clang 17.0.0git
CGBuiltin.cpp
Go to the documentation of this file.
1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "ABIInfo.h"
14#include "CGCUDARuntime.h"
15#include "CGCXXABI.h"
16#include "CGObjCRuntime.h"
17#include "CGOpenCLRuntime.h"
18#include "CGRecordLayout.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "ConstantEmitter.h"
22#include "PatternInit.h"
23#include "TargetInfo.h"
25#include "clang/AST/Attr.h"
26#include "clang/AST/Decl.h"
27#include "clang/AST/OSLog.h"
32#include "llvm/ADT/APFloat.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/StringExtras.h"
36#include "llvm/Analysis/ValueTracking.h"
37#include "llvm/IR/DataLayout.h"
38#include "llvm/IR/InlineAsm.h"
39#include "llvm/IR/Intrinsics.h"
40#include "llvm/IR/IntrinsicsAArch64.h"
41#include "llvm/IR/IntrinsicsAMDGPU.h"
42#include "llvm/IR/IntrinsicsARM.h"
43#include "llvm/IR/IntrinsicsBPF.h"
44#include "llvm/IR/IntrinsicsHexagon.h"
45#include "llvm/IR/IntrinsicsLoongArch.h"
46#include "llvm/IR/IntrinsicsNVPTX.h"
47#include "llvm/IR/IntrinsicsPowerPC.h"
48#include "llvm/IR/IntrinsicsR600.h"
49#include "llvm/IR/IntrinsicsRISCV.h"
50#include "llvm/IR/IntrinsicsS390.h"
51#include "llvm/IR/IntrinsicsVE.h"
52#include "llvm/IR/IntrinsicsWebAssembly.h"
53#include "llvm/IR/IntrinsicsX86.h"
54#include "llvm/IR/MDBuilder.h"
55#include "llvm/IR/MatrixBuilder.h"
56#include "llvm/Support/ConvertUTF.h"
57#include "llvm/Support/ScopedPrinter.h"
58#include "llvm/TargetParser/AArch64TargetParser.h"
59#include "llvm/TargetParser/X86TargetParser.h"
60#include <optional>
61#include <sstream>
62
63using namespace clang;
64using namespace CodeGen;
65using namespace llvm;
66
67static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
68 Align AlignmentInBytes) {
69 ConstantInt *Byte;
70 switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
71 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
72 // Nothing to initialize.
73 return;
74 case LangOptions::TrivialAutoVarInitKind::Zero:
75 Byte = CGF.Builder.getInt8(0x00);
76 break;
77 case LangOptions::TrivialAutoVarInitKind::Pattern: {
78 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
79 Byte = llvm::dyn_cast<llvm::ConstantInt>(
80 initializationPatternFor(CGF.CGM, Int8));
81 break;
82 }
83 }
84 if (CGF.CGM.stopAutoInit())
85 return;
86 auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
87 I->addAnnotationMetadata("auto-init");
88}
89
90/// getBuiltinLibFunction - Given a builtin id for a function like
91/// "__builtin_fabsf", return a Function* for "fabsf".
93 unsigned BuiltinID) {
94 assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
95
96 // Get the name, skip over the __builtin_ prefix (if necessary).
97 StringRef Name;
98 GlobalDecl D(FD);
99
100 // TODO: This list should be expanded or refactored after all GCC-compatible
101 // std libcall builtins are implemented.
102 static SmallDenseMap<unsigned, StringRef, 8> F128Builtins{
103 {Builtin::BI__builtin_printf, "__printfieee128"},
104 {Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"},
105 {Builtin::BI__builtin_vsprintf, "__vsprintfieee128"},
106 {Builtin::BI__builtin_sprintf, "__sprintfieee128"},
107 {Builtin::BI__builtin_snprintf, "__snprintfieee128"},
108 {Builtin::BI__builtin_fprintf, "__fprintfieee128"},
109 {Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"},
110 };
111
112 // The AIX library functions frexpl, ldexpl, and modfl are for 128-bit
113 // IBM 'long double' (i.e. __ibm128). Map to the 'double' versions
114 // if it is 64-bit 'long double' mode.
115 static SmallDenseMap<unsigned, StringRef, 4> AIXLongDouble64Builtins{
116 {Builtin::BI__builtin_frexpl, "frexp"},
117 {Builtin::BI__builtin_ldexpl, "ldexp"},
118 {Builtin::BI__builtin_modfl, "modf"},
119 };
120
121 // If the builtin has been declared explicitly with an assembler label,
122 // use the mangled name. This differs from the plain label on platforms
123 // that prefix labels.
124 if (FD->hasAttr<AsmLabelAttr>())
125 Name = getMangledName(D);
126 else {
127 // TODO: This mutation should also be applied to other targets other than
128 // PPC, after backend supports IEEE 128-bit style libcalls.
129 if (getTriple().isPPC64() &&
130 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() &&
131 F128Builtins.find(BuiltinID) != F128Builtins.end())
132 Name = F128Builtins[BuiltinID];
133 else if (getTriple().isOSAIX() &&
134 &getTarget().getLongDoubleFormat() ==
135 &llvm::APFloat::IEEEdouble() &&
136 AIXLongDouble64Builtins.find(BuiltinID) !=
137 AIXLongDouble64Builtins.end())
138 Name = AIXLongDouble64Builtins[BuiltinID];
139 else
140 Name = Context.BuiltinInfo.getName(BuiltinID).substr(10);
141 }
142
143 llvm::FunctionType *Ty =
144 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
145
146 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
147}
148
149/// Emit the conversions required to turn the given value into an
150/// integer of the given size.
151static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
152 QualType T, llvm::IntegerType *IntType) {
153 V = CGF.EmitToMemory(V, T);
154
155 if (V->getType()->isPointerTy())
156 return CGF.Builder.CreatePtrToInt(V, IntType);
157
158 assert(V->getType() == IntType);
159 return V;
160}
161
162static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
163 QualType T, llvm::Type *ResultType) {
164 V = CGF.EmitFromMemory(V, T);
165
166 if (ResultType->isPointerTy())
167 return CGF.Builder.CreateIntToPtr(V, ResultType);
168
169 assert(V->getType() == ResultType);
170 return V;
171}
172
173/// Utility to insert an atomic instruction based on Intrinsic::ID
174/// and the expression node.
176 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
177 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
178
179 QualType T = E->getType();
180 assert(E->getArg(0)->getType()->isPointerType());
181 assert(CGF.getContext().hasSameUnqualifiedType(T,
182 E->getArg(0)->getType()->getPointeeType()));
183 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
184
185 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
186 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
187
188 llvm::IntegerType *IntType =
189 llvm::IntegerType::get(CGF.getLLVMContext(),
190 CGF.getContext().getTypeSize(T));
191 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
192
193 llvm::Value *Args[2];
194 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
195 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
196 llvm::Type *ValueType = Args[1]->getType();
197 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
198
199 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
200 Kind, Args[0], Args[1], Ordering);
201 return EmitFromInt(CGF, Result, T, ValueType);
202}
203
205 Value *Val = CGF.EmitScalarExpr(E->getArg(0));
206 Value *Address = CGF.EmitScalarExpr(E->getArg(1));
207
208 // Convert the type of the pointer to a pointer to the stored type.
209 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
210 unsigned SrcAddrSpace = Address->getType()->getPointerAddressSpace();
211 Value *BC = CGF.Builder.CreateBitCast(
212 Address, llvm::PointerType::get(Val->getType(), SrcAddrSpace), "cast");
213 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
214 LV.setNontemporal(true);
215 CGF.EmitStoreOfScalar(Val, LV, false);
216 return nullptr;
217}
218
220 Value *Address = CGF.EmitScalarExpr(E->getArg(0));
221
223 LV.setNontemporal(true);
224 return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
225}
226
227static void CheckAtomicAlignment(CodeGenFunction &CGF, const CallExpr *E) {
228 ASTContext &Ctx = CGF.getContext();
229 Address Ptr = CGF.EmitPointerWithAlignment(E->getArg(0));
230 unsigned Bytes = Ptr.getElementType()->isPointerTy()
232 : Ptr.getElementType()->getScalarSizeInBits() / 8;
233 unsigned Align = Ptr.getAlignment().getQuantity();
234 if (Align % Bytes != 0) {
235 DiagnosticsEngine &Diags = CGF.CGM.getDiags();
236 Diags.Report(E->getBeginLoc(), diag::warn_sync_op_misaligned);
237 }
238}
239
241 llvm::AtomicRMWInst::BinOp Kind,
242 const CallExpr *E) {
243 CheckAtomicAlignment(CGF, E);
244 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
245}
246
247/// Utility to insert an atomic instruction based Intrinsic::ID and
248/// the expression node, where the return value is the result of the
249/// operation.
251 llvm::AtomicRMWInst::BinOp Kind,
252 const CallExpr *E,
253 Instruction::BinaryOps Op,
254 bool Invert = false) {
255 CheckAtomicAlignment(CGF, E);
256 QualType T = E->getType();
257 assert(E->getArg(0)->getType()->isPointerType());
258 assert(CGF.getContext().hasSameUnqualifiedType(T,
259 E->getArg(0)->getType()->getPointeeType()));
260 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
261
262 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
263 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
264
265 llvm::IntegerType *IntType =
266 llvm::IntegerType::get(CGF.getLLVMContext(),
267 CGF.getContext().getTypeSize(T));
268 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
269
270 llvm::Value *Args[2];
271 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
272 llvm::Type *ValueType = Args[1]->getType();
273 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
274 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
275
276 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
277 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
278 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
279 if (Invert)
280 Result =
281 CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
282 llvm::ConstantInt::getAllOnesValue(IntType));
283 Result = EmitFromInt(CGF, Result, T, ValueType);
284 return RValue::get(Result);
285}
286
287/// Utility to insert an atomic cmpxchg instruction.
288///
289/// @param CGF The current codegen function.
290/// @param E Builtin call expression to convert to cmpxchg.
291/// arg0 - address to operate on
292/// arg1 - value to compare with
293/// arg2 - new value
294/// @param ReturnBool Specifies whether to return success flag of
295/// cmpxchg result or the old value.
296///
297/// @returns result of cmpxchg, according to ReturnBool
298///
299/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
300/// invoke the function EmitAtomicCmpXchgForMSIntrin.
302 bool ReturnBool) {
303 CheckAtomicAlignment(CGF, E);
304 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
305 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
306 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
307
308 llvm::IntegerType *IntType = llvm::IntegerType::get(
309 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
310 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
311
312 Value *Args[3];
313 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
314 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
315 llvm::Type *ValueType = Args[1]->getType();
316 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
317 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
318
320 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
321 llvm::AtomicOrdering::SequentiallyConsistent);
322 if (ReturnBool)
323 // Extract boolean success flag and zext it to int.
324 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
325 CGF.ConvertType(E->getType()));
326 else
327 // Extract old value and emit it using the same type as compare value.
328 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
329 ValueType);
330}
331
332/// This function should be invoked to emit atomic cmpxchg for Microsoft's
333/// _InterlockedCompareExchange* intrinsics which have the following signature:
334/// T _InterlockedCompareExchange(T volatile *Destination,
335/// T Exchange,
336/// T Comparand);
337///
338/// Whereas the llvm 'cmpxchg' instruction has the following syntax:
339/// cmpxchg *Destination, Comparand, Exchange.
340/// So we need to swap Comparand and Exchange when invoking
341/// CreateAtomicCmpXchg. That is the reason we could not use the above utility
342/// function MakeAtomicCmpXchgValue since it expects the arguments to be
343/// already swapped.
344
345static
347 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
348 assert(E->getArg(0)->getType()->isPointerType());
350 E->getType(), E->getArg(0)->getType()->getPointeeType()));
351 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
352 E->getArg(1)->getType()));
353 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
354 E->getArg(2)->getType()));
355
356 auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
357 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
358 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
359
360 // For Release ordering, the failure ordering should be Monotonic.
361 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
362 AtomicOrdering::Monotonic :
363 SuccessOrdering;
364
365 // The atomic instruction is marked volatile for consistency with MSVC. This
366 // blocks the few atomics optimizations that LLVM has. If we want to optimize
367 // _Interlocked* operations in the future, we will have to remove the volatile
368 // marker.
370 Destination, Comparand, Exchange,
371 SuccessOrdering, FailureOrdering);
372 Result->setVolatile(true);
373 return CGF.Builder.CreateExtractValue(Result, 0);
374}
375
376// 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
377// prototyped like this:
378//
379// unsigned char _InterlockedCompareExchange128...(
380// __int64 volatile * _Destination,
381// __int64 _ExchangeHigh,
382// __int64 _ExchangeLow,
383// __int64 * _ComparandResult);
385 const CallExpr *E,
386 AtomicOrdering SuccessOrdering) {
387 assert(E->getNumArgs() == 4);
388 llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
389 llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
390 llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
391 llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
392
393 assert(Destination->getType()->isPointerTy());
394 assert(!ExchangeHigh->getType()->isPointerTy());
395 assert(!ExchangeLow->getType()->isPointerTy());
396 assert(ComparandPtr->getType()->isPointerTy());
397
398 // For Release ordering, the failure ordering should be Monotonic.
399 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
400 ? AtomicOrdering::Monotonic
401 : SuccessOrdering;
402
403 // Convert to i128 pointers and values.
404 llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
405 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
406 Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy);
407 Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy),
408 Int128Ty, CGF.getContext().toCharUnitsFromBits(128));
409
410 // (((i128)hi) << 64) | ((i128)lo)
411 ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
412 ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
413 ExchangeHigh =
414 CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
415 llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
416
417 // Load the comparand for the instruction.
418 llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult);
419
420 auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
421 SuccessOrdering, FailureOrdering);
422
423 // The atomic instruction is marked volatile for consistency with MSVC. This
424 // blocks the few atomics optimizations that LLVM has. If we want to optimize
425 // _Interlocked* operations in the future, we will have to remove the volatile
426 // marker.
427 CXI->setVolatile(true);
428
429 // Store the result as an outparameter.
430 CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
431 ComparandResult);
432
433 // Get the success boolean and zero extend it to i8.
434 Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
435 return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
436}
437
439 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
440 assert(E->getArg(0)->getType()->isPointerType());
441
442 auto *IntTy = CGF.ConvertType(E->getType());
443 auto *Result = CGF.Builder.CreateAtomicRMW(
444 AtomicRMWInst::Add,
445 CGF.EmitScalarExpr(E->getArg(0)),
446 ConstantInt::get(IntTy, 1),
447 Ordering);
448 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
449}
450
452 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
453 assert(E->getArg(0)->getType()->isPointerType());
454
455 auto *IntTy = CGF.ConvertType(E->getType());
456 auto *Result = CGF.Builder.CreateAtomicRMW(
457 AtomicRMWInst::Sub,
458 CGF.EmitScalarExpr(E->getArg(0)),
459 ConstantInt::get(IntTy, 1),
460 Ordering);
461 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
462}
463
464// Build a plain volatile load.
466 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
467 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
468 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
469 llvm::Type *ITy =
470 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
471 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
472 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
473 Load->setVolatile(true);
474 return Load;
475}
476
477// Build a plain volatile store.
479 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
480 Value *Value = CGF.EmitScalarExpr(E->getArg(1));
481 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
482 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
483 llvm::Type *ITy =
484 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
485 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
486 llvm::StoreInst *Store =
487 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
488 Store->setVolatile(true);
489 return Store;
490}
491
492// Emit a simple mangled intrinsic that has 1 argument and a return type
493// matching the argument type. Depending on mode, this may be a constrained
494// floating-point intrinsic.
496 const CallExpr *E, unsigned IntrinsicID,
497 unsigned ConstrainedIntrinsicID) {
498 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
499
500 if (CGF.Builder.getIsFPConstrained()) {
501 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
502 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
503 return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
504 } else {
505 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
506 return CGF.Builder.CreateCall(F, Src0);
507 }
508}
509
510// Emit an intrinsic that has 2 operands of the same type as its result.
511// Depending on mode, this may be a constrained floating-point intrinsic.
513 const CallExpr *E, unsigned IntrinsicID,
514 unsigned ConstrainedIntrinsicID) {
515 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
516 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
517
518 if (CGF.Builder.getIsFPConstrained()) {
519 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
520 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
521 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
522 } else {
523 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
524 return CGF.Builder.CreateCall(F, { Src0, Src1 });
525 }
526}
527
528// Emit an intrinsic that has 3 operands of the same type as its result.
529// Depending on mode, this may be a constrained floating-point intrinsic.
531 const CallExpr *E, unsigned IntrinsicID,
532 unsigned ConstrainedIntrinsicID) {
533 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
534 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
535 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
536
537 if (CGF.Builder.getIsFPConstrained()) {
538 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
539 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
540 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
541 } else {
542 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
543 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
544 }
545}
546
547// Emit an intrinsic where all operands are of the same type as the result.
548// Depending on mode, this may be a constrained floating-point intrinsic.
550 unsigned IntrinsicID,
551 unsigned ConstrainedIntrinsicID,
552 llvm::Type *Ty,
553 ArrayRef<Value *> Args) {
554 Function *F;
555 if (CGF.Builder.getIsFPConstrained())
556 F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
557 else
558 F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
559
560 if (CGF.Builder.getIsFPConstrained())
561 return CGF.Builder.CreateConstrainedFPCall(F, Args);
562 else
563 return CGF.Builder.CreateCall(F, Args);
564}
565
566// Emit a simple mangled intrinsic that has 1 argument and a return type
567// matching the argument type.
569 unsigned IntrinsicID,
570 llvm::StringRef Name = "") {
571 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
572
573 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
574 return CGF.Builder.CreateCall(F, Src0, Name);
575}
576
577// Emit an intrinsic that has 2 operands of the same type as its result.
579 const CallExpr *E,
580 unsigned IntrinsicID) {
581 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
582 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
583
584 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
585 return CGF.Builder.CreateCall(F, { Src0, Src1 });
586}
587
588// Emit an intrinsic that has 3 operands of the same type as its result.
590 const CallExpr *E,
591 unsigned IntrinsicID) {
592 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
593 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
594 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
595
596 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
597 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
598}
599
600// Emit an intrinsic that has 1 float or double operand, and 1 integer.
602 const CallExpr *E,
603 unsigned IntrinsicID) {
604 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
605 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
606
607 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
608 return CGF.Builder.CreateCall(F, {Src0, Src1});
609}
610
611// Emit an intrinsic that has overloaded integer result and fp operand.
612static Value *
614 unsigned IntrinsicID,
615 unsigned ConstrainedIntrinsicID) {
616 llvm::Type *ResultType = CGF.ConvertType(E->getType());
617 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
618
619 if (CGF.Builder.getIsFPConstrained()) {
620 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
621 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
622 {ResultType, Src0->getType()});
623 return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
624 } else {
625 Function *F =
626 CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
627 return CGF.Builder.CreateCall(F, Src0);
628 }
629}
630
631/// EmitFAbs - Emit a call to @llvm.fabs().
633 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
634 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
635 Call->setDoesNotAccessMemory();
636 return Call;
637}
638
639/// Emit the computation of the sign bit for a floating point value. Returns
640/// the i1 sign bit value.
642 LLVMContext &C = CGF.CGM.getLLVMContext();
643
644 llvm::Type *Ty = V->getType();
645 int Width = Ty->getPrimitiveSizeInBits();
646 llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
647 V = CGF.Builder.CreateBitCast(V, IntTy);
648 if (Ty->isPPC_FP128Ty()) {
649 // We want the sign bit of the higher-order double. The bitcast we just
650 // did works as if the double-double was stored to memory and then
651 // read as an i128. The "store" will put the higher-order double in the
652 // lower address in both little- and big-Endian modes, but the "load"
653 // will treat those bits as a different part of the i128: the low bits in
654 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
655 // we need to shift the high bits down to the low before truncating.
656 Width >>= 1;
657 if (CGF.getTarget().isBigEndian()) {
658 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
659 V = CGF.Builder.CreateLShr(V, ShiftCst);
660 }
661 // We are truncating value in order to extract the higher-order
662 // double, which we will be using to extract the sign from.
