clang  8.0.0svn
ParseExpr.cpp
Go to the documentation of this file.
1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// Provides the Expression parsing implementation.
12 ///
13 /// Expressions in C99 basically consist of a bunch of binary operators with
14 /// unary operators and other random stuff at the leaves.
15 ///
16 /// In the C99 grammar, these unary operators bind tightest and are represented
17 /// as the 'cast-expression' production. Everything else is either a binary
18 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are
19 /// handled by ParseCastExpression, the higher level pieces are handled by
20 /// ParseBinaryExpression.
21 ///
22 //===----------------------------------------------------------------------===//
23 
24 #include "clang/Parse/Parser.h"
25 #include "clang/AST/ASTContext.h"
28 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Scope.h"
32 #include "llvm/ADT/SmallVector.h"
33 using namespace clang;
34 
35 /// Simple precedence-based parser for binary/ternary operators.
36 ///
37 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
38 /// production. C99 specifies that the LHS of an assignment operator should be
39 /// parsed as a unary-expression, but consistency dictates that it be a
40 /// conditional-expession. In practice, the important thing here is that the
41 /// LHS of an assignment has to be an l-value, which productions between
42 /// unary-expression and conditional-expression don't produce. Because we want
43 /// consistency, we parse the LHS as a conditional-expression, then check for
44 /// l-value-ness in semantic analysis stages.
45 ///
46 /// \verbatim
47 /// pm-expression: [C++ 5.5]
48 /// cast-expression
49 /// pm-expression '.*' cast-expression
50 /// pm-expression '->*' cast-expression
51 ///
52 /// multiplicative-expression: [C99 6.5.5]
53 /// Note: in C++, apply pm-expression instead of cast-expression
54 /// cast-expression
55 /// multiplicative-expression '*' cast-expression
56 /// multiplicative-expression '/' cast-expression
57 /// multiplicative-expression '%' cast-expression
58 ///
59 /// additive-expression: [C99 6.5.6]
60 /// multiplicative-expression
61 /// additive-expression '+' multiplicative-expression
62 /// additive-expression '-' multiplicative-expression
63 ///
64 /// shift-expression: [C99 6.5.7]
65 /// additive-expression
66 /// shift-expression '<<' additive-expression
67 /// shift-expression '>>' additive-expression
68 ///
69 /// compare-expression: [C++20 expr.spaceship]
70 /// shift-expression
71 /// compare-expression '<=>' shift-expression
72 ///
73 /// relational-expression: [C99 6.5.8]
74 /// compare-expression
75 /// relational-expression '<' compare-expression
76 /// relational-expression '>' compare-expression
77 /// relational-expression '<=' compare-expression
78 /// relational-expression '>=' compare-expression
79 ///
80 /// equality-expression: [C99 6.5.9]
81 /// relational-expression
82 /// equality-expression '==' relational-expression
83 /// equality-expression '!=' relational-expression
84 ///
85 /// AND-expression: [C99 6.5.10]
86 /// equality-expression
87 /// AND-expression '&' equality-expression
88 ///
89 /// exclusive-OR-expression: [C99 6.5.11]
90 /// AND-expression
91 /// exclusive-OR-expression '^' AND-expression
92 ///
93 /// inclusive-OR-expression: [C99 6.5.12]
94 /// exclusive-OR-expression
95 /// inclusive-OR-expression '|' exclusive-OR-expression
96 ///
97 /// logical-AND-expression: [C99 6.5.13]
98 /// inclusive-OR-expression
99 /// logical-AND-expression '&&' inclusive-OR-expression
100 ///
101 /// logical-OR-expression: [C99 6.5.14]
102 /// logical-AND-expression
103 /// logical-OR-expression '||' logical-AND-expression
104 ///
105 /// conditional-expression: [C99 6.5.15]
106 /// logical-OR-expression
107 /// logical-OR-expression '?' expression ':' conditional-expression
108 /// [GNU] logical-OR-expression '?' ':' conditional-expression
109 /// [C++] the third operand is an assignment-expression
110 ///
111 /// assignment-expression: [C99 6.5.16]
112 /// conditional-expression
113 /// unary-expression assignment-operator assignment-expression
114 /// [C++] throw-expression [C++ 15]
115 ///
116 /// assignment-operator: one of
117 /// = *= /= %= += -= <<= >>= &= ^= |=
118 ///
119 /// expression: [C99 6.5.17]
120 /// assignment-expression ...[opt]
121 /// expression ',' assignment-expression ...[opt]
122 /// \endverbatim
124  ExprResult LHS(ParseAssignmentExpression(isTypeCast));
125  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
126 }
127 
128 /// This routine is called when the '@' is seen and consumed.
129 /// Current token is an Identifier and is not a 'try'. This
130 /// routine is necessary to disambiguate \@try-statement from,
131 /// for example, \@encode-expression.
132 ///
134 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
135  ExprResult LHS(ParseObjCAtExpression(AtLoc));
136  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
137 }
138 
139 /// This routine is called when a leading '__extension__' is seen and
140 /// consumed. This is necessary because the token gets consumed in the
141 /// process of disambiguating between an expression and a declaration.
143 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
144  ExprResult LHS(true);
145  {
146  // Silence extension warnings in the sub-expression
147  ExtensionRAIIObject O(Diags);
148 
149  LHS = ParseCastExpression(false);
150  }
151 
152  if (!LHS.isInvalid())
153  LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
154  LHS.get());
155 
156  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
157 }
158 
159 /// Parse an expr that doesn't include (top-level) commas.
161  if (Tok.is(tok::code_completion)) {
163  cutOffParsing();
164  return ExprError();
165  }
166 
167  if (Tok.is(tok::kw_throw))
168  return ParseThrowExpression();
169  if (Tok.is(tok::kw_co_yield))
170  return ParseCoyieldExpression();
171 
172  ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
173  /*isAddressOfOperand=*/false,
174  isTypeCast);
175  return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
176 }
177 
178 /// Parse an assignment expression where part of an Objective-C message
179 /// send has already been parsed.
180 ///
181 /// In this case \p LBracLoc indicates the location of the '[' of the message
182 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
183 /// the receiver of the message.
184 ///
185 /// Since this handles full assignment-expression's, it handles postfix
186 /// expressions and other binary operators for these expressions as well.
188 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
189  SourceLocation SuperLoc,
190  ParsedType ReceiverType,
191  Expr *ReceiverExpr) {
192  ExprResult R
193  = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
194  ReceiverType, ReceiverExpr);
195  R = ParsePostfixExpressionSuffix(R);
196  return ParseRHSOfBinaryExpression(R, prec::Assignment);
197 }
198 
201  assert(Actions.ExprEvalContexts.back().Context ==
203  "Call this function only if your ExpressionEvaluationContext is "
204  "already ConstantEvaluated");
205  ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
206  ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
207  return Actions.ActOnConstantExpression(Res);
208 }
209 
211  // C++03 [basic.def.odr]p2:
212  // An expression is potentially evaluated unless it appears where an
213  // integral constant expression is required (see 5.19) [...].
214  // C++98 and C++11 have no such rule, but this is only a defect in C++98.
215  EnterExpressionEvaluationContext ConstantEvaluated(
217  return ParseConstantExpressionInExprEvalContext(isTypeCast);
218 }
219 
221  EnterExpressionEvaluationContext ConstantEvaluated(
223  ExprResult LHS(ParseCastExpression(false, false, NotTypeCast));
224  ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
225  return Actions.ActOnCaseExpr(CaseLoc, Res);
226 }
227 
228 /// Parse a constraint-expression.
229 ///
230 /// \verbatim
231 /// constraint-expression: [Concepts TS temp.constr.decl p1]
232 /// logical-or-expression
233 /// \endverbatim
235  // FIXME: this may erroneously consume a function-body as the braced
236  // initializer list of a compound literal
237  //
238  // FIXME: this may erroneously consume a parenthesized rvalue reference
239  // declarator as a parenthesized address-of-label expression
240  ExprResult LHS(ParseCastExpression(/*isUnaryExpression=*/false));
241  ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
242 
243  return Res;
244 }
245 
246 bool Parser::isNotExpressionStart() {
247  tok::TokenKind K = Tok.getKind();
248  if (K == tok::l_brace || K == tok::r_brace ||
249  K == tok::kw_for || K == tok::kw_while ||
250  K == tok::kw_if || K == tok::kw_else ||
251  K == tok::kw_goto || K == tok::kw_try)
252  return true;
253  // If this is a decl-specifier, we can't be at the start of an expression.
254  return isKnownToBeDeclarationSpecifier();
255 }
256 
257 bool Parser::isFoldOperator(prec::Level Level) const {
258  return Level > prec::Unknown && Level != prec::Conditional &&
259  Level != prec::Spaceship;
260 }
261 
262 bool Parser::isFoldOperator(tok::TokenKind Kind) const {
263  return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true));
264 }
265 
266 /// Parse a binary expression that starts with \p LHS and has a
267 /// precedence of at least \p MinPrec.
269 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
270  prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
271  GreaterThanIsOperator,
272  getLangOpts().CPlusPlus11);
274 
275  while (1) {
276  // If this token has a lower precedence than we are allowed to parse (e.g.
277  // because we are called recursively, or because the token is not a binop),
278  // then we are done!
279  if (NextTokPrec < MinPrec)
280  return LHS;
281 
282  // Consume the operator, saving the operator token for error reporting.
283  Token OpToken = Tok;
284  ConsumeToken();
285 
286  if (OpToken.is(tok::caretcaret)) {
287  return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or));
288  }
289 
290  // If we're potentially in a template-id, we may now be able to determine
291  // whether we're actually in one or not.
292  if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater,
293  tok::greatergreatergreater) &&
294  checkPotentialAngleBracketDelimiter(OpToken))
295  return ExprError();
296 
297  // Bail out when encountering a comma followed by a token which can't
298  // possibly be the start of an expression. For instance:
299  // int f() { return 1, }
300  // We can't do this before consuming the comma, because
301  // isNotExpressionStart() looks at the token stream.
302  if (OpToken.is(tok::comma) && isNotExpressionStart()) {
303  PP.EnterToken(Tok);
304  Tok = OpToken;
305  return LHS;
306  }
307 
308  // If the next token is an ellipsis, then this is a fold-expression. Leave
309  // it alone so we can handle it in the paren expression.
310  if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
311  // FIXME: We can't check this via lookahead before we consume the token
312  // because that tickles a lexer bug.
313  PP.EnterToken(Tok);
314  Tok = OpToken;
315  return LHS;
316  }
317 
318  // In Objective-C++, alternative operator tokens can be used as keyword args
319  // in message expressions. Unconsume the token so that it can reinterpreted
320  // as an identifier in ParseObjCMessageExpressionBody. i.e., we support:
321  // [foo meth:0 and:0];
322  // [foo not_eq];
323  if (getLangOpts().ObjC1 && getLangOpts().CPlusPlus &&
324  Tok.isOneOf(tok::colon, tok::r_square) &&
325  OpToken.getIdentifierInfo() != nullptr) {
326  PP.EnterToken(Tok);
327  Tok = OpToken;
328  return LHS;
329  }
330 
331  // Special case handling for the ternary operator.
332  ExprResult TernaryMiddle(true);
333  if (NextTokPrec == prec::Conditional) {
334  if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
335  // Parse a braced-init-list here for error recovery purposes.
336  SourceLocation BraceLoc = Tok.getLocation();
337  TernaryMiddle = ParseBraceInitializer();
338  if (!TernaryMiddle.isInvalid()) {
339  Diag(BraceLoc, diag::err_init_list_bin_op)
340  << /*RHS*/ 1 << PP.getSpelling(OpToken)
341  << Actions.getExprRange(TernaryMiddle.get());
342  TernaryMiddle = ExprError();
343  }
344  } else if (Tok.isNot(tok::colon)) {
345  // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
347 
348  // Handle this production specially:
349  // logical-OR-expression '?' expression ':' conditional-expression
350  // In particular, the RHS of the '?' is 'expression', not
351  // 'logical-OR-expression' as we might expect.
352  TernaryMiddle = ParseExpression();
353  } else {
354  // Special case handling of "X ? Y : Z" where Y is empty:
355  // logical-OR-expression '?' ':' conditional-expression [GNU]
356  TernaryMiddle = nullptr;
357  Diag(Tok, diag::ext_gnu_conditional_expr);
358  }
359 
360  if (TernaryMiddle.isInvalid()) {
361  Actions.CorrectDelayedTyposInExpr(LHS);
362  LHS = ExprError();
363  TernaryMiddle = nullptr;
364  }
365 
366  if (!TryConsumeToken(tok::colon, ColonLoc)) {
367  // Otherwise, we're missing a ':'. Assume that this was a typo that
368  // the user forgot. If we're not in a macro expansion, we can suggest
369  // a fixit hint. If there were two spaces before the current token,
370  // suggest inserting the colon in between them, otherwise insert ": ".
371  SourceLocation FILoc = Tok.getLocation();
372  const char *FIText = ": ";
373  const SourceManager &SM = PP.getSourceManager();
374  if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
375  assert(FILoc.isFileID());
376  bool IsInvalid = false;
377  const char *SourcePtr =
378  SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
379  if (!IsInvalid && *SourcePtr == ' ') {
380  SourcePtr =
381  SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
382  if (!IsInvalid && *SourcePtr == ' ') {
383  FILoc = FILoc.getLocWithOffset(-1);
384  FIText = ":";
385  }
386  }
387  }
388 
389  Diag(Tok, diag::err_expected)
390  << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
391  Diag(OpToken, diag::note_matching) << tok::question;
392  ColonLoc = Tok.getLocation();
393  }
394  }
395 
396  // Code completion for the right-hand side of an assignment expression
397  // goes through a special hook that takes the left-hand side into account.
398  if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
399  Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
400  cutOffParsing();
401  return ExprError();
402  }
403 
404  // Parse another leaf here for the RHS of the operator.
405  // ParseCastExpression works here because all RHS expressions in C have it
406  // as a prefix, at least. However, in C++, an assignment-expression could
407  // be a throw-expression, which is not a valid cast-expression.
408  // Therefore we need some special-casing here.
409  // Also note that the third operand of the conditional operator is
410  // an assignment-expression in C++, and in C++11, we can have a
411  // braced-init-list on the RHS of an assignment. For better diagnostics,
412  // parse as if we were allowed braced-init-lists everywhere, and check that
413  // they only appear on the RHS of assignments later.
414  ExprResult RHS;
415  bool RHSIsInitList = false;
416  if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
417  RHS = ParseBraceInitializer();
418  RHSIsInitList = true;
419  } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
421  else
422  RHS = ParseCastExpression(false);
423 
424  if (RHS.isInvalid()) {
425  // FIXME: Errors generated by the delayed typo correction should be
426  // printed before errors from parsing the RHS, not after.
427  Actions.CorrectDelayedTyposInExpr(LHS);
428  if (TernaryMiddle.isUsable())
429  TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
430  LHS = ExprError();
431  }
432 
433  // Remember the precedence of this operator and get the precedence of the
434  // operator immediately to the right of the RHS.
435  prec::Level ThisPrec = NextTokPrec;
436  NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
437  getLangOpts().CPlusPlus11);
438 
439  // Assignment and conditional expressions are right-associative.
440  bool isRightAssoc = ThisPrec == prec::Conditional ||
441  ThisPrec == prec::Assignment;
442 
443  // Get the precedence of the operator to the right of the RHS. If it binds
444  // more tightly with RHS than we do, evaluate it completely first.
445  if (ThisPrec < NextTokPrec ||
446  (ThisPrec == NextTokPrec && isRightAssoc)) {
447  if (!RHS.isInvalid() && RHSIsInitList) {
448  Diag(Tok, diag::err_init_list_bin_op)
449  << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
450  RHS = ExprError();
451  }
452  // If this is left-associative, only parse things on the RHS that bind
453  // more tightly than the current operator. If it is left-associative, it
454  // is okay, to bind exactly as tightly. For example, compile A=B=C=D as
455  // A=(B=(C=D)), where each paren is a level of recursion here.
