clang 22.0.0git
CodeGenFunction.cpp
Go to the documentation of this file.
1//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This coordinates the per-function state used while generating code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenFunction.h"
14#include "CGBlocks.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCleanup.h"
18#include "CGDebugInfo.h"
19#include "CGHLSLRuntime.h"
20#include "CGOpenMPRuntime.h"
21#include "CodeGenModule.h"
22#include "CodeGenPGO.h"
23#include "TargetInfo.h"
25#include "clang/AST/ASTLambda.h"
26#include "clang/AST/Attr.h"
27#include "clang/AST/Decl.h"
28#include "clang/AST/DeclCXX.h"
29#include "clang/AST/Expr.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/StmtObjC.h"
38#include "llvm/ADT/ArrayRef.h"
39#include "llvm/ADT/ScopeExit.h"
40#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/Dominators.h"
43#include "llvm/IR/FPEnv.h"
44#include "llvm/IR/Instruction.h"
45#include "llvm/IR/IntrinsicInst.h"
46#include "llvm/IR/Intrinsics.h"
47#include "llvm/IR/MDBuilder.h"
48#include "llvm/Support/CRC.h"
49#include "llvm/Support/xxhash.h"
50#include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
51#include "llvm/Transforms/Utils/PromoteMemToReg.h"
52#include <optional>
53
54using namespace clang;
55using namespace CodeGen;
56
57namespace llvm {
58extern cl::opt<bool> EnableSingleByteCoverage;
59} // namespace llvm
60
61/// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
62/// markers.
63static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
64 const LangOptions &LangOpts) {
65 if (CGOpts.DisableLifetimeMarkers)
66 return false;
67
68 // Sanitizers may use markers.
69 if (CGOpts.SanitizeAddressUseAfterScope ||
70 LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
71 LangOpts.Sanitize.has(SanitizerKind::Memory))
72 return true;
73
74 // For now, only in optimized builds.
75 return CGOpts.OptimizationLevel != 0;
76}
77
78CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
79 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
80 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
83 DebugInfo(CGM.getModuleDebugInfo()),
84 PGO(std::make_unique<CodeGenPGO>(cgm)),
85 ShouldEmitLifetimeMarkers(
86 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
87 if (!suppressNewContext)
88 CGM.getCXXABI().getMangleContext().startNewFunction();
89 EHStack.setCGF(this);
90
92}
93
95 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
96 assert(DeferredDeactivationCleanupStack.empty() &&
97 "missed to deactivate a cleanup");
98
99 if (getLangOpts().OpenMP && CurFn)
100 CGM.getOpenMPRuntime().functionFinished(*this);
101
102 // If we have an OpenMPIRBuilder we want to finalize functions (incl.
103 // outlining etc) at some point. Doing it once the function codegen is done
104 // seems to be a reasonable spot. We do it here, as opposed to the deletion
105 // time of the CodeGenModule, because we have to ensure the IR has not yet
106 // been "emitted" to the outside, thus, modifications are still sensible.
107 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
108 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
109}
110
111// Map the LangOption for exception behavior into
112// the corresponding enum in the IR.
113llvm::fp::ExceptionBehavior
115
116 switch (Kind) {
117 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore;
118 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
119 case LangOptions::FPE_Strict: return llvm::fp::ebStrict;
120 default:
121 llvm_unreachable("Unsupported FP Exception Behavior");
122 }
123}
124
126 llvm::FastMathFlags FMF;
127 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
128 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
129 FMF.setNoInfs(FPFeatures.getNoHonorInfs());
130 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
131 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
132 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
133 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
134 Builder.setFastMathFlags(FMF);
135}
136
138 const Expr *E)
139 : CGF(CGF) {
140 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
141}
142
144 FPOptions FPFeatures)
145 : CGF(CGF) {
146 ConstructorHelper(FPFeatures);
147}
148
149void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
150 OldFPFeatures = CGF.CurFPFeatures;
151 CGF.CurFPFeatures = FPFeatures;
152
153 OldExcept = CGF.Builder.getDefaultConstrainedExcept();
154 OldRounding = CGF.Builder.getDefaultConstrainedRounding();
155
156 if (OldFPFeatures == FPFeatures)
157 return;
158
159 FMFGuard.emplace(CGF.Builder);
160
161 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
162 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
163 auto NewExceptionBehavior =
165 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
166
167 CGF.SetFastMathFlags(FPFeatures);
168
169 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
170 isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
171 isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
172 (NewExceptionBehavior == llvm::fp::ebIgnore &&
173 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
174 "FPConstrained should be enabled on entire function");
175
176 auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
177 auto OldValue =
178 CGF.CurFn->getFnAttribute(Name).getValueAsBool();
179 auto NewValue = OldValue & Value;
180 if (OldValue != NewValue)
181 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
182 };
183 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
184 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
185 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
186}
187
189 CGF.CurFPFeatures = OldFPFeatures;
190 CGF.Builder.setDefaultConstrainedExcept(OldExcept);
191 CGF.Builder.setDefaultConstrainedRounding(OldRounding);
192}
193
194static LValue
195makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType,
196 bool MightBeSigned, CodeGenFunction &CGF,
197 KnownNonNull_t IsKnownNonNull = NotKnownNonNull) {
198 LValueBaseInfo BaseInfo;
199 TBAAAccessInfo TBAAInfo;
200 CharUnits Alignment =
201 CGF.CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, ForPointeeType);
202 Address Addr =
203 MightBeSigned
204 ? CGF.makeNaturalAddressForPointer(V, T, Alignment, false, nullptr,
205 nullptr, IsKnownNonNull)
206 : Address(V, CGF.ConvertTypeForMem(T), Alignment, IsKnownNonNull);
207 return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
208}
209
210LValue
212 KnownNonNull_t IsKnownNonNull) {
213 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
214 /*MightBeSigned*/ true, *this,
215 IsKnownNonNull);
216}
217
218LValue
220 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
221 /*MightBeSigned*/ true, *this);
222}
223
225 QualType T) {
226 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false,
227 /*MightBeSigned*/ false, *this);
228}
229
231 QualType T) {
232 return ::makeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true,
233 /*MightBeSigned*/ false, *this);
234}
235
237 return CGM.getTypes().ConvertTypeForMem(T);
238}
239
241 return CGM.getTypes().ConvertType(T);
242}
243
245 llvm::Type *LLVMTy) {
246 return CGM.getTypes().convertTypeForLoadStore(ASTTy, LLVMTy);
247}
248
250 type = type.getCanonicalType();
251 while (true) {
252 switch (type->getTypeClass()) {
253#define TYPE(name, parent)
254#define ABSTRACT_TYPE(name, parent)
255#define NON_CANONICAL_TYPE(name, parent) case Type::name:
256#define DEPENDENT_TYPE(name, parent) case Type::name:
257#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
258#include "clang/AST/TypeNodes.inc"
259 llvm_unreachable("non-canonical or dependent type in IR-generation");
260
261 case Type::Auto:
262 case Type::DeducedTemplateSpecialization:
263 llvm_unreachable("undeduced type in IR-generation");
264
265 // Various scalar types.
266 case Type::Builtin:
267 case Type::Pointer:
268 case Type::BlockPointer:
269 case Type::LValueReference:
270 case Type::RValueReference:
271 case Type::MemberPointer:
272 case Type::Vector:
273 case Type::ExtVector:
274 case Type::ConstantMatrix:
275 case Type::FunctionProto:
276 case Type::FunctionNoProto:
277 case Type::Enum:
278 case Type::ObjCObjectPointer:
279 case Type::Pipe:
280 case Type::BitInt:
281 case Type::HLSLAttributedResource:
282 case Type::HLSLInlineSpirv:
283 return TEK_Scalar;
284
285 // Complexes.
286 case Type::Complex:
287 return TEK_Complex;
288
289 // Arrays, records, and Objective-C objects.
290 case Type::ConstantArray:
291 case Type::IncompleteArray:
292 case Type::VariableArray:
293 case Type::Record:
294 case Type::ObjCObject:
295 case Type::ObjCInterface:
296 case Type::ArrayParameter:
297 return TEK_Aggregate;
298
299 // We operate on atomic values according to their underlying type.
300 case Type::Atomic:
301 type = cast<AtomicType>(type)->getValueType();
302 continue;
303 }
304 llvm_unreachable("unknown type kind!");
305 }
306}
307
309 // For cleanliness, we try to avoid emitting the return block for
310 // simple cases.
311 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
312
313 if (CurBB) {
314 assert(!CurBB->getTerminator() && "Unexpected terminated block.");
315
316 // We have a valid insert point, reuse it if it is empty or there are no
317 // explicit jumps to the return block.
318 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
319 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
320 delete ReturnBlock.getBlock();
322 } else
323 EmitBlock(ReturnBlock.getBlock());
324 return llvm::DebugLoc();
325 }
326
327 // Otherwise, if the return block is the target of a single direct
328 // branch then we can just put the code in that block instead. This
329 // cleans up functions which started with a unified return block.
330 if (ReturnBlock.getBlock()->hasOneUse()) {
331 llvm::BranchInst *BI =
332 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
333 if (BI && BI->isUnconditional() &&
334 BI->getSuccessor(0) == ReturnBlock.getBlock()) {
335 // Record/return the DebugLoc of the simple 'return' expression to be used
336 // later by the actual 'ret' instruction.
337 llvm::DebugLoc Loc = BI->getDebugLoc();
338 Builder.SetInsertPoint(BI->getParent());
339 BI->eraseFromParent();
340 delete ReturnBlock.getBlock();
342 return Loc;
343 }
344 }
345
346 // FIXME: We are at an unreachable point, there is no reason to emit the block
347 // unless it has uses. However, we still need a place to put the debug
348 // region.end for now.
349
350 EmitBlock(ReturnBlock.getBlock());
351 return llvm::DebugLoc();
352}
353
354static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
355 if (!BB) return;
356 if (!BB->use_empty()) {
357 CGF.CurFn->insert(CGF.CurFn->end(), BB);
358 return;
359 }
360 delete BB;
361}
362
364 assert(BreakContinueStack.empty() &&
365 "mismatched push/pop in break/continue stack!");
366 assert(LifetimeExtendedCleanupStack.empty() &&
367 "mismatched push/pop of cleanups in EHStack!");
368 assert(DeferredDeactivationCleanupStack.empty() &&
369 "mismatched activate/deactivate of cleanups!");
370
371 if (CGM.shouldEmitConvergenceTokens()) {
372 ConvergenceTokenStack.pop_back();
373 assert(ConvergenceTokenStack.empty() &&
374 "mismatched push/pop in convergence stack!");
375 }
376
377 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
378 && NumSimpleReturnExprs == NumReturnExprs
379 && ReturnBlock.getBlock()->use_empty();
380 // Usually the return expression is evaluated before the cleanup
381 // code. If the function contains only a simple return statement,
382 // such as a constant, the location before the cleanup code becomes
383 // the last useful breakpoint in the function, because the simple
384 // return expression will be evaluated after the cleanup code. To be
385 // safe, set the debug location for cleanup code to the location of
386 // the return statement. Otherwise the cleanup code should be at the
387 // end of the function's lexical scope.
388 //
389 // If there are multiple branches to the return block, the branch
390 // instructions will get the location of the return statements and
391 // all will be fine.
392 if (CGDebugInfo *DI = getDebugInfo()) {
393 if (OnlySimpleReturnStmts)
394 DI->EmitLocation(Builder, LastStopPoint);
395 else
396 DI->EmitLocation(Builder, EndLoc);
397 }
398
399 // Pop any cleanups that might have been associated with the
400 // parameters. Do this in whatever block we're currently in; it's
401 // important to do this before we enter the return block or return
402 // edges will be *really* confused.
403 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
404 bool HasOnlyNoopCleanups =
405 HasCleanups && EHStack.containsOnlyNoopCleanups(PrologueCleanupDepth);
406 bool EmitRetDbgLoc = !HasCleanups || HasOnlyNoopCleanups;
407
408 std::optional<ApplyDebugLocation> OAL;
409 if (HasCleanups) {
410 // Make sure the line table doesn't jump back into the body for
411 // the ret after it's been at EndLoc.
412 if (CGDebugInfo *DI = getDebugInfo()) {
413 if (OnlySimpleReturnStmts)
414 DI->EmitLocation(Builder, EndLoc);
415 else
416 // We may not have a valid end location. Try to apply it anyway, and
417 // fall back to an artificial location if needed.
419 }
420
422 }
423
424 // Emit function epilog (to return).
425 llvm::DebugLoc Loc = EmitReturnBlock();
426
428 if (CGM.getCodeGenOpts().InstrumentFunctions)
429 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
430 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
431 CurFn->addFnAttr("instrument-function-exit-inlined",
432 "__cyg_profile_func_exit");
433 }
434
435 // Emit debug descriptor for function end.
436 if (CGDebugInfo *DI = getDebugInfo())
437 DI->EmitFunctionEnd(Builder, CurFn);
438
439 // Reset the debug location to that of the simple 'return' expression, if any
440 // rather than that of the end of the function's scope '}'.
441 uint64_t RetKeyInstructionsAtomGroup = Loc ? Loc->getAtomGroup() : 0;
442 ApplyDebugLocation AL(*this, Loc);
443 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc,
444 RetKeyInstructionsAtomGroup);
446
447 assert(EHStack.empty() &&
448 "did not remove all scopes from cleanup stack!");
449
450 // If someone did an indirect goto, emit the indirect goto block at the end of
451 // the function.
452 if (IndirectBranch) {
453 EmitBlock(IndirectBranch->getParent());
454 Builder.ClearInsertionPoint();
455 }
456
457 // If some of our locals escaped, insert a call to llvm.localescape in the
458 // entry block.
459 if (!EscapedLocals.empty()) {
460 // Invert the map from local to index into a simple vector. There should be
461 // no holes.
463 EscapeArgs.resize(EscapedLocals.size());
464 for (auto &Pair : EscapedLocals)
465 EscapeArgs[Pair.second] = Pair.first;
466 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getOrInsertDeclaration(
467 &CGM.getModule(), llvm::Intrinsic::localescape);
468 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
469 }
470
471 // Remove the AllocaInsertPt instruction, which is just a convenience for us.
472 llvm::Instruction *Ptr = AllocaInsertPt;
473 AllocaInsertPt = nullptr;
474 Ptr->eraseFromParent();
475
476 // PostAllocaInsertPt, if created, was lazily created when it was required,
477 // remove it now since it was just created for our own convenience.
478 if (PostAllocaInsertPt) {
479 llvm::Instruction *PostPtr = PostAllocaInsertPt;
480 PostAllocaInsertPt = nullptr;
481 PostPtr->eraseFromParent();
482 }
483
484 // If someone took the address of a label but never did an indirect goto, we
485 // made a zero entry PHI node, which is illegal, zap it now.
486 if (IndirectBranch) {
487 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
488 if (PN->getNumIncomingValues() == 0) {
489 PN->replaceAllUsesWith(llvm::PoisonValue::get(PN->getType()));
490 PN->eraseFromParent();
491 }
492 }
493
495 EmitIfUsed(*this, TerminateLandingPad);
496 EmitIfUsed(*this, TerminateHandler);
497 EmitIfUsed(*this, UnreachableBlock);
498
499 for (const auto &FuncletAndParent : TerminateFunclets)
500 EmitIfUsed(*this, FuncletAndParent.second);
501
502 if (CGM.getCodeGenOpts().EmitDeclMetadata)
503 EmitDeclMetadata();
504
505 for (const auto &R : DeferredReplacements) {
506 if (llvm::Value *Old = R.first) {
507 Old->replaceAllUsesWith(R.second);
508 cast<llvm::Instruction>(Old)->eraseFromParent();
509 }
510 }
511 DeferredReplacements.clear();
512
513 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
514 // PHIs if the current function is a coroutine. We don't do it for all
515 // functions as it may result in slight increase in numbers of instructions
516 // if compiled with no optimizations. We do it for coroutine as the lifetime
517 // of CleanupDestSlot alloca make correct coroutine frame building very
518 // difficult.
519 if (NormalCleanupDest.isValid() && isCoroutine()) {
520 llvm::DominatorTree DT(*CurFn);
521 llvm::PromoteMemToReg(
522 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
524 }
525
526 // Scan function arguments for vector width.
527 for (llvm::Argument &A : CurFn->args())
528 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
529 LargestVectorWidth =
530 std::max((uint64_t)LargestVectorWidth,
531 VT->getPrimitiveSizeInBits().getKnownMinValue());
532
533 // Update vector width based on return type.
534 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
535 LargestVectorWidth =
536 std::max((uint64_t)LargestVectorWidth,
537 VT->getPrimitiveSizeInBits().getKnownMinValue());
538
539 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
540 LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
541
542 // Add the min-legal-vector-width attribute. This contains the max width from:
543 // 1. min-vector-width attribute used in the source program.
544 // 2. Any builtins used that have a vector width specified.
545 // 3. Values passed in and out of inline assembly.
546 // 4. Width of vector arguments and return types for this function.
547 // 5. Width of vector arguments and return types for functions called by this
548 // function.
549 if (getContext().getTargetInfo().getTriple().isX86())
550 CurFn->addFnAttr("min-legal-vector-width",
551 llvm::utostr(LargestVectorWidth));
552
553 // If we generated an unreachable return block, delete it now.
554 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
555 Builder.ClearInsertionPoint();
556 ReturnBlock.getBlock()->eraseFromParent();
557 }
558 if (ReturnValue.isValid()) {
559 auto *RetAlloca =
560 dyn_cast<llvm::AllocaInst>(ReturnValue.emitRawPointer(*this));
561 if (RetAlloca && RetAlloca->use_empty()) {
562 RetAlloca->eraseFromParent();
564 }
565 }
566}
567
568/// ShouldInstrumentFunction - Return true if the current function should be
569/// instrumented with __cyg_profile_func_* calls
571 if (!CGM.getCodeGenOpts().InstrumentFunctions &&
572 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
573 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
574 return false;
575 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
576 return false;
577 return true;
578}
579
581 if (!CurFuncDecl)
582 return false;
583 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
584}
585
586/// ShouldXRayInstrument - Return true if the current function should be
587/// instrumented with XRay nop sleds.
