clang  8.0.0svn
Driver.cpp
Go to the documentation of this file.
1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "clang/Driver/Driver.h"
11 #include "InputInfo.h"
12 #include "ToolChains/AMDGPU.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Ananas.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/Clang.h"
17 #include "ToolChains/CloudABI.h"
18 #include "ToolChains/Contiki.h"
20 #include "ToolChains/Cuda.h"
21 #include "ToolChains/Darwin.h"
22 #include "ToolChains/DragonFly.h"
23 #include "ToolChains/FreeBSD.h"
24 #include "ToolChains/Fuchsia.h"
25 #include "ToolChains/Gnu.h"
26 #include "ToolChains/HIP.h"
27 #include "ToolChains/Haiku.h"
28 #include "ToolChains/Hexagon.h"
29 #include "ToolChains/Lanai.h"
30 #include "ToolChains/Linux.h"
31 #include "ToolChains/MSVC.h"
32 #include "ToolChains/MinGW.h"
33 #include "ToolChains/Minix.h"
34 #include "ToolChains/MipsLinux.h"
35 #include "ToolChains/Myriad.h"
36 #include "ToolChains/NaCl.h"
37 #include "ToolChains/NetBSD.h"
38 #include "ToolChains/OpenBSD.h"
39 #include "ToolChains/PS4CPU.h"
41 #include "ToolChains/Solaris.h"
42 #include "ToolChains/TCE.h"
43 #include "ToolChains/WebAssembly.h"
44 #include "ToolChains/XCore.h"
45 #include "clang/Basic/Version.h"
46 #include "clang/Config/config.h"
47 #include "clang/Driver/Action.h"
50 #include "clang/Driver/Job.h"
51 #include "clang/Driver/Options.h"
53 #include "clang/Driver/Tool.h"
54 #include "clang/Driver/ToolChain.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/STLExtras.h"
57 #include "llvm/ADT/SmallSet.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/ADT/StringSet.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/Config/llvm-config.h"
62 #include "llvm/Option/Arg.h"
63 #include "llvm/Option/ArgList.h"
64 #include "llvm/Option/OptSpecifier.h"
65 #include "llvm/Option/OptTable.h"
66 #include "llvm/Option/Option.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/FileSystem.h"
70 #include "llvm/Support/FormatVariadic.h"
71 #include "llvm/Support/Path.h"
72 #include "llvm/Support/PrettyStackTrace.h"
73 #include "llvm/Support/Process.h"
74 #include "llvm/Support/Program.h"
75 #include "llvm/Support/StringSaver.h"
76 #include "llvm/Support/TargetRegistry.h"
77 #include "llvm/Support/VirtualFileSystem.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include <map>
80 #include <memory>
81 #include <utility>
82 #if LLVM_ON_UNIX
83 #include <unistd.h> // getpid
84 #include <sysexits.h> // EX_IOERR
85 #endif
86 
87 using namespace clang::driver;
88 using namespace clang;
89 using namespace llvm::opt;
90 
91 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
92  DiagnosticsEngine &Diags,
94  : Opts(createDriverOptTable()), Diags(Diags), VFS(std::move(VFS)),
95  Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
96  LTOMode(LTOK_None), ClangExecutable(ClangExecutable),
97  SysRoot(DEFAULT_SYSROOT), DriverTitle("clang LLVM compiler"),
98  CCPrintOptionsFilename(nullptr), CCPrintHeadersFilename(nullptr),
99  CCLogDiagnosticsFilename(nullptr), CCCPrintBindings(false),
100  CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false),
101  CCGenDiagnostics(false), TargetTriple(TargetTriple),
102  CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true),
103  CCCUsePCH(true), GenReproducer(false),
104  SuppressMissingInputWarning(false) {
105 
106  // Provide a sane fallback if no VFS is specified.
107  if (!this->VFS)
108  this->VFS = llvm::vfs::getRealFileSystem();
109 
110  Name = llvm::sys::path::filename(ClangExecutable);
111  Dir = llvm::sys::path::parent_path(ClangExecutable);
112  InstalledDir = Dir; // Provide a sensible default installed dir.
113 
114 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
115  SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
116 #endif
117 #if defined(CLANG_CONFIG_FILE_USER_DIR)
118  UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
119 #endif
120 
121  // Compute the path to the resource directory.
122  StringRef ClangResourceDir(CLANG_RESOURCE_DIR);
124  if (ClangResourceDir != "") {
125  llvm::sys::path::append(P, ClangResourceDir);
126  } else {
127  StringRef ClangLibdirSuffix(CLANG_LIBDIR_SUFFIX);
128  P = llvm::sys::path::parent_path(Dir);
129  llvm::sys::path::append(P, Twine("lib") + ClangLibdirSuffix, "clang",
130  CLANG_VERSION_STRING);
131  }
132  ResourceDir = P.str();
133 }
134 
135 void Driver::ParseDriverMode(StringRef ProgramName,
136  ArrayRef<const char *> Args) {
137  if (ClangNameParts.isEmpty())
139  setDriverModeFromOption(ClangNameParts.DriverMode);
140 
141  for (const char *ArgPtr : Args) {
142  // Ignore nullptrs, they are the response file's EOL markers.
143  if (ArgPtr == nullptr)
144  continue;
145  const StringRef Arg = ArgPtr;
146  setDriverModeFromOption(Arg);
147  }
148 }
149 
150 void Driver::setDriverModeFromOption(StringRef Opt) {
151  const std::string OptName =
152  getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
153  if (!Opt.startswith(OptName))
154  return;
155  StringRef Value = Opt.drop_front(OptName.size());
156 
157  if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
158  .Case("gcc", GCCMode)
159  .Case("g++", GXXMode)
160  .Case("cpp", CPPMode)
161  .Case("cl", CLMode)
162  .Default(None))
163  Mode = *M;
164  else
165  Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
166 }
167 
169  bool IsClCompatMode,
170  bool &ContainsError) {
171  llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
172  ContainsError = false;
173 
174  unsigned IncludedFlagsBitmask;
175  unsigned ExcludedFlagsBitmask;
176  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
177  getIncludeExcludeOptionFlagMasks(IsClCompatMode);
178 
179  unsigned MissingArgIndex, MissingArgCount;
180  InputArgList Args =
181  getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
182  IncludedFlagsBitmask, ExcludedFlagsBitmask);
183 
184  // Check for missing argument error.
185  if (MissingArgCount) {
186  Diag(diag::err_drv_missing_argument)
187  << Args.getArgString(MissingArgIndex) << MissingArgCount;
188  ContainsError |=
189  Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
191  }
192 
193  // Check for unsupported options.
194  for (const Arg *A : Args) {
195  if (A->getOption().hasFlag(options::Unsupported)) {
196  unsigned DiagID;
197  auto ArgString = A->getAsString(Args);
198  std::string Nearest;
199  if (getOpts().findNearest(
200  ArgString, Nearest, IncludedFlagsBitmask,
201  ExcludedFlagsBitmask | options::Unsupported) > 1) {
202  DiagID = diag::err_drv_unsupported_opt;
203  Diag(DiagID) << ArgString;
204  } else {
205  DiagID = diag::err_drv_unsupported_opt_with_suggestion;
206  Diag(DiagID) << ArgString << Nearest;
207  }
208  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
210  continue;
211  }
212 
213  // Warn about -mcpu= without an argument.
214  if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
215  Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
216  ContainsError |= Diags.getDiagnosticLevel(
217  diag::warn_drv_empty_joined_argument,
219  }
220  }
221 
222  for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
223  unsigned DiagID;
224  auto ArgString = A->getAsString(Args);
225  std::string Nearest;
226  if (getOpts().findNearest(
227  ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
228  DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
229  : diag::err_drv_unknown_argument;
230  Diags.Report(DiagID) << ArgString;
231  } else {
232  DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
233  : diag::err_drv_unknown_argument_with_suggestion;
234  Diags.Report(DiagID) << ArgString << Nearest;
235  }
236  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
238  }
239 
240  return Args;
241 }
242 
243 // Determine which compilation mode we are in. We look for options which
244 // affect the phase, starting with the earliest phases, and record which
245 // option we used to determine the final phase.
246 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
247  Arg **FinalPhaseArg) const {
248  Arg *PhaseArg = nullptr;
249  phases::ID FinalPhase;
250 
251  // -{E,EP,P,M,MM} only run the preprocessor.
252  if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
253  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
254  (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
255  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
256  FinalPhase = phases::Preprocess;
257 
258  // --precompile only runs up to precompilation.
259  } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
260  FinalPhase = phases::Precompile;
261 
262  // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
263  } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
264  (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
265  (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
266  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
267  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
268  (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
269  (PhaseArg = DAL.getLastArg(options::OPT__analyze,
270  options::OPT__analyze_auto)) ||
271  (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
272  FinalPhase = phases::Compile;
273 
274  // -S only runs up to the backend.
275  } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
276  FinalPhase = phases::Backend;
277 
278  // -c compilation only runs up to the assembler.
279  } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
280  FinalPhase = phases::Assemble;
281 
282  // Otherwise do everything.
283  } else
284  FinalPhase = phases::Link;
285 
286  if (FinalPhaseArg)
287  *FinalPhaseArg = PhaseArg;
288 
289  return FinalPhase;
290 }
291 
292 static Arg *MakeInputArg(DerivedArgList &Args, OptTable &Opts,
293  StringRef Value, bool Claim = true) {
294  Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
295  Args.getBaseArgs().MakeIndex(Value), Value.data());
296  Args.AddSynthesizedArg(A);
297  if (Claim)
298  A->claim();
299  return A;
300 }
301 
302 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
303  DerivedArgList *DAL = new DerivedArgList(Args);
304 
305  bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
306  bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
307  for (Arg *A : Args) {
308  // Unfortunately, we have to parse some forwarding options (-Xassembler,
309  // -Xlinker, -Xpreprocessor) because we either integrate their functionality
310  // (assembler and preprocessor), or bypass a previous driver ('collect2').
311 
312  // Rewrite linker options, to replace --no-demangle with a custom internal
313  // option.
314  if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
315  A->getOption().matches(options::OPT_Xlinker)) &&
316  A->containsValue("--no-demangle")) {
317  // Add the rewritten no-demangle argument.
318  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle));
319 
320  // Add the remaining values as Xlinker arguments.
321  for (StringRef Val : A->getValues())
322  if (Val != "--no-demangle")
323  DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker), Val);
324 
325  continue;
326  }
327 
328  // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
329  // some build systems. We don't try to be complete here because we don't
330  // care to encourage this usage model.
331  if (A->getOption().matches(options::OPT_Wp_COMMA) &&
332  (A->getValue(0) == StringRef("-MD") ||
333  A->getValue(0) == StringRef("-MMD"))) {
334  // Rewrite to -MD/-MMD along with -MF.
335  if (A->getValue(0) == StringRef("-MD"))
336  DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD));
337  else
338  DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD));
339  if (A->getNumValues() == 2)
340  DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF),
341  A->getValue(1));
342  continue;
343  }
344 
345  // Rewrite reserved library names.
346  if (A->getOption().matches(options::OPT_l)) {
347  StringRef Value = A->getValue();
348 
349  // Rewrite unless -nostdlib is present.
350  if (!HasNostdlib && !HasNodefaultlib && Value == "stdc++") {
351  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_stdcxx));
352  continue;
353  }
354 
355  // Rewrite unconditionally.
356  if (Value == "cc_kext") {
357  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_cckext));
358  continue;
359  }
360  }
361 
362  // Pick up inputs via the -- option.
363  if (A->getOption().matches(options::OPT__DASH_DASH)) {
364  A->claim();
365  for (StringRef Val : A->getValues())
366  DAL->append(MakeInputArg(*DAL, *Opts, Val, false));
367  continue;
368  }
369 
370  DAL->append(A);
371  }
372 
373  // Enforce -static if -miamcu is present.
374  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
375  DAL->AddFlagArg(0, Opts->getOption(options::OPT_static));
376 
377 // Add a default value of -mlinker-version=, if one was given and the user
378 // didn't specify one.
379 #if defined(HOST_LINK_VERSION)
380  if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
381  strlen(HOST_LINK_VERSION) > 0) {
382  DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ),
383  HOST_LINK_VERSION);
384  DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
385  }
386 #endif
387 
388  return DAL;
389 }
390 
391 /// Compute target triple from args.
392 ///
393 /// This routine provides the logic to compute a target triple from various
394 /// args passed to the driver and the default triple string.
395 static llvm::Triple computeTargetTriple(const Driver &D,
396  StringRef TargetTriple,
397  const ArgList &Args,
398  StringRef DarwinArchName = "") {
399  // FIXME: Already done in Compilation *Driver::BuildCompilation
400  if (const Arg *A = Args.getLastArg(options::OPT_target))
401  TargetTriple = A->getValue();
402 
403  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
404 
405  // Handle Apple-specific options available here.
406  if (Target.isOSBinFormatMachO()) {
407  // If an explicit Darwin arch name is given, that trumps all.
408  if (!DarwinArchName.empty()) {
409  tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
410  return Target;
411  }
412 
413  // Handle the Darwin '-arch' flag.
414  if (Arg *A = Args.getLastArg(options::OPT_arch)) {
415  StringRef ArchName = A->getValue();
417  }
418  }
419 
420  // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
421  // '-mbig-endian'/'-EB'.
422  if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
423  options::OPT_mbig_endian)) {
424  if (A->getOption().matches(options::OPT_mlittle_endian)) {
425  llvm::Triple LE = Target.getLittleEndianArchVariant();
426  if (LE.getArch() != llvm::Triple::UnknownArch)
427  Target = std::move(LE);
428  } else {
429  llvm::Triple BE = Target.getBigEndianArchVariant();
430  if (BE.getArch() != llvm::Triple::UnknownArch)
431  Target = std::move(BE);
432  }
433  }
434 
435  // Skip further flag support on OSes which don't support '-m32' or '-m64'.
436  if (Target.getArch() == llvm::Triple::tce ||
437  Target.getOS() == llvm::Triple::Minix)
438  return Target;
439 
440  // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
441  Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
442  options::OPT_m32, options::OPT_m16);
443  if (A) {
444  llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
445 
446  if (A->getOption().matches(options::OPT_m64)) {
447  AT = Target.get64BitArchVariant().getArch();
448  if (Target.getEnvironment() == llvm::Triple::GNUX32)
449  Target.setEnvironment(llvm::Triple::GNU);
450  } else if (A->getOption().matches(options::OPT_mx32) &&
451  Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
452  AT = llvm::Triple::x86_64;
453  Target.setEnvironment(llvm::Triple::GNUX32);
454  } else if (A->getOption().matches(options::OPT_m32)) {
455  AT = Target.get32BitArchVariant().getArch();
456  if (Target.getEnvironment() == llvm::Triple::GNUX32)
457  Target.setEnvironment(llvm::Triple::GNU);
458  } else if (A->getOption().matches(options::OPT_m16) &&
459  Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
460  AT = llvm::Triple::x86;
461  Target.setEnvironment(llvm::Triple::CODE16);
462  }
463 
464  if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
465  Target.setArch(AT);
466  }
467 
468  // Handle -miamcu flag.
469  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
470  if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
471  D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
472  << Target.str();
473 
474  if (A && !A->getOption().matches(options::OPT_m32))
475  D.Diag(diag::err_drv_argument_not_allowed_with)
476  << "-miamcu" << A->getBaseArg().getAsString(Args);
477 
478  Target.setArch(llvm::Triple::x86);
479  Target.setArchName("i586");
480  Target.setEnvironment(llvm::Triple::UnknownEnvironment);
481  Target.setEnvironmentName("");
482  Target.setOS(llvm::Triple::ELFIAMCU);
483  Target.setVendor(llvm::Triple::UnknownVendor);
484  Target.setVendorName("intel");
485  }
486 
487  // If target is MIPS adjust the target triple
488  // accordingly to provided ABI name.
489  A = Args.getLastArg(options::OPT_mabi_EQ);
490  if (A && Target.isMIPS()) {
491  StringRef ABIName = A->getValue();
492  if (ABIName == "32") {
493  Target = Target.get32BitArchVariant();
494  if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
495  Target.getEnvironment() == llvm::Triple::GNUABIN32)
496  Target.setEnvironment(llvm::Triple::GNU);
497  } else if (ABIName == "n32") {
498  Target = Target.get64BitArchVariant();
499  if (Target.getEnvironment() == llvm::Triple::GNU ||
500  Target.getEnvironment() == llvm::Triple::GNUABI64)
501  Target.setEnvironment(llvm::Triple::GNUABIN32);
502  } else if (ABIName == "64") {
503  Target = Target.get64BitArchVariant();
504  if (Target.getEnvironment() == llvm::Triple::GNU ||
505  Target.getEnvironment() == llvm::Triple::GNUABIN32)
506  Target.setEnvironment(llvm::Triple::GNUABI64);
507  }
508  }
509 
510  return Target;
511 }
512 
513 // Parse the LTO options and record the type of LTO compilation
514 // based on which -f(no-)?lto(=.*)? option occurs last.
515 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
516  LTOMode = LTOK_None;
517  if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
518  options::OPT_fno_lto, false))
519  return;
520 
521  StringRef LTOName("full");
522 
523  const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
524  if (A)
525  LTOName = A->getValue();
526 
527  LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
528  .Case("full", LTOK_Full)
529  .Case("thin", LTOK_Thin)
530  .Default(LTOK_Unknown);
531 
532  if (LTOMode == LTOK_Unknown) {
533  assert(A);
534  Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
535  << A->getValue();
536  }
537 }
538 
539 /// Compute the desired OpenMP runtime from the flags provided.
541  StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
542 
543  const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
544  if (A)
545  RuntimeName = A->getValue();
546 
547  auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
548  .Case("libomp", OMPRT_OMP)
549  .Case("libgomp", OMPRT_GOMP)
550  .Case("libiomp5", OMPRT_IOMP5)
551  .Default(OMPRT_Unknown);
552 
553  if (RT == OMPRT_Unknown) {
554  if (A)
555  Diag(diag::err_drv_unsupported_option_argument)
556  << A->getOption().getName() << A->getValue();
557  else
558  // FIXME: We could use a nicer diagnostic here.
559  Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
560  }
561 
562  return RT;
563 }
564 
566  InputList &Inputs) {
567 
568  //
569  // CUDA/HIP
570  //
571  // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
572  // or HIP type. However, mixed CUDA/HIP compilation is not supported.
573  bool IsCuda =
574  llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
575  return types::isCuda(I.first);
576  });
577  bool IsHIP =
578  llvm::any_of(Inputs,
579  [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
580  return types::isHIP(I.first);
581  }) ||
582  C.getInputArgs().hasArg(options::OPT_hip_link);
583  if (IsCuda && IsHIP) {
584  Diag(clang::diag::err_drv_mix_cuda_hip);
585  return;
586  }
587  if (IsCuda) {
589  const llvm::Triple &HostTriple = HostTC->getTriple();
590  StringRef DeviceTripleStr;
591  auto OFK = Action::OFK_Cuda;
592  DeviceTripleStr =
593  HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
594  llvm::Triple CudaTriple(DeviceTripleStr);
595  // Use the CUDA and host triples as the key into the ToolChains map,
596  // because the device toolchain we create depends on both.
597  auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
598  if (!CudaTC) {
599  CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
600  *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
601  }
602  C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
603  } else if (IsHIP) {
605  const llvm::Triple &HostTriple = HostTC->getTriple();
606  StringRef DeviceTripleStr;
607  auto OFK = Action::OFK_HIP;
608  DeviceTripleStr = "amdgcn-amd-amdhsa";
609  llvm::Triple HIPTriple(DeviceTripleStr);
610  // Use the HIP and host triples as the key into the ToolChains map,
611  // because the device toolchain we create depends on both.
612  auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
613  if (!HIPTC) {
614  HIPTC = llvm::make_unique<toolchains::HIPToolChain>(
615  *this, HIPTriple, *HostTC, C.getInputArgs());
616  }
617  C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
618  }
619 
620  //
621  // OpenMP
622  //
623  // We need to generate an OpenMP toolchain if the user specified targets with
624  // the -fopenmp-targets option.
625  if (Arg *OpenMPTargets =
626  C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
627  if (OpenMPTargets->getNumValues()) {
628  // We expect that -fopenmp-targets is always used in conjunction with the
629  // option -fopenmp specifying a valid runtime with offloading support,
630  // i.e. libomp or libiomp.
631  bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
632  options::OPT_fopenmp, options::OPT_fopenmp_EQ,
633  options::OPT_fno_openmp, false);
634  if (HasValidOpenMPRuntime) {
636  HasValidOpenMPRuntime =
637  OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
638  }
639 
640  if (HasValidOpenMPRuntime) {
641  llvm::StringMap<const char *> FoundNormalizedTriples;
642  for (const char *Val : OpenMPTargets->getValues()) {
643  llvm::Triple TT(Val);
644  std::string NormalizedName = TT.normalize();
645 
646  // Make sure we don't have a duplicate triple.
647  auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
648  if (Duplicate != FoundNormalizedTriples.end()) {
649  Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
650  << Val << Duplicate->second;
651  continue;
652  }
653 
654  // Store the current triple so that we can check for duplicates in the
655  // following iterations.
656  FoundNormalizedTriples[NormalizedName] = Val;
657 
658  // If the specified target is invalid, emit a diagnostic.
659  if (TT.getArch() == llvm::Triple::UnknownArch)
660  Diag(clang::diag::err_drv_invalid_omp_target) << Val;
661  else {
662  const ToolChain *TC;
663  // CUDA toolchains have to be selected differently. They pair host
664  // and device in their implementation.
665  if (TT.isNVPTX()) {
666  const ToolChain *HostTC =
668  assert(HostTC && "Host toolchain should be always defined.");
669  auto &CudaTC =
670  ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
671  if (!CudaTC)
672  CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
673  *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
674  TC = CudaTC.get();
675  } else
676  TC = &getToolChain(C.getInputArgs(), TT);
678  }
679  }
680  } else
681  Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
682  } else
683  Diag(clang::diag::warn_drv_empty_joined_argument)
684  << OpenMPTargets->getAsString(C.getInputArgs());
685  }
686 
687  //
688  // TODO: Add support for other offloading programming models here.
689  //
690 }
691 
692 /// Looks the given directories for the specified file.
693 ///
694 /// \param[out] FilePath File path, if the file was found.
695 /// \param[in] Dirs Directories used for the search.
696 /// \param[in] FileName Name of the file to search for.
697 /// \return True if file was found.
698 ///
699 /// Looks for file specified by FileName sequentially in directories specified
700 /// by Dirs.
701 ///
702 static bool searchForFile(SmallVectorImpl<char> &FilePath,
704  StringRef FileName) {
705  SmallString<128> WPath;
706  for (const StringRef &Dir : Dirs) {
707  if (Dir.empty())
708  continue;
709  WPath.clear();
710  llvm::sys::path::append(WPath, Dir, FileName);
711  llvm::sys::path::native(WPath);
712  if (llvm::sys::fs::is_regular_file(WPath)) {
713  FilePath = std::move(WPath);
714  return true;
715  }
716  }
717  return false;
718 }
719 
720 bool Driver::readConfigFile(StringRef FileName) {
721  // Try reading the given file.
