming that this is a template
2239  // name, double-check that makes sense syntactically before committing
2240  // to it.
2241  if (TNK == TNK_Undeclared_template &&
2242  isTemplateArgumentList(0) == TPResult::False)
2243  return false;
2244 
2245  if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
2246  ObjectType && isTemplateArgumentList(0) == TPResult::True) {
2247  // We have something like t->getAs<T>(), where getAs is a
2248  // member of an unknown specialization. However, this will only
2249  // parse correctly as a template, so suggest the keyword 'template'
2250  // before 'getAs' and treat this as a dependent template name.
2251  std::string Name;
2253  Name = Id.Identifier->getName();
2254  else {
2255  Name = "operator ";
2258  else
2259  Name += Id.Identifier->getName();
2260  }
2261  Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
2262  << Name
2263  << FixItHint::CreateInsertion(Id.StartLocation, "template ");
2264  TNK = Actions.ActOnDependentTemplateName(
2265  getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
2266  Template, /*AllowInjectedClassName*/ true);
2267  if (TNK == TNK_Non_template)
2268  return true;
2269  }
2270  }
2271  break;
2272 
2275  bool MemberOfUnknownSpecialization;
2276  TemplateName.setIdentifier(Name, NameLoc);
2277  TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2278  TemplateName, ObjectType,
2279  EnteringContext, Template,
2280  MemberOfUnknownSpecialization);
2281  break;
2282  }
2283 
2286  bool MemberOfUnknownSpecialization;
2287  TemplateName.setIdentifier(Name, NameLoc);
2288  if (ObjectType) {
2289  TNK = Actions.ActOnDependentTemplateName(
2290  getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
2291  EnteringContext, Template, /*AllowInjectedClassName*/ true);
2292  if (TNK == TNK_Non_template)
2293  return true;
2294  } else {
2295  TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2296  TemplateName, ObjectType,
2297  EnteringContext, Template,
2298  MemberOfUnknownSpecialization);
2299 
2300  if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
2301  Diag(NameLoc, diag::err_destructor_template_id)
2302  << Name << SS.getRange();
2303  return true;
2304  }
2305  }
2306  break;
2307  }
2308 
2309  default:
2310  return false;
2311  }
2312 
2313  if (TNK == TNK_Non_template)
2314  return false;
2315 
2316  // Parse the enclosed template argument list.
2317  SourceLocation LAngleLoc, RAngleLoc;
2318  TemplateArgList TemplateArgs;
2319  if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs,
2320  RAngleLoc))
2321  return true;
2322 
2326  // Form a parsed representation of the template-id to be stored in the
2327  // UnqualifiedId.
2328 
2329  // FIXME: Store name for literal operator too.
2330  IdentifierInfo *TemplateII =
2332  : nullptr;
2333  OverloadedOperatorKind OpKind =
2335  ? OO_None
2337 
2339  SS, TemplateKWLoc, Id.StartLocation, TemplateII, OpKind, Template, TNK,
2340  LAngleLoc, RAngleLoc, TemplateArgs, TemplateIds);
2341 
2342  Id.setTemplateId(TemplateId);
2343  return false;
2344  }
2345 
2346  // Bundle the template arguments together.
2347  ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
2348 
2349  // Constructor and destructor names.
2351  getCurScope(), SS, TemplateKWLoc, Template, Name, NameLoc, LAngleLoc,
2352  TemplateArgsPtr, RAngleLoc, /*IsCtorOrDtorName=*/true);
2353  if (Type.isInvalid())
2354  return true;
2355 
2357  Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
2358  else
2359  Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
2360 
2361  return false;
2362 }
2363 
2364 /// Parse an operator-function-id or conversion-function-id as part
2365 /// of a C++ unqualified-id.
2366 ///
2367 /// This routine is responsible only for parsing the operator-function-id or
2368 /// conversion-function-id; it does not handle template arguments in any way.
2369 ///
2370 /// \code
2371 /// operator-function-id: [C++ 13.5]
2372 /// 'operator' operator
2373 ///
2374 /// operator: one of
2375 /// new delete new[] delete[]
2376 /// + - * / % ^ & | ~
2377 /// ! = < > += -= *= /= %=
2378 /// ^= &= |= << >> >>= <<= == !=
2379 /// <= >= && || ++ -- , ->* ->
2380 /// () [] <=>
2381 ///
2382 /// conversion-function-id: [C++ 12.3.2]
2383 /// operator conversion-type-id
2384 ///
2385 /// conversion-type-id:
2386 /// type-specifier-seq conversion-declarator[opt]
2387 ///
2388 /// conversion-declarator:
2389 /// ptr-operator conversion-declarator[opt]
2390 /// \endcode
2391 ///
2392 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2393 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2394 ///
2395 /// \param EnteringContext whether we are entering the scope of the
2396 /// nested-name-specifier.
2397 ///
2398 /// \param ObjectType if this unqualified-id occurs within a member access
2399 /// expression, the type of the base object whose member is being accessed.
2400 ///
2401 /// \param Result on a successful parse, contains the parsed unqualified-id.
2402 ///
2403 /// \returns true if parsing fails, false otherwise.
2404 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
2405  ParsedType ObjectType,
2406  UnqualifiedId &Result) {
2407  assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
2408 
2409  // Consume the 'operator' keyword.
2410  SourceLocation KeywordLoc = ConsumeToken();
2411 
2412  // Determine what kind of operator name we have.
2413  unsigned SymbolIdx = 0;
2414  SourceLocation SymbolLocations[3];
2416  switch (Tok.getKind()) {
2417  case tok::kw_new:
2418  case tok::kw_delete: {
2419  bool isNew = Tok.getKind() == tok::kw_new;
2420  // Consume the 'new' or 'delete'.
2421  SymbolLocations[SymbolIdx++] = ConsumeToken();
2422  // Check for array new/delete.
2423  if (Tok.is(tok::l_square) &&
2424  (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
2425  // Consume the '[' and ']'.
2426  BalancedDelimiterTracker T(*this, tok::l_square);
2427  T.consumeOpen();
2428  T.consumeClose();
2429  if (T.getCloseLocation().isInvalid())
2430  return true;
2431 
2432  SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2433  SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2434  Op = isNew? OO_Array_New : OO_Array_Delete;
2435  } else {
2436  Op = isNew? OO_New : OO_Delete;
2437  }
2438  break;
2439  }
2440 
2441 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2442  case tok::Token: \
2443  SymbolLocations[SymbolIdx++] = ConsumeToken(); \
2444  Op = OO_##Name; \
2445  break;
2446 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2447 #include "clang/Basic/OperatorKinds.def"
2448 
2449  case tok::l_paren: {
2450  // Consume the '(' and ')'.
2451  BalancedDelimiterTracker T(*this, tok::l_paren);
2452  T.consumeOpen();
2453  T.consumeClose();
2454  if (T.getCloseLocation().isInvalid())
2455  return true;
2456 
2457  SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2458  SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2459  Op = OO_Call;
2460  break;
2461  }
2462 
2463  case tok::l_square: {
2464  // Consume the '[' and ']'.
2465  BalancedDelimiterTracker T(*this, tok::l_square);
2466  T.consumeOpen();
2467  T.consumeClose();
2468  if (T.getCloseLocation().isInvalid())
2469  return true;
2470 
2471  SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2472  SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2473  Op = OO_Subscript;
2474  break;
2475  }
2476 
2477  case tok::code_completion: {
2478  // Code completion for the operator name.
2480  cutOffParsing();
2481  // Don't try to parse any further.
2482  return true;
2483  }
2484 
2485  default:
2486  break;
2487  }
2488 
2489  if (Op != OO_None) {
2490  // We have parsed an operator-function-id.
2491  Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2492  return false;
2493  }
2494 
2495  // Parse a literal-operator-id.
2496  //
2497  // literal-operator-id: C++11 [over.literal]
2498  // operator string-literal identifier
2499  // operator user-defined-string-literal
2500 
2501  if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2502  Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2503 
2504  SourceLocation DiagLoc;
2505  unsigned DiagId = 0;
2506 
2507  // We're past translation phase 6, so perform string literal concatenation
2508  // before checking for "".
2509  SmallVector<Token, 4> Toks;
2511  while (isTokenStringLiteral()) {
2512  if (!Tok.is(tok::string_literal) && !DiagId) {
2513  // C++11 [over.literal]p1:
2514  // The string-literal or user-defined-string-literal in a
2515  // literal-operator-id shall have no encoding-prefix [...].
2516  DiagLoc = Tok.getLocation();
2517  DiagId = diag::err_literal_operator_string_prefix;
2518  }
2519  Toks.push_back(Tok);
2520  TokLocs.push_back(ConsumeStringToken());
2521  }
2522 
2523  StringLiteralParser Literal(Toks, PP);
2524  if (Literal.hadError)
2525  return true;
2526 
2527  // Grab the literal operator's suffix, which will be either the next token
2528  // or a ud-suffix from the string literal.
2529  IdentifierInfo *II = nullptr;
2530  SourceLocation SuffixLoc;
2531  if (!Literal.getUDSuffix().empty()) {
2532  II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2533  SuffixLoc =
2535  Literal.getUDSuffixOffset(),
2536  PP.getSourceManager(), getLangOpts());
2537  } else if (Tok.is(tok::identifier)) {
2538  II = Tok.getIdentifierInfo();
2539  SuffixLoc = ConsumeToken();
2540  TokLocs.push_back(SuffixLoc);
2541  } else {
2542  Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
2543  return true;
2544  }
2545 
2546  // The string literal must be empty.
2547  if (!Literal.GetString().empty() || Literal.Pascal) {
2548  // C++11 [over.literal]p1:
2549  // The string-literal or user-defined-string-literal in a
2550  // literal-operator-id shall [...] contain no characters
2551  // other than the implicit terminating '\0'.
