clang  10.0.0svn
Driver.cpp
Go to the documentation of this file.
1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Driver/Driver.h"
10 #include "InputInfo.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AVR.h"
13 #include "ToolChains/Ananas.h"
14 #include "ToolChains/BareMetal.h"
15 #include "ToolChains/Clang.h"
16 #include "ToolChains/CloudABI.h"
17 #include "ToolChains/Contiki.h"
19 #include "ToolChains/Cuda.h"
20 #include "ToolChains/Darwin.h"
21 #include "ToolChains/DragonFly.h"
22 #include "ToolChains/FreeBSD.h"
23 #include "ToolChains/Fuchsia.h"
24 #include "ToolChains/Gnu.h"
25 #include "ToolChains/HIP.h"
26 #include "ToolChains/Haiku.h"
27 #include "ToolChains/Hexagon.h"
28 #include "ToolChains/Hurd.h"
29 #include "ToolChains/Lanai.h"
30 #include "ToolChains/Linux.h"
31 #include "ToolChains/MSP430.h"
32 #include "ToolChains/MSVC.h"
33 #include "ToolChains/MinGW.h"
34 #include "ToolChains/Minix.h"
35 #include "ToolChains/MipsLinux.h"
36 #include "ToolChains/Myriad.h"
37 #include "ToolChains/NaCl.h"
38 #include "ToolChains/NetBSD.h"
39 #include "ToolChains/OpenBSD.h"
40 #include "ToolChains/PS4CPU.h"
41 #include "ToolChains/PPCLinux.h"
43 #include "ToolChains/Solaris.h"
44 #include "ToolChains/TCE.h"
45 #include "ToolChains/WebAssembly.h"
46 #include "ToolChains/XCore.h"
47 #include "clang/Basic/Version.h"
48 #include "clang/Config/config.h"
49 #include "clang/Driver/Action.h"
52 #include "clang/Driver/Job.h"
53 #include "clang/Driver/Options.h"
55 #include "clang/Driver/Tool.h"
56 #include "clang/Driver/ToolChain.h"
57 #include "llvm/ADT/ArrayRef.h"
58 #include "llvm/ADT/STLExtras.h"
59 #include "llvm/ADT/SmallSet.h"
60 #include "llvm/ADT/StringExtras.h"
61 #include "llvm/ADT/StringSet.h"
62 #include "llvm/ADT/StringSwitch.h"
63 #include "llvm/Config/llvm-config.h"
64 #include "llvm/Option/Arg.h"
65 #include "llvm/Option/ArgList.h"
66 #include "llvm/Option/OptSpecifier.h"
67 #include "llvm/Option/OptTable.h"
68 #include "llvm/Option/Option.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/FileSystem.h"
72 #include "llvm/Support/FormatVariadic.h"
73 #include "llvm/Support/Path.h"
74 #include "llvm/Support/PrettyStackTrace.h"
75 #include "llvm/Support/Process.h"
76 #include "llvm/Support/Program.h"
77 #include "llvm/Support/StringSaver.h"
78 #include "llvm/Support/TargetRegistry.h"
79 #include "llvm/Support/VirtualFileSystem.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include <map>
82 #include <memory>
83 #include <utility>
84 #if LLVM_ON_UNIX
85 #include <unistd.h> // getpid
86 #include <sysexits.h> // EX_IOERR
87 #endif
88 
89 using namespace clang::driver;
90 using namespace clang;
91 using namespace llvm::opt;
92 
93 // static
94 std::string Driver::GetResourcesPath(StringRef BinaryPath,
95  StringRef CustomResourceDir) {
96  // Since the resource directory is embedded in the module hash, it's important
97  // that all places that need it call this function, so that they get the
98  // exact same string ("a/../b/" and "b/" get different hashes, for example).
99 
100  // Dir is bin/ or lib/, depending on where BinaryPath is.
101  std::string Dir = llvm::sys::path::parent_path(BinaryPath);
102 
103  SmallString<128> P(Dir);
104  if (CustomResourceDir != "") {
105  llvm::sys::path::append(P, CustomResourceDir);
106  } else {
107  // On Windows, libclang.dll is in bin/.
108  // On non-Windows, libclang.so/.dylib is in lib/.
109  // With a static-library build of libclang, LibClangPath will contain the
110  // path of the embedding binary, which for LLVM binaries will be in bin/.
111  // ../lib gets us to lib/ in both cases.
112  P = llvm::sys::path::parent_path(Dir);
113  llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
114  CLANG_VERSION_STRING);
115  }
116 
117  return P.str();
118 }
119 
120 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
121  DiagnosticsEngine &Diags,
123  : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
124  SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None),
125  ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
126  DriverTitle("clang LLVM compiler"), CCPrintOptionsFilename(nullptr),
127  CCPrintHeadersFilename(nullptr), CCLogDiagnosticsFilename(nullptr),
128  CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false),
129  CCLogDiagnostics(false), CCGenDiagnostics(false),
130  TargetTriple(TargetTriple), CCCGenericGCCName(""), Saver(Alloc),
131  CheckInputsExist(true), GenReproducer(false),
132  SuppressMissingInputWarning(false) {
133 
134  // Provide a sane fallback if no VFS is specified.
135  if (!this->VFS)
136  this->VFS = llvm::vfs::getRealFileSystem();
137 
138  Name = llvm::sys::path::filename(ClangExecutable);
139  Dir = llvm::sys::path::parent_path(ClangExecutable);
140  InstalledDir = Dir; // Provide a sensible default installed dir.
141 
142 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
143  SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
144 #endif
145 #if defined(CLANG_CONFIG_FILE_USER_DIR)
146  UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
147 #endif
148 
149  // Compute the path to the resource directory.
150  ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
151 }
152 
153 void Driver::ParseDriverMode(StringRef ProgramName,
154  ArrayRef<const char *> Args) {
155  if (ClangNameParts.isEmpty())
157  setDriverModeFromOption(ClangNameParts.DriverMode);
158 
159  for (const char *ArgPtr : Args) {
160  // Ignore nullptrs, they are the response file's EOL markers.
161  if (ArgPtr == nullptr)
162  continue;
163  const StringRef Arg = ArgPtr;
164  setDriverModeFromOption(Arg);
165  }
166 }
167 
168 void Driver::setDriverModeFromOption(StringRef Opt) {
169  const std::string OptName =
170  getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
171  if (!Opt.startswith(OptName))
172  return;
173  StringRef Value = Opt.drop_front(OptName.size());
174 
175  if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
176  .Case("gcc", GCCMode)
177  .Case("g++", GXXMode)
178  .Case("cpp", CPPMode)
179  .Case("cl", CLMode)
180  .Default(None))
181  Mode = *M;
182  else
183  Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
184 }
185 
187  bool IsClCompatMode,
188  bool &ContainsError) {
189  llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
190  ContainsError = false;
191 
192  unsigned IncludedFlagsBitmask;
193  unsigned ExcludedFlagsBitmask;
194  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
195  getIncludeExcludeOptionFlagMasks(IsClCompatMode);
196 
197  unsigned MissingArgIndex, MissingArgCount;
198  InputArgList Args =
199  getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
200  IncludedFlagsBitmask, ExcludedFlagsBitmask);
201 
202  // Check for missing argument error.
203  if (MissingArgCount) {
204  Diag(diag::err_drv_missing_argument)
205  << Args.getArgString(MissingArgIndex) << MissingArgCount;
206  ContainsError |=
207  Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
209  }
210 
211  // Check for unsupported options.
212  for (const Arg *A : Args) {
213  if (A->getOption().hasFlag(options::Unsupported)) {
214  unsigned DiagID;
215  auto ArgString = A->getAsString(Args);
216  std::string Nearest;
217  if (getOpts().findNearest(
218  ArgString, Nearest, IncludedFlagsBitmask,
219  ExcludedFlagsBitmask | options::Unsupported) > 1) {
220  DiagID = diag::err_drv_unsupported_opt;
221  Diag(DiagID) << ArgString;
222  } else {
223  DiagID = diag::err_drv_unsupported_opt_with_suggestion;
224  Diag(DiagID) << ArgString << Nearest;
225  }
226  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
228  continue;
229  }
230 
231  // Warn about -mcpu= without an argument.
232  if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
233  Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
234  ContainsError |= Diags.getDiagnosticLevel(
235  diag::warn_drv_empty_joined_argument,
237  }
238  }
239 
240  for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
241  unsigned DiagID;
242  auto ArgString = A->getAsString(Args);
243  std::string Nearest;
244  if (getOpts().findNearest(
245  ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
246  DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
247  : diag::err_drv_unknown_argument;
248  Diags.Report(DiagID) << ArgString;
249  } else {
250  DiagID = IsCLMode()
251  ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
252  : diag::err_drv_unknown_argument_with_suggestion;
253  Diags.Report(DiagID) << ArgString << Nearest;
254  }
255  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
257  }
258 
259  return Args;
260 }
261 
262 // Determine which compilation mode we are in. We look for options which
263 // affect the phase, starting with the earliest phases, and record which
264 // option we used to determine the final phase.
265 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
266  Arg **FinalPhaseArg) const {
267  Arg *PhaseArg = nullptr;
268  phases::ID FinalPhase;
269 
270  // -{E,EP,P,M,MM} only run the preprocessor.
271  if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
272  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
273  (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
274  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
275  FinalPhase = phases::Preprocess;
276 
277  // --precompile only runs up to precompilation.
278  } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
279  FinalPhase = phases::Precompile;
280 
281  // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
282  } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
283  (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
284  (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
285  (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
286  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
287  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
288  (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
289  (PhaseArg = DAL.getLastArg(options::OPT_emit_iterface_stubs)) ||
290  (PhaseArg = DAL.getLastArg(options::OPT__analyze,
291  options::OPT__analyze_auto)) ||
292  (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
293  FinalPhase = phases::Compile;
294 
295  // -S only runs up to the backend.
296  } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
297  FinalPhase = phases::Backend;
298 
299  // -c compilation only runs up to the assembler.
300  } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
301  FinalPhase = phases::Assemble;
302 
303  // Otherwise do everything.
304  } else
305  FinalPhase = phases::Link;
306 
307  if (FinalPhaseArg)
308  *FinalPhaseArg = PhaseArg;
309 
310  return FinalPhase;
311 }
312 
313 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
314  StringRef Value, bool Claim = true) {
315  Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
316  Args.getBaseArgs().MakeIndex(Value), Value.data());
317  Args.AddSynthesizedArg(A);
318  if (Claim)
319  A->claim();
320  return A;
321 }
322 
323 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
324  const llvm::opt::OptTable &Opts = getOpts();
325  DerivedArgList *DAL = new DerivedArgList(Args);
326 
327  bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
328  bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
329  bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
330  for (Arg *A : Args) {
331  // Unfortunately, we have to parse some forwarding options (-Xassembler,
332  // -Xlinker, -Xpreprocessor) because we either integrate their functionality
333  // (assembler and preprocessor), or bypass a previous driver ('collect2').
334 
335  // Rewrite linker options, to replace --no-demangle with a custom internal
336  // option.
337  if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
338  A->getOption().matches(options::OPT_Xlinker)) &&
339  A->containsValue("--no-demangle")) {
340  // Add the rewritten no-demangle argument.
341  DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
342 
343  // Add the remaining values as Xlinker arguments.
344  for (StringRef Val : A->getValues())
345  if (Val != "--no-demangle")
346  DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
347 
348  continue;
349  }
350 
351  // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
352  // some build systems. We don't try to be complete here because we don't
353  // care to encourage this usage model.
354  if (A->getOption().matches(options::OPT_Wp_COMMA) &&
355  (A->getValue(0) == StringRef("-MD") ||
356  A->getValue(0) == StringRef("-MMD"))) {
357  // Rewrite to -MD/-MMD along with -MF.
358  if (A->getValue(0) == StringRef("-MD"))
359  DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
360  else
361  DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
362  if (A->getNumValues() == 2)
363  DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
364  continue;
365  }
366 
367  // Rewrite reserved library names.
368  if (A->getOption().matches(options::OPT_l)) {
369  StringRef Value = A->getValue();
370 
371  // Rewrite unless -nostdlib is present.
372  if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
373  Value == "stdc++") {
374  DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
375  continue;
376  }
377 
378  // Rewrite unconditionally.
379  if (Value == "cc_kext") {
380  DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
381  continue;
382  }
383  }
384 
385  // Pick up inputs via the -- option.
386  if (A->getOption().matches(options::OPT__DASH_DASH)) {
387  A->claim();
388  for (StringRef Val : A->getValues())
389  DAL->append(MakeInputArg(*DAL, Opts, Val, false));
390  continue;
391  }
392 
393  DAL->append(A);
394  }
395 
396  // Enforce -static if -miamcu is present.
397  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
398  DAL->AddFlagArg(0, Opts.getOption(options::OPT_static));
399 
400 // Add a default value of -mlinker-version=, if one was given and the user
401 // didn't specify one.
402 #if defined(HOST_LINK_VERSION)
403  if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
404  strlen(HOST_LINK_VERSION) > 0) {
405  DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
406  HOST_LINK_VERSION);
407  DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
408  }
409 #endif
410 
411  return DAL;
412 }
413 
414 /// Compute target triple from args.
415 ///
416 /// This routine provides the logic to compute a target triple from various
417 /// args passed to the driver and the default triple string.
418 static llvm::Triple computeTargetTriple(const Driver &D,
419  StringRef TargetTriple,
420  const ArgList &Args,
421  StringRef DarwinArchName = "") {
422  // FIXME: Already done in Compilation *Driver::BuildCompilation
423  if (const Arg *A = Args.getLastArg(options::OPT_target))
424  TargetTriple = A->getValue();
425 
426  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
427 
428  // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
429  // -gnu* only, and we can not change this, so we have to detect that case as
430  // being the Hurd OS.
431  if (TargetTriple.find("-unknown-gnu") != StringRef::npos ||
432  TargetTriple.find("-pc-gnu") != StringRef::npos)
433  Target.setOSName("hurd");
434 
435  // Handle Apple-specific options available here.
436  if (Target.isOSBinFormatMachO()) {
437  // If an explicit Darwin arch name is given, that trumps all.
438  if (!DarwinArchName.empty()) {
439  tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
440  return Target;
441  }
442 
443  // Handle the Darwin '-arch' flag.
444  if (Arg *A = Args.getLastArg(options::OPT_arch)) {
445  StringRef ArchName = A->getValue();
447  }
448  }
449 
450  // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
451  // '-mbig-endian'/'-EB'.
452  if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
453  options::OPT_mbig_endian)) {
454  if (A->getOption().matches(options::OPT_mlittle_endian)) {
455  llvm::Triple LE = Target.getLittleEndianArchVariant();
456  if (LE.getArch() != llvm::Triple::UnknownArch)
457  Target = std::move(LE);
458  } else {
459  llvm::Triple BE = Target.getBigEndianArchVariant();
460  if (BE.getArch() != llvm::Triple::UnknownArch)
461  Target = std::move(BE);
462  }
463  }
464 
465  // Skip further flag support on OSes which don't support '-m32' or '-m64'.
466  if (Target.getArch() == llvm::Triple::tce ||
467  Target.getOS() == llvm::Triple::Minix)
468  return Target;
469 
470  // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
471  Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
472  options::OPT_m32, options::OPT_m16);
473  if (A) {
474  llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
475 
476  if (A->getOption().matches(options::OPT_m64)) {
477  AT = Target.get64BitArchVariant().getArch();
478  if (Target.getEnvironment() == llvm::Triple::GNUX32)
479  Target.setEnvironment(llvm::Triple::GNU);
480  } else if (A->getOption().matches(options::OPT_mx32) &&
481  Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
482  AT = llvm::Triple::x86_64;
483  Target.setEnvironment(llvm::Triple::GNUX32);
484  } else if (A->getOption().matches(options::OPT_m32)) {
485  AT = Target.get32BitArchVariant().getArch();
486  if (Target.getEnvironment() == llvm::Triple::GNUX32)
487  Target.setEnvironment(llvm::Triple::GNU);
488  } else if (A->getOption().matches(options::OPT_m16) &&
489  Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
490  AT = llvm::Triple::x86;
491  Target.setEnvironment(llvm::Triple::CODE16);
492  }
493 
494  if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
495  Target.setArch(AT);
496  }
497 
498  // Handle -miamcu flag.
499  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
500  if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
501  D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
502  << Target.str();
503 
504  if (A && !A->getOption().matches(options::OPT_m32))
505  D.Diag(diag::err_drv_argument_not_allowed_with)
506  << "-miamcu" << A->getBaseArg().getAsString(Args);
507 
508  Target.setArch(llvm::Triple::x86);
509  Target.setArchName("i586");
510  Target.setEnvironment(llvm::Triple::UnknownEnvironment);
511  Target.setEnvironmentName("");
512  Target.setOS(llvm::Triple::ELFIAMCU);
513  Target.setVendor(llvm::Triple::UnknownVendor);
514  Target.setVendorName("intel");
515  }
516 
517  // If target is MIPS adjust the target triple
518  // accordingly to provided ABI name.
519  A = Args.getLastArg(options::OPT_mabi_EQ);
520  if (A && Target.isMIPS()) {
521  StringRef ABIName = A->getValue();
522  if (ABIName == "32") {
523  Target = Target.get32BitArchVariant();
524  if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
525  Target.getEnvironment() == llvm::Triple::GNUABIN32)
526  Target.setEnvironment(llvm::Triple::GNU);
527  } else if (ABIName == "n32") {
528  Target = Target.get64BitArchVariant();
529  if (Target.getEnvironment() == llvm::Triple::GNU ||
530  Target.getEnvironment() == llvm::Triple::GNUABI64)
531  Target.setEnvironment(llvm::Triple::GNUABIN32);
532  } else if (ABIName == "64") {
533  Target = Target.get64BitArchVariant();
534  if (Target.getEnvironment() == llvm::Triple::GNU ||
535  Target.getEnvironment() == llvm::Triple::GNUABIN32)
536  Target.setEnvironment(llvm::Triple::GNUABI64);
537  }
538  }
539 
540  return Target;
541 }
542 
543 // Parse the LTO options and record the type of LTO compilation
544 // based on which -f(no-)?lto(=.*)? option occurs last.
545 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
546  LTOMode = LTOK_None;
547  if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
548  options::OPT_fno_lto, false))
549  return;
550 
551  StringRef LTOName("full");
552 
553  const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
554  if (A)
555  LTOName = A->getValue();
556 
557  LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
558  .Case("full", LTOK_Full)
559  .Case("thin", LTOK_Thin)
560  .Default(LTOK_Unknown);
561 
562  if (LTOMode == LTOK_Unknown) {
563  assert(A);
564  Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
565  << A->getValue();
566  }
567 }
568 
569 /// Compute the desired OpenMP runtime from the flags provided.
571  StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
572 
573  const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
574  if (A)
575  RuntimeName = A->getValue();
576 
577  auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
578  .Case("libomp", OMPRT_OMP)
579  .Case("libgomp", OMPRT_GOMP)
580  .Case("libiomp5", OMPRT_IOMP5)
581  .Default(OMPRT_Unknown);
582 
583  if (RT == OMPRT_Unknown) {
584  if (A)
585  Diag(diag::err_drv_unsupported_option_argument)
586  << A->getOption().getName() << A->getValue();
587  else
588  // FIXME: We could use a nicer diagnostic here.
589  Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
590  }
591 
592  return RT;
593 }
594 
596  InputList &Inputs) {
597 
598  //
599  // CUDA/HIP
600  //
601  // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
602  // or HIP type. However, mixed CUDA/HIP compilation is not supported.
603  bool IsCuda =
604  llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
605  return types::isCuda(I.first);
606  });
607  bool IsHIP =
608  llvm::any_of(Inputs,
609  [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
610  return types::isHIP(I.first);
611  }) ||
612  C.getInputArgs().hasArg(options::OPT_hip_link);
613  if (IsCuda && IsHIP) {
614  Diag(clang::diag::err_drv_mix_cuda_hip);
615  return;
616  }
617  if (IsCuda) {
619  const llvm::Triple &HostTriple = HostTC->getTriple();
620  StringRef DeviceTripleStr;
621  auto OFK = Action::OFK_Cuda;
622  DeviceTripleStr =
623  HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
624  llvm::Triple CudaTriple(DeviceTripleStr);
625  // Use the CUDA and host triples as the key into the ToolChains map,
626  // because the device toolchain we create depends on both.
627  auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
628  if (!CudaTC) {
629  CudaTC = std::make_unique<toolchains::CudaToolChain>(
630  *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
631  }
632  C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
633  } else if (IsHIP) {
635  const llvm::Triple &HostTriple = HostTC->getTriple();
636  StringRef DeviceTripleStr;
637  auto OFK = Action::OFK_HIP;
638  DeviceTripleStr = "amdgcn-amd-amdhsa";
639  llvm::Triple HIPTriple(DeviceTripleStr);
640  // Use the HIP and host triples as the key into the ToolChains map,
641  // because the device toolchain we create depends on both.
642  auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
643  if (!HIPTC) {
644  HIPTC = std::make_unique<toolchains::HIPToolChain>(
645  *this, HIPTriple, *HostTC, C.getInputArgs());
646  }
647  C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
648  }
649 
650  //
651  // OpenMP
652  //
653  // We need to generate an OpenMP toolchain if the user specified targets with
654  // the -fopenmp-targets option.
655  if (Arg *OpenMPTargets =
656  C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
657  if (OpenMPTargets->getNumValues()) {
658  // We expect that -fopenmp-targets is always used in conjunction with the
659  // option -fopenmp specifying a valid runtime with offloading support,
660  // i.e. libomp or libiomp.
661  bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
662  options::OPT_fopenmp, options::OPT_fopenmp_EQ,
663  options::OPT_fno_openmp, false);
664  if (HasValidOpenMPRuntime) {
666  HasValidOpenMPRuntime =
667  OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
668  }
669 
670  if (HasValidOpenMPRuntime) {
671  llvm::StringMap<const char *> FoundNormalizedTriples;
672  for (const char *Val : OpenMPTargets->getValues()) {
673  llvm::Triple TT(Val);
674  std::string NormalizedName = TT.normalize();
675 
676  // Make sure we don't have a duplicate triple.
677  auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
678  if (Duplicate != FoundNormalizedTriples.end()) {
679  Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
680  << Val << Duplicate->second;
681  continue;
682  }
683 
684  // Store the current triple so that we can check for duplicates in the
685  // following iterations.
686  FoundNormalizedTriples[NormalizedName] = Val;
687 
688  // If the specified target is invalid, emit a diagnostic.
689  if (TT.getArch() == llvm::Triple::UnknownArch)
690  Diag(clang::diag::err_drv_invalid_omp_target) << Val;
691  else {
692  const ToolChain *TC;
693  // CUDA toolchains have to be selected differently. They pair host
694  // and device in their implementation.
695  if (TT.isNVPTX()) {
696  const ToolChain *HostTC =
698  assert(HostTC && "Host toolchain should be always defined.");
699  auto &CudaTC =
700  ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
701  if (!CudaTC)
702  CudaTC = std::make_unique<toolchains::CudaToolChain>(
703  *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
704  TC = CudaTC.get();
705  } else
706  TC = &getToolChain(C.getInputArgs(), TT);
708  }
709  }
710  } else
711  Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
712  } else
713  Diag(clang::diag::warn_drv_empty_joined_argument)
714  << OpenMPTargets->getAsString(C.getInputArgs());
715  }
716 
717  //
718  // TODO: Add support for other offloading programming models here.
