clang  8.0.0svn
ParseExpr.cpp
Go to the documentation of this file.
1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// Provides the Expression parsing implementation.
12 ///
13 /// Expressions in C99 basically consist of a bunch of binary operators with
14 /// unary operators and other random stuff at the leaves.
15 ///
16 /// In the C99 grammar, these unary operators bind tightest and are represented
17 /// as the 'cast-expression' production. Everything else is either a binary
18 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are
19 /// handled by ParseCastExpression, the higher level pieces are handled by
20 /// ParseBinaryExpression.
21 ///
22 //===----------------------------------------------------------------------===//
23 
24 #include "clang/Parse/Parser.h"
25 #include "clang/AST/ASTContext.h"
28 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Scope.h"
32 #include "llvm/ADT/SmallVector.h"
33 using namespace clang;
34 
35 /// Simple precedence-based parser for binary/ternary operators.
36 ///
37 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
38 /// production. C99 specifies that the LHS of an assignment operator should be
39 /// parsed as a unary-expression, but consistency dictates that it be a
40 /// conditional-expession. In practice, the important thing here is that the
41 /// LHS of an assignment has to be an l-value, which productions between
42 /// unary-expression and conditional-expression don't produce. Because we want
43 /// consistency, we parse the LHS as a conditional-expression, then check for
44 /// l-value-ness in semantic analysis stages.
45 ///
46 /// \verbatim
47 /// pm-expression: [C++ 5.5]
48 /// cast-expression
49 /// pm-expression '.*' cast-expression
50 /// pm-expression '->*' cast-expression
51 ///
52 /// multiplicative-expression: [C99 6.5.5]
53 /// Note: in C++, apply pm-expression instead of cast-expression
54 /// cast-expression
55 /// multiplicative-expression '*' cast-expression
56 /// multiplicative-expression '/' cast-expression
57 /// multiplicative-expression '%' cast-expression
58 ///
59 /// additive-expression: [C99 6.5.6]
60 /// multiplicative-expression
61 /// additive-expression '+' multiplicative-expression
62 /// additive-expression '-' multiplicative-expression
63 ///
64 /// shift-expression: [C99 6.5.7]
65 /// additive-expression
66 /// shift-expression '<<' additive-expression
67 /// shift-expression '>>' additive-expression
68 ///
69 /// compare-expression: [C++20 expr.spaceship]
70 /// shift-expression
71 /// compare-expression '<=>' shift-expression
72 ///
73 /// relational-expression: [C99 6.5.8]
74 /// compare-expression
75 /// relational-expression '<' compare-expression
76 /// relational-expression '>' compare-expression
77 /// relational-expression '<=' compare-expression
78 /// relational-expression '>=' compare-expression
79 ///
80 /// equality-expression: [C99 6.5.9]
81 /// relational-expression
82 /// equality-expression '==' relational-expression
83 /// equality-expression '!=' relational-expression
84 ///
85 /// AND-expression: [C99 6.5.10]
86 /// equality-expression
87 /// AND-expression '&' equality-expression
88 ///
89 /// exclusive-OR-expression: [C99 6.5.11]
90 /// AND-expression
91 /// exclusive-OR-expression '^' AND-expression
92 ///
93 /// inclusive-OR-expression: [C99 6.5.12]
94 /// exclusive-OR-expression
95 /// inclusive-OR-expression '|' exclusive-OR-expression
96 ///
97 /// logical-AND-expression: [C99 6.5.13]
98 /// inclusive-OR-expression
99 /// logical-AND-expression '&&' inclusive-OR-expression
100 ///
101 /// logical-OR-expression: [C99 6.5.14]
102 /// logical-AND-expression
103 /// logical-OR-expression '||' logical-AND-expression
104 ///
105 /// conditional-expression: [C99 6.5.15]
106 /// logical-OR-expression
107 /// logical-OR-expression '?' expression ':' conditional-expression
108 /// [GNU] logical-OR-expression '?' ':' conditional-expression
109 /// [C++] the third operand is an assignment-expression
110 ///
111 /// assignment-expression: [C99 6.5.16]
112 /// conditional-expression
113 /// unary-expression assignment-operator assignment-expression
114 /// [C++] throw-expression [C++ 15]
115 ///
116 /// assignment-operator: one of
117 /// = *= /= %= += -= <<= >>= &= ^= |=
118 ///
119 /// expression: [C99 6.5.17]
120 /// assignment-expression ...[opt]
121 /// expression ',' assignment-expression ...[opt]
122 /// \endverbatim
124  ExprResult LHS(ParseAssignmentExpression(isTypeCast));
125  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
126 }
127 
128 /// This routine is called when the '@' is seen and consumed.
129 /// Current token is an Identifier and is not a 'try'. This
130 /// routine is necessary to disambiguate \@try-statement from,
131 /// for example, \@encode-expression.
132 ///
134 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
135  ExprResult LHS(ParseObjCAtExpression(AtLoc));
136  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
137 }
138 
139 /// This routine is called when a leading '__extension__' is seen and
140 /// consumed. This is necessary because the token gets consumed in the
141 /// process of disambiguating between an expression and a declaration.
143 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
144  ExprResult LHS(true);
145  {
146  // Silence extension warnings in the sub-expression
147  ExtensionRAIIObject O(Diags);
148 
149  LHS = ParseCastExpression(false);
150  }
151 
152  if (!LHS.isInvalid())
153  LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
154  LHS.get());
155 
156  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
157 }
158 
159 /// Parse an expr that doesn't include (top-level) commas.
161  if (Tok.is(tok::code_completion)) {
163  cutOffParsing();
164  return ExprError();
165  }
166 
167  if (Tok.is(tok::kw_throw))
168  return ParseThrowExpression();
169  if (Tok.is(tok::kw_co_yield))
170  return ParseCoyieldExpression();
171 
172  ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
173  /*isAddressOfOperand=*/false,
174  isTypeCast);
175  return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
176 }
177 
178 /// Parse an assignment expression where part of an Objective-C message
179 /// send has already been parsed.
180 ///
181 /// In this case \p LBracLoc indicates the location of the '[' of the message
182 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
183 /// the receiver of the message.
184 ///
185 /// Since this handles full assignment-expression's, it handles postfix
186 /// expressions and other binary operators for these expressions as well.
188 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
189  SourceLocation SuperLoc,
190  ParsedType ReceiverType,
191  Expr *ReceiverExpr) {
192  ExprResult R
193  = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
194  ReceiverType, ReceiverExpr);
195  R = ParsePostfixExpressionSuffix(R);
196  return ParseRHSOfBinaryExpression(R, prec::Assignment);
197 }
198 
201  assert(Actions.ExprEvalContexts.back().Context ==
203  "Call this function only if your ExpressionEvaluationContext is "
204  "already ConstantEvaluated");
205  ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
206  ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
207  return Actions.ActOnConstantExpression(Res);
208 }
209 
211  // C++03 [basic.def.odr]p2:
212  // An expression is potentially evaluated unless it appears where an
213  // integral constant expression is required (see 5.19) [...].
214  // C++98 and C++11 have no such rule, but this is only a defect in C++98.
215  EnterExpressionEvaluationContext ConstantEvaluated(
217  return ParseConstantExpressionInExprEvalContext(isTypeCast);
218 }
219 
221  EnterExpressionEvaluationContext ConstantEvaluated(
223  ExprResult LHS(ParseCastExpression(false, false, NotTypeCast));
224  ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
225  return Actions.ActOnCaseExpr(CaseLoc, Res);
226 }
227 
228 /// Parse a constraint-expression.
229 ///
230 /// \verbatim
231 /// constraint-expression: [Concepts TS temp.constr.decl p1]
232 /// logical-or-expression
233 /// \endverbatim
235  // FIXME: this may erroneously consume a function-body as the braced
236  // initializer list of a compound literal
237  //
238  // FIXME: this may erroneously consume a parenthesized rvalue reference
239  // declarator as a parenthesized address-of-label expression
240  ExprResult LHS(ParseCastExpression(/*isUnaryExpression=*/false));
241  ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
242 
243  return Res;
244 }
245 
246 bool Parser::isNotExpressionStart() {
247  tok::TokenKind K = Tok.getKind();
248  if (K == tok::l_brace || K == tok::r_brace ||
249  K == tok::kw_for || K == tok::kw_while ||
250  K == tok::kw_if || K == tok::kw_else ||
251  K == tok::kw_goto || K == tok::kw_try)
252  return true;
253  // If this is a decl-specifier, we can't be at the start of an expression.
254  return isKnownToBeDeclarationSpecifier();
255 }
256 
257 bool Parser::isFoldOperator(prec::Level Level) const {
258  return Level > prec::Unknown && Level != prec::Conditional &&
259  Level != prec::Spaceship;
260 }
261 
262 bool Parser::isFoldOperator(tok::TokenKind Kind) const {
263  return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true));
264 }
265 
266 /// Parse a binary expression that starts with \p LHS and has a
267 /// precedence of at least \p MinPrec.
269 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
270  prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
271  GreaterThanIsOperator,
272  getLangOpts().CPlusPlus11);
274 
275  while (1) {
276  // If this token has a lower precedence than we are allowed to parse (e.g.
277  // because we are called recursively, or because the token is not a binop),
278  // then we are done!
279  if (NextTokPrec < MinPrec)
280  return LHS;
281 
282  // Consume the operator, saving the operator token for error reporting.
283  Token OpToken = Tok;
284  ConsumeToken();
285 
286  if (OpToken.is(tok::caretcaret)) {
287  return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or));
288  }
289 
290  // If we're potentially in a template-id, we may now be able to determine
291  // whether we're actually in one or not.
292  if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater,
293  tok::greatergreatergreater) &&
294  checkPotentialAngleBracketDelimiter(OpToken))
295  return ExprError();
296 
297  // Bail out when encountering a comma followed by a token which can't
298  // possibly be the start of an expression. For instance:
299  // int f() { return 1, }
300  // We can't do this before consuming the comma, because
301  // isNotExpressionStart() looks at the token stream.
302  if (OpToken.is(tok::comma) && isNotExpressionStart()) {
303  PP.EnterToken(Tok);
304  Tok = OpToken;
305  return LHS;
306  }
307 
308  // If the next token is an ellipsis, then this is a fold-expression. Leave
309  // it alone so we can handle it in the paren expression.
310  if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
311  // FIXME: We can't check this via lookahead before we consume the token
312  // because that tickles a lexer bug.
313  PP.EnterToken(Tok);
314  Tok = OpToken;
315  return LHS;
316  }
317 
318  // In Objective-C++, alternative operator tokens can be used as keyword args
319  // in message expressions. Unconsume the token so that it can reinterpreted
320  // as an identifier in ParseObjCMessageExpressionBody. i.e., we support:
321  // [foo meth:0 and:0];
322  // [foo not_eq];
323  if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
324  Tok.isOneOf(tok::colon, tok::r_square) &&
325  OpToken.getIdentifierInfo() != nullptr) {
326  PP.EnterToken(Tok);
327  Tok = OpToken;
328  return LHS;
329  }
330 
331  // Special case handling for the ternary operator.
332  ExprResult TernaryMiddle(true);
333  if (NextTokPrec == prec::Conditional) {
334  if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
335  // Parse a braced-init-list here for error recovery purposes.
336  SourceLocation BraceLoc = Tok.getLocation();
337  TernaryMiddle = ParseBraceInitializer();
338  if (!TernaryMiddle.isInvalid()) {
339  Diag(BraceLoc, diag::err_init_list_bin_op)
340  << /*RHS*/ 1 << PP.getSpelling(OpToken)
341  << Actions.getExprRange(TernaryMiddle.get());
342  TernaryMiddle = ExprError();
343  }
344  } else if (Tok.isNot(tok::colon)) {
345  // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
347 
348  // Handle this production specially:
349  // logical-OR-expression '?' expression ':' conditional-expression
350  // In particular, the RHS of the '?' is 'expression', not
351  // 'logical-OR-expression' as we might expect.
352  TernaryMiddle = ParseExpression();
353  } else {
354  // Special case handling of "X ? Y : Z" where Y is empty:
355  // logical-OR-expression '?' ':' conditional-expression [GNU]
356  TernaryMiddle = nullptr;
357  Diag(Tok, diag::ext_gnu_conditional_expr);
358  }
359 
360  if (TernaryMiddle.isInvalid()) {
361  Actions.CorrectDelayedTyposInExpr(LHS);
362  LHS = ExprError();
363  TernaryMiddle = nullptr;
364  }
365 
366  if (!TryConsumeToken(tok::colon, ColonLoc)) {
367  // Otherwise, we're missing a ':'. Assume that this was a typo that
368  // the user forgot. If we're not in a macro expansion, we can suggest
369  // a fixit hint. If there were two spaces before the current token,
370  // suggest inserting the colon in between them, otherwise insert ": ".
371  SourceLocation FILoc = Tok.getLocation();
372  const char *FIText = ": ";
373  const SourceManager &SM = PP.getSourceManager();
374  if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
375  assert(FILoc.isFileID());
376  bool IsInvalid = false;
377  const char *SourcePtr =
378  SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
379  if (!IsInvalid && *SourcePtr == ' ') {
380  SourcePtr =
381  SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
382  if (!IsInvalid && *SourcePtr == ' ') {
383  FILoc = FILoc.getLocWithOffset(-1);
384  FIText = ":";
385  }
386  }
387  }
388 
389  Diag(Tok, diag::err_expected)
390  << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
391  Diag(OpToken, diag::note_matching) << tok::question;
392  ColonLoc = Tok.getLocation();
393  }
394  }
395 
396  // Code completion for the right-hand side of a binary expression goes
397  // through a special hook that takes the left-hand side into account.
398  if (Tok.is(tok::code_completion)) {
399  Actions.CodeCompleteBinaryRHS(getCurScope(), LHS.get(),
400  OpToken.getKind());
401  cutOffParsing();
402  return ExprError();
403  }
404 
405  // Parse another leaf here for the RHS of the operator.
406  // ParseCastExpression works here because all RHS expressions in C have it
407  // as a prefix, at least. However, in C++, an assignment-expression could
408  // be a throw-expression, which is not a valid cast-expression.
409  // Therefore we need some special-casing here.
410  // Also note that the third operand of the conditional operator is
411  // an assignment-expression in C++, and in C++11, we can have a
412  // braced-init-list on the RHS of an assignment. For better diagnostics,
413  // parse as if we were allowed braced-init-lists everywhere, and check that
414  // they only appear on the RHS of assignments later.
415  ExprResult RHS;
416  bool RHSIsInitList = false;
417  if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
418  RHS = ParseBraceInitializer();
419  RHSIsInitList = true;
420  } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
422  else
423  RHS = ParseCastExpression(false);
424 
425  if (RHS.isInvalid()) {
426  // FIXME: Errors generated by the delayed typo correction should be
427  // printed before errors from parsing the RHS, not after.
428  Actions.CorrectDelayedTyposInExpr(LHS);
429  if (TernaryMiddle.isUsable())
430  TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
431  LHS = ExprError();
432  }
433 
434  // Remember the precedence of this operator and get the precedence of the
435  // operator immediately to the right of the RHS.
436  prec::Level ThisPrec = NextTokPrec;
437  NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
438  getLangOpts().CPlusPlus11);
439 
440  // Assignment and conditional expressions are right-associative.
441  bool isRightAssoc = ThisPrec == prec::Conditional ||
442  ThisPrec == prec::Assignment;
443 
444  // Get the precedence of the operator to the right of the RHS. If it binds
445  // more tightly with RHS than we do, evaluate it completely first.
446  if (ThisPrec < NextTokPrec ||
447  (ThisPrec == NextTokPrec && isRightAssoc)) {
448  if (!RHS.isInvalid() && RHSIsInitList) {
449  Diag(Tok, diag::err_init_list_bin_op)
450  << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
451  RHS = ExprError();
452  }
453  // If this is left-associative, only parse things on the RHS that bind
454  // more tightly than the current operator. If it is left-associative, it
455  // is okay, to bind exactly as tightly. For example, compile A=B=C=D as
456  // A=(B=(C=D)), where each paren is a level of recursion here.
