clang  8.0.0svn
Driver.cpp
Go to the documentation of this file.
1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "clang/Driver/Driver.h"
11 #include "InputInfo.h"
12 #include "ToolChains/AMDGPU.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Ananas.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/Clang.h"
17 #include "ToolChains/CloudABI.h"
18 #include "ToolChains/Contiki.h"
20 #include "ToolChains/Cuda.h"
21 #include "ToolChains/Darwin.h"
22 #include "ToolChains/DragonFly.h"
23 #include "ToolChains/FreeBSD.h"
24 #include "ToolChains/Fuchsia.h"
25 #include "ToolChains/Gnu.h"
26 #include "ToolChains/HIP.h"
27 #include "ToolChains/Haiku.h"
28 #include "ToolChains/Hexagon.h"
29 #include "ToolChains/Hurd.h"
30 #include "ToolChains/Lanai.h"
31 #include "ToolChains/Linux.h"
32 #include "ToolChains/MSP430.h"
33 #include "ToolChains/MSVC.h"
34 #include "ToolChains/MinGW.h"
35 #include "ToolChains/Minix.h"
36 #include "ToolChains/MipsLinux.h"
37 #include "ToolChains/Myriad.h"
38 #include "ToolChains/NaCl.h"
39 #include "ToolChains/NetBSD.h"
40 #include "ToolChains/OpenBSD.h"
41 #include "ToolChains/PS4CPU.h"
43 #include "ToolChains/Solaris.h"
44 #include "ToolChains/TCE.h"
45 #include "ToolChains/WebAssembly.h"
46 #include "ToolChains/XCore.h"
47 #include "clang/Basic/Version.h"
48 #include "clang/Config/config.h"
49 #include "clang/Driver/Action.h"
52 #include "clang/Driver/Job.h"
53 #include "clang/Driver/Options.h"
55 #include "clang/Driver/Tool.h"
56 #include "clang/Driver/ToolChain.h"
57 #include "llvm/ADT/ArrayRef.h"
58 #include "llvm/ADT/STLExtras.h"
59 #include "llvm/ADT/SmallSet.h"
60 #include "llvm/ADT/StringExtras.h"
61 #include "llvm/ADT/StringSet.h"
62 #include "llvm/ADT/StringSwitch.h"
63 #include "llvm/Config/llvm-config.h"
64 #include "llvm/Option/Arg.h"
65 #include "llvm/Option/ArgList.h"
66 #include "llvm/Option/OptSpecifier.h"
67 #include "llvm/Option/OptTable.h"
68 #include "llvm/Option/Option.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/FileSystem.h"
72 #include "llvm/Support/FormatVariadic.h"
73 #include "llvm/Support/Path.h"
74 #include "llvm/Support/PrettyStackTrace.h"
75 #include "llvm/Support/Process.h"
76 #include "llvm/Support/Program.h"
77 #include "llvm/Support/StringSaver.h"
78 #include "llvm/Support/TargetRegistry.h"
79 #include "llvm/Support/VirtualFileSystem.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include <map>
82 #include <memory>
83 #include <utility>
84 #if LLVM_ON_UNIX
85 #include <unistd.h> // getpid
86 #include <sysexits.h> // EX_IOERR
87 #endif
88 
89 using namespace clang::driver;
90 using namespace clang;
91 using namespace llvm::opt;
92 
93 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
94  DiagnosticsEngine &Diags,
96  : Opts(createDriverOptTable()), Diags(Diags), VFS(std::move(VFS)),
97  Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
98  LTOMode(LTOK_None), ClangExecutable(ClangExecutable),
99  SysRoot(DEFAULT_SYSROOT), DriverTitle("clang LLVM compiler"),
100  CCPrintOptionsFilename(nullptr), CCPrintHeadersFilename(nullptr),
101  CCLogDiagnosticsFilename(nullptr), CCCPrintBindings(false),
102  CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false),
103  CCGenDiagnostics(false), TargetTriple(TargetTriple),
104  CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true),
105  GenReproducer(false), SuppressMissingInputWarning(false) {
106 
107  // Provide a sane fallback if no VFS is specified.
108  if (!this->VFS)
109  this->VFS = llvm::vfs::getRealFileSystem();
110 
111  Name = llvm::sys::path::filename(ClangExecutable);
112  Dir = llvm::sys::path::parent_path(ClangExecutable);
113  InstalledDir = Dir; // Provide a sensible default installed dir.
114 
115 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
116  SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
117 #endif
118 #if defined(CLANG_CONFIG_FILE_USER_DIR)
119  UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
120 #endif
121 
122  // Compute the path to the resource directory.
123  StringRef ClangResourceDir(CLANG_RESOURCE_DIR);
125  if (ClangResourceDir != "") {
126  llvm::sys::path::append(P, ClangResourceDir);
127  } else {
128  StringRef ClangLibdirSuffix(CLANG_LIBDIR_SUFFIX);
129  P = llvm::sys::path::parent_path(Dir);
130  llvm::sys::path::append(P, Twine("lib") + ClangLibdirSuffix, "clang",
131  CLANG_VERSION_STRING);
132  }
133  ResourceDir = P.str();
134 }
135 
136 void Driver::ParseDriverMode(StringRef ProgramName,
137  ArrayRef<const char *> Args) {
138  if (ClangNameParts.isEmpty())
140  setDriverModeFromOption(ClangNameParts.DriverMode);
141 
142  for (const char *ArgPtr : Args) {
143  // Ignore nullptrs, they are the response file's EOL markers.
144  if (ArgPtr == nullptr)
145  continue;
146  const StringRef Arg = ArgPtr;
147  setDriverModeFromOption(Arg);
148  }
149 }
150 
151 void Driver::setDriverModeFromOption(StringRef Opt) {
152  const std::string OptName =
153  getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
154  if (!Opt.startswith(OptName))
155  return;
156  StringRef Value = Opt.drop_front(OptName.size());
157 
158  if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
159  .Case("gcc", GCCMode)
160  .Case("g++", GXXMode)
161  .Case("cpp", CPPMode)
162  .Case("cl", CLMode)
163  .Default(None))
164  Mode = *M;
165  else
166  Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
167 }
168 
170  bool IsClCompatMode,
171  bool &ContainsError) {
172  llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
173  ContainsError = false;
174 
175  unsigned IncludedFlagsBitmask;
176  unsigned ExcludedFlagsBitmask;
177  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
178  getIncludeExcludeOptionFlagMasks(IsClCompatMode);
179 
180  unsigned MissingArgIndex, MissingArgCount;
181  InputArgList Args =
182  getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
183  IncludedFlagsBitmask, ExcludedFlagsBitmask);
184 
185  // Check for missing argument error.
186  if (MissingArgCount) {
187  Diag(diag::err_drv_missing_argument)
188  << Args.getArgString(MissingArgIndex) << MissingArgCount;
189  ContainsError |=
190  Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
192  }
193 
194  // Check for unsupported options.
195  for (const Arg *A : Args) {
196  if (A->getOption().hasFlag(options::Unsupported)) {
197  unsigned DiagID;
198  auto ArgString = A->getAsString(Args);
199  std::string Nearest;
200  if (getOpts().findNearest(
201  ArgString, Nearest, IncludedFlagsBitmask,
202  ExcludedFlagsBitmask | options::Unsupported) > 1) {
203  DiagID = diag::err_drv_unsupported_opt;
204  Diag(DiagID) << ArgString;
205  } else {
206  DiagID = diag::err_drv_unsupported_opt_with_suggestion;
207  Diag(DiagID) << ArgString << Nearest;
208  }
209  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
211  continue;
212  }
213 
214  // Warn about -mcpu= without an argument.
215  if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
216  Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
217  ContainsError |= Diags.getDiagnosticLevel(
218  diag::warn_drv_empty_joined_argument,
220  }
221  }
222 
223  for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
224  unsigned DiagID;
225  auto ArgString = A->getAsString(Args);
226  std::string Nearest;
227  if (getOpts().findNearest(
228  ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
229  DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
230  : diag::err_drv_unknown_argument;
231  Diags.Report(DiagID) << ArgString;
232  } else {
233  DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
234  : diag::err_drv_unknown_argument_with_suggestion;
235  Diags.Report(DiagID) << ArgString << Nearest;
236  }
237  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
239  }
240 
241  return Args;
242 }
243 
244 // Determine which compilation mode we are in. We look for options which
245 // affect the phase, starting with the earliest phases, and record which
246 // option we used to determine the final phase.
247 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
248  Arg **FinalPhaseArg) const {
249  Arg *PhaseArg = nullptr;
250  phases::ID FinalPhase;
251 
252  // -{E,EP,P,M,MM} only run the preprocessor.
253  if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
254  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
255  (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
256  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
257  FinalPhase = phases::Preprocess;
258 
259  // --precompile only runs up to precompilation.
260  } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
261  FinalPhase = phases::Precompile;
262 
263  // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
264  } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
265  (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
266  (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
267  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
268  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
269  (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
270  (PhaseArg = DAL.getLastArg(options::OPT__analyze,
271  options::OPT__analyze_auto)) ||
272  (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
273  FinalPhase = phases::Compile;
274 
275  // -S only runs up to the backend.
276  } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
277  FinalPhase = phases::Backend;
278 
279  // -c compilation only runs up to the assembler.
280  } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
281  FinalPhase = phases::Assemble;
282 
283  // Otherwise do everything.
284  } else
285  FinalPhase = phases::Link;
286 
287  if (FinalPhaseArg)
288  *FinalPhaseArg = PhaseArg;
289 
290  return FinalPhase;
291 }
292 
293 static Arg *MakeInputArg(DerivedArgList &Args, OptTable &Opts,
294  StringRef Value, bool Claim = true) {
295  Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
296  Args.getBaseArgs().MakeIndex(Value), Value.data());
297  Args.AddSynthesizedArg(A);
298  if (Claim)
299  A->claim();
300  return A;
301 }
302 
303 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
304  DerivedArgList *DAL = new DerivedArgList(Args);
305 
306  bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
307  bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
308  bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
309  for (Arg *A : Args) {
310  // Unfortunately, we have to parse some forwarding options (-Xassembler,
311  // -Xlinker, -Xpreprocessor) because we either integrate their functionality
312  // (assembler and preprocessor), or bypass a previous driver ('collect2').
313 
314  // Rewrite linker options, to replace --no-demangle with a custom internal
315  // option.
316  if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
317  A->getOption().matches(options::OPT_Xlinker)) &&
318  A->containsValue("--no-demangle")) {
319  // Add the rewritten no-demangle argument.
320  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle));
321 
322  // Add the remaining values as Xlinker arguments.
323  for (StringRef Val : A->getValues())
324  if (Val != "--no-demangle")
325  DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker), Val);
326 
327  continue;
328  }
329 
330  // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
331  // some build systems. We don't try to be complete here because we don't
332  // care to encourage this usage model.
333  if (A->getOption().matches(options::OPT_Wp_COMMA) &&
334  (A->getValue(0) == StringRef("-MD") ||
335  A->getValue(0) == StringRef("-MMD"))) {
336  // Rewrite to -MD/-MMD along with -MF.
337  if (A->getValue(0) == StringRef("-MD"))
338  DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD));
339  else
340  DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD));
341  if (A->getNumValues() == 2)
342  DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF),
343  A->getValue(1));
344  continue;
345  }
346 
347  // Rewrite reserved library names.
348  if (A->getOption().matches(options::OPT_l)) {
349  StringRef Value = A->getValue();
350 
351  // Rewrite unless -nostdlib is present.
352  if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
353  Value == "stdc++") {
354  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_stdcxx));
355  continue;
356  }
357 
358  // Rewrite unconditionally.
359  if (Value == "cc_kext") {
360  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_cckext));
361  continue;
362  }
363  }
364 
365  // Pick up inputs via the -- option.
366  if (A->getOption().matches(options::OPT__DASH_DASH)) {
367  A->claim();
368  for (StringRef Val : A->getValues())
369  DAL->append(MakeInputArg(*DAL, *Opts, Val, false));
370  continue;
371  }
372 
373  DAL->append(A);
374  }
375 
376  // Enforce -static if -miamcu is present.
377  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
378  DAL->AddFlagArg(0, Opts->getOption(options::OPT_static));
379 
380 // Add a default value of -mlinker-version=, if one was given and the user
381 // didn't specify one.
382 #if defined(HOST_LINK_VERSION)
383  if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
384  strlen(HOST_LINK_VERSION) > 0) {
385  DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ),
386  HOST_LINK_VERSION);
387  DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
388  }
389 #endif
390 
391  return DAL;
392 }
393 
394 /// Compute target triple from args.
395 ///
396 /// This routine provides the logic to compute a target triple from various
397 /// args passed to the driver and the default triple string.
398 static llvm::Triple computeTargetTriple(const Driver &D,
399  StringRef TargetTriple,
400  const ArgList &Args,
401  StringRef DarwinArchName = "") {
402  // FIXME: Already done in Compilation *Driver::BuildCompilation
403  if (const Arg *A = Args.getLastArg(options::OPT_target))
404  TargetTriple = A->getValue();
405 
406  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
407 
408  // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
409  // -gnu* only, and we can not change this, so we have to detect that case as
410  // being the Hurd OS.
411  if (TargetTriple.find("-unknown-gnu") != StringRef::npos ||
412  TargetTriple.find("-pc-gnu") != StringRef::npos)
413  Target.setOSName("hurd");
414 
415  // Handle Apple-specific options available here.
416  if (Target.isOSBinFormatMachO()) {
417  // If an explicit Darwin arch name is given, that trumps all.
418  if (!DarwinArchName.empty()) {
419  tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
420  return Target;
421  }
422 
423  // Handle the Darwin '-arch' flag.
424  if (Arg *A = Args.getLastArg(options::OPT_arch)) {
425  StringRef ArchName = A->getValue();
427  }
428  }
429 
430  // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
431  // '-mbig-endian'/'-EB'.
432  if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
433  options::OPT_mbig_endian)) {
434  if (A->getOption().matches(options::OPT_mlittle_endian)) {
435  llvm::Triple LE = Target.getLittleEndianArchVariant();
436  if (LE.getArch() != llvm::Triple::UnknownArch)
437  Target = std::move(LE);
438  } else {
439  llvm::Triple BE = Target.getBigEndianArchVariant();
440  if (BE.getArch() != llvm::Triple::UnknownArch)
441  Target = std::move(BE);
442  }
443  }
444 
445  // Skip further flag support on OSes which don't support '-m32' or '-m64'.
446  if (Target.getArch() == llvm::Triple::tce ||
447  Target.getOS() == llvm::Triple::Minix)
448  return Target;
449 
450  // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
451  Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
452  options::OPT_m32, options::OPT_m16);
453  if (A) {
454  llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
455 
456  if (A->getOption().matches(options::OPT_m64)) {
457  AT = Target.get64BitArchVariant().getArch();
458  if (Target.getEnvironment() == llvm::Triple::GNUX32)
459  Target.setEnvironment(llvm::Triple::GNU);
460  } else if (A->getOption().matches(options::OPT_mx32) &&
461  Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
462  AT = llvm::Triple::x86_64;
463  Target.setEnvironment(llvm::Triple::GNUX32);
464  } else if (A->getOption().matches(options::OPT_m32)) {
465  AT = Target.get32BitArchVariant().getArch();
466  if (Target.getEnvironment() == llvm::Triple::GNUX32)
467  Target.setEnvironment(llvm::Triple::GNU);
468  } else if (A->getOption().matches(options::OPT_m16) &&
469  Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
470  AT = llvm::Triple::x86;
471  Target.setEnvironment(llvm::Triple::CODE16);
472  }
473 
474  if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
475  Target.setArch(AT);
476  }
477 
478  // Handle -miamcu flag.
479  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
480  if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
481  D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
482  << Target.str();
483 
484  if (A && !A->getOption().matches(options::OPT_m32))
485  D.Diag(diag::err_drv_argument_not_allowed_with)
486  << "-miamcu" << A->getBaseArg().getAsString(Args);
487 
488  Target.setArch(llvm::Triple::x86);
489  Target.setArchName("i586");
490  Target.setEnvironment(llvm::Triple::UnknownEnvironment);
491  Target.setEnvironmentName("");
492  Target.setOS(llvm::Triple::ELFIAMCU);
493  Target.setVendor(llvm::Triple::UnknownVendor);
494  Target.setVendorName("intel");
495  }
496 
497  // If target is MIPS adjust the target triple
498  // accordingly to provided ABI name.
499  A = Args.getLastArg(options::OPT_mabi_EQ);
500  if (A && Target.isMIPS()) {
501  StringRef ABIName = A->getValue();
502  if (ABIName == "32") {
503  Target = Target.get32BitArchVariant();
504  if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
505  Target.getEnvironment() == llvm::Triple::GNUABIN32)
506  Target.setEnvironment(llvm::Triple::GNU);
507  } else if (ABIName == "n32") {
508  Target = Target.get64BitArchVariant();
509  if (Target.getEnvironment() == llvm::Triple::GNU ||
510  Target.getEnvironment() == llvm::Triple::GNUABI64)
511  Target.setEnvironment(llvm::Triple::GNUABIN32);
512  } else if (ABIName == "64") {
513  Target = Target.get64BitArchVariant();
514  if (Target.getEnvironment() == llvm::Triple::GNU ||
515  Target.getEnvironment() == llvm::Triple::GNUABIN32)
516  Target.setEnvironment(llvm::Triple::GNUABI64);
517  }
518  }
519 
520  return Target;
521 }
522 
523 // Parse the LTO options and record the type of LTO compilation
524 // based on which -f(no-)?lto(=.*)? option occurs last.
525 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
526  LTOMode = LTOK_None;
527  if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
528  options::OPT_fno_lto, false))
529  return;
530 
531  StringRef LTOName("full");
532 
533  const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
534  if (A)
535  LTOName = A->getValue();
536 
537  LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
538  .Case("full", LTOK_Full)
539  .Case("thin", LTOK_Thin)
540  .Default(LTOK_Unknown);
541 
542  if (LTOMode == LTOK_Unknown) {
543  assert(A);
544  Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
545  << A->getValue();
546  }
547 }
548 
549 /// Compute the desired OpenMP runtime from the flags provided.
551  StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
552 
553  const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
554  if (A)
555  RuntimeName = A->getValue();
556 
557  auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
558  .Case("libomp", OMPRT_OMP)
559  .Case("libgomp", OMPRT_GOMP)
560  .Case("libiomp5", OMPRT_IOMP5)
561  .Default(OMPRT_Unknown);
562 
563  if (RT == OMPRT_Unknown) {
564  if (A)
565  Diag(diag::err_drv_unsupported_option_argument)
566  << A->getOption().getName() << A->getValue();
567  else
568  // FIXME: We could use a nicer diagnostic here.
569  Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
570  }
571 
572  return RT;
573 }
574 
576  InputList &Inputs) {
577 
578  //
579  // CUDA/HIP
580  //
581  // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
582  // or HIP type. However, mixed CUDA/HIP compilation is not supported.