589 return CGM.getCodeGenOpts().XRayInstrumentFunctions;
590}
591
592/// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
593/// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
595 return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
596 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
597 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
599}
600
602 return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
603 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
604 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
606}
607
608llvm::ConstantInt *
610 // Remove any (C++17) exception specifications, to allow calling e.g. a
611 // noexcept function through a non-noexcept pointer.
612 if (!Ty->isFunctionNoProtoType())
614 std::string Mangled;
615 llvm::raw_string_ostream Out(Mangled);
616 CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false);
617 return llvm::ConstantInt::get(
618 CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled)));
619}
620
621void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
622 llvm::Function *Fn) {
623 if (!FD->hasAttr<DeviceKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
624 return;
625
626 llvm::LLVMContext &Context = getLLVMContext();
627
628 CGM.GenKernelArgMetadata(Fn, FD, this);
629
630 if (!(getLangOpts().OpenCL ||
631 (getLangOpts().CUDA &&
632 getContext().getTargetInfo().getTriple().isSPIRV())))
633 return;
634
635 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
636 QualType HintQTy = A->getTypeHint();
637 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
638 bool IsSignedInteger =
639 HintQTy->isSignedIntegerType() ||
640 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
641 llvm::Metadata *AttrMDArgs[] = {
642 llvm::ConstantAsMetadata::get(llvm::PoisonValue::get(
643 CGM.getTypes().ConvertType(A->getTypeHint()))),
644 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
645 llvm::IntegerType::get(Context, 32),
646 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
647 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
648 }
649
650 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
651 auto Eval = [&](Expr *E) {
652 return E->EvaluateKnownConstInt(FD->getASTContext()).getExtValue();
653 };
654 llvm::Metadata *AttrMDArgs[] = {
655 llvm::ConstantAsMetadata::get(Builder.getInt32(Eval(A->getXDim()))),
656 llvm::ConstantAsMetadata::get(Builder.getInt32(Eval(A->getYDim()))),
657 llvm::ConstantAsMetadata::get(Builder.getInt32(Eval(A->getZDim())))};
658 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
659 }
660
661 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
662 auto Eval = [&](Expr *E) {
663 return E->EvaluateKnownConstInt(FD->getASTContext()).getExtValue();
664 };
665 llvm::Metadata *AttrMDArgs[] = {
666 llvm::ConstantAsMetadata::get(Builder.getInt32(Eval(A->getXDim()))),
667 llvm::ConstantAsMetadata::get(Builder.getInt32(Eval(A->getYDim()))),
668 llvm::ConstantAsMetadata::get(Builder.getInt32(Eval(A->getZDim())))};
669 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
670 }
671
672 if (const OpenCLIntelReqdSubGroupSizeAttr *A =
673 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
674 llvm::Metadata *AttrMDArgs[] = {
675 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
676 Fn->setMetadata("intel_reqd_sub_group_size",
677 llvm::MDNode::get(Context, AttrMDArgs));
678 }
679}
680
681/// Determine whether the function F ends with a return stmt.
682static bool endsWithReturn(const Decl* F) {
683 const Stmt *Body = nullptr;
684 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
685 Body = FD->getBody();
686 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
687 Body = OMD->getBody();
688
689 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
690 auto LastStmt = CS->body_rbegin();
691 if (LastStmt != CS->body_rend())
692 return isa<ReturnStmt>(*LastStmt);
693 }
694 return false;
695}
696
698 if (SanOpts.has(SanitizerKind::Thread)) {
699 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
700 Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
701 }
702}
703
704/// Check if the return value of this function requires sanitization.
705bool CodeGenFunction::requiresReturnValueCheck() const {
706 return requiresReturnValueNullabilityCheck() ||
707 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
708 CurCodeDecl->getAttr<ReturnsNonNullAttr>());
709}
710
711static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
712 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
713 if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
714 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
715 (MD->getNumParams() != 1 && MD->getNumParams() != 2))
716 return false;
717
718 if (!Ctx.hasSameType(MD->parameters()[0]->getType(), Ctx.getSizeType()))
719 return false;
720
721 if (MD->getNumParams() == 2) {
722 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
723 if (!PT || !PT->isVoidPointerType() ||
724 !PT->getPointeeType().isConstQualified())
725 return false;
726 }
727
728 return true;
729}
730
731bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) {
732 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
733 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
734}
735
736bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) {
737 return getTarget().getTriple().getArch() == llvm::Triple::x86 &&
739 llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) {
740 return isInAllocaArgument(CGM.getCXXABI(), P->getType());
741 });
742}
743
744/// Return the UBSan prologue signature for \p FD if one is available.
745static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
746 const FunctionDecl *FD) {
747 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
748 if (!MD->isStatic())
749 return nullptr;
751}
752
754 llvm::Function *Fn,
755 const CGFunctionInfo &FnInfo,
756 const FunctionArgList &Args,
757 SourceLocation Loc,
758 SourceLocation StartLoc) {
759 assert(!CurFn &&
760 "Do not use a CodeGenFunction object for more than one function");
761
762 const Decl *D = GD.getDecl();
763
764 DidCallStackSave = false;
765 CurCodeDecl = D;
766 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
767 if (FD && FD->usesSEHTry())
768 CurSEHParent = GD;
769 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
770 FnRetTy = RetTy;
771 CurFn = Fn;
772 CurFnInfo = &FnInfo;
773 assert(CurFn->isDeclaration() && "Function already has body?");
774
775 // If this function is ignored for any of the enabled sanitizers,
776 // disable the sanitizer for the function.
777 do {
778#define SANITIZER(NAME, ID) \
779 if (SanOpts.empty()) \
780 break; \
781 if (SanOpts.has(SanitizerKind::ID)) \
782 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \
783 SanOpts.set(SanitizerKind::ID, false);
784
785#include "clang/Basic/Sanitizers.def"
786#undef SANITIZER
787 } while (false);
788
789 if (D) {
790 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
791 SanitizerMask no_sanitize_mask;
792 bool NoSanitizeCoverage = false;
793
794 for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) {
795 no_sanitize_mask |= Attr->getMask();
796 // SanitizeCoverage is not handled by SanOpts.
797 if (Attr->hasCoverage())
798 NoSanitizeCoverage = true;
799 }
800
801 // Apply the no_sanitize* attributes to SanOpts.
802 SanOpts.Mask &= ~no_sanitize_mask;
803 if (no_sanitize_mask & SanitizerKind::Address)
804 SanOpts.set(SanitizerKind::KernelAddress, false);
805 if (no_sanitize_mask & SanitizerKind::KernelAddress)
806 SanOpts.set(SanitizerKind::Address, false);
807 if (no_sanitize_mask & SanitizerKind::HWAddress)
808 SanOpts.set(SanitizerKind::KernelHWAddress, false);
809 if (no_sanitize_mask & SanitizerKind::KernelHWAddress)
810 SanOpts.set(SanitizerKind::HWAddress, false);
811
812 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
813 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
814
815 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
816 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
817
818 // Some passes need the non-negated no_sanitize attribute. Pass them on.
819 if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) {
820 if (no_sanitize_mask & SanitizerKind::Thread)
821 Fn->addFnAttr("no_sanitize_thread");
822 }
823 }
824
826 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
827 } else {
828 // Apply sanitizer attributes to the function.
829 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
830 Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
831 if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
832 SanitizerKind::KernelHWAddress))
833 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
834 if (SanOpts.has(SanitizerKind::MemtagStack))
835 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
836 if (SanOpts.has(SanitizerKind::Thread))
837 Fn->addFnAttr(llvm::Attribute::SanitizeThread);
838 if (SanOpts.has(SanitizerKind::Type))
839 Fn->addFnAttr(llvm::Attribute::SanitizeType);
840 if (SanOpts.has(SanitizerKind::NumericalStability))
841 Fn->addFnAttr(llvm::Attribute::SanitizeNumericalStability);
842 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
843 Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
844 if (SanOpts.has(SanitizerKind::AllocToken))
845 Fn->addFnAttr(llvm::Attribute::SanitizeAllocToken);
846 }
847 if (SanOpts.has(SanitizerKind::SafeStack))
848 Fn->addFnAttr(llvm::Attribute::SafeStack);
849 if (SanOpts.has(SanitizerKind::ShadowCallStack))
850 Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
851
852 if (SanOpts.has(SanitizerKind::Realtime))
853 if (FD && FD->getASTContext().hasAnyFunctionEffects())
854 for (const FunctionEffectWithCondition &Fe : FD->getFunctionEffects()) {
855 if (Fe.Effect.kind() == FunctionEffect::Kind::NonBlocking)
856 Fn->addFnAttr(llvm::Attribute::SanitizeRealtime);
857 else if (Fe.Effect.kind() == FunctionEffect::Kind::Blocking)
858 Fn->addFnAttr(llvm::Attribute::SanitizeRealtimeBlocking);
859 }
860
861 // Apply fuzzing attribute to the function.
862 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
863 Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
864
865 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
866 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
867 if (SanOpts.has(SanitizerKind::Thread)) {
868 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
869 const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
870 if (OMD->getMethodFamily() == OMF_dealloc ||
871 OMD->getMethodFamily() == OMF_initialize ||
872 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
874 }
875 }
876 }
877
878 // Ignore unrelated casts in STL allocate() since the allocator must cast
879 // from void* to T* before object initialization completes. Don't match on the
880 // namespace because not all allocators are in std::
881 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
883 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
884 }
885
886 // Ignore null checks in coroutine functions since the coroutines passes
887 // are not aware of how to move the extra UBSan instructions across the split
888 // coroutine boundaries.
889 if (D && SanOpts.has(SanitizerKind::Null))
890 if (FD && FD->getBody() &&
891 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
892 SanOpts.Mask &= ~SanitizerKind::Null;
893
894 // Apply xray attributes to the function (as a string, for now)
895 bool AlwaysXRayAttr = false;
896 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
897 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
899 CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
901 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
902 Fn->addFnAttr("function-instrument", "xray-always");
903 AlwaysXRayAttr = true;
904 }
905 if (XRayAttr->neverXRayInstrument())
906 Fn->addFnAttr("function-instrument", "xray-never");
907 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
909 Fn->addFnAttr("xray-log-args",
910 llvm::utostr(LogArgs->getArgumentCount()));
911 }
912 } else {
913 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
914 Fn->addFnAttr(
915 "xray-instruction-threshold",
916 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
917 }
918
920 if (CGM.getCodeGenOpts().XRayIgnoreLoops)
921 Fn->addFnAttr("xray-ignore-loops");
922
923 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
925 Fn->addFnAttr("xray-skip-exit");
926
927 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
929 Fn->addFnAttr("xray-skip-entry");
930
931 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
932 if (FuncGroups > 1) {
933 auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(),
934 CurFn->getName().bytes_end());
935 auto Group = crc32(FuncName) % FuncGroups;
936 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
937 !AlwaysXRayAttr)
938 Fn->addFnAttr("function-instrument", "xray-never");
939 }
940 }
941
942 if (CGM.getCodeGenOpts().getProfileInstr() !=
943 llvm::driver::ProfileInstrKind::ProfileNone) {
944 switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) {
946 Fn->addFnAttr(llvm::Attribute::SkipProfile);
947 break;
949 Fn->addFnAttr(llvm::Attribute::NoProfile);
950 break;
952 break;
953 }
954 }
955
956 unsigned Count, Offset;
957 StringRef Section;
958 if (const auto *Attr =
959 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
960 Count = Attr->getCount();
961 Offset = Attr->getOffset();
962 Section = Attr->getSection();
963 } else {
964 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
965 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
966 }
967 if (Section.empty())
968 Section = CGM.getCodeGenOpts().PatchableFunctionEntrySection;
969 if (Count && Offset <= Count) {
970 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
971 if (Offset)
972 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
973 if (!Section.empty())
974 Fn->addFnAttr("patchable-function-entry-section", Section);
975 }
976 // Instruct that functions for COFF/CodeView targets should start with a
977 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
978 // backends as they don't need it -- instructions on these architectures are
979 // always atomically patchable at runtime.
980 if (CGM.getCodeGenOpts().HotPatch &&
981 getContext().getTargetInfo().getTriple().isX86() &&
982 getContext().getTargetInfo().getTriple().getEnvironment() !=
983 llvm::Triple::CODE16)
984 Fn->addFnAttr("patchable-function", "prologue-short-redirect");
985
986 // Add no-jump-tables value.
987 if (CGM.getCodeGenOpts().NoUseJumpTables)
988 Fn->addFnAttr("no-jump-tables", "true");
989
990 // Add no-inline-line-tables value.
991 if (CGM.getCodeGenOpts().NoInlineLineTables)
992 Fn->addFnAttr("no-inline-line-tables");
993
994 // Add profile-sample-accurate value.
995 if (CGM.getCodeGenOpts().ProfileSampleAccurate)
996 Fn->addFnAttr("profile-sample-accurate");
997
998 if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
999 Fn->addFnAttr("use-sample-profile");
1000
1001 if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
1002 Fn->addFnAttr("cfi-canonical-jump-table");
1003
1004 if (D && D->hasAttr<NoProfileFunctionAttr>())
1005 Fn->addFnAttr(llvm::Attribute::NoProfile);
1006
1007 if (D && D->hasAttr<HybridPatchableAttr>())
1008 Fn->addFnAttr(llvm::Attribute::HybridPatchable);
1009
1010 if (D) {
1011 // Function attributes take precedence over command line flags.
1012 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
1013 switch (A->getThunkType()) {
1014 case FunctionReturnThunksAttr::Kind::Keep:
1015 break;
1016 case FunctionReturnThunksAttr::Kind::Extern:
1017 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1018 break;
1019 }
1020 } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
1021 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
1022 }
1023
1024 if (FD && (getLangOpts().OpenCL ||
1025 (getLangOpts().CUDA &&
1026 getContext().getTargetInfo().getTriple().isSPIRV()) ||
1027 ((getLangOpts().HIP || getLangOpts().OffloadViaLLVM) &&
1028 getLangOpts().CUDAIsDevice))) {
1029 // Add metadata for a kernel function.
1030 EmitKernelMetadata(FD, Fn);
1031 }
1032
1033 if (FD && FD->hasAttr<ClspvLibclcBuiltinAttr>()) {
1034 Fn->setMetadata("clspv_libclc_builtin",
1035 llvm::MDNode::get(getLLVMContext(), {}));
1036 }
1037
1038 // If we are checking function types, emit a function type signature as
1039 // prologue data.
1040 if (FD && SanOpts.has(SanitizerKind::Function)) {
1041 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
1042 llvm::LLVMContext &Ctx = Fn->getContext();
1043 llvm::MDBuilder MDB(Ctx);
1044 Fn->setMetadata(
1045 llvm::LLVMContext::MD_func_sanitize,
1046 MDB.createRTTIPointerPrologue(
1047 PrologueSig, getUBSanFunctionTypeHash(FD->getType())));
1048 }
1049 }
1050
1051 // If we're checking nullability, we need to know whether we can check the
1052 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
1053 if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
1054 auto Nullability = FnRetTy->getNullability();
1055 if (Nullability && *Nullability == NullabilityKind::NonNull &&
1056 !FnRetTy->isRecordType()) {
1057 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1058 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
1059 RetValNullabilityPrecondition =
1060 llvm::ConstantInt::getTrue(getLLVMContext());
1061 }
1062 }
1063
1064 // If we're in C++ mode and the function name is "main", it is guaranteed
1065 // to be norecurse by the standard (3.6.1.3 "The function main shall not be
1066 // used within a program").
1067 //
1068 // OpenCL C 2.0 v2.2-11 s6.9.i:
1069 // Recursion is not supported.
1070 //
1071 // HLSL
1072 // Recursion is not supported.
1073 //
1074 // SYCL v1.2.1 s3.10:
1075 // kernels cannot include RTTI information, exception classes,
1076 // recursive code, virtual functions or make use of C++ libraries that
1077 // are not compiled for the device.
1078 if (FD &&
1079 ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
1080 getLangOpts().HLSL || getLangOpts().SYCLIsDevice ||
1081 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
1082 Fn->addFnAttr(llvm::Attribute::NoRecurse);
1083
1084 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
1085 llvm::fp::ExceptionBehavior FPExceptionBehavior =
1086 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
1087 Builder.setDefaultConstrainedRounding(RM);
1088 Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
1089 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
1090 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
1091 RM != llvm::RoundingMode::NearestTiesToEven))) {
1092 Builder.setIsFPConstrained(true);
1093 Fn->addFnAttr(llvm::Attribute::StrictFP);
1094 }
1095
1096 // If a custom alignment is used, force realigning to this alignment on
1097 // any main function which certainly will need it.
1098 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
1099 CGM.getCodeGenOpts().StackAlignment))
1100 Fn->addFnAttr("stackrealign");
1101
1102 // "main" doesn't need to zero out call-used registers.
1103 if (FD && FD->isMain())
1104 Fn->removeFnAttr("zero-call-used-regs");
1105
1106 // Add vscale_range attribute if appropriate.
1107 llvm::StringMap<bool> FeatureMap;
1108 auto IsArmStreaming = TargetInfo::ArmStreamingKind::NotStreaming;
1109 if (FD) {
1110 getContext().getFunctionFeatureMap(FeatureMap, FD);
1111 if (const auto *T = FD->getType()->getAs<FunctionProtoType>())
1112 if (T->getAArch64SMEAttributes() &
1115
1116 if (IsArmStreamingFunction(FD, true))
1118 }
1119 std::optional<std::pair<unsigned, unsigned>> VScaleRange =
1120 getContext().getTargetInfo().getVScaleRange(getLangOpts(), IsArmStreaming,
1121 &FeatureMap);
1122 if (VScaleRange) {
1123 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
1124 getLLVMContext(), VScaleRange->first, VScaleRange->second));
1125 }
1126
1127 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
1128
1129 // Create a marker to make it easy to insert allocas into the entryblock
1130 // later. Don't create this with the builder, because we don't want it
1131 // folded.
1132 llvm::Value *Poison = llvm::PoisonValue::get(Int32Ty);
1133 AllocaInsertPt = new llvm::BitCastInst(Poison, Int32Ty, "allocapt", EntryBB);
1134
1136
1137 Builder.SetInsertPoint(EntryBB);
1138
1139 // If we're checking the return value, allocate space for a pointer to a
1140 // precise source location of the checked return statement.