719  //
720 }
721 
722 /// Looks the given directories for the specified file.
723 ///
724 /// \param[out] FilePath File path, if the file was found.
725 /// \param[in] Dirs Directories used for the search.
726 /// \param[in] FileName Name of the file to search for.
727 /// \return True if file was found.
728 ///
729 /// Looks for file specified by FileName sequentially in directories specified
730 /// by Dirs.
731 ///
732 static bool searchForFile(SmallVectorImpl<char> &FilePath,
734  StringRef FileName) {
735  SmallString<128> WPath;
736  for (const StringRef &Dir : Dirs) {
737  if (Dir.empty())
738  continue;
739  WPath.clear();
740  llvm::sys::path::append(WPath, Dir, FileName);
741  llvm::sys::path::native(WPath);
742  if (llvm::sys::fs::is_regular_file(WPath)) {
743  FilePath = std::move(WPath);
744  return true;
745  }
746  }
747  return false;
748 }
749 
750 bool Driver::readConfigFile(StringRef FileName) {
751  // Try reading the given file.
753  if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
754  Diag(diag::err_drv_cannot_read_config_file) << FileName;
755  return true;
756  }
757 
758  // Read options from config file.
759  llvm::SmallString<128> CfgFileName(FileName);
760  llvm::sys::path::native(CfgFileName);
761  ConfigFile = CfgFileName.str();
762  bool ContainErrors;
763  CfgOptions = std::make_unique<InputArgList>(
764  ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
765  if (ContainErrors) {
766  CfgOptions.reset();
767  return true;
768  }
769 
770  if (CfgOptions->hasArg(options::OPT_config)) {
771  CfgOptions.reset();
772  Diag(diag::err_drv_nested_config_file);
773  return true;
774  }
775 
776  // Claim all arguments that come from a configuration file so that the driver
777  // does not warn on any that is unused.
778  for (Arg *A : *CfgOptions)
779  A->claim();
780  return false;
781 }
782 
783 bool Driver::loadConfigFile() {
784  std::string CfgFileName;
785  bool FileSpecifiedExplicitly = false;
786 
787  // Process options that change search path for config files.
788  if (CLOptions) {
789  if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
790  SmallString<128> CfgDir;
791  CfgDir.append(
792  CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
793  if (!CfgDir.empty()) {
794  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
795  SystemConfigDir.clear();
796  else
797  SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
798  }
799  }
800  if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
801  SmallString<128> CfgDir;
802  CfgDir.append(
803  CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
804  if (!CfgDir.empty()) {
805  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
806  UserConfigDir.clear();
807  else
808  UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
809  }
810  }
811  }
812 
813  // First try to find config file specified in command line.
814  if (CLOptions) {
815  std::vector<std::string> ConfigFiles =
816  CLOptions->getAllArgValues(options::OPT_config);
817  if (ConfigFiles.size() > 1) {
818  Diag(diag::err_drv_duplicate_config);
819  return true;
820  }
821 
822  if (!ConfigFiles.empty()) {
823  CfgFileName = ConfigFiles.front();
824  assert(!CfgFileName.empty());
825 
826  // If argument contains directory separator, treat it as a path to
827  // configuration file.
828  if (llvm::sys::path::has_parent_path(CfgFileName)) {
829  SmallString<128> CfgFilePath;
830  if (llvm::sys::path::is_relative(CfgFileName))
831  llvm::sys::fs::current_path(CfgFilePath);
832  llvm::sys::path::append(CfgFilePath, CfgFileName);
833  if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
834  Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
835  return true;
836  }
837  return readConfigFile(CfgFilePath);
838  }
839 
840  FileSpecifiedExplicitly = true;
841  }
842  }
843 
844  // If config file is not specified explicitly, try to deduce configuration
845  // from executable name. For instance, an executable 'armv7l-clang' will
846  // search for config file 'armv7l-clang.cfg'.
847  if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
849 
850  if (CfgFileName.empty())
851  return false;
852 
853  // Determine architecture part of the file name, if it is present.
854  StringRef CfgFileArch = CfgFileName;
855  size_t ArchPrefixLen = CfgFileArch.find('-');
856  if (ArchPrefixLen == StringRef::npos)
857  ArchPrefixLen = CfgFileArch.size();
858  llvm::Triple CfgTriple;
859  CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
860  CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
861  if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
862  ArchPrefixLen = 0;
863 
864  if (!StringRef(CfgFileName).endswith(".cfg"))
865  CfgFileName += ".cfg";
866 
867  // If config file starts with architecture name and command line options
868  // redefine architecture (with options like -m32 -LE etc), try finding new
869  // config file with that architecture.
870  SmallString<128> FixedConfigFile;
871  size_t FixedArchPrefixLen = 0;
872  if (ArchPrefixLen) {
873  // Get architecture name from config file name like 'i386.cfg' or
874  // 'armv7l-clang.cfg'.
875  // Check if command line options changes effective triple.
876  llvm::Triple EffectiveTriple = computeTargetTriple(*this,
877  CfgTriple.getTriple(), *CLOptions);
878  if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
879  FixedConfigFile = EffectiveTriple.getArchName();
880  FixedArchPrefixLen = FixedConfigFile.size();
881  // Append the rest of original file name so that file name transforms
882  // like: i386-clang.cfg -> x86_64-clang.cfg.
883  if (ArchPrefixLen < CfgFileName.size())
884  FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
885  }
886  }
887 
888  // Prepare list of directories where config file is searched for.
889  SmallVector<std::string, 3> CfgFileSearchDirs;
890  CfgFileSearchDirs.push_back(UserConfigDir);
891  CfgFileSearchDirs.push_back(SystemConfigDir);
892  CfgFileSearchDirs.push_back(Dir);
893 
894  // Try to find config file. First try file with corrected architecture.
895  llvm::SmallString<128> CfgFilePath;
896  if (!FixedConfigFile.empty()) {
897  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
898  return readConfigFile(CfgFilePath);
899  // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
900  FixedConfigFile.resize(FixedArchPrefixLen);
901  FixedConfigFile.append(".cfg");
902  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
903  return readConfigFile(CfgFilePath);
904  }
905 
906  // Then try original file name.
907  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
908  return readConfigFile(CfgFilePath);
909 
910  // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
911  if (!ClangNameParts.ModeSuffix.empty() &&
912  !ClangNameParts.TargetPrefix.empty()) {
913  CfgFileName.assign(ClangNameParts.TargetPrefix);
914  CfgFileName.append(".cfg");
915  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
916  return readConfigFile(CfgFilePath);
917  }
918 
919  // Report error but only if config file was specified explicitly, by option
920  // --config. If it was deduced from executable name, it is not an error.
921  if (FileSpecifiedExplicitly) {
922  Diag(diag::err_drv_config_file_not_found) << CfgFileName;
923  for (const std::string &SearchDir : CfgFileSearchDirs)
924  if (!SearchDir.empty())
925  Diag(diag::note_drv_config_file_searched_in) << SearchDir;
926  return true;
927  }
928 
929  return false;
930 }
931 
933  llvm::PrettyStackTraceString CrashInfo("Compilation construction");
934 
935  // FIXME: Handle environment options which affect driver behavior, somewhere
936  // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
937 
938  if (Optional<std::string> CompilerPathValue =
939  llvm::sys::Process::GetEnv("COMPILER_PATH")) {
940  StringRef CompilerPath = *CompilerPathValue;
941  while (!CompilerPath.empty()) {
942  std::pair<StringRef, StringRef> Split =
943  CompilerPath.split(llvm::sys::EnvPathSeparator);
944  PrefixDirs.push_back(Split.first);
945  CompilerPath = Split.second;
946  }
947  }
948 
949  // We look for the driver mode option early, because the mode can affect
950  // how other options are parsed.
951  ParseDriverMode(ClangExecutable, ArgList.slice(1));
952 
953  // FIXME: What are we going to do with -V and -b?
954 
955  // Arguments specified in command line.
956  bool ContainsError;
957  CLOptions = std::make_unique<InputArgList>(
958  ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
959 
960  // Try parsing configuration file.
961  if (!ContainsError)
962  ContainsError = loadConfigFile();
963  bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
964 
965  // All arguments, from both config file and command line.
966  InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
967  : std::move(*CLOptions));
968 
969  // The args for config files or /clang: flags belong to different InputArgList
970  // objects than Args. This copies an Arg from one of those other InputArgLists
971  // to the ownership of Args.
972  auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
973  unsigned Index = Args.MakeIndex(Opt->getSpelling());
974  Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(),
975  Index, BaseArg);
976  Copy->getValues() = Opt->getValues();
977  if (Opt->isClaimed())
978  Copy->claim();
979  Args.append(Copy);
980  };
981 
982  if (HasConfigFile)
983  for (auto *Opt : *CLOptions) {
984  if (Opt->getOption().matches(options::OPT_config))
985  continue;
986  const Arg *BaseArg = &Opt->getBaseArg();
987  if (BaseArg == Opt)
988  BaseArg = nullptr;
989  appendOneArg(Opt, BaseArg);
990  }
991 
992  // In CL mode, look for any pass-through arguments
993  if (IsCLMode() && !ContainsError) {
994  SmallVector<const char *, 16> CLModePassThroughArgList;
995  for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
996  A->claim();
997  CLModePassThroughArgList.push_back(A->getValue());
998  }
999 
1000  if (!CLModePassThroughArgList.empty()) {
1001  // Parse any pass through args using default clang processing rather
1002  // than clang-cl processing.
1003  auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1004  ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1005 
1006  if (!ContainsError)
1007  for (auto *Opt : *CLModePassThroughOptions) {
1008  appendOneArg(Opt, nullptr);
1009  }
1010  }
1011  }
1012 
1013  // FIXME: This stuff needs to go into the Compilation, not the driver.
1014  bool CCCPrintPhases;
1015 
1016  // Silence driver warnings if requested
1017  Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1018 
1019  // -no-canonical-prefixes is used very early in main.
1020  Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1021 
1022  // Ignore -pipe.
1023  Args.ClaimAllArgs(options::OPT_pipe);
1024 
1025  // Extract -ccc args.
1026  //
1027  // FIXME: We need to figure out where this behavior should live. Most of it
1028  // should be outside in the client; the parts that aren't should have proper
1029  // options, either by introducing new ones or by overloading gcc ones like -V
1030  // or -b.
1031  CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1032  CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1033  if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1034  CCCGenericGCCName = A->getValue();
1035  GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1036  options::OPT_fno_crash_diagnostics,
1037  !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1038  // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1039  // and getToolChain is const.
1040  if (IsCLMode()) {
1041  // clang-cl targets MSVC-style Win32.
1042  llvm::Triple T(TargetTriple);
1043  T.setOS(llvm::Triple::Win32);
1044  T.setVendor(llvm::Triple::PC);
1045  T.setEnvironment(llvm::Triple::MSVC);
1046  T.setObjectFormat(llvm::Triple::COFF);
1047  TargetTriple = T.str();
1048  }
1049  if (const Arg *A = Args.getLastArg(options::OPT_target))
1050  TargetTriple = A->getValue();
1051  if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1052  Dir = InstalledDir = A->getValue();
1053  for (const Arg *A : Args.filtered(options::OPT_B)) {
1054  A->claim();
1055  PrefixDirs.push_back(A->getValue(0));
1056  }
1057  if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1058  SysRoot = A->getValue();
1059  if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1060  DyldPrefix = A->getValue();
1061 
1062  if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1063  ResourceDir = A->getValue();
1064 
1065  if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1066  SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1067  .Case("cwd", SaveTempsCwd)
1068  .Case("obj", SaveTempsObj)
1069  .Default(SaveTempsCwd);
1070  }
1071 
1072  setLTOMode(Args);
1073 
1074  // Process -fembed-bitcode= flags.
1075  if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1076  StringRef Name = A->getValue();
1077  unsigned Model = llvm::StringSwitch<unsigned>(Name)
1078  .Case("off", EmbedNone)
1079  .Case("all", EmbedBitcode)
1080  .Case("bitcode", EmbedBitcode)
1081  .Case("marker", EmbedMarker)
1082  .Default(~0U);
1083  if (Model == ~0U) {
1084  Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1085  << Name;
1086  } else
1087  BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1088  }
1089 
1090  std::unique_ptr<llvm::opt::InputArgList> UArgs =
1091  std::make_unique<InputArgList>(std::move(Args));
1092 
1093  // Perform the default argument translations.
1094  DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1095 
1096  // Owned by the host.
1097  const ToolChain &TC = getToolChain(
1098  *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1099 
1100  // The compilation takes ownership of Args.
1101  Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1102  ContainsError);
1103 
1104  if (!HandleImmediateArgs(*C))
1105  return C;
1106 
1107  // Construct the list of inputs.
1108  InputList Inputs;
1109  BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1110 
1111  // Populate the tool chains for the offloading devices, if any.
1113 
1114  // Construct the list of abstract actions to perform for this compilation. On
1115  // MachO targets this uses the driver-driver and universal actions.
1116  if (TC.getTriple().isOSBinFormatMachO())
1117  BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1118  else
1119  BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1120 
1121  if (CCCPrintPhases) {
1122  PrintActions(*C);
1123  return C;
1124  }
1125 
1126  BuildJobs(*C);
1127 
1128  return C;
1129 }
1130 
1131 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1132  llvm::opt::ArgStringList ASL;
1133  for (const auto *A : Args)
1134  A->render(Args, ASL);
1135 
1136  for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1137  if (I != ASL.begin())
1138  OS << ' ';
1139  Command::printArg(OS, *I, true);
1140  }
1141  OS << '\n';
1142 }
1143 
1144 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1145  SmallString<128> &CrashDiagDir) {
1146  using namespace llvm::sys;
1147  assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1148  "Only knows about .crash files on Darwin");
1149 
1150  // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1151  // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1152  // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1153  path::home_directory(CrashDiagDir);
1154  if (CrashDiagDir.startswith("/var/root"))
1155  CrashDiagDir = "/";
1156  path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1157  int PID =
1158 #if LLVM_ON_UNIX
1159  getpid();
1160 #else
1161  0;
1162 #endif
1163  std::error_code EC;
1164  fs::file_status FileStatus;
1165  TimePoint<> LastAccessTime;
1166  SmallString<128> CrashFilePath;
1167  // Lookup the .crash files and get the one generated by a subprocess spawned
1168  // by this driver invocation.
1169  for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1170  File != FileEnd && !EC; File.increment(EC)) {
1171  StringRef FileName = path::filename(File->path());
1172  if (!FileName.startswith(Name))
1173  continue;
1174  if (fs::status(File->path(), FileStatus))
1175  continue;
1176  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1177  llvm::MemoryBuffer::getFile(File->path());
1178  if (!CrashFile)
1179  continue;
1180  // The first line should start with "Process:", otherwise this isn't a real
1181  // .crash file.
1182  StringRef Data = CrashFile.get()->getBuffer();
1183  if (!Data.startswith("Process:"))
1184  continue;
1185  // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1186  size_t ParentProcPos = Data.find("Parent Process:");
1187  if (ParentProcPos == StringRef::npos)
1188  continue;
1189  size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1190  if (LineEnd == StringRef::npos)
1191  continue;
1192  StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1193  int OpenBracket = -1, CloseBracket = -1;
1194  for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1195  if (ParentProcess[i] == '[')
1196  OpenBracket = i;
1197  if (ParentProcess[i] == ']')
1198  CloseBracket = i;
1199  }
1200  // Extract the parent process PID from the .crash file and check whether
1201  // it matches this driver invocation pid.
1202  int CrashPID;
1203  if (OpenBracket < 0 || CloseBracket < 0 ||
1204  ParentProcess.slice(OpenBracket + 1, CloseBracket)
1205  .getAsInteger(10, CrashPID) || CrashPID != PID) {
1206  continue;
1207  }
1208 
1209  // Found a .crash file matching the driver pid. To avoid getting an older
1210  // and misleading crash file, continue looking for the most recent.
1211  // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1212  // multiple crashes poiting to the same parent process. Since the driver
1213  // does not collect pid information for the dispatched invocation there's
1214  // currently no way to distinguish among them.
1215  const auto FileAccessTime = FileStatus.getLastModificationTime();
1216  if (FileAccessTime > LastAccessTime) {
1217  CrashFilePath.assign(File->path());
1218  LastAccessTime = FileAccessTime;
1219  }
1220  }
1221 
1222  // If found, copy it over to the location of other reproducer files.
1223  if (!CrashFilePath.empty()) {
1224  EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1225  if (EC)
1226  return false;
1227  return true;
1228  }
1229 
1230  return false;
1231 }
1232 
1233 // When clang crashes, produce diagnostic information including the fully
1234 // preprocessed source file(s). Request that the developer attach the
1235 // diagnostic information to a bug report.
1237  Compilation &C, const Command &FailingCommand,
1238  StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1239  if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1240  return;
1241 
1242  // Don't try to generate diagnostics for link or dsymutil jobs.
1243  if (FailingCommand.getCreator().isLinkJob() ||
1244  FailingCommand.getCreator().isDsymutilJob())
1245  return;
1246 
1247  // Print the version of the compiler.
1248  PrintVersion(C, llvm::errs());
1249 
1250  Diag(clang::diag::note_drv_command_failed_diag_msg)
1251  << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the "
1252  "crash backtrace, preprocessed source, and associated run script.";
1253 
1254  // Suppress driver output and emit preprocessor output to temp file.
1255  Mode = CPPMode;
1256  CCGenDiagnostics = true;
1257 
1258  // Save the original job command(s).
1259  Command Cmd = FailingCommand;
1260 
1261  // Keep track of whether we produce any errors while trying to produce
1262  // preprocessed sources.
1263  DiagnosticErrorTrap Trap(Diags);
1264 
1265  // Suppress tool output.
1267 
1268  // Construct the list of inputs.
1269  InputList Inputs;
1270  BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1271 
1272  for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1273  bool IgnoreInput = false;
1274 
1275  // Ignore input from stdin or any inputs that cannot be preprocessed.
1276  // Check type first as not all linker inputs have a value.
1277  if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1278  IgnoreInput = true;
1279  } else if (!strcmp(it->second->getValue(), "-")) {
1280  Diag(clang::diag::note_drv_command_failed_diag_msg)
1281  << "Error generating preprocessed source(s) - "
1282  "ignoring input from stdin.";
1283  IgnoreInput = true;
1284  }
1285 
1286  if (IgnoreInput) {
1287  it = Inputs.erase(it);
1288  ie = Inputs.end();
1289  } else {
1290  ++it;
1291  }
1292  }
1293 
1294  if (Inputs.empty()) {
1295  Diag(clang::diag::note_drv_command_failed_diag_msg)
1296  << "Error generating preprocessed source(s) - "
1297  "no preprocessable inputs.";
1298  return;
1299  }
1300 
1301  // Don't attempt to generate preprocessed files if multiple -arch options are
1302  // used, unless they're all duplicates.
1303  llvm::StringSet<> ArchNames;
1304  for (const Arg *A : C.getArgs()) {
1305  if (A->getOption().matches(options::OPT_arch)) {
1306  StringRef ArchName = A->getValue();
1307  ArchNames.insert(ArchName);
1308  }
1309  }
1310  if (ArchNames.size() > 1) {
1311  Diag(clang::diag::note_drv_command_failed_diag_msg)
1312  << "Error generating preprocessed source(s) - cannot generate "
1313  "preprocessed source with multiple -arch options.";
1314  return;
1315  }
1316 
1317  // Construct the list of abstract actions to perform for this compilation. On
1318  // Darwin OSes this uses the driver-driver and builds universal actions.
1319  const ToolChain &TC = C.getDefaultToolChain();
1320  if (TC.getTriple().isOSBinFormatMachO())
1321  BuildUniversalActions(C, TC, Inputs);
1322  else
1323  BuildActions(C, C.getArgs(), Inputs, C.getActions());
1324 
1325  BuildJobs(C);
1326 
1327  // If there were errors building the compilation, quit now.
1328  if (Trap.hasErrorOccurred()) {
1329  Diag(clang::diag::note_drv_command_failed_diag_msg)
1330  << "Error generating preprocessed source(s).";
1331  return;
1332  }
1333 
1334  // Generate preprocessed output.
1335  SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1336  C.ExecuteJobs(C.getJobs(), FailingCommands);
1337 
1338  // If any of the preprocessing commands failed, clean up and exit.
1339  if (!FailingCommands.empty()) {
1340  Diag(clang::diag::note_drv_command_failed_diag_msg)
1341  << "Error generating preprocessed source(s).";
1342  return;
1343  }
1344 
1345  const ArgStringList &TempFiles = C.getTempFiles();
1346  if (TempFiles.empty()) {
1347  Diag(clang::diag::note_drv_command_failed_diag_msg)
1348  << "Error generating preprocessed source(s).";
1349  return;
1350  }
1351 
1352  Diag(clang::diag::note_drv_command_failed_diag_msg)
1353  << "\n********************\n\n"
1354  "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1355  "Preprocessed source(s) and associated run script(s) are located at:";
1356 
1357  SmallString<128> VFS;
1358  SmallString<128> ReproCrashFilename;
1359  for (const char *TempFile : TempFiles) {
1360  Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1361  if (Report)
1362  Report->TemporaryFiles.push_back(TempFile);
1363  if (ReproCrashFilename.empty()) {
1364  ReproCrashFilename = TempFile;
1365  llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1366  }
1367  if (StringRef(TempFile).endswith(".cache")) {
1368  // In some cases (modules) we'll dump extra data to help with reproducing
1369  // the crash into a directory next to the output.
1370  VFS = llvm::sys::path::filename(TempFile);
1371  llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1372  }
1373  }
1374 
1375  // Assume associated files are based off of the first temporary file.
1376  CrashReportInfo CrashInfo(TempFiles[0], VFS);
1377 
1378  llvm::SmallString<128> Script(CrashInfo.Filename);
1379  llvm::sys::path::replace_extension(Script, "sh");
1380  std::error_code EC;
1381  llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew);
1382  if (EC) {
1383  Diag(clang::diag::note_drv_command_failed_diag_msg)
1384  << "Error generating run script: " << Script << " " << EC.message();
1385  } else {
1386  ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1387  << "# Driver args: ";
1388  printArgList(ScriptOS, C.getInputArgs());
1389  ScriptOS << "# Original command: ";
1390  Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1391  Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1392  if (!AdditionalInformation.empty())
1393  ScriptOS << "\n# Additional information: " << AdditionalInformation
1394  << "\n";
1395  if (Report)
1396  Report->TemporaryFiles.push_back(Script.str());
1397  Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1398  }
1399 
1400  // On darwin, provide information about the .crash diagnostic report.
1401  if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1402  SmallString<128> CrashDiagDir;
1403  if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1404  Diag(clang::diag::note_drv_command_failed_diag_msg)
1405  << ReproCrashFilename.str();
1406  } else { // Suggest a directory for the user to look for .crash files.
