clang 22.0.0git
CGExprCXX.cpp
Go to the documentation of this file.
1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with code generation of C++ expressions
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCUDARuntime.h"
14#include "CGCXXABI.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CodeGenFunction.h"
18#include "ConstantEmitter.h"
19#include "TargetInfo.h"
22#include "llvm/IR/Intrinsics.h"
23
24using namespace clang;
25using namespace CodeGen;
26
27namespace {
28struct MemberCallInfo {
29 RequiredArgs ReqArgs;
30 // Number of prefix arguments for the call. Ignores the `this` pointer.
31 unsigned PrefixSize;
32};
33}
34
35static MemberCallInfo
37 llvm::Value *This, llvm::Value *ImplicitParam,
38 QualType ImplicitParamTy, const CallExpr *CE,
39 CallArgList &Args, CallArgList *RtlArgs) {
40 auto *MD = cast<CXXMethodDecl>(GD.getDecl());
41
42 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
44 assert(MD->isImplicitObjectMemberFunction() &&
45 "Trying to emit a member or operator call expr on a static method!");
46
47 // Push the this ptr.
48 const CXXRecordDecl *RD =
50 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
51
52 // If there is an implicit parameter (e.g. VTT), emit it.
53 if (ImplicitParam) {
54 Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
55 }
56
57 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
58 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
59 unsigned PrefixSize = Args.size() - 1;
60
61 // And the rest of the call args.
62 if (RtlArgs) {
63 // Special case: if the caller emitted the arguments right-to-left already
64 // (prior to emitting the *this argument), we're done. This happens for
65 // assignment operators.
66 Args.addFrom(*RtlArgs);
67 } else if (CE) {
68 // Special case: skip first argument of CXXOperatorCall (it is "this").
69 unsigned ArgsToSkip = 0;
70 if (const auto *Op = dyn_cast<CXXOperatorCallExpr>(CE)) {
71 if (const auto *M = dyn_cast<CXXMethodDecl>(Op->getCalleeDecl()))
72 ArgsToSkip =
73 static_cast<unsigned>(!M->isExplicitObjectMemberFunction());
74 }
75 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
76 CE->getDirectCallee());
77 } else {
78 assert(
79 FPT->getNumParams() == 0 &&
80 "No CallExpr specified for function with non-zero number of arguments");
81 }
82 return {required, PrefixSize};
83}
84
86 const CXXMethodDecl *MD, const CGCallee &Callee,
87 ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam,
88 QualType ImplicitParamTy, const CallExpr *CE, CallArgList *RtlArgs,
89 llvm::CallBase **CallOrInvoke) {
91 CallArgList Args;
92 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
93 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
94 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
95 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
96 return EmitCall(FnInfo, Callee, ReturnValue, Args, CallOrInvoke,
97 CE && CE == MustTailCall,
98 CE ? CE->getExprLoc() : SourceLocation());
99}
100
102 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
103 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
104 llvm::CallBase **CallOrInvoke) {
105 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
106
107 assert(!ThisTy.isNull());
108 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
109 "Pointer/Object mixup");
110
111 LangAS SrcAS = ThisTy.getAddressSpace();
112 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
113 if (SrcAS != DstAS) {
114 QualType DstTy = DtorDecl->getThisType();
115 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
116 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, NewType);
117 }
118
119 CallArgList Args;
120 commonEmitCXXMemberOrOperatorCall(*this, Dtor, This, ImplicitParam,
121 ImplicitParamTy, CE, Args, nullptr);
122 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
123 ReturnValueSlot(), Args, CallOrInvoke,
124 CE && CE == MustTailCall,
125 CE ? CE->getExprLoc() : SourceLocation{});
126}
127
129 const CXXPseudoDestructorExpr *E) {
130 QualType DestroyedType = E->getDestroyedType();
131 if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
132 // Automatic Reference Counting:
133 // If the pseudo-expression names a retainable object with weak or
134 // strong lifetime, the object shall be released.
135 Expr *BaseExpr = E->getBase();
136 Address BaseValue = Address::invalid();
137 Qualifiers BaseQuals;
138
139 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
140 if (E->isArrow()) {
141 BaseValue = EmitPointerWithAlignment(BaseExpr);
142 const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
143 BaseQuals = PTy->getPointeeType().getQualifiers();
144 } else {
145 LValue BaseLV = EmitLValue(BaseExpr);
146 BaseValue = BaseLV.getAddress();
147 QualType BaseTy = BaseExpr->getType();
148 BaseQuals = BaseTy.getQualifiers();
149 }
150
151 switch (DestroyedType.getObjCLifetime()) {
155 break;
156
158 EmitARCRelease(Builder.CreateLoad(BaseValue,
159 DestroyedType.isVolatileQualified()),
161 break;
162
164 EmitARCDestroyWeak(BaseValue);
165 break;
166 }
167 } else {
168 // C++ [expr.pseudo]p1:
169 // The result shall only be used as the operand for the function call
170 // operator (), and the result of such a call has type void. The only
171 // effect is the evaluation of the postfix-expression before the dot or
172 // arrow.
174 }
175
176 return RValue::get(nullptr);
177}
178
179static CXXRecordDecl *getCXXRecord(const Expr *E) {
180 QualType T = E->getType();
181 if (const PointerType *PTy = T->getAs<PointerType>())
182 T = PTy->getPointeeType();
183 return T->castAsCXXRecordDecl();
184}
185
186// Note: This function also emit constructor calls to support a MSVC
187// extensions allowing explicit constructor function call.
190 llvm::CallBase **CallOrInvoke) {
191 const Expr *callee = CE->getCallee()->IgnoreParens();
192
193 if (isa<BinaryOperator>(callee))
194 return EmitCXXMemberPointerCallExpr(CE, ReturnValue, CallOrInvoke);
195
196 const MemberExpr *ME = cast<MemberExpr>(callee);
198
199 if (MD->isStatic()) {
200 // The method is static, emit it as we would a regular call.
201 CGCallee callee =
202 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
203 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
204 ReturnValue, /*Chain=*/nullptr, CallOrInvoke);
205 }
206
207 bool HasQualifier = ME->hasQualifier();
208 NestedNameSpecifier Qualifier = ME->getQualifier();
209 bool IsArrow = ME->isArrow();
210 const Expr *Base = ME->getBase();
211
213 HasQualifier, Qualifier, IsArrow,
214 Base, CallOrInvoke);
215}
216
219 bool HasQualifier, NestedNameSpecifier Qualifier, bool IsArrow,
220 const Expr *Base, llvm::CallBase **CallOrInvoke) {
222
223 // Compute the object pointer.
224 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
225
226 const CXXMethodDecl *DevirtualizedMethod = nullptr;
227 if (CanUseVirtualCall &&
228 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
229 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
230 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
231 assert(DevirtualizedMethod);
232 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
233 const Expr *Inner = Base->IgnoreParenBaseCasts();
234 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
236 // If the return types are not the same, this might be a case where more
237 // code needs to run to compensate for it. For example, the derived
238 // method might return a type that inherits form from the return
239 // type of MD and has a prefix.
240 // For now we just avoid devirtualizing these covariant cases.
241 DevirtualizedMethod = nullptr;
242 else if (getCXXRecord(Inner) == DevirtualizedClass)
243 // If the class of the Inner expression is where the dynamic method
244 // is defined, build the this pointer from it.
245 Base = Inner;
246 else if (getCXXRecord(Base) != DevirtualizedClass) {
247 // If the method is defined in a class that is not the best dynamic
248 // one or the one of the full expression, we would have to build
249 // a derived-to-base cast to compute the correct this pointer, but
250 // we don't have support for that yet, so do a virtual call.
251 DevirtualizedMethod = nullptr;
252 }
253 }
254
255 bool TrivialForCodegen =
256 MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
257 bool TrivialAssignment =
258 TrivialForCodegen &&
261
262 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
263 // operator before the LHS.
264 CallArgList RtlArgStorage;
265 CallArgList *RtlArgs = nullptr;
266 LValue TrivialAssignmentRHS;
267 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
268 if (OCE->isAssignmentOp()) {
269 if (TrivialAssignment) {
270 TrivialAssignmentRHS = EmitLValue(CE->getArg(1));
271 } else {
272 RtlArgs = &RtlArgStorage;
273 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
274 drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
275 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
276 }
277 }
278 }
279
280 LValue This;
281 if (IsArrow) {
282 LValueBaseInfo BaseInfo;
283 TBAAAccessInfo TBAAInfo;
284 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
285 This = MakeAddrLValue(ThisValue, Base->getType()->getPointeeType(),
286 BaseInfo, TBAAInfo);
287 } else {
289 }
290
291 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
292 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
293 // constructing a new complete object of type Ctor.
294 assert(!RtlArgs);
295 assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
296 CallArgList Args;
298 *this, {Ctor, Ctor_Complete}, This.getPointer(*this),
299 /*ImplicitParam=*/nullptr,
300 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
301
302 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
303 /*Delegating=*/false, This.getAddress(), Args,
305 /*NewPointerIsChecked=*/false, CallOrInvoke);
306 return RValue::get(nullptr);
307 }
308
309 if (TrivialForCodegen) {
311 return RValue::get(nullptr);
312
313 if (TrivialAssignment) {
314 // We don't like to generate the trivial copy/move assignment operator
315 // when it isn't necessary; just produce the proper effect here.
316 // It's important that we use the result of EmitLValue here rather than
317 // emitting call arguments, in order to preserve TBAA information from
318 // the RHS.
320 ? TrivialAssignmentRHS
321 : EmitLValue(*CE->arg_begin());
322 EmitAggregateAssign(This, RHS, CE->getType());
323 return RValue::get(This.getPointer(*this));
324 }
325
326 assert(MD->getParent()->mayInsertExtraPadding() &&
327 "unknown trivial member function");
328 }
329
330 // Compute the function type we're calling.
331 const CXXMethodDecl *CalleeDecl =
332 DevirtualizedMethod ? DevirtualizedMethod : MD;
333 const CGFunctionInfo *FInfo = nullptr;
334 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
335 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
337 else
338 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
339
340 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
341
342 // C++11 [class.mfct.non-static]p2:
343 // If a non-static member function of a class X is called for an object that
344 // is not of type X, or of a type derived from X, the behavior is undefined.
345 SourceLocation CallLoc;
347 if (CE)
348 CallLoc = CE->getExprLoc();
349
350 SanitizerSet SkippedChecks;
351 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
352 auto *IOA = CMCE->getImplicitObjectArgument();
353 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
354 if (IsImplicitObjectCXXThis)
355 SkippedChecks.set(SanitizerKind::Alignment, true);
356 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
357 SkippedChecks.set(SanitizerKind::Null, true);
358 }
359
362 This.emitRawPointer(*this),
363 C.getCanonicalTagType(CalleeDecl->getParent()),
364 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
365
366 // C++ [class.virtual]p12:
367 // Explicit qualification with the scope operator (5.1) suppresses the
368 // virtual call mechanism.
369 //
370 // We also don't emit a virtual call if the base expression has a record type
371 // because then we know what the type is.
372 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
373
374 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
375 assert(CE->arguments().empty() &&
376 "Destructor shouldn't have explicit parameters");
377 assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
378 if (UseVirtualCall) {
379 CGM.getCXXABI().EmitVirtualDestructorCall(
380 *this, Dtor, Dtor_Complete, This.getAddress(),
381 cast<CXXMemberCallExpr>(CE), CallOrInvoke);
382 } else {
383 GlobalDecl GD(Dtor, Dtor_Complete);
384 CGCallee Callee;
385 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
386 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
387 else if (!DevirtualizedMethod)
388 Callee =
389 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
390 else {
391 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
392 }
393
394 QualType ThisTy =
395 IsArrow ? Base->getType()->getPointeeType() : Base->getType();
396 EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy,
397 /*ImplicitParam=*/nullptr,
398 /*ImplicitParamTy=*/QualType(), CE, CallOrInvoke);
399 }
400 return RValue::get(nullptr);
401 }
402
403 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
404 // 'CalleeDecl' instead.
405
406 CGCallee Callee;
407 if (UseVirtualCall) {
408 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
409 } else {
410 if (SanOpts.has(SanitizerKind::CFINVCall) &&
411 MD->getParent()->isDynamicClass()) {
412 llvm::Value *VTable;
413 const CXXRecordDecl *RD;
414 std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr(
415 *this, This.getAddress(), CalleeDecl->getParent());
417 }
418
419 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
420 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
421 else if (!DevirtualizedMethod)
422 Callee =
423 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
424 else {
425 Callee =
426 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
427 GlobalDecl(DevirtualizedMethod));
428 }
429 }
430
431 if (MD->isVirtual()) {
432 Address NewThisAddr =
433 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
434 *this, CalleeDecl, This.getAddress(), UseVirtualCall);
435 This.setAddress(NewThisAddr);
436 }
437
439 CalleeDecl, Callee, ReturnValue, This.getPointer(*this),
440 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs, CallOrInvoke);
441}
442
443RValue
446 llvm::CallBase **CallOrInvoke) {
447 const BinaryOperator *BO =
449 const Expr *BaseExpr = BO->getLHS();
450 const Expr *MemFnExpr = BO->getRHS();
451
452 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
453 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
454 const auto *RD = MPT->getMostRecentCXXRecordDecl();
455
456 // Emit the 'this' pointer.
458 if (BO->getOpcode() == BO_PtrMemI)
459 This = EmitPointerWithAlignment(BaseExpr, nullptr, nullptr, KnownNonNull);
460 else
461 This = EmitLValue(BaseExpr, KnownNonNull).getAddress();
462
463 CanQualType ClassType = CGM.getContext().getCanonicalTagType(RD);
464 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.emitRawPointer(*this),
465 ClassType);
466
467 // Get the member function pointer.