1141 if (requiresReturnValueCheck()) {
1142 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1143 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1144 ReturnLocation);
1145 }
1146
1147 // Emit subprogram debug descriptor.
1148 if (CGDebugInfo *DI = getDebugInfo()) {
1149 // Reconstruct the type from the argument list so that implicit parameters,
1150 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1151 // convention.
1152 DI->emitFunctionStart(GD, Loc, StartLoc,
1153 DI->getFunctionType(FD, RetTy, Args), CurFn,
1155 }
1156
1158 if (CGM.getCodeGenOpts().InstrumentFunctions)
1159 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1160 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1161 CurFn->addFnAttr("instrument-function-entry-inlined",
1162 "__cyg_profile_func_enter");
1163 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1164 CurFn->addFnAttr("instrument-function-entry-inlined",
1165 "__cyg_profile_func_enter_bare");
1166 }
1167
1168 // Since emitting the mcount call here impacts optimizations such as function
1169 // inlining, we just add an attribute to insert a mcount call in backend.
1170 // The attribute "counting-function" is set to mcount function name which is
1171 // architecture dependent.
1172 if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1173 // Calls to fentry/mcount should not be generated if function has
1174 // the no_instrument_function attribute.
1175 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1176 if (CGM.getCodeGenOpts().CallFEntry)
1177 Fn->addFnAttr("fentry-call", "true");
1178 else {
1179 Fn->addFnAttr("instrument-function-entry-inlined",
1180 getTarget().getMCountName());
1181 }
1182 if (CGM.getCodeGenOpts().MNopMCount) {
1183 if (!CGM.getCodeGenOpts().CallFEntry)
1184 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1185 << "-mnop-mcount" << "-mfentry";
1186 Fn->addFnAttr("mnop-mcount");
1187 }
1188
1189 if (CGM.getCodeGenOpts().RecordMCount) {
1190 if (!CGM.getCodeGenOpts().CallFEntry)
1191 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1192 << "-mrecord-mcount" << "-mfentry";
1193 Fn->addFnAttr("mrecord-mcount");
1194 }
1195 }
1196 }
1197
1198 if (CGM.getCodeGenOpts().PackedStack) {
1199 if (getContext().getTargetInfo().getTriple().getArch() !=
1200 llvm::Triple::systemz)
1201 CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1202 << "-mpacked-stack";
1203 Fn->addFnAttr("packed-stack");
1204 }
1205
1206 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1207 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1208 Fn->addFnAttr("warn-stack-size",
1209 std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1210
1211 if (RetTy->isVoidType()) {
1212 // Void type; nothing to return.
1214
1215 // Count the implicit return.
1216 if (!endsWithReturn(D))
1217 ++NumReturnExprs;
1218 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1219 // Indirect return; emit returned value directly into sret slot.
1220 // This reduces code size, and affects correctness in C++.
1221 auto AI = CurFn->arg_begin();
1222 if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1223 ++AI;
1225 &*AI, RetTy, CurFnInfo->getReturnInfo().getIndirectAlign(), false,
1226 nullptr, nullptr, KnownNonNull);
1227 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1229 CreateDefaultAlignTempAlloca(ReturnValue.getType(), "result.ptr");
1230 Builder.CreateStore(ReturnValue.emitRawPointer(*this),
1232 }
1233 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1234 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1235 // Load the sret pointer from the argument struct and return into that.
1236 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1237 llvm::Function::arg_iterator EI = CurFn->arg_end();
1238 --EI;
1239 llvm::Value *Addr = Builder.CreateStructGEP(
1240 CurFnInfo->getArgStruct(), &*EI, Idx);
1241 llvm::Type *Ty =
1242 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1244 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1246 CGM.getNaturalTypeAlignment(RetTy), KnownNonNull);
1247 } else {
1248 ReturnValue = CreateIRTemp(RetTy, "retval");
1249
1250 // Tell the epilog emitter to autorelease the result. We do this
1251 // now so that various specialized functions can suppress it
1252 // during their IR-generation.
1253 if (getLangOpts().ObjCAutoRefCount &&
1254 !CurFnInfo->isReturnsRetained() &&
1255 RetTy->isObjCRetainableType())
1256 AutoreleaseResult = true;
1257 }
1258
1260
1261 PrologueCleanupDepth = EHStack.stable_begin();
1262
1263 // Emit OpenMP specific initialization of the device functions.
1264 if (getLangOpts().OpenMP && CurCodeDecl)
1265 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1266
1267 if (FD && getLangOpts().HLSL) {
1268 // Handle emitting HLSL entry functions.
1269 if (FD->hasAttr<HLSLShaderAttr>()) {
1270 CGM.getHLSLRuntime().emitEntryFunction(FD, Fn);
1271 }
1272 }
1273
1275
1276 if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D);
1277 MD && !MD->isStatic()) {
1278 bool IsInLambda =
1279 MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call;
1281 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1282 if (IsInLambda) {
1283 // We're in a lambda; figure out the captures.
1287 // If the lambda captures the object referred to by '*this' - either by
1288 // value or by reference, make sure CXXThisValue points to the correct
1289 // object.
1290
1291 // Get the lvalue for the field (which is a copy of the enclosing object
1292 // or contains the address of the enclosing object).
1294 if (!LambdaThisCaptureField->getType()->isPointerType()) {
1295 // If the enclosing object was captured by value, just use its
1296 // address. Sign this pointer.
1297 CXXThisValue = ThisFieldLValue.getPointer(*this);
1298 } else {
1299 // Load the lvalue pointed to by the field, since '*this' was captured
1300 // by reference.
1301 CXXThisValue =
1302 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1303 }
1304 }
1305 for (auto *FD : MD->getParent()->fields()) {
1306 if (FD->hasCapturedVLAType()) {
1307 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1309 auto VAT = FD->getCapturedVLAType();
1310 VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1311 }
1312 }
1313 } else if (MD->isImplicitObjectMemberFunction()) {
1314 // Not in a lambda; just use 'this' from the method.
1315 // FIXME: Should we generate a new load for each use of 'this'? The
1316 // fast register allocator would be happier...
1317 CXXThisValue = CXXABIThisValue;
1318 }
1319
1320 // Check the 'this' pointer once per function, if it's available.
1321 if (CXXABIThisValue) {
1322 SanitizerSet SkippedChecks;
1323 SkippedChecks.set(SanitizerKind::ObjectSize, true);
1324 QualType ThisTy = MD->getThisType();
1325
1326 // If this is the call operator of a lambda with no captures, it
1327 // may have a static invoker function, which may call this operator with
1328 // a null 'this' pointer.
1330 SkippedChecks.set(SanitizerKind::Null, true);
1331
1334 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1335 }
1336 }
1337
1338 // If any of the arguments have a variably modified type, make sure to
1339 // emit the type size, but only if the function is not naked. Naked functions
1340 // have no prolog to run this evaluation.
1341 if (!FD || !FD->hasAttr<NakedAttr>()) {
1342 for (const VarDecl *VD : Args) {
1343 // Dig out the type as written from ParmVarDecls; it's unclear whether
1344 // the standard (C99 6.9.1p10) requires this, but we're following the
1345 // precedent set by gcc.
1346 QualType Ty;
1347 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1348 Ty = PVD->getOriginalType();
1349 else
1350 Ty = VD->getType();
1351
1352 if (Ty->isVariablyModifiedType())
1354 }
1355 }
1356 // Emit a location at the end of the prologue.
1357 if (CGDebugInfo *DI = getDebugInfo())
1358 DI->EmitLocation(Builder, StartLoc);
1359 // TODO: Do we need to handle this in two places like we do with
1360 // target-features/target-cpu?
1361 if (CurFuncDecl)
1362 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1363 LargestVectorWidth = VecWidth->getVectorWidth();
1364
1365 if (CGM.shouldEmitConvergenceTokens())
1366 ConvergenceTokenStack.push_back(getOrEmitConvergenceEntryToken(CurFn));
1367}
1368
1372 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1374 else
1375 EmitStmt(Body);
1376}
1377
1378/// When instrumenting to collect profile data, the counts for some blocks
1379/// such as switch cases need to not include the fall-through counts, so
1380/// emit a branch around the instrumentation code. When not instrumenting,
1381/// this just calls EmitBlock().
1383 const Stmt *S) {
1384 llvm::BasicBlock *SkipCountBB = nullptr;
1385 // Do not skip over the instrumentation when single byte coverage mode is
1386 // enabled.
1387 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1389 // When instrumenting for profiling, the fallthrough to certain
1390 // statements needs to skip over the instrumentation code so that we
1391 // get an accurate count.
1392 SkipCountBB = createBasicBlock("skipcount");
1393 EmitBranch(SkipCountBB);
1394 }
1395 EmitBlock(BB);
1396 uint64_t CurrentCount = getCurrentProfileCount();
1399 if (SkipCountBB)
1400 EmitBlock(SkipCountBB);
1401}
1402
1403/// Tries to mark the given function nounwind based on the
1404/// non-existence of any throwing calls within it. We believe this is
1405/// lightweight enough to do at -O0.
1406static void TryMarkNoThrow(llvm::Function *F) {
1407 // LLVM treats 'nounwind' on a function as part of the type, so we
1408 // can't do this on functions that can be overwritten.
1409 if (F->isInterposable()) return;
1410
1411 for (llvm::BasicBlock &BB : *F)
1412 for (llvm::Instruction &I : BB)
1413 if (I.mayThrow())
1414 return;
1415
1416 F->setDoesNotThrow();
1417}
1418
1420 FunctionArgList &Args) {
1421 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1422 QualType ResTy = FD->getReturnType();
1423
1424 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1425 if (MD && MD->isImplicitObjectMemberFunction()) {
1426 if (CGM.getCXXABI().HasThisReturn(GD))
1427 ResTy = MD->getThisType();
1428 else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1429 ResTy = CGM.getContext().VoidPtrTy;
1430 CGM.getCXXABI().buildThisParam(*this, Args);
1431 }
1432
1433 // The base version of an inheriting constructor whose constructed base is a
1434 // virtual base is not passed any arguments (because it doesn't actually call
1435 // the inherited constructor).
1436 bool PassedParams = true;
1437 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1438 if (auto Inherited = CD->getInheritedConstructor())
1439 PassedParams =
1440 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1441
1442 if (PassedParams) {
1443 for (auto *Param : FD->parameters()) {
1444 Args.push_back(Param);
1445 if (!Param->hasAttr<PassObjectSizeAttr>())
1446 continue;
1447
1449 getContext(), Param->getDeclContext(), Param->getLocation(),
1450 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other);
1451 SizeArguments[Param] = Implicit;
1452 Args.push_back(Implicit);
1453 }
1454 }
1455
1456 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1457 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1458
1459 return ResTy;
1460}
1461
1462void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1463 const CGFunctionInfo &FnInfo) {
1464 assert(Fn && "generating code for null Function");
1465 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1466 CurGD = GD;
1467
1468 FunctionArgList Args;
1469 QualType ResTy = BuildFunctionArgList(GD, Args);
1470
1471 CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, FD);
1472
1473 if (FD->isInlineBuiltinDeclaration()) {
1474 // When generating code for a builtin with an inline declaration, use a
1475 // mangled name to hold the actual body, while keeping an external
1476 // definition in case the function pointer is referenced somewhere.
1477 std::string FDInlineName = (Fn->getName() + ".inline").str();
1478 llvm::Module *M = Fn->getParent();
1479 llvm::Function *Clone = M->getFunction(FDInlineName);
1480 if (!Clone) {
1481 Clone = llvm::Function::Create(Fn->getFunctionType(),
1482 llvm::GlobalValue::InternalLinkage,
1483 Fn->getAddressSpace(), FDInlineName, M);
1484 Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1485 }
1486 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1487 Fn = Clone;
1488 } else {
1489 // Detect the unusual situation where an inline version is shadowed by a
1490 // non-inline version. In that case we should pick the external one
1491 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1492 // to detect that situation before we reach codegen, so do some late
1493 // replacement.
1494 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1495 PD = PD->getPreviousDecl()) {
1496 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1497 std::string FDInlineName = (Fn->getName() + ".inline").str();
1498 llvm::Module *M = Fn->getParent();
1499 if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1500 Clone->replaceAllUsesWith(Fn);
1501 Clone->eraseFromParent();
1502 }
1503 break;
1504 }
1505 }
1506 }
1507
1508 // Check if we should generate debug info for this function.
1509 if (FD->hasAttr<NoDebugAttr>()) {
1510 // Clear non-distinct debug info that was possibly attached to the function
1511 // due to an earlier declaration without the nodebug attribute
1512 Fn->setSubprogram(nullptr);
1513 // Disable debug info indefinitely for this function
1514 DebugInfo = nullptr;
1515 }
1516 // Finalize function debug info on exit.
1517 auto Cleanup = llvm::make_scope_exit([this] {
1518 if (CGDebugInfo *DI = getDebugInfo())
1519 DI->completeFunction();
1520 });
1521
1522 // The function might not have a body if we're generating thunks for a
1523 // function declaration.
1524 SourceRange BodyRange;
1525 if (Stmt *Body = FD->getBody())
1526 BodyRange = Body->getSourceRange();
1527 else
1528 BodyRange = FD->getLocation();
1529 CurEHLocation = BodyRange.getEnd();
1530
1531 // Use the location of the start of the function to determine where
1532 // the function definition is located. By default use the location
1533 // of the declaration as the location for the subprogram. A function
1534 // may lack a declaration in the source code if it is created by code
1535 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1536 SourceLocation Loc = FD->getLocation();
1537
1538 // If this is a function specialization then use the pattern body
1539 // as the location for the function.
1540 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1541 if (SpecDecl->hasBody(SpecDecl))
1542 Loc = SpecDecl->getLocation();
1543
1544 Stmt *Body = FD->getBody();
1545
1546 if (Body) {
1547 // Coroutines always emit lifetime markers.
1548 if (isa<CoroutineBodyStmt>(Body))
1549 ShouldEmitLifetimeMarkers = true;
1550
1551 // Initialize helper which will detect jumps which can cause invalid
1552 // lifetime markers.
1553 if (ShouldEmitLifetimeMarkers)
1554 Bypasses.Init(CGM, Body);
1555 }
1556
1557 // Emit the standard function prologue.
1558 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1559
1560 // Save parameters for coroutine function.
1561 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1562 llvm::append_range(FnArgs, FD->parameters());
1563
1564 // Ensure that the function adheres to the forward progress guarantee, which
1565 // is required by certain optimizations.
1566 // In C++11 and up, the attribute will be removed if the body contains a
1567 // trivial empty loop.
1569 CurFn->addFnAttr(llvm::Attribute::MustProgress);
1570
1571 // Generate the body of the function.
1572 PGO->assignRegionCounters(GD, CurFn);
1573 if (isa<CXXDestructorDecl>(FD))
1574 EmitDestructorBody(Args);
1575 else if (isa<CXXConstructorDecl>(FD))
1576 EmitConstructorBody(Args);
1577 else if (getLangOpts().CUDA &&
1578 !getLangOpts().CUDAIsDevice &&
1579 FD->hasAttr<CUDAGlobalAttr>())
1580 CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1581 else if (isa<CXXMethodDecl>(FD) &&
1582 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1583 // The lambda static invoker function is special, because it forwards or
1584 // clones the body of the function call operator (but is actually static).
1586 } else if (isa<CXXMethodDecl>(FD) &&
1588 !FnInfo.isDelegateCall() &&
1589 cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() &&
1590 hasInAllocaArg(cast<CXXMethodDecl>(FD))) {
1591 // If emitting a lambda with static invoker on X86 Windows, change
1592 // the call operator body.
1593 // Make sure that this is a call operator with an inalloca arg and check
1594 // for delegate call to make sure this is the original call op and not the
1595 // new forwarding function for the static invoker.
1597 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1598 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1599 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1600 // Implicit copy-assignment gets the same special treatment as implicit
1601 // copy-constructors.
1603 } else if (DeviceKernelAttr::isOpenCLSpelling(
1604 FD->getAttr<DeviceKernelAttr>()) &&
1606 CallArgList CallArgs;
1607 for (unsigned i = 0; i < Args.size(); ++i) {
1608 Address ArgAddr = GetAddrOfLocalVar(Args[i]);
1609 QualType ArgQualType = Args[i]->getType();
1610 RValue ArgRValue = convertTempToRValue(ArgAddr, ArgQualType, Loc);
1611 CallArgs.add(ArgRValue, ArgQualType);
1612 }
1614 const FunctionType *FT = cast<FunctionType>(FD->getType());
1615 CGM.getTargetCodeGenInfo().setOCLKernelStubCallingConvention(FT);
1616 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
1617 CallArgs, FT, /*ChainCall=*/false);
1618 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FnInfo);
1619 llvm::Constant *GDStubFunctionPointer =
1620 CGM.getRawFunctionPointer(GDStub, FTy);
1621 CGCallee GDStubCallee = CGCallee::forDirect(GDStubFunctionPointer, GDStub);
1622 EmitCall(FnInfo, GDStubCallee, ReturnValueSlot(), CallArgs, nullptr, false,
1623 Loc);
1624 } else if (Body) {
1625 EmitFunctionBody(Body);
1626 } else
1627 llvm_unreachable("no definition for emitted function");
1628
1629 // C++11 [stmt.return]p2:
1630 // Flowing off the end of a function [...] results in undefined behavior in
1631 // a value-returning function.
1632 // C11 6.9.1p12:
1633 // If the '}' that terminates a function is reached, and the value of the
1634 // function call is used by the caller, the behavior is undefined.
1636 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1637 bool ShouldEmitUnreachable =
1638 CGM.getCodeGenOpts().StrictReturn ||
1639 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1640 if (SanOpts.has(SanitizerKind::Return)) {
1641 auto CheckOrdinal = SanitizerKind::SO_Return;
1642 auto CheckHandler = SanitizerHandler::MissingReturn;
1643 SanitizerDebugLocation SanScope(this, {CheckOrdinal}, CheckHandler);
1644 llvm::Value *IsFalse = Builder.getFalse();
1645 EmitCheck(std::make_pair(IsFalse, CheckOrdinal), CheckHandler,
1647 } else if (ShouldEmitUnreachable) {
1648 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1649 EmitTrapCall(llvm::Intrinsic::trap);
1650 }
1651 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1652 Builder.CreateUnreachable();
1653 Builder.ClearInsertionPoint();
1654 }
1655 }
1656
1657 // Emit the standard function epilogue.