1407  llvm::sys::path::append(CrashDiagDir, Name);
1408  CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1409  Diag(clang::diag::note_drv_command_failed_diag_msg)
1410  << "Crash backtrace is located in";
1411  Diag(clang::diag::note_drv_command_failed_diag_msg)
1412  << CrashDiagDir.str();
1413  Diag(clang::diag::note_drv_command_failed_diag_msg)
1414  << "(choose the .crash file that corresponds to your crash)";
1415  }
1416  }
1417 
1418  for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
1419  options::OPT_frewrite_map_file_EQ))
1420  Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1421 
1422  Diag(clang::diag::note_drv_command_failed_diag_msg)
1423  << "\n\n********************";
1424 }
1425 
1426 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1427  // Since commandLineFitsWithinSystemLimits() may underestimate system's
1428  // capacity if the tool does not support response files, there is a chance/
1429  // that things will just work without a response file, so we silently just
1430  // skip it.
1432  llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1433  Cmd.getArguments()))
1434  return;
1435 
1436  std::string TmpName = GetTemporaryPath("response", "txt");
1437  Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1438 }
1439 
1441  Compilation &C,
1442  SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1443  // Just print if -### was present.
1444  if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1445  C.getJobs().Print(llvm::errs(), "\n", true);
1446  return 0;
1447  }
1448 
1449  // If there were errors building the compilation, quit now.
1450  if (Diags.hasErrorOccurred())
1451  return 1;
1452 
1453  // Set up response file names for each command, if necessary
1454  for (auto &Job : C.getJobs())
1455  setUpResponseFiles(C, Job);
1456 
1457  C.ExecuteJobs(C.getJobs(), FailingCommands);
1458 
1459  // If the command succeeded, we are done.
1460  if (FailingCommands.empty())
1461  return 0;
1462 
1463  // Otherwise, remove result files and print extra information about abnormal
1464  // failures.
1465  int Res = 0;
1466  for (const auto &CmdPair : FailingCommands) {
1467  int CommandRes = CmdPair.first;
1468  const Command *FailingCommand = CmdPair.second;
1469 
1470  // Remove result files if we're not saving temps.
1471  if (!isSaveTempsEnabled()) {
1472  const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1473  C.CleanupFileMap(C.getResultFiles(), JA, true);
1474 
1475  // Failure result files are valid unless we crashed.
1476  if (CommandRes < 0)
1477  C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1478  }
1479 
1480 #if LLVM_ON_UNIX
1481  // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1482  // for SIGPIPE. Do not print diagnostics for this case.
1483  if (CommandRes == EX_IOERR) {
1484  Res = CommandRes;
1485  continue;
1486  }
1487 #endif
1488 
1489  // Print extra information about abnormal failures, if possible.
1490  //
1491  // This is ad-hoc, but we don't want to be excessively noisy. If the result
1492  // status was 1, assume the command failed normally. In particular, if it
1493  // was the compiler then assume it gave a reasonable error code. Failures
1494  // in other tools are less common, and they generally have worse
1495  // diagnostics, so always print the diagnostic there.
1496  const Tool &FailingTool = FailingCommand->getCreator();
1497 
1498  if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1499  // FIXME: See FIXME above regarding result code interpretation.
1500  if (CommandRes < 0)
1501  Diag(clang::diag::err_drv_command_signalled)
1502  << FailingTool.getShortName();
1503  else
1504  Diag(clang::diag::err_drv_command_failed)
1505  << FailingTool.getShortName() << CommandRes;
1506  }
1507  }
1508  return Res;
1509 }
1510 
1511 void Driver::PrintHelp(bool ShowHidden) const {
1512  unsigned IncludedFlagsBitmask;
1513  unsigned ExcludedFlagsBitmask;
1514  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1515  getIncludeExcludeOptionFlagMasks(IsCLMode());
1516 
1517  ExcludedFlagsBitmask |= options::NoDriverOption;
1518  if (!ShowHidden)
1519  ExcludedFlagsBitmask |= HelpHidden;
1520 
1521  std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1522  getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1523  IncludedFlagsBitmask, ExcludedFlagsBitmask,
1524  /*ShowAllAliases=*/false);
1525 }
1526 
1527 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1528  // FIXME: The following handlers should use a callback mechanism, we don't
1529  // know what the client would like to do.
1530  OS << getClangFullVersion() << '\n';
1531  const ToolChain &TC = C.getDefaultToolChain();
1532  OS << "Target: " << TC.getTripleString() << '\n';
1533 
1534  // Print the threading model.
1535  if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1536  // Don't print if the ToolChain would have barfed on it already
1537  if (TC.isThreadModelSupported(A->getValue()))
1538  OS << "Thread model: " << A->getValue();
1539  } else
1540  OS << "Thread model: " << TC.getThreadModel();
1541  OS << '\n';
1542 
1543  // Print out the install directory.
1544  OS << "InstalledDir: " << InstalledDir << '\n';
1545 
1546  // If configuration file was used, print its path.
1547  if (!ConfigFile.empty())
1548  OS << "Configuration file: " << ConfigFile << '\n';
1549 }
1550 
1551 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1552 /// option.
1553 static void PrintDiagnosticCategories(raw_ostream &OS) {
1554  // Skip the empty category.
1555  for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1556  ++i)
1557  OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1558 }
1559 
1560 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1561  if (PassedFlags == "")
1562  return;
1563  // Print out all options that start with a given argument. This is used for
1564  // shell autocompletion.
1565  std::vector<std::string> SuggestedCompletions;
1566  std::vector<std::string> Flags;
1567 
1568  unsigned short DisableFlags =
1570 
1571  // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1572  // because the latter indicates that the user put space before pushing tab
1573  // which should end up in a file completion.
1574  const bool HasSpace = PassedFlags.endswith(",");
1575 
1576  // Parse PassedFlags by "," as all the command-line flags are passed to this
1577  // function separated by ","
1578  StringRef TargetFlags = PassedFlags;
1579  while (TargetFlags != "") {
1580  StringRef CurFlag;
1581  std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1582  Flags.push_back(std::string(CurFlag));
1583  }
1584 
1585  // We want to show cc1-only options only when clang is invoked with -cc1 or
1586  // -Xclang.
1587  if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1588  DisableFlags &= ~options::NoDriverOption;
1589 
1590  const llvm::opt::OptTable &Opts = getOpts();
1591  StringRef Cur;
1592  Cur = Flags.at(Flags.size() - 1);
1593  StringRef Prev;
1594  if (Flags.size() >= 2) {
1595  Prev = Flags.at(Flags.size() - 2);
1596  SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
1597  }
1598 
1599  if (SuggestedCompletions.empty())
1600  SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
1601 
1602  // If Flags were empty, it means the user typed `clang [tab]` where we should
1603  // list all possible flags. If there was no value completion and the user
1604  // pressed tab after a space, we should fall back to a file completion.
1605  // We're printing a newline to be consistent with what we print at the end of
1606  // this function.
1607  if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1608  llvm::outs() << '\n';
1609  return;
1610  }
1611 
1612  // When flag ends with '=' and there was no value completion, return empty
1613  // string and fall back to the file autocompletion.
1614  if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1615  // If the flag is in the form of "--autocomplete=-foo",
1616  // we were requested to print out all option names that start with "-foo".
1617  // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1618  SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
1619 
1620  // We have to query the -W flags manually as they're not in the OptTable.
1621  // TODO: Find a good way to add them to OptTable instead and them remove
1622  // this code.
1623  for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1624  if (S.startswith(Cur))
1625  SuggestedCompletions.push_back(S);
1626  }
1627 
1628  // Sort the autocomplete candidates so that shells print them out in a
1629  // deterministic order. We could sort in any way, but we chose
1630  // case-insensitive sorting for consistency with the -help option
1631  // which prints out options in the case-insensitive alphabetical order.
1632  llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1633  if (int X = A.compare_lower(B))
1634  return X < 0;
1635  return A.compare(B) > 0;
1636  });
1637 
1638  llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1639 }
1640 
1642  // The order these options are handled in gcc is all over the place, but we
1643  // don't expect inconsistencies w.r.t. that to matter in practice.
1644 
1645  if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1646  llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1647  return false;
1648  }
1649 
1650  if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1651  // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1652  // return an answer which matches our definition of __VERSION__.
1653  llvm::outs() << CLANG_VERSION_STRING << "\n";
1654  return false;
1655  }
1656 
1657  if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1658  PrintDiagnosticCategories(llvm::outs());
1659  return false;
1660  }
1661 
1662  if (C.getArgs().hasArg(options::OPT_help) ||
1663  C.getArgs().hasArg(options::OPT__help_hidden)) {
1664  PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1665  return false;
1666  }
1667 
1668  if (C.getArgs().hasArg(options::OPT__version)) {
1669  // Follow gcc behavior and use stdout for --version and stderr for -v.
1670  PrintVersion(C, llvm::outs());
1671  return false;
1672  }
1673 
1674  if (C.getArgs().hasArg(options::OPT_v) ||
1675  C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1676  C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1677  PrintVersion(C, llvm::errs());
1678  SuppressMissingInputWarning = true;
1679  }
1680 
1681  if (C.getArgs().hasArg(options::OPT_v)) {
1682  if (!SystemConfigDir.empty())
1683  llvm::errs() << "System configuration file directory: "
1684  << SystemConfigDir << "\n";
1685  if (!UserConfigDir.empty())
1686  llvm::errs() << "User configuration file directory: "
1687  << UserConfigDir << "\n";
1688  }
1689 
1690  const ToolChain &TC = C.getDefaultToolChain();
1691 
1692  if (C.getArgs().hasArg(options::OPT_v))
1693  TC.printVerboseInfo(llvm::errs());
1694 
1695  if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1696  llvm::outs() << ResourceDir << '\n';
1697  return false;
1698  }
1699 
1700  if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1701  llvm::outs() << "programs: =";
1702  bool separator = false;
1703  for (const std::string &Path : TC.getProgramPaths()) {
1704  if (separator)
1705  llvm::outs() << llvm::sys::EnvPathSeparator;
1706  llvm::outs() << Path;
1707  separator = true;
1708  }
1709  llvm::outs() << "\n";
1710  llvm::outs() << "libraries: =" << ResourceDir;
1711 
1712  StringRef sysroot = C.getSysRoot();
1713 
1714  for (const std::string &Path : TC.getFilePaths()) {
1715  // Always print a separator. ResourceDir was the first item shown.
1716  llvm::outs() << llvm::sys::EnvPathSeparator;
1717  // Interpretation of leading '=' is needed only for NetBSD.
1718  if (Path[0] == '=')
1719  llvm::outs() << sysroot << Path.substr(1);
1720  else
1721  llvm::outs() << Path;
1722  }
1723  llvm::outs() << "\n";
1724  return false;
1725  }
1726 
1727  // FIXME: The following handlers should use a callback mechanism, we don't
1728  // know what the client would like to do.
1729  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1730  llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1731  return false;
1732  }
1733 
1734  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1735  StringRef ProgName = A->getValue();
1736 
1737  // Null program name cannot have a path.
1738  if (! ProgName.empty())
1739  llvm::outs() << GetProgramPath(ProgName, TC);
1740 
1741  llvm::outs() << "\n";
1742  return false;
1743  }
1744 
1745  if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1746  StringRef PassedFlags = A->getValue();
1747  HandleAutocompletions(PassedFlags);
1748  return false;
1749  }
1750 
1751  if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1753  const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1754  RegisterEffectiveTriple TripleRAII(TC, Triple);
1755  switch (RLT) {
1757  llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1758  break;
1759  case ToolChain::RLT_Libgcc:
1760  llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1761  break;
1762  }
1763  return false;
1764  }
1765 
1766  if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1767  for (const Multilib &Multilib : TC.getMultilibs())
1768  llvm::outs() << Multilib << "\n";
1769  return false;
1770  }
1771 
1772  if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1773  const Multilib &Multilib = TC.getMultilib();
1774  if (Multilib.gccSuffix().empty())
1775  llvm::outs() << ".\n";
1776  else {
1777  StringRef Suffix(Multilib.gccSuffix());
1778  assert(Suffix.front() == '/');
1779  llvm::outs() << Suffix.substr(1) << "\n";
1780  }
1781  return false;
1782  }
1783 
1784  if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1785  llvm::outs() << TC.getTripleString() << "\n";
1786  return false;
1787  }
1788 
1789  if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1790  const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1791  llvm::outs() << Triple.getTriple() << "\n";
1792  return false;
1793  }
1794 
1795  return true;
1796 }
1797 
1798 // Display an action graph human-readably. Action A is the "sink" node
1799 // and latest-occuring action. Traversal is in pre-order, visiting the
1800 // inputs to each action before printing the action itself.
1801 static unsigned PrintActions1(const Compilation &C, Action *A,
1802  std::map<Action *, unsigned> &Ids) {
1803  if (Ids.count(A)) // A was already visited.
1804  return Ids[A];
1805 
1806  std::string str;
1807  llvm::raw_string_ostream os(str);
1808 
1809  os << Action::getClassName(A->getKind()) << ", ";
1810  if (InputAction *IA = dyn_cast<InputAction>(A)) {
1811  os << "\"" << IA->getInputArg().getValue() << "\"";
1812  } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1813  os << '"' << BIA->getArchName() << '"' << ", {"
1814  << PrintActions1(C, *BIA->input_begin(), Ids) << "}";
1815  } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1816  bool IsFirst = true;
1817  OA->doOnEachDependence(
1818  [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1819  // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1820  // sm_35 this will generate:
1821  // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1822  // (nvptx64-nvidia-cuda:sm_35) {#ID}
1823  if (!IsFirst)
1824  os << ", ";
1825  os << '"';
1826  if (TC)
1827  os << A->getOffloadingKindPrefix();
1828  else
1829  os << "host";
1830  os << " (";
1831  os << TC->getTriple().normalize();
1832 
1833  if (BoundArch)
1834  os << ":" << BoundArch;
1835  os << ")";
1836  os << '"';
1837  os << " {" << PrintActions1(C, A, Ids) << "}";
1838  IsFirst = false;
1839  });
1840  } else {
1841  const ActionList *AL = &A->getInputs();
1842 
1843  if (AL->size()) {
1844  const char *Prefix = "{";
1845  for (Action *PreRequisite : *AL) {
1846  os << Prefix << PrintActions1(C, PreRequisite, Ids);
1847  Prefix = ", ";
1848  }
1849  os << "}";
1850  } else
1851  os << "{}";
1852  }
1853 
1854  // Append offload info for all options other than the offloading action
1855  // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
1856  std::string offload_str;
1857  llvm::raw_string_ostream offload_os(offload_str);
1858  if (!isa<OffloadAction>(A)) {
1859  auto S = A->getOffloadingKindPrefix();
1860  if (!S.empty()) {
1861  offload_os << ", (" << S;
1862  if (A->getOffloadingArch())
1863  offload_os << ", " << A->getOffloadingArch();
1864  offload_os << ")";
1865  }
1866  }
1867 
1868  unsigned Id = Ids.size();
1869  Ids[A] = Id;
1870  llvm::errs() << Id << ": " << os.str() << ", "
1871  << types::getTypeName(A->getType()) << offload_os.str() << "\n";
1872 
1873  return Id;
1874 }
1875 
1876 // Print the action graphs in a compilation C.
1877 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
1878 void Driver::PrintActions(const Compilation &C) const {
1879  std::map<Action *, unsigned> Ids;
1880  for (Action *A : C.getActions())
1881  PrintActions1(C, A, Ids);
1882 }
1883 
1884 /// Check whether the given input tree contains any compilation or
1885 /// assembly actions.
1887  if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
1888  isa<AssembleJobAction>(A))
1889  return true;
1890 
1891  for (const Action *Input : A->inputs())
1893  return true;
1894 
1895  return false;
1896 }
1897 
1899  const InputList &BAInputs) const {
1900  DerivedArgList &Args = C.getArgs();
1901  ActionList &Actions = C.getActions();
1902  llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
1903  // Collect the list of architectures. Duplicates are allowed, but should only
1904  // be handled once (in the order seen).
1905  llvm::StringSet<> ArchNames;
1907  for (Arg *A : Args) {
1908  if (A->getOption().matches(options::OPT_arch)) {
1909  // Validate the option here; we don't save the type here because its
1910  // particular spelling may participate in other driver choices.
1911  llvm::Triple::ArchType Arch =
1913  if (Arch == llvm::Triple::UnknownArch) {
1914  Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
1915  continue;
1916  }
1917 
1918  A->claim();
1919  if (ArchNames.insert(A->getValue()).second)
1920  Archs.push_back(A->getValue());
1921  }
1922  }
1923 
1924  // When there is no explicit arch for this platform, make sure we still bind
1925  // the architecture (to the default) so that -Xarch_ is handled correctly.
1926  if (!Archs.size())
1927  Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
1928 
1929  ActionList SingleActions;
1930  BuildActions(C, Args, BAInputs, SingleActions);
1931 
1932  // Add in arch bindings for every top level action, as well as lipo and
1933  // dsymutil steps if needed.
1934  for (Action* Act : SingleActions) {
1935  // Make sure we can lipo this kind of output. If not (and it is an actual
1936  // output) then we disallow, since we can't create an output file with the
1937  // right name without overwriting it. We could remove this oddity by just
1938  // changing the output names to include the arch, which would also fix
1939  // -save-temps. Compatibility wins for now.
1940 
1941  if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
1942  Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
1943  << types::getTypeName(Act->getType());
1944 
1945  ActionList Inputs;
1946  for (unsigned i = 0, e = Archs.size(); i != e; ++i)
1947  Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
1948 
1949  // Lipo if necessary, we do it this way because we need to set the arch flag
1950  // so that -Xarch_ gets overwritten.
1951  if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
1952  Actions.append(Inputs.begin(), Inputs.end());
1953  else
1954  Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
1955 
1956  // Handle debug info queries.
1957  Arg *A = Args.getLastArg(options::OPT_g_Group);
1958  if (A && !A->getOption().matches(options::OPT_g0) &&
1959  !A->getOption().matches(options::OPT_gstabs) &&
1960  ContainsCompileOrAssembleAction(Actions.back())) {
1961 
1962  // Add a 'dsymutil' step if necessary, when debug info is enabled and we
1963  // have a compile input. We need to run 'dsymutil' ourselves in such cases
1964  // because the debug info will refer to a temporary object file which
1965  // will be removed at the end of the compilation process.
1966  if (Act->getType() == types::TY_Image) {
1967  ActionList Inputs;
1968  Inputs.push_back(Actions.back());
1969  Actions.pop_back();
1970  Actions.push_back(
1971  C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
1972  }
1973 
1974  // Verify the debug info output.
1975  if (Args.hasArg(options::OPT_verify_debug_info)) {
1976  Action* LastAction = Actions.back();
1977  Actions.pop_back();
1978  Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
1979  LastAction, types::TY_Nothing));
1980  }
1981  }
1982  }
1983 }
1984 
1985 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
1986  types::ID Ty, bool TypoCorrect) const {
1987  if (!getCheckInputsExist())
1988  return true;
1989 
1990  // stdin always exists.
1991  if (Value == "-")
1992  return true;
1993 
1994  SmallString<64> Path(Value);
1995  if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory)) {
1996  if (!llvm::sys::path::is_absolute(Path)) {
1997  SmallString<64> Directory(WorkDir->getValue());
1998  llvm::sys::path::append(Directory, Value);
1999  Path.assign(Directory);
2000  }
2001  }
2002 
2003  if (getVFS().exists(Path))
2004  return true;
2005 
2006  if (IsCLMode()) {
2007  if (!llvm::sys::path::is_absolute(Twine(Path)) &&
2008  llvm::sys::Process::FindInEnvPath("LIB", Value))
2009  return true;
2010 
2011  if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
2012  // Arguments to the /link flag might cause the linker to search for object
2013  // and library files in paths we don't know about. Don't error in such
2014  // cases.
2015  return true;
2016  }
2017  }
2018 
2019  if (TypoCorrect) {
2020  // Check if the filename is a typo for an option flag. OptTable thinks
2021  // that all args that are not known options and that start with / are
2022  // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2023  // the option `/diagnostics:caret` than a reference to a file in the root
2024  // directory.
2025  unsigned IncludedFlagsBitmask;
2026  unsigned ExcludedFlagsBitmask;
2027  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2028  getIncludeExcludeOptionFlagMasks(IsCLMode());
2029  std::string Nearest;
2030  if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2031  ExcludedFlagsBitmask) <= 1) {
2032  Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2033  << Path << Nearest;
2034  return false;
2035  }
2036  }
2037 
2038  Diag(clang::diag::err_drv_no_such_file) << Path;
2039  return false;
2040 }
2041 
2042 // Construct a the list of inputs and their types.
2043 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2044  InputList &Inputs) const {
2045  const llvm::opt::OptTable &Opts = getOpts();
2046  // Track the current user specified (-x) input. We also explicitly track the
2047  // argument used to set the type; we only want to claim the type when we
2048  // actually use it, so we warn about unused -x arguments.
2049  types::ID InputType = types::TY_Nothing;
2050  Arg *InputTypeArg = nullptr;
2051 
2052  // The last /TC or /TP option sets the input type to C or C++ globally.
2053  if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2054  options::OPT__SLASH_TP)) {
2055  InputTypeArg = TCTP;
2056  InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2057  ? types::TY_C
2058  : types::TY_CXX;
2059 
2060  Arg *Previous = nullptr;
2061  bool ShowNote = false;
2062  for (Arg *A :
2063  Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2064  if (Previous) {
2065  Diag(clang::diag::warn_drv_overriding_flag_option)
2066  << Previous->getSpelling() << A->getSpelling();
2067  ShowNote = true;
2068  }
2069  Previous = A;
2070  }
2071  if (ShowNote)
2072  Diag(clang::diag::note_drv_t_option_is_global);
2073 
2074  // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2075  assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2076  }
2077 
2078  for (Arg *A : Args) {
2079  if (A->getOption().getKind() == Option::InputClass) {
2080  const char *Value = A->getValue();
2082 
2083  // Infer the input type if necessary.
2084  if (InputType == types::TY_Nothing) {
2085  // If there was an explicit arg for this, claim it.
2086  if (InputTypeArg)
2087  InputTypeArg->claim();
2088 
2089  // stdin must be handled specially.
2090  if (memcmp(Value, "-", 2) == 0) {
2091  // If running with -E, treat as a C input (this changes the builtin
2092  // macros, for example). This may be overridden by -ObjC below.
2093  //
2094  // Otherwise emit an error but still use a valid type to avoid
2095  // spurious errors (e.g., no inputs).
2096  if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2097  Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2098  : clang::diag::err_drv_unknown_stdin_type);
2099  Ty = types::TY_C;
2100  } else {
2101  // Otherwise lookup by extension.
2102  // Fallback is C if invoked as C preprocessor, C++ if invoked with
2103  // clang-cl /E, or Object otherwise.
2104  // We use a host hook here because Darwin at least has its own
2105  // idea of what .s is.
2106  if (const char *Ext = strrchr(Value, '.'))
2107  Ty = TC.LookupTypeForExtension(Ext + 1);
2108 
2109  if (Ty == types::TY_INVALID) {
2110  if (CCCIsCPP())
2111  Ty = types::TY_C;
2112  else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E))
2113  Ty = types::TY_CXX;
2114  else
2115  Ty = types::TY_Object;
2116  }
2117 
2118  // If the driver is invoked as C++ compiler (like clang++ or c++) it
2119  // should autodetect some input files as C++ for g++ compatibility.