457  // The function takes ownership of the RHS.
458  RHS = ParseRHSOfBinaryExpression(RHS,
459  static_cast<prec::Level>(ThisPrec + !isRightAssoc));
460  RHSIsInitList = false;
461 
462  if (RHS.isInvalid()) {
463  // FIXME: Errors generated by the delayed typo correction should be
464  // printed before errors from ParseRHSOfBinaryExpression, not after.
465  Actions.CorrectDelayedTyposInExpr(LHS);
466  if (TernaryMiddle.isUsable())
467  TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
468  LHS = ExprError();
469  }
470 
471  NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
472  getLangOpts().CPlusPlus11);
473  }
474 
475  if (!RHS.isInvalid() && RHSIsInitList) {
476  if (ThisPrec == prec::Assignment) {
477  Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
478  << Actions.getExprRange(RHS.get());
479  } else if (ColonLoc.isValid()) {
480  Diag(ColonLoc, diag::err_init_list_bin_op)
481  << /*RHS*/1 << ":"
482  << Actions.getExprRange(RHS.get());
483  LHS = ExprError();
484  } else {
485  Diag(OpToken, diag::err_init_list_bin_op)
486  << /*RHS*/1 << PP.getSpelling(OpToken)
487  << Actions.getExprRange(RHS.get());
488  LHS = ExprError();
489  }
490  }
491 
492  ExprResult OrigLHS = LHS;
493  if (!LHS.isInvalid()) {
494  // Combine the LHS and RHS into the LHS (e.g. build AST).
495  if (TernaryMiddle.isInvalid()) {
496  // If we're using '>>' as an operator within a template
497  // argument list (in C++98), suggest the addition of
498  // parentheses so that the code remains well-formed in C++0x.
499  if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
500  SuggestParentheses(OpToken.getLocation(),
501  diag::warn_cxx11_right_shift_in_template_arg,
502  SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
503  Actions.getExprRange(RHS.get()).getEnd()));
504 
505  LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
506  OpToken.getKind(), LHS.get(), RHS.get());
507 
508  } else {
509  LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
510  LHS.get(), TernaryMiddle.get(),
511  RHS.get());
512  }
513  // In this case, ActOnBinOp or ActOnConditionalOp performed the
514  // CorrectDelayedTyposInExpr check.
515  if (!getLangOpts().CPlusPlus)
516  continue;
517  }
518 
519  // Ensure potential typos aren't left undiagnosed.
520  if (LHS.isInvalid()) {
521  Actions.CorrectDelayedTyposInExpr(OrigLHS);
522  Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
523  Actions.CorrectDelayedTyposInExpr(RHS);
524  }
525  }
526 }
527 
528 /// Parse a cast-expression, or, if \p isUnaryExpression is true,
529 /// parse a unary-expression.
530 ///
531 /// \p isAddressOfOperand exists because an id-expression that is the
532 /// operand of address-of gets special treatment due to member pointers.
533 ///
534 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
535  bool isAddressOfOperand,
536  TypeCastState isTypeCast,
537  bool isVectorLiteral) {
538  bool NotCastExpr;
539  ExprResult Res = ParseCastExpression(isUnaryExpression,
540  isAddressOfOperand,
541  NotCastExpr,
542  isTypeCast,
543  isVectorLiteral);
544  if (NotCastExpr)
545  Diag(Tok, diag::err_expected_expression);
546  return Res;
547 }
548 
549 namespace {
550 class CastExpressionIdValidator : public CorrectionCandidateCallback {
551  public:
552  CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
553  : NextToken(Next), AllowNonTypes(AllowNonTypes) {
554  WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
555  }
556 
557  bool ValidateCandidate(const TypoCorrection &candidate) override {
558  NamedDecl *ND = candidate.getCorrectionDecl();
559  if (!ND)
560  return candidate.isKeyword();
561 
562  if (isa<TypeDecl>(ND))
563  return WantTypeSpecifiers;
564 
565  if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
566  return false;
567 
568  if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
569  return true;
570 
571  for (auto *C : candidate) {
572  NamedDecl *ND = C->getUnderlyingDecl();
573  if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
574  return true;
575  }
576  return false;
577  }
578 
579  private:
581  bool AllowNonTypes;
582 };
583 }
584 
585 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse
586 /// a unary-expression.
587 ///
588 /// \p isAddressOfOperand exists because an id-expression that is the operand
589 /// of address-of gets special treatment due to member pointers. NotCastExpr
590 /// is set to true if the token is not the start of a cast-expression, and no
591 /// diagnostic is emitted in this case and no tokens are consumed.
592 ///
593 /// \verbatim
594 /// cast-expression: [C99 6.5.4]
595 /// unary-expression
596 /// '(' type-name ')' cast-expression
597 ///
598 /// unary-expression: [C99 6.5.3]
599 /// postfix-expression
600 /// '++' unary-expression
601 /// '--' unary-expression
602 /// [Coro] 'co_await' cast-expression
603 /// unary-operator cast-expression
604 /// 'sizeof' unary-expression
605 /// 'sizeof' '(' type-name ')'
606 /// [C++11] 'sizeof' '...' '(' identifier ')'
607 /// [GNU] '__alignof' unary-expression
608 /// [GNU] '__alignof' '(' type-name ')'
609 /// [C11] '_Alignof' '(' type-name ')'
610 /// [C++11] 'alignof' '(' type-id ')'
611 /// [GNU] '&&' identifier
612 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
613 /// [C++] new-expression
614 /// [C++] delete-expression
615 ///
616 /// unary-operator: one of
617 /// '&' '*' '+' '-' '~' '!'
618 /// [GNU] '__extension__' '__real' '__imag'
619 ///
620 /// primary-expression: [C99 6.5.1]
621 /// [C99] identifier
622 /// [C++] id-expression
623 /// constant
624 /// string-literal
625 /// [C++] boolean-literal [C++ 2.13.5]
626 /// [C++11] 'nullptr' [C++11 2.14.7]
627 /// [C++11] user-defined-literal
628 /// '(' expression ')'
629 /// [C11] generic-selection
630 /// '__func__' [C99 6.4.2.2]
631 /// [GNU] '__FUNCTION__'
632 /// [MS] '__FUNCDNAME__'
633 /// [MS] 'L__FUNCTION__'
634 /// [MS] '__FUNCSIG__'
635 /// [MS] 'L__FUNCSIG__'
636 /// [GNU] '__PRETTY_FUNCTION__'
637 /// [GNU] '(' compound-statement ')'
638 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
639 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
640 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
641 /// assign-expr ')'
642 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
643 /// [GNU] '__null'
644 /// [OBJC] '[' objc-message-expr ']'
645 /// [OBJC] '\@selector' '(' objc-selector-arg ')'
646 /// [OBJC] '\@protocol' '(' identifier ')'
647 /// [OBJC] '\@encode' '(' type-name ')'
648 /// [OBJC] objc-string-literal
649 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
650 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3]
651 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
652 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3]
653 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
654 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
655 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
656 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
657 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1]
658 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1]
659 /// [C++] 'this' [C++ 9.3.2]
660 /// [G++] unary-type-trait '(' type-id ')'
661 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO]
662 /// [EMBT] array-type-trait '(' type-id ',' integer ')'
663 /// [clang] '^' block-literal
664 ///
665 /// constant: [C99 6.4.4]
666 /// integer-constant
667 /// floating-constant
668 /// enumeration-constant -> identifier
669 /// character-constant
670 ///
671 /// id-expression: [C++ 5.1]
672 /// unqualified-id
673 /// qualified-id
674 ///
675 /// unqualified-id: [C++ 5.1]
676 /// identifier
677 /// operator-function-id
678 /// conversion-function-id
679 /// '~' class-name
680 /// template-id
681 ///
682 /// new-expression: [C++ 5.3.4]
683 /// '::'[opt] 'new' new-placement[opt] new-type-id
684 /// new-initializer[opt]
685 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
686 /// new-initializer[opt]
687 ///
688 /// delete-expression: [C++ 5.3.5]
689 /// '::'[opt] 'delete' cast-expression
690 /// '::'[opt] 'delete' '[' ']' cast-expression
691 ///
692 /// [GNU/Embarcadero] unary-type-trait:
693 /// '__is_arithmetic'
694 /// '__is_floating_point'
695 /// '__is_integral'
696 /// '__is_lvalue_expr'
697 /// '__is_rvalue_expr'
698 /// '__is_complete_type'
699 /// '__is_void'
700 /// '__is_array'
701 /// '__is_function'
702 /// '__is_reference'
703 /// '__is_lvalue_reference'
704 /// '__is_rvalue_reference'
705 /// '__is_fundamental'
706 /// '__is_object'
707 /// '__is_scalar'
708 /// '__is_compound'
709 /// '__is_pointer'
710 /// '__is_member_object_pointer'
711 /// '__is_member_function_pointer'
712 /// '__is_member_pointer'
713 /// '__is_const'
714 /// '__is_volatile'
715 /// '__is_trivial'
716 /// '__is_standard_layout'
717 /// '__is_signed'
718 /// '__is_unsigned'
719 ///
720 /// [GNU] unary-type-trait:
721 /// '__has_nothrow_assign'
722 /// '__has_nothrow_copy'
723 /// '__has_nothrow_constructor'
724 /// '__has_trivial_assign' [TODO]
725 /// '__has_trivial_copy' [TODO]
726 /// '__has_trivial_constructor'
727 /// '__has_trivial_destructor'
728 /// '__has_virtual_destructor'
729 /// '__is_abstract' [TODO]
730 /// '__is_class'
731 /// '__is_empty' [TODO]
732 /// '__is_enum'
733 /// '__is_final'
734 /// '__is_pod'
735 /// '__is_polymorphic'
736 /// '__is_sealed' [MS]
737 /// '__is_trivial'
738 /// '__is_union'
739 /// '__has_unique_object_representations'
740 ///
741 /// [Clang] unary-type-trait:
742 /// '__is_aggregate'
743 /// '__trivially_copyable'
744 ///
745 /// binary-type-trait:
746 /// [GNU] '__is_base_of'
747 /// [MS] '__is_convertible_to'
748 /// '__is_convertible'
749 /// '__is_same'
750 ///
751 /// [Embarcadero] array-type-trait:
752 /// '__array_rank'
753 /// '__array_extent'
754 ///
755 /// [Embarcadero] expression-trait:
756 /// '__is_lvalue_expr'
757 /// '__is_rvalue_expr'
758 /// \endverbatim
759 ///
760 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
761  bool isAddressOfOperand,
762  bool &NotCastExpr,
763  TypeCastState isTypeCast,
764  bool isVectorLiteral) {
765  ExprResult Res;
766  tok::TokenKind SavedKind = Tok.getKind();
767  NotCastExpr = false;
768 
769  // This handles all of cast-expression, unary-expression, postfix-expression,
770  // and primary-expression. We handle them together like this for efficiency
771  // and to simplify handling of an expression starting with a '(' token: which
772  // may be one of a parenthesized expression, cast-expression, compound literal
773  // expression, or statement expression.
774  //
775  // If the parsed tokens consist of a primary-expression, the cases below
776  // break out of the switch; at the end we call ParsePostfixExpressionSuffix
777  // to handle the postfix expression suffixes. Cases that cannot be followed
778  // by postfix exprs should return without invoking
779  // ParsePostfixExpressionSuffix.
780  switch (SavedKind) {
781  case tok::l_paren: {
782  // If this expression is limited to being a unary-expression, the parent can
783  // not start a cast expression.
784  ParenParseOption ParenExprType =
785  (isUnaryExpression && !getLangOpts().CPlusPlus) ? CompoundLiteral
786  : CastExpr;
787  ParsedType CastTy;
788  SourceLocation RParenLoc;
789  Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
790  isTypeCast == IsTypeCast, CastTy, RParenLoc);
791 
792  if (isVectorLiteral)
793  return Res;
794 
795  switch (ParenExprType) {
796  case SimpleExpr: break; // Nothing else to do.
797  case CompoundStmt: break; // Nothing else to do.
798  case CompoundLiteral:
799  // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of
800  // postfix-expression exist, parse them now.
801  break;
802  case CastExpr:
803  // We have parsed the cast-expression and no postfix-expr pieces are
804  // following.
805  return Res;
806  case FoldExpr:
807  // We only parsed a fold-expression. There might be postfix-expr pieces
808  // afterwards; parse them now.
809  break;
810  }
811 
812  break;
813  }
814 
815  // primary-expression
816  case tok::numeric_constant:
817  // constant: integer-constant
818  // constant: floating-constant
819 
820  Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
821  ConsumeToken();
822  break;
823 
824  case tok::kw_true:
825  case tok::kw_false:
826  Res = ParseCXXBoolLiteral();
827  break;
828 
829  case tok::kw___objc_yes:
830  case tok::kw___objc_no:
831  return ParseObjCBoolLiteral();
832 
833  case tok::kw_nullptr:
834  Diag(Tok, diag::warn_cxx98_compat_nullptr);
835  return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
836 
837  case tok::annot_primary_expr:
838  assert(Res.get() == nullptr && "Stray primary-expression annotation?");
839  Res = getExprAnnotation(Tok);
840  ConsumeAnnotationToken();
841  if (!Res.isInvalid() && Tok.is(tok::less))
842  checkPotentialAngleBracket(Res);
843  break;
844 
845  case tok::kw___super:
846  case tok::kw_decltype:
847  // Annotate the token and tail recurse.
849  return ExprError();
850  assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
851  return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
852 
853  case tok::identifier: { // primary-expression: identifier
854  // unqualified-id: identifier
855  // constant: enumeration-constant
856  // Turn a potentially qualified name into a annot_typename or
857  // annot_cxxscope if it would be valid. This handles things like x::y, etc.
858  if (getLangOpts().CPlusPlus) {
859  // Avoid the unnecessary parse-time lookup in the common case
860  // where the syntax forbids a type.
861  const Token &Next = NextToken();
862 
863  // If this identifier was reverted from a token ID, and the next token
864  // is a parenthesis, this is likely to be a use of a type trait. Check
865  // those tokens.
866  if (Next.is(tok::l_paren) &&
867  Tok.is(tok::identifier) &&
868  Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
869  IdentifierInfo *II = Tok.getIdentifierInfo();
870  // Build up the mapping of revertible type traits, for future use.
871  if (RevertibleTypeTraits.empty()) {
872 #define RTT_JOIN(X,Y) X##Y
873 #define REVERTIBLE_TYPE_TRAIT(Name) \
874  RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
875  = RTT_JOIN(tok::kw_,Name)
876 
877  REVERTIBLE_TYPE_TRAIT(__is_abstract);
878  REVERTIBLE_TYPE_TRAIT(__is_aggregate);
879  REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
880  REVERTIBLE_TYPE_TRAIT(__is_array);
881  REVERTIBLE_TYPE_TRAIT(__is_assignable);
882  REVERTIBLE_TYPE_TRAIT(__is_base_of);
883  REVERTIBLE_TYPE_TRAIT(__is_class);
884  REVERTIBLE_TYPE_TRAIT(__is_complete_type);
885  REVERTIBLE_TYPE_TRAIT(__is_compound);
886  REVERTIBLE_TYPE_TRAIT(__is_const);
887  REVERTIBLE_TYPE_TRAIT(__is_constructible);
888  REVERTIBLE_TYPE_TRAIT(__is_convertible);
889  REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
890  REVERTIBLE_TYPE_TRAIT(__is_destructible);
891  REVERTIBLE_TYPE_TRAIT(__is_empty);
892  REVERTIBLE_TYPE_TRAIT(__is_enum);
893  REVERTIBLE_TYPE_TRAIT(__is_floating_point);
894  REVERTIBLE_TYPE_TRAIT(__is_final);
895  REVERTIBLE_TYPE_TRAIT(__is_function);
896  REVERTIBLE_TYPE_TRAIT(__is_fundamental);
897  REVERTIBLE_TYPE_TRAIT(__is_integral);
898  REVERTIBLE_TYPE_TRAIT(__is_interface_class);
899  REVERTIBLE_TYPE_TRAIT(__is_literal);
900  REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
901  REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
902  REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
903  REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
904  REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
905  REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
906  REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
907  REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
908  REVERTIBLE_TYPE_TRAIT(__is_object);
909  REVERTIBLE_TYPE_TRAIT(__is_pod);
910  REVERTIBLE_TYPE_TRAIT(__is_pointer);
911  REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
912  REVERTIBLE_TYPE_TRAIT(__is_reference);
913  REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
914  REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
915  REVERTIBLE_TYPE_TRAIT(__is_same);
916  REVERTIBLE_TYPE_TRAIT(__is_scalar);
917  REVERTIBLE_TYPE_TRAIT(__is_sealed);
918  REVERTIBLE_TYPE_TRAIT(__is_signed);
919  REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
920  REVERTIBLE_TYPE_TRAIT(__is_trivial);
921  REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
922  REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
923  REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
924  REVERTIBLE_TYPE_TRAIT(__is_union);
925  REVERTIBLE_TYPE_TRAIT(__is_unsigned);
926  REVERTIBLE_TYPE_TRAIT(__is_void);
927  REVERTIBLE_TYPE_TRAIT(__is_volatile);
928 #undef REVERTIBLE_TYPE_TRAIT
929 #undef RTT_JOIN
930  }
931 
932  // If we find that this is in fact the name of a type trait,
933  // update the token kind in place and parse again to treat it as
934  // the appropriate kind of type trait.