1658 FinishFunction(BodyRange.getEnd());
1659
1660 PGO->verifyCounterMap();
1661
1662 // If we haven't marked the function nothrow through other means, do
1663 // a quick pass now to see if we can.
1664 if (!CurFn->doesNotThrow())
1666}
1667
1668/// ContainsLabel - Return true if the statement contains a label in it. If
1669/// this statement is not executed normally, it not containing a label means
1670/// that we can just remove the code.
1671bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1672 // Null statement, not a label!
1673 if (!S) return false;
1674
1675 // If this is a label, we have to emit the code, consider something like:
1676 // if (0) { ... foo: bar(); } goto foo;
1677 //
1678 // TODO: If anyone cared, we could track __label__'s, since we know that you
1679 // can't jump to one from outside their declared region.
1680 if (isa<LabelStmt>(S))
1681 return true;
1682
1683 // If this is a case/default statement, and we haven't seen a switch, we have
1684 // to emit the code.
1685 if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1686 return true;
1687
1688 // If this is a switch statement, we want to ignore cases below it.
1689 if (isa<SwitchStmt>(S))
1690 IgnoreCaseStmts = true;
1691
1692 // Scan subexpressions for verboten labels.
1693 for (const Stmt *SubStmt : S->children())
1694 if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1695 return true;
1696
1697 return false;
1698}
1699
1700/// containsBreak - Return true if the statement contains a break out of it.
1701/// If the statement (recursively) contains a switch or loop with a break
1702/// inside of it, this is fine.
1704 // Null statement, not a label!
1705 if (!S) return false;
1706
1707 // If this is a switch or loop that defines its own break scope, then we can
1708 // include it and anything inside of it.
1709 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1710 isa<ForStmt>(S))
1711 return false;
1712
1713 if (isa<BreakStmt>(S))
1714 return true;
1715
1716 // Scan subexpressions for verboten breaks.
1717 for (const Stmt *SubStmt : S->children())
1718 if (containsBreak(SubStmt))
1719 return true;
1720
1721 return false;
1722}
1723
1725 if (!S) return false;
1726
1727 // Some statement kinds add a scope and thus never add a decl to the current
1728 // scope. Note, this list is longer than the list of statements that might
1729 // have an unscoped decl nested within them, but this way is conservatively
1730 // correct even if more statement kinds are added.
1731 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1735 return false;
1736
1737 if (isa<DeclStmt>(S))
1738 return true;
1739
1740 for (const Stmt *SubStmt : S->children())
1741 if (mightAddDeclToScope(SubStmt))
1742 return true;
1743
1744 return false;
1745}
1746
1747/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1748/// to a constant, or if it does but contains a label, return false. If it
1749/// constant folds return true and set the boolean result in Result.
1751 bool &ResultBool,
1752 bool AllowLabels) {
1753 // If MC/DC is enabled, disable folding so that we can instrument all
1754 // conditions to yield complete test vectors. We still keep track of
1755 // folded conditions during region mapping and visualization.
1756 if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() &&
1757 CGM.getCodeGenOpts().MCDCCoverage)
1758 return false;
1759
1760 llvm::APSInt ResultInt;
1761 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1762 return false;
1763
1764 ResultBool = ResultInt.getBoolValue();
1765 return true;
1766}
1767
1768/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1769/// to a constant, or if it does but contains a label, return false. If it
1770/// constant folds return true and set the folded value.
1772 llvm::APSInt &ResultInt,
1773 bool AllowLabels) {
1774 // FIXME: Rename and handle conversion of other evaluatable things
1775 // to bool.
1777 if (!Cond->EvaluateAsInt(Result, getContext()))
1778 return false; // Not foldable, not integer or not fully evaluatable.
1779
1780 llvm::APSInt Int = Result.Val.getInt();
1781 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1782 return false; // Contains a label.
1783
1784 PGO->markStmtMaybeUsed(Cond);
1785 ResultInt = Int;
1786 return true;
1787}
1788
1789/// Strip parentheses and simplistic logical-NOT operators.
1791 while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) {
1792 if (Op->getOpcode() != UO_LNot)
1793 break;
1794 C = Op->getSubExpr();
1795 }
1796 return C->IgnoreParens();
1797}
1798
1799/// Determine whether the given condition is an instrumentable condition
1800/// (i.e. no "&&" or "||").
1802 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C));
1803 return (!BOp || !BOp->isLogicalOp());
1804}
1805
1806/// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1807/// increments a profile counter based on the semantics of the given logical
1808/// operator opcode. This is used to instrument branch condition coverage for
1809/// logical operators.
1811 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1812 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1813 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1814 // If not instrumenting, just emit a branch.
1815 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1816 if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1817 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1818
1819 const Stmt *CntrStmt = (CntrIdx ? CntrIdx : Cond);
1820
1821 llvm::BasicBlock *ThenBlock = nullptr;
1822 llvm::BasicBlock *ElseBlock = nullptr;
1823 llvm::BasicBlock *NextBlock = nullptr;
1824
1825 // Create the block we'll use to increment the appropriate counter.
1826 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1827
1828 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1829 // means we need to evaluate the condition and increment the counter on TRUE:
1830 //
1831 // if (Cond)
1832 // goto CounterIncrBlock;
1833 // else
1834 // goto FalseBlock;
1835 //
1836 // CounterIncrBlock:
1837 // Counter++;
1838 // goto TrueBlock;
1839
1840 if (LOp == BO_LAnd) {
1841 ThenBlock = CounterIncrBlock;
1842 ElseBlock = FalseBlock;
1843 NextBlock = TrueBlock;
1844 }
1845
1846 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1847 // we need to evaluate the condition and increment the counter on FALSE:
1848 //
1849 // if (Cond)
1850 // goto TrueBlock;
1851 // else
1852 // goto CounterIncrBlock;
1853 //
1854 // CounterIncrBlock:
1855 // Counter++;
1856 // goto FalseBlock;
1857
1858 else if (LOp == BO_LOr) {
1859 ThenBlock = TrueBlock;
1860 ElseBlock = CounterIncrBlock;
1861 NextBlock = FalseBlock;
1862 } else {
1863 llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1864 }
1865
1866 // Emit Branch based on condition.
1867 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1868
1869 // Emit the block containing the counter increment(s).
1870 EmitBlock(CounterIncrBlock);
1871
1872 // Increment corresponding counter; if index not provided, use Cond as index.
1873 incrementProfileCounter(CntrStmt);
1874
1875 // Go to the next block.
1876 EmitBranch(NextBlock);
1877}
1878
1879/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1880/// statement) to the specified blocks. Based on the condition, this might try
1881/// to simplify the codegen of the conditional based on the branch.
1882/// \param LH The value of the likelihood attribute on the True branch.
1883/// \param ConditionalOp Used by MC/DC code coverage to track the result of the
1884/// ConditionalOperator (ternary) through a recursive call for the operator's
1885/// LHS and RHS nodes.
1887 const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock,
1888 uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp,
1889 const VarDecl *ConditionalDecl) {
1890 Cond = Cond->IgnoreParens();
1891
1892 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1893 // Handle X && Y in a condition.
1894 if (CondBOp->getOpcode() == BO_LAnd) {
1895 MCDCLogOpStack.push_back(CondBOp);
1896
1897 // If we have "1 && X", simplify the code. "0 && X" would have constant
1898 // folded if the case was simple enough.
1899 bool ConstantBool = false;
1900 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1901 ConstantBool) {
1902 // br(1 && X) -> br(X).
1903 incrementProfileCounter(CondBOp);
1904 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1905 FalseBlock, TrueCount, LH);
1906 MCDCLogOpStack.pop_back();
1907 return;
1908 }
1909
1910 // If we have "X && 1", simplify the code to use an uncond branch.
1911 // "X && 0" would have been constant folded to 0.
1912 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1913 ConstantBool) {
1914 // br(X && 1) -> br(X).
1915 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1916 FalseBlock, TrueCount, LH, CondBOp);
1917 MCDCLogOpStack.pop_back();
1918 return;
1919 }
1920
1921 // Emit the LHS as a conditional. If the LHS conditional is false, we
1922 // want to jump to the FalseBlock.
1923 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1924 // The counter tells us how often we evaluate RHS, and all of TrueCount
1925 // can be propagated to that branch.
1926 uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1927
1928 ConditionalEvaluation eval(*this);
1929 {
1930 ApplyDebugLocation DL(*this, Cond);
1931 // Propagate the likelihood attribute like __builtin_expect
1932 // __builtin_expect(X && Y, 1) -> X and Y are likely
1933 // __builtin_expect(X && Y, 0) -> only Y is unlikely
1934 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1935 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1936 EmitBlock(LHSTrue);
1937 }
1938
1939 incrementProfileCounter(CondBOp);
1940 setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1941
1942 // Any temporaries created here are conditional.
1943 eval.begin(*this);
1944 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1945 FalseBlock, TrueCount, LH);
1946 eval.end(*this);
1947 MCDCLogOpStack.pop_back();
1948 return;
1949 }
1950
1951 if (CondBOp->getOpcode() == BO_LOr) {
1952 MCDCLogOpStack.push_back(CondBOp);
1953
1954 // If we have "0 || X", simplify the code. "1 || X" would have constant
1955 // folded if the case was simple enough.
1956 bool ConstantBool = false;
1957 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1958 !ConstantBool) {
1959 // br(0 || X) -> br(X).
1960 incrementProfileCounter(CondBOp);
1961 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1962 FalseBlock, TrueCount, LH);
1963 MCDCLogOpStack.pop_back();
1964 return;
1965 }
1966
1967 // If we have "X || 0", simplify the code to use an uncond branch.
1968 // "X || 1" would have been constant folded to 1.
1969 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1970 !ConstantBool) {
1971 // br(X || 0) -> br(X).
1972 EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1973 FalseBlock, TrueCount, LH, CondBOp);
1974 MCDCLogOpStack.pop_back();
1975 return;
1976 }
1977 // Emit the LHS as a conditional. If the LHS conditional is true, we
1978 // want to jump to the TrueBlock.
1979 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1980 // We have the count for entry to the RHS and for the whole expression
1981 // being true, so we can divy up True count between the short circuit and
1982 // the RHS.
1983 uint64_t LHSCount =
1984 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1985 uint64_t RHSCount = TrueCount - LHSCount;
1986
1987 ConditionalEvaluation eval(*this);
1988 {
1989 // Propagate the likelihood attribute like __builtin_expect
1990 // __builtin_expect(X || Y, 1) -> only Y is likely
1991 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1992 ApplyDebugLocation DL(*this, Cond);
1993 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1994 LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1995 EmitBlock(LHSFalse);
1996 }
1997
1998 incrementProfileCounter(CondBOp);
1999 setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
2000
2001 // Any temporaries created here are conditional.
2002 eval.begin(*this);
2003 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
2004 RHSCount, LH);
2005
2006 eval.end(*this);
2007 MCDCLogOpStack.pop_back();
2008 return;
2009 }
2010 }
2011
2012 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
2013 // br(!x, t, f) -> br(x, f, t)
2014 // Avoid doing this optimization when instrumenting a condition for MC/DC.
2015 // LNot is taken as part of the condition for simplicity, and changing its
2016 // sense negatively impacts test vector tracking.
2017 bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() &&
2018 CGM.getCodeGenOpts().MCDCCoverage &&
2020 if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) {
2021 // Negate the count.
2022 uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
2023 // The values of the enum are chosen to make this negation possible.
2024 LH = static_cast<Stmt::Likelihood>(-LH);
2025 // Negate the condition and swap the destination blocks.
2026 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
2027 FalseCount, LH);
2028 }
2029 }
2030
2031 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
2032 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
2033 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
2034 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
2035
2036 // The ConditionalOperator itself has no likelihood information for its
2037 // true and false branches. This matches the behavior of __builtin_expect.
2038 ConditionalEvaluation cond(*this);
2039 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
2041
2042 // When computing PGO branch weights, we only know the overall count for
2043 // the true block. This code is essentially doing tail duplication of the
2044 // naive code-gen, introducing new edges for which counts are not
2045 // available. Divide the counts proportionally between the LHS and RHS of
2046 // the conditional operator.
2047 uint64_t LHSScaledTrueCount = 0;
2048 if (TrueCount) {
2049 double LHSRatio =
2050 getProfileCount(CondOp) / (double)getCurrentProfileCount();
2051 LHSScaledTrueCount = TrueCount * LHSRatio;
2052 }
2053
2054 cond.begin(*this);
2055 EmitBlock(LHSBlock);
2057 {
2058 ApplyDebugLocation DL(*this, Cond);
2059 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
2060 LHSScaledTrueCount, LH, CondOp);
2061 }
2062 cond.end(*this);
2063
2064 cond.begin(*this);
2065 EmitBlock(RHSBlock);
2066 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
2067 TrueCount - LHSScaledTrueCount, LH, CondOp);
2068 cond.end(*this);
2069
2070 return;
2071 }
2072
2073 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
2074 // Conditional operator handling can give us a throw expression as a
2075 // condition for a case like:
2076 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
2077 // Fold this to:
2078 // br(c, throw x, br(y, t, f))
2079 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
2080 return;
2081 }
2082
2083 // Emit the code with the fully general case.
2084 llvm::Value *CondV;
2085 {
2086 ApplyDebugLocation DL(*this, Cond);
2087 CondV = EvaluateExprAsBool(Cond);
2088 }
2089
2090 MaybeEmitDeferredVarDeclInit(ConditionalDecl);
2091
2092 // If not at the top of the logical operator nest, update MCDC temp with the
2093 // boolean result of the evaluated condition.
2094 if (!MCDCLogOpStack.empty()) {
2095 const Expr *MCDCBaseExpr = Cond;
2096 // When a nested ConditionalOperator (ternary) is encountered in a boolean
2097 // expression, MC/DC tracks the result of the ternary, and this is tied to
2098 // the ConditionalOperator expression and not the ternary's LHS or RHS. If
2099 // this is the case, the ConditionalOperator expression is passed through
2100 // the ConditionalOp parameter and then used as the MCDC base expression.
2101 if (ConditionalOp)
2102 MCDCBaseExpr = ConditionalOp;
2103
2104 maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV);
2105 }
2106
2107 llvm::MDNode *Weights = nullptr;
2108 llvm::MDNode *Unpredictable = nullptr;
2109
2110 // If the branch has a condition wrapped by __builtin_unpredictable,
2111 // create metadata that specifies that the branch is unpredictable.
2112 // Don't bother if not optimizing because that metadata would not be used.
2113 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
2114 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2115 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2116 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2117 llvm::MDBuilder MDHelper(getLLVMContext());
2118 Unpredictable = MDHelper.createUnpredictable();
2119 }
2120 }
2121
2122 // If there is a Likelihood knowledge for the cond, lower it.
2123 // Note that if not optimizing this won't emit anything.
2124 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
2125 if (CondV != NewCondV)
2126 CondV = NewCondV;
2127 else {
2128 // Otherwise, lower profile counts. Note that we do this even at -O0.
2129 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
2130 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
2131 }
2132
2133 llvm::Instruction *BrInst = Builder.CreateCondBr(CondV, TrueBlock, FalseBlock,
2134 Weights, Unpredictable);
2135 addInstToNewSourceAtom(BrInst, CondV);
2136
2137 switch (HLSLControlFlowAttr) {
2138 case HLSLControlFlowHintAttr::Microsoft_branch:
2139 case HLSLControlFlowHintAttr::Microsoft_flatten: {
2140 llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2141
2142 llvm::ConstantInt *BranchHintConstant =
2144 HLSLControlFlowHintAttr::Spelling::Microsoft_branch
2145 ? llvm::ConstantInt::get(CGM.Int32Ty, 1)
2146 : llvm::ConstantInt::get(CGM.Int32Ty, 2);
2147
2149 {MDHelper.createString("hlsl.controlflow.hint"),
2150 MDHelper.createConstant(BranchHintConstant)});
2151 BrInst->setMetadata("hlsl.controlflow.hint",
2152 llvm::MDNode::get(CGM.getLLVMContext(), Vals));
2153 break;
2154 }
2155 // This is required to avoid warnings during compilation
2156 case HLSLControlFlowHintAttr::SpellingNotCalculated:
2157 break;
2158 }
2159}
2160
2161llvm::Value *CodeGenFunction::EmitScalarOrConstFoldImmArg(unsigned ICEArguments,
2162 unsigned Idx,
2163 const CallExpr *E) {
2164 llvm::Value *Arg = nullptr;
2165 if ((ICEArguments & (1 << Idx)) == 0) {
2166 Arg = EmitScalarExpr(E->getArg(Idx));
2167 } else {
2168 // If this is required to be a constant, constant fold it so that we
2169 // know that the generated intrinsic gets a ConstantInt.
2170 std::optional<llvm::APSInt> Result =
2172 assert(Result && "Expected argument to be a constant");
2173 Arg = llvm::ConstantInt::get(getLLVMContext(), *Result);
2174 }
2175 return Arg;
2176}
2177
2178/// ErrorUnsupported - Print out an error that codegen doesn't support the
2179/// specified stmt yet.
2180void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
2181 CGM.ErrorUnsupported(S, Type);
2182}
2183
2184/// emitNonZeroVLAInit - Emit the "zero" initialization of a
2185/// variable-length array whose elements have a non-zero bit-pattern.
2186///
2187/// \param baseType the inner-most element type of the array
2188/// \param src - a char* pointing to the bit-pattern for a single
2189/// base element of the array
2190/// \param sizeInChars - the total size of the VLA, in chars
2192 Address dest, Address src,
2193 llvm::Value *sizeInChars) {
2194 CGBuilderTy &Builder = CGF.Builder;
2195
2196 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
2197 llvm::Value *baseSizeInChars
2198 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
2199
2200 Address begin = dest.withElementType(CGF.Int8Ty);
2201 llvm::Value *end = Builder.CreateInBoundsGEP(begin.getElementType(),
2202 begin.emitRawPointer(CGF),
2203 sizeInChars, "vla.end");
2204
2205 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
2206 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
2207 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
2208
2209 // Make a loop over the VLA. C99 guarantees that the VLA element
2210 // count must be nonzero.