723  if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
724  Diag(diag::err_drv_cannot_read_config_file) << FileName;
725  return true;
726  }
727 
728  // Read options from config file.
729  llvm::SmallString<128> CfgFileName(FileName);
730  llvm::sys::path::native(CfgFileName);
731  ConfigFile = CfgFileName.str();
732  bool ContainErrors;
733  CfgOptions = llvm::make_unique<InputArgList>(
734  ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
735  if (ContainErrors) {
736  CfgOptions.reset();
737  return true;
738  }
739 
740  if (CfgOptions->hasArg(options::OPT_config)) {
741  CfgOptions.reset();
742  Diag(diag::err_drv_nested_config_file);
743  return true;
744  }
745 
746  // Claim all arguments that come from a configuration file so that the driver
747  // does not warn on any that is unused.
748  for (Arg *A : *CfgOptions)
749  A->claim();
750  return false;
751 }
752 
753 bool Driver::loadConfigFile() {
754  std::string CfgFileName;
755  bool FileSpecifiedExplicitly = false;
756 
757  // Process options that change search path for config files.
758  if (CLOptions) {
759  if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
760  SmallString<128> CfgDir;
761  CfgDir.append(
762  CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
763  if (!CfgDir.empty()) {
764  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
765  SystemConfigDir.clear();
766  else
767  SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
768  }
769  }
770  if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
771  SmallString<128> CfgDir;
772  CfgDir.append(
773  CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
774  if (!CfgDir.empty()) {
775  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
776  UserConfigDir.clear();
777  else
778  UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
779  }
780  }
781  }
782 
783  // First try to find config file specified in command line.
784  if (CLOptions) {
785  std::vector<std::string> ConfigFiles =
786  CLOptions->getAllArgValues(options::OPT_config);
787  if (ConfigFiles.size() > 1) {
788  Diag(diag::err_drv_duplicate_config);
789  return true;
790  }
791 
792  if (!ConfigFiles.empty()) {
793  CfgFileName = ConfigFiles.front();
794  assert(!CfgFileName.empty());
795 
796  // If argument contains directory separator, treat it as a path to
797  // configuration file.
798  if (llvm::sys::path::has_parent_path(CfgFileName)) {
799  SmallString<128> CfgFilePath;
800  if (llvm::sys::path::is_relative(CfgFileName))
801  llvm::sys::fs::current_path(CfgFilePath);
802  llvm::sys::path::append(CfgFilePath, CfgFileName);
803  if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
804  Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
805  return true;
806  }
807  return readConfigFile(CfgFilePath);
808  }
809 
810  FileSpecifiedExplicitly = true;
811  }
812  }
813 
814  // If config file is not specified explicitly, try to deduce configuration
815  // from executable name. For instance, an executable 'armv7l-clang' will
816  // search for config file 'armv7l-clang.cfg'.
817  if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
819 
820  if (CfgFileName.empty())
821  return false;
822 
823  // Determine architecture part of the file name, if it is present.
824  StringRef CfgFileArch = CfgFileName;
825  size_t ArchPrefixLen = CfgFileArch.find('-');
826  if (ArchPrefixLen == StringRef::npos)
827  ArchPrefixLen = CfgFileArch.size();
828  llvm::Triple CfgTriple;
829  CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
830  CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
831  if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
832  ArchPrefixLen = 0;
833 
834  if (!StringRef(CfgFileName).endswith(".cfg"))
835  CfgFileName += ".cfg";
836 
837  // If config file starts with architecture name and command line options
838  // redefine architecture (with options like -m32 -LE etc), try finding new
839  // config file with that architecture.
840  SmallString<128> FixedConfigFile;
841  size_t FixedArchPrefixLen = 0;
842  if (ArchPrefixLen) {
843  // Get architecture name from config file name like 'i386.cfg' or
844  // 'armv7l-clang.cfg'.
845  // Check if command line options changes effective triple.
846  llvm::Triple EffectiveTriple = computeTargetTriple(*this,
847  CfgTriple.getTriple(), *CLOptions);
848  if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
849  FixedConfigFile = EffectiveTriple.getArchName();
850  FixedArchPrefixLen = FixedConfigFile.size();
851  // Append the rest of original file name so that file name transforms
852  // like: i386-clang.cfg -> x86_64-clang.cfg.
853  if (ArchPrefixLen < CfgFileName.size())
854  FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
855  }
856  }
857 
858  // Prepare list of directories where config file is searched for.
859  SmallVector<std::string, 3> CfgFileSearchDirs;
860  CfgFileSearchDirs.push_back(UserConfigDir);
861  CfgFileSearchDirs.push_back(SystemConfigDir);
862  CfgFileSearchDirs.push_back(Dir);
863 
864  // Try to find config file. First try file with corrected architecture.
865  llvm::SmallString<128> CfgFilePath;
866  if (!FixedConfigFile.empty()) {
867  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
868  return readConfigFile(CfgFilePath);
869  // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
870  FixedConfigFile.resize(FixedArchPrefixLen);
871  FixedConfigFile.append(".cfg");
872  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
873  return readConfigFile(CfgFilePath);
874  }
875 
876  // Then try original file name.
877  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
878  return readConfigFile(CfgFilePath);
879 
880  // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
881  if (!ClangNameParts.ModeSuffix.empty() &&
882  !ClangNameParts.TargetPrefix.empty()) {
883  CfgFileName.assign(ClangNameParts.TargetPrefix);
884  CfgFileName.append(".cfg");
885  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
886  return readConfigFile(CfgFilePath);
887  }
888 
889  // Report error but only if config file was specified explicitly, by option
890  // --config. If it was deduced from executable name, it is not an error.
891  if (FileSpecifiedExplicitly) {
892  Diag(diag::err_drv_config_file_not_found) << CfgFileName;
893  for (const std::string &SearchDir : CfgFileSearchDirs)
894  if (!SearchDir.empty())
895  Diag(diag::note_drv_config_file_searched_in) << SearchDir;
896  return true;
897  }
898 
899  return false;
900 }
901 
903  llvm::PrettyStackTraceString CrashInfo("Compilation construction");
904 
905  // FIXME: Handle environment options which affect driver behavior, somewhere
906  // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
907 
908  if (Optional<std::string> CompilerPathValue =
909  llvm::sys::Process::GetEnv("COMPILER_PATH")) {
910  StringRef CompilerPath = *CompilerPathValue;
911  while (!CompilerPath.empty()) {
912  std::pair<StringRef, StringRef> Split =
913  CompilerPath.split(llvm::sys::EnvPathSeparator);
914  PrefixDirs.push_back(Split.first);
915  CompilerPath = Split.second;
916  }
917  }
918 
919  // We look for the driver mode option early, because the mode can affect
920  // how other options are parsed.
921  ParseDriverMode(ClangExecutable, ArgList.slice(1));
922 
923  // FIXME: What are we going to do with -V and -b?
924 
925  // Arguments specified in command line.
926  bool ContainsError;
927  CLOptions = llvm::make_unique<InputArgList>(
928  ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
929 
930  // Try parsing configuration file.
931  if (!ContainsError)
932  ContainsError = loadConfigFile();
933  bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
934 
935  // All arguments, from both config file and command line.
936  InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
937  : std::move(*CLOptions));
938 
939  auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
940  unsigned Index = Args.MakeIndex(Opt->getSpelling());
941  Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(),
942  Index, BaseArg);
943  Copy->getValues() = Opt->getValues();
944  if (Opt->isClaimed())
945  Copy->claim();
946  Args.append(Copy);
947  };
948 
949  if (HasConfigFile)
950  for (auto *Opt : *CLOptions) {
951  if (Opt->getOption().matches(options::OPT_config))
952  continue;
953  const Arg *BaseArg = &Opt->getBaseArg();
954  if (BaseArg == Opt)
955  BaseArg = nullptr;
956  appendOneArg(Opt, BaseArg);
957  }
958 
959  // In CL mode, look for any pass-through arguments
960  if (IsCLMode() && !ContainsError) {
961  SmallVector<const char *, 16> CLModePassThroughArgList;
962  for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
963  A->claim();
964  CLModePassThroughArgList.push_back(A->getValue());
965  }
966 
967  if (!CLModePassThroughArgList.empty()) {
968  // Parse any pass through args using default clang processing rather
969  // than clang-cl processing.
970  auto CLModePassThroughOptions = llvm::make_unique<InputArgList>(
971  ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
972 
973  if (!ContainsError)
974  for (auto *Opt : *CLModePassThroughOptions) {
975  appendOneArg(Opt, nullptr);
976  }
977  }
978  }
979 
980  // FIXME: This stuff needs to go into the Compilation, not the driver.
981  bool CCCPrintPhases;
982 
983  // Silence driver warnings if requested
984  Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
985 
986  // -no-canonical-prefixes is used very early in main.
987  Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
988 
989  // Ignore -pipe.
990  Args.ClaimAllArgs(options::OPT_pipe);
991 
992  // Extract -ccc args.
993  //
994  // FIXME: We need to figure out where this behavior should live. Most of it
995  // should be outside in the client; the parts that aren't should have proper
996  // options, either by introducing new ones or by overloading gcc ones like -V
997  // or -b.
998  CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
999  CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1000  if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1001  CCCGenericGCCName = A->getValue();
1002  CCCUsePCH =
1003  Args.hasFlag(options::OPT_ccc_pch_is_pch, options::OPT_ccc_pch_is_pth);
1004  GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1005  options::OPT_fno_crash_diagnostics,
1006  !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1007  // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1008  // and getToolChain is const.
1009  if (IsCLMode()) {
1010  // clang-cl targets MSVC-style Win32.
1011  llvm::Triple T(TargetTriple);
1012  T.setOS(llvm::Triple::Win32);
1013  T.setVendor(llvm::Triple::PC);
1014  T.setEnvironment(llvm::Triple::MSVC);
1015  T.setObjectFormat(llvm::Triple::COFF);
1016  TargetTriple = T.str();
1017  }
1018  if (const Arg *A = Args.getLastArg(options::OPT_target))
1019  TargetTriple = A->getValue();
1020  if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1021  Dir = InstalledDir = A->getValue();
1022  for (const Arg *A : Args.filtered(options::OPT_B)) {
1023  A->claim();
1024  PrefixDirs.push_back(A->getValue(0));
1025  }
1026  if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1027  SysRoot = A->getValue();
1028  if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1029  DyldPrefix = A->getValue();
1030 
1031  if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1032  ResourceDir = A->getValue();
1033 
1034  if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1035  SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1036  .Case("cwd", SaveTempsCwd)
1037  .Case("obj", SaveTempsObj)
1038  .Default(SaveTempsCwd);
1039  }
1040 
1041  setLTOMode(Args);
1042 
1043  // Process -fembed-bitcode= flags.
1044  if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1045  StringRef Name = A->getValue();
1046  unsigned Model = llvm::StringSwitch<unsigned>(Name)
1047  .Case("off", EmbedNone)
1048  .Case("all", EmbedBitcode)
1049  .Case("bitcode", EmbedBitcode)
1050  .Case("marker", EmbedMarker)
1051  .Default(~0U);
1052  if (Model == ~0U) {
1053  Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1054  << Name;
1055  } else
1056  BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1057  }
1058 
1059  std::unique_ptr<llvm::opt::InputArgList> UArgs =
1060  llvm::make_unique<InputArgList>(std::move(Args));
1061 
1062  // Perform the default argument translations.
1063  DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1064 
1065  // Owned by the host.
1066  const ToolChain &TC = getToolChain(
1067  *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1068 
1069  // The compilation takes ownership of Args.
1070  Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1071  ContainsError);
1072 
1073  if (!HandleImmediateArgs(*C))
1074  return C;
1075 
1076  // Construct the list of inputs.
1077  InputList Inputs;
1078  BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1079 
1080  // Populate the tool chains for the offloading devices, if any.
1082 
1083  // Construct the list of abstract actions to perform for this compilation. On
1084  // MachO targets this uses the driver-driver and universal actions.
1085  if (TC.getTriple().isOSBinFormatMachO())
1086  BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1087  else
1088  BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1089 
1090  if (CCCPrintPhases) {
1091  PrintActions(*C);
1092  return C;
1093  }
1094 
1095  BuildJobs(*C);
1096 
1097  return C;
1098 }
1099 
1100 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1101  llvm::opt::ArgStringList ASL;
1102  for (const auto *A : Args)
1103  A->render(Args, ASL);
1104 
1105  for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1106  if (I != ASL.begin())
1107  OS << ' ';
1108  Command::printArg(OS, *I, true);
1109  }
1110  OS << '\n';
1111 }
1112 
1113 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1114  SmallString<128> &CrashDiagDir) {
1115  using namespace llvm::sys;
1116  assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1117  "Only knows about .crash files on Darwin");
1118 
1119  // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1120  // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1121  // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1122  path::home_directory(CrashDiagDir);
1123  if (CrashDiagDir.startswith("/var/root"))
1124  CrashDiagDir = "/";
1125  path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1126  int PID =
1127 #if LLVM_ON_UNIX
1128  getpid();
1129 #else
1130  0;
1131 #endif
1132  std::error_code EC;
1133  fs::file_status FileStatus;
1134  TimePoint<> LastAccessTime;
1135  SmallString<128> CrashFilePath;
1136  // Lookup the .crash files and get the one generated by a subprocess spawned
1137  // by this driver invocation.
1138  for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1139  File != FileEnd && !EC; File.increment(EC)) {
1140  StringRef FileName = path::filename(File->path());
1141  if (!FileName.startswith(Name))
1142  continue;
1143  if (fs::status(File->path(), FileStatus))
1144  continue;
1145  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1146  llvm::MemoryBuffer::getFile(File->path());
1147  if (!CrashFile)
1148  continue;
1149  // The first line should start with "Process:", otherwise this isn't a real
1150  // .crash file.
1151  StringRef Data = CrashFile.get()->getBuffer();
1152  if (!Data.startswith("Process:"))
1153  continue;
1154  // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1155  size_t ParentProcPos = Data.find("Parent Process:");
1156  if (ParentProcPos == StringRef::npos)
1157  continue;
1158  size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1159  if (LineEnd == StringRef::npos)
1160  continue;
1161  StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1162  int OpenBracket = -1, CloseBracket = -1;
1163  for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1164  if (ParentProcess[i] == '[')
1165  OpenBracket = i;
1166  if (ParentProcess[i] == ']')
1167  CloseBracket = i;
1168  }
1169  // Extract the parent process PID from the .crash file and check whether
1170  // it matches this driver invocation pid.
1171  int CrashPID;
1172  if (OpenBracket < 0 || CloseBracket < 0 ||
1173  ParentProcess.slice(OpenBracket + 1, CloseBracket)
1174  .getAsInteger(10, CrashPID) || CrashPID != PID) {
1175  continue;
1176  }
1177 
1178  // Found a .crash file matching the driver pid. To avoid getting an older
1179  // and misleading crash file, continue looking for the most recent.
1180  // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1181  // multiple crashes poiting to the same parent process. Since the driver
1182  // does not collect pid information for the dispatched invocation there's
1183  // currently no way to distinguish among them.
1184  const auto FileAccessTime = FileStatus.getLastModificationTime();
1185  if (FileAccessTime > LastAccessTime) {
1186  CrashFilePath.assign(File->path());
1187  LastAccessTime = FileAccessTime;
1188  }
1189  }
1190 
1191  // If found, copy it over to the location of other reproducer files.
1192  if (!CrashFilePath.empty()) {
1193  EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1194  if (EC)
1195  return false;
1196  return true;
1197  }
1198 
1199  return false;
1200 }
1201 
1202 // When clang crashes, produce diagnostic information including the fully
1203 // preprocessed source file(s). Request that the developer attach the
1204 // diagnostic information to a bug report.
1206  Compilation &C, const Command &FailingCommand,
1207  StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1208  if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1209  return;
1210 
1211  // Don't try to generate diagnostics for link or dsymutil jobs.
1212  if (FailingCommand.getCreator().isLinkJob() ||
1213  FailingCommand.getCreator().isDsymutilJob())
1214  return;
1215 
1216  // Print the version of the compiler.
1217  PrintVersion(C, llvm::errs());
1218 
1219  Diag(clang::diag::note_drv_command_failed_diag_msg)
1220  << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the "
1221  "crash backtrace, preprocessed source, and associated run script.";
1222 
1223  // Suppress driver output and emit preprocessor output to temp file.
1224  Mode = CPPMode;
1225  CCGenDiagnostics = true;
1226 
1227  // Save the original job command(s).
1228  Command Cmd = FailingCommand;
1229 
1230  // Keep track of whether we produce any errors while trying to produce
1231  // preprocessed sources.
1232  DiagnosticErrorTrap Trap(Diags);
1233 
1234  // Suppress tool output.
1236 
1237  // Construct the list of inputs.
1238  InputList Inputs;
1239  BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1240 
1241  for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1242  bool IgnoreInput = false;
1243 
1244  // Ignore input from stdin or any inputs that cannot be preprocessed.
1245  // Check type first as not all linker inputs have a value.
1246  if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1247  IgnoreInput = true;
1248  } else if (!strcmp(it->second->getValue(), "-")) {
1249  Diag(clang::diag::note_drv_command_failed_diag_msg)
1250  << "Error generating preprocessed source(s) - "
1251  "ignoring input from stdin.";
1252  IgnoreInput = true;
1253  }
1254 
1255  if (IgnoreInput) {
1256  it = Inputs.erase(it);
1257  ie = Inputs.end();
1258  } else {
1259  ++it;
1260  }
1261  }
1262 
1263  if (Inputs.empty()) {
1264  Diag(clang::diag::note_drv_command_failed_diag_msg)
1265  << "Error generating preprocessed source(s) - "
1266  "no preprocessable inputs.";
1267  return;
1268  }
1269 
1270  // Don't attempt to generate preprocessed files if multiple -arch options are
1271  // used, unless they're all duplicates.
1272  llvm::StringSet<> ArchNames;
1273  for (const Arg *A : C.getArgs()) {
1274  if (A->getOption().matches(options::OPT_arch)) {
1275  StringRef ArchName = A->getValue();
1276  ArchNames.insert(ArchName);
1277  }
1278  }
1279  if (ArchNames.size() > 1) {
1280  Diag(clang::diag::note_drv_command_failed_diag_msg)
1281  << "Error generating preprocessed source(s) - cannot generate "
1282  "preprocessed source with multiple -arch options.";
1283  return;
1284  }
1285 
1286  // Construct the list of abstract actions to perform for this compilation. On
1287  // Darwin OSes this uses the driver-driver and builds universal actions.
1288  const ToolChain &TC = C.getDefaultToolChain();
1289  if (TC.getTriple().isOSBinFormatMachO())
1290  BuildUniversalActions(C, TC, Inputs);
1291  else
1292  BuildActions(C, C.getArgs(), Inputs, C.getActions());
1293 
1294  BuildJobs(C);
1295 
1296  // If there were errors building the compilation, quit now.
1297  if (Trap.hasErrorOccurred()) {
1298  Diag(clang::diag::note_drv_command_failed_diag_msg)
1299  << "Error generating preprocessed source(s).";
1300  return;
1301  }
1302 
1303  // Generate preprocessed output.
1304  SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1305  C.ExecuteJobs(C.getJobs(), FailingCommands);
1306 
1307  // If any of the preprocessing commands failed, clean up and exit.
1308  if (!FailingCommands.empty()) {
1309  Diag(clang::diag::note_drv_command_failed_diag_msg)
1310  << "Error generating preprocessed source(s).";
1311  return;
1312  }
1313 
1314  const ArgStringList &TempFiles = C.getTempFiles();
1315  if (TempFiles.empty()) {
1316  Diag(clang::diag::note_drv_command_failed_diag_msg)
1317  << "Error generating preprocessed source(s).";
1318  return;
1319  }
1320 
1321  Diag(clang::diag::note_drv_command_failed_diag_msg)
1322  << "\n********************\n\n"
1323  "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1324  "Preprocessed source(s) and associated run script(s) are located at:";
1325 
1326  SmallString<128> VFS;
1327  SmallString<128> ReproCrashFilename;
1328  for (const char *TempFile : TempFiles) {
1329  Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1330  if (Report)
1331  Report->TemporaryFiles.push_back(TempFile);
1332  if (ReproCrashFilename.empty()) {
1333  ReproCrashFilename = TempFile;
1334  llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1335  }
1336  if (StringRef(TempFile).endswith(".cache")) {
1337  // In some cases (modules) we'll dump extra data to help with reproducing
1338  // the crash into a directory next to the output.
1339  VFS = llvm::sys::path::filename(TempFile);
1340  llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1341  }
1342  }
1343 
1344  // Assume associated files are based off of the first temporary file.
1345  CrashReportInfo CrashInfo(TempFiles[0], VFS);
1346 
1347  llvm::SmallString<128> Script(CrashInfo.Filename);
1348  llvm::sys::path::replace_extension(Script, "sh");
1349  std::error_code EC;
1350  llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew);
1351  if (EC) {
1352  Diag(clang::diag::note_drv_command_failed_diag_msg)
1353  << "Error generating run script: " << Script << " " << EC.message();
1354  } else {
1355  ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1356  << "# Driver args: ";
1357  printArgList(ScriptOS, C.getInputArgs());
1358  ScriptOS << "# Original command: ";
1359  Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1360  Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1361  if (!AdditionalInformation.empty())
1362  ScriptOS << "\n# Additional information: " << AdditionalInformation
1363  << "\n";
1364  if (Report)
1365  Report->TemporaryFiles.push_back(Script.str());
1366  Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1367  }
1368 
1369  // On darwin, provide information about the .crash diagnostic report.
1370  if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1371  SmallString<128> CrashDiagDir;
1372  if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1373  Diag(clang::diag::note_drv_command_failed_diag_msg)
1374  << ReproCrashFilename.str();
1375  } else { // Suggest a directory for the user to look for .crash files.
1376  llvm::sys::path::append(CrashDiagDir, Name);
1377  CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1378  Diag(clang::diag::note_drv_command_failed_diag_msg)
1379  << "Crash backtrace is located in";
1380  Diag(clang::diag::note_drv_command_failed_diag_msg)
1381  << CrashDiagDir.str();
1382  Diag(clang::diag::note_drv_command_failed_diag_msg)
1383  << "(choose the .crash file that corresponds to your crash)";
1384  }
1385  }
1386 
1387  for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
1388  options::OPT_frewrite_map_file_EQ))
1389  Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1390 
1391  Diag(clang::diag::note_drv_command_failed_diag_msg)
1392  << "\n\n********************";
1393 }
1394 
1395 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1396  // Since commandLineFitsWithinSystemLimits() may underestimate system's capacity
1397  // if the tool does not support response files, there is a chance/ that things
1398  // will just work without a response file, so we silently just skip it.