468 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
469
470 // Ask the ABI to load the callee. Note that This is modified.
471 llvm::Value *ThisPtrForCall = nullptr;
472 CGCallee Callee =
473 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
474 ThisPtrForCall, MemFnPtr, MPT);
475
476 CallArgList Args;
477
478 QualType ThisType = getContext().getPointerType(ClassType);
479
480 // Push the this ptr.
481 Args.add(RValue::get(ThisPtrForCall), ThisType);
482
484
485 // And the rest of the call args
486 EmitCallArgs(Args, FPT, E->arguments());
487 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
488 /*PrefixSize=*/0),
489 Callee, ReturnValue, Args, CallOrInvoke, E == MustTailCall,
490 E->getExprLoc());
491}
492
494 const CXXOperatorCallExpr *E, const CXXMethodDecl *MD,
495 ReturnValueSlot ReturnValue, llvm::CallBase **CallOrInvoke) {
496 assert(MD->isImplicitObjectMemberFunction() &&
497 "Trying to emit a member call expr on a static method!");
499 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/std::nullopt,
500 /*IsArrow=*/false, E->getArg(0), CallOrInvoke);
501}
502
505 llvm::CallBase **CallOrInvoke) {
506 // Emit as a device kernel call if CUDA device code is to be generated.
507 if (getLangOpts().CUDAIsDevice)
508 return CGM.getCUDARuntime().EmitCUDADeviceKernelCallExpr(
509 *this, E, ReturnValue, CallOrInvoke);
510 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue,
511 CallOrInvoke);
512}
513
515 Address DestPtr,
516 const CXXRecordDecl *Base) {
517 if (Base->isEmpty())
518 return;
519
520 DestPtr = DestPtr.withElementType(CGF.Int8Ty);
521
522 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
523 CharUnits NVSize = Layout.getNonVirtualSize();
524
525 // We cannot simply zero-initialize the entire base sub-object if vbptrs are
526 // present, they are initialized by the most derived class before calling the
527 // constructor.
529 Stores.emplace_back(CharUnits::Zero(), NVSize);
530
531 // Each store is split by the existence of a vbptr.
532 CharUnits VBPtrWidth = CGF.getPointerSize();
533 std::vector<CharUnits> VBPtrOffsets =
535 for (CharUnits VBPtrOffset : VBPtrOffsets) {
536 // Stop before we hit any virtual base pointers located in virtual bases.
537 if (VBPtrOffset >= NVSize)
538 break;
539 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
540 CharUnits LastStoreOffset = LastStore.first;
541 CharUnits LastStoreSize = LastStore.second;
542
543 CharUnits SplitBeforeOffset = LastStoreOffset;
544 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
545 assert(!SplitBeforeSize.isNegative() && "negative store size!");
546 if (!SplitBeforeSize.isZero())
547 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
548
549 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
550 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
551 assert(!SplitAfterSize.isNegative() && "negative store size!");
552 if (!SplitAfterSize.isZero())
553 Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
554 }
555
556 // If the type contains a pointer to data member we can't memset it to zero.
557 // Instead, create a null constant and copy it to the destination.
558 // TODO: there are other patterns besides zero that we can usefully memset,
559 // like -1, which happens to be the pattern used by member-pointers.
560 // TODO: isZeroInitializable can be over-conservative in the case where a
561 // virtual base contains a member pointer.
562 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
563 if (!NullConstantForBase->isNullValue()) {
564 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
565 CGF.CGM.getModule(), NullConstantForBase->getType(),
566 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
567 NullConstantForBase, Twine());
568
569 CharUnits Align =
570 std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment());
571 NullVariable->setAlignment(Align.getAsAlign());
572
573 Address SrcPtr(NullVariable, CGF.Int8Ty, Align);
574
575 // Get and call the appropriate llvm.memcpy overload.
576 for (std::pair<CharUnits, CharUnits> Store : Stores) {
577 CharUnits StoreOffset = Store.first;
578 CharUnits StoreSize = Store.second;
579 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
581 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
582 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
583 StoreSizeVal);
584 }
585
586 // Otherwise, just memset the whole thing to zero. This is legal
587 // because in LLVM, all default initializers (other than the ones we just
588 // handled above) are guaranteed to have a bit pattern of all zeros.
589 } else {
590 for (std::pair<CharUnits, CharUnits> Store : Stores) {
591 CharUnits StoreOffset = Store.first;
592 CharUnits StoreSize = Store.second;
593 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
595 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
596 CGF.Builder.getInt8(0), StoreSizeVal);
597 }
598 }
599}
600
601void
603 AggValueSlot Dest) {
604 assert(!Dest.isIgnored() && "Must have a destination!");
605 const CXXConstructorDecl *CD = E->getConstructor();
606
607 // If we require zero initialization before (or instead of) calling the
608 // constructor, as can be the case with a non-user-provided default
609 // constructor, emit the zero initialization now, unless destination is
610 // already zeroed.
611 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
612 switch (E->getConstructionKind()) {
616 break;
620 CD->getParent());
621 break;
622 }
623 }
624
625 // If this is a call to a trivial default constructor, do nothing.
626 if (CD->isTrivial() && CD->isDefaultConstructor())
627 return;
628
629 // Elide the constructor if we're constructing from a temporary.
630 if (getLangOpts().ElideConstructors && E->isElidable()) {
631 // FIXME: This only handles the simplest case, where the source object
632 // is passed directly as the first argument to the constructor.
633 // This should also handle stepping though implicit casts and
634 // conversion sequences which involve two steps, with a
635 // conversion operator followed by a converting constructor.
636 const Expr *SrcObj = E->getArg(0);
637 assert(SrcObj->isTemporaryObject(getContext(), CD->getParent()));
638 assert(
639 getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
640 EmitAggExpr(SrcObj, Dest);
641 return;
642 }
643
644 if (const ArrayType *arrayType
645 = getContext().getAsArrayType(E->getType())) {
647 Dest.isSanitizerChecked());
648 } else {
650 bool ForVirtualBase = false;
651 bool Delegating = false;
652
653 switch (E->getConstructionKind()) {
655 // We should be emitting a constructor; GlobalDecl will assert this
656 Type = CurGD.getCtorType();
657 Delegating = true;
658 break;
659
662 break;
663
665 ForVirtualBase = true;
666 [[fallthrough]];
667
669 Type = Ctor_Base;
670 }
671
672 // Call the constructor.
673 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
674 }
675}
676
678 const Expr *Exp) {
679 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
680 Exp = E->getSubExpr();
681 assert(isa<CXXConstructExpr>(Exp) &&
682 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
684 const CXXConstructorDecl *CD = E->getConstructor();
685 RunCleanupsScope Scope(*this);
686
687 // If we require zero initialization before (or instead of) calling the
688 // constructor, as can be the case with a non-user-provided default
689 // constructor, emit the zero initialization now.
690 // FIXME. Do I still need this for a copy ctor synthesis?
693
694 assert(!getContext().getAsConstantArrayType(E->getType())
695 && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
696 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
697}
698
700 const CXXNewExpr *E) {
701 if (!E->isArray())
702 return CharUnits::Zero();
703
704 // No cookie is required if the operator new[] being used is the
705 // reserved placement operator new[].
707 return CharUnits::Zero();
708
709 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
710}
711
712static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
713 const CXXNewExpr *e,
714 unsigned minElements,
715 llvm::Value *&numElements,
716 llvm::Value *&sizeWithoutCookie) {
718
719 if (!e->isArray()) {
721 sizeWithoutCookie
722 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
723 return sizeWithoutCookie;
724 }
725
726 // The width of size_t.
727 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
728
729 // Figure out the cookie size.
730 llvm::APInt cookieSize(sizeWidth,
731 CalculateCookiePadding(CGF, e).getQuantity());
732
733 // Emit the array size expression.
734 // We multiply the size of all dimensions for NumElements.
735 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
736 numElements = ConstantEmitter(CGF).tryEmitAbstract(
737 *e->getArraySize(), (*e->getArraySize())->getType());
738 if (!numElements)
739 numElements = CGF.EmitScalarExpr(*e->getArraySize());
740 assert(isa<llvm::IntegerType>(numElements->getType()));
741
742 // The number of elements can be have an arbitrary integer type;
743 // essentially, we need to multiply it by a constant factor, add a
744 // cookie size, and verify that the result is representable as a
745 // size_t. That's just a gloss, though, and it's wrong in one
746 // important way: if the count is negative, it's an error even if
747 // the cookie size would bring the total size >= 0.
748 bool isSigned
749 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
750 llvm::IntegerType *numElementsType
751 = cast<llvm::IntegerType>(numElements->getType());
752 unsigned numElementsWidth = numElementsType->getBitWidth();
753
754 // Compute the constant factor.
755 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
756 while (const ConstantArrayType *CAT
758 type = CAT->getElementType();
759 arraySizeMultiplier *= CAT->getSize();
760 }
761
763 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
764 typeSizeMultiplier *= arraySizeMultiplier;
765
766 // This will be a size_t.
767 llvm::Value *size;
768
769 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
770 // Don't bloat the -O0 code.
771 if (llvm::ConstantInt *numElementsC =
772 dyn_cast<llvm::ConstantInt>(numElements)) {
773 const llvm::APInt &count = numElementsC->getValue();
774
775 bool hasAnyOverflow = false;
776
777 // If 'count' was a negative number, it's an overflow.
778 if (isSigned && count.isNegative())
779 hasAnyOverflow = true;
780
781 // We want to do all this arithmetic in size_t. If numElements is
782 // wider than that, check whether it's already too big, and if so,
783 // overflow.
784 else if (numElementsWidth > sizeWidth &&
785 numElementsWidth - sizeWidth > count.countl_zero())
786 hasAnyOverflow = true;
787
788 // Okay, compute a count at the right width.
789 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
790
791 // If there is a brace-initializer, we cannot allocate fewer elements than
792 // there are initializers. If we do, that's treated like an overflow.
793 if (adjustedCount.ult(minElements))
794 hasAnyOverflow = true;
795
796 // Scale numElements by that. This might overflow, but we don't
797 // care because it only overflows if allocationSize does, too, and
798 // if that overflows then we shouldn't use this.
799 numElements = llvm::ConstantInt::get(CGF.SizeTy,
800 adjustedCount * arraySizeMultiplier);
801
802 // Compute the size before cookie, and track whether it overflowed.
803 bool overflow;
804 llvm::APInt allocationSize
805 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
806 hasAnyOverflow |= overflow;
807
808 // Add in the cookie, and check whether it's overflowed.
809 if (cookieSize != 0) {
810 // Save the current size without a cookie. This shouldn't be
811 // used if there was overflow.
812 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
813
814 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
815 hasAnyOverflow |= overflow;
816 }
817
818 // On overflow, produce a -1 so operator new will fail.
819 if (hasAnyOverflow) {
820 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
821 } else {
822 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
823 }
824
825 // Otherwise, we might need to use the overflow intrinsics.
826 } else {
827 // There are up to five conditions we need to test for:
828 // 1) if isSigned, we need to check whether numElements is negative;
829 // 2) if numElementsWidth > sizeWidth, we need to check whether
830 // numElements is larger than something representable in size_t;
831 // 3) if minElements > 0, we need to check whether numElements is smaller
832 // than that.
833 // 4) we need to compute
834 // sizeWithoutCookie := numElements * typeSizeMultiplier
835 // and check whether it overflows; and
836 // 5) if we need a cookie, we need to compute
837 // size := sizeWithoutCookie + cookieSize
838 // and check whether it overflows.
839
840 llvm::Value *hasOverflow = nullptr;
841
842 // If numElementsWidth > sizeWidth, then one way or another, we're
843 // going to have to do a comparison for (2), and this happens to
844 // take care of (1), too.
845 if (numElementsWidth > sizeWidth) {
846 llvm::APInt threshold =
847 llvm::APInt::getOneBitSet(numElementsWidth, sizeWidth);
848
849 llvm::Value *thresholdV
850 = llvm::ConstantInt::get(numElementsType, threshold);
851
852 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
853 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
854
855 // Otherwise, if we're signed, we want to sext up to size_t.
856 } else if (isSigned) {
857 if (numElementsWidth < sizeWidth)
858 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
859
860 // If there's a non-1 type size multiplier, then we can do the
861 // signedness check at the same time as we do the multiply
862 // because a negative number times anything will cause an
863 // unsigned overflow. Otherwise, we have to do it here. But at least
864 // in this case, we can subsume the >= minElements check.
865 if (typeSizeMultiplier == 1)
866 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
867 llvm::ConstantInt::get(CGF.SizeTy, minElements));
868
869 // Otherwise, zext up to size_t if necessary.
870 } else if (numElementsWidth < sizeWidth) {
871 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
872 }
873
874 assert(numElements->getType() == CGF.SizeTy);
875
876 if (minElements) {
877 // Don't allow allocation of fewer elements than we have initializers.
878 if (!hasOverflow) {
879 hasOverflow = CGF.Builder.CreateICmpULT(numElements,
880 llvm::ConstantInt::get(CGF.SizeTy, minElements));
881 } else if (numElementsWidth > sizeWidth) {
882 // The other existing overflow subsumes this check.
883 // We do an unsigned comparison, since any signed value < -1 is
884 // taken care of either above or below.
885 hasOverflow = CGF.Builder.CreateOr(hasOverflow,
886 CGF.Builder.CreateICmpULT(numElements,
887 llvm::ConstantInt::get(CGF.SizeTy, minElements)));
888 }
889 }
890
891 size = numElements;
892
893 // Multiply by the type size if necessary. This multiplier
894 // includes all the factors for nested arrays.
895 //
896 // This step also causes numElements to be scaled up by the
897 // nested-array factor if necessary. Overflow on this computation
898 // can be ignored because the result shouldn't be used if
899 // allocation fails.