935  llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
936  = RevertibleTypeTraits.find(II);
937  if (Known != RevertibleTypeTraits.end()) {
938  Tok.setKind(Known->second);
939  return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
940  NotCastExpr, isTypeCast);
941  }
942  }
943 
944  if ((!ColonIsSacred && Next.is(tok::colon)) ||
945  Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
946  tok::l_brace)) {
947  // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
949  return ExprError();
950  if (!Tok.is(tok::identifier))
951  return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
952  }
953  }
954 
955  // Consume the identifier so that we can see if it is followed by a '(' or
956  // '.'.
957  IdentifierInfo &II = *Tok.getIdentifierInfo();
958  SourceLocation ILoc = ConsumeToken();
959 
960  // Support 'Class.property' and 'super.property' notation.
961  if (getLangOpts().ObjC && Tok.is(tok::period) &&
962  (Actions.getTypeName(II, ILoc, getCurScope()) ||
963  // Allow the base to be 'super' if in an objc-method.
964  (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
965  ConsumeToken();
966 
967  if (Tok.is(tok::code_completion) && &II != Ident_super) {
968  Actions.CodeCompleteObjCClassPropertyRefExpr(
969  getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc);
970  cutOffParsing();
971  return ExprError();
972  }
973  // Allow either an identifier or the keyword 'class' (in C++).
974  if (Tok.isNot(tok::identifier) &&
975  !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
976  Diag(Tok, diag::err_expected_property_name);
977  return ExprError();
978  }
979  IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
980  SourceLocation PropertyLoc = ConsumeToken();
981 
982  Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
983  ILoc, PropertyLoc);
984  break;
985  }
986 
987  // In an Objective-C method, if we have "super" followed by an identifier,
988  // the token sequence is ill-formed. However, if there's a ':' or ']' after
989  // that identifier, this is probably a message send with a missing open
990  // bracket. Treat it as such.
991  if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression &&
992  getCurScope()->isInObjcMethodScope() &&
993  ((Tok.is(tok::identifier) &&
994  (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
995  Tok.is(tok::code_completion))) {
996  Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr,
997  nullptr);
998  break;
999  }
1000 
1001  // If we have an Objective-C class name followed by an identifier
1002  // and either ':' or ']', this is an Objective-C class message
1003  // send that's missing the opening '['. Recovery
1004  // appropriately. Also take this path if we're performing code
1005  // completion after an Objective-C class name.
1006  if (getLangOpts().ObjC &&
1007  ((Tok.is(tok::identifier) && !InMessageExpression) ||
1008  Tok.is(tok::code_completion))) {
1009  const Token& Next = NextToken();
1010  if (Tok.is(tok::code_completion) ||
1011  Next.is(tok::colon) || Next.is(tok::r_square))
1012  if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
1013  if (Typ.get()->isObjCObjectOrInterfaceType()) {
1014  // Fake up a Declarator to use with ActOnTypeName.
1015  DeclSpec DS(AttrFactory);
1016  DS.SetRangeStart(ILoc);
1017  DS.SetRangeEnd(ILoc);
1018  const char *PrevSpec = nullptr;
1019  unsigned DiagID;
1020  DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
1021  Actions.getASTContext().getPrintingPolicy());
1022 
1023  Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
1024  TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
1025  DeclaratorInfo);
1026  if (Ty.isInvalid())
1027  break;
1028 
1029  Res = ParseObjCMessageExpressionBody(SourceLocation(),
1030  SourceLocation(),
1031  Ty.get(), nullptr);
1032  break;
1033  }
1034  }
1035 
1036  // Make sure to pass down the right value for isAddressOfOperand.
1037  if (isAddressOfOperand && isPostfixExpressionSuffixStart())
1038  isAddressOfOperand = false;
1039 
1040  // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
1041  // need to know whether or not this identifier is a function designator or
1042  // not.
1043  UnqualifiedId Name;
1044  CXXScopeSpec ScopeSpec;
1045  SourceLocation TemplateKWLoc;
1046  Token Replacement;
1047  auto Validator = llvm::make_unique<CastExpressionIdValidator>(
1048  Tok, isTypeCast != NotTypeCast, isTypeCast != IsTypeCast);
1049  Validator->IsAddressOfOperand = isAddressOfOperand;
1050  if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
1051  Validator->WantExpressionKeywords = false;
1052  Validator->WantRemainingKeywords = false;
1053  } else {
1054  Validator->WantRemainingKeywords = Tok.isNot(tok::r_paren);
1055  }
1056  Name.setIdentifier(&II, ILoc);
1057  Res = Actions.ActOnIdExpression(
1058  getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
1059  isAddressOfOperand, std::move(Validator),
1060  /*IsInlineAsmIdentifier=*/false,
1061  Tok.is(tok::r_paren) ? nullptr : &Replacement);
1062  if (!Res.isInvalid() && Res.isUnset()) {
1063  UnconsumeToken(Replacement);
1064  return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1065  NotCastExpr, isTypeCast);
1066  }
1067  if (!Res.isInvalid() && Tok.is(tok::less))
1068  checkPotentialAngleBracket(Res);
1069  break;
1070  }
1071  case tok::char_constant: // constant: character-constant
1072  case tok::wide_char_constant:
1073  case tok::utf8_char_constant:
1074  case tok::utf16_char_constant:
1075  case tok::utf32_char_constant:
1076  Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
1077  ConsumeToken();
1078  break;
1079  case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
1080  case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
1081  case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS]
1082  case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS]
1083  case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS]
1084  case tok::kw_L__FUNCSIG__: // primary-expression: L__FUNCSIG__ [MS]
1085  case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
1086  Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
1087  ConsumeToken();
1088  break;
1089  case tok::string_literal: // primary-expression: string-literal
1090  case tok::wide_string_literal:
1091  case tok::utf8_string_literal:
1092  case tok::utf16_string_literal:
1093  case tok::utf32_string_literal:
1094  Res = ParseStringLiteralExpression(true);
1095  break;
1096  case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1]
1097  Res = ParseGenericSelectionExpression();
1098  break;
1099  case tok::kw___builtin_available:
1100  return ParseAvailabilityCheckExpr(Tok.getLocation());
1101  case tok::kw___builtin_va_arg:
1102  case tok::kw___builtin_offsetof:
1103  case tok::kw___builtin_choose_expr:
1104  case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
1105  case tok::kw___builtin_convertvector:
1106  return ParseBuiltinPrimaryExpression();
1107  case tok::kw___null:
1108  return Actions.ActOnGNUNullExpr(ConsumeToken());
1109 
1110  case tok::plusplus: // unary-expression: '++' unary-expression [C99]
1111  case tok::minusminus: { // unary-expression: '--' unary-expression [C99]
1112  // C++ [expr.unary] has:
1113  // unary-expression:
1114  // ++ cast-expression
1115  // -- cast-expression
1116  Token SavedTok = Tok;
1117  ConsumeToken();
1118  // One special case is implicitly handled here: if the preceding tokens are
1119  // an ambiguous cast expression, such as "(T())++", then we recurse to
1120  // determine whether the '++' is prefix or postfix.
1121  Res = ParseCastExpression(!getLangOpts().CPlusPlus,
1122  /*isAddressOfOperand*/false, NotCastExpr,
1123  NotTypeCast);
1124  if (NotCastExpr) {
1125  // If we return with NotCastExpr = true, we must not consume any tokens,
1126  // so put the token back where we found it.
1127  assert(Res.isInvalid());
1128  UnconsumeToken(SavedTok);
1129  return ExprError();
1130  }
1131  if (!Res.isInvalid())
1132  Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(),
1133  SavedKind, Res.get());
1134  return Res;
1135  }
1136  case tok::amp: { // unary-expression: '&' cast-expression
1137  // Special treatment because of member pointers
1138  SourceLocation SavedLoc = ConsumeToken();
1139  Res = ParseCastExpression(false, true);
1140  if (!Res.isInvalid())
1141  Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1142  return Res;
1143  }
1144 
1145  case tok::star: // unary-expression: '*' cast-expression
1146  case tok::plus: // unary-expression: '+' cast-expression
1147  case tok::minus: // unary-expression: '-' cast-expression
1148  case tok::tilde: // unary-expression: '~' cast-expression
1149  case tok::exclaim: // unary-expression: '!' cast-expression
1150  case tok::kw___real: // unary-expression: '__real' cast-expression [GNU]
1151  case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU]
1152  SourceLocation SavedLoc = ConsumeToken();
1153  Res = ParseCastExpression(false);
1154  if (!Res.isInvalid())
1155  Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1156  return Res;
1157  }
1158 
1159  case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression
1160  SourceLocation CoawaitLoc = ConsumeToken();
1161  Res = ParseCastExpression(false);
1162  if (!Res.isInvalid())
1163  Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
1164  return Res;
1165  }
1166 
1167  case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1168  // __extension__ silences extension warnings in the subexpression.
1169  ExtensionRAIIObject O(Diags); // Use RAII to do this.
1170  SourceLocation SavedLoc = ConsumeToken();
1171  Res = ParseCastExpression(false);
1172  if (!Res.isInvalid())
1173  Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1174  return Res;
1175  }
1176  case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')'
1177  if (!getLangOpts().C11)
1178  Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
1179  LLVM_FALLTHROUGH;
1180  case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')'
1181  case tok::kw___alignof: // unary-expression: '__alignof' unary-expression
1182  // unary-expression: '__alignof' '(' type-name ')'
1183  case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression
1184  // unary-expression: 'sizeof' '(' type-name ')'
1185  case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression
1186  // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
1187  case tok::kw___builtin_omp_required_simd_align:
1188  return ParseUnaryExprOrTypeTraitExpression();
1189  case tok::ampamp: { // unary-expression: '&&' identifier
1190  SourceLocation AmpAmpLoc = ConsumeToken();
1191  if (Tok.isNot(tok::identifier))
1192  return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1193 
1194  if (getCurScope()->getFnParent() == nullptr)
1195  return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1196 
1197  Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1198  LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1199  Tok.getLocation());
1200  Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1201  ConsumeToken();
1202  return Res;
1203  }
1204  case tok::kw_const_cast:
1205  case tok::kw_dynamic_cast:
1206  case tok::kw_reinterpret_cast:
1207  case tok::kw_static_cast:
1208  Res = ParseCXXCasts();
1209  break;
1210  case tok::kw_typeid:
1211  Res = ParseCXXTypeid();
1212  break;
1213  case tok::kw___uuidof:
1214  Res = ParseCXXUuidof();
1215  break;
1216  case tok::kw_this:
1217  Res = ParseCXXThis();
1218  break;
1219 
1220  case tok::annot_typename:
1221  if (isStartOfObjCClassMessageMissingOpenBracket()) {
1223 
1224  // Fake up a Declarator to use with ActOnTypeName.
1225  DeclSpec DS(AttrFactory);
1226  DS.SetRangeStart(Tok.getLocation());
1227  DS.SetRangeEnd(Tok.getLastLoc());
1228 
1229  const char *PrevSpec = nullptr;
1230  unsigned DiagID;
1231  DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1232  PrevSpec, DiagID, Type,
1233  Actions.getASTContext().getPrintingPolicy());
1234 
1235  Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
1236  TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1237  if (Ty.isInvalid())
1238  break;
1239 
1240  ConsumeAnnotationToken();
1241  Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1242  Ty.get(), nullptr);
1243  break;
1244  }
1245  LLVM_FALLTHROUGH;
1246 
1247  case tok::annot_decltype:
1248  case tok::kw_char:
1249  case tok::kw_wchar_t:
1250  case tok::kw_char8_t:
1251  case tok::kw_char16_t:
1252  case tok::kw_char32_t:
1253  case tok::kw_bool:
1254  case tok::kw_short:
1255  case tok::kw_int:
1256  case tok::kw_long:
1257  case tok::kw___int64:
1258  case tok::kw___int128:
1259  case tok::kw_signed:
1260  case tok::kw_unsigned:
1261  case tok::kw_half:
1262  case tok::kw_float:
1263  case tok::kw_double:
1264  case tok::kw__Float16:
1265  case tok::kw___float128:
1266  case tok::kw_void:
1267  case tok::kw_typename:
1268  case tok::kw_typeof:
1269  case tok::kw___vector:
1270 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
1271 #include "clang/Basic/OpenCLImageTypes.def"
1272  {
1273  if (!getLangOpts().CPlusPlus) {
1274  Diag(Tok, diag::err_expected_expression);
1275  return ExprError();
1276  }
1277 
1278  if (SavedKind == tok::kw_typename) {
1279  // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1280  // typename-specifier braced-init-list
1282  return ExprError();
1283 
1284  if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1285  // We are trying to parse a simple-type-specifier but might not get such
1286  // a token after error recovery.
1287  return ExprError();
1288  }
1289 
1290  // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1291  // simple-type-specifier braced-init-list
1292  //
1293  DeclSpec DS(AttrFactory);
1294 
1295  ParseCXXSimpleTypeSpecifier(DS);
1296  if (Tok.isNot(tok::l_paren) &&
1297  (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1298  return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1299  << DS.getSourceRange());
1300 
1301  if (Tok.is(tok::l_brace))
1302  Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1303 
1304  Res = ParseCXXTypeConstructExpression(DS);
1305  break;
1306  }
1307 
1308  case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1309  // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1310  // (We can end up in this situation after tentative parsing.)
1312  return ExprError();
1313  if (!Tok.is(tok::annot_cxxscope))
1314  return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1315  NotCastExpr, isTypeCast);
1316 
1317  Token Next = NextToken();
1318  if (Next.is(tok::annot_template_id)) {
1319  TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1320  if (TemplateId->Kind == TNK_Type_template) {
1321  // We have a qualified template-id that we know refers to a
1322  // type, translate it into a type and continue parsing as a
1323  // cast expression.
1324  CXXScopeSpec SS;
1325  ParseOptionalCXXScopeSpecifier(SS, nullptr,
1326  /*EnteringContext=*/false);
1327  AnnotateTemplateIdTokenAsType();
1328  return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1329  NotCastExpr, isTypeCast);
1330  }
1331  }
1332 
1333  // Parse as an id-expression.
1334  Res = ParseCXXIdExpression(isAddressOfOperand);
1335  break;
1336  }
1337 
1338  case tok::annot_template_id: { // [C++] template-id
1339  TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1340  if (TemplateId->Kind == TNK_Type_template) {
1341  // We have a template-id that we know refers to a type,
1342  // translate it into a type and continue parsing as a cast
1343  // expression.
1344  AnnotateTemplateIdTokenAsType();
1345  return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1346  NotCastExpr, isTypeCast);
1347  }
1348 
1349  // Fall through to treat the template-id as an id-expression.