663 IntTy = llvm::IntegerType::get(C, Width);
664 V = CGF.Builder.CreateTrunc(V, IntTy);
665 }
666 Value *Zero = llvm::Constant::getNullValue(IntTy);
667 return CGF.Builder.CreateICmpSLT(V, Zero);
668}
669
671 const CallExpr *E, llvm::Constant *calleeValue) {
672 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
673 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
674}
675
676/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
677/// depending on IntrinsicID.
678///
679/// \arg CGF The current codegen function.
680/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
681/// \arg X The first argument to the llvm.*.with.overflow.*.
682/// \arg Y The second argument to the llvm.*.with.overflow.*.
683/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
684/// \returns The result (i.e. sum/product) returned by the intrinsic.
685static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
686 const llvm::Intrinsic::ID IntrinsicID,
687 llvm::Value *X, llvm::Value *Y,
688 llvm::Value *&Carry) {
689 // Make sure we have integers of the same width.
690 assert(X->getType() == Y->getType() &&
691 "Arguments must be the same type. (Did you forget to make sure both "
692 "arguments have the same integer width?)");
693
694 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
695 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
696 Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
697 return CGF.Builder.CreateExtractValue(Tmp, 0);
698}
699
701 unsigned IntrinsicID,
702 int low, int high) {
703 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
704 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
705 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
706 llvm::Instruction *Call = CGF.Builder.CreateCall(F);
707 Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
708 Call->setMetadata(llvm::LLVMContext::MD_noundef,
709 llvm::MDNode::get(CGF.getLLVMContext(), std::nullopt));
710 return Call;
711}
712
713namespace {
714 struct WidthAndSignedness {
715 unsigned Width;
716 bool Signed;
717 };
718}
719
720static WidthAndSignedness
722 const clang::QualType Type) {
723 assert(Type->isIntegerType() && "Given type is not an integer.");
724 unsigned Width = Type->isBooleanType() ? 1
725 : Type->isBitIntType() ? context.getIntWidth(Type)
726 : context.getTypeInfo(Type).Width;
728 return {Width, Signed};
729}
730
731// Given one or more integer types, this function produces an integer type that
732// encompasses them: any value in one of the given types could be expressed in
733// the encompassing type.
734static struct WidthAndSignedness
735EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
736 assert(Types.size() > 0 && "Empty list of types.");
737
738 // If any of the given types is signed, we must return a signed type.
739 bool Signed = false;
740 for (const auto &Type : Types) {
741 Signed |= Type.Signed;
742 }
743
744 // The encompassing type must have a width greater than or equal to the width
745 // of the specified types. Additionally, if the encompassing type is signed,
746 // its width must be strictly greater than the width of any unsigned types
747 // given.
748 unsigned Width = 0;
749 for (const auto &Type : Types) {
750 unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
751 if (Width < MinWidth) {
752 Width = MinWidth;
753 }
754 }
755
756 return {Width, Signed};
757}
758
759Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
760 llvm::Type *DestType = Int8PtrTy;
761 if (ArgValue->getType() != DestType)
762 ArgValue =
763 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
764
765 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
766 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
767}
768
769/// Checks if using the result of __builtin_object_size(p, @p From) in place of
770/// __builtin_object_size(p, @p To) is correct
771static bool areBOSTypesCompatible(int From, int To) {
772 // Note: Our __builtin_object_size implementation currently treats Type=0 and
773 // Type=2 identically. Encoding this implementation detail here may make
774 // improving __builtin_object_size difficult in the future, so it's omitted.
775 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
776}
777
778static llvm::Value *
779getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
780 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
781}
782
783llvm::Value *
784CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
785 llvm::IntegerType *ResType,
786 llvm::Value *EmittedE,
787 bool IsDynamic) {
788 uint64_t ObjectSize;
789 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
790 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
791 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
792}
793
794/// Returns a Value corresponding to the size of the given expression.
795/// This Value may be either of the following:
796/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
797/// it)
798/// - A call to the @llvm.objectsize intrinsic
799///
800/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
801/// and we wouldn't otherwise try to reference a pass_object_size parameter,
802/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
803llvm::Value *
804CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
805 llvm::IntegerType *ResType,
806 llvm::Value *EmittedE, bool IsDynamic) {
807 // We need to reference an argument if the pointer is a parameter with the
808 // pass_object_size attribute.
809 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
810 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
811 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
812 if (Param != nullptr && PS != nullptr &&
813 areBOSTypesCompatible(PS->getType(), Type)) {
814 auto Iter = SizeArguments.find(Param);
815 assert(Iter != SizeArguments.end());
816
817 const ImplicitParamDecl *D = Iter->second;
818 auto DIter = LocalDeclMap.find(D);
819 assert(DIter != LocalDeclMap.end());
820
821 return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
822 getContext().getSizeType(), E->getBeginLoc());
823 }
824 }
825
826 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
827 // evaluate E for side-effects. In either case, we shouldn't lower to
828 // @llvm.objectsize.
829 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
831
832 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
833 assert(Ptr->getType()->isPointerTy() &&
834 "Non-pointer passed to __builtin_object_size?");
835
836 Function *F =
837 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
838
839 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
840 Value *Min = Builder.getInt1((Type & 2) != 0);
841 // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
842 Value *NullIsUnknown = Builder.getTrue();
843 Value *Dynamic = Builder.getInt1(IsDynamic);
844 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
845}
846
847namespace {
848/// A struct to generically describe a bit test intrinsic.
849struct BitTest {
850 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
851 enum InterlockingKind : uint8_t {
852 Unlocked,
853 Sequential,
854 Acquire,
855 Release,
856 NoFence
857 };
858
859 ActionKind Action;
860 InterlockingKind Interlocking;
861 bool Is64Bit;
862
863 static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
864};
865} // namespace
866
867BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
868 switch (BuiltinID) {
869 // Main portable variants.
870 case Builtin::BI_bittest:
871 return {TestOnly, Unlocked, false};
872 case Builtin::BI_bittestandcomplement:
873 return {Complement, Unlocked, false};
874 case Builtin::BI_bittestandreset:
875 return {Reset, Unlocked, false};
876 case Builtin::BI_bittestandset:
877 return {Set, Unlocked, false};
878 case Builtin::BI_interlockedbittestandreset:
879 return {Reset, Sequential, false};
880 case Builtin::BI_interlockedbittestandset:
881 return {Set, Sequential, false};
882
883 // X86-specific 64-bit variants.
884 case Builtin::BI_bittest64:
885 return {TestOnly, Unlocked, true};
886 case Builtin::BI_bittestandcomplement64:
887 return {Complement, Unlocked, true};
888 case Builtin::BI_bittestandreset64:
889 return {Reset, Unlocked, true};
890 case Builtin::BI_bittestandset64:
891 return {Set, Unlocked, true};
892 case Builtin::BI_interlockedbittestandreset64:
893 return {Reset, Sequential, true};
894 case Builtin::BI_interlockedbittestandset64:
895 return {Set, Sequential, true};
896
897 // ARM/AArch64-specific ordering variants.
898 case Builtin::BI_interlockedbittestandset_acq:
899 return {Set, Acquire, false};
900 case Builtin::BI_interlockedbittestandset_rel:
901 return {Set, Release, false};
902 case Builtin::BI_interlockedbittestandset_nf:
903 return {Set, NoFence, false};
904 case Builtin::BI_interlockedbittestandreset_acq:
905 return {Reset, Acquire, false};
906 case Builtin::BI_interlockedbittestandreset_rel:
907 return {Reset, Release, false};
908 case Builtin::BI_interlockedbittestandreset_nf:
909 return {Reset, NoFence, false};
910 }
911 llvm_unreachable("expected only bittest intrinsics");
912}
913
914static char bitActionToX86BTCode(BitTest::ActionKind A) {
915 switch (A) {
916 case BitTest::TestOnly: return '\0';
917 case BitTest::Complement: return 'c';
918 case BitTest::Reset: return 'r';
919 case BitTest::Set: return 's';
920 }
921 llvm_unreachable("invalid action");
922}
923
925 BitTest BT,
926 const CallExpr *E, Value *BitBase,
927 Value *BitPos) {
928 char Action = bitActionToX86BTCode(BT.Action);
929 char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
930
931 // Build the assembly.
933 raw_svector_ostream AsmOS(Asm);
934 if (BT.Interlocking != BitTest::Unlocked)
935 AsmOS << "lock ";
936 AsmOS << "bt";
937 if (Action)
938 AsmOS << Action;
939 AsmOS << SizeSuffix << " $2, ($1)";
940
941 // Build the constraints. FIXME: We should support immediates when possible.
942 std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
943 std::string MachineClobbers = CGF.getTarget().getClobbers();
944 if (!MachineClobbers.empty()) {
945 Constraints += ',';
946 Constraints += MachineClobbers;
947 }
948 llvm::IntegerType *IntType = llvm::IntegerType::get(
949 CGF.getLLVMContext(),
950 CGF.getContext().getTypeSize(E->getArg(1)->getType()));
951 llvm::Type *IntPtrType = IntType->getPointerTo();
952 llvm::FunctionType *FTy =
953 llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
954
955 llvm::InlineAsm *IA =
956 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
957 return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
958}
959
960static llvm::AtomicOrdering
961getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
962 switch (I) {
963 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
964 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
965 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
966 case BitTest::Release: return llvm::AtomicOrdering::Release;
967 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
968 }
969 llvm_unreachable("invalid interlocking");
970}
971
972/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
973/// bits and a bit position and read and optionally modify the bit at that
974/// position. The position index can be arbitrarily large, i.e. it can be larger
975/// than 31 or 63, so we need an indexed load in the general case.
976static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
977 unsigned BuiltinID,
978 const CallExpr *E) {
979 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
980 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
981
982 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
983
984 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
985 // indexing operation internally. Use them if possible.
986 if (CGF.getTarget().getTriple().isX86())
987 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
988
989 // Otherwise, use generic code to load one byte and test the bit. Use all but
990 // the bottom three bits as the array index, and the bottom three bits to form
991 // a mask.
992 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
993 Value *ByteIndex = CGF.Builder.CreateAShr(
994 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
995 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
996 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
997 ByteIndex, "bittest.byteaddr"),
998 CGF.Int8Ty, CharUnits::One());
999 Value *PosLow =
1000 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
1001 llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
1002
1003 // The updating instructions will need a mask.
1004 Value *Mask = nullptr;
1005 if (BT.Action != BitTest::TestOnly) {
1006 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
1007 "bittest.mask");
1008 }
1009
1010 // Check the action and ordering of the interlocked intrinsics.
1011 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
1012
1013 Value *OldByte = nullptr;
1014 if (Ordering != llvm::AtomicOrdering::NotAtomic) {
1015 // Emit a combined atomicrmw load/store operation for the interlocked
1016 // intrinsics.
1017 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
1018 if (BT.Action == BitTest::Reset) {
1019 Mask = CGF.Builder.CreateNot(Mask);
1020 RMWOp = llvm::AtomicRMWInst::And;
1021 }
1022 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
1023 Ordering);
1024 } else {
1025 // Emit a plain load for the non-interlocked intrinsics.
1026 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
1027 Value *NewByte = nullptr;
1028 switch (BT.Action) {
1029 case BitTest::TestOnly:
1030 // Don't store anything.
1031 break;
1032 case BitTest::Complement:
1033 NewByte = CGF.Builder.CreateXor(OldByte, Mask);
1034 break;
1035 case BitTest::Reset:
1036 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
1037 break;
1038 case BitTest::Set:
1039 NewByte = CGF.Builder.CreateOr(OldByte, Mask);
1040 break;
1041 }
1042 if (NewByte)
1043 CGF.Builder.CreateStore(NewByte, ByteAddr);
1044 }
1045
1046 // However we loaded the old byte, either by plain load or atomicrmw, shift
1047 // the bit into the low position and mask it to 0 or 1.
1048 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
1049 return CGF.Builder.CreateAnd(
1050 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
1051}
1052
1054 unsigned BuiltinID,
1055 const CallExpr *E) {
1056 Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
1057
1059 raw_svector_ostream AsmOS(Asm);
1060 llvm::IntegerType *RetType = CGF.Int32Ty;
1061
1062 switch (BuiltinID) {
1063 case clang::PPC::BI__builtin_ppc_ldarx:
1064 AsmOS << "ldarx ";
1065 RetType = CGF.Int64Ty;
1066 break;
1067 case clang::PPC::BI__builtin_ppc_lwarx:
1068 AsmOS << "lwarx ";
1069 RetType = CGF.Int32Ty;
1070 break;
1071 case clang::PPC::BI__builtin_ppc_lharx:
1072 AsmOS << "lharx ";
1073 RetType = CGF.Int16Ty;
1074 break;
1075 case clang::PPC::BI__builtin_ppc_lbarx:
1076 AsmOS << "lbarx ";
1077 RetType = CGF.Int8Ty;
1078 break;
1079 default:
1080 llvm_unreachable("Expected only PowerPC load reserve intrinsics");
1081 }
1082
1083 AsmOS << "$0, ${1:y}";
1084
1085 std::string Constraints = "=r,*Z,~{memory}";
1086 std::string MachineClobbers = CGF.getTarget().getClobbers();
1087 if (!MachineClobbers.empty()) {
1088 Constraints += ',';
1089 Constraints += MachineClobbers;
1090 }
1091
1092 llvm::Type *IntPtrType = RetType->getPointerTo();
1093 llvm::FunctionType *FTy =
1094 llvm::FunctionType::get(RetType, {IntPtrType}, false);
1095
1096 llvm::InlineAsm *IA =
1097 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1098 llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr});
1099 CI->addParamAttr(
1100 0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType));
1101 return CI;
1102}
1103
1104namespace {
1105enum class MSVCSetJmpKind {
1106 _setjmpex,
1107 _setjmp3,
1108 _setjmp
1109};
1110}
1111
1112/// MSVC handles setjmp a bit differently on different platforms. On every
1113/// architecture except 32-bit x86, the frame address is passed. On x86, extra
1114/// parameters can be passed as variadic arguments, but we always pass none.
1115static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1116 const CallExpr *E) {
1117 llvm::Value *Arg1 = nullptr;
1118 llvm::Type *Arg1Ty = nullptr;
1119 StringRef Name;
1120 bool IsVarArg = false;
1121 if (SJKind == MSVCSetJmpKind::_setjmp3) {
1122 Name = "_setjmp3";
1123 Arg1Ty = CGF.Int32Ty;
1124 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1125 IsVarArg = true;
1126 } else {
1127 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1128 Arg1Ty = CGF.Int8PtrTy;
1129 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1130 Arg1 = CGF.Builder.CreateCall(
1131 CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1132 } else
1133 Arg1 = CGF.Builder.CreateCall(
1134 CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1135 llvm::ConstantInt::get(CGF.Int32Ty, 0));
1136 }
1137
1138 // Mark the call site and declaration with ReturnsTwice.
1139 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1140 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1141 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1142 llvm::Attribute::ReturnsTwice);
1143 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1144 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1145 ReturnsTwiceAttr, /*Local=*/true);
1146
1147 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1148 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1149 llvm::Value *Args[] = {Buf, Arg1};
1150 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1151 CB->setAttributes(ReturnsTwiceAttr);
1152 return RValue::get(CB);
1153}
1154
1155// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1156// we handle them here.