456  // The function takes ownership of the RHS.
457  RHS = ParseRHSOfBinaryExpression(RHS,
458  static_cast<prec::Level>(ThisPrec + !isRightAssoc));
459  RHSIsInitList = false;
460 
461  if (RHS.isInvalid()) {
462  // FIXME: Errors generated by the delayed typo correction should be
463  // printed before errors from ParseRHSOfBinaryExpression, not after.
464  Actions.CorrectDelayedTyposInExpr(LHS);
465  if (TernaryMiddle.isUsable())
466  TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
467  LHS = ExprError();
468  }
469 
470  NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
471  getLangOpts().CPlusPlus11);
472  }
473 
474  if (!RHS.isInvalid() && RHSIsInitList) {
475  if (ThisPrec == prec::Assignment) {
476  Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
477  << Actions.getExprRange(RHS.get());
478  } else if (ColonLoc.isValid()) {
479  Diag(ColonLoc, diag::err_init_list_bin_op)
480  << /*RHS*/1 << ":"
481  << Actions.getExprRange(RHS.get());
482  LHS = ExprError();
483  } else {
484  Diag(OpToken, diag::err_init_list_bin_op)
485  << /*RHS*/1 << PP.getSpelling(OpToken)
486  << Actions.getExprRange(RHS.get());
487  LHS = ExprError();
488  }
489  }
490 
491  ExprResult OrigLHS = LHS;
492  if (!LHS.isInvalid()) {
493  // Combine the LHS and RHS into the LHS (e.g. build AST).
494  if (TernaryMiddle.isInvalid()) {
495  // If we're using '>>' as an operator within a template
496  // argument list (in C++98), suggest the addition of
497  // parentheses so that the code remains well-formed in C++0x.
498  if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
499  SuggestParentheses(OpToken.getLocation(),
500  diag::warn_cxx11_right_shift_in_template_arg,
501  SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
502  Actions.getExprRange(RHS.get()).getEnd()));
503 
504  LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
505  OpToken.getKind(), LHS.get(), RHS.get());
506 
507  } else {
508  LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
509  LHS.get(), TernaryMiddle.get(),
510  RHS.get());
511  }
512  // In this case, ActOnBinOp or ActOnConditionalOp performed the
513  // CorrectDelayedTyposInExpr check.
514  if (!getLangOpts().CPlusPlus)
515  continue;
516  }
517 
518  // Ensure potential typos aren't left undiagnosed.
519  if (LHS.isInvalid()) {
520  Actions.CorrectDelayedTyposInExpr(OrigLHS);
521  Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
522  Actions.CorrectDelayedTyposInExpr(RHS);
523  }
524  }
525 }
526 
527 /// Parse a cast-expression, or, if \p isUnaryExpression is true,
528 /// parse a unary-expression.
529 ///
530 /// \p isAddressOfOperand exists because an id-expression that is the
531 /// operand of address-of gets special treatment due to member pointers.
532 ///
533 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
534  bool isAddressOfOperand,
535  TypeCastState isTypeCast,
536  bool isVectorLiteral) {
537  bool NotCastExpr;
538  ExprResult Res = ParseCastExpression(isUnaryExpression,
539  isAddressOfOperand,
540  NotCastExpr,
541  isTypeCast,
542  isVectorLiteral);
543  if (NotCastExpr)
544  Diag(Tok, diag::err_expected_expression);
545  return Res;
546 }
547 
548 namespace {
549 class CastExpressionIdValidator : public CorrectionCandidateCallback {
550  public:
551  CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
552  : NextToken(Next), AllowNonTypes(AllowNonTypes) {
553  WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
554  }
555 
556  bool ValidateCandidate(const TypoCorrection &candidate) override {
557  NamedDecl *ND = candidate.getCorrectionDecl();
558  if (!ND)
559  return candidate.isKeyword();
560 
561  if (isa<TypeDecl>(ND))
562  return WantTypeSpecifiers;
563 
564  if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
565  return false;
566 
567  if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
568  return true;
569 
570  for (auto *C : candidate) {
571  NamedDecl *ND = C->getUnderlyingDecl();
572  if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
573  return true;
574  }
575  return false;
576  }
577 
578  private:
580  bool AllowNonTypes;
581 };
582 }
583 
584 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse
585 /// a unary-expression.
586 ///
587 /// \p isAddressOfOperand exists because an id-expression that is the operand
588 /// of address-of gets special treatment due to member pointers. NotCastExpr
589 /// is set to true if the token is not the start of a cast-expression, and no
590 /// diagnostic is emitted in this case and no tokens are consumed.
591 ///
592 /// \verbatim
593 /// cast-expression: [C99 6.5.4]
594 /// unary-expression
595 /// '(' type-name ')' cast-expression
596 ///
597 /// unary-expression: [C99 6.5.3]
598 /// postfix-expression
599 /// '++' unary-expression
600 /// '--' unary-expression
601 /// [Coro] 'co_await' cast-expression
602 /// unary-operator cast-expression
603 /// 'sizeof' unary-expression
604 /// 'sizeof' '(' type-name ')'
605 /// [C++11] 'sizeof' '...' '(' identifier ')'
606 /// [GNU] '__alignof' unary-expression
607 /// [GNU] '__alignof' '(' type-name ')'
608 /// [C11] '_Alignof' '(' type-name ')'
609 /// [C++11] 'alignof' '(' type-id ')'
610 /// [GNU] '&&' identifier
611 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
612 /// [C++] new-expression
613 /// [C++] delete-expression
614 ///
615 /// unary-operator: one of
616 /// '&' '*' '+' '-' '~' '!'
617 /// [GNU] '__extension__' '__real' '__imag'
618 ///
619 /// primary-expression: [C99 6.5.1]
620 /// [C99] identifier
621 /// [C++] id-expression
622 /// constant
623 /// string-literal
624 /// [C++] boolean-literal [C++ 2.13.5]
625 /// [C++11] 'nullptr' [C++11 2.14.7]
626 /// [C++11] user-defined-literal
627 /// '(' expression ')'
628 /// [C11] generic-selection
629 /// '__func__' [C99 6.4.2.2]
630 /// [GNU] '__FUNCTION__'
631 /// [MS] '__FUNCDNAME__'
632 /// [MS] 'L__FUNCTION__'
633 /// [MS] '__FUNCSIG__'
634 /// [MS] 'L__FUNCSIG__'
635 /// [GNU] '__PRETTY_FUNCTION__'
636 /// [GNU] '(' compound-statement ')'
637 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
638 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
639 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
640 /// assign-expr ')'
641 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
642 /// [GNU] '__null'
643 /// [OBJC] '[' objc-message-expr ']'
644 /// [OBJC] '\@selector' '(' objc-selector-arg ')'
645 /// [OBJC] '\@protocol' '(' identifier ')'
646 /// [OBJC] '\@encode' '(' type-name ')'
647 /// [OBJC] objc-string-literal
648 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
649 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3]
650 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
651 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3]
652 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
653 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
654 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
655 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
656 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1]
657 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1]
658 /// [C++] 'this' [C++ 9.3.2]
659 /// [G++] unary-type-trait '(' type-id ')'
660 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO]
661 /// [EMBT] array-type-trait '(' type-id ',' integer ')'
662 /// [clang] '^' block-literal
663 ///
664 /// constant: [C99 6.4.4]
665 /// integer-constant
666 /// floating-constant
667 /// enumeration-constant -> identifier
668 /// character-constant
669 ///
670 /// id-expression: [C++ 5.1]
671 /// unqualified-id
672 /// qualified-id
673 ///
674 /// unqualified-id: [C++ 5.1]
675 /// identifier
676 /// operator-function-id
677 /// conversion-function-id
678 /// '~' class-name
679 /// template-id
680 ///
681 /// new-expression: [C++ 5.3.4]
682 /// '::'[opt] 'new' new-placement[opt] new-type-id
683 /// new-initializer[opt]
684 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
685 /// new-initializer[opt]
686 ///
687 /// delete-expression: [C++ 5.3.5]
688 /// '::'[opt] 'delete' cast-expression
689 /// '::'[opt] 'delete' '[' ']' cast-expression
690 ///
691 /// [GNU/Embarcadero] unary-type-trait:
692 /// '__is_arithmetic'
693 /// '__is_floating_point'
694 /// '__is_integral'
695 /// '__is_lvalue_expr'
696 /// '__is_rvalue_expr'
697 /// '__is_complete_type'
698 /// '__is_void'
699 /// '__is_array'
700 /// '__is_function'
701 /// '__is_reference'
702 /// '__is_lvalue_reference'
703 /// '__is_rvalue_reference'
704 /// '__is_fundamental'
705 /// '__is_object'
706 /// '__is_scalar'
707 /// '__is_compound'
708 /// '__is_pointer'
709 /// '__is_member_object_pointer'
710 /// '__is_member_function_pointer'
711 /// '__is_member_pointer'
712 /// '__is_const'
713 /// '__is_volatile'
714 /// '__is_trivial'
715 /// '__is_standard_layout'
716 /// '__is_signed'
717 /// '__is_unsigned'
718 ///
719 /// [GNU] unary-type-trait:
720 /// '__has_nothrow_assign'
721 /// '__has_nothrow_copy'
722 /// '__has_nothrow_constructor'
723 /// '__has_trivial_assign' [TODO]
724 /// '__has_trivial_copy' [TODO]
725 /// '__has_trivial_constructor'
726 /// '__has_trivial_destructor'
727 /// '__has_virtual_destructor'
728 /// '__is_abstract' [TODO]
729 /// '__is_class'
730 /// '__is_empty' [TODO]
731 /// '__is_enum'
732 /// '__is_final'
733 /// '__is_pod'
734 /// '__is_polymorphic'
735 /// '__is_sealed' [MS]
736 /// '__is_trivial'
737 /// '__is_union'
738 /// '__has_unique_object_representations'
739 ///
740 /// [Clang] unary-type-trait:
741 /// '__is_aggregate'
742 /// '__trivially_copyable'
743 ///
744 /// binary-type-trait:
745 /// [GNU] '__is_base_of'
746 /// [MS] '__is_convertible_to'
747 /// '__is_convertible'
748 /// '__is_same'
749 ///
750 /// [Embarcadero] array-type-trait:
751 /// '__array_rank'
752 /// '__array_extent'
753 ///
754 /// [Embarcadero] expression-trait:
755 /// '__is_lvalue_expr'
756 /// '__is_rvalue_expr'
757 /// \endverbatim
758 ///
759 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
760  bool isAddressOfOperand,
761  bool &NotCastExpr,
762  TypeCastState isTypeCast,
763  bool isVectorLiteral) {
764  ExprResult Res;
765  tok::TokenKind SavedKind = Tok.getKind();
766  NotCastExpr = false;
767 
768  // This handles all of cast-expression, unary-expression, postfix-expression,
769  // and primary-expression. We handle them together like this for efficiency
770  // and to simplify handling of an expression starting with a '(' token: which
771  // may be one of a parenthesized expression, cast-expression, compound literal
772  // expression, or statement expression.
773  //
774  // If the parsed tokens consist of a primary-expression, the cases below
775  // break out of the switch; at the end we call ParsePostfixExpressionSuffix
776  // to handle the postfix expression suffixes. Cases that cannot be followed
777  // by postfix exprs should return without invoking
778  // ParsePostfixExpressionSuffix.
779  switch (SavedKind) {
780  case tok::l_paren: {
781  // If this expression is limited to being a unary-expression, the parent can
782  // not start a cast expression.
783  ParenParseOption ParenExprType =
784  (isUnaryExpression && !getLangOpts().CPlusPlus) ? CompoundLiteral
785  : CastExpr;
786  ParsedType CastTy;
787  SourceLocation RParenLoc;
788  Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
789  isTypeCast == IsTypeCast, CastTy, RParenLoc);
790 
791  if (isVectorLiteral)
792  return Res;
793 
794  switch (ParenExprType) {
795  case SimpleExpr: break; // Nothing else to do.
796  case CompoundStmt: break; // Nothing else to do.
797  case CompoundLiteral:
798  // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of
799  // postfix-expression exist, parse them now.
800  break;
801  case CastExpr:
802  // We have parsed the cast-expression and no postfix-expr pieces are
803  // following.
804  return Res;
805  case FoldExpr:
806  // We only parsed a fold-expression. There might be postfix-expr pieces
807  // afterwards; parse them now.
808  break;
809  }
810 
811  break;
812  }
813 
814  // primary-expression
815  case tok::numeric_constant:
816  // constant: integer-constant
817  // constant: floating-constant
818 
819  Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
820  ConsumeToken();
821  break;
822 
823  case tok::kw_true:
824  case tok::kw_false:
825  Res = ParseCXXBoolLiteral();
826  break;
827 
828  case tok::kw___objc_yes:
829  case tok::kw___objc_no:
830  return ParseObjCBoolLiteral();
831 
832  case tok::kw_nullptr:
833  Diag(Tok, diag::warn_cxx98_compat_nullptr);
834  return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
835 
836  case tok::annot_primary_expr:
837  assert(Res.get() == nullptr && "Stray primary-expression annotation?");
838  Res = getExprAnnotation(Tok);
839  ConsumeAnnotationToken();
840  if (!Res.isInvalid() && Tok.is(tok::less))
841  checkPotentialAngleBracket(Res);
842  break;
843 
844  case tok::kw___super:
845  case tok::kw_decltype:
846  // Annotate the token and tail recurse.
848  return ExprError();
849  assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
850  return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
851 
852  case tok::identifier: { // primary-expression: identifier
853  // unqualified-id: identifier
854  // constant: enumeration-constant
855  // Turn a potentially qualified name into a annot_typename or
856  // annot_cxxscope if it would be valid. This handles things like x::y, etc.
857  if (getLangOpts().CPlusPlus) {
858  // Avoid the unnecessary parse-time lookup in the common case
859  // where the syntax forbids a type.
860  const Token &Next = NextToken();
861 
862  // If this identifier was reverted from a token ID, and the next token
863  // is a parenthesis, this is likely to be a use of a type trait. Check
864  // those tokens.
865  if (Next.is(tok::l_paren) &&
866  Tok.is(tok::identifier) &&
867  Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
868  IdentifierInfo *II = Tok.getIdentifierInfo();
869  // Build up the mapping of revertible type traits, for future use.