900 if (typeSizeMultiplier != 1) {
901 llvm::Function *umul_with_overflow
902 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
903
904 llvm::Value *tsmV =
905 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
906 llvm::Value *result =
907 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
908
909 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
910 if (hasOverflow)
911 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
912 else
913 hasOverflow = overflowed;
914
915 size = CGF.Builder.CreateExtractValue(result, 0);
916
917 // Also scale up numElements by the array size multiplier.
918 if (arraySizeMultiplier != 1) {
919 // If the base element type size is 1, then we can re-use the
920 // multiply we just did.
921 if (typeSize.isOne()) {
922 assert(arraySizeMultiplier == typeSizeMultiplier);
923 numElements = size;
924
925 // Otherwise we need a separate multiply.
926 } else {
927 llvm::Value *asmV =
928 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
929 numElements = CGF.Builder.CreateMul(numElements, asmV);
930 }
931 }
932 } else {
933 // numElements doesn't need to be scaled.
934 assert(arraySizeMultiplier == 1);
935 }
936
937 // Add in the cookie size if necessary.
938 if (cookieSize != 0) {
939 sizeWithoutCookie = size;
940
941 llvm::Function *uadd_with_overflow
942 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
943
944 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
945 llvm::Value *result =
946 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
947
948 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
949 if (hasOverflow)
950 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
951 else
952 hasOverflow = overflowed;
953
954 size = CGF.Builder.CreateExtractValue(result, 0);
955 }
956
957 // If we had any possibility of dynamic overflow, make a select to
958 // overwrite 'size' with an all-ones value, which should cause
959 // operator new to throw.
960 if (hasOverflow)
961 size = CGF.Builder.CreateSelect(hasOverflow,
962 llvm::Constant::getAllOnesValue(CGF.SizeTy),
963 size);
964 }
965
966 if (cookieSize == 0)
967 sizeWithoutCookie = size;
968 else
969 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
970
971 return size;
972}
973
975 QualType AllocType, Address NewPtr,
976 AggValueSlot::Overlap_t MayOverlap) {
977 // FIXME: Refactor with EmitExprAsInit.
978 switch (CGF.getEvaluationKind(AllocType)) {
979 case TEK_Scalar:
980 CGF.EmitScalarInit(Init, nullptr,
981 CGF.MakeAddrLValue(NewPtr, AllocType), false);
982 return;
983 case TEK_Complex:
984 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
985 /*isInit*/ true);
986 return;
987 case TEK_Aggregate: {
988 AggValueSlot Slot
989 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
993 MayOverlap, AggValueSlot::IsNotZeroed,
995 CGF.EmitAggExpr(Init, Slot);
996 return;
997 }
998 }
999 llvm_unreachable("bad evaluation kind");
1000}
1001
1003 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
1004 Address BeginPtr, llvm::Value *NumElements,
1005 llvm::Value *AllocSizeWithoutCookie) {
1006 // If we have a type with trivial initialization and no initializer,
1007 // there's nothing to do.
1008 if (!E->hasInitializer())
1009 return;
1010
1011 Address CurPtr = BeginPtr;
1012
1013 unsigned InitListElements = 0;
1014
1015 const Expr *Init = E->getInitializer();
1016 Address EndOfInit = Address::invalid();
1017 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
1018 CleanupDeactivationScope deactivation(*this);
1019 bool pushedCleanup = false;
1020
1021 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
1022 CharUnits ElementAlign =
1023 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
1024
1025 // Attempt to perform zero-initialization using memset.
1026 auto TryMemsetInitialization = [&]() -> bool {
1027 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1028 // we can initialize with a memset to -1.
1029 if (!CGM.getTypes().isZeroInitializable(ElementType))
1030 return false;
1031
1032 // Optimization: since zero initialization will just set the memory
1033 // to all zeroes, generate a single memset to do it in one shot.
1034
1035 // Subtract out the size of any elements we've already initialized.
1036 auto *RemainingSize = AllocSizeWithoutCookie;
1037 if (InitListElements) {
1038 // We know this can't overflow; we check this when doing the allocation.
1039 auto *InitializedSize = llvm::ConstantInt::get(
1040 RemainingSize->getType(),
1041 getContext().getTypeSizeInChars(ElementType).getQuantity() *
1042 InitListElements);
1043 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1044 }
1045
1046 // Create the memset.
1047 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1048 return true;
1049 };
1050
1051 const InitListExpr *ILE = dyn_cast<InitListExpr>(Init);
1052 const CXXParenListInitExpr *CPLIE = nullptr;
1053 const StringLiteral *SL = nullptr;
1054 const ObjCEncodeExpr *OCEE = nullptr;
1055 const Expr *IgnoreParen = nullptr;
1056 if (!ILE) {
1057 IgnoreParen = Init->IgnoreParenImpCasts();
1058 CPLIE = dyn_cast<CXXParenListInitExpr>(IgnoreParen);
1059 SL = dyn_cast<StringLiteral>(IgnoreParen);
1060 OCEE = dyn_cast<ObjCEncodeExpr>(IgnoreParen);
1061 }
1062
1063 // If the initializer is an initializer list, first do the explicit elements.
1064 if (ILE || CPLIE || SL || OCEE) {
1065 // Initializing from a (braced) string literal is a special case; the init
1066 // list element does not initialize a (single) array element.
1067 if ((ILE && ILE->isStringLiteralInit()) || SL || OCEE) {
1068 if (!ILE)
1069 Init = IgnoreParen;
1070 // Initialize the initial portion of length equal to that of the string
1071 // literal. The allocation must be for at least this much; we emitted a
1072 // check for that earlier.
1073 AggValueSlot Slot =
1074 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1081 EmitAggExpr(ILE ? ILE->getInit(0) : Init, Slot);
1082
1083 // Move past these elements.
1084 InitListElements =
1085 cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe())
1086 ->getZExtSize();
1087 CurPtr = Builder.CreateConstInBoundsGEP(
1088 CurPtr, InitListElements, "string.init.end");
1089
1090 // Zero out the rest, if any remain.
1091 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1092 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1093 bool OK = TryMemsetInitialization();
1094 (void)OK;
1095 assert(OK && "couldn't memset character type?");
1096 }
1097 return;
1098 }
1099
1100 ArrayRef<const Expr *> InitExprs =
1101 ILE ? ILE->inits() : CPLIE->getInitExprs();
1102 InitListElements = InitExprs.size();
1103
1104 // If this is a multi-dimensional array new, we will initialize multiple
1105 // elements with each init list element.
1106 QualType AllocType = E->getAllocatedType();
1107 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1108 AllocType->getAsArrayTypeUnsafe())) {
1109 ElementTy = ConvertTypeForMem(AllocType);
1110 CurPtr = CurPtr.withElementType(ElementTy);
1111 InitListElements *= getContext().getConstantArrayElementCount(CAT);
1112 }
1113
1114 // Enter a partial-destruction Cleanup if necessary.
1115 if (DtorKind) {
1116 AllocaTrackerRAII AllocaTracker(*this);
1117 // In principle we could tell the Cleanup where we are more
1118 // directly, but the control flow can get so varied here that it
1119 // would actually be quite complex. Therefore we go through an
1120 // alloca.
1121 llvm::Instruction *DominatingIP =
1122 Builder.CreateFlagLoad(llvm::ConstantInt::getNullValue(Int8PtrTy));
1123 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1124 "array.init.end");
1126 EndOfInit, ElementType, ElementAlign,
1127 getDestroyer(DtorKind));
1128 cast<EHCleanupScope>(*EHStack.find(EHStack.stable_begin()))
1129 .AddAuxAllocas(AllocaTracker.Take());
1131 {EHStack.stable_begin(), DominatingIP});
1132 pushedCleanup = true;
1133 }
1134
1135 CharUnits StartAlign = CurPtr.getAlignment();
1136 unsigned i = 0;
1137 for (const Expr *IE : InitExprs) {
1138 // Tell the cleanup that it needs to destroy up to this
1139 // element. TODO: some of these stores can be trivially
1140 // observed to be unnecessary.
1141 if (EndOfInit.isValid()) {
1142 Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit);
1143 }
1144 // FIXME: If the last initializer is an incomplete initializer list for
1145 // an array, and we have an array filler, we can fold together the two
1146 // initialization loops.
1147 StoreAnyExprIntoOneUnit(*this, IE, IE->getType(), CurPtr,
1149 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getElementType(),
1150 CurPtr.emitRawPointer(*this),
1151 Builder.getSize(1),
1152 "array.exp.next"),
1153 CurPtr.getElementType(),
1154 StartAlign.alignmentAtOffset((++i) * ElementSize));
1155 }
1156
1157 // The remaining elements are filled with the array filler expression.
1158 Init = ILE ? ILE->getArrayFiller() : CPLIE->getArrayFiller();
1159
1160 // Extract the initializer for the individual array elements by pulling
1161 // out the array filler from all the nested initializer lists. This avoids
1162 // generating a nested loop for the initialization.
1163 while (Init && Init->getType()->isConstantArrayType()) {
1164 auto *SubILE = dyn_cast<InitListExpr>(Init);
1165 if (!SubILE)
1166 break;
1167 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1168 Init = SubILE->getArrayFiller();
1169 }
1170
1171 // Switch back to initializing one base element at a time.
1172 CurPtr = CurPtr.withElementType(BeginPtr.getElementType());
1173 }
1174
1175 // If all elements have already been initialized, skip any further
1176 // initialization.
1177 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1178 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1179 return;
1180 }
1181
1182 assert(Init && "have trailing elements to initialize but no initializer");
1183
1184 // If this is a constructor call, try to optimize it out, and failing that
1185 // emit a single loop to initialize all remaining elements.
1186 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1187 CXXConstructorDecl *Ctor = CCE->getConstructor();
1188 if (Ctor->isTrivial()) {
1189 // If new expression did not specify value-initialization, then there
1190 // is no initialization.
1191 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1192 return;
1193
1194 if (TryMemsetInitialization())
1195 return;
1196 }
1197
1198 // Store the new Cleanup position for irregular Cleanups.
1199 //
1200 // FIXME: Share this cleanup with the constructor call emission rather than
1201 // having it create a cleanup of its own.
1202 if (EndOfInit.isValid())
1203 Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit);
1204
1205 // Emit a constructor call loop to initialize the remaining elements.
1206 if (InitListElements)
1207 NumElements = Builder.CreateSub(
1208 NumElements,
1209 llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1210 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1211 /*NewPointerIsChecked*/true,
1212 CCE->requiresZeroInitialization());
1213 return;
1214 }
1215
1216 // If this is value-initialization, we can usually use memset.
1217 ImplicitValueInitExpr IVIE(ElementType);
1219 if (TryMemsetInitialization())
1220 return;
1221
1222 // Switch to an ImplicitValueInitExpr for the element type. This handles
1223 // only one case: multidimensional array new of pointers to members. In
1224 // all other cases, we already have an initializer for the array element.
1225 Init = &IVIE;
1226 }
1227
1228 // At this point we should have found an initializer for the individual
1229 // elements of the array.
1230 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1231 "got wrong type of element to initialize");
1232
1233 // If we have an empty initializer list, we can usually use memset.
1234 if (auto *ILE = dyn_cast<InitListExpr>(Init))
1235 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1236 return;
1237
1238 // If we have a struct whose every field is value-initialized, we can
1239 // usually use memset.
1240 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1241 if (const RecordType *RType =
1242 ILE->getType()->getAsCanonical<RecordType>()) {
1243 if (RType->getDecl()->isStruct()) {
1244 const RecordDecl *RD = RType->getDecl()->getDefinitionOrSelf();
1245 unsigned NumElements = 0;
1246 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1247 NumElements = CXXRD->getNumBases();
1248 for (auto *Field : RD->fields())
1249 if (!Field->isUnnamedBitField())
1250 ++NumElements;
1251 // FIXME: Recurse into nested InitListExprs.
1252 if (ILE->getNumInits() == NumElements)
1253 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1254 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1255 --NumElements;
1256 if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1257 return;
1258 }
1259 }
1260 }
1261
1262 // Create the loop blocks.
1263 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1264 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1265 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1266
1267 // Find the end of the array, hoisted out of the loop.
1268 llvm::Value *EndPtr = Builder.CreateInBoundsGEP(
1269 BeginPtr.getElementType(), BeginPtr.emitRawPointer(*this), NumElements,
1270 "array.end");
1271
1272 // If the number of elements isn't constant, we have to now check if there is
1273 // anything left to initialize.
1274 if (!ConstNum) {
1275 llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr.emitRawPointer(*this),
1276 EndPtr, "array.isempty");
1277 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1278 }
1279
1280 // Enter the loop.
1281 EmitBlock(LoopBB);
1282
1283 // Set up the current-element phi.
1284 llvm::PHINode *CurPtrPhi =
1285 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1286 CurPtrPhi->addIncoming(CurPtr.emitRawPointer(*this), EntryBB);
1287
1288 CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign);
1289
1290 // Store the new Cleanup position for irregular Cleanups.
1291 if (EndOfInit.isValid())
1292 Builder.CreateStore(CurPtr.emitRawPointer(*this), EndOfInit);
1293
1294 // Enter a partial-destruction Cleanup if necessary.
1295 if (!pushedCleanup && needsEHCleanup(DtorKind)) {
1296 llvm::Instruction *DominatingIP =
1297 Builder.CreateFlagLoad(llvm::ConstantInt::getNullValue(Int8PtrTy));
1299 CurPtr.emitRawPointer(*this), ElementType,
1300 ElementAlign, getDestroyer(DtorKind));
1302 {EHStack.stable_begin(), DominatingIP});
1303 }
1304
1305 // Emit the initializer into this element.
1306 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1308
1309 // Leave the Cleanup if we entered one.
1310 deactivation.ForceDeactivate();
1311
1312 // Advance to the next element by adjusting the pointer type as necessary.