2552  DiagLoc = TokLocs.front();
2553  DiagId = diag::err_literal_operator_string_not_empty;
2554  }
2555 
2556  if (DiagId) {
2557  // This isn't a valid literal-operator-id, but we think we know
2558  // what the user meant. Tell them what they should have written.
2559  SmallString<32> Str;
2560  Str += "\"\"";
2561  Str += II->getName();
2562  Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2563  SourceRange(TokLocs.front(), TokLocs.back()), Str);
2564  }
2565 
2566  Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2567 
2568  return Actions.checkLiteralOperatorId(SS, Result);
2569  }
2570 
2571  // Parse a conversion-function-id.
2572  //
2573  // conversion-function-id: [C++ 12.3.2]
2574  // operator conversion-type-id
2575  //
2576  // conversion-type-id:
2577  // type-specifier-seq conversion-declarator[opt]
2578  //
2579  // conversion-declarator:
2580  // ptr-operator conversion-declarator[opt]
2581 
2582  // Parse the type-specifier-seq.
2583  DeclSpec DS(AttrFactory);
2584  if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
2585  return true;
2586 
2587  // Parse the conversion-declarator, which is merely a sequence of
2588  // ptr-operators.
2590  ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
2591 
2592  // Finish up the type.
2593  TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
2594  if (Ty.isInvalid())
2595  return true;
2596 
2597  // Note that this is a conversion-function-id.
2598  Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2599  D.getSourceRange().getEnd());
2600  return false;
2601 }
2602 
2603 /// Parse a C++ unqualified-id (or a C identifier), which describes the
2604 /// name of an entity.
2605 ///
2606 /// \code
2607 /// unqualified-id: [C++ expr.prim.general]
2608 /// identifier
2609 /// operator-function-id
2610 /// conversion-function-id
2611 /// [C++0x] literal-operator-id [TODO]
2612 /// ~ class-name
2613 /// template-id
2614 ///
2615 /// \endcode
2616 ///
2617 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2618 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2619 ///
2620 /// \param EnteringContext whether we are entering the scope of the
2621 /// nested-name-specifier.
2622 ///
2623 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2624 ///
2625 /// \param AllowConstructorName whether we allow parsing a constructor name.
2626 ///
2627 /// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
2628 ///
2629 /// \param ObjectType if this unqualified-id occurs within a member access
2630 /// expression, the type of the base object whose member is being accessed.
2631 ///
2632 /// \param Result on a successful parse, contains the parsed unqualified-id.
2633 ///
2634 /// \returns true if parsing fails, false otherwise.
2635 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
2636  bool AllowDestructorName,
2637  bool AllowConstructorName,
2638  bool AllowDeductionGuide,
2639  ParsedType ObjectType,
2640  SourceLocation *TemplateKWLoc,
2641  UnqualifiedId &Result) {
2642  if (TemplateKWLoc)
2643  *TemplateKWLoc = SourceLocation();
2644 
2645  // Handle 'A::template B'. This is for template-ids which have not
2646  // already been annotated by ParseOptionalCXXScopeSpecifier().
2647  bool TemplateSpecified = false;
2648  if (Tok.is(tok::kw_template)) {
2649  if (TemplateKWLoc && (ObjectType || SS.isSet())) {
2650  TemplateSpecified = true;
2651  *TemplateKWLoc = ConsumeToken();
2652  } else {
2653  SourceLocation TemplateLoc = ConsumeToken();
2654  Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2655  << FixItHint::CreateRemoval(TemplateLoc);
2656  }
2657  }
2658 
2659  // unqualified-id:
2660  // identifier
2661  // template-id (when it hasn't already been annotated)
2662  if (Tok.is(tok::identifier)) {
2663  // Consume the identifier.
2664  IdentifierInfo *Id = Tok.getIdentifierInfo();
2665  SourceLocation IdLoc = ConsumeToken();
2666 
2667  if (!getLangOpts().CPlusPlus) {
2668  // If we're not in C++, only identifiers matter. Record the
2669  // identifier and return.
2670  Result.setIdentifier(Id, IdLoc);
2671  return false;
2672  }
2673 
2675  if (AllowConstructorName &&
2676  Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2677  // We have parsed a constructor name.
2678  ParsedType Ty = Actions.getConstructorName(*Id, IdLoc, getCurScope(), SS,
2679  EnteringContext);
2680  if (!Ty)
2681  return true;
2682  Result.setConstructorName(Ty, IdLoc, IdLoc);
2683  } else if (getLangOpts().CPlusPlus17 &&
2684  AllowDeductionGuide && SS.isEmpty() &&
2685  Actions.isDeductionGuideName(getCurScope(), *Id, IdLoc,
2686  &TemplateName)) {
2687  // We have parsed a template-name naming a deduction guide.
2688  Result.setDeductionGuideName(TemplateName, IdLoc);
2689  } else {
2690  // We have parsed an identifier.
2691  Result.setIdentifier(Id, IdLoc);
2692  }
2693 
2694  // If the next token is a '<', we may have a template.
2695  TemplateTy Template;
2696  if (Tok.is(tok::less))
2697  return ParseUnqualifiedIdTemplateId(
2698  SS, TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Id, IdLoc,
2699  EnteringContext, ObjectType, Result, TemplateSpecified);
2700  else if (TemplateSpecified &&
2702  getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2703  EnteringContext, Template,
2704  /*AllowInjectedClassName*/ true) == TNK_Non_template)
2705  return true;
2706 
2707  return false;
2708  }
2709 
2710  // unqualified-id:
2711  // template-id (already parsed and annotated)
2712  if (Tok.is(tok::annot_template_id)) {
2713  TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2714 
2715  // If the template-name names the current class, then this is a constructor
2716  if (AllowConstructorName && TemplateId->Name &&
2717  Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2718  if (SS.isSet()) {
2719  // C++ [class.qual]p2 specifies that a qualified template-name
2720  // is taken as the constructor name where a constructor can be
2721  // declared. Thus, the template arguments are extraneous, so
2722  // complain about them and remove them entirely.
2723  Diag(TemplateId->TemplateNameLoc,
2724  diag::err_out_of_line_constructor_template_id)
2725  << TemplateId->Name
2727  SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2728  ParsedType Ty = Actions.getConstructorName(
2729  *TemplateId->Name, TemplateId->TemplateNameLoc, getCurScope(), SS,
2730  EnteringContext);
2731  if (!Ty)
2732  return true;
2733  Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2734  TemplateId->RAngleLoc);
2735  ConsumeAnnotationToken();
2736  return false;
2737  }
2738 
2739  Result.setConstructorTemplateId(TemplateId);
2740  ConsumeAnnotationToken();
2741  return false;
2742  }
2743 
2744  // We have already parsed a template-id; consume the annotation token as
2745  // our unqualified-id.
2746  Result.setTemplateId(TemplateId);
2747  SourceLocation TemplateLoc = TemplateId->TemplateKWLoc;
2748  if (TemplateLoc.isValid()) {
2749  if (TemplateKWLoc && (ObjectType || SS.isSet()))
2750  *TemplateKWLoc = TemplateLoc;
2751  else
2752  Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2753  << FixItHint::CreateRemoval(TemplateLoc);
2754  }
2755  ConsumeAnnotationToken();
2756  return false;
2757  }
2758 
2759  // unqualified-id:
2760  // operator-function-id
2761  // conversion-function-id
2762  if (Tok.is(tok::kw_operator)) {
2763  if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2764  return true;
2765 
2766  // If we have an operator-function-id or a literal-operator-id and the next
2767  // token is a '<', we may have a
2768  //
2769  // template-id:
2770  // operator-function-id < template-argument-list[opt] >
2771  TemplateTy Template;
2774  Tok.is(tok::less))
2775  return ParseUnqualifiedIdTemplateId(
2776  SS, TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), nullptr,
2777  SourceLocation(), EnteringContext, ObjectType, Result,
2778  TemplateSpecified);
2779  else if (TemplateSpecified &&
2781  getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2782  EnteringContext, Template,
2783  /*AllowInjectedClassName*/ true) == TNK_Non_template)
2784  return true;
2785 
2786  return false;
2787  }
2788 
2789  if (getLangOpts().CPlusPlus &&
2790  (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2791  // C++ [expr.unary.op]p10:
2792  // There is an ambiguity in the unary-expression ~X(), where X is a
2793  // class-name. The ambiguity is resolved in favor of treating ~ as a
2794  // unary complement rather than treating ~X as referring to a destructor.
2795 
2796  // Parse the '~'.
2797  SourceLocation TildeLoc = ConsumeToken();
2798 
2799  if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2800  DeclSpec DS(AttrFactory);
2801  SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2802  if (ParsedType Type =
2803  Actions.getDestructorTypeForDecltype(DS, ObjectType)) {
2804  Result.setDestructorName(TildeLoc, Type, EndLoc);
2805  return false;
2806  }
2807  return true;
2808  }
2809 
2810  // Parse the class-name.
2811  if (Tok.isNot(tok::identifier)) {
2812  Diag(Tok, diag::err_destructor_tilde_identifier);
2813  return true;
2814  }
2815 
2816  // If the user wrote ~T::T, correct it to T::~T.
2817  DeclaratorScopeObj DeclScopeObj(*this, SS);
2818  if (!TemplateSpecified && NextToken().is(tok::coloncolon)) {
2819  // Don't let ParseOptionalCXXScopeSpecifier() "correct"
2820  // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
2821  // it will confuse this recovery logic.
2822  ColonProtectionRAIIObject ColonRAII(*this, false);
2823 
2824  if (SS.isSet()) {
2825  AnnotateScopeToken(SS, /*NewAnnotation*/true);
2826  SS.clear();
2827  }
2828  if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, EnteringContext))
2829  return true;
2830  if (SS.isNotEmpty())
2831  ObjectType = nullptr;
2832  if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
2833  !SS.isSet()) {
2834  Diag(TildeLoc, diag::err_destructor_tilde_scope);
2835  return true;
2836  }
2837 
2838  // Recover as if the tilde had been written before the identifier.