870  if (RevertibleTypeTraits.empty()) {
871 #define RTT_JOIN(X,Y) X##Y
872 #define REVERTIBLE_TYPE_TRAIT(Name) \
873  RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
874  = RTT_JOIN(tok::kw_,Name)
875 
876  REVERTIBLE_TYPE_TRAIT(__is_abstract);
877  REVERTIBLE_TYPE_TRAIT(__is_aggregate);
878  REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
879  REVERTIBLE_TYPE_TRAIT(__is_array);
880  REVERTIBLE_TYPE_TRAIT(__is_assignable);
881  REVERTIBLE_TYPE_TRAIT(__is_base_of);
882  REVERTIBLE_TYPE_TRAIT(__is_class);
883  REVERTIBLE_TYPE_TRAIT(__is_complete_type);
884  REVERTIBLE_TYPE_TRAIT(__is_compound);
885  REVERTIBLE_TYPE_TRAIT(__is_const);
886  REVERTIBLE_TYPE_TRAIT(__is_constructible);
887  REVERTIBLE_TYPE_TRAIT(__is_convertible);
888  REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
889  REVERTIBLE_TYPE_TRAIT(__is_destructible);
890  REVERTIBLE_TYPE_TRAIT(__is_empty);
891  REVERTIBLE_TYPE_TRAIT(__is_enum);
892  REVERTIBLE_TYPE_TRAIT(__is_floating_point);
893  REVERTIBLE_TYPE_TRAIT(__is_final);
894  REVERTIBLE_TYPE_TRAIT(__is_function);
895  REVERTIBLE_TYPE_TRAIT(__is_fundamental);
896  REVERTIBLE_TYPE_TRAIT(__is_integral);
897  REVERTIBLE_TYPE_TRAIT(__is_interface_class);
898  REVERTIBLE_TYPE_TRAIT(__is_literal);
899  REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
900  REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
901  REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
902  REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
903  REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
904  REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
905  REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
906  REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
907  REVERTIBLE_TYPE_TRAIT(__is_object);
908  REVERTIBLE_TYPE_TRAIT(__is_pod);
909  REVERTIBLE_TYPE_TRAIT(__is_pointer);
910  REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
911  REVERTIBLE_TYPE_TRAIT(__is_reference);
912  REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
913  REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
914  REVERTIBLE_TYPE_TRAIT(__is_same);
915  REVERTIBLE_TYPE_TRAIT(__is_scalar);
916  REVERTIBLE_TYPE_TRAIT(__is_sealed);
917  REVERTIBLE_TYPE_TRAIT(__is_signed);
918  REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
919  REVERTIBLE_TYPE_TRAIT(__is_trivial);
920  REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
921  REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
922  REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
923  REVERTIBLE_TYPE_TRAIT(__is_union);
924  REVERTIBLE_TYPE_TRAIT(__is_unsigned);
925  REVERTIBLE_TYPE_TRAIT(__is_void);
926  REVERTIBLE_TYPE_TRAIT(__is_volatile);
927 #undef REVERTIBLE_TYPE_TRAIT
928 #undef RTT_JOIN
929  }
930 
931  // If we find that this is in fact the name of a type trait,
932  // update the token kind in place and parse again to treat it as
933  // the appropriate kind of type trait.
934  llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
935  = RevertibleTypeTraits.find(II);
936  if (Known != RevertibleTypeTraits.end()) {
937  Tok.setKind(Known->second);
938  return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
939  NotCastExpr, isTypeCast);
940  }
941  }
942 
943  if ((!ColonIsSacred && Next.is(tok::colon)) ||
944  Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
945  tok::l_brace)) {
946  // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
948  return ExprError();
949  if (!Tok.is(tok::identifier))
950  return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
951  }
952  }
953 
954  // Consume the identifier so that we can see if it is followed by a '(' or
955  // '.'.
956  IdentifierInfo &II = *Tok.getIdentifierInfo();
957  SourceLocation ILoc = ConsumeToken();
958 
959  // Support 'Class.property' and 'super.property' notation.
960  if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
961  (Actions.getTypeName(II, ILoc, getCurScope()) ||
962  // Allow the base to be 'super' if in an objc-method.
963  (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
964  ConsumeToken();
965 
966  if (Tok.is(tok::code_completion) && &II != Ident_super) {
967  Actions.CodeCompleteObjCClassPropertyRefExpr(
968  getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc);
969  cutOffParsing();
970  return ExprError();
971  }
972  // Allow either an identifier or the keyword 'class' (in C++).
973  if (Tok.isNot(tok::identifier) &&
974  !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
975  Diag(Tok, diag::err_expected_property_name);
976  return ExprError();
977  }
978  IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
979  SourceLocation PropertyLoc = ConsumeToken();
980 
981  Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
982  ILoc, PropertyLoc);
983  break;
984  }
985 
986  // In an Objective-C method, if we have "super" followed by an identifier,
987  // the token sequence is ill-formed. However, if there's a ':' or ']' after
988  // that identifier, this is probably a message send with a missing open
989  // bracket. Treat it as such.
990  if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
991  getCurScope()->isInObjcMethodScope() &&
992  ((Tok.is(tok::identifier) &&
993  (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
994  Tok.is(tok::code_completion))) {
995  Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr,
996  nullptr);
997  break;
998  }
999 
1000  // If we have an Objective-C class name followed by an identifier
1001  // and either ':' or ']', this is an Objective-C class message
1002  // send that's missing the opening '['. Recovery
1003  // appropriately. Also take this path if we're performing code
1004  // completion after an Objective-C class name.
1005  if (getLangOpts().ObjC1 &&
1006  ((Tok.is(tok::identifier) && !InMessageExpression) ||
1007  Tok.is(tok::code_completion))) {
1008  const Token& Next = NextToken();
1009  if (Tok.is(tok::code_completion) ||
1010  Next.is(tok::colon) || Next.is(tok::r_square))
1011  if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
1012  if (Typ.get()->isObjCObjectOrInterfaceType()) {
1013  // Fake up a Declarator to use with ActOnTypeName.
1014  DeclSpec DS(AttrFactory);
1015  DS.SetRangeStart(ILoc);
1016  DS.SetRangeEnd(ILoc);
1017  const char *PrevSpec = nullptr;
1018  unsigned DiagID;
1019  DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
1020  Actions.getASTContext().getPrintingPolicy());
1021 
1022  Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
1023  TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
1024  DeclaratorInfo);
1025  if (Ty.isInvalid())
1026  break;
1027 
1028  Res = ParseObjCMessageExpressionBody(SourceLocation(),
1029  SourceLocation(),
1030  Ty.get(), nullptr);
1031  break;
1032  }
1033  }
1034 
1035  // Make sure to pass down the right value for isAddressOfOperand.
1036  if (isAddressOfOperand && isPostfixExpressionSuffixStart())
1037  isAddressOfOperand = false;
1038 
1039  // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
1040  // need to know whether or not this identifier is a function designator or
1041  // not.
1042  UnqualifiedId Name;
1043  CXXScopeSpec ScopeSpec;
1044  SourceLocation TemplateKWLoc;
1045  Token Replacement;
1046  auto Validator = llvm::make_unique<CastExpressionIdValidator>(
1047  Tok, isTypeCast != NotTypeCast, isTypeCast != IsTypeCast);
1048  Validator->IsAddressOfOperand = isAddressOfOperand;
1049  if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
1050  Validator->WantExpressionKeywords = false;
1051  Validator->WantRemainingKeywords = false;
1052  } else {
1053  Validator->WantRemainingKeywords = Tok.isNot(tok::r_paren);
1054  }
1055  Name.setIdentifier(&II, ILoc);
1056  Res = Actions.ActOnIdExpression(
1057  getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
1058  isAddressOfOperand, std::move(Validator),
1059  /*IsInlineAsmIdentifier=*/false,
1060  Tok.is(tok::r_paren) ? nullptr : &Replacement);
1061  if (!Res.isInvalid() && Res.isUnset()) {
1062  UnconsumeToken(Replacement);
1063  return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1064  NotCastExpr, isTypeCast);
1065  }
1066  if (!Res.isInvalid() && Tok.is(tok::less))
1067  checkPotentialAngleBracket(Res);
1068  break;
1069  }
1070  case tok::char_constant: // constant: character-constant
1071  case tok::wide_char_constant:
1072  case tok::utf8_char_constant:
1073  case tok::utf16_char_constant:
1074  case tok::utf32_char_constant:
1075  Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
1076  ConsumeToken();
1077  break;
1078  case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
1079  case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
1080  case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS]
1081  case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS]
1082  case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS]
1083  case tok::kw_L__FUNCSIG__: // primary-expression: L__FUNCSIG__ [MS]
1084  case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
1085  Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
1086  ConsumeToken();
1087  break;
1088  case tok::string_literal: // primary-expression: string-literal
1089  case tok::wide_string_literal:
1090  case tok::utf8_string_literal:
1091  case tok::utf16_string_literal:
1092  case tok::utf32_string_literal:
1093  Res = ParseStringLiteralExpression(true);
1094  break;
1095  case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1]
1096  Res = ParseGenericSelectionExpression();
1097  break;
1098  case tok::kw___builtin_available:
1099  return ParseAvailabilityCheckExpr(Tok.getLocation());
1100  case tok::kw___builtin_va_arg:
1101  case tok::kw___builtin_offsetof:
1102  case tok::kw___builtin_choose_expr:
1103  case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
1104  case tok::kw___builtin_convertvector:
1105  return ParseBuiltinPrimaryExpression();
1106  case tok::kw___null:
1107  return Actions.ActOnGNUNullExpr(ConsumeToken());
1108 
1109  case tok::plusplus: // unary-expression: '++' unary-expression [C99]
1110  case tok::minusminus: { // unary-expression: '--' unary-expression [C99]
1111  // C++ [expr.unary] has:
1112  // unary-expression:
1113  // ++ cast-expression
1114  // -- cast-expression
1115  Token SavedTok = Tok;
1116  ConsumeToken();
1117  // One special case is implicitly handled here: if the preceding tokens are
1118  // an ambiguous cast expression, such as "(T())++", then we recurse to
1119  // determine whether the '++' is prefix or postfix.
1120  Res = ParseCastExpression(!getLangOpts().CPlusPlus,
1121  /*isAddressOfOperand*/false, NotCastExpr,
1122  NotTypeCast);
1123  if (NotCastExpr) {
1124  // If we return with NotCastExpr = true, we must not consume any tokens,
1125  // so put the token back where we found it.
1126  assert(Res.isInvalid());
1127  UnconsumeToken(SavedTok);
1128  return ExprError();
1129  }
1130  if (!Res.isInvalid())
1131  Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(),
1132  SavedKind, Res.get());
1133  return Res;
1134  }
1135  case tok::amp: { // unary-expression: '&' cast-expression
1136  // Special treatment because of member pointers
1137  SourceLocation SavedLoc = ConsumeToken();
1138  Res = ParseCastExpression(false, true);
1139  if (!Res.isInvalid())
1140  Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1141  return Res;
1142  }
1143 
1144  case tok::star: // unary-expression: '*' cast-expression
1145  case tok::plus: // unary-expression: '+' cast-expression
1146  case tok::minus: // unary-expression: '-' cast-expression
1147  case tok::tilde: // unary-expression: '~' cast-expression
1148  case tok::exclaim: // unary-expression: '!' cast-expression
1149  case tok::kw___real: // unary-expression: '__real' cast-expression [GNU]
1150  case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU]
1151  SourceLocation SavedLoc = ConsumeToken();
1152  Res = ParseCastExpression(false);
1153  if (!Res.isInvalid())
1154  Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1155  return Res;
1156  }
1157 
1158  case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression
1159  SourceLocation CoawaitLoc = ConsumeToken();
1160  Res = ParseCastExpression(false);
1161  if (!Res.isInvalid())
1162  Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
1163  return Res;
1164  }
1165 
1166  case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1167  // __extension__ silences extension warnings in the subexpression.
1168  ExtensionRAIIObject O(Diags); // Use RAII to do this.
1169  SourceLocation SavedLoc = ConsumeToken();
1170  Res = ParseCastExpression(false);
1171  if (!Res.isInvalid())
1172  Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1173  return Res;
1174  }
1175  case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')'
1176  if (!getLangOpts().C11)
1177  Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
1178  // fallthrough
1179  case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')'
1180  case tok::kw___alignof: // unary-expression: '__alignof' unary-expression
1181  // unary-expression: '__alignof' '(' type-name ')'
1182  case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression
1183  // unary-expression: 'sizeof' '(' type-name ')'
1184  case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression
1185  // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
1186  case tok::kw___builtin_omp_required_simd_align:
1187  return ParseUnaryExprOrTypeTraitExpression();
1188  case tok::ampamp: { // unary-expression: '&&' identifier
1189  SourceLocation AmpAmpLoc = ConsumeToken();
1190  if (Tok.isNot(tok::identifier))
1191  return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1192 
1193  if (getCurScope()->getFnParent() == nullptr)
1194  return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1195 
1196  Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1197  LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1198  Tok.getLocation());
1199  Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1200  ConsumeToken();
1201  return Res;
1202  }
1203  case tok::kw_const_cast:
1204  case tok::kw_dynamic_cast:
1205  case tok::kw_reinterpret_cast:
1206  case tok::kw_static_cast:
1207  Res = ParseCXXCasts();
1208  break;
1209  case tok::kw_typeid:
1210  Res = ParseCXXTypeid();
1211  break;
1212  case tok::kw___uuidof:
1213  Res = ParseCXXUuidof();
1214  break;
1215  case tok::kw_this:
1216  Res = ParseCXXThis();
1217  break;
1218 
1219  case tok::annot_typename:
1220  if (isStartOfObjCClassMessageMissingOpenBracket()) {
1222 
1223  // Fake up a Declarator to use with ActOnTypeName.
1224  DeclSpec DS(AttrFactory);
1225  DS.SetRangeStart(Tok.getLocation());
1226  DS.SetRangeEnd(Tok.getLastLoc());
1227 
1228  const char *PrevSpec = nullptr;
1229  unsigned DiagID;
1230  DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1231  PrevSpec, DiagID, Type,
1232  Actions.getASTContext().getPrintingPolicy());
1233 
1234  Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
1235  TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1236  if (Ty.isInvalid())
1237  break;
1238 
1239  ConsumeAnnotationToken();
1240  Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1241  Ty.get(), nullptr);
1242  break;
1243  }
1244  // Fall through
1245 
1246  case tok::annot_decltype:
1247  case tok::kw_char:
1248  case tok::kw_wchar_t:
1249  case tok::kw_char8_t:
1250  case tok::kw_char16_t:
1251  case tok::kw_char32_t:
1252  case tok::kw_bool:
1253  case tok::kw_short:
1254  case tok::kw_int:
1255  case tok::kw_long:
1256  case tok::kw___int64:
1257  case tok::kw___int128:
1258  case tok::kw_signed:
1259  case tok::kw_unsigned:
1260  case tok::kw_half:
1261  case tok::kw_float:
1262  case tok::kw_double:
1263  case tok::kw__Float16:
1264  case tok::kw___float128:
1265  case tok::kw_void:
1266  case tok::kw_typename:
1267  case tok::kw_typeof:
1268  case tok::kw___vector:
1269 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
1270 #include "clang/Basic/OpenCLImageTypes.def"
1271  {
1272  if (!getLangOpts().CPlusPlus) {
1273  Diag(Tok, diag::err_expected_expression);
1274  return ExprError();
1275  }
1276 
1277  if (SavedKind == tok::kw_typename) {
1278  // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1279  // typename-specifier braced-init-list
1281  return ExprError();
1282 
1283  if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1284  // We are trying to parse a simple-type-specifier but might not get such
1285  // a token after error recovery.
1286  return ExprError();
1287  }
1288 
1289  // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1290  // simple-type-specifier braced-init-list
1291  //
1292  DeclSpec DS(AttrFactory);
1293 
1294  ParseCXXSimpleTypeSpecifier(DS);
1295  if (Tok.isNot(tok::l_paren) &&
1296  (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1297  return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1298  << DS.getSourceRange());
1299 
1300  if (Tok.is(tok::l_brace))
1301  Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1302 
1303  Res = ParseCXXTypeConstructExpression(DS);
1304  break;
1305  }
1306 
1307  case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1308  // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1309  // (We can end up in this situation after tentative parsing.)
1311  return ExprError();
1312  if (!Tok.is(tok::annot_cxxscope))
1313  return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1314  NotCastExpr, isTypeCast);
1315 
1316  Token Next = NextToken();
1317  if (Next.is(tok::annot_template_id)) {
1318  TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1319  if (TemplateId->Kind == TNK_Type_template) {
1320  // We have a qualified template-id that we know refers to a
1321  // type, translate it into a type and continue parsing as a
1322  // cast expression.
1323  CXXScopeSpec SS;
1324  ParseOptionalCXXScopeSpecifier(SS, nullptr,
1325  /*EnteringContext=*/false);
1326  AnnotateTemplateIdTokenAsType();
1327  return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1328  NotCastExpr, isTypeCast);
1329  }
1330  }
1331 
1332  // Parse as an id-expression.
1333  Res = ParseCXXIdExpression(isAddressOfOperand);
1334  break;
1335  }
1336 
1337  case tok::annot_template_id: { // [C++] template-id
1338  TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1339  if (TemplateId->Kind == TNK_Type_template) {
1340  // We have a template-id that we know refers to a type,
1341  // translate it into a type and continue parsing as a cast
1342  // expression.