583  bool IsCuda =
584  llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
585  return types::isCuda(I.first);
586  });
587  bool IsHIP =
588  llvm::any_of(Inputs,
589  [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
590  return types::isHIP(I.first);
591  }) ||
592  C.getInputArgs().hasArg(options::OPT_hip_link);
593  if (IsCuda && IsHIP) {
594  Diag(clang::diag::err_drv_mix_cuda_hip);
595  return;
596  }
597  if (IsCuda) {
599  const llvm::Triple &HostTriple = HostTC->getTriple();
600  StringRef DeviceTripleStr;
601  auto OFK = Action::OFK_Cuda;
602  DeviceTripleStr =
603  HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
604  llvm::Triple CudaTriple(DeviceTripleStr);
605  // Use the CUDA and host triples as the key into the ToolChains map,
606  // because the device toolchain we create depends on both.
607  auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
608  if (!CudaTC) {
609  CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
610  *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
611  }
612  C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
613  } else if (IsHIP) {
615  const llvm::Triple &HostTriple = HostTC->getTriple();
616  StringRef DeviceTripleStr;
617  auto OFK = Action::OFK_HIP;
618  DeviceTripleStr = "amdgcn-amd-amdhsa";
619  llvm::Triple HIPTriple(DeviceTripleStr);
620  // Use the HIP and host triples as the key into the ToolChains map,
621  // because the device toolchain we create depends on both.
622  auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
623  if (!HIPTC) {
624  HIPTC = llvm::make_unique<toolchains::HIPToolChain>(
625  *this, HIPTriple, *HostTC, C.getInputArgs());
626  }
627  C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
628  }
629 
630  //
631  // OpenMP
632  //
633  // We need to generate an OpenMP toolchain if the user specified targets with
634  // the -fopenmp-targets option.
635  if (Arg *OpenMPTargets =
636  C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
637  if (OpenMPTargets->getNumValues()) {
638  // We expect that -fopenmp-targets is always used in conjunction with the
639  // option -fopenmp specifying a valid runtime with offloading support,
640  // i.e. libomp or libiomp.
641  bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
642  options::OPT_fopenmp, options::OPT_fopenmp_EQ,
643  options::OPT_fno_openmp, false);
644  if (HasValidOpenMPRuntime) {
646  HasValidOpenMPRuntime =
647  OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
648  }
649 
650  if (HasValidOpenMPRuntime) {
651  llvm::StringMap<const char *> FoundNormalizedTriples;
652  for (const char *Val : OpenMPTargets->getValues()) {
653  llvm::Triple TT(Val);
654  std::string NormalizedName = TT.normalize();
655 
656  // Make sure we don't have a duplicate triple.
657  auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
658  if (Duplicate != FoundNormalizedTriples.end()) {
659  Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
660  << Val << Duplicate->second;
661  continue;
662  }
663 
664  // Store the current triple so that we can check for duplicates in the
665  // following iterations.
666  FoundNormalizedTriples[NormalizedName] = Val;
667 
668  // If the specified target is invalid, emit a diagnostic.
669  if (TT.getArch() == llvm::Triple::UnknownArch)
670  Diag(clang::diag::err_drv_invalid_omp_target) << Val;
671  else {
672  const ToolChain *TC;
673  // CUDA toolchains have to be selected differently. They pair host
674  // and device in their implementation.
675  if (TT.isNVPTX()) {
676  const ToolChain *HostTC =
678  assert(HostTC && "Host toolchain should be always defined.");
679  auto &CudaTC =
680  ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
681  if (!CudaTC)
682  CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
683  *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
684  TC = CudaTC.get();
685  } else
686  TC = &getToolChain(C.getInputArgs(), TT);
688  }
689  }
690  } else
691  Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
692  } else
693  Diag(clang::diag::warn_drv_empty_joined_argument)
694  << OpenMPTargets->getAsString(C.getInputArgs());
695  }
696 
697  //
698  // TODO: Add support for other offloading programming models here.
699  //
700 }
701 
702 /// Looks the given directories for the specified file.
703 ///
704 /// \param[out] FilePath File path, if the file was found.
705 /// \param[in] Dirs Directories used for the search.
706 /// \param[in] FileName Name of the file to search for.
707 /// \return True if file was found.
708 ///
709 /// Looks for file specified by FileName sequentially in directories specified
710 /// by Dirs.
711 ///
712 static bool searchForFile(SmallVectorImpl<char> &FilePath,
714  StringRef FileName) {
715  SmallString<128> WPath;
716  for (const StringRef &Dir : Dirs) {
717  if (Dir.empty())
718  continue;
719  WPath.clear();
720  llvm::sys::path::append(WPath, Dir, FileName);
721  llvm::sys::path::native(WPath);
722  if (llvm::sys::fs::is_regular_file(WPath)) {
723  FilePath = std::move(WPath);
724  return true;
725  }
726  }
727  return false;
728 }
729 
730 bool Driver::readConfigFile(StringRef FileName) {
731  // Try reading the given file.
733  if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
734  Diag(diag::err_drv_cannot_read_config_file) << FileName;
735  return true;
736  }
737 
738  // Read options from config file.
739  llvm::SmallString<128> CfgFileName(FileName);
740  llvm::sys::path::native(CfgFileName);
741  ConfigFile = CfgFileName.str();
742  bool ContainErrors;
743  CfgOptions = llvm::make_unique<InputArgList>(
744  ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
745  if (ContainErrors) {
746  CfgOptions.reset();
747  return true;
748  }
749 
750  if (CfgOptions->hasArg(options::OPT_config)) {
751  CfgOptions.reset();
752  Diag(diag::err_drv_nested_config_file);
753  return true;
754  }
755 
756  // Claim all arguments that come from a configuration file so that the driver
757  // does not warn on any that is unused.
758  for (Arg *A : *CfgOptions)
759  A->claim();
760  return false;
761 }
762 
763 bool Driver::loadConfigFile() {
764  std::string CfgFileName;
765  bool FileSpecifiedExplicitly = false;
766 
767  // Process options that change search path for config files.
768  if (CLOptions) {
769  if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
770  SmallString<128> CfgDir;
771  CfgDir.append(
772  CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
773  if (!CfgDir.empty()) {
774  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
775  SystemConfigDir.clear();
776  else
777  SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
778  }
779  }
780  if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
781  SmallString<128> CfgDir;
782  CfgDir.append(
783  CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
784  if (!CfgDir.empty()) {
785  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
786  UserConfigDir.clear();
787  else
788  UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
789  }
790  }
791  }
792 
793  // First try to find config file specified in command line.
794  if (CLOptions) {
795  std::vector<std::string> ConfigFiles =
796  CLOptions->getAllArgValues(options::OPT_config);
797  if (ConfigFiles.size() > 1) {
798  Diag(diag::err_drv_duplicate_config);
799  return true;
800  }
801 
802  if (!ConfigFiles.empty()) {
803  CfgFileName = ConfigFiles.front();
804  assert(!CfgFileName.empty());
805 
806  // If argument contains directory separator, treat it as a path to
807  // configuration file.
808  if (llvm::sys::path::has_parent_path(CfgFileName)) {
809  SmallString<128> CfgFilePath;
810  if (llvm::sys::path::is_relative(CfgFileName))
811  llvm::sys::fs::current_path(CfgFilePath);
812  llvm::sys::path::append(CfgFilePath, CfgFileName);
813  if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
814  Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
815  return true;
816  }
817  return readConfigFile(CfgFilePath);
818  }
819 
820  FileSpecifiedExplicitly = true;
821  }
822  }
823 
824  // If config file is not specified explicitly, try to deduce configuration
825  // from executable name. For instance, an executable 'armv7l-clang' will
826  // search for config file 'armv7l-clang.cfg'.
827  if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
829 
830  if (CfgFileName.empty())
831  return false;
832 
833  // Determine architecture part of the file name, if it is present.
834  StringRef CfgFileArch = CfgFileName;
835  size_t ArchPrefixLen = CfgFileArch.find('-');
836  if (ArchPrefixLen == StringRef::npos)
837  ArchPrefixLen = CfgFileArch.size();
838  llvm::Triple CfgTriple;
839  CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
840  CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
841  if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
842  ArchPrefixLen = 0;
843 
844  if (!StringRef(CfgFileName).endswith(".cfg"))
845  CfgFileName += ".cfg";
846 
847  // If config file starts with architecture name and command line options
848  // redefine architecture (with options like -m32 -LE etc), try finding new
849  // config file with that architecture.
850  SmallString<128> FixedConfigFile;
851  size_t FixedArchPrefixLen = 0;
852  if (ArchPrefixLen) {
853  // Get architecture name from config file name like 'i386.cfg' or
854  // 'armv7l-clang.cfg'.
855  // Check if command line options changes effective triple.
856  llvm::Triple EffectiveTriple = computeTargetTriple(*this,
857  CfgTriple.getTriple(), *CLOptions);
858  if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
859  FixedConfigFile = EffectiveTriple.getArchName();
860  FixedArchPrefixLen = FixedConfigFile.size();
861  // Append the rest of original file name so that file name transforms
862  // like: i386-clang.cfg -> x86_64-clang.cfg.
863  if (ArchPrefixLen < CfgFileName.size())
864  FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
865  }
866  }
867 
868  // Prepare list of directories where config file is searched for.
869  SmallVector<std::string, 3> CfgFileSearchDirs;
870  CfgFileSearchDirs.push_back(UserConfigDir);
871  CfgFileSearchDirs.push_back(SystemConfigDir);
872  CfgFileSearchDirs.push_back(Dir);
873 
874  // Try to find config file. First try file with corrected architecture.
875  llvm::SmallString<128> CfgFilePath;
876  if (!FixedConfigFile.empty()) {
877  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
878  return readConfigFile(CfgFilePath);
879  // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
880  FixedConfigFile.resize(FixedArchPrefixLen);
881  FixedConfigFile.append(".cfg");
882  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
883  return readConfigFile(CfgFilePath);
884  }
885 
886  // Then try original file name.
887  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
888  return readConfigFile(CfgFilePath);
889 
890  // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
891  if (!ClangNameParts.ModeSuffix.empty() &&
892  !ClangNameParts.TargetPrefix.empty()) {
893  CfgFileName.assign(ClangNameParts.TargetPrefix);
894  CfgFileName.append(".cfg");
895  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
896  return readConfigFile(CfgFilePath);
897  }
898 
899  // Report error but only if config file was specified explicitly, by option
900  // --config. If it was deduced from executable name, it is not an error.
901  if (FileSpecifiedExplicitly) {
902  Diag(diag::err_drv_config_file_not_found) << CfgFileName;
903  for (const std::string &SearchDir : CfgFileSearchDirs)
904  if (!SearchDir.empty())
905  Diag(diag::note_drv_config_file_searched_in) << SearchDir;
906  return true;
907  }
908 
909  return false;
910 }
911 
913  llvm::PrettyStackTraceString CrashInfo("Compilation construction");
914 
915  // FIXME: Handle environment options which affect driver behavior, somewhere
916  // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
917 
918  if (Optional<std::string> CompilerPathValue =
919  llvm::sys::Process::GetEnv("COMPILER_PATH")) {
920  StringRef CompilerPath = *CompilerPathValue;
921  while (!CompilerPath.empty()) {
922  std::pair<StringRef, StringRef> Split =
923  CompilerPath.split(llvm::sys::EnvPathSeparator);
924  PrefixDirs.push_back(Split.first);
925  CompilerPath = Split.second;
926  }
927  }
928 
929  // We look for the driver mode option early, because the mode can affect
930  // how other options are parsed.
931  ParseDriverMode(ClangExecutable, ArgList.slice(1));
932 
933  // FIXME: What are we going to do with -V and -b?
934 
935  // Arguments specified in command line.
936  bool ContainsError;
937  CLOptions = llvm::make_unique<InputArgList>(
938  ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
939 
940  // Try parsing configuration file.
941  if (!ContainsError)
942  ContainsError = loadConfigFile();
943  bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
944 
945  // All arguments, from both config file and command line.
946  InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
947  : std::move(*CLOptions));
948 
949  auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
950  unsigned Index = Args.MakeIndex(Opt->getSpelling());
951  Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(),
952  Index, BaseArg);
953  Copy->getValues() = Opt->getValues();
954  if (Opt->isClaimed())
955  Copy->claim();
956  Args.append(Copy);
957  };
958 
959  if (HasConfigFile)
960  for (auto *Opt : *CLOptions) {
961  if (Opt->getOption().matches(options::OPT_config))
962  continue;
963  const Arg *BaseArg = &Opt->getBaseArg();
964  if (BaseArg == Opt)
965  BaseArg = nullptr;
966  appendOneArg(Opt, BaseArg);
967  }
968 
969  // In CL mode, look for any pass-through arguments
970  if (IsCLMode() && !ContainsError) {
971  SmallVector<const char *, 16> CLModePassThroughArgList;
972  for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
973  A->claim();
974  CLModePassThroughArgList.push_back(A->getValue());
975  }
976 
977  if (!CLModePassThroughArgList.empty()) {
978  // Parse any pass through args using default clang processing rather
979  // than clang-cl processing.
980  auto CLModePassThroughOptions = llvm::make_unique<InputArgList>(
981  ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
982 
983  if (!ContainsError)
984  for (auto *Opt : *CLModePassThroughOptions) {
985  appendOneArg(Opt, nullptr);
986  }
987  }
988  }
989 
990  // FIXME: This stuff needs to go into the Compilation, not the driver.
991  bool CCCPrintPhases;
992 
993  // Silence driver warnings if requested
994  Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
995 
996  // -no-canonical-prefixes is used very early in main.
997  Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
998 
999  // Ignore -pipe.
1000  Args.ClaimAllArgs(options::OPT_pipe);
1001 
1002  // Extract -ccc args.
1003  //
1004  // FIXME: We need to figure out where this behavior should live. Most of it
1005  // should be outside in the client; the parts that aren't should have proper
1006  // options, either by introducing new ones or by overloading gcc ones like -V
1007  // or -b.
1008  CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1009  CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1010  if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1011  CCCGenericGCCName = A->getValue();
1012  GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1013  options::OPT_fno_crash_diagnostics,
1014  !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1015  // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1016  // and getToolChain is const.
1017  if (IsCLMode()) {
1018  // clang-cl targets MSVC-style Win32.
1019  llvm::Triple T(TargetTriple);
1020  T.setOS(llvm::Triple::Win32);
1021  T.setVendor(llvm::Triple::PC);
1022  T.setEnvironment(llvm::Triple::MSVC);
1023  T.setObjectFormat(llvm::Triple::COFF);
1024  TargetTriple = T.str();
1025  }
1026  if (const Arg *A = Args.getLastArg(options::OPT_target))
1027  TargetTriple = A->getValue();
1028  if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1029  Dir = InstalledDir = A->getValue();
1030  for (const Arg *A : Args.filtered(options::OPT_B)) {
1031  A->claim();
1032  PrefixDirs.push_back(A->getValue(0));
1033  }
1034  if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1035  SysRoot = A->getValue();
1036  if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1037  DyldPrefix = A->getValue();
1038 
1039  if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1040  ResourceDir = A->getValue();
1041 
1042  if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1043  SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1044  .Case("cwd", SaveTempsCwd)
1045  .Case("obj", SaveTempsObj)
1046  .Default(SaveTempsCwd);
1047  }
1048 
1049  setLTOMode(Args);
1050 
1051  // Process -fembed-bitcode= flags.
1052  if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1053  StringRef Name = A->getValue();
1054  unsigned Model = llvm::StringSwitch<unsigned>(Name)
1055  .Case("off", EmbedNone)
1056  .Case("all", EmbedBitcode)
1057  .Case("bitcode", EmbedBitcode)
1058  .Case("marker", EmbedMarker)
1059  .Default(~0U);
1060  if (Model == ~0U) {
1061  Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1062  << Name;
1063  } else
1064  BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1065  }
1066 
1067  std::unique_ptr<llvm::opt::InputArgList> UArgs =
1068  llvm::make_unique<InputArgList>(std::move(Args));
1069 
1070  // Perform the default argument translations.
1071  DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1072 
1073  // Owned by the host.
1074  const ToolChain &TC = getToolChain(
1075  *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1076 
1077  // The compilation takes ownership of Args.
1078  Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1079  ContainsError);
1080 
1081  if (!HandleImmediateArgs(*C))
1082  return C;
1083 
1084  // Construct the list of inputs.
1085  InputList Inputs;
1086  BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1087 
1088  // Populate the tool chains for the offloading devices, if any.
1090 
1091  // Construct the list of abstract actions to perform for this compilation. On
1092  // MachO targets this uses the driver-driver and universal actions.
1093  if (TC.getTriple().isOSBinFormatMachO())
1094  BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1095  else
1096  BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1097 
1098  if (CCCPrintPhases) {
1099  PrintActions(*C);
1100  return C;
1101  }
1102 
1103  BuildJobs(*C);
1104 
1105  return C;
1106 }
1107 
1108 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1109  llvm::opt::ArgStringList ASL;
1110  for (const auto *A : Args)
1111  A->render(Args, ASL);
1112 
1113  for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1114  if (I != ASL.begin())
1115  OS << ' ';
1116  Command::printArg(OS, *I, true);
1117  }
1118  OS << '\n';
1119 }
1120 
1121 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1122  SmallString<128> &CrashDiagDir) {
1123  using namespace llvm::sys;
1124  assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1125  "Only knows about .crash files on Darwin");
1126 
1127  // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1128  // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1129  // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1130  path::home_directory(CrashDiagDir);
1131  if (CrashDiagDir.startswith("/var/root"))
1132  CrashDiagDir = "/";
1133  path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1134  int PID =
1135 #if LLVM_ON_UNIX
1136  getpid();
1137 #else
1138  0;
1139 #endif
1140  std::error_code EC;
1141  fs::file_status FileStatus;
1142  TimePoint<> LastAccessTime;
1143  SmallString<128> CrashFilePath;
1144  // Lookup the .crash files and get the one generated by a subprocess spawned
1145  // by this driver invocation.
1146  for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1147  File != FileEnd && !EC; File.increment(EC)) {
1148  StringRef FileName = path::filename(File->path());
1149  if (!FileName.startswith(Name))
1150  continue;
1151  if (fs::status(File->path(), FileStatus))
1152  continue;
1153  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1154  llvm::MemoryBuffer::getFile(File->path());
1155  if (!CrashFile)
1156  continue;
1157  // The first line should start with "Process:", otherwise this isn't a real
1158  // .crash file.
1159  StringRef Data = CrashFile.get()->getBuffer();
1160  if (!Data.startswith("Process:"))
1161  continue;
1162  // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1163  size_t ParentProcPos = Data.find("Parent Process:");
1164  if (ParentProcPos == StringRef::npos)
1165  continue;
1166  size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1167  if (LineEnd == StringRef::npos)
1168  continue;
1169  StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1170  int OpenBracket = -1, CloseBracket = -1;
1171  for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1172  if (ParentProcess[i] == '[')
1173  OpenBracket = i;
1174  if (ParentProcess[i] == ']')
1175  CloseBracket = i;
1176  }
1177  // Extract the parent process PID from the .crash file and check whether
1178  // it matches this driver invocation pid.
1179  int CrashPID;
1180  if (OpenBracket < 0 || CloseBracket < 0 ||
1181  ParentProcess.slice(OpenBracket + 1, CloseBracket)
1182  .getAsInteger(10, CrashPID) || CrashPID != PID) {
1183  continue;
1184  }
1185 
1186  // Found a .crash file matching the driver pid. To avoid getting an older
1187  // and misleading crash file, continue looking for the most recent.