2839  Diag(TildeLoc, diag::err_destructor_tilde_scope)
2840  << FixItHint::CreateRemoval(TildeLoc)
2841  << FixItHint::CreateInsertion(Tok.getLocation(), "~");
2842 
2843  // Temporarily enter the scope for the rest of this function.
2844  if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
2845  DeclScopeObj.EnterDeclaratorScope();
2846  }
2847 
2848  // Parse the class-name (or template-name in a simple-template-id).
2849  IdentifierInfo *ClassName = Tok.getIdentifierInfo();
2850  SourceLocation ClassNameLoc = ConsumeToken();
2851 
2852  if (Tok.is(tok::less)) {
2853  Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
2854  return ParseUnqualifiedIdTemplateId(
2855  SS, TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), ClassName,
2856  ClassNameLoc, EnteringContext, ObjectType, Result, TemplateSpecified);
2857  }
2858 
2859  // Note that this is a destructor name.
2860  ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
2861  ClassNameLoc, getCurScope(),
2862  SS, ObjectType,
2863  EnteringContext);
2864  if (!Ty)
2865  return true;
2866 
2867  Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
2868  return false;
2869  }
2870 
2871  Diag(Tok, diag::err_expected_unqualified_id)
2872  << getLangOpts().CPlusPlus;
2873  return true;
2874 }
2875 
2876 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
2877 /// memory in a typesafe manner and call constructors.
2878 ///
2879 /// This method is called to parse the new expression after the optional :: has
2880 /// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
2881 /// is its location. Otherwise, "Start" is the location of the 'new' token.
2882 ///
2883 /// new-expression:
2884 /// '::'[opt] 'new' new-placement[opt] new-type-id
2885 /// new-initializer[opt]
2886 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2887 /// new-initializer[opt]
2888 ///
2889 /// new-placement:
2890 /// '(' expression-list ')'
2891 ///
2892 /// new-type-id:
2893 /// type-specifier-seq new-declarator[opt]
2894 /// [GNU] attributes type-specifier-seq new-declarator[opt]
2895 ///
2896 /// new-declarator:
2897 /// ptr-operator new-declarator[opt]
2898 /// direct-new-declarator
2899 ///
2900 /// new-initializer:
2901 /// '(' expression-list[opt] ')'
2902 /// [C++0x] braced-init-list
2903 ///
2904 ExprResult
2905 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
2906  assert(Tok.is(tok::kw_new) && "expected 'new' token");
2907  ConsumeToken(); // Consume 'new'
2908 
2909  // A '(' now can be a new-placement or the '(' wrapping the type-id in the
2910  // second form of new-expression. It can't be a new-type-id.
2911 
2912  ExprVector PlacementArgs;
2913  SourceLocation PlacementLParen, PlacementRParen;
2914 
2915  SourceRange TypeIdParens;
2916  DeclSpec DS(AttrFactory);
2917  Declarator DeclaratorInfo(DS, DeclaratorContext::CXXNewContext);
2918  if (Tok.is(tok::l_paren)) {
2919  // If it turns out to be a placement, we change the type location.
2920  BalancedDelimiterTracker T(*this, tok::l_paren);
2921  T.consumeOpen();
2922  PlacementLParen = T.getOpenLocation();
2923  if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
2924  SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2925  return ExprError();
2926  }
2927 
2928  T.consumeClose();
2929  PlacementRParen = T.getCloseLocation();
2930  if (PlacementRParen.isInvalid()) {
2931  SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2932  return ExprError();
2933  }
2934 
2935  if (PlacementArgs.empty()) {
2936  // Reset the placement locations. There was no placement.
2937  TypeIdParens = T.getRange();
2938  PlacementLParen = PlacementRParen = SourceLocation();
2939  } else {
2940  // We still need the type.
2941  if (Tok.is(tok::l_paren)) {
2942  BalancedDelimiterTracker T(*this, tok::l_paren);
2943  T.consumeOpen();
2944  MaybeParseGNUAttributes(DeclaratorInfo);
2945  ParseSpecifierQualifierList(DS);
2946  DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2947  ParseDeclarator(DeclaratorInfo);
2948  T.consumeClose();
2949  TypeIdParens = T.getRange();
2950  } else {
2951  MaybeParseGNUAttributes(DeclaratorInfo);
2952  if (ParseCXXTypeSpecifierSeq(DS))
2953  DeclaratorInfo.setInvalidType(true);
2954  else {
2955  DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2956  ParseDeclaratorInternal(DeclaratorInfo,
2957  &Parser::ParseDirectNewDeclarator);
2958  }
2959  }
2960  }
2961  } else {
2962  // A new-type-id is a simplified type-id, where essentially the
2963  // direct-declarator is replaced by a direct-new-declarator.
2964  MaybeParseGNUAttributes(DeclaratorInfo);
2965  if (ParseCXXTypeSpecifierSeq(DS))
2966  DeclaratorInfo.setInvalidType(true);
2967  else {
2968  DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2969  ParseDeclaratorInternal(DeclaratorInfo,
2970  &Parser::ParseDirectNewDeclarator);
2971  }
2972  }
2973  if (DeclaratorInfo.isInvalidType()) {
2974  SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2975  return ExprError();
2976  }
2977 
2979 
2980  if (Tok.is(tok::l_paren)) {
2981  SourceLocation ConstructorLParen, ConstructorRParen;
2982  ExprVector ConstructorArgs;
2983  BalancedDelimiterTracker T(*this, tok::l_paren);
2984  T.consumeOpen();
2985  ConstructorLParen = T.getOpenLocation();
2986  if (Tok.isNot(tok::r_paren)) {
2987  CommaLocsTy CommaLocs;
2988  auto RunSignatureHelp = [&]() {
2989  ParsedType TypeRep =
2990  Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
2991  QualType PreferredType = Actions.ProduceConstructorSignatureHelp(
2992  getCurScope(), TypeRep.get()->getCanonicalTypeInternal(),
2993  DeclaratorInfo.getEndLoc(), ConstructorArgs, ConstructorLParen);
2994  CalledSignatureHelp = true;
2995  return PreferredType;
2996  };
2997  if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] {
2998  PreferredType.enterFunctionArgument(Tok.getLocation(),
2999  RunSignatureHelp);
3000  })) {
3001  if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
3002  RunSignatureHelp();
3003  SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3004  return ExprError();
3005  }
3006  }
3007  T.consumeClose();
3008  ConstructorRParen = T.getCloseLocation();
3009  if (ConstructorRParen.isInvalid()) {
3010  SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3011  return ExprError();
3012  }
3013  Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
3014  ConstructorRParen,
3015  ConstructorArgs);
3016  } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
3017  Diag(Tok.getLocation(),
3018  diag::warn_cxx98_compat_generalized_initializer_lists);
3019  Initializer = ParseBraceInitializer();
3020  }
3021  if (Initializer.isInvalid())
3022  return Initializer;
3023 
3024  return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
3025  PlacementArgs, PlacementRParen,
3026  TypeIdParens, DeclaratorInfo, Initializer.get());
3027 }
3028 
3029 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
3030 /// passed to ParseDeclaratorInternal.
3031 ///
3032 /// direct-new-declarator:
3033 /// '[' expression[opt] ']'
3034 /// direct-new-declarator '[' constant-expression ']'
3035 ///
3036 void Parser::ParseDirectNewDeclarator(Declarator &D) {
3037  // Parse the array dimensions.
3038  bool First = true;
3039  while (Tok.is(tok::l_square)) {
3040  // An array-size expression can't start with a lambda.
3041  if (CheckProhibitedCXX11Attribute())
3042  continue;
3043 
3044  BalancedDelimiterTracker T(*this, tok::l_square);
3045  T.consumeOpen();
3046 
3047  ExprResult Size =
3048  First ? (Tok.is(tok::r_square) ? ExprResult() : ParseExpression())
3050  if (Size.isInvalid()) {
3051  // Recover
3052  SkipUntil(tok::r_square, StopAtSemi);
3053  return;
3054  }
3055  First = false;
3056 
3057  T.consumeClose();
3058 
3059  // Attributes here appertain to the array type. C++11 [expr.new]p5.
3060  ParsedAttributes Attrs(AttrFactory);
3061  MaybeParseCXX11Attributes(Attrs);
3062 
3064  /*isStatic=*/false, /*isStar=*/false,
3065  Size.get(), T.getOpenLocation(),
3066  T.getCloseLocation()),
3067  std::move(Attrs), T.getCloseLocation());
3068 
3069  if (T.getCloseLocation().isInvalid())
3070  return;
3071  }
3072 }
3073 
3074 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
3075 /// This ambiguity appears in the syntax of the C++ new operator.
3076 ///
3077 /// new-expression:
3078 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3079 /// new-initializer[opt]
3080 ///
3081 /// new-placement:
3082 /// '(' expression-list ')'
3083 ///
3084 bool Parser::ParseExpressionListOrTypeId(
3085  SmallVectorImpl<Expr*> &PlacementArgs,
3086  Declarator &D) {
3087  // The '(' was already consumed.
3088  if (isTypeIdInParens()) {
3089  ParseSpecifierQualifierList(D.getMutableDeclSpec());
3091  ParseDeclarator(D);
3092  return D.isInvalidType();
3093  }
3094 
3095  // It's not a type, it has to be an expression list.
3096  // Discard the comma locations - ActOnCXXNew has enough parameters.
3097  CommaLocsTy CommaLocs;
3098  return ParseExpressionList(PlacementArgs, CommaLocs);
3099 }
3100 
3101 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
3102 /// to free memory allocated by new.