2120  if (CCCIsCXX()) {
2121  types::ID OldTy = Ty;
2123 
2124  if (Ty != OldTy)
2125  Diag(clang::diag::warn_drv_treating_input_as_cxx)
2126  << getTypeName(OldTy) << getTypeName(Ty);
2127  }
2128 
2129  // If running with -fthinlto-index=, extensions that normally identify
2130  // native object files actually identify LLVM bitcode files.
2131  if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2132  Ty == types::TY_Object)
2133  Ty = types::TY_LLVM_BC;
2134  }
2135 
2136  // -ObjC and -ObjC++ override the default language, but only for "source
2137  // files". We just treat everything that isn't a linker input as a
2138  // source file.
2139  //
2140  // FIXME: Clean this up if we move the phase sequence into the type.
2141  if (Ty != types::TY_Object) {
2142  if (Args.hasArg(options::OPT_ObjC))
2143  Ty = types::TY_ObjC;
2144  else if (Args.hasArg(options::OPT_ObjCXX))
2145  Ty = types::TY_ObjCXX;
2146  }
2147  } else {
2148  assert(InputTypeArg && "InputType set w/o InputTypeArg");
2149  if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2150  // If emulating cl.exe, make sure that /TC and /TP don't affect input
2151  // object files.
2152  const char *Ext = strrchr(Value, '.');
2153  if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2154  Ty = types::TY_Object;
2155  }
2156  if (Ty == types::TY_INVALID) {
2157  Ty = InputType;
2158  InputTypeArg->claim();
2159  }
2160  }
2161 
2162  if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2163  Inputs.push_back(std::make_pair(Ty, A));
2164 
2165  } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2166  StringRef Value = A->getValue();
2167  if (DiagnoseInputExistence(Args, Value, types::TY_C,
2168  /*TypoCorrect=*/false)) {
2169  Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2170  Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2171  }
2172  A->claim();
2173  } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2174  StringRef Value = A->getValue();
2175  if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2176  /*TypoCorrect=*/false)) {
2177  Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2178  Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2179  }
2180  A->claim();
2181  } else if (A->getOption().hasFlag(options::LinkerInput)) {
2182  // Just treat as object type, we could make a special type for this if
2183  // necessary.
2184  Inputs.push_back(std::make_pair(types::TY_Object, A));
2185 
2186  } else if (A->getOption().matches(options::OPT_x)) {
2187  InputTypeArg = A;
2188  InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2189  A->claim();
2190 
2191  // Follow gcc behavior and treat as linker input for invalid -x
2192  // options. Its not clear why we shouldn't just revert to unknown; but
2193  // this isn't very important, we might as well be bug compatible.
2194  if (!InputType) {
2195  Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2196  InputType = types::TY_Object;
2197  }
2198  } else if (A->getOption().getID() == options::OPT_U) {
2199  assert(A->getNumValues() == 1 && "The /U option has one value.");
2200  StringRef Val = A->getValue(0);
2201  if (Val.find_first_of("/\\") != StringRef::npos) {
2202  // Warn about e.g. "/Users/me/myfile.c".
2203  Diag(diag::warn_slash_u_filename) << Val;
2204  Diag(diag::note_use_dashdash);
2205  }
2206  }
2207  }
2208  if (CCCIsCPP() && Inputs.empty()) {
2209  // If called as standalone preprocessor, stdin is processed
2210  // if no other input is present.
2211  Arg *A = MakeInputArg(Args, Opts, "-");
2212  Inputs.push_back(std::make_pair(types::TY_C, A));
2213  }
2214 }
2215 
2216 namespace {
2217 /// Provides a convenient interface for different programming models to generate
2218 /// the required device actions.
2219 class OffloadingActionBuilder final {
2220  /// Flag used to trace errors in the builder.
2221  bool IsValid = false;
2222 
2223  /// The compilation that is using this builder.
2224  Compilation &C;
2225 
2226  /// Map between an input argument and the offload kinds used to process it.
2227  std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2228 
2229  /// Builder interface. It doesn't build anything or keep any state.
2230  class DeviceActionBuilder {
2231  public:
2232  typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2233 
2234  enum ActionBuilderReturnCode {
2235  // The builder acted successfully on the current action.
2236  ABRT_Success,
2237  // The builder didn't have to act on the current action.
2238  ABRT_Inactive,
2239  // The builder was successful and requested the host action to not be
2240  // generated.
2241  ABRT_Ignore_Host,
2242  };
2243 
2244  protected:
2245  /// Compilation associated with this builder.
2246  Compilation &C;
2247 
2248  /// Tool chains associated with this builder. The same programming
2249  /// model may have associated one or more tool chains.
2251 
2252  /// The derived arguments associated with this builder.
2253  DerivedArgList &Args;
2254 
2255  /// The inputs associated with this builder.
2256  const Driver::InputList &Inputs;
2257 
2258  /// The associated offload kind.
2259  Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2260 
2261  public:
2262  DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2263  const Driver::InputList &Inputs,
2264  Action::OffloadKind AssociatedOffloadKind)
2265  : C(C), Args(Args), Inputs(Inputs),
2266  AssociatedOffloadKind(AssociatedOffloadKind) {}
2267  virtual ~DeviceActionBuilder() {}
2268 
2269  /// Fill up the array \a DA with all the device dependences that should be
2270  /// added to the provided host action \a HostAction. By default it is
2271  /// inactive.
2272  virtual ActionBuilderReturnCode
2273  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2274  phases::ID CurPhase, phases::ID FinalPhase,
2275  PhasesTy &Phases) {
2276  return ABRT_Inactive;
2277  }
2278 
2279  /// Update the state to include the provided host action \a HostAction as a
2280  /// dependency of the current device action. By default it is inactive.
2281  virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2282  return ABRT_Inactive;
2283  }
2284 
2285  /// Append top level actions generated by the builder. Return true if errors
2286  /// were found.
2287  virtual void appendTopLevelActions(ActionList &AL) {}
2288 
2289  /// Append linker actions generated by the builder. Return true if errors
2290  /// were found.
2291  virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2292 
2293  /// Initialize the builder. Return true if any initialization errors are
2294  /// found.
2295  virtual bool initialize() { return false; }
2296 
2297  /// Return true if the builder can use bundling/unbundling.
2298  virtual bool canUseBundlerUnbundler() const { return false; }
2299 
2300  /// Return true if this builder is valid. We have a valid builder if we have
2301  /// associated device tool chains.
2302  bool isValid() { return !ToolChains.empty(); }
2303 
2304  /// Return the associated offload kind.
2305  Action::OffloadKind getAssociatedOffloadKind() {
2306  return AssociatedOffloadKind;
2307  }
2308  };
2309 
2310  /// Base class for CUDA/HIP action builder. It injects device code in
2311  /// the host backend action.
2312  class CudaActionBuilderBase : public DeviceActionBuilder {
2313  protected:
2314  /// Flags to signal if the user requested host-only or device-only
2315  /// compilation.
2316  bool CompileHostOnly = false;
2317  bool CompileDeviceOnly = false;
2318 
2319  /// List of GPU architectures to use in this compilation.
2320  SmallVector<CudaArch, 4> GpuArchList;
2321 
2322  /// The CUDA actions for the current input.
2323  ActionList CudaDeviceActions;
2324 
2325  /// The CUDA fat binary if it was generated for the current input.
2326  Action *CudaFatBinary = nullptr;
2327 
2328  /// Flag that is set to true if this builder acted on the current input.
2329  bool IsActive = false;
2330 
2331  /// Flag for -fgpu-rdc.
2332  bool Relocatable = false;
2333  public:
2334  CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2335  const Driver::InputList &Inputs,
2336  Action::OffloadKind OFKind)
2337  : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2338 
2339  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2340  // While generating code for CUDA, we only depend on the host input action
2341  // to trigger the creation of all the CUDA device actions.
2342 
2343  // If we are dealing with an input action, replicate it for each GPU
2344  // architecture. If we are in host-only mode we return 'success' so that
2345  // the host uses the CUDA offload kind.
2346  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2347  assert(!GpuArchList.empty() &&
2348  "We should have at least one GPU architecture.");
2349 
2350  // If the host input is not CUDA or HIP, we don't need to bother about
2351  // this input.
2352  if (IA->getType() != types::TY_CUDA &&
2353  IA->getType() != types::TY_HIP) {
2354  // The builder will ignore this input.
2355  IsActive = false;
2356  return ABRT_Inactive;
2357  }
2358 
2359  // Set the flag to true, so that the builder acts on the current input.
2360  IsActive = true;
2361 
2362  if (CompileHostOnly)
2363  return ABRT_Success;
2364 
2365  // Replicate inputs for each GPU architecture.
2366  auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2367  : types::TY_CUDA_DEVICE;
2368  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2369  CudaDeviceActions.push_back(
2370  C.MakeAction<InputAction>(IA->getInputArg(), Ty));
2371  }
2372 
2373  return ABRT_Success;
2374  }
2375 
2376  // If this is an unbundling action use it as is for each CUDA toolchain.
2377  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2378 
2379  // If -fgpu-rdc is disabled, should not unbundle since there is no
2380  // device code to link.
2381  if (!Relocatable)
2382  return ABRT_Inactive;
2383 
2384  CudaDeviceActions.clear();
2385  auto *IA = cast<InputAction>(UA->getInputs().back());
2386  std::string FileName = IA->getInputArg().getAsString(Args);
2387  // Check if the type of the file is the same as the action. Do not
2388  // unbundle it if it is not. Do not unbundle .so files, for example,
2389  // which are not object files.
2390  if (IA->getType() == types::TY_Object &&
2391  (!llvm::sys::path::has_extension(FileName) ||
2393  llvm::sys::path::extension(FileName).drop_front()) !=
2394  types::TY_Object))
2395  return ABRT_Inactive;
2396 
2397  for (auto Arch : GpuArchList) {
2398  CudaDeviceActions.push_back(UA);
2399  UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch),
2400  AssociatedOffloadKind);
2401  }
2402  return ABRT_Success;
2403  }
2404 
2405  return IsActive ? ABRT_Success : ABRT_Inactive;
2406  }
2407 
2408  void appendTopLevelActions(ActionList &AL) override {
2409  // Utility to append actions to the top level list.
2410  auto AddTopLevel = [&](Action *A, CudaArch BoundArch) {
2412  Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch),
2413  AssociatedOffloadKind);
2414  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2415  };
2416 
2417  // If we have a fat binary, add it to the list.
2418  if (CudaFatBinary) {
2419  AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN);
2420  CudaDeviceActions.clear();
2421  CudaFatBinary = nullptr;
2422  return;
2423  }
2424 
2425  if (CudaDeviceActions.empty())
2426  return;
2427 
2428  // If we have CUDA actions at this point, that's because we have a have
2429  // partial compilation, so we should have an action for each GPU
2430  // architecture.
2431  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2432  "Expecting one action per GPU architecture.");
2433  assert(ToolChains.size() == 1 &&
2434  "Expecting to have a sing CUDA toolchain.");
2435  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2436  AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2437 
2438  CudaDeviceActions.clear();
2439  }
2440 
2441  bool initialize() override {
2442  assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2443  AssociatedOffloadKind == Action::OFK_HIP);
2444 
2445  // We don't need to support CUDA.
2446  if (AssociatedOffloadKind == Action::OFK_Cuda &&
2448  return false;
2449 
2450  // We don't need to support HIP.
2451  if (AssociatedOffloadKind == Action::OFK_HIP &&
2453  return false;
2454 
2455  Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2456  options::OPT_fno_gpu_rdc, /*Default=*/false);
2457 
2459  assert(HostTC && "No toolchain for host compilation.");
2460  if (HostTC->getTriple().isNVPTX() ||
2461  HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2462  // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2463  // an error and abort pipeline construction early so we don't trip
2464  // asserts that assume device-side compilation.
2465  C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2466  << HostTC->getTriple().getArchName();
2467  return true;
2468  }
2469 
2470  ToolChains.push_back(
2471  AssociatedOffloadKind == Action::OFK_Cuda
2474 
2475  Arg *PartialCompilationArg = Args.getLastArg(
2476  options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2477  options::OPT_cuda_compile_host_device);
2478  CompileHostOnly = PartialCompilationArg &&
2479  PartialCompilationArg->getOption().matches(
2480  options::OPT_cuda_host_only);
2481  CompileDeviceOnly = PartialCompilationArg &&
2482  PartialCompilationArg->getOption().matches(
2483  options::OPT_cuda_device_only);
2484 
2485  // Collect all cuda_gpu_arch parameters, removing duplicates.
2486  std::set<CudaArch> GpuArchs;
2487  bool Error = false;
2488  for (Arg *A : Args) {
2489  if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) ||
2490  A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)))
2491  continue;
2492  A->claim();
2493 
2494  const StringRef ArchStr = A->getValue();
2495  if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) &&
2496  ArchStr == "all") {
2497  GpuArchs.clear();
2498  continue;
2499  }
2500  CudaArch Arch = StringToCudaArch(ArchStr);
2501  if (Arch == CudaArch::UNKNOWN) {
2502  C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2503  Error = true;
2504  } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ))
2505  GpuArchs.insert(Arch);
2506  else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))
2507  GpuArchs.erase(Arch);
2508  else
2509  llvm_unreachable("Unexpected option.");
2510  }
2511 
2512  // Collect list of GPUs remaining in the set.
2513  for (CudaArch Arch : GpuArchs)
2514  GpuArchList.push_back(Arch);
2515 
2516  // Default to sm_20 which is the lowest common denominator for
2517  // supported GPUs. sm_20 code should work correctly, if
2518  // suboptimally, on all newer GPUs.
2519  if (GpuArchList.empty())
2520  GpuArchList.push_back(CudaArch::SM_20);
2521 
2522  return Error;
2523  }
2524  };
2525 
2526  /// \brief CUDA action builder. It injects device code in the host backend
2527  /// action.
2528  class CudaActionBuilder final : public CudaActionBuilderBase {
2529  public:
2530  CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2531  const Driver::InputList &Inputs)
2532  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {}
2533 
2534  ActionBuilderReturnCode
2535  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2536  phases::ID CurPhase, phases::ID FinalPhase,
2537  PhasesTy &Phases) override {
2538  if (!IsActive)
2539  return ABRT_Inactive;
2540 
2541  // If we don't have more CUDA actions, we don't have any dependences to
2542  // create for the host.
2543  if (CudaDeviceActions.empty())
2544  return ABRT_Success;
2545 
2546  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2547  "Expecting one action per GPU architecture.");
2548  assert(!CompileHostOnly &&
2549  "Not expecting CUDA actions in host-only compilation.");
2550 
2551  // If we are generating code for the device or we are in a backend phase,
2552  // we attempt to generate the fat binary. We compile each arch to ptx and
2553  // assemble to cubin, then feed the cubin *and* the ptx into a device
2554  // "link" action, which uses fatbinary to combine these cubins into one
2555  // fatbin. The fatbin is then an input to the host action if not in
2556  // device-only mode.
2557  if (CompileDeviceOnly || CurPhase == phases::Backend) {
2558  ActionList DeviceActions;
2559  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2560  // Produce the device action from the current phase up to the assemble
2561  // phase.
2562  for (auto Ph : Phases) {
2563  // Skip the phases that were already dealt with.
2564  if (Ph < CurPhase)
2565  continue;
2566  // We have to be consistent with the host final phase.
2567  if (Ph > FinalPhase)
2568  break;
2569 
2570  CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2571  C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2572 
2573  if (Ph == phases::Assemble)
2574  break;
2575  }
2576 
2577  // If we didn't reach the assemble phase, we can't generate the fat
2578  // binary. We don't need to generate the fat binary if we are not in
2579  // device-only mode.
2580  if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2581  CompileDeviceOnly)
2582  continue;
2583 
2584  Action *AssembleAction = CudaDeviceActions[I];
2585  assert(AssembleAction->getType() == types::TY_Object);
2586  assert(AssembleAction->getInputs().size() == 1);
2587 
2588  Action *BackendAction = AssembleAction->getInputs()[0];
2589  assert(BackendAction->getType() == types::TY_PP_Asm);
2590 
2591  for (auto &A : {AssembleAction, BackendAction}) {
2593  DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]),
2595  DeviceActions.push_back(
2596  C.MakeAction<OffloadAction>(DDep, A->getType()));
2597  }
2598  }
2599 
2600  // We generate the fat binary if we have device input actions.
2601  if (!DeviceActions.empty()) {
2602  CudaFatBinary =
2603  C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2604 
2605  if (!CompileDeviceOnly) {
2606  DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2608  // Clear the fat binary, it is already a dependence to an host
2609  // action.
2610  CudaFatBinary = nullptr;
2611  }
2612 
2613  // Remove the CUDA actions as they are already connected to an host
2614  // action or fat binary.
2615  CudaDeviceActions.clear();
2616  }
2617 
2618  // We avoid creating host action in device-only mode.
2619  return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2620  } else if (CurPhase > phases::Backend) {
2621  // If we are past the backend phase and still have a device action, we
2622  // don't have to do anything as this action is already a device
2623  // top-level action.
2624  return ABRT_Success;
2625  }
2626 
2627  assert(CurPhase < phases::Backend && "Generating single CUDA "
2628  "instructions should only occur "
2629  "before the backend phase!");
2630 
2631  // By default, we produce an action for each device arch.
2632  for (Action *&A : CudaDeviceActions)
2633  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2634 
2635  return ABRT_Success;
2636  }
2637  };
2638  /// \brief HIP action builder. It injects device code in the host backend
2639  /// action.
2640  class HIPActionBuilder final : public CudaActionBuilderBase {
2641  /// The linker inputs obtained for each device arch.
2642  SmallVector<ActionList, 8> DeviceLinkerInputs;
2643 
2644  public:
2645  HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2646  const Driver::InputList &Inputs)
2647  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {}
2648 
2649  bool canUseBundlerUnbundler() const override { return true; }
2650 
2651  ActionBuilderReturnCode
2652  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2653  phases::ID CurPhase, phases::ID FinalPhase,
2654  PhasesTy &Phases) override {
2655  // amdgcn does not support linking of object files, therefore we skip
2656  // backend and assemble phases to output LLVM IR. Except for generating
2657  // non-relocatable device coee, where we generate fat binary for device
2658  // code and pass to host in Backend phase.
2659  if (CudaDeviceActions.empty() ||
2660  (CurPhase == phases::Backend && Relocatable) ||
2661  CurPhase == phases::Assemble)
2662  return ABRT_Success;
2663 
2664  assert(((CurPhase == phases::Link && Relocatable) ||
2665  CudaDeviceActions.size() == GpuArchList.size()) &&
2666  "Expecting one action per GPU architecture.");
2667  assert(!CompileHostOnly &&
2668  "Not expecting CUDA actions in host-only compilation.");
2669 
2670  if (!Relocatable && CurPhase == phases::Backend) {
2671  // If we are in backend phase, we attempt to generate the fat binary.
2672  // We compile each arch to IR and use a link action to generate code
2673  // object containing ISA. Then we use a special "link" action to create
2674  // a fat binary containing all the code objects for different GPU's.
2675  // The fat binary is then an input to the host action.
2676  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2677  // Create a link action to link device IR with device library
2678  // and generate ISA.
2679  ActionList AL;
2680  AL.push_back(CudaDeviceActions[I]);
2681  CudaDeviceActions[I] =
2682  C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2683 
2684  // OffloadingActionBuilder propagates device arch until an offload
2685  // action. Since the next action for creating fatbin does
2686  // not have device arch, whereas the above link action and its input
2687  // have device arch, an offload action is needed to stop the null
2688  // device arch of the next action being propagated to the above link
2689  // action.
2691  DDep.add(*CudaDeviceActions[I], *ToolChains.front(),
2692  CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2693  CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
2694  DDep, CudaDeviceActions[I]->getType());
2695  }
2696  // Create HIP fat binary with a special "link" action.
2697  CudaFatBinary =
2698  C.MakeAction<LinkJobAction>(CudaDeviceActions,
2699  types::TY_HIP_FATBIN);
2700 
2701  if (!CompileDeviceOnly) {
2702  DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2703  AssociatedOffloadKind);
2704  // Clear the fat binary, it is already a dependence to an host
2705  // action.
2706  CudaFatBinary = nullptr;
2707  }
2708 
2709  // Remove the CUDA actions as they are already connected to an host
2710  // action or fat binary.
2711  CudaDeviceActions.clear();
2712 
2713  return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2714  } else if (CurPhase == phases::Link) {
2715  // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
2716  // This happens to each device action originated from each input file.
2717  // Later on, device actions in DeviceLinkerInputs are used to create
2718  // device link actions in appendLinkDependences and the created device
2719  // link actions are passed to the offload action as device dependence.
2720  DeviceLinkerInputs.resize(CudaDeviceActions.size());
2721  auto LI = DeviceLinkerInputs.begin();
2722  for (auto *A : CudaDeviceActions) {
2723  LI->push_back(A);
2724  ++LI;
2725  }
2726 
2727  // We will pass the device action as a host dependence, so we don't
2728  // need to do anything else with them.
2729  CudaDeviceActions.clear();
2730  return ABRT_Success;
2731  }
2732 
2733  // By default, we produce an action for each device arch.
2734  for (Action *&A : CudaDeviceActions)
2735  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
2736  AssociatedOffloadKind);
2737 
2738  return ABRT_Success;
2739  }
2740 
2741  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2742  // Append a new link action for each device.
2743  unsigned I = 0;
2744  for (auto &LI : DeviceLinkerInputs) {
2745  auto *DeviceLinkAction =
2746  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2747  DA.add(*DeviceLinkAction, *ToolChains[0],
2748  CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2749  ++I;
2750  }
2751  }
2752  };
2753 
2754  /// OpenMP action builder. The host bitcode is passed to the device frontend
2755  /// and all the device linked images are passed to the host link phase.
2756  class OpenMPActionBuilder final : public DeviceActionBuilder {
2757  /// The OpenMP actions for the current input.
2758  ActionList OpenMPDeviceActions;
2759 
2760  /// The linker inputs obtained for each toolchain.
2761  SmallVector<ActionList, 8> DeviceLinkerInputs;
2762 
2763  public:
2764  OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
2765  const Driver::InputList &Inputs)
2766  : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
2767 
2768  ActionBuilderReturnCode
2769  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2770  phases::ID CurPhase, phases::ID FinalPhase,
2771  PhasesTy &Phases) override {
2772  if (OpenMPDeviceActions.empty())
2773  return ABRT_Inactive;
2774 
2775  // We should always have an action for each input.
2776  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2777  "Number of OpenMP actions and toolchains do not match.");
2778 
2779  // The host only depends on device action in the linking phase, when all
2780  // the device images have to be embedded in the host image.
2781  if (CurPhase == phases::Link) {
2782  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2783  "Toolchains and linker inputs sizes do not match.");
2784  auto LI = DeviceLinkerInputs.begin();
2785  for (auto *A : OpenMPDeviceActions) {
2786  LI->push_back(A);
2787  ++LI;
2788  }
2789 
2790  // We passed the device action as a host dependence, so we don't need to
2791  // do anything else with them.
2792  OpenMPDeviceActions.clear();
2793  return ABRT_Success;
2794  }
2795 
2796  // By default, we produce an action for each device arch.
2797  for (Action *&A : OpenMPDeviceActions)
2798  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2799 
2800  return ABRT_Success;
2801  }
2802 
2803  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2804 
2805  // If this is an input action replicate it for each OpenMP toolchain.