1188  // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1189  // multiple crashes poiting to the same parent process. Since the driver
1190  // does not collect pid information for the dispatched invocation there's
1191  // currently no way to distinguish among them.
1192  const auto FileAccessTime = FileStatus.getLastModificationTime();
1193  if (FileAccessTime > LastAccessTime) {
1194  CrashFilePath.assign(File->path());
1195  LastAccessTime = FileAccessTime;
1196  }
1197  }
1198 
1199  // If found, copy it over to the location of other reproducer files.
1200  if (!CrashFilePath.empty()) {
1201  EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1202  if (EC)
1203  return false;
1204  return true;
1205  }
1206 
1207  return false;
1208 }
1209 
1210 // When clang crashes, produce diagnostic information including the fully
1211 // preprocessed source file(s). Request that the developer attach the
1212 // diagnostic information to a bug report.
1214  Compilation &C, const Command &FailingCommand,
1215  StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1216  if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1217  return;
1218 
1219  // Don't try to generate diagnostics for link or dsymutil jobs.
1220  if (FailingCommand.getCreator().isLinkJob() ||
1221  FailingCommand.getCreator().isDsymutilJob())
1222  return;
1223 
1224  // Print the version of the compiler.
1225  PrintVersion(C, llvm::errs());
1226 
1227  Diag(clang::diag::note_drv_command_failed_diag_msg)
1228  << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the "
1229  "crash backtrace, preprocessed source, and associated run script.";
1230 
1231  // Suppress driver output and emit preprocessor output to temp file.
1232  Mode = CPPMode;
1233  CCGenDiagnostics = true;
1234 
1235  // Save the original job command(s).
1236  Command Cmd = FailingCommand;
1237 
1238  // Keep track of whether we produce any errors while trying to produce
1239  // preprocessed sources.
1240  DiagnosticErrorTrap Trap(Diags);
1241 
1242  // Suppress tool output.
1244 
1245  // Construct the list of inputs.
1246  InputList Inputs;
1247  BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1248 
1249  for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1250  bool IgnoreInput = false;
1251 
1252  // Ignore input from stdin or any inputs that cannot be preprocessed.
1253  // Check type first as not all linker inputs have a value.
1254  if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1255  IgnoreInput = true;
1256  } else if (!strcmp(it->second->getValue(), "-")) {
1257  Diag(clang::diag::note_drv_command_failed_diag_msg)
1258  << "Error generating preprocessed source(s) - "
1259  "ignoring input from stdin.";
1260  IgnoreInput = true;
1261  }
1262 
1263  if (IgnoreInput) {
1264  it = Inputs.erase(it);
1265  ie = Inputs.end();
1266  } else {
1267  ++it;
1268  }
1269  }
1270 
1271  if (Inputs.empty()) {
1272  Diag(clang::diag::note_drv_command_failed_diag_msg)
1273  << "Error generating preprocessed source(s) - "
1274  "no preprocessable inputs.";
1275  return;
1276  }
1277 
1278  // Don't attempt to generate preprocessed files if multiple -arch options are
1279  // used, unless they're all duplicates.
1280  llvm::StringSet<> ArchNames;
1281  for (const Arg *A : C.getArgs()) {
1282  if (A->getOption().matches(options::OPT_arch)) {
1283  StringRef ArchName = A->getValue();
1284  ArchNames.insert(ArchName);
1285  }
1286  }
1287  if (ArchNames.size() > 1) {
1288  Diag(clang::diag::note_drv_command_failed_diag_msg)
1289  << "Error generating preprocessed source(s) - cannot generate "
1290  "preprocessed source with multiple -arch options.";
1291  return;
1292  }
1293 
1294  // Construct the list of abstract actions to perform for this compilation. On
1295  // Darwin OSes this uses the driver-driver and builds universal actions.
1296  const ToolChain &TC = C.getDefaultToolChain();
1297  if (TC.getTriple().isOSBinFormatMachO())
1298  BuildUniversalActions(C, TC, Inputs);
1299  else
1300  BuildActions(C, C.getArgs(), Inputs, C.getActions());
1301 
1302  BuildJobs(C);
1303 
1304  // If there were errors building the compilation, quit now.
1305  if (Trap.hasErrorOccurred()) {
1306  Diag(clang::diag::note_drv_command_failed_diag_msg)
1307  << "Error generating preprocessed source(s).";
1308  return;
1309  }
1310 
1311  // Generate preprocessed output.
1312  SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1313  C.ExecuteJobs(C.getJobs(), FailingCommands);
1314 
1315  // If any of the preprocessing commands failed, clean up and exit.
1316  if (!FailingCommands.empty()) {
1317  Diag(clang::diag::note_drv_command_failed_diag_msg)
1318  << "Error generating preprocessed source(s).";
1319  return;
1320  }
1321 
1322  const ArgStringList &TempFiles = C.getTempFiles();
1323  if (TempFiles.empty()) {
1324  Diag(clang::diag::note_drv_command_failed_diag_msg)
1325  << "Error generating preprocessed source(s).";
1326  return;
1327  }
1328 
1329  Diag(clang::diag::note_drv_command_failed_diag_msg)
1330  << "\n********************\n\n"
1331  "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1332  "Preprocessed source(s) and associated run script(s) are located at:";
1333 
1334  SmallString<128> VFS;
1335  SmallString<128> ReproCrashFilename;
1336  for (const char *TempFile : TempFiles) {
1337  Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1338  if (Report)
1339  Report->TemporaryFiles.push_back(TempFile);
1340  if (ReproCrashFilename.empty()) {
1341  ReproCrashFilename = TempFile;
1342  llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1343  }
1344  if (StringRef(TempFile).endswith(".cache")) {
1345  // In some cases (modules) we'll dump extra data to help with reproducing
1346  // the crash into a directory next to the output.
1347  VFS = llvm::sys::path::filename(TempFile);
1348  llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1349  }
1350  }
1351 
1352  // Assume associated files are based off of the first temporary file.
1353  CrashReportInfo CrashInfo(TempFiles[0], VFS);
1354 
1355  llvm::SmallString<128> Script(CrashInfo.Filename);
1356  llvm::sys::path::replace_extension(Script, "sh");
1357  std::error_code EC;
1358  llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew);
1359  if (EC) {
1360  Diag(clang::diag::note_drv_command_failed_diag_msg)
1361  << "Error generating run script: " << Script << " " << EC.message();
1362  } else {
1363  ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1364  << "# Driver args: ";
1365  printArgList(ScriptOS, C.getInputArgs());
1366  ScriptOS << "# Original command: ";
1367  Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1368  Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1369  if (!AdditionalInformation.empty())
1370  ScriptOS << "\n# Additional information: " << AdditionalInformation
1371  << "\n";
1372  if (Report)
1373  Report->TemporaryFiles.push_back(Script.str());
1374  Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1375  }
1376 
1377  // On darwin, provide information about the .crash diagnostic report.
1378  if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1379  SmallString<128> CrashDiagDir;
1380  if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1381  Diag(clang::diag::note_drv_command_failed_diag_msg)
1382  << ReproCrashFilename.str();
1383  } else { // Suggest a directory for the user to look for .crash files.
1384  llvm::sys::path::append(CrashDiagDir, Name);
1385  CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1386  Diag(clang::diag::note_drv_command_failed_diag_msg)
1387  << "Crash backtrace is located in";
1388  Diag(clang::diag::note_drv_command_failed_diag_msg)
1389  << CrashDiagDir.str();
1390  Diag(clang::diag::note_drv_command_failed_diag_msg)
1391  << "(choose the .crash file that corresponds to your crash)";
1392  }
1393  }
1394 
1395  for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
1396  options::OPT_frewrite_map_file_EQ))
1397  Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1398 
1399  Diag(clang::diag::note_drv_command_failed_diag_msg)
1400  << "\n\n********************";
1401 }
1402 
1403 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1404  // Since commandLineFitsWithinSystemLimits() may underestimate system's capacity
1405  // if the tool does not support response files, there is a chance/ that things
1406  // will just work without a response file, so we silently just skip it.
1408  llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), Cmd.getArguments()))
1409  return;
1410 
1411  std::string TmpName = GetTemporaryPath("response", "txt");
1412  Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1413 }
1414 
1416  Compilation &C,
1417  SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1418  // Just print if -### was present.
1419  if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1420  C.getJobs().Print(llvm::errs(), "\n", true);
1421  return 0;
1422  }
1423 
1424  // If there were errors building the compilation, quit now.
1425  if (Diags.hasErrorOccurred())
1426  return 1;
1427 
1428  // Set up response file names for each command, if necessary
1429  for (auto &Job : C.getJobs())
1430  setUpResponseFiles(C, Job);
1431 
1432  C.ExecuteJobs(C.getJobs(), FailingCommands);
1433 
1434  // If the command succeeded, we are done.
1435  if (FailingCommands.empty())
1436  return 0;
1437 
1438  // Otherwise, remove result files and print extra information about abnormal
1439  // failures.
1440  int Res = 0;
1441  for (const auto &CmdPair : FailingCommands) {
1442  int CommandRes = CmdPair.first;
1443  const Command *FailingCommand = CmdPair.second;
1444 
1445  // Remove result files if we're not saving temps.
1446  if (!isSaveTempsEnabled()) {
1447  const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1448  C.CleanupFileMap(C.getResultFiles(), JA, true);
1449 
1450  // Failure result files are valid unless we crashed.
1451  if (CommandRes < 0)
1452  C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1453  }
1454 
1455 #if LLVM_ON_UNIX
1456  // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1457  // for SIGPIPE. Do not print diagnostics for this case.
1458  if (CommandRes == EX_IOERR) {
1459  Res = CommandRes;
1460  continue;
1461  }
1462 #endif
1463 
1464  // Print extra information about abnormal failures, if possible.
1465  //
1466  // This is ad-hoc, but we don't want to be excessively noisy. If the result
1467  // status was 1, assume the command failed normally. In particular, if it
1468  // was the compiler then assume it gave a reasonable error code. Failures
1469  // in other tools are less common, and they generally have worse
1470  // diagnostics, so always print the diagnostic there.
1471  const Tool &FailingTool = FailingCommand->getCreator();
1472 
1473  if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1474  // FIXME: See FIXME above regarding result code interpretation.
1475  if (CommandRes < 0)
1476  Diag(clang::diag::err_drv_command_signalled)
1477  << FailingTool.getShortName();
1478  else
1479  Diag(clang::diag::err_drv_command_failed)
1480  << FailingTool.getShortName() << CommandRes;
1481  }
1482  }
1483  return Res;
1484 }
1485 
1486 void Driver::PrintHelp(bool ShowHidden) const {
1487  unsigned IncludedFlagsBitmask;
1488  unsigned ExcludedFlagsBitmask;
1489  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1490  getIncludeExcludeOptionFlagMasks(IsCLMode());
1491 
1492  ExcludedFlagsBitmask |= options::NoDriverOption;
1493  if (!ShowHidden)
1494  ExcludedFlagsBitmask |= HelpHidden;
1495 
1496  std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1497  getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1498  IncludedFlagsBitmask, ExcludedFlagsBitmask,
1499  /*ShowAllAliases=*/false);
1500 }
1501 
1502 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1503  // FIXME: The following handlers should use a callback mechanism, we don't
1504  // know what the client would like to do.
1505  OS << getClangFullVersion() << '\n';
1506  const ToolChain &TC = C.getDefaultToolChain();
1507  OS << "Target: " << TC.getTripleString() << '\n';
1508 
1509  // Print the threading model.
1510  if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1511  // Don't print if the ToolChain would have barfed on it already
1512  if (TC.isThreadModelSupported(A->getValue()))
1513  OS << "Thread model: " << A->getValue();
1514  } else
1515  OS << "Thread model: " << TC.getThreadModel();
1516  OS << '\n';
1517 
1518  // Print out the install directory.
1519  OS << "InstalledDir: " << InstalledDir << '\n';
1520 
1521  // If configuration file was used, print its path.
1522  if (!ConfigFile.empty())
1523  OS << "Configuration file: " << ConfigFile << '\n';
1524 }
1525 
1526 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1527 /// option.
1528 static void PrintDiagnosticCategories(raw_ostream &OS) {
1529  // Skip the empty category.
1530  for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1531  ++i)
1532  OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1533 }
1534 
1535 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1536  if (PassedFlags == "")
1537  return;
1538  // Print out all options that start with a given argument. This is used for
1539  // shell autocompletion.
1540  std::vector<std::string> SuggestedCompletions;
1541  std::vector<std::string> Flags;
1542 
1543  unsigned short DisableFlags =
1545 
1546  // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1547  // because the latter indicates that the user put space before pushing tab
1548  // which should end up in a file completion.
1549  const bool HasSpace = PassedFlags.endswith(",");
1550 
1551  // Parse PassedFlags by "," as all the command-line flags are passed to this
1552  // function separated by ","
1553  StringRef TargetFlags = PassedFlags;
1554  while (TargetFlags != "") {
1555  StringRef CurFlag;
1556  std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1557  Flags.push_back(std::string(CurFlag));
1558  }
1559 
1560  // We want to show cc1-only options only when clang is invoked with -cc1 or
1561  // -Xclang.
1562  if (std::find(Flags.begin(), Flags.end(), "-Xclang") != Flags.end() ||
1563  std::find(Flags.begin(), Flags.end(), "-cc1") != Flags.end())
1564  DisableFlags &= ~options::NoDriverOption;
1565 
1566  StringRef Cur;
1567  Cur = Flags.at(Flags.size() - 1);
1568  StringRef Prev;
1569  if (Flags.size() >= 2) {
1570  Prev = Flags.at(Flags.size() - 2);
1571  SuggestedCompletions = Opts->suggestValueCompletions(Prev, Cur);
1572  }
1573 
1574  if (SuggestedCompletions.empty())
1575  SuggestedCompletions = Opts->suggestValueCompletions(Cur, "");
1576 
1577  // If Flags were empty, it means the user typed `clang [tab]` where we should
1578  // list all possible flags. If there was no value completion and the user
1579  // pressed tab after a space, we should fall back to a file completion.
1580  // We're printing a newline to be consistent with what we print at the end of
1581  // this function.
1582  if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1583  llvm::outs() << '\n';
1584  return;
1585  }
1586 
1587  // When flag ends with '=' and there was no value completion, return empty
1588  // string and fall back to the file autocompletion.
1589  if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1590  // If the flag is in the form of "--autocomplete=-foo",
1591  // we were requested to print out all option names that start with "-foo".
1592  // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1593  SuggestedCompletions = Opts->findByPrefix(Cur, DisableFlags);
1594 
1595  // We have to query the -W flags manually as they're not in the OptTable.
1596  // TODO: Find a good way to add them to OptTable instead and them remove
1597  // this code.
1598  for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1599  if (S.startswith(Cur))
1600  SuggestedCompletions.push_back(S);
1601  }
1602 
1603  // Sort the autocomplete candidates so that shells print them out in a
1604  // deterministic order. We could sort in any way, but we chose
1605  // case-insensitive sorting for consistency with the -help option
1606  // which prints out options in the case-insensitive alphabetical order.
1607  llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1608  if (int X = A.compare_lower(B))
1609  return X < 0;
1610  return A.compare(B) > 0;
1611  });
1612 
1613  llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1614 }
1615 
1617  // The order these options are handled in gcc is all over the place, but we
1618  // don't expect inconsistencies w.r.t. that to matter in practice.
1619 
1620  if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1621  llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1622  return false;
1623  }
1624 
1625  if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1626  // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1627  // return an answer which matches our definition of __VERSION__.
1628  //
1629  // If we want to return a more correct answer some day, then we should
1630  // introduce a non-pedantically GCC compatible mode to Clang in which we
1631  // provide sensible definitions for -dumpversion, __VERSION__, etc.
1632  llvm::outs() << "4.2.1\n";
1633  return false;
1634  }
1635 
1636  if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1637  PrintDiagnosticCategories(llvm::outs());
1638  return false;
1639  }
1640 
1641  if (C.getArgs().hasArg(options::OPT_help) ||
1642  C.getArgs().hasArg(options::OPT__help_hidden)) {
1643  PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1644  return false;
1645  }
1646 
1647  if (C.getArgs().hasArg(options::OPT__version)) {
1648  // Follow gcc behavior and use stdout for --version and stderr for -v.
1649  PrintVersion(C, llvm::outs());
1650  return false;
1651  }
1652 
1653  if (C.getArgs().hasArg(options::OPT_v) ||
1654  C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1655  PrintVersion(C, llvm::errs());
1656  SuppressMissingInputWarning = true;
1657  }
1658 
1659  if (C.getArgs().hasArg(options::OPT_v)) {
1660  if (!SystemConfigDir.empty())
1661  llvm::errs() << "System configuration file directory: "
1662  << SystemConfigDir << "\n";
1663  if (!UserConfigDir.empty())
1664  llvm::errs() << "User configuration file directory: "
1665  << UserConfigDir << "\n";
1666  }
1667 
1668  const ToolChain &TC = C.getDefaultToolChain();
1669 
1670  if (C.getArgs().hasArg(options::OPT_v))
1671  TC.printVerboseInfo(llvm::errs());
1672 
1673  if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1674  llvm::outs() << ResourceDir << '\n';
1675  return false;
1676  }
1677 
1678  if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1679  llvm::outs() << "programs: =";
1680  bool separator = false;
1681  for (const std::string &Path : TC.getProgramPaths()) {
1682  if (separator)
1683  llvm::outs() << ':';
1684  llvm::outs() << Path;
1685  separator = true;
1686  }
1687  llvm::outs() << "\n";
1688  llvm::outs() << "libraries: =" << ResourceDir;
1689 
1690  StringRef sysroot = C.getSysRoot();
1691 
1692  for (const std::string &Path : TC.getFilePaths()) {
1693  // Always print a separator. ResourceDir was the first item shown.
1694  llvm::outs() << ':';
1695  // Interpretation of leading '=' is needed only for NetBSD.
1696  if (Path[0] == '=')
1697  llvm::outs() << sysroot << Path.substr(1);
1698  else
1699  llvm::outs() << Path;
1700  }
1701  llvm::outs() << "\n";
1702  return false;
1703  }
1704 
1705  // FIXME: The following handlers should use a callback mechanism, we don't
1706  // know what the client would like to do.
1707  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1708  llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1709  return false;
1710  }
1711 
1712  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1713  StringRef ProgName = A->getValue();
1714 
1715  // Null program name cannot have a path.