1313 llvm::Value *NextPtr = Builder.CreateConstInBoundsGEP1_32(
1314 ElementTy, CurPtr.emitRawPointer(*this), 1, "array.next");
1315
1316 // Check whether we've gotten to the end of the array and, if so,
1317 // exit the loop.
1318 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1319 Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1320 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1321
1322 EmitBlock(ContBB);
1323}
1324
1326 QualType ElementType, llvm::Type *ElementTy,
1327 Address NewPtr, llvm::Value *NumElements,
1328 llvm::Value *AllocSizeWithoutCookie) {
1329 ApplyDebugLocation DL(CGF, E);
1330 if (E->isArray())
1331 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1332 AllocSizeWithoutCookie);
1333 else if (const Expr *Init = E->getInitializer())
1336}
1337
1338/// Emit a call to an operator new or operator delete function, as implicitly
1339/// created by new-expressions and delete-expressions.
1341 const FunctionDecl *CalleeDecl,
1342 const FunctionProtoType *CalleeType,
1343 const CallArgList &Args) {
1344 llvm::CallBase *CallOrInvoke;
1345 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1346 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1347 RValue RV =
1349 Args, CalleeType, /*ChainCall=*/false),
1350 Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1351
1352 /// C++1y [expr.new]p10:
1353 /// [In a new-expression,] an implementation is allowed to omit a call
1354 /// to a replaceable global allocation function.
1355 ///
1356 /// We model such elidable calls with the 'builtin' attribute.
1357 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1358 if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1359 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1360 CallOrInvoke->addFnAttr(llvm::Attribute::Builtin);
1361 }
1362
1363 return RV;
1364}
1365
1367 const CallExpr *TheCall,
1368 bool IsDelete) {
1369 CallArgList Args;
1370 EmitCallArgs(Args, Type, TheCall->arguments());
1371 // Find the allocation or deallocation function that we're calling.
1372 ASTContext &Ctx = getContext();
1374 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1375
1376 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1377 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1378 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) {
1379 RValue RV = EmitNewDeleteCall(*this, FD, Type, Args);
1380 if (auto *CB = dyn_cast_if_present<llvm::CallBase>(RV.getScalarVal())) {
1381 if (SanOpts.has(SanitizerKind::AllocToken)) {
1382 // Set !alloc_token metadata.
1383 EmitAllocToken(CB, TheCall);
1384 }
1385 }
1386 return RV;
1387 }
1388 llvm_unreachable("predeclared global operator new/delete is missing");
1389}
1390
1391namespace {
1392 /// A cleanup to call the given 'operator delete' function upon abnormal
1393 /// exit from a new expression. Templated on a traits type that deals with
1394 /// ensuring that the arguments dominate the cleanup if necessary.
1395 template<typename Traits>
1396 class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1397 /// Type used to hold llvm::Value*s.
1398 typedef typename Traits::ValueTy ValueTy;
1399 /// Type used to hold RValues.
1400 typedef typename Traits::RValueTy RValueTy;
1401 struct PlacementArg {
1402 RValueTy ArgValue;
1404 };
1405
1406 unsigned NumPlacementArgs : 30;
1407 LLVM_PREFERRED_TYPE(AlignedAllocationMode)
1408 unsigned PassAlignmentToPlacementDelete : 1;
1409 const FunctionDecl *OperatorDelete;
1410 RValueTy TypeIdentity;
1411 ValueTy Ptr;
1412 ValueTy AllocSize;
1413 CharUnits AllocAlign;
1414
1415 PlacementArg *getPlacementArgs() {
1416 return reinterpret_cast<PlacementArg *>(this + 1);
1417 }
1418
1419 public:
1420 static size_t getExtraSize(size_t NumPlacementArgs) {
1421 return NumPlacementArgs * sizeof(PlacementArg);
1422 }
1423
1424 CallDeleteDuringNew(size_t NumPlacementArgs,
1425 const FunctionDecl *OperatorDelete,
1426 RValueTy TypeIdentity, ValueTy Ptr, ValueTy AllocSize,
1427 const ImplicitAllocationParameters &IAP,
1428 CharUnits AllocAlign)
1429 : NumPlacementArgs(NumPlacementArgs),
1430 PassAlignmentToPlacementDelete(
1431 isAlignedAllocation(IAP.PassAlignment)),
1432 OperatorDelete(OperatorDelete), TypeIdentity(TypeIdentity), Ptr(Ptr),
1433 AllocSize(AllocSize), AllocAlign(AllocAlign) {}
1434
1435 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1436 assert(I < NumPlacementArgs && "index out of range");
1437 getPlacementArgs()[I] = {Arg, Type};
1438 }
1439
1440 void Emit(CodeGenFunction &CGF, Flags flags) override {
1441 const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1442 CallArgList DeleteArgs;
1443 unsigned FirstNonTypeArg = 0;
1444 TypeAwareAllocationMode TypeAwareDeallocation =
1445 TypeAwareAllocationMode::No;
1446 if (OperatorDelete->isTypeAwareOperatorNewOrDelete()) {
1447 TypeAwareDeallocation = TypeAwareAllocationMode::Yes;
1448 QualType SpecializedTypeIdentity = FPT->getParamType(0);
1449 ++FirstNonTypeArg;
1450 DeleteArgs.add(Traits::get(CGF, TypeIdentity), SpecializedTypeIdentity);
1451 }
1452 // The first argument after type-identity parameter (if any) is always
1453 // a void* (or C* for a destroying operator delete for class type C).
1454 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(FirstNonTypeArg));
1455
1456 // Figure out what other parameters we should be implicitly passing.
1457 UsualDeleteParams Params;
1458 if (NumPlacementArgs) {
1459 // A placement deallocation function is implicitly passed an alignment
1460 // if the placement allocation function was, but is never passed a size.
1461 Params.Alignment =
1462 alignedAllocationModeFromBool(PassAlignmentToPlacementDelete);
1463 Params.TypeAwareDelete = TypeAwareDeallocation;
1465 } else {
1466 // For a non-placement new-expression, 'operator delete' can take a
1467 // size and/or an alignment if it has the right parameters.
1468 Params = OperatorDelete->getUsualDeleteParams();
1469 }
1470
1471 assert(!Params.DestroyingDelete &&
1472 "should not call destroying delete in a new-expression");
1473
1474 // The second argument can be a std::size_t (for non-placement delete).
1475 if (Params.Size)
1476 DeleteArgs.add(Traits::get(CGF, AllocSize),
1477 CGF.getContext().getSizeType());
1478
1479 // The next (second or third) argument can be a std::align_val_t, which
1480 // is an enum whose underlying type is std::size_t.
1481 // FIXME: Use the right type as the parameter type. Note that in a call
1482 // to operator delete(size_t, ...), we may not have it available.
1483 if (isAlignedAllocation(Params.Alignment))
1484 DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1485 CGF.SizeTy, AllocAlign.getQuantity())),
1486 CGF.getContext().getSizeType());
1487
1488 // Pass the rest of the arguments, which must match exactly.
1489 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1490 auto Arg = getPlacementArgs()[I];
1491 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1492 }
1493
1494 // Call 'operator delete'.
1495 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1496 }
1497 };
1498}
1499
1500/// Enter a cleanup to call 'operator delete' if the initializer in a
1501/// new-expression throws.
1503 RValue TypeIdentity, Address NewPtr,
1504 llvm::Value *AllocSize, CharUnits AllocAlign,
1505 const CallArgList &NewArgs) {
1506 unsigned NumNonPlacementArgs = E->getNumImplicitArgs();
1507
1508 // If we're not inside a conditional branch, then the cleanup will
1509 // dominate and we can do the easier (and more efficient) thing.
1510 if (!CGF.isInConditionalBranch()) {
1511 struct DirectCleanupTraits {
1512 typedef llvm::Value *ValueTy;
1513 typedef RValue RValueTy;
1514 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1515 static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1516 };
1517
1518 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1519
1520 DirectCleanup *Cleanup = CGF.EHStack.pushCleanupWithExtra<DirectCleanup>(
1522 TypeIdentity, NewPtr.emitRawPointer(CGF), AllocSize,
1523 E->implicitAllocationParameters(), AllocAlign);
1524 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1525 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1526 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1527 }
1528
1529 return;
1530 }
1531
1532 // Otherwise, we need to save all this stuff.
1534 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr, CGF));
1537 DominatingValue<RValue>::saved_type SavedTypeIdentity =
1538 DominatingValue<RValue>::save(CGF, TypeIdentity);
1539 struct ConditionalCleanupTraits {
1541 typedef DominatingValue<RValue>::saved_type RValueTy;
1542 static RValue get(CodeGenFunction &CGF, ValueTy V) {
1543 return V.restore(CGF);
1544 }
1545 };
1546 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1547
1548 ConditionalCleanup *Cleanup =
1549 CGF.EHStack.pushCleanupWithExtra<ConditionalCleanup>(
1551 SavedTypeIdentity, SavedNewPtr, SavedAllocSize,
1552 E->implicitAllocationParameters(), AllocAlign);
1553 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1554 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1555 Cleanup->setPlacementArg(
1556 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1557 }
1558
1559 CGF.initFullExprCleanup();
1560}
1561
1563 // The element type being allocated.
1565
1566 // 1. Build a call to the allocation function.
1567 FunctionDecl *allocator = E->getOperatorNew();
1568
1569 // If there is a brace-initializer or C++20 parenthesized initializer, cannot
1570 // allocate fewer elements than inits.
1571 unsigned minElements = 0;
1572 unsigned IndexOfAlignArg = 1;
1573 if (E->isArray() && E->hasInitializer()) {
1574 const Expr *Init = E->getInitializer();
1575 const InitListExpr *ILE = dyn_cast<InitListExpr>(Init);
1576 const CXXParenListInitExpr *CPLIE = dyn_cast<CXXParenListInitExpr>(Init);
1577 const Expr *IgnoreParen = Init->IgnoreParenImpCasts();
1578 if ((ILE && ILE->isStringLiteralInit()) ||
1579 isa<StringLiteral>(IgnoreParen) || isa<ObjCEncodeExpr>(IgnoreParen)) {
1580 minElements =
1581 cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe())
1582 ->getZExtSize();
1583 } else if (ILE || CPLIE) {
1584 minElements = ILE ? ILE->getNumInits() : CPLIE->getInitExprs().size();
1585 }
1586 }
1587
1588 llvm::Value *numElements = nullptr;
1589 llvm::Value *allocSizeWithoutCookie = nullptr;
1590 llvm::Value *allocSize =
1591 EmitCXXNewAllocSize(*this, E, minElements, numElements,
1592 allocSizeWithoutCookie);
1593 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1594
1595 // Emit the allocation call. If the allocator is a global placement
1596 // operator, just "inline" it directly.
1597 Address allocation = Address::invalid();
1598 CallArgList allocatorArgs;
1599 RValue TypeIdentityArg;
1600 if (allocator->isReservedGlobalPlacementOperator()) {
1601 assert(E->getNumPlacementArgs() == 1);
1602 const Expr *arg = *E->placement_arguments().begin();
1603
1604 LValueBaseInfo BaseInfo;
1605 allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1606
1607 // The pointer expression will, in many cases, be an opaque void*.
1608 // In these cases, discard the computed alignment and use the
1609 // formal alignment of the allocated type.
1610 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1611 allocation.setAlignment(allocAlign);
1612
1613 // Set up allocatorArgs for the call to operator delete if it's not
1614 // the reserved global operator.
1615 if (E->getOperatorDelete() &&
1617 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1618 allocatorArgs.add(RValue::get(allocation, *this), arg->getType());
1619 }
1620
1621 } else {
1622 const FunctionProtoType *allocatorType =
1623 allocator->getType()->castAs<FunctionProtoType>();
1625 unsigned ParamsToSkip = 0;
1626 if (isTypeAwareAllocation(IAP.PassTypeIdentity)) {
1627 QualType SpecializedTypeIdentity = allocatorType->getParamType(0);
1628 CXXScalarValueInitExpr TypeIdentityParam(SpecializedTypeIdentity, nullptr,
1629 SourceLocation());
1630 TypeIdentityArg = EmitAnyExprToTemp(&TypeIdentityParam);
1631 allocatorArgs.add(TypeIdentityArg, SpecializedTypeIdentity);
1632 ++ParamsToSkip;
1633 ++IndexOfAlignArg;
1634 }
1635 // The allocation size is the first argument.
1636 QualType sizeType = getContext().getSizeType();
1637 allocatorArgs.add(RValue::get(allocSize), sizeType);
1638 ++ParamsToSkip;
1639
1640 if (allocSize != allocSizeWithoutCookie) {
1641 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1642 allocAlign = std::max(allocAlign, cookieAlign);
1643 }
1644
1645 // The allocation alignment may be passed as the second argument.
1646 if (isAlignedAllocation(IAP.PassAlignment)) {
1647 QualType AlignValT = sizeType;
1648 if (allocatorType->getNumParams() > IndexOfAlignArg) {
1649 AlignValT = allocatorType->getParamType(IndexOfAlignArg);
1650 assert(getContext().hasSameUnqualifiedType(
1651 AlignValT->castAsEnumDecl()->getIntegerType(), sizeType) &&
1652 "wrong type for alignment parameter");
1653 ++ParamsToSkip;
1654 } else {
1655 // Corner case, passing alignment to 'operator new(size_t, ...)'.
1656 assert(allocator->isVariadic() && "can't pass alignment to allocator");
1657 }
1658 allocatorArgs.add(
1659 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1660 AlignValT);
1661 }
1662
1663 // FIXME: Why do we not pass a CalleeDecl here?
1664 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1665 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1666
1667 RValue RV =
1668 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1669
1670 if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal())) {
1671 if (auto *CGDI = getDebugInfo()) {
1672 // Set !heapallocsite metadata on the call to operator new.