1400  llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), Cmd.getArguments()))
1401  return;
1402 
1403  std::string TmpName = GetTemporaryPath("response", "txt");
1404  Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1405 }
1406 
1408  Compilation &C,
1409  SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1410  // Just print if -### was present.
1411  if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1412  C.getJobs().Print(llvm::errs(), "\n", true);
1413  return 0;
1414  }
1415 
1416  // If there were errors building the compilation, quit now.
1417  if (Diags.hasErrorOccurred())
1418  return 1;
1419 
1420  // Set up response file names for each command, if necessary
1421  for (auto &Job : C.getJobs())
1422  setUpResponseFiles(C, Job);
1423 
1424  C.ExecuteJobs(C.getJobs(), FailingCommands);
1425 
1426  // If the command succeeded, we are done.
1427  if (FailingCommands.empty())
1428  return 0;
1429 
1430  // Otherwise, remove result files and print extra information about abnormal
1431  // failures.
1432  int Res = 0;
1433  for (const auto &CmdPair : FailingCommands) {
1434  int CommandRes = CmdPair.first;
1435  const Command *FailingCommand = CmdPair.second;
1436 
1437  // Remove result files if we're not saving temps.
1438  if (!isSaveTempsEnabled()) {
1439  const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1440  C.CleanupFileMap(C.getResultFiles(), JA, true);
1441 
1442  // Failure result files are valid unless we crashed.
1443  if (CommandRes < 0)
1444  C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1445  }
1446 
1447 #if LLVM_ON_UNIX
1448  // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1449  // for SIGPIPE. Do not print diagnostics for this case.
1450  if (CommandRes == EX_IOERR) {
1451  Res = CommandRes;
1452  continue;
1453  }
1454 #endif
1455 
1456  // Print extra information about abnormal failures, if possible.
1457  //
1458  // This is ad-hoc, but we don't want to be excessively noisy. If the result
1459  // status was 1, assume the command failed normally. In particular, if it
1460  // was the compiler then assume it gave a reasonable error code. Failures
1461  // in other tools are less common, and they generally have worse
1462  // diagnostics, so always print the diagnostic there.
1463  const Tool &FailingTool = FailingCommand->getCreator();
1464 
1465  if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1466  // FIXME: See FIXME above regarding result code interpretation.
1467  if (CommandRes < 0)
1468  Diag(clang::diag::err_drv_command_signalled)
1469  << FailingTool.getShortName();
1470  else
1471  Diag(clang::diag::err_drv_command_failed)
1472  << FailingTool.getShortName() << CommandRes;
1473  }
1474  }
1475  return Res;
1476 }
1477 
1478 void Driver::PrintHelp(bool ShowHidden) const {
1479  unsigned IncludedFlagsBitmask;
1480  unsigned ExcludedFlagsBitmask;
1481  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1482  getIncludeExcludeOptionFlagMasks(IsCLMode());
1483 
1484  ExcludedFlagsBitmask |= options::NoDriverOption;
1485  if (!ShowHidden)
1486  ExcludedFlagsBitmask |= HelpHidden;
1487 
1488  std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1489  getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1490  IncludedFlagsBitmask, ExcludedFlagsBitmask,
1491  /*ShowAllAliases=*/false);
1492 }
1493 
1494 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1495  // FIXME: The following handlers should use a callback mechanism, we don't
1496  // know what the client would like to do.
1497  OS << getClangFullVersion() << '\n';
1498  const ToolChain &TC = C.getDefaultToolChain();
1499  OS << "Target: " << TC.getTripleString() << '\n';
1500 
1501  // Print the threading model.
1502  if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1503  // Don't print if the ToolChain would have barfed on it already
1504  if (TC.isThreadModelSupported(A->getValue()))
1505  OS << "Thread model: " << A->getValue();
1506  } else
1507  OS << "Thread model: " << TC.getThreadModel();
1508  OS << '\n';
1509 
1510  // Print out the install directory.
1511  OS << "InstalledDir: " << InstalledDir << '\n';
1512 
1513  // If configuration file was used, print its path.
1514  if (!ConfigFile.empty())
1515  OS << "Configuration file: " << ConfigFile << '\n';
1516 }
1517 
1518 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1519 /// option.
1520 static void PrintDiagnosticCategories(raw_ostream &OS) {
1521  // Skip the empty category.
1522  for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1523  ++i)
1524  OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1525 }
1526 
1527 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1528  if (PassedFlags == "")
1529  return;
1530  // Print out all options that start with a given argument. This is used for
1531  // shell autocompletion.
1532  std::vector<std::string> SuggestedCompletions;
1533  std::vector<std::string> Flags;
1534 
1535  unsigned short DisableFlags =
1537 
1538  // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1539  // because the latter indicates that the user put space before pushing tab
1540  // which should end up in a file completion.
1541  const bool HasSpace = PassedFlags.endswith(",");
1542 
1543  // Parse PassedFlags by "," as all the command-line flags are passed to this
1544  // function separated by ","
1545  StringRef TargetFlags = PassedFlags;
1546  while (TargetFlags != "") {
1547  StringRef CurFlag;
1548  std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1549  Flags.push_back(std::string(CurFlag));
1550  }
1551 
1552  // We want to show cc1-only options only when clang is invoked with -cc1 or
1553  // -Xclang.
1554  if (std::find(Flags.begin(), Flags.end(), "-Xclang") != Flags.end() ||
1555  std::find(Flags.begin(), Flags.end(), "-cc1") != Flags.end())
1556  DisableFlags &= ~options::NoDriverOption;
1557 
1558  StringRef Cur;
1559  Cur = Flags.at(Flags.size() - 1);
1560  StringRef Prev;
1561  if (Flags.size() >= 2) {
1562  Prev = Flags.at(Flags.size() - 2);
1563  SuggestedCompletions = Opts->suggestValueCompletions(Prev, Cur);
1564  }
1565 
1566  if (SuggestedCompletions.empty())
1567  SuggestedCompletions = Opts->suggestValueCompletions(Cur, "");
1568 
1569  // If Flags were empty, it means the user typed `clang [tab]` where we should
1570  // list all possible flags. If there was no value completion and the user
1571  // pressed tab after a space, we should fall back to a file completion.
1572  // We're printing a newline to be consistent with what we print at the end of
1573  // this function.
1574  if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1575  llvm::outs() << '\n';
1576  return;
1577  }
1578 
1579  // When flag ends with '=' and there was no value completion, return empty
1580  // string and fall back to the file autocompletion.
1581  if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1582  // If the flag is in the form of "--autocomplete=-foo",
1583  // we were requested to print out all option names that start with "-foo".
1584  // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1585  SuggestedCompletions = Opts->findByPrefix(Cur, DisableFlags);
1586 
1587  // We have to query the -W flags manually as they're not in the OptTable.
1588  // TODO: Find a good way to add them to OptTable instead and them remove
1589  // this code.
1590  for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1591  if (S.startswith(Cur))
1592  SuggestedCompletions.push_back(S);
1593  }
1594 
1595  // Sort the autocomplete candidates so that shells print them out in a
1596  // deterministic order. We could sort in any way, but we chose
1597  // case-insensitive sorting for consistency with the -help option
1598  // which prints out options in the case-insensitive alphabetical order.
1599  llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1600  if (int X = A.compare_lower(B))
1601  return X < 0;
1602  return A.compare(B) > 0;
1603  });
1604 
1605  llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1606 }
1607 
1609  // The order these options are handled in gcc is all over the place, but we
1610  // don't expect inconsistencies w.r.t. that to matter in practice.
1611 
1612  if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1613  llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1614  return false;
1615  }
1616 
1617  if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1618  // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1619  // return an answer which matches our definition of __VERSION__.
1620  //
1621  // If we want to return a more correct answer some day, then we should
1622  // introduce a non-pedantically GCC compatible mode to Clang in which we
1623  // provide sensible definitions for -dumpversion, __VERSION__, etc.
1624  llvm::outs() << "4.2.1\n";
1625  return false;
1626  }
1627 
1628  if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1629  PrintDiagnosticCategories(llvm::outs());
1630  return false;
1631  }
1632 
1633  if (C.getArgs().hasArg(options::OPT_help) ||
1634  C.getArgs().hasArg(options::OPT__help_hidden)) {
1635  PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1636  return false;
1637  }
1638 
1639  if (C.getArgs().hasArg(options::OPT__version)) {
1640  // Follow gcc behavior and use stdout for --version and stderr for -v.
1641  PrintVersion(C, llvm::outs());
1642  return false;
1643  }
1644 
1645  if (C.getArgs().hasArg(options::OPT_v) ||
1646  C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1647  PrintVersion(C, llvm::errs());
1648  SuppressMissingInputWarning = true;
1649  }
1650 
1651  if (C.getArgs().hasArg(options::OPT_v)) {
1652  if (!SystemConfigDir.empty())
1653  llvm::errs() << "System configuration file directory: "
1654  << SystemConfigDir << "\n";
1655  if (!UserConfigDir.empty())
1656  llvm::errs() << "User configuration file directory: "
1657  << UserConfigDir << "\n";
1658  }
1659 
1660  const ToolChain &TC = C.getDefaultToolChain();
1661 
1662  if (C.getArgs().hasArg(options::OPT_v))
1663  TC.printVerboseInfo(llvm::errs());
1664 
1665  if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1666  llvm::outs() << ResourceDir << '\n';
1667  return false;
1668  }
1669 
1670  if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1671  llvm::outs() << "programs: =";
1672  bool separator = false;
1673  for (const std::string &Path : TC.getProgramPaths()) {
1674  if (separator)
1675  llvm::outs() << ':';
1676  llvm::outs() << Path;
1677  separator = true;
1678  }
1679  llvm::outs() << "\n";
1680  llvm::outs() << "libraries: =" << ResourceDir;
1681 
1682  StringRef sysroot = C.getSysRoot();
1683 
1684  for (const std::string &Path : TC.getFilePaths()) {
1685  // Always print a separator. ResourceDir was the first item shown.
1686  llvm::outs() << ':';
1687  // Interpretation of leading '=' is needed only for NetBSD.
1688  if (Path[0] == '=')
1689  llvm::outs() << sysroot << Path.substr(1);
1690  else
1691  llvm::outs() << Path;
1692  }
1693  llvm::outs() << "\n";
1694  return false;
1695  }
1696 
1697  // FIXME: The following handlers should use a callback mechanism, we don't
1698  // know what the client would like to do.
1699  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1700  llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1701  return false;
1702  }
1703 
1704  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1705  StringRef ProgName = A->getValue();
1706 
1707  // Null program name cannot have a path.
1708  if (! ProgName.empty())
1709  llvm::outs() << GetProgramPath(ProgName, TC);
1710 
1711  llvm::outs() << "\n";
1712  return false;
1713  }
1714 
1715  if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1716  StringRef PassedFlags = A->getValue();
1717  HandleAutocompletions(PassedFlags);
1718  return false;
1719  }
1720 
1721  if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1723  const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1724  RegisterEffectiveTriple TripleRAII(TC, Triple);
1725  switch (RLT) {
1727  llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1728  break;
1729  case ToolChain::RLT_Libgcc:
1730  llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1731  break;
1732  }
1733  return false;
1734  }
1735 
1736  if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1737  for (const Multilib &Multilib : TC.getMultilibs())
1738  llvm::outs() << Multilib << "\n";
1739  return false;
1740  }
1741 
1742  if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1743  const Multilib &Multilib = TC.getMultilib();
1744  if (Multilib.gccSuffix().empty())
1745  llvm::outs() << ".\n";
1746  else {
1747  StringRef Suffix(Multilib.gccSuffix());
1748  assert(Suffix.front() == '/');
1749  llvm::outs() << Suffix.substr(1) << "\n";
1750  }
1751  return false;
1752  }
1753 
1754  if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1755  llvm::outs() << TC.getTripleString() << "\n";
1756  return false;
1757  }
1758 
1759  if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1760  const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1761  llvm::outs() << Triple.getTriple() << "\n";
1762  return false;
1763  }
1764 
1765  return true;
1766 }
1767 
1768 // Display an action graph human-readably. Action A is the "sink" node
1769 // and latest-occuring action. Traversal is in pre-order, visiting the
1770 // inputs to each action before printing the action itself.
1771 static unsigned PrintActions1(const Compilation &C, Action *A,
1772  std::map<Action *, unsigned> &Ids) {
1773  if (Ids.count(A)) // A was already visited.
1774  return Ids[A];
1775 
1776  std::string str;
1777  llvm::raw_string_ostream os(str);
1778 
1779  os << Action::getClassName(A->getKind()) << ", ";
1780  if (InputAction *IA = dyn_cast<InputAction>(A)) {
1781  os << "\"" << IA->getInputArg().getValue() << "\"";
1782  } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1783  os << '"' << BIA->getArchName() << '"' << ", {"
1784  << PrintActions1(C, *BIA->input_begin(), Ids) << "}";
1785  } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1786  bool IsFirst = true;
1787  OA->doOnEachDependence(
1788  [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1789  // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1790  // sm_35 this will generate:
1791  // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1792  // (nvptx64-nvidia-cuda:sm_35) {#ID}
1793  if (!IsFirst)
1794  os << ", ";
1795  os << '"';
1796  if (TC)
1797  os << A->getOffloadingKindPrefix();
1798  else
1799  os << "host";
1800  os << " (";
1801  os << TC->getTriple().normalize();
1802 
1803  if (BoundArch)
1804  os << ":" << BoundArch;
1805  os << ")";
1806  os << '"';
1807  os << " {" << PrintActions1(C, A, Ids) << "}";
1808  IsFirst = false;
1809  });
1810  } else {
1811  const ActionList *AL = &A->getInputs();
1812 
1813  if (AL->size()) {
1814  const char *Prefix = "{";
1815  for (Action *PreRequisite : *AL) {
1816  os << Prefix << PrintActions1(C, PreRequisite, Ids);
1817  Prefix = ", ";
1818  }
1819  os << "}";
1820  } else
1821  os << "{}";
1822  }
1823 
1824  // Append offload info for all options other than the offloading action
1825  // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
1826  std::string offload_str;
1827  llvm::raw_string_ostream offload_os(offload_str);
1828  if (!isa<OffloadAction>(A)) {
1829  auto S = A->getOffloadingKindPrefix();
1830  if (!S.empty()) {
1831  offload_os << ", (" << S;
1832  if (A->getOffloadingArch())
1833  offload_os << ", " << A->getOffloadingArch();
1834  offload_os << ")";
1835  }
1836  }
1837 
1838  unsigned Id = Ids.size();
1839  Ids[A] = Id;
1840  llvm::errs() << Id << ": " << os.str() << ", "
1841  << types::getTypeName(A->getType()) << offload_os.str() << "\n";
1842 
1843  return Id;
1844 }
1845 
1846 // Print the action graphs in a compilation C.
1847 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
1848 void Driver::PrintActions(const Compilation &C) const {
1849  std::map<Action *, unsigned> Ids;
1850  for (Action *A : C.getActions())
1851  PrintActions1(C, A, Ids);
1852 }
1853 
1854 /// Check whether the given input tree contains any compilation or
1855 /// assembly actions.
1857  if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
1858  isa<AssembleJobAction>(A))
1859  return true;
1860 
1861  for (const Action *Input : A->inputs())
1863  return true;
1864 
1865  return false;
1866 }
1867 
1869  const InputList &BAInputs) const {
1870  DerivedArgList &Args = C.getArgs();
1871  ActionList &Actions = C.getActions();
1872  llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
1873  // Collect the list of architectures. Duplicates are allowed, but should only
1874  // be handled once (in the order seen).
1875  llvm::StringSet<> ArchNames;
1877  for (Arg *A : Args) {
1878  if (A->getOption().matches(options::OPT_arch)) {
1879  // Validate the option here; we don't save the type here because its
1880  // particular spelling may participate in other driver choices.
1881  llvm::Triple::ArchType Arch =
1883  if (Arch == llvm::Triple::UnknownArch) {
1884  Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
1885  continue;
1886  }
1887 
1888  A->claim();
1889  if (ArchNames.insert(A->getValue()).second)
1890  Archs.push_back(A->getValue());
1891  }
1892  }
1893 
1894  // When there is no explicit arch for this platform, make sure we still bind
1895  // the architecture (to the default) so that -Xarch_ is handled correctly.
1896  if (!Archs.size())
1897  Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
1898 
1899  ActionList SingleActions;
1900  BuildActions(C, Args, BAInputs, SingleActions);
1901 
1902  // Add in arch bindings for every top level action, as well as lipo and
1903  // dsymutil steps if needed.
1904  for (Action* Act : SingleActions) {
1905  // Make sure we can lipo this kind of output. If not (and it is an actual
1906  // output) then we disallow, since we can't create an output file with the
1907  // right name without overwriting it. We could remove this oddity by just
1908  // changing the output names to include the arch, which would also fix
1909  // -save-temps. Compatibility wins for now.
1910 
1911  if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
1912  Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
1913  << types::getTypeName(Act->getType());
1914 
1915  ActionList Inputs;
1916  for (unsigned i = 0, e = Archs.size(); i != e; ++i)
1917  Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
1918 
1919  // Lipo if necessary, we do it this way because we need to set the arch flag
1920  // so that -Xarch_ gets overwritten.
1921  if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
1922  Actions.append(Inputs.begin(), Inputs.end());
1923  else
1924  Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
1925 
1926  // Handle debug info queries.
1927  Arg *A = Args.getLastArg(options::OPT_g_Group);
1928  if (A && !A->getOption().matches(options::OPT_g0) &&
1929  !A->getOption().matches(options::OPT_gstabs) &&
1930  ContainsCompileOrAssembleAction(Actions.back())) {
1931 
1932  // Add a 'dsymutil' step if necessary, when debug info is enabled and we
1933  // have a compile input. We need to run 'dsymutil' ourselves in such cases
1934  // because the debug info will refer to a temporary object file which
1935  // will be removed at the end of the compilation process.
1936  if (Act->getType() == types::TY_Image) {
1937  ActionList Inputs;
1938  Inputs.push_back(Actions.back());
1939  Actions.pop_back();
1940  Actions.push_back(
1941  C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
1942  }
1943 
1944  // Verify the debug info output.
1945  if (Args.hasArg(options::OPT_verify_debug_info)) {
1946  Action* LastAction = Actions.back();
1947  Actions.pop_back();
1948  Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
1949  LastAction, types::TY_Nothing));
1950  }
1951  }
1952  }
1953 }
1954 
1955 /// Check that the file referenced by Value exists. If it doesn't,
1956 /// issue a diagnostic and return false.
1957 static bool DiagnoseInputExistence(const Driver &D, const DerivedArgList &Args,
1958  StringRef Value, types::ID Ty) {
1959  if (!D.getCheckInputsExist())
1960  return true;
1961 
1962  // stdin always exists.
1963  if (Value == "-")
1964  return true;
1965 
1966  SmallString<64> Path(Value);
1967  if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory)) {
1968  if (!llvm::sys::path::is_absolute(Path)) {
1969  SmallString<64> Directory(WorkDir->getValue());
1970  llvm::sys::path::append(Directory, Value);
1971  Path.assign(Directory);
1972  }
1973  }
1974 
1975  if (D.getVFS().exists(Path))
1976  return true;
1977 
1978  if (D.IsCLMode()) {
1979  if (!llvm::sys::path::is_absolute(Twine(Path)) &&
1980  llvm::sys::Process::FindInEnvPath("LIB", Value))
1981  return true;
1982 
1983  if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
1984  // Arguments to the /link flag might cause the linker to search for object
1985  // and library files in paths we don't know about. Don't error in such
1986  // cases.
1987  return true;
1988  }
1989  }
1990 
1991  D.Diag(clang::diag::err_drv_no_such_file) << Path;
1992  return false;
1993 }
1994 
1995 // Construct a the list of inputs and their types.
1996 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
1997  InputList &Inputs) const {
1998  // Track the current user specified (-x) input. We also explicitly track the
1999  // argument used to set the type; we only want to claim the type when we
2000  // actually use it, so we warn about unused -x arguments.
2001  types::ID InputType = types::TY_Nothing;
2002  Arg *InputTypeArg = nullptr;
2003 
2004  // The last /TC or /TP option sets the input type to C or C++ globally.
2005  if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2006  options::OPT__SLASH_TP)) {
2007  InputTypeArg = TCTP;
2008  InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2009  ? types::TY_C
2010  : types::TY_CXX;
2011 
2012  Arg *Previous = nullptr;
2013  bool ShowNote = false;
2014  for (Arg *A : Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2015  if (Previous) {
2016  Diag(clang::diag::warn_drv_overriding_flag_option)
2017  << Previous->getSpelling() << A->getSpelling();
2018  ShowNote = true;
2019  }
2020  Previous = A;
2021  }
2022  if (ShowNote)
2023  Diag(clang::diag::note_drv_t_option_is_global);
2024 
2025  // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2026  assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2027  }
2028 
2029  for (Arg *A : Args) {
2030  if (A->getOption().getKind() == Option::InputClass) {
2031  const char *Value = A->getValue();
2033 
2034  // Infer the input type if necessary.
2035  if (InputType == types::TY_Nothing) {
2036  // If there was an explicit arg for this, claim it.
2037  if (InputTypeArg)
2038  InputTypeArg->claim();
2039 
2040  // stdin must be handled specially.
2041  if (memcmp(Value, "-", 2) == 0) {
2042  // If running with -E, treat as a C input (this changes the builtin
2043  // macros, for example). This may be overridden by -ObjC below.
2044  //
2045  // Otherwise emit an error but still use a valid type to avoid
2046  // spurious errors (e.g., no inputs).
2047  if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2048  Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2049  : clang::diag::err_drv_unknown_stdin_type);
2050  Ty = types::TY_C;
2051  } else {
2052  // Otherwise lookup by extension.
2053  // Fallback is C if invoked as C preprocessor or Object otherwise.
2054  // We use a host hook here because Darwin at least has its own
2055  // idea of what .s is.
2056  if (const char *Ext = strrchr(Value, '.'))
2057  Ty = TC.LookupTypeForExtension(Ext + 1);
2058 
2059  if (Ty == types::TY_INVALID) {
2060  if (CCCIsCPP())
2061  Ty = types::TY_C;
2062  else
2063  Ty = types::TY_Object;
2064  }
2065 
2066  // If the driver is invoked as C++ compiler (like clang++ or c++) it
2067  // should autodetect some input files as C++ for g++ compatibility.
2068  if (CCCIsCXX()) {
2069  types::ID OldTy = Ty;
2071 
2072  if (Ty != OldTy)
2073  Diag(clang::diag::warn_drv_treating_input_as_cxx)
2074  << getTypeName(OldTy) << getTypeName(Ty);
2075  }
2076  }
2077 
2078  // -ObjC and -ObjC++ override the default language, but only for "source
2079  // files". We just treat everything that isn't a linker input as a
2080  // source file.