1716  if (! ProgName.empty())
1717  llvm::outs() << GetProgramPath(ProgName, TC);
1718 
1719  llvm::outs() << "\n";
1720  return false;
1721  }
1722 
1723  if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1724  StringRef PassedFlags = A->getValue();
1725  HandleAutocompletions(PassedFlags);
1726  return false;
1727  }
1728 
1729  if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1731  const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1732  RegisterEffectiveTriple TripleRAII(TC, Triple);
1733  switch (RLT) {
1735  llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1736  break;
1737  case ToolChain::RLT_Libgcc:
1738  llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1739  break;
1740  }
1741  return false;
1742  }
1743 
1744  if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1745  for (const Multilib &Multilib : TC.getMultilibs())
1746  llvm::outs() << Multilib << "\n";
1747  return false;
1748  }
1749 
1750  if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1751  const Multilib &Multilib = TC.getMultilib();
1752  if (Multilib.gccSuffix().empty())
1753  llvm::outs() << ".\n";
1754  else {
1755  StringRef Suffix(Multilib.gccSuffix());
1756  assert(Suffix.front() == '/');
1757  llvm::outs() << Suffix.substr(1) << "\n";
1758  }
1759  return false;
1760  }
1761 
1762  if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1763  llvm::outs() << TC.getTripleString() << "\n";
1764  return false;
1765  }
1766 
1767  if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1768  const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1769  llvm::outs() << Triple.getTriple() << "\n";
1770  return false;
1771  }
1772 
1773  return true;
1774 }
1775 
1776 // Display an action graph human-readably. Action A is the "sink" node
1777 // and latest-occuring action. Traversal is in pre-order, visiting the
1778 // inputs to each action before printing the action itself.
1779 static unsigned PrintActions1(const Compilation &C, Action *A,
1780  std::map<Action *, unsigned> &Ids) {
1781  if (Ids.count(A)) // A was already visited.
1782  return Ids[A];
1783 
1784  std::string str;
1785  llvm::raw_string_ostream os(str);
1786 
1787  os << Action::getClassName(A->getKind()) << ", ";
1788  if (InputAction *IA = dyn_cast<InputAction>(A)) {
1789  os << "\"" << IA->getInputArg().getValue() << "\"";
1790  } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1791  os << '"' << BIA->getArchName() << '"' << ", {"
1792  << PrintActions1(C, *BIA->input_begin(), Ids) << "}";
1793  } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1794  bool IsFirst = true;
1795  OA->doOnEachDependence(
1796  [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1797  // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1798  // sm_35 this will generate:
1799  // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1800  // (nvptx64-nvidia-cuda:sm_35) {#ID}
1801  if (!IsFirst)
1802  os << ", ";
1803  os << '"';
1804  if (TC)
1805  os << A->getOffloadingKindPrefix();
1806  else
1807  os << "host";
1808  os << " (";
1809  os << TC->getTriple().normalize();
1810 
1811  if (BoundArch)
1812  os << ":" << BoundArch;
1813  os << ")";
1814  os << '"';
1815  os << " {" << PrintActions1(C, A, Ids) << "}";
1816  IsFirst = false;
1817  });
1818  } else {
1819  const ActionList *AL = &A->getInputs();
1820 
1821  if (AL->size()) {
1822  const char *Prefix = "{";
1823  for (Action *PreRequisite : *AL) {
1824  os << Prefix << PrintActions1(C, PreRequisite, Ids);
1825  Prefix = ", ";
1826  }
1827  os << "}";
1828  } else
1829  os << "{}";
1830  }
1831 
1832  // Append offload info for all options other than the offloading action
1833  // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
1834  std::string offload_str;
1835  llvm::raw_string_ostream offload_os(offload_str);
1836  if (!isa<OffloadAction>(A)) {
1837  auto S = A->getOffloadingKindPrefix();
1838  if (!S.empty()) {
1839  offload_os << ", (" << S;
1840  if (A->getOffloadingArch())
1841  offload_os << ", " << A->getOffloadingArch();
1842  offload_os << ")";
1843  }
1844  }
1845 
1846  unsigned Id = Ids.size();
1847  Ids[A] = Id;
1848  llvm::errs() << Id << ": " << os.str() << ", "
1849  << types::getTypeName(A->getType()) << offload_os.str() << "\n";
1850 
1851  return Id;
1852 }
1853 
1854 // Print the action graphs in a compilation C.
1855 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
1856 void Driver::PrintActions(const Compilation &C) const {
1857  std::map<Action *, unsigned> Ids;
1858  for (Action *A : C.getActions())
1859  PrintActions1(C, A, Ids);
1860 }
1861 
1862 /// Check whether the given input tree contains any compilation or
1863 /// assembly actions.
1865  if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
1866  isa<AssembleJobAction>(A))
1867  return true;
1868 
1869  for (const Action *Input : A->inputs())
1871  return true;
1872 
1873  return false;
1874 }
1875 
1877  const InputList &BAInputs) const {
1878  DerivedArgList &Args = C.getArgs();
1879  ActionList &Actions = C.getActions();
1880  llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
1881  // Collect the list of architectures. Duplicates are allowed, but should only
1882  // be handled once (in the order seen).
1883  llvm::StringSet<> ArchNames;
1885  for (Arg *A : Args) {
1886  if (A->getOption().matches(options::OPT_arch)) {
1887  // Validate the option here; we don't save the type here because its
1888  // particular spelling may participate in other driver choices.
1889  llvm::Triple::ArchType Arch =
1891  if (Arch == llvm::Triple::UnknownArch) {
1892  Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
1893  continue;
1894  }
1895 
1896  A->claim();
1897  if (ArchNames.insert(A->getValue()).second)
1898  Archs.push_back(A->getValue());
1899  }
1900  }
1901 
1902  // When there is no explicit arch for this platform, make sure we still bind
1903  // the architecture (to the default) so that -Xarch_ is handled correctly.
1904  if (!Archs.size())
1905  Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
1906 
1907  ActionList SingleActions;
1908  BuildActions(C, Args, BAInputs, SingleActions);
1909 
1910  // Add in arch bindings for every top level action, as well as lipo and
1911  // dsymutil steps if needed.
1912  for (Action* Act : SingleActions) {
1913  // Make sure we can lipo this kind of output. If not (and it is an actual
1914  // output) then we disallow, since we can't create an output file with the
1915  // right name without overwriting it. We could remove this oddity by just
1916  // changing the output names to include the arch, which would also fix
1917  // -save-temps. Compatibility wins for now.
1918 
1919  if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
1920  Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
1921  << types::getTypeName(Act->getType());
1922 
1923  ActionList Inputs;
1924  for (unsigned i = 0, e = Archs.size(); i != e; ++i)
1925  Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
1926 
1927  // Lipo if necessary, we do it this way because we need to set the arch flag
1928  // so that -Xarch_ gets overwritten.
1929  if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
1930  Actions.append(Inputs.begin(), Inputs.end());
1931  else
1932  Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
1933 
1934  // Handle debug info queries.
1935  Arg *A = Args.getLastArg(options::OPT_g_Group);
1936  if (A && !A->getOption().matches(options::OPT_g0) &&
1937  !A->getOption().matches(options::OPT_gstabs) &&
1938  ContainsCompileOrAssembleAction(Actions.back())) {
1939 
1940  // Add a 'dsymutil' step if necessary, when debug info is enabled and we
1941  // have a compile input. We need to run 'dsymutil' ourselves in such cases
1942  // because the debug info will refer to a temporary object file which
1943  // will be removed at the end of the compilation process.
1944  if (Act->getType() == types::TY_Image) {
1945  ActionList Inputs;
1946  Inputs.push_back(Actions.back());
1947  Actions.pop_back();
1948  Actions.push_back(
1949  C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
1950  }
1951 
1952  // Verify the debug info output.
1953  if (Args.hasArg(options::OPT_verify_debug_info)) {
1954  Action* LastAction = Actions.back();
1955  Actions.pop_back();
1956  Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
1957  LastAction, types::TY_Nothing));
1958  }
1959  }
1960  }
1961 }
1962 
1963 /// Check that the file referenced by Value exists. If it doesn't,
1964 /// issue a diagnostic and return false.
1965 static bool DiagnoseInputExistence(const Driver &D, const DerivedArgList &Args,
1966  StringRef Value, types::ID Ty) {
1967  if (!D.getCheckInputsExist())
1968  return true;
1969 
1970  // stdin always exists.
1971  if (Value == "-")
1972  return true;
1973 
1974  SmallString<64> Path(Value);
1975  if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory)) {
1976  if (!llvm::sys::path::is_absolute(Path)) {
1977  SmallString<64> Directory(WorkDir->getValue());
1978  llvm::sys::path::append(Directory, Value);
1979  Path.assign(Directory);
1980  }
1981  }
1982 
1983  if (D.getVFS().exists(Path))
1984  return true;
1985 
1986  if (D.IsCLMode()) {
1987  if (!llvm::sys::path::is_absolute(Twine(Path)) &&
1988  llvm::sys::Process::FindInEnvPath("LIB", Value))
1989  return true;
1990 
1991  if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
1992  // Arguments to the /link flag might cause the linker to search for object
1993  // and library files in paths we don't know about. Don't error in such
1994  // cases.
1995  return true;
1996  }
1997  }
1998 
1999  D.Diag(clang::diag::err_drv_no_such_file) << Path;
2000  return false;
2001 }
2002 
2003 // Construct a the list of inputs and their types.
2004 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2005  InputList &Inputs) const {
2006  // Track the current user specified (-x) input. We also explicitly track the
2007  // argument used to set the type; we only want to claim the type when we
2008  // actually use it, so we warn about unused -x arguments.
2009  types::ID InputType = types::TY_Nothing;
2010  Arg *InputTypeArg = nullptr;
2011 
2012  // The last /TC or /TP option sets the input type to C or C++ globally.
2013  if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2014  options::OPT__SLASH_TP)) {
2015  InputTypeArg = TCTP;
2016  InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2017  ? types::TY_C
2018  : types::TY_CXX;
2019 
2020  Arg *Previous = nullptr;
2021  bool ShowNote = false;
2022  for (Arg *A : Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2023  if (Previous) {
2024  Diag(clang::diag::warn_drv_overriding_flag_option)
2025  << Previous->getSpelling() << A->getSpelling();
2026  ShowNote = true;
2027  }
2028  Previous = A;
2029  }
2030  if (ShowNote)
2031  Diag(clang::diag::note_drv_t_option_is_global);
2032 
2033  // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2034  assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2035  }
2036 
2037  for (Arg *A : Args) {
2038  if (A->getOption().getKind() == Option::InputClass) {
2039  const char *Value = A->getValue();
2041 
2042  // Infer the input type if necessary.
2043  if (InputType == types::TY_Nothing) {
2044  // If there was an explicit arg for this, claim it.
2045  if (InputTypeArg)
2046  InputTypeArg->claim();
2047 
2048  // stdin must be handled specially.
2049  if (memcmp(Value, "-", 2) == 0) {
2050  // If running with -E, treat as a C input (this changes the builtin
2051  // macros, for example). This may be overridden by -ObjC below.
2052  //
2053  // Otherwise emit an error but still use a valid type to avoid
2054  // spurious errors (e.g., no inputs).
2055  if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2056  Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2057  : clang::diag::err_drv_unknown_stdin_type);
2058  Ty = types::TY_C;
2059  } else {
2060  // Otherwise lookup by extension.
2061  // Fallback is C if invoked as C preprocessor, C++ if invoked with
2062  // clang-cl /E, or Object otherwise.
2063  // We use a host hook here because Darwin at least has its own
2064  // idea of what .s is.
2065  if (const char *Ext = strrchr(Value, '.'))
2066  Ty = TC.LookupTypeForExtension(Ext + 1);
2067 
2068  if (Ty == types::TY_INVALID) {
2069  if (CCCIsCPP())
2070  Ty = types::TY_C;
2071  else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E))
2072  Ty = types::TY_CXX;
2073  else
2074  Ty = types::TY_Object;
2075  }
2076 
2077  // If the driver is invoked as C++ compiler (like clang++ or c++) it
2078  // should autodetect some input files as C++ for g++ compatibility.
2079  if (CCCIsCXX()) {
2080  types::ID OldTy = Ty;
2082 
2083  if (Ty != OldTy)
2084  Diag(clang::diag::warn_drv_treating_input_as_cxx)
2085  << getTypeName(OldTy) << getTypeName(Ty);
2086  }
2087  }
2088 
2089  // -ObjC and -ObjC++ override the default language, but only for "source
2090  // files". We just treat everything that isn't a linker input as a
2091  // source file.
2092  //
2093  // FIXME: Clean this up if we move the phase sequence into the type.
2094  if (Ty != types::TY_Object) {
2095  if (Args.hasArg(options::OPT_ObjC))
2096  Ty = types::TY_ObjC;
2097  else if (Args.hasArg(options::OPT_ObjCXX))
2098  Ty = types::TY_ObjCXX;
2099  }
2100  } else {
2101  assert(InputTypeArg && "InputType set w/o InputTypeArg");
2102  if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2103  // If emulating cl.exe, make sure that /TC and /TP don't affect input
2104  // object files.
2105  const char *Ext = strrchr(Value, '.');
2106  if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2107  Ty = types::TY_Object;
2108  }
2109  if (Ty == types::TY_INVALID) {
2110  Ty = InputType;
2111  InputTypeArg->claim();
2112  }
2113  }
2114 
2115  if (DiagnoseInputExistence(*this, Args, Value, Ty))
2116  Inputs.push_back(std::make_pair(Ty, A));
2117 
2118  } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2119  StringRef Value = A->getValue();
2120  if (DiagnoseInputExistence(*this, Args, Value, types::TY_C)) {
2121  Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2122  Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2123  }
2124  A->claim();
2125  } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2126  StringRef Value = A->getValue();
2127  if (DiagnoseInputExistence(*this, Args, Value, types::TY_CXX)) {
2128  Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2129  Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2130  }
2131  A->claim();
2132  } else if (A->getOption().hasFlag(options::LinkerInput)) {
2133  // Just treat as object type, we could make a special type for this if
2134  // necessary.
2135  Inputs.push_back(std::make_pair(types::TY_Object, A));
2136 
2137  } else if (A->getOption().matches(options::OPT_x)) {
2138  InputTypeArg = A;
2139  InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2140  A->claim();
2141 
2142  // Follow gcc behavior and treat as linker input for invalid -x
2143  // options. Its not clear why we shouldn't just revert to unknown; but
2144  // this isn't very important, we might as well be bug compatible.
2145  if (!InputType) {
2146  Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2147  InputType = types::TY_Object;
2148  }
2149  } else if (A->getOption().getID() == options::OPT__SLASH_U) {
2150  assert(A->getNumValues() == 1 && "The /U option has one value.");
2151  StringRef Val = A->getValue(0);
2152  if (Val.find_first_of("/\\") != StringRef::npos) {
2153  // Warn about e.g. "/Users/me/myfile.c".
2154  Diag(diag::warn_slash_u_filename) << Val;
2155  Diag(diag::note_use_dashdash);
2156  }
2157  }
2158  }
2159  if (CCCIsCPP() && Inputs.empty()) {
2160  // If called as standalone preprocessor, stdin is processed
2161  // if no other input is present.
2162  Arg *A = MakeInputArg(Args, *Opts, "-");
2163  Inputs.push_back(std::make_pair(types::TY_C, A));
2164  }
2165 }
2166 
2167 namespace {
2168 /// Provides a convenient interface for different programming models to generate
2169 /// the required device actions.
2170 class OffloadingActionBuilder final {
2171  /// Flag used to trace errors in the builder.
2172  bool IsValid = false;
2173 
2174  /// The compilation that is using this builder.
2175  Compilation &C;
2176 
2177  /// Map between an input argument and the offload kinds used to process it.
2178  std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2179 
2180  /// Builder interface. It doesn't build anything or keep any state.
2181  class DeviceActionBuilder {
2182  public:
2184 
2185  enum ActionBuilderReturnCode {
2186  // The builder acted successfully on the current action.
2187  ABRT_Success,
2188  // The builder didn't have to act on the current action.
2189  ABRT_Inactive,
2190  // The builder was successful and requested the host action to not be
2191  // generated.
2192  ABRT_Ignore_Host,
2193  };
2194 
2195  protected:
2196  /// Compilation associated with this builder.
2197  Compilation &C;
2198 
2199  /// Tool chains associated with this builder. The same programming
2200  /// model may have associated one or more tool chains.
2202 
2203  /// The derived arguments associated with this builder.
2204  DerivedArgList &Args;
2205 
2206  /// The inputs associated with this builder.
2207  const Driver::InputList &Inputs;
2208 
2209  /// The associated offload kind.
2210  Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2211 
2212  public:
2213  DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2214  const Driver::InputList &Inputs,
2215  Action::OffloadKind AssociatedOffloadKind)
2216  : C(C), Args(Args), Inputs(Inputs),
2217  AssociatedOffloadKind(AssociatedOffloadKind) {}
2218  virtual ~DeviceActionBuilder() {}
2219 
2220  /// Fill up the array \a DA with all the device dependences that should be
2221  /// added to the provided host action \a HostAction. By default it is
2222  /// inactive.
2223  virtual ActionBuilderReturnCode
2224  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2225  phases::ID CurPhase, phases::ID FinalPhase,
2226  PhasesTy &Phases) {
2227  return ABRT_Inactive;
2228  }
2229 
2230  /// Update the state to include the provided host action \a HostAction as a
2231  /// dependency of the current device action. By default it is inactive.
2232  virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2233  return ABRT_Inactive;
2234  }
2235 
2236  /// Append top level actions generated by the builder. Return true if errors
2237  /// were found.
2238  virtual void appendTopLevelActions(ActionList &AL) {}
2239 
2240  /// Append linker actions generated by the builder. Return true if errors
2241  /// were found.
2242  virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2243 
2244  /// Initialize the builder. Return true if any initialization errors are
2245  /// found.
2246  virtual bool initialize() { return false; }
2247 
2248  /// Return true if the builder can use bundling/unbundling.
2249  virtual bool canUseBundlerUnbundler() const { return false; }
2250 
2251  /// Return true if this builder is valid. We have a valid builder if we have
2252  /// associated device tool chains.
2253  bool isValid() { return !ToolChains.empty(); }
2254 
2255  /// Return the associated offload kind.
2256  Action::OffloadKind getAssociatedOffloadKind() {
2257  return AssociatedOffloadKind;
2258  }
2259  };
2260 
2261  /// Base class for CUDA/HIP action builder. It injects device code in
2262  /// the host backend action.
2263  class CudaActionBuilderBase : public DeviceActionBuilder {
2264  protected:
2265  /// Flags to signal if the user requested host-only or device-only
2266  /// compilation.
2267  bool CompileHostOnly = false;
2268  bool CompileDeviceOnly = false;
2269 
2270  /// List of GPU architectures to use in this compilation.
2271  SmallVector<CudaArch, 4> GpuArchList;
2272 
2273  /// The CUDA actions for the current input.
2274  ActionList CudaDeviceActions;
2275 
2276  /// The CUDA fat binary if it was generated for the current input.
2277  Action *CudaFatBinary = nullptr;
2278 
2279  /// Flag that is set to true if this builder acted on the current input.
2280  bool IsActive = false;
2281  public:
2282  CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2283  const Driver::InputList &Inputs,
2284  Action::OffloadKind OFKind)
2285  : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2286 
2287  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2288  // While generating code for CUDA, we only depend on the host input action
2289  // to trigger the creation of all the CUDA device actions.
2290 
2291  // If we are dealing with an input action, replicate it for each GPU
2292  // architecture. If we are in host-only mode we return 'success' so that
2293  // the host uses the CUDA offload kind.