1196 __fastfail,
1197};
1198
1199static std::optional<CodeGenFunction::MSVCIntrin>
1200translateArmToMsvcIntrin(unsigned BuiltinID) {
1201 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1202 switch (BuiltinID) {
1203 default:
1204 return std::nullopt;
1205 case clang::ARM::BI_BitScanForward:
1206 case clang::ARM::BI_BitScanForward64:
1207 return MSVCIntrin::_BitScanForward;
1208 case clang::ARM::BI_BitScanReverse:
1209 case clang::ARM::BI_BitScanReverse64:
1210 return MSVCIntrin::_BitScanReverse;
1211 case clang::ARM::BI_InterlockedAnd64:
1212 return MSVCIntrin::_InterlockedAnd;
1213 case clang::ARM::BI_InterlockedExchange64:
1214 return MSVCIntrin::_InterlockedExchange;
1215 case clang::ARM::BI_InterlockedExchangeAdd64:
1216 return MSVCIntrin::_InterlockedExchangeAdd;
1217 case clang::ARM::BI_InterlockedExchangeSub64:
1218 return MSVCIntrin::_InterlockedExchangeSub;
1219 case clang::ARM::BI_InterlockedOr64:
1220 return MSVCIntrin::_InterlockedOr;
1221 case clang::ARM::BI_InterlockedXor64:
1222 return MSVCIntrin::_InterlockedXor;
1223 case clang::ARM::BI_InterlockedDecrement64:
1224 return MSVCIntrin::_InterlockedDecrement;
1225 case clang::ARM::BI_InterlockedIncrement64:
1226 return MSVCIntrin::_InterlockedIncrement;
1227 case clang::ARM::BI_InterlockedExchangeAdd8_acq:
1228 case clang::ARM::BI_InterlockedExchangeAdd16_acq:
1229 case clang::ARM::BI_InterlockedExchangeAdd_acq:
1230 case clang::ARM::BI_InterlockedExchangeAdd64_acq:
1231 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1232 case clang::ARM::BI_InterlockedExchangeAdd8_rel:
1233 case clang::ARM::BI_InterlockedExchangeAdd16_rel:
1234 case clang::ARM::BI_InterlockedExchangeAdd_rel:
1235 case clang::ARM::BI_InterlockedExchangeAdd64_rel:
1236 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1237 case clang::ARM::BI_InterlockedExchangeAdd8_nf:
1238 case clang::ARM::BI_InterlockedExchangeAdd16_nf:
1239 case clang::ARM::BI_InterlockedExchangeAdd_nf:
1240 case clang::ARM::BI_InterlockedExchangeAdd64_nf:
1241 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1242 case clang::ARM::BI_InterlockedExchange8_acq:
1243 case clang::ARM::BI_InterlockedExchange16_acq:
1244 case clang::ARM::BI_InterlockedExchange_acq:
1245 case clang::ARM::BI_InterlockedExchange64_acq:
1246 return MSVCIntrin::_InterlockedExchange_acq;
1247 case clang::ARM::BI_InterlockedExchange8_rel:
1248 case clang::ARM::BI_InterlockedExchange16_rel:
1249 case clang::ARM::BI_InterlockedExchange_rel:
1250 case clang::ARM::BI_InterlockedExchange64_rel:
1251 return MSVCIntrin::_InterlockedExchange_rel;
1252 case clang::ARM::BI_InterlockedExchange8_nf:
1253 case clang::ARM::BI_InterlockedExchange16_nf:
1254 case clang::ARM::BI_InterlockedExchange_nf:
1255 case clang::ARM::BI_InterlockedExchange64_nf:
1256 return MSVCIntrin::_InterlockedExchange_nf;
1257 case clang::ARM::BI_InterlockedCompareExchange8_acq:
1258 case clang::ARM::BI_InterlockedCompareExchange16_acq:
1259 case clang::ARM::BI_InterlockedCompareExchange_acq:
1260 case clang::ARM::BI_InterlockedCompareExchange64_acq:
1261 return MSVCIntrin::_InterlockedCompareExchange_acq;
1262 case clang::ARM::BI_InterlockedCompareExchange8_rel:
1263 case clang::ARM::BI_InterlockedCompareExchange16_rel:
1264 case clang::ARM::BI_InterlockedCompareExchange_rel:
1265 case clang::ARM::BI_InterlockedCompareExchange64_rel:
1266 return MSVCIntrin::_InterlockedCompareExchange_rel;
1267 case clang::ARM::BI_InterlockedCompareExchange8_nf:
1268 case clang::ARM::BI_InterlockedCompareExchange16_nf:
1269 case clang::ARM::BI_InterlockedCompareExchange_nf:
1270 case clang::ARM::BI_InterlockedCompareExchange64_nf:
1271 return MSVCIntrin::_InterlockedCompareExchange_nf;
1272 case clang::ARM::BI_InterlockedOr8_acq:
1273 case clang::ARM::BI_InterlockedOr16_acq:
1274 case clang::ARM::BI_InterlockedOr_acq:
1275 case clang::ARM::BI_InterlockedOr64_acq:
1276 return MSVCIntrin::_InterlockedOr_acq;
1277 case clang::ARM::BI_InterlockedOr8_rel:
1278 case clang::ARM::BI_InterlockedOr16_rel:
1279 case clang::ARM::BI_InterlockedOr_rel:
1280 case clang::ARM::BI_InterlockedOr64_rel:
1281 return MSVCIntrin::_InterlockedOr_rel;
1282 case clang::ARM::BI_InterlockedOr8_nf:
1283 case clang::ARM::BI_InterlockedOr16_nf:
1284 case clang::ARM::BI_InterlockedOr_nf:
1285 case clang::ARM::BI_InterlockedOr64_nf:
1286 return MSVCIntrin::_InterlockedOr_nf;
1287 case clang::ARM::BI_InterlockedXor8_acq:
1288 case clang::ARM::BI_InterlockedXor16_acq:
1289 case clang::ARM::BI_InterlockedXor_acq:
1290 case clang::ARM::BI_InterlockedXor64_acq:
1291 return MSVCIntrin::_InterlockedXor_acq;
1292 case clang::ARM::BI_InterlockedXor8_rel:
1293 case clang::ARM::BI_InterlockedXor16_rel:
1294 case clang::ARM::BI_InterlockedXor_rel:
1295 case clang::ARM::BI_InterlockedXor64_rel:
1296 return MSVCIntrin::_InterlockedXor_rel;
1297 case clang::ARM::BI_InterlockedXor8_nf:
1298 case clang::ARM::BI_InterlockedXor16_nf:
1299 case clang::ARM::BI_InterlockedXor_nf:
1300 case clang::ARM::BI_InterlockedXor64_nf:
1301 return MSVCIntrin::_InterlockedXor_nf;
1302 case clang::ARM::BI_InterlockedAnd8_acq:
1303 case clang::ARM::BI_InterlockedAnd16_acq:
1304 case clang::ARM::BI_InterlockedAnd_acq:
1305 case clang::ARM::BI_InterlockedAnd64_acq:
1306 return MSVCIntrin::_InterlockedAnd_acq;
1307 case clang::ARM::BI_InterlockedAnd8_rel:
1308 case clang::ARM::BI_InterlockedAnd16_rel:
1309 case clang::ARM::BI_InterlockedAnd_rel:
1310 case clang::ARM::BI_InterlockedAnd64_rel:
1311 return MSVCIntrin::_InterlockedAnd_rel;
1312 case clang::ARM::BI_InterlockedAnd8_nf:
1313 case clang::ARM::BI_InterlockedAnd16_nf:
1314 case clang::ARM::BI_InterlockedAnd_nf:
1315 case clang::ARM::BI_InterlockedAnd64_nf:
1316 return MSVCIntrin::_InterlockedAnd_nf;
1317 case clang::ARM::BI_InterlockedIncrement16_acq:
1318 case clang::ARM::BI_InterlockedIncrement_acq:
1319 case clang::ARM::BI_InterlockedIncrement64_acq:
1320 return MSVCIntrin::_InterlockedIncrement_acq;
1321 case clang::ARM::BI_InterlockedIncrement16_rel:
1322 case clang::ARM::BI_InterlockedIncrement_rel:
1323 case clang::ARM::BI_InterlockedIncrement64_rel:
1324 return MSVCIntrin::_InterlockedIncrement_rel;
1325 case clang::ARM::BI_InterlockedIncrement16_nf:
1326 case clang::ARM::BI_InterlockedIncrement_nf:
1327 case clang::ARM::BI_InterlockedIncrement64_nf:
1328 return MSVCIntrin::_InterlockedIncrement_nf;
1329 case clang::ARM::BI_InterlockedDecrement16_acq:
1330 case clang::ARM::BI_InterlockedDecrement_acq:
1331 case clang::ARM::BI_InterlockedDecrement64_acq:
1332 return MSVCIntrin::_InterlockedDecrement_acq;
1333 case clang::ARM::BI_InterlockedDecrement16_rel:
1334 case clang::ARM::BI_InterlockedDecrement_rel:
1335 case clang::ARM::BI_InterlockedDecrement64_rel:
1336 return MSVCIntrin::_InterlockedDecrement_rel;
1337 case clang::ARM::BI_InterlockedDecrement16_nf:
1338 case clang::ARM::BI_InterlockedDecrement_nf:
1339 case clang::ARM::BI_InterlockedDecrement64_nf:
1340 return MSVCIntrin::_InterlockedDecrement_nf;
1341 }
1342 llvm_unreachable("must return from switch");
1343}
1344
1345static std::optional<CodeGenFunction::MSVCIntrin>
1346translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1347 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1348 switch (BuiltinID) {
1349 default:
1350 return std::nullopt;
1351 case clang::AArch64::BI_BitScanForward:
1352 case clang::AArch64::BI_BitScanForward64:
1353 return MSVCIntrin::_BitScanForward;
1354 case clang::AArch64::BI_BitScanReverse:
1355 case clang::AArch64::BI_BitScanReverse64:
1356 return MSVCIntrin::_BitScanReverse;
1357 case clang::AArch64::BI_InterlockedAnd64:
1358 return MSVCIntrin::_InterlockedAnd;
1359 case clang::AArch64::BI_InterlockedExchange64:
1360 return MSVCIntrin::_InterlockedExchange;
1361 case clang::AArch64::BI_InterlockedExchangeAdd64:
1362 return MSVCIntrin::_InterlockedExchangeAdd;
1363 case clang::AArch64::BI_InterlockedExchangeSub64:
1364 return MSVCIntrin::_InterlockedExchangeSub;
1365 case clang::AArch64::BI_InterlockedOr64:
1366 return MSVCIntrin::_InterlockedOr;
1367 case clang::AArch64::BI_InterlockedXor64:
1368 return MSVCIntrin::_InterlockedXor;
1369 case clang::AArch64::BI_InterlockedDecrement64:
1370 return MSVCIntrin::_InterlockedDecrement;
1371 case clang::AArch64::BI_InterlockedIncrement64:
1372 return MSVCIntrin::_InterlockedIncrement;
1373 case clang::AArch64::BI_InterlockedExchangeAdd8_acq:
1374 case clang::AArch64::BI_InterlockedExchangeAdd16_acq:
1375 case clang::AArch64::BI_InterlockedExchangeAdd_acq:
1376 case clang::AArch64::BI_InterlockedExchangeAdd64_acq:
1377 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1378 case clang::AArch64::BI_InterlockedExchangeAdd8_rel:
1379 case clang::AArch64::BI_InterlockedExchangeAdd16_rel:
1380 case clang::AArch64::BI_InterlockedExchangeAdd_rel:
1381 case clang::AArch64::BI_InterlockedExchangeAdd64_rel:
1382 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1383 case clang::AArch64::BI_InterlockedExchangeAdd8_nf:
1384 case clang::AArch64::BI_InterlockedExchangeAdd16_nf:
1385 case clang::AArch64::BI_InterlockedExchangeAdd_nf:
1386 case clang::AArch64::BI_InterlockedExchangeAdd64_nf:
1387 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1388 case clang::AArch64::BI_InterlockedExchange8_acq:
1389 case clang::AArch64::BI_InterlockedExchange16_acq:
1390 case clang::AArch64::BI_InterlockedExchange_acq:
1391 case clang::AArch64::BI_InterlockedExchange64_acq:
1392 return MSVCIntrin::_InterlockedExchange_acq;
1393 case clang::AArch64::BI_InterlockedExchange8_rel:
1394 case clang::AArch64::BI_InterlockedExchange16_rel:
1395 case clang::AArch64::BI_InterlockedExchange_rel:
1396 case clang::AArch64::BI_InterlockedExchange64_rel:
1397 return MSVCIntrin::_InterlockedExchange_rel;
1398 case clang::AArch64::BI_InterlockedExchange8_nf:
1399 case clang::AArch64::BI_InterlockedExchange16_nf:
1400 case clang::AArch64::BI_InterlockedExchange_nf:
1401 case clang::AArch64::BI_InterlockedExchange64_nf:
1402 return MSVCIntrin::_InterlockedExchange_nf;
1403 case clang::AArch64::BI_InterlockedCompareExchange8_acq:
1404 case clang::AArch64::BI_InterlockedCompareExchange16_acq:
1405 case clang::AArch64::BI_InterlockedCompareExchange_acq:
1406 case clang::AArch64::BI_InterlockedCompareExchange64_acq:
1407 return MSVCIntrin::_InterlockedCompareExchange_acq;
1408 case clang::AArch64::BI_InterlockedCompareExchange8_rel:
1409 case clang::AArch64::BI_InterlockedCompareExchange16_rel:
1410 case clang::AArch64::BI_InterlockedCompareExchange_rel:
1411 case clang::AArch64::BI_InterlockedCompareExchange64_rel:
1412 return MSVCIntrin::_InterlockedCompareExchange_rel;
1413 case clang::AArch64::BI_InterlockedCompareExchange8_nf:
1414 case clang::AArch64::BI_InterlockedCompareExchange16_nf:
1415 case clang::AArch64::BI_InterlockedCompareExchange_nf:
1416 case clang::AArch64::BI_InterlockedCompareExchange64_nf:
1417 return MSVCIntrin::_InterlockedCompareExchange_nf;
1418 case clang::AArch64::BI_InterlockedCompareExchange128:
1419 return MSVCIntrin::_InterlockedCompareExchange128;
1420 case clang::AArch64::BI_InterlockedCompareExchange128_acq:
1421 return MSVCIntrin::_InterlockedCompareExchange128_acq;
1422 case clang::AArch64::BI_InterlockedCompareExchange128_nf:
1423 return MSVCIntrin::_InterlockedCompareExchange128_nf;
1424 case clang::AArch64::BI_InterlockedCompareExchange128_rel:
1425 return MSVCIntrin::_InterlockedCompareExchange128_rel;
1426 case clang::AArch64::BI_InterlockedOr8_acq:
1427 case clang::AArch64::BI_InterlockedOr16_acq:
1428 case clang::AArch64::BI_InterlockedOr_acq:
1429 case clang::AArch64::BI_InterlockedOr64_acq:
1430 return MSVCIntrin::_InterlockedOr_acq;
1431 case clang::AArch64::BI_InterlockedOr8_rel:
1432 case clang::AArch64::BI_InterlockedOr16_rel:
1433 case clang::AArch64::BI_InterlockedOr_rel:
1434 case clang::AArch64::BI_InterlockedOr64_rel:
1435 return MSVCIntrin::_InterlockedOr_rel;
1436 case clang::AArch64::BI_InterlockedOr8_nf:
1437 case clang::AArch64::BI_InterlockedOr16_nf:
1438 case clang::AArch64::BI_InterlockedOr_nf:
1439 case clang::AArch64::BI_InterlockedOr64_nf:
1440 return MSVCIntrin::_InterlockedOr_nf;
1441 case clang::AArch64::BI_InterlockedXor8_acq:
1442 case clang::AArch64::BI_InterlockedXor16_acq:
1443 case clang::AArch64::BI_InterlockedXor_acq:
1444 case clang::AArch64::BI_InterlockedXor64_acq:
1445 return MSVCIntrin::_InterlockedXor_acq;
1446 case clang::AArch64::BI_InterlockedXor8_rel:
1447 case clang::AArch64::BI_InterlockedXor16_rel:
1448 case clang::AArch64::BI_InterlockedXor_rel:
1449 case clang::AArch64::BI_InterlockedXor64_rel:
1450 return MSVCIntrin::_InterlockedXor_rel;
1451 case clang::AArch64::BI_InterlockedXor8_nf:
1452 case clang::AArch64::BI_InterlockedXor16_nf:
1453 case clang::AArch64::BI_InterlockedXor_nf:
1454 case clang::AArch64::BI_InterlockedXor64_nf:
1455 return MSVCIntrin::_InterlockedXor_nf;
1456 case clang::AArch64::BI_InterlockedAnd8_acq:
1457 case clang::AArch64::BI_InterlockedAnd16_acq:
1458 case clang::AArch64::BI_InterlockedAnd_acq:
1459 case clang::AArch64::BI_InterlockedAnd64_acq:
1460 return MSVCIntrin::_InterlockedAnd_acq;
1461 case clang::AArch64::BI_InterlockedAnd8_rel:
1462 case clang::AArch64::BI_InterlockedAnd16_rel:
1463 case clang::AArch64::BI_InterlockedAnd_rel:
1464 case clang::AArch64::BI_InterlockedAnd64_rel:
1465 return MSVCIntrin::_InterlockedAnd_rel;
1466 case clang::AArch64::BI_InterlockedAnd8_nf:
1467 case clang::AArch64::BI_InterlockedAnd16_nf:
1468 case clang::AArch64::BI_InterlockedAnd_nf:
1469 case clang::AArch64::BI_InterlockedAnd64_nf:
1470 return MSVCIntrin::_InterlockedAnd_nf;
1471 case clang::AArch64::BI_InterlockedIncrement16_acq:
1472 case clang::AArch64::BI_InterlockedIncrement_acq:
1473 case clang::AArch64::BI_InterlockedIncrement64_acq:
1474 return MSVCIntrin::_InterlockedIncrement_acq;
1475 case clang::AArch64::BI_InterlockedIncrement16_rel:
1476 case clang::AArch64::BI_InterlockedIncrement_rel:
1477 case clang::AArch64::BI_InterlockedIncrement64_rel:
1478 return MSVCIntrin::_InterlockedIncrement_rel;
1479 case clang::AArch64::BI_InterlockedIncrement16_nf:
1480 case clang::AArch64::BI_InterlockedIncrement_nf:
1481 case clang::AArch64::BI_InterlockedIncrement64_nf:
1482 return MSVCIntrin::_InterlockedIncrement_nf;
1483 case clang::AArch64::BI_InterlockedDecrement16_acq:
1484 case clang::AArch64::BI_InterlockedDecrement_acq:
1485 case clang::AArch64::BI_InterlockedDecrement64_acq:
1486 return MSVCIntrin::_InterlockedDecrement_acq;
1487 case clang::AArch64::BI_InterlockedDecrement16_rel:
1488 case clang::AArch64::BI_InterlockedDecrement_rel:
1489 case clang::AArch64::BI_InterlockedDecrement64_rel:
1490 return MSVCIntrin::_InterlockedDecrement_rel;
1491 case clang::AArch64::BI_InterlockedDecrement16_nf:
1492 case clang::AArch64::BI_InterlockedDecrement_nf:
1493 case clang::AArch64::BI_InterlockedDecrement64_nf:
1494 return MSVCIntrin::_InterlockedDecrement_nf;
1495 }
1496 llvm_unreachable("must return from switch");
1497}
1498
1499static std::optional<CodeGenFunction::MSVCIntrin>
1500translateX86ToMsvcIntrin(unsigned BuiltinID) {
1501 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1502 switch (BuiltinID) {
1503 default:
1504 return std::nullopt;
1505 case clang::X86::BI_BitScanForward:
1506 case clang::X86::BI_BitScanForward64:
1507 return MSVCIntrin::_BitScanForward;
1508 case clang::X86::BI_BitScanReverse:
1509 case clang::X86::BI_BitScanReverse64:
1510 return MSVCIntrin::_BitScanReverse;
1511 case clang::X86::BI_InterlockedAnd64:
1512 return MSVCIntrin::_InterlockedAnd;
1513 case clang::X86::BI_InterlockedCompareExchange128:
1514 return MSVCIntrin::_InterlockedCompareExchange128;
1515 case clang::X86::BI_InterlockedExchange64:
1516 return MSVCIntrin::_InterlockedExchange;
1517 case clang::X86::BI_InterlockedExchangeAdd64:
1518 return MSVCIntrin::_InterlockedExchangeAdd;
1519 case clang::X86::BI_InterlockedExchangeSub64:
1520 return MSVCIntrin::_InterlockedExchangeSub;
1521 case clang::X86::BI_InterlockedOr64:
1522 return MSVCIntrin::_InterlockedOr;
1523 case clang::X86::BI_InterlockedXor64:
1524 return MSVCIntrin::_InterlockedXor;
1525 case clang::X86::BI_InterlockedDecrement64:
1526 return MSVCIntrin::_InterlockedDecrement;
1527 case clang::X86::BI_InterlockedIncrement64:
1528 return MSVCIntrin::_InterlockedIncrement;
1529 }
1530 llvm_unreachable("must return from switch");
1531}
1532
1533// Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1534Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1535 const CallExpr *E) {
1536 switch (BuiltinID) {
1537 case MSVCIntrin::_BitScanForward:
1538 case MSVCIntrin::_BitScanReverse: {
1539 Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1540 Value *ArgValue = EmitScalarExpr(E->getArg(1));
1541
1542 llvm::Type *ArgType = ArgValue->getType();
1543 llvm::Type *IndexType = IndexAddress.getElementType();
1544 llvm::Type *ResultType = ConvertType(E->getType());
1545
1546 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1547 Value *ResZero = llvm::Constant::getNullValue(ResultType);
1548 Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1549
1550 BasicBlock *Begin = Builder.GetInsertBlock();
1551 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1552 Builder.SetInsertPoint(End);
1553 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1554
1555 Builder.SetInsertPoint(Begin);
1556 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1557 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1558 Builder.CreateCondBr(IsZero, End, NotZero);
1559 Result->addIncoming(ResZero, Begin);
1560
1561 Builder.SetInsertPoint(NotZero);
1562
1563 if (BuiltinID == MSVCIntrin::_BitScanForward) {
1564 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1565 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1566 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1567 Builder.CreateStore(ZeroCount, IndexAddress, false);
1568 } else {
1569 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1570 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1571
1572 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1573 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1574 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1575 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1576 Builder.CreateStore(Index, IndexAddress, false);
1577 }
1578 Builder.CreateBr(End);
1579 Result->addIncoming(ResOne, NotZero);
1580
1581 Builder.SetInsertPoint(End);
1582 return Result;
1583 }
1584 case MSVCIntrin::_InterlockedAnd:
1585 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1586 case MSVCIntrin::_InterlockedExchange:
1587 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1588 case MSVCIntrin::_InterlockedExchangeAdd:
1589 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1590 case MSVCIntrin::_InterlockedExchangeSub:
1591 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1592 case MSVCIntrin::_InterlockedOr:
1593 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1594 case MSVCIntrin::_InterlockedXor:
1595 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1596 case MSVCIntrin::_InterlockedExchangeAdd_acq:
1597 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1598 AtomicOrdering::Acquire);
1599 case MSVCIntrin::_InterlockedExchangeAdd_rel:
1600 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1601 AtomicOrdering::Release);
1602 case MSVCIntrin::_InterlockedExchangeAdd_nf:
1603 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1604 AtomicOrdering::Monotonic);
1605 case MSVCIntrin::_InterlockedExchange_acq:
1606 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1607 AtomicOrdering::Acquire);
1608 case MSVCIntrin::_InterlockedExchange_rel:
1609 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1610 AtomicOrdering::Release);
1611 case MSVCIntrin::_InterlockedExchange_nf:
1612 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1613 AtomicOrdering::Monotonic);
1614 case MSVCIntrin::_InterlockedCompareExchange_acq:
1615 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1616 case MSVCIntrin::_InterlockedCompareExchange_rel:
1617 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1618 case MSVCIntrin::_InterlockedCompareExchange_nf:
1619 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1620 case MSVCIntrin::_InterlockedCompareExchange128:
1622 *this, E, AtomicOrdering::SequentiallyConsistent);
1623 case MSVCIntrin::_InterlockedCompareExchange128_acq:
1624 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1625 case MSVCIntrin::_InterlockedCompareExchange128_rel:
1626 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1627 case MSVCIntrin::_InterlockedCompareExchange128_nf:
1628 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1629 case MSVCIntrin::_InterlockedOr_acq:
1630 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1631 AtomicOrdering::Acquire);
1632 case MSVCIntrin::_InterlockedOr_rel:
1633 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1634 AtomicOrdering::Release);
1635 case MSVCIntrin::_InterlockedOr_nf:
1636 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1637 AtomicOrdering::Monotonic);
1638 case MSVCIntrin::_InterlockedXor_acq:
1639 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1640 AtomicOrdering::Acquire);
1641 case MSVCIntrin::_InterlockedXor_rel:
1642 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1643 AtomicOrdering::Release);
1644 case MSVCIntrin::_InterlockedXor_nf:
1645 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1646 AtomicOrdering::Monotonic);
1647 case MSVCIntrin::_InterlockedAnd_acq:
1648 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1649 AtomicOrdering::Acquire);
1650 case MSVCIntrin::_InterlockedAnd_rel:
1651 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1652 AtomicOrdering::Release);
1653 case MSVCIntrin::_InterlockedAnd_nf:
1654 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1655 AtomicOrdering::Monotonic);
1656 case MSVCIntrin::_InterlockedIncrement_acq:
1657 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1658 case MSVCIntrin::_InterlockedIncrement_rel:
1659 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1660 case MSVCIntrin::_InterlockedIncrement_nf:
1661 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1662 case MSVCIntrin::_InterlockedDecrement_acq:
1663 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1664 case MSVCIntrin::_InterlockedDecrement_rel:
1665 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1666 case MSVCIntrin::_InterlockedDecrement_nf:
1667 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1668
1669 case MSVCIntrin::_InterlockedDecrement:
1670 return EmitAtomicDecrementValue(*this, E);
1671 case MSVCIntrin::_InterlockedIncrement:
1672 return EmitAtomicIncrementValue(*this, E);
1673
1674 case MSVCIntrin::__fastfail: {
1675 // Request immediate process termination from the kernel. The instruction
1676 // sequences to do this are documented on MSDN:
1677 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1678 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1679 StringRef Asm, Constraints;
1680 switch (ISA) {
1681 default:
1682 ErrorUnsupported(E, "__fastfail call for this architecture");
1683 break;
1684 case llvm::Triple::x86:
1685 case llvm::Triple::x86_64:
1686 Asm = "int $$0x29";
1687 Constraints = "{cx}";
1688 break;
1689 case llvm::Triple::thumb:
1690 Asm = "udf #251";
1691 Constraints = "{r0}";
1692 break;
1693 case llvm::Triple::aarch64:
1694 Asm = "brk #0xF003";
1695 Constraints = "{w0}";
1696 }
1697 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1698 llvm::InlineAsm *IA =
1699 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1700 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1701 getLLVMContext(), llvm::AttributeList::FunctionIndex,
1702 llvm::Attribute::NoReturn);
1703 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1704 CI->setAttributes(NoReturnAttr);
1705 return CI;
1706 }
1707 }
1708 llvm_unreachable("Incorrect MSVC intrinsic!");
1709}
1710
1711namespace {
1712// ARC cleanup for __builtin_os_log_format
1713struct CallObjCArcUse final : EHScopeStack::Cleanup {
1714 CallObjCArcUse(llvm::Value *object) : object(object) {}
1715 llvm::Value *object;
1716
1717 void Emit(CodeGenFunction &CGF, Flags flags) override {
1718 CGF.EmitARCIntrinsicUse(object);
1719 }
1720};
1721}
1722
1724 BuiltinCheckKind Kind) {
1725 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1726 && "Unsupported builtin check kind");
1727
1728 Value *ArgValue = EmitScalarExpr(E);
1729 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1730 return ArgValue;
1731
1732 SanitizerScope SanScope(this);
1733 Value *Cond = Builder.CreateICmpNE(
1734 ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1735 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1736 SanitizerHandler::InvalidBuiltin,
1738 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1739 std::nullopt);
1740 return ArgValue;
1741}
1742
1743/// Get the argument type for arguments to os_log_helper.