2806  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2807  OpenMPDeviceActions.clear();
2808  for (unsigned I = 0; I < ToolChains.size(); ++I)
2809  OpenMPDeviceActions.push_back(
2810  C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
2811  return ABRT_Success;
2812  }
2813 
2814  // If this is an unbundling action use it as is for each OpenMP toolchain.
2815  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2816  OpenMPDeviceActions.clear();
2817  auto *IA = cast<InputAction>(UA->getInputs().back());
2818  std::string FileName = IA->getInputArg().getAsString(Args);
2819  // Check if the type of the file is the same as the action. Do not
2820  // unbundle it if it is not. Do not unbundle .so files, for example,
2821  // which are not object files.
2822  if (IA->getType() == types::TY_Object &&
2823  (!llvm::sys::path::has_extension(FileName) ||
2825  llvm::sys::path::extension(FileName).drop_front()) !=
2826  types::TY_Object))
2827  return ABRT_Inactive;
2828  for (unsigned I = 0; I < ToolChains.size(); ++I) {
2829  OpenMPDeviceActions.push_back(UA);
2830  UA->registerDependentActionInfo(
2831  ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
2832  }
2833  return ABRT_Success;
2834  }
2835 
2836  // When generating code for OpenMP we use the host compile phase result as
2837  // a dependence to the device compile phase so that it can learn what
2838  // declarations should be emitted. However, this is not the only use for
2839  // the host action, so we prevent it from being collapsed.
2840  if (isa<CompileJobAction>(HostAction)) {
2842  assert(ToolChains.size() == OpenMPDeviceActions.size() &&
2843  "Toolchains and device action sizes do not match.");
2845  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2846  /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2847  auto TC = ToolChains.begin();
2848  for (Action *&A : OpenMPDeviceActions) {
2849  assert(isa<CompileJobAction>(A));
2851  DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2852  A = C.MakeAction<OffloadAction>(HDep, DDep);
2853  ++TC;
2854  }
2855  }
2856  return ABRT_Success;
2857  }
2858 
2859  void appendTopLevelActions(ActionList &AL) override {
2860  if (OpenMPDeviceActions.empty())
2861  return;
2862 
2863  // We should always have an action for each input.
2864  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2865  "Number of OpenMP actions and toolchains do not match.");
2866 
2867  // Append all device actions followed by the proper offload action.
2868  auto TI = ToolChains.begin();
2869  for (auto *A : OpenMPDeviceActions) {
2871  Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2872  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2873  ++TI;
2874  }
2875  // We no longer need the action stored in this builder.
2876  OpenMPDeviceActions.clear();
2877  }
2878 
2879  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2880  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2881  "Toolchains and linker inputs sizes do not match.");
2882 
2883  // Append a new link action for each device.
2884  auto TC = ToolChains.begin();
2885  for (auto &LI : DeviceLinkerInputs) {
2886  auto *DeviceLinkAction =
2887  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2888  DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
2890  ++TC;
2891  }
2892  }
2893 
2894  bool initialize() override {
2895  // Get the OpenMP toolchains. If we don't get any, the action builder will
2896  // know there is nothing to do related to OpenMP offloading.
2897  auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
2898  for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
2899  ++TI)
2900  ToolChains.push_back(TI->second);
2901 
2902  DeviceLinkerInputs.resize(ToolChains.size());
2903  return false;
2904  }
2905 
2906  bool canUseBundlerUnbundler() const override {
2907  // OpenMP should use bundled files whenever possible.
2908  return true;
2909  }
2910  };
2911 
2912  ///
2913  /// TODO: Add the implementation for other specialized builders here.
2914  ///
2915 
2916  /// Specialized builders being used by this offloading action builder.
2917  SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
2918 
2919  /// Flag set to true if all valid builders allow file bundling/unbundling.
2920  bool CanUseBundler;
2921 
2922 public:
2923  OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
2924  const Driver::InputList &Inputs)
2925  : C(C) {
2926  // Create a specialized builder for each device toolchain.
2927 
2928  IsValid = true;
2929 
2930  // Create a specialized builder for CUDA.
2931  SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
2932 
2933  // Create a specialized builder for HIP.
2934  SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
2935 
2936  // Create a specialized builder for OpenMP.
2937  SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
2938 
2939  //
2940  // TODO: Build other specialized builders here.
2941  //
2942 
2943  // Initialize all the builders, keeping track of errors. If all valid
2944  // builders agree that we can use bundling, set the flag to true.
2945  unsigned ValidBuilders = 0u;
2946  unsigned ValidBuildersSupportingBundling = 0u;
2947  for (auto *SB : SpecializedBuilders) {
2948  IsValid = IsValid && !SB->initialize();
2949 
2950  // Update the counters if the builder is valid.
2951  if (SB->isValid()) {
2952  ++ValidBuilders;
2953  if (SB->canUseBundlerUnbundler())
2954  ++ValidBuildersSupportingBundling;
2955  }
2956  }
2957  CanUseBundler =
2958  ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
2959  }
2960 
2961  ~OffloadingActionBuilder() {
2962  for (auto *SB : SpecializedBuilders)
2963  delete SB;
2964  }
2965 
2966  /// Generate an action that adds device dependences (if any) to a host action.
2967  /// If no device dependence actions exist, just return the host action \a
2968  /// HostAction. If an error is found or if no builder requires the host action
2969  /// to be generated, return nullptr.
2970  Action *
2971  addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
2972  phases::ID CurPhase, phases::ID FinalPhase,
2973  DeviceActionBuilder::PhasesTy &Phases) {
2974  if (!IsValid)
2975  return nullptr;
2976 
2977  if (SpecializedBuilders.empty())
2978  return HostAction;
2979 
2980  assert(HostAction && "Invalid host action!");
2981 
2983  // Check if all the programming models agree we should not emit the host
2984  // action. Also, keep track of the offloading kinds employed.
2985  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
2986  unsigned InactiveBuilders = 0u;
2987  unsigned IgnoringBuilders = 0u;
2988  for (auto *SB : SpecializedBuilders) {
2989  if (!SB->isValid()) {
2990  ++InactiveBuilders;
2991  continue;
2992  }
2993 
2994  auto RetCode =
2995  SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
2996 
2997  // If the builder explicitly says the host action should be ignored,
2998  // we need to increment the variable that tracks the builders that request
2999  // the host object to be ignored.
3000  if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3001  ++IgnoringBuilders;
3002 
3003  // Unless the builder was inactive for this action, we have to record the
3004  // offload kind because the host will have to use it.
3005  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3006  OffloadKind |= SB->getAssociatedOffloadKind();
3007  }
3008 
3009  // If all builders agree that the host object should be ignored, just return
3010  // nullptr.
3011  if (IgnoringBuilders &&
3012  SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3013  return nullptr;
3014 
3015  if (DDeps.getActions().empty())
3016  return HostAction;
3017 
3018  // We have dependences we need to bundle together. We use an offload action
3019  // for that.
3021  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3022  /*BoundArch=*/nullptr, DDeps);
3023  return C.MakeAction<OffloadAction>(HDep, DDeps);
3024  }
3025 
3026  /// Generate an action that adds a host dependence to a device action. The
3027  /// results will be kept in this action builder. Return true if an error was
3028  /// found.
3029  bool addHostDependenceToDeviceActions(Action *&HostAction,
3030  const Arg *InputArg) {
3031  if (!IsValid)
3032  return true;
3033 
3034  // If we are supporting bundling/unbundling and the current action is an
3035  // input action of non-source file, we replace the host action by the
3036  // unbundling action. The bundler tool has the logic to detect if an input
3037  // is a bundle or not and if the input is not a bundle it assumes it is a
3038  // host file. Therefore it is safe to create an unbundling action even if
3039  // the input is not a bundle.
3040  if (CanUseBundler && isa<InputAction>(HostAction) &&
3041  InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3042  !types::isSrcFile(HostAction->getType())) {
3043  auto UnbundlingHostAction =
3044  C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3045  UnbundlingHostAction->registerDependentActionInfo(
3047  /*BoundArch=*/StringRef(), Action::OFK_Host);
3048  HostAction = UnbundlingHostAction;
3049  }
3050 
3051  assert(HostAction && "Invalid host action!");
3052 
3053  // Register the offload kinds that are used.
3054  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3055  for (auto *SB : SpecializedBuilders) {
3056  if (!SB->isValid())
3057  continue;
3058 
3059  auto RetCode = SB->addDeviceDepences(HostAction);
3060 
3061  // Host dependences for device actions are not compatible with that same
3062  // action being ignored.
3063  assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3064  "Host dependence not expected to be ignored.!");
3065 
3066  // Unless the builder was inactive for this action, we have to record the
3067  // offload kind because the host will have to use it.
3068  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3069  OffloadKind |= SB->getAssociatedOffloadKind();
3070  }
3071 
3072  // Do not use unbundler if the Host does not depend on device action.
3073  if (OffloadKind == Action::OFK_None && CanUseBundler)
3074  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3075  HostAction = UA->getInputs().back();
3076 
3077  return false;
3078  }
3079 
3080  /// Add the offloading top level actions to the provided action list. This
3081  /// function can replace the host action by a bundling action if the
3082  /// programming models allow it.
3083  bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3084  const Arg *InputArg) {
3085  // Get the device actions to be appended.
3086  ActionList OffloadAL;
3087  for (auto *SB : SpecializedBuilders) {
3088  if (!SB->isValid())
3089  continue;
3090  SB->appendTopLevelActions(OffloadAL);
3091  }
3092 
3093  // If we can use the bundler, replace the host action by the bundling one in
3094  // the resulting list. Otherwise, just append the device actions. For
3095  // device only compilation, HostAction is a null pointer, therefore only do
3096  // this when HostAction is not a null pointer.
3097  if (CanUseBundler && HostAction && !OffloadAL.empty()) {
3098  // Add the host action to the list in order to create the bundling action.
3099  OffloadAL.push_back(HostAction);
3100 
3101  // We expect that the host action was just appended to the action list
3102  // before this method was called.
3103  assert(HostAction == AL.back() && "Host action not in the list??");
3104  HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3105  AL.back() = HostAction;
3106  } else
3107  AL.append(OffloadAL.begin(), OffloadAL.end());
3108 
3109  // Propagate to the current host action (if any) the offload information
3110  // associated with the current input.
3111  if (HostAction)
3112  HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3113  /*BoundArch=*/nullptr);
3114  return false;
3115  }
3116 
3117  /// Processes the host linker action. This currently consists of replacing it
3118  /// with an offload action if there are device link objects and propagate to
3119  /// the host action all the offload kinds used in the current compilation. The
3120  /// resulting action is returned.
3121  Action *processHostLinkAction(Action *HostAction) {
3122  // Add all the dependences from the device linking actions.
3124  for (auto *SB : SpecializedBuilders) {
3125  if (!SB->isValid())
3126  continue;
3127 
3128  SB->appendLinkDependences(DDeps);
3129  }
3130 
3131  // Calculate all the offload kinds used in the current compilation.
3132  unsigned ActiveOffloadKinds = 0u;
3133  for (auto &I : InputArgToOffloadKindMap)
3134  ActiveOffloadKinds |= I.second;
3135 
3136  // If we don't have device dependencies, we don't have to create an offload
3137  // action.
3138  if (DDeps.getActions().empty()) {
3139  // Propagate all the active kinds to host action. Given that it is a link
3140  // action it is assumed to depend on all actions generated so far.
3141  HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3142  /*BoundArch=*/nullptr);
3143  return HostAction;
3144  }
3145 
3146  // Create the offload action with all dependences. When an offload action
3147  // is created the kinds are propagated to the host action, so we don't have
3148  // to do that explicitly here.
3150  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3151  /*BoundArch*/ nullptr, ActiveOffloadKinds);
3152  return C.MakeAction<OffloadAction>(HDep, DDeps);
3153  }
3154 };
3155 } // anonymous namespace.
3156 
3157 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3158  const InputList &Inputs,
3159  ActionList &Actions) const {
3160 
3161  // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3162  Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3163  Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3164  if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3165  Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3166  Args.eraseArg(options::OPT__SLASH_Yc);
3167  Args.eraseArg(options::OPT__SLASH_Yu);
3168  YcArg = YuArg = nullptr;
3169  }
3170  if (YcArg && Inputs.size() > 1) {
3171  Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3172  Args.eraseArg(options::OPT__SLASH_Yc);
3173  YcArg = nullptr;
3174  }
3175 
3176  Arg *FinalPhaseArg;
3177  phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3178 
3179  if (FinalPhase == phases::Link) {
3180  if (Args.hasArg(options::OPT_emit_llvm))
3181  Diag(clang::diag::err_drv_emit_llvm_link);
3182  if (IsCLMode() && LTOMode != LTOK_None &&
3183  !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
3184  Diag(clang::diag::err_drv_lto_without_lld);
3185  }
3186 
3187  if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3188  // If only preprocessing or /Y- is used, all pch handling is disabled.
3189  // Rather than check for it everywhere, just remove clang-cl pch-related
3190  // flags here.
3191  Args.eraseArg(options::OPT__SLASH_Fp);
3192  Args.eraseArg(options::OPT__SLASH_Yc);
3193  Args.eraseArg(options::OPT__SLASH_Yu);
3194  YcArg = YuArg = nullptr;
3195  }
3196 
3197  unsigned LastPLSize = 0;
3198  for (auto &I : Inputs) {
3199  types::ID InputType = I.first;
3200  const Arg *InputArg = I.second;
3201 
3203  types::getCompilationPhases(InputType, PL);
3204  LastPLSize = PL.size();
3205 
3206  // If the first step comes after the final phase we are doing as part of
3207  // this compilation, warn the user about it.
3208  phases::ID InitialPhase = PL[0];
3209  if (InitialPhase > FinalPhase) {
3210  if (InputArg->isClaimed())
3211  continue;
3212 
3213  // Claim here to avoid the more general unused warning.
3214  InputArg->claim();
3215 
3216  // Suppress all unused style warnings with -Qunused-arguments
3217  if (Args.hasArg(options::OPT_Qunused_arguments))
3218  continue;
3219 
3220  // Special case when final phase determined by binary name, rather than
3221  // by a command-line argument with a corresponding Arg.
3222  if (CCCIsCPP())
3223  Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3224  << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3225  // Special case '-E' warning on a previously preprocessed file to make
3226  // more sense.
3227  else if (InitialPhase == phases::Compile &&
3228  (Args.getLastArg(options::OPT__SLASH_EP,
3229  options::OPT__SLASH_P) ||
3230  Args.getLastArg(options::OPT_E) ||
3231  Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
3232  getPreprocessedType(InputType) == types::TY_INVALID)
3233  Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3234  << InputArg->getAsString(Args) << !!FinalPhaseArg
3235  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3236  else
3237  Diag(clang::diag::warn_drv_input_file_unused)
3238  << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3239  << !!FinalPhaseArg
3240  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3241  continue;
3242  }
3243 
3244  if (YcArg) {
3245  // Add a separate precompile phase for the compile phase.
3246  if (FinalPhase >= phases::Compile) {
3247  const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3249  types::getCompilationPhases(HeaderType, PCHPL);
3250  // Build the pipeline for the pch file.
3251  Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
3252  for (phases::ID Phase : PCHPL)
3253  ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3254  assert(ClangClPch);
3255  Actions.push_back(ClangClPch);
3256  // The driver currently exits after the first failed command. This
3257  // relies on that behavior, to make sure if the pch generation fails,
3258  // the main compilation won't run.
3259  // FIXME: If the main compilation fails, the PCH generation should
3260  // probably not be considered successful either.
3261  }
3262  }
3263  }
3264 
3265  // If we are linking, claim any options which are obviously only used for
3266  // compilation.
3267  // FIXME: Understand why the last Phase List length is used here.
3268  if (FinalPhase == phases::Link && LastPLSize == 1) {
3269  Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3270  Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3271  }
3272 }
3273 
3274 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3275  const InputList &Inputs, ActionList &Actions) const {
3276  llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3277 
3278  if (!SuppressMissingInputWarning && Inputs.empty()) {
3279  Diag(clang::diag::err_drv_no_input_files);
3280  return;
3281  }
3282 
3283  // Reject -Z* at the top level, these options should never have been exposed
3284  // by gcc.
3285  if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3286  Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3287 
3288  // Diagnose misuse of /Fo.
3289  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3290  StringRef V = A->getValue();
3291  if (Inputs.size() > 1 && !V.empty() &&
3292  !llvm::sys::path::is_separator(V.back())) {
3293  // Check whether /Fo tries to name an output file for multiple inputs.
3294  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3295  << A->getSpelling() << V;
3296  Args.eraseArg(options::OPT__SLASH_Fo);
3297  }
3298  }
3299 
3300  // Diagnose misuse of /Fa.
3301  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3302  StringRef V = A->getValue();
3303  if (Inputs.size() > 1 && !V.empty() &&
3304  !llvm::sys::path::is_separator(V.back())) {
3305  // Check whether /Fa tries to name an asm file for multiple inputs.
3306  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3307  << A->getSpelling() << V;
3308  Args.eraseArg(options::OPT__SLASH_Fa);
3309  }
3310  }
3311 
3312  // Diagnose misuse of /o.
3313  if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3314  if (A->getValue()[0] == '\0') {
3315  // It has to have a value.
3316  Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3317  Args.eraseArg(options::OPT__SLASH_o);
3318  }
3319  }
3320 
3321  handleArguments(C, Args, Inputs, Actions);
3322 
3323  // Builder to be used to build offloading actions.
3324  OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3325 
3326  // Construct the actions to perform.
3327  HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3328  ActionList LinkerInputs;
3329 
3330  for (auto &I : Inputs) {
3331  types::ID InputType = I.first;
3332  const Arg *InputArg = I.second;
3333 
3335  types::getCompilationPhases(*this, Args, InputType, PL);
3336  if (PL.empty())
3337  continue;
3338 
3340  types::getCompilationPhases(InputType, FullPL);
3341 
3342  // Build the pipeline for this file.
3343  Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3344 
3345  // Use the current host action in any of the offloading actions, if
3346  // required.
3347  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3348  break;
3349 
3350  for (phases::ID Phase : PL) {
3351 
3352  // Add any offload action the host action depends on.
3353  Current = OffloadBuilder.addDeviceDependencesToHostAction(
3354  Current, InputArg, Phase, PL.back(), FullPL);
3355  if (!Current)
3356  break;
3357 
3358  // Queue linker inputs.
3359  if (Phase == phases::Link) {
3360  assert(Phase == PL.back() && "linking must be final compilation step.");
3361  LinkerInputs.push_back(Current);
3362  Current = nullptr;
3363  break;
3364  }
3365 
3366  // Each precompiled header file after a module file action is a module
3367  // header of that same module file, rather than being compiled to a
3368  // separate PCH.
3369  if (Phase == phases::Precompile && HeaderModuleAction &&
3370  getPrecompiledType(InputType) == types::TY_PCH) {
3371  HeaderModuleAction->addModuleHeaderInput(Current);
3372  Current = nullptr;
3373  break;
3374  }
3375 
3376  // FIXME: Should we include any prior module file outputs as inputs of
3377  // later actions in the same command line?
3378 
3379  // Otherwise construct the appropriate action.
3380  Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3381 
3382  // We didn't create a new action, so we will just move to the next phase.
3383  if (NewCurrent == Current)
3384  continue;
3385 
3386  if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3387  HeaderModuleAction = HMA;
3388 
3389  Current = NewCurrent;
3390 
3391  // Use the current host action in any of the offloading actions, if
3392  // required.
3393  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3394  break;
3395 
3396  if (Current->getType() == types::TY_Nothing)
3397  break;
3398  }
3399 
3400  // If we ended with something, add to the output list.
3401  if (Current)
3402  Actions.push_back(Current);
3403 
3404  // Add any top level actions generated for offloading.
3405  OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3406  }
3407 
3408  // Add a link action if necessary.
3409  if (!LinkerInputs.empty()) {
3410  Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3411  LA = OffloadBuilder.processHostLinkAction(LA);
3412  Actions.push_back(LA);
3413  }
3414 
3415  // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
3416  // Compile phase that prints out supported cpu models and quits.
3417  if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
3418  // Use the -mcpu=? flag as the dummy input to cc1.
3419  Actions.clear();
3420  Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
3421  Actions.push_back(
3422  C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
3423  for (auto &I : Inputs)
3424  I.second->claim();
3425  }
3426 
3427  // Claim ignored clang-cl options.
3428  Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3429 
3430  // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3431  // to non-CUDA compilations and should not trigger warnings there.
3432  Args.ClaimAllArgs(options::OPT_cuda_host_only);
3433  Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3434 }
3435 
3437  Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3438  Action::OffloadKind TargetDeviceOffloadKind) const {
3439  llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3440 
3441  // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3442  // encode this in the steps because the intermediate type depends on
3443  // arguments. Just special case here.
3444  if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3445  return Input;
3446 
3447  // Build the appropriate action.
3448  switch (Phase) {
3449  case phases::Link:
3450  llvm_unreachable("link action invalid here.");
3451  case phases::Preprocess: {
3452  types::ID OutputTy;
3453  // -M and -MM specify the dependency file name by altering the output type,
3454  // -if -MD and -MMD are not specified.
3455  if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
3456  !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
3457  OutputTy = types::TY_Dependencies;
3458  } else {
3459  OutputTy = Input->getType();
3460  if (!Args.hasFlag(options::OPT_frewrite_includes,
3461  options::OPT_fno_rewrite_includes, false) &&
3462  !Args.hasFlag(options::OPT_frewrite_imports,
3463  options::OPT_fno_rewrite_imports, false) &&
3465  OutputTy = types::getPreprocessedType(OutputTy);
3466  assert(OutputTy != types::TY_INVALID &&
3467  "Cannot preprocess this input type!");
3468  }
3469  return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3470  }
3471  case phases::Precompile: {
3472  types::ID OutputTy = getPrecompiledType(Input->getType());
3473  assert(OutputTy != types::TY_INVALID &&
3474  "Cannot precompile this input type!");
3475 
3476  // If we're given a module name, precompile header file inputs as a
3477  // module, not as a precompiled header.
3478  const char *ModName = nullptr;
3479  if (OutputTy == types::TY_PCH) {
3480  if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3481  ModName = A->getValue();
3482  if (ModName)
3483  OutputTy = types::TY_ModuleFile;
3484  }
3485 
3486  if (Args.hasArg(options::OPT_fsyntax_only)) {
3487  // Syntax checks should not emit a PCH file
3488  OutputTy = types::TY_Nothing;
3489  }
3490 
3491  if (ModName)
3492  return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3493  ModName);
3494  return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3495  }
3496  case phases::Compile: {
3497  if (Args.hasArg(options::OPT_fsyntax_only))
3498  return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3499  if (Args.hasArg(options::OPT_rewrite_objc))
3500  return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3501  if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3502  return C.MakeAction<CompileJobAction>(Input,
3503  types::TY_RewrittenLegacyObjC);
3504  if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto))
3505  return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3506  if (Args.hasArg(options::OPT__migrate))
3507  return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3508  if (Args.hasArg(options::OPT_emit_ast))
3509  return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3510  if (Args.hasArg(options::OPT_module_file_info))
3511  return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3512  if (Args.hasArg(options::OPT_verify_pch))
3513  return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3514  if (Args.hasArg(options::OPT_emit_iterface_stubs))
3515  return C.MakeAction<CompileJobAction>(Input, types::TY_IFS);
3516  return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3517  }
3518  case phases::Backend: {
3519  if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3520  types::ID Output =
3521  Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3522  return C.MakeAction<BackendJobAction>(Input, Output);
3523  }
3524  if (Args.hasArg(options::OPT_emit_llvm)) {
3525  types::ID Output =
3526  Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3527  return C.MakeAction<BackendJobAction>(Input, Output);
3528  }
3529  return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3530  }
3531  case phases::Assemble:
3532  return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3533  }
3534 
3535  llvm_unreachable("invalid phase in ConstructPhaseAction");
3536 }
3537 
3539  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3540 
3541  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3542 
3543  // It is an error to provide a -o option if we are making multiple output
3544  // files.