2211 CGF.EmitBlock(loopBB);
2212
2213 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
2214 cur->addIncoming(begin.emitRawPointer(CGF), originBB);
2215
2216 CharUnits curAlign =
2217 dest.getAlignment().alignmentOfArrayElement(baseSize);
2218
2219 // memcpy the individual element bit-pattern.
2220 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
2221 /*volatile*/ false);
2222
2223 // Go to the next element.
2224 llvm::Value *next =
2225 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
2226
2227 // Leave if that's the end of the VLA.
2228 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
2229 Builder.CreateCondBr(done, contBB, loopBB);
2230 cur->addIncoming(next, loopBB);
2231
2232 CGF.EmitBlock(contBB);
2233}
2234
2235void
2237 // Ignore empty classes in C++.
2238 if (getLangOpts().CPlusPlus)
2239 if (const auto *RD = Ty->getAsCXXRecordDecl(); RD && RD->isEmpty())
2240 return;
2241
2242 if (DestPtr.getElementType() != Int8Ty)
2243 DestPtr = DestPtr.withElementType(Int8Ty);
2244
2245 // Get size and alignment info for this aggregate.
2247
2248 llvm::Value *SizeVal;
2249 const VariableArrayType *vla;
2250
2251 // Don't bother emitting a zero-byte memset.
2252 if (size.isZero()) {
2253 // But note that getTypeInfo returns 0 for a VLA.
2254 if (const VariableArrayType *vlaType =
2255 dyn_cast_or_null<VariableArrayType>(
2256 getContext().getAsArrayType(Ty))) {
2257 auto VlaSize = getVLASize(vlaType);
2258 SizeVal = VlaSize.NumElts;
2259 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
2260 if (!eltSize.isOne())
2261 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
2262 vla = vlaType;
2263 } else {
2264 return;
2265 }
2266 } else {
2267 SizeVal = CGM.getSize(size);
2268 vla = nullptr;
2269 }
2270
2271 // If the type contains a pointer to data member we can't memset it to zero.
2272 // Instead, create a null constant and copy it to the destination.
2273 // TODO: there are other patterns besides zero that we can usefully memset,
2274 // like -1, which happens to be the pattern used by member-pointers.
2275 if (!CGM.getTypes().isZeroInitializable(Ty)) {
2276 // For a VLA, emit a single element, then splat that over the VLA.
2277 if (vla) Ty = getContext().getBaseElementType(vla);
2278
2279 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
2280
2281 llvm::GlobalVariable *NullVariable =
2282 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2283 /*isConstant=*/true,
2284 llvm::GlobalVariable::PrivateLinkage,
2285 NullConstant, Twine());
2286 CharUnits NullAlign = DestPtr.getAlignment();
2287 NullVariable->setAlignment(NullAlign.getAsAlign());
2288 Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign);
2289
2290 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2291
2292 // Get and call the appropriate llvm.memcpy overload.
2293 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2294 return;
2295 }
2296
2297 // Otherwise, just memset the whole thing to zero. This is legal
2298 // because in LLVM, all default initializers (other than the ones we just
2299 // handled above) are guaranteed to have a bit pattern of all zeros.
2300 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2301}
2302
2303llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2304 // Make sure that there is a block for the indirect goto.
2305 if (!IndirectBranch)
2307
2308 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2309
2310 // Make sure the indirect branch includes all of the address-taken blocks.
2311 IndirectBranch->addDestination(BB);
2312 return llvm::BlockAddress::get(CurFn->getType(), BB);
2313}
2314
2316 // If we already made the indirect branch for indirect goto, return its block.
2317 if (IndirectBranch) return IndirectBranch->getParent();
2318
2319 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2320
2321 // Create the PHI node that indirect gotos will add entries to.
2322 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2323 "indirect.goto.dest");
2324
2325 // Create the indirect branch instruction.
2326 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2327 return IndirectBranch->getParent();
2328}
2329
2330/// Computes the length of an array in elements, as well as the base
2331/// element type and a properly-typed first element pointer.
2332llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2333 QualType &baseType,
2334 Address &addr) {
2335 const ArrayType *arrayType = origArrayType;
2336
2337 // If it's a VLA, we have to load the stored size. Note that
2338 // this is the size of the VLA in bytes, not its size in elements.
2339 llvm::Value *numVLAElements = nullptr;
2342
2343 // Walk into all VLAs. This doesn't require changes to addr,
2344 // which has type T* where T is the first non-VLA element type.
2345 do {
2346 QualType elementType = arrayType->getElementType();
2347 arrayType = getContext().getAsArrayType(elementType);
2348
2349 // If we only have VLA components, 'addr' requires no adjustment.
2350 if (!arrayType) {
2351 baseType = elementType;
2352 return numVLAElements;
2353 }
2355
2356 // We get out here only if we find a constant array type
2357 // inside the VLA.
2358 }
2359
2360 // We have some number of constant-length arrays, so addr should
2361 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
2362 // down to the first element of addr.
2364
2365 // GEP down to the array type.
2366 llvm::ConstantInt *zero = Builder.getInt32(0);
2367 gepIndices.push_back(zero);
2368
2369 uint64_t countFromCLAs = 1;
2370 QualType eltType;
2371
2372 llvm::ArrayType *llvmArrayType =
2373 dyn_cast<llvm::ArrayType>(addr.getElementType());
2374 while (llvmArrayType) {
2376 assert(cast<ConstantArrayType>(arrayType)->getZExtSize() ==
2377 llvmArrayType->getNumElements());
2378
2379 gepIndices.push_back(zero);
2380 countFromCLAs *= llvmArrayType->getNumElements();
2381 eltType = arrayType->getElementType();
2382
2383 llvmArrayType =
2384 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2385 arrayType = getContext().getAsArrayType(arrayType->getElementType());
2386 assert((!llvmArrayType || arrayType) &&
2387 "LLVM and Clang types are out-of-synch");
2388 }
2389
2390 if (arrayType) {
2391 // From this point onwards, the Clang array type has been emitted
2392 // as some other type (probably a packed struct). Compute the array
2393 // size, and just emit the 'begin' expression as a bitcast.
2394 while (arrayType) {
2395 countFromCLAs *= cast<ConstantArrayType>(arrayType)->getZExtSize();
2396 eltType = arrayType->getElementType();
2397 arrayType = getContext().getAsArrayType(eltType);
2398 }
2399
2400 llvm::Type *baseType = ConvertType(eltType);
2401 addr = addr.withElementType(baseType);
2402 } else {
2403 // Create the actual GEP.
2404 addr = Address(Builder.CreateInBoundsGEP(addr.getElementType(),
2405 addr.emitRawPointer(*this),
2406 gepIndices, "array.begin"),
2407 ConvertTypeForMem(eltType), addr.getAlignment());
2408 }
2409
2410 baseType = eltType;
2411
2412 llvm::Value *numElements
2413 = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2414
2415 // If we had any VLA dimensions, factor them in.
2416 if (numVLAElements)
2417 numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2418
2419 return numElements;
2420}
2421
2424 assert(vla && "type was not a variable array type!");
2425 return getVLASize(vla);
2426}
2427
2430 // The number of elements so far; always size_t.
2431 llvm::Value *numElements = nullptr;
2432
2433 QualType elementType;
2434 do {
2435 elementType = type->getElementType();
2436 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2437 assert(vlaSize && "no size for VLA!");
2438 assert(vlaSize->getType() == SizeTy);
2439
2440 if (!numElements) {
2441 numElements = vlaSize;
2442 } else {
2443 // It's undefined behavior if this wraps around, so mark it that way.
2444 // FIXME: Teach -fsanitize=undefined to trap this.
2445 numElements = Builder.CreateNUWMul(numElements, vlaSize);
2446 }
2447 } while ((type = getContext().getAsVariableArrayType(elementType)));
2448
2449 return { numElements, elementType };
2450}
2451
2455 assert(vla && "type was not a variable array type!");
2456 return getVLAElements1D(vla);
2457}
2458
2461 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2462 assert(VlaSize && "no size for VLA!");
2463 assert(VlaSize->getType() == SizeTy);
2464 return { VlaSize, Vla->getElementType() };
2465}
2466
2468 assert(type->isVariablyModifiedType() &&
2469 "Must pass variably modified type to EmitVLASizes!");
2470
2472
2473 // We're going to walk down into the type and look for VLA
2474 // expressions.
2475 do {
2476 assert(type->isVariablyModifiedType());
2477
2478 const Type *ty = type.getTypePtr();
2479 switch (ty->getTypeClass()) {
2480
2481#define TYPE(Class, Base)
2482#define ABSTRACT_TYPE(Class, Base)
2483#define NON_CANONICAL_TYPE(Class, Base)
2484#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2485#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2486#include "clang/AST/TypeNodes.inc"
2487 llvm_unreachable("unexpected dependent type!");
2488
2489 // These types are never variably-modified.
2490 case Type::Builtin:
2491 case Type::Complex:
2492 case Type::Vector:
2493 case Type::ExtVector:
2494 case Type::ConstantMatrix:
2495 case Type::Record:
2496 case Type::Enum:
2497 case Type::Using:
2498 case Type::TemplateSpecialization:
2499 case Type::ObjCTypeParam:
2500 case Type::ObjCObject:
2501 case Type::ObjCInterface:
2502 case Type::ObjCObjectPointer:
2503 case Type::BitInt:
2504 case Type::HLSLInlineSpirv:
2505 case Type::PredefinedSugar:
2506 llvm_unreachable("type class is never variably-modified!");
2507
2508 case Type::Adjusted:
2509 type = cast<AdjustedType>(ty)->getAdjustedType();
2510 break;
2511
2512 case Type::Decayed:
2513 type = cast<DecayedType>(ty)->getPointeeType();
2514 break;
2515
2516 case Type::Pointer:
2517 type = cast<PointerType>(ty)->getPointeeType();
2518 break;
2519
2520 case Type::BlockPointer:
2521 type = cast<BlockPointerType>(ty)->getPointeeType();
2522 break;
2523
2524 case Type::LValueReference:
2525 case Type::RValueReference:
2526 type = cast<ReferenceType>(ty)->getPointeeType();
2527 break;
2528
2529 case Type::MemberPointer:
2530 type = cast<MemberPointerType>(ty)->getPointeeType();
2531 break;
2532
2533 case Type::ArrayParameter:
2534 case Type::ConstantArray:
2535 case Type::IncompleteArray:
2536 // Losing element qualification here is fine.
2537 type = cast<ArrayType>(ty)->getElementType();
2538 break;
2539
2540 case Type::VariableArray: {
2541 // Losing element qualification here is fine.
2543
2544 // Unknown size indication requires no size computation.
2545 // Otherwise, evaluate and record it.
2546 if (const Expr *sizeExpr = vat->getSizeExpr()) {
2547 // It's possible that we might have emitted this already,
2548 // e.g. with a typedef and a pointer to it.
2549 llvm::Value *&entry = VLASizeMap[sizeExpr];
2550 if (!entry) {
2551 llvm::Value *size = EmitScalarExpr(sizeExpr);
2552
2553 // C11 6.7.6.2p5:
2554 // If the size is an expression that is not an integer constant
2555 // expression [...] each time it is evaluated it shall have a value
2556 // greater than zero.
2557 if (SanOpts.has(SanitizerKind::VLABound)) {
2558 auto CheckOrdinal = SanitizerKind::SO_VLABound;
2559 auto CheckHandler = SanitizerHandler::VLABoundNotPositive;
2560 SanitizerDebugLocation SanScope(this, {CheckOrdinal}, CheckHandler);
2561 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2562 clang::QualType SEType = sizeExpr->getType();
2563 llvm::Value *CheckCondition =
2564 SEType->isSignedIntegerType()
2565 ? Builder.CreateICmpSGT(size, Zero)
2566 : Builder.CreateICmpUGT(size, Zero);
2567 llvm::Constant *StaticArgs[] = {
2568 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2569 EmitCheckTypeDescriptor(SEType)};
2570 EmitCheck(std::make_pair(CheckCondition, CheckOrdinal),
2571 CheckHandler, StaticArgs, size);
2572 }
2573
2574 // Always zexting here would be wrong if it weren't
2575 // undefined behavior to have a negative bound.
2576 // FIXME: What about when size's type is larger than size_t?
2577 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2578 }
2579 }
2580 type = vat->getElementType();
2581 break;
2582 }
2583
2584 case Type::FunctionProto:
2585 case Type::FunctionNoProto:
2586 type = cast<FunctionType>(ty)->getReturnType();
2587 break;
2588
2589 case Type::Paren:
2590 case Type::TypeOf:
2591 case Type::UnaryTransform:
2592 case Type::Attributed:
2593 case Type::BTFTagAttributed:
2594 case Type::HLSLAttributedResource:
2595 case Type::SubstTemplateTypeParm:
2596 case Type::MacroQualified:
2597 case Type::CountAttributed:
2598 // Keep walking after single level desugaring.
2599 type = type.getSingleStepDesugaredType(getContext());
2600 break;
2601
2602 case Type::Typedef:
2603 case Type::Decltype:
2604 case Type::Auto:
2605 case Type::DeducedTemplateSpecialization:
2606 case Type::PackIndexing:
2607 // Stop walking: nothing to do.
2608 return;
2609
2610 case Type::TypeOfExpr:
2611 // Stop walking: emit typeof expression.
2612 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2613 return;
2614
2615 case Type::Atomic:
2616 type = cast<AtomicType>(ty)->getValueType();
2617 break;
2618
2619 case Type::Pipe:
2620 type = cast<PipeType>(ty)->getElementType();
2621 break;
2622 }
2623 } while (type->isVariablyModifiedType());
2624}
2625
2627 if (getContext().getBuiltinVaListType()->isArrayType())
2628 return EmitPointerWithAlignment(E);
2629 return EmitLValue(E).getAddress();
2630}
2631
2635
2637 const APValue &Init) {
2638 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2639 if (CGDebugInfo *Dbg = getDebugInfo())
2640 if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2641 Dbg->EmitGlobalVariable(E->getDecl(), Init);
2642}
2643
2646 // At the moment, the only aggressive peephole we do in IR gen
2647 // is trunc(zext) folding, but if we add more, we can easily
2648 // extend this protection.
2649
2650 if (!rvalue.isScalar()) return PeepholeProtection();
2651 llvm::Value *value = rvalue.getScalarVal();
2652 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2653
2654 // Just make an extra bitcast.
2655 assert(HaveInsertPoint());
2656 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2657 Builder.GetInsertBlock());
2658
2659 PeepholeProtection protection;
2660 protection.Inst = inst;
2661 return protection;
2662}
2663
2665 if (!protection.Inst) return;
2666
2667 // In theory, we could try to duplicate the peepholes now, but whatever.
2668 protection.Inst->eraseFromParent();
2669}
2670
2672 QualType Ty, SourceLocation Loc,
2673 SourceLocation AssumptionLoc,
2674 llvm::Value *Alignment,
2675 llvm::Value *OffsetValue) {
2676 if (Alignment->getType() != IntPtrTy)
2677 Alignment =
2678 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2679 if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2680 OffsetValue =
2681 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2682 llvm::Value *TheCheck = nullptr;
2683 if (SanOpts.has(SanitizerKind::Alignment)) {
2684 llvm::Value *PtrIntValue =
2685 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2686
2687 if (OffsetValue) {
2688 bool IsOffsetZero = false;
2689 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2690 IsOffsetZero = CI->isZero();
2691
2692 if (!IsOffsetZero)
2693 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2694 }
2695
2696 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2697 llvm::Value *Mask =
2698 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2699 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2700 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2701 }
2702 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2703 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2704
2705 if (!SanOpts.has(SanitizerKind::Alignment))
2706 return;
2707 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2708 OffsetValue, TheCheck, Assumption);
2709}
2710
2712 const Expr *E,
2713 SourceLocation AssumptionLoc,
2714 llvm::Value *Alignment,
2715 llvm::Value *OffsetValue) {
2716 QualType Ty = E->getType();
2717 SourceLocation Loc = E->getExprLoc();
2718
2719 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2720 OffsetValue);
2721}
2722
2723llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2724 llvm::Value *AnnotatedVal,
2725 StringRef AnnotationStr,
2726 SourceLocation Location,
2727 const AnnotateAttr *Attr) {
2729 AnnotatedVal,
2730 CGM.EmitAnnotationString(AnnotationStr),
2731 CGM.EmitAnnotationUnit(Location),
2732 CGM.EmitAnnotationLineNo(Location),
2733 };
2734 if (Attr)
2735 Args.push_back(CGM.EmitAnnotationArgs(Attr));
2736 return Builder.CreateCall(AnnotationFn, Args);
2737}
2738
2739void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2740 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2741 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2742 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation,
2743 {V->getType(), CGM.ConstGlobalsPtrTy}),
2744 V, I->getAnnotation(), D->getLocation(), I);
2745}
2746
2748 Address Addr) {
2749 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2750 llvm::Value *V = Addr.emitRawPointer(*this);
2751 llvm::Type *VTy = V->getType();
2752 auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2753 unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2754 llvm::PointerType *IntrinTy =
2755 llvm::PointerType::get(CGM.getLLVMContext(), AS);
2756 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2757 {IntrinTy, CGM.ConstGlobalsPtrTy});
2758
2759 for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2760 // FIXME Always emit the cast inst so we can differentiate between
2761 // annotation on the first field of a struct and annotation on the struct
2762 // itself.
2763 if (VTy != IntrinTy)
2764 V = Builder.CreateBitCast(V, IntrinTy);
2765 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2766 V = Builder.CreateBitCast(V, VTy);
2767 }
2768
2769 return Address(V, Addr.getElementType(), Addr.getAlignment());
2770}
2771
2773
2775 : CGF(CGF) {
2776 assert(!CGF->IsSanitizerScope);
2777 CGF->IsSanitizerScope = true;
2778}
2779
2781 CGF->IsSanitizerScope = false;
2782}
2783
2784void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2785 const llvm::Twine &Name,
2786 llvm::BasicBlock::iterator InsertPt) const {
2787 LoopStack.InsertHelper(I);
2788 if (IsSanitizerScope)
2789 I->setNoSanitizeMetadata();
2790}
2791
2793 llvm::Instruction *I, const llvm::Twine &Name,
2794 llvm::BasicBlock::iterator InsertPt) const {
2795 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, InsertPt);
2796 if (CGF)
2797 CGF->InsertHelper(I, Name, InsertPt);
2798}
2799
2800// Emits an error if we don't have a valid set of target features for the
2801// called function.