1343  AnnotateTemplateIdTokenAsType();
1344  return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1345  NotCastExpr, isTypeCast);
1346  }
1347 
1348  // Fall through to treat the template-id as an id-expression.
1349  LLVM_FALLTHROUGH;
1350  }
1351 
1352  case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1353  Res = ParseCXXIdExpression(isAddressOfOperand);
1354  break;
1355 
1356  case tok::coloncolon: {
1357  // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken
1358  // annotates the token, tail recurse.
1360  return ExprError();
1361  if (!Tok.is(tok::coloncolon))
1362  return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
1363 
1364  // ::new -> [C++] new-expression
1365  // ::delete -> [C++] delete-expression
1366  SourceLocation CCLoc = ConsumeToken();
1367  if (Tok.is(tok::kw_new))
1368  return ParseCXXNewExpression(true, CCLoc);
1369  if (Tok.is(tok::kw_delete))
1370  return ParseCXXDeleteExpression(true, CCLoc);
1371 
1372  // This is not a type name or scope specifier, it is an invalid expression.
1373  Diag(CCLoc, diag::err_expected_expression);
1374  return ExprError();
1375  }
1376 
1377  case tok::kw_new: // [C++] new-expression
1378  return ParseCXXNewExpression(false, Tok.getLocation());
1379 
1380  case tok::kw_delete: // [C++] delete-expression
1381  return ParseCXXDeleteExpression(false, Tok.getLocation());
1382 
1383  case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1384  Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1385  SourceLocation KeyLoc = ConsumeToken();
1386  BalancedDelimiterTracker T(*this, tok::l_paren);
1387 
1388  if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1389  return ExprError();
1390  // C++11 [expr.unary.noexcept]p1:
1391  // The noexcept operator determines whether the evaluation of its operand,
1392  // which is an unevaluated operand, can throw an exception.
1396 
1397  T.consumeClose();
1398 
1399  if (!Result.isInvalid())
1400  Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
1401  Result.get(), T.getCloseLocation());
1402  return Result;
1403  }
1404 
1405 #define TYPE_TRAIT(N,Spelling,K) \
1406  case tok::kw_##Spelling:
1407 #include "clang/Basic/TokenKinds.def"
1408  return ParseTypeTrait();
1409 
1410  case tok::kw___array_rank:
1411  case tok::kw___array_extent:
1412  return ParseArrayTypeTrait();
1413 
1414  case tok::kw___is_lvalue_expr:
1415  case tok::kw___is_rvalue_expr:
1416  return ParseExpressionTrait();
1417 
1418  case tok::at: {
1419  SourceLocation AtLoc = ConsumeToken();
1420  return ParseObjCAtExpression(AtLoc);
1421  }
1422  case tok::caret:
1423  Res = ParseBlockLiteralExpression();
1424  break;
1425  case tok::code_completion: {
1426  Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
1427  cutOffParsing();
1428  return ExprError();
1429  }
1430  case tok::l_square:
1431  if (getLangOpts().CPlusPlus11) {
1432  if (getLangOpts().ObjC1) {
1433  // C++11 lambda expressions and Objective-C message sends both start with a
1434  // square bracket. There are three possibilities here:
1435  // we have a valid lambda expression, we have an invalid lambda
1436  // expression, or we have something that doesn't appear to be a lambda.
1437  // If we're in the last case, we fall back to ParseObjCMessageExpression.
1438  Res = TryParseLambdaExpression();
1439  if (!Res.isInvalid() && !Res.get())
1440  Res = ParseObjCMessageExpression();
1441  break;
1442  }
1443  Res = ParseLambdaExpression();
1444  break;
1445  }
1446  if (getLangOpts().ObjC1) {
1447  Res = ParseObjCMessageExpression();
1448  break;
1449  }
1450  // FALL THROUGH.
1451  default:
1452  NotCastExpr = true;
1453  return ExprError();
1454  }
1455 
1456  // Check to see whether Res is a function designator only. If it is and we
1457  // are compiling for OpenCL, we need to return an error as this implies
1458  // that the address of the function is being taken, which is illegal in CL.
1459 
1460  // These can be followed by postfix-expr pieces.
1461  Res = ParsePostfixExpressionSuffix(Res);
1462  if (getLangOpts().OpenCL)
1463  if (Expr *PostfixExpr = Res.get()) {
1464  QualType Ty = PostfixExpr->getType();
1465  if (!Ty.isNull() && Ty->isFunctionType()) {
1466  Diag(PostfixExpr->getExprLoc(),
1467  diag::err_opencl_taking_function_address_parser);
1468  return ExprError();
1469  }
1470  }
1471 
1472  return Res;
1473 }
1474 
1475 /// Once the leading part of a postfix-expression is parsed, this
1476 /// method parses any suffixes that apply.
1477 ///
1478 /// \verbatim
1479 /// postfix-expression: [C99 6.5.2]
1480 /// primary-expression
1481 /// postfix-expression '[' expression ']'
1482 /// postfix-expression '[' braced-init-list ']'
1483 /// postfix-expression '(' argument-expression-list[opt] ')'
1484 /// postfix-expression '.' identifier
1485 /// postfix-expression '->' identifier
1486 /// postfix-expression '++'
1487 /// postfix-expression '--'
1488 /// '(' type-name ')' '{' initializer-list '}'
1489 /// '(' type-name ')' '{' initializer-list ',' '}'
1490 ///
1491 /// argument-expression-list: [C99 6.5.2]
1492 /// argument-expression ...[opt]
1493 /// argument-expression-list ',' assignment-expression ...[opt]
1494 /// \endverbatim
1495 ExprResult
1496 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1497  // Now that the primary-expression piece of the postfix-expression has been
1498  // parsed, see if there are any postfix-expression pieces here.
1499  SourceLocation Loc;
1500  while (1) {
1501  switch (Tok.getKind()) {
1502  case tok::code_completion:
1503  if (InMessageExpression)
1504  return LHS;
1505 
1506  Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
1507  cutOffParsing();
1508  return ExprError();
1509 
1510  case tok::identifier:
1511  // If we see identifier: after an expression, and we're not already in a
1512  // message send, then this is probably a message send with a missing
1513  // opening bracket '['.
1514  if (getLangOpts().ObjC1 && !InMessageExpression &&
1515  (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1516  LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1517  nullptr, LHS.get());
1518  break;
1519  }
1520  // Fall through; this isn't a message send.
1521  LLVM_FALLTHROUGH;
1522 
1523  default: // Not a postfix-expression suffix.
1524  return LHS;
1525  case tok::l_square: { // postfix-expression: p-e '[' expression ']'
1526  // If we have a array postfix expression that starts on a new line and
1527  // Objective-C is enabled, it is highly likely that the user forgot a
1528  // semicolon after the base expression and that the array postfix-expr is
1529  // actually another message send. In this case, do some look-ahead to see
1530  // if the contents of the square brackets are obviously not a valid
1531  // expression and recover by pretending there is no suffix.
1532  if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
1533  isSimpleObjCMessageExpression())
1534  return LHS;
1535 
1536  // Reject array indices starting with a lambda-expression. '[[' is
1537  // reserved for attributes.
1538  if (CheckProhibitedCXX11Attribute()) {
1539  (void)Actions.CorrectDelayedTyposInExpr(LHS);
1540  return ExprError();
1541  }
1542 
1543  BalancedDelimiterTracker T(*this, tok::l_square);
1544  T.consumeOpen();
1545  Loc = T.getOpenLocation();
1546  ExprResult Idx, Length;
1548  if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1549  Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1550  Idx = ParseBraceInitializer();
1551  } else if (getLangOpts().OpenMP) {
1552  ColonProtectionRAIIObject RAII(*this);
1553  // Parse [: or [ expr or [ expr :
1554  if (!Tok.is(tok::colon)) {
1555  // [ expr
1556  Idx = ParseExpression();
1557  }
1558  if (Tok.is(tok::colon)) {
1559  // Consume ':'
1560  ColonLoc = ConsumeToken();
1561  if (Tok.isNot(tok::r_square))
1562  Length = ParseExpression();
1563  }
1564  } else
1565  Idx = ParseExpression();
1566 
1567  SourceLocation RLoc = Tok.getLocation();
1568 
1569  ExprResult OrigLHS = LHS;
1570  if (!LHS.isInvalid() && !Idx.isInvalid() && !Length.isInvalid() &&
1571  Tok.is(tok::r_square)) {
1572  if (ColonLoc.isValid()) {
1573  LHS = Actions.ActOnOMPArraySectionExpr(LHS.get(), Loc, Idx.get(),
1574  ColonLoc, Length.get(), RLoc);
1575  } else {
1576  LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
1577  Idx.get(), RLoc);
1578  }
1579  } else {
1580  LHS = ExprError();
1581  }
1582  if (LHS.isInvalid()) {
1583  (void)Actions.CorrectDelayedTyposInExpr(OrigLHS);
1584  (void)Actions.CorrectDelayedTyposInExpr(Idx);
1585  (void)Actions.CorrectDelayedTyposInExpr(Length);
1586  LHS = ExprError();
1587  Idx = ExprError();
1588  }
1589 
1590  // Match the ']'.
1591  T.consumeClose();
1592  break;
1593  }
1594 
1595  case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')'
1596  case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>'
1597  // '(' argument-expression-list[opt] ')'
1598  tok::TokenKind OpKind = Tok.getKind();
1599  InMessageExpressionRAIIObject InMessage(*this, false);
1600 
1601  Expr *ExecConfig = nullptr;
1602 
1603  BalancedDelimiterTracker PT(*this, tok::l_paren);
1604 
1605  if (OpKind == tok::lesslessless) {
1606  ExprVector ExecConfigExprs;
1607  CommaLocsTy ExecConfigCommaLocs;
1608  SourceLocation OpenLoc = ConsumeToken();
1609 
1610  if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1611  (void)Actions.CorrectDelayedTyposInExpr(LHS);
1612  LHS = ExprError();
1613  }
1614 
1615  SourceLocation CloseLoc;
1616  if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
1617  } else if (LHS.isInvalid()) {
1618  SkipUntil(tok::greatergreatergreater, StopAtSemi);
1619  } else {
1620  // There was an error closing the brackets
1621  Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
1622  Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
1623  SkipUntil(tok::greatergreatergreater, StopAtSemi);
1624  LHS = ExprError();
1625  }
1626 
1627  if (!LHS.isInvalid()) {
1628  if (ExpectAndConsume(tok::l_paren))
1629  LHS = ExprError();
1630  else
1631  Loc = PrevTokLocation;
1632  }
1633 
1634  if (!LHS.isInvalid()) {
1635  ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
1636  OpenLoc,
1637  ExecConfigExprs,
1638  CloseLoc);
1639  if (ECResult.isInvalid())
1640  LHS = ExprError();
1641  else
1642  ExecConfig = ECResult.get();
1643  }
1644  } else {
1645  PT.consumeOpen();
1646  Loc = PT.getOpenLocation();
1647  }
1648 
1649  ExprVector ArgExprs;
1650  CommaLocsTy CommaLocs;
1651 
1652  if (Tok.is(tok::code_completion)) {
1653  QualType PreferredType = Actions.ProduceCallSignatureHelp(
1654  getCurScope(), LHS.get(), None, PT.getOpenLocation());
1655  CalledSignatureHelp = true;
1656  Actions.CodeCompleteExpression(getCurScope(), PreferredType);
1657  cutOffParsing();
1658  return ExprError();
1659  }
1660 
1661  if (OpKind == tok::l_paren || !LHS.isInvalid()) {
1662  if (Tok.isNot(tok::r_paren)) {
1663  if (ParseExpressionList(ArgExprs, CommaLocs, [&] {
1664  QualType PreferredType = Actions.ProduceCallSignatureHelp(
1665  getCurScope(), LHS.get(), ArgExprs, PT.getOpenLocation());
1666  CalledSignatureHelp = true;
1667  Actions.CodeCompleteExpression(getCurScope(), PreferredType);
1668  })) {
1669  (void)Actions.CorrectDelayedTyposInExpr(LHS);
1670  // If we got an error when parsing expression list, we don't call
1671  // the CodeCompleteCall handler inside the parser. So call it here
1672  // to make sure we get overload suggestions even when we are in the
1673  // middle of a parameter.
1674  if (PP.isCodeCompletionReached() && !CalledSignatureHelp) {
1675  Actions.ProduceCallSignatureHelp(getCurScope(), LHS.get(),
1676  ArgExprs, PT.getOpenLocation());
1677  CalledSignatureHelp = true;
1678  }
1679  LHS = ExprError();
1680  } else if (LHS.isInvalid()) {
1681  for (auto &E : ArgExprs)
1682  Actions.CorrectDelayedTyposInExpr(E);
1683  }
1684  }
1685  }
1686 
1687  // Match the ')'.
1688  if (LHS.isInvalid()) {
1689  SkipUntil(tok::r_paren, StopAtSemi);
1690  } else if (Tok.isNot(tok::r_paren)) {
1691  bool HadDelayedTypo = false;
1692  if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
1693  HadDelayedTypo = true;
1694  for (auto &E : ArgExprs)
1695  if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
1696  HadDelayedTypo = true;
1697  // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
1698  // instead of PT.consumeClose() to avoid emitting extra diagnostics for
1699  // the unmatched l_paren.
1700  if (HadDelayedTypo)
1701  SkipUntil(tok::r_paren, StopAtSemi);
1702  else
1703  PT.consumeClose();
1704  LHS = ExprError();
1705  } else {
1706  assert((ArgExprs.size() == 0 ||
1707  ArgExprs.size()-1 == CommaLocs.size())&&
1708  "Unexpected number of commas!");
1709  LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc,
1710  ArgExprs, Tok.getLocation(),
1711  ExecConfig);
1712  PT.consumeClose();
1713  }
1714 
1715  break;
1716  }
1717  case tok::arrow:
1718  case tok::period: {
1719  // postfix-expression: p-e '->' template[opt] id-expression
1720  // postfix-expression: p-e '.' template[opt] id-expression
1721  tok::TokenKind OpKind = Tok.getKind();
1722  SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token.
1723 
1724  CXXScopeSpec SS;
1725  ParsedType ObjectType;
1726  bool MayBePseudoDestructor = false;
1727  Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr;
1728 
1729  if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
1730  Expr *Base = OrigLHS;
1731  const Type* BaseType = Base->getType().getTypePtrOrNull();
1732  if (BaseType && Tok.is(tok::l_paren) &&
1733  (BaseType->isFunctionType() ||
1734  BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
1735  Diag(OpLoc, diag::err_function_is_not_record)
1736  << OpKind << Base->getSourceRange()
1737  << FixItHint::CreateRemoval(OpLoc);
1738  return ParsePostfixExpressionSuffix(Base);
1739  }
1740 
1741  LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
1742  OpLoc, OpKind, ObjectType,
1743  MayBePseudoDestructor);
1744  if (LHS.isInvalid())
1745  break;
1746 
1747  ParseOptionalCXXScopeSpecifier(SS, ObjectType,
1748  /*EnteringContext=*/false,
1749  &MayBePseudoDestructor);
1750  if (SS.isNotEmpty())
1751  ObjectType = nullptr;
1752  }
1753 
1754  if (Tok.is(tok::code_completion)) {
1755  tok::TokenKind CorrectedOpKind =
1756  OpKind == tok::arrow ? tok::period : tok::arrow;
1757  ExprResult CorrectedLHS(/*IsInvalid=*/true);
1758  if (getLangOpts().CPlusPlus && OrigLHS) {
1759  const bool DiagsAreSuppressed = Diags.getSuppressAllDiagnostics();
1760  Diags.setSuppressAllDiagnostics(true);
1761  CorrectedLHS = Actions.ActOnStartCXXMemberReference(
1762  getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType,
1763  MayBePseudoDestructor);
1764  Diags.setSuppressAllDiagnostics(DiagsAreSuppressed);
1765  }
1766 
1767  Expr *Base = LHS.get();
1768  Expr *CorrectedBase = CorrectedLHS.get();
1769 
1770  // Code completion for a member access expression.