3103 ///
3104 /// This method is called to parse the 'delete' expression after the optional
3105 /// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
3106 /// and "Start" is its location. Otherwise, "Start" is the location of the
3107 /// 'delete' token.
3108 ///
3109 /// delete-expression:
3110 /// '::'[opt] 'delete' cast-expression
3111 /// '::'[opt] 'delete' '[' ']' cast-expression
3112 ExprResult
3113 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
3114  assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
3115  ConsumeToken(); // Consume 'delete'
3116 
3117  // Array delete?
3118  bool ArrayDelete = false;
3119  if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
3120  // C++11 [expr.delete]p1:
3121  // Whenever the delete keyword is followed by empty square brackets, it
3122  // shall be interpreted as [array delete].
3123  // [Footnote: A lambda expression with a lambda-introducer that consists
3124  // of empty square brackets can follow the delete keyword if
3125  // the lambda expression is enclosed in parentheses.]
3126 
3127  const Token Next = GetLookAheadToken(2);
3128 
3129  // Basic lookahead to check if we have a lambda expression.
3130  if (Next.isOneOf(tok::l_brace, tok::less) ||
3131  (Next.is(tok::l_paren) &&
3132  (GetLookAheadToken(3).is(tok::r_paren) ||
3133  (GetLookAheadToken(3).is(tok::identifier) &&
3134  GetLookAheadToken(4).is(tok::identifier))))) {
3135  TentativeParsingAction TPA(*this);
3136  SourceLocation LSquareLoc = Tok.getLocation();
3137  SourceLocation RSquareLoc = NextToken().getLocation();
3138 
3139  // SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this
3140  // case.
3141  SkipUntil({tok::l_brace, tok::less}, StopBeforeMatch);
3142  SourceLocation RBraceLoc;
3143  bool EmitFixIt = false;
3144  if (Tok.is(tok::l_brace)) {
3145  ConsumeBrace();
3146  SkipUntil(tok::r_brace, StopBeforeMatch);
3147  RBraceLoc = Tok.getLocation();
3148  EmitFixIt = true;
3149  }
3150 
3151  TPA.Revert();
3152 
3153  if (EmitFixIt)
3154  Diag(Start, diag::err_lambda_after_delete)
3155  << SourceRange(Start, RSquareLoc)
3156  << FixItHint::CreateInsertion(LSquareLoc, "(")
3159  RBraceLoc, 0, Actions.getSourceManager(), getLangOpts()),
3160  ")");
3161  else
3162  Diag(Start, diag::err_lambda_after_delete)
3163  << SourceRange(Start, RSquareLoc);
3164 
3165  // Warn that the non-capturing lambda isn't surrounded by parentheses
3166  // to disambiguate it from 'delete[]'.
3167  ExprResult Lambda = ParseLambdaExpression();
3168  if (Lambda.isInvalid())
3169  return ExprError();
3170 
3171  // Evaluate any postfix expressions used on the lambda.
3172  Lambda = ParsePostfixExpressionSuffix(Lambda);
3173  if (Lambda.isInvalid())
3174  return ExprError();
3175  return Actions.ActOnCXXDelete(Start, UseGlobal, /*ArrayForm=*/false,
3176  Lambda.get());
3177  }
3178 
3179  ArrayDelete = true;
3180  BalancedDelimiterTracker T(*this, tok::l_square);
3181 
3182  T.consumeOpen();
3183  T.consumeClose();
3184  if (T.getCloseLocation().isInvalid())
3185  return ExprError();
3186  }
3187 
3188  ExprResult Operand(ParseCastExpression(false));
3189  if (Operand.isInvalid())
3190  return Operand;
3191 
3192  return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
3193 }
3194 
3196  switch (kind) {
3197  default: llvm_unreachable("Not a known type trait");
3198 #define TYPE_TRAIT_1(Spelling, Name, Key) \
3199 case tok::kw_ ## Spelling: return UTT_ ## Name;
3200 #define TYPE_TRAIT_2(Spelling, Name, Key) \
3201 case tok::kw_ ## Spelling: return BTT_ ## Name;
3202 #include "clang/Basic/TokenKinds.def"
3203 #define TYPE_TRAIT_N(Spelling, Name, Key) \
3204  case tok::kw_ ## Spelling: return TT_ ## Name;
3205 #include "clang/Basic/TokenKinds.def"
3206  }
3207 }
3208 
3210  switch(kind) {
3211  default: llvm_unreachable("Not a known binary type trait");
3212  case tok::kw___array_rank: return ATT_ArrayRank;
3213  case tok::kw___array_extent: return ATT_ArrayExtent;
3214  }
3215 }
3216 
3218  switch(kind) {
3219  default: llvm_unreachable("Not a known unary expression trait.");
3220  case tok::kw___is_lvalue_expr: return ET_IsLValueExpr;
3221  case tok::kw___is_rvalue_expr: return ET_IsRValueExpr;
3222  }
3223 }
3224 
3226  switch (kind) {
3227  default: llvm_unreachable("Not a known type trait");
3228 #define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
3229 #include "clang/Basic/TokenKinds.def"
3230  }
3231 }
3232 
3233 /// Parse the built-in type-trait pseudo-functions that allow
3234 /// implementation of the TR1/C++11 type traits templates.
3235 ///
3236 /// primary-expression:
3237 /// unary-type-trait '(' type-id ')'
3238 /// binary-type-trait '(' type-id ',' type-id ')'
3239 /// type-trait '(' type-id-seq ')'
3240 ///
3241 /// type-id-seq:
3242 /// type-id ...[opt] type-id-seq[opt]
3243 ///
3244 ExprResult Parser::ParseTypeTrait() {
3245  tok::TokenKind Kind = Tok.getKind();
3246  unsigned Arity = TypeTraitArity(Kind);
3247 
3248  SourceLocation Loc = ConsumeToken();
3249 
3250  BalancedDelimiterTracker Parens(*this, tok::l_paren);
3251  if (Parens.expectAndConsume())
3252  return ExprError();
3253 
3255  do {
3256  // Parse the next type.
3257  TypeResult Ty = ParseTypeName();
3258  if (Ty.isInvalid()) {
3259  Parens.skipToEnd();
3260  return ExprError();
3261  }
3262 
3263  // Parse the ellipsis, if present.
3264  if (Tok.is(tok::ellipsis)) {
3265  Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
3266  if (Ty.isInvalid()) {
3267  Parens.skipToEnd();
3268  return ExprError();
3269  }
3270  }
3271 
3272  // Add this type to the list of arguments.
3273  Args.push_back(Ty.get());
3274  } while (TryConsumeToken(tok::comma));
3275 
3276  if (Parens.consumeClose())
3277  return ExprError();
3278 
3279  SourceLocation EndLoc = Parens.getCloseLocation();
3280 
3281  if (Arity && Args.size() != Arity) {
3282  Diag(EndLoc, diag::err_type_trait_arity)
3283  << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
3284  return ExprError();
3285  }
3286 
3287  if (!Arity && Args.empty()) {
3288  Diag(EndLoc, diag::err_type_trait_arity)
3289  << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
3290  return ExprError();
3291  }
3292 
3293  return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
3294 }
3295 
3296 /// ParseArrayTypeTrait - Parse the built-in array type-trait
3297 /// pseudo-functions.
3298 ///
3299 /// primary-expression:
3300 /// [Embarcadero] '__array_rank' '(' type-id ')'
3301 /// [Embarcadero] '__array_extent' '(' type-id ',' expression ')'
3302 ///
3303 ExprResult Parser::ParseArrayTypeTrait() {
3305  SourceLocation Loc = ConsumeToken();
3306 
3307  BalancedDelimiterTracker T(*this, tok::l_paren);
3308  if (T.expectAndConsume())
3309  return ExprError();
3310 
3311  TypeResult Ty = ParseTypeName();
3312  if (Ty.isInvalid()) {
3313  SkipUntil(tok::comma, StopAtSemi);
3314  SkipUntil(tok::r_paren, StopAtSemi);
3315  return ExprError();
3316  }
3317 
3318  switch (ATT) {
3319  case ATT_ArrayRank: {
3320  T.consumeClose();
3321  return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
3322  T.getCloseLocation());
3323  }
3324  case ATT_ArrayExtent: {
3325  if (ExpectAndConsume(tok::comma)) {
3326  SkipUntil(tok::r_paren, StopAtSemi);
3327  return ExprError();
3328  }
3329 
3330  ExprResult DimExpr = ParseExpression();
3331  T.consumeClose();
3332 
3333  return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
3334  T.getCloseLocation());
3335  }
3336  }
3337  llvm_unreachable("Invalid ArrayTypeTrait!");
3338 }
3339 
3340 /// ParseExpressionTrait - Parse built-in expression-trait
3341 /// pseudo-functions like __is_lvalue_expr( xxx ).
3342 ///
3343 /// primary-expression:
3344 /// [Embarcadero] expression-trait '(' expression ')'
3345 ///
3346 ExprResult Parser::ParseExpressionTrait() {
3348  SourceLocation Loc = ConsumeToken();
3349 
3350  BalancedDelimiterTracker T(*this, tok::l_paren);
3351  if (T.expectAndConsume())
3352  return ExprError();
3353 
3355 
3356  T.consumeClose();
3357 
3358  return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
3359  T.getCloseLocation());
3360 }
3361 
3362 
3363 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
3364 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
3365 /// based on the context past the parens.