1350  LLVM_FALLTHROUGH;
1351  }
1352 
1353  case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1354  Res = ParseCXXIdExpression(isAddressOfOperand);
1355  break;
1356 
1357  case tok::coloncolon: {
1358  // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken
1359  // annotates the token, tail recurse.
1361  return ExprError();
1362  if (!Tok.is(tok::coloncolon))
1363  return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
1364 
1365  // ::new -> [C++] new-expression
1366  // ::delete -> [C++] delete-expression
1367  SourceLocation CCLoc = ConsumeToken();
1368  if (Tok.is(tok::kw_new))
1369  return ParseCXXNewExpression(true, CCLoc);
1370  if (Tok.is(tok::kw_delete))
1371  return ParseCXXDeleteExpression(true, CCLoc);
1372 
1373  // This is not a type name or scope specifier, it is an invalid expression.
1374  Diag(CCLoc, diag::err_expected_expression);
1375  return ExprError();
1376  }
1377 
1378  case tok::kw_new: // [C++] new-expression
1379  return ParseCXXNewExpression(false, Tok.getLocation());
1380 
1381  case tok::kw_delete: // [C++] delete-expression
1382  return ParseCXXDeleteExpression(false, Tok.getLocation());
1383 
1384  case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1385  Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1386  SourceLocation KeyLoc = ConsumeToken();
1387  BalancedDelimiterTracker T(*this, tok::l_paren);
1388 
1389  if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1390  return ExprError();
1391  // C++11 [expr.unary.noexcept]p1:
1392  // The noexcept operator determines whether the evaluation of its operand,
1393  // which is an unevaluated operand, can throw an exception.
1397 
1398  T.consumeClose();
1399 
1400  if (!Result.isInvalid())
1401  Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
1402  Result.get(), T.getCloseLocation());
1403  return Result;
1404  }
1405 
1406 #define TYPE_TRAIT(N,Spelling,K) \
1407  case tok::kw_##Spelling:
1408 #include "clang/Basic/TokenKinds.def"
1409  return ParseTypeTrait();
1410 
1411  case tok::kw___array_rank:
1412  case tok::kw___array_extent:
1413  return ParseArrayTypeTrait();
1414 
1415  case tok::kw___is_lvalue_expr:
1416  case tok::kw___is_rvalue_expr:
1417  return ParseExpressionTrait();
1418 
1419  case tok::at: {
1420  SourceLocation AtLoc = ConsumeToken();
1421  return ParseObjCAtExpression(AtLoc);
1422  }
1423  case tok::caret:
1424  Res = ParseBlockLiteralExpression();
1425  break;
1426  case tok::code_completion: {
1427  Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
1428  cutOffParsing();
1429  return ExprError();
1430  }
1431  case tok::l_square:
1432  if (getLangOpts().CPlusPlus11) {
1433  if (getLangOpts().ObjC) {
1434  // C++11 lambda expressions and Objective-C message sends both start with a
1435  // square bracket. There are three possibilities here:
1436  // we have a valid lambda expression, we have an invalid lambda
1437  // expression, or we have something that doesn't appear to be a lambda.
1438  // If we're in the last case, we fall back to ParseObjCMessageExpression.
1439  Res = TryParseLambdaExpression();
1440  if (!Res.isInvalid() && !Res.get())
1441  Res = ParseObjCMessageExpression();
1442  break;
1443  }
1444  Res = ParseLambdaExpression();
1445  break;
1446  }
1447  if (getLangOpts().ObjC) {
1448  Res = ParseObjCMessageExpression();
1449  break;
1450  }
1451  LLVM_FALLTHROUGH;
1452  default:
1453  NotCastExpr = true;
1454  return ExprError();
1455  }
1456 
1457  // Check to see whether Res is a function designator only. If it is and we
1458  // are compiling for OpenCL, we need to return an error as this implies
1459  // that the address of the function is being taken, which is illegal in CL.
1460 
1461  // These can be followed by postfix-expr pieces.
1462  Res = ParsePostfixExpressionSuffix(Res);
1463  if (getLangOpts().OpenCL)
1464  if (Expr *PostfixExpr = Res.get()) {
1465  QualType Ty = PostfixExpr->getType();
1466  if (!Ty.isNull() && Ty->isFunctionType()) {
1467  Diag(PostfixExpr->getExprLoc(),
1468  diag::err_opencl_taking_function_address_parser);
1469  return ExprError();
1470  }
1471  }
1472 
1473  return Res;
1474 }
1475 
1476 /// Once the leading part of a postfix-expression is parsed, this
1477 /// method parses any suffixes that apply.
1478 ///
1479 /// \verbatim
1480 /// postfix-expression: [C99 6.5.2]
1481 /// primary-expression
1482 /// postfix-expression '[' expression ']'
1483 /// postfix-expression '[' braced-init-list ']'
1484 /// postfix-expression '(' argument-expression-list[opt] ')'
1485 /// postfix-expression '.' identifier
1486 /// postfix-expression '->' identifier
1487 /// postfix-expression '++'
1488 /// postfix-expression '--'
1489 /// '(' type-name ')' '{' initializer-list '}'
1490 /// '(' type-name ')' '{' initializer-list ',' '}'
1491 ///
1492 /// argument-expression-list: [C99 6.5.2]
1493 /// argument-expression ...[opt]
1494 /// argument-expression-list ',' assignment-expression ...[opt]
1495 /// \endverbatim
1496 ExprResult
1497 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1498  // Now that the primary-expression piece of the postfix-expression has been
1499  // parsed, see if there are any postfix-expression pieces here.
1500  SourceLocation Loc;
1501  while (1) {
1502  switch (Tok.getKind()) {
1503  case tok::code_completion:
1504  if (InMessageExpression)
1505  return LHS;
1506 
1507  Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
1508  cutOffParsing();
1509  return ExprError();
1510 
1511  case tok::identifier:
1512  // If we see identifier: after an expression, and we're not already in a
1513  // message send, then this is probably a message send with a missing
1514  // opening bracket '['.
1515  if (getLangOpts().ObjC && !InMessageExpression &&
1516  (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1517  LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1518  nullptr, LHS.get());
1519  break;
1520  }
1521  // Fall through; this isn't a message send.
1522  LLVM_FALLTHROUGH;
1523 
1524  default: // Not a postfix-expression suffix.
1525  return LHS;
1526  case tok::l_square: { // postfix-expression: p-e '[' expression ']'
1527  // If we have a array postfix expression that starts on a new line and
1528  // Objective-C is enabled, it is highly likely that the user forgot a
1529  // semicolon after the base expression and that the array postfix-expr is
1530  // actually another message send. In this case, do some look-ahead to see
1531  // if the contents of the square brackets are obviously not a valid
1532  // expression and recover by pretending there is no suffix.
1533  if (getLangOpts().ObjC && Tok.isAtStartOfLine() &&
1534  isSimpleObjCMessageExpression())
1535  return LHS;
1536 
1537  // Reject array indices starting with a lambda-expression. '[[' is
1538  // reserved for attributes.
1539  if (CheckProhibitedCXX11Attribute()) {
1540  (void)Actions.CorrectDelayedTyposInExpr(LHS);
1541  return ExprError();
1542  }
1543 
1544  BalancedDelimiterTracker T(*this, tok::l_square);
1545  T.consumeOpen();
1546  Loc = T.getOpenLocation();
1547  ExprResult Idx, Length;
1549  if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1550  Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1551  Idx = ParseBraceInitializer();
1552  } else if (getLangOpts().OpenMP) {
1553  ColonProtectionRAIIObject RAII(*this);
1554  // Parse [: or [ expr or [ expr :
1555  if (!Tok.is(tok::colon)) {
1556  // [ expr
1557  Idx = ParseExpression();
1558  }
1559  if (Tok.is(tok::colon)) {
1560  // Consume ':'
1561  ColonLoc = ConsumeToken();
1562  if (Tok.isNot(tok::r_square))
1563  Length = ParseExpression();
1564  }
1565  } else
1566  Idx = ParseExpression();
1567 
1568  SourceLocation RLoc = Tok.getLocation();
1569 
1570  ExprResult OrigLHS = LHS;
1571  if (!LHS.isInvalid() && !Idx.isInvalid() && !Length.isInvalid() &&
1572  Tok.is(tok::r_square)) {
1573  if (ColonLoc.isValid()) {
1574  LHS = Actions.ActOnOMPArraySectionExpr(LHS.get(), Loc, Idx.get(),
1575  ColonLoc, Length.get(), RLoc);
1576  } else {
1577  LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
1578  Idx.get(), RLoc);
1579  }
1580  } else {
1581  LHS = ExprError();
1582  }
1583  if (LHS.isInvalid()) {
1584  (void)Actions.CorrectDelayedTyposInExpr(OrigLHS);
1585  (void)Actions.CorrectDelayedTyposInExpr(Idx);
1586  (void)Actions.CorrectDelayedTyposInExpr(Length);
1587  LHS = ExprError();
1588  Idx = ExprError();
1589  }
1590 
1591  // Match the ']'.
1592  T.consumeClose();
1593  break;
1594  }
1595 
1596  case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')'
1597  case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>'
1598  // '(' argument-expression-list[opt] ')'
1599  tok::TokenKind OpKind = Tok.getKind();
1600  InMessageExpressionRAIIObject InMessage(*this, false);
1601 
1602  Expr *ExecConfig = nullptr;
1603 
1604  BalancedDelimiterTracker PT(*this, tok::l_paren);
1605 
1606  if (OpKind == tok::lesslessless) {
1607  ExprVector ExecConfigExprs;
1608  CommaLocsTy ExecConfigCommaLocs;
1609  SourceLocation OpenLoc = ConsumeToken();
1610 
1611  if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1612  (void)Actions.CorrectDelayedTyposInExpr(LHS);
1613  LHS = ExprError();
1614  }
1615 
1616  SourceLocation CloseLoc;
1617  if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
1618  } else if (LHS.isInvalid()) {
1619  SkipUntil(tok::greatergreatergreater, StopAtSemi);
1620  } else {
1621  // There was an error closing the brackets
1622  Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
1623  Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
1624  SkipUntil(tok::greatergreatergreater, StopAtSemi);
1625  LHS = ExprError();
1626  }
1627 
1628  if (!LHS.isInvalid()) {
1629  if (ExpectAndConsume(tok::l_paren))
1630  LHS = ExprError();
1631  else
1632  Loc = PrevTokLocation;
1633  }
1634 
1635  if (!LHS.isInvalid()) {
1636  ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
1637  OpenLoc,
1638  ExecConfigExprs,
1639  CloseLoc);
1640  if (ECResult.isInvalid())
1641  LHS = ExprError();
1642  else
1643  ExecConfig = ECResult.get();
1644  }
1645  } else {
1646  PT.consumeOpen();
1647  Loc = PT.getOpenLocation();
1648  }
1649 
1650  ExprVector ArgExprs;
1651  CommaLocsTy CommaLocs;
1652 
1653  if (Tok.is(tok::code_completion)) {
1654  QualType PreferredType = Actions.ProduceCallSignatureHelp(
1655  getCurScope(), LHS.get(), None, PT.getOpenLocation());
1656  CalledSignatureHelp = true;
1657  Actions.CodeCompleteExpression(getCurScope(), PreferredType);
1658  cutOffParsing();
1659  return ExprError();
1660  }
1661 
1662  if (OpKind == tok::l_paren || !LHS.isInvalid()) {
1663  if (Tok.isNot(tok::r_paren)) {
1664  if (ParseExpressionList(ArgExprs, CommaLocs, [&] {
1665  QualType PreferredType = Actions.ProduceCallSignatureHelp(
1666  getCurScope(), LHS.get(), ArgExprs, PT.getOpenLocation());
1667  CalledSignatureHelp = true;
1668  Actions.CodeCompleteExpression(getCurScope(), PreferredType);
1669  })) {
1670  (void)Actions.CorrectDelayedTyposInExpr(LHS);
1671  // If we got an error when parsing expression list, we don't call
1672  // the CodeCompleteCall handler inside the parser. So call it here
1673  // to make sure we get overload suggestions even when we are in the
1674  // middle of a parameter.
1675  if (PP.isCodeCompletionReached() && !CalledSignatureHelp) {
1676  Actions.ProduceCallSignatureHelp(getCurScope(), LHS.get(),
1677  ArgExprs, PT.getOpenLocation());
1678  CalledSignatureHelp = true;
1679  }
1680  LHS = ExprError();
1681  } else if (LHS.isInvalid()) {
1682  for (auto &E : ArgExprs)
1683  Actions.CorrectDelayedTyposInExpr(E);
1684  }
1685  }
1686  }
1687 
1688  // Match the ')'.
1689  if (LHS.isInvalid()) {
1690  SkipUntil(tok::r_paren, StopAtSemi);
1691  } else if (Tok.isNot(tok::r_paren)) {
1692  bool HadDelayedTypo = false;
1693  if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
1694  HadDelayedTypo = true;
1695  for (auto &E : ArgExprs)
1696  if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
1697  HadDelayedTypo = true;
1698  // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
1699  // instead of PT.consumeClose() to avoid emitting extra diagnostics for
1700  // the unmatched l_paren.
1701  if (HadDelayedTypo)
1702  SkipUntil(tok::r_paren, StopAtSemi);
1703  else
1704  PT.consumeClose();
1705  LHS = ExprError();
1706  } else {
1707  assert((ArgExprs.size() == 0 ||
1708  ArgExprs.size()-1 == CommaLocs.size())&&
1709  "Unexpected number of commas!");
1710  LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc,
1711  ArgExprs, Tok.getLocation(),
1712  ExecConfig);
1713  PT.consumeClose();
1714  }
1715 
1716  break;
1717  }
1718  case tok::arrow:
1719  case tok::period: {
1720  // postfix-expression: p-e '->' template[opt] id-expression
1721  // postfix-expression: p-e '.' template[opt] id-expression
1722  tok::TokenKind OpKind = Tok.getKind();
1723  SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token.
1724 
1725  CXXScopeSpec SS;
1726  ParsedType ObjectType;
1727  bool MayBePseudoDestructor = false;
1728  Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr;
1729 
1730  if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
1731  Expr *Base = OrigLHS;
1732  const Type* BaseType = Base->getType().getTypePtrOrNull();
1733  if (BaseType && Tok.is(tok::l_paren) &&
1734  (BaseType->isFunctionType() ||
1735  BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
1736  Diag(OpLoc, diag::err_function_is_not_record)
1737  << OpKind << Base->getSourceRange()
1738  << FixItHint::CreateRemoval(OpLoc);
1739  return ParsePostfixExpressionSuffix(Base);
1740  }
1741 
1742  LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
1743  OpLoc, OpKind, ObjectType,
1744  MayBePseudoDestructor);
1745  if (LHS.isInvalid())
1746  break;
1747 
1748  ParseOptionalCXXScopeSpecifier(SS, ObjectType,
1749  /*EnteringContext=*/false,
1750  &MayBePseudoDestructor);
1751  if (SS.isNotEmpty())
1752  ObjectType = nullptr;
1753  }
1754 
1755  if (Tok.is(tok::code_completion)) {
1756  tok::TokenKind CorrectedOpKind =
1757  OpKind == tok::arrow ? tok::period : tok::arrow;
1758  ExprResult CorrectedLHS(/*IsInvalid=*/true);
1759  if (getLangOpts().CPlusPlus && OrigLHS) {
1760  const bool DiagsAreSuppressed = Diags.getSuppressAllDiagnostics();
1761  Diags.setSuppressAllDiagnostics(true);
1762  CorrectedLHS = Actions.ActOnStartCXXMemberReference(
1763  getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType,
1764  MayBePseudoDestructor);
1765  Diags.setSuppressAllDiagnostics(DiagsAreSuppressed);
1766  }
1767 
1768  Expr *Base = LHS.get();
1769  Expr *CorrectedBase = CorrectedLHS.get();
1770  if (!CorrectedBase && !getLangOpts().CPlusPlus)
1771  CorrectedBase = Base;
1772 
1773  // Code completion for a member access expression.