2803 const FunctionDecl *TargetDecl) {
2804 // SemaChecking cannot handle below x86 builtins because they have different
2805 // parameter ranges with different TargetAttribute of caller.
2806 if (CGM.getContext().getTargetInfo().getTriple().isX86()) {
2807 unsigned BuiltinID = TargetDecl->getBuiltinID();
2808 if (BuiltinID == X86::BI__builtin_ia32_cmpps ||
2809 BuiltinID == X86::BI__builtin_ia32_cmpss ||
2810 BuiltinID == X86::BI__builtin_ia32_cmppd ||
2811 BuiltinID == X86::BI__builtin_ia32_cmpsd) {
2812 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2813 llvm::StringMap<bool> TargetFetureMap;
2814 CGM.getContext().getFunctionFeatureMap(TargetFetureMap, FD);
2815 llvm::APSInt Result =
2816 *(E->getArg(2)->getIntegerConstantExpr(CGM.getContext()));
2817 if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx"))
2818 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature)
2819 << TargetDecl->getDeclName() << "avx";
2820 }
2821 }
2822 return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2823}
2824
2825// Emits an error if we don't have a valid set of target features for the
2826// called function.
2828 const FunctionDecl *TargetDecl) {
2829 // Early exit if this is an indirect call.
2830 if (!TargetDecl)
2831 return;
2832
2833 // Get the current enclosing function if it exists. If it doesn't
2834 // we can't check the target features anyhow.
2835 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2836 if (!FD)
2837 return;
2838
2839 bool IsAlwaysInline = TargetDecl->hasAttr<AlwaysInlineAttr>();
2840 bool IsFlatten = FD && FD->hasAttr<FlattenAttr>();
2841
2842 // Grab the required features for the call. For a builtin this is listed in
2843 // the td file with the default cpu, for an always_inline function this is any
2844 // listed cpu and any listed features.
2845 unsigned BuiltinID = TargetDecl->getBuiltinID();
2846 std::string MissingFeature;
2847 llvm::StringMap<bool> CallerFeatureMap;
2848 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2849 // When compiling in HipStdPar mode we have to be conservative in rejecting
2850 // target specific features in the FE, and defer the possible error to the
2851 // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is
2852 // referenced by an accelerator executable function, we emit an error.
2853 bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice;
2854 if (BuiltinID) {
2855 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2857 FeatureList, CallerFeatureMap) && !IsHipStdPar) {
2858 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2859 << TargetDecl->getDeclName()
2860 << FeatureList;
2861 }
2862 } else if (!TargetDecl->isMultiVersion() &&
2863 TargetDecl->hasAttr<TargetAttr>()) {
2864 // Get the required features for the callee.
2865
2866 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2868 CGM.getContext().filterFunctionTargetAttrs(TD);
2869
2870 SmallVector<StringRef, 1> ReqFeatures;
2871 llvm::StringMap<bool> CalleeFeatureMap;
2872 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2873
2874 for (const auto &F : ParsedAttr.Features) {
2875 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2876 ReqFeatures.push_back(StringRef(F).substr(1));
2877 }
2878
2879 for (const auto &F : CalleeFeatureMap) {
2880 // Only positive features are "required".
2881 if (F.getValue())
2882 ReqFeatures.push_back(F.getKey());
2883 }
2884 if (!llvm::all_of(ReqFeatures,
2885 [&](StringRef Feature) {
2886 if (!CallerFeatureMap.lookup(Feature)) {
2887 MissingFeature = Feature.str();
2888 return false;
2889 }
2890 return true;
2891 }) &&
2892 !IsHipStdPar) {
2893 if (IsAlwaysInline)
2894 CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2895 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2896 else if (IsFlatten)
2897 CGM.getDiags().Report(Loc, diag::err_flatten_function_needs_feature)
2898 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2899 }
2900
2901 } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) {
2902 llvm::StringMap<bool> CalleeFeatureMap;
2903 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2904
2905 for (const auto &F : CalleeFeatureMap) {
2906 if (F.getValue() &&
2907 (!CallerFeatureMap.lookup(F.getKey()) ||
2908 !CallerFeatureMap.find(F.getKey())->getValue()) &&
2909 !IsHipStdPar) {
2910 if (IsAlwaysInline)
2911 CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2912 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2913 else if (IsFlatten)
2914 CGM.getDiags().Report(Loc, diag::err_flatten_function_needs_feature)
2915 << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey();
2916 }
2917 }
2918 }
2919}
2920
2921void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2922 if (!CGM.getCodeGenOpts().SanitizeStats)
2923 return;
2924
2925 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2926 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2927 CGM.getSanStats().create(IRB, SSK);
2928}
2929
2931 const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) {
2932 const CGCalleeInfo &CI = Callee.getAbstractInfo();
2934 if (!FP)
2935 return;
2936
2937 StringRef Salt;
2938 if (const auto &Info = FP->getExtraAttributeInfo())
2939 Salt = Info.CFISalt;
2940
2941 Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar(), Salt));
2942}
2943
2944llvm::Value *
2945CodeGenFunction::FormAArch64ResolverCondition(const FMVResolverOption &RO) {
2946 return RO.Features.empty() ? nullptr : EmitAArch64CpuSupports(RO.Features);
2947}
2948
2949llvm::Value *
2950CodeGenFunction::FormX86ResolverCondition(const FMVResolverOption &RO) {
2951 llvm::Value *Condition = nullptr;
2952
2953 if (RO.Architecture) {
2954 StringRef Arch = *RO.Architecture;
2955 // If arch= specifies an x86-64 micro-architecture level, test the feature
2956 // with __builtin_cpu_supports, otherwise use __builtin_cpu_is.
2957 if (Arch.starts_with("x86-64"))
2958 Condition = EmitX86CpuSupports({Arch});
2959 else
2960 Condition = EmitX86CpuIs(Arch);
2961 }
2962
2963 if (!RO.Features.empty()) {
2964 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Features);
2965 Condition =
2966 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2967 }
2968 return Condition;
2969}
2970
2972 llvm::Function *Resolver,
2973 CGBuilderTy &Builder,
2974 llvm::Function *FuncToReturn,
2975 bool SupportsIFunc) {
2976 if (SupportsIFunc) {
2977 Builder.CreateRet(FuncToReturn);
2978 return;
2979 }
2980
2982 llvm::make_pointer_range(Resolver->args()));
2983
2984 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2985 Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2986
2987 if (Resolver->getReturnType()->isVoidTy())
2988 Builder.CreateRetVoid();
2989 else
2990 Builder.CreateRet(Result);
2991}
2992
2994 llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
2995
2996 llvm::Triple::ArchType ArchType =
2997 getContext().getTargetInfo().getTriple().getArch();
2998
2999 switch (ArchType) {
3000 case llvm::Triple::x86:
3001 case llvm::Triple::x86_64:
3002 EmitX86MultiVersionResolver(Resolver, Options);
3003 return;
3004 case llvm::Triple::aarch64:
3005 EmitAArch64MultiVersionResolver(Resolver, Options);
3006 return;
3007 case llvm::Triple::riscv32:
3008 case llvm::Triple::riscv64:
3009 EmitRISCVMultiVersionResolver(Resolver, Options);
3010 return;
3011
3012 default:
3013 assert(false && "Only implemented for x86, AArch64 and RISC-V targets");
3014 }
3015}
3016
3018 llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
3019
3020 if (getContext().getTargetInfo().getTriple().getOS() !=
3021 llvm::Triple::OSType::Linux) {
3022 CGM.getDiags().Report(diag::err_os_unsupport_riscv_fmv);
3023 return;
3024 }
3025
3026 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3027 Builder.SetInsertPoint(CurBlock);
3029
3030 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3031 bool HasDefault = false;
3032 unsigned DefaultIndex = 0;
3033
3034 // Check the each candidate function.
3035 for (unsigned Index = 0; Index < Options.size(); Index++) {
3036
3037 if (Options[Index].Features.empty()) {
3038 HasDefault = true;
3039 DefaultIndex = Index;
3040 continue;
3041 }
3042
3043 Builder.SetInsertPoint(CurBlock);
3044
3045 // FeaturesCondition: The bitmask of the required extension has been
3046 // enabled by the runtime object.
3047 // (__riscv_feature_bits.features[i] & REQUIRED_BITMASK) ==
3048 // REQUIRED_BITMASK
3049 //
3050 // When condition is met, return this version of the function.
3051 // Otherwise, try the next version.
3052 //
3053 // if (FeaturesConditionVersion1)
3054 // return Version1;
3055 // else if (FeaturesConditionVersion2)
3056 // return Version2;
3057 // else if (FeaturesConditionVersion3)
3058 // return Version3;
3059 // ...
3060 // else
3061 // return DefaultVersion;
3062
3063 // TODO: Add a condition to check the length before accessing elements.
3064 // Without checking the length first, we may access an incorrect memory
3065 // address when using different versions.
3066 llvm::SmallVector<StringRef, 8> CurrTargetAttrFeats;
3067 llvm::SmallVector<std::string, 8> TargetAttrFeats;
3068
3069 for (StringRef Feat : Options[Index].Features) {
3070 std::vector<std::string> FeatStr =
3072
3073 assert(FeatStr.size() == 1 && "Feature string not delimited");
3074
3075 std::string &CurrFeat = FeatStr.front();
3076 if (CurrFeat[0] == '+')
3077 TargetAttrFeats.push_back(CurrFeat.substr(1));
3078 }
3079
3080 if (TargetAttrFeats.empty())
3081 continue;
3082
3083 for (std::string &Feat : TargetAttrFeats)
3084 CurrTargetAttrFeats.push_back(Feat);
3085
3086 Builder.SetInsertPoint(CurBlock);
3087 llvm::Value *FeatsCondition = EmitRISCVCpuSupports(CurrTargetAttrFeats);
3088
3089 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3090 CGBuilderTy RetBuilder(*this, RetBlock);
3091 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder,
3092 Options[Index].Function, SupportsIFunc);
3093 llvm::BasicBlock *ElseBlock = createBasicBlock("resolver_else", Resolver);
3094
3095 Builder.SetInsertPoint(CurBlock);
3096 Builder.CreateCondBr(FeatsCondition, RetBlock, ElseBlock);
3097
3098 CurBlock = ElseBlock;
3099 }
3100
3101 // Finally, emit the default one.
3102 if (HasDefault) {
3103 Builder.SetInsertPoint(CurBlock);
3105 CGM, Resolver, Builder, Options[DefaultIndex].Function, SupportsIFunc);
3106 return;
3107 }
3108
3109 // If no generic/default, emit an unreachable.
3110 Builder.SetInsertPoint(CurBlock);
3111 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3112 TrapCall->setDoesNotReturn();
3113 TrapCall->setDoesNotThrow();
3114 Builder.CreateUnreachable();
3115 Builder.ClearInsertionPoint();
3116}
3117
3119 llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
3120 assert(!Options.empty() && "No multiversion resolver options found");
3121 assert(Options.back().Features.size() == 0 && "Default case must be last");
3122 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3123 assert(SupportsIFunc &&
3124 "Multiversion resolver requires target IFUNC support");
3125 bool AArch64CpuInitialized = false;
3126 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3127
3128 for (const FMVResolverOption &RO : Options) {
3129 Builder.SetInsertPoint(CurBlock);
3130 llvm::Value *Condition = FormAArch64ResolverCondition(RO);
3131
3132 // The 'default' or 'all features enabled' case.
3133 if (!Condition) {
3134 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3135 SupportsIFunc);
3136 return;
3137 }
3138
3139 if (!AArch64CpuInitialized) {
3140 Builder.SetInsertPoint(CurBlock, CurBlock->begin());
3141 EmitAArch64CpuInit();
3142 AArch64CpuInitialized = true;
3143 Builder.SetInsertPoint(CurBlock);
3144 }
3145
3146 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3147 CGBuilderTy RetBuilder(*this, RetBlock);
3148 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3149 SupportsIFunc);
3150 CurBlock = createBasicBlock("resolver_else", Resolver);
3151 Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3152 }
3153
3154 // If no default, emit an unreachable.
3155 Builder.SetInsertPoint(CurBlock);
3156 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3157 TrapCall->setDoesNotReturn();
3158 TrapCall->setDoesNotThrow();
3159 Builder.CreateUnreachable();
3160 Builder.ClearInsertionPoint();
3161}
3162
3164 llvm::Function *Resolver, ArrayRef<FMVResolverOption> Options) {
3165
3166 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
3167
3168 // Main function's basic block.
3169 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
3170 Builder.SetInsertPoint(CurBlock);
3171 EmitX86CpuInit();
3172
3173 for (const FMVResolverOption &RO : Options) {
3174 Builder.SetInsertPoint(CurBlock);
3175 llvm::Value *Condition = FormX86ResolverCondition(RO);
3176
3177 // The 'default' or 'generic' case.
3178 if (!Condition) {
3179 assert(&RO == Options.end() - 1 &&
3180 "Default or Generic case must be last");
3181 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
3182 SupportsIFunc);
3183 return;
3184 }
3185
3186 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
3187 CGBuilderTy RetBuilder(*this, RetBlock);
3188 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
3189 SupportsIFunc);
3190 CurBlock = createBasicBlock("resolver_else", Resolver);
3191 Builder.CreateCondBr(Condition, RetBlock, CurBlock);
3192 }
3193
3194 // If no generic/default, emit an unreachable.
3195 Builder.SetInsertPoint(CurBlock);
3196 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3197 TrapCall->setDoesNotReturn();
3198 TrapCall->setDoesNotThrow();
3199 Builder.CreateUnreachable();
3200 Builder.ClearInsertionPoint();
3201}
3202
3203// Loc - where the diagnostic will point, where in the source code this
3204// alignment has failed.
3205// SecondaryLoc - if present (will be present if sufficiently different from
3206// Loc), the diagnostic will additionally point a "Note:" to this location.
3207// It should be the location where the __attribute__((assume_aligned))
3208// was written e.g.
3210 llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
3211 SourceLocation SecondaryLoc, llvm::Value *Alignment,
3212 llvm::Value *OffsetValue, llvm::Value *TheCheck,
3213 llvm::Instruction *Assumption) {
3214 assert(isa_and_nonnull<llvm::CallInst>(Assumption) &&
3215 cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
3216 llvm::Intrinsic::getOrInsertDeclaration(
3217 Builder.GetInsertBlock()->getParent()->getParent(),
3218 llvm::Intrinsic::assume) &&
3219 "Assumption should be a call to llvm.assume().");
3220 assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
3221 "Assumption should be the last instruction of the basic block, "
3222 "since the basic block is still being generated.");
3223
3224 if (!SanOpts.has(SanitizerKind::Alignment))
3225 return;
3226
3227 // Don't check pointers to volatile data. The behavior here is implementation-
3228 // defined.
3230 return;
3231
3232 // We need to temorairly remove the assumption so we can insert the
3233 // sanitizer check before it, else the check will be dropped by optimizations.
3234 Assumption->removeFromParent();
3235
3236 {
3237 auto CheckOrdinal = SanitizerKind::SO_Alignment;
3238 auto CheckHandler = SanitizerHandler::AlignmentAssumption;
3239 SanitizerDebugLocation SanScope(this, {CheckOrdinal}, CheckHandler);
3240
3241 if (!OffsetValue)
3242 OffsetValue = Builder.getInt1(false); // no offset.
3243
3244 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
3245 EmitCheckSourceLocation(SecondaryLoc),
3247 llvm::Value *DynamicData[] = {Ptr, Alignment, OffsetValue};
3248 EmitCheck({std::make_pair(TheCheck, CheckOrdinal)}, CheckHandler,
3249 StaticData, DynamicData);
3250 }
3251
3252 // We are now in the (new, empty) "cont" basic block.
3253 // Reintroduce the assumption.
3254 Builder.Insert(Assumption);
3255 // FIXME: Assumption still has it's original basic block as it's Parent.
3256}
3257
3259 if (CGDebugInfo *DI = getDebugInfo())
3260 return DI->SourceLocToDebugLoc(Location);
3261
3262 return llvm::DebugLoc();
3263}
3264
3265llvm::Value *
3266CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
3267 Stmt::Likelihood LH) {
3268 switch (LH) {
3269 case Stmt::LH_None:
3270 return Cond;
3271 case Stmt::LH_Likely:
3272 case Stmt::LH_Unlikely:
3273 // Don't generate llvm.expect on -O0 as the backend won't use it for
3274 // anything.
3275 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
3276 return Cond;
3277 llvm::Type *CondTy = Cond->getType();
3278 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
3279 llvm::Function *FnExpect =
3280 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
3281 llvm::Value *ExpectedValueOfCond =
3282 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
3283 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
3284 Cond->getName() + ".expval");
3285 }
3286 llvm_unreachable("Unknown Likelihood");
3287}
3288
3289llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
3290 unsigned NumElementsDst,
3291 const llvm::Twine &Name) {
3292 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
3293 unsigned NumElementsSrc = SrcTy->getNumElements();
3294 if (NumElementsSrc == NumElementsDst)
3295 return SrcVec;
3296
3297 std::vector<int> ShuffleMask(NumElementsDst, -1);
3298 for (unsigned MaskIdx = 0;
3299 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
3300 ShuffleMask[MaskIdx] = MaskIdx;
3301
3302 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
3303}
3304
3306 const CGPointerAuthInfo &PointerAuth,
3308 if (!PointerAuth.isSigned())
3309 return;
3310
3311 auto *Key = Builder.getInt32(PointerAuth.getKey());
3312
3313 llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3314 if (!Discriminator)
3315 Discriminator = Builder.getSize(0);
3316
3317 llvm::Value *Args[] = {Key, Discriminator};
3318 Bundles.emplace_back("ptrauth", Args);
3319}
3320
3322 const CGPointerAuthInfo &PointerAuth,
3323 llvm::Value *Pointer,
3324 unsigned IntrinsicID) {
3325 if (!PointerAuth)
3326 return Pointer;
3327
3328 auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3329
3330 llvm::Value *Discriminator = PointerAuth.getDiscriminator();
3331 if (!Discriminator) {
3332 Discriminator = CGF.Builder.getSize(0);
3333 }
3334
3335 // Convert the pointer to intptr_t before signing it.