2294  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2295  assert(!GpuArchList.empty() &&
2296  "We should have at least one GPU architecture.");
2297 
2298  // If the host input is not CUDA or HIP, we don't need to bother about
2299  // this input.
2300  if (IA->getType() != types::TY_CUDA &&
2301  IA->getType() != types::TY_HIP) {
2302  // The builder will ignore this input.
2303  IsActive = false;
2304  return ABRT_Inactive;
2305  }
2306 
2307  // Set the flag to true, so that the builder acts on the current input.
2308  IsActive = true;
2309 
2310  if (CompileHostOnly)
2311  return ABRT_Success;
2312 
2313  // Replicate inputs for each GPU architecture.
2314  auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2315  : types::TY_CUDA_DEVICE;
2316  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2317  CudaDeviceActions.push_back(
2318  C.MakeAction<InputAction>(IA->getInputArg(), Ty));
2319  }
2320 
2321  return ABRT_Success;
2322  }
2323 
2324  // If this is an unbundling action use it as is for each CUDA toolchain.
2325  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2326  CudaDeviceActions.clear();
2327  auto *IA = cast<InputAction>(UA->getInputs().back());
2328  std::string FileName = IA->getInputArg().getAsString(Args);
2329  // Check if the type of the file is the same as the action. Do not
2330  // unbundle it if it is not. Do not unbundle .so files, for example,
2331  // which are not object files.
2332  if (IA->getType() == types::TY_Object &&
2333  (!llvm::sys::path::has_extension(FileName) ||
2335  llvm::sys::path::extension(FileName).drop_front()) !=
2336  types::TY_Object))
2337  return ABRT_Inactive;
2338 
2339  for (auto Arch : GpuArchList) {
2340  CudaDeviceActions.push_back(UA);
2341  UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch),
2342  AssociatedOffloadKind);
2343  }
2344  return ABRT_Success;
2345  }
2346 
2347  return IsActive ? ABRT_Success : ABRT_Inactive;
2348  }
2349 
2350  void appendTopLevelActions(ActionList &AL) override {
2351  // Utility to append actions to the top level list.
2352  auto AddTopLevel = [&](Action *A, CudaArch BoundArch) {
2354  Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch),
2355  AssociatedOffloadKind);
2356  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2357  };
2358 
2359  // If we have a fat binary, add it to the list.
2360  if (CudaFatBinary) {
2361  AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN);
2362  CudaDeviceActions.clear();
2363  CudaFatBinary = nullptr;
2364  return;
2365  }
2366 
2367  if (CudaDeviceActions.empty())
2368  return;
2369 
2370  // If we have CUDA actions at this point, that's because we have a have
2371  // partial compilation, so we should have an action for each GPU
2372  // architecture.
2373  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2374  "Expecting one action per GPU architecture.");
2375  assert(ToolChains.size() == 1 &&
2376  "Expecting to have a sing CUDA toolchain.");
2377  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2378  AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2379 
2380  CudaDeviceActions.clear();
2381  }
2382 
2383  bool initialize() override {
2384  assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2385  AssociatedOffloadKind == Action::OFK_HIP);
2386 
2387  // We don't need to support CUDA.
2388  if (AssociatedOffloadKind == Action::OFK_Cuda &&
2390  return false;
2391 
2392  // We don't need to support HIP.
2393  if (AssociatedOffloadKind == Action::OFK_HIP &&
2395  return false;
2396 
2398  assert(HostTC && "No toolchain for host compilation.");
2399  if (HostTC->getTriple().isNVPTX() ||
2400  HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2401  // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2402  // an error and abort pipeline construction early so we don't trip
2403  // asserts that assume device-side compilation.
2404  C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2405  << HostTC->getTriple().getArchName();
2406  return true;
2407  }
2408 
2409  ToolChains.push_back(
2410  AssociatedOffloadKind == Action::OFK_Cuda
2413 
2414  Arg *PartialCompilationArg = Args.getLastArg(
2415  options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2416  options::OPT_cuda_compile_host_device);
2417  CompileHostOnly = PartialCompilationArg &&
2418  PartialCompilationArg->getOption().matches(
2419  options::OPT_cuda_host_only);
2420  CompileDeviceOnly = PartialCompilationArg &&
2421  PartialCompilationArg->getOption().matches(
2422  options::OPT_cuda_device_only);
2423 
2424  // Collect all cuda_gpu_arch parameters, removing duplicates.
2425  std::set<CudaArch> GpuArchs;
2426  bool Error = false;
2427  for (Arg *A : Args) {
2428  if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) ||
2429  A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)))
2430  continue;
2431  A->claim();
2432 
2433  const StringRef ArchStr = A->getValue();
2434  if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) &&
2435  ArchStr == "all") {
2436  GpuArchs.clear();
2437  continue;
2438  }
2439  CudaArch Arch = StringToCudaArch(ArchStr);
2440  if (Arch == CudaArch::UNKNOWN) {
2441  C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2442  Error = true;
2443  } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ))
2444  GpuArchs.insert(Arch);
2445  else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))
2446  GpuArchs.erase(Arch);
2447  else
2448  llvm_unreachable("Unexpected option.");
2449  }
2450 
2451  // Collect list of GPUs remaining in the set.
2452  for (CudaArch Arch : GpuArchs)
2453  GpuArchList.push_back(Arch);
2454 
2455  // Default to sm_20 which is the lowest common denominator for
2456  // supported GPUs. sm_20 code should work correctly, if
2457  // suboptimally, on all newer GPUs.
2458  if (GpuArchList.empty())
2459  GpuArchList.push_back(CudaArch::SM_20);
2460 
2461  return Error;
2462  }
2463  };
2464 
2465  /// \brief CUDA action builder. It injects device code in the host backend
2466  /// action.
2467  class CudaActionBuilder final : public CudaActionBuilderBase {
2468  public:
2469  CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2470  const Driver::InputList &Inputs)
2471  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {}
2472 
2473  ActionBuilderReturnCode
2474  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2475  phases::ID CurPhase, phases::ID FinalPhase,
2476  PhasesTy &Phases) override {
2477  if (!IsActive)
2478  return ABRT_Inactive;
2479 
2480  // If we don't have more CUDA actions, we don't have any dependences to
2481  // create for the host.
2482  if (CudaDeviceActions.empty())
2483  return ABRT_Success;
2484 
2485  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2486  "Expecting one action per GPU architecture.");
2487  assert(!CompileHostOnly &&
2488  "Not expecting CUDA actions in host-only compilation.");
2489 
2490  // If we are generating code for the device or we are in a backend phase,
2491  // we attempt to generate the fat binary. We compile each arch to ptx and
2492  // assemble to cubin, then feed the cubin *and* the ptx into a device
2493  // "link" action, which uses fatbinary to combine these cubins into one
2494  // fatbin. The fatbin is then an input to the host action if not in
2495  // device-only mode.
2496  if (CompileDeviceOnly || CurPhase == phases::Backend) {
2497  ActionList DeviceActions;
2498  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2499  // Produce the device action from the current phase up to the assemble
2500  // phase.
2501  for (auto Ph : Phases) {
2502  // Skip the phases that were already dealt with.
2503  if (Ph < CurPhase)
2504  continue;
2505  // We have to be consistent with the host final phase.
2506  if (Ph > FinalPhase)
2507  break;
2508 
2509  CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2510  C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2511 
2512  if (Ph == phases::Assemble)
2513  break;
2514  }
2515 
2516  // If we didn't reach the assemble phase, we can't generate the fat
2517  // binary. We don't need to generate the fat binary if we are not in
2518  // device-only mode.
2519  if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2520  CompileDeviceOnly)
2521  continue;
2522 
2523  Action *AssembleAction = CudaDeviceActions[I];
2524  assert(AssembleAction->getType() == types::TY_Object);
2525  assert(AssembleAction->getInputs().size() == 1);
2526 
2527  Action *BackendAction = AssembleAction->getInputs()[0];
2528  assert(BackendAction->getType() == types::TY_PP_Asm);
2529 
2530  for (auto &A : {AssembleAction, BackendAction}) {
2532  DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]),
2534  DeviceActions.push_back(
2535  C.MakeAction<OffloadAction>(DDep, A->getType()));
2536  }
2537  }
2538 
2539  // We generate the fat binary if we have device input actions.
2540  if (!DeviceActions.empty()) {
2541  CudaFatBinary =
2542  C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2543 
2544  if (!CompileDeviceOnly) {
2545  DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2547  // Clear the fat binary, it is already a dependence to an host
2548  // action.
2549  CudaFatBinary = nullptr;
2550  }
2551 
2552  // Remove the CUDA actions as they are already connected to an host
2553  // action or fat binary.
2554  CudaDeviceActions.clear();
2555  }
2556 
2557  // We avoid creating host action in device-only mode.
2558  return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2559  } else if (CurPhase > phases::Backend) {
2560  // If we are past the backend phase and still have a device action, we
2561  // don't have to do anything as this action is already a device
2562  // top-level action.
2563  return ABRT_Success;
2564  }
2565 
2566  assert(CurPhase < phases::Backend && "Generating single CUDA "
2567  "instructions should only occur "
2568  "before the backend phase!");
2569 
2570  // By default, we produce an action for each device arch.
2571  for (Action *&A : CudaDeviceActions)
2572  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2573 
2574  return ABRT_Success;
2575  }
2576  };
2577  /// \brief HIP action builder. It injects device code in the host backend
2578  /// action.
2579  class HIPActionBuilder final : public CudaActionBuilderBase {
2580  /// The linker inputs obtained for each device arch.
2581  SmallVector<ActionList, 8> DeviceLinkerInputs;
2582  bool Relocatable;
2583 
2584  public:
2585  HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2586  const Driver::InputList &Inputs)
2587  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP),
2588  Relocatable(false) {}
2589 
2590  bool canUseBundlerUnbundler() const override { return true; }
2591 
2592  ActionBuilderReturnCode
2593  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2594  phases::ID CurPhase, phases::ID FinalPhase,
2595  PhasesTy &Phases) override {
2596  // amdgcn does not support linking of object files, therefore we skip
2597  // backend and assemble phases to output LLVM IR. Except for generating
2598  // non-relocatable device coee, where we generate fat binary for device
2599  // code and pass to host in Backend phase.
2600  if (CudaDeviceActions.empty() ||
2601  (CurPhase == phases::Backend && Relocatable) ||
2602  CurPhase == phases::Assemble)
2603  return ABRT_Success;
2604 
2605  assert(((CurPhase == phases::Link && Relocatable) ||
2606  CudaDeviceActions.size() == GpuArchList.size()) &&
2607  "Expecting one action per GPU architecture.");
2608  assert(!CompileHostOnly &&
2609  "Not expecting CUDA actions in host-only compilation.");
2610 
2611  if (!Relocatable && CurPhase == phases::Backend) {
2612  // If we are in backend phase, we attempt to generate the fat binary.
2613  // We compile each arch to IR and use a link action to generate code
2614  // object containing ISA. Then we use a special "link" action to create
2615  // a fat binary containing all the code objects for different GPU's.
2616  // The fat binary is then an input to the host action.
2617  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2618  // Create a link action to link device IR with device library
2619  // and generate ISA.
2620  ActionList AL;
2621  AL.push_back(CudaDeviceActions[I]);
2622  CudaDeviceActions[I] =
2623  C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2624 
2625  // OffloadingActionBuilder propagates device arch until an offload
2626  // action. Since the next action for creating fatbin does
2627  // not have device arch, whereas the above link action and its input
2628  // have device arch, an offload action is needed to stop the null
2629  // device arch of the next action being propagated to the above link
2630  // action.
2632  DDep.add(*CudaDeviceActions[I], *ToolChains.front(),
2633  CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2634  CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
2635  DDep, CudaDeviceActions[I]->getType());
2636  }
2637  // Create HIP fat binary with a special "link" action.
2638  CudaFatBinary =
2639  C.MakeAction<LinkJobAction>(CudaDeviceActions,
2640  types::TY_HIP_FATBIN);
2641 
2642  if (!CompileDeviceOnly) {
2643  DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2644  AssociatedOffloadKind);
2645  // Clear the fat binary, it is already a dependence to an host
2646  // action.
2647  CudaFatBinary = nullptr;
2648  }
2649 
2650  // Remove the CUDA actions as they are already connected to an host
2651  // action or fat binary.
2652  CudaDeviceActions.clear();
2653 
2654  return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2655  } else if (CurPhase == phases::Link) {
2656  // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
2657  // This happens to each device action originated from each input file.
2658  // Later on, device actions in DeviceLinkerInputs are used to create
2659  // device link actions in appendLinkDependences and the created device
2660  // link actions are passed to the offload action as device dependence.
2661  DeviceLinkerInputs.resize(CudaDeviceActions.size());
2662  auto LI = DeviceLinkerInputs.begin();
2663  for (auto *A : CudaDeviceActions) {
2664  LI->push_back(A);
2665  ++LI;
2666  }
2667 
2668  // We will pass the device action as a host dependence, so we don't
2669  // need to do anything else with them.
2670  CudaDeviceActions.clear();
2671  return ABRT_Success;
2672  }
2673 
2674  // By default, we produce an action for each device arch.
2675  for (Action *&A : CudaDeviceActions)
2676  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
2677  AssociatedOffloadKind);
2678 
2679  return ABRT_Success;
2680  }
2681 
2682  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2683  // Append a new link action for each device.
2684  unsigned I = 0;
2685  for (auto &LI : DeviceLinkerInputs) {
2686  auto *DeviceLinkAction =
2687  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2688  DA.add(*DeviceLinkAction, *ToolChains[0],
2689  CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2690  ++I;
2691  }
2692  }
2693 
2694  bool initialize() override {
2695  Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2696  options::OPT_fno_gpu_rdc, /*Default=*/false);
2697 
2699  }
2700  };
2701 
2702  /// OpenMP action builder. The host bitcode is passed to the device frontend
2703  /// and all the device linked images are passed to the host link phase.
2704  class OpenMPActionBuilder final : public DeviceActionBuilder {
2705  /// The OpenMP actions for the current input.
2706  ActionList OpenMPDeviceActions;
2707 
2708  /// The linker inputs obtained for each toolchain.
2709  SmallVector<ActionList, 8> DeviceLinkerInputs;
2710 
2711  public:
2712  OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
2713  const Driver::InputList &Inputs)
2714  : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
2715 
2716  ActionBuilderReturnCode
2717  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2718  phases::ID CurPhase, phases::ID FinalPhase,
2719  PhasesTy &Phases) override {
2720  if (OpenMPDeviceActions.empty())
2721  return ABRT_Inactive;
2722 
2723  // We should always have an action for each input.
2724  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2725  "Number of OpenMP actions and toolchains do not match.");
2726 
2727  // The host only depends on device action in the linking phase, when all
2728  // the device images have to be embedded in the host image.
2729  if (CurPhase == phases::Link) {
2730  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2731  "Toolchains and linker inputs sizes do not match.");
2732  auto LI = DeviceLinkerInputs.begin();
2733  for (auto *A : OpenMPDeviceActions) {
2734  LI->push_back(A);
2735  ++LI;
2736  }
2737 
2738  // We passed the device action as a host dependence, so we don't need to
2739  // do anything else with them.
2740  OpenMPDeviceActions.clear();
2741  return ABRT_Success;
2742  }
2743 
2744  // By default, we produce an action for each device arch.
2745  for (Action *&A : OpenMPDeviceActions)
2746  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2747 
2748  return ABRT_Success;
2749  }
2750 
2751  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2752 
2753  // If this is an input action replicate it for each OpenMP toolchain.
2754  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2755  OpenMPDeviceActions.clear();
2756  for (unsigned I = 0; I < ToolChains.size(); ++I)
2757  OpenMPDeviceActions.push_back(
2758  C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
2759  return ABRT_Success;
2760  }
2761 
2762  // If this is an unbundling action use it as is for each OpenMP toolchain.
2763  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2764  OpenMPDeviceActions.clear();
2765  auto *IA = cast<InputAction>(UA->getInputs().back());
2766  std::string FileName = IA->getInputArg().getAsString(Args);
2767  // Check if the type of the file is the same as the action. Do not
2768  // unbundle it if it is not. Do not unbundle .so files, for example,
2769  // which are not object files.
2770  if (IA->getType() == types::TY_Object &&
2771  (!llvm::sys::path::has_extension(FileName) ||
2773  llvm::sys::path::extension(FileName).drop_front()) !=
2774  types::TY_Object))
2775  return ABRT_Inactive;
2776  for (unsigned I = 0; I < ToolChains.size(); ++I) {
2777  OpenMPDeviceActions.push_back(UA);
2778  UA->registerDependentActionInfo(
2779  ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
2780  }
2781  return ABRT_Success;
2782  }
2783 
2784  // When generating code for OpenMP we use the host compile phase result as
2785  // a dependence to the device compile phase so that it can learn what
2786  // declarations should be emitted. However, this is not the only use for
2787  // the host action, so we prevent it from being collapsed.
2788  if (isa<CompileJobAction>(HostAction)) {
2790  assert(ToolChains.size() == OpenMPDeviceActions.size() &&
2791  "Toolchains and device action sizes do not match.");
2793  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2794  /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2795  auto TC = ToolChains.begin();
2796  for (Action *&A : OpenMPDeviceActions) {
2797  assert(isa<CompileJobAction>(A));
2799  DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2800  A = C.MakeAction<OffloadAction>(HDep, DDep);
2801  ++TC;
2802  }
2803  }
2804  return ABRT_Success;
2805  }
2806 
2807  void appendTopLevelActions(ActionList &AL) override {
2808  if (OpenMPDeviceActions.empty())
2809  return;
2810 
2811  // We should always have an action for each input.
2812  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2813  "Number of OpenMP actions and toolchains do not match.");
2814 
2815  // Append all device actions followed by the proper offload action.
2816  auto TI = ToolChains.begin();
2817  for (auto *A : OpenMPDeviceActions) {
2819  Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2820  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2821  ++TI;
2822  }
2823  // We no longer need the action stored in this builder.
2824  OpenMPDeviceActions.clear();
2825  }
2826 
2827  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2828  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2829  "Toolchains and linker inputs sizes do not match.");
2830 
2831  // Append a new link action for each device.
2832  auto TC = ToolChains.begin();
2833  for (auto &LI : DeviceLinkerInputs) {
2834  auto *DeviceLinkAction =
2835  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2836  DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
2838  ++TC;
2839  }
2840  }
2841 
2842  bool initialize() override {
2843  // Get the OpenMP toolchains. If we don't get any, the action builder will
2844  // know there is nothing to do related to OpenMP offloading.
2845  auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
2846  for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
2847  ++TI)
2848  ToolChains.push_back(TI->second);
2849 
2850  DeviceLinkerInputs.resize(ToolChains.size());
2851  return false;
2852  }
2853 
2854  bool canUseBundlerUnbundler() const override {
2855  // OpenMP should use bundled files whenever possible.
2856  return true;
2857  }
2858  };
2859 
2860  ///
2861  /// TODO: Add the implementation for other specialized builders here.
2862  ///
2863 
2864  /// Specialized builders being used by this offloading action builder.
2865  SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
2866 
2867  /// Flag set to true if all valid builders allow file bundling/unbundling.
