clang  15.0.0git
Driver.cpp
Go to the documentation of this file.
1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Driver/Driver.h"
10 #include "ToolChains/AIX.h"
11 #include "ToolChains/AMDGPU.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Ananas.h"
15 #include "ToolChains/BareMetal.h"
17 #include "ToolChains/Clang.h"
18 #include "ToolChains/CloudABI.h"
19 #include "ToolChains/Contiki.h"
21 #include "ToolChains/Cuda.h"
22 #include "ToolChains/Darwin.h"
23 #include "ToolChains/DragonFly.h"
24 #include "ToolChains/FreeBSD.h"
25 #include "ToolChains/Fuchsia.h"
26 #include "ToolChains/Gnu.h"
27 #include "ToolChains/HIPAMD.h"
28 #include "ToolChains/HIPSPV.h"
29 #include "ToolChains/HLSL.h"
30 #include "ToolChains/Haiku.h"
31 #include "ToolChains/Hexagon.h"
32 #include "ToolChains/Hurd.h"
33 #include "ToolChains/Lanai.h"
34 #include "ToolChains/Linux.h"
35 #include "ToolChains/MSP430.h"
36 #include "ToolChains/MSVC.h"
37 #include "ToolChains/MinGW.h"
38 #include "ToolChains/Minix.h"
39 #include "ToolChains/MipsLinux.h"
40 #include "ToolChains/Myriad.h"
41 #include "ToolChains/NaCl.h"
42 #include "ToolChains/NetBSD.h"
43 #include "ToolChains/OpenBSD.h"
44 #include "ToolChains/PPCFreeBSD.h"
45 #include "ToolChains/PPCLinux.h"
46 #include "ToolChains/PS4CPU.h"
48 #include "ToolChains/SPIRV.h"
49 #include "ToolChains/Solaris.h"
50 #include "ToolChains/TCE.h"
51 #include "ToolChains/VEToolchain.h"
52 #include "ToolChains/WebAssembly.h"
53 #include "ToolChains/XCore.h"
54 #include "ToolChains/ZOS.h"
55 #include "clang/Basic/TargetID.h"
56 #include "clang/Basic/Version.h"
57 #include "clang/Config/config.h"
58 #include "clang/Driver/Action.h"
61 #include "clang/Driver/InputInfo.h"
62 #include "clang/Driver/Job.h"
63 #include "clang/Driver/Options.h"
64 #include "clang/Driver/Phases.h"
66 #include "clang/Driver/Tool.h"
67 #include "clang/Driver/ToolChain.h"
68 #include "clang/Driver/Types.h"
69 #include "llvm/ADT/ArrayRef.h"
70 #include "llvm/ADT/STLExtras.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/StringExtras.h"
73 #include "llvm/ADT/StringRef.h"
74 #include "llvm/ADT/StringSet.h"
75 #include "llvm/ADT/StringSwitch.h"
76 #include "llvm/Config/llvm-config.h"
77 #include "llvm/MC/TargetRegistry.h"
78 #include "llvm/Option/Arg.h"
79 #include "llvm/Option/ArgList.h"
80 #include "llvm/Option/OptSpecifier.h"
81 #include "llvm/Option/OptTable.h"
82 #include "llvm/Option/Option.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/ExitCodes.h"
86 #include "llvm/Support/FileSystem.h"
87 #include "llvm/Support/FormatVariadic.h"
88 #include "llvm/Support/Host.h"
89 #include "llvm/Support/MD5.h"
90 #include "llvm/Support/Path.h"
91 #include "llvm/Support/PrettyStackTrace.h"
92 #include "llvm/Support/Process.h"
93 #include "llvm/Support/Program.h"
94 #include "llvm/Support/StringSaver.h"
95 #include "llvm/Support/VirtualFileSystem.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include <map>
98 #include <memory>
99 #include <utility>
100 #if LLVM_ON_UNIX
101 #include <unistd.h> // getpid
102 #endif
103 
104 using namespace clang::driver;
105 using namespace clang;
106 using namespace llvm::opt;
107 
109 getOffloadTargetTriple(const Driver &D, const ArgList &Args) {
110  auto OffloadTargets = Args.getAllArgValues(options::OPT_offload_EQ);
111  // Offload compilation flow does not support multiple targets for now. We
112  // need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too)
113  // to support multiple tool chains first.
114  switch (OffloadTargets.size()) {
115  default:
116  D.Diag(diag::err_drv_only_one_offload_target_supported);
117  return llvm::None;
118  case 0:
119  D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << "";
120  return llvm::None;
121  case 1:
122  break;
123  }
124  return llvm::Triple(OffloadTargets[0]);
125 }
126 
128 getNVIDIAOffloadTargetTriple(const Driver &D, const ArgList &Args,
129  const llvm::Triple &HostTriple) {
130  if (!Args.hasArg(options::OPT_offload_EQ)) {
131  return llvm::Triple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda"
132  : "nvptx-nvidia-cuda");
133  }
134  auto TT = getOffloadTargetTriple(D, Args);
135  if (TT && (TT->getArch() == llvm::Triple::spirv32 ||
136  TT->getArch() == llvm::Triple::spirv64)) {
137  if (Args.hasArg(options::OPT_emit_llvm))
138  return TT;
139  D.Diag(diag::err_drv_cuda_offload_only_emit_bc);
140  return llvm::None;
141  }
142  D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
143  return llvm::None;
144 }
146 getHIPOffloadTargetTriple(const Driver &D, const ArgList &Args) {
147  if (!Args.hasArg(options::OPT_offload_EQ)) {
148  return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple.
149  }
150  auto TT = getOffloadTargetTriple(D, Args);
151  if (!TT)
152  return llvm::None;
153  if (TT->getArch() == llvm::Triple::amdgcn &&
154  TT->getVendor() == llvm::Triple::AMD &&
155  TT->getOS() == llvm::Triple::AMDHSA)
156  return TT;
157  if (TT->getArch() == llvm::Triple::spirv64)
158  return TT;
159  D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
160  return llvm::None;
161 }
162 
163 // static
165  StringRef CustomResourceDir) {
166  // Since the resource directory is embedded in the module hash, it's important
167  // that all places that need it call this function, so that they get the
168  // exact same string ("a/../b/" and "b/" get different hashes, for example).
169 
170  // Dir is bin/ or lib/, depending on where BinaryPath is.
171  std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
172 
173  SmallString<128> P(Dir);
174  if (CustomResourceDir != "") {
175  llvm::sys::path::append(P, CustomResourceDir);
176  } else {
177  // On Windows, libclang.dll is in bin/.
178  // On non-Windows, libclang.so/.dylib is in lib/.
179  // With a static-library build of libclang, LibClangPath will contain the
180  // path of the embedding binary, which for LLVM binaries will be in bin/.
181  // ../lib gets us to lib/ in both cases.
182  P = llvm::sys::path::parent_path(Dir);
183  llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
184  CLANG_VERSION_STRING);
185  }
186 
187  return std::string(P.str());
188 }
189 
190 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
191  DiagnosticsEngine &Diags, std::string Title,
193  : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
194  SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
195  CXX20HeaderType(HeaderMode_None), ModulesModeCXX20(false),
196  LTOMode(LTOK_None), ClangExecutable(ClangExecutable),
197  SysRoot(DEFAULT_SYSROOT), DriverTitle(Title), CCCPrintBindings(false),
198  CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false),
199  CCGenDiagnostics(false), CCPrintProcessStats(false),
200  TargetTriple(TargetTriple), Saver(Alloc), CheckInputsExist(true),
201  ProbePrecompiled(true), GenReproducer(false),
202  SuppressMissingInputWarning(false) {
203  // Provide a sane fallback if no VFS is specified.
204  if (!this->VFS)
205  this->VFS = llvm::vfs::getRealFileSystem();
206 
207  Name = std::string(llvm::sys::path::filename(ClangExecutable));
208  Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
209  InstalledDir = Dir; // Provide a sensible default installed dir.
210 
211  if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
212  // Prepend InstalledDir if SysRoot is relative
214  llvm::sys::path::append(P, SysRoot);
215  SysRoot = std::string(P);
216  }
217 
218 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
219  SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
220 #endif
221 #if defined(CLANG_CONFIG_FILE_USER_DIR)
222  UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
223 #endif
224 
225  // Compute the path to the resource directory.
226  ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
227 }
228 
229 void Driver::setDriverMode(StringRef Value) {
230  static const std::string OptName =
231  getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
232  if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
233  .Case("gcc", GCCMode)
234  .Case("g++", GXXMode)
235  .Case("cpp", CPPMode)
236  .Case("cl", CLMode)
237  .Case("flang", FlangMode)
238  .Case("dxc", DXCMode)
239  .Default(None))
240  Mode = *M;
241  else
242  Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
243 }
244 
246  bool IsClCompatMode,
247  bool &ContainsError) {
248  llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
249  ContainsError = false;
250 
251  unsigned IncludedFlagsBitmask;
252  unsigned ExcludedFlagsBitmask;
253  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
254  getIncludeExcludeOptionFlagMasks(IsClCompatMode);
255 
256  // Make sure that Flang-only options don't pollute the Clang output
257  // TODO: Make sure that Clang-only options don't pollute Flang output
258  if (!IsFlangMode())
259  ExcludedFlagsBitmask |= options::FlangOnlyOption;
260 
261  unsigned MissingArgIndex, MissingArgCount;
262  InputArgList Args =
263  getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
264  IncludedFlagsBitmask, ExcludedFlagsBitmask);
265 
266  // Check for missing argument error.
267  if (MissingArgCount) {
268  Diag(diag::err_drv_missing_argument)
269  << Args.getArgString(MissingArgIndex) << MissingArgCount;
270  ContainsError |=
271  Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
273  }
274 
275  // Check for unsupported options.
276  for (const Arg *A : Args) {
277  if (A->getOption().hasFlag(options::Unsupported)) {
278  unsigned DiagID;
279  auto ArgString = A->getAsString(Args);
280  std::string Nearest;
281  if (getOpts().findNearest(
282  ArgString, Nearest, IncludedFlagsBitmask,
283  ExcludedFlagsBitmask | options::Unsupported) > 1) {
284  DiagID = diag::err_drv_unsupported_opt;
285  Diag(DiagID) << ArgString;
286  } else {
287  DiagID = diag::err_drv_unsupported_opt_with_suggestion;
288  Diag(DiagID) << ArgString << Nearest;
289  }
290  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
292  continue;
293  }
294 
295  // Warn about -mcpu= without an argument.
296  if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
297  Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
298  ContainsError |= Diags.getDiagnosticLevel(
299  diag::warn_drv_empty_joined_argument,
301  }
302  }
303 
304  for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
305  unsigned DiagID;
306  auto ArgString = A->getAsString(Args);
307  std::string Nearest;
308  if (getOpts().findNearest(
309  ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
310  DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
311  : diag::err_drv_unknown_argument;
312  Diags.Report(DiagID) << ArgString;
313  } else {
314  DiagID = IsCLMode()
315  ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
316  : diag::err_drv_unknown_argument_with_suggestion;
317  Diags.Report(DiagID) << ArgString << Nearest;
318  }
319  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
321  }
322 
323  return Args;
324 }
325 
326 // Determine which compilation mode we are in. We look for options which
327 // affect the phase, starting with the earliest phases, and record which
328 // option we used to determine the final phase.
329 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
330  Arg **FinalPhaseArg) const {
331  Arg *PhaseArg = nullptr;
332  phases::ID FinalPhase;
333 
334  // -{E,EP,P,M,MM} only run the preprocessor.
335  if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
336  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
337  (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
338  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P)) ||
340  FinalPhase = phases::Preprocess;
341 
342  // --precompile only runs up to precompilation.
343  // Options that cause the output of C++20 compiled module interfaces or
344  // header units have the same effect.
345  } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile)) ||
346  (PhaseArg = DAL.getLastArg(options::OPT_extract_api)) ||
347  (PhaseArg = DAL.getLastArg(options::OPT_fmodule_header,
348  options::OPT_fmodule_header_EQ))) {
349  FinalPhase = phases::Precompile;
350  // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
351  } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
352  (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
353  (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
354  (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
355  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
356  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
357  (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
358  (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
359  (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
360  FinalPhase = phases::Compile;
361 
362  // -S only runs up to the backend.
363  } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
364  FinalPhase = phases::Backend;
365 
366  // -c compilation only runs up to the assembler.
367  } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
368  FinalPhase = phases::Assemble;
369 
370  } else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) {
371  FinalPhase = phases::IfsMerge;
372 
373  // Otherwise do everything.
374  } else
375  FinalPhase = phases::Link;
376 
377  if (FinalPhaseArg)
378  *FinalPhaseArg = PhaseArg;
379 
380  return FinalPhase;
381 }
382 
383 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
384  StringRef Value, bool Claim = true) {
385  Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
386  Args.getBaseArgs().MakeIndex(Value), Value.data());
387  Args.AddSynthesizedArg(A);
388  if (Claim)
389  A->claim();
390  return A;
391 }
392 
393 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
394  const llvm::opt::OptTable &Opts = getOpts();
395  DerivedArgList *DAL = new DerivedArgList(Args);
396 
397  bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
398  bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
399  bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
400  bool IgnoreUnused = false;
401  for (Arg *A : Args) {
402  if (IgnoreUnused)
403  A->claim();
404 
405  if (A->getOption().matches(options::OPT_start_no_unused_arguments)) {
406  IgnoreUnused = true;
407  continue;
408  }
409  if (A->getOption().matches(options::OPT_end_no_unused_arguments)) {
410  IgnoreUnused = false;
411  continue;
412  }
413 
414  // Unfortunately, we have to parse some forwarding options (-Xassembler,
415  // -Xlinker, -Xpreprocessor) because we either integrate their functionality
416  // (assembler and preprocessor), or bypass a previous driver ('collect2').
417 
418  // Rewrite linker options, to replace --no-demangle with a custom internal
419  // option.
420  if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
421  A->getOption().matches(options::OPT_Xlinker)) &&
422  A->containsValue("--no-demangle")) {
423  // Add the rewritten no-demangle argument.
424  DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
425 
426  // Add the remaining values as Xlinker arguments.
427  for (StringRef Val : A->getValues())
428  if (Val != "--no-demangle")
429  DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
430 
431  continue;
432  }
433 
434  // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
435  // some build systems. We don't try to be complete here because we don't
436  // care to encourage this usage model.
437  if (A->getOption().matches(options::OPT_Wp_COMMA) &&
438  (A->getValue(0) == StringRef("-MD") ||
439  A->getValue(0) == StringRef("-MMD"))) {
440  // Rewrite to -MD/-MMD along with -MF.
441  if (A->getValue(0) == StringRef("-MD"))
442  DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
443  else
444  DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
445  if (A->getNumValues() == 2)
446  DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
447  continue;
448  }
449 
450  // Rewrite reserved library names.
451  if (A->getOption().matches(options::OPT_l)) {
452  StringRef Value = A->getValue();
453 
454  // Rewrite unless -nostdlib is present.
455  if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
456  Value == "stdc++") {
457  DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
458  continue;
459  }
460 
461  // Rewrite unconditionally.
462  if (Value == "cc_kext") {
463  DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
464  continue;
465  }
466  }
467 
468  // Pick up inputs via the -- option.
469  if (A->getOption().matches(options::OPT__DASH_DASH)) {
470  A->claim();
471  for (StringRef Val : A->getValues())
472  DAL->append(MakeInputArg(*DAL, Opts, Val, false));
473  continue;
474  }
475 
476  DAL->append(A);
477  }
478 
479  // Enforce -static if -miamcu is present.
480  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
481  DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_static));
482 
483 // Add a default value of -mlinker-version=, if one was given and the user
484 // didn't specify one.
485 #if defined(HOST_LINK_VERSION)
486  if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
487  strlen(HOST_LINK_VERSION) > 0) {
488  DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
489  HOST_LINK_VERSION);
490  DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
491  }
492 #endif
493 
494  return DAL;
495 }
496 
497 /// Compute target triple from args.
498 ///
499 /// This routine provides the logic to compute a target triple from various
500 /// args passed to the driver and the default triple string.
501 static llvm::Triple computeTargetTriple(const Driver &D,
502  StringRef TargetTriple,
503  const ArgList &Args,
504  StringRef DarwinArchName = "") {
505  // FIXME: Already done in Compilation *Driver::BuildCompilation
506  if (const Arg *A = Args.getLastArg(options::OPT_target))
507  TargetTriple = A->getValue();
508 
509  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
510 
511  // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
512  // -gnu* only, and we can not change this, so we have to detect that case as
513  // being the Hurd OS.
514  if (TargetTriple.contains("-unknown-gnu") || TargetTriple.contains("-pc-gnu"))
515  Target.setOSName("hurd");
516 
517  // Handle Apple-specific options available here.
518  if (Target.isOSBinFormatMachO()) {
519  // If an explicit Darwin arch name is given, that trumps all.
520  if (!DarwinArchName.empty()) {
522  return Target;
523  }
524 
525  // Handle the Darwin '-arch' flag.
526  if (Arg *A = Args.getLastArg(options::OPT_arch)) {
527  StringRef ArchName = A->getValue();
529  }
530  }
531 
532  // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
533  // '-mbig-endian'/'-EB'.
534  if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
535  options::OPT_mbig_endian)) {
536  if (A->getOption().matches(options::OPT_mlittle_endian)) {
537  llvm::Triple LE = Target.getLittleEndianArchVariant();
538  if (LE.getArch() != llvm::Triple::UnknownArch)
539  Target = std::move(LE);
540  } else {
541  llvm::Triple BE = Target.getBigEndianArchVariant();
542  if (BE.getArch() != llvm::Triple::UnknownArch)
543  Target = std::move(BE);
544  }
545  }
546 
547  // Skip further flag support on OSes which don't support '-m32' or '-m64'.
548  if (Target.getArch() == llvm::Triple::tce ||
549  Target.getOS() == llvm::Triple::Minix)
550  return Target;
551 
552  // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
553  if (Target.isOSAIX()) {
554  if (Optional<std::string> ObjectModeValue =
555  llvm::sys::Process::GetEnv("OBJECT_MODE")) {
556  StringRef ObjectMode = *ObjectModeValue;
557  llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
558 
559  if (ObjectMode.equals("64")) {
560  AT = Target.get64BitArchVariant().getArch();
561  } else if (ObjectMode.equals("32")) {
562  AT = Target.get32BitArchVariant().getArch();
563  } else {
564  D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
565  }
566 
567  if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
568  Target.setArch(AT);
569  }
570  }
571 
572  // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
573  Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
574  options::OPT_m32, options::OPT_m16);
575  if (A) {
576  llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
577 
578  if (A->getOption().matches(options::OPT_m64)) {
579  AT = Target.get64BitArchVariant().getArch();
580  if (Target.getEnvironment() == llvm::Triple::GNUX32)
581  Target.setEnvironment(llvm::Triple::GNU);
582  else if (Target.getEnvironment() == llvm::Triple::MuslX32)
583  Target.setEnvironment(llvm::Triple::Musl);
584  } else if (A->getOption().matches(options::OPT_mx32) &&
585  Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
586  AT = llvm::Triple::x86_64;
587  if (Target.getEnvironment() == llvm::Triple::Musl)
588  Target.setEnvironment(llvm::Triple::MuslX32);
589  else
590  Target.setEnvironment(llvm::Triple::GNUX32);
591  } else if (A->getOption().matches(options::OPT_m32)) {
592  AT = Target.get32BitArchVariant().getArch();
593  if (Target.getEnvironment() == llvm::Triple::GNUX32)
594  Target.setEnvironment(llvm::Triple::GNU);
595  else if (Target.getEnvironment() == llvm::Triple::MuslX32)
596  Target.setEnvironment(llvm::Triple::Musl);
597  } else if (A->getOption().matches(options::OPT_m16) &&
598  Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
599  AT = llvm::Triple::x86;
600  Target.setEnvironment(llvm::Triple::CODE16);
601  }
602 
603  if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) {
604  Target.setArch(AT);
605  if (Target.isWindowsGNUEnvironment())
607  }
608  }
609 
610  // Handle -miamcu flag.
611  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
612  if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
613  D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
614  << Target.str();
615 
616  if (A && !A->getOption().matches(options::OPT_m32))
617  D.Diag(diag::err_drv_argument_not_allowed_with)
618  << "-miamcu" << A->getBaseArg().getAsString(Args);
619 
620  Target.setArch(llvm::Triple::x86);
621  Target.setArchName("i586");
622  Target.setEnvironment(llvm::Triple::UnknownEnvironment);
623  Target.setEnvironmentName("");
624  Target.setOS(llvm::Triple::ELFIAMCU);
625  Target.setVendor(llvm::Triple::UnknownVendor);
626  Target.setVendorName("intel");
627  }
628 
629  // If target is MIPS adjust the target triple
630  // accordingly to provided ABI name.
631  A = Args.getLastArg(options::OPT_mabi_EQ);
632  if (A && Target.isMIPS()) {
633  StringRef ABIName = A->getValue();
634  if (ABIName == "32") {
635  Target = Target.get32BitArchVariant();
636  if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
637  Target.getEnvironment() == llvm::Triple::GNUABIN32)
638  Target.setEnvironment(llvm::Triple::GNU);
639  } else if (ABIName == "n32") {
640  Target = Target.get64BitArchVariant();
641  if (Target.getEnvironment() == llvm::Triple::GNU ||
642  Target.getEnvironment() == llvm::Triple::GNUABI64)
643  Target.setEnvironment(llvm::Triple::GNUABIN32);
644  } else if (ABIName == "64") {
645  Target = Target.get64BitArchVariant();
646  if (Target.getEnvironment() == llvm::Triple::GNU ||
647  Target.getEnvironment() == llvm::Triple::GNUABIN32)
648  Target.setEnvironment(llvm::Triple::GNUABI64);
649  }
650  }
651 
652  // If target is RISC-V adjust the target triple according to
653  // provided architecture name
654  A = Args.getLastArg(options::OPT_march_EQ);
655  if (A && Target.isRISCV()) {
656  StringRef ArchName = A->getValue();
657  if (ArchName.startswith_insensitive("rv32"))
658  Target.setArch(llvm::Triple::riscv32);
659  else if (ArchName.startswith_insensitive("rv64"))
660  Target.setArch(llvm::Triple::riscv64);
661  }
662 
663  return Target;
664 }
665 
666 // Parse the LTO options and record the type of LTO compilation
667 // based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
668 // option occurs last.
669 static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args,
670  OptSpecifier OptEq, OptSpecifier OptNeg) {
671  if (!Args.hasFlag(OptEq, OptNeg, false))
672  return LTOK_None;
673 
674  const Arg *A = Args.getLastArg(OptEq);
675  StringRef LTOName = A->getValue();
676 
677  driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
678  .Case("full", LTOK_Full)
679  .Case("thin", LTOK_Thin)
680  .Default(LTOK_Unknown);
681 
682  if (LTOMode == LTOK_Unknown) {
683  D.Diag(diag::err_drv_unsupported_option_argument)
684  << A->getOption().getName() << A->getValue();
685  return LTOK_None;
686  }
687  return LTOMode;
688 }
689 
690 // Parse the LTO options.
691 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
692  LTOMode =
693  parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto);
694 
695  OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ,
696  options::OPT_fno_offload_lto);
697 }
698 
699 /// Compute the desired OpenMP runtime from the flags provided.
701  StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
702 
703  const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
704  if (A)
705  RuntimeName = A->getValue();
706 
707  auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
708  .Case("libomp", OMPRT_OMP)
709  .Case("libgomp", OMPRT_GOMP)
710  .Case("libiomp5", OMPRT_IOMP5)
711  .Default(OMPRT_Unknown);
712 
713  if (RT == OMPRT_Unknown) {
714  if (A)
715  Diag(diag::err_drv_unsupported_option_argument)
716  << A->getOption().getName() << A->getValue();
717  else
718  // FIXME: We could use a nicer diagnostic here.
719  Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
720  }
721 
722  return RT;
723 }
724 
726  InputList &Inputs) {
727 
728  //
729  // CUDA/HIP
730  //
731  // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
732  // or HIP type. However, mixed CUDA/HIP compilation is not supported.
733  bool IsCuda =
734  llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
735  return types::isCuda(I.first);
736  });
737  bool IsHIP =
738  llvm::any_of(Inputs,
739  [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
740  return types::isHIP(I.first);
741  }) ||
742  C.getInputArgs().hasArg(options::OPT_hip_link);
743  if (IsCuda && IsHIP) {
744  Diag(clang::diag::err_drv_mix_cuda_hip);
745  return;
746  }
747  if (IsCuda) {
748  const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
749  const llvm::Triple &HostTriple = HostTC->getTriple();
750  auto OFK = Action::OFK_Cuda;
751  auto CudaTriple =
752  getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), HostTriple);
753  if (!CudaTriple)
754  return;
755  // Use the CUDA and host triples as the key into the ToolChains map,
756  // because the device toolchain we create depends on both.
757  auto &CudaTC = ToolChains[CudaTriple->str() + "/" + HostTriple.str()];
758  if (!CudaTC) {
759  CudaTC = std::make_unique<toolchains::CudaToolChain>(
760  *this, *CudaTriple, *HostTC, C.getInputArgs(), OFK);
761  }
762  C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
763  } else if (IsHIP) {
764  if (auto *OMPTargetArg =
765  C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
766  Diag(clang::diag::err_drv_unsupported_opt_for_language_mode)
767  << OMPTargetArg->getSpelling() << "HIP";
768  return;
769  }
770  const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
771  auto OFK = Action::OFK_HIP;
772  auto HIPTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
773  if (!HIPTriple)
774  return;
775  auto *HIPTC = &getOffloadingDeviceToolChain(C.getInputArgs(), *HIPTriple,
776  *HostTC, OFK);
777  assert(HIPTC && "Could not create offloading device tool chain.");
778  C.addOffloadDeviceToolChain(HIPTC, OFK);
779  }
780 
781  //
782  // OpenMP
783  //
784  // We need to generate an OpenMP toolchain if the user specified targets with
785  // the -fopenmp-targets option or used --offload-arch with OpenMP enabled.