1745 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1746 return C.getCanonicalType(UnsignedTy);
1747}
1748
1751 CharUnits BufferAlignment) {
1752 ASTContext &Ctx = getContext();
1753
1755 {
1756 raw_svector_ostream OS(Name);
1757 OS << "__os_log_helper";
1758 OS << "_" << BufferAlignment.getQuantity();
1759 OS << "_" << int(Layout.getSummaryByte());
1760 OS << "_" << int(Layout.getNumArgsByte());
1761 for (const auto &Item : Layout.Items)
1762 OS << "_" << int(Item.getSizeByte()) << "_"
1763 << int(Item.getDescriptorByte());
1764 }
1765
1766 if (llvm::Function *F = CGM.getModule().getFunction(Name))
1767 return F;
1768
1770 FunctionArgList Args;
1771 Args.push_back(ImplicitParamDecl::Create(
1772 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1774 ArgTys.emplace_back(Ctx.VoidPtrTy);
1775
1776 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1777 char Size = Layout.Items[I].getSizeByte();
1778 if (!Size)
1779 continue;
1780
1781 QualType ArgTy = getOSLogArgType(Ctx, Size);
1782 Args.push_back(ImplicitParamDecl::Create(
1783 Ctx, nullptr, SourceLocation(),
1784 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1786 ArgTys.emplace_back(ArgTy);
1787 }
1788
1789 QualType ReturnTy = Ctx.VoidTy;
1790
1791 // The helper function has linkonce_odr linkage to enable the linker to merge
1792 // identical functions. To ensure the merging always happens, 'noinline' is
1793 // attached to the function when compiling with -Oz.
1794 const CGFunctionInfo &FI =
1796 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1797 llvm::Function *Fn = llvm::Function::Create(
1798 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1799 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1800 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
1802 Fn->setDoesNotThrow();
1803
1804 // Attach 'noinline' at -Oz.
1805 if (CGM.getCodeGenOpts().OptimizeSize == 2)
1806 Fn->addFnAttr(llvm::Attribute::NoInline);
1807
1808 auto NL = ApplyDebugLocation::CreateEmpty(*this);
1809 StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args);
1810
1811 // Create a scope with an artificial location for the body of this function.
1812 auto AL = ApplyDebugLocation::CreateArtificial(*this);
1813
1815 Address BufAddr =
1817 BufferAlignment);
1818 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1819 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1820 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1821 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1822
1823 unsigned I = 1;
1824 for (const auto &Item : Layout.Items) {
1826 Builder.getInt8(Item.getDescriptorByte()),
1827 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1829 Builder.getInt8(Item.getSizeByte()),
1830 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1831
1832 CharUnits Size = Item.size();
1833 if (!Size.getQuantity())
1834 continue;
1835
1836 Address Arg = GetAddrOfLocalVar(Args[I]);
1837 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1838 Addr =
1839 Builder.CreateElementBitCast(Addr, Arg.getElementType(), "argDataCast");
1841 Offset += Size;
1842 ++I;
1843 }
1844
1846
1847 return Fn;
1848}
1849
1851 assert(E.getNumArgs() >= 2 &&
1852 "__builtin_os_log_format takes at least 2 arguments");
1853 ASTContext &Ctx = getContext();
1856 Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1857 llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1858
1859 // Ignore argument 1, the format string. It is not currently used.
1860 CallArgList Args;
1861 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1862
1863 for (const auto &Item : Layout.Items) {
1864 int Size = Item.getSizeByte();
1865 if (!Size)
1866 continue;
1867
1868 llvm::Value *ArgVal;
1869
1870 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1871 uint64_t Val = 0;
1872 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1873 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1874 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1875 } else if (const Expr *TheExpr = Item.getExpr()) {
1876 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1877
1878 // If a temporary object that requires destruction after the full
1879 // expression is passed, push a lifetime-extended cleanup to extend its
1880 // lifetime to the end of the enclosing block scope.
1881 auto LifetimeExtendObject = [&](const Expr *E) {
1882 E = E->IgnoreParenCasts();
1883 // Extend lifetimes of objects returned by function calls and message
1884 // sends.
1885
1886 // FIXME: We should do this in other cases in which temporaries are
1887 // created including arguments of non-ARC types (e.g., C++
1888 // temporaries).
1889 if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1890 return true;
1891 return false;
1892 };
1893
1894 if (TheExpr->getType()->isObjCRetainableType() &&
1895 getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1896 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1897 "Only scalar can be a ObjC retainable type");
1898 if (!isa<Constant>(ArgVal)) {
1899 CleanupKind Cleanup = getARCCleanupKind();
1900 QualType Ty = TheExpr->getType();
1901 Address Alloca = Address::invalid();
1902 Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1903 ArgVal = EmitARCRetain(Ty, ArgVal);
1904 Builder.CreateStore(ArgVal, Addr);
1905 pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1907 Cleanup & EHCleanup);
1908
1909 // Push a clang.arc.use call to ensure ARC optimizer knows that the
1910 // argument has to be alive.
1911 if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1912 pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1913 }
1914 }
1915 } else {
1916 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1917 }
1918
1919 unsigned ArgValSize =
1920 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1921 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1922 ArgValSize);
1923 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1924 CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1925 // If ArgVal has type x86_fp80, zero-extend ArgVal.
1926 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1927 Args.add(RValue::get(ArgVal), ArgTy);
1928 }
1929
1930 const CGFunctionInfo &FI =
1933 Layout, BufAddr.getAlignment());
1935 return RValue::get(BufAddr.getPointer());
1936}
1937
1939 unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
1940 WidthAndSignedness ResultInfo) {
1941 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1942 Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
1943 !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
1944}
1945
1947 CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
1948 const clang::Expr *Op2, WidthAndSignedness Op2Info,
1949 const clang::Expr *ResultArg, QualType ResultQTy,
1950 WidthAndSignedness ResultInfo) {
1952 Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
1953 "Cannot specialize this multiply");
1954
1955 llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
1956 llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
1957
1958 llvm::Value *HasOverflow;
1959 llvm::Value *Result = EmitOverflowIntrinsic(
1960 CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
1961
1962 // The intrinsic call will detect overflow when the value is > UINT_MAX,
1963 // however, since the original builtin had a signed result, we need to report
1964 // an overflow when the result is greater than INT_MAX.
1965 auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
1966 llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
1967
1968 llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
1969 HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
1970
1971 bool isVolatile =
1972 ResultArg->getType()->getPointeeType().isVolatileQualified();
1973 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1974 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1975 isVolatile);
1976 return RValue::get(HasOverflow);
1977}
1978
1979/// Determine if a binop is a checked mixed-sign multiply we can specialize.
1980static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1981 WidthAndSignedness Op1Info,
1982 WidthAndSignedness Op2Info,
1983 WidthAndSignedness ResultInfo) {
1984 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1985 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1986 Op1Info.Signed != Op2Info.Signed;
1987}
1988
1989/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1990/// the generic checked-binop irgen.
1991static RValue
1993 WidthAndSignedness Op1Info, const clang::Expr *Op2,
1994 WidthAndSignedness Op2Info,
1995 const clang::Expr *ResultArg, QualType ResultQTy,
1996 WidthAndSignedness ResultInfo) {
1997 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1998 Op2Info, ResultInfo) &&
1999 "Not a mixed-sign multipliction we can specialize");
2000
2001 // Emit the signed and unsigned operands.
2002 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
2003 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
2004 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
2005 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
2006 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
2007 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
2008
2009 // One of the operands may be smaller than the other. If so, [s|z]ext it.
2010 if (SignedOpWidth < UnsignedOpWidth)
2011 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
2012 if (UnsignedOpWidth < SignedOpWidth)
2013 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
2014
2015 llvm::Type *OpTy = Signed->getType();
2016 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
2017 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
2018 llvm::Type *ResTy = ResultPtr.getElementType();
2019 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
2020
2021 // Take the absolute value of the signed operand.
2022 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
2023 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
2024 llvm::Value *AbsSigned =
2025 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
2026
2027 // Perform a checked unsigned multiplication.
2028 llvm::Value *UnsignedOverflow;
2029 llvm::Value *UnsignedResult =
2030 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
2031 Unsigned, UnsignedOverflow);
2032
2033 llvm::Value *Overflow, *Result;
2034 if (ResultInfo.Signed) {
2035 // Signed overflow occurs if the result is greater than INT_MAX or lesser
2036 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
2037 auto IntMax =
2038 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zext(OpWidth);
2039 llvm::Value *MaxResult =
2040 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
2041 CGF.Builder.CreateZExt(IsNegative, OpTy));
2042 llvm::Value *SignedOverflow =
2043 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
2044 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
2045
2046 // Prepare the signed result (possibly by negating it).
2047 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
2048 llvm::Value *SignedResult =
2049 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
2050 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
2051 } else {
2052 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
2053 llvm::Value *Underflow = CGF.Builder.CreateAnd(
2054 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
2055 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
2056 if (ResultInfo.Width < OpWidth) {
2057 auto IntMax =
2058 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
2059 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
2060 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
2061 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
2062 }
2063
2064 // Negate the product if it would be negative in infinite precision.
2065 Result = CGF.Builder.CreateSelect(
2066 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
2067
2068 Result = CGF.Builder.CreateTrunc(Result, ResTy);
2069 }
2070 assert(Overflow && Result && "Missing overflow or result");
2071
2072 bool isVolatile =
2073 ResultArg->getType()->getPointeeType().isVolatileQualified();
2074 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2075 isVolatile);
2076 return RValue::get(Overflow);
2077}
2078
2079static bool
2081 llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2082 if (const auto *Arr = Ctx.getAsArrayType(Ty))
2083 Ty = Ctx.getBaseElementType(Arr);
2084
2085 const auto *Record = Ty->getAsCXXRecordDecl();
2086 if (!Record)
2087 return false;
2088
2089 // We've already checked this type, or are in the process of checking it.
2090 if (!Seen.insert(Record).second)
2091 return false;
2092
2093 assert(Record->hasDefinition() &&
2094 "Incomplete types should already be diagnosed");
2095
2096 if (Record->isDynamicClass())
2097 return true;
2098
2099 for (FieldDecl *F : Record->fields()) {
2100 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2101 return true;
2102 }
2103 return false;
2104}
2105
2106/// Determine if the specified type requires laundering by checking if it is a
2107/// dynamic class type or contains a subobject which is a dynamic class type.
2109 if (!CGM.getCodeGenOpts().StrictVTablePointers)
2110 return false;
2112 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2113}
2114
2115RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2116 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2117 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2118
2119 // The builtin's shift arg may have a different type than the source arg and
2120 // result, but the LLVM intrinsic uses the same type for all values.
2121 llvm::Type *Ty = Src->getType();
2122 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2123
2124 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2125 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2126 Function *F = CGM.getIntrinsic(IID, Ty);
2127 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2128}
2129
2130// Map math builtins for long-double to f128 version.
2131static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2132 switch (BuiltinID) {
2133#define MUTATE_LDBL(func) \
2134 case Builtin::BI__builtin_##func##l: \
2135 return Builtin::BI__builtin_##func##f128;
2166 MUTATE_LDBL(nans)
2167 MUTATE_LDBL(inf)
2186 MUTATE_LDBL(huge_val)
2196#undef MUTATE_LDBL
2197 default:
2198 return BuiltinID;
2199 }
2200}
2201
2202RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2203 const CallExpr *E,
2204 ReturnValueSlot ReturnValue) {
2205 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2206 // See if we can constant fold this builtin. If so, don't emit it at all.
2207 // TODO: Extend this handling to all builtin calls that we can constant-fold.
2209 if (E->isPRValue() && E->EvaluateAsRValue(Result, CGM.getContext()) &&
2210 !Result.hasSideEffects()) {
2211 if (Result.Val.isInt())
2212 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2213 Result.Val.getInt()));
2214 if (Result.Val.isFloat())
2215 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2216 Result.Val.getFloat()));
2217 }
2218
2219 // If current long-double semantics is IEEE 128-bit, replace math builtins
2220 // of long-double with f128 equivalent.
2221 // TODO: This mutation should also be applied to other targets other than PPC,
2222 // after backend supports IEEE 128-bit style libcalls.
2223 if (getTarget().getTriple().isPPC64() &&
2224 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2225 BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2226
2227 // If the builtin has been declared explicitly with an assembler label,
2228 // disable the specialized emitting below. Ideally we should communicate the
2229 // rename in IR, or at least avoid generating the intrinsic calls that are
2230 // likely to get lowered to the renamed library functions.
2231 const unsigned BuiltinIDIfNoAsmLabel =
2232 FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2233
2234 // There are LLVM math intrinsics/instructions corresponding to math library
2235 // functions except the LLVM op will never set errno while the math library
2236 // might. Also, math builtins have the same semantics as their math library
2237 // twins. Thus, we can transform math library and builtin calls to their
2238 // LLVM counterparts if the call is marked 'const' (known to never set errno).
2239 // In case FP exceptions are enabled, the experimental versions of the
2240 // intrinsics model those.
2241 bool ConstWithoutErrnoAndExceptions =
2243 bool ConstWithoutExceptions =
2245 if (FD->hasAttr<ConstAttr>() ||
2246 ((ConstWithoutErrnoAndExceptions || ConstWithoutExceptions) &&
2247 (!ConstWithoutErrnoAndExceptions || (!getLangOpts().MathErrno)))) {
2248 switch (BuiltinIDIfNoAsmLabel) {
2249 case Builtin::BIceil:
2250 case Builtin::BIceilf:
2251 case Builtin::BIceill:
2252 case Builtin::BI__builtin_ceil:
2253 case Builtin::BI__builtin_ceilf:
2254 case Builtin::BI__builtin_ceilf16:
2255 case Builtin::BI__builtin_ceill:
2256 case Builtin::BI__builtin_ceilf128:
2258 Intrinsic::ceil,
2259 Intrinsic::experimental_constrained_ceil));
2260
2261 case Builtin::BIcopysign:
2262 case Builtin::BIcopysignf:
2263 case Builtin::BIcopysignl:
2264 case Builtin::BI__builtin_copysign:
2265 case Builtin::BI__builtin_copysignf:
2266 case Builtin::BI__builtin_copysignf16:
2267 case Builtin::BI__builtin_copysignl:
2268 case Builtin::BI__builtin_copysignf128:
2269 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2270
2271 case Builtin::BIcos:
2272 case Builtin::BIcosf:
2273 case Builtin::BIcosl:
2274 case Builtin::BI__builtin_cos:
2275 case Builtin::BI__builtin_cosf:
2276 case Builtin::BI__builtin_cosf16:
2277 case Builtin::BI__builtin_cosl:
2278 case Builtin::BI__builtin_cosf128:
2280 Intrinsic::cos,
2281 Intrinsic::experimental_constrained_cos));
2282
2283 case Builtin::BIexp:
2284 case Builtin::BIexpf:
2285 case Builtin::BIexpl:
2286 case Builtin::BI__builtin_exp:
2287 case Builtin::BI__builtin_expf:
2288 case Builtin::BI__builtin_expf16:
2289 case Builtin::BI__builtin_expl:
2290 case Builtin::BI__builtin_expf128:
2292 Intrinsic::exp,
2293 Intrinsic::experimental_constrained_exp));
2294
2295 case Builtin::BIexp2:
2296 case Builtin::BIexp2f:
2297 case Builtin::BIexp2l:
2298 case Builtin::BI__builtin_exp2:
2299 case Builtin::BI__builtin_exp2f:
2300 case Builtin::BI__builtin_exp2f16:
2301 case Builtin::BI__builtin_exp2l:
2302 case Builtin::BI__builtin_exp2f128:
2304 Intrinsic::exp2,
2305 Intrinsic::experimental_constrained_exp2));
2306
2307 case Builtin::BIfabs:
2308 case Builtin::BIfabsf:
2309 case Builtin::BIfabsl:
2310 case Builtin::BI__builtin_fabs:
2311 case Builtin::BI__builtin_fabsf:
2312 case Builtin::BI__builtin_fabsf16:
2313 case Builtin::BI__builtin_fabsl:
2314 case Builtin::BI__builtin_fabsf128:
2315 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2316
2317 case Builtin::BIfloor:
2318 case Builtin::BIfloorf:
2319 case Builtin::BIfloorl:
2320 case Builtin::BI__builtin_floor:
2321 case Builtin::BI__builtin_floorf:
2322 case Builtin::BI__builtin_floorf16:
2323 case Builtin::BI__builtin_floorl:
2324 case Builtin::BI__builtin_floorf128:
2326 Intrinsic::floor,
2327 Intrinsic::experimental_constrained_floor));
2328
2329 case Builtin::BIfma:
2330 case Builtin::BIfmaf:
2331 case Builtin::BIfmal:
2332 case Builtin::BI__builtin_fma:
2333 case Builtin::BI__builtin_fmaf:
2334 case Builtin::BI__builtin_fmaf16:
2335 case Builtin::BI__builtin_fmal:
2336 case Builtin::BI__builtin_fmaf128:
2338 Intrinsic::fma,
2339 Intrinsic::experimental_constrained_fma));
2340
2341 case Builtin::BIfmax:
2342 case Builtin::BIfmaxf:
2343 case Builtin::BIfmaxl:
2344 case Builtin::BI__builtin_fmax:
2345 case Builtin::BI__builtin_fmaxf:
2346 case Builtin::BI__builtin_fmaxf16:
2347 case Builtin::BI__builtin_fmaxl:
2348 case Builtin::BI__builtin_fmaxf128:
2350 Intrinsic::maxnum,
2351 Intrinsic::experimental_constrained_maxnum));
2352
2353 case Builtin::BIfmin:
2354 case Builtin::BIfminf:
2355 case Builtin::BIfminl:
2356 case Builtin::BI__builtin_fmin:
2357 case Builtin::BI__builtin_fminf:
2358 case Builtin::BI__builtin_fminf16:
2359 case Builtin::BI__builtin_fminl:
2360 case Builtin::BI__builtin_fminf128:
2362 Intrinsic::minnum,
2363 Intrinsic::experimental_constrained_minnum));
2364
2365 // fmod() is a special-case. It maps to the frem instruction rather than an
2366 // LLVM intrinsic.