1673 CGDI->addHeapAllocSiteMetadata(newCall, allocType, E->getExprLoc());
1674 }
1675 if (SanOpts.has(SanitizerKind::AllocToken)) {
1676 // Set !alloc_token metadata.
1677 EmitAllocToken(newCall, allocType);
1678 }
1679 }
1680
1681 // If this was a call to a global replaceable allocation function that does
1682 // not take an alignment argument, the allocator is known to produce
1683 // storage that's suitably aligned for any object that fits, up to a known
1684 // threshold. Otherwise assume it's suitably aligned for the allocated type.
1685 CharUnits allocationAlign = allocAlign;
1686 if (!E->passAlignment() &&
1687 allocator->isReplaceableGlobalAllocationFunction()) {
1688 unsigned AllocatorAlign = llvm::bit_floor(std::min<uint64_t>(
1689 Target.getNewAlign(), getContext().getTypeSize(allocType)));
1690 allocationAlign = std::max(
1691 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1692 }
1693
1694 allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign);
1695 }
1696
1697 // Emit a null check on the allocation result if the allocation
1698 // function is allowed to return null (because it has a non-throwing
1699 // exception spec or is the reserved placement new) and we have an
1700 // interesting initializer will be running sanitizers on the initialization.
1701 bool nullCheck = E->shouldNullCheckAllocation() &&
1702 (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1704
1705 llvm::BasicBlock *nullCheckBB = nullptr;
1706 llvm::BasicBlock *contBB = nullptr;
1707
1708 // The null-check means that the initializer is conditionally
1709 // evaluated.
1710 ConditionalEvaluation conditional(*this);
1711
1712 if (nullCheck) {
1713 conditional.begin(*this);
1714
1715 nullCheckBB = Builder.GetInsertBlock();
1716 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1717 contBB = createBasicBlock("new.cont");
1718
1719 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1720 Builder.CreateCondBr(isNull, contBB, notNullBB);
1721 EmitBlock(notNullBB);
1722 }
1723
1724 // If there's an operator delete, enter a cleanup to call it if an
1725 // exception is thrown.
1726 EHScopeStack::stable_iterator operatorDeleteCleanup;
1727 llvm::Instruction *cleanupDominator = nullptr;
1728 if (E->getOperatorDelete() &&
1730 EnterNewDeleteCleanup(*this, E, TypeIdentityArg, allocation, allocSize,
1731 allocAlign, allocatorArgs);
1732 operatorDeleteCleanup = EHStack.stable_begin();
1733 cleanupDominator = Builder.CreateUnreachable();
1734 }
1735
1736 assert((allocSize == allocSizeWithoutCookie) ==
1737 CalculateCookiePadding(*this, E).isZero());
1738 if (allocSize != allocSizeWithoutCookie) {
1739 assert(E->isArray());
1740 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1741 numElements,
1742 E, allocType);
1743 }
1744
1745 llvm::Type *elementTy = ConvertTypeForMem(allocType);
1746 Address result = allocation.withElementType(elementTy);
1747
1748 // Passing pointer through launder.invariant.group to avoid propagation of
1749 // vptrs information which may be included in previous type.
1750 // To not break LTO with different optimizations levels, we do it regardless
1751 // of optimization level.
1752 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1753 allocator->isReservedGlobalPlacementOperator())
1754 result = Builder.CreateLaunderInvariantGroup(result);
1755
1756 // Emit sanitizer checks for pointer value now, so that in the case of an
1757 // array it was checked only once and not at each constructor call. We may
1758 // have already checked that the pointer is non-null.
1759 // FIXME: If we have an array cookie and a potentially-throwing allocator,
1760 // we'll null check the wrong pointer here.
1761 SanitizerSet SkippedChecks;
1762 SkippedChecks.set(SanitizerKind::Null, nullCheck);
1765 result, allocType, result.getAlignment(), SkippedChecks,
1766 numElements);
1767
1768 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1769 allocSizeWithoutCookie);
1770 llvm::Value *resultPtr = result.emitRawPointer(*this);
1771
1772 // Deactivate the 'operator delete' cleanup if we finished
1773 // initialization.
1774 if (operatorDeleteCleanup.isValid()) {
1775 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1776 cleanupDominator->eraseFromParent();
1777 }
1778
1779 if (nullCheck) {
1780 conditional.end(*this);
1781
1782 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1783 EmitBlock(contBB);
1784
1785 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1786 PHI->addIncoming(resultPtr, notNullBB);
1787 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1788 nullCheckBB);
1789
1790 resultPtr = PHI;
1791 }
1792
1793 return resultPtr;
1794}
1795
1797 llvm::Value *DeletePtr, QualType DeleteTy,
1798 llvm::Value *NumElements,
1799 CharUnits CookieSize) {
1800 assert((!NumElements && CookieSize.isZero()) ||
1801 DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1802
1803 const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
1804 CallArgList DeleteArgs;
1805
1806 auto Params = DeleteFD->getUsualDeleteParams();
1807 auto ParamTypeIt = DeleteFTy->param_type_begin();
1808
1809 std::optional<llvm::AllocaInst *> TagAlloca;
1810 auto EmitTag = [&](QualType TagType, const char *TagName) {
1811 assert(!TagAlloca);
1812 llvm::Type *Ty = getTypes().ConvertType(TagType);
1813 CharUnits Align = CGM.getNaturalTypeAlignment(TagType);
1814 llvm::AllocaInst *TagAllocation = CreateTempAlloca(Ty, TagName);
1815 TagAllocation->setAlignment(Align.getAsAlign());
1816 DeleteArgs.add(RValue::getAggregate(Address(TagAllocation, Ty, Align)),
1817 TagType);
1818 TagAlloca = TagAllocation;
1819 };
1820
1821 // Pass std::type_identity tag if present
1823 EmitTag(*ParamTypeIt++, "typeaware.delete.tag");
1824
1825 // Pass the pointer itself.
1826 QualType ArgTy = *ParamTypeIt++;
1827 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1828
1829 // Pass the std::destroying_delete tag if present.
1830 if (Params.DestroyingDelete)
1831 EmitTag(*ParamTypeIt++, "destroying.delete.tag");
1832
1833 // Pass the size if the delete function has a size_t parameter.
1834 if (Params.Size) {
1835 QualType SizeType = *ParamTypeIt++;
1836 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1837 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1838 DeleteTypeSize.getQuantity());
1839
1840 // For array new, multiply by the number of elements.
1841 if (NumElements)
1842 Size = Builder.CreateMul(Size, NumElements);
1843
1844 // If there is a cookie, add the cookie size.
1845 if (!CookieSize.isZero())
1846 Size = Builder.CreateAdd(
1847 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1848
1849 DeleteArgs.add(RValue::get(Size), SizeType);
1850 }
1851
1852 // Pass the alignment if the delete function has an align_val_t parameter.
1853 if (isAlignedAllocation(Params.Alignment)) {
1854 QualType AlignValType = *ParamTypeIt++;
1855 CharUnits DeleteTypeAlign =
1856 getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown(
1857 DeleteTy, true /* NeedsPreferredAlignment */));
1858 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1859 DeleteTypeAlign.getQuantity());
1860 DeleteArgs.add(RValue::get(Align), AlignValType);
1861 }
1862
1863 assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1864 "unknown parameter to usual delete function");
1865
1866 // Emit the call to delete.
1867 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1868
1869 // If call argument lowering didn't use a generated tag argument alloca we
1870 // remove them
1871 if (TagAlloca && (*TagAlloca)->use_empty())
1872 (*TagAlloca)->eraseFromParent();
1873}
1874namespace {
1875 /// Calls the given 'operator delete' on a single object.
1876 struct CallObjectDelete final : EHScopeStack::Cleanup {
1877 llvm::Value *Ptr;
1878 const FunctionDecl *OperatorDelete;
1879 QualType ElementType;
1880
1881 CallObjectDelete(llvm::Value *Ptr,
1882 const FunctionDecl *OperatorDelete,
1883 QualType ElementType)
1884 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1885
1886 void Emit(CodeGenFunction &CGF, Flags flags) override {
1887 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1888 }
1889 };
1890}
1891
1892void
1894 llvm::Value *CompletePtr,
1895 QualType ElementType) {
1896 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1897 OperatorDelete, ElementType);
1898}
1899
1900/// Emit the code for deleting a single object with a destroying operator
1901/// delete. If the element type has a non-virtual destructor, Ptr has already
1902/// been converted to the type of the parameter of 'operator delete'. Otherwise
1903/// Ptr points to an object of the static type.
1905 const CXXDeleteExpr *DE, Address Ptr,
1906 QualType ElementType) {
1907 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1908 if (Dtor && Dtor->isVirtual())
1909 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1910 Dtor);
1911 else
1913 ElementType);
1914}
1915
1916/// Emit the code for deleting a single object.
1917/// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
1918/// if not.
1920 Address Ptr, QualType ElementType,
1921 llvm::BasicBlock *UnconditionalDeleteBlock) {
1922 // C++11 [expr.delete]p3:
1923 // If the static type of the object to be deleted is different from its
1924 // dynamic type, the static type shall be a base class of the dynamic type
1925 // of the object to be deleted and the static type shall have a virtual
1926 // destructor or the behavior is undefined.
1928 ElementType);
1929
1930 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1931 assert(!OperatorDelete->isDestroyingOperatorDelete());
1932
1933 // Find the destructor for the type, if applicable. If the
1934 // destructor is virtual, we'll just emit the vcall and return.
1935 const CXXDestructorDecl *Dtor = nullptr;
1936 if (const auto *RD = ElementType->getAsCXXRecordDecl()) {
1937 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1938 Dtor = RD->getDestructor();
1939
1940 if (Dtor->isVirtual()) {
1941 bool UseVirtualCall = true;
1942 const Expr *Base = DE->getArgument();
1943 if (auto *DevirtualizedDtor =
1944 dyn_cast_or_null<const CXXDestructorDecl>(
1946 Base, CGF.CGM.getLangOpts().AppleKext))) {
1947 UseVirtualCall = false;
1948 const CXXRecordDecl *DevirtualizedClass =
1949 DevirtualizedDtor->getParent();
1950 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) {
1951 // Devirtualized to the class of the base type (the type of the
1952 // whole expression).
1953 Dtor = DevirtualizedDtor;
1954 } else {
1955 // Devirtualized to some other type. Would need to cast the this
1956 // pointer to that type but we don't have support for that yet, so
1957 // do a virtual call. FIXME: handle the case where it is
1958 // devirtualized to the derived type (the type of the inner
1959 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1960 UseVirtualCall = true;
1961 }
1962 }
1963 if (UseVirtualCall) {
1964 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1965 Dtor);
1966 return false;
1967 }
1968 }
1969 }
1970 }
1971
1972 // Make sure that we call delete even if the dtor throws.
1973 // This doesn't have to a conditional cleanup because we're going
1974 // to pop it off in a second.
1975 CGF.EHStack.pushCleanup<CallObjectDelete>(
1976 NormalAndEHCleanup, Ptr.emitRawPointer(CGF), OperatorDelete, ElementType);
1977
1978 if (Dtor)
1980 /*ForVirtualBase=*/false,
1981 /*Delegating=*/false,
1982 Ptr, ElementType);
1983 else if (auto Lifetime = ElementType.getObjCLifetime()) {
1984 switch (Lifetime) {
1988 break;
1989
1992 break;
1993
1995 CGF.EmitARCDestroyWeak(Ptr);
1996 break;
1997 }
1998 }
1999
2000 // When optimizing for size, call 'operator delete' unconditionally.
2001 if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) {
2002 CGF.EmitBlock(UnconditionalDeleteBlock);
2003 CGF.PopCleanupBlock();
2004 return true;
2005 }
2006
2007 CGF.PopCleanupBlock();
2008 return false;
2009}
2010
2011namespace {
2012 /// Calls the given 'operator delete' on an array of objects.
2013 struct CallArrayDelete final : EHScopeStack::Cleanup {
2014 llvm::Value *Ptr;
2015 const FunctionDecl *OperatorDelete;
2016 llvm::Value *NumElements;
2017 QualType ElementType;
2018 CharUnits CookieSize;
2019
2020 CallArrayDelete(llvm::Value *Ptr,
2021 const FunctionDecl *OperatorDelete,
2022 llvm::Value *NumElements,
2023 QualType ElementType,
2024 CharUnits CookieSize)
2025 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
2026 ElementType(ElementType), CookieSize(CookieSize) {}
2027
2028 void Emit(CodeGenFunction &CGF, Flags flags) override {
2029 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
2030 CookieSize);
2031 }
2032 };
2033}
2034
2035/// Emit the code for deleting an array of objects.
2037 const CXXDeleteExpr *E,
2038 Address deletedPtr,
2039 QualType elementType) {
2040 llvm::Value *numElements = nullptr;
2041 llvm::Value *allocatedPtr = nullptr;
2042 CharUnits cookieSize;
2043 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
2044 numElements, allocatedPtr, cookieSize);
2045
2046 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
2047
2048 // Make sure that we call delete even if one of the dtors throws.
2049 const FunctionDecl *operatorDelete = E->getOperatorDelete();
2050 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
2051 allocatedPtr, operatorDelete,
2052 numElements, elementType,
2053 cookieSize);
2054
2055 // Destroy the elements.
2056 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2057 assert(numElements && "no element count for a type with a destructor!");
2058
2059 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2060 CharUnits elementAlign =
2061 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
2062
2063 llvm::Value *arrayBegin = deletedPtr.emitRawPointer(CGF);
2064 llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
2065 deletedPtr.getElementType(), arrayBegin, numElements, "delete.end");
2066
2067 // Note that it is legal to allocate a zero-length array, and we
2068 // can never fold the check away because the length should always
2069 // come from a cookie.