786  bool IsOpenMPOffloading =
787  C.getInputArgs().hasFlag(options::OPT_fopenmp, options::OPT_fopenmp_EQ,
788  options::OPT_fno_openmp, false) &&
789  (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ) ||
790  C.getInputArgs().hasArg(options::OPT_offload_arch_EQ));
791  if (IsOpenMPOffloading) {
792  // We expect that -fopenmp-targets is always used in conjunction with the
793  // option -fopenmp specifying a valid runtime with offloading support, i.e.
794  // libomp or libiomp.
795  OpenMPRuntimeKind RuntimeKind = getOpenMPRuntime(C.getInputArgs());
796  if (RuntimeKind != OMPRT_OMP && RuntimeKind != OMPRT_IOMP5) {
797  Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
798  return;
799  }
800 
801  llvm::StringMap<llvm::DenseSet<StringRef>> DerivedArchs;
802  llvm::StringMap<StringRef> FoundNormalizedTriples;
803  llvm::SmallVector<StringRef, 4> OpenMPTriples;
804 
805  // If the user specified -fopenmp-targets= we create a toolchain for each
806  // valid triple. Otherwise, if only --offload-arch= was specified we instead
807  // attempt to derive the appropriate toolchains from the arguments.
808  if (Arg *OpenMPTargets =
809  C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
810  if (OpenMPTargets && !OpenMPTargets->getNumValues()) {
811  Diag(clang::diag::warn_drv_empty_joined_argument)
812  << OpenMPTargets->getAsString(C.getInputArgs());
813  return;
814  }
815  llvm::copy(OpenMPTargets->getValues(), std::back_inserter(OpenMPTriples));
816  } else if (C.getInputArgs().hasArg(options::OPT_offload_arch_EQ) &&
817  !IsHIP && !IsCuda) {
818  const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
819  auto AMDTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
820  auto NVPTXTriple = getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(),
821  HostTC->getTriple());
822 
823  // Attempt to deduce the offloading triple from the set of architectures.
824  // We can only correctly deduce NVPTX / AMDGPU triples currently.
826  getOffloadArchs(C, C.getArgs(), Action::OFK_OpenMP, nullptr);
827  for (StringRef Arch : Archs) {
828  if (NVPTXTriple && IsNVIDIAGpuArch(StringToCudaArch(
829  getProcessorFromTargetID(*NVPTXTriple, Arch)))) {
830  DerivedArchs[NVPTXTriple->getTriple()].insert(Arch);
831  } else if (AMDTriple &&
833  getProcessorFromTargetID(*AMDTriple, Arch)))) {
834  DerivedArchs[AMDTriple->getTriple()].insert(Arch);
835  } else {
836  Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch) << Arch;
837  return;
838  }
839  }
840 
841  for (const auto &TripleAndArchs : DerivedArchs)
842  OpenMPTriples.push_back(TripleAndArchs.first());
843  }
844 
845  for (StringRef Val : OpenMPTriples) {
846  llvm::Triple TT(ToolChain::getOpenMPTriple(Val));
847  std::string NormalizedName = TT.normalize();
848 
849  // Make sure we don't have a duplicate triple.
850  auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
851  if (Duplicate != FoundNormalizedTriples.end()) {
852  Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
853  << Val << Duplicate->second;
854  continue;
855  }
856 
857  // Store the current triple so that we can check for duplicates in the
858  // following iterations.
859  FoundNormalizedTriples[NormalizedName] = Val;
860 
861  // If the specified target is invalid, emit a diagnostic.
862  if (TT.getArch() == llvm::Triple::UnknownArch)
863  Diag(clang::diag::err_drv_invalid_omp_target) << Val;
864  else {
865  const ToolChain *TC;
866  // Device toolchains have to be selected differently. They pair host
867  // and device in their implementation.
868  if (TT.isNVPTX() || TT.isAMDGCN()) {
869  const ToolChain *HostTC =
870  C.getSingleOffloadToolChain<Action::OFK_Host>();
871  assert(HostTC && "Host toolchain should be always defined.");
872  auto &DeviceTC =
873  ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
874  if (!DeviceTC) {
875  if (TT.isNVPTX())
876  DeviceTC = std::make_unique<toolchains::CudaToolChain>(
877  *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
878  else if (TT.isAMDGCN())
879  DeviceTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
880  *this, TT, *HostTC, C.getInputArgs());
881  else
882  assert(DeviceTC && "Device toolchain not defined.");
883  }
884 
885  TC = DeviceTC.get();
886  } else
887  TC = &getToolChain(C.getInputArgs(), TT);
888  C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
889  if (DerivedArchs.find(TT.getTriple()) != DerivedArchs.end())
890  KnownArchs[TC] = DerivedArchs[TT.getTriple()];
891  }
892  }
893  } else if (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ)) {
894  Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
895  return;
896  }
897 
898  //
899  // TODO: Add support for other offloading programming models here.
900  //
901 }
902 
903 /// Looks the given directories for the specified file.
904 ///
905 /// \param[out] FilePath File path, if the file was found.
906 /// \param[in] Dirs Directories used for the search.
907 /// \param[in] FileName Name of the file to search for.
908 /// \return True if file was found.
909 ///
910 /// Looks for file specified by FileName sequentially in directories specified
911 /// by Dirs.
912 ///
913 static bool searchForFile(SmallVectorImpl<char> &FilePath,
914  ArrayRef<StringRef> Dirs, StringRef FileName) {
915  SmallString<128> WPath;
916  for (const StringRef &Dir : Dirs) {
917  if (Dir.empty())
918  continue;
919  WPath.clear();
920  llvm::sys::path::append(WPath, Dir, FileName);
921  llvm::sys::path::native(WPath);
922  if (llvm::sys::fs::is_regular_file(WPath)) {
923  FilePath = std::move(WPath);
924  return true;
925  }
926  }
927  return false;
928 }
929 
930 bool Driver::readConfigFile(StringRef FileName) {
931  // Try reading the given file.
933  if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
934  Diag(diag::err_drv_cannot_read_config_file) << FileName;
935  return true;
936  }
937 
938  // Read options from config file.
939  llvm::SmallString<128> CfgFileName(FileName);
940  llvm::sys::path::native(CfgFileName);
941  ConfigFile = std::string(CfgFileName);
942  bool ContainErrors;
943  CfgOptions = std::make_unique<InputArgList>(
944  ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
945  if (ContainErrors) {
946  CfgOptions.reset();
947  return true;
948  }
949 
950  if (CfgOptions->hasArg(options::OPT_config)) {
951  CfgOptions.reset();
952  Diag(diag::err_drv_nested_config_file);
953  return true;
954  }
955 
956  // Claim all arguments that come from a configuration file so that the driver
957  // does not warn on any that is unused.
958  for (Arg *A : *CfgOptions)
959  A->claim();
960  return false;
961 }
962 
963 bool Driver::loadConfigFile() {
964  std::string CfgFileName;
965  bool FileSpecifiedExplicitly = false;
966 
967  // Process options that change search path for config files.
968  if (CLOptions) {
969  if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
970  SmallString<128> CfgDir;
971  CfgDir.append(
972  CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
973  if (!CfgDir.empty()) {
974  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
975  SystemConfigDir.clear();
976  else
977  SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
978  }
979  }
980  if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
981  SmallString<128> CfgDir;
982  CfgDir.append(
983  CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
984  if (!CfgDir.empty()) {
985  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
986  UserConfigDir.clear();
987  else
988  UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
989  }
990  }
991  }
992 
993  // First try to find config file specified in command line.
994  if (CLOptions) {
995  std::vector<std::string> ConfigFiles =
996  CLOptions->getAllArgValues(options::OPT_config);
997  if (ConfigFiles.size() > 1) {
998  if (!llvm::all_of(ConfigFiles, [ConfigFiles](const std::string &s) {
999  return s == ConfigFiles[0];
1000  })) {
1001  Diag(diag::err_drv_duplicate_config);
1002  return true;
1003  }
1004  }
1005 
1006  if (!ConfigFiles.empty()) {
1007  CfgFileName = ConfigFiles.front();
1008  assert(!CfgFileName.empty());
1009 
1010  // If argument contains directory separator, treat it as a path to
1011  // configuration file.
1012  if (llvm::sys::path::has_parent_path(CfgFileName)) {
1013  SmallString<128> CfgFilePath;
1014  if (llvm::sys::path::is_relative(CfgFileName))
1015  llvm::sys::fs::current_path(CfgFilePath);
1016  llvm::sys::path::append(CfgFilePath, CfgFileName);
1017  if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
1018  Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
1019  return true;
1020  }
1021  return readConfigFile(CfgFilePath);
1022  }
1023 
1024  FileSpecifiedExplicitly = true;
1025  }
1026  }
1027 
1028  // If config file is not specified explicitly, try to deduce configuration
1029  // from executable name. For instance, an executable 'armv7l-clang' will
1030  // search for config file 'armv7l-clang.cfg'.
1031  if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
1032  CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
1033 
1034  if (CfgFileName.empty())
1035  return false;
1036 
1037  // Determine architecture part of the file name, if it is present.
1038  StringRef CfgFileArch = CfgFileName;
1039  size_t ArchPrefixLen = CfgFileArch.find('-');
1040  if (ArchPrefixLen == StringRef::npos)
1041  ArchPrefixLen = CfgFileArch.size();
1042  llvm::Triple CfgTriple;
1043  CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
1044  CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
1045  if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
1046  ArchPrefixLen = 0;
1047 
1048  if (!StringRef(CfgFileName).endswith(".cfg"))
1049  CfgFileName += ".cfg";
1050 
1051  // If config file starts with architecture name and command line options
1052  // redefine architecture (with options like -m32 -LE etc), try finding new
1053  // config file with that architecture.
1054  SmallString<128> FixedConfigFile;
1055  size_t FixedArchPrefixLen = 0;
1056  if (ArchPrefixLen) {
1057  // Get architecture name from config file name like 'i386.cfg' or
1058  // 'armv7l-clang.cfg'.
1059  // Check if command line options changes effective triple.
1060  llvm::Triple EffectiveTriple = computeTargetTriple(*this,
1061  CfgTriple.getTriple(), *CLOptions);
1062  if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
1063  FixedConfigFile = EffectiveTriple.getArchName();
1064  FixedArchPrefixLen = FixedConfigFile.size();
1065  // Append the rest of original file name so that file name transforms
1066  // like: i386-clang.cfg -> x86_64-clang.cfg.
1067  if (ArchPrefixLen < CfgFileName.size())
1068  FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
1069  }
1070  }
1071 
1072  // Prepare list of directories where config file is searched for.
1073  StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
1074 
1075  // Try to find config file. First try file with corrected architecture.
1076  llvm::SmallString<128> CfgFilePath;
1077  if (!FixedConfigFile.empty()) {
1078  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
1079  return readConfigFile(CfgFilePath);
1080  // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
1081  FixedConfigFile.resize(FixedArchPrefixLen);
1082  FixedConfigFile.append(".cfg");
1083  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
1084  return readConfigFile(CfgFilePath);
1085  }
1086 
1087  // Then try original file name.
1088  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
1089  return readConfigFile(CfgFilePath);
1090 
1091  // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
1092  if (!ClangNameParts.ModeSuffix.empty() &&
1093  !ClangNameParts.TargetPrefix.empty()) {
1094  CfgFileName.assign(ClangNameParts.TargetPrefix);
1095  CfgFileName.append(".cfg");
1096  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
1097  return readConfigFile(CfgFilePath);
1098  }
1099 
1100  // Report error but only if config file was specified explicitly, by option
1101  // --config. If it was deduced from executable name, it is not an error.
1102  if (FileSpecifiedExplicitly) {
1103  Diag(diag::err_drv_config_file_not_found) << CfgFileName;
1104  for (const StringRef &SearchDir : CfgFileSearchDirs)
1105  if (!SearchDir.empty())
1106  Diag(diag::note_drv_config_file_searched_in) << SearchDir;
1107  return true;
1108  }
1109 
1110  return false;
1111 }
1112 
1114  llvm::PrettyStackTraceString CrashInfo("Compilation construction");
1115 
1116  // FIXME: Handle environment options which affect driver behavior, somewhere
1117  // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1118 
1119  // We look for the driver mode option early, because the mode can affect
1120  // how other options are parsed.
1121 
1122  auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1));
1123  if (!DriverMode.empty())
1124  setDriverMode(DriverMode);
1125 
1126  // FIXME: What are we going to do with -V and -b?
1127 
1128  // Arguments specified in command line.
1129  bool ContainsError;
1130  CLOptions = std::make_unique<InputArgList>(
1131  ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
1132 
1133  // Try parsing configuration file.
1134  if (!ContainsError)
1135  ContainsError = loadConfigFile();
1136  bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1137 
1138  // All arguments, from both config file and command line.
1139  InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1140  : std::move(*CLOptions));
1141 
1142  // The args for config files or /clang: flags belong to different InputArgList
1143  // objects than Args. This copies an Arg from one of those other InputArgLists
1144  // to the ownership of Args.
1145  auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
1146  unsigned Index = Args.MakeIndex(Opt->getSpelling());
1147  Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
1148  Index, BaseArg);
1149  Copy->getValues() = Opt->getValues();
1150  if (Opt->isClaimed())
1151  Copy->claim();
1152  Copy->setOwnsValues(Opt->getOwnsValues());
1153  Opt->setOwnsValues(false);
1154  Args.append(Copy);
1155  };
1156 
1157  if (HasConfigFile)
1158  for (auto *Opt : *CLOptions) {
1159  if (Opt->getOption().matches(options::OPT_config))
1160  continue;
1161  const Arg *BaseArg = &Opt->getBaseArg();
1162  if (BaseArg == Opt)
1163  BaseArg = nullptr;
1164  appendOneArg(Opt, BaseArg);
1165  }
1166 
1167  // In CL mode, look for any pass-through arguments
1168  if (IsCLMode() && !ContainsError) {
1169  SmallVector<const char *, 16> CLModePassThroughArgList;
1170  for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1171  A->claim();
1172  CLModePassThroughArgList.push_back(A->getValue());
1173  }
1174 
1175  if (!CLModePassThroughArgList.empty()) {
1176  // Parse any pass through args using default clang processing rather
1177  // than clang-cl processing.
1178  auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1179  ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1180 
1181  if (!ContainsError)
1182  for (auto *Opt : *CLModePassThroughOptions) {
1183  appendOneArg(Opt, nullptr);
1184  }
1185  }
1186  }
1187 
1188  // Check for working directory option before accessing any files
1189  if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1190  if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1191  Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1192 
1193  // FIXME: This stuff needs to go into the Compilation, not the driver.
1194  bool CCCPrintPhases;
1195 
1196  // Silence driver warnings if requested
1197  Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1198 
1199  // -canonical-prefixes, -no-canonical-prefixes are used very early in main.
1200  Args.ClaimAllArgs(options::OPT_canonical_prefixes);
1201  Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1202 
1203  // f(no-)integated-cc1 is also used very early in main.
1204  Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1205  Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1206 
1207  // Ignore -pipe.
1208  Args.ClaimAllArgs(options::OPT_pipe);
1209 
1210  // Extract -ccc args.
1211  //
1212  // FIXME: We need to figure out where this behavior should live. Most of it
1213  // should be outside in the client; the parts that aren't should have proper
1214  // options, either by introducing new ones or by overloading gcc ones like -V
1215  // or -b.
1216  CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1217  CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1218  if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1219  CCCGenericGCCName = A->getValue();
1220  GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1221  options::OPT_fno_crash_diagnostics,
1222  !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1223 
1224  // Process -fproc-stat-report options.
1225  if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
1226  CCPrintProcessStats = true;
1227  CCPrintStatReportFilename = A->getValue();
1228  }
1229  if (Args.hasArg(options::OPT_fproc_stat_report))
1230  CCPrintProcessStats = true;
1231 
1232  // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1233  // and getToolChain is const.
1234  if (IsCLMode()) {
1235  // clang-cl targets MSVC-style Win32.
1236  llvm::Triple T(TargetTriple);
1237  T.setOS(llvm::Triple::Win32);
1238  T.setVendor(llvm::Triple::PC);
1239  T.setEnvironment(llvm::Triple::MSVC);
1240  T.setObjectFormat(llvm::Triple::COFF);
1241  TargetTriple = T.str();
1242  } else if (IsDXCMode()) {
1243  // clang-dxc target is build from target_profile option.
1244  // Just set OS to shader model to select HLSLToolChain.
1245  llvm::Triple T(TargetTriple);
1246  T.setOS(llvm::Triple::ShaderModel);
1247  TargetTriple = T.str();
1248  }
1249 
1250  if (const Arg *A = Args.getLastArg(options::OPT_target))
1251  TargetTriple = A->getValue();
1252  if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1253  Dir = InstalledDir = A->getValue();
1254  for (const Arg *A : Args.filtered(options::OPT_B)) {
1255  A->claim();
1256  PrefixDirs.push_back(A->getValue(0));
1257  }
1258  if (Optional<std::string> CompilerPathValue =
1259  llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1260  StringRef CompilerPath = *CompilerPathValue;
1261  while (!CompilerPath.empty()) {
1262  std::pair<StringRef, StringRef> Split =
1263  CompilerPath.split(llvm::sys::EnvPathSeparator);
1264  PrefixDirs.push_back(std::string(Split.first));
1265  CompilerPath = Split.second;
1266  }
1267  }
1268  if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1269  SysRoot = A->getValue();
1270  if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1271  DyldPrefix = A->getValue();
1272 
1273  if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1274  ResourceDir = A->getValue();
1275 
1276  if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1277  SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1278  .Case("cwd", SaveTempsCwd)
1279  .Case("obj", SaveTempsObj)
1280  .Default(SaveTempsCwd);
1281  }
1282 
1283  setLTOMode(Args);
1284 
1285  // Process -fembed-bitcode= flags.
1286  if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1287  StringRef Name = A->getValue();
1288  unsigned Model = llvm::StringSwitch<unsigned>(Name)
1289  .Case("off", EmbedNone)
1290  .Case("all", EmbedBitcode)
1291  .Case("bitcode", EmbedBitcode)
1292  .Case("marker", EmbedMarker)
1293  .Default(~0U);
1294  if (Model == ~0U) {
1295  Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1296  << Name;
1297  } else
1298  BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1299  }
1300 
1301  // Setting up the jobs for some precompile cases depends on whether we are
1302  // treating them as PCH, implicit modules or C++20 ones.
1303  // TODO: inferring the mode like this seems fragile (it meets the objective
1304  // of not requiring anything new for operation, however).
1305  const Arg *Std = Args.getLastArg(options::OPT_std_EQ);
1306  ModulesModeCXX20 =
1307  !Args.hasArg(options::OPT_fmodules) && Std &&
1308  (Std->containsValue("c++20") || Std->containsValue("c++2b") ||
1309  Std->containsValue("c++2a") || Std->containsValue("c++latest"));
1310 
1311  // Process -fmodule-header{=} flags.
1312  if (Arg *A = Args.getLastArg(options::OPT_fmodule_header_EQ,
1313  options::OPT_fmodule_header)) {
1314  // These flags force C++20 handling of headers.
1315  ModulesModeCXX20 = true;
1316  if (A->getOption().matches(options::OPT_fmodule_header))
1317  CXX20HeaderType = HeaderMode_Default;
1318  else {
1319  StringRef ArgName = A->getValue();
1320  unsigned Kind = llvm::StringSwitch<unsigned>(ArgName)
1321  .Case("user", HeaderMode_User)
1322  .Case("system", HeaderMode_System)
1323  .Default(~0U);
1324  if (Kind == ~0U) {
1325  Diags.Report(diag::err_drv_invalid_value)
1326  << A->getAsString(Args) << ArgName;
1327  } else
1328  CXX20HeaderType = static_cast<ModuleHeaderMode>(Kind);
1329  }
1330  }
1331 
1332  std::unique_ptr<llvm::opt::InputArgList> UArgs =
1333  std::make_unique<InputArgList>(std::move(Args));
1334 
1335  // Perform the default argument translations.
1336  DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1337 
1338  // Owned by the host.
1339  const ToolChain &TC = getToolChain(
1340  *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1341 
1342  // The compilation takes ownership of Args.
1343  Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1344  ContainsError);
1345 
1346  if (!HandleImmediateArgs(*C))
1347  return C;
1348 
1349  // Construct the list of inputs.
1350  InputList Inputs;
1351  BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1352 
1353  // Populate the tool chains for the offloading devices, if any.
1355 
1356  // Construct the list of abstract actions to perform for this compilation. On
1357  // MachO targets this uses the driver-driver and universal actions.
1358  if (TC.getTriple().isOSBinFormatMachO())
1359  BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1360  else
1361  BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1362 
1363  if (CCCPrintPhases) {
1364  PrintActions(*C);
1365  return C;
1366  }
1367 
1368  BuildJobs(*C);
1369 
1370  return C;
1371 }
1372 
1373 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1374  llvm::opt::ArgStringList ASL;
1375  for (const auto *A : Args) {
1376  // Use user's original spelling of flags. For example, use
1377  // `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user
1378  // wrote the former.
1379  while (A->getAlias())
1380  A = A->getAlias();
1381  A->render(Args, ASL);
1382  }
1383 
1384  for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1385  if (I != ASL.begin())
1386  OS << ' ';
1387  llvm::sys::printArg(OS, *I, true);
1388  }
1389  OS << '\n';
1390 }
1391 
1392 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1393  SmallString<128> &CrashDiagDir) {
1394  using namespace llvm::sys;
1395  assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1396  "Only knows about .crash files on Darwin");
1397 
1398  // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1399  // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1400  // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1401  path::home_directory(CrashDiagDir);
1402  if (CrashDiagDir.startswith("/var/root"))
1403  CrashDiagDir = "/";
1404  path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1405  int PID =
1406 #if LLVM_ON_UNIX
1407  getpid();
1408 #else
1409  0;
1410 #endif
1411  std::error_code EC;
1412  fs::file_status FileStatus;
1413  TimePoint<> LastAccessTime;
1414  SmallString<128> CrashFilePath;
1415  // Lookup the .crash files and get the one generated by a subprocess spawned
1416  // by this driver invocation.
1417  for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1418  File != FileEnd && !EC; File.increment(EC)) {
1419  StringRef FileName = path::filename(File->path());
1420  if (!FileName.startswith(Name))
1421  continue;
1422  if (fs::status(File->path(), FileStatus))
1423  continue;
1424  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1425  llvm::MemoryBuffer::getFile(File->path());
1426  if (!CrashFile)
1427  continue;
1428  // The first line should start with "Process:", otherwise this isn't a real
1429  // .crash file.
1430  StringRef Data = CrashFile.get()->getBuffer();
1431  if (!Data.startswith("Process:"))
1432  continue;
1433  // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1434  size_t ParentProcPos = Data.find("Parent Process:");
1435  if (ParentProcPos == StringRef::npos)
1436  continue;
1437  size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1438  if (LineEnd == StringRef::npos)
1439  continue;
1440  StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1441  int OpenBracket = -1, CloseBracket = -1;
1442  for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1443  if (ParentProcess[i] == '[')
1444  OpenBracket = i;
1445  if (ParentProcess[i] == ']')
1446  CloseBracket = i;
1447  }
1448  // Extract the parent process PID from the .crash file and check whether
1449  // it matches this driver invocation pid.
1450  int CrashPID;
1451  if (OpenBracket < 0 || CloseBracket < 0 ||
1452  ParentProcess.slice(OpenBracket + 1, CloseBracket)
1453  .getAsInteger(10, CrashPID) || CrashPID != PID) {
1454  continue;
1455  }
1456 
1457  // Found a .crash file matching the driver pid. To avoid getting an older
1458  // and misleading crash file, continue looking for the most recent.
1459  // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1460  // multiple crashes poiting to the same parent process. Since the driver
1461  // does not collect pid information for the dispatched invocation there's
1462  // currently no way to distinguish among them.
1463  const auto FileAccessTime = FileStatus.getLastModificationTime();
1464  if (FileAccessTime > LastAccessTime) {
1465  CrashFilePath.assign(File->path());
1466  LastAccessTime = FileAccessTime;
1467  }
1468  }
1469 
1470  // If found, copy it over to the location of other reproducer files.
1471  if (!CrashFilePath.empty()) {
1472  EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1473  if (EC)
1474  return false;
1475  return true;
1476  }
1477 
1478  return false;
1479 }
1480 
1481 // When clang crashes, produce diagnostic information including the fully
1482 // preprocessed source file(s). Request that the developer attach the
1483 // diagnostic information to a bug report.
1485  Compilation &C, const Command &FailingCommand,
1486  StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1487  if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1488  return;
1489 
1490  // Don't try to generate diagnostics for link or dsymutil jobs.
1491  if (FailingCommand.getCreator().isLinkJob() ||
1492  FailingCommand.getCreator().isDsymutilJob())
1493  return;
1494 
1495  // Print the version of the compiler.
1496  PrintVersion(C, llvm::errs());
1497 
1498  // Suppress driver output and emit preprocessor output to temp file.
1499  CCGenDiagnostics = true;
1500 
1501  // Save the original job command(s).
1502  Command Cmd = FailingCommand;
1503 
1504  // Keep track of whether we produce any errors while trying to produce
1505  // preprocessed sources.
1506  DiagnosticErrorTrap Trap(Diags);
1507 
1508  // Suppress tool output.
1509  C.initCompilationForDiagnostics();
1510 
1511  // Construct the list of inputs.
1512  InputList Inputs;
1513  BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1514 
1515  for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1516  bool IgnoreInput = false;
1517 
1518  // Ignore input from stdin or any inputs that cannot be preprocessed.
1519  // Check type first as not all linker inputs have a value.