3545  if (FinalOutput) {
3546  unsigned NumOutputs = 0;
3547  for (const Action *A : C.getActions())
3548  if (A->getType() != types::TY_Nothing)
3549  ++NumOutputs;
3550 
3551  if (NumOutputs > 1) {
3552  Diag(clang::diag::err_drv_output_argument_with_multiple_files);
3553  FinalOutput = nullptr;
3554  }
3555  }
3556 
3557  // Collect the list of architectures.
3558  llvm::StringSet<> ArchNames;
3559  if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
3560  for (const Arg *A : C.getArgs())
3561  if (A->getOption().matches(options::OPT_arch))
3562  ArchNames.insert(A->getValue());
3563 
3564  // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
3565  std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
3566  for (Action *A : C.getActions()) {
3567  // If we are linking an image for multiple archs then the linker wants
3568  // -arch_multiple and -final_output <final image name>. Unfortunately, this
3569  // doesn't fit in cleanly because we have to pass this information down.
3570  //
3571  // FIXME: This is a hack; find a cleaner way to integrate this into the
3572  // process.
3573  const char *LinkingOutput = nullptr;
3574  if (isa<LipoJobAction>(A)) {
3575  if (FinalOutput)
3576  LinkingOutput = FinalOutput->getValue();
3577  else
3578  LinkingOutput = getDefaultImageName();
3579  }
3580 
3582  /*BoundArch*/ StringRef(),
3583  /*AtTopLevel*/ true,
3584  /*MultipleArchs*/ ArchNames.size() > 1,
3585  /*LinkingOutput*/ LinkingOutput, CachedResults,
3586  /*TargetDeviceOffloadKind*/ Action::OFK_None);
3587  }
3588 
3589  // If the user passed -Qunused-arguments or there were errors, don't warn
3590  // about any unused arguments.
3591  if (Diags.hasErrorOccurred() ||
3592  C.getArgs().hasArg(options::OPT_Qunused_arguments))
3593  return;
3594 
3595  // Claim -### here.
3596  (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
3597 
3598  // Claim --driver-mode, --rsp-quoting, it was handled earlier.
3599  (void)C.getArgs().hasArg(options::OPT_driver_mode);
3600  (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
3601 
3602  for (Arg *A : C.getArgs()) {
3603  // FIXME: It would be nice to be able to send the argument to the
3604  // DiagnosticsEngine, so that extra values, position, and so on could be
3605  // printed.
3606  if (!A->isClaimed()) {
3607  if (A->getOption().hasFlag(options::NoArgumentUnused))
3608  continue;
3609 
3610  // Suppress the warning automatically if this is just a flag, and it is an
3611  // instance of an argument we already claimed.
3612  const Option &Opt = A->getOption();
3613  if (Opt.getKind() == Option::FlagClass) {
3614  bool DuplicateClaimed = false;
3615 
3616  for (const Arg *AA : C.getArgs().filtered(&Opt)) {
3617  if (AA->isClaimed()) {
3618  DuplicateClaimed = true;
3619  break;
3620  }
3621  }
3622 
3623  if (DuplicateClaimed)
3624  continue;
3625  }
3626 
3627  // In clang-cl, don't mention unknown arguments here since they have
3628  // already been warned about.
3629  if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
3630  Diag(clang::diag::warn_drv_unused_argument)
3631  << A->getAsString(C.getArgs());
3632  }
3633  }
3634 }
3635 
3636 namespace {
3637 /// Utility class to control the collapse of dependent actions and select the
3638 /// tools accordingly.
3639 class ToolSelector final {
3640  /// The tool chain this selector refers to.
3641  const ToolChain &TC;
3642 
3643  /// The compilation this selector refers to.
3644  const Compilation &C;
3645 
3646  /// The base action this selector refers to.
3647  const JobAction *BaseAction;
3648 
3649  /// Set to true if the current toolchain refers to host actions.
3650  bool IsHostSelector;
3651 
3652  /// Set to true if save-temps and embed-bitcode functionalities are active.
3653  bool SaveTemps;
3654  bool EmbedBitcode;
3655 
3656  /// Get previous dependent action or null if that does not exist. If
3657  /// \a CanBeCollapsed is false, that action must be legal to collapse or
3658  /// null will be returned.
3659  const JobAction *getPrevDependentAction(const ActionList &Inputs,
3660  ActionList &SavedOffloadAction,
3661  bool CanBeCollapsed = true) {
3662  // An option can be collapsed only if it has a single input.
3663  if (Inputs.size() != 1)
3664  return nullptr;
3665 
3666  Action *CurAction = *Inputs.begin();
3667  if (CanBeCollapsed &&
3669  return nullptr;
3670 
3671  // If the input action is an offload action. Look through it and save any
3672  // offload action that can be dropped in the event of a collapse.
3673  if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
3674  // If the dependent action is a device action, we will attempt to collapse
3675  // only with other device actions. Otherwise, we would do the same but
3676  // with host actions only.
3677  if (!IsHostSelector) {
3678  if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
3679  CurAction =
3680  OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
3681  if (CanBeCollapsed &&
3683  return nullptr;
3684  SavedOffloadAction.push_back(OA);
3685  return dyn_cast<JobAction>(CurAction);
3686  }
3687  } else if (OA->hasHostDependence()) {
3688  CurAction = OA->getHostDependence();
3689  if (CanBeCollapsed &&
3691  return nullptr;
3692  SavedOffloadAction.push_back(OA);
3693  return dyn_cast<JobAction>(CurAction);
3694  }
3695  return nullptr;
3696  }
3697 
3698  return dyn_cast<JobAction>(CurAction);
3699  }
3700 
3701  /// Return true if an assemble action can be collapsed.
3702  bool canCollapseAssembleAction() const {
3703  return TC.useIntegratedAs() && !SaveTemps &&
3704  !C.getArgs().hasArg(options::OPT_via_file_asm) &&
3705  !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
3706  !C.getArgs().hasArg(options::OPT__SLASH_Fa);
3707  }
3708 
3709  /// Return true if a preprocessor action can be collapsed.
3710  bool canCollapsePreprocessorAction() const {
3711  return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
3712  !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
3713  !C.getArgs().hasArg(options::OPT_rewrite_objc);
3714  }
3715 
3716  /// Struct that relates an action with the offload actions that would be
3717  /// collapsed with it.
3718  struct JobActionInfo final {
3719  /// The action this info refers to.
3720  const JobAction *JA = nullptr;
3721  /// The offload actions we need to take care off if this action is
3722  /// collapsed.
3723  ActionList SavedOffloadAction;
3724  };
3725 
3726  /// Append collapsed offload actions from the give nnumber of elements in the
3727  /// action info array.
3728  static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
3729  ArrayRef<JobActionInfo> &ActionInfo,
3730  unsigned ElementNum) {
3731  assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
3732  for (unsigned I = 0; I < ElementNum; ++I)
3733  CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
3734  ActionInfo[I].SavedOffloadAction.end());
3735  }
3736 
3737  /// Functions that attempt to perform the combining. They detect if that is
3738  /// legal, and if so they update the inputs \a Inputs and the offload action
3739  /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
3740  /// the combined action is returned. If the combining is not legal or if the
3741  /// tool does not exist, null is returned.
3742  /// Currently three kinds of collapsing are supported:
3743  /// - Assemble + Backend + Compile;
3744  /// - Assemble + Backend ;
3745  /// - Backend + Compile.
3746  const Tool *
3747  combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3748  ActionList &Inputs,
3749  ActionList &CollapsedOffloadAction) {
3750  if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
3751  return nullptr;
3752  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3753  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3754  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
3755  if (!AJ || !BJ || !CJ)
3756  return nullptr;
3757 
3758  // Get compiler tool.
3759  const Tool *T = TC.SelectTool(*CJ);
3760  if (!T)
3761  return nullptr;
3762 
3763  // When using -fembed-bitcode, it is required to have the same tool (clang)
3764  // for both CompilerJA and BackendJA. Otherwise, combine two stages.
3765  if (EmbedBitcode) {
3766  const Tool *BT = TC.SelectTool(*BJ);
3767  if (BT == T)
3768  return nullptr;
3769  }
3770 
3771  if (!T->hasIntegratedAssembler())
3772  return nullptr;
3773 
3774  Inputs = CJ->getInputs();
3775  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3776  /*NumElements=*/3);
3777  return T;
3778  }
3779  const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
3780  ActionList &Inputs,
3781  ActionList &CollapsedOffloadAction) {
3782  if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
3783  return nullptr;
3784  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3785  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3786  if (!AJ || !BJ)
3787  return nullptr;
3788 
3789  // Retrieve the compile job, backend action must always be preceded by one.
3790  ActionList CompileJobOffloadActions;
3791  auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions,
3792  /*CanBeCollapsed=*/false);
3793  if (!AJ || !BJ || !CJ)
3794  return nullptr;
3795 
3796  assert(isa<CompileJobAction>(CJ) &&
3797  "Expecting compile job preceding backend job.");
3798 
3799  // Get compiler tool.
3800  const Tool *T = TC.SelectTool(*CJ);
3801  if (!T)
3802  return nullptr;
3803 
3804  if (!T->hasIntegratedAssembler())
3805  return nullptr;
3806 
3807  Inputs = BJ->getInputs();
3808  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3809  /*NumElements=*/2);
3810  return T;
3811  }
3812  const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3813  ActionList &Inputs,
3814  ActionList &CollapsedOffloadAction) {
3815  if (ActionInfo.size() < 2)
3816  return nullptr;
3817  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
3818  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
3819  if (!BJ || !CJ)
3820  return nullptr;
3821 
3822  // Check if the initial input (to the compile job or its predessor if one
3823  // exists) is LLVM bitcode. In that case, no preprocessor step is required
3824  // and we can still collapse the compile and backend jobs when we have
3825  // -save-temps. I.e. there is no need for a separate compile job just to
3826  // emit unoptimized bitcode.
3827  bool InputIsBitcode = true;
3828  for (size_t i = 1; i < ActionInfo.size(); i++)
3829  if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
3830  ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
3831  InputIsBitcode = false;
3832  break;
3833  }
3834  if (!InputIsBitcode && !canCollapsePreprocessorAction())
3835  return nullptr;
3836 
3837  // Get compiler tool.
3838  const Tool *T = TC.SelectTool(*CJ);
3839  if (!T)
3840  return nullptr;
3841 
3842  if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
3843  return nullptr;
3844 
3845  Inputs = CJ->getInputs();
3846  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3847  /*NumElements=*/2);
3848  return T;
3849  }
3850 
3851  /// Updates the inputs if the obtained tool supports combining with
3852  /// preprocessor action, and the current input is indeed a preprocessor
3853  /// action. If combining results in the collapse of offloading actions, those
3854  /// are appended to \a CollapsedOffloadAction.
3855  void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
3856  ActionList &CollapsedOffloadAction) {
3857  if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
3858  return;
3859 
3860  // Attempt to get a preprocessor action dependence.
3861  ActionList PreprocessJobOffloadActions;
3862  ActionList NewInputs;
3863  for (Action *A : Inputs) {
3864  auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
3865  if (!PJ || !isa<PreprocessJobAction>(PJ)) {
3866  NewInputs.push_back(A);
3867  continue;
3868  }
3869 
3870  // This is legal to combine. Append any offload action we found and add the
3871  // current input to preprocessor inputs.
3872  CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
3873  PreprocessJobOffloadActions.end());
3874  NewInputs.append(PJ->input_begin(), PJ->input_end());
3875  }
3876  Inputs = NewInputs;
3877  }
3878 
3879 public:
3880  ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
3881  const Compilation &C, bool SaveTemps, bool EmbedBitcode)
3882  : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
3883  EmbedBitcode(EmbedBitcode) {
3884  assert(BaseAction && "Invalid base action.");
3885  IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
3886  }
3887 
3888  /// Check if a chain of actions can be combined and return the tool that can
3889  /// handle the combination of actions. The pointer to the current inputs \a
3890  /// Inputs and the list of offload actions \a CollapsedOffloadActions
3891  /// connected to collapsed actions are updated accordingly. The latter enables
3892  /// the caller of the selector to process them afterwards instead of just
3893  /// dropping them. If no suitable tool is found, null will be returned.
3894  const Tool *getTool(ActionList &Inputs,
3895  ActionList &CollapsedOffloadAction) {
3896  //
3897  // Get the largest chain of actions that we could combine.
3898  //
3899 
3900  SmallVector<JobActionInfo, 5> ActionChain(1);
3901  ActionChain.back().JA = BaseAction;
3902  while (ActionChain.back().JA) {
3903  const Action *CurAction = ActionChain.back().JA;
3904 
3905  // Grow the chain by one element.
3906  ActionChain.resize(ActionChain.size() + 1);
3907  JobActionInfo &AI = ActionChain.back();
3908 
3909  // Attempt to fill it with the
3910  AI.JA =
3911  getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
3912  }
3913 
3914  // Pop the last action info as it could not be filled.
3915  ActionChain.pop_back();
3916 
3917  //
3918  // Attempt to combine actions. If all combining attempts failed, just return
3919  // the tool of the provided action. At the end we attempt to combine the
3920  // action with any preprocessor action it may depend on.
3921  //
3922 
3923  const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
3924  CollapsedOffloadAction);
3925  if (!T)
3926  T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
3927  if (!T)
3928  T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
3929  if (!T) {
3930  Inputs = BaseAction->getInputs();
3931  T = TC.SelectTool(*BaseAction);
3932  }
3933 
3934  combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
3935  return T;
3936  }
3937 };
3938 }
3939 
3940 /// Return a string that uniquely identifies the result of a job. The bound arch
3941 /// is not necessarily represented in the toolchain's triple -- for example,
3942 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
3943 /// Also, we need to add the offloading device kind, as the same tool chain can
3944 /// be used for host and device for some programming models, e.g. OpenMP.
3945 static std::string GetTriplePlusArchString(const ToolChain *TC,
3946  StringRef BoundArch,
3947  Action::OffloadKind OffloadKind) {
3948  std::string TriplePlusArch = TC->getTriple().normalize();
3949  if (!BoundArch.empty()) {
3950  TriplePlusArch += "-";
3951  TriplePlusArch += BoundArch;
3952  }
3953  TriplePlusArch += "-";
3954  TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
3955  return TriplePlusArch;
3956 }
3957 
3959  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3960  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3961  std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3962  Action::OffloadKind TargetDeviceOffloadKind) const {
3963  std::pair<const Action *, std::string> ActionTC = {
3964  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
3965  auto CachedResult = CachedResults.find(ActionTC);
3966  if (CachedResult != CachedResults.end()) {
3967  return CachedResult->second;
3968  }
3969  InputInfo Result = BuildJobsForActionNoCache(
3970  C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
3971  CachedResults, TargetDeviceOffloadKind);
3972  CachedResults[ActionTC] = Result;
3973  return Result;
3974 }
3975 
3976 InputInfo Driver::BuildJobsForActionNoCache(
3977  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3978  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3979  std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3980  Action::OffloadKind TargetDeviceOffloadKind) const {
3981  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3982 
3983  InputInfoList OffloadDependencesInputInfo;
3984  bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
3985  if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
3986  // The 'Darwin' toolchain is initialized only when its arguments are
3987  // computed. Get the default arguments for OFK_None to ensure that
3988  // initialization is performed before processing the offload action.
3989  // FIXME: Remove when darwin's toolchain is initialized during construction.
3990  C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
3991 
3992  // The offload action is expected to be used in four different situations.
3993  //
3994  // a) Set a toolchain/architecture/kind for a host action:
3995  // Host Action 1 -> OffloadAction -> Host Action 2
3996  //
3997  // b) Set a toolchain/architecture/kind for a device action;
3998  // Device Action 1 -> OffloadAction -> Device Action 2
3999  //
4000  // c) Specify a device dependence to a host action;
4001  // Device Action 1 _
4002  // \
4003  // Host Action 1 ---> OffloadAction -> Host Action 2
4004  //
4005  // d) Specify a host dependence to a device action.
4006  // Host Action 1 _
4007  // \
4008  // Device Action 1 ---> OffloadAction -> Device Action 2
4009  //
4010  // For a) and b), we just return the job generated for the dependence. For
4011  // c) and d) we override the current action with the host/device dependence
4012  // if the current toolchain is host/device and set the offload dependences
4013  // info with the jobs obtained from the device/host dependence(s).
4014 
4015  // If there is a single device option, just generate the job for it.
4016  if (OA->hasSingleDeviceDependence()) {
4017  InputInfo DevA;
4018  OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
4019  const char *DepBoundArch) {
4020  DevA =
4021  BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
4022  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
4023  CachedResults, DepA->getOffloadingDeviceKind());
4024  });
4025  return DevA;
4026  }
4027 
4028  // If 'Action 2' is host, we generate jobs for the device dependences and
4029  // override the current action with the host dependence. Otherwise, we
4030  // generate the host dependences and override the action with the device
4031  // dependence. The dependences can't therefore be a top-level action.
4032  OA->doOnEachDependence(
4033  /*IsHostDependence=*/BuildingForOffloadDevice,
4034  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4035  OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4036  C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
4037  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
4038  DepA->getOffloadingDeviceKind()));
4039  });
4040 
4041  A = BuildingForOffloadDevice
4042  ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
4043  : OA->getHostDependence();
4044  }
4045 
4046  if (const InputAction *IA = dyn_cast<InputAction>(A)) {
4047  // FIXME: It would be nice to not claim this here; maybe the old scheme of
4048  // just using Args was better?
4049  const Arg &Input = IA->getInputArg();
4050  Input.claim();
4051  if (Input.getOption().matches(options::OPT_INPUT)) {
4052  const char *Name = Input.getValue();
4053  return InputInfo(A, Name, /* _BaseInput = */ Name);
4054  }
4055  return InputInfo(A, &Input, /* _BaseInput = */ "");
4056  }
4057 
4058  if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
4059  const ToolChain *TC;
4060  StringRef ArchName = BAA->getArchName();
4061 
4062  if (!ArchName.empty())
4063  TC = &getToolChain(C.getArgs(),
4064  computeTargetTriple(*this, TargetTriple,
4065  C.getArgs(), ArchName));
4066  else
4067  TC = &C.getDefaultToolChain();
4068 
4069  return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
4070  MultipleArchs, LinkingOutput, CachedResults,
4071  TargetDeviceOffloadKind);
4072  }
4073 
4074 
4075  ActionList Inputs = A->getInputs();
4076 
4077  const JobAction *JA = cast<JobAction>(A);
4078  ActionList CollapsedOffloadActions;
4079 
4080  ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
4082  const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
4083 
4084  if (!T)
4085  return InputInfo();
4086 
4087  // If we've collapsed action list that contained OffloadAction we
4088  // need to build jobs for host/device-side inputs it may have held.
4089  for (const auto *OA : CollapsedOffloadActions)
4090  cast<OffloadAction>(OA)->doOnEachDependence(
4091  /*IsHostDependence=*/BuildingForOffloadDevice,
4092  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4093  OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4094  C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4095  /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4096  DepA->getOffloadingDeviceKind()));
4097  });
4098 
4099  // Only use pipes when there is exactly one input.
4100  InputInfoList InputInfos;
4101  for (const Action *Input : Inputs) {
4102  // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4103  // shouldn't get temporary output names.
4104  // FIXME: Clean this up.
4105  bool SubJobAtTopLevel =
4106  AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
4107  InputInfos.push_back(BuildJobsForAction(
4108  C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
4109  CachedResults, A->getOffloadingDeviceKind()));
4110  }
4111 
4112  // Always use the first input as the base input.
4113  const char *BaseInput = InputInfos[0].getBaseInput();
4114 
4115  // ... except dsymutil actions, which use their actual input as the base
4116  // input.
4117  if (JA->getType() == types::TY_dSYM)
4118  BaseInput = InputInfos[0].getFilename();
4119 
4120  // ... and in header module compilations, which use the module name.
4121  if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4122  BaseInput = ModuleJA->getModuleName();
4123 
4124  // Append outputs of offload device jobs to the input list
4125  if (!OffloadDependencesInputInfo.empty())
4126  InputInfos.append(OffloadDependencesInputInfo.begin(),
4127  OffloadDependencesInputInfo.end());
4128 
4129  // Set the effective triple of the toolchain for the duration of this job.
4130  llvm::Triple EffectiveTriple;
4131  const ToolChain &ToolTC = T->getToolChain();
4132  const ArgList &Args =
4133  C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4134  if (InputInfos.size() != 1) {
4135  EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4136  } else {
4137  // Pass along the input type if it can be unambiguously determined.
4138  EffectiveTriple = llvm::Triple(
4139  ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4140  }
4141  RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4142 
4143  // Determine the place to write output to, if any.
4144  InputInfo Result;
4145  InputInfoList UnbundlingResults;
4146  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4147  // If we have an unbundling job, we need to create results for all the
4148  // outputs. We also update the results cache so that other actions using
4149  // this unbundling action can get the right results.
4150  for (auto &UI : UA->getDependentActionsInfo()) {
4151  assert(UI.DependentOffloadKind != Action::OFK_None &&
4152  "Unbundling with no offloading??");
4153 
4154  // Unbundling actions are never at the top level. When we generate the
4155  // offloading prefix, we also do that for the host file because the
4156  // unbundling action does not change the type of the output which can
4157  // cause a overwrite.
4158  std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4159  UI.DependentOffloadKind,
4160  UI.DependentToolChain->getTriple().normalize(),
4161  /*CreatePrefixForHost=*/true);
4162  auto CurI = InputInfo(
4163  UA,
4164  GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4165  /*AtTopLevel=*/false,
4166  MultipleArchs ||
4167  UI.DependentOffloadKind == Action::OFK_HIP,
4168  OffloadingPrefix),
4169  BaseInput);
4170  // Save the unbundling result.
4171  UnbundlingResults.push_back(CurI);
4172 
4173  // Get the unique string identifier for this dependence and cache the
4174  // result.
4175  StringRef Arch;
4176  if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4177  if (UI.DependentOffloadKind == Action::OFK_Host)
4178  Arch = StringRef();
4179  else
4180  Arch = UI.DependentBoundArch;
4181  } else
4182  Arch = BoundArch;
4183 
4184  CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
4185  UI.DependentOffloadKind)}] =
4186  CurI;
4187  }
4188 
4189  // Now that we have all the results generated, select the one that should be
4190  // returned for the current depending action.
4191  std::pair<const Action *, std::string> ActionTC = {
4192  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4193  assert(CachedResults.find(ActionTC) != CachedResults.end() &&
4194  "Result does not exist??");
4195  Result = CachedResults[ActionTC];
4196  } else if (JA->getType() == types::TY_Nothing)
4197  Result = InputInfo(A, BaseInput);
4198  else {
4199  // We only have to generate a prefix for the host if this is not a top-level
4200  // action.