2868  bool CanUseBundler;
2869 
2870 public:
2871  OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
2872  const Driver::InputList &Inputs)
2873  : C(C) {
2874  // Create a specialized builder for each device toolchain.
2875 
2876  IsValid = true;
2877 
2878  // Create a specialized builder for CUDA.
2879  SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
2880 
2881  // Create a specialized builder for HIP.
2882  SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
2883 
2884  // Create a specialized builder for OpenMP.
2885  SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
2886 
2887  //
2888  // TODO: Build other specialized builders here.
2889  //
2890 
2891  // Initialize all the builders, keeping track of errors. If all valid
2892  // builders agree that we can use bundling, set the flag to true.
2893  unsigned ValidBuilders = 0u;
2894  unsigned ValidBuildersSupportingBundling = 0u;
2895  for (auto *SB : SpecializedBuilders) {
2896  IsValid = IsValid && !SB->initialize();
2897 
2898  // Update the counters if the builder is valid.
2899  if (SB->isValid()) {
2900  ++ValidBuilders;
2901  if (SB->canUseBundlerUnbundler())
2902  ++ValidBuildersSupportingBundling;
2903  }
2904  }
2905  CanUseBundler =
2906  ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
2907  }
2908 
2909  ~OffloadingActionBuilder() {
2910  for (auto *SB : SpecializedBuilders)
2911  delete SB;
2912  }
2913 
2914  /// Generate an action that adds device dependences (if any) to a host action.
2915  /// If no device dependence actions exist, just return the host action \a
2916  /// HostAction. If an error is found or if no builder requires the host action
2917  /// to be generated, return nullptr.
2918  Action *
2919  addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
2920  phases::ID CurPhase, phases::ID FinalPhase,
2921  DeviceActionBuilder::PhasesTy &Phases) {
2922  if (!IsValid)
2923  return nullptr;
2924 
2925  if (SpecializedBuilders.empty())
2926  return HostAction;
2927 
2928  assert(HostAction && "Invalid host action!");
2929 
2931  // Check if all the programming models agree we should not emit the host
2932  // action. Also, keep track of the offloading kinds employed.
2933  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
2934  unsigned InactiveBuilders = 0u;
2935  unsigned IgnoringBuilders = 0u;
2936  for (auto *SB : SpecializedBuilders) {
2937  if (!SB->isValid()) {
2938  ++InactiveBuilders;
2939  continue;
2940  }
2941 
2942  auto RetCode =
2943  SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
2944 
2945  // If the builder explicitly says the host action should be ignored,
2946  // we need to increment the variable that tracks the builders that request
2947  // the host object to be ignored.
2948  if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
2949  ++IgnoringBuilders;
2950 
2951  // Unless the builder was inactive for this action, we have to record the
2952  // offload kind because the host will have to use it.
2953  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
2954  OffloadKind |= SB->getAssociatedOffloadKind();
2955  }
2956 
2957  // If all builders agree that the host object should be ignored, just return
2958  // nullptr.
2959  if (IgnoringBuilders &&
2960  SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
2961  return nullptr;
2962 
2963  if (DDeps.getActions().empty())
2964  return HostAction;
2965 
2966  // We have dependences we need to bundle together. We use an offload action
2967  // for that.
2969  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2970  /*BoundArch=*/nullptr, DDeps);
2971  return C.MakeAction<OffloadAction>(HDep, DDeps);
2972  }
2973 
2974  /// Generate an action that adds a host dependence to a device action. The
2975  /// results will be kept in this action builder. Return true if an error was
2976  /// found.
2977  bool addHostDependenceToDeviceActions(Action *&HostAction,
2978  const Arg *InputArg) {
2979  if (!IsValid)
2980  return true;
2981 
2982  // If we are supporting bundling/unbundling and the current action is an
2983  // input action of non-source file, we replace the host action by the
2984  // unbundling action. The bundler tool has the logic to detect if an input
2985  // is a bundle or not and if the input is not a bundle it assumes it is a
2986  // host file. Therefore it is safe to create an unbundling action even if
2987  // the input is not a bundle.
2988  if (CanUseBundler && isa<InputAction>(HostAction) &&
2989  InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
2990  !types::isSrcFile(HostAction->getType())) {
2991  auto UnbundlingHostAction =
2992  C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
2993  UnbundlingHostAction->registerDependentActionInfo(
2995  /*BoundArch=*/StringRef(), Action::OFK_Host);
2996  HostAction = UnbundlingHostAction;
2997  }
2998 
2999  assert(HostAction && "Invalid host action!");
3000 
3001  // Register the offload kinds that are used.
3002  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3003  for (auto *SB : SpecializedBuilders) {
3004  if (!SB->isValid())
3005  continue;
3006 
3007  auto RetCode = SB->addDeviceDepences(HostAction);
3008 
3009  // Host dependences for device actions are not compatible with that same
3010  // action being ignored.
3011  assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3012  "Host dependence not expected to be ignored.!");
3013 
3014  // Unless the builder was inactive for this action, we have to record the
3015  // offload kind because the host will have to use it.
3016  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3017  OffloadKind |= SB->getAssociatedOffloadKind();
3018  }
3019 
3020  // Do not use unbundler if the Host does not depend on device action.
3021  if (OffloadKind == Action::OFK_None && CanUseBundler)
3022  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3023  HostAction = UA->getInputs().back();
3024 
3025  return false;
3026  }
3027 
3028  /// Add the offloading top level actions to the provided action list. This
3029  /// function can replace the host action by a bundling action if the
3030  /// programming models allow it.
3031  bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3032  const Arg *InputArg) {
3033  // Get the device actions to be appended.
3034  ActionList OffloadAL;
3035  for (auto *SB : SpecializedBuilders) {
3036  if (!SB->isValid())
3037  continue;
3038  SB->appendTopLevelActions(OffloadAL);
3039  }
3040 
3041  // If we can use the bundler, replace the host action by the bundling one in
3042  // the resulting list. Otherwise, just append the device actions. For
3043  // device only compilation, HostAction is a null pointer, therefore only do
3044  // this when HostAction is not a null pointer.
3045  if (CanUseBundler && HostAction && !OffloadAL.empty()) {
3046  // Add the host action to the list in order to create the bundling action.
3047  OffloadAL.push_back(HostAction);
3048 
3049  // We expect that the host action was just appended to the action list
3050  // before this method was called.
3051  assert(HostAction == AL.back() && "Host action not in the list??");
3052  HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3053  AL.back() = HostAction;
3054  } else
3055  AL.append(OffloadAL.begin(), OffloadAL.end());
3056 
3057  // Propagate to the current host action (if any) the offload information
3058  // associated with the current input.
3059  if (HostAction)
3060  HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3061  /*BoundArch=*/nullptr);
3062  return false;
3063  }
3064 
3065  /// Processes the host linker action. This currently consists of replacing it
3066  /// with an offload action if there are device link objects and propagate to
3067  /// the host action all the offload kinds used in the current compilation. The
3068  /// resulting action is returned.
3069  Action *processHostLinkAction(Action *HostAction) {
3070  // Add all the dependences from the device linking actions.
3072  for (auto *SB : SpecializedBuilders) {
3073  if (!SB->isValid())
3074  continue;
3075 
3076  SB->appendLinkDependences(DDeps);
3077  }
3078 
3079  // Calculate all the offload kinds used in the current compilation.
3080  unsigned ActiveOffloadKinds = 0u;
3081  for (auto &I : InputArgToOffloadKindMap)
3082  ActiveOffloadKinds |= I.second;
3083 
3084  // If we don't have device dependencies, we don't have to create an offload
3085  // action.
3086  if (DDeps.getActions().empty()) {
3087  // Propagate all the active kinds to host action. Given that it is a link
3088  // action it is assumed to depend on all actions generated so far.
3089  HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3090  /*BoundArch=*/nullptr);
3091  return HostAction;
3092  }
3093 
3094  // Create the offload action with all dependences. When an offload action
3095  // is created the kinds are propagated to the host action, so we don't have
3096  // to do that explicitly here.
3098  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3099  /*BoundArch*/ nullptr, ActiveOffloadKinds);
3100  return C.MakeAction<OffloadAction>(HDep, DDeps);
3101  }
3102 };
3103 } // anonymous namespace.
3104 
3105 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3106  const InputList &Inputs, ActionList &Actions) const {
3107  llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3108 
3109  if (!SuppressMissingInputWarning && Inputs.empty()) {
3110  Diag(clang::diag::err_drv_no_input_files);
3111  return;
3112  }
3113 
3114  Arg *FinalPhaseArg;
3115  phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3116 
3117  if (FinalPhase == phases::Link) {
3118  if (Args.hasArg(options::OPT_emit_llvm))
3119  Diag(clang::diag::err_drv_emit_llvm_link);
3120  if (IsCLMode() && LTOMode != LTOK_None &&
3121  !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
3122  Diag(clang::diag::err_drv_lto_without_lld);
3123  }
3124 
3125  // Reject -Z* at the top level, these options should never have been exposed
3126  // by gcc.
3127  if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3128  Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3129 
3130  // Diagnose misuse of /Fo.
3131  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3132  StringRef V = A->getValue();
3133  if (Inputs.size() > 1 && !V.empty() &&
3134  !llvm::sys::path::is_separator(V.back())) {
3135  // Check whether /Fo tries to name an output file for multiple inputs.
3136  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3137  << A->getSpelling() << V;
3138  Args.eraseArg(options::OPT__SLASH_Fo);
3139  }
3140  }
3141 
3142  // Diagnose misuse of /Fa.
3143  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3144  StringRef V = A->getValue();
3145  if (Inputs.size() > 1 && !V.empty() &&
3146  !llvm::sys::path::is_separator(V.back())) {
3147  // Check whether /Fa tries to name an asm file for multiple inputs.
3148  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3149  << A->getSpelling() << V;
3150  Args.eraseArg(options::OPT__SLASH_Fa);
3151  }
3152  }
3153 
3154  // Diagnose misuse of /o.
3155  if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3156  if (A->getValue()[0] == '\0') {
3157  // It has to have a value.
3158  Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3159  Args.eraseArg(options::OPT__SLASH_o);
3160  }
3161  }
3162 
3163  // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3164  Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3165  Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3166  if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3167  Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3168  Args.eraseArg(options::OPT__SLASH_Yc);
3169  Args.eraseArg(options::OPT__SLASH_Yu);
3170  YcArg = YuArg = nullptr;
3171  }
3172  if (YcArg && Inputs.size() > 1) {
3173  Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3174  Args.eraseArg(options::OPT__SLASH_Yc);
3175  YcArg = nullptr;
3176  }
3177  if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3178  // If only preprocessing or /Y- is used, all pch handling is disabled.
3179  // Rather than check for it everywhere, just remove clang-cl pch-related
3180  // flags here.
3181  Args.eraseArg(options::OPT__SLASH_Fp);
3182  Args.eraseArg(options::OPT__SLASH_Yc);
3183  Args.eraseArg(options::OPT__SLASH_Yu);
3184  YcArg = YuArg = nullptr;
3185  }
3186 
3187  // Builder to be used to build offloading actions.
3188  OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3189 
3190  // Construct the actions to perform.
3191  HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3192  ActionList LinkerInputs;
3193 
3195  for (auto &I : Inputs) {
3196  types::ID InputType = I.first;
3197  const Arg *InputArg = I.second;
3198 
3199  PL.clear();
3200  types::getCompilationPhases(InputType, PL);
3201 
3202  // If the first step comes after the final phase we are doing as part of
3203  // this compilation, warn the user about it.
3204  phases::ID InitialPhase = PL[0];
3205  if (InitialPhase > FinalPhase) {
3206  if (InputArg->isClaimed())
3207  continue;
3208 
3209  // Claim here to avoid the more general unused warning.
3210  InputArg->claim();
3211 
3212  // Suppress all unused style warnings with -Qunused-arguments
3213  if (Args.hasArg(options::OPT_Qunused_arguments))
3214  continue;
3215 
3216  // Special case when final phase determined by binary name, rather than
3217  // by a command-line argument with a corresponding Arg.
3218  if (CCCIsCPP())
3219  Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3220  << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3221  // Special case '-E' warning on a previously preprocessed file to make
3222  // more sense.
3223  else if (InitialPhase == phases::Compile &&
3224  FinalPhase == phases::Preprocess &&
3225  getPreprocessedType(InputType) == types::TY_INVALID)
3226  Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3227  << InputArg->getAsString(Args) << !!FinalPhaseArg
3228  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3229  else
3230  Diag(clang::diag::warn_drv_input_file_unused)
3231  << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3232  << !!FinalPhaseArg
3233  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3234  continue;
3235  }
3236 
3237  if (YcArg) {
3238  // Add a separate precompile phase for the compile phase.
3239  if (FinalPhase >= phases::Compile) {
3240  const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3242  types::getCompilationPhases(HeaderType, PCHPL);
3243  // Build the pipeline for the pch file.
3244  Action *ClangClPch =
3245  C.MakeAction<InputAction>(*InputArg, HeaderType);
3246  for (phases::ID Phase : PCHPL)
3247  ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3248  assert(ClangClPch);
3249  Actions.push_back(ClangClPch);
3250  // The driver currently exits after the first failed command. This
3251  // relies on that behavior, to make sure if the pch generation fails,
3252  // the main compilation won't run.
3253  // FIXME: If the main compilation fails, the PCH generation should
3254  // probably not be considered successful either.
3255  }
3256  }
3257 
3258  // Build the pipeline for this file.
3259  Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3260 
3261  // Use the current host action in any of the offloading actions, if
3262  // required.
3263  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3264  break;
3265 
3266  for (SmallVectorImpl<phases::ID>::iterator i = PL.begin(), e = PL.end();
3267  i != e; ++i) {
3268  phases::ID Phase = *i;
3269 
3270  // We are done if this step is past what the user requested.
3271  if (Phase > FinalPhase)
3272  break;
3273 
3274  // Add any offload action the host action depends on.
3275  Current = OffloadBuilder.addDeviceDependencesToHostAction(
3276  Current, InputArg, Phase, FinalPhase, PL);
3277  if (!Current)
3278  break;
3279 
3280  // Queue linker inputs.
3281  if (Phase == phases::Link) {
3282  assert((i + 1) == e && "linking must be final compilation step.");
3283  LinkerInputs.push_back(Current);
3284  Current = nullptr;
3285  break;
3286  }
3287 
3288  // Each precompiled header file after a module file action is a module
3289  // header of that same module file, rather than being compiled to a
3290  // separate PCH.
3291  if (Phase == phases::Precompile && HeaderModuleAction &&
3292  getPrecompiledType(InputType) == types::TY_PCH) {
3293  HeaderModuleAction->addModuleHeaderInput(Current);
3294  Current = nullptr;
3295  break;
3296  }
3297 
3298  // FIXME: Should we include any prior module file outputs as inputs of
3299  // later actions in the same command line?
3300 
3301  // Otherwise construct the appropriate action.
3302  Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3303 
3304  // We didn't create a new action, so we will just move to the next phase.
3305  if (NewCurrent == Current)
3306  continue;
3307 
3308  if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3309  HeaderModuleAction = HMA;
3310 
3311  Current = NewCurrent;
3312 
3313  // Use the current host action in any of the offloading actions, if
3314  // required.
3315  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3316  break;
3317 
3318  if (Current->getType() == types::TY_Nothing)
3319  break;
3320  }
3321 
3322  // If we ended with something, add to the output list.
3323  if (Current)
3324  Actions.push_back(Current);
3325 
3326  // Add any top level actions generated for offloading.
3327  OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3328  }
3329 
3330  // Add a link action if necessary.
3331  if (!LinkerInputs.empty()) {
3332  Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3333  LA = OffloadBuilder.processHostLinkAction(LA);
3334  Actions.push_back(LA);
3335  }
3336 
3337  // If we are linking, claim any options which are obviously only used for
3338  // compilation.
3339  if (FinalPhase == phases::Link && PL.size() == 1) {
3340  Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3341  Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3342  }
3343 
3344  // Claim ignored clang-cl options.
3345  Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3346 
3347  // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3348  // to non-CUDA compilations and should not trigger warnings there.
3349  Args.ClaimAllArgs(options::OPT_cuda_host_only);
3350  Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3351 }
3352 
3354  Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3355  Action::OffloadKind TargetDeviceOffloadKind) const {
3356  llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3357 
3358  // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3359  // encode this in the steps because the intermediate type depends on
3360  // arguments. Just special case here.
3361  if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3362  return Input;
3363 
3364  // Build the appropriate action.
3365  switch (Phase) {
3366  case phases::Link:
3367  llvm_unreachable("link action invalid here.");
3368  case phases::Preprocess: {
3369  types::ID OutputTy;
3370  // -{M, MM} alter the output type.
3371  if (Args.hasArg(options::OPT_M, options::OPT_MM)) {
3372  OutputTy = types::TY_Dependencies;
3373  } else {
3374  OutputTy = Input->getType();
3375  if (!Args.hasFlag(options::OPT_frewrite_includes,
3376  options::OPT_fno_rewrite_includes, false) &&
3377  !Args.hasFlag(options::OPT_frewrite_imports,
3378  options::OPT_fno_rewrite_imports, false) &&
3380  OutputTy = types::getPreprocessedType(OutputTy);
3381  assert(OutputTy != types::TY_INVALID &&
3382  "Cannot preprocess this input type!");
3383  }
3384  return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3385  }
3386  case phases::Precompile: {
3387  types::ID OutputTy = getPrecompiledType(Input->getType());
3388  assert(OutputTy != types::TY_INVALID &&
3389  "Cannot precompile this input type!");
3390 
3391  // If we're given a module name, precompile header file inputs as a
3392  // module, not as a precompiled header.
3393  const char *ModName = nullptr;
3394  if (OutputTy == types::TY_PCH) {
3395  if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3396  ModName = A->getValue();
3397  if (ModName)
3398  OutputTy = types::TY_ModuleFile;
3399  }
3400 
3401  if (Args.hasArg(options::OPT_fsyntax_only)) {
3402  // Syntax checks should not emit a PCH file
3403  OutputTy = types::TY_Nothing;
3404  }
3405 
3406  if (ModName)
3407  return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3408  ModName);
3409  return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3410  }
3411  case phases::Compile: {
3412  if (Args.hasArg(options::OPT_fsyntax_only))
3413  return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3414  if (Args.hasArg(options::OPT_rewrite_objc))
3415  return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3416  if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3417  return C.MakeAction<CompileJobAction>(Input,
3418  types::TY_RewrittenLegacyObjC);
3419  if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto))
3420  return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3421  if (Args.hasArg(options::OPT__migrate))
3422  return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3423  if (Args.hasArg(options::OPT_emit_ast))
3424  return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3425  if (Args.hasArg(options::OPT_module_file_info))
3426  return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3427  if (Args.hasArg(options::OPT_verify_pch))
3428  return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3429  return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3430  }
3431  case phases::Backend: {
3432  if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3433  types::ID Output =
3434  Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3435  return C.MakeAction<BackendJobAction>(Input, Output);
3436  }
3437  if (Args.hasArg(options::OPT_emit_llvm)) {
3438  types::ID Output =
3439  Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3440  return C.MakeAction<BackendJobAction>(Input, Output);
3441  }
3442  return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3443  }
3444  case phases::Assemble:
3445  return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3446  }
3447 
3448  llvm_unreachable("invalid phase in ConstructPhaseAction");
3449 }
3450 
3452  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3453 
3454  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3455 
3456  // It is an error to provide a -o option if we are making multiple output
3457  // files.