3366 ExprResult
3367 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
3368  ParsedType &CastTy,
3369  BalancedDelimiterTracker &Tracker,
3370  ColonProtectionRAIIObject &ColonProt) {
3371  assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
3372  assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
3373  assert(isTypeIdInParens() && "Not a type-id!");
3374 
3375  ExprResult Result(true);
3376  CastTy = nullptr;
3377 
3378  // We need to disambiguate a very ugly part of the C++ syntax:
3379  //
3380  // (T())x; - type-id
3381  // (T())*x; - type-id
3382  // (T())/x; - expression
3383  // (T()); - expression
3384  //
3385  // The bad news is that we cannot use the specialized tentative parser, since
3386  // it can only verify that the thing inside the parens can be parsed as
3387  // type-id, it is not useful for determining the context past the parens.
3388  //
3389  // The good news is that the parser can disambiguate this part without
3390  // making any unnecessary Action calls.
3391  //
3392  // It uses a scheme similar to parsing inline methods. The parenthesized
3393  // tokens are cached, the context that follows is determined (possibly by
3394  // parsing a cast-expression), and then we re-introduce the cached tokens
3395  // into the token stream and parse them appropriately.
3396 
3397  ParenParseOption ParseAs;
3398  CachedTokens Toks;
3399 
3400  // Store the tokens of the parentheses. We will parse them after we determine
3401  // the context that follows them.
3402  if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
3403  // We didn't find the ')' we expected.
3404  Tracker.consumeClose();
3405  return ExprError();
3406  }
3407 
3408  if (Tok.is(tok::l_brace)) {
3409  ParseAs = CompoundLiteral;
3410  } else {
3411  bool NotCastExpr;
3412  if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
3413  NotCastExpr = true;
3414  } else {
3415  // Try parsing the cast-expression that may follow.
3416  // If it is not a cast-expression, NotCastExpr will be true and no token
3417  // will be consumed.
3418  ColonProt.restore();
3419  Result = ParseCastExpression(false/*isUnaryExpression*/,
3420  false/*isAddressofOperand*/,
3421  NotCastExpr,
3422  // type-id has priority.
3423  IsTypeCast);
3424  }
3425 
3426  // If we parsed a cast-expression, it's really a type-id, otherwise it's
3427  // an expression.
3428  ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
3429  }
3430 
3431  // Create a fake EOF to mark end of Toks buffer.
3432  Token AttrEnd;
3433  AttrEnd.startToken();
3434  AttrEnd.setKind(tok::eof);
3435  AttrEnd.setLocation(Tok.getLocation());
3436  AttrEnd.setEofData(Toks.data());
3437  Toks.push_back(AttrEnd);
3438 
3439  // The current token should go after the cached tokens.
3440  Toks.push_back(Tok);
3441  // Re-enter the stored parenthesized tokens into the token stream, so we may
3442  // parse them now.
3443  PP.EnterTokenStream(Toks, /*DisableMacroExpansion*/ true,
3444  /*IsReinject*/ true);
3445  // Drop the current token and bring the first cached one. It's the same token
3446  // as when we entered this function.
3447  ConsumeAnyToken();
3448 
3449  if (ParseAs >= CompoundLiteral) {
3450  // Parse the type declarator.
3451  DeclSpec DS(AttrFactory);
3452  Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
3453  {
3454  ColonProtectionRAIIObject InnerColonProtection(*this);
3455  ParseSpecifierQualifierList(DS);
3456  ParseDeclarator(DeclaratorInfo);
3457  }
3458 
3459  // Match the ')'.
3460  Tracker.consumeClose();
3461  ColonProt.restore();
3462 
3463  // Consume EOF marker for Toks buffer.
3464  assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
3465  ConsumeAnyToken();
3466 
3467  if (ParseAs == CompoundLiteral) {
3468  ExprType = CompoundLiteral;
3469  if (DeclaratorInfo.isInvalidType())
3470  return ExprError();
3471 
3472  TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3473  return ParseCompoundLiteralExpression(Ty.get(),
3474  Tracker.getOpenLocation(),
3475  Tracker.getCloseLocation());
3476  }
3477 
3478  // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
3479  assert(ParseAs == CastExpr);
3480 
3481  if (DeclaratorInfo.isInvalidType())
3482  return ExprError();
3483 
3484  // Result is what ParseCastExpression returned earlier.
3485  if (!Result.isInvalid())
3486  Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
3487  DeclaratorInfo, CastTy,
3488  Tracker.getCloseLocation(), Result.get());
3489  return Result;
3490  }
3491 
3492  // Not a compound literal, and not followed by a cast-expression.
3493  assert(ParseAs == SimpleExpr);
3494 
3495  ExprType = SimpleExpr;
3496  Result = ParseExpression();
3497  if (!Result.isInvalid() && Tok.is(tok::r_paren))
3498  Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
3499  Tok.getLocation(), Result.get());
3500 
3501  // Match the ')'.
3502  if (Result.isInvalid()) {
3503  while (Tok.isNot(tok::eof))
3504  ConsumeAnyToken();
3505  assert(Tok.getEofData() == AttrEnd.getEofData());
3506  ConsumeAnyToken();
3507  return ExprError();
3508  }
3509 
3510  Tracker.consumeClose();
3511  // Consume EOF marker for Toks buffer.
3512  assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
3513  ConsumeAnyToken();
3514  return Result;
3515 }
3516 
3517 /// Parse a __builtin_bit_cast(T, E).
3518 ExprResult Parser::ParseBuiltinBitCast() {
3519  SourceLocation KWLoc = ConsumeToken();
3520 
3521  BalancedDelimiterTracker T(*this, tok::l_paren);
3522  if (T.expectAndConsume(diag::err_expected_lparen_after, "__builtin_bit_cast"))
3523  return ExprError();
3524 
3525  // Parse the common declaration-specifiers piece.
3526  DeclSpec DS(AttrFactory);
3527  ParseSpecifierQualifierList(DS);
3528 
3529  // Parse the abstract-declarator, if present.
3530  Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
3531  ParseDeclarator(DeclaratorInfo);
3532 
3533  if (ExpectAndConsume(tok::comma)) {
3534  Diag(Tok.getLocation(), diag::err_expected) << tok::comma;
3535  SkipUntil(tok::r_paren, StopAtSemi);
3536  return ExprError();
3537  }
3538 
3539  ExprResult Operand = ParseExpression();
3540 
3541  if (T.consumeClose())
3542  return ExprError();
3543 
3544  if (Operand.isInvalid() || DeclaratorInfo.isInvalidType())
3545  return ExprError();
3546 
3547  return Actions.ActOnBuiltinBitCastExpr(KWLoc, DeclaratorInfo, Operand,
3548  T.getCloseLocation());
3549 }
static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind)
Defines the clang::ASTContext interface.
void setConstructorName(ParsedType ClassType, SourceLocation ClassNameLoc, SourceLocation EndLoc)
Specify that this unqualified-id was parsed as a constructor name.
Definition: DeclSpec.h:1092
ConditionResult ActOnCondition(Scope *S, SourceLocation Loc, Expr *SubExpr, ConditionKind CK)
Definition: SemaExpr.cpp:17171
ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc, ParsedType LhsTy, Expr *DimExpr, SourceLocation RParen)
ActOnArrayTypeTrait - Parsed one of the binary type trait support pseudo-functions.
StringRef getUDSuffix() const
StringRef Identifier
Definition: Format.cpp:1756
ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc, Declarator &D, ParsedType &Ty, SourceLocation RParenLoc, Expr *CastExpr)
Definition: SemaExpr.cpp:6614
SourceLocation getLocWithOffset(int Offset) const
Return a source location with the specified offset from this SourceLocation.
no exception specification
PtrTy get() const
Definition: Ownership.h:80
ExprResult ParseExpression(TypeCastState isTypeCast=NotTypeCast)
Simple precedence-based parser for binary/ternary operators.
Definition: ParseExpr.cpp:122
void restore()
restore - This can be used to restore the state early, before the dtor is run.
A (possibly-)qualified type.
Definition: Type.h:643
Keeps information about an identifier in a nested-name-spec.
Definition: Sema.h:5665
This is a scope that corresponds to the parameters within a function prototype.
Definition: Scope.h:81
ConditionResult ActOnConditionVariable(Decl *ConditionVar, SourceLocation StmtLoc, ConditionKind CK)
static void tryConsumeLambdaSpecifierToken(Parser &P, SourceLocation &MutableLoc, SourceLocation &ConstexprLoc, SourceLocation &ConstevalLoc, SourceLocation &DeclEndLoc)
bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id)
SourceRange getSourceRange() const LLVM_READONLY
Return the source range that covers this unqualified-id.
Definition: DeclSpec.h:1144
static const TSS TSS_unsigned
Definition: DeclSpec.h:268
bool ActOnCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo, bool EnteringContext, CXXScopeSpec &SS, bool ErrorRecoveryLookup=false, bool *IsCorrectedToColon=nullptr, bool OnlyNamespace=false)
The parser has parsed a nested-name-specifier &#39;identifier::&#39;.
SourceLocation StartLocation
The location of the first token that describes this unqualified-id, which will be the location of the...
Definition: DeclSpec.h:1002
IdentifierInfo * Name
FIXME: Temporarily stores the name of a specialization.
static const TST TST_wchar
Definition: DeclSpec.h:275
ExprResult ActOnParenListExpr(SourceLocation L, SourceLocation R, MultiExprArg Val)
Definition: SemaExpr.cpp:6787
SourceLocation TemplateNameLoc
TemplateNameLoc - The location of the template name within the source.
static ConditionResult ConditionError()
Definition: Sema.h:10361
const Token & LookAhead(unsigned N)
Peeks ahead N tokens and returns that token without consuming any tokens.
Stmt - This represents one statement.
Definition: Stmt.h:66
IdentifierInfo * Identifier
When Kind == IK_Identifier, the parsed identifier, or when Kind == IK_UserLiteralId, the identifier suffix.
Definition: DeclSpec.h:972
ParsedType actOnLambdaInitCaptureInitialization(SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc, IdentifierInfo *Id, LambdaCaptureInitKind InitKind, Expr *&Init)
Perform initialization analysis of the init-capture and perform any implicit conversions such as an l...