1771  Actions.CodeCompleteMemberReferenceExpr(
1772  getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow,
1773  Base && ExprStatementTokLoc == Base->getBeginLoc());
1774 
1775  cutOffParsing();
1776  return ExprError();
1777  }
1778 
1779  if (MayBePseudoDestructor && !LHS.isInvalid()) {
1780  LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
1781  ObjectType);
1782  break;
1783  }
1784 
1785  // Either the action has told us that this cannot be a
1786  // pseudo-destructor expression (based on the type of base
1787  // expression), or we didn't see a '~' in the right place. We
1788  // can still parse a destructor name here, but in that case it
1789  // names a real destructor.
1790  // Allow explicit constructor calls in Microsoft mode.
1791  // FIXME: Add support for explicit call of template constructor.
1792  SourceLocation TemplateKWLoc;
1793  UnqualifiedId Name;
1794  if (getLangOpts().ObjC2 && OpKind == tok::period &&
1795  Tok.is(tok::kw_class)) {
1796  // Objective-C++:
1797  // After a '.' in a member access expression, treat the keyword
1798  // 'class' as if it were an identifier.
1799  //
1800  // This hack allows property access to the 'class' method because it is
1801  // such a common method name. For other C++ keywords that are
1802  // Objective-C method names, one must use the message send syntax.
1803  IdentifierInfo *Id = Tok.getIdentifierInfo();
1804  SourceLocation Loc = ConsumeToken();
1805  Name.setIdentifier(Id, Loc);
1806  } else if (ParseUnqualifiedId(SS,
1807  /*EnteringContext=*/false,
1808  /*AllowDestructorName=*/true,
1809  /*AllowConstructorName=*/
1810  getLangOpts().MicrosoftExt,
1811  /*AllowDeductionGuide=*/false,
1812  ObjectType, &TemplateKWLoc, Name)) {
1813  (void)Actions.CorrectDelayedTyposInExpr(LHS);
1814  LHS = ExprError();
1815  }
1816 
1817  if (!LHS.isInvalid())
1818  LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
1819  OpKind, SS, TemplateKWLoc, Name,
1820  CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
1821  : nullptr);
1822  if (!LHS.isInvalid() && Tok.is(tok::less))
1823  checkPotentialAngleBracket(LHS);
1824  break;
1825  }
1826  case tok::plusplus: // postfix-expression: postfix-expression '++'
1827  case tok::minusminus: // postfix-expression: postfix-expression '--'
1828  if (!LHS.isInvalid()) {
1829  LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
1830  Tok.getKind(), LHS.get());
1831  }
1832  ConsumeToken();
1833  break;
1834  }
1835  }
1836 }
1837 
1838 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
1839 /// vec_step and we are at the start of an expression or a parenthesized
1840 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
1841 /// expression (isCastExpr == false) or the type (isCastExpr == true).
1842 ///
1843 /// \verbatim
1844 /// unary-expression: [C99 6.5.3]
1845 /// 'sizeof' unary-expression
1846 /// 'sizeof' '(' type-name ')'
1847 /// [GNU] '__alignof' unary-expression
1848 /// [GNU] '__alignof' '(' type-name ')'
1849 /// [C11] '_Alignof' '(' type-name ')'
1850 /// [C++0x] 'alignof' '(' type-id ')'
1851 ///
1852 /// [GNU] typeof-specifier:
1853 /// typeof ( expressions )
1854 /// typeof ( type-name )
1855 /// [GNU/C++] typeof unary-expression
1856 ///
1857 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
1858 /// vec_step ( expressions )
1859 /// vec_step ( type-name )
1860 /// \endverbatim
1861 ExprResult
1862 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
1863  bool &isCastExpr,
1864  ParsedType &CastTy,
1865  SourceRange &CastRange) {
1866 
1867  assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_sizeof, tok::kw___alignof,
1868  tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step,
1869  tok::kw___builtin_omp_required_simd_align) &&
1870  "Not a typeof/sizeof/alignof/vec_step expression!");
1871 
1872  ExprResult Operand;
1873 
1874  // If the operand doesn't start with an '(', it must be an expression.
1875  if (Tok.isNot(tok::l_paren)) {
1876  // If construct allows a form without parenthesis, user may forget to put
1877  // pathenthesis around type name.
1878  if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
1879  tok::kw__Alignof)) {
1880  if (isTypeIdUnambiguously()) {
1881  DeclSpec DS(AttrFactory);
1882  ParseSpecifierQualifierList(DS);
1883  Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
1884  ParseDeclarator(DeclaratorInfo);
1885 
1886  SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
1887  SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
1888  Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
1889  << OpTok.getName()
1890  << FixItHint::CreateInsertion(LParenLoc, "(")
1891  << FixItHint::CreateInsertion(RParenLoc, ")");
1892  isCastExpr = true;
1893  return ExprEmpty();
1894  }
1895  }
1896 
1897  isCastExpr = false;
1898  if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
1899  Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
1900  << tok::l_paren;
1901  return ExprError();
1902  }
1903 
1904  Operand = ParseCastExpression(true/*isUnaryExpression*/);
1905  } else {
1906  // If it starts with a '(', we know that it is either a parenthesized
1907  // type-name, or it is a unary-expression that starts with a compound
1908  // literal, or starts with a primary-expression that is a parenthesized
1909  // expression.
1910  ParenParseOption ExprType = CastExpr;
1911  SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
1912 
1913  Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
1914  false, CastTy, RParenLoc);
1915  CastRange = SourceRange(LParenLoc, RParenLoc);
1916 
1917  // If ParseParenExpression parsed a '(typename)' sequence only, then this is
1918  // a type.
1919  if (ExprType == CastExpr) {
1920  isCastExpr = true;
1921  return ExprEmpty();
1922  }
1923 
1924  if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
1925  // GNU typeof in C requires the expression to be parenthesized. Not so for
1926  // sizeof/alignof or in C++. Therefore, the parenthesized expression is
1927  // the start of a unary-expression, but doesn't include any postfix
1928  // pieces. Parse these now if present.
1929  if (!Operand.isInvalid())
1930  Operand = ParsePostfixExpressionSuffix(Operand.get());
1931  }
1932  }
1933 
1934  // If we get here, the operand to the typeof/sizeof/alignof was an expression.
1935  isCastExpr = false;
1936  return Operand;
1937 }
1938 
1939 
1940 /// Parse a sizeof or alignof expression.
1941 ///
1942 /// \verbatim
1943 /// unary-expression: [C99 6.5.3]
1944 /// 'sizeof' unary-expression
1945 /// 'sizeof' '(' type-name ')'
1946 /// [C++11] 'sizeof' '...' '(' identifier ')'
1947 /// [GNU] '__alignof' unary-expression
1948 /// [GNU] '__alignof' '(' type-name ')'
1949 /// [C11] '_Alignof' '(' type-name ')'
1950 /// [C++11] 'alignof' '(' type-id ')'
1951 /// \endverbatim
1952 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
1953  assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
1954  tok::kw__Alignof, tok::kw_vec_step,
1955  tok::kw___builtin_omp_required_simd_align) &&
1956  "Not a sizeof/alignof/vec_step expression!");
1957  Token OpTok = Tok;
1958  ConsumeToken();
1959 
1960  // [C++11] 'sizeof' '...' '(' identifier ')'
1961  if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
1962  SourceLocation EllipsisLoc = ConsumeToken();
1963  SourceLocation LParenLoc, RParenLoc;
1964  IdentifierInfo *Name = nullptr;
1965  SourceLocation NameLoc;
1966  if (Tok.is(tok::l_paren)) {
1967  BalancedDelimiterTracker T(*this, tok::l_paren);
1968  T.consumeOpen();
1969  LParenLoc = T.getOpenLocation();
1970  if (Tok.is(tok::identifier)) {
1971  Name = Tok.getIdentifierInfo();
1972  NameLoc = ConsumeToken();
1973  T.consumeClose();
1974  RParenLoc = T.getCloseLocation();
1975  if (RParenLoc.isInvalid())
1976  RParenLoc = PP.getLocForEndOfToken(NameLoc);
1977  } else {
1978  Diag(Tok, diag::err_expected_parameter_pack);
1979  SkipUntil(tok::r_paren, StopAtSemi);
1980  }
1981  } else if (Tok.is(tok::identifier)) {
1982  Name = Tok.getIdentifierInfo();
1983  NameLoc = ConsumeToken();
1984  LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
1985  RParenLoc = PP.getLocForEndOfToken(NameLoc);
1986  Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
1987  << Name
1988  << FixItHint::CreateInsertion(LParenLoc, "(")
1989  << FixItHint::CreateInsertion(RParenLoc, ")");
1990  } else {
1991  Diag(Tok, diag::err_sizeof_parameter_pack);
1992  }
1993 
1994  if (!Name)
1995  return ExprError();
1996 
2000 
2001  return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
2002  OpTok.getLocation(),
2003  *Name, NameLoc,
2004  RParenLoc);
2005  }
2006 
2007  if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2008  Diag(OpTok, diag::warn_cxx98_compat_alignof);
2009 
2013 
2014  bool isCastExpr;
2015  ParsedType CastTy;
2016  SourceRange CastRange;
2017  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
2018  isCastExpr,
2019  CastTy,
2020  CastRange);
2021 
2022  UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
2023  if (OpTok.isOneOf(tok::kw_alignof, tok::kw___alignof, tok::kw__Alignof))
2024  ExprKind = UETT_AlignOf;
2025  else if (OpTok.is(tok::kw_vec_step))
2026  ExprKind = UETT_VecStep;
2027  else if (OpTok.is(tok::kw___builtin_omp_required_simd_align))
2028  ExprKind = UETT_OpenMPRequiredSimdAlign;
2029 
2030  if (isCastExpr)
2031  return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2032  ExprKind,
2033  /*isType=*/true,
2034  CastTy.getAsOpaquePtr(),
2035  CastRange);
2036 
2037  if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2038  Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
2039 
2040  // If we get here, the operand to the sizeof/alignof was an expression.
2041  if (!Operand.isInvalid())
2042  Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2043  ExprKind,
2044  /*isType=*/false,
2045  Operand.get(),
2046  CastRange);
2047  return Operand;
2048 }
2049 
2050 /// ParseBuiltinPrimaryExpression
2051 ///
2052 /// \verbatim
2053 /// primary-expression: [C99 6.5.1]
2054 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
2055 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
2056 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
2057 /// assign-expr ')'
2058 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
2059 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')'
2060 ///
2061 /// [GNU] offsetof-member-designator:
2062 /// [GNU] identifier
2063 /// [GNU] offsetof-member-designator '.' identifier
2064 /// [GNU] offsetof-member-designator '[' expression ']'
2065 /// \endverbatim
2066 ExprResult Parser::ParseBuiltinPrimaryExpression() {
2067  ExprResult Res;
2068  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2069 
2070  tok::TokenKind T = Tok.getKind();
2071  SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier.
2072 
2073  // All of these start with an open paren.
2074  if (Tok.isNot(tok::l_paren))
2075  return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
2076  << tok::l_paren);
2077 
2078  BalancedDelimiterTracker PT(*this, tok::l_paren);
2079  PT.consumeOpen();
2080 
2081  // TODO: Build AST.
2082 
2083  switch (T) {
2084  default: llvm_unreachable("Not a builtin primary expression!");
2085  case tok::kw___builtin_va_arg: {
2087 
2088  if (ExpectAndConsume(tok::comma)) {
2089  SkipUntil(tok::r_paren, StopAtSemi);
2090  Expr = ExprError();
2091  }
2092 
2093  TypeResult Ty = ParseTypeName();
2094 
2095  if (Tok.isNot(tok::r_paren)) {
2096  Diag(Tok, diag::err_expected) << tok::r_paren;
2097  Expr = ExprError();
2098  }
2099 
2100  if (Expr.isInvalid() || Ty.isInvalid())
2101  Res = ExprError();
2102  else
2103  Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
2104  break;
2105  }
2106  case tok::kw___builtin_offsetof: {
2107  SourceLocation TypeLoc = Tok.getLocation();
2108  TypeResult Ty = ParseTypeName();
2109  if (Ty.isInvalid()) {
2110  SkipUntil(tok::r_paren, StopAtSemi);
2111  return ExprError();
2112  }
2113 
2114  if (ExpectAndConsume(tok::comma)) {
2115  SkipUntil(tok::r_paren, StopAtSemi);
2116  return ExprError();
2117  }
2118 
2119  // We must have at least one identifier here.
2120  if (Tok.isNot(tok::identifier)) {
2121  Diag(Tok, diag::err_expected) << tok::identifier;
2122  SkipUntil(tok::r_paren, StopAtSemi);
2123  return ExprError();
2124  }
2125 
2126  // Keep track of the various subcomponents we see.
2128 
2129  Comps.push_back(Sema::OffsetOfComponent());
2130  Comps.back().isBrackets = false;
2131  Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2132  Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
2133 
2134  // FIXME: This loop leaks the index expressions on error.
2135  while (1) {
2136  if (Tok.is(tok::period)) {
2137  // offsetof-member-designator: offsetof-member-designator '.' identifier
2138  Comps.push_back(Sema::OffsetOfComponent());
2139  Comps.back().isBrackets = false;
2140  Comps.back().LocStart = ConsumeToken();
2141 
2142  if (Tok.isNot(tok::identifier)) {
2143  Diag(Tok, diag::err_expected) << tok::identifier;
2144  SkipUntil(tok::r_paren, StopAtSemi);
2145  return ExprError();
2146  }
2147  Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2148  Comps.back().LocEnd = ConsumeToken();
2149 
2150  } else if (Tok.is(tok::l_square)) {
2151  if (CheckProhibitedCXX11Attribute())
2152  return ExprError();
2153 
2154  // offsetof-member-designator: offsetof-member-design '[' expression ']'
2155  Comps.push_back(Sema::OffsetOfComponent());
2156  Comps.back().isBrackets = true;
2157  BalancedDelimiterTracker ST(*this, tok::l_square);
2158  ST.consumeOpen();
2159  Comps.back().LocStart = ST.getOpenLocation();
2160  Res = ParseExpression();
2161  if (Res.isInvalid()) {
2162  SkipUntil(tok::r_paren, StopAtSemi);
2163  return Res;
2164  }
2165  Comps.back().U.E = Res.get();
2166 
2167  ST.consumeClose();
2168  Comps.back().LocEnd = ST.getCloseLocation();
2169  } else {
2170  if (Tok.isNot(tok::r_paren)) {
2171  PT.consumeClose();
2172  Res = ExprError();
2173  } else if (Ty.isInvalid()) {
2174  Res = ExprError();
2175  } else {
2176  PT.consumeClose();
2177  Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
2178  Ty.get(), Comps,
2179  PT.getCloseLocation());
2180  }
2181  break;
2182  }
2183  }
2184  break;
2185  }
2186  case tok::kw___builtin_choose_expr: {
2188  if (Cond.isInvalid()) {
2189  SkipUntil(tok::r_paren, StopAtSemi);
2190  return Cond;
2191  }
2192  if (ExpectAndConsume(tok::comma)) {
2193  SkipUntil(tok::r_paren, StopAtSemi);
2194  return ExprError();
2195  }
2196 
2198  if (Expr1.isInvalid()) {
2199  SkipUntil(tok::r_paren, StopAtSemi);
2200  return Expr1;
2201  }
2202  if (ExpectAndConsume(tok::comma)) {
2203  SkipUntil(tok::r_paren, StopAtSemi);
2204  return ExprError();
2205  }
2206 
2208  if (Expr2.isInvalid()) {
2209  SkipUntil(tok::r_paren, StopAtSemi);
2210  return Expr2;
2211  }
2212  if (Tok.isNot(tok::r_paren)) {
2213  Diag(Tok, diag::err_expected) << tok::r_paren;
2214  return ExprError();
2215  }
2216  Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
2217  Expr2.get(), ConsumeParen());
2218  break;
2219  }
2220  case tok::kw___builtin_astype: {
2221  // The first argument is an expression to be converted, followed by a comma.