3336 auto OrigType = Pointer->getType();
3337 Pointer = CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy);
3338
3339 // call i64 @llvm.ptrauth.sign.i64(i64 %pointer, i32 %key, i64 %discriminator)
3340 auto Intrinsic = CGF.CGM.getIntrinsic(IntrinsicID);
3341 Pointer = CGF.EmitRuntimeCall(Intrinsic, {Pointer, Key, Discriminator});
3342
3343 // Convert back to the original type.
3344 Pointer = CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3345 return Pointer;
3346}
3347
3348llvm::Value *
3350 llvm::Value *Pointer) {
3351 if (!PointerAuth.shouldSign())
3352 return Pointer;
3353 return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3354 llvm::Intrinsic::ptrauth_sign);
3355}
3356
3357static llvm::Value *EmitStrip(CodeGenFunction &CGF,
3358 const CGPointerAuthInfo &PointerAuth,
3359 llvm::Value *Pointer) {
3360 auto StripIntrinsic = CGF.CGM.getIntrinsic(llvm::Intrinsic::ptrauth_strip);
3361
3362 auto Key = CGF.Builder.getInt32(PointerAuth.getKey());
3363 // Convert the pointer to intptr_t before signing it.
3364 auto OrigType = Pointer->getType();
3366 StripIntrinsic, {CGF.Builder.CreatePtrToInt(Pointer, CGF.IntPtrTy), Key});
3367 return CGF.Builder.CreateIntToPtr(Pointer, OrigType);
3368}
3369
3370llvm::Value *
3372 llvm::Value *Pointer) {
3373 if (PointerAuth.shouldStrip()) {
3374 return EmitStrip(*this, PointerAuth, Pointer);
3375 }
3376 if (!PointerAuth.shouldAuth()) {
3377 return Pointer;
3378 }
3379
3380 return EmitPointerAuthCommon(*this, PointerAuth, Pointer,
3381 llvm::Intrinsic::ptrauth_auth);
3382}
3383
3385 llvm::Instruction *KeyInstruction, llvm::Value *Backup) {
3386 if (CGDebugInfo *DI = getDebugInfo())
3387 DI->addInstToCurrentSourceAtom(KeyInstruction, Backup);
3388}
3389
3391 llvm::Instruction *KeyInstruction, llvm::Value *Backup, uint64_t Atom) {
3392 if (CGDebugInfo *DI = getDebugInfo())
3393 DI->addInstToSpecificSourceAtom(KeyInstruction, Backup, Atom);
3394}
3395
3396void CodeGenFunction::addInstToNewSourceAtom(llvm::Instruction *KeyInstruction,
3397 llvm::Value *Backup) {
3398 if (CGDebugInfo *DI = getDebugInfo()) {
3400 DI->addInstToCurrentSourceAtom(KeyInstruction, Backup);
3401 }
3402}
Defines the clang::ASTContext interface.
#define V(N, I)
This file provides some common utility functions for processing Lambda related AST Constructs.
Defines enum values for all the target-independent builtin functions.
static llvm::Value * EmitPointerAuthCommon(CodeGenFunction &CGF, const CGPointerAuthInfo &PointerAuth, llvm::Value *Pointer, unsigned IntrinsicID)
static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, llvm::Function *Resolver, CGBuilderTy &Builder, llvm::Function *FuncToReturn, bool SupportsIFunc)
static llvm::Value * EmitStrip(CodeGenFunction &CGF, const CGPointerAuthInfo &PointerAuth, llvm::Value *Pointer)
static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, Address dest, Address src, llvm::Value *sizeInChars)
emitNonZeroVLAInit - Emit the "zero" initialization of a variable-length array whose elements have a ...
static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB)
static LValue makeNaturalAlignAddrLValue(llvm::Value *V, QualType T, bool ForPointeeType, bool MightBeSigned, CodeGenFunction &CGF, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
static void TryMarkNoThrow(llvm::Function *F)
Tries to mark the given function nounwind based on the non-existence of any throwing calls within it.
static llvm::Constant * getPrologueSignature(CodeGenModule &CGM, const FunctionDecl *FD)
Return the UBSan prologue signature for FD if one is available.
static bool endsWithReturn(const Decl *F)
Determine whether the function F ends with a return stmt.
static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, const LangOptions &LangOpts)
shouldEmitLifetimeMarkers - Decide whether we need emit the life-time markers.
static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx)
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
Defines the Objective-C statement AST node classes.
Enumerates target-specific builtins in their own namespaces within namespace clang.
APValue - This class implements a discriminated union of [uninitialized] [APSInt] [APFloat],...
Definition APValue.h:122
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition ASTContext.h:220
QualType getFunctionTypeWithExceptionSpec(QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const
Get a function type and produce the equivalent function type with the specified exception specificati...
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
bool hasAnyFunctionEffects() const
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
static bool hasSameType(QualType T1, QualType T2)
Determine whether the given types T1 and T2 are equivalent.
const VariableArrayType * getAsVariableArrayType(QualType T) const
QualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
const TargetInfo & getTargetInfo() const
Definition ASTContext.h:910
void getFunctionFeatureMap(llvm::StringMap< bool > &FeatureMap, const FunctionDecl *) const
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition TypeBase.h:3722
QualType getElementType() const
Definition TypeBase.h:3734
Attr - This represents one attribute.
Definition Attr.h:45
A builtin binary operation expression such as "x + y" or "x <= y".
Definition Expr.h:3972
static bool isLogicalOp(Opcode Opc)
Definition Expr.h:4105
BinaryOperatorKind Opcode
Definition Expr.h:3977
Represents a C++ constructor within a class.
Definition DeclCXX.h:2604
Represents a static or instance method of a struct/union/class.
Definition DeclCXX.h:2129
bool isImplicitObjectMemberFunction() const
[C++2b][dcl.fct]/p7 An implicit object member function is a non-static member function without an exp...
Definition DeclCXX.cpp:2710
const CXXRecordDecl * getParent() const
Return the parent of this method declaration, which is the class in which this method is defined.
Definition DeclCXX.h:2255
QualType getThisType() const
Return the type of the this pointer.
Definition DeclCXX.cpp:2809
bool isStatic() const
Definition DeclCXX.cpp:2401
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition DeclCXX.h:1018
void getCaptureFields(llvm::DenseMap< const ValueDecl *, FieldDecl * > &Captures, FieldDecl *&ThisCapture) const
For a closure type, retrieve the mapping from captured variables and this to the non-static data memb...
Definition DeclCXX.cpp:1784
bool isCapturelessLambda() const
Definition DeclCXX.h:1064
bool isEmpty() const
Determine whether this is an empty class in the sense of (C++11 [meta.unary.prop]).
Definition DeclCXX.h:1186
A C++ throw-expression (C++ [except.throw]).
Definition ExprCXX.h:1208
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition Expr.h:2877
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition Expr.h:3081
SourceLocation getBeginLoc() const
Definition Expr.h:3211
CharUnits - This is an opaque type for sizes expressed in character units.
Definition CharUnits.h:38
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition CharUnits.h:122
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition CharUnits.h:189
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition CharUnits.h:185
CharUnits alignmentOfArrayElement(CharUnits elementSize) const
Given that this is the alignment of the first element of an array, return the minimum alignment of an...
Definition CharUnits.h:214
bool isOne() const
isOne - Test whether the quantity equals one.
Definition CharUnits.h:125
CodeGenOptions - Track various options which control how the code is optimized and passed to the back...
@ InAlloca
InAlloca - Pass the argument directly using the LLVM inalloca attribute.
@ Indirect
Indirect - Pass the argument indirectly via a hidden pointer with the specified alignment (0 indicate...
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition Address.h:128
static Address invalid()
Definition Address.h:176
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Return the pointer contained in this class after authenticating it and adding offset to it if necessa...
Definition Address.h:253
CharUnits getAlignment() const
Definition Address.h:194
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition Address.h:209
Address withElementType(llvm::Type *ElemTy) const
Return address with different element type, but same pointer and alignment.
Definition Address.h:276
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition Address.h:204
A scoped helper to set the current source atom group for CGDebugInfo::addInstToCurrentSourceAtom.
A scoped helper to set the current debug location to the specified location or preferred location of ...
static ApplyDebugLocation CreateDefaultArtificial(CodeGenFunction &CGF, SourceLocation TemporaryLocation)
Apply TemporaryLocation if it is valid.
void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock::iterator InsertPt) const override
This forwards to CodeGenFunction::InsertHelper.
llvm::ConstantInt * getSize(CharUnits N)
Definition CGBuilder.h:103
@ RAA_DirectInMemory
Pass it on the stack using its defined layout.
Definition CGCXXABI.h:158
virtual RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const =0
Returns how an argument of the given record type should be passed.
Abstract information about a function or function prototype.
Definition CGCall.h:41
const FunctionProtoType * getCalleeFunctionProtoType() const
Definition CGCall.h:56
All available information about a concrete callee.
Definition CGCall.h:63
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition CGCall.h:137
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition CGDebugInfo.h:59
CGFunctionInfo - Class to encapsulate the information about a function definition.
llvm::Value * getDiscriminator() const
CallArgList - Type for representing both the value and type of arguments in a call.
Definition CGCall.h:274
void add(RValue rvalue, QualType type)
Definition CGCall.h:302
CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures)
An object to manage conditionally-evaluated expressions.
An object which temporarily prevents a value from being destroyed by aggressive peephole optimization...
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
void EmitRISCVMultiVersionResolver(llvm::Function *Resolver, ArrayRef< FMVResolverOption > Options)
GlobalDecl CurGD
CurGD - The GlobalDecl for the current function being compiled.
void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, uint64_t TrueCount, Stmt::Likelihood LH=Stmt::LH_None, const Expr *ConditionalOp=nullptr, const VarDecl *ConditionalDecl=nullptr)
EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g.
void setCurrentProfileCount(uint64_t Count)
Set the profiler's current count.
llvm::Value * emitBoolVecConversion(llvm::Value *SrcVec, unsigned NumElementsDst, const llvm::Twine &Name="")
void EmitAArch64MultiVersionResolver(llvm::Function *Resolver, ArrayRef< FMVResolverOption > Options)
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target)
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
llvm::Value * EmitScalarOrConstFoldImmArg(unsigned ICEArguments, unsigned Idx, const CallExpr *E)
SanitizerSet SanOpts
Sanitizers enabled for this function.
void EmitNullInitialization(Address DestPtr, QualType Ty)
EmitNullInitialization - Generate code to set a value of the given type to null, If the type contains...
RawAddress CreateIRTemp(QualType T, const Twine &Name="tmp")
CreateIRTemp - Create a temporary IR object of the given type, with appropriate alignment.
Definition CGExpr.cpp:183
void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl)
static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts=false)
ContainsLabel - Return true if the statement contains a label in it.
bool ShouldSkipSanitizerInstrumentation()
ShouldSkipSanitizerInstrumentation - Return true if the current function should not be instrumented w...
llvm::BlockAddress * GetAddrOfLabel(const LabelDecl *L)
llvm::Value * EmitRISCVCpuSupports(const CallExpr *E)
Definition RISCV.cpp:970
llvm::Value * EmitRISCVCpuInit()
Definition RISCV.cpp:960
static bool hasScalarEvaluationKind(QualType T)
llvm::Type * ConvertType(QualType T)
void GenerateCode(GlobalDecl GD, llvm::Function *Fn, const CGFunctionInfo &FnInfo)
void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK)
void addInstToNewSourceAtom(llvm::Instruction *KeyInstruction, llvm::Value *Backup)
Add KeyInstruction and an optional Backup instruction to a new atom group (See ApplyAtomGroup for mor...
PeepholeProtection protectFromPeepholes(RValue rvalue)
protectFromPeepholes - Protect a value that we're intending to store to the side, but which will prob...
void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD)
Definition CGClass.cpp:3220
bool CurFuncIsThunk
In C++, whether we are code generating a thunk.
LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T)
Given a value of type T* that may not be to a complete object, construct an l-value with the natural ...
JumpDest getJumpDestForLabel(const LabelDecl *S)
getBasicBlockForLabel - Return the LLVM basicblock that the specified label maps to.
Definition CGStmt.cpp:710
void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint=true)
SmallVector< llvm::ConvergenceControlInst *, 4 > ConvergenceTokenStack
Stack to track the controlled convergence tokens.
void unprotectFromPeepholes(PeepholeProtection protection)
RValue convertTempToRValue(Address addr, QualType type, SourceLocation Loc)
Given the address of a temporary variable, produce an r-value of its type.
Definition CGExpr.cpp:6772
llvm::Constant * EmitCheckSourceLocation(SourceLocation Loc)
Emit a description of a source location in a format suitable for passing to a runtime sanitizer handl...
Definition CGExpr.cpp:3767
llvm::SmallVector< DeferredDeactivateCleanup > DeferredDeactivationCleanupStack
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
void addInstToCurrentSourceAtom(llvm::Instruction *KeyInstruction, llvm::Value *Backup)
See CGDebugInfo::addInstToCurrentSourceAtom.
const LangOptions & getLangOpts() const
void addInstToSpecificSourceAtom(llvm::Instruction *KeyInstruction, llvm::Value *Backup, uint64_t Atom)
See CGDebugInfo::addInstToSpecificSourceAtom.
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
void EmitVarAnnotations(const VarDecl *D, llvm::Value *V)
Emit local annotations for the local variable V, declared by D.
llvm::BasicBlock * EHResumeBlock
EHResumeBlock - Unified block containing a call to llvm.eh.resume.
Address EmitFieldAnnotations(const FieldDecl *D, Address V)
Emit field annotations for the given field & value.
void EmitConstructorBody(FunctionArgList &Args)
EmitConstructorBody - Emits the body of the current constructor.
Definition CGClass.cpp:830
void EmitKCFIOperandBundle(const CGCallee &Callee, SmallVectorImpl< llvm::OperandBundleDef > &Bundles)
void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init)
Address makeNaturalAddressForPointer(llvm::Value *Ptr, QualType T, CharUnits Alignment=CharUnits::Zero(), bool ForPointeeType=false, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
Construct an address with the natural alignment of T.
LValue MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, QualType T)
Same as MakeNaturalAlignPointeeAddrLValue except that the pointer is known to be unsigned.
@ TCK_ConstructorCall
Checking the 'this' pointer for a constructor call.
@ TCK_MemberCall
Checking the 'this' pointer for a call to a non-static member function.
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
llvm::AssertingVH< llvm::Instruction > AllocaInsertPt
AllocaInsertPoint - This is an instruction in the entry block before which we prefer to insert alloca...
void EmitFunctionBody(const Stmt *Body)
JumpDest ReturnBlock
ReturnBlock - Unified return block.
llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location)
Converts Location to a DebugLoc, if debug information is enabled.
llvm::Constant * EmitCheckTypeDescriptor(QualType T)
Emit a description of a type in a format suitable for passing to a runtime sanitizer handler.
Definition CGExpr.cpp:3657
llvm::DebugLoc EmitReturnBlock()
Emit the unified return block, trying to avoid its emission when possible.
RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty, const Twine &Name="tmp")
CreateDefaultAlignedTempAlloca - This creates an alloca with the default ABI alignment of the given L...
Definition CGExpr.cpp:176
const TargetInfo & getTarget() const
llvm::Value * EmitAnnotationCall(llvm::Function *AnnotationFn, llvm::Value *AnnotatedVal, StringRef AnnotationStr, SourceLocation Location, const AnnotateAttr *Attr)
Emit an annotation call (intrinsic).
Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
Definition CGStmt.cpp:585
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, std::initializer_list< llvm::Value ** > ValuesToReload={})
Takes the old cleanup stack size and emits the cleanup blocks that have been added.
void maybeCreateMCDCCondBitmap()
Allocate a temp value on the stack that MCDC can use to track condition results.
void EmitIgnoredExpr(const Expr *E)
EmitIgnoredExpr - Emit an expression in a context which ignores the result.
Definition CGExpr.cpp:244
RValue EmitLoadOfLValue(LValue V, SourceLocation Loc)
EmitLoadOfLValue - Given an expression that represents a value lvalue, this method emits the address ...
Definition CGExpr.cpp:2399
static bool isInstrumentedCondition(const Expr *C)
isInstrumentedCondition - Determine whether the given condition is an instrumentable condition (i....
VlaSizePair getVLAElements1D(const VariableArrayType *vla)
Return the number of elements for a single dimension for the given array type.
bool AlwaysEmitXRayCustomEvents() const
AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit XRay custom event handling c...
void StartFunction(GlobalDecl GD, QualType RetTy, llvm::Function *Fn, const CGFunctionInfo &FnInfo, const FunctionArgList &Args, SourceLocation Loc=SourceLocation(), SourceLocation StartLoc=SourceLocation())
Emit code for the start of a function.
llvm::Value * EmitPointerAuthSign(const CGPointerAuthInfo &Info, llvm::Value *Pointer)
void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn)
Annotate the function with an attribute that disables TSan checking at runtime.
llvm::Value * EvaluateExprAsBool(const Expr *E)
EvaluateExprAsBool - Perform the usual unary conversions on the specified expression and compare the ...
Definition CGExpr.cpp:225
void EmitPointerAuthOperandBundle(const CGPointerAuthInfo &Info, SmallVectorImpl< llvm::OperandBundleDef > &Bundles)
void EmitCheck(ArrayRef< std::pair< llvm::Value *, SanitizerKind::SanitizerOrdinal > > Checked, SanitizerHandler Check, ArrayRef< llvm::Constant * > StaticArgs, ArrayRef< llvm::Value * > DynamicArgs, const TrapReason *TR=nullptr)
Create a basic block that will either trap or call a handler function in the UBSan runtime with the p...
Definition CGExpr.cpp:3915
void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock::iterator InsertPt) const
CGBuilder insert helper.
SmallVector< const BinaryOperator *, 16 > MCDCLogOpStack
Stack to track the Logical Operator recursion nest for MC/DC.
llvm::Value * emitArrayLength(const ArrayType *arrayType, QualType &baseType, Address &addr)
emitArrayLength - Compute the length of an array, even if it's a VLA, and drill down to the base elem...