1774  Actions.CodeCompleteMemberReferenceExpr(
1775  getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow,
1776  Base && ExprStatementTokLoc == Base->getBeginLoc());
1777 
1778  cutOffParsing();
1779  return ExprError();
1780  }
1781 
1782  if (MayBePseudoDestructor && !LHS.isInvalid()) {
1783  LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
1784  ObjectType);
1785  break;
1786  }
1787 
1788  // Either the action has told us that this cannot be a
1789  // pseudo-destructor expression (based on the type of base
1790  // expression), or we didn't see a '~' in the right place. We
1791  // can still parse a destructor name here, but in that case it
1792  // names a real destructor.
1793  // Allow explicit constructor calls in Microsoft mode.
1794  // FIXME: Add support for explicit call of template constructor.
1795  SourceLocation TemplateKWLoc;
1796  UnqualifiedId Name;
1797  if (getLangOpts().ObjC && OpKind == tok::period &&
1798  Tok.is(tok::kw_class)) {
1799  // Objective-C++:
1800  // After a '.' in a member access expression, treat the keyword
1801  // 'class' as if it were an identifier.
1802  //
1803  // This hack allows property access to the 'class' method because it is
1804  // such a common method name. For other C++ keywords that are
1805  // Objective-C method names, one must use the message send syntax.
1806  IdentifierInfo *Id = Tok.getIdentifierInfo();
1807  SourceLocation Loc = ConsumeToken();
1808  Name.setIdentifier(Id, Loc);
1809  } else if (ParseUnqualifiedId(SS,
1810  /*EnteringContext=*/false,
1811  /*AllowDestructorName=*/true,
1812  /*AllowConstructorName=*/
1813  getLangOpts().MicrosoftExt &&
1814  SS.isNotEmpty(),
1815  /*AllowDeductionGuide=*/false,
1816  ObjectType, &TemplateKWLoc, Name)) {
1817  (void)Actions.CorrectDelayedTyposInExpr(LHS);
1818  LHS = ExprError();
1819  }
1820 
1821  if (!LHS.isInvalid())
1822  LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
1823  OpKind, SS, TemplateKWLoc, Name,
1824  CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
1825  : nullptr);
1826  if (!LHS.isInvalid() && Tok.is(tok::less))
1827  checkPotentialAngleBracket(LHS);
1828  break;
1829  }
1830  case tok::plusplus: // postfix-expression: postfix-expression '++'
1831  case tok::minusminus: // postfix-expression: postfix-expression '--'
1832  if (!LHS.isInvalid()) {
1833  LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
1834  Tok.getKind(), LHS.get());
1835  }
1836  ConsumeToken();
1837  break;
1838  }
1839  }
1840 }
1841 
1842 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
1843 /// vec_step and we are at the start of an expression or a parenthesized
1844 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
1845 /// expression (isCastExpr == false) or the type (isCastExpr == true).
1846 ///
1847 /// \verbatim
1848 /// unary-expression: [C99 6.5.3]
1849 /// 'sizeof' unary-expression
1850 /// 'sizeof' '(' type-name ')'
1851 /// [GNU] '__alignof' unary-expression
1852 /// [GNU] '__alignof' '(' type-name ')'
1853 /// [C11] '_Alignof' '(' type-name ')'
1854 /// [C++0x] 'alignof' '(' type-id ')'
1855 ///
1856 /// [GNU] typeof-specifier:
1857 /// typeof ( expressions )
1858 /// typeof ( type-name )
1859 /// [GNU/C++] typeof unary-expression
1860 ///
1861 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
1862 /// vec_step ( expressions )
1863 /// vec_step ( type-name )
1864 /// \endverbatim
1865 ExprResult
1866 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
1867  bool &isCastExpr,
1868  ParsedType &CastTy,
1869  SourceRange &CastRange) {
1870 
1871  assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_sizeof, tok::kw___alignof,
1872  tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step,
1873  tok::kw___builtin_omp_required_simd_align) &&
1874  "Not a typeof/sizeof/alignof/vec_step expression!");
1875 
1876  ExprResult Operand;
1877 
1878  // If the operand doesn't start with an '(', it must be an expression.
1879  if (Tok.isNot(tok::l_paren)) {
1880  // If construct allows a form without parenthesis, user may forget to put
1881  // pathenthesis around type name.
1882  if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
1883  tok::kw__Alignof)) {
1884  if (isTypeIdUnambiguously()) {
1885  DeclSpec DS(AttrFactory);
1886  ParseSpecifierQualifierList(DS);
1887  Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
1888  ParseDeclarator(DeclaratorInfo);
1889 
1890  SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
1891  SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
1892  Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
1893  << OpTok.getName()
1894  << FixItHint::CreateInsertion(LParenLoc, "(")
1895  << FixItHint::CreateInsertion(RParenLoc, ")");
1896  isCastExpr = true;
1897  return ExprEmpty();
1898  }
1899  }
1900 
1901  isCastExpr = false;
1902  if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
1903  Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
1904  << tok::l_paren;
1905  return ExprError();
1906  }
1907 
1908  Operand = ParseCastExpression(true/*isUnaryExpression*/);
1909  } else {
1910  // If it starts with a '(', we know that it is either a parenthesized
1911  // type-name, or it is a unary-expression that starts with a compound
1912  // literal, or starts with a primary-expression that is a parenthesized
1913  // expression.
1914  ParenParseOption ExprType = CastExpr;
1915  SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
1916 
1917  Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
1918  false, CastTy, RParenLoc);
1919  CastRange = SourceRange(LParenLoc, RParenLoc);
1920 
1921  // If ParseParenExpression parsed a '(typename)' sequence only, then this is
1922  // a type.
1923  if (ExprType == CastExpr) {
1924  isCastExpr = true;
1925  return ExprEmpty();
1926  }
1927 
1928  if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
1929  // GNU typeof in C requires the expression to be parenthesized. Not so for
1930  // sizeof/alignof or in C++. Therefore, the parenthesized expression is
1931  // the start of a unary-expression, but doesn't include any postfix
1932  // pieces. Parse these now if present.
1933  if (!Operand.isInvalid())
1934  Operand = ParsePostfixExpressionSuffix(Operand.get());
1935  }
1936  }
1937 
1938  // If we get here, the operand to the typeof/sizeof/alignof was an expression.
1939  isCastExpr = false;
1940  return Operand;
1941 }
1942 
1943 
1944 /// Parse a sizeof or alignof expression.
1945 ///
1946 /// \verbatim
1947 /// unary-expression: [C99 6.5.3]
1948 /// 'sizeof' unary-expression
1949 /// 'sizeof' '(' type-name ')'
1950 /// [C++11] 'sizeof' '...' '(' identifier ')'
1951 /// [GNU] '__alignof' unary-expression
1952 /// [GNU] '__alignof' '(' type-name ')'
1953 /// [C11] '_Alignof' '(' type-name ')'
1954 /// [C++11] 'alignof' '(' type-id ')'
1955 /// \endverbatim
1956 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
1957  assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
1958  tok::kw__Alignof, tok::kw_vec_step,
1959  tok::kw___builtin_omp_required_simd_align) &&
1960  "Not a sizeof/alignof/vec_step expression!");
1961  Token OpTok = Tok;
1962  ConsumeToken();
1963 
1964  // [C++11] 'sizeof' '...' '(' identifier ')'
1965  if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
1966  SourceLocation EllipsisLoc = ConsumeToken();
1967  SourceLocation LParenLoc, RParenLoc;
1968  IdentifierInfo *Name = nullptr;
1969  SourceLocation NameLoc;
1970  if (Tok.is(tok::l_paren)) {
1971  BalancedDelimiterTracker T(*this, tok::l_paren);
1972  T.consumeOpen();
1973  LParenLoc = T.getOpenLocation();
1974  if (Tok.is(tok::identifier)) {
1975  Name = Tok.getIdentifierInfo();
1976  NameLoc = ConsumeToken();
1977  T.consumeClose();
1978  RParenLoc = T.getCloseLocation();
1979  if (RParenLoc.isInvalid())
1980  RParenLoc = PP.getLocForEndOfToken(NameLoc);
1981  } else {
1982  Diag(Tok, diag::err_expected_parameter_pack);
1983  SkipUntil(tok::r_paren, StopAtSemi);
1984  }
1985  } else if (Tok.is(tok::identifier)) {
1986  Name = Tok.getIdentifierInfo();
1987  NameLoc = ConsumeToken();
1988  LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
1989  RParenLoc = PP.getLocForEndOfToken(NameLoc);
1990  Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
1991  << Name
1992  << FixItHint::CreateInsertion(LParenLoc, "(")
1993  << FixItHint::CreateInsertion(RParenLoc, ")");
1994  } else {
1995  Diag(Tok, diag::err_sizeof_parameter_pack);
1996  }
1997 
1998  if (!Name)
1999  return ExprError();
2000 
2004 
2005  return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
2006  OpTok.getLocation(),
2007  *Name, NameLoc,
2008  RParenLoc);
2009  }
2010 
2011  if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2012  Diag(OpTok, diag::warn_cxx98_compat_alignof);
2013 
2017 
2018  bool isCastExpr;
2019  ParsedType CastTy;
2020  SourceRange CastRange;
2021  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
2022  isCastExpr,
2023  CastTy,
2024  CastRange);
2025 
2026  UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
2027  if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2028  ExprKind = UETT_AlignOf;
2029  else if (OpTok.is(tok::kw___alignof))
2030  ExprKind = UETT_PreferredAlignOf;
2031  else if (OpTok.is(tok::kw_vec_step))
2032  ExprKind = UETT_VecStep;
2033  else if (OpTok.is(tok::kw___builtin_omp_required_simd_align))
2034  ExprKind = UETT_OpenMPRequiredSimdAlign;
2035 
2036  if (isCastExpr)
2037  return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2038  ExprKind,
2039  /*isType=*/true,
2040  CastTy.getAsOpaquePtr(),
2041  CastRange);
2042 
2043  if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2044  Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
2045 
2046  // If we get here, the operand to the sizeof/alignof was an expression.
2047  if (!Operand.isInvalid())
2048  Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2049  ExprKind,
2050  /*isType=*/false,
2051  Operand.get(),
2052  CastRange);
2053  return Operand;
2054 }
2055 
2056 /// ParseBuiltinPrimaryExpression
2057 ///
2058 /// \verbatim
2059 /// primary-expression: [C99 6.5.1]
2060 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
2061 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
2062 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
2063 /// assign-expr ')'
2064 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
2065 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')'
2066 ///
2067 /// [GNU] offsetof-member-designator:
2068 /// [GNU] identifier
2069 /// [GNU] offsetof-member-designator '.' identifier
2070 /// [GNU] offsetof-member-designator '[' expression ']'
2071 /// \endverbatim
2072 ExprResult Parser::ParseBuiltinPrimaryExpression() {
2073  ExprResult Res;
2074  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2075 
2076  tok::TokenKind T = Tok.getKind();
2077  SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier.
2078 
2079  // All of these start with an open paren.
2080  if (Tok.isNot(tok::l_paren))
2081  return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
2082  << tok::l_paren);
2083 
2084  BalancedDelimiterTracker PT(*this, tok::l_paren);
2085  PT.consumeOpen();
2086 
2087  // TODO: Build AST.
2088 
2089  switch (T) {
2090  default: llvm_unreachable("Not a builtin primary expression!");
2091  case tok::kw___builtin_va_arg: {
2093 
2094  if (ExpectAndConsume(tok::comma)) {
2095  SkipUntil(tok::r_paren, StopAtSemi);
2096  Expr = ExprError();
2097  }
2098 
2099  TypeResult Ty = ParseTypeName();
2100 
2101  if (Tok.isNot(tok::r_paren)) {
2102  Diag(Tok, diag::err_expected) << tok::r_paren;
2103  Expr = ExprError();
2104  }
2105 
2106  if (Expr.isInvalid() || Ty.isInvalid())
2107  Res = ExprError();
2108  else
2109  Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
2110  break;
2111  }
2112  case tok::kw___builtin_offsetof: {
2113  SourceLocation TypeLoc = Tok.getLocation();
2114  TypeResult Ty = ParseTypeName();
2115  if (Ty.isInvalid()) {
2116  SkipUntil(tok::r_paren, StopAtSemi);
2117  return ExprError();
2118  }
2119 
2120  if (ExpectAndConsume(tok::comma)) {
2121  SkipUntil(tok::r_paren, StopAtSemi);
2122  return ExprError();
2123  }
2124 
2125  // We must have at least one identifier here.
2126  if (Tok.isNot(tok::identifier)) {
2127  Diag(Tok, diag::err_expected) << tok::identifier;
2128  SkipUntil(tok::r_paren, StopAtSemi);
2129  return ExprError();
2130  }
2131 
2132  // Keep track of the various subcomponents we see.
2134 
2135  Comps.push_back(Sema::OffsetOfComponent());
2136  Comps.back().isBrackets = false;
2137  Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2138  Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
2139 
2140  // FIXME: This loop leaks the index expressions on error.
2141  while (1) {
2142  if (Tok.is(tok::period)) {
2143  // offsetof-member-designator: offsetof-member-designator '.' identifier
2144  Comps.push_back(Sema::OffsetOfComponent());
2145  Comps.back().isBrackets = false;
2146  Comps.back().LocStart = ConsumeToken();
2147 
2148  if (Tok.isNot(tok::identifier)) {
2149  Diag(Tok, diag::err_expected) << tok::identifier;
2150  SkipUntil(tok::r_paren, StopAtSemi);
2151  return ExprError();
2152  }
2153  Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2154  Comps.back().LocEnd = ConsumeToken();
2155 
2156  } else if (Tok.is(tok::l_square)) {
2157  if (CheckProhibitedCXX11Attribute())
2158  return ExprError();
2159 
2160  // offsetof-member-designator: offsetof-member-design '[' expression ']'
2161  Comps.push_back(Sema::OffsetOfComponent());
2162  Comps.back().isBrackets = true;
2163  BalancedDelimiterTracker ST(*this, tok::l_square);
2164  ST.consumeOpen();
2165  Comps.back().LocStart = ST.getOpenLocation();
2166  Res = ParseExpression();
2167  if (Res.isInvalid()) {
2168  SkipUntil(tok::r_paren, StopAtSemi);
2169  return Res;
2170  }
2171  Comps.back().U.E = Res.get();
2172 
2173  ST.consumeClose();
2174  Comps.back().LocEnd = ST.getCloseLocation();
2175  } else {
2176  if (Tok.isNot(tok::r_paren)) {
2177  PT.consumeClose();
2178  Res = ExprError();
2179  } else if (Ty.isInvalid()) {
2180  Res = ExprError();
2181  } else {
2182  PT.consumeClose();
2183  Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
2184  Ty.get(), Comps,
2185  PT.getCloseLocation());
2186  }
2187  break;
2188  }
2189  }
2190  break;
2191  }
2192  case tok::kw___builtin_choose_expr: {
2194  if (Cond.isInvalid()) {
2195  SkipUntil(tok::r_paren, StopAtSemi);
2196  return Cond;
2197  }
2198  if (ExpectAndConsume(tok::comma)) {
2199  SkipUntil(tok::r_paren, StopAtSemi);
2200  return ExprError();
2201  }
2202 
2204  if (Expr1.isInvalid()) {
2205  SkipUntil(tok::r_paren, StopAtSemi);
2206  return Expr1;
2207  }
2208  if (ExpectAndConsume(tok::comma)) {
2209  SkipUntil(tok::r_paren, StopAtSemi);
2210  return ExprError();
2211  }
2212 
2214  if (Expr2.isInvalid()) {
2215  SkipUntil(tok::r_paren, StopAtSemi);
2216  return Expr2;
2217  }
2218  if (Tok.isNot(tok::r_paren)) {
2219  Diag(Tok, diag::err_expected) << tok::r_paren;
2220  return ExprError();
2221  }
2222  Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
2223  Expr2.get(), ConsumeParen());
2224  break;
2225  }
2226  case tok::kw___builtin_astype: {
2227  // The first argument is an expression to be converted, followed by a comma.