2081  //
2082  // FIXME: Clean this up if we move the phase sequence into the type.
2083  if (Ty != types::TY_Object) {
2084  if (Args.hasArg(options::OPT_ObjC))
2085  Ty = types::TY_ObjC;
2086  else if (Args.hasArg(options::OPT_ObjCXX))
2087  Ty = types::TY_ObjCXX;
2088  }
2089  } else {
2090  assert(InputTypeArg && "InputType set w/o InputTypeArg");
2091  if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2092  // If emulating cl.exe, make sure that /TC and /TP don't affect input
2093  // object files.
2094  const char *Ext = strrchr(Value, '.');
2095  if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2096  Ty = types::TY_Object;
2097  }
2098  if (Ty == types::TY_INVALID) {
2099  Ty = InputType;
2100  InputTypeArg->claim();
2101  }
2102  }
2103 
2104  if (DiagnoseInputExistence(*this, Args, Value, Ty))
2105  Inputs.push_back(std::make_pair(Ty, A));
2106 
2107  } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2108  StringRef Value = A->getValue();
2109  if (DiagnoseInputExistence(*this, Args, Value, types::TY_C)) {
2110  Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2111  Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2112  }
2113  A->claim();
2114  } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2115  StringRef Value = A->getValue();
2116  if (DiagnoseInputExistence(*this, Args, Value, types::TY_CXX)) {
2117  Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2118  Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2119  }
2120  A->claim();
2121  } else if (A->getOption().hasFlag(options::LinkerInput)) {
2122  // Just treat as object type, we could make a special type for this if
2123  // necessary.
2124  Inputs.push_back(std::make_pair(types::TY_Object, A));
2125 
2126  } else if (A->getOption().matches(options::OPT_x)) {
2127  InputTypeArg = A;
2128  InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2129  A->claim();
2130 
2131  // Follow gcc behavior and treat as linker input for invalid -x
2132  // options. Its not clear why we shouldn't just revert to unknown; but
2133  // this isn't very important, we might as well be bug compatible.
2134  if (!InputType) {
2135  Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2136  InputType = types::TY_Object;
2137  }
2138  } else if (A->getOption().getID() == options::OPT__SLASH_U) {
2139  assert(A->getNumValues() == 1 && "The /U option has one value.");
2140  StringRef Val = A->getValue(0);
2141  if (Val.find_first_of("/\\") != StringRef::npos) {
2142  // Warn about e.g. "/Users/me/myfile.c".
2143  Diag(diag::warn_slash_u_filename) << Val;
2144  Diag(diag::note_use_dashdash);
2145  }
2146  }
2147  }
2148  if (CCCIsCPP() && Inputs.empty()) {
2149  // If called as standalone preprocessor, stdin is processed
2150  // if no other input is present.
2151  Arg *A = MakeInputArg(Args, *Opts, "-");
2152  Inputs.push_back(std::make_pair(types::TY_C, A));
2153  }
2154 }
2155 
2156 namespace {
2157 /// Provides a convenient interface for different programming models to generate
2158 /// the required device actions.
2159 class OffloadingActionBuilder final {
2160  /// Flag used to trace errors in the builder.
2161  bool IsValid = false;
2162 
2163  /// The compilation that is using this builder.
2164  Compilation &C;
2165 
2166  /// Map between an input argument and the offload kinds used to process it.
2167  std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2168 
2169  /// Builder interface. It doesn't build anything or keep any state.
2170  class DeviceActionBuilder {
2171  public:
2173 
2174  enum ActionBuilderReturnCode {
2175  // The builder acted successfully on the current action.
2176  ABRT_Success,
2177  // The builder didn't have to act on the current action.
2178  ABRT_Inactive,
2179  // The builder was successful and requested the host action to not be
2180  // generated.
2181  ABRT_Ignore_Host,
2182  };
2183 
2184  protected:
2185  /// Compilation associated with this builder.
2186  Compilation &C;
2187 
2188  /// Tool chains associated with this builder. The same programming
2189  /// model may have associated one or more tool chains.
2191 
2192  /// The derived arguments associated with this builder.
2193  DerivedArgList &Args;
2194 
2195  /// The inputs associated with this builder.
2196  const Driver::InputList &Inputs;
2197 
2198  /// The associated offload kind.
2199  Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2200 
2201  public:
2202  DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2203  const Driver::InputList &Inputs,
2204  Action::OffloadKind AssociatedOffloadKind)
2205  : C(C), Args(Args), Inputs(Inputs),
2206  AssociatedOffloadKind(AssociatedOffloadKind) {}
2207  virtual ~DeviceActionBuilder() {}
2208 
2209  /// Fill up the array \a DA with all the device dependences that should be
2210  /// added to the provided host action \a HostAction. By default it is
2211  /// inactive.
2212  virtual ActionBuilderReturnCode
2213  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2214  phases::ID CurPhase, phases::ID FinalPhase,
2215  PhasesTy &Phases) {
2216  return ABRT_Inactive;
2217  }
2218 
2219  /// Update the state to include the provided host action \a HostAction as a
2220  /// dependency of the current device action. By default it is inactive.
2221  virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2222  return ABRT_Inactive;
2223  }
2224 
2225  /// Append top level actions generated by the builder. Return true if errors
2226  /// were found.
2227  virtual void appendTopLevelActions(ActionList &AL) {}
2228 
2229  /// Append linker actions generated by the builder. Return true if errors
2230  /// were found.
2231  virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2232 
2233  /// Initialize the builder. Return true if any initialization errors are
2234  /// found.
2235  virtual bool initialize() { return false; }
2236 
2237  /// Return true if the builder can use bundling/unbundling.
2238  virtual bool canUseBundlerUnbundler() const { return false; }
2239 
2240  /// Return true if this builder is valid. We have a valid builder if we have
2241  /// associated device tool chains.
2242  bool isValid() { return !ToolChains.empty(); }
2243 
2244  /// Return the associated offload kind.
2245  Action::OffloadKind getAssociatedOffloadKind() {
2246  return AssociatedOffloadKind;
2247  }
2248  };
2249 
2250  /// Base class for CUDA/HIP action builder. It injects device code in
2251  /// the host backend action.
2252  class CudaActionBuilderBase : public DeviceActionBuilder {
2253  protected:
2254  /// Flags to signal if the user requested host-only or device-only
2255  /// compilation.
2256  bool CompileHostOnly = false;
2257  bool CompileDeviceOnly = false;
2258 
2259  /// List of GPU architectures to use in this compilation.
2260  SmallVector<CudaArch, 4> GpuArchList;
2261 
2262  /// The CUDA actions for the current input.
2263  ActionList CudaDeviceActions;
2264 
2265  /// The CUDA fat binary if it was generated for the current input.
2266  Action *CudaFatBinary = nullptr;
2267 
2268  /// Flag that is set to true if this builder acted on the current input.
2269  bool IsActive = false;
2270  public:
2271  CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2272  const Driver::InputList &Inputs,
2273  Action::OffloadKind OFKind)
2274  : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2275 
2276  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2277  // While generating code for CUDA, we only depend on the host input action
2278  // to trigger the creation of all the CUDA device actions.
2279 
2280  // If we are dealing with an input action, replicate it for each GPU
2281  // architecture. If we are in host-only mode we return 'success' so that
2282  // the host uses the CUDA offload kind.
2283  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2284  assert(!GpuArchList.empty() &&
2285  "We should have at least one GPU architecture.");
2286 
2287  // If the host input is not CUDA or HIP, we don't need to bother about
2288  // this input.
2289  if (IA->getType() != types::TY_CUDA &&
2290  IA->getType() != types::TY_HIP) {
2291  // The builder will ignore this input.
2292  IsActive = false;
2293  return ABRT_Inactive;
2294  }
2295 
2296  // Set the flag to true, so that the builder acts on the current input.
2297  IsActive = true;
2298 
2299  if (CompileHostOnly)
2300  return ABRT_Success;
2301 
2302  // Replicate inputs for each GPU architecture.
2303  auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2304  : types::TY_CUDA_DEVICE;
2305  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2306  CudaDeviceActions.push_back(
2307  C.MakeAction<InputAction>(IA->getInputArg(), Ty));
2308  }
2309 
2310  return ABRT_Success;
2311  }
2312 
2313  // If this is an unbundling action use it as is for each CUDA toolchain.
2314  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2315  CudaDeviceActions.clear();
2316  for (auto Arch : GpuArchList) {
2317  CudaDeviceActions.push_back(UA);
2318  UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch),
2319  AssociatedOffloadKind);
2320  }
2321  return ABRT_Success;
2322  }
2323 
2324  return IsActive ? ABRT_Success : ABRT_Inactive;
2325  }
2326 
2327  void appendTopLevelActions(ActionList &AL) override {
2328  // Utility to append actions to the top level list.
2329  auto AddTopLevel = [&](Action *A, CudaArch BoundArch) {
2331  Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch),
2332  AssociatedOffloadKind);
2333  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2334  };
2335 
2336  // If we have a fat binary, add it to the list.
2337  if (CudaFatBinary) {
2338  AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN);
2339  CudaDeviceActions.clear();
2340  CudaFatBinary = nullptr;
2341  return;
2342  }
2343 
2344  if (CudaDeviceActions.empty())
2345  return;
2346 
2347  // If we have CUDA actions at this point, that's because we have a have
2348  // partial compilation, so we should have an action for each GPU
2349  // architecture.
2350  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2351  "Expecting one action per GPU architecture.");
2352  assert(ToolChains.size() == 1 &&
2353  "Expecting to have a sing CUDA toolchain.");
2354  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2355  AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2356 
2357  CudaDeviceActions.clear();
2358  }
2359 
2360  bool initialize() override {
2361  assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2362  AssociatedOffloadKind == Action::OFK_HIP);
2363 
2364  // We don't need to support CUDA.
2365  if (AssociatedOffloadKind == Action::OFK_Cuda &&
2367  return false;
2368 
2369  // We don't need to support HIP.
2370  if (AssociatedOffloadKind == Action::OFK_HIP &&
2372  return false;
2373 
2375  assert(HostTC && "No toolchain for host compilation.");
2376  if (HostTC->getTriple().isNVPTX() ||
2377  HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2378  // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2379  // an error and abort pipeline construction early so we don't trip
2380  // asserts that assume device-side compilation.
2381  C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2382  << HostTC->getTriple().getArchName();
2383  return true;
2384  }
2385 
2386  ToolChains.push_back(
2387  AssociatedOffloadKind == Action::OFK_Cuda
2390 
2391  Arg *PartialCompilationArg = Args.getLastArg(
2392  options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2393  options::OPT_cuda_compile_host_device);
2394  CompileHostOnly = PartialCompilationArg &&
2395  PartialCompilationArg->getOption().matches(
2396  options::OPT_cuda_host_only);
2397  CompileDeviceOnly = PartialCompilationArg &&
2398  PartialCompilationArg->getOption().matches(
2399  options::OPT_cuda_device_only);
2400 
2401  // Collect all cuda_gpu_arch parameters, removing duplicates.
2402  std::set<CudaArch> GpuArchs;
2403  bool Error = false;
2404  for (Arg *A : Args) {
2405  if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) ||
2406  A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)))
2407  continue;
2408  A->claim();
2409 
2410  const StringRef ArchStr = A->getValue();
2411  if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) &&
2412  ArchStr == "all") {
2413  GpuArchs.clear();
2414  continue;
2415  }
2416  CudaArch Arch = StringToCudaArch(ArchStr);
2417  if (Arch == CudaArch::UNKNOWN) {
2418  C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2419  Error = true;
2420  } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ))
2421  GpuArchs.insert(Arch);
2422  else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))
2423  GpuArchs.erase(Arch);
2424  else
2425  llvm_unreachable("Unexpected option.");
2426  }
2427 
2428  // Collect list of GPUs remaining in the set.
2429  for (CudaArch Arch : GpuArchs)
2430  GpuArchList.push_back(Arch);
2431 
2432  // Default to sm_20 which is the lowest common denominator for
2433  // supported GPUs. sm_20 code should work correctly, if
2434  // suboptimally, on all newer GPUs.
2435  if (GpuArchList.empty())
2436  GpuArchList.push_back(CudaArch::SM_20);
2437 
2438  return Error;
2439  }
2440  };
2441 
2442  /// \brief CUDA action builder. It injects device code in the host backend
2443  /// action.
2444  class CudaActionBuilder final : public CudaActionBuilderBase {
2445  public:
2446  CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2447  const Driver::InputList &Inputs)
2448  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {}
2449 
2450  ActionBuilderReturnCode
2451  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2452  phases::ID CurPhase, phases::ID FinalPhase,
2453  PhasesTy &Phases) override {
2454  if (!IsActive)
2455  return ABRT_Inactive;
2456 
2457  // If we don't have more CUDA actions, we don't have any dependences to
2458  // create for the host.
2459  if (CudaDeviceActions.empty())
2460  return ABRT_Success;
2461 
2462  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2463  "Expecting one action per GPU architecture.");
2464  assert(!CompileHostOnly &&
2465  "Not expecting CUDA actions in host-only compilation.");
2466 
2467  // If we are generating code for the device or we are in a backend phase,
2468  // we attempt to generate the fat binary. We compile each arch to ptx and
2469  // assemble to cubin, then feed the cubin *and* the ptx into a device
2470  // "link" action, which uses fatbinary to combine these cubins into one
2471  // fatbin. The fatbin is then an input to the host action if not in
2472  // device-only mode.
2473  if (CompileDeviceOnly || CurPhase == phases::Backend) {
2474  ActionList DeviceActions;
2475  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2476  // Produce the device action from the current phase up to the assemble
2477  // phase.
2478  for (auto Ph : Phases) {
2479  // Skip the phases that were already dealt with.
2480  if (Ph < CurPhase)
2481  continue;
2482  // We have to be consistent with the host final phase.
2483  if (Ph > FinalPhase)
2484  break;
2485 
2486  CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2487  C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2488 
2489  if (Ph == phases::Assemble)
2490  break;
2491  }
2492 
2493  // If we didn't reach the assemble phase, we can't generate the fat
2494  // binary. We don't need to generate the fat binary if we are not in
2495  // device-only mode.
2496  if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2497  CompileDeviceOnly)
2498  continue;
2499 
2500  Action *AssembleAction = CudaDeviceActions[I];
2501  assert(AssembleAction->getType() == types::TY_Object);
2502  assert(AssembleAction->getInputs().size() == 1);
2503 
2504  Action *BackendAction = AssembleAction->getInputs()[0];
2505  assert(BackendAction->getType() == types::TY_PP_Asm);
2506 
2507  for (auto &A : {AssembleAction, BackendAction}) {
2509  DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]),
2511  DeviceActions.push_back(
2512  C.MakeAction<OffloadAction>(DDep, A->getType()));
2513  }
2514  }
2515 
2516  // We generate the fat binary if we have device input actions.
2517  if (!DeviceActions.empty()) {
2518  CudaFatBinary =
2519  C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2520 
2521  if (!CompileDeviceOnly) {
2522  DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2524  // Clear the fat binary, it is already a dependence to an host
2525  // action.
2526  CudaFatBinary = nullptr;
2527  }
2528 
2529  // Remove the CUDA actions as they are already connected to an host
2530  // action or fat binary.
2531  CudaDeviceActions.clear();
2532  }
2533 
2534  // We avoid creating host action in device-only mode.
2535  return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2536  } else if (CurPhase > phases::Backend) {
2537  // If we are past the backend phase and still have a device action, we
2538  // don't have to do anything as this action is already a device
2539  // top-level action.
2540  return ABRT_Success;
2541  }
2542 
2543  assert(CurPhase < phases::Backend && "Generating single CUDA "
2544  "instructions should only occur "
2545  "before the backend phase!");
2546 
2547  // By default, we produce an action for each device arch.
2548  for (Action *&A : CudaDeviceActions)
2549  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2550 
2551  return ABRT_Success;
2552  }
2553  };
2554  /// \brief HIP action builder. It injects device code in the host backend
2555  /// action.
2556  class HIPActionBuilder final : public CudaActionBuilderBase {
2557  /// The linker inputs obtained for each device arch.
2558  SmallVector<ActionList, 8> DeviceLinkerInputs;
2559  bool Relocatable;
2560 
2561  public:
2562  HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2563  const Driver::InputList &Inputs)
2564  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP),
2565  Relocatable(false) {}
2566 
2567  bool canUseBundlerUnbundler() const override { return true; }
2568 
2569  ActionBuilderReturnCode
2570  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2571  phases::ID CurPhase, phases::ID FinalPhase,
2572  PhasesTy &Phases) override {
2573  // amdgcn does not support linking of object files, therefore we skip
2574  // backend and assemble phases to output LLVM IR. Except for generating
2575  // non-relocatable device coee, where we generate fat binary for device
2576  // code and pass to host in Backend phase.
2577  if (CudaDeviceActions.empty() ||
2578  (CurPhase == phases::Backend && Relocatable) ||
2579  CurPhase == phases::Assemble)
2580  return ABRT_Success;
2581 
2582  assert(((CurPhase == phases::Link && Relocatable) ||
2583  CudaDeviceActions.size() == GpuArchList.size()) &&
2584  "Expecting one action per GPU architecture.");
2585  assert(!CompileHostOnly &&
2586  "Not expecting CUDA actions in host-only compilation.");
2587 
2588  if (!Relocatable && CurPhase == phases::Backend) {
2589  // If we are in backend phase, we attempt to generate the fat binary.
2590  // We compile each arch to IR and use a link action to generate code
2591  // object containing ISA. Then we use a special "link" action to create
2592  // a fat binary containing all the code objects for different GPU's.
2593  // The fat binary is then an input to the host action.
2594  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2595  // Create a link action to link device IR with device library
2596  // and generate ISA.
2597  ActionList AL;
2598  AL.push_back(CudaDeviceActions[I]);
2599  CudaDeviceActions[I] =
2600  C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2601 
2602  // OffloadingActionBuilder propagates device arch until an offload
2603  // action. Since the next action for creating fatbin does
2604  // not have device arch, whereas the above link action and its input
2605  // have device arch, an offload action is needed to stop the null
2606  // device arch of the next action being propagated to the above link
2607  // action.
2609  DDep.add(*CudaDeviceActions[I], *ToolChains.front(),
2610  CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2611  CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
2612  DDep, CudaDeviceActions[I]->getType());
2613  }
2614  // Create HIP fat binary with a special "link" action.
2615  CudaFatBinary =
2616  C.MakeAction<LinkJobAction>(CudaDeviceActions,
2617  types::TY_HIP_FATBIN);
2618 
2619  if (!CompileDeviceOnly) {
2620  DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2621  AssociatedOffloadKind);
2622  // Clear the fat binary, it is already a dependence to an host
2623  // action.
2624  CudaFatBinary = nullptr;
2625  }
2626 
2627  // Remove the CUDA actions as they are already connected to an host
2628  // action or fat binary.
2629  CudaDeviceActions.clear();
2630 
2631  return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2632  } else if (CurPhase == phases::Link) {
2633  // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
2634  // This happens to each device action originated from each input file.
2635  // Later on, device actions in DeviceLinkerInputs are used to create
2636  // device link actions in appendLinkDependences and the created device
2637  // link actions are passed to the offload action as device dependence.
2638  DeviceLinkerInputs.resize(CudaDeviceActions.size());
2639  auto LI = DeviceLinkerInputs.begin();
2640  for (auto *A : CudaDeviceActions) {
2641  LI->push_back(A);
2642  ++LI;
2643  }
2644 
2645  // We will pass the device action as a host dependence, so we don't
2646  // need to do anything else with them.
2647  CudaDeviceActions.clear();
2648  return ABRT_Success;
2649  }
2650 
2651  // By default, we produce an action for each device arch.
2652  for (Action *&A : CudaDeviceActions)
2653  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
2654  AssociatedOffloadKind);
2655 
2656  return ABRT_Success;
2657  }
2658 
2659  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2660  // Append a new link action for each device.
2661  unsigned I = 0;
2662  for (auto &LI : DeviceLinkerInputs) {
2663  auto *DeviceLinkAction =
2664  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2665  DA.add(*DeviceLinkAction, *ToolChains[0],
2666  CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2667  ++I;
2668  }
2669  }
2670 
2671  bool initialize() override {
2672  Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2673  options::OPT_fno_gpu_rdc, /*Default=*/false);
2674 
2676  }
2677  };
2678 
2679  /// OpenMP action builder. The host bitcode is passed to the device frontend
2680  /// and all the device linked images are passed to the host link phase.
2681  class OpenMPActionBuilder final : public DeviceActionBuilder {
2682  /// The OpenMP actions for the current input.
2683  ActionList OpenMPDeviceActions;
2684 
2685  /// The linker inputs obtained for each toolchain.
2686  SmallVector<ActionList, 8> DeviceLinkerInputs;
2687 
2688  public:
2689  OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
2690  const Driver::InputList &Inputs)
2691  : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
2692 
2693  ActionBuilderReturnCode
2694  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2695  phases::ID CurPhase, phases::ID FinalPhase,
2696  PhasesTy &Phases) override {
2697  if (OpenMPDeviceActions.empty())
2698  return ABRT_Inactive;
2699 
2700  // We should always have an action for each input.
2701  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2702  "Number of OpenMP actions and toolchains do not match.");
2703 
2704  // The host only depends on device action in the linking phase, when all
2705  // the device images have to be embedded in the host image.
2706  if (CurPhase == phases::Link) {
2707  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2708  "Toolchains and linker inputs sizes do not match.");
2709  auto LI = DeviceLinkerInputs.begin();
2710  for (auto *A : OpenMPDeviceActions) {
2711  LI->push_back(A);
2712  ++LI;
2713  }
2714 
2715  // We passed the device action as a host dependence, so we don't need to
2716  // do anything else with them.
2717  OpenMPDeviceActions.clear();
2718  return ABRT_Success;
2719  }
2720 
2721  // By default, we produce an action for each device arch.
2722  for (Action *&A : OpenMPDeviceActions)
2723  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2724 
2725  return ABRT_Success;
2726  }
2727 
2728  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2729 
2730  // If this is an input action replicate it for each OpenMP toolchain.
2731  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2732  OpenMPDeviceActions.clear();
2733  for (unsigned I = 0; I < ToolChains.size(); ++I)
2734  OpenMPDeviceActions.push_back(
2735  C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
2736  return ABRT_Success;
2737  }
2738 
2739  // If this is an unbundling action use it as is for each OpenMP toolchain.
2740  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2741  OpenMPDeviceActions.clear();
2742  auto *IA = cast<InputAction>(UA->getInputs().back());
2743  std::string FileName = IA->getInputArg().getAsString(Args);
2744  // Check if the type of the file is the same as the action. Do not
2745  // unbundle it if it is not. Do not unbundle .so files, for example,
2746  // which are not object files.