1520  if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1521  IgnoreInput = true;
1522  } else if (!strcmp(it->second->getValue(), "-")) {
1523  Diag(clang::diag::note_drv_command_failed_diag_msg)
1524  << "Error generating preprocessed source(s) - "
1525  "ignoring input from stdin.";
1526  IgnoreInput = true;
1527  }
1528 
1529  if (IgnoreInput) {
1530  it = Inputs.erase(it);
1531  ie = Inputs.end();
1532  } else {
1533  ++it;
1534  }
1535  }
1536 
1537  if (Inputs.empty()) {
1538  Diag(clang::diag::note_drv_command_failed_diag_msg)
1539  << "Error generating preprocessed source(s) - "
1540  "no preprocessable inputs.";
1541  return;
1542  }
1543 
1544  // Don't attempt to generate preprocessed files if multiple -arch options are
1545  // used, unless they're all duplicates.
1546  llvm::StringSet<> ArchNames;
1547  for (const Arg *A : C.getArgs()) {
1548  if (A->getOption().matches(options::OPT_arch)) {
1549  StringRef ArchName = A->getValue();
1550  ArchNames.insert(ArchName);
1551  }
1552  }
1553  if (ArchNames.size() > 1) {
1554  Diag(clang::diag::note_drv_command_failed_diag_msg)
1555  << "Error generating preprocessed source(s) - cannot generate "
1556  "preprocessed source with multiple -arch options.";
1557  return;
1558  }
1559 
1560  // Construct the list of abstract actions to perform for this compilation. On
1561  // Darwin OSes this uses the driver-driver and builds universal actions.
1562  const ToolChain &TC = C.getDefaultToolChain();
1563  if (TC.getTriple().isOSBinFormatMachO())
1564  BuildUniversalActions(C, TC, Inputs);
1565  else
1566  BuildActions(C, C.getArgs(), Inputs, C.getActions());
1567 
1568  BuildJobs(C);
1569 
1570  // If there were errors building the compilation, quit now.
1571  if (Trap.hasErrorOccurred()) {
1572  Diag(clang::diag::note_drv_command_failed_diag_msg)
1573  << "Error generating preprocessed source(s).";
1574  return;
1575  }
1576 
1577  // Generate preprocessed output.
1578  SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1579  C.ExecuteJobs(C.getJobs(), FailingCommands);
1580 
1581  // If any of the preprocessing commands failed, clean up and exit.
1582  if (!FailingCommands.empty()) {
1583  Diag(clang::diag::note_drv_command_failed_diag_msg)
1584  << "Error generating preprocessed source(s).";
1585  return;
1586  }
1587 
1588  const ArgStringList &TempFiles = C.getTempFiles();
1589  if (TempFiles.empty()) {
1590  Diag(clang::diag::note_drv_command_failed_diag_msg)
1591  << "Error generating preprocessed source(s).";
1592  return;
1593  }
1594 
1595  Diag(clang::diag::note_drv_command_failed_diag_msg)
1596  << "\n********************\n\n"
1597  "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1598  "Preprocessed source(s) and associated run script(s) are located at:";
1599 
1600  SmallString<128> VFS;
1601  SmallString<128> ReproCrashFilename;
1602  for (const char *TempFile : TempFiles) {
1603  Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1604  if (Report)
1605  Report->TemporaryFiles.push_back(TempFile);
1606  if (ReproCrashFilename.empty()) {
1607  ReproCrashFilename = TempFile;
1608  llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1609  }
1610  if (StringRef(TempFile).endswith(".cache")) {
1611  // In some cases (modules) we'll dump extra data to help with reproducing
1612  // the crash into a directory next to the output.
1613  VFS = llvm::sys::path::filename(TempFile);
1614  llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1615  }
1616  }
1617 
1618  // Assume associated files are based off of the first temporary file.
1619  CrashReportInfo CrashInfo(TempFiles[0], VFS);
1620 
1621  llvm::SmallString<128> Script(CrashInfo.Filename);
1622  llvm::sys::path::replace_extension(Script, "sh");
1623  std::error_code EC;
1624  llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
1625  llvm::sys::fs::FA_Write,
1626  llvm::sys::fs::OF_Text);
1627  if (EC) {
1628  Diag(clang::diag::note_drv_command_failed_diag_msg)
1629  << "Error generating run script: " << Script << " " << EC.message();
1630  } else {
1631  ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1632  << "# Driver args: ";
1633  printArgList(ScriptOS, C.getInputArgs());
1634  ScriptOS << "# Original command: ";
1635  Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1636  Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1637  if (!AdditionalInformation.empty())
1638  ScriptOS << "\n# Additional information: " << AdditionalInformation
1639  << "\n";
1640  if (Report)
1641  Report->TemporaryFiles.push_back(std::string(Script.str()));
1642  Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1643  }
1644 
1645  // On darwin, provide information about the .crash diagnostic report.
1646  if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1647  SmallString<128> CrashDiagDir;
1648  if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1649  Diag(clang::diag::note_drv_command_failed_diag_msg)
1650  << ReproCrashFilename.str();
1651  } else { // Suggest a directory for the user to look for .crash files.
1652  llvm::sys::path::append(CrashDiagDir, Name);
1653  CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1654  Diag(clang::diag::note_drv_command_failed_diag_msg)
1655  << "Crash backtrace is located in";
1656  Diag(clang::diag::note_drv_command_failed_diag_msg)
1657  << CrashDiagDir.str();
1658  Diag(clang::diag::note_drv_command_failed_diag_msg)
1659  << "(choose the .crash file that corresponds to your crash)";
1660  }
1661  }
1662 
1663  for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file_EQ))
1664  Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1665 
1666  Diag(clang::diag::note_drv_command_failed_diag_msg)
1667  << "\n\n********************";
1668 }
1669 
1670 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1671  // Since commandLineFitsWithinSystemLimits() may underestimate system's
1672  // capacity if the tool does not support response files, there is a chance/
1673  // that things will just work without a response file, so we silently just
1674  // skip it.
1675  if (Cmd.getResponseFileSupport().ResponseKind ==
1677  llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1678  Cmd.getArguments()))
1679  return;
1680 
1681  std::string TmpName = GetTemporaryPath("response", "txt");
1682  Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1683 }
1684 
1686  Compilation &C,
1687  SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1688  // Just print if -### was present.
1689  if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1690  C.getJobs().Print(llvm::errs(), "\n", true);
1691  return 0;
1692  }
1693 
1694  // If there were errors building the compilation, quit now.
1695  if (Diags.hasErrorOccurred())
1696  return 1;
1697 
1698  // Set up response file names for each command, if necessary.
1699  for (auto &Job : C.getJobs())
1700  setUpResponseFiles(C, Job);
1701 
1702  C.ExecuteJobs(C.getJobs(), FailingCommands);
1703 
1704  // If the command succeeded, we are done.
1705  if (FailingCommands.empty())
1706  return 0;
1707 
1708  // Otherwise, remove result files and print extra information about abnormal
1709  // failures.
1710  int Res = 0;
1711  for (const auto &CmdPair : FailingCommands) {
1712  int CommandRes = CmdPair.first;
1713  const Command *FailingCommand = CmdPair.second;
1714 
1715  // Remove result files if we're not saving temps.
1716  if (!isSaveTempsEnabled()) {
1717  const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1718  C.CleanupFileMap(C.getResultFiles(), JA, true);
1719 
1720  // Failure result files are valid unless we crashed.
1721  if (CommandRes < 0)
1722  C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1723  }
1724 
1725 #if LLVM_ON_UNIX
1726  // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1727  // for SIGPIPE. Do not print diagnostics for this case.
1728  if (CommandRes == EX_IOERR) {
1729  Res = CommandRes;
1730  continue;
1731  }
1732 #endif
1733 
1734  // Print extra information about abnormal failures, if possible.
1735  //
1736  // This is ad-hoc, but we don't want to be excessively noisy. If the result
1737  // status was 1, assume the command failed normally. In particular, if it
1738  // was the compiler then assume it gave a reasonable error code. Failures
1739  // in other tools are less common, and they generally have worse
1740  // diagnostics, so always print the diagnostic there.
1741  const Tool &FailingTool = FailingCommand->getCreator();
1742 
1743  if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1744  // FIXME: See FIXME above regarding result code interpretation.
1745  if (CommandRes < 0)
1746  Diag(clang::diag::err_drv_command_signalled)
1747  << FailingTool.getShortName();
1748  else
1749  Diag(clang::diag::err_drv_command_failed)
1750  << FailingTool.getShortName() << CommandRes;
1751  }
1752  }
1753  return Res;
1754 }
1755 
1756 void Driver::PrintHelp(bool ShowHidden) const {
1757  unsigned IncludedFlagsBitmask;
1758  unsigned ExcludedFlagsBitmask;
1759  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1760  getIncludeExcludeOptionFlagMasks(IsCLMode());
1761 
1762  ExcludedFlagsBitmask |= options::NoDriverOption;
1763  if (!ShowHidden)
1764  ExcludedFlagsBitmask |= HelpHidden;
1765 
1766  if (IsFlangMode())
1767  IncludedFlagsBitmask |= options::FlangOption;
1768  else
1769  ExcludedFlagsBitmask |= options::FlangOnlyOption;
1770 
1771  std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1772  getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1773  IncludedFlagsBitmask, ExcludedFlagsBitmask,
1774  /*ShowAllAliases=*/false);
1775 }
1776 
1777 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1778  if (IsFlangMode()) {
1779  OS << getClangToolFullVersion("flang-new") << '\n';
1780  } else {
1781  // FIXME: The following handlers should use a callback mechanism, we don't
1782  // know what the client would like to do.
1783  OS << getClangFullVersion() << '\n';
1784  }
1785  const ToolChain &TC = C.getDefaultToolChain();
1786  OS << "Target: " << TC.getTripleString() << '\n';
1787 
1788  // Print the threading model.
1789  if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1790  // Don't print if the ToolChain would have barfed on it already
1791  if (TC.isThreadModelSupported(A->getValue()))
1792  OS << "Thread model: " << A->getValue();
1793  } else
1794  OS << "Thread model: " << TC.getThreadModel();
1795  OS << '\n';
1796 
1797  // Print out the install directory.
1798  OS << "InstalledDir: " << InstalledDir << '\n';
1799 
1800  // If configuration file was used, print its path.
1801  if (!ConfigFile.empty())
1802  OS << "Configuration file: " << ConfigFile << '\n';
1803 }
1804 
1805 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1806 /// option.
1807 static void PrintDiagnosticCategories(raw_ostream &OS) {
1808  // Skip the empty category.
1809  for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1810  ++i)
1811  OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1812 }
1813 
1814 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1815  if (PassedFlags == "")
1816  return;
1817  // Print out all options that start with a given argument. This is used for
1818  // shell autocompletion.
1819  std::vector<std::string> SuggestedCompletions;
1820  std::vector<std::string> Flags;
1821 
1822  unsigned int DisableFlags =
1824 
1825  // Make sure that Flang-only options don't pollute the Clang output
1826  // TODO: Make sure that Clang-only options don't pollute Flang output
1827  if (!IsFlangMode())
1828  DisableFlags |= options::FlangOnlyOption;
1829 
1830  // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1831  // because the latter indicates that the user put space before pushing tab
1832  // which should end up in a file completion.
1833  const bool HasSpace = PassedFlags.endswith(",");
1834 
1835  // Parse PassedFlags by "," as all the command-line flags are passed to this
1836  // function separated by ","
1837  StringRef TargetFlags = PassedFlags;
1838  while (TargetFlags != "") {
1839  StringRef CurFlag;
1840  std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1841  Flags.push_back(std::string(CurFlag));
1842  }
1843 
1844  // We want to show cc1-only options only when clang is invoked with -cc1 or
1845  // -Xclang.
1846  if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1847  DisableFlags &= ~options::NoDriverOption;
1848 
1849  const llvm::opt::OptTable &Opts = getOpts();
1850  StringRef Cur;
1851  Cur = Flags.at(Flags.size() - 1);
1852  StringRef Prev;
1853  if (Flags.size() >= 2) {
1854  Prev = Flags.at(Flags.size() - 2);
1855  SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
1856  }
1857 
1858  if (SuggestedCompletions.empty())
1859  SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
1860 
1861  // If Flags were empty, it means the user typed `clang [tab]` where we should
1862  // list all possible flags. If there was no value completion and the user
1863  // pressed tab after a space, we should fall back to a file completion.
1864  // We're printing a newline to be consistent with what we print at the end of
1865  // this function.
1866  if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1867  llvm::outs() << '\n';
1868  return;
1869  }
1870 
1871  // When flag ends with '=' and there was no value completion, return empty
1872  // string and fall back to the file autocompletion.
1873  if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1874  // If the flag is in the form of "--autocomplete=-foo",
1875  // we were requested to print out all option names that start with "-foo".
1876  // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1877  SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
1878 
1879  // We have to query the -W flags manually as they're not in the OptTable.
1880  // TODO: Find a good way to add them to OptTable instead and them remove
1881  // this code.
1882  for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1883  if (S.startswith(Cur))
1884  SuggestedCompletions.push_back(std::string(S));
1885  }
1886 
1887  // Sort the autocomplete candidates so that shells print them out in a
1888  // deterministic order. We could sort in any way, but we chose
1889  // case-insensitive sorting for consistency with the -help option
1890  // which prints out options in the case-insensitive alphabetical order.
1891  llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1892  if (int X = A.compare_insensitive(B))
1893  return X < 0;
1894  return A.compare(B) > 0;
1895  });
1896 
1897  llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1898 }
1899 
1901  // The order these options are handled in gcc is all over the place, but we
1902  // don't expect inconsistencies w.r.t. that to matter in practice.
1903 
1904  if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1905  llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1906  return false;
1907  }
1908 
1909  if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1910  // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1911  // return an answer which matches our definition of __VERSION__.
1912  llvm::outs() << CLANG_VERSION_STRING << "\n";
1913  return false;
1914  }
1915 
1916  if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1917  PrintDiagnosticCategories(llvm::outs());
1918  return false;
1919  }
1920 
1921  if (C.getArgs().hasArg(options::OPT_help) ||
1922  C.getArgs().hasArg(options::OPT__help_hidden)) {
1923  PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1924  return false;
1925  }
1926 
1927  if (C.getArgs().hasArg(options::OPT__version)) {
1928  // Follow gcc behavior and use stdout for --version and stderr for -v.
1929  PrintVersion(C, llvm::outs());
1930  return false;
1931  }
1932 
1933  if (C.getArgs().hasArg(options::OPT_v) ||
1934  C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1935  C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1936  PrintVersion(C, llvm::errs());
1937  SuppressMissingInputWarning = true;
1938  }
1939 
1940  if (C.getArgs().hasArg(options::OPT_v)) {
1941  if (!SystemConfigDir.empty())
1942  llvm::errs() << "System configuration file directory: "
1943  << SystemConfigDir << "\n";
1944  if (!UserConfigDir.empty())
1945  llvm::errs() << "User configuration file directory: "
1946  << UserConfigDir << "\n";
1947  }
1948 
1949  const ToolChain &TC = C.getDefaultToolChain();
1950 
1951  if (C.getArgs().hasArg(options::OPT_v))
1952  TC.printVerboseInfo(llvm::errs());
1953 
1954  if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1955  llvm::outs() << ResourceDir << '\n';
1956  return false;
1957  }
1958 
1959  if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1960  llvm::outs() << "programs: =";
1961  bool separator = false;
1962  // Print -B and COMPILER_PATH.
1963  for (const std::string &Path : PrefixDirs) {
1964  if (separator)
1965  llvm::outs() << llvm::sys::EnvPathSeparator;
1966  llvm::outs() << Path;
1967  separator = true;
1968  }
1969  for (const std::string &Path : TC.getProgramPaths()) {
1970  if (separator)
1971  llvm::outs() << llvm::sys::EnvPathSeparator;
1972  llvm::outs() << Path;
1973  separator = true;
1974  }
1975  llvm::outs() << "\n";
1976  llvm::outs() << "libraries: =" << ResourceDir;
1977 
1978  StringRef sysroot = C.getSysRoot();
1979 
1980  for (const std::string &Path : TC.getFilePaths()) {
1981  // Always print a separator. ResourceDir was the first item shown.
1982  llvm::outs() << llvm::sys::EnvPathSeparator;
1983  // Interpretation of leading '=' is needed only for NetBSD.
1984  if (Path[0] == '=')
1985  llvm::outs() << sysroot << Path.substr(1);
1986  else
1987  llvm::outs() << Path;
1988  }
1989  llvm::outs() << "\n";
1990  return false;
1991  }
1992 
1993  if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
1994  std::string RuntimePath;
1995  // Get the first existing path, if any.
1996  for (auto Path : TC.getRuntimePaths()) {
1997  if (getVFS().exists(Path)) {
1998  RuntimePath = Path;
1999  break;
2000  }
2001  }
2002  if (!RuntimePath.empty())
2003  llvm::outs() << RuntimePath << '\n';
2004  else
2005  llvm::outs() << TC.getCompilerRTPath() << '\n';
2006  return false;
2007  }
2008 
2009  // FIXME: The following handlers should use a callback mechanism, we don't
2010  // know what the client would like to do.
2011  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
2012  llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
2013  return false;
2014  }
2015 
2016  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
2017  StringRef ProgName = A->getValue();
2018 
2019  // Null program name cannot have a path.
2020  if (! ProgName.empty())
2021  llvm::outs() << GetProgramPath(ProgName, TC);
2022 
2023  llvm::outs() << "\n";
2024  return false;
2025  }
2026 
2027  if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
2028  StringRef PassedFlags = A->getValue();
2029  HandleAutocompletions(PassedFlags);
2030  return false;
2031  }
2032 
2033  if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
2034  ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
2035  const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2036  RegisterEffectiveTriple TripleRAII(TC, Triple);
2037  switch (RLT) {
2039  llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
2040  break;
2041  case ToolChain::RLT_Libgcc:
2042  llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
2043  break;
2044  }
2045  return false;
2046  }
2047 
2048  if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
2049  for (const Multilib &Multilib : TC.getMultilibs())
2050  llvm::outs() << Multilib << "\n";
2051  return false;
2052  }
2053 
2054  if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
2055  const Multilib &Multilib = TC.getMultilib();
2056  if (Multilib.gccSuffix().empty())
2057  llvm::outs() << ".\n";
2058  else {
2059  StringRef Suffix(Multilib.gccSuffix());
2060  assert(Suffix.front() == '/');
2061  llvm::outs() << Suffix.substr(1) << "\n";
2062  }
2063  return false;
2064  }
2065 
2066  if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
2067  llvm::outs() << TC.getTripleString() << "\n";
2068  return false;
2069  }
2070 
2071  if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
2072  const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2073  llvm::outs() << Triple.getTriple() << "\n";
2074  return false;
2075  }
2076 
2077  if (C.getArgs().hasArg(options::OPT_print_multiarch)) {
2078  llvm::outs() << TC.getMultiarchTriple(*this, TC.getTriple(), SysRoot)
2079  << "\n";
2080  return false;
2081  }
2082 
2083  if (C.getArgs().hasArg(options::OPT_print_targets)) {
2084  llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
2085  return false;
2086  }
2087 
2088  return true;
2089 }
2090 
2091 enum {
2095 };
2096 
2097 // Display an action graph human-readably. Action A is the "sink" node
2098 // and latest-occuring action. Traversal is in pre-order, visiting the
2099 // inputs to each action before printing the action itself.
2100 static unsigned PrintActions1(const Compilation &C, Action *A,
2101  std::map<Action *, unsigned> &Ids,
2102  Twine Indent = {}, int Kind = TopLevelAction) {
2103  if (Ids.count(A)) // A was already visited.
2104  return Ids[A];
2105 
2106  std::string str;
2107  llvm::raw_string_ostream os(str);
2108 
2109  auto getSibIndent = [](int K) -> Twine {
2110  return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : "";
2111  };
2112 
2113  Twine SibIndent = Indent + getSibIndent(Kind);
2114  int SibKind = HeadSibAction;
2115  os << Action::getClassName(A->getKind()) << ", ";
2116  if (InputAction *IA = dyn_cast<InputAction>(A)) {
2117  os << "\"" << IA->getInputArg().getValue() << "\"";
2118  } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
2119  os << '"' << BIA->getArchName() << '"' << ", {"
2120  << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
2121  } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
2122  bool IsFirst = true;
2123  OA->doOnEachDependence(
2124  [&](Action *A, const ToolChain *TC, const char *BoundArch) {
2125  assert(TC && "Unknown host toolchain");
2126  // E.g. for two CUDA device dependences whose bound arch is sm_20 and
2127  // sm_35 this will generate:
2128  // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
2129  // (nvptx64-nvidia-cuda:sm_35) {#ID}
2130  if (!IsFirst)
2131  os << ", ";
2132  os << '"';
2133  os << A->getOffloadingKindPrefix();
2134  os << " (";
2135  os << TC->getTriple().normalize();
2136  if (BoundArch)
2137  os << ":" << BoundArch;
2138  os << ")";
2139  os << '"';
2140  os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
2141  IsFirst = false;
2142  SibKind = OtherSibAction;
2143  });
2144  } else {
2145  const ActionList *AL = &A->getInputs();
2146 
2147  if (AL->size()) {
2148  const char *Prefix = "{";
2149  for (Action *PreRequisite : *AL) {
2150  os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
2151  Prefix = ", ";
2152  SibKind = OtherSibAction;
2153  }
2154  os << "}";
2155  } else
2156  os << "{}";
2157  }
2158 
2159  // Append offload info for all options other than the offloading action
2160  // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2161  std::string offload_str;
2162  llvm::raw_string_ostream offload_os(offload_str);
2163  if (!isa<OffloadAction>(A)) {
2164  auto S = A->getOffloadingKindPrefix();
2165  if (!S.empty()) {
2166  offload_os << ", (" << S;
2167  if (A->getOffloadingArch())
2168  offload_os << ", " << A->getOffloadingArch();
2169  offload_os << ")";
2170  }
2171  }
2172 
2173  auto getSelfIndent = [](int K) -> Twine {
2174  return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2175  };
2176 
2177  unsigned Id = Ids.size();
2178  Ids[A] = Id;
2179  llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2180  << types::getTypeName(A->getType()) << offload_os.str() << "\n";
2181 
2182  return Id;
2183 }
2184 
2185 // Print the action graphs in a compilation C.
2186 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
2187 void Driver::PrintActions(const Compilation &C) const {
2188  std::map<Action *, unsigned> Ids;
2189  for (Action *A : C.getActions())
2190  PrintActions1(C, A, Ids);
2191 }
2192 
2193 /// Check whether the given input tree contains any compilation or
2194 /// assembly actions.
2196  if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
2197  isa<AssembleJobAction>(A))
2198  return true;
2199 
2200  return llvm::any_of(A->inputs(), ContainsCompileOrAssembleAction);
2201 }
2202 
2204  const InputList &BAInputs) const {
2205  DerivedArgList &Args = C.getArgs();
2206  ActionList &Actions = C.getActions();
2207  llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2208  // Collect the list of architectures. Duplicates are allowed, but should only
2209  // be handled once (in the order seen).
2210  llvm::StringSet<> ArchNames;
2212  for (Arg *A : Args) {
2213  if (A->getOption().matches(options::OPT_arch)) {
2214  // Validate the option here; we don't save the type here because its
2215  // particular spelling may participate in other driver choices.
2216  llvm::Triple::ArchType Arch =
2218  if (Arch == llvm::Triple::UnknownArch) {
2219  Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2220  continue;
2221  }
2222 
2223  A->claim();
2224  if (ArchNames.insert(A->getValue()).second)
2225  Archs.push_back(A->getValue());
2226  }
2227  }
2228 
2229  // When there is no explicit arch for this platform, make sure we still bind
2230  // the architecture (to the default) so that -Xarch_ is handled correctly.
2231  if (!Archs.size())
2232  Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2233 
2234  ActionList SingleActions;
2235  BuildActions(C, Args, BAInputs, SingleActions);
2236 
2237  // Add in arch bindings for every top level action, as well as lipo and
2238  // dsymutil steps if needed.
2239  for (Action* Act : SingleActions) {
2240  // Make sure we can lipo this kind of output. If not (and it is an actual
2241  // output) then we disallow, since we can't create an output file with the
2242  // right name without overwriting it. We could remove this oddity by just
2243  // changing the output names to include the arch, which would also fix
2244  // -save-temps. Compatibility wins for now.
2245 
2246  if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2247  Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2248  << types::getTypeName(Act->getType());
2249 
2250  ActionList Inputs;
2251  for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2252  Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2253 
2254  // Lipo if necessary, we do it this way because we need to set the arch flag
2255  // so that -Xarch_ gets overwritten.
2256  if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2257  Actions.append(Inputs.begin(), Inputs.end());
2258  else
2259  Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2260 
2261  // Handle debug info queries.
2262  Arg *A = Args.getLastArg(options::OPT_g_Group);
2263  bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2264  !A->getOption().matches(options::OPT_gstabs);
2265  if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2266  ContainsCompileOrAssembleAction(Actions.back())) {
2267 
2268  // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2269  // have a compile input. We need to run 'dsymutil' ourselves in such cases
2270  // because the debug info will refer to a temporary object file which
2271  // will be removed at the end of the compilation process.
2272  if (Act->getType() == types::TY_Image) {
2273  ActionList Inputs;
2274  Inputs.push_back(Actions.back());
2275  Actions.pop_back();
2276  Actions.push_back(
2277  C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2278  }
2279 
2280  // Verify the debug info output.
2281  if (Args.hasArg(options::OPT_verify_debug_info)) {
2282  Action* LastAction = Actions.back();
2283  Actions.pop_back();
2284  Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2285  LastAction, types::TY_Nothing));
2286  }
2287  }
2288  }
2289 }
2290 
2291 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2292  types::ID Ty, bool TypoCorrect) const {
2293  if (!getCheckInputsExist())
2294  return true;
2295 
2296  // stdin always exists.
2297  if (Value == "-")
2298  return true;
2299 
2300  // If it's a header to be found in the system or user search path, then defer
2301  // complaints about its absence until those searches can be done. When we
2302  // are definitely processing headers for C++20 header units, extend this to
2303  // allow the user to put "-fmodule-header -xc++-header vector" for example.