2223  if (Expr.isInvalid()) {
2224  SkipUntil(tok::r_paren, StopAtSemi);
2225  return ExprError();
2226  }
2227 
2228  if (ExpectAndConsume(tok::comma)) {
2229  SkipUntil(tok::r_paren, StopAtSemi);
2230  return ExprError();
2231  }
2232 
2233  // Second argument is the type to bitcast to.
2234  TypeResult DestTy = ParseTypeName();
2235  if (DestTy.isInvalid())
2236  return ExprError();
2237 
2238  // Attempt to consume the r-paren.
2239  if (Tok.isNot(tok::r_paren)) {
2240  Diag(Tok, diag::err_expected) << tok::r_paren;
2241  SkipUntil(tok::r_paren, StopAtSemi);
2242  return ExprError();
2243  }
2244 
2245  Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
2246  ConsumeParen());
2247  break;
2248  }
2249  case tok::kw___builtin_convertvector: {
2250  // The first argument is an expression to be converted, followed by a comma.
2252  if (Expr.isInvalid()) {
2253  SkipUntil(tok::r_paren, StopAtSemi);
2254  return ExprError();
2255  }
2256 
2257  if (ExpectAndConsume(tok::comma)) {
2258  SkipUntil(tok::r_paren, StopAtSemi);
2259  return ExprError();
2260  }
2261 
2262  // Second argument is the type to bitcast to.
2263  TypeResult DestTy = ParseTypeName();
2264  if (DestTy.isInvalid())
2265  return ExprError();
2266 
2267  // Attempt to consume the r-paren.
2268  if (Tok.isNot(tok::r_paren)) {
2269  Diag(Tok, diag::err_expected) << tok::r_paren;
2270  SkipUntil(tok::r_paren, StopAtSemi);
2271  return ExprError();
2272  }
2273 
2274  Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2275  ConsumeParen());
2276  break;
2277  }
2278  }
2279 
2280  if (Res.isInvalid())
2281  return ExprError();
2282 
2283  // These can be followed by postfix-expr pieces because they are
2284  // primary-expressions.
2285  return ParsePostfixExpressionSuffix(Res.get());
2286 }
2287 
2288 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2289 /// based on what is allowed by ExprType. The actual thing parsed is returned
2290 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2291 /// not the parsed cast-expression.
2292 ///
2293 /// \verbatim
2294 /// primary-expression: [C99 6.5.1]
2295 /// '(' expression ')'
2296 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly)
2297 /// postfix-expression: [C99 6.5.2]
2298 /// '(' type-name ')' '{' initializer-list '}'
2299 /// '(' type-name ')' '{' initializer-list ',' '}'
2300 /// cast-expression: [C99 6.5.4]
2301 /// '(' type-name ')' cast-expression
2302 /// [ARC] bridged-cast-expression
2303 /// [ARC] bridged-cast-expression:
2304 /// (__bridge type-name) cast-expression
2305 /// (__bridge_transfer type-name) cast-expression
2306 /// (__bridge_retained type-name) cast-expression
2307 /// fold-expression: [C++1z]
2308 /// '(' cast-expression fold-operator '...' ')'
2309 /// '(' '...' fold-operator cast-expression ')'
2310 /// '(' cast-expression fold-operator '...'
2311 /// fold-operator cast-expression ')'
2312 /// \endverbatim
2313 ExprResult
2314 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2315  bool isTypeCast, ParsedType &CastTy,
2316  SourceLocation &RParenLoc) {
2317  assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2318  ColonProtectionRAIIObject ColonProtection(*this, false);
2319  BalancedDelimiterTracker T(*this, tok::l_paren);
2320  if (T.consumeOpen())
2321  return ExprError();
2322  SourceLocation OpenLoc = T.getOpenLocation();
2323 
2324  ExprResult Result(true);
2325  bool isAmbiguousTypeId;
2326  CastTy = nullptr;
2327 
2328  if (Tok.is(tok::code_completion)) {
2329  Actions.CodeCompleteOrdinaryName(getCurScope(),
2330  ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
2332  cutOffParsing();
2333  return ExprError();
2334  }
2335 
2336  // Diagnose use of bridge casts in non-arc mode.
2337  bool BridgeCast = (getLangOpts().ObjC2 &&
2338  Tok.isOneOf(tok::kw___bridge,
2339  tok::kw___bridge_transfer,
2340  tok::kw___bridge_retained,
2341  tok::kw___bridge_retain));
2342  if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2343  if (!TryConsumeToken(tok::kw___bridge)) {
2344  StringRef BridgeCastName = Tok.getName();
2345  SourceLocation BridgeKeywordLoc = ConsumeToken();
2346  if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2347  Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2348  << BridgeCastName
2349  << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2350  }
2351  BridgeCast = false;
2352  }
2353 
2354  // None of these cases should fall through with an invalid Result
2355  // unless they've already reported an error.
2356  if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2357  Diag(Tok, diag::ext_gnu_statement_expr);
2358 
2359  if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
2360  Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
2361  } else {
2362  // Find the nearest non-record decl context. Variables declared in a
2363  // statement expression behave as if they were declared in the enclosing
2364  // function, block, or other code construct.
2365  DeclContext *CodeDC = Actions.CurContext;
2366  while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
2367  CodeDC = CodeDC->getParent();
2368  assert(CodeDC && !CodeDC->isFileContext() &&
2369  "statement expr not in code context");
2370  }
2371  Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
2372 
2373  Actions.ActOnStartStmtExpr();
2374 
2375  StmtResult Stmt(ParseCompoundStatement(true));
2376  ExprType = CompoundStmt;
2377 
2378  // If the substmt parsed correctly, build the AST node.
2379  if (!Stmt.isInvalid()) {
2380  Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation());
2381  } else {
2382  Actions.ActOnStmtExprError();
2383  }
2384  }
2385  } else if (ExprType >= CompoundLiteral && BridgeCast) {
2386  tok::TokenKind tokenKind = Tok.getKind();
2387  SourceLocation BridgeKeywordLoc = ConsumeToken();
2388 
2389  // Parse an Objective-C ARC ownership cast expression.
2391  if (tokenKind == tok::kw___bridge)
2392  Kind = OBC_Bridge;
2393  else if (tokenKind == tok::kw___bridge_transfer)
2394  Kind = OBC_BridgeTransfer;
2395  else if (tokenKind == tok::kw___bridge_retained)
2396  Kind = OBC_BridgeRetained;
2397  else {
2398  // As a hopefully temporary workaround, allow __bridge_retain as
2399  // a synonym for __bridge_retained, but only in system headers.
2400  assert(tokenKind == tok::kw___bridge_retain);
2401  Kind = OBC_BridgeRetained;
2402  if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2403  Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2404  << FixItHint::CreateReplacement(BridgeKeywordLoc,
2405  "__bridge_retained");
2406  }
2407 
2408  TypeResult Ty = ParseTypeName();
2409  T.consumeClose();
2410  ColonProtection.restore();
2411  RParenLoc = T.getCloseLocation();
2412  ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
2413 
2414  if (Ty.isInvalid() || SubExpr.isInvalid())
2415  return ExprError();
2416 
2417  return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2418  BridgeKeywordLoc, Ty.get(),
2419  RParenLoc, SubExpr.get());
2420  } else if (ExprType >= CompoundLiteral &&
2421  isTypeIdInParens(isAmbiguousTypeId)) {
2422 
2423  // Otherwise, this is a compound literal expression or cast expression.
2424 
2425  // In C++, if the type-id is ambiguous we disambiguate based on context.
2426  // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2427  // in which case we should treat it as type-id.
2428  // if stopIfCastExpr is false, we need to determine the context past the
2429  // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2430  if (isAmbiguousTypeId && !stopIfCastExpr) {
2431  ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
2432  ColonProtection);
2433  RParenLoc = T.getCloseLocation();
2434  return res;
2435  }
2436 
2437  // Parse the type declarator.
2438  DeclSpec DS(AttrFactory);
2439  ParseSpecifierQualifierList(DS);
2440  Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
2441  ParseDeclarator(DeclaratorInfo);
2442 
2443  // If our type is followed by an identifier and either ':' or ']', then
2444  // this is probably an Objective-C message send where the leading '[' is
2445  // missing. Recover as if that were the case.
2446  if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2447  !InMessageExpression && getLangOpts().ObjC1 &&
2448  (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2449  TypeResult Ty;
2450  {
2451  InMessageExpressionRAIIObject InMessage(*this, false);
2452  Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2453  }
2454  Result = ParseObjCMessageExpressionBody(SourceLocation(),
2455  SourceLocation(),
2456  Ty.get(), nullptr);
2457  } else {
2458  // Match the ')'.
2459  T.consumeClose();
2460  ColonProtection.restore();
2461  RParenLoc = T.getCloseLocation();
2462  if (Tok.is(tok::l_brace)) {
2463  ExprType = CompoundLiteral;
2464  TypeResult Ty;
2465  {
2466  InMessageExpressionRAIIObject InMessage(*this, false);
2467  Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2468  }
2469  return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2470  }
2471 
2472  if (Tok.is(tok::l_paren)) {
2473  // This could be OpenCL vector Literals
2474  if (getLangOpts().OpenCL)
2475  {
2476  TypeResult Ty;
2477  {
2478  InMessageExpressionRAIIObject InMessage(*this, false);
2479  Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2480  }
2481  if(Ty.isInvalid())
2482  {
2483  return ExprError();
2484  }
2485  QualType QT = Ty.get().get().getCanonicalType();
2486  if (QT->isVectorType())
2487  {
2488  // We parsed '(' vector-type-name ')' followed by '('
2489 
2490  // Parse the cast-expression that follows it next.
2491  // isVectorLiteral = true will make sure we don't parse any
2492  // Postfix expression yet
2493  Result = ParseCastExpression(/*isUnaryExpression=*/false,
2494  /*isAddressOfOperand=*/false,
2495  /*isTypeCast=*/IsTypeCast,
2496  /*isVectorLiteral=*/true);
2497 
2498  if (!Result.isInvalid()) {
2499  Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2500  DeclaratorInfo, CastTy,
2501  RParenLoc, Result.get());
2502  }
2503 
2504  // After we performed the cast we can check for postfix-expr pieces.
2505  if (!Result.isInvalid()) {
2506  Result = ParsePostfixExpressionSuffix(Result);
2507  }
2508 
2509  return Result;
2510  }
2511  }
2512  }
2513 
2514  if (ExprType == CastExpr) {
2515  // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2516 
2517  if (DeclaratorInfo.isInvalidType())
2518  return ExprError();
2519 
2520  // Note that this doesn't parse the subsequent cast-expression, it just
2521  // returns the parsed type to the callee.
2522  if (stopIfCastExpr) {
2523  TypeResult Ty;
2524  {
2525  InMessageExpressionRAIIObject InMessage(*this, false);
2526  Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2527  }
2528  CastTy = Ty.get();
2529  return ExprResult();
2530  }
2531 
2532  // Reject the cast of super idiom in ObjC.
2533  if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
2534  Tok.getIdentifierInfo() == Ident_super &&
2536  GetLookAheadToken(1).isNot(tok::period)) {
2537  Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2538  << SourceRange(OpenLoc, RParenLoc);
2539  return ExprError();
2540  }
2541 
2542  // Parse the cast-expression that follows it next.
2543  // TODO: For cast expression with CastTy.
2544  Result = ParseCastExpression(/*isUnaryExpression=*/false,
2545  /*isAddressOfOperand=*/false,
2546  /*isTypeCast=*/IsTypeCast);
2547  if (!Result.isInvalid()) {
2548  Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2549  DeclaratorInfo, CastTy,
2550  RParenLoc, Result.get());
2551  }
2552  return Result;
2553  }
2554 
2555  Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
2556  return ExprError();
2557  }
2558  } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) &&
2559  isFoldOperator(NextToken().getKind())) {
2560  ExprType = FoldExpr;
2561  return ParseFoldExpression(ExprResult(), T);
2562  } else if (isTypeCast) {
2563  // Parse the expression-list.
2564  InMessageExpressionRAIIObject InMessage(*this, false);
2565 
2566  ExprVector ArgExprs;
2567  CommaLocsTy CommaLocs;
2568 
2569  if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
2570  // FIXME: If we ever support comma expressions as operands to
2571  // fold-expressions, we'll need to allow multiple ArgExprs here.
2572  if (ExprType >= FoldExpr && ArgExprs.size() == 1 &&
2573  isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) {
2574  ExprType = FoldExpr;
2575  return ParseFoldExpression(ArgExprs[0], T);
2576  }
2577 
2578  ExprType = SimpleExpr;
2579  Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
2580  ArgExprs);
2581  }
2582  } else {
2583  InMessageExpressionRAIIObject InMessage(*this, false);
2584 
2585  Result = ParseExpression(MaybeTypeCast);
2586  if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) {
2587  // Correct typos in non-C++ code earlier so that implicit-cast-like
2588  // expressions are parsed correctly.
2589  Result = Actions.CorrectDelayedTyposInExpr(Result);
2590  }
2591 
2592  if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) &&
2593  NextToken().is(tok::ellipsis)) {
2594  ExprType = FoldExpr;
2595  return ParseFoldExpression(Result, T);
2596  }
2597  ExprType = SimpleExpr;
2598 
2599  // Don't build a paren expression unless we actually match a ')'.
2600  if (!Result.isInvalid() && Tok.is(tok::r_paren))
2601  Result =
2602  Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
2603  }
2604 
2605  // Match the ')'.
2606  if (Result.isInvalid()) {
2607  SkipUntil(tok::r_paren, StopAtSemi);
2608  return ExprError();
2609  }
2610 
2611  T.consumeClose();
2612  RParenLoc = T.getCloseLocation();
2613  return Result;
2614 }
2615 
2616 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
2617 /// and we are at the left brace.
2618 ///
2619 /// \verbatim
2620 /// postfix-expression: [C99 6.5.2]
2621 /// '(' type-name ')' '{' initializer-list '}'
2622 /// '(' type-name ')' '{' initializer-list ',' '}'
2623 /// \endverbatim
2624 ExprResult
2625 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
2626  SourceLocation LParenLoc,
2627  SourceLocation RParenLoc) {
2628  assert(Tok.is(tok::l_brace) && "Not a compound literal!");
2629  if (!getLangOpts().C99) // Compound literals don't exist in C90.
2630  Diag(LParenLoc, diag::ext_c99_compound_literal);
2631  ExprResult Result = ParseInitializer();
2632  if (!Result.isInvalid() && Ty)
2633  return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
2634  return Result;
2635 }
2636 
2637 /// ParseStringLiteralExpression - This handles the various token types that
2638 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
2639 /// translation phase #6].
2640 ///
2641 /// \verbatim
2642 /// primary-expression: [C99 6.5.1]
2643 /// string-literal
2644 /// \verbatim
2645 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
2646  assert(isTokenStringLiteral() && "Not a string literal!");
2647 
2648  // String concat. Note that keywords like __func__ and __FUNCTION__ are not
2649  // considered to be strings for concatenation purposes.
2650  SmallVector<Token, 4> StringToks;
2651 
2652  do {
2653  StringToks.push_back(Tok);
2654  ConsumeStringToken();
2655  } while (isTokenStringLiteral());
2656 
2657  // Pass the set of string tokens, ready for concatenation, to the actions.
2658  return Actions.ActOnStringLiteral(StringToks,
2659  AllowUserDefinedLiteral ? getCurScope()
2660  : nullptr);
2661 }
2662 
2663 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
2664 /// [C11 6.5.1.1].