2747  if (IA->getType() == types::TY_Object &&
2748  (!llvm::sys::path::has_extension(FileName) ||
2750  llvm::sys::path::extension(FileName).drop_front()) !=
2751  types::TY_Object))
2752  return ABRT_Inactive;
2753  for (unsigned I = 0; I < ToolChains.size(); ++I) {
2754  OpenMPDeviceActions.push_back(UA);
2755  UA->registerDependentActionInfo(
2756  ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
2757  }
2758  return ABRT_Success;
2759  }
2760 
2761  // When generating code for OpenMP we use the host compile phase result as
2762  // a dependence to the device compile phase so that it can learn what
2763  // declarations should be emitted. However, this is not the only use for
2764  // the host action, so we prevent it from being collapsed.
2765  if (isa<CompileJobAction>(HostAction)) {
2767  assert(ToolChains.size() == OpenMPDeviceActions.size() &&
2768  "Toolchains and device action sizes do not match.");
2770  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2771  /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2772  auto TC = ToolChains.begin();
2773  for (Action *&A : OpenMPDeviceActions) {
2774  assert(isa<CompileJobAction>(A));
2776  DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2777  A = C.MakeAction<OffloadAction>(HDep, DDep);
2778  ++TC;
2779  }
2780  }
2781  return ABRT_Success;
2782  }
2783 
2784  void appendTopLevelActions(ActionList &AL) override {
2785  if (OpenMPDeviceActions.empty())
2786  return;
2787 
2788  // We should always have an action for each input.
2789  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2790  "Number of OpenMP actions and toolchains do not match.");
2791 
2792  // Append all device actions followed by the proper offload action.
2793  auto TI = ToolChains.begin();
2794  for (auto *A : OpenMPDeviceActions) {
2796  Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2797  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2798  ++TI;
2799  }
2800  // We no longer need the action stored in this builder.
2801  OpenMPDeviceActions.clear();
2802  }
2803 
2804  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2805  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2806  "Toolchains and linker inputs sizes do not match.");
2807 
2808  // Append a new link action for each device.
2809  auto TC = ToolChains.begin();
2810  for (auto &LI : DeviceLinkerInputs) {
2811  auto *DeviceLinkAction =
2812  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2813  DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
2815  ++TC;
2816  }
2817  }
2818 
2819  bool initialize() override {
2820  // Get the OpenMP toolchains. If we don't get any, the action builder will
2821  // know there is nothing to do related to OpenMP offloading.
2822  auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
2823  for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
2824  ++TI)
2825  ToolChains.push_back(TI->second);
2826 
2827  DeviceLinkerInputs.resize(ToolChains.size());
2828  return false;
2829  }
2830 
2831  bool canUseBundlerUnbundler() const override {
2832  // OpenMP should use bundled files whenever possible.
2833  return true;
2834  }
2835  };
2836 
2837  ///
2838  /// TODO: Add the implementation for other specialized builders here.
2839  ///
2840 
2841  /// Specialized builders being used by this offloading action builder.
2842  SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
2843 
2844  /// Flag set to true if all valid builders allow file bundling/unbundling.
2845  bool CanUseBundler;
2846 
2847 public:
2848  OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
2849  const Driver::InputList &Inputs)
2850  : C(C) {
2851  // Create a specialized builder for each device toolchain.
2852 
2853  IsValid = true;
2854 
2855  // Create a specialized builder for CUDA.
2856  SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
2857 
2858  // Create a specialized builder for HIP.
2859  SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
2860 
2861  // Create a specialized builder for OpenMP.
2862  SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
2863 
2864  //
2865  // TODO: Build other specialized builders here.
2866  //
2867 
2868  // Initialize all the builders, keeping track of errors. If all valid
2869  // builders agree that we can use bundling, set the flag to true.
2870  unsigned ValidBuilders = 0u;
2871  unsigned ValidBuildersSupportingBundling = 0u;
2872  for (auto *SB : SpecializedBuilders) {
2873  IsValid = IsValid && !SB->initialize();
2874 
2875  // Update the counters if the builder is valid.
2876  if (SB->isValid()) {
2877  ++ValidBuilders;
2878  if (SB->canUseBundlerUnbundler())
2879  ++ValidBuildersSupportingBundling;
2880  }
2881  }
2882  CanUseBundler =
2883  ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
2884  }
2885 
2886  ~OffloadingActionBuilder() {
2887  for (auto *SB : SpecializedBuilders)
2888  delete SB;
2889  }
2890 
2891  /// Generate an action that adds device dependences (if any) to a host action.
2892  /// If no device dependence actions exist, just return the host action \a
2893  /// HostAction. If an error is found or if no builder requires the host action
2894  /// to be generated, return nullptr.
2895  Action *
2896  addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
2897  phases::ID CurPhase, phases::ID FinalPhase,
2898  DeviceActionBuilder::PhasesTy &Phases) {
2899  if (!IsValid)
2900  return nullptr;
2901 
2902  if (SpecializedBuilders.empty())
2903  return HostAction;
2904 
2905  assert(HostAction && "Invalid host action!");
2906 
2908  // Check if all the programming models agree we should not emit the host
2909  // action. Also, keep track of the offloading kinds employed.
2910  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
2911  unsigned InactiveBuilders = 0u;
2912  unsigned IgnoringBuilders = 0u;
2913  for (auto *SB : SpecializedBuilders) {
2914  if (!SB->isValid()) {
2915  ++InactiveBuilders;
2916  continue;
2917  }
2918 
2919  auto RetCode =
2920  SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
2921 
2922  // If the builder explicitly says the host action should be ignored,
2923  // we need to increment the variable that tracks the builders that request
2924  // the host object to be ignored.
2925  if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
2926  ++IgnoringBuilders;
2927 
2928  // Unless the builder was inactive for this action, we have to record the
2929  // offload kind because the host will have to use it.
2930  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
2931  OffloadKind |= SB->getAssociatedOffloadKind();
2932  }
2933 
2934  // If all builders agree that the host object should be ignored, just return
2935  // nullptr.
2936  if (IgnoringBuilders &&
2937  SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
2938  return nullptr;
2939 
2940  if (DDeps.getActions().empty())
2941  return HostAction;
2942 
2943  // We have dependences we need to bundle together. We use an offload action
2944  // for that.
2946  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2947  /*BoundArch=*/nullptr, DDeps);
2948  return C.MakeAction<OffloadAction>(HDep, DDeps);
2949  }
2950 
2951  /// Generate an action that adds a host dependence to a device action. The
2952  /// results will be kept in this action builder. Return true if an error was
2953  /// found.
2954  bool addHostDependenceToDeviceActions(Action *&HostAction,
2955  const Arg *InputArg) {
2956  if (!IsValid)
2957  return true;
2958 
2959  // If we are supporting bundling/unbundling and the current action is an
2960  // input action of non-source file, we replace the host action by the
2961  // unbundling action. The bundler tool has the logic to detect if an input
2962  // is a bundle or not and if the input is not a bundle it assumes it is a
2963  // host file. Therefore it is safe to create an unbundling action even if
2964  // the input is not a bundle.
2965  if (CanUseBundler && isa<InputAction>(HostAction) &&
2966  InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
2967  !types::isSrcFile(HostAction->getType())) {
2968  auto UnbundlingHostAction =
2969  C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
2970  UnbundlingHostAction->registerDependentActionInfo(
2972  /*BoundArch=*/StringRef(), Action::OFK_Host);
2973  HostAction = UnbundlingHostAction;
2974  }
2975 
2976  assert(HostAction && "Invalid host action!");
2977 
2978  // Register the offload kinds that are used.
2979  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
2980  for (auto *SB : SpecializedBuilders) {
2981  if (!SB->isValid())
2982  continue;
2983 
2984  auto RetCode = SB->addDeviceDepences(HostAction);
2985 
2986  // Host dependences for device actions are not compatible with that same
2987  // action being ignored.
2988  assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
2989  "Host dependence not expected to be ignored.!");
2990 
2991  // Unless the builder was inactive for this action, we have to record the
2992  // offload kind because the host will have to use it.
2993  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
2994  OffloadKind |= SB->getAssociatedOffloadKind();
2995  }
2996 
2997  // Do not use unbundler if the Host does not depend on device action.
2998  if (OffloadKind == Action::OFK_None && CanUseBundler)
2999  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3000  HostAction = UA->getInputs().back();
3001 
3002  return false;
3003  }
3004 
3005  /// Add the offloading top level actions to the provided action list. This
3006  /// function can replace the host action by a bundling action if the
3007  /// programming models allow it.
3008  bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3009  const Arg *InputArg) {
3010  // Get the device actions to be appended.
3011  ActionList OffloadAL;
3012  for (auto *SB : SpecializedBuilders) {
3013  if (!SB->isValid())
3014  continue;
3015  SB->appendTopLevelActions(OffloadAL);
3016  }
3017 
3018  // If we can use the bundler, replace the host action by the bundling one in
3019  // the resulting list. Otherwise, just append the device actions. For
3020  // device only compilation, HostAction is a null pointer, therefore only do
3021  // this when HostAction is not a null pointer.
3022  if (CanUseBundler && HostAction && !OffloadAL.empty()) {
3023  // Add the host action to the list in order to create the bundling action.
3024  OffloadAL.push_back(HostAction);
3025 
3026  // We expect that the host action was just appended to the action list
3027  // before this method was called.
3028  assert(HostAction == AL.back() && "Host action not in the list??");
3029  HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3030  AL.back() = HostAction;
3031  } else
3032  AL.append(OffloadAL.begin(), OffloadAL.end());
3033 
3034  // Propagate to the current host action (if any) the offload information
3035  // associated with the current input.
3036  if (HostAction)
3037  HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3038  /*BoundArch=*/nullptr);
3039  return false;
3040  }
3041 
3042  /// Processes the host linker action. This currently consists of replacing it
3043  /// with an offload action if there are device link objects and propagate to
3044  /// the host action all the offload kinds used in the current compilation. The
3045  /// resulting action is returned.
3046  Action *processHostLinkAction(Action *HostAction) {
3047  // Add all the dependences from the device linking actions.
3049  for (auto *SB : SpecializedBuilders) {
3050  if (!SB->isValid())
3051  continue;
3052 
3053  SB->appendLinkDependences(DDeps);
3054  }
3055 
3056  // Calculate all the offload kinds used in the current compilation.
3057  unsigned ActiveOffloadKinds = 0u;
3058  for (auto &I : InputArgToOffloadKindMap)
3059  ActiveOffloadKinds |= I.second;
3060 
3061  // If we don't have device dependencies, we don't have to create an offload
3062  // action.
3063  if (DDeps.getActions().empty()) {
3064  // Propagate all the active kinds to host action. Given that it is a link
3065  // action it is assumed to depend on all actions generated so far.
3066  HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3067  /*BoundArch=*/nullptr);
3068  return HostAction;
3069  }
3070 
3071  // Create the offload action with all dependences. When an offload action
3072  // is created the kinds are propagated to the host action, so we don't have
3073  // to do that explicitly here.
3075  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3076  /*BoundArch*/ nullptr, ActiveOffloadKinds);
3077  return C.MakeAction<OffloadAction>(HDep, DDeps);
3078  }
3079 };
3080 } // anonymous namespace.
3081 
3082 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3083  const InputList &Inputs, ActionList &Actions) const {
3084  llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3085 
3086  if (!SuppressMissingInputWarning && Inputs.empty()) {
3087  Diag(clang::diag::err_drv_no_input_files);
3088  return;
3089  }
3090 
3091  Arg *FinalPhaseArg;
3092  phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3093 
3094  if (FinalPhase == phases::Link) {
3095  if (Args.hasArg(options::OPT_emit_llvm))
3096  Diag(clang::diag::err_drv_emit_llvm_link);
3097  if (IsCLMode() && LTOMode != LTOK_None &&
3098  !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
3099  Diag(clang::diag::err_drv_lto_without_lld);
3100  }
3101 
3102  // Reject -Z* at the top level, these options should never have been exposed
3103  // by gcc.
3104  if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3105  Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3106 
3107  // Diagnose misuse of /Fo.
3108  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3109  StringRef V = A->getValue();
3110  if (Inputs.size() > 1 && !V.empty() &&
3111  !llvm::sys::path::is_separator(V.back())) {
3112  // Check whether /Fo tries to name an output file for multiple inputs.
3113  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3114  << A->getSpelling() << V;
3115  Args.eraseArg(options::OPT__SLASH_Fo);
3116  }
3117  }
3118 
3119  // Diagnose misuse of /Fa.
3120  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3121  StringRef V = A->getValue();
3122  if (Inputs.size() > 1 && !V.empty() &&
3123  !llvm::sys::path::is_separator(V.back())) {
3124  // Check whether /Fa tries to name an asm file for multiple inputs.
3125  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3126  << A->getSpelling() << V;
3127  Args.eraseArg(options::OPT__SLASH_Fa);
3128  }
3129  }
3130 
3131  // Diagnose misuse of /o.
3132  if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3133  if (A->getValue()[0] == '\0') {
3134  // It has to have a value.
3135  Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3136  Args.eraseArg(options::OPT__SLASH_o);
3137  }
3138  }
3139 
3140  // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3141  Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3142  Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3143  if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3144  Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3145  Args.eraseArg(options::OPT__SLASH_Yc);
3146  Args.eraseArg(options::OPT__SLASH_Yu);
3147  YcArg = YuArg = nullptr;
3148  }
3149  if (YcArg && Inputs.size() > 1) {
3150  Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3151  Args.eraseArg(options::OPT__SLASH_Yc);
3152  YcArg = nullptr;
3153  }
3154  if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3155  // If only preprocessing or /Y- is used, all pch handling is disabled.
3156  // Rather than check for it everywhere, just remove clang-cl pch-related
3157  // flags here.
3158  Args.eraseArg(options::OPT__SLASH_Fp);
3159  Args.eraseArg(options::OPT__SLASH_Yc);
3160  Args.eraseArg(options::OPT__SLASH_Yu);
3161  YcArg = YuArg = nullptr;
3162  }
3163 
3164  // Builder to be used to build offloading actions.
3165  OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3166 
3167  // Construct the actions to perform.
3168  HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3169  ActionList LinkerInputs;
3170 
3172  for (auto &I : Inputs) {
3173  types::ID InputType = I.first;
3174  const Arg *InputArg = I.second;
3175 
3176  PL.clear();
3177  types::getCompilationPhases(InputType, PL);
3178 
3179  // If the first step comes after the final phase we are doing as part of
3180  // this compilation, warn the user about it.
3181  phases::ID InitialPhase = PL[0];
3182  if (InitialPhase > FinalPhase) {
3183  if (InputArg->isClaimed())
3184  continue;
3185 
3186  // Claim here to avoid the more general unused warning.
3187  InputArg->claim();
3188 
3189  // Suppress all unused style warnings with -Qunused-arguments
3190  if (Args.hasArg(options::OPT_Qunused_arguments))
3191  continue;
3192 
3193  // Special case when final phase determined by binary name, rather than
3194  // by a command-line argument with a corresponding Arg.
3195  if (CCCIsCPP())
3196  Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3197  << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3198  // Special case '-E' warning on a previously preprocessed file to make
3199  // more sense.
3200  else if (InitialPhase == phases::Compile &&
3201  FinalPhase == phases::Preprocess &&
3202  getPreprocessedType(InputType) == types::TY_INVALID)
3203  Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3204  << InputArg->getAsString(Args) << !!FinalPhaseArg
3205  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3206  else
3207  Diag(clang::diag::warn_drv_input_file_unused)
3208  << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3209  << !!FinalPhaseArg
3210  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3211  continue;
3212  }
3213 
3214  if (YcArg) {
3215  // Add a separate precompile phase for the compile phase.
3216  if (FinalPhase >= phases::Compile) {
3217  const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3219  types::getCompilationPhases(HeaderType, PCHPL);
3220  // Build the pipeline for the pch file.
3221  Action *ClangClPch =
3222  C.MakeAction<InputAction>(*InputArg, HeaderType);
3223  for (phases::ID Phase : PCHPL)
3224  ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3225  assert(ClangClPch);
3226  Actions.push_back(ClangClPch);
3227  // The driver currently exits after the first failed command. This
3228  // relies on that behavior, to make sure if the pch generation fails,
3229  // the main compilation won't run.
3230  // FIXME: If the main compilation fails, the PCH generation should
3231  // probably not be considered successful either.
3232  }
3233  }
3234 
3235  // Build the pipeline for this file.
3236  Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3237 
3238  // Use the current host action in any of the offloading actions, if
3239  // required.
3240  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3241  break;
3242 
3243  for (SmallVectorImpl<phases::ID>::iterator i = PL.begin(), e = PL.end();
3244  i != e; ++i) {
3245  phases::ID Phase = *i;
3246 
3247  // We are done if this step is past what the user requested.
3248  if (Phase > FinalPhase)
3249  break;
3250 
3251  // Add any offload action the host action depends on.
3252  Current = OffloadBuilder.addDeviceDependencesToHostAction(
3253  Current, InputArg, Phase, FinalPhase, PL);
3254  if (!Current)
3255  break;
3256 
3257  // Queue linker inputs.
3258  if (Phase == phases::Link) {
3259  assert((i + 1) == e && "linking must be final compilation step.");
3260  LinkerInputs.push_back(Current);
3261  Current = nullptr;
3262  break;
3263  }
3264 
3265  // Each precompiled header file after a module file action is a module
3266  // header of that same module file, rather than being compiled to a
3267  // separate PCH.
3268  if (Phase == phases::Precompile && HeaderModuleAction &&
3269  getPrecompiledType(InputType) == types::TY_PCH) {
3270  HeaderModuleAction->addModuleHeaderInput(Current);
3271  Current = nullptr;
3272  break;
3273  }
3274 
3275  // FIXME: Should we include any prior module file outputs as inputs of
3276  // later actions in the same command line?
3277 
3278  // Otherwise construct the appropriate action.
3279  Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3280 
3281  // We didn't create a new action, so we will just move to the next phase.
3282  if (NewCurrent == Current)
3283  continue;
3284 
3285  if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3286  HeaderModuleAction = HMA;
3287 
3288  Current = NewCurrent;
3289 
3290  // Use the current host action in any of the offloading actions, if
3291  // required.
3292  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3293  break;
3294 
3295  if (Current->getType() == types::TY_Nothing)
3296  break;
3297  }
3298 
3299  // If we ended with something, add to the output list.
3300  if (Current)
3301  Actions.push_back(Current);
3302 
3303  // Add any top level actions generated for offloading.
3304  OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3305  }
3306 
3307  // Add a link action if necessary.
3308  if (!LinkerInputs.empty()) {
3309  Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3310  LA = OffloadBuilder.processHostLinkAction(LA);
3311  Actions.push_back(LA);
3312  }
3313 
3314  // If we are linking, claim any options which are obviously only used for
3315  // compilation.
3316  if (FinalPhase == phases::Link && PL.size() == 1) {
3317  Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3318  Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3319  }
3320 
3321  // Claim ignored clang-cl options.
3322  Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3323 
3324  // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3325  // to non-CUDA compilations and should not trigger warnings there.
3326  Args.ClaimAllArgs(options::OPT_cuda_host_only);
3327  Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3328 }
3329 
3331  Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3332  Action::OffloadKind TargetDeviceOffloadKind) const {
3333  llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3334 
3335  // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3336  // encode this in the steps because the intermediate type depends on
3337  // arguments. Just special case here.
3338  if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3339  return Input;
3340 
3341  // Build the appropriate action.
3342  switch (Phase) {
3343  case phases::Link:
3344  llvm_unreachable("link action invalid here.");
3345  case phases::Preprocess: {
3346  types::ID OutputTy;
3347  // -{M, MM} alter the output type.
3348  if (Args.hasArg(options::OPT_M, options::OPT_MM)) {
3349  OutputTy = types::TY_Dependencies;
3350  } else {
3351  OutputTy = Input->getType();
3352  if (!Args.hasFlag(options::OPT_frewrite_includes,
3353  options::OPT_fno_rewrite_includes, false) &&
3354  !Args.hasFlag(options::OPT_frewrite_imports,
3355  options::OPT_fno_rewrite_imports, false) &&
3357  OutputTy = types::getPreprocessedType(OutputTy);
3358  assert(OutputTy != types::TY_INVALID &&
3359  "Cannot preprocess this input type!");
3360  }
3361  return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3362  }
3363  case phases::Precompile: {
3364  types::ID OutputTy = getPrecompiledType(Input->getType());
3365  assert(OutputTy != types::TY_INVALID &&
3366  "Cannot precompile this input type!");
3367 
3368  // If we're given a module name, precompile header file inputs as a
3369  // module, not as a precompiled header.
3370  const char *ModName = nullptr;
3371  if (OutputTy == types::TY_PCH) {
3372  if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3373  ModName = A->getValue();
3374  if (ModName)
3375  OutputTy = types::TY_ModuleFile;
3376  }
3377 
3378  if (Args.hasArg(options::OPT_fsyntax_only)) {
3379  // Syntax checks should not emit a PCH file
3380  OutputTy = types::TY_Nothing;
3381  }
3382 
3383  if (ModName)
3384  return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3385  ModName);
3386  return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3387  }
3388  case phases::Compile: {
3389  if (Args.hasArg(options::OPT_fsyntax_only))
3390  return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3391  if (Args.hasArg(options::OPT_rewrite_objc))
3392  return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3393  if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3394  return C.MakeAction<CompileJobAction>(Input,
3395  types::TY_RewrittenLegacyObjC);
3396  if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto))
3397  return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3398  if (Args.hasArg(options::OPT__migrate))
3399  return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3400  if (Args.hasArg(options::OPT_emit_ast))
3401  return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3402  if (Args.hasArg(options::OPT_module_file_info))
3403  return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3404  if (Args.hasArg(options::OPT_verify_pch))
3405  return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3406  return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3407  }
3408  case phases::Backend: {
3409  if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3410  types::ID Output =
3411  Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3412  return C.MakeAction<BackendJobAction>(Input, Output);
3413  }
3414  if (Args.hasArg(options::OPT_emit_llvm)) {
3415  types::ID Output =
3416  Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3417  return C.MakeAction<BackendJobAction>(Input, Output);
3418  }
3419  return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3420  }
3421  case phases::Assemble:
3422  return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3423  }
3424 
3425  llvm_unreachable("invalid phase in ConstructPhaseAction");
3426 }
3427 
3429  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3430 
3431  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3432 
3433  // It is an error to provide a -o option if we are making multiple output
3434  // files.
3435  if (FinalOutput) {
3436  unsigned NumOutputs = 0;
3437  for (const Action *A : C.getActions())
3438  if (A->getType() != types::TY_Nothing)
3439  ++NumOutputs;
3440 
3441  if (NumOutputs > 1) {
3442  Diag(clang::diag::err_drv_output_argument_with_multiple_files);
3443  FinalOutput = nullptr;
3444  }
3445  }
3446 
3447  // Collect the list of architectures.