2304  if (Ty == types::TY_CXXSHeader || Ty == types::TY_CXXUHeader ||
2305  (ModulesModeCXX20 && Ty == types::TY_CXXHeader))
2306  return true;
2307 
2308  if (getVFS().exists(Value))
2309  return true;
2310 
2311  if (TypoCorrect) {
2312  // Check if the filename is a typo for an option flag. OptTable thinks
2313  // that all args that are not known options and that start with / are
2314  // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2315  // the option `/diagnostics:caret` than a reference to a file in the root
2316  // directory.
2317  unsigned IncludedFlagsBitmask;
2318  unsigned ExcludedFlagsBitmask;
2319  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2320  getIncludeExcludeOptionFlagMasks(IsCLMode());
2321  std::string Nearest;
2322  if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2323  ExcludedFlagsBitmask) <= 1) {
2324  Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2325  << Value << Nearest;
2326  return false;
2327  }
2328  }
2329 
2330  // In CL mode, don't error on apparently non-existent linker inputs, because
2331  // they can be influenced by linker flags the clang driver might not
2332  // understand.
2333  // Examples:
2334  // - `clang-cl main.cc ole32.lib` in a a non-MSVC shell will make the driver
2335  // module look for an MSVC installation in the registry. (We could ask
2336  // the MSVCToolChain object if it can find `ole32.lib`, but the logic to
2337  // look in the registry might move into lld-link in the future so that
2338  // lld-link invocations in non-MSVC shells just work too.)
2339  // - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
2340  // including /libpath:, which is used to find .lib and .obj files.
2341  // So do not diagnose this on the driver level. Rely on the linker diagnosing
2342  // it. (If we don't end up invoking the linker, this means we'll emit a
2343  // "'linker' input unused [-Wunused-command-line-argument]" warning instead
2344  // of an error.)
2345  //
2346  // Only do this skip after the typo correction step above. `/Brepo` is treated
2347  // as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
2348  // an error if we have a flag that's within an edit distance of 1 from a
2349  // flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
2350  // driver in the unlikely case they run into this.)
2351  //
2352  // Don't do this for inputs that start with a '/', else we'd pass options
2353  // like /libpath: through to the linker silently.
2354  //
2355  // Emitting an error for linker inputs can also cause incorrect diagnostics
2356  // with the gcc driver. The command
2357  // clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o
2358  // will make lld look for some/dir/file.o, while we will diagnose here that
2359  // `/file.o` does not exist. However, configure scripts check if
2360  // `clang /GR-` compiles without error to see if the compiler is cl.exe,
2361  // so we can't downgrade diagnostics for `/GR-` from an error to a warning
2362  // in cc mode. (We can in cl mode because cl.exe itself only warns on
2363  // unknown flags.)
2364  if (IsCLMode() && Ty == types::TY_Object && !Value.startswith("/"))
2365  return true;
2366 
2367  Diag(clang::diag::err_drv_no_such_file) << Value;
2368  return false;
2369 }
2370 
2371 // Get the C++20 Header Unit type corresponding to the input type.
2373  switch (HM) {
2374  case HeaderMode_User:
2375  return types::TY_CXXUHeader;
2376  case HeaderMode_System:
2377  return types::TY_CXXSHeader;
2378  case HeaderMode_Default:
2379  break;
2380  case HeaderMode_None:
2381  llvm_unreachable("should not be called in this case");
2382  }
2383  return types::TY_CXXHUHeader;
2384 }
2385 
2386 // Construct a the list of inputs and their types.
2387 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2388  InputList &Inputs) const {
2389  const llvm::opt::OptTable &Opts = getOpts();
2390  // Track the current user specified (-x) input. We also explicitly track the
2391  // argument used to set the type; we only want to claim the type when we
2392  // actually use it, so we warn about unused -x arguments.
2393  types::ID InputType = types::TY_Nothing;
2394  Arg *InputTypeArg = nullptr;
2395 
2396  // The last /TC or /TP option sets the input type to C or C++ globally.
2397  if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2398  options::OPT__SLASH_TP)) {
2399  InputTypeArg = TCTP;
2400  InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2401  ? types::TY_C
2402  : types::TY_CXX;
2403 
2404  Arg *Previous = nullptr;
2405  bool ShowNote = false;
2406  for (Arg *A :
2407  Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2408  if (Previous) {
2409  Diag(clang::diag::warn_drv_overriding_flag_option)
2410  << Previous->getSpelling() << A->getSpelling();
2411  ShowNote = true;
2412  }
2413  Previous = A;
2414  }
2415  if (ShowNote)
2416  Diag(clang::diag::note_drv_t_option_is_global);
2417 
2418  // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2419  assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2420  }
2421 
2422  // Warn -x after last input file has no effect
2423  {
2424  Arg *LastXArg = Args.getLastArgNoClaim(options::OPT_x);
2425  Arg *LastInputArg = Args.getLastArgNoClaim(options::OPT_INPUT);
2426  if (LastXArg && LastInputArg && LastInputArg->getIndex() < LastXArg->getIndex())
2427  Diag(clang::diag::warn_drv_unused_x) << LastXArg->getValue();
2428  }
2429 
2430  for (Arg *A : Args) {
2431  if (A->getOption().getKind() == Option::InputClass) {
2432  const char *Value = A->getValue();
2434 
2435  // Infer the input type if necessary.
2436  if (InputType == types::TY_Nothing) {
2437  // If there was an explicit arg for this, claim it.
2438  if (InputTypeArg)
2439  InputTypeArg->claim();
2440 
2441  // stdin must be handled specially.
2442  if (memcmp(Value, "-", 2) == 0) {
2443  if (IsFlangMode()) {
2444  Ty = types::TY_Fortran;
2445  } else {
2446  // If running with -E, treat as a C input (this changes the
2447  // builtin macros, for example). This may be overridden by -ObjC
2448  // below.
2449  //
2450  // Otherwise emit an error but still use a valid type to avoid
2451  // spurious errors (e.g., no inputs).
2452  assert(!CCGenDiagnostics && "stdin produces no crash reproducer");
2453  if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2454  Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2455  : clang::diag::err_drv_unknown_stdin_type);
2456  Ty = types::TY_C;
2457  }
2458  } else {
2459  // Otherwise lookup by extension.
2460  // Fallback is C if invoked as C preprocessor, C++ if invoked with
2461  // clang-cl /E, or Object otherwise.
2462  // We use a host hook here because Darwin at least has its own
2463  // idea of what .s is.
2464  if (const char *Ext = strrchr(Value, '.'))
2465  Ty = TC.LookupTypeForExtension(Ext + 1);
2466 
2467  if (Ty == types::TY_INVALID) {
2468  if (IsCLMode() && (Args.hasArgNoClaim(options::OPT_E) || CCGenDiagnostics))
2469  Ty = types::TY_CXX;
2470  else if (CCCIsCPP() || CCGenDiagnostics)
2471  Ty = types::TY_C;
2472  else
2473  Ty = types::TY_Object;
2474  }
2475 
2476  // If the driver is invoked as C++ compiler (like clang++ or c++) it
2477  // should autodetect some input files as C++ for g++ compatibility.
2478  if (CCCIsCXX()) {
2479  types::ID OldTy = Ty;
2481 
2482  // Do not complain about foo.h, when we are known to be processing
2483  // it as a C++20 header unit.
2484  if (Ty != OldTy && !(OldTy == types::TY_CHeader && hasHeaderMode()))
2485  Diag(clang::diag::warn_drv_treating_input_as_cxx)
2486  << getTypeName(OldTy) << getTypeName(Ty);
2487  }
2488 
2489  // If running with -fthinlto-index=, extensions that normally identify
2490  // native object files actually identify LLVM bitcode files.
2491  if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2492  Ty == types::TY_Object)
2493  Ty = types::TY_LLVM_BC;
2494  }
2495 
2496  // -ObjC and -ObjC++ override the default language, but only for "source
2497  // files". We just treat everything that isn't a linker input as a
2498  // source file.
2499  //
2500  // FIXME: Clean this up if we move the phase sequence into the type.
2501  if (Ty != types::TY_Object) {
2502  if (Args.hasArg(options::OPT_ObjC))
2503  Ty = types::TY_ObjC;
2504  else if (Args.hasArg(options::OPT_ObjCXX))
2505  Ty = types::TY_ObjCXX;
2506  }
2507 
2508  // Disambiguate headers that are meant to be header units from those
2509  // intended to be PCH. Avoid missing '.h' cases that are counted as
2510  // C headers by default - we know we are in C++ mode and we do not
2511  // want to issue a complaint about compiling things in the wrong mode.
2512  if ((Ty == types::TY_CXXHeader || Ty == types::TY_CHeader) &&
2513  hasHeaderMode())
2514  Ty = CXXHeaderUnitType(CXX20HeaderType);
2515  } else {
2516  assert(InputTypeArg && "InputType set w/o InputTypeArg");
2517  if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2518  // If emulating cl.exe, make sure that /TC and /TP don't affect input
2519  // object files.
2520  const char *Ext = strrchr(Value, '.');
2521  if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2522  Ty = types::TY_Object;
2523  }
2524  if (Ty == types::TY_INVALID) {
2525  Ty = InputType;
2526  InputTypeArg->claim();
2527  }
2528  }
2529 
2530  if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2531  Inputs.push_back(std::make_pair(Ty, A));
2532 
2533  } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2534  StringRef Value = A->getValue();
2535  if (DiagnoseInputExistence(Args, Value, types::TY_C,
2536  /*TypoCorrect=*/false)) {
2537  Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2538  Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2539  }
2540  A->claim();
2541  } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2542  StringRef Value = A->getValue();
2543  if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2544  /*TypoCorrect=*/false)) {
2545  Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2546  Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2547  }
2548  A->claim();
2549  } else if (A->getOption().hasFlag(options::LinkerInput)) {
2550  // Just treat as object type, we could make a special type for this if
2551  // necessary.
2552  Inputs.push_back(std::make_pair(types::TY_Object, A));
2553 
2554  } else if (A->getOption().matches(options::OPT_x)) {
2555  InputTypeArg = A;
2556  InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2557  A->claim();
2558 
2559  // Follow gcc behavior and treat as linker input for invalid -x
2560  // options. Its not clear why we shouldn't just revert to unknown; but
2561  // this isn't very important, we might as well be bug compatible.
2562  if (!InputType) {
2563  Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2564  InputType = types::TY_Object;
2565  }
2566 
2567  // If the user has put -fmodule-header{,=} then we treat C++ headers as
2568  // header unit inputs. So we 'promote' -xc++-header appropriately.
2569  if (InputType == types::TY_CXXHeader && hasHeaderMode())
2570  InputType = CXXHeaderUnitType(CXX20HeaderType);
2571  } else if (A->getOption().getID() == options::OPT_U) {
2572  assert(A->getNumValues() == 1 && "The /U option has one value.");
2573  StringRef Val = A->getValue(0);
2574  if (Val.find_first_of("/\\") != StringRef::npos) {
2575  // Warn about e.g. "/Users/me/myfile.c".
2576  Diag(diag::warn_slash_u_filename) << Val;
2577  Diag(diag::note_use_dashdash);
2578  }
2579  }
2580  }
2581  if (CCCIsCPP() && Inputs.empty()) {
2582  // If called as standalone preprocessor, stdin is processed
2583  // if no other input is present.
2584  Arg *A = MakeInputArg(Args, Opts, "-");
2585  Inputs.push_back(std::make_pair(types::TY_C, A));
2586  }
2587 }
2588 
2589 namespace {
2590 /// Provides a convenient interface for different programming models to generate
2591 /// the required device actions.
2592 class OffloadingActionBuilder final {
2593  /// Flag used to trace errors in the builder.
2594  bool IsValid = false;
2595 
2596  /// The compilation that is using this builder.
2597  Compilation &C;
2598 
2599  /// Map between an input argument and the offload kinds used to process it.
2600  std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2601 
2602  /// Map between a host action and its originating input argument.
2603  std::map<Action *, const Arg *> HostActionToInputArgMap;
2604 
2605  /// Builder interface. It doesn't build anything or keep any state.
2606  class DeviceActionBuilder {
2607  public:
2608  typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2609 
2610  enum ActionBuilderReturnCode {
2611  // The builder acted successfully on the current action.
2612  ABRT_Success,
2613  // The builder didn't have to act on the current action.
2614  ABRT_Inactive,
2615  // The builder was successful and requested the host action to not be
2616  // generated.
2617  ABRT_Ignore_Host,
2618  };
2619 
2620  protected:
2621  /// Compilation associated with this builder.
2622  Compilation &C;
2623 
2624  /// Tool chains associated with this builder. The same programming
2625  /// model may have associated one or more tool chains.
2627 
2628  /// The derived arguments associated with this builder.
2629  DerivedArgList &Args;
2630 
2631  /// The inputs associated with this builder.
2632  const Driver::InputList &Inputs;
2633 
2634  /// The associated offload kind.
2635  Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2636 
2637  public:
2638  DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2639  const Driver::InputList &Inputs,
2640  Action::OffloadKind AssociatedOffloadKind)
2641  : C(C), Args(Args), Inputs(Inputs),
2642  AssociatedOffloadKind(AssociatedOffloadKind) {}
2643  virtual ~DeviceActionBuilder() {}
2644 
2645  /// Fill up the array \a DA with all the device dependences that should be
2646  /// added to the provided host action \a HostAction. By default it is
2647  /// inactive.
2648  virtual ActionBuilderReturnCode
2649  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2650  phases::ID CurPhase, phases::ID FinalPhase,
2651  PhasesTy &Phases) {
2652  return ABRT_Inactive;
2653  }
2654 
2655  /// Update the state to include the provided host action \a HostAction as a
2656  /// dependency of the current device action. By default it is inactive.
2657  virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2658  return ABRT_Inactive;
2659  }
2660 
2661  /// Append top level actions generated by the builder.
2662  virtual void appendTopLevelActions(ActionList &AL) {}
2663 
2664  /// Append linker device actions generated by the builder.
2665  virtual void appendLinkDeviceActions(ActionList &AL) {}
2666 
2667  /// Append linker host action generated by the builder.
2668  virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2669 
2670  /// Append linker actions generated by the builder.
2671  virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2672 
2673  /// Initialize the builder. Return true if any initialization errors are
2674  /// found.
2675  virtual bool initialize() { return false; }
2676 
2677  /// Return true if the builder can use bundling/unbundling.
2678  virtual bool canUseBundlerUnbundler() const { return false; }
2679 
2680  /// Return true if this builder is valid. We have a valid builder if we have
2681  /// associated device tool chains.
2682  bool isValid() { return !ToolChains.empty(); }
2683 
2684  /// Return the associated offload kind.
2685  Action::OffloadKind getAssociatedOffloadKind() {
2686  return AssociatedOffloadKind;
2687  }
2688  };
2689 
2690  /// Base class for CUDA/HIP action builder. It injects device code in
2691  /// the host backend action.
2692  class CudaActionBuilderBase : public DeviceActionBuilder {
2693  protected:
2694  /// Flags to signal if the user requested host-only or device-only
2695  /// compilation.
2696  bool CompileHostOnly = false;
2697  bool CompileDeviceOnly = false;
2698  bool EmitLLVM = false;
2699  bool EmitAsm = false;
2700 
2701  /// ID to identify each device compilation. For CUDA it is simply the
2702  /// GPU arch string. For HIP it is either the GPU arch string or GPU
2703  /// arch string plus feature strings delimited by a plus sign, e.g.
2704  /// gfx906+xnack.
2705  struct TargetID {
2706  /// Target ID string which is persistent throughout the compilation.
2707  const char *ID;
2708  TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); }
2709  TargetID(const char *ID) : ID(ID) {}
2710  operator const char *() { return ID; }
2711  operator StringRef() { return StringRef(ID); }
2712  };
2713  /// List of GPU architectures to use in this compilation.
2714  SmallVector<TargetID, 4> GpuArchList;
2715 
2716  /// The CUDA actions for the current input.
2717  ActionList CudaDeviceActions;
2718 
2719  /// The CUDA fat binary if it was generated for the current input.
2720  Action *CudaFatBinary = nullptr;
2721 
2722  /// Flag that is set to true if this builder acted on the current input.
2723  bool IsActive = false;
2724 
2725  /// Flag for -fgpu-rdc.
2726  bool Relocatable = false;
2727 
2728  /// Default GPU architecture if there's no one specified.
2729  CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2730 
2731  /// Method to generate compilation unit ID specified by option
2732  /// '-fuse-cuid='.
2733  enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
2734  UseCUIDKind UseCUID = CUID_Hash;
2735 
2736  /// Compilation unit ID specified by option '-cuid='.
2737  StringRef FixedCUID;
2738 
2739  public:
2740  CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2741  const Driver::InputList &Inputs,
2742  Action::OffloadKind OFKind)
2743  : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2744 
2745  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2746  // While generating code for CUDA, we only depend on the host input action
2747  // to trigger the creation of all the CUDA device actions.
2748 
2749  // If we are dealing with an input action, replicate it for each GPU
2750  // architecture. If we are in host-only mode we return 'success' so that
2751  // the host uses the CUDA offload kind.
2752  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2753  assert(!GpuArchList.empty() &&
2754  "We should have at least one GPU architecture.");
2755 
2756  // If the host input is not CUDA or HIP, we don't need to bother about
2757  // this input.
2758  if (!(IA->getType() == types::TY_CUDA ||
2759  IA->getType() == types::TY_HIP ||
2760  IA->getType() == types::TY_PP_HIP)) {
2761  // The builder will ignore this input.
2762  IsActive = false;
2763  return ABRT_Inactive;
2764  }
2765 
2766  // Set the flag to true, so that the builder acts on the current input.
2767  IsActive = true;
2768 
2769  if (CompileHostOnly)
2770  return ABRT_Success;
2771 
2772  // Replicate inputs for each GPU architecture.
2773  auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2774  : types::TY_CUDA_DEVICE;
2775  std::string CUID = FixedCUID.str();
2776  if (CUID.empty()) {
2777  if (UseCUID == CUID_Random)
2778  CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
2779  /*LowerCase=*/true);
2780  else if (UseCUID == CUID_Hash) {
2781  llvm::MD5 Hasher;
2782  llvm::MD5::MD5Result Hash;
2783  SmallString<256> RealPath;
2784  llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
2785  /*expand_tilde=*/true);
2786  Hasher.update(RealPath);
2787  for (auto *A : Args) {
2788  if (A->getOption().matches(options::OPT_INPUT))
2789  continue;
2790  Hasher.update(A->getAsString(Args));
2791  }
2792  Hasher.final(Hash);
2793  CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
2794  }
2795  }
2796  IA->setId(CUID);
2797 
2798  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2799  CudaDeviceActions.push_back(
2800  C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
2801  }
2802 
2803  return ABRT_Success;
2804  }
2805 
2806  // If this is an unbundling action use it as is for each CUDA toolchain.
2807  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2808 
2809  // If -fgpu-rdc is disabled, should not unbundle since there is no
2810  // device code to link.
2811  if (UA->getType() == types::TY_Object && !Relocatable)
2812  return ABRT_Inactive;
2813 
2814  CudaDeviceActions.clear();
2815  auto *IA = cast<InputAction>(UA->getInputs().back());
2816  std::string FileName = IA->getInputArg().getAsString(Args);
2817  // Check if the type of the file is the same as the action. Do not
2818  // unbundle it if it is not. Do not unbundle .so files, for example,
2819  // which are not object files.
2820  if (IA->getType() == types::TY_Object &&
2821  (!llvm::sys::path::has_extension(FileName) ||
2823  llvm::sys::path::extension(FileName).drop_front()) !=
2824  types::TY_Object))
2825  return ABRT_Inactive;
2826 
2827  for (auto Arch : GpuArchList) {
2828  CudaDeviceActions.push_back(UA);
2829  UA->registerDependentActionInfo(ToolChains[0], Arch,
2830  AssociatedOffloadKind);
2831  }
2832  IsActive = true;
2833  return ABRT_Success;
2834  }
2835 
2836  return IsActive ? ABRT_Success : ABRT_Inactive;
2837  }
2838 
2839  void appendTopLevelActions(ActionList &AL) override {
2840  // Utility to append actions to the top level list.
2841  auto AddTopLevel = [&](Action *A, TargetID TargetID) {
2843  Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
2844  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2845  };
2846 
2847  // If we have a fat binary, add it to the list.
2848  if (CudaFatBinary) {
2849  AddTopLevel(CudaFatBinary, CudaArch::UNUSED);
2850  CudaDeviceActions.clear();
2851  CudaFatBinary = nullptr;
2852  return;
2853  }
2854 
2855  if (CudaDeviceActions.empty())
2856  return;
2857 
2858  // If we have CUDA actions at this point, that's because we have a have
2859  // partial compilation, so we should have an action for each GPU
2860  // architecture.
2861  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2862  "Expecting one action per GPU architecture.");
2863  assert(ToolChains.size() == 1 &&
2864  "Expecting to have a single CUDA toolchain.");
2865  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2866  AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2867 
2868  CudaDeviceActions.clear();
2869  }
2870 
2871  /// Get canonicalized offload arch option. \returns empty StringRef if the
2872  /// option is invalid.
2873  virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
2874 
2876  getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
2877 
2878  bool initialize() override {
2879  assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2880  AssociatedOffloadKind == Action::OFK_HIP);
2881 
2882  // We don't need to support CUDA.
2883  if (AssociatedOffloadKind == Action::OFK_Cuda &&
2884  !C.hasOffloadToolChain<Action::OFK_Cuda>())
2885  return false;
2886 
2887  // We don't need to support HIP.
2888  if (AssociatedOffloadKind == Action::OFK_HIP &&
2889  !C.hasOffloadToolChain<Action::OFK_HIP>())
2890  return false;
2891 
2892  Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2893  options::OPT_fno_gpu_rdc, /*Default=*/false);
2894 
2895  const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
2896  assert(HostTC && "No toolchain for host compilation.");
2897  if (HostTC->getTriple().isNVPTX() ||
2898  HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2899  // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2900  // an error and abort pipeline construction early so we don't trip
2901  // asserts that assume device-side compilation.
2902  C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2903  << HostTC->getTriple().getArchName();
2904  return true;
2905  }
2906 
2907  ToolChains.push_back(
2908  AssociatedOffloadKind == Action::OFK_Cuda
2909  ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
2910  : C.getSingleOffloadToolChain<Action::OFK_HIP>());
2911 
2912  Arg *PartialCompilationArg = Args.getLastArg(
2913  options::OPT_offload_host_only, options::OPT_offload_device_only,
2914  options::OPT_offload_host_device);
2915  CompileHostOnly =
2916  PartialCompilationArg && PartialCompilationArg->getOption().matches(
2917  options::OPT_offload_host_only);
2918  CompileDeviceOnly =
2919  PartialCompilationArg && PartialCompilationArg->getOption().matches(
2920  options::OPT_offload_device_only);
2921  EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
2922  EmitAsm = Args.getLastArg(options::OPT_S);
2923  FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
2924  if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
2925  StringRef UseCUIDStr = A->getValue();
2926  UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
2927  .Case("hash", CUID_Hash)
2928  .Case("random", CUID_Random)
2929  .Case("none", CUID_None)
2930  .Default(CUID_Invalid);
2931  if (UseCUID == CUID_Invalid) {
2932  C.getDriver().Diag(diag::err_drv_invalid_value)
2933  << A->getAsString(Args) << UseCUIDStr;
2934  C.setContainsError();
2935  return true;
2936  }
2937  }
2938 
2939  // --offload and --offload-arch options are mutually exclusive.
2940  if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
2941  Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
2942  options::OPT_no_offload_arch_EQ)) {
2943  C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "--offload-arch"
2944  << "--offload";
2945  }
2946 
2947  // Collect all cuda_gpu_arch parameters, removing duplicates.
2948  std::set<StringRef> GpuArchs;
2949  bool Error = false;
2950  for (Arg *A : Args) {
2951  if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
2952  A->getOption().matches(options::OPT_no_offload_arch_EQ)))
2953  continue;
2954  A->claim();
2955 
2956  StringRef ArchStr = A->getValue();
2957  if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
2958  ArchStr == "all") {
2959  GpuArchs.clear();
2960  continue;
2961  }
2962  ArchStr = getCanonicalOffloadArch(ArchStr);
2963  if (ArchStr.empty()) {
2964  Error = true;
2965  } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
2966  GpuArchs.insert(ArchStr);
2967  else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
2968  GpuArchs.erase(ArchStr);
2969  else
2970  llvm_unreachable("Unexpected option.");
2971  }
2972 
2973  auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
2974  if (ConflictingArchs) {
2975  C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
2976  << ConflictingArchs.getValue().first
2977  << ConflictingArchs.getValue().second;
2978  C.setContainsError();
2979  return true;
2980  }
2981 
2982  // Collect list of GPUs remaining in the set.
2983  for (auto Arch : GpuArchs)
2984  GpuArchList.push_back(Arch.data());
2985 
2986  // Default to sm_20 which is the lowest common denominator for
2987  // supported GPUs. sm_20 code should work correctly, if
2988  // suboptimally, on all newer GPUs.
2989  if (GpuArchList.empty()) {
2990  if (ToolChains.front()->getTriple().isSPIRV())
2991  GpuArchList.push_back(CudaArch::Generic);
2992  else
2993  GpuArchList.push_back(DefaultCudaArch);
2994  }
2995 
2996  return Error;
2997  }
2998  };
2999 
3000  /// \brief CUDA action builder. It injects device code in the host backend
3001  /// action.
3002  class CudaActionBuilder final : public CudaActionBuilderBase {
3003  public:
3004  CudaActionBuilder(Compilation &C, DerivedArgList &Args,
3005  const Driver::InputList &Inputs)
3006  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
3007  DefaultCudaArch = CudaArch::SM_35;
3008  }
3009 
3010  StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
3011  CudaArch Arch = StringToCudaArch(ArchStr);
3012  if (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch)) {
3013  C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
3014  return StringRef();
3015  }
3016  return CudaArchToString(Arch);
3017  }
3018 
3021  const std::set<StringRef> &GpuArchs) override {
3022  return llvm::None;
3023  }
3024 
3025  ActionBuilderReturnCode
3026  getDeviceDependences(OffloadAction::DeviceDependences &DA,
3027  phases::ID CurPhase, phases::ID FinalPhase,
3028  PhasesTy &Phases) override {
3029  if (!IsActive)
3030  return ABRT_Inactive;
3031 
3032  // If we don't have more CUDA actions, we don't have any dependences to
3033  // create for the host.