2665 ///
2666 /// \verbatim
2667 /// generic-selection:
2668 /// _Generic ( assignment-expression , generic-assoc-list )
2669 /// generic-assoc-list:
2670 /// generic-association
2671 /// generic-assoc-list , generic-association
2672 /// generic-association:
2673 /// type-name : assignment-expression
2674 /// default : assignment-expression
2675 /// \endverbatim
2676 ExprResult Parser::ParseGenericSelectionExpression() {
2677  assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
2678  SourceLocation KeyLoc = ConsumeToken();
2679 
2680  if (!getLangOpts().C11)
2681  Diag(KeyLoc, diag::ext_c11_generic_selection);
2682 
2683  BalancedDelimiterTracker T(*this, tok::l_paren);
2684  if (T.expectAndConsume())
2685  return ExprError();
2686 
2687  ExprResult ControllingExpr;
2688  {
2689  // C11 6.5.1.1p3 "The controlling expression of a generic selection is
2690  // not evaluated."
2693  ControllingExpr =
2694  Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
2695  if (ControllingExpr.isInvalid()) {
2696  SkipUntil(tok::r_paren, StopAtSemi);
2697  return ExprError();
2698  }
2699  }
2700 
2701  if (ExpectAndConsume(tok::comma)) {
2702  SkipUntil(tok::r_paren, StopAtSemi);
2703  return ExprError();
2704  }
2705 
2706  SourceLocation DefaultLoc;
2707  TypeVector Types;
2708  ExprVector Exprs;
2709  do {
2710  ParsedType Ty;
2711  if (Tok.is(tok::kw_default)) {
2712  // C11 6.5.1.1p2 "A generic selection shall have no more than one default
2713  // generic association."
2714  if (!DefaultLoc.isInvalid()) {
2715  Diag(Tok, diag::err_duplicate_default_assoc);
2716  Diag(DefaultLoc, diag::note_previous_default_assoc);
2717  SkipUntil(tok::r_paren, StopAtSemi);
2718  return ExprError();
2719  }
2720  DefaultLoc = ConsumeToken();
2721  Ty = nullptr;
2722  } else {
2724  TypeResult TR = ParseTypeName();
2725  if (TR.isInvalid()) {
2726  SkipUntil(tok::r_paren, StopAtSemi);
2727  return ExprError();
2728  }
2729  Ty = TR.get();
2730  }
2731  Types.push_back(Ty);
2732 
2733  if (ExpectAndConsume(tok::colon)) {
2734  SkipUntil(tok::r_paren, StopAtSemi);
2735  return ExprError();
2736  }
2737 
2738  // FIXME: These expressions should be parsed in a potentially potentially
2739  // evaluated context.
2740  ExprResult ER(
2741  Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
2742  if (ER.isInvalid()) {
2743  SkipUntil(tok::r_paren, StopAtSemi);
2744  return ExprError();
2745  }
2746  Exprs.push_back(ER.get());
2747  } while (TryConsumeToken(tok::comma));
2748 
2749  T.consumeClose();
2750  if (T.getCloseLocation().isInvalid())
2751  return ExprError();
2752 
2753  return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
2754  T.getCloseLocation(),
2755  ControllingExpr.get(),
2756  Types, Exprs);
2757 }
2758 
2759 /// Parse A C++1z fold-expression after the opening paren and optional
2760 /// left-hand-side expression.
2761 ///
2762 /// \verbatim
2763 /// fold-expression:
2764 /// ( cast-expression fold-operator ... )
2765 /// ( ... fold-operator cast-expression )
2766 /// ( cast-expression fold-operator ... fold-operator cast-expression )
2767 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
2769  if (LHS.isInvalid()) {
2770  T.skipToEnd();
2771  return true;
2772  }
2773 
2774  tok::TokenKind Kind = tok::unknown;
2775  SourceLocation FirstOpLoc;
2776  if (LHS.isUsable()) {
2777  Kind = Tok.getKind();
2778  assert(isFoldOperator(Kind) && "missing fold-operator");
2779  FirstOpLoc = ConsumeToken();
2780  }
2781 
2782  assert(Tok.is(tok::ellipsis) && "not a fold-expression");
2783  SourceLocation EllipsisLoc = ConsumeToken();
2784 
2785  ExprResult RHS;
2786  if (Tok.isNot(tok::r_paren)) {
2787  if (!isFoldOperator(Tok.getKind()))
2788  return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
2789 
2790  if (Kind != tok::unknown && Tok.getKind() != Kind)
2791  Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
2792  << SourceRange(FirstOpLoc);
2793  Kind = Tok.getKind();
2794  ConsumeToken();
2795 
2796  RHS = ParseExpression();
2797  if (RHS.isInvalid()) {
2798  T.skipToEnd();
2799  return true;
2800  }
2801  }
2802 
2803  Diag(EllipsisLoc, getLangOpts().CPlusPlus17
2804  ? diag::warn_cxx14_compat_fold_expression
2805  : diag::ext_fold_expression);
2806 
2807  T.consumeClose();
2808  return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind,
2809  EllipsisLoc, RHS.get(), T.getCloseLocation());
2810 }
2811 
2812 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
2813 ///
2814 /// \verbatim
2815 /// argument-expression-list:
2816 /// assignment-expression
2817 /// argument-expression-list , assignment-expression
2818 ///
2819 /// [C++] expression-list:
2820 /// [C++] assignment-expression
2821 /// [C++] expression-list , assignment-expression
2822 ///
2823 /// [C++0x] expression-list:
2824 /// [C++0x] initializer-list
2825 ///
2826 /// [C++0x] initializer-list
2827 /// [C++0x] initializer-clause ...[opt]
2828 /// [C++0x] initializer-list , initializer-clause ...[opt]
2829 ///
2830 /// [C++0x] initializer-clause:
2831 /// [C++0x] assignment-expression
2832 /// [C++0x] braced-init-list
2833 /// \endverbatim
2834 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
2836  llvm::function_ref<void()> Completer) {
2837  bool SawError = false;
2838  while (1) {
2839  if (Tok.is(tok::code_completion)) {
2840  if (Completer)
2841  Completer();
2842  else
2843  Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
2844  cutOffParsing();
2845  return true;
2846  }
2847 
2848  ExprResult Expr;
2849  if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2850  Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2851  Expr = ParseBraceInitializer();
2852  } else
2853  Expr = ParseAssignmentExpression();
2854 
2855  if (Tok.is(tok::ellipsis))
2856  Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
2857  if (Expr.isInvalid()) {
2858  SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
2859  SawError = true;
2860  } else {
2861  Exprs.push_back(Expr.get());
2862  }
2863 
2864  if (Tok.isNot(tok::comma))
2865  break;
2866  // Move to the next argument, remember where the comma was.
2867  Token Comma = Tok;
2868  CommaLocs.push_back(ConsumeToken());
2869 
2870  checkPotentialAngleBracketDelimiter(Comma);
2871  }
2872  if (SawError) {
2873  // Ensure typos get diagnosed when errors were encountered while parsing the
2874  // expression list.
2875  for (auto &E : Exprs) {
2876  ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
2877  if (Expr.isUsable()) E = Expr.get();
2878  }
2879  }
2880  return SawError;
2881 }
2882 
2883 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
2884 /// used for misc language extensions.
2885 ///
2886 /// \verbatim
2887 /// simple-expression-list:
2888 /// assignment-expression
2889 /// simple-expression-list , assignment-expression
2890 /// \endverbatim
2891 bool
2892 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
2893  SmallVectorImpl<SourceLocation> &CommaLocs) {
2894  while (1) {
2896  if (Expr.isInvalid())
2897  return true;
2898 
2899  Exprs.push_back(Expr.get());
2900 
2901  if (Tok.isNot(tok::comma))
2902  return false;
2903 
2904  // Move to the next argument, remember where the comma was.
2905  Token Comma = Tok;
2906  CommaLocs.push_back(ConsumeToken());
2907 
2908  checkPotentialAngleBracketDelimiter(Comma);
2909  }
2910 }
2911 
2912 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
2913 ///
2914 /// \verbatim
2915 /// [clang] block-id:
2916 /// [clang] specifier-qualifier-list block-declarator
2917 /// \endverbatim
2918 void Parser::ParseBlockId(SourceLocation CaretLoc) {
2919  if (Tok.is(tok::code_completion)) {
2920  Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
2921  return cutOffParsing();
2922  }
2923 
2924  // Parse the specifier-qualifier-list piece.
2925  DeclSpec DS(AttrFactory);
2926  ParseSpecifierQualifierList(DS);
2927 
2928  // Parse the block-declarator.
2930  DeclaratorInfo.setFunctionDefinitionKind(FDK_Definition);
2931  ParseDeclarator(DeclaratorInfo);
2932 
2933  MaybeParseGNUAttributes(DeclaratorInfo);
2934 
2935  // Inform sema that we are starting a block.
2936  Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
2937 }
2938 
2939 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
2940 /// like ^(int x){ return x+1; }
2941 ///
2942 /// \verbatim
2943 /// block-literal:
2944 /// [clang] '^' block-args[opt] compound-statement
2945 /// [clang] '^' block-id compound-statement
2946 /// [clang] block-args:
2947 /// [clang] '(' parameter-list ')'
2948 /// \endverbatim
2949 ExprResult Parser::ParseBlockLiteralExpression() {
2950  assert(Tok.is(tok::caret) && "block literal starts with ^");
2951  SourceLocation CaretLoc = ConsumeToken();
2952 
2953  PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
2954  "block literal parsing");
2955 
2956  // Enter a scope to hold everything within the block. This includes the
2957  // argument decls, decls within the compound expression, etc. This also
2958  // allows determining whether a variable reference inside the block is
2959  // within or outside of the block.
2960  ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
2962 
2963  // Inform sema that we are starting a block.
2964  Actions.ActOnBlockStart(CaretLoc, getCurScope());
2965 
2966  // Parse the return type if present.
2967  DeclSpec DS(AttrFactory);
2970  // FIXME: Since the return type isn't actually parsed, it can't be used to
2971  // fill ParamInfo with an initial valid range, so do it manually.
2972  ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
2973 
2974  // If this block has arguments, parse them. There is no ambiguity here with
2975  // the expression case, because the expression case requires a parameter list.
2976  if (Tok.is(tok::l_paren)) {
2977  ParseParenDeclarator(ParamInfo);
2978  // Parse the pieces after the identifier as if we had "int(...)".
2979  // SetIdentifier sets the source range end, but in this case we're past
2980  // that location.
2981  SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
2982  ParamInfo.SetIdentifier(nullptr, CaretLoc);
2983  ParamInfo.SetRangeEnd(Tmp);
2984  if (ParamInfo.isInvalidType()) {
2985  // If there was an error parsing the arguments, they may have
2986  // tried to use ^(x+y) which requires an argument list. Just
2987  // skip the whole block literal.
2988  Actions.ActOnBlockError(CaretLoc, getCurScope());
2989  return ExprError();
2990  }
2991 
2992  MaybeParseGNUAttributes(ParamInfo);
2993 
2994  // Inform sema that we are starting a block.
2995  Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2996  } else if (!Tok.is(tok::l_brace)) {
2997  ParseBlockId(CaretLoc);
2998  } else {
2999  // Otherwise, pretend we saw (void).
3000  SourceLocation NoLoc;
3001  ParamInfo.AddTypeInfo(
3002  DeclaratorChunk::getFunction(/*HasProto=*/true,
3003  /*IsAmbiguous=*/false,
3004  /*RParenLoc=*/NoLoc,
3005  /*ArgInfo=*/nullptr,
3006  /*NumArgs=*/0,
3007  /*EllipsisLoc=*/NoLoc,
3008  /*RParenLoc=*/NoLoc,
3009  /*TypeQuals=*/0,
3010  /*RefQualifierIsLvalueRef=*/true,
3011  /*RefQualifierLoc=*/NoLoc,
3012  /*ConstQualifierLoc=*/NoLoc,
3013  /*VolatileQualifierLoc=*/NoLoc,
3014  /*RestrictQualifierLoc=*/NoLoc,
3015  /*MutableLoc=*/NoLoc, EST_None,
3016  /*ESpecRange=*/SourceRange(),
3017  /*Exceptions=*/nullptr,
3018  /*ExceptionRanges=*/nullptr,
3019  /*NumExceptions=*/0,
3020  /*NoexceptExpr=*/nullptr,
3021  /*ExceptionSpecTokens=*/nullptr,
3022  /*DeclsInPrototype=*/None, CaretLoc,
3023  CaretLoc, ParamInfo),
3024  CaretLoc);
3025 
3026  MaybeParseGNUAttributes(ParamInfo);
3027 
3028  // Inform sema that we are starting a block.
3029  Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3030  }
3031 
3032 
3033  ExprResult Result(true);
3034  if (!Tok.is(tok::l_brace)) {
3035  // Saw something like: ^expr
3036  Diag(Tok, diag::err_expected_expression);
3037  Actions.ActOnBlockError(CaretLoc, getCurScope());
3038  return ExprError();
3039  }
3040 
3041  StmtResult Stmt(ParseCompoundStatementBody());
3042  BlockScope.Exit();
3043  if (!Stmt.isInvalid())
3044  Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
3045  else
3046  Actions.ActOnBlockError(CaretLoc, getCurScope());
3047  return Result;
3048 }
3049 
3050 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
3051 ///
3052 /// '__objc_yes'
3053 /// '__objc_no'
3054 ExprResult Parser::ParseObjCBoolLiteral() {
3055  tok::TokenKind Kind = Tok.getKind();
3056  return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
3057 }
3058 
3059 /// Validate availability spec list, emitting diagnostics if necessary. Returns
3060 /// true if invalid.
3062  ArrayRef<AvailabilitySpec> AvailSpecs) {
3063  llvm::SmallSet<StringRef, 4> Platforms;
3064  bool HasOtherPlatformSpec = false;
3065  bool Valid = true;
3066  for (const auto &Spec : AvailSpecs) {
3067  if (Spec.isOtherPlatformSpec()) {
3068  if (HasOtherPlatformSpec) {
3069  P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star);
3070  Valid = false;
3071  }
3072 
3073  HasOtherPlatformSpec = true;
3074  continue;
3075  }
3076 
3077  bool Inserted = Platforms.insert(Spec.getPlatform()).second;
3078  if (!Inserted) {
3079  // Rule out multiple version specs referring to the same platform.
3080  // For example, we emit an error for:
3081  // @available(macos 10.10, macos 10.11, *)
3082  StringRef Platform = Spec.getPlatform();
3083  P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform)
3084  << Spec.getEndLoc() << Platform;
3085  Valid = false;
3086  }
3087  }
3088 
3089  if (!HasOtherPlatformSpec) {
3090  SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc();
3091  P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required)
3092  << FixItHint::CreateInsertion(InsertWildcardLoc, ", *");
3093  return true;
3094  }
3095 
3096  return !Valid;
3097 }
3098 
3099 /// Parse availability query specification.
3100 ///
3101 /// availability-spec:
3102 /// '*'
3103 /// identifier version-tuple
3104 Optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() {
3105  if (Tok.is(tok::star)) {
3106  return AvailabilitySpec(ConsumeToken());
3107  } else {
3108  // Parse the platform name.
3109  if (Tok.is(tok::code_completion)) {
3110  Actions.CodeCompleteAvailabilityPlatformName();
3111  cutOffParsing();
3112  return None;
3113  }
3114  if (Tok.isNot(tok::identifier)) {
3115  Diag(Tok, diag::err_avail_query_expected_platform_name);
3116  return None;
3117  }
3118 
3119  IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc();
3120  SourceRange VersionRange;
3121  VersionTuple Version = ParseVersionTuple(VersionRange);
3122 
3123  if (Version.empty())
3124  return None;
3125 
3126  StringRef GivenPlatform = PlatformIdentifier->Ident->getName();
3127  StringRef Platform =
3128  AvailabilityAttr::canonicalizePlatformName(GivenPlatform);
3129 
3130  if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) {
3131  Diag(PlatformIdentifier->Loc,
3132  diag::err_avail_query_unrecognized_platform_name)
3133  << GivenPlatform;
3134  return None;
3135  }
3136 
3137  return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc,
3138  VersionRange.getEnd());
3139  }
3140 }
3141 
3142 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) {
3143  assert(Tok.is(tok::kw___builtin_available) ||
3144  Tok.isObjCAtKeyword(tok::objc_available));
3145 
3146  // Eat the available or __builtin_available.