2229  if (Expr.isInvalid()) {
2230  SkipUntil(tok::r_paren, StopAtSemi);
2231  return ExprError();
2232  }
2233 
2234  if (ExpectAndConsume(tok::comma)) {
2235  SkipUntil(tok::r_paren, StopAtSemi);
2236  return ExprError();
2237  }
2238 
2239  // Second argument is the type to bitcast to.
2240  TypeResult DestTy = ParseTypeName();
2241  if (DestTy.isInvalid())
2242  return ExprError();
2243 
2244  // Attempt to consume the r-paren.
2245  if (Tok.isNot(tok::r_paren)) {
2246  Diag(Tok, diag::err_expected) << tok::r_paren;
2247  SkipUntil(tok::r_paren, StopAtSemi);
2248  return ExprError();
2249  }
2250 
2251  Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
2252  ConsumeParen());
2253  break;
2254  }
2255  case tok::kw___builtin_convertvector: {
2256  // The first argument is an expression to be converted, followed by a comma.
2258  if (Expr.isInvalid()) {
2259  SkipUntil(tok::r_paren, StopAtSemi);
2260  return ExprError();
2261  }
2262 
2263  if (ExpectAndConsume(tok::comma)) {
2264  SkipUntil(tok::r_paren, StopAtSemi);
2265  return ExprError();
2266  }
2267 
2268  // Second argument is the type to bitcast to.
2269  TypeResult DestTy = ParseTypeName();
2270  if (DestTy.isInvalid())
2271  return ExprError();
2272 
2273  // Attempt to consume the r-paren.
2274  if (Tok.isNot(tok::r_paren)) {
2275  Diag(Tok, diag::err_expected) << tok::r_paren;
2276  SkipUntil(tok::r_paren, StopAtSemi);
2277  return ExprError();
2278  }
2279 
2280  Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2281  ConsumeParen());
2282  break;
2283  }
2284  }
2285 
2286  if (Res.isInvalid())
2287  return ExprError();
2288 
2289  // These can be followed by postfix-expr pieces because they are
2290  // primary-expressions.
2291  return ParsePostfixExpressionSuffix(Res.get());
2292 }
2293 
2294 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2295 /// based on what is allowed by ExprType. The actual thing parsed is returned
2296 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2297 /// not the parsed cast-expression.
2298 ///
2299 /// \verbatim
2300 /// primary-expression: [C99 6.5.1]
2301 /// '(' expression ')'
2302 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly)
2303 /// postfix-expression: [C99 6.5.2]
2304 /// '(' type-name ')' '{' initializer-list '}'
2305 /// '(' type-name ')' '{' initializer-list ',' '}'
2306 /// cast-expression: [C99 6.5.4]
2307 /// '(' type-name ')' cast-expression
2308 /// [ARC] bridged-cast-expression
2309 /// [ARC] bridged-cast-expression:
2310 /// (__bridge type-name) cast-expression
2311 /// (__bridge_transfer type-name) cast-expression
2312 /// (__bridge_retained type-name) cast-expression
2313 /// fold-expression: [C++1z]
2314 /// '(' cast-expression fold-operator '...' ')'
2315 /// '(' '...' fold-operator cast-expression ')'
2316 /// '(' cast-expression fold-operator '...'
2317 /// fold-operator cast-expression ')'
2318 /// \endverbatim
2319 ExprResult
2320 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2321  bool isTypeCast, ParsedType &CastTy,
2322  SourceLocation &RParenLoc) {
2323  assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2324  ColonProtectionRAIIObject ColonProtection(*this, false);
2325  BalancedDelimiterTracker T(*this, tok::l_paren);
2326  if (T.consumeOpen())
2327  return ExprError();
2328  SourceLocation OpenLoc = T.getOpenLocation();
2329 
2330  ExprResult Result(true);
2331  bool isAmbiguousTypeId;
2332  CastTy = nullptr;
2333 
2334  if (Tok.is(tok::code_completion)) {
2335  Actions.CodeCompleteOrdinaryName(getCurScope(),
2336  ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
2338  cutOffParsing();
2339  return ExprError();
2340  }
2341 
2342  // Diagnose use of bridge casts in non-arc mode.
2343  bool BridgeCast = (getLangOpts().ObjC &&
2344  Tok.isOneOf(tok::kw___bridge,
2345  tok::kw___bridge_transfer,
2346  tok::kw___bridge_retained,
2347  tok::kw___bridge_retain));
2348  if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2349  if (!TryConsumeToken(tok::kw___bridge)) {
2350  StringRef BridgeCastName = Tok.getName();
2351  SourceLocation BridgeKeywordLoc = ConsumeToken();
2352  if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2353  Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2354  << BridgeCastName
2355  << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2356  }
2357  BridgeCast = false;
2358  }
2359 
2360  // None of these cases should fall through with an invalid Result
2361  // unless they've already reported an error.
2362  if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2363  Diag(Tok, diag::ext_gnu_statement_expr);
2364 
2365  if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
2366  Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
2367  } else {
2368  // Find the nearest non-record decl context. Variables declared in a
2369  // statement expression behave as if they were declared in the enclosing
2370  // function, block, or other code construct.
2371  DeclContext *CodeDC = Actions.CurContext;
2372  while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
2373  CodeDC = CodeDC->getParent();
2374  assert(CodeDC && !CodeDC->isFileContext() &&
2375  "statement expr not in code context");
2376  }
2377  Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
2378 
2379  Actions.ActOnStartStmtExpr();
2380 
2381  StmtResult Stmt(ParseCompoundStatement(true));
2382  ExprType = CompoundStmt;
2383 
2384  // If the substmt parsed correctly, build the AST node.
2385  if (!Stmt.isInvalid()) {
2386  Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation());
2387  } else {
2388  Actions.ActOnStmtExprError();
2389  }
2390  }
2391  } else if (ExprType >= CompoundLiteral && BridgeCast) {
2392  tok::TokenKind tokenKind = Tok.getKind();
2393  SourceLocation BridgeKeywordLoc = ConsumeToken();
2394 
2395  // Parse an Objective-C ARC ownership cast expression.
2397  if (tokenKind == tok::kw___bridge)
2398  Kind = OBC_Bridge;
2399  else if (tokenKind == tok::kw___bridge_transfer)
2400  Kind = OBC_BridgeTransfer;
2401  else if (tokenKind == tok::kw___bridge_retained)
2402  Kind = OBC_BridgeRetained;
2403  else {
2404  // As a hopefully temporary workaround, allow __bridge_retain as
2405  // a synonym for __bridge_retained, but only in system headers.
2406  assert(tokenKind == tok::kw___bridge_retain);
2407  Kind = OBC_BridgeRetained;
2408  if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2409  Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2410  << FixItHint::CreateReplacement(BridgeKeywordLoc,
2411  "__bridge_retained");
2412  }
2413 
2414  TypeResult Ty = ParseTypeName();
2415  T.consumeClose();
2416  ColonProtection.restore();
2417  RParenLoc = T.getCloseLocation();
2418  ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
2419 
2420  if (Ty.isInvalid() || SubExpr.isInvalid())
2421  return ExprError();
2422 
2423  return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2424  BridgeKeywordLoc, Ty.get(),
2425  RParenLoc, SubExpr.get());
2426  } else if (ExprType >= CompoundLiteral &&
2427  isTypeIdInParens(isAmbiguousTypeId)) {
2428 
2429  // Otherwise, this is a compound literal expression or cast expression.
2430 
2431  // In C++, if the type-id is ambiguous we disambiguate based on context.
2432  // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2433  // in which case we should treat it as type-id.
2434  // if stopIfCastExpr is false, we need to determine the context past the
2435  // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2436  if (isAmbiguousTypeId && !stopIfCastExpr) {
2437  ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
2438  ColonProtection);
2439  RParenLoc = T.getCloseLocation();
2440  return res;
2441  }
2442 
2443  // Parse the type declarator.
2444  DeclSpec DS(AttrFactory);
2445  ParseSpecifierQualifierList(DS);
2446  Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
2447  ParseDeclarator(DeclaratorInfo);
2448 
2449  // If our type is followed by an identifier and either ':' or ']', then
2450  // this is probably an Objective-C message send where the leading '[' is
2451  // missing. Recover as if that were the case.
2452  if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2453  !InMessageExpression && getLangOpts().ObjC &&
2454  (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2455  TypeResult Ty;
2456  {
2457  InMessageExpressionRAIIObject InMessage(*this, false);
2458  Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2459  }
2460  Result = ParseObjCMessageExpressionBody(SourceLocation(),
2461  SourceLocation(),
2462  Ty.get(), nullptr);
2463  } else {
2464  // Match the ')'.
2465  T.consumeClose();
2466  ColonProtection.restore();
2467  RParenLoc = T.getCloseLocation();
2468  if (Tok.is(tok::l_brace)) {
2469  ExprType = CompoundLiteral;
2470  TypeResult Ty;
2471  {
2472  InMessageExpressionRAIIObject InMessage(*this, false);
2473  Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2474  }
2475  return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2476  }
2477 
2478  if (Tok.is(tok::l_paren)) {
2479  // This could be OpenCL vector Literals
2480  if (getLangOpts().OpenCL)
2481  {
2482  TypeResult Ty;
2483  {
2484  InMessageExpressionRAIIObject InMessage(*this, false);
2485  Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2486  }
2487  if(Ty.isInvalid())
2488  {
2489  return ExprError();
2490  }
2491  QualType QT = Ty.get().get().getCanonicalType();
2492  if (QT->isVectorType())
2493  {
2494  // We parsed '(' vector-type-name ')' followed by '('
2495 
2496  // Parse the cast-expression that follows it next.
2497  // isVectorLiteral = true will make sure we don't parse any
2498  // Postfix expression yet
2499  Result = ParseCastExpression(/*isUnaryExpression=*/false,
2500  /*isAddressOfOperand=*/false,
2501  /*isTypeCast=*/IsTypeCast,
2502  /*isVectorLiteral=*/true);
2503 
2504  if (!Result.isInvalid()) {
2505  Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2506  DeclaratorInfo, CastTy,
2507  RParenLoc, Result.get());
2508  }
2509 
2510  // After we performed the cast we can check for postfix-expr pieces.
2511  if (!Result.isInvalid()) {
2512  Result = ParsePostfixExpressionSuffix(Result);
2513  }
2514 
2515  return Result;
2516  }
2517  }
2518  }
2519 
2520  if (ExprType == CastExpr) {
2521  // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2522 
2523  if (DeclaratorInfo.isInvalidType())
2524  return ExprError();
2525 
2526  // Note that this doesn't parse the subsequent cast-expression, it just
2527  // returns the parsed type to the callee.
2528  if (stopIfCastExpr) {
2529  TypeResult Ty;
2530  {
2531  InMessageExpressionRAIIObject InMessage(*this, false);
2532  Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2533  }
2534  CastTy = Ty.get();
2535  return ExprResult();
2536  }
2537 
2538  // Reject the cast of super idiom in ObjC.
2539  if (Tok.is(tok::identifier) && getLangOpts().ObjC &&
2540  Tok.getIdentifierInfo() == Ident_super &&
2542  GetLookAheadToken(1).isNot(tok::period)) {
2543  Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2544  << SourceRange(OpenLoc, RParenLoc);
2545  return ExprError();
2546  }
2547 
2548  // Parse the cast-expression that follows it next.
2549  // TODO: For cast expression with CastTy.
2550  Result = ParseCastExpression(/*isUnaryExpression=*/false,
2551  /*isAddressOfOperand=*/false,
2552  /*isTypeCast=*/IsTypeCast);
2553  if (!Result.isInvalid()) {
2554  Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2555  DeclaratorInfo, CastTy,
2556  RParenLoc, Result.get());
2557  }
2558  return Result;
2559  }
2560 
2561  Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
2562  return ExprError();
2563  }
2564  } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) &&
2565  isFoldOperator(NextToken().getKind())) {
2566  ExprType = FoldExpr;
2567  return ParseFoldExpression(ExprResult(), T);
2568  } else if (isTypeCast) {
2569  // Parse the expression-list.
2570  InMessageExpressionRAIIObject InMessage(*this, false);
2571 
2572  ExprVector ArgExprs;
2573  CommaLocsTy CommaLocs;
2574 
2575  if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
2576  // FIXME: If we ever support comma expressions as operands to
2577  // fold-expressions, we'll need to allow multiple ArgExprs here.
2578  if (ExprType >= FoldExpr && ArgExprs.size() == 1 &&
2579  isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) {
2580  ExprType = FoldExpr;
2581  return ParseFoldExpression(ArgExprs[0], T);
2582  }
2583 
2584  ExprType = SimpleExpr;
2585  Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
2586  ArgExprs);
2587  }
2588  } else {
2589  InMessageExpressionRAIIObject InMessage(*this, false);
2590 
2591  Result = ParseExpression(MaybeTypeCast);
2592  if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) {
2593  // Correct typos in non-C++ code earlier so that implicit-cast-like
2594  // expressions are parsed correctly.
2595  Result = Actions.CorrectDelayedTyposInExpr(Result);
2596  }
2597 
2598  if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) &&
2599  NextToken().is(tok::ellipsis)) {
2600  ExprType = FoldExpr;
2601  return ParseFoldExpression(Result, T);
2602  }
2603  ExprType = SimpleExpr;
2604 
2605  // Don't build a paren expression unless we actually match a ')'.
2606  if (!Result.isInvalid() && Tok.is(tok::r_paren))
2607  Result =
2608  Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
2609  }
2610 
2611  // Match the ')'.
2612  if (Result.isInvalid()) {
2613  SkipUntil(tok::r_paren, StopAtSemi);
2614  return ExprError();
2615  }
2616 
2617  T.consumeClose();
2618  RParenLoc = T.getCloseLocation();
2619  return Result;
2620 }
2621 
2622 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
2623 /// and we are at the left brace.
2624 ///
2625 /// \verbatim
2626 /// postfix-expression: [C99 6.5.2]
2627 /// '(' type-name ')' '{' initializer-list '}'
2628 /// '(' type-name ')' '{' initializer-list ',' '}'
2629 /// \endverbatim
2630 ExprResult
2631 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
2632  SourceLocation LParenLoc,
2633  SourceLocation RParenLoc) {
2634  assert(Tok.is(tok::l_brace) && "Not a compound literal!");
2635  if (!getLangOpts().C99) // Compound literals don't exist in C90.
2636  Diag(LParenLoc, diag::ext_c99_compound_literal);
2637  ExprResult Result = ParseInitializer();
2638  if (!Result.isInvalid() && Ty)
2639  return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
2640  return Result;
2641 }
2642 
2643 /// ParseStringLiteralExpression - This handles the various token types that
2644 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
2645 /// translation phase #6].
2646 ///
2647 /// \verbatim
2648 /// primary-expression: [C99 6.5.1]
2649 /// string-literal
2650 /// \verbatim
2651 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
2652  assert(isTokenStringLiteral() && "Not a string literal!");
2653 
2654  // String concat. Note that keywords like __func__ and __FUNCTION__ are not
2655  // considered to be strings for concatenation purposes.
2656  SmallVector<Token, 4> StringToks;
2657 
2658  do {
2659  StringToks.push_back(Tok);
2660  ConsumeStringToken();
2661  } while (isTokenStringLiteral());
2662 
2663  // Pass the set of string tokens, ready for concatenation, to the actions.
2664  return Actions.ActOnStringLiteral(StringToks,
2665  AllowUserDefinedLiteral ? getCurScope()
2666  : nullptr);
2667 }
2668 
2669 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
2670 /// [C11 6.5.1.1].