3034  if (CudaDeviceActions.empty())
3035  return ABRT_Success;
3036 
3037  assert(CudaDeviceActions.size() == GpuArchList.size() &&
3038  "Expecting one action per GPU architecture.");
3039  assert(!CompileHostOnly &&
3040  "Not expecting CUDA actions in host-only compilation.");
3041 
3042  // If we are generating code for the device or we are in a backend phase,
3043  // we attempt to generate the fat binary. We compile each arch to ptx and
3044  // assemble to cubin, then feed the cubin *and* the ptx into a device
3045  // "link" action, which uses fatbinary to combine these cubins into one
3046  // fatbin. The fatbin is then an input to the host action if not in
3047  // device-only mode.
3048  if (CompileDeviceOnly || CurPhase == phases::Backend) {
3049  ActionList DeviceActions;
3050  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3051  // Produce the device action from the current phase up to the assemble
3052  // phase.
3053  for (auto Ph : Phases) {
3054  // Skip the phases that were already dealt with.
3055  if (Ph < CurPhase)
3056  continue;
3057  // We have to be consistent with the host final phase.
3058  if (Ph > FinalPhase)
3059  break;
3060 
3061  CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
3062  C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
3063 
3064  if (Ph == phases::Assemble)
3065  break;
3066  }
3067 
3068  // If we didn't reach the assemble phase, we can't generate the fat
3069  // binary. We don't need to generate the fat binary if we are not in
3070  // device-only mode.
3071  if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
3072  CompileDeviceOnly)
3073  continue;
3074 
3075  Action *AssembleAction = CudaDeviceActions[I];
3076  assert(AssembleAction->getType() == types::TY_Object);
3077  assert(AssembleAction->getInputs().size() == 1);
3078 
3079  Action *BackendAction = AssembleAction->getInputs()[0];
3080  assert(BackendAction->getType() == types::TY_PP_Asm);
3081 
3082  for (auto &A : {AssembleAction, BackendAction}) {
3084  DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
3085  DeviceActions.push_back(
3086  C.MakeAction<OffloadAction>(DDep, A->getType()));
3087  }
3088  }
3089 
3090  // We generate the fat binary if we have device input actions.
3091  if (!DeviceActions.empty()) {
3092  CudaFatBinary =
3093  C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
3094 
3095  if (!CompileDeviceOnly) {
3096  DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3098  // Clear the fat binary, it is already a dependence to an host
3099  // action.
3100  CudaFatBinary = nullptr;
3101  }
3102 
3103  // Remove the CUDA actions as they are already connected to an host
3104  // action or fat binary.
3105  CudaDeviceActions.clear();
3106  }
3107 
3108  // We avoid creating host action in device-only mode.
3109  return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3110  } else if (CurPhase > phases::Backend) {
3111  // If we are past the backend phase and still have a device action, we
3112  // don't have to do anything as this action is already a device
3113  // top-level action.
3114  return ABRT_Success;
3115  }
3116 
3117  assert(CurPhase < phases::Backend && "Generating single CUDA "
3118  "instructions should only occur "
3119  "before the backend phase!");
3120 
3121  // By default, we produce an action for each device arch.
3122  for (Action *&A : CudaDeviceActions)
3123  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3124 
3125  return ABRT_Success;
3126  }
3127  };
3128  /// \brief HIP action builder. It injects device code in the host backend
3129  /// action.
3130  class HIPActionBuilder final : public CudaActionBuilderBase {
3131  /// The linker inputs obtained for each device arch.
3132  SmallVector<ActionList, 8> DeviceLinkerInputs;
3133  // The default bundling behavior depends on the type of output, therefore
3134  // BundleOutput needs to be tri-value: None, true, or false.
3135  // Bundle code objects except --no-gpu-output is specified for device
3136  // only compilation. Bundle other type of output files only if
3137  // --gpu-bundle-output is specified for device only compilation.
3138  Optional<bool> BundleOutput;
3139 
3140  public:
3141  HIPActionBuilder(Compilation &C, DerivedArgList &Args,
3142  const Driver::InputList &Inputs)
3143  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
3144  DefaultCudaArch = CudaArch::GFX803;
3145  if (Args.hasArg(options::OPT_gpu_bundle_output,
3146  options::OPT_no_gpu_bundle_output))
3147  BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output,
3148  options::OPT_no_gpu_bundle_output, true);
3149  }
3150 
3151  bool canUseBundlerUnbundler() const override { return true; }
3152 
3153  StringRef getCanonicalOffloadArch(StringRef IdStr) override {
3154  llvm::StringMap<bool> Features;
3155  // getHIPOffloadTargetTriple() is known to return valid value as it has
3156  // been called successfully in the CreateOffloadingDeviceToolChains().
3157  auto ArchStr = parseTargetID(
3158  *getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()), IdStr,
3159  &Features);
3160  if (!ArchStr) {
3161  C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
3162  C.setContainsError();
3163  return StringRef();
3164  }
3165  auto CanId = getCanonicalTargetID(ArchStr.getValue(), Features);
3166  return Args.MakeArgStringRef(CanId);
3167  };
3168 
3171  const std::set<StringRef> &GpuArchs) override {
3172  return getConflictTargetIDCombination(GpuArchs);
3173  }
3174 
3175  ActionBuilderReturnCode
3176  getDeviceDependences(OffloadAction::DeviceDependences &DA,
3177  phases::ID CurPhase, phases::ID FinalPhase,
3178  PhasesTy &Phases) override {
3179  if (!IsActive)
3180  return ABRT_Inactive;
3181 
3182  // amdgcn does not support linking of object files, therefore we skip
3183  // backend and assemble phases to output LLVM IR. Except for generating
3184  // non-relocatable device code, where we generate fat binary for device
3185  // code and pass to host in Backend phase.
3186  if (CudaDeviceActions.empty())
3187  return ABRT_Success;
3188 
3189  assert(((CurPhase == phases::Link && Relocatable) ||
3190  CudaDeviceActions.size() == GpuArchList.size()) &&
3191  "Expecting one action per GPU architecture.");
3192  assert(!CompileHostOnly &&
3193  "Not expecting HIP actions in host-only compilation.");
3194 
3195  if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
3196  !EmitAsm) {
3197  // If we are in backend phase, we attempt to generate the fat binary.
3198  // We compile each arch to IR and use a link action to generate code
3199  // object containing ISA. Then we use a special "link" action to create
3200  // a fat binary containing all the code objects for different GPU's.
3201  // The fat binary is then an input to the host action.
3202  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3203  if (C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
3204  // When LTO is enabled, skip the backend and assemble phases and
3205  // use lld to link the bitcode.
3206  ActionList AL;
3207  AL.push_back(CudaDeviceActions[I]);
3208  // Create a link action to link device IR with device library
3209  // and generate ISA.
3210  CudaDeviceActions[I] =
3211  C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3212  } else {
3213  // When LTO is not enabled, we follow the conventional
3214  // compiler phases, including backend and assemble phases.
3215  ActionList AL;
3216  Action *BackendAction = nullptr;
3217  if (ToolChains.front()->getTriple().isSPIRV()) {
3218  // Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain
3219  // (HIPSPVToolChain) runs post-link LLVM IR passes.
3220  types::ID Output = Args.hasArg(options::OPT_S)
3221  ? types::TY_LLVM_IR
3222  : types::TY_LLVM_BC;
3223  BackendAction =
3224  C.MakeAction<BackendJobAction>(CudaDeviceActions[I], Output);
3225  } else
3226  BackendAction = C.getDriver().ConstructPhaseAction(
3227  C, Args, phases::Backend, CudaDeviceActions[I],
3228  AssociatedOffloadKind);
3229  auto AssembleAction = C.getDriver().ConstructPhaseAction(
3230  C, Args, phases::Assemble, BackendAction,
3231  AssociatedOffloadKind);
3232  AL.push_back(AssembleAction);
3233  // Create a link action to link device IR with device library
3234  // and generate ISA.
3235  CudaDeviceActions[I] =
3236  C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3237  }
3238 
3239  // OffloadingActionBuilder propagates device arch until an offload
3240  // action. Since the next action for creating fatbin does
3241  // not have device arch, whereas the above link action and its input
3242  // have device arch, an offload action is needed to stop the null
3243  // device arch of the next action being propagated to the above link
3244  // action.
3246  DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3247  AssociatedOffloadKind);
3248  CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3249  DDep, CudaDeviceActions[I]->getType());
3250  }
3251 
3252  if (!CompileDeviceOnly || !BundleOutput.hasValue() ||
3253  BundleOutput.getValue()) {
3254  // Create HIP fat binary with a special "link" action.
3255  CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions,
3256  types::TY_HIP_FATBIN);
3257 
3258  if (!CompileDeviceOnly) {
3259  DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3260  AssociatedOffloadKind);
3261  // Clear the fat binary, it is already a dependence to an host
3262  // action.
3263  CudaFatBinary = nullptr;
3264  }
3265 
3266  // Remove the CUDA actions as they are already connected to an host
3267  // action or fat binary.
3268  CudaDeviceActions.clear();
3269  }
3270 
3271  return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3272  } else if (CurPhase == phases::Link) {
3273  // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3274  // This happens to each device action originated from each input file.
3275  // Later on, device actions in DeviceLinkerInputs are used to create
3276  // device link actions in appendLinkDependences and the created device
3277  // link actions are passed to the offload action as device dependence.
3278  DeviceLinkerInputs.resize(CudaDeviceActions.size());
3279  auto LI = DeviceLinkerInputs.begin();
3280  for (auto *A : CudaDeviceActions) {
3281  LI->push_back(A);
3282  ++LI;
3283  }
3284 
3285  // We will pass the device action as a host dependence, so we don't
3286  // need to do anything else with them.
3287  CudaDeviceActions.clear();
3288  return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3289  }
3290 
3291  // By default, we produce an action for each device arch.
3292  for (Action *&A : CudaDeviceActions)
3293  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
3294  AssociatedOffloadKind);
3295 
3296  if (CompileDeviceOnly && CurPhase == FinalPhase &&
3297  BundleOutput.hasValue() && BundleOutput.getValue()) {
3298  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3300  DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3301  AssociatedOffloadKind);
3302  CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3303  DDep, CudaDeviceActions[I]->getType());
3304  }
3305  CudaFatBinary =
3306  C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions);
3307  CudaDeviceActions.clear();
3308  }
3309 
3310  return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host
3311  : ABRT_Success;
3312  }
3313 
3314  void appendLinkDeviceActions(ActionList &AL) override {
3315  if (DeviceLinkerInputs.size() == 0)
3316  return;
3317 
3318  assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
3319  "Linker inputs and GPU arch list sizes do not match.");
3320 
3321  ActionList Actions;
3322  unsigned I = 0;
3323  // Append a new link action for each device.
3324  // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3325  for (auto &LI : DeviceLinkerInputs) {
3326 
3327  types::ID Output = Args.hasArg(options::OPT_emit_llvm)
3328  ? types::TY_LLVM_BC
3329  : types::TY_Image;
3330 
3331  auto *DeviceLinkAction = C.MakeAction<LinkJobAction>(LI, Output);
3332  // Linking all inputs for the current GPU arch.
3333  // LI contains all the inputs for the linker.
3334  OffloadAction::DeviceDependences DeviceLinkDeps;
3335  DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
3336  GpuArchList[I], AssociatedOffloadKind);
3337  Actions.push_back(C.MakeAction<OffloadAction>(
3338  DeviceLinkDeps, DeviceLinkAction->getType()));
3339  ++I;
3340  }
3341  DeviceLinkerInputs.clear();
3342 
3343  // If emitting LLVM, do not generate final host/device compilation action
3344  if (Args.hasArg(options::OPT_emit_llvm)) {
3345  AL.append(Actions);
3346  return;
3347  }
3348 
3349  // Create a host object from all the device images by embedding them
3350  // in a fat binary for mixed host-device compilation. For device-only
3351  // compilation, creates a fat binary.
3353  if (!CompileDeviceOnly || !BundleOutput.hasValue() ||
3354  BundleOutput.getValue()) {
3355  auto *TopDeviceLinkAction = C.MakeAction<LinkJobAction>(
3356  Actions,
3357  CompileDeviceOnly ? types::TY_HIP_FATBIN : types::TY_Object);
3358  DDeps.add(*TopDeviceLinkAction, *ToolChains[0], nullptr,
3359  AssociatedOffloadKind);
3360  // Offload the host object to the host linker.
3361  AL.push_back(
3362  C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
3363  } else {
3364  AL.append(Actions);
3365  }
3366  }
3367 
3368  Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3369 
3370  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3371  };
3372 
3373  /// OpenMP action builder. The host bitcode is passed to the device frontend
3374  /// and all the device linked images are passed to the host link phase.
3375  class OpenMPActionBuilder final : public DeviceActionBuilder {
3376  /// The OpenMP actions for the current input.
3377  ActionList OpenMPDeviceActions;
3378 
3379  /// The linker inputs obtained for each toolchain.
3380  SmallVector<ActionList, 8> DeviceLinkerInputs;
3381 
3382  public:
3383  OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
3384  const Driver::InputList &Inputs)
3385  : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
3386 
3387  ActionBuilderReturnCode
3388  getDeviceDependences(OffloadAction::DeviceDependences &DA,
3389  phases::ID CurPhase, phases::ID FinalPhase,
3390  PhasesTy &Phases) override {
3391  if (OpenMPDeviceActions.empty())
3392  return ABRT_Inactive;
3393 
3394  // We should always have an action for each input.
3395  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
3396  "Number of OpenMP actions and toolchains do not match.");
3397 
3398  // The host only depends on device action in the linking phase, when all
3399  // the device images have to be embedded in the host image.
3400  if (CurPhase == phases::Link) {
3401  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
3402  "Toolchains and linker inputs sizes do not match.");
3403  auto LI = DeviceLinkerInputs.begin();
3404  for (auto *A : OpenMPDeviceActions) {
3405  LI->push_back(A);
3406  ++LI;
3407  }
3408 
3409  // We passed the device action as a host dependence, so we don't need to
3410  // do anything else with them.
3411  OpenMPDeviceActions.clear();
3412  return ABRT_Success;
3413  }
3414 
3415  // By default, we produce an action for each device arch.
3416  for (Action *&A : OpenMPDeviceActions)
3417  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3418 
3419  return ABRT_Success;
3420  }
3421 
3422  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
3423 
3424  // If this is an input action replicate it for each OpenMP toolchain.
3425  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
3426  OpenMPDeviceActions.clear();
3427  for (unsigned I = 0; I < ToolChains.size(); ++I)
3428  OpenMPDeviceActions.push_back(
3429  C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
3430  return ABRT_Success;
3431  }
3432 
3433  // If this is an unbundling action use it as is for each OpenMP toolchain.
3434  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
3435  OpenMPDeviceActions.clear();
3436  auto *IA = cast<InputAction>(UA->getInputs().back());
3437  std::string FileName = IA->getInputArg().getAsString(Args);
3438  // Check if the type of the file is the same as the action. Do not
3439  // unbundle it if it is not. Do not unbundle .so files, for example,
3440  // which are not object files.
3441  if (IA->getType() == types::TY_Object &&
3442  (!llvm::sys::path::has_extension(FileName) ||
3444  llvm::sys::path::extension(FileName).drop_front()) !=
3445  types::TY_Object))
3446  return ABRT_Inactive;
3447  for (unsigned I = 0; I < ToolChains.size(); ++I) {
3448  OpenMPDeviceActions.push_back(UA);
3449  UA->registerDependentActionInfo(
3450  ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
3451  }
3452  return ABRT_Success;
3453  }
3454 
3455  // When generating code for OpenMP we use the host compile phase result as
3456  // a dependence to the device compile phase so that it can learn what
3457  // declarations should be emitted. However, this is not the only use for
3458  // the host action, so we prevent it from being collapsed.
3459  if (isa<CompileJobAction>(HostAction)) {
3461  assert(ToolChains.size() == OpenMPDeviceActions.size() &&
3462  "Toolchains and device action sizes do not match.");
3464  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3465  /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3466  auto TC = ToolChains.begin();
3467  for (Action *&A : OpenMPDeviceActions) {
3468  assert(isa<CompileJobAction>(A));
3470  DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3471  A = C.MakeAction<OffloadAction>(HDep, DDep);
3472  ++TC;
3473  }
3474  }
3475  return ABRT_Success;
3476  }
3477 
3478  void appendTopLevelActions(ActionList &AL) override {
3479  if (OpenMPDeviceActions.empty())
3480  return;
3481 
3482  // We should always have an action for each input.
3483  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
3484  "Number of OpenMP actions and toolchains do not match.");
3485 
3486  // Append all device actions followed by the proper offload action.
3487  auto TI = ToolChains.begin();
3488  for (auto *A : OpenMPDeviceActions) {
3490  Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
3491  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
3492  ++TI;
3493  }
3494  // We no longer need the action stored in this builder.
3495  OpenMPDeviceActions.clear();
3496  }
3497 
3498  void appendLinkDeviceActions(ActionList &AL) override {
3499  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
3500  "Toolchains and linker inputs sizes do not match.");
3501 
3502  // Append a new link action for each device.
3503  auto TC = ToolChains.begin();
3504  for (auto &LI : DeviceLinkerInputs) {
3505  auto *DeviceLinkAction =
3506  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
3507  OffloadAction::DeviceDependences DeviceLinkDeps;
3508  DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
3510  AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
3511  DeviceLinkAction->getType()));
3512  ++TC;
3513  }
3514  DeviceLinkerInputs.clear();
3515  }
3516 
3517  Action* appendLinkHostActions(ActionList &AL) override {
3518  // Create wrapper bitcode from the result of device link actions and compile
3519  // it to an object which will be added to the host link command.
3520  auto *BC = C.MakeAction<OffloadWrapperJobAction>(AL, types::TY_LLVM_BC);
3521  auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm);
3522  return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object);
3523  }
3524 
3525  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3526 
3527  bool initialize() override {
3528  // Get the OpenMP toolchains. If we don't get any, the action builder will
3529  // know there is nothing to do related to OpenMP offloading.
3530  auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
3531  for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
3532  ++TI)
3533  ToolChains.push_back(TI->second);
3534 
3535  DeviceLinkerInputs.resize(ToolChains.size());
3536  return false;
3537  }
3538 
3539  bool canUseBundlerUnbundler() const override {
3540  // OpenMP should use bundled files whenever possible.
3541  return true;
3542  }
3543  };
3544 
3545  ///
3546  /// TODO: Add the implementation for other specialized builders here.
3547  ///
3548 
3549  /// Specialized builders being used by this offloading action builder.
3550  SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3551 
3552  /// Flag set to true if all valid builders allow file bundling/unbundling.
3553  bool CanUseBundler;
3554 
3555 public:
3556  OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3557  const Driver::InputList &Inputs)
3558  : C(C) {
3559  // Create a specialized builder for each device toolchain.
3560 
3561  IsValid = true;
3562 
3563  // Create a specialized builder for CUDA.
3564  SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3565 
3566  // Create a specialized builder for HIP.
3567  SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3568 
3569  // Create a specialized builder for OpenMP.
3570  SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
3571 
3572  //
3573  // TODO: Build other specialized builders here.
3574  //
3575 
3576  // Initialize all the builders, keeping track of errors. If all valid
3577  // builders agree that we can use bundling, set the flag to true.
3578  unsigned ValidBuilders = 0u;
3579  unsigned ValidBuildersSupportingBundling = 0u;
3580  for (auto *SB : SpecializedBuilders) {
3581  IsValid = IsValid && !SB->initialize();
3582 
3583  // Update the counters if the builder is valid.
3584  if (SB->isValid()) {
3585  ++ValidBuilders;
3586  if (SB->canUseBundlerUnbundler())
3587  ++ValidBuildersSupportingBundling;
3588  }
3589  }
3590  CanUseBundler =
3591  ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3592  }
3593 
3594  ~OffloadingActionBuilder() {
3595  for (auto *SB : SpecializedBuilders)
3596  delete SB;
3597  }
3598 
3599  /// Record a host action and its originating input argument.
3600  void recordHostAction(Action *HostAction, const Arg *InputArg) {
3601  assert(HostAction && "Invalid host action");
3602  assert(InputArg && "Invalid input argument");
3603  auto Loc = HostActionToInputArgMap.find(HostAction);
3604  if (Loc == HostActionToInputArgMap.end())
3605  HostActionToInputArgMap[HostAction] = InputArg;
3606  assert(HostActionToInputArgMap[HostAction] == InputArg &&
3607  "host action mapped to multiple input arguments");
3608  }
3609 
3610  /// Generate an action that adds device dependences (if any) to a host action.
3611  /// If no device dependence actions exist, just return the host action \a
3612  /// HostAction. If an error is found or if no builder requires the host action
3613  /// to be generated, return nullptr.
3614  Action *
3615  addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3616  phases::ID CurPhase, phases::ID FinalPhase,
3617  DeviceActionBuilder::PhasesTy &Phases) {
3618  if (!IsValid)
3619  return nullptr;
3620 
3621  if (SpecializedBuilders.empty())
3622  return HostAction;
3623 
3624  assert(HostAction && "Invalid host action!");
3625  recordHostAction(HostAction, InputArg);
3626 
3628  // Check if all the programming models agree we should not emit the host
3629  // action. Also, keep track of the offloading kinds employed.
3630  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3631  unsigned InactiveBuilders = 0u;
3632  unsigned IgnoringBuilders = 0u;
3633  for (auto *SB : SpecializedBuilders) {
3634  if (!SB->isValid()) {
3635  ++InactiveBuilders;
3636  continue;
3637  }
3638 
3639  auto RetCode =
3640  SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3641 
3642  // If the builder explicitly says the host action should be ignored,
3643  // we need to increment the variable that tracks the builders that request
3644  // the host object to be ignored.
3645  if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3646  ++IgnoringBuilders;
3647 
3648  // Unless the builder was inactive for this action, we have to record the
3649  // offload kind because the host will have to use it.
3650  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3651  OffloadKind |= SB->getAssociatedOffloadKind();
3652  }
3653 
3654  // If all builders agree that the host object should be ignored, just return
3655  // nullptr.
3656  if (IgnoringBuilders &&
3657  SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3658  return nullptr;
3659 
3660  if (DDeps.getActions().empty())
3661  return HostAction;
3662 
3663  // We have dependences we need to bundle together. We use an offload action
3664  // for that.
3666  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3667  /*BoundArch=*/nullptr, DDeps);
3668  return C.MakeAction<OffloadAction>(HDep, DDeps);
3669  }
3670 
3671  /// Generate an action that adds a host dependence to a device action. The
3672  /// results will be kept in this action builder. Return true if an error was
3673  /// found.
3674  bool addHostDependenceToDeviceActions(Action *&HostAction,
3675  const Arg *InputArg) {
3676  if (!IsValid)
3677  return true;
3678 
3679  recordHostAction(HostAction, InputArg);
3680 
3681  // If we are supporting bundling/unbundling and the current action is an
3682  // input action of non-source file, we replace the host action by the
3683  // unbundling action. The bundler tool has the logic to detect if an input
3684  // is a bundle or not and if the input is not a bundle it assumes it is a
3685  // host file. Therefore it is safe to create an unbundling action even if
3686  // the input is not a bundle.
3687  if (CanUseBundler && isa<InputAction>(HostAction) &&
3688  InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3689  (!types::isSrcFile(HostAction->getType()) ||
3690  HostAction->getType() == types::TY_PP_HIP)) {
3691  auto UnbundlingHostAction =
3692  C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3693  UnbundlingHostAction->registerDependentActionInfo(
3694  C.getSingleOffloadToolChain<Action::OFK_Host>(),
3695  /*BoundArch=*/StringRef(), Action::OFK_Host);
3696  HostAction = UnbundlingHostAction;
3697  recordHostAction(HostAction, InputArg);
3698  }
3699 
3700  assert(HostAction && "Invalid host action!");
3701 
3702  // Register the offload kinds that are used.
3703  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3704  for (auto *SB : SpecializedBuilders) {
3705  if (!SB->isValid())
3706  continue;
3707 
3708  auto RetCode = SB->addDeviceDepences(HostAction);
3709 
3710  // Host dependences for device actions are not compatible with that same
3711  // action being ignored.
3712  assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3713  "Host dependence not expected to be ignored.!");
3714 
3715  // Unless the builder was inactive for this action, we have to record the
3716  // offload kind because the host will have to use it.
3717  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3718  OffloadKind |= SB->getAssociatedOffloadKind();
3719  }
3720 
3721  // Do not use unbundler if the Host does not depend on device action.
3722  if (OffloadKind == Action::OFK_None && CanUseBundler)
3723  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3724  HostAction = UA->getInputs().back();
3725 
3726  return false;
3727  }
3728 
3729  /// Add the offloading top level actions to the provided action list. This
3730  /// function can replace the host action by a bundling action if the
3731  /// programming models allow it.
3732  bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3733  const Arg *InputArg) {
3734  if (HostAction)
3735  recordHostAction(HostAction, InputArg);
3736 
3737  // Get the device actions to be appended.
3738  ActionList OffloadAL;
3739  for (auto *SB : SpecializedBuilders) {
3740  if (!SB->isValid())
3741  continue;
3742  SB->appendTopLevelActions(OffloadAL);
3743  }
3744 
3745  // If we can use the bundler, replace the host action by the bundling one in
3746  // the resulting list. Otherwise, just append the device actions. For
3747  // device only compilation, HostAction is a null pointer, therefore only do
3748  // this when HostAction is not a null pointer.
3749  if (CanUseBundler && HostAction &&
3750  HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3751  // Add the host action to the list in order to create the bundling action.