2367 case Builtin::BIfmod:
2368 case Builtin::BIfmodf:
2369 case Builtin::BIfmodl:
2370 case Builtin::BI__builtin_fmod:
2371 case Builtin::BI__builtin_fmodf:
2372 case Builtin::BI__builtin_fmodf16:
2373 case Builtin::BI__builtin_fmodl:
2374 case Builtin::BI__builtin_fmodf128: {
2375 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2376 Value *Arg1 = EmitScalarExpr(E->getArg(0));
2377 Value *Arg2 = EmitScalarExpr(E->getArg(1));
2378 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2379 }
2380
2381 case Builtin::BIlog:
2382 case Builtin::BIlogf:
2383 case Builtin::BIlogl:
2384 case Builtin::BI__builtin_log:
2385 case Builtin::BI__builtin_logf:
2386 case Builtin::BI__builtin_logf16:
2387 case Builtin::BI__builtin_logl:
2388 case Builtin::BI__builtin_logf128:
2390 Intrinsic::log,
2391 Intrinsic::experimental_constrained_log));
2392
2393 case Builtin::BIlog10:
2394 case Builtin::BIlog10f:
2395 case Builtin::BIlog10l:
2396 case Builtin::BI__builtin_log10:
2397 case Builtin::BI__builtin_log10f:
2398 case Builtin::BI__builtin_log10f16:
2399 case Builtin::BI__builtin_log10l:
2400 case Builtin::BI__builtin_log10f128:
2402 Intrinsic::log10,
2403 Intrinsic::experimental_constrained_log10));
2404
2405 case Builtin::BIlog2:
2406 case Builtin::BIlog2f:
2407 case Builtin::BIlog2l:
2408 case Builtin::BI__builtin_log2:
2409 case Builtin::BI__builtin_log2f:
2410 case Builtin::BI__builtin_log2f16:
2411 case Builtin::BI__builtin_log2l:
2412 case Builtin::BI__builtin_log2f128:
2414 Intrinsic::log2,
2415 Intrinsic::experimental_constrained_log2));
2416
2417 case Builtin::BInearbyint:
2418 case Builtin::BInearbyintf:
2419 case Builtin::BInearbyintl:
2420 case Builtin::BI__builtin_nearbyint:
2421 case Builtin::BI__builtin_nearbyintf:
2422 case Builtin::BI__builtin_nearbyintl:
2423 case Builtin::BI__builtin_nearbyintf128:
2425 Intrinsic::nearbyint,
2426 Intrinsic::experimental_constrained_nearbyint));
2427
2428 case Builtin::BIpow:
2429 case Builtin::BIpowf:
2430 case Builtin::BIpowl:
2431 case Builtin::BI__builtin_pow:
2432 case Builtin::BI__builtin_powf:
2433 case Builtin::BI__builtin_powf16:
2434 case Builtin::BI__builtin_powl:
2435 case Builtin::BI__builtin_powf128:
2437 Intrinsic::pow,
2438 Intrinsic::experimental_constrained_pow));
2439
2440 case Builtin::BIrint:
2441 case Builtin::BIrintf:
2442 case Builtin::BIrintl:
2443 case Builtin::BI__builtin_rint:
2444 case Builtin::BI__builtin_rintf:
2445 case Builtin::BI__builtin_rintf16:
2446 case Builtin::BI__builtin_rintl:
2447 case Builtin::BI__builtin_rintf128:
2449 Intrinsic::rint,
2450 Intrinsic::experimental_constrained_rint));
2451
2452 case Builtin::BIround:
2453 case Builtin::BIroundf:
2454 case Builtin::BIroundl:
2455 case Builtin::BI__builtin_round:
2456 case Builtin::BI__builtin_roundf:
2457 case Builtin::BI__builtin_roundf16:
2458 case Builtin::BI__builtin_roundl:
2459 case Builtin::BI__builtin_roundf128:
2461 Intrinsic::round,
2462 Intrinsic::experimental_constrained_round));
2463
2464 case Builtin::BIroundeven:
2465 case Builtin::BIroundevenf:
2466 case Builtin::BIroundevenl:
2467 case Builtin::BI__builtin_roundeven:
2468 case Builtin::BI__builtin_roundevenf:
2469 case Builtin::BI__builtin_roundevenf16:
2470 case Builtin::BI__builtin_roundevenl:
2471 case Builtin::BI__builtin_roundevenf128:
2473 Intrinsic::roundeven,
2474 Intrinsic::experimental_constrained_roundeven));
2475
2476 case Builtin::BIsin:
2477 case Builtin::BIsinf:
2478 case Builtin::BIsinl:
2479 case Builtin::BI__builtin_sin:
2480 case Builtin::BI__builtin_sinf:
2481 case Builtin::BI__builtin_sinf16:
2482 case Builtin::BI__builtin_sinl:
2483 case Builtin::BI__builtin_sinf128:
2485 Intrinsic::sin,
2486 Intrinsic::experimental_constrained_sin));
2487
2488 case Builtin::BIsqrt:
2489 case Builtin::BIsqrtf:
2490 case Builtin::BIsqrtl:
2491 case Builtin::BI__builtin_sqrt:
2492 case Builtin::BI__builtin_sqrtf:
2493 case Builtin::BI__builtin_sqrtf16:
2494 case Builtin::BI__builtin_sqrtl:
2495 case Builtin::BI__builtin_sqrtf128:
2497 Intrinsic::sqrt,
2498 Intrinsic::experimental_constrained_sqrt));
2499
2500 case Builtin::BItrunc:
2501 case Builtin::BItruncf:
2502 case Builtin::BItruncl:
2503 case Builtin::BI__builtin_trunc:
2504 case Builtin::BI__builtin_truncf:
2505 case Builtin::BI__builtin_truncf16:
2506 case Builtin::BI__builtin_truncl:
2507 case Builtin::BI__builtin_truncf128:
2509 Intrinsic::trunc,
2510 Intrinsic::experimental_constrained_trunc));
2511
2512 case Builtin::BIlround:
2513 case Builtin::BIlroundf:
2514 case Builtin::BIlroundl:
2515 case Builtin::BI__builtin_lround:
2516 case Builtin::BI__builtin_lroundf:
2517 case Builtin::BI__builtin_lroundl:
2518 case Builtin::BI__builtin_lroundf128:
2520 *this, E, Intrinsic::lround,
2521 Intrinsic::experimental_constrained_lround));
2522
2523 case Builtin::BIllround:
2524 case Builtin::BIllroundf:
2525 case Builtin::BIllroundl:
2526 case Builtin::BI__builtin_llround:
2527 case Builtin::BI__builtin_llroundf:
2528 case Builtin::BI__builtin_llroundl:
2529 case Builtin::BI__builtin_llroundf128:
2531 *this, E, Intrinsic::llround,
2532 Intrinsic::experimental_constrained_llround));
2533
2534 case Builtin::BIlrint:
2535 case Builtin::BIlrintf:
2536 case Builtin::BIlrintl:
2537 case Builtin::BI__builtin_lrint:
2538 case Builtin::BI__builtin_lrintf:
2539 case Builtin::BI__builtin_lrintl:
2540 case Builtin::BI__builtin_lrintf128:
2542 *this, E, Intrinsic::lrint,
2543 Intrinsic::experimental_constrained_lrint));
2544
2545 case Builtin::BIllrint:
2546 case Builtin::BIllrintf:
2547 case Builtin::BIllrintl:
2548 case Builtin::BI__builtin_llrint:
2549 case Builtin::BI__builtin_llrintf:
2550 case Builtin::BI__builtin_llrintl:
2551 case Builtin::BI__builtin_llrintf128:
2553 *this, E, Intrinsic::llrint,
2554 Intrinsic::experimental_constrained_llrint));
2555
2556 default:
2557 break;
2558 }
2559 }
2560
2561 switch (BuiltinIDIfNoAsmLabel) {
2562 default: break;
2563 case Builtin::BI__builtin___CFStringMakeConstantString:
2564 case Builtin::BI__builtin___NSStringMakeConstantString:
2565 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
2566 case Builtin::BI__builtin_stdarg_start:
2567 case Builtin::BI__builtin_va_start:
2568 case Builtin::BI__va_start:
2569 case Builtin::BI__builtin_va_end:
2570 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
2571 ? EmitScalarExpr(E->getArg(0))
2572 : EmitVAListRef(E->getArg(0)).getPointer(),
2573 BuiltinID != Builtin::BI__builtin_va_end);
2574 return RValue::get(nullptr);
2575 case Builtin::BI__builtin_va_copy: {
2576 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
2577 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
2578
2579 llvm::Type *Type = Int8PtrTy;
2580
2581 DstPtr = Builder.CreateBitCast(DstPtr, Type);
2582 SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
2583 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), {DstPtr, SrcPtr});
2584 return RValue::get(nullptr);
2585 }
2586 case Builtin::BI__builtin_abs:
2587 case Builtin::BI__builtin_labs:
2588 case Builtin::BI__builtin_llabs: {
2589 // X < 0 ? -X : X
2590 // The negation has 'nsw' because abs of INT_MIN is undefined.
2591 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2592 Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
2593 Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
2594 Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2595 Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
2596 return RValue::get(Result);
2597 }
2598 case Builtin::BI__builtin_complex: {
2599 Value *Real = EmitScalarExpr(E->getArg(0));
2600 Value *Imag = EmitScalarExpr(E->getArg(1));
2601 return RValue::getComplex({Real, Imag});
2602 }
2603 case Builtin::BI__builtin_conj:
2604 case Builtin::BI__builtin_conjf:
2605 case Builtin::BI__builtin_conjl:
2606 case Builtin::BIconj:
2607 case Builtin::BIconjf:
2608 case Builtin::BIconjl: {
2609 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2610 Value *Real = ComplexVal.first;
2611 Value *Imag = ComplexVal.second;
2612 Imag = Builder.CreateFNeg(Imag, "neg");
2613 return RValue::getComplex(std::make_pair(Real, Imag));
2614 }
2615 case Builtin::BI__builtin_creal:
2616 case Builtin::BI__builtin_crealf:
2617 case Builtin::BI__builtin_creall:
2618 case Builtin::BIcreal:
2619 case Builtin::BIcrealf:
2620 case Builtin::BIcreall: {
2621 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2622 return RValue::get(ComplexVal.first);
2623 }
2624
2625 case Builtin::BI__builtin_preserve_access_index: {
2626 // Only enabled preserved access index region when debuginfo
2627 // is available as debuginfo is needed to preserve user-level
2628 // access pattern.
2629 if (!getDebugInfo()) {
2630 CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2631 return RValue::get(EmitScalarExpr(E->getArg(0)));
2632 }
2633
2634 // Nested builtin_preserve_access_index() not supported
2636 CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2637 return RValue::get(EmitScalarExpr(E->getArg(0)));
2638 }
2639
2640 IsInPreservedAIRegion = true;
2641 Value *Res = EmitScalarExpr(E->getArg(0));
2642 IsInPreservedAIRegion = false;
2643 return RValue::get(Res);
2644 }
2645
2646 case Builtin::BI__builtin_cimag:
2647 case Builtin::BI__builtin_cimagf:
2648 case Builtin::BI__builtin_cimagl:
2649 case Builtin::BIcimag:
2650 case Builtin::BIcimagf:
2651 case Builtin::BIcimagl: {
2652 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2653 return RValue::get(ComplexVal.second);
2654 }
2655
2656 case Builtin::BI__builtin_clrsb:
2657 case Builtin::BI__builtin_clrsbl:
2658 case Builtin::BI__builtin_clrsbll: {
2659 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2660 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2661
2662 llvm::Type *ArgType = ArgValue->getType();
2663 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2664
2665 llvm::Type *ResultType = ConvertType(E->getType());
2666 Value *Zero = llvm::Constant::getNullValue(ArgType);
2667 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2668 Value *Inverse = Builder.CreateNot(ArgValue, "not");
2669 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2670 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2671 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2672 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2673 "cast");
2674 return RValue::get(Result);
2675 }
2676 case Builtin::BI__builtin_ctzs:
2677 case Builtin::BI__builtin_ctz:
2678 case Builtin::BI__builtin_ctzl:
2679 case Builtin::BI__builtin_ctzll: {
2681
2682 llvm::Type *ArgType = ArgValue->getType();
2683 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2684
2685 llvm::Type *ResultType = ConvertType(E->getType());
2686 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2687 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2688 if (Result->getType() != ResultType)
2689 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2690 "cast");
2691 return RValue::get(Result);
2692 }
2693 case Builtin::BI__builtin_clzs:
2694 case Builtin::BI__builtin_clz:
2695 case Builtin::BI__builtin_clzl:
2696 case Builtin::BI__builtin_clzll: {
2698
2699 llvm::Type *ArgType = ArgValue->getType();
2700 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2701
2702 llvm::Type *ResultType = ConvertType(E->getType());
2703 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2704 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2705 if (Result->getType() != ResultType)
2706 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2707 "cast");
2708 return RValue::get(Result);
2709 }
2710 case Builtin::BI__builtin_ffs:
2711 case Builtin::BI__builtin_ffsl:
2712 case Builtin::BI__builtin_ffsll: {
2713 // ffs(x) -> x ? cttz(x) + 1 : 0
2714 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2715
2716 llvm::Type *ArgType = ArgValue->getType();
2717 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2718
2719 llvm::Type *ResultType = ConvertType(E->getType());
2720 Value *Tmp =
2721 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2722 llvm::ConstantInt::get(ArgType, 1));
2723 Value *Zero = llvm::Constant::getNullValue(ArgType);
2724 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2725 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2726 if (Result->getType() != ResultType)
2727 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2728 "cast");
2729 return RValue::get(Result);
2730 }
2731 case Builtin::BI__builtin_parity:
2732 case Builtin::BI__builtin_parityl:
2733 case Builtin::BI__builtin_parityll: {
2734 // parity(x) -> ctpop(x) & 1
2735 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2736
2737 llvm::Type *ArgType = ArgValue->getType();
2738 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2739
2740 llvm::Type *ResultType = ConvertType(E->getType());
2741 Value *Tmp = Builder.CreateCall(F, ArgValue);
2742 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2743 if (Result->getType() != ResultType)
2744 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2745 "cast");
2746 return RValue::get(Result);
2747 }
2748 case Builtin::BI__lzcnt16:
2749 case Builtin::BI__lzcnt:
2750 case Builtin::BI__lzcnt64: {
2751 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2752
2753 llvm::Type *ArgType = ArgValue->getType();
2754 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2755
2756 llvm::Type *ResultType = ConvertType(E->getType());
2757 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2758 if (Result->getType() != ResultType)
2759 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2760 "cast");
2761 return RValue::get(Result);
2762 }
2763 case Builtin::BI__popcnt16:
2764 case Builtin::BI__popcnt:
2765 case Builtin::BI__popcnt64:
2766 case Builtin::BI__builtin_popcount:
2767 case Builtin::BI__builtin_popcountl:
2768 case Builtin::BI__builtin_popcountll: {
2769 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2770
2771 llvm::Type *ArgType = ArgValue->getType();
2772 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2773
2774 llvm::Type *ResultType = ConvertType(E->getType());
2775 Value *Result = Builder.CreateCall(F, ArgValue);
2776 if (Result->getType() != ResultType)
2777 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2778 "cast");
2779 return RValue::get(Result);
2780 }
2781 case Builtin::BI__builtin_unpredictable: {
2782 // Always return the argument of __builtin_unpredictable. LLVM does not
2783 // handle this builtin. Metadata for this builtin should be added directly
2784 // to instructions such as branches or switches that use it.
2785 return RValue::get(EmitScalarExpr(E->getArg(0)));
2786 }
2787 case Builtin::BI__builtin_expect: {
2788 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2789 llvm::Type *ArgType = ArgValue->getType();
2790
2791 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2792 // Don't generate llvm.expect on -O0 as the backend won't use it for
2793 // anything.
2794 // Note, we still IRGen ExpectedValue because it could have side-effects.
2795 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2796 return RValue::get(ArgValue);
2797
2798 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2799 Value *Result =
2800 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2801 return RValue::get(Result);
2802 }
2803 case Builtin::BI__builtin_expect_with_probability: {
2804 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2805 llvm::Type *ArgType = ArgValue->getType();
2806
2807 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2808 llvm::APFloat Probability(0.0);
2809 const Expr *ProbArg = E->getArg(2);
2810 bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2811 assert(EvalSucceed && "probability should be able to evaluate as float");
2812 (void)EvalSucceed;
2813 bool LoseInfo = false;
2814 Probability.convert(llvm::APFloat::IEEEdouble(),
2815 llvm::RoundingMode::Dynamic, &LoseInfo);
2816 llvm::Type *Ty = ConvertType(ProbArg->getType());
2817 Constant *Confidence = ConstantFP::get(Ty, Probability);
2818 // Don't generate llvm.expect.with.probability on -O0 as the backend
2819 // won't use it for anything.
2820 // Note, we still IRGen ExpectedValue because it could have side-effects.
2821 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2822 return RValue::get(ArgValue);
2823
2824 Function *FnExpect =
2825 CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2826 Value *Result = Builder.CreateCall(
2827 FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2828 return RValue::get(Result);
2829 }
2830 case Builtin::BI__builtin_assume_aligned: {
2831 const Expr *Ptr = E->getArg(0);
2832 Value *PtrValue = EmitScalarExpr(Ptr);
2833 if (PtrValue->getType() != VoidPtrTy)
2834 PtrValue = EmitCastToVoidPtr(PtrValue);
2835 Value *OffsetValue =
2836 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2837
2838 Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2839 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2840 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2841 AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2842 llvm::Value::MaximumAlignment);
2843
2844 emitAlignmentAssumption(PtrValue, Ptr,
2845 /*The expr loc is sufficient.*/ SourceLocation(),
2846 AlignmentCI, OffsetValue);
2847 return RValue::get(PtrValue);
2848 }
2849 case Builtin::BI__assume:
2850 case Builtin::BI__builtin_assume: {
2851 if (E->getArg(0)->HasSideEffects(getContext()))
2852 return RValue::get(nullptr);
2853
2854 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2855 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2856 Builder.CreateCall(FnAssume, ArgValue);
2857 return RValue::get(nullptr);
2858 }
2859 case Builtin::BI__builtin_assume_separate_storage: {
2860 const Expr *Arg0 = E->getArg(0);
2861 const Expr *Arg1 = E->getArg(1);
2862
2863 Value *Value0 = EmitScalarExpr(Arg0);
2864 Value *Value1 = EmitScalarExpr(Arg1);
2865
2866 Value *Values[] = {Value0, Value1};
2867 OperandBundleDefT<Value *> OBD("separate_storage", Values);
2868 Builder.CreateAssumption(ConstantInt::getTrue(getLLVMContext()), {OBD});
2869 return RValue::get(nullptr);
2870 }
2871 case Builtin::BI__arithmetic_fence: {
2872 // Create the builtin call if FastMath is selected, and the target
2873 // supports the builtin, otherwise just return the argument.