3458  if (FinalOutput) {
3459  unsigned NumOutputs = 0;
3460  for (const Action *A : C.getActions())
3461  if (A->getType() != types::TY_Nothing)
3462  ++NumOutputs;
3463 
3464  if (NumOutputs > 1) {
3465  Diag(clang::diag::err_drv_output_argument_with_multiple_files);
3466  FinalOutput = nullptr;
3467  }
3468  }
3469 
3470  // Collect the list of architectures.
3471  llvm::StringSet<> ArchNames;
3472  if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
3473  for (const Arg *A : C.getArgs())
3474  if (A->getOption().matches(options::OPT_arch))
3475  ArchNames.insert(A->getValue());
3476 
3477  // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
3478  std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
3479  for (Action *A : C.getActions()) {
3480  // If we are linking an image for multiple archs then the linker wants
3481  // -arch_multiple and -final_output <final image name>. Unfortunately, this
3482  // doesn't fit in cleanly because we have to pass this information down.
3483  //
3484  // FIXME: This is a hack; find a cleaner way to integrate this into the
3485  // process.
3486  const char *LinkingOutput = nullptr;
3487  if (isa<LipoJobAction>(A)) {
3488  if (FinalOutput)
3489  LinkingOutput = FinalOutput->getValue();
3490  else
3491  LinkingOutput = getDefaultImageName();
3492  }
3493 
3495  /*BoundArch*/ StringRef(),
3496  /*AtTopLevel*/ true,
3497  /*MultipleArchs*/ ArchNames.size() > 1,
3498  /*LinkingOutput*/ LinkingOutput, CachedResults,
3499  /*TargetDeviceOffloadKind*/ Action::OFK_None);
3500  }
3501 
3502  // If the user passed -Qunused-arguments or there were errors, don't warn
3503  // about any unused arguments.
3504  if (Diags.hasErrorOccurred() ||
3505  C.getArgs().hasArg(options::OPT_Qunused_arguments))
3506  return;
3507 
3508  // Claim -### here.
3509  (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
3510 
3511  // Claim --driver-mode, --rsp-quoting, it was handled earlier.
3512  (void)C.getArgs().hasArg(options::OPT_driver_mode);
3513  (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
3514 
3515  for (Arg *A : C.getArgs()) {
3516  // FIXME: It would be nice to be able to send the argument to the
3517  // DiagnosticsEngine, so that extra values, position, and so on could be
3518  // printed.
3519  if (!A->isClaimed()) {
3520  if (A->getOption().hasFlag(options::NoArgumentUnused))
3521  continue;
3522 
3523  // Suppress the warning automatically if this is just a flag, and it is an
3524  // instance of an argument we already claimed.
3525  const Option &Opt = A->getOption();
3526  if (Opt.getKind() == Option::FlagClass) {
3527  bool DuplicateClaimed = false;
3528 
3529  for (const Arg *AA : C.getArgs().filtered(&Opt)) {
3530  if (AA->isClaimed()) {
3531  DuplicateClaimed = true;
3532  break;
3533  }
3534  }
3535 
3536  if (DuplicateClaimed)
3537  continue;
3538  }
3539 
3540  // In clang-cl, don't mention unknown arguments here since they have
3541  // already been warned about.
3542  if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
3543  Diag(clang::diag::warn_drv_unused_argument)
3544  << A->getAsString(C.getArgs());
3545  }
3546  }
3547 }
3548 
3549 namespace {
3550 /// Utility class to control the collapse of dependent actions and select the
3551 /// tools accordingly.
3552 class ToolSelector final {
3553  /// The tool chain this selector refers to.
3554  const ToolChain &TC;
3555 
3556  /// The compilation this selector refers to.
3557  const Compilation &C;
3558 
3559  /// The base action this selector refers to.
3560  const JobAction *BaseAction;
3561 
3562  /// Set to true if the current toolchain refers to host actions.
3563  bool IsHostSelector;
3564 
3565  /// Set to true if save-temps and embed-bitcode functionalities are active.
3566  bool SaveTemps;
3567  bool EmbedBitcode;
3568 
3569  /// Get previous dependent action or null if that does not exist. If
3570  /// \a CanBeCollapsed is false, that action must be legal to collapse or
3571  /// null will be returned.
3572  const JobAction *getPrevDependentAction(const ActionList &Inputs,
3573  ActionList &SavedOffloadAction,
3574  bool CanBeCollapsed = true) {
3575  // An option can be collapsed only if it has a single input.
3576  if (Inputs.size() != 1)
3577  return nullptr;
3578 
3579  Action *CurAction = *Inputs.begin();
3580  if (CanBeCollapsed &&
3582  return nullptr;
3583 
3584  // If the input action is an offload action. Look through it and save any
3585  // offload action that can be dropped in the event of a collapse.
3586  if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
3587  // If the dependent action is a device action, we will attempt to collapse
3588  // only with other device actions. Otherwise, we would do the same but
3589  // with host actions only.
3590  if (!IsHostSelector) {
3591  if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
3592  CurAction =
3593  OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
3594  if (CanBeCollapsed &&
3596  return nullptr;
3597  SavedOffloadAction.push_back(OA);
3598  return dyn_cast<JobAction>(CurAction);
3599  }
3600  } else if (OA->hasHostDependence()) {
3601  CurAction = OA->getHostDependence();
3602  if (CanBeCollapsed &&
3604  return nullptr;
3605  SavedOffloadAction.push_back(OA);
3606  return dyn_cast<JobAction>(CurAction);
3607  }
3608  return nullptr;
3609  }
3610 
3611  return dyn_cast<JobAction>(CurAction);
3612  }
3613 
3614  /// Return true if an assemble action can be collapsed.
3615  bool canCollapseAssembleAction() const {
3616  return TC.useIntegratedAs() && !SaveTemps &&
3617  !C.getArgs().hasArg(options::OPT_via_file_asm) &&
3618  !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
3619  !C.getArgs().hasArg(options::OPT__SLASH_Fa);
3620  }
3621 
3622  /// Return true if a preprocessor action can be collapsed.
3623  bool canCollapsePreprocessorAction() const {
3624  return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
3625  !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
3626  !C.getArgs().hasArg(options::OPT_rewrite_objc);
3627  }
3628 
3629  /// Struct that relates an action with the offload actions that would be
3630  /// collapsed with it.
3631  struct JobActionInfo final {
3632  /// The action this info refers to.
3633  const JobAction *JA = nullptr;
3634  /// The offload actions we need to take care off if this action is
3635  /// collapsed.
3636  ActionList SavedOffloadAction;
3637  };
3638 
3639  /// Append collapsed offload actions from the give nnumber of elements in the
3640  /// action info array.
3641  static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
3642  ArrayRef<JobActionInfo> &ActionInfo,
3643  unsigned ElementNum) {
3644  assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
3645  for (unsigned I = 0; I < ElementNum; ++I)
3646  CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
3647  ActionInfo[I].SavedOffloadAction.end());
3648  }
3649 
3650  /// Functions that attempt to perform the combining. They detect if that is
3651  /// legal, and if so they update the inputs \a Inputs and the offload action
3652  /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
3653  /// the combined action is returned. If the combining is not legal or if the
3654  /// tool does not exist, null is returned.
3655  /// Currently three kinds of collapsing are supported:
3656  /// - Assemble + Backend + Compile;
3657  /// - Assemble + Backend ;
3658  /// - Backend + Compile.
3659  const Tool *
3660  combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3661  ActionList &Inputs,
3662  ActionList &CollapsedOffloadAction) {
3663  if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
3664  return nullptr;
3665  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3666  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3667  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
3668  if (!AJ || !BJ || !CJ)
3669  return nullptr;
3670 
3671  // Get compiler tool.
3672  const Tool *T = TC.SelectTool(*CJ);
3673  if (!T)
3674  return nullptr;
3675 
3676  // When using -fembed-bitcode, it is required to have the same tool (clang)
3677  // for both CompilerJA and BackendJA. Otherwise, combine two stages.
3678  if (EmbedBitcode) {
3679  const Tool *BT = TC.SelectTool(*BJ);
3680  if (BT == T)
3681  return nullptr;
3682  }
3683 
3684  if (!T->hasIntegratedAssembler())
3685  return nullptr;
3686 
3687  Inputs = CJ->getInputs();
3688  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3689  /*NumElements=*/3);
3690  return T;
3691  }
3692  const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
3693  ActionList &Inputs,
3694  ActionList &CollapsedOffloadAction) {
3695  if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
3696  return nullptr;
3697  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3698  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3699  if (!AJ || !BJ)
3700  return nullptr;
3701 
3702  // Retrieve the compile job, backend action must always be preceded by one.
3703  ActionList CompileJobOffloadActions;
3704  auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions,
3705  /*CanBeCollapsed=*/false);
3706  if (!AJ || !BJ || !CJ)
3707  return nullptr;
3708 
3709  assert(isa<CompileJobAction>(CJ) &&
3710  "Expecting compile job preceding backend job.");
3711 
3712  // Get compiler tool.
3713  const Tool *T = TC.SelectTool(*CJ);
3714  if (!T)
3715  return nullptr;
3716 
3717  if (!T->hasIntegratedAssembler())
3718  return nullptr;
3719 
3720  Inputs = BJ->getInputs();
3721  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3722  /*NumElements=*/2);
3723  return T;
3724  }
3725  const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3726  ActionList &Inputs,
3727  ActionList &CollapsedOffloadAction) {
3728  if (ActionInfo.size() < 2)
3729  return nullptr;
3730  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
3731  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
3732  if (!BJ || !CJ)
3733  return nullptr;
3734 
3735  // Check if the initial input (to the compile job or its predessor if one
3736  // exists) is LLVM bitcode. In that case, no preprocessor step is required
3737  // and we can still collapse the compile and backend jobs when we have
3738  // -save-temps. I.e. there is no need for a separate compile job just to
3739  // emit unoptimized bitcode.
3740  bool InputIsBitcode = true;
3741  for (size_t i = 1; i < ActionInfo.size(); i++)
3742  if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
3743  ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
3744  InputIsBitcode = false;
3745  break;
3746  }
3747  if (!InputIsBitcode && !canCollapsePreprocessorAction())
3748  return nullptr;
3749 
3750  // Get compiler tool.
3751  const Tool *T = TC.SelectTool(*CJ);
3752  if (!T)
3753  return nullptr;
3754 
3755  if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
3756  return nullptr;
3757 
3758  Inputs = CJ->getInputs();
3759  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3760  /*NumElements=*/2);
3761  return T;
3762  }
3763 
3764  /// Updates the inputs if the obtained tool supports combining with
3765  /// preprocessor action, and the current input is indeed a preprocessor
3766  /// action. If combining results in the collapse of offloading actions, those
3767  /// are appended to \a CollapsedOffloadAction.
3768  void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
3769  ActionList &CollapsedOffloadAction) {
3770  if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
3771  return;
3772 
3773  // Attempt to get a preprocessor action dependence.
3774  ActionList PreprocessJobOffloadActions;
3775  ActionList NewInputs;
3776  for (Action *A : Inputs) {
3777  auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
3778  if (!PJ || !isa<PreprocessJobAction>(PJ)) {
3779  NewInputs.push_back(A);
3780  continue;
3781  }
3782 
3783  // This is legal to combine. Append any offload action we found and add the
3784  // current input to preprocessor inputs.
3785  CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
3786  PreprocessJobOffloadActions.end());
3787  NewInputs.append(PJ->input_begin(), PJ->input_end());
3788  }
3789  Inputs = NewInputs;
3790  }
3791 
3792 public:
3793  ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
3794  const Compilation &C, bool SaveTemps, bool EmbedBitcode)
3795  : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
3796  EmbedBitcode(EmbedBitcode) {
3797  assert(BaseAction && "Invalid base action.");
3798  IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
3799  }
3800 
3801  /// Check if a chain of actions can be combined and return the tool that can
3802  /// handle the combination of actions. The pointer to the current inputs \a
3803  /// Inputs and the list of offload actions \a CollapsedOffloadActions
3804  /// connected to collapsed actions are updated accordingly. The latter enables
3805  /// the caller of the selector to process them afterwards instead of just
3806  /// dropping them. If no suitable tool is found, null will be returned.
3807  const Tool *getTool(ActionList &Inputs,
3808  ActionList &CollapsedOffloadAction) {
3809  //
3810  // Get the largest chain of actions that we could combine.
3811  //
3812 
3813  SmallVector<JobActionInfo, 5> ActionChain(1);
3814  ActionChain.back().JA = BaseAction;
3815  while (ActionChain.back().JA) {
3816  const Action *CurAction = ActionChain.back().JA;
3817 
3818  // Grow the chain by one element.
3819  ActionChain.resize(ActionChain.size() + 1);
3820  JobActionInfo &AI = ActionChain.back();
3821 
3822  // Attempt to fill it with the
3823  AI.JA =
3824  getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
3825  }
3826 
3827  // Pop the last action info as it could not be filled.
3828  ActionChain.pop_back();
3829 
3830  //
3831  // Attempt to combine actions. If all combining attempts failed, just return
3832  // the tool of the provided action. At the end we attempt to combine the
3833  // action with any preprocessor action it may depend on.
3834  //
3835 
3836  const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
3837  CollapsedOffloadAction);
3838  if (!T)
3839  T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
3840  if (!T)
3841  T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
3842  if (!T) {
3843  Inputs = BaseAction->getInputs();
3844  T = TC.SelectTool(*BaseAction);
3845  }
3846 
3847  combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
3848  return T;
3849  }
3850 };
3851 }
3852 
3853 /// Return a string that uniquely identifies the result of a job. The bound arch
3854 /// is not necessarily represented in the toolchain's triple -- for example,
3855 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
3856 /// Also, we need to add the offloading device kind, as the same tool chain can
3857 /// be used for host and device for some programming models, e.g. OpenMP.
3858 static std::string GetTriplePlusArchString(const ToolChain *TC,
3859  StringRef BoundArch,
3860  Action::OffloadKind OffloadKind) {
3861  std::string TriplePlusArch = TC->getTriple().normalize();
3862  if (!BoundArch.empty()) {
3863  TriplePlusArch += "-";
3864  TriplePlusArch += BoundArch;
3865  }
3866  TriplePlusArch += "-";
3867  TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
3868  return TriplePlusArch;
3869 }
3870 
3872  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3873  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3874  std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3875  Action::OffloadKind TargetDeviceOffloadKind) const {
3876  std::pair<const Action *, std::string> ActionTC = {
3877  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
3878  auto CachedResult = CachedResults.find(ActionTC);
3879  if (CachedResult != CachedResults.end()) {
3880  return CachedResult->second;
3881  }
3882  InputInfo Result = BuildJobsForActionNoCache(
3883  C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
3884  CachedResults, TargetDeviceOffloadKind);
3885  CachedResults[ActionTC] = Result;
3886  return Result;
3887 }
3888 
3889 InputInfo Driver::BuildJobsForActionNoCache(
3890  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3891  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3892  std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3893  Action::OffloadKind TargetDeviceOffloadKind) const {
3894  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3895 
3896  InputInfoList OffloadDependencesInputInfo;
3897  bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
3898  if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
3899  // The 'Darwin' toolchain is initialized only when its arguments are
3900  // computed. Get the default arguments for OFK_None to ensure that
3901  // initialization is performed before processing the offload action.
3902  // FIXME: Remove when darwin's toolchain is initialized during construction.
3903  C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
3904 
3905  // The offload action is expected to be used in four different situations.
3906  //
3907  // a) Set a toolchain/architecture/kind for a host action:
3908  // Host Action 1 -> OffloadAction -> Host Action 2
3909  //
3910  // b) Set a toolchain/architecture/kind for a device action;
3911  // Device Action 1 -> OffloadAction -> Device Action 2
3912  //
3913  // c) Specify a device dependence to a host action;
3914  // Device Action 1 _
3915  // \
3916  // Host Action 1 ---> OffloadAction -> Host Action 2
3917  //
3918  // d) Specify a host dependence to a device action.
3919  // Host Action 1 _
3920  // \
3921  // Device Action 1 ---> OffloadAction -> Device Action 2
3922  //
3923  // For a) and b), we just return the job generated for the dependence. For
3924  // c) and d) we override the current action with the host/device dependence
3925  // if the current toolchain is host/device and set the offload dependences
3926  // info with the jobs obtained from the device/host dependence(s).
3927 
3928  // If there is a single device option, just generate the job for it.
3929  if (OA->hasSingleDeviceDependence()) {
3930  InputInfo DevA;
3931  OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
3932  const char *DepBoundArch) {
3933  DevA =
3934  BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
3935  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
3936  CachedResults, DepA->getOffloadingDeviceKind());
3937  });
3938  return DevA;
3939  }
3940 
3941  // If 'Action 2' is host, we generate jobs for the device dependences and
3942  // override the current action with the host dependence. Otherwise, we
3943  // generate the host dependences and override the action with the device
3944  // dependence. The dependences can't therefore be a top-level action.
3945  OA->doOnEachDependence(
3946  /*IsHostDependence=*/BuildingForOffloadDevice,
3947  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
3948  OffloadDependencesInputInfo.push_back(BuildJobsForAction(
3949  C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
3950  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
3951  DepA->getOffloadingDeviceKind()));
3952  });
3953 
3954  A = BuildingForOffloadDevice
3955  ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
3956  : OA->getHostDependence();
3957  }
3958 
3959  if (const InputAction *IA = dyn_cast<InputAction>(A)) {
3960  // FIXME: It would be nice to not claim this here; maybe the old scheme of
3961  // just using Args was better?
3962  const Arg &Input = IA->getInputArg();
3963  Input.claim();
3964  if (Input.getOption().matches(options::OPT_INPUT)) {
3965  const char *Name = Input.getValue();
3966  return InputInfo(A, Name, /* BaseInput = */ Name);
3967  }
3968  return InputInfo(A, &Input, /* BaseInput = */ "");
3969  }
3970 
3971  if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
3972  const ToolChain *TC;
3973  StringRef ArchName = BAA->getArchName();
3974 
3975  if (!ArchName.empty())
3976  TC = &getToolChain(C.getArgs(),
3977  computeTargetTriple(*this, TargetTriple,
3978  C.getArgs(), ArchName));
3979  else
3980  TC = &C.getDefaultToolChain();
3981 
3982  return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
3983  MultipleArchs, LinkingOutput, CachedResults,
3984  TargetDeviceOffloadKind);
3985  }
3986 
3987 
3988  ActionList Inputs = A->getInputs();
3989 
3990  const JobAction *JA = cast<JobAction>(A);
3991  ActionList CollapsedOffloadActions;
3992 
3993  ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
3995  const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
3996 
3997  if (!T)
3998  return InputInfo();
3999 
4000  // If we've collapsed action list that contained OffloadAction we
4001  // need to build jobs for host/device-side inputs it may have held.