3448  llvm::StringSet<> ArchNames;
3449  if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
3450  for (const Arg *A : C.getArgs())
3451  if (A->getOption().matches(options::OPT_arch))
3452  ArchNames.insert(A->getValue());
3453 
3454  // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
3455  std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
3456  for (Action *A : C.getActions()) {
3457  // If we are linking an image for multiple archs then the linker wants
3458  // -arch_multiple and -final_output <final image name>. Unfortunately, this
3459  // doesn't fit in cleanly because we have to pass this information down.
3460  //
3461  // FIXME: This is a hack; find a cleaner way to integrate this into the
3462  // process.
3463  const char *LinkingOutput = nullptr;
3464  if (isa<LipoJobAction>(A)) {
3465  if (FinalOutput)
3466  LinkingOutput = FinalOutput->getValue();
3467  else
3468  LinkingOutput = getDefaultImageName();
3469  }
3470 
3472  /*BoundArch*/ StringRef(),
3473  /*AtTopLevel*/ true,
3474  /*MultipleArchs*/ ArchNames.size() > 1,
3475  /*LinkingOutput*/ LinkingOutput, CachedResults,
3476  /*TargetDeviceOffloadKind*/ Action::OFK_None);
3477  }
3478 
3479  // If the user passed -Qunused-arguments or there were errors, don't warn
3480  // about any unused arguments.
3481  if (Diags.hasErrorOccurred() ||
3482  C.getArgs().hasArg(options::OPT_Qunused_arguments))
3483  return;
3484 
3485  // Claim -### here.
3486  (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
3487 
3488  // Claim --driver-mode, --rsp-quoting, it was handled earlier.
3489  (void)C.getArgs().hasArg(options::OPT_driver_mode);
3490  (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
3491 
3492  for (Arg *A : C.getArgs()) {
3493  // FIXME: It would be nice to be able to send the argument to the
3494  // DiagnosticsEngine, so that extra values, position, and so on could be
3495  // printed.
3496  if (!A->isClaimed()) {
3497  if (A->getOption().hasFlag(options::NoArgumentUnused))
3498  continue;
3499 
3500  // Suppress the warning automatically if this is just a flag, and it is an
3501  // instance of an argument we already claimed.
3502  const Option &Opt = A->getOption();
3503  if (Opt.getKind() == Option::FlagClass) {
3504  bool DuplicateClaimed = false;
3505 
3506  for (const Arg *AA : C.getArgs().filtered(&Opt)) {
3507  if (AA->isClaimed()) {
3508  DuplicateClaimed = true;
3509  break;
3510  }
3511  }
3512 
3513  if (DuplicateClaimed)
3514  continue;
3515  }
3516 
3517  // In clang-cl, don't mention unknown arguments here since they have
3518  // already been warned about.
3519  if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
3520  Diag(clang::diag::warn_drv_unused_argument)
3521  << A->getAsString(C.getArgs());
3522  }
3523  }
3524 }
3525 
3526 namespace {
3527 /// Utility class to control the collapse of dependent actions and select the
3528 /// tools accordingly.
3529 class ToolSelector final {
3530  /// The tool chain this selector refers to.
3531  const ToolChain &TC;
3532 
3533  /// The compilation this selector refers to.
3534  const Compilation &C;
3535 
3536  /// The base action this selector refers to.
3537  const JobAction *BaseAction;
3538 
3539  /// Set to true if the current toolchain refers to host actions.
3540  bool IsHostSelector;
3541 
3542  /// Set to true if save-temps and embed-bitcode functionalities are active.
3543  bool SaveTemps;
3544  bool EmbedBitcode;
3545 
3546  /// Get previous dependent action or null if that does not exist. If
3547  /// \a CanBeCollapsed is false, that action must be legal to collapse or
3548  /// null will be returned.
3549  const JobAction *getPrevDependentAction(const ActionList &Inputs,
3550  ActionList &SavedOffloadAction,
3551  bool CanBeCollapsed = true) {
3552  // An option can be collapsed only if it has a single input.
3553  if (Inputs.size() != 1)
3554  return nullptr;
3555 
3556  Action *CurAction = *Inputs.begin();
3557  if (CanBeCollapsed &&
3559  return nullptr;
3560 
3561  // If the input action is an offload action. Look through it and save any
3562  // offload action that can be dropped in the event of a collapse.
3563  if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
3564  // If the dependent action is a device action, we will attempt to collapse
3565  // only with other device actions. Otherwise, we would do the same but
3566  // with host actions only.
3567  if (!IsHostSelector) {
3568  if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
3569  CurAction =
3570  OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
3571  if (CanBeCollapsed &&
3573  return nullptr;
3574  SavedOffloadAction.push_back(OA);
3575  return dyn_cast<JobAction>(CurAction);
3576  }
3577  } else if (OA->hasHostDependence()) {
3578  CurAction = OA->getHostDependence();
3579  if (CanBeCollapsed &&
3581  return nullptr;
3582  SavedOffloadAction.push_back(OA);
3583  return dyn_cast<JobAction>(CurAction);
3584  }
3585  return nullptr;
3586  }
3587 
3588  return dyn_cast<JobAction>(CurAction);
3589  }
3590 
3591  /// Return true if an assemble action can be collapsed.
3592  bool canCollapseAssembleAction() const {
3593  return TC.useIntegratedAs() && !SaveTemps &&
3594  !C.getArgs().hasArg(options::OPT_via_file_asm) &&
3595  !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
3596  !C.getArgs().hasArg(options::OPT__SLASH_Fa);
3597  }
3598 
3599  /// Return true if a preprocessor action can be collapsed.
3600  bool canCollapsePreprocessorAction() const {
3601  return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
3602  !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
3603  !C.getArgs().hasArg(options::OPT_rewrite_objc);
3604  }
3605 
3606  /// Struct that relates an action with the offload actions that would be
3607  /// collapsed with it.
3608  struct JobActionInfo final {
3609  /// The action this info refers to.
3610  const JobAction *JA = nullptr;
3611  /// The offload actions we need to take care off if this action is
3612  /// collapsed.
3613  ActionList SavedOffloadAction;
3614  };
3615 
3616  /// Append collapsed offload actions from the give nnumber of elements in the
3617  /// action info array.
3618  static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
3619  ArrayRef<JobActionInfo> &ActionInfo,
3620  unsigned ElementNum) {
3621  assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
3622  for (unsigned I = 0; I < ElementNum; ++I)
3623  CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
3624  ActionInfo[I].SavedOffloadAction.end());
3625  }
3626 
3627  /// Functions that attempt to perform the combining. They detect if that is
3628  /// legal, and if so they update the inputs \a Inputs and the offload action
3629  /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
3630  /// the combined action is returned. If the combining is not legal or if the
3631  /// tool does not exist, null is returned.
3632  /// Currently three kinds of collapsing are supported:
3633  /// - Assemble + Backend + Compile;
3634  /// - Assemble + Backend ;
3635  /// - Backend + Compile.
3636  const Tool *
3637  combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3638  ActionList &Inputs,
3639  ActionList &CollapsedOffloadAction) {
3640  if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
3641  return nullptr;
3642  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3643  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3644  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
3645  if (!AJ || !BJ || !CJ)
3646  return nullptr;
3647 
3648  // Get compiler tool.
3649  const Tool *T = TC.SelectTool(*CJ);
3650  if (!T)
3651  return nullptr;
3652 
3653  // When using -fembed-bitcode, it is required to have the same tool (clang)
3654  // for both CompilerJA and BackendJA. Otherwise, combine two stages.
3655  if (EmbedBitcode) {
3656  const Tool *BT = TC.SelectTool(*BJ);
3657  if (BT == T)
3658  return nullptr;
3659  }
3660 
3661  if (!T->hasIntegratedAssembler())
3662  return nullptr;
3663 
3664  Inputs = CJ->getInputs();
3665  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3666  /*NumElements=*/3);
3667  return T;
3668  }
3669  const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
3670  ActionList &Inputs,
3671  ActionList &CollapsedOffloadAction) {
3672  if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
3673  return nullptr;
3674  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3675  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3676  if (!AJ || !BJ)
3677  return nullptr;
3678 
3679  // Retrieve the compile job, backend action must always be preceded by one.
3680  ActionList CompileJobOffloadActions;
3681  auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions,
3682  /*CanBeCollapsed=*/false);
3683  if (!AJ || !BJ || !CJ)
3684  return nullptr;
3685 
3686  assert(isa<CompileJobAction>(CJ) &&
3687  "Expecting compile job preceding backend job.");
3688 
3689  // Get compiler tool.
3690  const Tool *T = TC.SelectTool(*CJ);
3691  if (!T)
3692  return nullptr;
3693 
3694  if (!T->hasIntegratedAssembler())
3695  return nullptr;
3696 
3697  Inputs = BJ->getInputs();
3698  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3699  /*NumElements=*/2);
3700  return T;
3701  }
3702  const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3703  ActionList &Inputs,
3704  ActionList &CollapsedOffloadAction) {
3705  if (ActionInfo.size() < 2)
3706  return nullptr;
3707  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
3708  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
3709  if (!BJ || !CJ)
3710  return nullptr;
3711 
3712  // Check if the initial input (to the compile job or its predessor if one
3713  // exists) is LLVM bitcode. In that case, no preprocessor step is required
3714  // and we can still collapse the compile and backend jobs when we have
3715  // -save-temps. I.e. there is no need for a separate compile job just to
3716  // emit unoptimized bitcode.
3717  bool InputIsBitcode = true;
3718  for (size_t i = 1; i < ActionInfo.size(); i++)
3719  if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
3720  ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
3721  InputIsBitcode = false;
3722  break;
3723  }
3724  if (!InputIsBitcode && !canCollapsePreprocessorAction())
3725  return nullptr;
3726 
3727  // Get compiler tool.
3728  const Tool *T = TC.SelectTool(*CJ);
3729  if (!T)
3730  return nullptr;
3731 
3732  if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
3733  return nullptr;
3734 
3735  Inputs = CJ->getInputs();
3736  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3737  /*NumElements=*/2);
3738  return T;
3739  }
3740 
3741  /// Updates the inputs if the obtained tool supports combining with
3742  /// preprocessor action, and the current input is indeed a preprocessor
3743  /// action. If combining results in the collapse of offloading actions, those
3744  /// are appended to \a CollapsedOffloadAction.
3745  void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
3746  ActionList &CollapsedOffloadAction) {
3747  if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
3748  return;
3749 
3750  // Attempt to get a preprocessor action dependence.
3751  ActionList PreprocessJobOffloadActions;
3752  ActionList NewInputs;
3753  for (Action *A : Inputs) {
3754  auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
3755  if (!PJ || !isa<PreprocessJobAction>(PJ)) {
3756  NewInputs.push_back(A);
3757  continue;
3758  }
3759 
3760  // This is legal to combine. Append any offload action we found and add the
3761  // current input to preprocessor inputs.
3762  CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
3763  PreprocessJobOffloadActions.end());
3764  NewInputs.append(PJ->input_begin(), PJ->input_end());
3765  }
3766  Inputs = NewInputs;
3767  }
3768 
3769 public:
3770  ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
3771  const Compilation &C, bool SaveTemps, bool EmbedBitcode)
3772  : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
3773  EmbedBitcode(EmbedBitcode) {
3774  assert(BaseAction && "Invalid base action.");
3775  IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
3776  }
3777 
3778  /// Check if a chain of actions can be combined and return the tool that can
3779  /// handle the combination of actions. The pointer to the current inputs \a
3780  /// Inputs and the list of offload actions \a CollapsedOffloadActions
3781  /// connected to collapsed actions are updated accordingly. The latter enables
3782  /// the caller of the selector to process them afterwards instead of just
3783  /// dropping them. If no suitable tool is found, null will be returned.
3784  const Tool *getTool(ActionList &Inputs,
3785  ActionList &CollapsedOffloadAction) {
3786  //
3787  // Get the largest chain of actions that we could combine.
3788  //
3789 
3790  SmallVector<JobActionInfo, 5> ActionChain(1);
3791  ActionChain.back().JA = BaseAction;
3792  while (ActionChain.back().JA) {
3793  const Action *CurAction = ActionChain.back().JA;
3794 
3795  // Grow the chain by one element.
3796  ActionChain.resize(ActionChain.size() + 1);
3797  JobActionInfo &AI = ActionChain.back();
3798 
3799  // Attempt to fill it with the
3800  AI.JA =
3801  getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
3802  }
3803 
3804  // Pop the last action info as it could not be filled.
3805  ActionChain.pop_back();
3806 
3807  //
3808  // Attempt to combine actions. If all combining attempts failed, just return
3809  // the tool of the provided action. At the end we attempt to combine the
3810  // action with any preprocessor action it may depend on.
3811  //
3812 
3813  const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
3814  CollapsedOffloadAction);
3815  if (!T)
3816  T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
3817  if (!T)
3818  T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
3819  if (!T) {
3820  Inputs = BaseAction->getInputs();
3821  T = TC.SelectTool(*BaseAction);
3822  }
3823 
3824  combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
3825  return T;
3826  }
3827 };
3828 }
3829 
3830 /// Return a string that uniquely identifies the result of a job. The bound arch
3831 /// is not necessarily represented in the toolchain's triple -- for example,
3832 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
3833 /// Also, we need to add the offloading device kind, as the same tool chain can
3834 /// be used for host and device for some programming models, e.g. OpenMP.
3835 static std::string GetTriplePlusArchString(const ToolChain *TC,
3836  StringRef BoundArch,
3837  Action::OffloadKind OffloadKind) {
3838  std::string TriplePlusArch = TC->getTriple().normalize();
3839  if (!BoundArch.empty()) {
3840  TriplePlusArch += "-";
3841  TriplePlusArch += BoundArch;
3842  }
3843  TriplePlusArch += "-";
3844  TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
3845  return TriplePlusArch;
3846 }
3847 
3849  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3850  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3851  std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3852  Action::OffloadKind TargetDeviceOffloadKind) const {
3853  std::pair<const Action *, std::string> ActionTC = {
3854  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
3855  auto CachedResult = CachedResults.find(ActionTC);
3856  if (CachedResult != CachedResults.end()) {
3857  return CachedResult->second;
3858  }
3859  InputInfo Result = BuildJobsForActionNoCache(
3860  C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
3861  CachedResults, TargetDeviceOffloadKind);
3862  CachedResults[ActionTC] = Result;
3863  return Result;
3864 }
3865 
3866 InputInfo Driver::BuildJobsForActionNoCache(
3867  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3868  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3869  std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3870  Action::OffloadKind TargetDeviceOffloadKind) const {
3871  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3872 
3873  InputInfoList OffloadDependencesInputInfo;
3874  bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
3875  if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
3876  // The 'Darwin' toolchain is initialized only when its arguments are
3877  // computed. Get the default arguments for OFK_None to ensure that
3878  // initialization is performed before processing the offload action.
3879  // FIXME: Remove when darwin's toolchain is initialized during construction.
3880  C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
3881 
3882  // The offload action is expected to be used in four different situations.
3883  //
3884  // a) Set a toolchain/architecture/kind for a host action:
3885  // Host Action 1 -> OffloadAction -> Host Action 2
3886  //
3887  // b) Set a toolchain/architecture/kind for a device action;
3888  // Device Action 1 -> OffloadAction -> Device Action 2
3889  //
3890  // c) Specify a device dependence to a host action;
3891  // Device Action 1 _
3892  // \
3893  // Host Action 1 ---> OffloadAction -> Host Action 2
3894  //
3895  // d) Specify a host dependence to a device action.
3896  // Host Action 1 _
3897  // \
3898  // Device Action 1 ---> OffloadAction -> Device Action 2
3899  //
3900  // For a) and b), we just return the job generated for the dependence. For
3901  // c) and d) we override the current action with the host/device dependence
3902  // if the current toolchain is host/device and set the offload dependences
3903  // info with the jobs obtained from the device/host dependence(s).
3904 
3905  // If there is a single device option, just generate the job for it.
3906  if (OA->hasSingleDeviceDependence()) {
3907  InputInfo DevA;
3908  OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
3909  const char *DepBoundArch) {
3910  DevA =
3911  BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
3912  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
3913  CachedResults, DepA->getOffloadingDeviceKind());
3914  });
3915  return DevA;
3916  }
3917 
3918  // If 'Action 2' is host, we generate jobs for the device dependences and
3919  // override the current action with the host dependence. Otherwise, we
3920  // generate the host dependences and override the action with the device
3921  // dependence. The dependences can't therefore be a top-level action.
3922  OA->doOnEachDependence(
3923  /*IsHostDependence=*/BuildingForOffloadDevice,
3924  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
3925  OffloadDependencesInputInfo.push_back(BuildJobsForAction(
3926  C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
3927  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
3928  DepA->getOffloadingDeviceKind()));
3929  });
3930 
3931  A = BuildingForOffloadDevice
3932  ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
3933  : OA->getHostDependence();
3934  }
3935 
3936  if (const InputAction *IA = dyn_cast<InputAction>(A)) {
3937  // FIXME: It would be nice to not claim this here; maybe the old scheme of
3938  // just using Args was better?
3939  const Arg &Input = IA->getInputArg();
3940  Input.claim();
3941  if (Input.getOption().matches(options::OPT_INPUT)) {
3942  const char *Name = Input.getValue();
3943  return InputInfo(A, Name, /* BaseInput = */ Name);
3944  }
3945  return InputInfo(A, &Input, /* BaseInput = */ "");
3946  }
3947 
3948  if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
3949  const ToolChain *TC;
3950  StringRef ArchName = BAA->getArchName();
3951 
3952  if (!ArchName.empty())
3953  TC = &getToolChain(C.getArgs(),
3954  computeTargetTriple(*this, TargetTriple,
3955  C.getArgs(), ArchName));
3956  else
3957  TC = &C.getDefaultToolChain();
3958 
3959  return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
3960  MultipleArchs, LinkingOutput, CachedResults,
3961  TargetDeviceOffloadKind);
3962  }
3963 
3964 
3965  ActionList Inputs = A->getInputs();
3966 
3967  const JobAction *JA = cast<JobAction>(A);
3968  ActionList CollapsedOffloadActions;
3969 
3970  ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
3972  const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
3973 
3974  if (!T)
3975  return InputInfo();
3976 
3977  // If we've collapsed action list that contained OffloadAction we
3978  // need to build jobs for host/device-side inputs it may have held.
3979  for (const auto *OA : CollapsedOffloadActions)
3980  cast<OffloadAction>(OA)->doOnEachDependence(
3981  /*IsHostDependence=*/BuildingForOffloadDevice,
3982  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
3983  OffloadDependencesInputInfo.push_back(BuildJobsForAction(
3984  C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
3985  /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
3986  DepA->getOffloadingDeviceKind()));
3987  });
3988 
3989  // Only use pipes when there is exactly one input.
3990  InputInfoList InputInfos;
3991  for (const Action *Input : Inputs) {
3992  // Treat dsymutil and verify sub-jobs as being at the top-level too, they
3993  // shouldn't get temporary output names.
3994  // FIXME: Clean this up.
3995  bool SubJobAtTopLevel =
3996  AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
3997  InputInfos.push_back(BuildJobsForAction(
3998  C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
3999  CachedResults, A->getOffloadingDeviceKind()));
4000  }
4001 
4002  // Always use the first input as the base input.
4003  const char *BaseInput = InputInfos[0].getBaseInput();
4004 
4005  // ... except dsymutil actions, which use their actual input as the base
4006  // input.
4007  if (JA->getType() == types::TY_dSYM)
4008  BaseInput = InputInfos[0].getFilename();
4009 
4010  // ... and in header module compilations, which use the module name.
4011  if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4012  BaseInput = ModuleJA->getModuleName();
4013 
4014  // Append outputs of offload device jobs to the input list
4015  if (!OffloadDependencesInputInfo.empty())
4016  InputInfos.append(OffloadDependencesInputInfo.begin(),
4017  OffloadDependencesInputInfo.end());
4018 
4019  // Set the effective triple of the toolchain for the duration of this job.
4020  llvm::Triple EffectiveTriple;
4021  const ToolChain &ToolTC = T->getToolChain();
4022  const ArgList &Args =
4023  C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4024  if (InputInfos.size() != 1) {
4025  EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4026  } else {
4027  // Pass along the input type if it can be unambiguously determined.
4028  EffectiveTriple = llvm::Triple(
4029  ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4030  }
4031  RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4032 
4033  // Determine the place to write output to, if any.
4034  InputInfo Result;
4035  InputInfoList UnbundlingResults;
4036  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4037  // If we have an unbundling job, we need to create results for all the
4038  // outputs. We also update the results cache so that other actions using
4039  // this unbundling action can get the right results.
4040  for (auto &UI : UA->getDependentActionsInfo()) {
4041  assert(UI.DependentOffloadKind != Action::OFK_None &&
4042  "Unbundling with no offloading??");
4043 
4044  // Unbundling actions are never at the top level. When we generate the
4045  // offloading prefix, we also do that for the host file because the
4046  // unbundling action does not change the type of the output which can
4047  // cause a overwrite.
4048  std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4049  UI.DependentOffloadKind,
4050  UI.DependentToolChain->getTriple().normalize(),
4051  /*CreatePrefixForHost=*/true);
4052  auto CurI = InputInfo(
4053  UA,
4054  GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4055  /*AtTopLevel=*/false,
4056  MultipleArchs ||
4057  UI.DependentOffloadKind == Action::OFK_HIP,
4058  OffloadingPrefix),
4059  BaseInput);
4060  // Save the unbundling result.
4061  UnbundlingResults.push_back(CurI);
4062 
4063  // Get the unique string identifier for this dependence and cache the
4064  // result.
4065  StringRef Arch;
4066  if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4067  if (UI.DependentOffloadKind == Action::OFK_Host)
4068  Arch = StringRef();
4069  else
4070  Arch = UI.DependentBoundArch;
4071  } else
4072  Arch = BoundArch;
4073 
4074  CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
4075  UI.DependentOffloadKind)}] =
4076  CurI;
4077  }
4078 
4079  // Now that we have all the results generated, select the one that should be
4080  // returned for the current depending action.
4081  std::pair<const Action *, std::string> ActionTC = {
4082  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4083  assert(CachedResults.find(ActionTC) != CachedResults.end() &&
4084  "Result does not exist??");
4085  Result = CachedResults[ActionTC];
4086  } else if (JA->getType() == types::TY_Nothing)
4087  Result = InputInfo(A, BaseInput);
4088  else {
4089  // We only have to generate a prefix for the host if this is not a top-level
4090  // action.