3752  OffloadAL.push_back(HostAction);
3753 
3754  // We expect that the host action was just appended to the action list
3755  // before this method was called.
3756  assert(HostAction == AL.back() && "Host action not in the list??");
3757  HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3758  recordHostAction(HostAction, InputArg);
3759  AL.back() = HostAction;
3760  } else
3761  AL.append(OffloadAL.begin(), OffloadAL.end());
3762 
3763  // Propagate to the current host action (if any) the offload information
3764  // associated with the current input.
3765  if (HostAction)
3766  HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3767  /*BoundArch=*/nullptr);
3768  return false;
3769  }
3770 
3771  void appendDeviceLinkActions(ActionList &AL) {
3772  for (DeviceActionBuilder *SB : SpecializedBuilders) {
3773  if (!SB->isValid())
3774  continue;
3775  SB->appendLinkDeviceActions(AL);
3776  }
3777  }
3778 
3779  Action *makeHostLinkAction() {
3780  // Build a list of device linking actions.
3781  ActionList DeviceAL;
3782  appendDeviceLinkActions(DeviceAL);
3783  if (DeviceAL.empty())
3784  return nullptr;
3785 
3786  // Let builders add host linking actions.
3787  Action* HA = nullptr;
3788  for (DeviceActionBuilder *SB : SpecializedBuilders) {
3789  if (!SB->isValid())
3790  continue;
3791  HA = SB->appendLinkHostActions(DeviceAL);
3792  // This created host action has no originating input argument, therefore
3793  // needs to set its offloading kind directly.
3794  if (HA)
3795  HA->propagateHostOffloadInfo(SB->getAssociatedOffloadKind(),
3796  /*BoundArch=*/nullptr);
3797  }
3798  return HA;
3799  }
3800 
3801  /// Processes the host linker action. This currently consists of replacing it
3802  /// with an offload action if there are device link objects and propagate to
3803  /// the host action all the offload kinds used in the current compilation. The
3804  /// resulting action is returned.
3805  Action *processHostLinkAction(Action *HostAction) {
3806  // Add all the dependences from the device linking actions.
3808  for (auto *SB : SpecializedBuilders) {
3809  if (!SB->isValid())
3810  continue;
3811 
3812  SB->appendLinkDependences(DDeps);
3813  }
3814 
3815  // Calculate all the offload kinds used in the current compilation.
3816  unsigned ActiveOffloadKinds = 0u;
3817  for (auto &I : InputArgToOffloadKindMap)
3818  ActiveOffloadKinds |= I.second;
3819 
3820  // If we don't have device dependencies, we don't have to create an offload
3821  // action.
3822  if (DDeps.getActions().empty()) {
3823  // Set all the active offloading kinds to the link action. Given that it
3824  // is a link action it is assumed to depend on all actions generated so
3825  // far.
3826  HostAction->setHostOffloadInfo(ActiveOffloadKinds,
3827  /*BoundArch=*/nullptr);
3828  // Propagate active offloading kinds for each input to the link action.
3829  // Each input may have different active offloading kind.
3830  for (auto A : HostAction->inputs()) {
3831  auto ArgLoc = HostActionToInputArgMap.find(A);
3832  if (ArgLoc == HostActionToInputArgMap.end())
3833  continue;
3834  auto OFKLoc = InputArgToOffloadKindMap.find(ArgLoc->second);
3835  if (OFKLoc == InputArgToOffloadKindMap.end())
3836  continue;
3837  A->propagateHostOffloadInfo(OFKLoc->second, /*BoundArch=*/nullptr);
3838  }
3839  return HostAction;
3840  }
3841 
3842  // Create the offload action with all dependences. When an offload action
3843  // is created the kinds are propagated to the host action, so we don't have
3844  // to do that explicitly here.
3846  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3847  /*BoundArch*/ nullptr, ActiveOffloadKinds);
3848  return C.MakeAction<OffloadAction>(HDep, DDeps);
3849  }
3850 };
3851 } // anonymous namespace.
3852 
3853 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3854  const InputList &Inputs,
3855  ActionList &Actions) const {
3856 
3857  // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3858  Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3859  Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3860  if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3861  Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3862  Args.eraseArg(options::OPT__SLASH_Yc);
3863  Args.eraseArg(options::OPT__SLASH_Yu);
3864  YcArg = YuArg = nullptr;
3865  }
3866  if (YcArg && Inputs.size() > 1) {
3867  Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3868  Args.eraseArg(options::OPT__SLASH_Yc);
3869  YcArg = nullptr;
3870  }
3871 
3872  Arg *FinalPhaseArg;
3873  phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3874 
3875  if (FinalPhase == phases::Link) {
3876  // Emitting LLVM while linking disabled except in HIPAMD Toolchain
3877  if (Args.hasArg(options::OPT_emit_llvm) && !Args.hasArg(options::OPT_hip_link))
3878  Diag(clang::diag::err_drv_emit_llvm_link);
3879  if (IsCLMode() && LTOMode != LTOK_None &&
3880  !Args.getLastArgValue(options::OPT_fuse_ld_EQ)
3881  .equals_insensitive("lld"))
3882  Diag(clang::diag::err_drv_lto_without_lld);
3883  }
3884 
3885  if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3886  // If only preprocessing or /Y- is used, all pch handling is disabled.
3887  // Rather than check for it everywhere, just remove clang-cl pch-related
3888  // flags here.
3889  Args.eraseArg(options::OPT__SLASH_Fp);
3890  Args.eraseArg(options::OPT__SLASH_Yc);
3891  Args.eraseArg(options::OPT__SLASH_Yu);
3892  YcArg = YuArg = nullptr;
3893  }
3894 
3895  unsigned LastPLSize = 0;
3896  for (auto &I : Inputs) {
3897  types::ID InputType = I.first;
3898  const Arg *InputArg = I.second;
3899 
3900  auto PL = types::getCompilationPhases(InputType);
3901  LastPLSize = PL.size();
3902 
3903  // If the first step comes after the final phase we are doing as part of
3904  // this compilation, warn the user about it.
3905  phases::ID InitialPhase = PL[0];
3906  if (InitialPhase > FinalPhase) {
3907  if (InputArg->isClaimed())
3908  continue;
3909 
3910  // Claim here to avoid the more general unused warning.
3911  InputArg->claim();
3912 
3913  // Suppress all unused style warnings with -Qunused-arguments
3914  if (Args.hasArg(options::OPT_Qunused_arguments))
3915  continue;
3916 
3917  // Special case when final phase determined by binary name, rather than
3918  // by a command-line argument with a corresponding Arg.
3919  if (CCCIsCPP())
3920  Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3921  << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3922  // Special case '-E' warning on a previously preprocessed file to make
3923  // more sense.
3924  else if (InitialPhase == phases::Compile &&
3925  (Args.getLastArg(options::OPT__SLASH_EP,
3926  options::OPT__SLASH_P) ||
3927  Args.getLastArg(options::OPT_E) ||
3928  Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
3929  getPreprocessedType(InputType) == types::TY_INVALID)
3930  Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3931  << InputArg->getAsString(Args) << !!FinalPhaseArg
3932  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3933  else
3934  Diag(clang::diag::warn_drv_input_file_unused)
3935  << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3936  << !!FinalPhaseArg
3937  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3938  continue;
3939  }
3940 
3941  if (YcArg) {
3942  // Add a separate precompile phase for the compile phase.
3943  if (FinalPhase >= phases::Compile) {
3944  const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3945  // Build the pipeline for the pch file.
3946  Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
3947  for (phases::ID Phase : types::getCompilationPhases(HeaderType))
3948  ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3949  assert(ClangClPch);
3950  Actions.push_back(ClangClPch);
3951  // The driver currently exits after the first failed command. This
3952  // relies on that behavior, to make sure if the pch generation fails,
3953  // the main compilation won't run.
3954  // FIXME: If the main compilation fails, the PCH generation should
3955  // probably not be considered successful either.
3956  }
3957  }
3958  }
3959 
3960  // If we are linking, claim any options which are obviously only used for
3961  // compilation.
3962  // FIXME: Understand why the last Phase List length is used here.
3963  if (FinalPhase == phases::Link && LastPLSize == 1) {
3964  Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3965  Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3966  }
3967 }
3968 
3969 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3970  const InputList &Inputs, ActionList &Actions) const {
3971  llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3972 
3973  if (!SuppressMissingInputWarning && Inputs.empty()) {
3974  Diag(clang::diag::err_drv_no_input_files);
3975  return;
3976  }
3977 
3978  // Reject -Z* at the top level, these options should never have been exposed
3979  // by gcc.
3980  if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3981  Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3982 
3983  // Diagnose misuse of /Fo.
3984  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3985  StringRef V = A->getValue();
3986  if (Inputs.size() > 1 && !V.empty() &&
3987  !llvm::sys::path::is_separator(V.back())) {
3988  // Check whether /Fo tries to name an output file for multiple inputs.
3989  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3990  << A->getSpelling() << V;
3991  Args.eraseArg(options::OPT__SLASH_Fo);
3992  }
3993  }
3994 
3995  // Diagnose misuse of /Fa.
3996  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3997  StringRef V = A->getValue();
3998  if (Inputs.size() > 1 && !V.empty() &&
3999  !llvm::sys::path::is_separator(V.back())) {
4000  // Check whether /Fa tries to name an asm file for multiple inputs.
4001  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4002  << A->getSpelling() << V;
4003  Args.eraseArg(options::OPT__SLASH_Fa);
4004  }
4005  }
4006 
4007  // Diagnose misuse of /o.
4008  if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
4009  if (A->getValue()[0] == '\0') {
4010  // It has to have a value.
4011  Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
4012  Args.eraseArg(options::OPT__SLASH_o);
4013  }
4014  }
4015 
4016  handleArguments(C, Args, Inputs, Actions);
4017 
4018  // Builder to be used to build offloading actions.
4019  OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
4020 
4021  bool UseNewOffloadingDriver =
4022  (C.isOffloadingHostKind(Action::OFK_OpenMP) &&
4023  Args.hasFlag(options::OPT_fopenmp_new_driver,
4024  options::OPT_no_offload_new_driver, true)) ||
4025  Args.hasFlag(options::OPT_offload_new_driver,
4026  options::OPT_no_offload_new_driver, false);
4027 
4028  // Construct the actions to perform.
4029  HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
4031  ActionList LinkerInputs;
4032  ActionList MergerInputs;
4033 
4034  for (auto &I : Inputs) {
4035  types::ID InputType = I.first;
4036  const Arg *InputArg = I.second;
4037 
4038  auto PL = types::getCompilationPhases(*this, Args, InputType);
4039  if (PL.empty())
4040  continue;
4041 
4042  auto FullPL = types::getCompilationPhases(InputType);
4043 
4044  // Build the pipeline for this file.
4045  Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4046 
4047  // Use the current host action in any of the offloading actions, if
4048  // required.
4049  if (!UseNewOffloadingDriver)
4050  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
4051  break;
4052 
4053  for (phases::ID Phase : PL) {
4054 
4055  // Add any offload action the host action depends on.
4056  if (!UseNewOffloadingDriver)
4057  Current = OffloadBuilder.addDeviceDependencesToHostAction(
4058  Current, InputArg, Phase, PL.back(), FullPL);
4059  if (!Current)
4060  break;
4061 
4062  // Queue linker inputs.
4063  if (Phase == phases::Link) {
4064  assert(Phase == PL.back() && "linking must be final compilation step.");
4065  // We don't need to generate additional link commands if emitting AMD bitcode
4066  if (!(C.getInputArgs().hasArg(options::OPT_hip_link) &&
4067  (C.getInputArgs().hasArg(options::OPT_emit_llvm))))
4068  LinkerInputs.push_back(Current);
4069  Current = nullptr;
4070  break;
4071  }
4072 
4073  // TODO: Consider removing this because the merged may not end up being
4074  // the final Phase in the pipeline. Perhaps the merged could just merge
4075  // and then pass an artifact of some sort to the Link Phase.
4076  // Queue merger inputs.
4077  if (Phase == phases::IfsMerge) {
4078  assert(Phase == PL.back() && "merging must be final compilation step.");
4079  MergerInputs.push_back(Current);
4080  Current = nullptr;
4081  break;
4082  }
4083 
4084  // Each precompiled header file after a module file action is a module
4085  // header of that same module file, rather than being compiled to a
4086  // separate PCH.
4087  if (Phase == phases::Precompile && HeaderModuleAction &&
4088  getPrecompiledType(InputType) == types::TY_PCH) {
4089  HeaderModuleAction->addModuleHeaderInput(Current);
4090  Current = nullptr;
4091  break;
4092  }
4093 
4094  if (Phase == phases::Precompile && ExtractAPIAction) {
4095  ExtractAPIAction->addHeaderInput(Current);
4096  Current = nullptr;
4097  break;
4098  }
4099 
4100  // FIXME: Should we include any prior module file outputs as inputs of
4101  // later actions in the same command line?
4102 
4103  // Otherwise construct the appropriate action.
4104  Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
4105 
4106  // We didn't create a new action, so we will just move to the next phase.
4107  if (NewCurrent == Current)
4108  continue;
4109 
4110  if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
4111  HeaderModuleAction = HMA;
4112  else if (auto *EAA = dyn_cast<ExtractAPIJobAction>(NewCurrent))
4113  ExtractAPIAction = EAA;
4114 
4115  Current = NewCurrent;
4116 
4117  // Use the current host action in any of the offloading actions, if
4118  // required.
4119  if (!UseNewOffloadingDriver)
4120  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
4121  break;
4122 
4123  // Try to build the offloading actions and add the result as a dependency
4124  // to the host.
4125  if (UseNewOffloadingDriver)
4126  Current = BuildOffloadingActions(C, Args, I, Current);
4127 
4128  if (Current->getType() == types::TY_Nothing)
4129  break;
4130  }
4131 
4132  // If we ended with something, add to the output list.
4133  if (Current)
4134  Actions.push_back(Current);
4135 
4136  // Add any top level actions generated for offloading.
4137  if (!UseNewOffloadingDriver)
4138  OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
4139  else if (Current)
4140  Current->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4141  /*BoundArch=*/nullptr);
4142  }
4143 
4144  // Add a link action if necessary.
4145 
4146  if (LinkerInputs.empty()) {
4147  Arg *FinalPhaseArg;
4148  if (getFinalPhase(Args, &FinalPhaseArg) == phases::Link)
4149  if (!UseNewOffloadingDriver)
4150  OffloadBuilder.appendDeviceLinkActions(Actions);
4151  }
4152 
4153  if (!LinkerInputs.empty()) {
4154  if (!UseNewOffloadingDriver)
4155  if (Action *Wrapper = OffloadBuilder.makeHostLinkAction())
4156  LinkerInputs.push_back(Wrapper);
4157  Action *LA;
4158  // Check if this Linker Job should emit a static library.
4159  if (ShouldEmitStaticLibrary(Args)) {
4160  LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
4161  } else if (UseNewOffloadingDriver) {
4162  LA = C.MakeAction<LinkerWrapperJobAction>(LinkerInputs, types::TY_Image);
4163  LA->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4164  /*BoundArch=*/nullptr);
4165  } else {
4166  LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
4167  }
4168  if (!UseNewOffloadingDriver)
4169  LA = OffloadBuilder.processHostLinkAction(LA);
4170  Actions.push_back(LA);
4171  }
4172 
4173  // Add an interface stubs merge action if necessary.
4174  if (!MergerInputs.empty())
4175  Actions.push_back(
4176  C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4177 
4178  if (Args.hasArg(options::OPT_emit_interface_stubs)) {
4179  auto PhaseList = types::getCompilationPhases(
4180  types::TY_IFS_CPP,
4181  Args.hasArg(options::OPT_c) ? phases::Compile : phases::IfsMerge);
4182 
4183  ActionList MergerInputs;
4184 
4185  for (auto &I : Inputs) {
4186  types::ID InputType = I.first;
4187  const Arg *InputArg = I.second;
4188 
4189  // Currently clang and the llvm assembler do not support generating symbol
4190  // stubs from assembly, so we skip the input on asm files. For ifs files
4191  // we rely on the normal pipeline setup in the pipeline setup code above.
4192  if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
4193  InputType == types::TY_Asm)
4194  continue;
4195 
4196  Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4197 
4198  for (auto Phase : PhaseList) {
4199  switch (Phase) {
4200  default:
4201  llvm_unreachable(
4202  "IFS Pipeline can only consist of Compile followed by IfsMerge.");
4203  case phases::Compile: {
4204  // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
4205  // files where the .o file is located. The compile action can not
4206  // handle this.
4207  if (InputType == types::TY_Object)
4208  break;
4209 
4210  Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
4211  break;
4212  }
4213  case phases::IfsMerge: {
4214  assert(Phase == PhaseList.back() &&
4215  "merging must be final compilation step.");
4216  MergerInputs.push_back(Current);
4217  Current = nullptr;
4218  break;
4219  }
4220  }
4221  }
4222 
4223  // If we ended with something, add to the output list.
4224  if (Current)
4225  Actions.push_back(Current);
4226  }
4227 
4228  // Add an interface stubs merge action if necessary.
4229  if (!MergerInputs.empty())
4230  Actions.push_back(
4231  C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4232  }
4233 
4234  // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
4235  // Compile phase that prints out supported cpu models and quits.
4236  if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
4237  // Use the -mcpu=? flag as the dummy input to cc1.
4238  Actions.clear();
4239  Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
4240  Actions.push_back(
4241  C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
4242  for (auto &I : Inputs)
4243  I.second->claim();
4244  }
4245 
4246  // Claim ignored clang-cl options.
4247  Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
4248 
4249  // Claim --offload-host-only and --offload-compile-host-device, which may be
4250  // passed to non-CUDA compilations and should not trigger warnings there.
4251  Args.ClaimAllArgs(options::OPT_offload_host_only);
4252  Args.ClaimAllArgs(options::OPT_offload_host_device);
4253 }
4254 
4255 /// Returns the canonical name for the offloading architecture when using a HIP
4256 /// or CUDA architecture.
4258  const llvm::opt::DerivedArgList &Args,
4259  StringRef ArchStr,
4260  const llvm::Triple &Triple) {
4261  // Lookup the CUDA / HIP architecture string. Only report an error if we were
4262  // expecting the triple to be only NVPTX / AMDGPU.
4263  CudaArch Arch = StringToCudaArch(getProcessorFromTargetID(Triple, ArchStr));
4264  if (Triple.isNVPTX() &&
4265  (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch))) {
4266  C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4267  << "CUDA" << ArchStr;
4268  return StringRef();
4269  } else if (Triple.isAMDGPU() &&
4270  (Arch == CudaArch::UNKNOWN || !IsAMDGpuArch(Arch))) {
4271  C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4272  << "HIP" << ArchStr;
4273  return StringRef();
4274  }
4275 
4276  if (IsNVIDIAGpuArch(Arch))
4277  return Args.MakeArgStringRef(CudaArchToString(Arch));
4278 
4279  if (IsAMDGpuArch(Arch)) {
4280  llvm::StringMap<bool> Features;
4281  auto HIPTriple = getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs());
4282  if (!HIPTriple)
4283  return StringRef();
4284  auto Arch = parseTargetID(*HIPTriple, ArchStr, &Features);
4285  if (!Arch) {
4286  C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << ArchStr;
4287  C.setContainsError();
4288  return StringRef();
4289  }
4290  return Args.MakeArgStringRef(
4291  getCanonicalTargetID(Arch.getValue(), Features));
4292  }
4293 
4294  // If the input isn't CUDA or HIP just return the architecture.
4295  return ArchStr;
4296 }
4297 
4298 /// Checks if the set offloading architectures does not conflict. Returns the
4299 /// incompatible pair if a conflict occurs.
4303  if (Kind != Action::OFK_HIP)
4304  return None;
4305 
4306  std::set<StringRef> ArchSet;
4307  llvm::copy(Archs, std::inserter(ArchSet, ArchSet.begin()));
4308  return getConflictTargetIDCombination(ArchSet);
4309 }
4310 
4312 Driver::getOffloadArchs(Compilation &C, const llvm::opt::DerivedArgList &Args,
4313  Action::OffloadKind Kind, const ToolChain *TC) const {
4314  if (!TC)
4315  TC = &C.getDefaultToolChain();
4316 
4317  // --offload and --offload-arch options are mutually exclusive.
4318  if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
4319  Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
4320  options::OPT_no_offload_arch_EQ)) {
4321  C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
4322  << "--offload"
4323  << (Args.hasArgNoClaim(options::OPT_offload_arch_EQ)
4324  ? "--offload-arch"
4325  : "--no-offload-arch");
4326  }
4327 
4328  if (KnownArchs.find(TC) != KnownArchs.end())
4329  return KnownArchs.lookup(TC);
4330 
4332  for (auto &Arg : Args) {
4333  if (Arg->getOption().matches(options::OPT_offload_arch_EQ)) {
4334  Archs.insert(
4335  getCanonicalArchString(C, Args, Arg->getValue(), TC->getTriple()));
4336  } else if (Arg->getOption().matches(options::OPT_no_offload_arch_EQ)) {
4337  if (Arg->getValue() == StringRef("all"))
4338  Archs.clear();
4339  else
4340  Archs.erase(
4341  getCanonicalArchString(C, Args, Arg->getValue(), TC->getTriple()));
4342  }
4343  }
4344 
4345  if (auto ConflictingArchs = getConflictOffloadArchCombination(Archs, Kind)) {
4346  C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
4347  << ConflictingArchs.getValue().first
4348  << ConflictingArchs.getValue().second;
4349  C.setContainsError();
4350  }
4351 
4352  if (Archs.empty()) {
4353  if (Kind == Action::OFK_Cuda)
4354  Archs.insert(CudaArchToString(CudaArch::CudaDefault));
4355  else if (Kind == Action::OFK_HIP)
4356  Archs.insert(CudaArchToString(CudaArch::HIPDefault));
4357  else if (Kind == Action::OFK_OpenMP)
4358  Archs.insert(StringRef());
4359  } else {
4360  Args.ClaimAllArgs(options::OPT_offload_arch_EQ);
4361  Args.ClaimAllArgs(options::OPT_no_offload_arch_EQ);
4362  }
4363 
4364  return Archs;
4365 }
4366 
4368  llvm::opt::DerivedArgList &Args,
4369  const InputTy &Input,
4370  Action *HostAction) const {
4371  const Arg *Mode = Args.getLastArg(options::OPT_offload_host_only,
4372  options::OPT_offload_device_only,
4373  options::OPT_offload_host_device);
4374  const bool HostOnly =
4375  Mode && Mode->getOption().matches(options::OPT_offload_host_only);
4376  const bool DeviceOnly =
4377  Mode && Mode->getOption().matches(options::OPT_offload_device_only);
4378 
4379  // Don't build offloading actions if explicitly disabled or we do not have a
4380  // valid source input and compile action to embed it in. If preprocessing only
4381  // ignore embedding.
4382  if (HostOnly || !types::isSrcFile(Input.first) ||
4383  !(isa<CompileJobAction>(HostAction) ||
4385  return HostAction;
4386 
4387  ActionList OffloadActions;
4389 
4390  const Action::OffloadKind OffloadKinds[] = {
4392 
4393  for (Action::OffloadKind Kind : OffloadKinds) {
4395  ActionList DeviceActions;
4396 
4397  auto TCRange = C.getOffloadToolChains(Kind);
4398  for (auto TI = TCRange.first, TE = TCRange.second; TI != TE; ++TI)
4399  ToolChains.push_back(TI->second);
4400 
4401  if (ToolChains.empty())
4402  continue;
4403 
4404  types::ID InputType = Input.first;
4405  const Arg *InputArg = Input.second;
4406 
4407  // Get the product of all bound architectures and toolchains.
4409  for (const ToolChain *TC : ToolChains)
4410  for (StringRef Arch : getOffloadArchs(
4411  C, C.getArgsForToolChain(TC, "generic", Kind), Kind, TC))
4412  TCAndArchs.push_back(std::make_pair(TC, Arch));
4413 
4414  for (unsigned I = 0, E = TCAndArchs.size(); I != E; ++I)
4415  DeviceActions.push_back(C.MakeAction<InputAction>(*InputArg, InputType));
4416 
4417  if (DeviceActions.empty())
4418  return HostAction;
4419 
4420  auto PL = types::getCompilationPhases(*this, Args, InputType);
4421 
4422  for (phases::ID Phase : PL) {
4423  if (Phase == phases::Link) {
4424  assert(Phase == PL.back() && "linking must be final compilation step.");
4425  break;
4426  }
4427 
4428  auto TCAndArch = TCAndArchs.begin();
4429  for (Action *&A : DeviceActions) {
4430  A = ConstructPhaseAction(C, Args, Phase, A, Kind);
4431 
4432  if (isa<CompileJobAction>(A) && isa<CompileJobAction>(HostAction) &&
4433  Kind == Action::OFK_OpenMP) {
4434  // OpenMP offloading has a dependency on the host compile action to
4435  // identify which declarations need to be emitted. This shouldn't be
4436  // collapsed with any other actions so we can use it in the device.
4439  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4440  TCAndArch->second.data(), Kind);
4442  DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4443  A = C.MakeAction<OffloadAction>(HDep, DDep);
4444  } else if (isa<AssembleJobAction>(A) && Kind == Action::OFK_Cuda) {
4445  // The Cuda toolchain uses fatbinary as the linker phase to bundle the
4446  // PTX and Cubin output.