2874 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2875 llvm::FastMathFlags FMF = Builder.getFastMathFlags();
2876 bool isArithmeticFenceEnabled =
2877 FMF.allowReassoc() &&
2879 QualType ArgType = E->getArg(0)->getType();
2880 if (ArgType->isComplexType()) {
2881 if (isArithmeticFenceEnabled) {
2882 QualType ElementType = ArgType->castAs<ComplexType>()->getElementType();
2883 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2884 Value *Real = Builder.CreateArithmeticFence(ComplexVal.first,
2885 ConvertType(ElementType));
2886 Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second,
2887 ConvertType(ElementType));
2888 return RValue::getComplex(std::make_pair(Real, Imag));
2889 }
2890 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2891 Value *Real = ComplexVal.first;
2892 Value *Imag = ComplexVal.second;
2893 return RValue::getComplex(std::make_pair(Real, Imag));
2894 }
2895 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2896 if (isArithmeticFenceEnabled)
2897 return RValue::get(
2898 Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType)));
2899 return RValue::get(ArgValue);
2900 }
2901 case Builtin::BI__builtin_bswap16:
2902 case Builtin::BI__builtin_bswap32:
2903 case Builtin::BI__builtin_bswap64:
2904 case Builtin::BI_byteswap_ushort:
2905 case Builtin::BI_byteswap_ulong:
2906 case Builtin::BI_byteswap_uint64: {
2907 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2908 }
2909 case Builtin::BI__builtin_bitreverse8:
2910 case Builtin::BI__builtin_bitreverse16:
2911 case Builtin::BI__builtin_bitreverse32:
2912 case Builtin::BI__builtin_bitreverse64: {
2913 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2914 }
2915 case Builtin::BI__builtin_rotateleft8:
2916 case Builtin::BI__builtin_rotateleft16:
2917 case Builtin::BI__builtin_rotateleft32:
2918 case Builtin::BI__builtin_rotateleft64:
2919 case Builtin::BI_rotl8: // Microsoft variants of rotate left
2920 case Builtin::BI_rotl16:
2921 case Builtin::BI_rotl:
2922 case Builtin::BI_lrotl:
2923 case Builtin::BI_rotl64:
2924 return emitRotate(E, false);
2925
2926 case Builtin::BI__builtin_rotateright8:
2927 case Builtin::BI__builtin_rotateright16:
2928 case Builtin::BI__builtin_rotateright32:
2929 case Builtin::BI__builtin_rotateright64:
2930 case Builtin::BI_rotr8: // Microsoft variants of rotate right
2931 case Builtin::BI_rotr16:
2932 case Builtin::BI_rotr:
2933 case Builtin::BI_lrotr:
2934 case Builtin::BI_rotr64:
2935 return emitRotate(E, true);
2936
2937 case Builtin::BI__builtin_constant_p: {
2938 llvm::Type *ResultType = ConvertType(E->getType());
2939
2940 const Expr *Arg = E->getArg(0);
2941 QualType ArgType = Arg->getType();
2942 // FIXME: The allowance for Obj-C pointers and block pointers is historical
2943 // and likely a mistake.
2944 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2945 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2946 // Per the GCC documentation, only numeric constants are recognized after
2947 // inlining.
2948 return RValue::get(ConstantInt::get(ResultType, 0));
2949
2950 if (Arg->HasSideEffects(getContext()))
2951 // The argument is unevaluated, so be conservative if it might have
2952 // side-effects.
2953 return RValue::get(ConstantInt::get(ResultType, 0));
2954
2955 Value *ArgValue = EmitScalarExpr(Arg);
2956 if (ArgType->isObjCObjectPointerType()) {
2957 // Convert Objective-C objects to id because we cannot distinguish between
2958 // LLVM types for Obj-C classes as they are opaque.
2959 ArgType = CGM.getContext().getObjCIdType();
2960 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2961 }
2962 Function *F =
2963 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2964 Value *Result = Builder.CreateCall(F, ArgValue);
2965 if (Result->getType() != ResultType)
2966 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2967 return RValue::get(Result);
2968 }
2969 case Builtin::BI__builtin_dynamic_object_size:
2970 case Builtin::BI__builtin_object_size: {
2971 unsigned Type =
2972 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2973 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2974
2975 // We pass this builtin onto the optimizer so that it can figure out the
2976 // object size in more complex cases.
2977 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2978 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2979 /*EmittedE=*/nullptr, IsDynamic));
2980 }
2981 case Builtin::BI__builtin_prefetch: {
2982 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2983 // FIXME: Technically these constants should of type 'int', yes?
2984 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2985 llvm::ConstantInt::get(Int32Ty, 0);
2986 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2987 llvm::ConstantInt::get(Int32Ty, 3);
2988 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2989 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2990 Builder.CreateCall(F, {Address, RW, Locality, Data});
2991 return RValue::get(nullptr);
2992 }
2993 case Builtin::BI__builtin_readcyclecounter: {
2994 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2995 return RValue::get(Builder.CreateCall(F));
2996 }
2997 case Builtin::BI__builtin___clear_cache: {
2998 Value *Begin = EmitScalarExpr(E->getArg(0));
2999 Value *End = EmitScalarExpr(E->getArg(1));
3000 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
3001 return RValue::get(Builder.CreateCall(F, {Begin, End}));
3002 }
3003 case Builtin::BI__builtin_trap:
3004 EmitTrapCall(Intrinsic::trap);
3005 return RValue::get(nullptr);
3006 case Builtin::BI__debugbreak:
3007 EmitTrapCall(Intrinsic::debugtrap);
3008 return RValue::get(nullptr);
3009 case Builtin::BI__builtin_unreachable: {
3011
3012 // We do need to preserve an insertion point.
3013 EmitBlock(createBasicBlock("unreachable.cont"));
3014
3015 return RValue::get(nullptr);
3016 }
3017
3018 case Builtin::BI__builtin_powi:
3019 case Builtin::BI__builtin_powif:
3020 case Builtin::BI__builtin_powil: {
3021 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
3022 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
3023
3024 if (Builder.getIsFPConstrained()) {
3025 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3026 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi,
3027 Src0->getType());
3028 return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 }));
3029 }
3030
3031 Function *F = CGM.getIntrinsic(Intrinsic::powi,
3032 { Src0->getType(), Src1->getType() });
3033 return RValue::get(Builder.CreateCall(F, { Src0, Src1 }));
3034 }
3035 case Builtin::BI__builtin_isgreater:
3036 case Builtin::BI__builtin_isgreaterequal:
3037 case Builtin::BI__builtin_isless:
3038 case Builtin::BI__builtin_islessequal:
3039 case Builtin::BI__builtin_islessgreater:
3040 case Builtin::BI__builtin_isunordered: {
3041 // Ordered comparisons: we know the arguments to these are matching scalar
3042 // floating point values.
3043 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3044 Value *LHS = EmitScalarExpr(E->getArg(0));
3045 Value *RHS = EmitScalarExpr(E->getArg(1));
3046
3047 switch (BuiltinID) {
3048 default: llvm_unreachable("Unknown ordered comparison");
3049 case Builtin::BI__builtin_isgreater:
3050 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
3051 break;
3052 case Builtin::BI__builtin_isgreaterequal:
3053 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
3054 break;
3055 case Builtin::BI__builtin_isless:
3056 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
3057 break;
3058 case Builtin::BI__builtin_islessequal:
3059 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
3060 break;
3061 case Builtin::BI__builtin_islessgreater:
3062 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
3063 break;
3064 case Builtin::BI__builtin_isunordered:
3065 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
3066 break;
3067 }
3068 // ZExt bool to int type.
3069 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
3070 }
3071 case Builtin::BI__builtin_isnan: {
3072 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3073 Value *V = EmitScalarExpr(E->getArg(0));
3074 llvm::Type *Ty = V->getType();
3075 const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3076 if (!Builder.getIsFPConstrained() ||
3077 Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3078 !Ty->isIEEE()) {
3079 V = Builder.CreateFCmpUNO(V, V, "cmp");
3080 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3081 }
3082
3083 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3084 return RValue::get(Result);
3085
3086 // NaN has all exp bits set and a non zero significand. Therefore:
3087 // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0)
3088 unsigned bitsize = Ty->getScalarSizeInBits();
3089 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3090 Value *IntV = Builder.CreateBitCast(V, IntTy);
3091 APInt AndMask = APInt::getSignedMaxValue(bitsize);
3092 Value *AbsV =
3093 Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask));
3094 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3095 Value *Sub =
3096 Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV);
3097 // V = sign bit (Sub) <=> V = (Sub < 0)
3098 V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1));
3099 if (bitsize > 32)
3100 V = Builder.CreateTrunc(V, ConvertType(E->getType()));
3101 return RValue::get(V);
3102 }
3103
3104 case Builtin::BI__builtin_nondeterministic_value: {
3105 llvm::Type *Ty = ConvertType(E->getArg(0)->getType());
3106
3107 Value *Result = PoisonValue::get(Ty);
3108 Result = Builder.CreateFreeze(Result);
3109
3110 return RValue::get(Result);
3111 }
3112
3113 case Builtin::BI__builtin_elementwise_abs: {
3114 Value *Result;
3115 QualType QT = E->getArg(0)->getType();
3116
3117 if (auto *VecTy = QT->getAs<VectorType>())
3118 QT = VecTy->getElementType();
3119 if (QT->isIntegerType())
3120 Result = Builder.CreateBinaryIntrinsic(
3121 llvm::Intrinsic::abs, EmitScalarExpr(E->getArg(0)),
3122 Builder.getFalse(), nullptr, "elt.abs");
3123 else
3124 Result = emitUnaryBuiltin(*this, E, llvm::Intrinsic::fabs, "elt.abs");
3125
3126 return RValue::get(Result);
3127 }
3128
3129 case Builtin::BI__builtin_elementwise_ceil:
3130 return RValue::get(
3131 emitUnaryBuiltin(*this, E, llvm::Intrinsic::ceil, "elt.ceil"));
3132 case Builtin::BI__builtin_elementwise_exp:
3133 return RValue::get(
3134 emitUnaryBuiltin(*this, E, llvm::Intrinsic::exp, "elt.exp"));
3135 case Builtin::BI__builtin_elementwise_exp2:
3136 return RValue::get(
3137 emitUnaryBuiltin(*this, E, llvm::Intrinsic::exp2, "elt.exp2"));
3138 case Builtin::BI__builtin_elementwise_log:
3139 return RValue::get(
3140 emitUnaryBuiltin(*this, E, llvm::Intrinsic::log, "elt.log"));
3141 case Builtin::BI__builtin_elementwise_log2:
3142 return RValue::get(
3143 emitUnaryBuiltin(*this, E, llvm::Intrinsic::log2, "elt.log2"));
3144 case Builtin::BI__builtin_elementwise_log10:
3145 return RValue::get(
3146 emitUnaryBuiltin(*this, E, llvm::Intrinsic::log10, "elt.log10"));
3147 case Builtin::BI__builtin_elementwise_cos:
3148 return RValue::get(
3149 emitUnaryBuiltin(*this, E, llvm::Intrinsic::cos, "elt.cos"));
3150 case Builtin::BI__builtin_elementwise_floor:
3151 return RValue::get(
3152 emitUnaryBuiltin(*this, E, llvm::Intrinsic::floor, "elt.floor"));
3153 case Builtin::BI__builtin_elementwise_roundeven:
3154 return RValue::get(emitUnaryBuiltin(*this, E, llvm::Intrinsic::roundeven,
3155 "elt.roundeven"));
3156 case Builtin::BI__builtin_elementwise_sin:
3157 return RValue::get(
3158 emitUnaryBuiltin(*this, E, llvm::Intrinsic::sin, "elt.sin"));
3159
3160 case Builtin::BI__builtin_elementwise_trunc:
3161 return RValue::get(
3162 emitUnaryBuiltin(*this, E, llvm::Intrinsic::trunc, "elt.trunc"));
3163 case Builtin::BI__builtin_elementwise_canonicalize:
3164 return RValue::get(
3165 emitUnaryBuiltin(*this, E, llvm::Intrinsic::canonicalize, "elt.trunc"));
3166 case Builtin::BI__builtin_elementwise_copysign:
3167 return RValue::get(emitBinaryBuiltin(*this, E, llvm::Intrinsic::copysign));
3168 case Builtin::BI__builtin_elementwise_fma:
3169 return RValue::get(emitTernaryBuiltin(*this, E, llvm::Intrinsic::fma));
3170 case Builtin::BI__builtin_elementwise_add_sat:
3171 case Builtin::BI__builtin_elementwise_sub_sat: {
3172 Value *Op0 = EmitScalarExpr(E->getArg(0));
3173 Value *Op1 = EmitScalarExpr(E->getArg(1));
3174 Value *Result;
3175 assert(Op0->getType()->isIntOrIntVectorTy() && "integer type expected");
3176 QualType Ty = E->getArg(0)->getType();
3177 if (auto *VecTy = Ty->getAs<VectorType>())
3178 Ty = VecTy->getElementType();
3179 bool IsSigned = Ty->isSignedIntegerType();
3180 unsigned Opc;
3181 if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_elementwise_add_sat)
3182 Opc = IsSigned ? llvm::Intrinsic::sadd_sat : llvm::Intrinsic::uadd_sat;
3183 else
3184 Opc = IsSigned ? llvm::Intrinsic::ssub_sat : llvm::Intrinsic::usub_sat;
3185 Result = Builder.CreateBinaryIntrinsic(Opc, Op0, Op1, nullptr, "elt.sat");
3186 return RValue::get(Result);
3187 }
3188
3189 case Builtin::BI__builtin_elementwise_max: {
3190 Value *Op0 = EmitScalarExpr(E->getArg(0));
3191 Value *Op1 = EmitScalarExpr(E->getArg(1));
3192 Value *Result;
3193 if (Op0->getType()->isIntOrIntVectorTy()) {
3194 QualType Ty = E->getArg(0)->getType();
3195 if (auto *VecTy = Ty->getAs<VectorType>())
3196 Ty = VecTy->getElementType();
3197 Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3198 ? llvm::Intrinsic::smax
3199 : llvm::Intrinsic::umax,
3200 Op0, Op1, nullptr, "elt.max");
3201 } else
3202 Result = Builder.CreateMaxNum(Op0, Op1, "elt.max");
3203 return RValue::get(Result);
3204 }
3205 case Builtin::BI__builtin_elementwise_min: {
3206 Value *Op0 = EmitScalarExpr(E->getArg(0));
3207 Value *Op1 = EmitScalarExpr(E->getArg(1));
3208 Value *Result;
3209 if (Op0->getType()->isIntOrIntVectorTy()) {
3210 QualType Ty = E->getArg(0)->getType();
3211 if (auto *VecTy = Ty->getAs<VectorType>())
3212 Ty = VecTy->getElementType();
3213 Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3214 ? llvm::Intrinsic::smin
3215 : llvm::Intrinsic::umin,
3216 Op0, Op1, nullptr, "elt.min");
3217 } else
3218 Result = Builder.CreateMinNum(Op0, Op1, "elt.min");
3219 return RValue::get(Result);
3220 }
3221
3222 case Builtin::BI__builtin_reduce_max: {
3223 auto GetIntrinsicID = [](QualType QT) {
3224 if (auto *VecTy = QT->getAs<VectorType>())
3225 QT = VecTy->getElementType();
3226 if (QT->isSignedIntegerType())
3227 return llvm::Intrinsic::vector_reduce_smax;
3228 if (QT->isUnsignedIntegerType())
3229 return llvm::Intrinsic::vector_reduce_umax;
3230 assert(QT->isFloatingType() && "must have a float here");
3231 return llvm::Intrinsic::vector_reduce_fmax;
3232 };
3234 *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3235 }
3236
3237 case Builtin::BI__builtin_reduce_min: {
3238 auto GetIntrinsicID = [](QualType QT) {
3239 if (auto *VecTy = QT->getAs<VectorType>())
3240 QT = VecTy->getElementType();
3241 if (QT->isSignedIntegerType())
3242 return llvm::Intrinsic::vector_reduce_smin;
3243 if (QT->isUnsignedIntegerType())
3244 return llvm::Intrinsic::vector_reduce_umin;
3245 assert(QT->isFloatingType() && "must have a float here");
3246 return llvm::Intrinsic::vector_reduce_fmin;
3247 };
3248
3250 *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3251 }
3252
3253 case Builtin::BI__builtin_reduce_add:
3255 *this, E, llvm::Intrinsic::vector_reduce_add, "rdx.add"));
3256 case Builtin::BI__builtin_reduce_mul:
3258 *this, E, llvm::Intrinsic::vector_reduce_mul, "rdx.mul"));
3259 case Builtin::BI__builtin_reduce_xor:
3261 *this, E, llvm::Intrinsic::vector_reduce_xor, "rdx.xor"));
3262 case Builtin::BI__builtin_reduce_or:
3264 *this, E, llvm::Intrinsic::vector_reduce_or, "rdx.or"));
3265 case Builtin::BI__builtin_reduce_and:
3267 *this, E, llvm::Intrinsic::vector_reduce_and, "rdx.and"));
3268
3269 case Builtin::BI__builtin_matrix_transpose: {
3270 auto *MatrixTy = E->getArg(0)->getType()->castAs<ConstantMatrixType>();
3271 Value *MatValue = EmitScalarExpr(E->getArg(0));
3272 MatrixBuilder MB(Builder);
3273 Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3274 MatrixTy->getNumColumns());
3275 return RValue::get(Result);
3276 }
3277
3278 case Builtin::BI__builtin_matrix_column_major_load: {
3279 MatrixBuilder MB(Builder);
3280 // Emit everything that isn't dependent on the first parameter type
3281 Value *Stride = EmitScalarExpr(E->getArg(3));
3282 const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3283 auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3284 assert(PtrTy && "arg0 must be of pointer type");
3285 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3286
3289 E->getArg(0)->getExprLoc(), FD, 0);
3290 Value *Result = MB.CreateColumnMajorLoad(
3291 Src.getElementType(), Src.getPointer(),
3292 Align(Src.getAlignment().getQuantity()), Stride, IsVolatile,
3293 ResultTy->getNumRows(), ResultTy->getNumColumns(),
3294 "matrix");
3295 return RValue::get(Result);
3296 }
3297
3298 case Builtin::BI__builtin_matrix_column_major_store: {
3299 MatrixBuilder MB(Builder);
3300 Value *Matrix = EmitScalarExpr(E->getArg(0));
3302 Value *Stride = EmitScalarExpr(E->getArg(2));
3303
3304 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3305 auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
3306 assert(PtrTy && "arg1 must be of pointer type");
3307 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3308
3310 E->getArg(1)->getExprLoc(), FD, 0);
3311 Value *Result = MB.CreateColumnMajorStore(
3312 Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
3313 Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
3314 return RValue::get(Result);
3315 }
3316
3317 case Builtin::BIfinite:
3318 case Builtin::BI__finite:
3319 case Builtin::BIfinitef:
3320 case Builtin::BI__finitef:
3321 case Builtin::BIfinitel:
3322 case Builtin::BI__finitel:
3323 case Builtin::BI__builtin_isinf:
3324 case Builtin::BI__builtin_isfinite: {
3325 // isinf(x) --> fabs(x) == infinity
3326 // isfinite(x) --> fabs(x) != infinity
3327 // x != NaN via the ordered compare in either case.