4091  std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4092  A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
4093  /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
4094  !AtTopLevel);
4095  Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
4096  AtTopLevel, MultipleArchs,
4097  OffloadingPrefix),
4098  BaseInput);
4099  }
4100 
4102  llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
4103  << " - \"" << T->getName() << "\", inputs: [";
4104  for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
4105  llvm::errs() << InputInfos[i].getAsString();
4106  if (i + 1 != e)
4107  llvm::errs() << ", ";
4108  }
4109  if (UnbundlingResults.empty())
4110  llvm::errs() << "], output: " << Result.getAsString() << "\n";
4111  else {
4112  llvm::errs() << "], outputs: [";
4113  for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
4114  llvm::errs() << UnbundlingResults[i].getAsString();
4115  if (i + 1 != e)
4116  llvm::errs() << ", ";
4117  }
4118  llvm::errs() << "] \n";
4119  }
4120  } else {
4121  if (UnbundlingResults.empty())
4122  T->ConstructJob(
4123  C, *JA, Result, InputInfos,
4124  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4125  LinkingOutput);
4126  else
4128  C, *JA, UnbundlingResults, InputInfos,
4129  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4130  LinkingOutput);
4131  }
4132  return Result;
4133 }
4134 
4135 const char *Driver::getDefaultImageName() const {
4136  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
4137  return Target.isOSWindows() ? "a.exe" : "a.out";
4138 }
4139 
4140 /// Create output filename based on ArgValue, which could either be a
4141 /// full filename, filename without extension, or a directory. If ArgValue
4142 /// does not provide a filename, then use BaseName, and use the extension
4143 /// suitable for FileType.
4144 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
4145  StringRef BaseName,
4146  types::ID FileType) {
4147  SmallString<128> Filename = ArgValue;
4148 
4149  if (ArgValue.empty()) {
4150  // If the argument is empty, output to BaseName in the current dir.
4151  Filename = BaseName;
4152  } else if (llvm::sys::path::is_separator(Filename.back())) {
4153  // If the argument is a directory, output to BaseName in that dir.
4154  llvm::sys::path::append(Filename, BaseName);
4155  }
4156 
4157  if (!llvm::sys::path::has_extension(ArgValue)) {
4158  // If the argument didn't provide an extension, then set it.
4159  const char *Extension = types::getTypeTempSuffix(FileType, true);
4160 
4161  if (FileType == types::TY_Image &&
4162  Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4163  // The output file is a dll.
4164  Extension = "dll";
4165  }
4166 
4167  llvm::sys::path::replace_extension(Filename, Extension);
4168  }
4169 
4170  return Args.MakeArgString(Filename.c_str());
4171 }
4172 
4174  const char *BaseInput,
4175  StringRef BoundArch, bool AtTopLevel,
4176  bool MultipleArchs,
4177  StringRef OffloadingPrefix) const {
4178  llvm::PrettyStackTraceString CrashInfo("Computing output path");
4179  // Output to a user requested destination?
4180  if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4181  if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4182  return C.addResultFile(FinalOutput->getValue(), &JA);
4183  }
4184 
4185  // For /P, preprocess to file named after BaseInput.
4186  if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4187  assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4188  StringRef BaseName = llvm::sys::path::filename(BaseInput);
4189  StringRef NameArg;
4190  if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4191  NameArg = A->getValue();
4192  return C.addResultFile(
4193  MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4194  &JA);
4195  }
4196 
4197  // Default to writing to stdout?
4198  if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA))
4199  return "-";
4200 
4201  // Is this the assembly listing for /FA?
4202  if (JA.getType() == types::TY_PP_Asm &&
4203  (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4204  C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4205  // Use /Fa and the input filename to determine the asm file name.
4206  StringRef BaseName = llvm::sys::path::filename(BaseInput);
4207  StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4208  return C.addResultFile(
4209  MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4210  &JA);
4211  }
4212 
4213  // Output to a temporary file?
4214  if ((!AtTopLevel && !isSaveTempsEnabled() &&
4215  !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4216  CCGenDiagnostics) {
4217  StringRef Name = llvm::sys::path::filename(BaseInput);
4218  std::pair<StringRef, StringRef> Split = Name.split('.');
4219  SmallString<128> TmpName;
4220  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4221  Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4222  if (CCGenDiagnostics && A) {
4223  SmallString<128> CrashDirectory(A->getValue());
4224  llvm::sys::path::append(CrashDirectory, Split.first);
4225  const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4226  std::error_code EC =
4227  llvm::sys::fs::createUniqueFile(CrashDirectory + Middle + Suffix, TmpName);
4228  if (EC) {
4229  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4230  return "";
4231  }
4232  } else {
4233  TmpName = GetTemporaryPath(Split.first, Suffix);
4234  }
4235  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4236  }
4237 
4238  SmallString<128> BasePath(BaseInput);
4239  StringRef BaseName;
4240 
4241  // Dsymutil actions should use the full path.
4242  if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4243  BaseName = BasePath;
4244  else
4245  BaseName = llvm::sys::path::filename(BasePath);
4246 
4247  // Determine what the derived output name should be.
4248  const char *NamedOutput;
4249 
4250  if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4251  C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4252  // The /Fo or /o flag decides the object filename.
4253  StringRef Val =
4254  C.getArgs()
4255  .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4256  ->getValue();
4257  NamedOutput =
4258  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4259  } else if (JA.getType() == types::TY_Image &&
4260  C.getArgs().hasArg(options::OPT__SLASH_Fe,
4261  options::OPT__SLASH_o)) {
4262  // The /Fe or /o flag names the linked file.
4263  StringRef Val =
4264  C.getArgs()
4265  .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4266  ->getValue();
4267  NamedOutput =
4268  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4269  } else if (JA.getType() == types::TY_Image) {
4270  if (IsCLMode()) {
4271  // clang-cl uses BaseName for the executable name.
4272  NamedOutput =
4273  MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4274  } else {
4276  Output += OffloadingPrefix;
4277  if (MultipleArchs && !BoundArch.empty()) {
4278  Output += "-";
4279  Output.append(BoundArch);
4280  }
4281  NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4282  }
4283  } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4284  NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4285  } else {
4286  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4287  assert(Suffix && "All types used for output should have a suffix.");
4288 
4289  std::string::size_type End = std::string::npos;
4291  End = BaseName.rfind('.');
4292  SmallString<128> Suffixed(BaseName.substr(0, End));
4293  Suffixed += OffloadingPrefix;
4294  if (MultipleArchs && !BoundArch.empty()) {
4295  Suffixed += "-";
4296  Suffixed.append(BoundArch);
4297  }
4298  // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
4299  // the unoptimized bitcode so that it does not get overwritten by the ".bc"
4300  // optimized bitcode output.
4301  if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) &&
4302  JA.getType() == types::TY_LLVM_BC)
4303  Suffixed += ".tmp";
4304  Suffixed += '.';
4305  Suffixed += Suffix;
4306  NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
4307  }
4308 
4309  // Prepend object file path if -save-temps=obj
4310  if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
4311  JA.getType() != types::TY_PCH) {
4312  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4313  SmallString<128> TempPath(FinalOutput->getValue());
4314  llvm::sys::path::remove_filename(TempPath);
4315  StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
4316  llvm::sys::path::append(TempPath, OutputFileName);
4317  NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
4318  }
4319 
4320  // If we're saving temps and the temp file conflicts with the input file,
4321  // then avoid overwriting input file.
4322  if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
4323  bool SameFile = false;
4324  SmallString<256> Result;
4325  llvm::sys::fs::current_path(Result);
4326  llvm::sys::path::append(Result, BaseName);
4327  llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
4328  // Must share the same path to conflict.
4329  if (SameFile) {
4330  StringRef Name = llvm::sys::path::filename(BaseInput);
4331  std::pair<StringRef, StringRef> Split = Name.split('.');
4332  std::string TmpName = GetTemporaryPath(
4333  Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
4334  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4335  }
4336  }
4337 
4338  // As an annoying special case, PCH generation doesn't strip the pathname.
4339  if (JA.getType() == types::TY_PCH && !IsCLMode()) {
4340  llvm::sys::path::remove_filename(BasePath);
4341  if (BasePath.empty())
4342  BasePath = NamedOutput;
4343  else
4344  llvm::sys::path::append(BasePath, NamedOutput);
4345  return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
4346  } else {
4347  return C.addResultFile(NamedOutput, &JA);
4348  }
4349 }
4350 
4351 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
4352  // Seach for Name in a list of paths.
4353  auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
4355  // Respect a limited subset of the '-Bprefix' functionality in GCC by
4356  // attempting to use this prefix when looking for file paths.
4357  for (const auto &Dir : P) {
4358  if (Dir.empty())
4359  continue;
4360  SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4361  llvm::sys::path::append(P, Name);
4362  if (llvm::sys::fs::exists(Twine(P)))
4363  return P.str().str();
4364  }
4365  return None;
4366  };
4367 
4368  if (auto P = SearchPaths(PrefixDirs))
4369  return *P;
4370 
4372  llvm::sys::path::append(R, Name);
4373  if (llvm::sys::fs::exists(Twine(R)))
4374  return R.str();
4375 
4377  llvm::sys::path::append(P, Name);
4378  if (llvm::sys::fs::exists(Twine(P)))
4379  return P.str();
4380 
4381  if (auto P = SearchPaths(TC.getLibraryPaths()))
4382  return *P;
4383 
4384  if (auto P = SearchPaths(TC.getFilePaths()))
4385  return *P;
4386 
4387  return Name;
4388 }
4389 
4390 void Driver::generatePrefixedToolNames(
4391  StringRef Tool, const ToolChain &TC,
4392  SmallVectorImpl<std::string> &Names) const {
4393  // FIXME: Needs a better variable than TargetTriple
4394  Names.emplace_back((TargetTriple + "-" + Tool).str());
4395  Names.emplace_back(Tool);
4396 
4397  // Allow the discovery of tools prefixed with LLVM's default target triple.
4398  std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
4399  if (DefaultTargetTriple != TargetTriple)
4400  Names.emplace_back((DefaultTargetTriple + "-" + Tool).str());
4401 }
4402 
4404  ArrayRef<std::string> Names) {
4405  for (const auto &Name : Names) {
4406  llvm::sys::path::append(Dir, Name);
4407  if (llvm::sys::fs::can_execute(Twine(Dir)))
4408  return true;
4409  llvm::sys::path::remove_filename(Dir);
4410  }
4411  return false;
4412 }
4413 
4414 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
4415  SmallVector<std::string, 2> TargetSpecificExecutables;
4416  generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
4417 
4418  // Respect a limited subset of the '-Bprefix' functionality in GCC by
4419  // attempting to use this prefix when looking for program paths.
4420  for (const auto &PrefixDir : PrefixDirs) {
4421  if (llvm::sys::fs::is_directory(PrefixDir)) {
4422  SmallString<128> P(PrefixDir);
4423  if (ScanDirForExecutable(P, TargetSpecificExecutables))
4424  return P.str();
4425  } else {
4426  SmallString<128> P((PrefixDir + Name).str());
4427  if (llvm::sys::fs::can_execute(Twine(P)))
4428  return P.str();
4429  }
4430  }
4431 
4432  const ToolChain::path_list &List = TC.getProgramPaths();
4433  for (const auto &Path : List) {
4434  SmallString<128> P(Path);
4435  if (ScanDirForExecutable(P, TargetSpecificExecutables))
4436  return P.str();
4437  }
4438 
4439  // If all else failed, search the path.
4440  for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
4441  if (llvm::ErrorOr<std::string> P =
4442  llvm::sys::findProgramByName(TargetSpecificExecutable))
4443  return *P;
4444 
4445  return Name;
4446 }
4447 
4448 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
4449  SmallString<128> Path;
4450  std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
4451  if (EC) {
4452  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4453  return "";
4454  }
4455 
4456  return Path.str();
4457 }
4458 
4459 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
4460  SmallString<128> Output;
4461  if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
4462  // FIXME: If anybody needs it, implement this obscure rule:
4463  // "If you specify a directory without a file name, the default file name
4464  // is VCx0.pch., where x is the major version of Visual C++ in use."
4465  Output = FpArg->getValue();
4466 
4467  // "If you do not specify an extension as part of the path name, an
4468  // extension of .pch is assumed. "
4469  if (!llvm::sys::path::has_extension(Output))
4470  Output += ".pch";
4471  } else {
4472  if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
4473  Output = YcArg->getValue();
4474  if (Output.empty())
4475  Output = BaseName;
4476  llvm::sys::path::replace_extension(Output, ".pch");
4477  }
4478  return Output.str();
4479 }
4480 
4481 const ToolChain &Driver::getToolChain(const ArgList &Args,
4482  const llvm::Triple &Target) const {
4483 
4484  auto &TC = ToolChains[Target.str()];
4485  if (!TC) {
4486  switch (Target.getOS()) {
4487  case llvm::Triple::Haiku:
4488  TC = llvm::make_unique<toolchains::Haiku>(*this, Target, Args);
4489  break;
4490  case llvm::Triple::Ananas:
4491  TC = llvm::make_unique<toolchains::Ananas>(*this, Target, Args);
4492  break;
4493  case llvm::Triple::CloudABI:
4494  TC = llvm::make_unique<toolchains::CloudABI>(*this, Target, Args);
4495  break;
4496  case llvm::Triple::Darwin:
4497  case llvm::Triple::MacOSX:
4498  case llvm::Triple::IOS:
4499  case llvm::Triple::TvOS:
4500  case llvm::Triple::WatchOS:
4501  TC = llvm::make_unique<toolchains::DarwinClang>(*this, Target, Args);
4502  break;
4503  case llvm::Triple::DragonFly:
4504  TC = llvm::make_unique<toolchains::DragonFly>(*this, Target, Args);
4505  break;
4506  case llvm::Triple::OpenBSD:
4507  TC = llvm::make_unique<toolchains::OpenBSD>(*this, Target, Args);
4508  break;
4509  case llvm::Triple::NetBSD:
4510  TC = llvm::make_unique<toolchains::NetBSD>(*this, Target, Args);
4511  break;
4512  case llvm::Triple::FreeBSD:
4513  TC = llvm::make_unique<toolchains::FreeBSD>(*this, Target, Args);
4514  break;
4515  case llvm::Triple::Minix:
4516  TC = llvm::make_unique<toolchains::Minix>(*this, Target, Args);
4517  break;
4518  case llvm::Triple::Linux:
4519  case llvm::Triple::ELFIAMCU:
4520  if (Target.getArch() == llvm::Triple::hexagon)
4521  TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4522  Args);
4523  else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
4524  !Target.hasEnvironment())
4525  TC = llvm::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
4526  Args);
4527  else
4528  TC = llvm::make_unique<toolchains::Linux>(*this, Target, Args);
4529  break;
4530  case llvm::Triple::NaCl:
4531  TC = llvm::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
4532  break;
4533  case llvm::Triple::Fuchsia:
4534  TC = llvm::make_unique<toolchains::Fuchsia>(*this, Target, Args);
4535  break;
4536  case llvm::Triple::Solaris:
4537  TC = llvm::make_unique<toolchains::Solaris>(*this, Target, Args);
4538  break;
4539  case llvm::Triple::AMDHSA:
4540  TC = llvm::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
4541  break;
4542  case llvm::Triple::Win32:
4543  switch (Target.getEnvironment()) {
4544  default:
4545  if (Target.isOSBinFormatELF())
4546  TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4547  else if (Target.isOSBinFormatMachO())
4548  TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4549  else
4550  TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4551  break;
4552  case llvm::Triple::GNU:
4553  TC = llvm::make_unique<toolchains::MinGW>(*this, Target, Args);
4554  break;
4555  case llvm::Triple::Itanium:
4556  TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
4557  Args);
4558  break;
4559  case llvm::Triple::MSVC:
4560  case llvm::Triple::UnknownEnvironment:
4561  if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4562  .startswith_lower("bfd"))
4563  TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(
4564  *this, Target, Args);
4565  else
4566  TC =
4567  llvm::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
4568  break;
4569  }
4570  break;
4571  case llvm::Triple::PS4:
4572  TC = llvm::make_unique<toolchains::PS4CPU>(*this, Target, Args);
4573  break;
4574  case llvm::Triple::Contiki:
4575  TC = llvm::make_unique<toolchains::Contiki>(*this, Target, Args);
4576  break;
4577  default:
4578  // Of these targets, Hexagon is the only one that might have
4579  // an OS of Linux, in which case it got handled above already.
4580  switch (Target.getArch()) {
4581  case llvm::Triple::tce:
4582  TC = llvm::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
4583  break;
4584  case llvm::Triple::tcele:
4585  TC = llvm::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
4586  break;
4587  case llvm::Triple::hexagon:
4588  TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4589  Args);
4590  break;
4591  case llvm::Triple::lanai:
4592  TC = llvm::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
4593  break;
4594  case llvm::Triple::xcore:
4595  TC = llvm::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
4596  break;
4597  case llvm::Triple::wasm32:
4598  case llvm::Triple::wasm64:
4599  TC = llvm::make_unique<toolchains::WebAssembly>(*this, Target, Args);
4600  break;
4601  case llvm::Triple::avr:
4602  TC = llvm::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
4603  break;
4604  case llvm::Triple::riscv32:
4605  case llvm::Triple::riscv64:
4606  TC = llvm::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
4607  break;
4608  default:
4609  if (Target.getVendor() == llvm::Triple::Myriad)
4610  TC = llvm::make_unique<toolchains::MyriadToolChain>(*this, Target,
4611  Args);
4612  else if (toolchains::BareMetal::handlesTarget(Target))
4613  TC = llvm::make_unique<toolchains::BareMetal>(*this, Target, Args);
4614  else if (Target.isOSBinFormatELF())
4615  TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4616  else if (Target.isOSBinFormatMachO())
4617  TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4618  else
4619  TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4620  }
4621  }
4622  }
4623 
4624  // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA
4625  // compiles always need two toolchains, the CUDA toolchain and the host
4626  // toolchain. So the only valid way to create a CUDA toolchain is via
4627  // CreateOffloadingDeviceToolChains.
4628 
4629  return *TC;
4630 }
4631 
4633  // Say "no" if there is not exactly one input of a type clang understands.
4634  if (JA.size() != 1 ||
4635  !types::isAcceptedByClang((*JA.input_begin())->getType()))
4636  return false;
4637 
4638  // And say "no" if this is not a kind of action clang understands.
4639  if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
4640  !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
4641  return false;
4642 
4643  return true;
4644 }
4645 
4646 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
4647 /// grouped values as integers. Numbers which are not provided are set to 0.
4648 ///
4649 /// \return True if the entire string was parsed (9.2), or all groups were
4650 /// parsed (10.3.5extrastuff).
4651 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
4652  unsigned &Micro, bool &HadExtra) {
4653  HadExtra = false;
4654 
4655  Major = Minor = Micro = 0;
4656  if (Str.empty())
4657  return false;
4658 
4659  if (Str.consumeInteger(10, Major))
4660  return false;
4661  if (Str.empty())
4662  return true;
4663  if (Str[0] != '.')
4664  return false;
4665 
4666  Str = Str.drop_front(1);
4667 
4668  if (Str.consumeInteger(10, Minor))
4669  return false;
4670  if (Str.empty())
4671  return true;
4672  if (Str[0] != '.')
4673  return false;
4674  Str = Str.drop_front(1);
4675 
4676  if (Str.consumeInteger(10, Micro))
4677  return false;
4678  if (!Str.empty())
4679  HadExtra = true;
4680  return true;
4681 }
4682 
4683 /// Parse digits from a string \p Str and fulfill \p Digits with
4684 /// the parsed numbers. This method assumes that the max number of
4685 /// digits to look for is equal to Digits.size().
4686 ///
4687 /// \return True if the entire string was parsed and there are
4688 /// no extra characters remaining at the end.
4689 bool Driver::GetReleaseVersion(StringRef Str,
4690  MutableArrayRef<unsigned> Digits) {
4691  if (Str.empty())
4692  return false;
4693 
4694  unsigned CurDigit = 0;
4695  while (CurDigit < Digits.size()) {
4696  unsigned Digit;
4697  if (Str.consumeInteger(10, Digit))
4698  return false;
4699  Digits[CurDigit] = Digit;
4700  if (Str.empty())
4701  return true;
4702  if (Str[0] != '.')
4703  return false;
4704  Str = Str.drop_front(1);
4705  CurDigit++;
4706  }
4707 
4708  // More digits than requested, bail out...
4709  return false;
4710 }
4711 
4712 std::pair<unsigned, unsigned> Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
4713  unsigned IncludedFlagsBitmask = 0;
4714  unsigned ExcludedFlagsBitmask = options::NoDriverOption;
4715 
4716  if (IsClCompatMode) {
4717  // Include CL and Core options.
4718  IncludedFlagsBitmask |= options::CLOption;
4719  IncludedFlagsBitmask |= options::CoreOption;
4720  } else {
4721  ExcludedFlagsBitmask |= options::CLOption;
4722  }
4723 
4724  return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
4725 }
4726 
4727 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
4728  return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
4729 }
StringRef getSysRoot() const
Returns the sysroot path.
static bool GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, unsigned &Micro, bool &HadExtra)
GetReleaseVersion - Parse (([0-9]+)(.
Definition: Driver.cpp:4651
static bool DiagnoseInputExistence(const Driver &D, const DerivedArgList &Args, StringRef Value, types::ID Ty)
Check that the file referenced by Value exists.
Definition: Driver.cpp:1957
ID
ID - Ordered values for successive stages in the compilation process which interact with user options...
Definition: Phases.h:18
static bool ContainsCompileOrAssembleAction(const Action *A)
Check whether the given input tree contains any compilation or assembly actions.
Definition: Driver.cpp:1856
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
SmallVector< std::string, 16 > path_list
Definition: ToolChain.h:90
bool isCollapsingWithNextDependentActionLegal() const
Return true if this function can be collapsed with others.
Definition: Action.h:163
const llvm::opt::ArgStringList & getTempFiles() const
Definition: Compilation.h:208
std::string ModeSuffix
Driver mode part of the executable name, as g++.
Definition: ToolChain.h:66
CudaArch
Definition: Cuda.h:35
const char * CudaArchToString(CudaArch A)
Definition: Cuda.cpp:31
OpenMPRuntimeKind getOpenMPRuntime(const llvm::opt::ArgList &Args) const
Compute the desired OpenMP runtime from the flags provided.
Definition: Driver.cpp:540
std::string getClangFullVersion()
Retrieves a string representing the complete clang version, which includes the clang version number...
Definition: Version.cpp:118
prefix_list PrefixDirs
Definition: Driver.h:145
std::string GetTemporaryPath(StringRef Prefix, StringRef Suffix) const
GetTemporaryPath - Return the pathname of a temporary file to use as part of compilation; the file wi...
Definition: Driver.cpp:4448
const MultilibSet & getMultilibs() const
Definition: ToolChain.h:229
StringRef getArchName() const
Definition: ToolChain.h:202
T * MakeAction(Args &&... Arg)
Creates a new Action owned by this Compilation.
Definition: Compilation.h:197
bool canLipoType(ID Id)
canLipoType - Is this type acceptable as the output of a universal build (currently, just the Nothing, Image, and Object types).
Definition: Types.cpp:88
Set a ToolChain&#39;s effective triple.