4447  ActionList FatbinActions;
4448  for (Action *A : {A, A->getInputs()[0]}) {
4450  DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4451  FatbinActions.emplace_back(
4452  C.MakeAction<OffloadAction>(DDep, A->getType()));
4453  }
4454  A = C.MakeAction<LinkJobAction>(FatbinActions, types::TY_CUDA_FATBIN);
4455  }
4456  ++TCAndArch;
4457  }
4458  }
4459 
4460  auto TCAndArch = TCAndArchs.begin();
4461  for (Action *A : DeviceActions) {
4462  DDeps.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4464  DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4465  OffloadActions.push_back(C.MakeAction<OffloadAction>(DDep, A->getType()));
4466  ++TCAndArch;
4467  }
4468  }
4469 
4470  if (DeviceOnly)
4471  return C.MakeAction<OffloadAction>(DDeps, types::TY_Nothing);
4472 
4473  Action *OffloadPackager =
4474  C.MakeAction<OffloadPackagerJobAction>(OffloadActions, types::TY_Image);
4476  DDep.add(*OffloadPackager, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4477  nullptr, Action::OFK_None);
4479  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4480  /*BoundArch=*/nullptr, isa<CompileJobAction>(HostAction) ? DDep : DDeps);
4481  return C.MakeAction<OffloadAction>(
4482  HDep, isa<CompileJobAction>(HostAction) ? DDep : DDeps);
4483 }
4484 
4486  Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
4487  Action::OffloadKind TargetDeviceOffloadKind) const {
4488  llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
4489 
4490  // Some types skip the assembler phase (e.g., llvm-bc), but we can't
4491  // encode this in the steps because the intermediate type depends on
4492  // arguments. Just special case here.
4493  if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
4494  return Input;
4495 
4496  // Build the appropriate action.
4497  switch (Phase) {
4498  case phases::Link:
4499  llvm_unreachable("link action invalid here.");
4500  case phases::IfsMerge:
4501  llvm_unreachable("ifsmerge action invalid here.");
4502  case phases::Preprocess: {
4503  types::ID OutputTy;
4504  // -M and -MM specify the dependency file name by altering the output type,
4505  // -if -MD and -MMD are not specified.
4506  if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
4507  !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
4508  OutputTy = types::TY_Dependencies;
4509  } else {
4510  OutputTy = Input->getType();
4511  // For these cases, the preprocessor is only translating forms, the Output
4512  // still needs preprocessing.
4513  if (!Args.hasFlag(options::OPT_frewrite_includes,
4514  options::OPT_fno_rewrite_includes, false) &&
4515  !Args.hasFlag(options::OPT_frewrite_imports,
4516  options::OPT_fno_rewrite_imports, false) &&
4517  !Args.hasFlag(options::OPT_fdirectives_only,
4518  options::OPT_fno_directives_only, false) &&
4520  OutputTy = types::getPreprocessedType(OutputTy);
4521  assert(OutputTy != types::TY_INVALID &&
4522  "Cannot preprocess this input type!");
4523  }
4524  return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
4525  }
4526  case phases::Precompile: {
4527  // API extraction should not generate an actual precompilation action.
4528  if (Args.hasArg(options::OPT_extract_api))
4529  return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4530 
4531  types::ID OutputTy = getPrecompiledType(Input->getType());
4532  assert(OutputTy != types::TY_INVALID &&
4533  "Cannot precompile this input type!");
4534 
4535  // If we're given a module name, precompile header file inputs as a
4536  // module, not as a precompiled header.
4537  const char *ModName = nullptr;
4538  if (OutputTy == types::TY_PCH) {
4539  if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
4540  ModName = A->getValue();
4541  if (ModName)
4542  OutputTy = types::TY_ModuleFile;
4543  }
4544 
4545  if (Args.hasArg(options::OPT_fsyntax_only)) {
4546  // Syntax checks should not emit a PCH file
4547  OutputTy = types::TY_Nothing;
4548  }
4549 
4550  if (ModName)
4551  return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
4552  ModName);
4553  return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
4554  }
4555  case phases::Compile: {
4556  if (Args.hasArg(options::OPT_fsyntax_only))
4557  return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
4558  if (Args.hasArg(options::OPT_rewrite_objc))
4559  return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
4560  if (Args.hasArg(options::OPT_rewrite_legacy_objc))
4561  return C.MakeAction<CompileJobAction>(Input,
4562  types::TY_RewrittenLegacyObjC);
4563  if (Args.hasArg(options::OPT__analyze))
4564  return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
4565  if (Args.hasArg(options::OPT__migrate))
4566  return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
4567  if (Args.hasArg(options::OPT_emit_ast))
4568  return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
4569  if (Args.hasArg(options::OPT_module_file_info))
4570  return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
4571  if (Args.hasArg(options::OPT_verify_pch))
4572  return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
4573  if (Args.hasArg(options::OPT_extract_api))
4574  return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4575  return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
4576  }
4577  case phases::Backend: {
4578  if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
4579  types::ID Output =
4580  Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4581  return C.MakeAction<BackendJobAction>(Input, Output);
4582  }
4583  if (isUsingLTO(/* IsOffload */ true) &&
4584  TargetDeviceOffloadKind != Action::OFK_None) {
4585  types::ID Output =
4586  Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4587  return C.MakeAction<BackendJobAction>(Input, Output);
4588  }
4589  if (Args.hasArg(options::OPT_emit_llvm) ||
4590  (TargetDeviceOffloadKind == Action::OFK_HIP &&
4591  Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4592  false))) {
4593  types::ID Output =
4594  Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
4595  return C.MakeAction<BackendJobAction>(Input, Output);
4596  }
4597  return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
4598  }
4599  case phases::Assemble:
4600  return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
4601  }
4602 
4603  llvm_unreachable("invalid phase in ConstructPhaseAction");
4604 }
4605 
4607  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4608 
4609  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4610 
4611  // It is an error to provide a -o option if we are making multiple output
4612  // files. There are exceptions:
4613  //
4614  // IfsMergeJob: when generating interface stubs enabled we want to be able to
4615  // generate the stub file at the same time that we generate the real
4616  // library/a.out. So when a .o, .so, etc are the output, with clang interface
4617  // stubs there will also be a .ifs and .ifso at the same location.
4618  //
4619  // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4620  // and -c is passed, we still want to be able to generate a .ifs file while
4621  // we are also generating .o files. So we allow more than one output file in
4622  // this case as well.
4623  //
4624  if (FinalOutput) {
4625  unsigned NumOutputs = 0;
4626  unsigned NumIfsOutputs = 0;
4627  for (const Action *A : C.getActions())
4628  if (A->getType() != types::TY_Nothing &&
4629  !(A->getKind() == Action::IfsMergeJobClass ||
4630  (A->getType() == clang::driver::types::TY_IFS_CPP &&
4632  0 == NumIfsOutputs++) ||
4633  (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
4634  A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
4635  ++NumOutputs;
4636 
4637  if (NumOutputs > 1) {
4638  Diag(clang::diag::err_drv_output_argument_with_multiple_files);
4639  FinalOutput = nullptr;
4640  }
4641  }
4642 
4643  const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
4644  if (RawTriple.isOSAIX()) {
4645  if (Arg *A = C.getArgs().getLastArg(options::OPT_G))
4646  Diag(diag::err_drv_unsupported_opt_for_target)
4647  << A->getSpelling() << RawTriple.str();
4648  if (LTOMode == LTOK_Thin)
4649  Diag(diag::err_drv_clang_unsupported) << "thinLTO on AIX";
4650  }
4651 
4652  // Collect the list of architectures.
4653  llvm::StringSet<> ArchNames;
4654  if (RawTriple.isOSBinFormatMachO())
4655  for (const Arg *A : C.getArgs())
4656  if (A->getOption().matches(options::OPT_arch))
4657  ArchNames.insert(A->getValue());
4658 
4659  // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4660  std::map<std::pair<const Action *, std::string>, InputInfoList> CachedResults;
4661  for (Action *A : C.getActions()) {
4662  // If we are linking an image for multiple archs then the linker wants
4663  // -arch_multiple and -final_output <final image name>. Unfortunately, this
4664  // doesn't fit in cleanly because we have to pass this information down.
4665  //
4666  // FIXME: This is a hack; find a cleaner way to integrate this into the
4667  // process.
4668  const char *LinkingOutput = nullptr;
4669  if (isa<LipoJobAction>(A)) {
4670  if (FinalOutput)
4671  LinkingOutput = FinalOutput->getValue();
4672  else
4673  LinkingOutput = getDefaultImageName();
4674  }
4675 
4676  BuildJobsForAction(C, A, &C.getDefaultToolChain(),
4677  /*BoundArch*/ StringRef(),
4678  /*AtTopLevel*/ true,
4679  /*MultipleArchs*/ ArchNames.size() > 1,
4680  /*LinkingOutput*/ LinkingOutput, CachedResults,
4681  /*TargetDeviceOffloadKind*/ Action::OFK_None);
4682  }
4683 
4684  // If we have more than one job, then disable integrated-cc1 for now. Do this
4685  // also when we need to report process execution statistics.
4686  if (C.getJobs().size() > 1 || CCPrintProcessStats)
4687  for (auto &J : C.getJobs())
4688  J.InProcess = false;
4689 
4690  if (CCPrintProcessStats) {
4691  C.setPostCallback([=](const Command &Cmd, int Res) {
4693  Cmd.getProcessStatistics();
4694  if (!ProcStat)
4695  return;
4696 
4697  const char *LinkingOutput = nullptr;
4698  if (FinalOutput)
4699  LinkingOutput = FinalOutput->getValue();
4700  else if (!Cmd.getOutputFilenames().empty())
4701  LinkingOutput = Cmd.getOutputFilenames().front().c_str();
4702  else
4703  LinkingOutput = getDefaultImageName();
4704 
4705  if (CCPrintStatReportFilename.empty()) {
4706  using namespace llvm;
4707  // Human readable output.
4708  outs() << sys::path::filename(Cmd.getExecutable()) << ": "
4709  << "output=" << LinkingOutput;
4710  outs() << ", total="
4711  << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
4712  << ", user="
4713  << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
4714  << ", mem=" << ProcStat->PeakMemory << " Kb\n";
4715  } else {
4716  // CSV format.
4717  std::string Buffer;
4718  llvm::raw_string_ostream Out(Buffer);
4719  llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
4720  /*Quote*/ true);
4721  Out << ',';
4722  llvm::sys::printArg(Out, LinkingOutput, true);
4723  Out << ',' << ProcStat->TotalTime.count() << ','
4724  << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
4725  << '\n';
4726  Out.flush();
4727  std::error_code EC;
4728  llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC,
4729  llvm::sys::fs::OF_Append |
4730  llvm::sys::fs::OF_Text);
4731  if (EC)
4732  return;
4733  auto L = OS.lock();
4734  if (!L) {
4735  llvm::errs() << "ERROR: Cannot lock file "
4736  << CCPrintStatReportFilename << ": "
4737  << toString(L.takeError()) << "\n";
4738  return;
4739  }
4740  OS << Buffer;
4741  OS.flush();
4742  }
4743  });
4744  }
4745 
4746  // If the user passed -Qunused-arguments or there were errors, don't warn
4747  // about any unused arguments.
4748  if (Diags.hasErrorOccurred() ||
4749  C.getArgs().hasArg(options::OPT_Qunused_arguments))
4750  return;
4751 
4752  // Claim -### here.
4753  (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
4754 
4755  // Claim --driver-mode, --rsp-quoting, it was handled earlier.
4756  (void)C.getArgs().hasArg(options::OPT_driver_mode);
4757  (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
4758 
4759  for (Arg *A : C.getArgs()) {
4760  // FIXME: It would be nice to be able to send the argument to the
4761  // DiagnosticsEngine, so that extra values, position, and so on could be
4762  // printed.
4763  if (!A->isClaimed()) {
4764  if (A->getOption().hasFlag(options::NoArgumentUnused))
4765  continue;
4766 
4767  // Suppress the warning automatically if this is just a flag, and it is an
4768  // instance of an argument we already claimed.
4769  const Option &Opt = A->getOption();
4770  if (Opt.getKind() == Option::FlagClass) {
4771  bool DuplicateClaimed = false;
4772 
4773  for (const Arg *AA : C.getArgs().filtered(&Opt)) {
4774  if (AA->isClaimed()) {
4775  DuplicateClaimed = true;
4776  break;
4777  }
4778  }
4779 
4780  if (DuplicateClaimed)
4781  continue;
4782  }
4783 
4784  // In clang-cl, don't mention unknown arguments here since they have
4785  // already been warned about.
4786  if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
4787  Diag(clang::diag::warn_drv_unused_argument)
4788  << A->getAsString(C.getArgs());
4789  }
4790  }
4791 }
4792 
4793 namespace {
4794 /// Utility class to control the collapse of dependent actions and select the
4795 /// tools accordingly.
4796 class ToolSelector final {
4797  /// The tool chain this selector refers to.
4798  const ToolChain &TC;
4799 
4800  /// The compilation this selector refers to.
4801  const Compilation &C;
4802 
4803  /// The base action this selector refers to.
4804  const JobAction *BaseAction;
4805 
4806  /// Set to true if the current toolchain refers to host actions.
4807  bool IsHostSelector;
4808 
4809  /// Set to true if save-temps and embed-bitcode functionalities are active.
4810  bool SaveTemps;
4811  bool EmbedBitcode;
4812 
4813  /// Get previous dependent action or null if that does not exist. If
4814  /// \a CanBeCollapsed is false, that action must be legal to collapse or
4815  /// null will be returned.
4816  const JobAction *getPrevDependentAction(const ActionList &Inputs,
4817  ActionList &SavedOffloadAction,
4818  bool CanBeCollapsed = true) {
4819  // An option can be collapsed only if it has a single input.
4820  if (Inputs.size() != 1)
4821  return nullptr;
4822 
4823  Action *CurAction = *Inputs.begin();
4824  if (CanBeCollapsed &&
4826  return nullptr;
4827 
4828  // If the input action is an offload action. Look through it and save any
4829  // offload action that can be dropped in the event of a collapse.
4830  if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
4831  // If the dependent action is a device action, we will attempt to collapse
4832  // only with other device actions. Otherwise, we would do the same but
4833  // with host actions only.
4834  if (!IsHostSelector) {
4835  if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
4836  CurAction =
4837  OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
4838  if (CanBeCollapsed &&
4840  return nullptr;
4841  SavedOffloadAction.push_back(OA);
4842  return dyn_cast<JobAction>(CurAction);
4843  }
4844  } else if (OA->hasHostDependence()) {
4845  CurAction = OA->getHostDependence();
4846  if (CanBeCollapsed &&
4848  return nullptr;
4849  SavedOffloadAction.push_back(OA);
4850  return dyn_cast<JobAction>(CurAction);
4851  }
4852  return nullptr;
4853  }
4854 
4855  return dyn_cast<JobAction>(CurAction);
4856  }
4857 
4858  /// Return true if an assemble action can be collapsed.
4859  bool canCollapseAssembleAction() const {
4860  return TC.useIntegratedAs() && !SaveTemps &&
4861  !C.getArgs().hasArg(options::OPT_via_file_asm) &&
4862  !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
4863  !C.getArgs().hasArg(options::OPT__SLASH_Fa);
4864  }
4865 
4866  /// Return true if a preprocessor action can be collapsed.
4867  bool canCollapsePreprocessorAction() const {
4868  return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
4869  !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
4870  !C.getArgs().hasArg(options::OPT_rewrite_objc);
4871  }
4872 
4873  /// Struct that relates an action with the offload actions that would be
4874  /// collapsed with it.
4875  struct JobActionInfo final {
4876  /// The action this info refers to.
4877  const JobAction *JA = nullptr;
4878  /// The offload actions we need to take care off if this action is
4879  /// collapsed.
4880  ActionList SavedOffloadAction;
4881  };
4882 
4883  /// Append collapsed offload actions from the give nnumber of elements in the
4884  /// action info array.
4885  static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
4886  ArrayRef<JobActionInfo> &ActionInfo,
4887  unsigned ElementNum) {
4888  assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
4889  for (unsigned I = 0; I < ElementNum; ++I)
4890  CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
4891  ActionInfo[I].SavedOffloadAction.end());
4892  }
4893 
4894  /// Functions that attempt to perform the combining. They detect if that is
4895  /// legal, and if so they update the inputs \a Inputs and the offload action
4896  /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
4897  /// the combined action is returned. If the combining is not legal or if the
4898  /// tool does not exist, null is returned.
4899  /// Currently three kinds of collapsing are supported:
4900  /// - Assemble + Backend + Compile;
4901  /// - Assemble + Backend ;
4902  /// - Backend + Compile.
4903  const Tool *
4904  combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4905  ActionList &Inputs,
4906  ActionList &CollapsedOffloadAction) {
4907  if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
4908  return nullptr;
4909  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4910  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4911  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
4912  if (!AJ || !BJ || !CJ)
4913  return nullptr;
4914 
4915  // Get compiler tool.
4916  const Tool *T = TC.SelectTool(*CJ);
4917  if (!T)
4918  return nullptr;
4919 
4920  // Can't collapse if we don't have codegen support unless we are
4921  // emitting LLVM IR.
4922  bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
4923  if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
4924  return nullptr;
4925 
4926  // When using -fembed-bitcode, it is required to have the same tool (clang)
4927  // for both CompilerJA and BackendJA. Otherwise, combine two stages.
4928  if (EmbedBitcode) {
4929  const Tool *BT = TC.SelectTool(*BJ);
4930  if (BT == T)
4931  return nullptr;
4932  }
4933 
4934  if (!T->hasIntegratedAssembler())
4935  return nullptr;
4936 
4937  Inputs = CJ->getInputs();
4938  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4939  /*NumElements=*/3);
4940  return T;
4941  }
4942  const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
4943  ActionList &Inputs,
4944  ActionList &CollapsedOffloadAction) {
4945  if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
4946  return nullptr;
4947  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4948  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4949  if (!AJ || !BJ)
4950  return nullptr;
4951 
4952  // Get backend tool.
4953  const Tool *T = TC.SelectTool(*BJ);
4954  if (!T)
4955  return nullptr;
4956 
4957  if (!T->hasIntegratedAssembler())
4958  return nullptr;
4959 
4960  Inputs = BJ->getInputs();
4961  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4962  /*NumElements=*/2);
4963  return T;
4964  }
4965  const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4966  ActionList &Inputs,
4967  ActionList &CollapsedOffloadAction) {
4968  if (ActionInfo.size() < 2)
4969  return nullptr;
4970  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
4971  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
4972  if (!BJ || !CJ)
4973  return nullptr;
4974 
4975  // Check if the initial input (to the compile job or its predessor if one
4976  // exists) is LLVM bitcode. In that case, no preprocessor step is required
4977  // and we can still collapse the compile and backend jobs when we have
4978  // -save-temps. I.e. there is no need for a separate compile job just to
4979  // emit unoptimized bitcode.
4980  bool InputIsBitcode = true;
4981  for (size_t i = 1; i < ActionInfo.size(); i++)
4982  if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
4983  ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
4984  InputIsBitcode = false;
4985  break;
4986  }
4987  if (!InputIsBitcode && !canCollapsePreprocessorAction())
4988  return nullptr;
4989 
4990  // Get compiler tool.
4991  const Tool *T = TC.SelectTool(*CJ);
4992  if (!T)
4993  return nullptr;
4994 
4995  // Can't collapse if we don't have codegen support unless we are
4996  // emitting LLVM IR.
4997  bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
4998  if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
4999  return nullptr;
5000 
5001  if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
5002  return nullptr;
5003 
5004  Inputs = CJ->getInputs();
5005  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5006  /*NumElements=*/2);
5007  return T;
5008  }
5009 
5010  /// Updates the inputs if the obtained tool supports combining with
5011  /// preprocessor action, and the current input is indeed a preprocessor
5012  /// action. If combining results in the collapse of offloading actions, those
5013  /// are appended to \a CollapsedOffloadAction.
5014  void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
5015  ActionList &CollapsedOffloadAction) {
5016  if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
5017  return;
5018 
5019  // Attempt to get a preprocessor action dependence.
5020  ActionList PreprocessJobOffloadActions;
5021  ActionList NewInputs;
5022  for (Action *A : Inputs) {
5023  auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
5024  if (!PJ || !isa<PreprocessJobAction>(PJ)) {
5025  NewInputs.push_back(A);
5026  continue;
5027  }
5028 
5029  // This is legal to combine. Append any offload action we found and add the
5030  // current input to preprocessor inputs.
5031  CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
5032  PreprocessJobOffloadActions.end());
5033  NewInputs.append(PJ->input_begin(), PJ->input_end());
5034  }
5035  Inputs = NewInputs;
5036  }
5037 
5038 public:
5039  ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
5040  const Compilation &C, bool SaveTemps, bool EmbedBitcode)
5041  : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
5043  assert(BaseAction && "Invalid base action.");
5044  IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
5045  }
5046 
5047  /// Check if a chain of actions can be combined and return the tool that can
5048  /// handle the combination of actions. The pointer to the current inputs \a
5049  /// Inputs and the list of offload actions \a CollapsedOffloadActions
5050  /// connected to collapsed actions are updated accordingly. The latter enables
5051  /// the caller of the selector to process them afterwards instead of just
5052  /// dropping them. If no suitable tool is found, null will be returned.
5053  const Tool *getTool(ActionList &Inputs,
5054  ActionList &CollapsedOffloadAction) {
5055  //
5056  // Get the largest chain of actions that we could combine.
5057  //
5058 
5059  SmallVector<JobActionInfo, 5> ActionChain(1);
5060  ActionChain.back().JA = BaseAction;
5061  while (ActionChain.back().JA) {
5062  const Action *CurAction = ActionChain.back().JA;
5063 
5064  // Grow the chain by one element.
5065  ActionChain.resize(ActionChain.size() + 1);
5066  JobActionInfo &AI = ActionChain.back();
5067 
5068  // Attempt to fill it with the
5069  AI.JA =
5070  getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
5071  }
5072 
5073  // Pop the last action info as it could not be filled.
5074  ActionChain.pop_back();
5075 
5076  //
5077  // Attempt to combine actions. If all combining attempts failed, just return
5078  // the tool of the provided action. At the end we attempt to combine the
5079  // action with any preprocessor action it may depend on.
5080  //
5081 
5082  const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
5083  CollapsedOffloadAction);
5084  if (!T)
5085  T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
5086  if (!T)
5087  T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
5088  if (!T) {
5089  Inputs = BaseAction->getInputs();
5090  T = TC.SelectTool(*BaseAction);
5091  }
5092 
5093  combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
5094  return T;
5095  }
5096 };
5097 }
5098 
5099 /// Return a string that uniquely identifies the result of a job. The bound arch
5100 /// is not necessarily represented in the toolchain's triple -- for example,
5101 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
5102 /// Also, we need to add the offloading device kind, as the same tool chain can
5103 /// be used for host and device for some programming models, e.g. OpenMP.
5105  StringRef BoundArch,
5106  Action::OffloadKind OffloadKind) {
5107  std::string TriplePlusArch = TC->getTriple().normalize();
5108  if (!BoundArch.empty()) {
5109  TriplePlusArch += "-";
5110  TriplePlusArch += BoundArch;
5111  }
5112  TriplePlusArch += "-";
5113  TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
5114  return TriplePlusArch;
5115 }
5116 
5118  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5119  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5120  std::map<std::pair<const Action *, std::string>, InputInfoList>
5121  &CachedResults,
5122  Action::OffloadKind TargetDeviceOffloadKind) const {
5123  std::pair<const Action *, std::string> ActionTC = {
5124  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5125  auto CachedResult = CachedResults.find(ActionTC);
5126  if (CachedResult != CachedResults.end()) {
5127  return CachedResult->second;
5128  }
5129  InputInfoList Result = BuildJobsForActionNoCache(
5130  C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
5131  CachedResults, TargetDeviceOffloadKind);
5132  CachedResults[ActionTC] = Result;
5133  return Result;
5134 }
5135 
5136 InputInfoList Driver::BuildJobsForActionNoCache(
5137  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5138  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5139  std::map<std::pair<const Action *, std::string>, InputInfoList>
5140  &CachedResults,
5141  Action::OffloadKind TargetDeviceOffloadKind) const {
5142  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
5143 
5144  InputInfoList OffloadDependencesInputInfo;
5145  bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
5146  if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
5147  // The 'Darwin' toolchain is initialized only when its arguments are
5148  // computed. Get the default arguments for OFK_None to ensure that
5149  // initialization is performed before processing the offload action.
5150  // FIXME: Remove when darwin's toolchain is initialized during construction.
5151  C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
5152 
5153  // The offload action is expected to be used in four different situations.
5154  //
5155  // a) Set a toolchain/architecture/kind for a host action:
5156  // Host Action 1 -> OffloadAction -> Host Action 2
5157  //
5158  // b) Set a toolchain/architecture/kind for a device action;
5159  // Device Action 1 -> OffloadAction -> Device Action 2
5160  //
5161  // c) Specify a device dependence to a host action;
5162  // Device Action 1 _
5163  // \
5164  // Host Action 1 ---> OffloadAction -> Host Action 2
5165  //
5166  // d) Specify a host dependence to a device action.
5167  // Host Action 1 _
5168  // \
5169  // Device Action 1 ---> OffloadAction -> Device Action 2
5170  //
5171  // For a) and b), we just return the job generated for the dependence. For
5172  // c) and d) we override the current action with the host/device dependence
5173  // if the current toolchain is host/device and set the offload dependences
5174  // info with the jobs obtained from the device/host dependence(s).
5175 
5176  // If there is a single device option, just generate the job for it.
5177  if (OA->hasSingleDeviceDependence()) {
5178  InputInfoList DevA;
5179  OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
5180  const char *DepBoundArch) {
5181  DevA =
5182  BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
5183  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
5184  CachedResults, DepA->getOffloadingDeviceKind());
5185  });
5186  return DevA;
5187  }
5188 
5189  // If 'Action 2' is host, we generate jobs for the device dependences and
5190  // override the current action with the host dependence. Otherwise, we
5191  // generate the host dependences and override the action with the device
5192  // dependence. The dependences can't therefore be a top-level action.
5193  OA->doOnEachDependence(
5194  /*IsHostDependence=*/BuildingForOffloadDevice,
5195  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5196  OffloadDependencesInputInfo.append(BuildJobsForAction(
5197  C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
5198  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
5199  DepA->getOffloadingDeviceKind()));
5200  });
5201 
5202  A = BuildingForOffloadDevice
5203  ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
5204  : OA->getHostDependence();
5205 
5206  // We may have already built this action as a part of the offloading
5207  // toolchain, return the cached input if so.