2671 ///
2672 /// \verbatim
2673 /// generic-selection:
2674 /// _Generic ( assignment-expression , generic-assoc-list )
2675 /// generic-assoc-list:
2676 /// generic-association
2677 /// generic-assoc-list , generic-association
2678 /// generic-association:
2679 /// type-name : assignment-expression
2680 /// default : assignment-expression
2681 /// \endverbatim
2682 ExprResult Parser::ParseGenericSelectionExpression() {
2683  assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
2684  SourceLocation KeyLoc = ConsumeToken();
2685 
2686  if (!getLangOpts().C11)
2687  Diag(KeyLoc, diag::ext_c11_generic_selection);
2688 
2689  BalancedDelimiterTracker T(*this, tok::l_paren);
2690  if (T.expectAndConsume())
2691  return ExprError();
2692 
2693  ExprResult ControllingExpr;
2694  {
2695  // C11 6.5.1.1p3 "The controlling expression of a generic selection is
2696  // not evaluated."
2699  ControllingExpr =
2700  Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
2701  if (ControllingExpr.isInvalid()) {
2702  SkipUntil(tok::r_paren, StopAtSemi);
2703  return ExprError();
2704  }
2705  }
2706 
2707  if (ExpectAndConsume(tok::comma)) {
2708  SkipUntil(tok::r_paren, StopAtSemi);
2709  return ExprError();
2710  }
2711 
2712  SourceLocation DefaultLoc;
2713  TypeVector Types;
2714  ExprVector Exprs;
2715  do {
2716  ParsedType Ty;
2717  if (Tok.is(tok::kw_default)) {
2718  // C11 6.5.1.1p2 "A generic selection shall have no more than one default
2719  // generic association."
2720  if (!DefaultLoc.isInvalid()) {
2721  Diag(Tok, diag::err_duplicate_default_assoc);
2722  Diag(DefaultLoc, diag::note_previous_default_assoc);
2723  SkipUntil(tok::r_paren, StopAtSemi);
2724  return ExprError();
2725  }
2726  DefaultLoc = ConsumeToken();
2727  Ty = nullptr;
2728  } else {
2730  TypeResult TR = ParseTypeName();
2731  if (TR.isInvalid()) {
2732  SkipUntil(tok::r_paren, StopAtSemi);
2733  return ExprError();
2734  }
2735  Ty = TR.get();
2736  }
2737  Types.push_back(Ty);
2738 
2739  if (ExpectAndConsume(tok::colon)) {
2740  SkipUntil(tok::r_paren, StopAtSemi);
2741  return ExprError();
2742  }
2743 
2744  // FIXME: These expressions should be parsed in a potentially potentially
2745  // evaluated context.
2746  ExprResult ER(
2747  Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
2748  if (ER.isInvalid()) {
2749  SkipUntil(tok::r_paren, StopAtSemi);
2750  return ExprError();
2751  }
2752  Exprs.push_back(ER.get());
2753  } while (TryConsumeToken(tok::comma));
2754 
2755  T.consumeClose();
2756  if (T.getCloseLocation().isInvalid())
2757  return ExprError();
2758 
2759  return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
2760  T.getCloseLocation(),
2761  ControllingExpr.get(),
2762  Types, Exprs);
2763 }
2764 
2765 /// Parse A C++1z fold-expression after the opening paren and optional
2766 /// left-hand-side expression.
2767 ///
2768 /// \verbatim
2769 /// fold-expression:
2770 /// ( cast-expression fold-operator ... )
2771 /// ( ... fold-operator cast-expression )
2772 /// ( cast-expression fold-operator ... fold-operator cast-expression )
2773 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
2775  if (LHS.isInvalid()) {
2776  T.skipToEnd();
2777  return true;
2778  }
2779 
2780  tok::TokenKind Kind = tok::unknown;
2781  SourceLocation FirstOpLoc;
2782  if (LHS.isUsable()) {
2783  Kind = Tok.getKind();
2784  assert(isFoldOperator(Kind) && "missing fold-operator");
2785  FirstOpLoc = ConsumeToken();
2786  }
2787 
2788  assert(Tok.is(tok::ellipsis) && "not a fold-expression");
2789  SourceLocation EllipsisLoc = ConsumeToken();
2790 
2791  ExprResult RHS;
2792  if (Tok.isNot(tok::r_paren)) {
2793  if (!isFoldOperator(Tok.getKind()))
2794  return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
2795 
2796  if (Kind != tok::unknown && Tok.getKind() != Kind)
2797  Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
2798  << SourceRange(FirstOpLoc);
2799  Kind = Tok.getKind();
2800  ConsumeToken();
2801 
2802  RHS = ParseExpression();
2803  if (RHS.isInvalid()) {
2804  T.skipToEnd();
2805  return true;
2806  }
2807  }
2808 
2809  Diag(EllipsisLoc, getLangOpts().CPlusPlus17
2810  ? diag::warn_cxx14_compat_fold_expression
2811  : diag::ext_fold_expression);
2812 
2813  T.consumeClose();
2814  return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind,
2815  EllipsisLoc, RHS.get(), T.getCloseLocation());
2816 }
2817 
2818 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
2819 ///
2820 /// \verbatim
2821 /// argument-expression-list:
2822 /// assignment-expression
2823 /// argument-expression-list , assignment-expression
2824 ///
2825 /// [C++] expression-list:
2826 /// [C++] assignment-expression
2827 /// [C++] expression-list , assignment-expression
2828 ///
2829 /// [C++0x] expression-list:
2830 /// [C++0x] initializer-list
2831 ///
2832 /// [C++0x] initializer-list
2833 /// [C++0x] initializer-clause ...[opt]
2834 /// [C++0x] initializer-list , initializer-clause ...[opt]
2835 ///
2836 /// [C++0x] initializer-clause:
2837 /// [C++0x] assignment-expression
2838 /// [C++0x] braced-init-list
2839 /// \endverbatim
2840 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
2842  llvm::function_ref<void()> Completer) {
2843  bool SawError = false;
2844  while (1) {
2845  if (Tok.is(tok::code_completion)) {
2846  if (Completer)
2847  Completer();
2848  else
2849  Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
2850  cutOffParsing();
2851  return true;
2852  }
2853 
2854  ExprResult Expr;
2855  if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2856  Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2857  Expr = ParseBraceInitializer();
2858  } else
2859  Expr = ParseAssignmentExpression();
2860 
2861  if (Tok.is(tok::ellipsis))
2862  Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
2863  if (Expr.isInvalid()) {
2864  SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
2865  SawError = true;
2866  } else {
2867  Exprs.push_back(Expr.get());
2868  }
2869 
2870  if (Tok.isNot(tok::comma))
2871  break;
2872  // Move to the next argument, remember where the comma was.
2873  Token Comma = Tok;
2874  CommaLocs.push_back(ConsumeToken());
2875 
2876  checkPotentialAngleBracketDelimiter(Comma);
2877  }
2878  if (SawError) {
2879  // Ensure typos get diagnosed when errors were encountered while parsing the
2880  // expression list.
2881  for (auto &E : Exprs) {
2882  ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
2883  if (Expr.isUsable()) E = Expr.get();
2884  }
2885  }
2886  return SawError;
2887 }
2888 
2889 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
2890 /// used for misc language extensions.
2891 ///
2892 /// \verbatim
2893 /// simple-expression-list:
2894 /// assignment-expression
2895 /// simple-expression-list , assignment-expression
2896 /// \endverbatim
2897 bool
2898 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
2899  SmallVectorImpl<SourceLocation> &CommaLocs) {
2900  while (1) {
2902  if (Expr.isInvalid())
2903  return true;
2904 
2905  Exprs.push_back(Expr.get());
2906 
2907  if (Tok.isNot(tok::comma))
2908  return false;
2909 
2910  // Move to the next argument, remember where the comma was.
2911  Token Comma = Tok;
2912  CommaLocs.push_back(ConsumeToken());
2913 
2914  checkPotentialAngleBracketDelimiter(Comma);
2915  }
2916 }
2917 
2918 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
2919 ///
2920 /// \verbatim
2921 /// [clang] block-id:
2922 /// [clang] specifier-qualifier-list block-declarator
2923 /// \endverbatim
2924 void Parser::ParseBlockId(SourceLocation CaretLoc) {
2925  if (Tok.is(tok::code_completion)) {
2926  Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
2927  return cutOffParsing();
2928  }
2929 
2930  // Parse the specifier-qualifier-list piece.
2931  DeclSpec DS(AttrFactory);
2932  ParseSpecifierQualifierList(DS);
2933 
2934  // Parse the block-declarator.
2936  DeclaratorInfo.setFunctionDefinitionKind(FDK_Definition);
2937  ParseDeclarator(DeclaratorInfo);
2938 
2939  MaybeParseGNUAttributes(DeclaratorInfo);
2940 
2941  // Inform sema that we are starting a block.
2942  Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
2943 }
2944 
2945 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
2946 /// like ^(int x){ return x+1; }
2947 ///
2948 /// \verbatim
2949 /// block-literal:
2950 /// [clang] '^' block-args[opt] compound-statement
2951 /// [clang] '^' block-id compound-statement
2952 /// [clang] block-args:
2953 /// [clang] '(' parameter-list ')'
2954 /// \endverbatim
2955 ExprResult Parser::ParseBlockLiteralExpression() {
2956  assert(Tok.is(tok::caret) && "block literal starts with ^");
2957  SourceLocation CaretLoc = ConsumeToken();
2958 
2959  PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
2960  "block literal parsing");
2961 
2962  // Enter a scope to hold everything within the block. This includes the
2963  // argument decls, decls within the compound expression, etc. This also
2964  // allows determining whether a variable reference inside the block is
2965  // within or outside of the block.
2966  ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
2968 
2969  // Inform sema that we are starting a block.
2970  Actions.ActOnBlockStart(CaretLoc, getCurScope());
2971 
2972  // Parse the return type if present.
2973  DeclSpec DS(AttrFactory);
2976  // FIXME: Since the return type isn't actually parsed, it can't be used to
2977  // fill ParamInfo with an initial valid range, so do it manually.
2978  ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
2979 
2980  // If this block has arguments, parse them. There is no ambiguity here with
2981  // the expression case, because the expression case requires a parameter list.
2982  if (Tok.is(tok::l_paren)) {
2983  ParseParenDeclarator(ParamInfo);
2984  // Parse the pieces after the identifier as if we had "int(...)".
2985  // SetIdentifier sets the source range end, but in this case we're past
2986  // that location.
2987  SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
2988  ParamInfo.SetIdentifier(nullptr, CaretLoc);
2989  ParamInfo.SetRangeEnd(Tmp);
2990  if (ParamInfo.isInvalidType()) {
2991  // If there was an error parsing the arguments, they may have
2992  // tried to use ^(x+y) which requires an argument list. Just
2993  // skip the whole block literal.
2994  Actions.ActOnBlockError(CaretLoc, getCurScope());
2995  return ExprError();
2996  }
2997 
2998  MaybeParseGNUAttributes(ParamInfo);
2999 
3000  // Inform sema that we are starting a block.
3001  Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3002  } else if (!Tok.is(tok::l_brace)) {
3003  ParseBlockId(CaretLoc);
3004  } else {
3005  // Otherwise, pretend we saw (void).
3006  SourceLocation NoLoc;
3007  ParamInfo.AddTypeInfo(
3008  DeclaratorChunk::getFunction(/*HasProto=*/true,
3009  /*IsAmbiguous=*/false,
3010  /*RParenLoc=*/NoLoc,
3011  /*ArgInfo=*/nullptr,
3012  /*NumArgs=*/0,
3013  /*EllipsisLoc=*/NoLoc,
3014  /*RParenLoc=*/NoLoc,
3015  /*RefQualifierIsLvalueRef=*/true,
3016  /*RefQualifierLoc=*/NoLoc,
3017  /*MutableLoc=*/NoLoc, EST_None,
3018  /*ESpecRange=*/SourceRange(),
3019  /*Exceptions=*/nullptr,
3020  /*ExceptionRanges=*/nullptr,
3021  /*NumExceptions=*/0,
3022  /*NoexceptExpr=*/nullptr,
3023  /*ExceptionSpecTokens=*/nullptr,
3024  /*DeclsInPrototype=*/None, CaretLoc,
3025  CaretLoc, ParamInfo),
3026  CaretLoc);
3027 
3028  MaybeParseGNUAttributes(ParamInfo);
3029 
3030  // Inform sema that we are starting a block.
3031  Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3032  }
3033 
3034 
3035  ExprResult Result(true);
3036  if (!Tok.is(tok::l_brace)) {
3037  // Saw something like: ^expr
3038  Diag(Tok, diag::err_expected_expression);
3039  Actions.ActOnBlockError(CaretLoc, getCurScope());
3040  return ExprError();
3041  }
3042 
3043  StmtResult Stmt(ParseCompoundStatementBody());
3044  BlockScope.Exit();
3045  if (!Stmt.isInvalid())
3046  Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
3047  else
3048  Actions.ActOnBlockError(CaretLoc, getCurScope());
3049  return Result;
3050 }
3051 
3052 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
3053 ///
3054 /// '__objc_yes'
3055 /// '__objc_no'
3056 ExprResult Parser::ParseObjCBoolLiteral() {
3057  tok::TokenKind Kind = Tok.getKind();
3058  return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
3059 }
3060 
3061 /// Validate availability spec list, emitting diagnostics if necessary. Returns
3062 /// true if invalid.
3064  ArrayRef<AvailabilitySpec> AvailSpecs) {
3065  llvm::SmallSet<StringRef, 4> Platforms;
3066  bool HasOtherPlatformSpec = false;
3067  bool Valid = true;
3068  for (const auto &Spec : AvailSpecs) {
3069  if (Spec.isOtherPlatformSpec()) {
3070  if (HasOtherPlatformSpec) {
3071  P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star);
3072  Valid = false;
3073  }
3074 
3075  HasOtherPlatformSpec = true;
3076  continue;
3077  }
3078 
3079  bool Inserted = Platforms.insert(Spec.getPlatform()).second;
3080  if (!Inserted) {
3081  // Rule out multiple version specs referring to the same platform.
3082  // For example, we emit an error for:
3083  // @available(macos 10.10, macos 10.11, *)
3084  StringRef Platform = Spec.getPlatform();
3085  P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform)
3086  << Spec.getEndLoc() << Platform;
3087  Valid = false;
3088  }
3089  }
3090 
3091  if (!HasOtherPlatformSpec) {
3092  SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc();
3093  P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required)
3094  << FixItHint::CreateInsertion(InsertWildcardLoc, ", *");
3095  return true;
3096  }
3097 
3098  return !Valid;
3099 }
3100 
3101 /// Parse availability query specification.
3102 ///
3103 /// availability-spec:
3104 /// '*'
3105 /// identifier version-tuple
3106 Optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() {
3107  if (Tok.is(tok::star)) {
3108  return AvailabilitySpec(ConsumeToken());
3109  } else {
3110  // Parse the platform name.
3111  if (Tok.is(tok::code_completion)) {
3112  Actions.CodeCompleteAvailabilityPlatformName();
3113  cutOffParsing();
3114  return None;
3115  }
3116  if (Tok.isNot(tok::identifier)) {
3117  Diag(Tok, diag::err_avail_query_expected_platform_name);
3118  return None;
3119  }
3120 
3121  IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc();
3122  SourceRange VersionRange;
3123  VersionTuple Version = ParseVersionTuple(VersionRange);
3124 
3125  if (Version.empty())
3126  return None;
3127 
3128  StringRef GivenPlatform = PlatformIdentifier->Ident->getName();
3129  StringRef Platform =
3130  AvailabilityAttr::canonicalizePlatformName(GivenPlatform);
3131 
3132  if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) {
3133  Diag(PlatformIdentifier->Loc,
3134  diag::err_avail_query_unrecognized_platform_name)
3135  << GivenPlatform;
3136  return None;
3137  }
3138 
3139  return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc,
3140  VersionRange.getEnd());
3141  }
3142 }
3143 
3144 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) {
3145  assert(Tok.is(tok::kw___builtin_available) ||
3146  Tok.isObjCAtKeyword(tok::objc_available));
3147 
3148  // Eat the available or __builtin_available.