Definition: Sema.h:5861
TemplateNameKind isTemplateName(Scope *S, CXXScopeSpec &SS, bool hasTemplateKeyword, const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext, TemplateTy &Template, bool &MemberOfUnknownSpecialization)
bool is(tok::TokenKind K) const
is/isNot - Predicates to check if this token is a specific kind, as in "if (Tok.is(tok::l_brace)) {...
Definition: Token.h:97
bool isEmpty() const
No scope specifier.
Definition: DeclSpec.h:189
DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D)
ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a C++ if/switch/while/for statem...
void setEndLoc(SourceLocation Loc)
Definition: DeclSpec.h:71
static const TST TST_char16
Definition: DeclSpec.h:277
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
bool isCodeCompletionReached() const
Returns true if code-completion is enabled and we have hit the code-completion point.
Defines the PrettyStackTraceEntry class, which is used to make crashes give more contextual informati...
Defines the C++ template declaration subclasses.
StringRef P
The base class of the type hierarchy.
Definition: Type.h:1436
SourceLocation getCloseLocation() const
This indicates that the scope corresponds to a function, which means that labels are set here...
Definition: Scope.h:47
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclSpec.h:1901
Parser - This implements a parser for the C family of languages.
Definition: Parser.h:57
An overloaded operator name, e.g., operator+.
bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS, NestedNameSpecInfo &IdInfo, bool EnteringContext)
IsInvalidUnlessNestedName - This method is used for error recovery purposes to determine whether the ...
ExprResult ActOnExpressionTrait(ExpressionTrait OET, SourceLocation KWLoc, Expr *Queried, SourceLocation RParen)
ActOnExpressionTrait - Parsed one of the unary type trait support pseudo-functions.
static TemplateIdAnnotation * Create(CXXScopeSpec SS, SourceLocation TemplateKWLoc, SourceLocation TemplateNameLoc, IdentifierInfo *Name, OverloadedOperatorKind OperatorKind, ParsedTemplateTy OpaqueTemplateName, TemplateNameKind TemplateKind, SourceLocation LAngleLoc, SourceLocation RAngleLoc, ArrayRef< ParsedTemplateArgument > TemplateArgs, SmallVectorImpl< TemplateIdAnnotation *> &CleanupList)
Creates a new TemplateIdAnnotation with NumArgs arguments and appends it to List. ...
void CodeCompleteObjCMessageReceiver(Scope *S)
RAII object that enters a new expression evaluation context.
Definition: Sema.h:11360
ActionResult< Stmt * > StmtResult
Definition: Ownership.h:264
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1775
static const TST TST_char
Definition: DeclSpec.h:274
Like System, but searched after the system directories.
void setBegin(SourceLocation b)
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:37
RAII object that makes sure paren/bracket/brace count is correct after declaration/statement parsing...
ColonProtectionRAIIObject - This sets the Parser::ColonIsSacred bool and restores it when destroyed...
bool isUnset() const
Definition: Ownership.h:168
tok::TokenKind getKind() const
Definition: Token.h:92
bool SetConstexprSpec(ConstexprSpecKind ConstexprKind, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID)
Definition: DeclSpec.cpp:1037
bool SkipUntil(tok::TokenKind T, SkipUntilFlags Flags=static_cast< SkipUntilFlags >(0))
SkipUntil - Read tokens until we get to the specified token, then consume it (unless StopBeforeMatch ...
Definition: Parser.h:1089
Information about a template-id annotation token.
void enterFunctionArgument(SourceLocation Tok, llvm::function_ref< QualType()> ComputeType)
Computing a type for the function argument may require running overloading, so we postpone its comput...
void enterVariableInit(SourceLocation Tok, Decl *D)
void CodeCompleteOrdinaryName(Scope *S, ParserCompletionContext CompletionContext)
const Token & NextToken()
NextToken - This peeks ahead one token and returns it without consuming it.
Definition: Parser.h:755
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset=0)
Computes the source location just past the end of the token at this source location.
bool TryConsumeToken(tok::TokenKind Expected)
Definition: Parser.h:456
bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS, const DeclSpec &DS, SourceLocation ColonColonLoc)
One of these records is kept for each identifier that is lexed.
void setConstructorTemplateId(TemplateIdAnnotation *TemplateId)
Specify that this unqualified-id was parsed as a template-id that names a constructor.
Definition: DeclSpec.cpp:38
SourceLocation getAnnotationEndLoc() const
Definition: Token.h:140
sema::LambdaScopeInfo * getCurGenericLambda()
Retrieve the current generic lambda info, if any.
Definition: Sema.cpp:1860
StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue=true)
Definition: SemaStmt.cpp:45
static const TST TST_char8
Definition: DeclSpec.h:276
Lookup for the name failed, but we&#39;re assuming it was a template name anyway.
Definition: TemplateKinds.h:50
ExprResult ExprEmpty()
Definition: Ownership.h:285
void setConversionFunctionId(SourceLocation OperatorLoc, ParsedType Ty, SourceLocation EndLoc)
Specify that this unqualified-id was parsed as a conversion-function-id.
Definition: DeclSpec.h:1060
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:274
LambdaCaptureKind
The different capture forms in a lambda introducer.
Definition: Lambda.h:33
The current expression is potentially evaluated at run time, which means that code may be generated t...
bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS)
OverloadedOperatorKind Operator
The kind of overloaded operator.
Definition: DeclSpec.h:955
static const TST TST_double
Definition: DeclSpec.h:283
struct OFI OperatorFunctionId
When Kind == IK_OperatorFunctionId, the overloaded operator that we parsed.
Definition: DeclSpec.h:976
ExprResult ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc)
ActOnCXXUuidof - Parse __uuidof( something ).
Token - This structure provides full information about a lexed token.
Definition: Token.h:34
void setKind(tok::TokenKind K)
Definition: Token.h:93
RAII class that helps handle the parsing of an open/close delimiter pair, such as braces { ...
ParsedType getDestructorName(SourceLocation TildeLoc, IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec &SS, ParsedType ObjectType, bool EnteringContext)
A user-defined literal name, e.g., operator "" _i.
void SetSourceRange(SourceRange R)
Definition: DeclSpec.h:1903
bool isInvalidType() const
Definition: DeclSpec.h:2453
ExprResult ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &Dcl, ExprResult Operand, SourceLocation RParenLoc)
Definition: SemaCast.cpp:335
void CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro, bool AfterAmpersand)
UnionParsedType DestructorName
When Kind == IK_DestructorName, the type referred to by the class-name.
Definition: DeclSpec.h:988
This is a scope that corresponds to a block/closure object.
Definition: Scope.h:71
ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr)
ActOnCXXThrow - Parse throw expressions.
Represents a C++ unqualified-id that has been parsed.
Definition: DeclSpec.h:944
static ParsedType getTypeAnnotation(const Token &Tok)
getTypeAnnotation - Read a parsed type out of an annotation token.
Definition: Parser.h:760
PtrTy get() const
Definition: Ownership.h:170
< Capturing the *this object by copy
Definition: Lambda.h:36
void ActOnInitializerError(Decl *Dcl)
ActOnInitializerError - Given that there was an error parsing an initializer for the given declaratio...
Definition: SemaDecl.cpp:11941
ExprResult CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl=nullptr, llvm::function_ref< ExprResult(Expr *)> Filter=[](Expr *E) -> ExprResult { return E;})
Process any TypoExprs in the given Expr and its children, generating diagnostics as appropriate and r...
QualType ProduceConstructorSignatureHelp(Scope *S, QualType Type, SourceLocation Loc, ArrayRef< Expr *> Args, SourceLocation OpenParLoc)
void enterCondition(Sema &S, SourceLocation Tok)
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:667
SourceRange getAnnotationRange() const
SourceRange of the group of tokens that this annotation token represents.
Definition: Token.h:160
ParsedTemplateArgument * getTemplateArgs()
Retrieves a pointer to the template arguments.
If a crash happens while one of these objects are live, the message is printed out along with the spe...
void SetInvalid(SourceRange R)
Indicate that this nested-name-specifier is invalid.
Definition: DeclSpec.h:199
ExprResult ActOnIdExpression(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand, CorrectionCandidateCallback *CCC=nullptr, bool IsInlineAsmIdentifier=false, Token *KeywordReplacement=nullptr)
Definition: SemaExpr.cpp:2160
ExprResult ActOnCXXThis(SourceLocation loc)
static SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart, unsigned Characters, const SourceManager &SM, const LangOptions &LangOpts)
AdvanceToTokenCharacter - If the current SourceLocation specifies a location at the start of a token...
Definition: Lexer.h:363
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3120
SourceLocation getSpellingLoc(SourceLocation Loc) const
Given a SourceLocation object, return the spelling location referenced by the ID. ...
ArrayTypeTrait
Names for the array type traits.
Definition: TypeTraits.h:90
SourceLocation ConsumeAnyToken(bool ConsumeCodeCompletionTok=false)
ConsumeAnyToken - Dispatch to the right Consume* method based on the current token type...
Definition: Parser.h:476
void setTemplateId(TemplateIdAnnotation *TemplateId)
Specify that this unqualified-id was parsed as a template-id.
Definition: DeclSpec.cpp:30
LambdaCaptureInitKind
Definition: DeclSpec.h:2551
SourceRange getSourceRange() const LLVM_READONLY
Definition: DeclSpec.h:497
const char * getName() const
Definition: Token.h:168
bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS, NestedNameSpecInfo &IdInfo)
SourceLocation TemplateKWLoc
TemplateKWLoc - The location of the template keyword.
static const TST TST_float
Definition: DeclSpec.h:282
TypeTrait
Names for traits that operate specifically on types.