2070 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
2071 CGF.getDestroyer(dtorKind),
2072 /*checkZeroLength*/ true,
2073 CGF.needsEHCleanup(dtorKind));
2074 }
2075
2076 // Pop the cleanup block.
2077 CGF.PopCleanupBlock();
2078}
2079
2081 const Expr *Arg = E->getArgument();
2083
2084 // Null check the pointer.
2085 //
2086 // We could avoid this null check if we can determine that the object
2087 // destruction is trivial and doesn't require an array cookie; we can
2088 // unconditionally perform the operator delete call in that case. For now, we
2089 // assume that deleted pointers are null rarely enough that it's better to
2090 // keep the branch. This might be worth revisiting for a -O0 code size win.
2091 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2092 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2093
2094 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
2095
2096 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2097 EmitBlock(DeleteNotNull);
2098 Ptr.setKnownNonNull();
2099
2100 QualType DeleteTy = E->getDestroyedType();
2101
2102 // A destroying operator delete overrides the entire operation of the
2103 // delete expression.
2105 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2106 EmitBlock(DeleteEnd);
2107 return;
2108 }
2109
2110 // We might be deleting a pointer to array.
2111 DeleteTy = getContext().getBaseElementType(DeleteTy);
2112 Ptr = Ptr.withElementType(ConvertTypeForMem(DeleteTy));
2113
2114 if (E->isArrayForm() &&
2115 CGM.getContext().getTargetInfo().emitVectorDeletingDtors(
2116 CGM.getContext().getLangOpts())) {
2117 if (auto *RD = DeleteTy->getAsCXXRecordDecl()) {
2118 auto *Dtor = RD->getDestructor();
2119 if (Dtor && Dtor->isVirtual()) {
2120 llvm::Value *NumElements = nullptr;
2121 llvm::Value *AllocatedPtr = nullptr;
2122 CharUnits CookieSize;
2123 llvm::BasicBlock *BodyBB = createBasicBlock("vdtor.call");
2124 llvm::BasicBlock *DoneBB = createBasicBlock("vdtor.nocall");
2125 // Check array cookie to see if the array has length 0. Don't call
2126 // the destructor in that case.
2127 CGM.getCXXABI().ReadArrayCookie(*this, Ptr, E, DeleteTy, NumElements,
2128 AllocatedPtr, CookieSize);
2129
2130 auto *CondTy = cast<llvm::IntegerType>(NumElements->getType());
2131 llvm::Value *IsEmpty = Builder.CreateICmpEQ(
2132 NumElements, llvm::ConstantInt::get(CondTy, 0));
2133 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
2134
2135 // Delete cookie for empty array.
2136 const FunctionDecl *OperatorDelete = E->getOperatorDelete();
2137 EmitBlock(DoneBB);
2138 EmitDeleteCall(OperatorDelete, AllocatedPtr, DeleteTy, NumElements,
2139 CookieSize);
2140 EmitBranch(DeleteEnd);
2141
2142 EmitBlock(BodyBB);
2143 if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd))
2144 EmitBlock(DeleteEnd);
2145 return;
2146 }
2147 }
2148 }
2149
2150 if (E->isArrayForm()) {
2151 EmitArrayDelete(*this, E, Ptr, DeleteTy);
2152 EmitBlock(DeleteEnd);
2153 } else {
2154 if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd))
2155 EmitBlock(DeleteEnd);
2156 }
2157}
2158
2159static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2160 llvm::Type *StdTypeInfoPtrTy,
2161 bool HasNullCheck) {
2162 // Get the vtable pointer.
2163 Address ThisPtr = CGF.EmitLValue(E).getAddress();
2164
2165 QualType SrcRecordTy = E->getType();
2166
2167 // C++ [class.cdtor]p4:
2168 // If the operand of typeid refers to the object under construction or
2169 // destruction and the static type of the operand is neither the constructor
2170 // or destructor’s class nor one of its bases, the behavior is undefined.
2172 ThisPtr, SrcRecordTy);
2173
2174 // Whether we need an explicit null pointer check. For example, with the
2175 // Microsoft ABI, if this is a call to __RTtypeid, the null pointer check and
2176 // exception throw is inside the __RTtypeid(nullptr) call
2177 if (HasNullCheck &&
2178 CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(SrcRecordTy)) {
2179 llvm::BasicBlock *BadTypeidBlock =
2180 CGF.createBasicBlock("typeid.bad_typeid");
2181 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2182
2183 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
2184 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2185
2186 CGF.EmitBlock(BadTypeidBlock);
2187 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2188 CGF.EmitBlock(EndBlock);
2189 }
2190
2191 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2192 StdTypeInfoPtrTy);
2193}
2194
2196 // Ideally, we would like to use GlobalsInt8PtrTy here, however, we cannot,
2197 // primarily because the result of applying typeid is a value of type
2198 // type_info, which is declared & defined by the standard library
2199 // implementation and expects to operate on the generic (default) AS.
2200 // https://reviews.llvm.org/D157452 has more context, and a possible solution.
2201 llvm::Type *PtrTy = Int8PtrTy;
2202 LangAS GlobAS = CGM.GetGlobalVarAddressSpace(nullptr);
2203
2204 auto MaybeASCast = [=](auto &&TypeInfo) {
2205 if (GlobAS == LangAS::Default)
2206 return TypeInfo;
2207 return getTargetHooks().performAddrSpaceCast(CGM, TypeInfo, GlobAS, PtrTy);
2208 };
2209
2210 if (E->isTypeOperand()) {
2211 llvm::Constant *TypeInfo =
2212 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2213 return MaybeASCast(TypeInfo);
2214 }
2215
2216 // C++ [expr.typeid]p2:
2217 // When typeid is applied to a glvalue expression whose type is a
2218 // polymorphic class type, the result refers to a std::type_info object
2219 // representing the type of the most derived object (that is, the dynamic
2220 // type) to which the glvalue refers.
2221 // If the operand is already most derived object, no need to look up vtable.
2223 return EmitTypeidFromVTable(*this, E->getExprOperand(), PtrTy,
2224 E->hasNullCheck());
2225
2226 QualType OperandTy = E->getExprOperand()->getType();
2227 return MaybeASCast(CGM.GetAddrOfRTTIDescriptor(OperandTy));
2228}
2229
2231 QualType DestTy) {
2232 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2233 if (DestTy->isPointerType())
2234 return llvm::Constant::getNullValue(DestLTy);
2235
2236 /// C++ [expr.dynamic.cast]p9:
2237 /// A failed cast to reference type throws std::bad_cast
2238 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2239 return nullptr;
2240
2241 CGF.Builder.ClearInsertionPoint();
2242 return llvm::PoisonValue::get(DestLTy);
2243}
2244
2246 const CXXDynamicCastExpr *DCE) {
2247 CGM.EmitExplicitCastExprType(DCE, this);
2248 QualType DestTy = DCE->getTypeAsWritten();
2249
2250 QualType SrcTy = DCE->getSubExpr()->getType();
2251
2252 // C++ [expr.dynamic.cast]p7:
2253 // If T is "pointer to cv void," then the result is a pointer to the most
2254 // derived object pointed to by v.
2255 bool IsDynamicCastToVoid = DestTy->isVoidPointerType();
2256 QualType SrcRecordTy;
2257 QualType DestRecordTy;
2258 if (IsDynamicCastToVoid) {
2259 SrcRecordTy = SrcTy->getPointeeType();
2260 // No DestRecordTy.
2261 } else if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
2262 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2263 DestRecordTy = DestPTy->getPointeeType();
2264 } else {
2265 SrcRecordTy = SrcTy;
2266 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2267 }
2268
2269 // C++ [class.cdtor]p5:
2270 // If the operand of the dynamic_cast refers to the object under
2271 // construction or destruction and the static type of the operand is not a
2272 // pointer to or object of the constructor or destructor’s own class or one
2273 // of its bases, the dynamic_cast results in undefined behavior.
2274 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr, SrcRecordTy);
2275
2276 if (DCE->isAlwaysNull()) {
2277 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) {
2278 // Expression emission is expected to retain a valid insertion point.
2279 if (!Builder.GetInsertBlock())
2280 EmitBlock(createBasicBlock("dynamic_cast.unreachable"));
2281 return T;
2282 }
2283 }
2284
2285 assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2286
2287 // If the destination is effectively final, the cast succeeds if and only
2288 // if the dynamic type of the pointer is exactly the destination type.
2289 bool IsExact = !IsDynamicCastToVoid &&
2290 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2291 DestRecordTy->getAsCXXRecordDecl()->isEffectivelyFinal() &&
2292 CGM.getCXXABI().shouldEmitExactDynamicCast(DestRecordTy);
2293
2294 std::optional<CGCXXABI::ExactDynamicCastInfo> ExactCastInfo;
2295 if (IsExact) {
2296 ExactCastInfo = CGM.getCXXABI().getExactDynamicCastInfo(SrcRecordTy, DestTy,
2297 DestRecordTy);
2298 if (!ExactCastInfo) {
2299 llvm::Value *NullValue = EmitDynamicCastToNull(*this, DestTy);
2300 if (!Builder.GetInsertBlock())
2301 EmitBlock(createBasicBlock("dynamic_cast.unreachable"));
2302 return NullValue;
2303 }
2304 }
2305
2306 // C++ [expr.dynamic.cast]p4:
2307 // If the value of v is a null pointer value in the pointer case, the result
2308 // is the null pointer value of type T.
2309 bool ShouldNullCheckSrcValue =
2310 IsExact || CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(
2311 SrcTy->isPointerType(), SrcRecordTy);
2312
2313 llvm::BasicBlock *CastNull = nullptr;
2314 llvm::BasicBlock *CastNotNull = nullptr;
2315 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2316
2317 if (ShouldNullCheckSrcValue) {
2318 CastNull = createBasicBlock("dynamic_cast.null");
2319 CastNotNull = createBasicBlock("dynamic_cast.notnull");
2320
2321 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr);
2322 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2323 EmitBlock(CastNotNull);
2324 }
2325
2326 llvm::Value *Value;
2327 if (IsDynamicCastToVoid) {
2328 Value = CGM.getCXXABI().emitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy);
2329 } else if (IsExact) {
2330 // If the destination type is effectively final, this pointer points to the
2331 // right type if and only if its vptr has the right value.
2332 Value = CGM.getCXXABI().emitExactDynamicCast(
2333 *this, ThisAddr, SrcRecordTy, DestTy, DestRecordTy, *ExactCastInfo,
2334 CastEnd, CastNull);
2335 } else {
2336 assert(DestRecordTy->isRecordType() &&
2337 "destination type must be a record type!");
2338 Value = CGM.getCXXABI().emitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2339 DestTy, DestRecordTy, CastEnd);
2340 }
2341 CastNotNull = Builder.GetInsertBlock();
2342
2343 llvm::Value *NullValue = nullptr;
2344 if (ShouldNullCheckSrcValue) {
2345 EmitBranch(CastEnd);
2346
2347 EmitBlock(CastNull);
2348 NullValue = EmitDynamicCastToNull(*this, DestTy);
2349 CastNull = Builder.GetInsertBlock();
2350
2351 EmitBranch(CastEnd);
2352 }
2353
2354 EmitBlock(CastEnd);
2355
2356 if (CastNull) {
2357 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2358 PHI->addIncoming(Value, CastNotNull);
2359 PHI->addIncoming(NullValue, CastNull);
2360
2361 Value = PHI;
2362 }
2363
2364 return Value;
2365}
#define V(N, I)
static MemberCallInfo commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args, CallArgList *RtlArgs)
Definition CGExprCXX.cpp:36
static llvm::Value * EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, llvm::Type *StdTypeInfoPtrTy, bool HasNullCheck)
static llvm::Value * EmitDynamicCastToNull(CodeGenFunction &CGF, QualType DestTy)
static RValue EmitNewDeleteCall(CodeGenFunction &CGF, const FunctionDecl *CalleeDecl, const FunctionProtoType *CalleeType, const CallArgList &Args)
Emit a call to an operator new or operator delete function, as implicitly created by new-expressions ...
static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object with a destroying operator delete.
static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, Address DestPtr, const CXXRecordDecl *Base)
static bool EmitObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType, llvm::BasicBlock *UnconditionalDeleteBlock)
Emit the code for deleting a single object.
static CXXRecordDecl * getCXXRecord(const Expr *E)
static void EnterNewDeleteCleanup(CodeGenFunction &CGF, const CXXNewExpr *E, RValue TypeIdentity, Address NewPtr, llvm::Value *AllocSize, CharUnits AllocAlign, const CallArgList &NewArgs)
Enter a cleanup to call 'operator delete' if the initializer in a new-expression throws.
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, const CXXNewExpr *E)
static void EmitArrayDelete(CodeGenFunction &CGF, const CXXDeleteExpr *E, Address deletedPtr, QualType elementType)
Emit the code for deleting an array of objects.
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, QualType AllocType, Address NewPtr, AggValueSlot::Overlap_t MayOverlap)
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
static llvm::Value * EmitCXXNewAllocSize(CodeGenFunction &CGF, const CXXNewExpr *e, unsigned minElements, llvm::Value *&numElements, llvm::Value *&sizeWithoutCookie)
static QualType getPointeeType(const MemRegion *R)
a trap message and trap category.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition ASTContext.h:220
TranslationUnitDecl * getTranslationUnitDecl() const
const ConstantArrayType * getAsConstantArrayType(QualType T) const
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
DeclarationNameTable DeclarationNames
Definition ASTContext.h:795
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D,...
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
static bool hasSameType(QualType T1, QualType T2)
Determine whether the given types T1 and T2 are equivalent.
QualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
CharUnits toCharUnitsFromBits(int64_t BitSize) const
Convert a size in bits to a size in characters.
uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const
Return number of constant array elements.