3149  ConsumeToken();
3150 
3151  BalancedDelimiterTracker Parens(*this, tok::l_paren);
3152  if (Parens.expectAndConsume())
3153  return ExprError();
3154 
3156  bool HasError = false;
3157  while (true) {
3158  Optional<AvailabilitySpec> Spec = ParseAvailabilitySpec();
3159  if (!Spec)
3160  HasError = true;
3161  else
3162  AvailSpecs.push_back(*Spec);
3163 
3164  if (!TryConsumeToken(tok::comma))
3165  break;
3166  }
3167 
3168  if (HasError) {
3169  SkipUntil(tok::r_paren, StopAtSemi);
3170  return ExprError();
3171  }
3172 
3173  CheckAvailabilitySpecList(*this, AvailSpecs);
3174 
3175  if (Parens.consumeClose())
3176  return ExprError();
3177 
3178  return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc,
3179  Parens.getCloseLocation());
3180 }
Defines the clang::ASTContext interface.
SourceLocation getLocWithOffset(int Offset) const
Return a source location with the specified offset from this SourceLocation.
no exception specification
ExprResult ParseExpression(TypeCastState isTypeCast=NotTypeCast)
Simple precedence-based parser for binary/ternary operators.
Definition: ParseExpr.cpp:123
ParseScope - Introduces a new scope for parsing.
Definition: Parser.h:962
A (possibly-)qualified type.
Definition: Type.h:638
Simple class containing the result of Sema::CorrectTypo.
SourceRange getExprRange(Expr *E) const
Definition: SemaExpr.cpp:430
ExprResult ActOnConditionalOp(SourceLocation QuestionLoc, SourceLocation ColonLoc, Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr)
ActOnConditionalOp - Parse a ?: operation.
Definition: SemaExpr.cpp:7467
ObjCBridgeCastKind
The kind of bridging performed by the Objective-C bridge cast.
Stmt - This represents one statement.
Definition: Stmt.h:66
Bridging via __bridge, which does nothing but reinterpret the bits.
bool is(tok::TokenKind K) const
is/isNot - Predicates to check if this token is a specific kind, as in "if (Tok.is(tok::l_brace)) {...
Definition: Token.h:95
bool isSpecificPlaceholderType(unsigned K) const
Test for a specific placeholder type.
Definition: Type.h:6531
static bool CheckAvailabilitySpecList(Parser &P, ArrayRef< AvailabilitySpec > AvailSpecs)
Validate availability spec list, emitting diagnostics if necessary.
Definition: ParseExpr.cpp:3063
Defines the PrettyStackTraceEntry class, which is used to make crashes give more contextual informati...
StringRef P
IdentifierInfo * Ident
Definition: ParsedAttr.h:97
const char * getCharacterData(SourceLocation SL, bool *Invalid=nullptr) const
Return a pointer to the start of the specified location in the appropriate spelling MemoryBuffer...
The base class of the type hierarchy.
Definition: Type.h:1407
SourceLocation getCloseLocation() const
This indicates that the scope corresponds to a function, which means that labels are set here...
Definition: Scope.h:48
TemplateNameKind Kind
The kind of template that Template refers to.
Parser - This implements a parser for the C family of languages.
Definition: Parser.h:58
TypeCastState
TypeCastState - State whether an expression is or may be a type cast.
Definition: Parser.h:1588
void SetIdentifier(IdentifierInfo *Id, SourceLocation IdLoc)
Set the name of this declarator to be the given identifier.
Definition: DeclSpec.h:2136
ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val)
Definition: SemaStmt.cpp:390
RAII object that enters a new expression evaluation context.
Definition: Sema.h:10853
void EnterToken(const Token &Tok)
Enters a token in the token stream to be lexed next.
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1765
bool isInObjcMethodScope() const
isInObjcMethodScope - Return true if this scope is, or is contained in, an Objective-C method body...
Definition: Scope.h:354
#define REVERTIBLE_TYPE_TRAIT(Name)
ColonProtectionRAIIObject - This sets the Parser::ColonIsSacred bool and restores it when destroyed...
tok::TokenKind getKind() const
Definition: Token.h:90
bool SkipUntil(tok::TokenKind T, SkipUntilFlags Flags=static_cast< SkipUntilFlags >(0))
SkipUntil - Read tokens until we get to the specified token, then consume it (unless StopBeforeMatch ...
Definition: Parser.h:1056
SourceLocation Loc
Definition: ParsedAttr.h:96
Information about a template-id annotation token.
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:57
void CodeCompleteOrdinaryName(Scope *S, ParserCompletionContext CompletionContext)
const Token & NextToken()
NextToken - This peeks ahead one token and returns it without consuming it.
Definition: Parser.h:724
bool TryConsumeToken(tok::TokenKind Expected)
Definition: Parser.h:425
One of these records is kept for each identifier that is lexed.
void CodeCompleteBinaryRHS(Scope *S, Expr *LHS, tok::TokenKind Op)
ExprResult ExprEmpty()
Definition: Ownership.h:289
Used for GCC&#39;s __alignof.
Definition: TypeTraits.h:107
Base class for callback objects used by Sema::CorrectTypo to check the validity of a potential typo c...
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:288
UnaryExprOrTypeTrait
Names for the "expression or type" traits.
Definition: TypeTraits.h:97
Token - This structure provides full information about a lexed token.
Definition: Token.h:35
RAII class that helps handle the parsing of an open/close delimiter pair, such as braces { ...
void * getAsOpaquePtr() const
Definition: Ownership.h:91
Code completion occurs where only a type is permitted.
Definition: Sema.h:10326
void SetSourceRange(SourceRange R)
Definition: DeclSpec.h:1893
bool isInvalidType() const
Definition: DeclSpec.h:2443
This is a scope that corresponds to a block/closure object.
Definition: Scope.h:72
Represents a C++ unqualified-id that has been parsed.
Definition: DeclSpec.h:934
static ParsedType getTypeAnnotation(const Token &Tok)
getTypeAnnotation - Read a parsed type out of an annotation token.
Definition: Parser.h:729
PtrTy get() const
Definition: Ownership.h:174
bool isNot(T Kind) const
Definition: FormatToken.h:323
StringRef getSpelling(SourceLocation loc, SmallVectorImpl< char > &buffer, bool *invalid=nullptr) const
Return the &#39;spelling&#39; of the token at the given location; does not go up to the spelling location or ...
Code completion occurs within an expression.
Definition: Sema.h:10311
ExprResult CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl=nullptr, llvm::function_ref< ExprResult(Expr *)> Filter=[](Expr *E) -> ExprResult { return E;})
Process any TypoExprs in the given Expr and its children, generating diagnostics as appropriate and r...
If a crash happens while one of these objects are live, the message is printed out along with the spe...
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2998
Bridging via __bridge_transfer, which transfers ownership of an Objective-C pointer into ARC...
SourceRange getSourceRange() const LLVM_READONLY
Definition: DeclSpec.h:507
const char * getName() const
Definition: Token.h:166
The current context is "potentially evaluated" in C++11 terms, but the expression is evaluated at com...
static DeclaratorChunk getFunction(bool HasProto, bool IsAmbiguous, SourceLocation LParenLoc, ParamInfo *Params, unsigned NumParams, SourceLocation EllipsisLoc, SourceLocation RParenLoc, bool RefQualifierIsLvalueRef, SourceLocation RefQualifierLoc, SourceLocation MutableLoc, ExceptionSpecificationType ESpecType, SourceRange ESpecRange, ParsedType *Exceptions, SourceRange *ExceptionRanges, unsigned NumExceptions, Expr *NoexceptExpr, CachedTokens *ExceptionSpecTokens, ArrayRef< NamedDecl *> DeclsInPrototype, SourceLocation LocalRangeBegin, SourceLocation LocalRangeEnd, Declarator &TheDeclarator, TypeResult TrailingReturnType=TypeResult(), DeclSpec *MethodQualifiers=nullptr)
DeclaratorChunk::getFunction - Return a DeclaratorChunk for a function.
Definition: DeclSpec.cpp:152
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1241
bool isOneOf(A K1, B K2) const
Definition: FormatToken.h:316
void SetRangeStart(SourceLocation Loc)
Definition: DeclSpec.h:626
virtual bool ValidateCandidate(const TypoCorrection &candidate)
Simple predicate used by the default RankCandidate to determine whether to return an edit distance of...
ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc, tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr)
Definition: SemaExpr.cpp:12703
This represents one expression.
Definition: Expr.h:106
int Id
Definition: ASTDiff.cpp:191
This file defines the classes used to store parsed information about declaration-specifiers and decla...
bool ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext, bool AllowDestructorName, bool AllowConstructorName, bool AllowDeductionGuide, ParsedType ObjectType, SourceLocation *TemplateKWLoc, UnqualifiedId &Result)
Parse a C++ unqualified-id (or a C identifier), which describes the name of an entity.
SourceLocation getLocation() const
Return a source location identifier for the specified offset in the current file. ...
Definition: Token.h:124
bool isFileContext() const
Definition: DeclBase.h:1818
This is a compound statement scope.
Definition: Scope.h:131
The current expression and its subexpressions occur within an unevaluated operand (C++11 [expr]p7)...
QualType getType() const
Definition: Expr.h:128
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1752
bool isInvalid() const
Definition: Ownership.h:170
SourceLocation getEnd() const
SourceLocation getOpenLocation() const
Wraps an identifier and optional source location for the identifier.
Definition: ParsedAttr.h:95
bool isUsable() const
Definition: Ownership.h:171
The result type of a method or function.
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:703
const SourceManager & SM
Definition: Format.cpp:1490
const LangOptions & getLangOpts() const
Definition: Parser.h:372
SourceManager & getSourceManager() const
Definition: Preprocessor.h:819
Kind
Stop skipping at semicolon.
Definition: Parser.h:1036
ActionResult - This structure is used while parsing/acting on expressions, stmts, etc...
Definition: Ownership.h:157
Encodes a location in the source.
bool TryAnnotateTypeOrScopeToken()
TryAnnotateTypeOrScopeToken - If the current token position is on a typename (possibly qualified in C...
Definition: Parser.cpp:1654
bool is(tok::TokenKind Kind) const
Definition: FormatToken.h:307
IdentifierInfo * getIdentifierInfo() const
Definition: Token.h:177
Represents the declaration of a label.
Definition: Decl.h:469
ExtensionRAIIObject - This saves the state of extension warnings when constructed and disables them...
bool isAtStartOfMacroExpansion(SourceLocation loc, SourceLocation *MacroBegin=nullptr) const
Returns true if the given MacroID location points at the first token of the macro expansion...
TokenKind
Provides a simple uniform namespace for tokens from all C languages.
Definition: TokenKinds.h:25
Used for C&#39;s _Alignof and C++&#39;s alignof.
Definition: TypeTraits.h:101
Scope * getCurScope() const
Definition: Parser.h:379
bool isVectorType() const
Definition: Type.h:6381
ExprResult ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast=NotTypeCast)
Definition: ParseExpr.cpp:200
void setFunctionDefinitionKind(FunctionDefinitionKind Val)
Definition: DeclSpec.h:2458
StringRef getName() const
Return the actual identifier string.
SourceRange getSourceRange() const LLVM_READONLY
Get the source range that spans this declarator.
Definition: DeclSpec.h:1889
bool isNot(tok::TokenKind K) const
Definition: Token.h:96
Dataflow Directional Tag Classes.
bool isValid() const
Return true if this is a valid SourceLocation object.
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1262
ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op, Expr *Input)
Definition: SemaExpr.cpp:13169
bool expectAndConsume(unsigned DiagID=diag::err_expected, const char *Msg="", tok::TokenKind SkipToTok=tok::unknown)
Definition: Parser.cpp:2256
bool isRecord() const
Definition: DeclBase.h:1827
ExprResult ParseCaseExpression(SourceLocation CaseLoc)
Definition: ParseExpr.cpp:220
static FixItHint CreateRemoval(CharSourceRange RemoveRange)
Create a code modification hint that removes the given source range.
Definition: Diagnostic.h:118
ExprResult ParseConstraintExpression()
Parse a constraint-expression.
Definition: ParseExpr.cpp:234
NamedDecl * getCorrectionDecl() const
Gets the pointer to the declaration of the typo correction.
bool isOneOf(tok::TokenKind K1, tok::TokenKind K2) const
Definition: Token.h:97
Bridging via __bridge_retain, which makes an ARC object available as a +1 C pointer.
The name refers to a template whose specialization produces a type.
Definition: TemplateKinds.h:30
ExprResult ActOnConstantExpression(ExprResult Res)
Definition: SemaExpr.cpp:15551
DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Definition: Parser.cpp:73
bool isFunctionType() const
Definition: Type.h:6292
SmallVector< ExpressionEvaluationContextRecord, 8 > ExprEvalContexts
A stack of expression evaluation contexts.
Definition: Sema.h:1041
void SetRangeEnd(SourceLocation Loc)
SetRangeEnd - Set the end of the source range to Loc, unless it&#39;s invalid.
Definition: DeclSpec.h:1901
ExprResult ParseAssignmentExpression(TypeCastState isTypeCast=NotTypeCast)
Parse an expr that doesn&#39;t include (top-level) commas.
Definition: ParseExpr.cpp:160
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:92
void AddTypeInfo(const DeclaratorChunk &TI, ParsedAttributes &&attrs, SourceLocation EndLoc)
AddTypeInfo - Add a chunk to this declarator.
Definition: DeclSpec.h:2150
const Type * getTypePtrOrNull() const
Definition: Type.h:6076
This is a scope that can contain a declaration.
Definition: Scope.h:60
bool SetTypeSpecType(TST T, SourceLocation Loc, const char *&PrevSpec, unsigned &DiagID, const PrintingPolicy &Policy)
Definition: DeclSpec.cpp:773
X
Add a minimal nested name specifier fixit hint to allow lookup of a tag name from an outer enclosing ...
Definition: SemaDecl.cpp:13954
ExprResult ParseConstantExpression(TypeCastState isTypeCast=NotTypeCast)
Definition: ParseExpr.cpp:210
Captures information about "declaration specifiers".
Definition: DeclSpec.h:228
ActionResult< Expr * > ExprResult
Definition: Ownership.h:267
SourceLocation ConsumeToken()
ConsumeToken - Consume the current &#39;peek token&#39; and lex the next one.
Definition: Parser.h:417
bool isNotEmpty() const
A scope specifier is present, but may be valid or invalid.
Definition: DeclSpec.h:191
static FixItHint CreateReplacement(CharSourceRange RemoveRange, StringRef Code)
Create a code modification hint that replaces the given source range with the given code string...
Definition: Diagnostic.h:129
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:276
ExprResult ExprError()
Definition: Ownership.h:283
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:954
const Scope * getFnParent() const
getFnParent - Return the closest scope that is a function body.
Definition: Scope.h:230
prec::Level getBinOpPrecedence(tok::TokenKind Kind, bool GreaterThanIsOperator, bool CPlusPlus11)
Return the precedence of the specified binary operator token.
A trivial tuple used to represent a source range.
This represents a decl that may have a name.
Definition: Decl.h:249
void setIdentifier(const IdentifierInfo *Id, SourceLocation IdLoc)
Specify that this unqualified-id was parsed as an identifier.
Definition: DeclSpec.h:1023
bool isObjCAtKeyword(tok::ObjCKeywordKind Kind) const
Definition: FormatToken.h:349
void SetRangeEnd(SourceLocation Loc)
Definition: DeclSpec.h:627
SourceLocation ColonLoc
Location of &#39;:&#39;.
Definition: OpenMPClause.h:108
This class handles loading and caching of source files into memory.
Code completion occurs in a parenthesized expression, which might also be a type cast.
Definition: Sema.h:10329
One specifier in an expression.
Definition: Availability.h:31
TypeResult ParseTypeName(SourceRange *Range=nullptr, DeclaratorContext Context=DeclaratorContext::TypeNameContext, AccessSpecifier AS=AS_none, Decl **OwnedType=nullptr, ParsedAttributes *Attrs=nullptr)
ParseTypeName type-name: [C99 6.7.6] specifier-qualifier-list abstract-declarator[opt].
Definition: ParseDecl.cpp:43
Stop skipping at specified token, but don&#39;t skip the token itself.
Definition: Parser.h:1038
A RAII object to temporarily push a declaration context.
Definition: Sema.h:728