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
bool AlwaysEmitXRayTypedEvents() const
AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit XRay typed event handling ...
void EmitStartEHSpec(const Decl *D)
EmitStartEHSpec - Emit the start of the exception spec.
void EmitDestructorBody(FunctionArgList &Args)
EmitDestructorBody - Emits the body of the current destructor.
Definition CGClass.cpp:1543
void EmitX86MultiVersionResolver(llvm::Function *Resolver, ArrayRef< FMVResolverOption > Options)
bool ShouldInstrumentFunction()
ShouldInstrumentFunction - Return true if the current function should be instrumented with __cyg_prof...
void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val)
Update the MCDC temp value with the condition's evaluated result.
void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, SourceLocation Loc, SourceLocation AssumptionLoc, llvm::Value *Alignment, llvm::Value *OffsetValue, llvm::Value *TheCheck, llvm::Instruction *Assumption)
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **CallOrInvoke, bool IsMustTail, SourceLocation Loc, bool IsVirtualFunctionPointerThunk=false)
EmitCall - Generate a call of the given function, expecting the given result type,...
Definition CGCall.cpp:5248
llvm::ConstantInt * getUBSanFunctionTypeHash(QualType T) const
Return a type hash constant for a function instrumented by -fsanitize=function.
void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, uint64_t TrueCount=0, Stmt::Likelihood LH=Stmt::LH_None, const Expr *CntrIdx=nullptr)
EmitBranchToCounterBlock - Emit a conditional branch to a new block that increments a profile counter...
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler's counter for the given statement by StepV.
VlaSizePair getVLASize(const VariableArrayType *vla)
Returns an LLVM value that corresponds to the size, in non-variably-sized elements,...
void EmitMultiVersionResolver(llvm::Function *Resolver, ArrayRef< FMVResolverOption > Options)
const Decl * CurFuncDecl
CurFuncDecl - Holds the Decl for the current outermost non-closure context.
static const Expr * stripCond(const Expr *C)
Ignore parentheses and logical-NOT to track conditions consistently.
void EmitFunctionProlog(const CGFunctionInfo &FI, llvm::Function *Fn, const FunctionArgList &Args)
EmitFunctionProlog - Emit the target specific LLVM code to load the arguments for the given function.
Definition CGCall.cpp:3113
void SetFastMathFlags(FPOptions FPFeatures)
Set the codegen fast-math flags.
llvm::SmallVector< char, 256 > LifetimeExtendedCleanupStack
Address EmitVAListRef(const Expr *E)
void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD)
Definition CGClass.cpp:3276
Address ReturnValuePointer
ReturnValuePointer - The temporary alloca to hold a pointer to sret.
static bool mightAddDeclToScope(const Stmt *S)
Determine if the given statement might introduce a declaration into the current scope,...
void EmitStmt(const Stmt *S, ArrayRef< const Attr * > Attrs={})
EmitStmt - Emit the code for the statement.
Definition CGStmt.cpp:61
llvm::DenseMap< const ValueDecl *, FieldDecl * > LambdaCaptureFields
bool AutoreleaseResult
In ARC, whether we should autorelease the return value.
llvm::CallInst * EmitRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
uint64_t getCurrentProfileCount()
Get the profiler's current count.
llvm::Type * ConvertTypeForMem(QualType T)
void EmitEndEHSpec(const Decl *D)
EmitEndEHSpec - Emit the end of the exception spec.
LValue EmitLValueForLambdaField(const FieldDecl *Field)
Definition CGExpr.cpp:5295
CodeGenTypes & getTypes() const
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
bool IsSanitizerScope
True if CodeGen currently emits code implementing sanitizer checks.
static bool containsBreak(const Stmt *S)
containsBreak - Return true if the statement contains a break out of it.
void emitImplicitAssignmentOperatorBody(FunctionArgList &Args)
Definition CGClass.cpp:1664
HLSLControlFlowHintAttr::Spelling HLSLControlFlowAttr
HLSL Branch attribute.
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV, QualType Type, SanitizerSet SkippedChecks=SanitizerSet(), llvm::Value *ArraySize=nullptr)
llvm::SmallVector< const ParmVarDecl *, 4 > FnArgs
Save Parameter Decl for coroutine.
void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, SourceLocation EndLoc, uint64_t RetKeyInstructionsSourceAtom)
EmitFunctionEpilog - Emit the target specific LLVM code to return the given temporary.
Definition CGCall.cpp:4000
Address EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitPointerWithAlignment - Given an expression with a pointer type, emit the value and compute our be...
Definition CGExpr.cpp:1574
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block,...
Definition CGStmt.cpp:676
RawAddress NormalCleanupDest
i32s containing the indexes of the cleanup destinations.
llvm::Type * convertTypeForLoadStore(QualType ASTTy, llvm::Type *LLVMTy=nullptr)
llvm::BasicBlock * GetIndirectGotoBlock()
EHScopeStack::stable_iterator PrologueCleanupDepth
PrologueCleanupDepth - The cleanup depth enclosing all the cleanups associated with the parameters.
Address EmitMSVAListRef(const Expr *E)
Emit a "reference" to a __builtin_ms_va_list; this is always the value of the expression,...
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type,...
llvm::CallInst * EmitTrapCall(llvm::Intrinsic::ID IntrID)
Emit a call to trap or debugtrap and attach function attribute "trap-func-name" if specified.
Definition CGExpr.cpp:4330
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
void FinishFunction(SourceLocation EndLoc=SourceLocation())
FinishFunction - Complete IR generation of the current function.
const CGFunctionInfo * CurFnInfo
uint64_t getProfileCount(const Stmt *S)
Get the profiler's count for the given statement.
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, bool AllowLabels=false)
ConstantFoldsToSimpleInteger - If the specified expression does not fold to a constant,...
void ErrorUnsupported(const Stmt *S, const char *Type)
ErrorUnsupported - Print out an error that codegen doesn't support the specified stmt yet.
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
LValue EmitLValue(const Expr *E, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitLValue - Emit code to compute a designator that specifies the location of the expression.
Definition CGExpr.cpp:1690
bool ShouldXRayInstrumentFunction() const
ShouldXRayInstrument - Return true if the current function should be instrumented with XRay nop sleds...
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go.
llvm::LLVMContext & getLLVMContext()
bool SawAsmBlock
Whether we processed a Microsoft-style asm block during CodeGen.
bool checkIfFunctionMustProgress()
Returns true if a function must make progress, which means the mustprogress attribute can be added.
void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, SourceLocation Loc, SourceLocation AssumptionLoc, llvm::Value *Alignment, llvm::Value *OffsetValue=nullptr)
void EmitVariablyModifiedType(QualType Ty)
EmitVLASize - Capture all the sizes for the VLA expressions in the given variably-modified type and s...
void MaybeEmitDeferredVarDeclInit(const VarDecl *var)
Definition CGDecl.cpp:2074
void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S)
When instrumenting to collect profile data, the counts for some blocks such as switch cases need to n...
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition CGStmt.cpp:656
LValue MakeNaturalAlignRawAddrLValue(llvm::Value *V, QualType T)
QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args)
llvm::Value * EmitPointerAuthAuth(const CGPointerAuthInfo &Info, llvm::Value *Pointer)
This class organizes the cross-function state that is used while generating LLVM code.
CharUnits getNaturalTypeAlignment(QualType T, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr, bool forPointeeType=false)
const TargetCodeGenInfo & getTargetCodeGenInfo()
const CodeGenOptions & getCodeGenOpts() const
void GenKernelArgMetadata(llvm::Function *FN, const FunctionDecl *FD=nullptr, CodeGenFunction *CGF=nullptr)
OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument information in the program executab...
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type * > Tys={})
Per-function PGO state.
Definition CodeGenPGO.h:29
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
bool inheritingCtorHasParams(const InheritedConstructor &Inherited, CXXCtorType Type)
Determine if a C++ inheriting constructor should have parameters matching those of its inherited cons...
Definition CGCall.cpp:392
FunctionArgList - Type for representing both the decl and type of parameters to a function.
Definition CGCall.h:375
LValue - This represents an lvalue references.
Definition CGValue.h:183
llvm::Value * getPointer(CodeGenFunction &CGF) const
Address getAddress() const
Definition CGValue.h:362
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition CGValue.h:42
bool isScalar() const
Definition CGValue.h:64
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition CGValue.h:72
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Definition CGCall.h:379
virtual llvm::Constant * getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const
Return a constant used by UBSan as a signature to identify functions possessing type information,...
Definition TargetInfo.h:243
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition Stmt.h:1730
ConditionalOperator - The ?
Definition Expr.h:4325
A reference to a declared variable, function, enum, etc.
Definition Expr.h:1270
ValueDecl * getDecl()
Definition Expr.h:1338
Decl - This represents one declaration (or definition), e.g.
Definition DeclBase.h:86
T * getAttr() const
Definition DeclBase.h:573
ASTContext & getASTContext() const LLVM_READONLY
Definition DeclBase.cpp:546
Decl * getNonClosureContext()
Find the innermost non-closure ancestor of this declaration, walking up through blocks,...
llvm::iterator_range< specific_attr_iterator< T > > specific_attrs() const
Definition DeclBase.h:559
SourceLocation getLocation() const
Definition DeclBase.h:439
bool hasAttr() const
Definition DeclBase.h:577
This represents one expression.
Definition Expr.h:112
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const
Returns the set of floating point options that apply to this expression.
Definition Expr.cpp:3967
std::optional< llvm::APSInt > getIntegerConstantExpr(const ASTContext &Ctx) const
isIntegerConstantExpr - Return the value if this expression is a valid integer constant expression.
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition Expr.cpp:276
QualType getType() const
Definition Expr.h:144
ExtVectorType - Extended vector type.
Definition TypeBase.h:4267
LangOptions::FPExceptionModeKind getExceptionMode() const
bool allowFPContractAcrossStatement() const
RoundingMode getRoundingMode() const
Represents a member of a struct/union/class.
Definition Decl.h:3160
Represents a function declaration or definition.
Definition Decl.h:2000
bool isMultiVersion() const
True if this function is considered a multiversioned function.
Definition Decl.h:2689
Stmt * getBody(const FunctionDecl *&Definition) const
Retrieve the body (definition) of the function.
Definition Decl.cpp:3275
unsigned getBuiltinID(bool ConsiderWrapperFunctions=false) const
Returns a value indicating whether this function corresponds to a builtin function.
Definition Decl.cpp:3758
bool UsesFPIntrin() const
Determine whether the function was declared in source context that requires constrained FP intrinsics...
Definition Decl.h:2909
bool usesSEHTry() const
Indicates the function uses __try.
Definition Decl.h:2518
QualType getReturnType() const
Definition Decl.h:2845
ArrayRef< ParmVarDecl * > parameters() const
Definition Decl.h:2774
FunctionDecl * getTemplateInstantiationPattern(bool ForDefinition=true) const
Retrieve the function declaration from which this function could be instantiated, if it is an instant...
Definition Decl.cpp:4260
FunctionEffectsRef getFunctionEffects() const
Definition Decl.h:3134
bool isMSVCRTEntryPoint() const
Determines whether this function is a MSVCRT user defined entry point.
Definition Decl.cpp:3371
bool isInlineBuiltinDeclaration() const
Determine if this function provides an inline implementation of a builtin.
Definition Decl.cpp:3522
bool hasImplicitReturnZero() const
Whether falling off this function implicitly returns null/zero.
Definition Decl.h:2428
bool isMain() const
Determines whether this function is "main", which is the entry point into an executable program.
Definition Decl.cpp:3364
bool isDefaulted() const
Whether this function is defaulted.
Definition Decl.h:2385
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any.
Definition Decl.cpp:4126
FunctionDecl * getPreviousDecl()
Return the previous declaration of this declaration or NULL if this is the first declaration.
Represents a prototype with parameter type info, e.g.
Definition TypeBase.h:5254
QualType desugar() const
Definition TypeBase.h:5835
FunctionTypeExtraAttributeInfo getExtraAttributeInfo() const
Return the extra attribute information.
Definition TypeBase.h:5743
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition TypeBase.h:4450
GlobalDecl - represents a global declaration.
Definition GlobalDecl.h:57
CXXCtorType getCtorType() const
Definition GlobalDecl.h:108
KernelReferenceKind getKernelReferenceKind() const
Definition GlobalDecl.h:135
const Decl * getDecl() const
Definition GlobalDecl.h:106
One of these records is kept for each identifier that is lexed.
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
static ImplicitParamDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, ImplicitParamKind ParamKind)
Create implicit parameter.
Definition Decl.cpp:5536
Represents the declaration of a label.
Definition Decl.h:524
FPExceptionModeKind
Possible floating point exception behavior.
@ FPE_Strict
Strictly preserve the floating-point exception semantics.
@ FPE_MayTrap
Transformations do not cause new exceptions but may hide some.
@ FPE_Ignore
Assume that floating-point exceptions are masked.
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
SanitizerSet Sanitize
Set of enabled sanitizers.
RoundingMode getDefaultRoundingMode() const
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition Decl.h:340
Represents a parameter to a function.
Definition Decl.h:1790
ParsedAttr - Represents a syntactic attribute.
Definition ParsedAttr.h:119
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition TypeBase.h:3328
@ Forbid
Profiling is forbidden using the noprofile attribute.
Definition ProfileList.h:37
@ Skip
Profiling is skipped using the skipprofile attribute.
Definition ProfileList.h:35
@ Allow
Profiling is allowed.
Definition ProfileList.h:33
A (possibly-)qualified type.
Definition TypeBase.h:937
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition TypeBase.h:8362
field_range fields() const
Definition Decl.h:4524
Encodes a location in the source.
A trivial tuple used to represent a source range.
Stmt - This represents one statement.
Definition Stmt.h:85
child_range children()
Definition Stmt.cpp:299
StmtClass getStmtClass() const
Definition Stmt.h:1483
Likelihood
The likelihood of a branch being taken.
Definition Stmt.h:1426
@ LH_Unlikely
Branch has the [[unlikely]] attribute.
Definition Stmt.h:1427
@ LH_None
No attribute set or branches of the IfStmt have the same attribute.
Definition Stmt.h:1428
@ LH_Likely
Branch has the [[likely]] attribute.
Definition Stmt.h:1430
bool isMicrosoft() const
Is this ABI an MSVC-compatible ABI?
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
virtual std::optional< std::pair< unsigned, unsigned > > getVScaleRange(const LangOptions &LangOpts, ArmStreamingKind Mode, llvm::StringMap< bool > *FeatureMap=nullptr) const
Returns target-specific min and max values VScale_Range.
bool supportsIFunc() const
Identify whether this target supports IFuncs.
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
virtual ParsedTargetAttr parseTargetAttr(StringRef Str) const
bool isVoidType() const
Definition TypeBase.h:8871
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char,...
Definition Type.cpp:2205
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition Type.h:26
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition Type.cpp:752
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition TypeBase.h:2800
TypeClass getTypeClass() const
Definition TypeBase.h:2385
const T * getAs() const
Member-template getAs<specific type>'.
Definition TypeBase.h:9091
bool isObjCRetainableType() const
Definition Type.cpp:5283
bool isFunctionNoProtoType() const
Definition TypeBase.h:2600
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition Expr.h:2244
QualType getType() const
Definition Decl.h:723
Represents a variable declaration or definition.
Definition Decl.h:926
Represents a C array with a specified size that is not an integer-constant-expression.
Definition TypeBase.h:3966
Expr * getSizeExpr() const
Definition TypeBase.h:3980
QualType getElementType() const
Definition TypeBase.h:4189
Defines the clang::TargetInfo interface.
#define UINT_MAX
Definition limits.h:64
bool evaluateRequiredTargetFeatures(llvm::StringRef RequiredFatures, const llvm::StringMap< bool > &TargetFetureMap)
Returns true if the required target features of a builtin function are enabled.
@ Type
The l-value was considered opaque, so the alignment was determined from a type.
Definition CGValue.h:155
@ Decl
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
Definition CGValue.h:146
TypeEvaluationKind
The kind of evaluation to perform on values of a particular type.
CGBuilderInserter CGBuilderInserterTy
Definition CGBuilder.h:45
constexpr XRayInstrMask Typed
Definition XRayInstr.h:42
constexpr XRayInstrMask FunctionExit
Definition XRayInstr.h:40
constexpr XRayInstrMask FunctionEntry
Definition XRayInstr.h:39
constexpr XRayInstrMask Custom
Definition XRayInstr.h:41
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const AstTypeMatcher< ArrayType > arrayType
The JSON file list parser is used to communicate input to InstallAPI.
bool isa(CodeGen::Address addr)
Definition Address.h:330
@ CPlusPlus
@ NonNull
Values of this type can never be null.
Definition Specifiers.h:350
nullptr
This class represents a compute construct, representing a 'Kind' of ‘parallel’, 'serial',...
Expr * Cond
};
bool isLambdaCallOperator(const CXXMethodDecl *MD)
Definition ASTLambda.h:28
@ Result
The result type of a method or function.
Definition TypeBase.h:905
const FunctionProtoType * T
llvm::fp::ExceptionBehavior ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind)
U cast(CodeGen::Address addr)
Definition Address.h:327
bool IsArmStreamingFunction(const FunctionDecl *FD, bool IncludeLocallyStreaming)
Returns whether the given FunctionDecl has an __arm[_locally]_streaming attribute.
Definition Decl.cpp:6033
@ Other
Other implicit parameter.
Definition Decl.h:1746
@ EST_None
no exception specification
@ Implicit
An implicit conversion.
Definition Sema.h:438
Diagnostic wrappers for TextAPI types for error reporting.
Definition Dominators.h:30
cl::opt< bool > EnableSingleByteCoverage
A jump destination is an abstract label, branching to which may require a jump out through normal cle...
This structure provides a set of types that are commonly used during IR emission.
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
EvalResult is a struct with detailed info about an evaluated expression.
Definition Expr.h:645
A FunctionEffect plus a potential boolean expression determining whether the effect is declared (e....
Definition TypeBase.h:4991
Contains information gathered from parsing the contents of TargetAttr.
Definition TargetInfo.h:60
std::vector< std::string > Features
Definition TargetInfo.h:61
void set(SanitizerMask K, bool Value)
Enable or disable a certain (single) sanitizer.
Definition Sanitizers.h:187
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition Sanitizers.h:174