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
CharUnits getNonVirtualAlignment() const
getNonVirtualAlignment - Get the non-virtual alignment (in chars) of an object, which is the alignmen...
CharUnits getNonVirtualSize() const
getNonVirtualSize - Get the non-virtual size (in chars) of an object, which is the size of the object...
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition TypeBase.h:3722
A builtin binary operation expression such as "x + y" or "x <= y".
Definition Expr.h:3972
Expr * getLHS() const
Definition Expr.h:4022
Expr * getRHS() const
Definition Expr.h:4024
Opcode getOpcode() const
Definition Expr.h:4017
Represents a call to a CUDA kernel function.
Definition ExprCXX.h:234
Represents a call to a C++ constructor.
Definition ExprCXX.h:1548
bool isElidable() const
Whether this construction is elidable.
Definition ExprCXX.h:1617
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition ExprCXX.h:1691
bool requiresZeroInitialization() const
Whether this construction first requires zero-initialization before the initializer is called.
Definition ExprCXX.h:1650
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition ExprCXX.h:1611
CXXConstructionKind getConstructionKind() const
Determine whether this constructor is actually constructing a base class (rather than a complete obje...
Definition ExprCXX.h:1659
Represents a C++ constructor within a class.
Definition DeclCXX.h:2604
bool isDefaultConstructor() const
Whether this constructor is a default constructor (C++ [class.ctor]p5), which can be used to default-...
Definition DeclCXX.cpp:2999
Represents a delete expression for memory deallocation and destructor calls, e.g.
Definition ExprCXX.h:2626
FunctionDecl * getOperatorDelete() const
Definition ExprCXX.h:2665
bool isArrayForm() const
Definition ExprCXX.h:2652
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition ExprCXX.cpp:338
Represents a C++ destructor within a class.
Definition DeclCXX.h:2869
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition ExprCXX.h:481
bool isAlwaysNull() const
isAlwaysNull - Return whether the result of the dynamic_cast is proven to always be null.
Definition ExprCXX.cpp:838
Represents a call to a member function that may be written either with member call syntax (e....
Definition ExprCXX.h:179
SourceLocation getExprLoc() const LLVM_READONLY
Definition ExprCXX.h:220
Represents a static or instance method of a struct/union/class.
Definition DeclCXX.h:2129
bool isImplicitObjectMemberFunction() const
[C++2b][dcl.fct]/p7 An implicit object member function is a non-static member function without an exp...
Definition DeclCXX.cpp:2710
bool isVirtual() const
Definition DeclCXX.h:2184
const CXXRecordDecl * getParent() const
Return the parent of this method declaration, which is the class in which this method is defined.
Definition DeclCXX.h:2255
QualType getThisType() const
Return the type of the this pointer.
Definition DeclCXX.cpp:2809
bool isMoveAssignmentOperator() const
Determine whether this is a move assignment operator.
Definition DeclCXX.cpp:2735
Qualifiers getMethodQualifiers() const
Definition DeclCXX.h:2290
CXXMethodDecl * getDevirtualizedMethod(const Expr *Base, bool IsAppleKext)
If it's possible to devirtualize a call to this method, return the called function.
Definition DeclCXX.cpp:2508
CXXMethodDecl * getCorrespondingMethodInClass(const CXXRecordDecl *RD, bool MayBeBase=false)
Find the method in RD that corresponds to this one.
Definition DeclCXX.cpp:2454
bool isStatic() const
Definition DeclCXX.cpp:2401
bool isCopyAssignmentOperator() const
Determine whether this is a copy-assignment operator, regardless of whether it was declared implicitl...
Definition DeclCXX.cpp:2714
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)".
Definition ExprCXX.h:2355
bool isArray() const
Definition ExprCXX.h:2464
llvm::iterator_range< arg_iterator > placement_arguments()
Definition ExprCXX.h:2572
QualType getAllocatedType() const
Definition ExprCXX.h:2434
unsigned getNumImplicitArgs() const
Definition ExprCXX.h:2511
std::optional< Expr * > getArraySize()
This might return std::nullopt even if isArray() returns true, since there might not be an array size...
Definition ExprCXX.h:2469
ImplicitAllocationParameters implicitAllocationParameters() const
Provides the full set of information about expected implicit parameters in this call.
Definition ExprCXX.h:2562
bool hasInitializer() const
Whether this new-expression has any initializer at all.
Definition ExprCXX.h:2524
bool shouldNullCheckAllocation() const
True if the allocation result needs to be null-checked.
Definition ExprCXX.cpp:326
bool passAlignment() const
Indicates whether the required alignment should be implicitly passed to the allocation function.
Definition ExprCXX.h:2551
FunctionDecl * getOperatorDelete() const
Definition ExprCXX.h:2461
unsigned getNumPlacementArgs() const
Definition ExprCXX.h:2494
TypeSourceInfo * getAllocatedTypeSourceInfo() const
Definition ExprCXX.h:2438
FunctionDecl * getOperatorNew() const
Definition ExprCXX.h:2459
Expr * getInitializer()
The initializer of this new-expression.
Definition ExprCXX.h:2533
A call to an overloaded operator written using operator syntax.
Definition ExprCXX.h:84
Represents a list-initialization with parenthesis.
Definition ExprCXX.h:5141
MutableArrayRef< Expr * > getInitExprs()
Definition ExprCXX.h:5181
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition ExprCXX.h:2745
bool isArrow() const
Determine whether this pseudo-destructor expression was written using an '->' (otherwise,...
Definition ExprCXX.h:2809
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition ExprCXX.cpp:385
Represents a C++ struct/union/class.
Definition DeclCXX.h:258
bool isEffectivelyFinal() const
Determine whether it's impossible for a class to be derived from this class.
Definition DeclCXX.cpp:2325
bool isDynamicClass() const
Definition DeclCXX.h:574
bool isEmpty() const
Determine whether this is an empty class in the sense of (C++11 [meta.unary.prop]).
Definition DeclCXX.h:1186
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition DeclCXX.cpp:2121
An expression "T()" which creates an rvalue of a non-class type T.
Definition ExprCXX.h:2196
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition ExprCXX.h:848
bool isTypeOperand() const
Definition ExprCXX.h:884
QualType getTypeOperand(const ASTContext &Context) const
Retrieves the type operand of this typeid() expression after various required adjustments (removing r...
Definition ExprCXX.cpp:161
Expr * getExprOperand() const
Definition ExprCXX.h:895
bool isMostDerived(const ASTContext &Context) const
Best-effort check if the expression operand refers to a most derived object.
Definition ExprCXX.cpp:149
bool isPotentiallyEvaluated() const
Determine whether this typeid has a type operand which is potentially evaluated, per C++11 [expr....
Definition ExprCXX.cpp:134
bool hasNullCheck() const
Whether this is of a form like "typeid(*ptr)" that can throw a std::bad_typeid if a pointer is a null...
Definition ExprCXX.cpp:200
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition Expr.h:2877
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition Expr.h:3081
SourceLocation getBeginLoc() const
Definition Expr.h:3211
arg_iterator arg_begin()
Definition Expr.h:3134
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return null.
Definition Expr.h:3060
Expr * getCallee()
Definition Expr.h:3024
arg_range arguments()
Definition Expr.h:3129
Expr * getSubExpr()
Definition Expr.h:3660
CharUnits - This is an opaque type for sizes expressed in character units.
Definition CharUnits.h:38
CharUnits alignmentAtOffset(CharUnits offset) const
Given that this is a non-zero alignment value, what is the alignment at the given offset?
Definition CharUnits.h:207
bool isNegative() const
isNegative - Test whether the quantity is less than zero.
Definition CharUnits.h:131
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition CharUnits.h:122
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition CharUnits.h:189
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition CharUnits.h:185
CharUnits alignmentOfArrayElement(CharUnits elementSize) const
Given that this is the alignment of the first element of an array, return the minimum alignment of an...
Definition CharUnits.h:214
bool isOne() const
isOne - Test whether the quantity equals one.
Definition CharUnits.h:125
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition CharUnits.h:53
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition Address.h:128
static Address invalid()
Definition Address.h:176
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Return the pointer contained in this class after authenticating it and adding offset to it if necessa...
Definition Address.h:253
CharUnits getAlignment() const
Definition Address.h:194
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition Address.h:209
Address withElementType(llvm::Type *ElemTy) const
Return address with different element type, but same pointer and alignment.
Definition Address.h:276
Address setKnownNonNull()
Definition Address.h:238
void setAlignment(CharUnits Value)
Definition Address.h:196
bool isValid() const
Definition Address.h:177
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition Address.h:204
An aggregate value slot.
Definition CGValue.h:505
bool isSanitizerChecked() const
Definition CGValue.h:663
Address getAddress() const
Definition CGValue.h:645
IsZeroed_t isZeroed() const
Definition CGValue.h:676
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
forAddr - Make a slot for an aggregate value.
Definition CGValue.h:588
A scoped helper to set the current debug location to the specified location or preferred location of ...
Address CreateConstInBoundsByteGEP(Address Addr, CharUnits Offset, const llvm::Twine &Name="")
Given a pointer to i8, adjust it by a given constant offset.
Definition CGBuilder.h:309
llvm::Value * CreateIsNull(Address Addr, const Twine &Name="")
Definition CGBuilder.h:360
llvm::CallInst * CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile=false)
Definition CGBuilder.h:402
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition CGBuilder.h:369
Address CreateInBoundsGEP(Address Addr, ArrayRef< llvm::Value * > IdxList, llvm::Type *ElementType, CharUnits Align, const Twine &Name="")
Definition CGBuilder.h:350
virtual std::vector< CharUnits > getVBPtrOffsets(const CXXRecordDecl *RD)
Gets the offsets of all the virtual base pointers in a given class.
Definition CGCXXABI.cpp:351
virtual void ReadArrayCookie(CodeGenFunction &CGF, Address Ptr, const CXXDeleteExpr *expr, QualType ElementType, llvm::Value *&NumElements, llvm::Value *&AllocPtr, CharUnits &CookieSize)
Reads the array cookie associated with the given pointer, if it has one.
Definition CGCXXABI.cpp:250
virtual bool shouldTypeidBeNullChecked(QualType SrcRecordTy)=0
virtual void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType, const CXXDestructorDecl *Dtor)=0
virtual const CXXRecordDecl * getThisArgumentTypeForMethod(GlobalDecl GD)
Get the type of the implicit "this" parameter used by a method.
Definition CGCXXABI.h:395
virtual bool EmitBadCastCall(CodeGenFunction &CGF)=0
virtual llvm::Value * EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, Address ThisPtr, llvm::Type *StdTypeInfoPtrTy)=0
virtual CharUnits GetArrayCookieSize(const CXXNewExpr *expr)
Returns the extra size required in order to store the array cookie for the given new-expression.
Definition CGCXXABI.cpp:210
virtual void EmitBadTypeidCall(CodeGenFunction &CGF)=0
All available information about a concrete callee.
Definition CGCall.h:63
static CGCallee forVirtual(const CallExpr *CE, GlobalDecl MD, Address Addr, llvm::FunctionType *FTy)
Definition CGCall.h:147
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition CGCall.h:137
CGFunctionInfo - Class to encapsulate the information about a function definition.
CallArgList - Type for representing both the value and type of arguments in a call.
Definition CGCall.h:274
void add(RValue rvalue, QualType type)
Definition CGCall.h:302
void addFrom(const CallArgList &other)
Add all the arguments from another CallArgList to this one.
Definition CGCall.h:311
An abstract representation of regular/ObjC call/message targets.
An object to manage conditionally-evaluated expressions.
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited.
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, QualType elementType, CharUnits elementAlign, Destroyer *destroyer, bool checkZeroLength, bool useEHCleanup)
emitArrayDestroy - Destroys all the elements of the given array, beginning from last to first.
Definition CGDecl.cpp:2434
GlobalDecl CurGD
CurGD - The GlobalDecl for the current function being compiled.
void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest)
SanitizerSet SanOpts
Sanitizers enabled for this function.
void EmitNullInitialization(Address DestPtr, QualType Ty)
EmitNullInitialization - Generate code to set a value of the given type to null, If the type contains...
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
llvm::Type * ConvertType(QualType T)
RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E)
RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, bool HasQualifier, NestedNameSpecifier Qualifier, bool IsArrow, const Expr *Base, llvm::CallBase **CallOrInvoke)
void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, CFITypeCheckKind TCK, SourceLocation Loc)
EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
Definition CGClass.cpp:2982
void EmitARCDestroyWeak(Address addr)
void @objc_destroyWeak(i8** addr) Essentially objc_storeWeak(addr, nil).
Definition CGObjC.cpp:2681
void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, llvm::Value *arrayEnd, QualType elementType, CharUnits elementAlignment, Destroyer *destroyer)
pushRegularPartialArrayCleanup - Push an EH cleanup to destroy already-constructed elements of the gi...
Definition CGDecl.cpp:2594
void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp)
llvm::SmallVector< DeferredDeactivateCleanup > DeferredDeactivationCleanupStack
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
void EmitCXXDeleteExpr(const CXXDeleteExpr *E)
const LangOptions & getLangOpts() const
void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit)
Definition CGDecl.cpp:787
void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, const ArrayType *ArrayTy, Address ArrayPtr, const CXXConstructExpr *E, bool NewPointerIsChecked, bool ZeroInitialization=false)
EmitCXXAggrConstructorCall - Emit a loop to call a particular constructor for each of several members...
Definition CGClass.cpp:2150
@ TCK_ConstructorCall
Checking the 'this' pointer for a constructor call.
@ TCK_MemberCall
Checking the 'this' pointer for a call to a non-static member function.