Definition: TypeTraits.h:20
SourceLocation LAngleLoc
The location of the &#39;<&#39; before the template argument list.
DeclSpec & getMutableDeclSpec()
getMutableDeclSpec - Return a non-const version of the DeclSpec.
Definition: DeclSpec.h:1871
static const TSW TSW_long
Definition: DeclSpec.h:255
static DeclaratorChunk getFunction(bool HasProto, bool IsAmbiguous, SourceLocation LParenLoc, ParamInfo *Params, unsigned NumParams, SourceLocation EllipsisLoc, SourceLocation RParenLoc, bool RefQualifierIsLvalueRef, SourceLocation RefQualifierLoc, SourceLocation MutableLoc, ExceptionSpecificationType ESpecType, SourceRange ESpecRange, ParsedType *Exceptions, SourceRange *ExceptionRanges, unsigned NumExceptions, Expr *NoexceptExpr, CachedTokens *ExceptionSpecTokens, ArrayRef< NamedDecl *> DeclsInPrototype, SourceLocation LocalRangeBegin, SourceLocation LocalRangeEnd, Declarator &TheDeclarator, TypeResult TrailingReturnType=TypeResult(), DeclSpec *MethodQualifiers=nullptr)
DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function.
Definition: DeclSpec.cpp:151
StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl, SourceLocation StartLoc, SourceLocation EndLoc)
Definition: SemaStmt.cpp:72
void SetRangeStart(SourceLocation Loc)
Definition: DeclSpec.h:629
void addCapture(LambdaCaptureKind Kind, SourceLocation Loc, IdentifierInfo *Id, SourceLocation EllipsisLoc, LambdaCaptureInitKind InitKind, ExprResult Init, ParsedType InitCaptureType, SourceRange ExplicitRange)
Append a capture in a lambda introducer.
Definition: DeclSpec.h:2590
SourceRange getRange() const
Definition: DeclSpec.h:68
TST getTypeSpecType() const
Definition: DeclSpec.h:473
ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body, Scope *CurScope)
ActOnLambdaExpr - This is called when the body of a lambda expression was successfully completed...
This represents one expression.
Definition: Expr.h:108
static SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset, const SourceManager &SM, const LangOptions &LangOpts)
Computes the source location just past the end of the token at this source location.
Definition: Lexer.cpp:778
bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS)
The parser has parsed a global nested-name-specifier &#39;::&#39;.
void setDeductionGuideName(ParsedTemplateTy Template, SourceLocation TemplateLoc)
Specify that this unqualified-id was parsed as a template-name for a deduction-guide.
Definition: DeclSpec.h:1136
int Id
Definition: ASTDiff.cpp:190
void AnnotateCachedTokens(const Token &Tok)
We notify the Preprocessor that if it is caching tokens (because backtrack is enabled) it should repl...
ParsedType getDestructorTypeForDecltype(const DeclSpec &DS, ParsedType ObjectType)
bool hasLeadingEmptyMacro() const
Return true if this token has an empty macro before it.
Definition: Token.h:289
This file defines the classes used to store parsed information about declaration-specifiers and decla...
bool ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext, bool AllowDestructorName, bool AllowConstructorName, bool AllowDeductionGuide, ParsedType ObjectType, SourceLocation *TemplateKWLoc, UnqualifiedId &Result)
Parse a C++ unqualified-id (or a C identifier), which describes the name of an entity.
TypeResult ActOnTypeName(Scope *S, Declarator &D)
Definition: SemaType.cpp:5814
OpaquePtr< T > get() const
Definition: Ownership.h:104
void setEofData(const void *D)
Definition: Token.h:196
void RevertCachedTokens(unsigned N)
When backtracking is enabled and tokens are cached, this allows to revert a specific number of tokens...
ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base, SourceLocation OpLoc, tok::TokenKind OpKind, CXXScopeSpec &SS, UnqualifiedId &FirstTypeName, SourceLocation CCLoc, SourceLocation TildeLoc, UnqualifiedId &SecondTypeName)
const Token & getCurToken() const
Definition: Parser.h:409
OpaquePtr< TemplateName > TemplateTy
Definition: Parser.h:420
SourceLocation getLocation() const
Return a source location identifier for the specified offset in the current file. ...
Definition: Token.h:126
void setAsmLabel(Expr *E)
Definition: DeclSpec.h:2440
SourceLocation getBeginLoc() const
Definition: DeclSpec.h:72
Represents a C++ template name within the type system.
Definition: TemplateName.h:187
This is a compound statement scope.
Definition: Scope.h:130
UnqualifiedIdKind getKind() const
Determine what kind of name we have.
Definition: DeclSpec.h:1026
The current expression and its subexpressions occur within an unevaluated operand (C++11 [expr]p7)...
TemplateNameKind
Specifies the kind of template name that an identifier refers to.
Definition: TemplateKinds.h:20
ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, ArrayRef< ParsedType > Args, SourceLocation RParenLoc)
Parsed one of the type trait support pseudo-functions.
void setLiteralOperatorId(const IdentifierInfo *Id, SourceLocation OpLoc, SourceLocation IdLoc)
Specific that this unqualified-id was parsed as a literal-operator-id.
Definition: DeclSpec.h:1077
static const TST TST_int
Definition: DeclSpec.h:279
StmtResult ActOnNullStmt(SourceLocation SemiLoc, bool HasLeadingEmptyMacro=false)
Definition: SemaStmt.cpp:67
bool isInvalid() const
Definition: Ownership.h:166
SourceLocation getEnd() const
bool SetTypeSpecSign(TSS S, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID)
Definition: DeclSpec.cpp:692
SourceLocation getOpenLocation() const
static const TST TST_half
Definition: DeclSpec.h:281
ExprResult ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, bool ArrayForm, Expr *Operand)
ActOnCXXDelete - Parsed a C++ &#39;delete&#39; expression.
bool isUsable() const
Definition: Ownership.h:167
sema::LambdaScopeInfo * PushLambdaScope()
Definition: Sema.cpp:1641
The result type of a method or function.
static const TSW TSW_short
Definition: DeclSpec.h:254
StringRef GetString() const
ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg, SourceLocation EllipsisLoc)
Invoked when parsing a template argument followed by an ellipsis, which creates a pack expansion...
const SourceManager & SM
Definition: Format.cpp:1609
bool isValid() const
Determine whether this unqualified-id refers to a valid name.
Definition: DeclSpec.h:1020
OpaquePtr< DeclGroupRef > DeclGroupPtrTy
Definition: Parser.h:419
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:287
const LangOptions & getLangOpts() const
Definition: Parser.h:403
bool SetTypeSpecWidth(TSW W, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, const PrintingPolicy &Policy)
These methods set the specified attribute of the DeclSpec, but return true and ignore the request if ...
Definition: DeclSpec.cpp:665
This is a scope that corresponds to the parameters within a function prototype for a function declara...
Definition: Scope.h:87
ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E)
Definition: SemaExpr.cpp:3703
SourceManager & getSourceManager() const
Definition: Preprocessor.h:908
static const TST TST_char32
Definition: DeclSpec.h:278
unsigned getUDSuffixOffset() const
Get the spelling offset of the first byte of the ud-suffix.
SourceLocation DefaultLoc
Definition: DeclSpec.h:2582
Kind
Stop skipping at semicolon.
Definition: Parser.h:1069
ActionResult - This structure is used while parsing/acting on expressions, stmts, etc...
Definition: Ownership.h:153
unsigned getUDSuffixToken() const
Get the index of a token containing a ud-suffix.
ASTContext & getASTContext() const
Definition: Sema.h:1300
static const TST TST_float16
Definition: DeclSpec.h:284
Encodes a location in the source.
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
void setLength(unsigned Len)
Definition: Token.h:135
static void addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc, DeclSpec &DS)
void FinalizeDeclaration(Decl *D)
FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform any semantic actions neces...
Definition: SemaDecl.cpp:12566
MutableArrayRef< Expr * > MultiExprArg
Definition: Ownership.h:273
bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name, SourceLocation NameLoc, ParsedTemplateTy *Template=nullptr)
Determine whether a particular identifier might be the name in a C++1z deduction-guide declaration...
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclSpec.h:499
IdentifierInfo * getIdentifierInfo() const
Definition: Token.h:179
void setAnnotationEndLoc(SourceLocation L)
Definition: Token.h:144
IdentifierTable & getIdentifierTable()
Definition: Preprocessor.h:911
ParsedAttr - Represents a syntactic attribute.
Definition: ParsedAttr.h:117
static const TSS TSS_signed
Definition: DeclSpec.h:267
ExprResult ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, SourceLocation LAngleBracketLoc, Declarator &D, SourceLocation RAngleBracketLoc, SourceLocation LParenLoc, Expr *E, SourceLocation RParenLoc)
ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast&#39;s.
Definition: SemaCast.cpp:235
void CodeCompleteOperatorName(Scope *S)
void Lex(Token &Result)
Lex the next token for this preprocessor.
ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep, SourceLocation LParenOrBraceLoc, MultiExprArg Exprs, SourceLocation RParenOrBraceLoc, bool ListInitialization)
ActOnCXXTypeConstructExpr - Parse construction of a specified type.
const void * getEofData() const
Definition: Token.h:192
TemplateNameKind ActOnDependentTemplateName(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext, TemplateTy &Template, bool AllowInjectedClassName=false)
Form a dependent template name.
TokenKind
Provides a simple uniform namespace for tokens from all C languages.
Definition: TokenKinds.h:24
void EnterToken(const Token &Tok, bool IsReinject)
Enters a token in the token stream to be lexed next.
Scope * getCurScope() const
Definition: Parser.h:410
static DeclaratorChunk getArray(unsigned TypeQuals, bool isStatic, bool isStar, Expr *NumElts, SourceLocation LBLoc, SourceLocation RBLoc)
Return a DeclaratorChunk for an array.