5208  std::pair<const Action *, std::string> ActionTC = {
5209  OA->getHostDependence(),
5210  GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5211  if (CachedResults.find(ActionTC) != CachedResults.end()) {
5212  InputInfoList Inputs = CachedResults[ActionTC];
5213  Inputs.append(OffloadDependencesInputInfo);
5214  return Inputs;
5215  }
5216  }
5217 
5218  if (const InputAction *IA = dyn_cast<InputAction>(A)) {
5219  // FIXME: It would be nice to not claim this here; maybe the old scheme of
5220  // just using Args was better?
5221  const Arg &Input = IA->getInputArg();
5222  Input.claim();
5223  if (Input.getOption().matches(options::OPT_INPUT)) {
5224  const char *Name = Input.getValue();
5225  return {InputInfo(A, Name, /* _BaseInput = */ Name)};
5226  }
5227  return {InputInfo(A, &Input, /* _BaseInput = */ "")};
5228  }
5229 
5230  if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
5231  const ToolChain *TC;
5232  StringRef ArchName = BAA->getArchName();
5233 
5234  if (!ArchName.empty())
5235  TC = &getToolChain(C.getArgs(),
5236  computeTargetTriple(*this, TargetTriple,
5237  C.getArgs(), ArchName));
5238  else
5239  TC = &C.getDefaultToolChain();
5240 
5241  return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
5242  MultipleArchs, LinkingOutput, CachedResults,
5243  TargetDeviceOffloadKind);
5244  }
5245 
5246 
5247  ActionList Inputs = A->getInputs();
5248 
5249  const JobAction *JA = cast<JobAction>(A);
5250  ActionList CollapsedOffloadActions;
5251 
5252  ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
5254  const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
5255 
5256  if (!T)
5257  return {InputInfo()};
5258 
5259  if (BuildingForOffloadDevice &&
5261  if (TC->getTriple().isAMDGCN()) {
5262  // AMDGCN treats backend and assemble actions as no-op because
5263  // linker does not support object files.
5264  if (const BackendJobAction *BA = dyn_cast<BackendJobAction>(A)) {
5265  return BuildJobsForAction(C, *BA->input_begin(), TC, BoundArch,
5266  AtTopLevel, MultipleArchs, LinkingOutput,
5267  CachedResults, TargetDeviceOffloadKind);
5268  }
5269 
5270  if (const AssembleJobAction *AA = dyn_cast<AssembleJobAction>(A)) {
5271  return BuildJobsForAction(C, *AA->input_begin(), TC, BoundArch,
5272  AtTopLevel, MultipleArchs, LinkingOutput,
5273  CachedResults, TargetDeviceOffloadKind);
5274  }
5275  }
5276  }
5277 
5278  // If we've collapsed action list that contained OffloadAction we
5279  // need to build jobs for host/device-side inputs it may have held.
5280  for (const auto *OA : CollapsedOffloadActions)
5281  cast<OffloadAction>(OA)->doOnEachDependence(
5282  /*IsHostDependence=*/BuildingForOffloadDevice,
5283  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5284  OffloadDependencesInputInfo.append(BuildJobsForAction(
5285  C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
5286  /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
5287  DepA->getOffloadingDeviceKind()));
5288  });
5289 
5290  // Only use pipes when there is exactly one input.
5291  InputInfoList InputInfos;
5292  for (const Action *Input : Inputs) {
5293  // Treat dsymutil and verify sub-jobs as being at the top-level too, they
5294  // shouldn't get temporary output names.
5295  // FIXME: Clean this up.
5296  bool SubJobAtTopLevel =
5297  AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
5298  InputInfos.append(BuildJobsForAction(
5299  C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
5300  CachedResults, A->getOffloadingDeviceKind()));
5301  }
5302 
5303  // Always use the first file input as the base input.
5304  const char *BaseInput = InputInfos[0].getBaseInput();
5305  for (auto &Info : InputInfos) {
5306  if (Info.isFilename()) {
5307  BaseInput = Info.getBaseInput();
5308  break;
5309  }
5310  }
5311 
5312  // ... except dsymutil actions, which use their actual input as the base
5313  // input.
5314  if (JA->getType() == types::TY_dSYM)
5315  BaseInput = InputInfos[0].getFilename();
5316 
5317  // ... and in header module compilations, which use the module name.
5318  if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
5319  BaseInput = ModuleJA->getModuleName();
5320 
5321  // Append outputs of offload device jobs to the input list
5322  if (!OffloadDependencesInputInfo.empty())
5323  InputInfos.append(OffloadDependencesInputInfo.begin(),
5324  OffloadDependencesInputInfo.end());
5325 
5326  // Set the effective triple of the toolchain for the duration of this job.
5327  llvm::Triple EffectiveTriple;
5328  const ToolChain &ToolTC = T->getToolChain();
5329  const ArgList &Args =
5330  C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
5331  if (InputInfos.size() != 1) {
5332  EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
5333  } else {
5334  // Pass along the input type if it can be unambiguously determined.
5335  EffectiveTriple = llvm::Triple(
5336  ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
5337  }
5338  RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
5339 
5340  // Determine the place to write output to, if any.
5341  InputInfo Result;
5342  InputInfoList UnbundlingResults;
5343  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
5344  // If we have an unbundling job, we need to create results for all the
5345  // outputs. We also update the results cache so that other actions using
5346  // this unbundling action can get the right results.
5347  for (auto &UI : UA->getDependentActionsInfo()) {
5348  assert(UI.DependentOffloadKind != Action::OFK_None &&
5349  "Unbundling with no offloading??");
5350 
5351  // Unbundling actions are never at the top level. When we generate the
5352  // offloading prefix, we also do that for the host file because the
5353  // unbundling action does not change the type of the output which can
5354  // cause a overwrite.
5356  UI.DependentOffloadKind,
5357  UI.DependentToolChain->getTriple().normalize(),
5358  /*CreatePrefixForHost=*/true);
5359  auto CurI = InputInfo(
5360  UA,
5361  GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
5362  /*AtTopLevel=*/false,
5363  MultipleArchs ||
5364  UI.DependentOffloadKind == Action::OFK_HIP,
5365  OffloadingPrefix),
5366  BaseInput);
5367  // Save the unbundling result.
5368  UnbundlingResults.push_back(CurI);
5369 
5370  // Get the unique string identifier for this dependence and cache the
5371  // result.
5372  StringRef Arch;
5373  if (TargetDeviceOffloadKind == Action::OFK_HIP) {
5374  if (UI.DependentOffloadKind == Action::OFK_Host)
5375  Arch = StringRef();
5376  else
5377  Arch = UI.DependentBoundArch;
5378  } else
5379  Arch = BoundArch;
5380 
5381  CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
5382  UI.DependentOffloadKind)}] = {
5383  CurI};
5384  }
5385 
5386  // Now that we have all the results generated, select the one that should be
5387  // returned for the current depending action.
5388  std::pair<const Action *, std::string> ActionTC = {
5389  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5390  assert(CachedResults.find(ActionTC) != CachedResults.end() &&
5391  "Result does not exist??");
5392  Result = CachedResults[ActionTC].front();
5393  } else if (JA->getType() == types::TY_Nothing)
5394  Result = {InputInfo(A, BaseInput)};
5395  else {
5396  // We only have to generate a prefix for the host if this is not a top-level
5397  // action.
5399  A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
5400  /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
5401  !AtTopLevel);
5402  if (isa<OffloadWrapperJobAction>(JA)) {
5403  if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
5404  BaseInput = FinalOutput->getValue();
5405  else
5406  BaseInput = getDefaultImageName();
5407  BaseInput =
5408  C.getArgs().MakeArgString(std::string(BaseInput) + "-wrapper");
5409  }
5410  Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
5411  AtTopLevel, MultipleArchs,
5412  OffloadingPrefix),
5413  BaseInput);
5414  }
5415 
5417  llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
5418  << " - \"" << T->getName() << "\", inputs: [";
5419  for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
5420  llvm::errs() << InputInfos[i].getAsString();
5421  if (i + 1 != e)
5422  llvm::errs() << ", ";
5423  }
5424  if (UnbundlingResults.empty())
5425  llvm::errs() << "], output: " << Result.getAsString() << "\n";
5426  else {
5427  llvm::errs() << "], outputs: [";
5428  for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
5429  llvm::errs() << UnbundlingResults[i].getAsString();
5430  if (i + 1 != e)
5431  llvm::errs() << ", ";
5432  }
5433  llvm::errs() << "] \n";
5434  }
5435  } else {
5436  if (UnbundlingResults.empty())
5437  T->ConstructJob(
5438  C, *JA, Result, InputInfos,
5439  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5440  LinkingOutput);
5441  else
5443  C, *JA, UnbundlingResults, InputInfos,
5444  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5445  LinkingOutput);
5446  }
5447  return {Result};
5448 }
5449 
5450 const char *Driver::getDefaultImageName() const {
5451  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
5452  return Target.isOSWindows() ? "a.exe" : "a.out";
5453 }
5454 
5455 /// Create output filename based on ArgValue, which could either be a
5456 /// full filename, filename without extension, or a directory. If ArgValue
5457 /// does not provide a filename, then use BaseName, and use the extension
5458 /// suitable for FileType.
5459 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
5460  StringRef BaseName,
5461  types::ID FileType) {
5462  SmallString<128> Filename = ArgValue;
5463 
5464  if (ArgValue.empty()) {
5465  // If the argument is empty, output to BaseName in the current dir.
5466  Filename = BaseName;
5467  } else if (llvm::sys::path::is_separator(Filename.back())) {
5468  // If the argument is a directory, output to BaseName in that dir.
5469  llvm::sys::path::append(Filename, BaseName);
5470  }
5471 
5472  if (!llvm::sys::path::has_extension(ArgValue)) {
5473  // If the argument didn't provide an extension, then set it.
5474  const char *Extension = types::getTypeTempSuffix(FileType, true);
5475 
5476  if (FileType == types::TY_Image &&
5477  Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
5478  // The output file is a dll.
5479  Extension = "dll";
5480  }
5481 
5482  llvm::sys::path::replace_extension(Filename, Extension);
5483  }
5484 
5485  return Args.MakeArgString(Filename.c_str());
5486 }
5487 
5488 static bool HasPreprocessOutput(const Action &JA) {
5489  if (isa<PreprocessJobAction>(JA))
5490  return true;
5491  if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
5492  return true;
5493  if (isa<OffloadBundlingJobAction>(JA) &&
5494  HasPreprocessOutput(*(JA.getInputs()[0])))
5495  return true;
5496  return false;
5497 }
5498 
5500  const char *BaseInput,
5501  StringRef OrigBoundArch, bool AtTopLevel,
5502  bool MultipleArchs,
5503  StringRef OffloadingPrefix) const {
5504  std::string BoundArch = OrigBoundArch.str();
5505  if (is_style_windows(llvm::sys::path::Style::native)) {
5506  // BoundArch may contains ':', which is invalid in file names on Windows,
5507  // therefore replace it with '%'.
5508  std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
5509  }
5510 
5511  llvm::PrettyStackTraceString CrashInfo("Computing output path");
5512  // Output to a user requested destination?
5513  if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
5514  if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
5515  return C.addResultFile(FinalOutput->getValue(), &JA);
5516  }
5517 
5518  // For /P, preprocess to file named after BaseInput.
5519  if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
5520  assert(AtTopLevel && isa<PreprocessJobAction>(JA));
5521  StringRef BaseName = llvm::sys::path::filename(BaseInput);
5522  StringRef NameArg;
5523  if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
5524  NameArg = A->getValue();
5525  return C.addResultFile(
5526  MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
5527  &JA);
5528  }
5529 
5530  // Default to writing to stdout?
5531  if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
5532  return "-";
5533  }
5534 
5535  if (JA.getType() == types::TY_ModuleFile &&
5536  C.getArgs().getLastArg(options::OPT_module_file_info)) {
5537  return "-";
5538  }
5539 
5540  // Is this the assembly listing for /FA?
5541  if (JA.getType() == types::TY_PP_Asm &&
5542  (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
5543  C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
5544  // Use /Fa and the input filename to determine the asm file name.
5545  StringRef BaseName = llvm::sys::path::filename(BaseInput);
5546  StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
5547  return C.addResultFile(
5548  MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
5549  &JA);
5550  }
5551 
5552  // Output to a temporary file?
5553  if ((!AtTopLevel && !isSaveTempsEnabled() &&
5554  !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
5555  CCGenDiagnostics) {
5556  StringRef Name = llvm::sys::path::filename(BaseInput);
5557  std::pair<StringRef, StringRef> Split = Name.split('.');
5558  SmallString<128> TmpName;
5559  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
5560  Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
5561  if (CCGenDiagnostics && A) {
5562  SmallString<128> CrashDirectory(A->getValue());
5563  if (!getVFS().exists(CrashDirectory))
5564  llvm::sys::fs::create_directories(CrashDirectory);
5565  llvm::sys::path::append(CrashDirectory, Split.first);
5566  const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
5567  std::error_code EC = llvm::sys::fs::createUniqueFile(
5568  CrashDirectory + Middle + Suffix, TmpName);
5569  if (EC) {
5570  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5571  return "";
5572  }
5573  } else {
5574  if (MultipleArchs && !BoundArch.empty()) {
5575  TmpName = GetTemporaryDirectory(Split.first);
5576  llvm::sys::path::append(TmpName,
5577  Split.first + "-" + BoundArch + "." + Suffix);
5578  } else {
5579  TmpName = GetTemporaryPath(Split.first, Suffix);
5580  }
5581  }
5582  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5583  }
5584 
5585  SmallString<128> BasePath(BaseInput);
5586  SmallString<128> ExternalPath("");
5587  StringRef BaseName;
5588 
5589  // Dsymutil actions should use the full path.
5590  if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
5591  ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
5592  // We use posix style here because the tests (specifically
5593  // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
5594  // even on Windows and if we don't then the similar test covering this
5595  // fails.
5596  llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
5597  llvm::sys::path::filename(BasePath));
5598  BaseName = ExternalPath;
5599  } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
5600  BaseName = BasePath;
5601  else
5602  BaseName = llvm::sys::path::filename(BasePath);
5603 
5604  // Determine what the derived output name should be.
5605  const char *NamedOutput;
5606 
5607  if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
5608  C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
5609  // The /Fo or /o flag decides the object filename.
5610  StringRef Val =
5611  C.getArgs()
5612  .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
5613  ->getValue();
5614  NamedOutput =
5615  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
5616  } else if (JA.getType() == types::TY_Image &&
5617  C.getArgs().hasArg(options::OPT__SLASH_Fe,
5618  options::OPT__SLASH_o)) {
5619  // The /Fe or /o flag names the linked file.
5620  StringRef Val =
5621  C.getArgs()
5622  .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
5623  ->getValue();
5624  NamedOutput =
5625  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
5626  } else if (JA.getType() == types::TY_Image) {
5627  if (IsCLMode()) {
5628  // clang-cl uses BaseName for the executable name.
5629  NamedOutput =
5630  MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
5631  } else {
5633  // HIP image for device compilation with -fno-gpu-rdc is per compilation
5634  // unit.
5635  bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5636  !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
5637  options::OPT_fno_gpu_rdc, false);
5638  if (IsHIPNoRDC) {
5639  Output = BaseName;
5640  llvm::sys::path::replace_extension(Output, "");
5641  }
5642  Output += OffloadingPrefix;
5643  if (MultipleArchs && !BoundArch.empty()) {
5644  Output += "-";
5645  Output.append(BoundArch);
5646  }
5647  if (IsHIPNoRDC)
5648  Output += ".out";
5649  NamedOutput = C.getArgs().MakeArgString(Output.c_str());
5650  }
5651  } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
5652  NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
5653  } else {
5654  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
5655  assert(Suffix && "All types used for output should have a suffix.");
5656 
5657  std::string::size_type End = std::string::npos;
5659  End = BaseName.rfind('.');
5660  SmallString<128> Suffixed(BaseName.substr(0, End));
5661  Suffixed += OffloadingPrefix;
5662  if (MultipleArchs && !BoundArch.empty()) {
5663  Suffixed += "-";
5664  Suffixed.append(BoundArch);
5665  }
5666  // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
5667  // the unoptimized bitcode so that it does not get overwritten by the ".bc"
5668  // optimized bitcode output.
5669  auto IsHIPRDCInCompilePhase = [](const JobAction &JA,
5670  const llvm::opt::DerivedArgList &Args) {
5671  // The relocatable compilation in HIP implies -emit-llvm. Similarly, use a
5672  // ".tmp.bc" suffix for the unoptimized bitcode (generated in the compile
5673  // phase.)
5674  return isa<CompileJobAction>(JA) &&
5676  Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
5677  false);
5678  };
5679  if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
5680  (C.getArgs().hasArg(options::OPT_emit_llvm) ||
5681  IsHIPRDCInCompilePhase(JA, C.getArgs())))
5682  Suffixed += ".tmp";
5683  Suffixed += '.';
5684  Suffixed += Suffix;
5685  NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
5686  }
5687 
5688  // Prepend object file path if -save-temps=obj
5689  if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
5690  JA.getType() != types::TY_PCH) {
5691  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
5692  SmallString<128> TempPath(FinalOutput->getValue());
5693  llvm::sys::path::remove_filename(TempPath);
5694  StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
5695  llvm::sys::path::append(TempPath, OutputFileName);
5696  NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
5697  }
5698 
5699  // If we're saving temps and the temp file conflicts with the input file,
5700  // then avoid overwriting input file.
5701  if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
5702  bool SameFile = false;
5703  SmallString<256> Result;
5704  llvm::sys::fs::current_path(Result);
5705  llvm::sys::path::append(Result, BaseName);
5706  llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
5707  // Must share the same path to conflict.
5708  if (SameFile) {
5709  StringRef Name = llvm::sys::path::filename(BaseInput);
5710  std::pair<StringRef, StringRef> Split = Name.split('.');
5711  std::string TmpName = GetTemporaryPath(
5713  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5714  }
5715  }
5716 
5717  // As an annoying special case, PCH generation doesn't strip the pathname.
5718  if (JA.getType() == types::TY_PCH && !IsCLMode()) {
5719  llvm::sys::path::remove_filename(BasePath);
5720  if (BasePath.empty())
5721  BasePath = NamedOutput;
5722  else
5723  llvm::sys::path::append(BasePath, NamedOutput);
5724  return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
5725  } else {
5726  return C.addResultFile(NamedOutput, &JA);
5727  }
5728 }
5729 
5730 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
5731  // Search for Name in a list of paths.
5732  auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
5734  // Respect a limited subset of the '-Bprefix' functionality in GCC by
5735  // attempting to use this prefix when looking for file paths.
5736  for (const auto &Dir : P) {
5737  if (Dir.empty())
5738  continue;
5739  SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
5740  llvm::sys::path::append(P, Name);
5741  if (llvm::sys::fs::exists(Twine(P)))
5742  return std::string(P);
5743  }
5744  return None;
5745  };
5746 
5747  if (auto P = SearchPaths(PrefixDirs))
5748  return *P;
5749 
5751  llvm::sys::path::append(R, Name);
5752  if (llvm::sys::fs::exists(Twine(R)))
5753  return std::string(R.str());
5754 
5756  llvm::sys::path::append(P, Name);
5757  if (llvm::sys::fs::exists(Twine(P)))
5758  return std::string(P.str());
5759 
5760  SmallString<128> D(Dir);
5761  llvm::sys::path::append(D, "..", Name);
5762  if (llvm::sys::fs::exists(Twine(D)))
5763  return std::string(D.str());
5764 
5765  if (auto P = SearchPaths(TC.getLibraryPaths()))
5766  return *P;
5767 
5768  if (auto P = SearchPaths(TC.getFilePaths()))
5769  return *P;
5770 
5771  return std::string(Name);
5772 }
5773 
5774 void Driver::generatePrefixedToolNames(
5775  StringRef Tool, const ToolChain &TC,
5776  SmallVectorImpl<std::string> &Names) const {
5777  // FIXME: Needs a better variable than TargetTriple
5778  Names.emplace_back((TargetTriple + "-" + Tool).str());
5779  Names.emplace_back(Tool);
5780 }
5781 
5782 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
5783  llvm::sys::path::append(Dir, Name);
5784  if (llvm::sys::fs::can_execute(Twine(Dir)))
5785  return true;
5786  llvm::sys::path::remove_filename(Dir);
5787  return false;
5788 }
5789 
5790 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
5791  SmallVector<std::string, 2> TargetSpecificExecutables;
5792  generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
5793 
5794  // Respect a limited subset of the '-Bprefix' functionality in GCC by
5795  // attempting to use this prefix when looking for program paths.
5796  for (const auto &PrefixDir : PrefixDirs) {
5797  if (llvm::sys::fs::is_directory(PrefixDir)) {
5798  SmallString<128> P(PrefixDir);
5799  if (ScanDirForExecutable(P, Name))
5800  return std::string(P.str());
5801  } else {
5802  SmallString<128> P((PrefixDir + Name).str());
5803  if (llvm::sys::fs::can_execute(Twine(P)))
5804  return std::string(P.str());
5805  }
5806  }
5807 
5808  const ToolChain::path_list &List = TC.getProgramPaths();
5809  for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
5810  // For each possible name of the tool look for it in
5811  // program paths first, then the path.
5812  // Higher priority names will be first, meaning that
5813  // a higher priority name in the path will be found
5814  // instead of a lower priority name in the program path.
5815  // E.g. <triple>-gcc on the path will be found instead
5816  // of gcc in the program path
5817  for (const auto &Path : List) {
5818  SmallString<128> P(Path);
5819  if (ScanDirForExecutable(P, TargetSpecificExecutable))
5820  return std::string(P.str());
5821  }
5822 
5823  // Fall back to the path
5824  if (llvm::ErrorOr<std::string> P =
5825  llvm::sys::findProgramByName(TargetSpecificExecutable))
5826  return *P;
5827  }
5828 
5829  return std::string(Name);
5830 }
5831 
5832 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
5833  SmallString<128> Path;
5834  std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
5835  if (EC) {
5836  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5837  return "";
5838  }
5839 
5840  return std::string(Path.str());
5841 }
5842 
5844  SmallString<128> Path;
5845  std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
5846  if (EC) {
5847  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5848  return "";
5849  }
5850 
5851  return std::string(Path.str());
5852 }
5853 
5854 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
5855  SmallString<128> Output;
5856  if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
5857  // FIXME: If anybody needs it, implement this obscure rule:
5858  // "If you specify a directory without a file name, the default file name
5859  // is VCx0.pch., where x is the major version of Visual C++ in use."
5860  Output = FpArg->getValue();
5861 
5862  // "If you do not specify an extension as part of the path name, an
5863  // extension of .pch is assumed. "
5864  if (!llvm::sys::path::has_extension(Output))
5865  Output += ".pch";
5866  } else {
5867  if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
5868  Output = YcArg->getValue();
5869  if (Output.empty())
5870  Output = BaseName;
5871  llvm::sys::path::replace_extension(Output, ".pch");
5872  }
5873  return std::string(Output.str());
5874 }
5875 
5876 const ToolChain &Driver::getToolChain(const ArgList &Args,
5877  const llvm::Triple &Target) const {
5878 
5879  auto &TC = ToolChains[Target.str()];
5880  if (!TC) {
5881  switch (Target.getOS()) {
5882  case llvm::Triple::AIX:
5883  TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
5884  break;
5885  case llvm::Triple::Haiku:
5886  TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
5887  break;
5888  case llvm::Triple::Ananas:
5889  TC = std::make_unique<toolchains::Ananas>(*this, Target, Args);
5890  break;
5891  case llvm::Triple::CloudABI:
5892  TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args);
5893  break;
5894  case llvm::Triple::Darwin:
5895  case llvm::Triple::MacOSX:
5896  case llvm::Triple::IOS:
5897  case llvm::Triple::TvOS:
5898  case llvm::Triple::WatchOS:
5899  case llvm::Triple::DriverKit:
5900  TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
5901  break;
5902  case llvm::Triple::DragonFly:
5903  TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
5904  break;
5905  case llvm::Triple::OpenBSD:
5906  TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
5907  break;
5908  case llvm::Triple::NetBSD:
5909  TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
5910  break;
5911  case llvm::Triple::FreeBSD:
5912  if (Target.isPPC())
5913  TC = std::make_unique<toolchains::PPCFreeBSDToolChain>(*this, Target,
5914  Args);
5915  else
5916  TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
5917  break;
5918  case llvm::Triple::Minix:
5919  TC = std::make_unique<toolchains::Minix>(*this, Target, Args);
5920  break;
5921  case llvm::Triple::Linux:
5922  case llvm::Triple::ELFIAMCU:
5923  if (Target.getArch() == llvm::Triple::hexagon)
5924  TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5925  Args);
5926  else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
5927  !Target.hasEnvironment())
5928  TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
5929  Args);
5930  else if (Target.isPPC())
5931  TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
5932  Args);
5933  else if (Target.getArch() == llvm::Triple::ve)
5934  TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
5935 
5936  else
5937  TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
5938  break;
5939  case llvm::Triple::NaCl:
5940  TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
5941  break;
5942  case llvm::Triple::Fuchsia:
5943  TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
5944  break;
5945  case llvm::Triple::Solaris:
5946  TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
5947  break;
5948  case llvm::Triple::AMDHSA:
5949  TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
5950  break;
5951  case llvm::Triple::AMDPAL:
5952  case llvm::Triple::Mesa3D:
5953  TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
5954  break;
5955  case llvm::Triple::Win32:
5956  switch (Target.getEnvironment()) {
5957  default:
5958  if (Target.isOSBinFormatELF())
5959  TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
5960  else if (Target.isOSBinFormatMachO())
5961  TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
5962  else
5963  TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
5964  break;
5965  case llvm::Triple::GNU:
5966  TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
5967  break;
5968  case llvm::Triple::Itanium:
5969  TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
5970  Args);
5971  break;
5972  case llvm::Triple::MSVC:
5973  case llvm::Triple::UnknownEnvironment:
5974  if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
5975  .startswith_insensitive("bfd"))