@ TCK_DynamicOperation
Checking the operand of a dynamic_cast or a typeid expression.
llvm::Value * EmitCXXNewExpr(const CXXNewExpr *E)
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This, QualType ThisTy)
Definition CGClass.cpp:2678
void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, Address arrayEndPointer, QualType elementType, CharUnits elementAlignment, Destroyer *destroyer)
pushIrregularPartialArrayCleanup - Push a NormalAndEHCleanup to destroy already-constructed elements ...
Definition CGDecl.cpp:2578
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
Definition CGDecl.cpp:2251
void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy)
Emit an aggregate assignment.
void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise)
Release the given object.
Definition CGObjC.cpp:2481
void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, llvm::Value *CompletePtr, QualType ElementType)
RValue EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, const CGCallee &Callee, ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, CallArgList *RtlArgs, llvm::CallBase **CallOrInvoke)
Definition CGExprCXX.cpp:85
@ ForceRightToLeft
! Language semantics require right-to-left evaluation.
RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, ReturnValueSlot ReturnValue, llvm::CallBase **CallOrInvoke)
void initFullExprCleanup()
Set up the last cleanup that was pushed as a conditional full-expression cleanup.
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we're currently emitting one branch or the other of a conditio...
void EmitIgnoredExpr(const Expr *E)
EmitIgnoredExpr - Emit an expression in a context which ignores the result.
Definition CGExpr.cpp:244
void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise)
Destroy a __strong variable.
Definition CGObjC.cpp:2510
void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, llvm::Instruction *DominatingIP)
DeactivateCleanupBlock - Deactivates the given cleanup block.
void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase, bool Delegating, AggValueSlot ThisAVS, const CXXConstructExpr *E)
Definition CGClass.cpp:2290
llvm::Value * getTypeSize(QualType Ty)
Returns calculated size of the specified type.
RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue, llvm::CallBase **CallOrInvoke=nullptr)
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
Definition CGExpr.cpp:153
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **CallOrInvoke, bool IsMustTail, SourceLocation Loc, bool IsVirtualFunctionPointerThunk=false)
EmitCall - Generate a call of the given function, expecting the given result type,...
Definition CGCall.cpp:5248
const TargetCodeGenInfo & getTargetHooks() const
RValue EmitAnyExprToTemp(const Expr *E)
EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will always be accessible even if...
Definition CGExpr.cpp:285
void EmitAllocToken(llvm::CallBase *CB, QualType AllocType)
Emit and set additional metadata used by the AllocToken instrumentation.
Definition CGExpr.cpp:1313
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind.
RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, const CallExpr *TheCallExpr, bool IsDelete)
llvm::Type * ConvertTypeForMem(QualType T)
void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, Address This, Address Src, const CXXConstructExpr *E)
Definition CGClass.cpp:2561
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, QualType DeleteTy, llvm::Value *NumElements=nullptr, CharUnits CookieSize=CharUnits())
CodeGenTypes & getTypes() const
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV, QualType Type, SanitizerSet SkippedChecks=SanitizerSet(), llvm::Value *ArraySize=nullptr)
Address EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitPointerWithAlignment - Given an expression with a pointer type, emit the value and compute our be...
Definition CGExpr.cpp:1574
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block,...
Definition CGStmt.cpp:676
CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, NestedNameSpecifier Qual, llvm::Type *Ty)
BuildAppleKextVirtualCall - This routine is to support gcc's kext ABI making indirect call to virtual...
Definition CGCXX.cpp:314
RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue, llvm::CallBase **CallOrInvoke)
bool sanitizePerformTypeCheck() const
Whether any type-checking sanitizers are enabled.
Definition CGExpr.cpp:736
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type.
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type,...
static bool IsWrappedCXXThis(const Expr *E)
Check if E is a C++ "this" pointer wrapped in value-preserving casts.
Definition CGExpr.cpp:1632
void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
Definition CGCall.cpp:4688
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
LValue EmitLValue(const Expr *E, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitLValue - Emit code to compute a designator that specifies the location of the expression.
Definition CGExpr.cpp:1690
void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, llvm::CallBase **CallOrInvoke)
void PopCleanupBlock(bool FallThroughIsBranchThrough=false, bool ForDeactivation=false)
PopCleanupBlock - Will pop the cleanup entry on the stack and process all branch fixups.
llvm::Value * EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE)
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition CGStmt.cpp:656
llvm::Value * EmitCXXTypeidExpr(const CXXTypeidExpr *E)
llvm::Module & getModule() const
llvm::Constant * EmitNullConstantForBase(const CXXRecordDecl *Record)
Return a null constant appropriate for zero-initializing a base class with the given type.
llvm::Constant * GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty=nullptr, bool ForVTable=false, bool DontDefer=false, ForDefinition_t IsForDefinition=NotForDefinition)
Return the address of the given function.
const LangOptions & getLangOpts() const
const CodeGenOptions & getCodeGenOpts() const
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type * > Tys={})
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
CanQualType DeriveThisType(const CXXRecordDecl *RD, const CXXMethodDecl *MD)
Derives the 'this' type for codegen purposes, i.e.
Definition CGCall.cpp:127
const CGFunctionInfo & arrangeFreeFunctionCall(const CallArgList &Args, const FunctionType *Ty, bool ChainCall)
Figure out the rules for calling a function with the given formal type using the given arguments.
Definition CGCall.cpp:700
llvm::Constant * tryEmitAbstract(const Expr *E, QualType T)
Try to emit the result of the given expression as an abstract constant.
A saved depth on the scope stack.
T * pushCleanupWithExtra(CleanupKind Kind, size_t N, As... A)
Push a cleanup with non-constant storage requirements on the stack.
LValue - This represents an lvalue references.
Definition CGValue.h:183
Address getAddress() const
Definition CGValue.h:362
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition CGValue.h:42
static RValue get(llvm::Value *V)
Definition CGValue.h:99
static RValue getAggregate(Address addr, bool isVolatile=false)
Convert an Address to an RValue.
Definition CGValue.h:126
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition CGValue.h:72
A class for recording the number of arguments that a function signature requires.
static RequiredArgs forPrototypePlus(const FunctionProtoType *prototype, unsigned additional)
Compute the arguments required by the given formal prototype, given that there may be some additional...
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Definition CGCall.h:379
Address performAddrSpaceCast(CodeGen::CodeGenFunction &CGF, Address Addr, LangAS SrcAddr, llvm::Type *DestTy, bool IsNonNull=false) const
Represents the canonical version of C arrays with a specified constant size.
Definition TypeBase.h:3760
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition DeclBase.h:2109
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
DeclarationName getCXXOperatorName(OverloadedOperatorKind Op)
Get the name of the overloadable C++ operator corresponding to Op.
The name of a declaration.
QualType getIntegerType() const
Return the integer type this enum decl corresponds to.
Definition Decl.h:4180
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition Expr.h:3889
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition ExprCXX.h:3661
This represents one expression.
Definition Expr.h:112
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition Expr.cpp:3085
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const
Determine whether the result of this expression is a temporary object of the given class type.
Definition Expr.cpp:3252
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition Expr.cpp:276
QualType getType() const
Definition Expr.h:144
Represents a function declaration or definition.
Definition Decl.h:2000
bool isDestroyingOperatorDelete() const
Determine whether this is a destroying operator delete.
Definition Decl.cpp:3547
QualType getReturnType() const
Definition Decl.h:2845
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition Decl.h:2377
bool isReplaceableGlobalAllocationFunction(UnsignedOrNone *AlignmentParam=nullptr, bool *IsNothrow=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition Decl.h:2594
UsualDeleteParams getUsualDeleteParams() const
Definition Decl.cpp:3563
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition Decl.cpp:3399
bool isDefaulted() const
Whether this function is defaulted.
Definition Decl.h:2385
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any.
Definition Decl.cpp:4126
Represents a prototype with parameter type info, e.g.
Definition TypeBase.h:5254
unsigned getNumParams() const
Definition TypeBase.h:5532
QualType getParamType(unsigned i) const
Definition TypeBase.h:5534
GlobalDecl - represents a global declaration.
Definition GlobalDecl.h:57
const Decl * getDecl() const
Definition GlobalDecl.h:106
Represents an implicitly-generated value initialization of an object of a given type.
Definition Expr.h:5991
Describes an C or C++ initializer list.
Definition Expr.h:5233
bool isStringLiteralInit() const
Is this an initializer for an array of characters, initialized by a string literal or an @encode?
Definition Expr.cpp:2447
unsigned getNumInits() const
Definition Expr.h:5263
Expr * getArrayFiller()
If this initializer list initializes an array with more elements than there are initializers in the l...
Definition Expr.h:5335
const Expr * getInit(unsigned Init) const
Definition Expr.h:5287
ArrayRef< Expr * > inits()
Definition Expr.h:5283
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition Expr.h:3298
NestedNameSpecifier getQualifier() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name.
Definition Expr.h:3409
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition Expr.h:3381
bool hasQualifier() const
Determines whether this member expression actually had a C++ nested-name-specifier prior to the name ...
Definition Expr.h:3395
Expr * getBase() const
Definition Expr.h:3375
bool isArrow() const
Definition Expr.h:3482
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition TypeBase.h:3653
QualType getPointeeType() const
Definition TypeBase.h:3671
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
ObjCEncodeExpr, used for @encode in Objective-C.
Definition ExprObjC.h:407
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition TypeBase.h:3328
A (possibly-)qualified type.
Definition TypeBase.h:937
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition TypeBase.h:8362
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition TypeBase.h:1004
LangAS getAddressSpace() const
Return the address space of this type.
Definition TypeBase.h:8404
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition TypeBase.h:8318
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition TypeBase.h:1438
QualType getCanonicalType() const
Definition TypeBase.h:8330
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after.
Definition TypeBase.h:1545
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition Type.cpp:2694
bool hasStrongOrWeakObjCLifetime() const
Definition TypeBase.h:1446
The collection of all-type qualifiers we support.
Definition TypeBase.h:331
@ OCL_Strong
Assigning into this object requires the old value to be released and the new value to be retained.
Definition TypeBase.h:361
@ OCL_ExplicitNone
This object can be modified without requiring retains or releases.
Definition TypeBase.h:354
@ OCL_None
There is no lifetime qualification on this type.
Definition TypeBase.h:350
@ OCL_Weak
Reading or writing from this object requires a barrier call.
Definition TypeBase.h:364
@ OCL_Autoreleasing
Assigning into this object requires a lifetime extension.
Definition TypeBase.h:367
LangAS getAddressSpace() const
Definition TypeBase.h:571
Represents a struct/union/class.
Definition Decl.h:4321
field_range fields() const
Definition Decl.h:4524
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition Decl.cpp:5294
RecordDecl * getDefinitionOrSelf() const
Definition Decl.h:4509
Base for LValueReferenceType and RValueReferenceType.
Definition TypeBase.h:3573
Scope - A scope is a transient data structure that is used while parsing the program.
Definition Scope.h:41
Encodes a location in the source.
StringLiteral - This represents a string literal expression, e.g.
Definition Expr.h:1799
bool isUnion() const
Definition Decl.h:3922
SourceLocation getBeginLoc() const
Get the begin source location.
Definition TypeLoc.cpp:193
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition TypeLoc.h:267
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition Type.h:26
bool isVoidPointerType() const
Definition Type.cpp:712
bool isPointerType() const
Definition TypeBase.h:8515
const T * castAs() const
Member-template castAs<specific type>.
Definition TypeBase.h:9158
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition Type.cpp:752
EnumDecl * castAsEnumDecl() const
Definition Type.h:59
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type.
Definition TypeBase.h:9144
const T * getAsCanonical() const
If this type is canonically the specified type, return its canonical type cast to that specified type...
Definition TypeBase.h:2921
const T * getAs() const
Member-template getAs<specific type>'.
Definition TypeBase.h:9091
bool isRecordType() const
Definition TypeBase.h:8642
QualType getType() const
Definition Decl.h:723
QualType getType() const
Definition Value.cpp:237
@ Type
The l-value was considered opaque, so the alignment was determined from a type.
Definition CGValue.h:155
@ Decl
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
Definition CGValue.h:146
@ EHCleanup
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const AstTypeMatcher< ArrayType > arrayType
The JSON file list parser is used to communicate input to InstallAPI.
CanQual< Type > CanQualType
Represents a canonical, potentially-qualified type.
CXXCtorType
C++ constructor types.
Definition ABI.h:24
@ Ctor_Base
Base object ctor.
Definition ABI.h:26
@ Ctor_Complete
Complete object ctor.
Definition ABI.h:25
bool isa(CodeGen::Address addr)
Definition Address.h:330
AlignedAllocationMode alignedAllocationModeFromBool(bool IsAligned)
Definition ExprCXX.h:2269
bool isAlignedAllocation(AlignedAllocationMode Mode)
Definition ExprCXX.h:2265
AlignedAllocationMode
Definition ExprCXX.h:2263
const FunctionProtoType * T
@ Dtor_Complete
Complete object dtor.
Definition ABI.h:36
@ Type
The name was classified as a type.
Definition Sema.h:562
bool isTypeAwareAllocation(TypeAwareAllocationMode Mode)
Definition ExprCXX.h:2253
LangAS
Defines the address space values used by the address space qualifier of QualType.
TypeAwareAllocationMode
Definition ExprCXX.h:2251
bool declaresSameEntity(const Decl *D1, const Decl *D2)
Determine whether two declarations declare the same entity.
Definition DeclBase.h:1288
U cast(CodeGen::Address addr)
Definition Address.h:327
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function.
static saved_type save(CodeGenFunction &CGF, type value)
void set(SanitizerMask K, bool Value)
Enable or disable a certain (single) sanitizer.
Definition Sanitizers.h:187
TypeAwareAllocationMode TypeAwareDelete
Definition ExprCXX.h:2345
AlignedAllocationMode Alignment
Definition ExprCXX.h:2348