Definition: ToolChain.h:558
const char * getTypeTempSuffix(ID Id, bool CLMode=false)
getTypeTempSuffix - Return the suffix to use when creating a temp file of this type, or null if unspecified.
Definition: Types.cpp:55
unsigned CCCUsePCH
Use lazy precompiled headers for PCH support.
Definition: Driver.h:231
void BuildInputs(const ToolChain &TC, llvm::opt::DerivedArgList &Args, InputList &Inputs) const
BuildInputs - Construct the list of inputs and their types from the given arguments.
Definition: Driver.cpp:1996
StringRef P
void setResponseFile(const char *FileName)
Set to pass arguments via a response file when launching the command.
Definition: Job.cpp:305
bool isUsingLTO() const
Returns true if we are performing any kind of LTO.
Definition: Driver.h:519
virtual std::string getThreadModel() const
getThreadModel() - Which thread model does this target use?
Definition: ToolChain.h:443
virtual void ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const =0
ConstructJob - Construct jobs to perform the action JA, writing to Output and with Inputs...
input_range inputs()
Definition: Action.h:150
virtual bool isLinkJob() const
Definition: Tool.h:89
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1294
std::string GetProgramPath(StringRef Name, const ToolChain &TC) const
GetProgramPath - Lookup Name in the list of program search paths.
Definition: Driver.cpp:4414
virtual bool isThreadModelSupported(const StringRef Model) const
isThreadModelSupported() - Does this target support a thread model?
Definition: ToolChain.cpp:501
std::string DyldPrefix
Dynamic loader prefix, if present.
Definition: Driver.h:151
virtual void printVerboseInfo(raw_ostream &OS) const
Dispatch to the specific toolchain for verbose printing.
Definition: ToolChain.h:302
static StringRef getCategoryNameFromID(unsigned CategoryID)
Given a category ID, return the name of the category.
DiagnosticBuilder Diag(unsigned DiagID) const
Definition: Driver.h:109
InputInfo BuildJobsForAction(Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, std::map< std::pair< const Action *, std::string >, InputInfo > &CachedResults, Action::OffloadKind TargetDeviceOffloadKind) const
BuildJobsForAction - Construct the jobs to perform for the action A and return an InputInfo for the r...
Definition: Driver.cpp:3848
static ParsedClangName getTargetAndModeFromProgramName(StringRef ProgName)
Return any implicit target and/or mode flag for an invocation of the compiler driver as ProgName...
Definition: ToolChain.cpp:204
ResponseFileSupport getResponseFilesSupport() const
Returns the level of support for response files of this tool, whether it accepts arguments to be pass...
Definition: Tool.h:93
CudaArch StringToCudaArch(llvm::StringRef S)
Definition: Cuda.cpp:103
Type used to communicate device actions.
Definition: Action.h:254
const char * getClassName() const
Definition: Action.h:138
RAII class that determines when any errors have occurred between the time the instance was created an...
Definition: Diagnostic.h:998
virtual void ConstructJobMultipleOutputs(Compilation &C, const JobAction &JA, const InputInfoList &Outputs, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const
Construct jobs to perform the action JA, writing to the Outputs and with Inputs, and add the jobs to ...
Definition: Tool.cpp:26
void registerDependentActionInfo(const ToolChain *TC, StringRef BoundArch, OffloadKind Kind)
Register information about a dependent action.
Definition: Action.h:602
const ArgStringMap & getFailureResultFiles() const
Definition: Compilation.h:212
float __ovld __cnfn normalize(float p)
Returns a vector in the same direction as p but with a length of 1.
const llvm::opt::DerivedArgList & getArgsForToolChain(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind)
getArgsForToolChain - Return the derived argument list for the tool chain TC (or the default tool cha...
Definition: Compilation.cpp:63
const Multilib & getMultilib() const
Definition: ToolChain.h:231
void addOffloadDeviceToolChain(const ToolChain *DeviceToolChain, Action::OffloadKind OffloadKind)
Definition: Compilation.h:174
Compilation * BuildCompilation(ArrayRef< const char *> Args)
BuildCompilation - Construct a compilation object for a command line argument vector.
Definition: Driver.cpp:902
std::string TargetPrefix
Target part of the executable name, as i686-linux-android.
Definition: ToolChain.h:63
path_list & getProgramPaths()
Definition: ToolChain.h:226
Contains the files in the compilation diagnostic report generated by generateCompilationDiagnostics.
Definition: Driver.h:412
static bool ScanDirForExecutable(SmallString< 128 > &Dir, ArrayRef< std::string > Names)
Definition: Driver.cpp:4403
Definition: Format.h:2072
ActionList & getInputs()
Definition: Action.h:143
std::string Dir
The path the driver executable was in, as invoked from the command line.
Definition: Driver.h:120
ID lookupCXXTypeForCType(ID Id)
lookupCXXTypeForCType - Lookup CXX input type that corresponds to given C type (used for clang++ emul...
Definition: Types.cpp:294
const std::string & gccSuffix() const
Get the detected GCC installation path suffix for the multi-arch target variant.
Definition: Multilib.h:45
Type used to communicate host actions.
Definition: Action.h:295
static unsigned getNumberOfCategories()
Return the number of diagnostic categories.
BackendAction
Definition: BackendUtil.h:31
std::string GetClPchPath(Compilation &C, StringRef BaseName) const
Return the pathname of the pch file in clang-cl mode.
Definition: Driver.cpp:4459
Action - Represent an abstract compilation step to perform.
Definition: Action.h:48
std::string getTripleString() const
Definition: ToolChain.h:210
bool HandleImmediateArgs(const Compilation &C)
HandleImmediateArgs - Handle any arguments which should be treated before building actions or binding...
Definition: Driver.cpp:1608
InputInfo - Wrapper for information about an input source.
Definition: InputInfo.h:23
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
types::ID getType() const
Definition: Action.h:141
bool isOptimizationLevelFast(const llvm::opt::ArgList &Args)
path_list & getFilePaths()
Definition: ToolChain.h:223
CompileCommand Cmd
The LLVM OpenMP runtime.
Definition: Driver.h:95
OffloadKind getOffloadingDeviceKind() const
Definition: Action.h:197
std::unique_ptr< llvm::opt::OptTable > createDriverOptTable()
virtual bool isDsymutilJob() const
Definition: Tool.h:90
Driver - Encapsulate logic for constructing compilation processes from a set of gcc-driver-like comma...
Definition: Driver.h:58
An unknown OpenMP runtime.
Definition: Driver.h:91
const llvm::opt::InputArgList & getInputArgs() const
Definition: Compilation.h:185
input_iterator input_begin()
Definition: Action.h:148
llvm::vfs::FileSystem & getVFS() const
Definition: Driver.h:300
bool isHIP(ID Id)
isHIP - Is this a HIP input.
Definition: Types.cpp:179
return Out str()
static Arg * MakeInputArg(DerivedArgList &Args, OptTable &Opts, StringRef Value, bool Claim=true)
Definition: Driver.cpp:292
bool hasOffloadToolChain() const
Return true if an offloading tool chain of a given kind exists.
Definition: Compilation.h:156
ID getPreprocessedType(ID Id)
getPreprocessedType - Get the ID of the type for this input when it has been preprocessed, or INVALID if this input is not preprocessed.
Definition: Types.cpp:43
StringRef Filename
Definition: Format.cpp:1629
void add(Action &A, const ToolChain &TC, const char *BoundArch, OffloadKind OKind)
Add a action along with the associated toolchain, bound arch, and offload kind.
Definition: Action.cpp:288
void PrintActions(const Compilation &C) const
PrintActions - Print the list of actions.
Definition: Driver.cpp:1848
const ToolChain & getDefaultToolChain() const
Definition: Compilation.h:136
const ArgStringMap & getResultFiles() const
Definition: Compilation.h:210
unsigned GenReproducer
Force clang to emit reproducer for driver invocation.
Definition: Driver.h:236
ID lookupHeaderTypeForSourceType(ID Id)
Lookup header file input type that corresponds to given source file type (used for clang-cl emulation...
Definition: Types.cpp:310
const char * getTypeName(ID Id)
getTypeName - Return the name of the type for Id.
Definition: Types.cpp:39
std::string getAsString() const
getAsString - Return a string name for this input, for debugging.
Definition: InputInfo.h:95
ActionClass getKind() const
Definition: Action.h:140
SourceLocation End
const char * getPhaseName(ID Id)
Definition: Phases.cpp:16
int Id
Definition: ASTDiff.cpp:191
const Tool & getCreator() const
getCreator - Return the Tool which caused the creation of this job.
Definition: Job.h:108
StateNode * Previous
bool isSaveTempsObj() const
Definition: Driver.h:329
Defines version macros and version-related utility functions for Clang.
bool IsCLMode() const
Whether the driver should follow cl.exe like behavior.
Definition: Driver.h:182
virtual types::ID LookupTypeForExtension(StringRef Ext) const
LookupTypeForExtension - Return the default language type to use for the given extension.
Definition: ToolChain.cpp:467
llvm::opt::InputArgList ParseArgStrings(ArrayRef< const char *> Args, bool IsClCompatMode, bool &ContainsError)
ParseArgStrings - Parse the given list of strings into an ArgList.
Definition: Driver.cpp:168
This corresponds to a single GCC Multilib, or a segment of one controlled by a command line flag...
Definition: Multilib.h:29
static std::string GetTriplePlusArchString(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind OffloadKind)
Return a string that uniquely identifies the result of a job.
Definition: Driver.cpp:3835
void HandleAutocompletions(StringRef PassedFlags) const
HandleAutocompletions - Handle –autocomplete by searching and printing possible flags, descriptions, and its arguments.
Definition: Driver.cpp:1527
virtual std::string getCompilerRT(const llvm::opt::ArgList &Args, StringRef Component, bool Shared=false) const
Definition: ToolChain.cpp:365
void getCompilationPhases(ID Id, llvm::SmallVectorImpl< phases::ID > &Phases)
getCompilationPhases - Get the list of compilation phases (&#39;Phases&#39;) to be done for type &#39;Id&#39;...
Definition: Types.cpp:268
void BuildUniversalActions(Compilation &C, const ToolChain &TC, const InputList &BAInputs) const
BuildUniversalActions - Construct the list of actions to perform for the given arguments, which may require a universal build.
Definition: Driver.cpp:1868
size_type size() const
Definition: Action.h:146
void setCannotBeCollapsedWithNextDependentAction()
Mark this action as not legal to collapse.
Definition: Action.h:158
Action * ConstructPhaseAction(Compilation &C, const llvm::opt::ArgList &Args, phases::ID Phase, Action *Input, Action::OffloadKind TargetDeviceOffloadKind=Action::OFK_None) const
ConstructAction - Construct the appropriate action to do for Phase on the Input, taking in to account...
Definition: Driver.cpp:3330
llvm::Triple::ArchType getArchTypeForMachOArchName(StringRef Str)
Definition: Darwin.cpp:34
const ActionList & getActions() const
Get each of the individual arrays.
Definition: Action.h:285
const_offload_toolchains_range getOffloadToolChains() const
Definition: Compilation.h:151
static void PrintDiagnosticCategories(raw_ostream &OS)
PrintDiagnosticCategories - Implement the –print-diagnostic-categories option.
Definition: Driver.cpp:1520
void Print(llvm::raw_ostream &OS, const char *Terminator, bool Quote, CrashReportInfo *CrashInfo=nullptr) const
Definition: Job.cpp:436
path_list & getLibraryPaths()
Definition: ToolChain.h:220
void PrintHelp(bool ShowHidden) const
PrintHelp - Print the help text.
Definition: Driver.cpp:1478
virtual bool canEmitIR() const
Definition: Tool.h:87
static void printArg(llvm::raw_ostream &OS, StringRef Arg, bool Quote)
Print a command argument, and optionally quote it.
Definition: Job.cpp:102
#define false
Definition: stdbool.h:33
virtual bool hasIntegratedCPP() const =0
void generateCompilationDiagnostics(Compilation &C, const Command &FailingCommand, StringRef AdditionalInformation="", CompilationDiagnosticReport *GeneratedReport=nullptr)
generateCompilationDiagnostics - Generate diagnostics information including preprocessed source file(...
Definition: Driver.cpp:1205
static unsigned PrintActions1(const Compilation &C, Action *A, std::map< Action *, unsigned > &Ids)
Definition: Driver.cpp:1771
bool embedBitcodeInObject() const
Definition: Driver.h:332
Encodes a location in the source.
const llvm::opt::DerivedArgList & getArgs() const
Definition: Compilation.h:187
bool hasErrorOccurred() const
Determine whether any errors have occurred since this object instance was created.
Definition: Diagnostic.h:1009
Command - An executable path/name and argument vector to execute.
Definition: Job.h:42
bool isCuda(ID Id)
isCuda - Is this a CUDA input.
Definition: Types.cpp:167
The legacy name for the LLVM OpenMP runtime from when it was the Intel OpenMP runtime.
Definition: Driver.h:105
std::string InstalledDir
The path to the installed clang directory, if any.
Definition: Driver.h:129
bool CCCIsCXX() const
Whether the driver should follow g++ like behavior.
Definition: Driver.h:173
const char * addResultFile(const char *Name, const JobAction *JA)
addResultFile - Add a file to remove on failure, and returns its argument.
Definition: Compilation.h:240
bool isSaveTempsEnabled() const
Definition: Driver.h:328
static std::vector< std::string > getDiagnosticFlags()
Get the string of all diagnostic flags.
std::string UserConfigDir
User directory for config files.
Definition: Driver.h:138
bool isAcceptedByClang(ID Id)
isAcceptedByClang - Can clang handle this input type.
Definition: Types.cpp:95
virtual bool hasIntegratedAssembler() const
Definition: Tool.h:86
An offload action combines host or/and device actions according to the programming model implementati...
Definition: Action.h:248
const char * getDefaultImageName() const
Returns the default name for linked images (e.g., "a.out").
Definition: Driver.cpp:4135
virtual RuntimeLibType GetRuntimeLibType(const llvm::opt::ArgList &Args) const
Definition: ToolChain.cpp:660
void ExecuteJobs(const JobList &Jobs, SmallVectorImpl< std::pair< int, const Command *>> &FailingCommands) const
ExecuteJob - Execute a single job.
const char * getShortName() const
Definition: Tool.h:82
void setIgnoreAllWarnings(bool Val)
When set to true, any unmapped warnings are ignored.
Definition: Diagnostic.h:587
static bool searchForFile(SmallVectorImpl< char > &FilePath, ArrayRef< std::string > Dirs, StringRef FileName)
Looks the given directories for the specified file.
Definition: Driver.cpp:702
unsigned getOffloadingHostActiveKinds() const
Definition: Action.h:193
void EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf)
const Action & getSource() const
getSource - Return the Action which caused the creation of this job.
Definition: Job.h:105
Dataflow Directional Tag Classes.
Level getDiagnosticLevel(unsigned DiagID, SourceLocation Loc) const
Based on the way the client configured the DiagnosticsEngine object, classify the specified diagnosti...
Definition: Diagnostic.h:833
const char * getExecutable() const
Definition: Job.h:125
unsigned CCCPrintBindings
Only print tool bindings, don&#39;t build any jobs.
Definition: Driver.h:185
static llvm::Triple computeTargetTriple(const Driver &D, StringRef TargetTriple, const ArgList &Args, StringRef DarwinArchName="")
Compute target triple from args.
Definition: Driver.cpp:395
virtual std::string ComputeEffectiveClangTriple(const llvm::opt::ArgList &Args, types::ID InputType=types::TY_INVALID) const
ComputeEffectiveClangTriple - Return the Clang triple to use for this target, which may take into acc...
Definition: ToolChain.cpp:637
const llvm::opt::ArgStringList & getArguments() const
Definition: Job.h:127
virtual bool hasGoodDiagnostics() const
Does this tool have "good" standardized diagnostics, or should the driver add an additional "command ...
Definition: Tool.h:117
std::string SysRoot
sysroot, if present
Definition: Driver.h:148
Tool - Information on a specific compilation tool.
Definition: Tool.h:34
void setTripleTypeForMachOArchName(llvm::Triple &T, StringRef Str)
Definition: Darwin.cpp:69
std::string Name
The name the driver was invoked as.
Definition: Driver.h:116
static bool handlesTarget(const llvm::Triple &Triple)
Definition: BareMetal.cpp:60
The GNU OpenMP runtime.
Definition: Driver.h:100
llvm::SmallVector< std::string, 4 > TemporaryFiles
Definition: Driver.h:413
int ExecuteCompilation(Compilation &C, SmallVectorImpl< std::pair< int, const Command *> > &FailingCommands)
ExecuteCompilation - Execute the compilation according to the command line arguments and return an ap...
Definition: Driver.cpp:1407
ActionList & getActions()
Definition: Compilation.h:191
ParsedClangName ClangNameParts
Target and driver mode components extracted from clang executable name.
Definition: Driver.h:126
bool getCheckInputsExist() const
Definition: Driver.h:302
std::string ClangExecutable
The original path to the clang executable.
Definition: Driver.h:123
void BuildJobs(Compilation &C) const
BuildJobs - Bind actions to concrete tools and translate arguments to form the list of jobs to run...
Definition: Driver.cpp:3428
ID getPrecompiledType(ID Id)
getPrecompiledType - Get the ID of the type for this input when it has been precompiled, or INVALID if this input is not precompiled.
Definition: Types.cpp:47
bool ShouldUseClangCompiler(const JobAction &JA) const
ShouldUseClangCompiler - Should the clang compiler be used to handle this action. ...
Definition: Driver.cpp:4632
StringRef getDefaultUniversalArchName() const
Provide the default architecture name (as expected by -arch) for this toolchain.
Definition: ToolChain.cpp:226
Compilation - A set of tasks to perform for a single driver invocation.
Definition: Compilation.h:46
void BuildActions(Compilation &C, llvm::opt::DerivedArgList &Args, const InputList &Inputs, ActionList &Actions) const
BuildActions - Construct the list of actions to perform for the given arguments, which are only done ...
Definition: Driver.cpp:3082
const Driver & getDriver() const
Definition: Compilation.h:134
const llvm::Triple & getTriple() const
Definition: ToolChain.h:187
static StringRef GetOffloadKindName(OffloadKind Kind)
Return a string containing a offload kind name.
Definition: Action.cpp:144
std::string GetFilePath(StringRef Name, const ToolChain &TC) const
GetFilePath - Lookup Name in the list of file search paths.
Definition: Driver.cpp:4351
static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args)
Definition: Driver.cpp:1100
ID lookupTypeForExtension(llvm::StringRef Ext)
lookupTypeForExtension - Lookup the type to use for the file extension Ext.
Definition: Types.cpp:195
const ToolChain & getToolChain() const
Definition: Tool.h:84
bool CleanupFileMap(const ArgStringMap &Files, const JobAction *JA, bool IssueErrors=false) const
CleanupFileMap - Remove the files in the given map.
virtual std::string getCompilerRTPath() const
Definition: ToolChain.cpp:355
X
Add a minimal nested name specifier fixit hint to allow lookup of a tag name from an outer enclosing ...
Definition: SemaDecl.cpp:13853
Driver(StringRef ClangExecutable, StringRef TargetTriple, DiagnosticsEngine &Diags, IntrusiveRefCntPtr< llvm::vfs::FileSystem > VFS=nullptr)
Definition: Driver.cpp:91
void propagateHostOffloadInfo(unsigned OKinds, const char *OArch)
Append the host offload info of this action and propagate it to its dependences.
Definition: Action.cpp:67
static std::string GetOffloadingFileNamePrefix(OffloadKind Kind, StringRef NormalizedTriple, bool CreatePrefixForHost=false)
Return a string that can be used as prefix in order to generate unique files for each offloading kind...
Definition: Action.cpp:128
void ParseDriverMode(StringRef ProgramName, ArrayRef< const char *> Args)
ParseDriverMode - Look for and handle the driver mode option in Args.
Definition: Driver.cpp:135
const char * getName() const
Definition: Tool.h:80
const llvm::opt::OptTable & getOpts() const
Definition: Driver.h:296
virtual Tool * SelectTool(const JobAction &JA) const
Choose a tool to use to handle the action JA.
Definition: ToolChain.cpp:419
const char * addTempFile(const char *Name)
addTempFile - Add a file to remove on exit, and returns its argument.
Definition: Compilation.h:233
std::string getOffloadingKindPrefix() const
Return a string containing the offload kind of the action.
Definition: Action.cpp:89
const ToolChain * getSingleOffloadToolChain() const
Return an offload toolchain of the provided kind.
Definition: Compilation.h:164
__DEVICE__ int max(int __a, int __b)
std::string DriverTitle
Driver title to use with help.
Definition: Driver.h:154
static const char * MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, StringRef BaseName, types::ID FileType)
Create output filename based on ArgValue, which could either be a full filename, filename without ext...
Definition: Driver.cpp:4144
void initialize(TemplateInstantiationCallbackPtrs &Callbacks, const Sema &TheSema)
bool CCCIsCPP() const
Whether the driver is just the preprocessor.
Definition: Driver.h:176
void PrintVersion(const Compilation &C, raw_ostream &OS) const
PrintVersion - Print the driver version.
Definition: Driver.cpp:1494
void CreateOffloadingDeviceToolChains(Compilation &C, InputList &Inputs)
CreateOffloadingDeviceToolChains - create all the toolchains required to support offloading devices g...
Definition: Driver.cpp:565
bool appendSuffixForType(ID Id)
appendSuffixForType - When generating outputs of this type, should the suffix be appended (instead of...
Definition: Types.cpp:84
ID lookupTypeForTypeSpecifier(const char *Name)
lookupTypeForTypSpecifier - Lookup the type to use for a user specified type name.
Definition: Types.cpp:256
const char * GetNamedOutputPath(Compilation &C, const JobAction &JA, const char *BaseInput, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, StringRef NormalizedTriple) const
GetNamedOutputPath - Return the name to use for the output of the action JA.
Definition: Driver.cpp:4173
#define true
Definition: stdbool.h:32
void initCompilationForDiagnostics()
initCompilationForDiagnostics - Remove stale state and suppress output so compilation can be reexecut...
bool isSrcFile(ID Id)
isSrcFile - Is this a source file, i.e.
Definition: Types.cpp:191
const char * DriverMode
Corresponding driver mode argument, as &#39;–driver-mode=g++&#39;.
Definition: ToolChain.h:69
const char * getOffloadingArch() const
Definition: Action.h:198
virtual void Print(llvm::raw_ostream &OS, const char *Terminator, bool Quote, CrashReportInfo *CrashInfo=nullptr) const
Definition: Job.cpp:215
unsigned CCGenDiagnostics
Whether the driver is generating diagnostics for debugging purposes.
Definition: Driver.h:201
std::string SystemConfigDir
System directory for config files.
Definition: Driver.h:135
ToolChain - Access to tools for a single platform.
Definition: ToolChain.h:88
std::string ResourceDir
The path to the compiler resource directory.
Definition: Driver.h:132