4201  std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4202  A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
4203  /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
4204  !AtTopLevel);
4205  Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
4206  AtTopLevel, MultipleArchs,
4207  OffloadingPrefix),
4208  BaseInput);
4209  }
4210 
4212  llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
4213  << " - \"" << T->getName() << "\", inputs: [";
4214  for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
4215  llvm::errs() << InputInfos[i].getAsString();
4216  if (i + 1 != e)
4217  llvm::errs() << ", ";
4218  }
4219  if (UnbundlingResults.empty())
4220  llvm::errs() << "], output: " << Result.getAsString() << "\n";
4221  else {
4222  llvm::errs() << "], outputs: [";
4223  for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
4224  llvm::errs() << UnbundlingResults[i].getAsString();
4225  if (i + 1 != e)
4226  llvm::errs() << ", ";
4227  }
4228  llvm::errs() << "] \n";
4229  }
4230  } else {
4231  if (UnbundlingResults.empty())
4232  T->ConstructJob(
4233  C, *JA, Result, InputInfos,
4234  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4235  LinkingOutput);
4236  else
4238  C, *JA, UnbundlingResults, InputInfos,
4239  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4240  LinkingOutput);
4241  }
4242  return Result;
4243 }
4244 
4245 const char *Driver::getDefaultImageName() const {
4246  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
4247  return Target.isOSWindows() ? "a.exe" : "a.out";
4248 }
4249 
4250 /// Create output filename based on ArgValue, which could either be a
4251 /// full filename, filename without extension, or a directory. If ArgValue
4252 /// does not provide a filename, then use BaseName, and use the extension
4253 /// suitable for FileType.
4254 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
4255  StringRef BaseName,
4256  types::ID FileType) {
4257  SmallString<128> Filename = ArgValue;
4258 
4259  if (ArgValue.empty()) {
4260  // If the argument is empty, output to BaseName in the current dir.
4261  Filename = BaseName;
4262  } else if (llvm::sys::path::is_separator(Filename.back())) {
4263  // If the argument is a directory, output to BaseName in that dir.
4264  llvm::sys::path::append(Filename, BaseName);
4265  }
4266 
4267  if (!llvm::sys::path::has_extension(ArgValue)) {
4268  // If the argument didn't provide an extension, then set it.
4269  const char *Extension = types::getTypeTempSuffix(FileType, true);
4270 
4271  if (FileType == types::TY_Image &&
4272  Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4273  // The output file is a dll.
4274  Extension = "dll";
4275  }
4276 
4277  llvm::sys::path::replace_extension(Filename, Extension);
4278  }
4279 
4280  return Args.MakeArgString(Filename.c_str());
4281 }
4282 
4284  const char *BaseInput,
4285  StringRef BoundArch, bool AtTopLevel,
4286  bool MultipleArchs,
4287  StringRef OffloadingPrefix) const {
4288  llvm::PrettyStackTraceString CrashInfo("Computing output path");
4289  // Output to a user requested destination?
4290  if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4291  if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4292  return C.addResultFile(FinalOutput->getValue(), &JA);
4293  }
4294 
4295  // For /P, preprocess to file named after BaseInput.
4296  if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4297  assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4298  StringRef BaseName = llvm::sys::path::filename(BaseInput);
4299  StringRef NameArg;
4300  if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4301  NameArg = A->getValue();
4302  return C.addResultFile(
4303  MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4304  &JA);
4305  }
4306 
4307  // Default to writing to stdout?
4308  if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA))
4309  return "-";
4310 
4311  // Is this the assembly listing for /FA?
4312  if (JA.getType() == types::TY_PP_Asm &&
4313  (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4314  C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4315  // Use /Fa and the input filename to determine the asm file name.
4316  StringRef BaseName = llvm::sys::path::filename(BaseInput);
4317  StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4318  return C.addResultFile(
4319  MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4320  &JA);
4321  }
4322 
4323  // Output to a temporary file?
4324  if ((!AtTopLevel && !isSaveTempsEnabled() &&
4325  !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4326  CCGenDiagnostics) {
4327  StringRef Name = llvm::sys::path::filename(BaseInput);
4328  std::pair<StringRef, StringRef> Split = Name.split('.');
4329  SmallString<128> TmpName;
4330  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4331  Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4332  if (CCGenDiagnostics && A) {
4333  SmallString<128> CrashDirectory(A->getValue());
4334  if (!getVFS().exists(CrashDirectory))
4335  llvm::sys::fs::create_directories(CrashDirectory);
4336  llvm::sys::path::append(CrashDirectory, Split.first);
4337  const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4338  std::error_code EC = llvm::sys::fs::createUniqueFile(
4339  CrashDirectory + Middle + Suffix, TmpName);
4340  if (EC) {
4341  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4342  return "";
4343  }
4344  } else {
4345  TmpName = GetTemporaryPath(Split.first, Suffix);
4346  }
4347  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4348  }
4349 
4350  SmallString<128> BasePath(BaseInput);
4351  StringRef BaseName;
4352 
4353  // Dsymutil actions should use the full path.
4354  if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4355  BaseName = BasePath;
4356  else
4357  BaseName = llvm::sys::path::filename(BasePath);
4358 
4359  // Determine what the derived output name should be.
4360  const char *NamedOutput;
4361 
4362  if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4363  C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4364  // The /Fo or /o flag decides the object filename.
4365  StringRef Val =
4366  C.getArgs()
4367  .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4368  ->getValue();
4369  NamedOutput =
4370  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4371  } else if (JA.getType() == types::TY_Image &&
4372  C.getArgs().hasArg(options::OPT__SLASH_Fe,
4373  options::OPT__SLASH_o)) {
4374  // The /Fe or /o flag names the linked file.
4375  StringRef Val =
4376  C.getArgs()
4377  .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4378  ->getValue();
4379  NamedOutput =
4380  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4381  } else if (JA.getType() == types::TY_Image) {
4382  if (IsCLMode()) {
4383  // clang-cl uses BaseName for the executable name.
4384  NamedOutput =
4385  MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4386  } else {
4388  Output += OffloadingPrefix;
4389  if (MultipleArchs && !BoundArch.empty()) {
4390  Output += "-";
4391  Output.append(BoundArch);
4392  }
4393  NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4394  }
4395  } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4396  NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4397  } else {
4398  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4399  assert(Suffix && "All types used for output should have a suffix.");
4400 
4401  std::string::size_type End = std::string::npos;
4403  End = BaseName.rfind('.');
4404  SmallString<128> Suffixed(BaseName.substr(0, End));
4405  Suffixed += OffloadingPrefix;
4406  if (MultipleArchs && !BoundArch.empty()) {
4407  Suffixed += "-";
4408  Suffixed.append(BoundArch);
4409  }
4410  // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
4411  // the unoptimized bitcode so that it does not get overwritten by the ".bc"
4412  // optimized bitcode output.
4413  if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) &&
4414  JA.getType() == types::TY_LLVM_BC)
4415  Suffixed += ".tmp";
4416  Suffixed += '.';
4417  Suffixed += Suffix;
4418  NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
4419  }
4420 
4421  // Prepend object file path if -save-temps=obj
4422  if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
4423  JA.getType() != types::TY_PCH) {
4424  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4425  SmallString<128> TempPath(FinalOutput->getValue());
4426  llvm::sys::path::remove_filename(TempPath);
4427  StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
4428  llvm::sys::path::append(TempPath, OutputFileName);
4429  NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
4430  }
4431 
4432  // If we're saving temps and the temp file conflicts with the input file,
4433  // then avoid overwriting input file.
4434  if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
4435  bool SameFile = false;
4436  SmallString<256> Result;
4437  llvm::sys::fs::current_path(Result);
4438  llvm::sys::path::append(Result, BaseName);
4439  llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
4440  // Must share the same path to conflict.
4441  if (SameFile) {
4442  StringRef Name = llvm::sys::path::filename(BaseInput);
4443  std::pair<StringRef, StringRef> Split = Name.split('.');
4444  std::string TmpName = GetTemporaryPath(
4445  Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
4446  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4447  }
4448  }
4449 
4450  // As an annoying special case, PCH generation doesn't strip the pathname.
4451  if (JA.getType() == types::TY_PCH && !IsCLMode()) {
4452  llvm::sys::path::remove_filename(BasePath);
4453  if (BasePath.empty())
4454  BasePath = NamedOutput;
4455  else
4456  llvm::sys::path::append(BasePath, NamedOutput);
4457  return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
4458  } else {
4459  return C.addResultFile(NamedOutput, &JA);
4460  }
4461 }
4462 
4463 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
4464  // Search for Name in a list of paths.
4465  auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
4467  // Respect a limited subset of the '-Bprefix' functionality in GCC by
4468  // attempting to use this prefix when looking for file paths.
4469  for (const auto &Dir : P) {
4470  if (Dir.empty())
4471  continue;
4472  SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4473  llvm::sys::path::append(P, Name);
4474  if (llvm::sys::fs::exists(Twine(P)))
4475  return P.str().str();
4476  }
4477  return None;
4478  };
4479 
4480  if (auto P = SearchPaths(PrefixDirs))
4481  return *P;
4482 
4484  llvm::sys::path::append(R, Name);
4485  if (llvm::sys::fs::exists(Twine(R)))
4486  return R.str();
4487 
4489  llvm::sys::path::append(P, Name);
4490  if (llvm::sys::fs::exists(Twine(P)))
4491  return P.str();
4492 
4493  SmallString<128> D(Dir);
4494  llvm::sys::path::append(D, "..", Name);
4495  if (llvm::sys::fs::exists(Twine(D)))
4496  return D.str();
4497 
4498  if (auto P = SearchPaths(TC.getLibraryPaths()))
4499  return *P;
4500 
4501  if (auto P = SearchPaths(TC.getFilePaths()))
4502  return *P;
4503 
4504  return Name;
4505 }
4506 
4507 void Driver::generatePrefixedToolNames(
4508  StringRef Tool, const ToolChain &TC,
4509  SmallVectorImpl<std::string> &Names) const {
4510  // FIXME: Needs a better variable than TargetTriple
4511  Names.emplace_back((TargetTriple + "-" + Tool).str());
4512  Names.emplace_back(Tool);
4513 
4514  // Allow the discovery of tools prefixed with LLVM's default target triple.
4515  std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
4516  if (DefaultTargetTriple != TargetTriple)
4517  Names.emplace_back((DefaultTargetTriple + "-" + Tool).str());
4518 }
4519 
4521  ArrayRef<std::string> Names) {
4522  for (const auto &Name : Names) {
4523  llvm::sys::path::append(Dir, Name);
4524  if (llvm::sys::fs::can_execute(Twine(Dir)))
4525  return true;
4526  llvm::sys::path::remove_filename(Dir);
4527  }
4528  return false;
4529 }
4530 
4531 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
4532  SmallVector<std::string, 2> TargetSpecificExecutables;
4533  generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
4534 
4535  // Respect a limited subset of the '-Bprefix' functionality in GCC by
4536  // attempting to use this prefix when looking for program paths.
4537  for (const auto &PrefixDir : PrefixDirs) {
4538  if (llvm::sys::fs::is_directory(PrefixDir)) {
4539  SmallString<128> P(PrefixDir);
4540  if (ScanDirForExecutable(P, TargetSpecificExecutables))
4541  return P.str();
4542  } else {
4543  SmallString<128> P((PrefixDir + Name).str());
4544  if (llvm::sys::fs::can_execute(Twine(P)))
4545  return P.str();
4546  }
4547  }
4548 
4549  const ToolChain::path_list &List = TC.getProgramPaths();
4550  for (const auto &Path : List) {
4551  SmallString<128> P(Path);
4552  if (ScanDirForExecutable(P, TargetSpecificExecutables))
4553  return P.str();
4554  }
4555 
4556  // If all else failed, search the path.
4557  for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
4558  if (llvm::ErrorOr<std::string> P =
4559  llvm::sys::findProgramByName(TargetSpecificExecutable))
4560  return *P;
4561 
4562  return Name;
4563 }
4564 
4565 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
4566  SmallString<128> Path;
4567  std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
4568  if (EC) {
4569  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4570  return "";
4571  }
4572 
4573  return Path.str();
4574 }
4575 
4576 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
4577  SmallString<128> Path;
4578  std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
4579  if (EC) {
4580  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4581  return "";
4582  }
4583 
4584  return Path.str();
4585 }
4586 
4587 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
4588  SmallString<128> Output;
4589  if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
4590  // FIXME: If anybody needs it, implement this obscure rule:
4591  // "If you specify a directory without a file name, the default file name
4592  // is VCx0.pch., where x is the major version of Visual C++ in use."
4593  Output = FpArg->getValue();
4594 
4595  // "If you do not specify an extension as part of the path name, an
4596  // extension of .pch is assumed. "
4597  if (!llvm::sys::path::has_extension(Output))
4598  Output += ".pch";
4599  } else {
4600  if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
4601  Output = YcArg->getValue();
4602  if (Output.empty())
4603  Output = BaseName;
4604  llvm::sys::path::replace_extension(Output, ".pch");
4605  }
4606  return Output.str();
4607 }
4608 
4609 const ToolChain &Driver::getToolChain(const ArgList &Args,
4610  const llvm::Triple &Target) const {
4611 
4612  auto &TC = ToolChains[Target.str()];
4613  if (!TC) {
4614  switch (Target.getOS()) {
4615  case llvm::Triple::Haiku:
4616  TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
4617  break;
4618  case llvm::Triple::Ananas:
4619  TC = std::make_unique<toolchains::Ananas>(*this, Target, Args);
4620  break;
4621  case llvm::Triple::CloudABI:
4622  TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args);
4623  break;
4624  case llvm::Triple::Darwin:
4625  case llvm::Triple::MacOSX:
4626  case llvm::Triple::IOS:
4627  case llvm::Triple::TvOS:
4628  case llvm::Triple::WatchOS:
4629  TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
4630  break;
4631  case llvm::Triple::DragonFly:
4632  TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
4633  break;
4634  case llvm::Triple::OpenBSD:
4635  TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
4636  break;
4637  case llvm::Triple::NetBSD:
4638  TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
4639  break;
4640  case llvm::Triple::FreeBSD:
4641  TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
4642  break;
4643  case llvm::Triple::Minix:
4644  TC = std::make_unique<toolchains::Minix>(*this, Target, Args);
4645  break;
4646  case llvm::Triple::Linux:
4647  case llvm::Triple::ELFIAMCU:
4648  if (Target.getArch() == llvm::Triple::hexagon)
4649  TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
4650  Args);
4651  else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
4652  !Target.hasEnvironment())
4653  TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
4654  Args);
4655  else if (Target.getArch() == llvm::Triple::ppc ||
4656  Target.getArch() == llvm::Triple::ppc64 ||
4657  Target.getArch() == llvm::Triple::ppc64le)
4658  TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
4659  Args);
4660  else
4661  TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
4662  break;
4663  case llvm::Triple::NaCl:
4664  TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
4665  break;
4666  case llvm::Triple::Fuchsia:
4667  TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
4668  break;
4669  case llvm::Triple::Solaris:
4670  TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
4671  break;
4672  case llvm::Triple::AMDHSA:
4673  case llvm::Triple::AMDPAL:
4674  case llvm::Triple::Mesa3D:
4675  TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
4676  break;
4677  case llvm::Triple::Win32:
4678  switch (Target.getEnvironment()) {
4679  default:
4680  if (Target.isOSBinFormatELF())
4681  TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4682  else if (Target.isOSBinFormatMachO())
4683  TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
4684  else
4685  TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4686  break;
4687  case llvm::Triple::GNU:
4688  TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
4689  break;
4690  case llvm::Triple::Itanium:
4691  TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
4692  Args);
4693  break;
4694  case llvm::Triple::MSVC:
4695  case llvm::Triple::UnknownEnvironment:
4696  if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4697  .startswith_lower("bfd"))
4698  TC = std::make_unique<toolchains::CrossWindowsToolChain>(
4699  *this, Target, Args);
4700  else
4701  TC =
4702  std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
4703  break;
4704  }
4705  break;
4706  case llvm::Triple::PS4:
4707  TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
4708  break;
4709  case llvm::Triple::Contiki:
4710  TC = std::make_unique<toolchains::Contiki>(*this, Target, Args);
4711  break;
4712  case llvm::Triple::Hurd:
4713  TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
4714  break;
4715  default:
4716  // Of these targets, Hexagon is the only one that might have
4717  // an OS of Linux, in which case it got handled above already.
4718  switch (Target.getArch()) {
4719  case llvm::Triple::tce:
4720  TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
4721  break;
4722  case llvm::Triple::tcele:
4723  TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
4724  break;
4725  case llvm::Triple::hexagon:
4726  TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
4727  Args);
4728  break;
4729  case llvm::Triple::lanai:
4730  TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
4731  break;
4732  case llvm::Triple::xcore:
4733  TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
4734  break;
4735  case llvm::Triple::wasm32:
4736  case llvm::Triple::wasm64:
4737  TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
4738  break;
4739  case llvm::Triple::avr:
4740  TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
4741  break;
4742  case llvm::Triple::msp430:
4743  TC =
4744  std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
4745  break;
4746  case llvm::Triple::riscv32:
4747  case llvm::Triple::riscv64:
4748  TC = std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
4749  break;
4750  default:
4751  if (Target.getVendor() == llvm::Triple::Myriad)
4752  TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target,
4753  Args);
4754  else if (toolchains::BareMetal::handlesTarget(Target))
4755  TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
4756  else if (Target.isOSBinFormatELF())
4757  TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4758  else if (Target.isOSBinFormatMachO())
4759  TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
4760  else
4761  TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4762  }
4763  }
4764  }
4765 
4766  // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA
4767  // compiles always need two toolchains, the CUDA toolchain and the host
4768  // toolchain. So the only valid way to create a CUDA toolchain is via
4769  // CreateOffloadingDeviceToolChains.
4770 
4771  return *TC;
4772 }
4773 
4775  // Say "no" if there is not exactly one input of a type clang understands.
4776  if (JA.size() != 1 ||
4777  !types::isAcceptedByClang((*JA.input_begin())->getType()))
4778  return false;
4779 
4780  // And say "no" if this is not a kind of action clang understands.
4781  if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
4782  !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
4783  return false;
4784 
4785  return true;
4786 }
4787 
4788 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
4789 /// grouped values as integers. Numbers which are not provided are set to 0.
4790 ///
4791 /// \return True if the entire string was parsed (9.2), or all groups were
4792 /// parsed (10.3.5extrastuff).
4793 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
4794  unsigned &Micro, bool &HadExtra) {
4795  HadExtra = false;
4796 
4797  Major = Minor = Micro = 0;
4798  if (Str.empty())
4799  return false;
4800 
4801  if (Str.consumeInteger(10, Major))
4802  return false;
4803  if (Str.empty())
4804  return true;
4805  if (Str[0] != '.')
4806  return false;
4807 
4808  Str = Str.drop_front(1);
4809 
4810  if (Str.consumeInteger(10, Minor))
4811  return false;
4812  if (Str.empty())
4813  return true;
4814  if (Str[0] != '.')
4815  return false;
4816  Str = Str.drop_front(1);
4817 
4818  if (Str.consumeInteger(10, Micro))
4819  return false;
4820  if (!Str.empty())
4821  HadExtra = true;
4822  return true;
4823 }
4824 
4825 /// Parse digits from a string \p Str and fulfill \p Digits with
4826 /// the parsed numbers. This method assumes that the max number of
4827 /// digits to look for is equal to Digits.size().
4828 ///
4829 /// \return True if the entire string was parsed and there are
4830 /// no extra characters remaining at the end.
4831 bool Driver::GetReleaseVersion(StringRef Str,
4832  MutableArrayRef<unsigned> Digits) {
4833  if (Str.empty())
4834  return false;
4835 
4836  unsigned CurDigit = 0;
4837  while (CurDigit < Digits.size()) {
4838  unsigned Digit;
4839  if (Str.consumeInteger(10, Digit))
4840  return false;
4841  Digits[CurDigit] = Digit;
4842  if (Str.empty())
4843  return true;
4844  if (Str[0] != '.')
4845  return false;
4846  Str = Str.drop_front(1);
4847  CurDigit++;
4848  }
4849 
4850  // More digits than requested, bail out...
4851  return false;
4852 }
4853 
4854 std::pair<unsigned, unsigned>
4855 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
4856  unsigned IncludedFlagsBitmask = 0;
4857  unsigned ExcludedFlagsBitmask = options::NoDriverOption;
4858 
4859  if (IsClCompatMode) {
4860  // Include CL and Core options.
4861  IncludedFlagsBitmask |= options::CLOption;
4862  IncludedFlagsBitmask |= options::CoreOption;
4863  } else {
4864  ExcludedFlagsBitmask |= options::CLOption;
4865  }
4866 
4867  return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
4868 }
4869 
4870 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
4871  return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
4872 }
StringRef getSysRoot() const
Returns the sysroot path.
static bool GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, unsigned &Micro, bool &HadExtra)
GetReleaseVersion - Parse (([0-9]+)(.
Definition: Driver.cpp:4793
ID
ID - Ordered values for successive stages in the compilation process which interact with user options...
Definition: Phases.h:17
static bool ContainsCompileOrAssembleAction(const Action *A)
Check whether the given input tree contains any compilation or assembly actions.
Definition: Driver.cpp:1886
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
bool isCollapsingWithNextDependentActionLegal() const
Return true if this function can be collapsed with others.
Definition: Action.h:162
const llvm::opt::ArgStringList & getTempFiles() const
Definition: Compilation.h:207
std::string ModeSuffix
Driver mode part of the executable name, as g++.
Definition: ToolChain.h:66
CudaArch
Definition: Cuda.h:35
const char * CudaArchToString(CudaArch A)
Definition: Cuda.cpp:46
OpenMPRuntimeKind getOpenMPRuntime(const llvm::opt::ArgList &Args) const
Compute the desired OpenMP runtime from the flags provided.
Definition: Driver.cpp:570
std::string getClangFullVersion()
Retrieves a string representing the complete clang version, which includes the clang version number...
Definition: Version.cpp:117
prefix_list PrefixDirs
Definition: Driver.h:144
std::string GetTemporaryPath(StringRef Prefix, StringRef Suffix) const
GetTemporaryPath - Return the pathname of a temporary file to use as part of compilation; the file wi...
Definition: Driver.cpp:4565
const MultilibSet & getMultilibs() const
Definition: ToolChain.h:237
StringRef getArchName() const
Definition: ToolChain.h:210
T * MakeAction(Args &&... Arg)
Creates a new Action owned by this Compilation.
Definition: Compilation.h:196
bool canLipoType(ID Id)
canLipoType - Is this type acceptable as the output of a universal build (currently, just the Nothing, Image, and Object types).
Definition: Types.cpp:112
Set a ToolChain&#39;s effective triple.
Definition: ToolChain.h:603
const char * getTypeTempSuffix(ID Id, bool CLMode=false)
getTypeTempSuffix - Return the suffix to use when creating a temp file of this type, or null if unspecified.