3328 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3329 Value *V = EmitScalarExpr(E->getArg(0));
3330 llvm::Type *Ty = V->getType();
3331 if (!Builder.getIsFPConstrained() ||
3332 Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3333 !Ty->isIEEE()) {
3334 Value *Fabs = EmitFAbs(*this, V);
3335 Constant *Infinity = ConstantFP::getInfinity(V->getType());
3336 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
3337 ? CmpInst::FCMP_OEQ
3338 : CmpInst::FCMP_ONE;
3339 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
3340 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
3341 }
3342
3343 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3344 return RValue::get(Result);
3345
3346 // Inf values have all exp bits set and a zero significand. Therefore:
3347 // isinf(V) == ((V << 1) == ((exp mask) << 1))
3348 // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison
3349 unsigned bitsize = Ty->getScalarSizeInBits();
3350 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3351 Value *IntV = Builder.CreateBitCast(V, IntTy);
3352 Value *Shl1 = Builder.CreateShl(IntV, 1);
3353 const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3354 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3355 Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1));
3356 if (BuiltinID == Builtin::BI__builtin_isinf)
3357 V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1);
3358 else
3359 V = Builder.CreateICmpULT(Shl1, ExpMaskShl1);
3360 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3361 }
3362
3363 case Builtin::BI__builtin_isinf_sign: {
3364 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
3365 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3366 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3367 Value *Arg = EmitScalarExpr(E->getArg(0));
3368 Value *AbsArg = EmitFAbs(*this, Arg);
3369 Value *IsInf = Builder.CreateFCmpOEQ(
3370 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
3371 Value *IsNeg = EmitSignBit(*this, Arg);
3372
3373 llvm::Type *IntTy = ConvertType(E->getType());
3374 Value *Zero = Constant::getNullValue(IntTy);
3375 Value *One = ConstantInt::get(IntTy, 1);
3376 Value *NegativeOne = ConstantInt::get(IntTy, -1);
3377 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
3378 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
3379 return RValue::get(Result);
3380 }
3381
3382 case Builtin::BI__builtin_isnormal: {
3383 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
3384 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3385 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3386 Value *V = EmitScalarExpr(E->getArg(0));
3387 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
3388
3389 Value *Abs = EmitFAbs(*this, V);
3390 Value *IsLessThanInf =
3391 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
3392 APFloat Smallest = APFloat::getSmallestNormalized(
3393 getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
3394 Value *IsNormal =
3395 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
3396 "isnormal");
3397 V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
3398 V = Builder.CreateAnd(V, IsNormal, "and");
3399 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3400 }
3401
3402 case Builtin::BI__builtin_flt_rounds: {
3403 Function *F = CGM.getIntrinsic(Intrinsic::get_rounding);
3404
3405 llvm::Type *ResultType = ConvertType(E->getType());
3406 Value *Result = Builder.CreateCall(F);
3407 if (Result->getType() != ResultType)
3408 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3409 "cast");
3410 return RValue::get(Result);
3411 }
3412
3413 case Builtin::BI__builtin_set_flt_rounds: {
3414 Function *F = CGM.getIntrinsic(Intrinsic::set_rounding);
3415
3416 Value *V = EmitScalarExpr(E->getArg(0));
3417 Builder.CreateCall(F, V);
3418 return RValue::get(nullptr);
3419 }
3420
3421 case Builtin::BI__builtin_fpclassify: {
3422 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3423 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3424 Value *V = EmitScalarExpr(E->getArg(5));
3425 llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
3426
3427 // Create Result
3428 BasicBlock *Begin = Builder.GetInsertBlock();
3429 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
3430 Builder.SetInsertPoint(End);
3431 PHINode *Result =
3432 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
3433 "fpclassify_result");
3434
3435 // if (V==0) return FP_ZERO
3436 Builder.SetInsertPoint(Begin);
3437 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
3438 "iszero");
3439 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
3440 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
3441 Builder.CreateCondBr(IsZero, End, NotZero);
3442 Result->addIncoming(ZeroLiteral, Begin);
3443
3444 // if (V != V) return FP_NAN
3445 Builder.SetInsertPoint(NotZero);
3446 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
3447 Value *NanLiteral = EmitScalarExpr(E->getArg(0));
3448 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
3449 Builder.CreateCondBr(IsNan, End, NotNan);
3450 Result->addIncoming(NanLiteral, NotZero);
3451
3452 // if (fabs(V) == infinity) return FP_INFINITY
3453 Builder.SetInsertPoint(NotNan);
3454 Value *VAbs = EmitFAbs(*this, V);
3455 Value *IsInf =
3456 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
3457 "isinf");
3458 Value *InfLiteral = EmitScalarExpr(E->getArg(1));
3459 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
3460 Builder.CreateCondBr(IsInf, End, NotInf);
3461 Result->addIncoming(InfLiteral, NotNan);
3462
3463 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
3464 Builder.SetInsertPoint(NotInf);
3465 APFloat Smallest = APFloat::getSmallestNormalized(
3466 getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
3467 Value *IsNormal =
3468 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
3469 "isnormal");
3470 Value *NormalResult =
3471 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
3472 EmitScalarExpr(E->getArg(3)));
3473 Builder.CreateBr(End);
3474 Result->addIncoming(NormalResult, NotInf);
3475
3476 // return Result
3477 Builder.SetInsertPoint(End);
3478 return RValue::get(Result);
3479 }
3480
3481 case Builtin::BIalloca:
3482 case Builtin::BI_alloca:
3483 case Builtin::BI__builtin_alloca_uninitialized:
3484 case Builtin::BI__builtin_alloca: {
3485 Value *Size = EmitScalarExpr(E->getArg(0));
3486 const TargetInfo &TI = getContext().getTargetInfo();
3487 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
3488 const Align SuitableAlignmentInBytes =
3489 CGM.getContext()
3491 .getAsAlign();
3492 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3493 AI->setAlignment(SuitableAlignmentInBytes);
3494 if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized)
3495 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
3496 return RValue::get(AI);
3497 }
3498
3499 case Builtin::BI__builtin_alloca_with_align_uninitialized:
3500 case Builtin::BI__builtin_alloca_with_align: {
3501 Value *Size = EmitScalarExpr(E->getArg(0));
3502 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
3503 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
3504 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
3505 const Align AlignmentInBytes =
3506 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
3507 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3508 AI->setAlignment(AlignmentInBytes);
3509 if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized)
3510 initializeAlloca(*this, AI, Size, AlignmentInBytes);
3511 return RValue::get(AI);
3512 }
3513
3514 case Builtin::BIbzero:
3515 case Builtin::BI__builtin_bzero: {
3517 Value *SizeVal = EmitScalarExpr(E->getArg(1));
3519 E->getArg(0)->getExprLoc(), FD, 0);
3520 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
3521 return RValue::get(nullptr);
3522 }
3523 case Builtin::BImemcpy:
3524 case Builtin::BI__builtin_memcpy:
3525 case Builtin::BImempcpy:
3526 case Builtin::BI__builtin_mempcpy: {
3529 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3531 E->getArg(0)->getExprLoc(), FD, 0);
3533 E->getArg(1)->getExprLoc(), FD, 1);
3534 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3535 if (BuiltinID == Builtin::BImempcpy ||
3536 BuiltinID == Builtin::BI__builtin_mempcpy)
3537 return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(),
3538 Dest.getPointer(), SizeVal));
3539 else
3540 return RValue::get(Dest.getPointer());
3541 }
3542
3543 case Builtin::BI__builtin_memcpy_inline: {
3546 uint64_t Size =
3547 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3549 E->getArg(0)->getExprLoc(), FD, 0);
3551 E->getArg(1)->getExprLoc(), FD, 1);
3552 Builder.CreateMemCpyInline(Dest, Src, Size);
3553 return RValue::get(nullptr);
3554 }
3555
3556 case Builtin::BI__builtin_char_memchr:
3557 BuiltinID = Builtin::BI__builtin_memchr;
3558 break;
3559
3560 case Builtin::BI__builtin___memcpy_chk: {
3561 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
3562 Expr::EvalResult SizeResult, DstSizeResult;
3563 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3564 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3565 break;
3566 llvm::APSInt Size = SizeResult.Val.getInt();
3567 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3568 if (Size.ugt(DstSize))
3569 break;
3572 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3573 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3574 return RValue::get(Dest.getPointer());
3575 }
3576
3577 case Builtin::BI__builtin_objc_memmove_collectable: {
3578 Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
3579 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
3580 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3582 DestAddr, SrcAddr, SizeVal);
3583 return RValue::get(DestAddr.getPointer());
3584 }
3585
3586 case Builtin::BI__builtin___memmove_chk: {
3587 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
3588 Expr::EvalResult SizeResult, DstSizeResult;
3589 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3590 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3591 break;
3592 llvm::APSInt Size = SizeResult.Val.getInt();
3593 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3594 if (Size.ugt(DstSize))
3595 break;
3598 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3599 Builder.CreateMemMove(Dest, Src, SizeVal, false);
3600 return RValue::get(Dest.getPointer());
3601 }
3602
3603 case Builtin::BImemmove:
3604 case Builtin::BI__builtin_memmove: {
3607 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3609 E->getArg(0)->getExprLoc(), FD, 0);
3611 E->getArg(1)->getExprLoc(), FD, 1);
3612 Builder.CreateMemMove(Dest, Src, SizeVal, false);
3613 return RValue::get(Dest.getPointer());
3614 }
3615 case Builtin::BImemset:
3616 case Builtin::BI__builtin_memset: {
3618 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3619 Builder.getInt8Ty());
3620 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3622 E->getArg(0)->getExprLoc(), FD, 0);
3623 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3624 return RValue::get(Dest.getPointer());
3625 }
3626 case Builtin::BI__builtin_memset_inline: {
3628 Value *ByteVal =
3629 Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), Builder.getInt8Ty());
3630 uint64_t Size =
3631 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3633 E->getArg(0)->getExprLoc(), FD, 0);
3634 Builder.CreateMemSetInline(Dest, ByteVal, Size);
3635 return RValue::get(nullptr);
3636 }
3637 case Builtin::BI__builtin___memset_chk: {
3638 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
3639 Expr::EvalResult SizeResult, DstSizeResult;
3640 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3641 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3642 break;
3643 llvm::APSInt Size = SizeResult.Val.getInt();
3644 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3645 if (Size.ugt(DstSize))
3646 break;
3648 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3649 Builder.getInt8Ty());
3650 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3651 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3652 return RValue::get(Dest.getPointer());
3653 }
3654 case Builtin::BI__builtin_wmemchr: {
3655 // The MSVC runtime library does not provide a definition of wmemchr, so we
3656 // need an inline implementation.
3657 if (!getTarget().getTriple().isOSMSVCRT())
3658 break;
3659
3660 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3661 Value *Str = EmitScalarExpr(E->getArg(0));
3662 Value *Chr = EmitScalarExpr(E->getArg(1));
3663 Value *Size = EmitScalarExpr(E->getArg(2));
3664
3665 BasicBlock *Entry = Builder.GetInsertBlock();
3666 BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
3667 BasicBlock *Next = createBasicBlock("wmemchr.next");
3668 BasicBlock *Exit = createBasicBlock("wmemchr.exit");
3669 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3670 Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
3671
3672 EmitBlock(CmpEq);
3673 PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
3674 StrPhi->addIncoming(Str, Entry);
3675 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3676 SizePhi->addIncoming(Size, Entry);
3677 CharUnits WCharAlign =
3679 Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
3680 Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
3681 Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
3682 Builder.CreateCondBr(StrEqChr, Exit, Next);
3683
3684 EmitBlock(Next);
3685 Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
3686 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3687 Value *NextSizeEq0 =
3688 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3689 Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
3690 StrPhi->addIncoming(NextStr, Next);
3691 SizePhi->addIncoming(NextSize, Next);
3692
3693 EmitBlock(Exit);
3694 PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
3695 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
3696 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
3697 Ret->addIncoming(FoundChr, CmpEq);
3698 return RValue::get(Ret);
3699 }
3700 case Builtin::BI__builtin_wmemcmp: {
3701 // The MSVC runtime library does not provide a definition of wmemcmp, so we
3702 // need an inline implementation.
3703 if (!getTarget().getTriple().isOSMSVCRT())
3704 break;
3705
3706 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3707
3708 Value *Dst = EmitScalarExpr(E->getArg(0));
3709 Value *Src = EmitScalarExpr(E->getArg(1));
3710 Value *Size = EmitScalarExpr(E->getArg(2));
3711
3712 BasicBlock *Entry = Builder.GetInsertBlock();
3713 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
3714 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
3715 BasicBlock *Next = createBasicBlock("wmemcmp.next");
3716 BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
3717 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3718 Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
3719
3720 EmitBlock(CmpGT);
3721 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
3722 DstPhi->addIncoming(Dst, Entry);
3723 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
3724 SrcPhi->addIncoming(Src, Entry);
3725 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3726 SizePhi->addIncoming(Size, Entry);
3727 CharUnits WCharAlign =
3729 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
3730 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
3731 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
3732 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
3733
3734 EmitBlock(CmpLT);
3735 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
3736 Builder.CreateCondBr(DstLtSrc, Exit, Next);
3737
3738 EmitBlock(Next);
3739 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
3740 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
3741 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3742 Value *NextSizeEq0 =
3743 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3744 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
3745 DstPhi->addIncoming(NextDst, Next);
3746 SrcPhi->addIncoming(NextSrc, Next);
3747 SizePhi->addIncoming(NextSize, Next);
3748
3749 EmitBlock(Exit);
3750 PHINode *Ret = Builder.CreatePHI(IntTy, 4);
3751 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
3752 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
3753 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
3754 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
3755 return RValue::get(Ret);
3756 }
3757 case Builtin::BI__builtin_dwarf_cfa: {
3758 // The offset in bytes from the first argument to the CFA.
3759 //
3760 // Why on earth is this in the frontend? Is there any reason at
3761 // all that the backend can't reasonably determine this while
3762 // lowering llvm.eh.dwarf.cfa()?
3763 //
3764 // TODO: If there's a satisfactory reason, add a target hook for
3765 // this instead of hard-coding 0, which is correct for most targets.
3766 int32_t Offset = 0;
3767
3768 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
3769 return RValue::get(Builder.CreateCall(F,
3770 llvm::ConstantInt::get(Int32Ty, Offset)));
3771 }
3772 case Builtin::BI__builtin_return_address: {
3773 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3774 getContext().UnsignedIntTy);
3775 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3776 return RValue::get(Builder.CreateCall(F, Depth));
3777 }
3778 case Builtin::BI_ReturnAddress: {
3779 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3780 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
3781 }
3782 case Builtin::BI__builtin_frame_address: {
3783 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3784 getContext().UnsignedIntTy);
3785 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
3786 return RValue::get(Builder.CreateCall(F, Depth));
3787 }
3788 case Builtin::BI__builtin_extract_return_addr: {
3791 return RValue::get(Result);
3792 }
3793 case Builtin::BI__builtin_frob_return_addr: {
3796 return RValue::get(Result);
3797 }
3798 case Builtin::BI__builtin_dwarf_sp_column: {
3799 llvm::IntegerType *Ty
3800 = cast<llvm::IntegerType>(ConvertType(E->getType()));
3802 if (Column == -1) {
3803 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
3804 return RValue::get(llvm::UndefValue::get(Ty));
3805 }
3806 return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
3807 }
3808 case Builtin::BI__builtin_init_dwarf_reg_size_table: {
3810 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
3811 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
3812 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
3813 }
3814 case Builtin::BI__builtin_eh_return: {
3815 Value *Int = EmitScalarExpr(E->getArg(0));
3816 Value *Ptr = EmitScalarExpr(E->getArg(1));
3817
3818 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
3819 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
3820 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
3821 Function *F =
3822 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
3823 : Intrinsic::eh_return_i64);
3824 Builder.CreateCall(F, {Int, Ptr});
3825 Builder.CreateUnreachable();
3826
3827 // We do need to preserve an insertion point.
3828 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
3829
3830 return RValue::get(nullptr);
3831 }
3832 case Builtin::BI__builtin_unwind_init: {
3833 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
3834 Builder.CreateCall(F);
3835 return RValue::get(nullptr);
3836 }
3837 case Builtin::BI__builtin_extend_pointer: {
3838 // Extends a pointer to the size of an _Unwind_Word, which is
3839 // uint64_t on all platforms. Generally this gets poked into a
3840 // register and eventually used as an address, so if the
3841 // addressing registers are wider than pointers and the platform
3842 // doesn't implicitly ignore high-order bits when doing
3843 // addressing, we need to make sure we zext / sext based on
3844 // the platform's expectations.
3845 //
3846 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
3847
3848 // Cast the pointer to intptr_t.
3849 Value *Ptr = EmitScalarExpr(E->getArg(0));
3850 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
3851
3852 // If that's 64 bits, we're done.
3853 if (IntPtrTy->getBitWidth() == 64)
3854 return RValue::get(Result);
3855
3856 // Otherwise, ask the codegen data what to do.
3857 if (getTargetHooks().extendPointerWithSExt())
3858 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
3859 else
3860 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
3861 }
3862 case Builtin::BI__builtin_setjmp: {
3863 // Buffer is a void**.
3865
3866 // Store the frame pointer to the setjmp buffer.
3867 Value *FrameAddr = Builder.CreateCall(
3868 CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
3869 ConstantInt::get(Int32Ty, 0));
3870 Builder.CreateStore(FrameAddr, Buf);
3871
3872 // Store the stack pointer to the setjmp buffer.
3873 Value *StackAddr =
3874 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
3875 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
3876 Builder.CreateStore(StackAddr, StackSaveSlot);
3877
3878 // Call LLVM's EH setjmp, which is lightweight.
3879 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
3881 return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
3882 }
3883 case Builtin::BI__builtin_longjmp: {
3884 Value *Buf = EmitScalarExpr(E->getArg(0));
3885 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3886
3887 // Call LLVM's EH longjmp, which is lightweight.
3888 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
3889
3890 // longjmp doesn't return; mark this as unreachable.
3891 Builder.CreateUnreachable();
3892
3893 // We do need to preserve an insertion point.
3894 EmitBlock(createBasicBlock("longjmp.cont"));
3895
3896 return RValue::get(nullptr);
3897 }
3898 case Builtin::BI__builtin_launder: {
3899 const Expr *Arg = E->getArg(0);
3900 QualType ArgTy = Arg->getType()->getPointeeType();
3901 Value *Ptr = EmitScalarExpr(Arg);
3902 if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
3904
3905 return RValue::get(Ptr);
3906 }
3907 case Builtin::BI__sync_fetch_and_add:
3908 case Builtin::BI__sync_fetch_and_sub:
3909 case Builtin::BI__sync_fetch_and_or:
3910 case Builtin::BI__sync_fetch_and_and:
3911 case Builtin::BI__sync_fetch_and_xor:
3912 case Builtin::BI__sync_fetch_and_nand:
3913 case Builtin::BI__sync_add_and_fetch:
3914 case Builtin::BI__sync_sub_and_fetch:
3915 case Builtin::BI__sync_and_and_fetch:
3916 case Builtin::BI__sync_or_and_fetch:
3917 case Builtin::BI__sync_xor_and_fetch:
3918 case Builtin::BI__sync_nand_and_fetch:
3919 case Builtin::BI__sync_val_compare_and_swap:
3920 case Builtin::BI__sync_bool_compare_and_swap:
3921 case Builtin::BI__sync_lock_test_and_set:
3922 case Builtin::BI__sync_lock_release:
3923 case Builtin::BI__sync_swap:
3924 llvm_unreachable("Shouldn't make it through sema");
3925 case Builtin::BI__sync_fetch_and_add_1:
3926 case Builtin::BI__sync_fetch_and_add_2:
3927 case Builtin::BI__sync_fetch_and_add_4:
3928 case Builtin::BI__sync_fetch_and_add_8:
3929 case Builtin::BI__sync_fetch_and_add_16:
3930 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
3931 case Builtin::BI__sync_fetch_and_sub_1:
3932 case Builtin::BI__sync_fetch_and_sub_2:
3933 case Builtin::BI__sync_fetch_and_sub_4:
3934 case Builtin::BI__sync_fetch_and_sub_8:
3935 case Builtin::BI__sync_fetch_and_sub_16:
3936 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
3937 case Builtin::BI__sync_fetch_and_or_1:
3938 case Builtin::BI__sync_fetch_and_or_2:
3939 case Builtin::BI__sync_fetch_and_or_4:
3940 case Builtin::BI__sync_fetch_and_or_8:
3941 case Builtin::BI__sync_fetch_and_or_16:
3942 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
3943 case Builtin::BI__sync_fetch_and_and_1:
3944 case Builtin::BI__sync_fetch_and_and_2:
3945 case Builtin::BI__sync_fetch_and_and_4:
3946 case Builtin::BI__sync_fetch_and_and_8:
3947 case Builtin::BI__sync_fetch_and_and_16:
3948 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
3949 case Builtin::BI__sync_fetch_and_xor_1:
3950 case Builtin::BI__sync_fetch_and_xor_2:
3951 case Builtin::BI__sync_fetch_and_xor_4:
3952 case Builtin::BI__sync_fetch_and_xor_8:
3953 case Builtin::BI__sync_fetch_and_xor_16:
3954 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
3955 case Builtin::BI__sync_fetch_and_nand_1:
3956 case Builtin::BI__sync_fetch_and_nand_2:
3957 case Builtin::BI__sync_fetch_and_nand_4:
3958 case Builtin::BI__sync_fetch_and_nand_8:
3959 case Builtin::BI__sync_fetch_and_nand_16:
3960 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
3961
3962 // Clang extensions: not overloaded yet.