3147  ConsumeToken();
3148 
3149  BalancedDelimiterTracker Parens(*this, tok::l_paren);
3150  if (Parens.expectAndConsume())
3151  return ExprError();
3152 
3154  bool HasError = false;
3155  while (true) {
3156  Optional<AvailabilitySpec> Spec = ParseAvailabilitySpec();
3157  if (!Spec)
3158  HasError = true;
3159  else
3160  AvailSpecs.push_back(*Spec);
3161 
3162  if (!TryConsumeToken(tok::comma))
3163  break;
3164  }
3165 
3166  if (HasError) {
3167  SkipUntil(tok::r_paren, StopAtSemi);
3168  return ExprError();
3169  }
3170 
3171  CheckAvailabilitySpecList(*this, AvailSpecs);
3172 
3173  if (Parens.consumeClose())
3174  return ExprError();
3175 
3176  return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc,
3177  Parens.getCloseLocation());
3178 }
Defines the clang::ASTContext interface.
SourceLocation getLocWithOffset(int Offset) const
Return a source location with the specified offset from this SourceLocation.
no exception specification
ExprResult ParseExpression(TypeCastState isTypeCast=NotTypeCast)
Simple precedence-based parser for binary/ternary operators.
Definition: ParseExpr.cpp:123
ParseScope - Introduces a new scope for parsing.
Definition: Parser.h:956
A (possibly-)qualified type.
Definition: Type.h:642
Simple class containing the result of Sema::CorrectTypo.
SourceRange getExprRange(Expr *E) const
Definition: SemaExpr.cpp:411
ExprResult ActOnConditionalOp(SourceLocation QuestionLoc, SourceLocation ColonLoc, Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr)
ActOnConditionalOp - Parse a ?: operation.
Definition: SemaExpr.cpp:7277
ObjCBridgeCastKind
The kind of bridging performed by the Objective-C bridge cast.
Stmt - This represents one statement.
Definition: Stmt.h:66
Bridging via __bridge, which does nothing but reinterpret the bits.
bool is(tok::TokenKind K) const
is/isNot - Predicates to check if this token is a specific kind, as in "if (Tok.is(tok::l_brace)) {...
Definition: Token.h:95
void CodeCompleteAssignmentRHS(Scope *S, Expr *LHS)
bool isSpecificPlaceholderType(unsigned K) const
Test for a specific placeholder type.
Definition: Type.h:6391
static bool CheckAvailabilitySpecList(Parser &P, ArrayRef< AvailabilitySpec > AvailSpecs)
Validate availability spec list, emitting diagnostics if necessary.
Definition: ParseExpr.cpp:3061
Defines the PrettyStackTraceEntry class, which is used to make crashes give more contextual informati...
StringRef P
IdentifierInfo * Ident
Definition: ParsedAttr.h:97
const char * getCharacterData(SourceLocation SL, bool *Invalid=nullptr) const
Return a pointer to the start of the specified location in the appropriate spelling MemoryBuffer...
The base class of the type hierarchy.
Definition: Type.h:1415
SourceLocation getCloseLocation() const
This indicates that the scope corresponds to a function, which means that labels are set here...
Definition: Scope.h:47
TemplateNameKind Kind
The kind of template that Template refers to.
Parser - This implements a parser for the C family of languages.
Definition: Parser.h:57
TypeCastState
TypeCastState - State whether an expression is or may be a type cast.
Definition: Parser.h:1582
void SetIdentifier(IdentifierInfo *Id, SourceLocation IdLoc)
Set the name of this declarator to be the given identifier.
Definition: DeclSpec.h:2119
ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val)
Definition: SemaStmt.cpp:396
RAII object that enters a new expression evaluation context.
Definition: Sema.h:10751
void EnterToken(const Token &Tok)
Enters a token in the token stream to be lexed next.
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1748
bool isInObjcMethodScope() const
isInObjcMethodScope - Return true if this scope is, or is contained in, an Objective-C method body...
Definition: Scope.h:353
#define REVERTIBLE_TYPE_TRAIT(Name)
ColonProtectionRAIIObject - This sets the Parser::ColonIsSacred bool and restores it when destroyed...
tok::TokenKind getKind() const
Definition: Token.h:90
bool SkipUntil(tok::TokenKind T, SkipUntilFlags Flags=static_cast< SkipUntilFlags >(0))
SkipUntil - Read tokens until we get to the specified token, then consume it (unless StopBeforeMatch ...
Definition: Parser.h:1050
SourceLocation Loc
Definition: ParsedAttr.h:96
Information about a template-id annotation token.
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:57
void CodeCompleteOrdinaryName(Scope *S, ParserCompletionContext CompletionContext)
const Token & NextToken()
NextToken - This peeks ahead one token and returns it without consuming it.
Definition: Parser.h:718
bool TryConsumeToken(tok::TokenKind Expected)
Definition: Parser.h:419
One of these records is kept for each identifier that is lexed.
ExprResult ExprEmpty()
Definition: Ownership.h:289
Base class for callback objects used by Sema::CorrectTypo to check the validity of a potential typo c...
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:280
UnaryExprOrTypeTrait
Names for the "expression or type" traits.
Definition: TypeTraits.h:97
Token - This structure provides full information about a lexed token.
Definition: Token.h:35
RAII class that helps handle the parsing of an open/close delimiter pair, such as braces { ...
void * getAsOpaquePtr() const
Definition: Ownership.h:91
Code completion occurs where only a type is permitted.
Definition: Sema.h:10225
void SetSourceRange(SourceRange R)
Definition: DeclSpec.h:1876
bool isInvalidType() const
Definition: DeclSpec.h:2426
This is a scope that corresponds to a block/closure object.
Definition: Scope.h:71
Represents a C++ unqualified-id that has been parsed.
Definition: DeclSpec.h:920
static ParsedType getTypeAnnotation(const Token &Tok)
getTypeAnnotation - Read a parsed type out of an annotation token.
Definition: Parser.h:723
PtrTy get() const
Definition: Ownership.h:174
bool isNot(T Kind) const
Definition: FormatToken.h:326
StringRef getSpelling(SourceLocation loc, SmallVectorImpl< char > &buffer, bool *invalid=nullptr) const
Return the &#39;spelling&#39; of the token at the given location; does not go up to the spelling location or ...
Code completion occurs within an expression.
Definition: Sema.h:10210
ExprResult CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl=nullptr, llvm::function_ref< ExprResult(Expr *)> Filter=[](Expr *E) -> ExprResult { return E;})
Process any TypoExprs in the given Expr and its children, generating diagnostics as appropriate and r...
If a crash happens while one of these objects are live, the message is printed out along with the spe...
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2790
Bridging via __bridge_transfer, which transfers ownership of an Objective-C pointer into ARC...
SourceRange getSourceRange() const LLVM_READONLY
Definition: DeclSpec.h:507
const char * getName() const
Definition: Token.h:166
The current context is "potentially evaluated" in C++11 terms, but the expression is evaluated at com...
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:613
bool isOneOf(A K1, B K2) const
Definition: FormatToken.h:319
void SetRangeStart(SourceLocation Loc)
Definition: DeclSpec.h:614
virtual bool ValidateCandidate(const TypoCorrection &candidate)
Simple predicate used by the default RankCandidate to determine whether to return an edit distance of...
ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc, tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr)
Definition: SemaExpr.cpp:12429
This represents one expression.
Definition: Expr.h:105
static DeclaratorChunk getFunction(bool HasProto, bool IsAmbiguous, SourceLocation LParenLoc, ParamInfo *Params, unsigned NumParams, SourceLocation EllipsisLoc, SourceLocation RParenLoc, unsigned TypeQuals, bool RefQualifierIsLvalueRef, SourceLocation RefQualifierLoc, SourceLocation ConstQualifierLoc, SourceLocation VolatileQualifierLoc, SourceLocation RestrictQualifierLoc, SourceLocation MutableLoc, ExceptionSpecificationType ESpecType, SourceRange ESpecRange, ParsedType *Exceptions, SourceRange *ExceptionRanges, unsigned NumExceptions, Expr *NoexceptExpr, CachedTokens *ExceptionSpecTokens, ArrayRef< NamedDecl *> DeclsInPrototype, SourceLocation LocalRangeBegin, SourceLocation LocalRangeEnd, Declarator &TheDeclarator, TypeResult TrailingReturnType=TypeResult())
DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function.
Definition: DeclSpec.cpp:152
int Id
Definition: ASTDiff.cpp:191
This file defines the classes used to store parsed information about declaration-specifiers and decla...
bool ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext, bool AllowDestructorName, bool AllowConstructorName, bool AllowDeductionGuide, ParsedType ObjectType, SourceLocation *TemplateKWLoc, UnqualifiedId &Result)
Parse a C++ unqualified-id (or a C identifier), which describes the name of an entity.
SourceLocation getLocation() const
Return a source location identifier for the specified offset in the current file. ...
Definition: Token.h:124
bool isFileContext() const
Definition: DeclBase.h:1830
This is a compound statement scope.
Definition: Scope.h:130
The current expression and its subexpressions occur within an unevaluated operand (C++11 [expr]p7)...
QualType getType() const
Definition: Expr.h:127
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1764
bool isInvalid() const
Definition: Ownership.h:170
SourceLocation getEnd() const
SourceLocation getOpenLocation() const
Wraps an identifier and optional source location for the identifier.
Definition: ParsedAttr.h:95
bool isUsable() const
Definition: Ownership.h:171
The result type of a method or function.
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:707
const SourceManager & SM
Definition: Format.cpp:1472
const LangOptions & getLangOpts() const
Definition: Parser.h:366
SourceManager & getSourceManager() const
Definition: Preprocessor.h:831
Kind
Stop skipping at semicolon.
Definition: Parser.h:1030
ActionResult - This structure is used while parsing/acting on expressions, stmts, etc...
Definition: Ownership.h:157
Encodes a location in the source.
bool TryAnnotateTypeOrScopeToken()
TryAnnotateTypeOrScopeToken - If the current token position is on a typename (possibly qualified in C...
Definition: Parser.cpp:1654
bool is(tok::TokenKind Kind) const
Definition: FormatToken.h:310
IdentifierInfo * getIdentifierInfo() const
Definition: Token.h:177
Represents the declaration of a label.
Definition: Decl.h:468
ExtensionRAIIObject - This saves the state of extension warnings when constructed and disables them...
bool isAtStartOfMacroExpansion(SourceLocation loc, SourceLocation *MacroBegin=nullptr) const
Returns true if the given MacroID location points at the first token of the macro expansion...
TokenKind
Provides a simple uniform namespace for tokens from all C languages.
Definition: TokenKinds.h:25
Scope * getCurScope() const
Definition: Parser.h:373
bool isVectorType() const
Definition: Type.h:6262
ExprResult ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast=NotTypeCast)
Definition: ParseExpr.cpp:200
void setFunctionDefinitionKind(FunctionDefinitionKind Val)
Definition: DeclSpec.h:2441
StringRef getName() const
Return the actual identifier string.
SourceRange getSourceRange() const LLVM_READONLY
Get the source range that spans this declarator.
Definition: DeclSpec.h:1872
bool isNot(tok::TokenKind K) const
Definition: Token.h:96
Dataflow Directional Tag Classes.
bool isValid() const
Return true if this is a valid SourceLocation object.
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1267
ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op, Expr *Input)
Definition: SemaExpr.cpp:12889
bool expectAndConsume(unsigned DiagID=diag::err_expected, const char *Msg="", tok::TokenKind SkipToTok=tok::unknown)
Definition: Parser.cpp:2256
bool isRecord() const
Definition: DeclBase.h:1839
ExprResult ParseCaseExpression(SourceLocation CaseLoc)
Definition: ParseExpr.cpp:220
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:118
ExprResult ParseConstraintExpression()
Parse a constraint-expression.
Definition: ParseExpr.cpp:234
NamedDecl * getCorrectionDecl() const
Gets the pointer to the declaration of the typo correction.
bool isOneOf(tok::TokenKind K1, tok::TokenKind K2) const
Definition: Token.h:97
Bridging via __bridge_retain, which makes an ARC object available as a +1 C pointer.
The name refers to a template whose specialization produces a type.
Definition: TemplateKinds.h:30
ExprResult ActOnConstantExpression(ExprResult Res)
Definition: SemaExpr.cpp:15202
DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Definition: Parser.cpp:73
bool isFunctionType() const
Definition: Type.h:6173
SmallVector< ExpressionEvaluationContextRecord, 8 > ExprEvalContexts
A stack of expression evaluation contexts.
Definition: Sema.h:1025
void SetRangeEnd(SourceLocation Loc)
SetRangeEnd - Set the end of the source range to Loc, unless it&#39;s invalid.
Definition: DeclSpec.h:1884
ExprResult ParseAssignmentExpression(TypeCastState isTypeCast=NotTypeCast)
Parse an expr that doesn&#39;t include (top-level) commas.
Definition: ParseExpr.cpp:160
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:92
void AddTypeInfo(const DeclaratorChunk &TI, ParsedAttributes &&attrs, SourceLocation EndLoc)
AddTypeInfo - Add a chunk to this declarator.
Definition: DeclSpec.h:2133
const Type * getTypePtrOrNull() const
Definition: Type.h:5957
This is a scope that can contain a declaration.
Definition: Scope.h:59
bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, const PrintingPolicy &Policy)
Definition: DeclSpec.cpp:749
X
Add a minimal nested name specifier fixit hint to allow lookup of a tag name from an outer enclosing ...
Definition: SemaDecl.cpp:13824
ExprResult ParseConstantExpression(TypeCastState isTypeCast=NotTypeCast)
Definition: ParseExpr.cpp:210
Captures information about "declaration specifiers".
Definition: DeclSpec.h:228
ActionResult< Expr * > ExprResult
Definition: Ownership.h:267
SourceLocation ConsumeToken()
ConsumeToken - Consume the current &#39;peek token&#39; and lex the next one.
Definition: Parser.h:411
bool isNotEmpty() const
A scope specifier is present, but may be valid or invalid.
Definition: DeclSpec.h:191
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string...
Definition: Diagnostic.h:129
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:268
ExprResult ExprError()
Definition: Ownership.h:283
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:930
const Scope * getFnParent() const
getFnParent - Return the closest scope that is a function body.
Definition: Scope.h:229
prec::Level getBinOpPrecedence(tok::TokenKind Kind, bool GreaterThanIsOperator, bool CPlusPlus11)
Return the precedence of the specified binary operator token.
A trivial tuple used to represent a source range.
This represents a decl that may have a name.
Definition: Decl.h:248
void setIdentifier(const IdentifierInfo *Id, SourceLocation IdLoc)
Specify that this unqualified-id was parsed as an identifier.
Definition: DeclSpec.h:1009
bool isObjCAtKeyword(tok::ObjCKeywordKind Kind) const
Definition: FormatToken.h:352
void SetRangeEnd(SourceLocation Loc)
Definition: DeclSpec.h:615
SourceLocation ColonLoc
Location of &#39;:&#39;.
Definition: OpenMPClause.h:108
This class handles loading and caching of source files into memory.
Code completion occurs in a parenthesized expression, which might also be a type cast.
Definition: Sema.h:10228
One specifier in an expression.
Definition: Availability.h:31
TypeResult ParseTypeName(SourceRange *Range=nullptr, DeclaratorContext Context=DeclaratorContext::TypeNameContext, AccessSpecifier AS=AS_none, Decl **OwnedType=nullptr, ParsedAttributes *Attrs=nullptr)
ParseTypeName type-name: [C99 6.7.6] specifier-qualifier-list abstract-declarator[opt].
Definition: ParseDecl.cpp:44
Stop skipping at specified token, but don&#39;t skip the token itself.
Definition: Parser.h:1032
A RAII object to temporarily push a declaration context.
Definition: Sema.h:714