Definition: Types.cpp:67
void BuildInputs(const ToolChain &TC, llvm::opt::DerivedArgList &Args, InputList &Inputs) const
BuildInputs - Construct the list of inputs and their types from the given arguments.
Definition: Driver.cpp:2043
StringRef P
void setResponseFile(const char *FileName)
Set to pass arguments via a response file when launching the command.
Definition: Job.cpp:304
bool isUsingLTO() const
Returns true if we are performing any kind of LTO.
Definition: Driver.h:538
virtual std::string getThreadModel() const
getThreadModel() - Which thread model does this target use?
Definition: ToolChain.h:477
virtual void ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const =0
ConstructJob - Construct jobs to perform the action JA, writing to Output and with Inputs...
input_range inputs()
Definition: Action.h:149
virtual bool isLinkJob() const
Definition: Tool.h:88
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1290
std::string GetProgramPath(StringRef Name, const ToolChain &TC) const
GetProgramPath - Lookup Name in the list of program search paths.
Definition: Driver.cpp:4531
virtual bool isThreadModelSupported(const StringRef Model) const
isThreadModelSupported() - Does this target support a thread model?
Definition: ToolChain.cpp:558
std::string DyldPrefix
Dynamic loader prefix, if present.
Definition: Driver.h:150
virtual void printVerboseInfo(raw_ostream &OS) const
Dispatch to the specific toolchain for verbose printing.
Definition: ToolChain.h:310
static StringRef getCategoryNameFromID(unsigned CategoryID)
Given a category ID, return the name of the category.
DiagnosticBuilder Diag(unsigned DiagID) const
Definition: Driver.h:108
InputInfo BuildJobsForAction(Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, std::map< std::pair< const Action *, std::string >, InputInfo > &CachedResults, Action::OffloadKind TargetDeviceOffloadKind) const
BuildJobsForAction - Construct the jobs to perform for the action A and return an InputInfo for the r...
Definition: Driver.cpp:3958
static ParsedClangName getTargetAndModeFromProgramName(StringRef ProgName)
Return any implicit target and/or mode flag for an invocation of the compiler driver as ProgName...
Definition: ToolChain.cpp:203
ResponseFileSupport getResponseFilesSupport() const
Returns the level of support for response files of this tool, whether it accepts arguments to be pass...
Definition: Tool.h:92
CudaArch StringToCudaArch(llvm::StringRef S)
Definition: Cuda.cpp:126
Type used to communicate device actions.
Definition: Action.h:253
const char * getClassName() const
Definition: Action.h:137
RAII class that determines when any errors have occurred between the time the instance was created an...
Definition: Diagnostic.h:999
virtual void ConstructJobMultipleOutputs(Compilation &C, const JobAction &JA, const InputInfoList &Outputs, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const
Construct jobs to perform the action JA, writing to the Outputs and with Inputs, and add the jobs to ...
Definition: Tool.cpp:25
void registerDependentActionInfo(const ToolChain *TC, StringRef BoundArch, OffloadKind Kind)
Register information about a dependent action.
Definition: Action.h:601
const ArgStringMap & getFailureResultFiles() const
Definition: Compilation.h:211
float __ovld __cnfn normalize(float p)
Returns a vector in the same direction as p but with a length of 1.
const llvm::opt::DerivedArgList & getArgsForToolChain(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind)
getArgsForToolChain - Return the derived argument list for the tool chain TC (or the default tool cha...
Definition: Compilation.cpp:62
const Multilib & getMultilib() const
Definition: ToolChain.h:239
void addOffloadDeviceToolChain(const ToolChain *DeviceToolChain, Action::OffloadKind OffloadKind)
Definition: Compilation.h:173
Compilation * BuildCompilation(ArrayRef< const char *> Args)
BuildCompilation - Construct a compilation object for a command line argument vector.
Definition: Driver.cpp:932
std::string TargetPrefix
Target part of the executable name, as i686-linux-android.
Definition: ToolChain.h:63
path_list & getProgramPaths()
Definition: ToolChain.h:234
Contains the files in the compilation diagnostic report generated by generateCompilationDiagnostics.
Definition: Driver.h:427
static bool ScanDirForExecutable(SmallString< 128 > &Dir, ArrayRef< std::string > Names)
Definition: Driver.cpp:4520
Definition: Format.h:2327
ActionList & getInputs()
Definition: Action.h:142
std::string Dir
The path the driver executable was in, as invoked from the command line.
Definition: Driver.h:119
ID lookupCXXTypeForCType(ID Id)
lookupCXXTypeForCType - Lookup CXX input type that corresponds to given C type (used for clang++ emul...
Definition: Types.cpp:350
__DEVICE__ int max(int __a, int __b)
const std::string & gccSuffix() const
Get the detected GCC installation path suffix for the multi-arch target variant.
Definition: Multilib.h:45
Type used to communicate host actions.
Definition: Action.h:294
static unsigned getNumberOfCategories()
Return the number of diagnostic categories.
BackendAction
Definition: BackendUtil.h:30
std::string GetClPchPath(Compilation &C, StringRef BaseName) const
Return the pathname of the pch file in clang-cl mode.
Definition: Driver.cpp:4587
Action - Represent an abstract compilation step to perform.
Definition: Action.h:47
std::string getTripleString() const
Definition: ToolChain.h:218
bool HandleImmediateArgs(const Compilation &C)
HandleImmediateArgs - Handle any arguments which should be treated before building actions or binding...
Definition: Driver.cpp:1641
InputInfo - Wrapper for information about an input source.
Definition: InputInfo.h:22
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
types::ID getType() const
Definition: Action.h:140
static Arg * MakeInputArg(DerivedArgList &Args, const OptTable &Opts, StringRef Value, bool Claim=true)
Definition: Driver.cpp:313
bool isOptimizationLevelFast(const llvm::opt::ArgList &Args)
path_list & getFilePaths()
Definition: ToolChain.h:231
CompileCommand Cmd
llvm::Error Error
The LLVM OpenMP runtime.
Definition: Driver.h:94
OffloadKind getOffloadingDeviceKind() const
Definition: Action.h:196
virtual bool isDsymutilJob() const
Definition: Tool.h:89
Driver - Encapsulate logic for constructing compilation processes from a set of gcc-driver-like comma...
Definition: Driver.h:59
An unknown OpenMP runtime.
Definition: Driver.h:90
const llvm::opt::InputArgList & getInputArgs() const
Definition: Compilation.h:184
input_iterator input_begin()
Definition: Action.h:147
llvm::vfs::FileSystem & getVFS() const
Definition: Driver.h:307
bool isHIP(ID Id)
isHIP - Is this a HIP input.
Definition: Types.cpp:203
bool hasOffloadToolChain() const
Return true if an offloading tool chain of a given kind exists.
Definition: Compilation.h:155
ID getPreprocessedType(ID Id)
getPreprocessedType - Get the ID of the type for this input when it has been preprocessed, or INVALID if this input is not preprocessed.
Definition: Types.cpp:47
StringRef Filename
Definition: Format.cpp:1749
void add(Action &A, const ToolChain &TC, const char *BoundArch, OffloadKind OKind)
Add a action along with the associated toolchain, bound arch, and offload kind.
Definition: Action.cpp:287
void PrintActions(const Compilation &C) const
PrintActions - Print the list of actions.
Definition: Driver.cpp:1878
const ToolChain & getDefaultToolChain() const
Definition: Compilation.h:135
const ArgStringMap & getResultFiles() const
Definition: Compilation.h:209
unsigned GenReproducer
Force clang to emit reproducer for driver invocation.
Definition: Driver.h:232
ID lookupHeaderTypeForSourceType(ID Id)
Lookup header file input type that corresponds to given source file type (used for clang-cl emulation...
Definition: Types.cpp:366
const char * getTypeName(ID Id)
getTypeName - Return the name of the type for Id.
Definition: Types.cpp:43
std::string getAsString() const
getAsString - Return a string name for this input, for debugging.
Definition: InputInfo.h:94
ActionClass getKind() const
Definition: Action.h:139
std::string GetTemporaryDirectory(StringRef Prefix) const
GetTemporaryDirectory - Return the pathname of a temporary directory to use as part of compilation; t...
Definition: Driver.cpp:4576
SourceLocation End
const char * getPhaseName(ID Id)
Definition: Phases.cpp:15
int Id
Definition: ASTDiff.cpp:190
const Tool & getCreator() const
getCreator - Return the Tool which caused the creation of this job.
Definition: Job.h:107
StateNode * Previous
bool isSaveTempsObj() const
Definition: Driver.h:336
#define V(N, I)
Definition: ASTContext.h:2913
Defines version macros and version-related utility functions for Clang.
bool IsCLMode() const
Whether the driver should follow cl.exe like behavior.
Definition: Driver.h:181
static std::string GetResourcesPath(StringRef BinaryPath, StringRef CustomResourceDir="")
Takes the path to a binary that&#39;s either in bin/ or lib/ and returns the path to clang&#39;s resource dir...
Definition: Driver.cpp:94
virtual types::ID LookupTypeForExtension(StringRef Ext) const
LookupTypeForExtension - Return the default language type to use for the given extension.
Definition: ToolChain.cpp:524
llvm::opt::InputArgList ParseArgStrings(ArrayRef< const char *> Args, bool IsClCompatMode, bool &ContainsError)
ParseArgStrings - Parse the given list of strings into an ArgList.
Definition: Driver.cpp:186
This corresponds to a single GCC Multilib, or a segment of one controlled by a command line flag...
Definition: Multilib.h:28
static std::string GetTriplePlusArchString(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind OffloadKind)
Return a string that uniquely identifies the result of a job.
Definition: Driver.cpp:3945
void HandleAutocompletions(StringRef PassedFlags) const
HandleAutocompletions - Handle –autocomplete by searching and printing possible flags, descriptions, and its arguments.
Definition: Driver.cpp:1560
void getCompilationPhases(ID Id, llvm::SmallVectorImpl< phases::ID > &Phases)
getCompilationPhases - Get the list of compilation phases (&#39;Phases&#39;) to be done for type &#39;Id&#39;...
Definition: Types.cpp:294
void BuildUniversalActions(Compilation &C, const ToolChain &TC, const InputList &BAInputs) const
BuildUniversalActions - Construct the list of actions to perform for the given arguments, which may require a universal build.
Definition: Driver.cpp:1898
size_type size() const
Definition: Action.h:145
void setCannotBeCollapsedWithNextDependentAction()
Mark this action as not legal to collapse.
Definition: Action.h:157
Action * ConstructPhaseAction(Compilation &C, const llvm::opt::ArgList &Args, phases::ID Phase, Action *Input, Action::OffloadKind TargetDeviceOffloadKind=Action::OFK_None) const
ConstructAction - Construct the appropriate action to do for Phase on the Input, taking in to account...
Definition: Driver.cpp:3436
llvm::Triple::ArchType getArchTypeForMachOArchName(StringRef Str)
Definition: Darwin.cpp:34
const ActionList & getActions() const
Get each of the individual arrays.
Definition: Action.h:284
const_offload_toolchains_range getOffloadToolChains() const
Definition: Compilation.h:150
static void PrintDiagnosticCategories(raw_ostream &OS)
PrintDiagnosticCategories - Implement the –print-diagnostic-categories option.
Definition: Driver.cpp:1553
void Print(llvm::raw_ostream &OS, const char *Terminator, bool Quote, CrashReportInfo *CrashInfo=nullptr) const
Definition: Job.cpp:435
path_list & getLibraryPaths()
Definition: ToolChain.h:228
void PrintHelp(bool ShowHidden) const
PrintHelp - Print the help text.
Definition: Driver.cpp:1511
virtual bool canEmitIR() const
Definition: Tool.h:86
static void printArg(llvm::raw_ostream &OS, StringRef Arg, bool Quote)
Print a command argument, and optionally quote it.
Definition: Job.cpp:101
#define false
Definition: stdbool.h:17
virtual bool hasIntegratedCPP() const =0
void generateCompilationDiagnostics(Compilation &C, const Command &FailingCommand, StringRef AdditionalInformation="", CompilationDiagnosticReport *GeneratedReport=nullptr)
generateCompilationDiagnostics - Generate diagnostics information including preprocessed source file(...
Definition: Driver.cpp:1236
virtual std::string getCompilerRT(const llvm::opt::ArgList &Args, StringRef Component, FileType Type=ToolChain::FT_Static) const
Definition: ToolChain.cpp:364
static unsigned PrintActions1(const Compilation &C, Action *A, std::map< Action *, unsigned > &Ids)
Definition: Driver.cpp:1801
bool embedBitcodeInObject() const
Definition: Driver.h:339
Encodes a location in the source.
const llvm::opt::DerivedArgList & getArgs() const
Definition: Compilation.h:186
bool hasErrorOccurred() const
Determine whether any errors have occurred since this object instance was created.
Definition: Diagnostic.h:1010
Command - An executable path/name and argument vector to execute.
Definition: Job.h:41
bool isCuda(ID Id)
isCuda - Is this a CUDA input.
Definition: Types.cpp:191
bool DiagnoseInputExistence(const llvm::opt::DerivedArgList &Args, StringRef Value, types::ID Ty, bool TypoCorrect) const
Check that the file referenced by Value exists.
Definition: Driver.cpp:1985
The legacy name for the LLVM OpenMP runtime from when it was the Intel OpenMP runtime.
Definition: Driver.h:104
std::string InstalledDir
The path to the installed clang directory, if any.
Definition: Driver.h:128
bool CCCIsCXX() const
Whether the driver should follow g++ like behavior.
Definition: Driver.h:172
const char * addResultFile(const char *Name, const JobAction *JA)
addResultFile - Add a file to remove on failure, and returns its argument.
Definition: Compilation.h:239
bool isSaveTempsEnabled() const
Definition: Driver.h:335
static std::vector< std::string > getDiagnosticFlags()
Get the string of all diagnostic flags.
std::string UserConfigDir
User directory for config files.
Definition: Driver.h:137
bool isAcceptedByClang(ID Id)
isAcceptedByClang - Can clang handle this input type.
Definition: Types.cpp:119
virtual bool hasIntegratedAssembler() const
Definition: Tool.h:85
An offload action combines host or/and device actions according to the programming model implementati...
Definition: Action.h:247
const char * getDefaultImageName() const
Returns the default name for linked images (e.g., "a.out").
Definition: Driver.cpp:4245
virtual RuntimeLibType GetRuntimeLibType(const llvm::opt::ArgList &Args) const
Definition: ToolChain.cpp:717
void ExecuteJobs(const JobList &Jobs, SmallVectorImpl< std::pair< int, const Command *>> &FailingCommands) const
ExecuteJob - Execute a single job.
const char * getShortName() const
Definition: Tool.h:81
void setIgnoreAllWarnings(bool Val)
When set to true, any unmapped warnings are ignored.
Definition: Diagnostic.h:588
static bool searchForFile(SmallVectorImpl< char > &FilePath, ArrayRef< std::string > Dirs, StringRef FileName)
Looks the given directories for the specified file.
Definition: Driver.cpp:732
unsigned getOffloadingHostActiveKinds() const
Definition: Action.h:192
void EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf)
const Action & getSource() const
getSource - Return the Action which caused the creation of this job.
Definition: Job.h:104
Dataflow Directional Tag Classes.
Level getDiagnosticLevel(unsigned DiagID, SourceLocation Loc) const
Based on the way the client configured the DiagnosticsEngine object, classify the specified diagnosti...
Definition: Diagnostic.h:834
const char * getExecutable() const
Definition: Job.h:124
unsigned CCCPrintBindings
Only print tool bindings, don&#39;t build any jobs.
Definition: Driver.h:184
static llvm::Triple computeTargetTriple(const Driver &D, StringRef TargetTriple, const ArgList &Args, StringRef DarwinArchName="")
Compute target triple from args.
Definition: Driver.cpp:418
virtual std::string ComputeEffectiveClangTriple(const llvm::opt::ArgList &Args, types::ID InputType=types::TY_INVALID) const
ComputeEffectiveClangTriple - Return the Clang triple to use for this target, which may take into acc...
Definition: ToolChain.cpp:694
const llvm::opt::ArgStringList & getArguments() const
Definition: Job.h:126
virtual bool hasGoodDiagnostics() const
Does this tool have "good" standardized diagnostics, or should the driver add an additional "command ...
Definition: Tool.h:116
std::string SysRoot
sysroot, if present
Definition: Driver.h:147
Tool - Information on a specific compilation tool.
Definition: Tool.h:33
void setTripleTypeForMachOArchName(llvm::Triple &T, StringRef Str)
Definition: Darwin.cpp:69
std::string Name
The name the driver was invoked as.
Definition: Driver.h:115
static bool handlesTarget(const llvm::Triple &Triple)
Definition: BareMetal.cpp:59
The GNU OpenMP runtime.
Definition: Driver.h:99
llvm::SmallVector< std::string, 4 > TemporaryFiles
Definition: Driver.h:428
int ExecuteCompilation(Compilation &C, SmallVectorImpl< std::pair< int, const Command *> > &FailingCommands)
ExecuteCompilation - Execute the compilation according to the command line arguments and return an ap...
Definition: Driver.cpp:1440
ActionList & getActions()
Definition: Compilation.h:190
ParsedClangName ClangNameParts
Target and driver mode components extracted from clang executable name.
Definition: Driver.h:125
bool getCheckInputsExist() const
Definition: Driver.h:309
std::string ClangExecutable
The original path to the clang executable.
Definition: Driver.h:122
void BuildJobs(Compilation &C) const
BuildJobs - Bind actions to concrete tools and translate arguments to form the list of jobs to run...
Definition: Driver.cpp:3538
ID getPrecompiledType(ID Id)
getPrecompiledType - Get the ID of the type for this input when it has been precompiled, or INVALID if this input is not precompiled.
Definition: Types.cpp:59
bool ShouldUseClangCompiler(const JobAction &JA) const
ShouldUseClangCompiler - Should the clang compiler be used to handle this action. ...
Definition: Driver.cpp:4774
StringRef getDefaultUniversalArchName() const
Provide the default architecture name (as expected by -arch) for this toolchain.
Definition: ToolChain.cpp:225
Compilation - A set of tasks to perform for a single driver invocation.
Definition: Compilation.h:45
void BuildActions(Compilation &C, llvm::opt::DerivedArgList &Args, const InputList &Inputs, ActionList &Actions) const
BuildActions - Construct the list of actions to perform for the given arguments, which are only done ...
Definition: Driver.cpp:3274
const Driver & getDriver() const
Definition: Compilation.h:133
const llvm::Triple & getTriple() const
Definition: ToolChain.h:195
static StringRef GetOffloadKindName(OffloadKind Kind)
Return a string containing a offload kind name.
Definition: Action.cpp:143
std::string GetFilePath(StringRef Name, const ToolChain &TC) const
GetFilePath - Lookup Name in the list of file search paths.
Definition: Driver.cpp:4463
static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args)
Definition: Driver.cpp:1131
ID lookupTypeForExtension(llvm::StringRef Ext)
lookupTypeForExtension - Lookup the type to use for the file extension Ext.
Definition: Types.cpp:219
const ToolChain & getToolChain() const
Definition: Tool.h:83
bool CleanupFileMap(const ArgStringMap &Files, const JobAction *JA, bool IssueErrors=false) const
CleanupFileMap - Remove the files in the given map.
virtual std::string getCompilerRTPath() const
Definition: ToolChain.cpp:354
X
Add a minimal nested name specifier fixit hint to allow lookup of a tag name from an outer enclosing ...
Definition: SemaDecl.cpp:14579
Driver(StringRef ClangExecutable, StringRef TargetTriple, DiagnosticsEngine &Diags, IntrusiveRefCntPtr< llvm::vfs::FileSystem > VFS=nullptr)
Definition: Driver.cpp:120
void propagateHostOffloadInfo(unsigned OKinds, const char *OArch)
Append the host offload info of this action and propagate it to its dependences.
Definition: Action.cpp:66
static std::string GetOffloadingFileNamePrefix(OffloadKind Kind, StringRef NormalizedTriple, bool CreatePrefixForHost=false)
Return a string that can be used as prefix in order to generate unique files for each offloading kind...
Definition: Action.cpp:127
void ParseDriverMode(StringRef ProgramName, ArrayRef< const char *> Args)
ParseDriverMode - Look for and handle the driver mode option in Args.
Definition: Driver.cpp:153
bool LE(InterpState &S, CodePtr OpPC)
Definition: Interp.h:240
const char * getName() const
Definition: Tool.h:79
const llvm::opt::OptTable & getOpts() const
Definition: Driver.h:303
virtual Tool * SelectTool(const JobAction &JA) const
Choose a tool to use to handle the action JA.
Definition: ToolChain.cpp:476
const char * addTempFile(const char *Name)
addTempFile - Add a file to remove on exit, and returns its argument.
Definition: Compilation.h:232
std::string getOffloadingKindPrefix() const
Return a string containing the offload kind of the action.
Definition: Action.cpp:88
const ToolChain * getSingleOffloadToolChain() const
Return an offload toolchain of the provided kind.
Definition: Compilation.h:163
std::string DriverTitle
Driver title to use with help.
Definition: Driver.h:153
static const char * MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, StringRef BaseName, types::ID FileType)
Create output filename based on ArgValue, which could either be a full filename, filename without ext...
Definition: Driver.cpp:4254
void initialize(TemplateInstantiationCallbackPtrs &Callbacks, const Sema &TheSema)
bool CCCIsCPP() const
Whether the driver is just the preprocessor.
Definition: Driver.h:175
void PrintVersion(const Compilation &C, raw_ostream &OS) const
PrintVersion - Print the driver version.
Definition: Driver.cpp:1527
void CreateOffloadingDeviceToolChains(Compilation &C, InputList &Inputs)
CreateOffloadingDeviceToolChains - create all the toolchains required to support offloading devices g...
Definition: Driver.cpp:595
bool appendSuffixForType(ID Id)
appendSuffixForType - When generating outputs of this type, should the suffix be appended (instead of...
Definition: Types.cpp:107
ID lookupTypeForTypeSpecifier(const char *Name)
lookupTypeForTypSpecifier - Lookup the type to use for a user specified type name.
Definition: Types.cpp:280
const char * GetNamedOutputPath(Compilation &C, const JobAction &JA, const char *BaseInput, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, StringRef NormalizedTriple) const
GetNamedOutputPath - Return the name to use for the output of the action JA.
Definition: Driver.cpp:4283
#define true
Definition: stdbool.h:16
void initCompilationForDiagnostics()
initCompilationForDiagnostics - Remove stale state and suppress output so compilation can be reexecut...
bool isSrcFile(ID Id)
isSrcFile - Is this a source file, i.e.
Definition: Types.cpp:215
const char * DriverMode
Corresponding driver mode argument, as &#39;–driver-mode=g++&#39;.
Definition: ToolChain.h:69
const char * getOffloadingArch() const
Definition: Action.h:197
virtual void Print(llvm::raw_ostream &OS, const char *Terminator, bool Quote, CrashReportInfo *CrashInfo=nullptr) const
Definition: Job.cpp:214
unsigned CCGenDiagnostics
Whether the driver is generating diagnostics for debugging purposes.
Definition: Driver.h:200
std::string SystemConfigDir
System directory for config files.
Definition: Driver.h:134
ToolChain - Access to tools for a single platform.
Definition: ToolChain.h:88
std::string ResourceDir
The path to the compiler resource directory.
Definition: Driver.h:131