3963 case Builtin::BI__sync_fetch_and_min:
3964 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3965 case Builtin::BI__sync_fetch_and_max:
3966 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3967 case Builtin::BI__sync_fetch_and_umin:
3968 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3969 case Builtin::BI__sync_fetch_and_umax:
3970 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3971
3972 case Builtin::BI__sync_add_and_fetch_1:
3973 case Builtin::BI__sync_add_and_fetch_2:
3974 case Builtin::BI__sync_add_and_fetch_4:
3975 case Builtin::BI__sync_add_and_fetch_8:
3976 case Builtin::BI__sync_add_and_fetch_16:
3977 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3978 llvm::Instruction::Add);
3979 case Builtin::BI__sync_sub_and_fetch_1:
3980 case Builtin::BI__sync_sub_and_fetch_2:
3981 case Builtin::BI__sync_sub_and_fetch_4:
3982 case Builtin::BI__sync_sub_and_fetch_8:
3983 case Builtin::BI__sync_sub_and_fetch_16:
3984 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3985 llvm::Instruction::Sub);
3986 case Builtin::BI__sync_and_and_fetch_1:
3987 case Builtin::BI__sync_and_and_fetch_2:
3988 case Builtin::BI__sync_and_and_fetch_4:
3989 case Builtin::BI__sync_and_and_fetch_8:
3990 case Builtin::BI__sync_and_and_fetch_16:
3991 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3992 llvm::Instruction::And);
3993 case Builtin::BI__sync_or_and_fetch_1:
3994 case Builtin::BI__sync_or_and_fetch_2:
3995 case Builtin::BI__sync_or_and_fetch_4:
3996 case Builtin::BI__sync_or_and_fetch_8:
3997 case Builtin::BI__sync_or_and_fetch_16:
3998 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3999 llvm::Instruction::Or);
4000 case Builtin::BI__sync_xor_and_fetch_1:
4001 case Builtin::BI__sync_xor_and_fetch_2:
4002 case Builtin::BI__sync_xor_and_fetch_4:
4003 case Builtin::BI__sync_xor_and_fetch_8:
4004 case Builtin::BI__sync_xor_and_fetch_16:
4005 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
4006 llvm::Instruction::Xor);
4007 case Builtin::BI__sync_nand_and_fetch_1:
4008 case Builtin::BI__sync_nand_and_fetch_2:
4009 case Builtin::BI__sync_nand_and_fetch_4:
4010 case Builtin::BI__sync_nand_and_fetch_8:
4011 case Builtin::BI__sync_nand_and_fetch_16:
4012 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
4013 llvm::Instruction::And, true);
4014
4015 case Builtin::BI__sync_val_compare_and_swap_1:
4016 case Builtin::BI__sync_val_compare_and_swap_2:
4017 case Builtin::BI__sync_val_compare_and_swap_4:
4018 case Builtin::BI__sync_val_compare_and_swap_8:
4019 case Builtin::BI__sync_val_compare_and_swap_16:
4020 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
4021
4022 case Builtin::BI__sync_bool_compare_and_swap_1:
4023 case Builtin::BI__sync_bool_compare_and_swap_2:
4024 case Builtin::BI__sync_bool_compare_and_swap_4:
4025 case Builtin::BI__sync_bool_compare_and_swap_8:
4026 case Builtin::BI__sync_bool_compare_and_swap_16:
4027 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
4028
4029 case Builtin::BI__sync_swap_1:
4030 case Builtin::BI__sync_swap_2:
4031 case Builtin::BI__sync_swap_4:
4032 case Builtin::BI__sync_swap_8:
4033 case Builtin::BI__sync_swap_16:
4034 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4035
4036 case Builtin::BI__sync_lock_test_and_set_1:
4037 case Builtin::BI__sync_lock_test_and_set_2:
4038 case Builtin::BI__sync_lock_test_and_set_4:
4039 case Builtin::BI__sync_lock_test_and_set_8:
4040 case Builtin::BI__sync_lock_test_and_set_16:
4041 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4042
4043 case Builtin::BI__sync_lock_release_1:
4044 case Builtin::BI__sync_lock_release_2:
4045 case Builtin::BI__sync_lock_release_4:
4046 case Builtin::BI__sync_lock_release_8:
4047 case Builtin::BI__sync_lock_release_16: {
4048 CheckAtomicAlignment(*this, E);
4049 Value *Ptr = EmitScalarExpr(E->getArg(0));
4050 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
4051 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
4052 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
4053 StoreSize.getQuantity() * 8);
4054 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
4055 llvm::StoreInst *Store =
4056 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
4057 StoreSize);
4058 Store->setAtomic(llvm::AtomicOrdering::Release);
4059 return RValue::get(nullptr);
4060 }
4061
4062 case Builtin::BI__sync_synchronize: {
4063 // We assume this is supposed to correspond to a C++0x-style
4064 // sequentially-consistent fence (i.e. this is only usable for
4065 // synchronization, not device I/O or anything like that). This intrinsic
4066 // is really badly designed in the sense that in theory, there isn't
4067 // any way to safely use it... but in practice, it mostly works
4068 // to use it with non-atomic loads and stores to get acquire/release
4069 // semantics.
4070 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
4071 return RValue::get(nullptr);
4072 }
4073
4074 case Builtin::BI__builtin_nontemporal_load:
4075 return RValue::get(EmitNontemporalLoad(*this, E));
4076 case Builtin::BI__builtin_nontemporal_store:
4077 return RValue::get(EmitNontemporalStore(*this, E));
4078 case Builtin::BI__c11_atomic_is_lock_free:
4079 case Builtin::BI__atomic_is_lock_free: {
4080 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
4081 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
4082 // _Atomic(T) is always properly-aligned.
4083 const char *LibCallName = "__atomic_is_lock_free";
4084 CallArgList Args;
4085 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
4086 getContext().getSizeType());
4087 if (BuiltinID == Builtin::BI__atomic_is_lock_free)
4088 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
4090 else
4091 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
4093 const CGFunctionInfo &FuncInfo =
4095 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
4096 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
4097 return EmitCall(FuncInfo, CGCallee::forDirect(Func),
4098 ReturnValueSlot(), Args);
4099 }
4100
4101 case Builtin::BI__atomic_test_and_set: {
4102 // Look at the argument type to determine whether this is a volatile
4103 // operation. The parameter type is always volatile.
4104 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4105 bool Volatile =
4106 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4107
4108 Value *Ptr = EmitScalarExpr(E->getArg(0));
4109 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
4110 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
4111 Value *NewVal = Builder.getInt8(1);
4112 Value *Order = EmitScalarExpr(E->getArg(1));
4113 if (isa<llvm::ConstantInt>(Order)) {
4114 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4115 AtomicRMWInst *Result = nullptr;
4116 switch (ord) {
4117 case 0: // memory_order_relaxed
4118 default: // invalid order
4119 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4120 llvm::AtomicOrdering::Monotonic);
4121 break;
4122 case 1: // memory_order_consume
4123 case 2: // memory_order_acquire
4124 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4125 llvm::AtomicOrdering::Acquire);
4126 break;
4127 case 3: // memory_order_release
4128 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4129 llvm::AtomicOrdering::Release);
4130 break;
4131 case 4: // memory_order_acq_rel
4132
4133 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4134 llvm::AtomicOrdering::AcquireRelease);
4135 break;
4136 case 5: // memory_order_seq_cst
4138 llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4139 llvm::AtomicOrdering::SequentiallyConsistent);
4140 break;
4141 }
4142 Result->setVolatile(Volatile);
4143 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4144 }
4145
4146 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4147
4148 llvm::BasicBlock *BBs[5] = {
4149 createBasicBlock("monotonic", CurFn),
4150 createBasicBlock("acquire", CurFn),
4151 createBasicBlock("release", CurFn),
4152 createBasicBlock("acqrel", CurFn),
4153 createBasicBlock("seqcst", CurFn)
4154 };
4155 llvm::AtomicOrdering Orders[5] = {
4156 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
4157 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
4158 llvm::AtomicOrdering::SequentiallyConsistent};
4159
4160 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4161 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4162
4163 Builder.SetInsertPoint(ContBB);
4164 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
4165
4166 for (unsigned i = 0; i < 5; ++i) {
4167 Builder.SetInsertPoint(BBs[i]);
4168 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
4169 Ptr, NewVal, Orders[i]);
4170 RMW->setVolatile(Volatile);
4171 Result->addIncoming(RMW, BBs[i]);
4172 Builder.CreateBr(ContBB);
4173 }
4174
4175 SI->addCase(Builder.getInt32(0), BBs[0]);
4176 SI->addCase(Builder.getInt32(1), BBs[1]);
4177 SI->addCase(Builder.getInt32(2), BBs[1]);
4178 SI->addCase(Builder.getInt32(3), BBs[2]);
4179 SI->addCase(Builder.getInt32(4), BBs[3]);
4180 SI->addCase(Builder.getInt32(5), BBs[4]);
4181
4182 Builder.SetInsertPoint(ContBB);
4183 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4184 }
4185
4186 case Builtin::BI__atomic_clear: {
4187 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4188 bool Volatile =
4189 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4190
4193 Value *NewVal = Builder.getInt8(0);
4194 Value *Order = EmitScalarExpr(E->getArg(1));
4195 if (isa<llvm::ConstantInt>(Order)) {
4196 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4197 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4198 switch (ord) {
4199 case 0: // memory_order_relaxed
4200 default: // invalid order
4201 Store->setOrdering(llvm::AtomicOrdering::Monotonic);
4202 break;
4203 case 3: // memory_order_release
4204 Store->setOrdering(llvm::AtomicOrdering::Release);
4205 break;
4206 case 5: // memory_order_seq_cst
4207 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
4208 break;
4209 }
4210 return RValue::get(nullptr);
4211 }
4212
4213 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4214
4215 llvm::BasicBlock *BBs[3] = {
4216 createBasicBlock("monotonic", CurFn),
4217 createBasicBlock("release", CurFn),
4218 createBasicBlock("seqcst", CurFn)
4219 };
4220 llvm::AtomicOrdering Orders[3] = {
4221 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
4222 llvm::AtomicOrdering::SequentiallyConsistent};
4223
4224 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4225 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4226
4227 for (unsigned i = 0; i < 3; ++i) {
4228 Builder.SetInsertPoint(BBs[i]);
4229 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4230 Store->setOrdering(Orders[i]);
4231 Builder.CreateBr(ContBB);
4232 }
4233
4234 SI->addCase(Builder.getInt32(0), BBs[0]);
4235 SI->addCase(Builder.getInt32(3), BBs[1]);
4236 SI->addCase(Builder.getInt32(5), BBs[2]);
4237
4238 Builder.SetInsertPoint(ContBB);
4239 return RValue::get(nullptr);
4240 }
4241
4242 case Builtin::BI__atomic_thread_fence:
4243 case Builtin::BI__atomic_signal_fence:
4244 case Builtin::BI__c11_atomic_thread_fence:
4245 case Builtin::BI__c11_atomic_signal_fence: {
4246 llvm::SyncScope::ID SSID;
4247 if (BuiltinID == Builtin::BI__atomic_signal_fence ||
4248 BuiltinID == Builtin::BI__c11_atomic_signal_fence)
4249 SSID = llvm::SyncScope::SingleThread;
4250 else
4251 SSID = llvm::SyncScope::System;
4252 Value *Order = EmitScalarExpr(E->getArg(0));
4253 if (isa<llvm::ConstantInt>(Order)) {
4254 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4255 switch (ord) {
4256 case 0: // memory_order_relaxed
4257 default: // invalid order
4258 break;
4259 case 1: // memory_order_consume
4260 case 2: // memory_order_acquire
4261 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4262 break;
4263 case 3: // memory_order_release
4264 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4265 break;
4266 case 4: // memory_order_acq_rel
4267 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4268 break;
4269 case 5: // memory_order_seq_cst
4270 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4271 break;
4272 }
4273 return RValue::get(nullptr);
4274 }
4275
4276 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4277 AcquireBB = createBasicBlock("acquire", CurFn);
4278 ReleaseBB = createBasicBlock("release", CurFn);
4279 AcqRelBB = createBasicBlock("acqrel", CurFn);
4280 SeqCstBB = createBasicBlock("seqcst", CurFn);
4281 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4282
4283 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4284 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4285
4286 Builder.SetInsertPoint(AcquireBB);
4287 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4288 Builder.CreateBr(ContBB);
4289 SI->addCase(Builder.getInt32(1), AcquireBB);
4290 SI->addCase(Builder.getInt32(2), AcquireBB);
4291
4292 Builder.SetInsertPoint(ReleaseBB);
4293 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4294 Builder.CreateBr(ContBB);
4295 SI->addCase(Builder.getInt32(3), ReleaseBB);
4296
4297 Builder.SetInsertPoint(AcqRelBB);
4298 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4299 Builder.CreateBr(ContBB);
4300 SI->addCase(Builder.getInt32(4), AcqRelBB);
4301
4302 Builder.SetInsertPoint(SeqCstBB);
4303 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4304 Builder.CreateBr(ContBB);
4305 SI->addCase(Builder.getInt32(5), SeqCstBB);
4306
4307 Builder.SetInsertPoint(ContBB);
4308 return RValue::get(nullptr);
4309 }
4310
4311 case Builtin::BI__builtin_signbit:
4312 case Builtin::BI__builtin_signbitf:
4313 case Builtin::BI__builtin_signbitl: {
4314 return RValue::get(
4315 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4316 ConvertType(E->getType())));
4317 }
4318 case Builtin::BI__warn_memset_zero_len:
4319 return RValue::getIgnored();
4320 case Builtin::BI__annotation: {
4321 // Re-encode each wide string to UTF8 and make an MDString.
4323 for (const Expr *Arg : E->arguments()) {
4324 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
4325 assert(Str->getCharByteWidth() == 2);
4326 StringRef WideBytes = Str->getBytes();
4327 std::string StrUtf8;
4328 if (!convertUTF16ToUTF8String(
4329 ArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
4330 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
4331 continue;
4332 }
4333 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
4334 }
4335
4336 // Build and MDTuple of MDStrings and emit the intrinsic call.
4337 llvm::Function *F =
4338 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
4339 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
4340 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
4341 return RValue::getIgnored();
4342 }
4343 case Builtin::BI__builtin_annotation: {
4344 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
4345 llvm::Function *F =
4346 CGM.getIntrinsic(llvm::Intrinsic::annotation,
4347 {AnnVal->getType(), CGM.ConstGlobalsPtrTy});
4348
4349 // Get the annotation string, go through casts. Sema requires this to be a
4350 // non-wide string literal, potentially casted, so the cast<> is safe.
4351 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
4352 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
4353 return RValue::get(
4354 EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
4355 }
4356 case Builtin::BI__builtin_addcb:
4357 case Builtin::BI__builtin_addcs:
4358 case Builtin::BI__builtin_addc:
4359 case Builtin::BI__builtin_addcl:
4360 case Builtin::BI__builtin_addcll:
4361 case Builtin::BI__builtin_subcb:
4362 case Builtin::BI__builtin_subcs:
4363 case Builtin::BI__builtin_subc:
4364 case Builtin::BI__builtin_subcl:
4365 case Builtin::BI__builtin_subcll: {
4366
4367 // We translate all of these builtins from expressions of the form:
4368 // int x = ..., y = ..., carryin = ..., carryout, result;
4369 // result = __builtin_addc(x, y, carryin, &carryout);
4370 //
4371 // to LLVM IR of the form:
4372 //
4373 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
4374 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
4375 // %carry1 = extractvalue {i32, i1} %tmp1, 1
4376 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
4377 // i32 %carryin)
4378 // %result = extractvalue {i32, i1} %tmp2, 0
4379 // %carry2 = extractvalue {i32, i1} %tmp2, 1
4380 // %tmp3 = or i1 %carry1, %carry2
4381 // %tmp4 = zext i1 %tmp3 to i32
4382 // store i32 %tmp4, i32* %carryout
4383
4384 // Scalarize our inputs.
4385 llvm::Value *X = EmitScalarExpr(E->getArg(0));
4386 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4387 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
4388 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
4389
4390 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
4391 llvm::Intrinsic::ID IntrinsicId;
4392 switch (BuiltinID) {
4393 default: llvm_unreachable("Unknown multiprecision builtin id.");
4394 case Builtin::BI__builtin_addcb:
4395 case Builtin::BI__builtin_addcs:
4396 case Builtin::BI__builtin_addc:
4397 case Builtin::BI__builtin_addcl:
4398 case Builtin::BI__builtin_addcll:
4399 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4400 break;
4401 case Builtin::BI__builtin_subcb:
4402 case Builtin::BI__builtin_subcs:
4403 case Builtin::BI__builtin_subc:
4404 case Builtin::BI__builtin_subcl:
4405 case Builtin::BI__builtin_subcll:
4406 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4407 break;
4408 }
4409
4410 // Construct our resulting LLVM IR expression.
4411 llvm::Value *Carry1;
4412 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
4413 X, Y, Carry1);
4414 llvm::Value *Carry2;
4415 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
4416 Sum1, Carryin, Carry2);
4417 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
4418 X->getType());
4419 Builder.CreateStore(CarryOut, CarryOutPtr);
4420 return RValue::get(Sum2);
4421 }
4422
4423 case Builtin::BI__builtin_add_overflow:
4424 case Builtin::BI__builtin_sub_overflow:
4425 case Builtin::BI__builtin_mul_overflow: {
4426 const clang::Expr *LeftArg = E->getArg(0);
4427 const clang::Expr *RightArg = E->getArg(1);
4428 const clang::Expr *ResultArg = E->getArg(2);
4429
4430 clang::QualType ResultQTy =
4431 ResultArg->getType()->castAs<PointerType>()->getPointeeType();
4432
4433 WidthAndSignedness LeftInfo =
4435 WidthAndSignedness RightInfo =
4437 WidthAndSignedness ResultInfo =
4439
4440 // Handle mixed-sign multiplication as a special case, because adding
4441 // runtime or backend support for our generic irgen would be too expensive.
4442 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
4443 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
4444 RightInfo, ResultArg, ResultQTy,
4445 ResultInfo);
4446
4447 if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
4448 ResultInfo))
4450 *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
4451 ResultInfo);
4452
4453 WidthAndSignedness EncompassingInfo =
4454 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
4455
4456 llvm::Type *EncompassingLLVMTy =
4457 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
4458
4459 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
4460
4461 llvm::Intrinsic::ID IntrinsicId;
4462 switch (BuiltinID) {
4463 default:
4464 llvm_unreachable("Unknown overflow builtin id.");
4465 case Builtin::BI__builtin_add_overflow:
4466 IntrinsicId = EncompassingInfo.Signed
4467 ? llvm::Intrinsic::sadd_with_overflow
4468 : llvm::Intrinsic::uadd_with_overflow;
4469 break;
4470 case Builtin::BI__builtin_sub_overflow:
4471 IntrinsicId = EncompassingInfo.Signed
4472 ? llvm::Intrinsic::ssub_with_overflow
4473 : llvm::Intrinsic::usub_with_overflow;
4474 break;
4475 case Builtin::BI__builtin_mul_overflow:
4476 IntrinsicId = EncompassingInfo.Signed
4477 ? llvm::Intrinsic::smul_with_overflow
4478 : llvm::Intrinsic::umul_with_overflow;
4479 break;
4480 }
4481
4482 llvm::Value *Left = EmitScalarExpr(LeftArg);
4483 llvm::Value *Right = EmitScalarExpr(RightArg);
4484 Address ResultPtr = EmitPointerWithAlignment(ResultArg);
4485
4486 <