Definition: DeclSpec.h:1585
ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, SourceRange TypeIdParens, Declarator &D, Expr *Initializer)
ActOnCXXNew - Parsed a C++ &#39;new&#39; expression.
static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken, Token &ColonToken, tok::TokenKind Kind, bool AtDigraph)
TypeResult ActOnTemplateIdType(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, TemplateTy Template, IdentifierInfo *TemplateII, SourceLocation TemplateIILoc, SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc, bool IsCtorOrDtorName=false, bool IsClassName=false)
StringRef getName() const
Return the actual identifier string.
SourceRange getSourceRange() const LLVM_READONLY
Get the source range that spans this declarator.
Definition: DeclSpec.h:1899
bool isNot(tok::TokenKind K) const
Definition: Token.h:98
static const TST TST_decltype_auto
Definition: DeclSpec.h:301
The name does not refer to a template.
Definition: TemplateKinds.h:22
Dataflow Directional Tag Classes.
void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope, bool IsInstantiation=false)
ActOnLambdaError - If there is an error parsing a lambda, this callback is invoked to pop the informa...
bool isValid() const
Return true if this is a valid SourceLocation object.
LambdaCaptureDefault Default
Definition: DeclSpec.h:2583
bool expectAndConsume(unsigned DiagID=diag::err_expected, const char *Msg="", tok::TokenKind SkipToTok=tok::unknown)
Definition: Parser.cpp:2440
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:21
static const TST TST_void
Definition: DeclSpec.h:273
CXXScopeSpec SS
The nested-name-specifier that precedes the template name.
SourceLocation RAngleLoc
The location of the &#39;>&#39; after the template argument list.
static const TST TST_int128
Definition: DeclSpec.h:280
void RecordParsingTemplateParameterDepth(unsigned Depth)
This is used to inform Sema what the current TemplateParameterDepth is during Parsing.
Definition: Sema.cpp:1647
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:118
void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, bool EnteringContext, QualType BaseType, QualType PreferredType)
This is a scope that corresponds to the template parameters of a C++ template.
Definition: Scope.h:77
bool isOneOf(tok::TokenKind K1, tok::TokenKind K2) const
Definition: Token.h:99
SourceLocation getLastCachedTokenLocation() const
Get the location of the last cached token, suitable for setting the end location of an annotation tok...
bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc, SourceLocation ColonColonLoc, CXXScopeSpec &SS)
The parser has parsed a &#39;__super&#39; nested-name-specifier.
unsigned getLength() const
Definition: Token.h:129
void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit)
AddInitializerToDecl - Adds the initializer Init to the declaration dcl.
Definition: SemaDecl.cpp:11502
void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc, ArrayRef< NamedDecl *> TParams, SourceLocation RAngleLoc)
This is called after parsing the explicit template parameter list on a lambda (if it exists) in C++2a...
Definition: SemaLambda.cpp:493
bool isMacroID() const
bool isCurrentClassName(const IdentifierInfo &II, Scope *S, const CXXScopeSpec *SS=nullptr)
isCurrentClassName - Determine whether the identifier II is the name of the class type currently bein...
ParsedType getConstructorName(IdentifierInfo &II, SourceLocation NameLoc, Scope *S, CXXScopeSpec &SS, bool EnteringContext)
Definition: SemaExprCXX.cpp:82
Not an overloaded operator.
Definition: OperatorKinds.h:22
void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro, Declarator &ParamInfo, Scope *CurScope)
ActOnStartOfLambdaDefinition - This is called just before we start parsing the body of a lambda; it a...
Definition: SemaLambda.cpp:857
QualType getCanonicalTypeInternal() const
Definition: Type.h:2390
void takeAttributesFrom(ParsedAttributes &attrs)
Definition: DeclSpec.h:775
DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Definition: Parser.cpp:72
void RestoreNestedNameSpecifierAnnotation(void *Annotation, SourceRange AnnotationRange, CXXScopeSpec &SS)
Given an annotation pointer for a nested-name-specifier, restore the nested-name-specifier structure...
const char * getOperatorSpelling(OverloadedOperatorKind Operator)
Retrieve the spelling of the given overloaded operator, without the preceding "operator" keyword...
ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind)
ActOnCXXBoolLiteral - Parse {true,false} literals.
void setOperatorFunctionId(SourceLocation OperatorLoc, OverloadedOperatorKind Op, SourceLocation SymbolLocations[3])
Specify that this unqualified-id was parsed as an operator-function-id.
Definition: DeclSpec.cpp:1368
static const TST TST_typename
Definition: DeclSpec.h:297
void SetRangeEnd(SourceLocation Loc)
SetRangeEnd - Set the end of the source range to Loc, unless it&#39;s invalid.
Definition: DeclSpec.h:1911
ExprResult ParseAssignmentExpression(TypeCastState isTypeCast=NotTypeCast)
Parse an expr that doesn&#39;t include (top-level) commas.
Definition: ParseExpr.cpp:159
ExprResult ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, bool isType, void *TyOrExpr, SourceLocation RParenLoc)
ActOnCXXTypeid - Parse typeid( something ).
ExceptionSpecificationType
The various types of exception specifications that exist in C++11.
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:92
void AddTypeInfo(const DeclaratorChunk &TI, ParsedAttributes &&attrs, SourceLocation EndLoc)
AddTypeInfo - Add a chunk to this declarator.
Definition: DeclSpec.h:2160
ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E)
Capturing the *this object by reference.
Definition: Lambda.h:34
This is a scope that can contain a declaration.
Definition: Scope.h:59
bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, const PrintingPolicy &Policy)
Definition: DeclSpec.cpp:787
bool isSet() const
Deprecated.
Definition: DeclSpec.h:209
ExprResult ParseConstantExpression(TypeCastState isTypeCast=NotTypeCast)
Definition: ParseExpr.cpp:210
void setInvalidType(bool Val=true)
Definition: DeclSpec.h:2452
An integral condition for a &#39;switch&#39; statement.
Captures information about "declaration specifiers".
Definition: DeclSpec.h:228
ActionResult< Expr * > ExprResult
Definition: Ownership.h:263
void setEnd(SourceLocation e)
SourceLocation ConsumeToken()
ConsumeToken - Consume the current &#39;peek token&#39; and lex the next one.
Definition: Parser.h:448
static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind)
static int SelectDigraphErrorMessage(tok::TokenKind Kind)
bool isNotEmpty() const
A scope specifier is present, but may be valid or invalid.
Definition: DeclSpec.h:191
Capturing by reference.
Definition: Lambda.h:37
static const TST TST_float128
Definition: DeclSpec.h:287
const DeclSpec & getDeclSpec() const
getDeclSpec - Return the declaration-specifier that this declarator was declared with.
Definition: DeclSpec.h:1864
static const TST TST_bool
Definition: DeclSpec.h:288
StringLiteralParser - This decodes string escape characters and performs wide string analysis and Tra...
unsigned kind
All of the diagnostics that can be emitted by the frontend.
Definition: DiagnosticIDs.h:60
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string...
Definition: Diagnostic.h:129
SourceManager & getSourceManager() const
Definition: Sema.h:1298
void Finish(Sema &S, const PrintingPolicy &Policy)
Finish - This does final analysis of the declspec, issuing diagnostics for things like "_Imaginary" (...
Definition: DeclSpec.cpp:1060
Represents a complete lambda introducer.
Definition: DeclSpec.h:2559
ExprResult ExprError()
Definition: Ownership.h:279
static const TSW TSW_longlong
Definition: DeclSpec.h:256
void enterTypeCast(SourceLocation Tok, QualType CastType)
Handles all type casts, including C-style cast, C++ casts, etc.
Code completion occurs within the condition of an if, while, switch, or for statement.
Definition: Sema.h:10821
static unsigned TypeTraitArity(tok::TokenKind kind)
static void addConstevalToLambdaDeclSpecifier(Parser &P, SourceLocation ConstevalLoc, DeclSpec &DS)
void setLocation(SourceLocation L)
Definition: Token.h:134
A trivial tuple used to represent a source range.
void setIdentifier(const IdentifierInfo *Id, SourceLocation IdLoc)
Specify that this unqualified-id was parsed as an identifier.
Definition: DeclSpec.h:1033
bool SetTypeSpecError()
Definition: DeclSpec.cpp:890
unsigned NumArgs
NumArgs - The number of template arguments.
void * getAnnotationValue() const
Definition: Token.h:226
void setDestructorName(SourceLocation TildeLoc, ParsedType ClassType, SourceLocation EndLoc)
Specify that this unqualified-id was parsed as a destructor name.
Definition: DeclSpec.h:1115
void SetRangeEnd(SourceLocation Loc)
Definition: DeclSpec.h:630
SourceLocation getBegin() const
ParsedAttributes - A collection of parsed attributes.
Definition: ParsedAttr.h:824
This class handles loading and caching of source files into memory.
TypeResult ParseTypeName(SourceRange *Range=nullptr, DeclaratorContext Context=DeclaratorContext::TypeNameContext, AccessSpecifier AS=AS_none, Decl **OwnedType=nullptr, ParsedAttributes *Attrs=nullptr)
ParseTypeName type-name: [C99 6.7.6] specifier-qualifier-list abstract-declarator[opt].
Definition: ParseDecl.cpp:42
static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind)
Attr - This represents one attribute.
Definition: Attr.h:45
SourceLocation getLocation() const
Definition: DeclBase.h:429
void startToken()
Reset all flags to cleared.
Definition: Token.h:171
ParsedTemplateTy Template
The declaration of the template corresponding to the template-name.
Engages in a tight little dance with the lexer to efficiently preprocess tokens.
Definition: Preprocessor.h:125
Stop skipping at specified token, but don&#39;t skip the token itself.
Definition: Parser.h:1071