4002  for (const auto *OA : CollapsedOffloadActions)
4003  cast<OffloadAction>(OA)->doOnEachDependence(
4004  /*IsHostDependence=*/BuildingForOffloadDevice,
4005  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4006  OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4007  C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4008  /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4009  DepA->getOffloadingDeviceKind()));
4010  });
4011 
4012  // Only use pipes when there is exactly one input.
4013  InputInfoList InputInfos;
4014  for (const Action *Input : Inputs) {
4015  // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4016  // shouldn't get temporary output names.
4017  // FIXME: Clean this up.
4018  bool SubJobAtTopLevel =
4019  AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
4020  InputInfos.push_back(BuildJobsForAction(
4021  C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
4022  CachedResults, A->getOffloadingDeviceKind()));
4023  }
4024 
4025  // Always use the first input as the base input.
4026  const char *BaseInput = InputInfos[0].getBaseInput();
4027 
4028  // ... except dsymutil actions, which use their actual input as the base
4029  // input.
4030  if (JA->getType() == types::TY_dSYM)
4031  BaseInput = InputInfos[0].getFilename();
4032 
4033  // ... and in header module compilations, which use the module name.
4034  if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4035  BaseInput = ModuleJA->getModuleName();
4036 
4037  // Append outputs of offload device jobs to the input list
4038  if (!OffloadDependencesInputInfo.empty())
4039  InputInfos.append(OffloadDependencesInputInfo.begin(),
4040  OffloadDependencesInputInfo.end());
4041 
4042  // Set the effective triple of the toolchain for the duration of this job.
4043  llvm::Triple EffectiveTriple;
4044  const ToolChain &ToolTC = T->getToolChain();
4045  const ArgList &Args =
4046  C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4047  if (InputInfos.size() != 1) {
4048  EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4049  } else {
4050  // Pass along the input type if it can be unambiguously determined.
4051  EffectiveTriple = llvm::Triple(
4052  ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4053  }
4054  RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4055 
4056  // Determine the place to write output to, if any.
4057  InputInfo Result;
4058  InputInfoList UnbundlingResults;
4059  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4060  // If we have an unbundling job, we need to create results for all the
4061  // outputs. We also update the results cache so that other actions using
4062  // this unbundling action can get the right results.
4063  for (auto &UI : UA->getDependentActionsInfo()) {
4064  assert(UI.DependentOffloadKind != Action::OFK_None &&
4065  "Unbundling with no offloading??");
4066 
4067  // Unbundling actions are never at the top level. When we generate the
4068  // offloading prefix, we also do that for the host file because the
4069  // unbundling action does not change the type of the output which can
4070  // cause a overwrite.
4071  std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4072  UI.DependentOffloadKind,
4073  UI.DependentToolChain->getTriple().normalize(),
4074  /*CreatePrefixForHost=*/true);
4075  auto CurI = InputInfo(
4076  UA,
4077  GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4078  /*AtTopLevel=*/false,
4079  MultipleArchs ||
4080  UI.DependentOffloadKind == Action::OFK_HIP,
4081  OffloadingPrefix),
4082  BaseInput);
4083  // Save the unbundling result.
4084  UnbundlingResults.push_back(CurI);
4085 
4086  // Get the unique string identifier for this dependence and cache the
4087  // result.
4088  StringRef Arch;
4089  if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4090  if (UI.DependentOffloadKind == Action::OFK_Host)
4091  Arch = StringRef();
4092  else
4093  Arch = UI.DependentBoundArch;
4094  } else
4095  Arch = BoundArch;
4096 
4097  CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
4098  UI.DependentOffloadKind)}] =
4099  CurI;
4100  }
4101 
4102  // Now that we have all the results generated, select the one that should be
4103  // returned for the current depending action.
4104  std::pair<const Action *, std::string> ActionTC = {
4105  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4106  assert(CachedResults.find(ActionTC) != CachedResults.end() &&
4107  "Result does not exist??");
4108  Result = CachedResults[ActionTC];
4109  } else if (JA->getType() == types::TY_Nothing)
4110  Result = InputInfo(A, BaseInput);
4111  else {
4112  // We only have to generate a prefix for the host if this is not a top-level
4113  // action.
4114  std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4115  A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
4116  /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
4117  !AtTopLevel);
4118  Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
4119  AtTopLevel, MultipleArchs,
4120  OffloadingPrefix),
4121  BaseInput);
4122  }
4123 
4125  llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
4126  << " - \"" << T->getName() << "\", inputs: [";
4127  for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
4128  llvm::errs() << InputInfos[i].getAsString();
4129  if (i + 1 != e)
4130  llvm::errs() << ", ";
4131  }
4132  if (UnbundlingResults.empty())
4133  llvm::errs() << "], output: " << Result.getAsString() << "\n";
4134  else {
4135  llvm::errs() << "], outputs: [";
4136  for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
4137  llvm::errs() << UnbundlingResults[i].getAsString();
4138  if (i + 1 != e)
4139  llvm::errs() << ", ";
4140  }
4141  llvm::errs() << "] \n";
4142  }
4143  } else {
4144  if (UnbundlingResults.empty())
4145  T->ConstructJob(
4146  C, *JA, Result, InputInfos,
4147  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4148  LinkingOutput);
4149  else
4151  C, *JA, UnbundlingResults, InputInfos,
4152  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4153  LinkingOutput);
4154  }
4155  return Result;
4156 }
4157 
4158 const char *Driver::getDefaultImageName() const {
4159  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
4160  return Target.isOSWindows() ? "a.exe" : "a.out";
4161 }
4162 
4163 /// Create output filename based on ArgValue, which could either be a
4164 /// full filename, filename without extension, or a directory. If ArgValue
4165 /// does not provide a filename, then use BaseName, and use the extension
4166 /// suitable for FileType.
4167 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
4168  StringRef BaseName,
4169  types::ID FileType) {
4170  SmallString<128> Filename = ArgValue;
4171 
4172  if (ArgValue.empty()) {
4173  // If the argument is empty, output to BaseName in the current dir.
4174  Filename = BaseName;
4175  } else if (llvm::sys::path::is_separator(Filename.back())) {
4176  // If the argument is a directory, output to BaseName in that dir.
4177  llvm::sys::path::append(Filename, BaseName);
4178  }
4179 
4180  if (!llvm::sys::path::has_extension(ArgValue)) {
4181  // If the argument didn't provide an extension, then set it.
4182  const char *Extension = types::getTypeTempSuffix(FileType, true);
4183 
4184  if (FileType == types::TY_Image &&
4185  Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4186  // The output file is a dll.
4187  Extension = "dll";
4188  }
4189 
4190  llvm::sys::path::replace_extension(Filename, Extension);
4191  }
4192 
4193  return Args.MakeArgString(Filename.c_str());
4194 }
4195 
4197  const char *BaseInput,
4198  StringRef BoundArch, bool AtTopLevel,
4199  bool MultipleArchs,
4200  StringRef OffloadingPrefix) const {
4201  llvm::PrettyStackTraceString CrashInfo("Computing output path");
4202  // Output to a user requested destination?
4203  if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4204  if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4205  return C.addResultFile(FinalOutput->getValue(), &JA);
4206  }
4207 
4208  // For /P, preprocess to file named after BaseInput.
4209  if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4210  assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4211  StringRef BaseName = llvm::sys::path::filename(BaseInput);
4212  StringRef NameArg;
4213  if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4214  NameArg = A->getValue();
4215  return C.addResultFile(
4216  MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4217  &JA);
4218  }
4219 
4220  // Default to writing to stdout?
4221  if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA))
4222  return "-";
4223 
4224  // Is this the assembly listing for /FA?
4225  if (JA.getType() == types::TY_PP_Asm &&
4226  (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4227  C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4228  // Use /Fa and the input filename to determine the asm file name.
4229  StringRef BaseName = llvm::sys::path::filename(BaseInput);
4230  StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4231  return C.addResultFile(
4232  MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4233  &JA);
4234  }
4235 
4236  // Output to a temporary file?
4237  if ((!AtTopLevel && !isSaveTempsEnabled() &&
4238  !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4239  CCGenDiagnostics) {
4240  StringRef Name = llvm::sys::path::filename(BaseInput);
4241  std::pair<StringRef, StringRef> Split = Name.split('.');
4242  SmallString<128> TmpName;
4243  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4244  Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4245  if (CCGenDiagnostics && A) {
4246  SmallString<128> CrashDirectory(A->getValue());
4247  llvm::sys::path::append(CrashDirectory, Split.first);
4248  const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4249  std::error_code EC =
4250  llvm::sys::fs::createUniqueFile(CrashDirectory + Middle + Suffix, TmpName);
4251  if (EC) {
4252  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4253  return "";
4254  }
4255  } else {
4256  TmpName = GetTemporaryPath(Split.first, Suffix);
4257  }
4258  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4259  }
4260 
4261  SmallString<128> BasePath(BaseInput);
4262  StringRef BaseName;
4263 
4264  // Dsymutil actions should use the full path.
4265  if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4266  BaseName = BasePath;
4267  else
4268  BaseName = llvm::sys::path::filename(BasePath);
4269 
4270  // Determine what the derived output name should be.
4271  const char *NamedOutput;
4272 
4273  if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4274  C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4275  // The /Fo or /o flag decides the object filename.
4276  StringRef Val =
4277  C.getArgs()
4278  .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4279  ->getValue();
4280  NamedOutput =
4281  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4282  } else if (JA.getType() == types::TY_Image &&
4283  C.getArgs().hasArg(options::OPT__SLASH_Fe,
4284  options::OPT__SLASH_o)) {
4285  // The /Fe or /o flag names the linked file.
4286  StringRef Val =
4287  C.getArgs()
4288  .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4289  ->getValue();
4290  NamedOutput =
4291  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4292  } else if (JA.getType() == types::TY_Image) {
4293  if (IsCLMode()) {
4294  // clang-cl uses BaseName for the executable name.
4295  NamedOutput =
4296  MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4297  } else {
4299  Output += OffloadingPrefix;
4300  if (MultipleArchs && !BoundArch.empty()) {
4301  Output += "-";
4302  Output.append(BoundArch);
4303  }
4304  NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4305  }
4306  } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4307  NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4308  } else {
4309  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4310  assert(Suffix && "All types used for output should have a suffix.");
4311 
4312  std::string::size_type End = std::string::npos;
4314  End = BaseName.rfind('.');
4315  SmallString<128> Suffixed(BaseName.substr(0, End));
4316  Suffixed += OffloadingPrefix;
4317  if (MultipleArchs && !BoundArch.empty()) {
4318  Suffixed += "-";
4319  Suffixed.append(BoundArch);
4320  }
4321  // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
4322  // the unoptimized bitcode so that it does not get overwritten by the ".bc"
4323  // optimized bitcode output.
4324  if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) &&
4325  JA.getType() == types::TY_LLVM_BC)
4326  Suffixed += ".tmp";
4327  Suffixed += '.';
4328  Suffixed += Suffix;
4329  NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
4330  }
4331 
4332  // Prepend object file path if -save-temps=obj
4333  if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
4334  JA.getType() != types::TY_PCH) {
4335  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4336  SmallString<128> TempPath(FinalOutput->getValue());
4337  llvm::sys::path::remove_filename(TempPath);
4338  StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
4339  llvm::sys::path::append(TempPath, OutputFileName);
4340  NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
4341  }
4342 
4343  // If we're saving temps and the temp file conflicts with the input file,
4344  // then avoid overwriting input file.
4345  if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
4346  bool SameFile = false;
4347  SmallString<256> Result;
4348  llvm::sys::fs::current_path(Result);
4349  llvm::sys::path::append(Result, BaseName);
4350  llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
4351  // Must share the same path to conflict.
4352  if (SameFile) {
4353  StringRef Name = llvm::sys::path::filename(BaseInput);
4354  std::pair<StringRef, StringRef> Split = Name.split('.');
4355  std::string TmpName = GetTemporaryPath(
4356  Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
4357  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4358  }
4359  }
4360 
4361  // As an annoying special case, PCH generation doesn't strip the pathname.
4362  if (JA.getType() == types::TY_PCH && !IsCLMode()) {
4363  llvm::sys::path::remove_filename(BasePath);
4364  if (BasePath.empty())
4365  BasePath = NamedOutput;
4366  else
4367  llvm::sys::path::append(BasePath, NamedOutput);
4368  return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
4369  } else {
4370  return C.addResultFile(NamedOutput, &JA);
4371  }
4372 }
4373 
4374 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
4375  // Search for Name in a list of paths.
4376  auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
4378  // Respect a limited subset of the '-Bprefix' functionality in GCC by
4379  // attempting to use this prefix when looking for file paths.
4380  for (const auto &Dir : P) {
4381  if (Dir.empty())
4382  continue;
4383  SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4384  llvm::sys::path::append(P, Name);
4385  if (llvm::sys::fs::exists(Twine(P)))
4386  return P.str().str();
4387  }
4388  return None;
4389  };
4390 
4391  if (auto P = SearchPaths(PrefixDirs))
4392  return *P;
4393 
4395  llvm::sys::path::append(R, Name);
4396  if (llvm::sys::fs::exists(Twine(R)))
4397  return R.str();
4398 
4400  llvm::sys::path::append(P, Name);
4401  if (llvm::sys::fs::exists(Twine(P)))
4402  return P.str();
4403 
4404  if (auto P = SearchPaths(TC.getLibraryPaths()))
4405  return *P;
4406 
4407  if (auto P = SearchPaths(TC.getFilePaths()))
4408  return *P;
4409 
4410  return Name;
4411 }
4412 
4413 void Driver::generatePrefixedToolNames(
4414  StringRef Tool, const ToolChain &TC,
4415  SmallVectorImpl<std::string> &Names) const {
4416  // FIXME: Needs a better variable than TargetTriple
4417  Names.emplace_back((TargetTriple + "-" + Tool).str());
4418  Names.emplace_back(Tool);
4419 
4420  // Allow the discovery of tools prefixed with LLVM's default target triple.
4421  std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
4422  if (DefaultTargetTriple != TargetTriple)
4423  Names.emplace_back((DefaultTargetTriple + "-" + Tool).str());
4424 }
4425 
4427  ArrayRef<std::string> Names) {
4428  for (const auto &Name : Names) {
4429  llvm::sys::path::append(Dir, Name);
4430  if (llvm::sys::fs::can_execute(Twine(Dir)))
4431  return true;
4432  llvm::sys::path::remove_filename(Dir);
4433  }
4434  return false;
4435 }
4436 
4437 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
4438  SmallVector<std::string, 2> TargetSpecificExecutables;
4439  generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
4440 
4441  // Respect a limited subset of the '-Bprefix' functionality in GCC by
4442  // attempting to use this prefix when looking for program paths.
4443  for (const auto &PrefixDir : PrefixDirs) {
4444  if (llvm::sys::fs::is_directory(PrefixDir)) {
4445  SmallString<128> P(PrefixDir);
4446  if (ScanDirForExecutable(P, TargetSpecificExecutables))
4447  return P.str();
4448  } else {
4449  SmallString<128> P((PrefixDir + Name).str());
4450  if (llvm::sys::fs::can_execute(Twine(P)))
4451  return P.str();
4452  }
4453  }
4454 
4455  const ToolChain::path_list &List = TC.getProgramPaths();
4456  for (const auto &Path : List) {
4457  SmallString<128> P(Path);
4458  if (ScanDirForExecutable(P, TargetSpecificExecutables))
4459  return P.str();
4460  }
4461 
4462  // If all else failed, search the path.
4463  for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
4464  if (llvm::ErrorOr<std::string> P =
4465  llvm::sys::findProgramByName(TargetSpecificExecutable))
4466  return *P;
4467 
4468  return Name;
4469 }
4470 
4471 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
4472  SmallString<128> Path;
4473  std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
4474  if (EC) {
4475  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4476  return "";
4477  }
4478 
4479  return Path.str();
4480 }
4481 
4482 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
4483  SmallString<128> Path;
4484  std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
4485  if (EC) {
4486  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4487  return "";
4488  }
4489 
4490  return Path.str();
4491 }
4492 
4493 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
4494  SmallString<128> Output;
4495  if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
4496  // FIXME: If anybody needs it, implement this obscure rule:
4497  // "If you specify a directory without a file name, the default file name
4498  // is VCx0.pch., where x is the major version of Visual C++ in use."
4499  Output = FpArg->getValue();
4500 
4501  // "If you do not specify an extension as part of the path name, an
4502  // extension of .pch is assumed. "
4503  if (!llvm::sys::path::has_extension(Output))
4504  Output += ".pch";
4505  } else {
4506  if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
4507  Output = YcArg->getValue();
4508  if (Output.empty())
4509  Output = BaseName;
4510  llvm::sys::path::replace_extension(Output, ".pch");
4511  }
4512  return Output.str();
4513 }
4514 
4515 const ToolChain &Driver::getToolChain(const ArgList &Args,
4516  const llvm::Triple &Target) const {
4517 
4518  auto &TC = ToolChains[Target.str()];
4519  if (!TC) {
4520  switch (Target.getOS()) {
4521  case llvm::Triple::Haiku:
4522  TC = llvm::make_unique<toolchains::Haiku>(*this, Target, Args);
4523  break;
4524  case llvm::Triple::Ananas:
4525  TC = llvm::make_unique<toolchains::Ananas>(*this, Target, Args);
4526  break;
4527  case llvm::Triple::CloudABI:
4528  TC = llvm::make_unique<toolchains::CloudABI>(*this, Target, Args);
4529  break;
4530  case llvm::Triple::Darwin:
4531  case llvm::Triple::MacOSX:
4532  case llvm::Triple::IOS:
4533  case llvm::Triple::TvOS:
4534  case llvm::Triple::WatchOS:
4535  TC = llvm::make_unique<toolchains::DarwinClang>(*this, Target, Args);
4536  break;
4537  case llvm::Triple::DragonFly:
4538  TC = llvm::make_unique<toolchains::DragonFly>(*this, Target, Args);
4539  break;
4540  case llvm::Triple::OpenBSD:
4541  TC = llvm::make_unique<toolchains::OpenBSD>(*this, Target, Args);
4542  break;
4543  case llvm::Triple::NetBSD:
4544  TC = llvm::make_unique<toolchains::NetBSD>(*this, Target, Args);
4545  break;
4546  case llvm::Triple::FreeBSD:
4547  TC = llvm::make_unique<toolchains::FreeBSD>(*this, Target, Args);
4548  break;
4549  case llvm::Triple::Minix:
4550  TC = llvm::make_unique<toolchains::Minix>(*this, Target, Args);
4551  break;
4552  case llvm::Triple::Linux:
4553  case llvm::Triple::ELFIAMCU:
4554  if (Target.getArch() == llvm::Triple::hexagon)
4555  TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4556  Args);
4557  else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
4558  !Target.hasEnvironment())
4559  TC = llvm::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
4560  Args);
4561  else
4562  TC = llvm::make_unique<toolchains::Linux>(*this, Target, Args);
4563  break;
4564  case llvm::Triple::NaCl:
4565  TC = llvm::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
4566  break;
4567  case llvm::Triple::Fuchsia:
4568  TC = llvm::make_unique<toolchains::Fuchsia>(*this, Target, Args);
4569  break;
4570  case llvm::Triple::Solaris:
4571  TC = llvm::make_unique<toolchains::Solaris>(*this, Target, Args);
4572  break;
4573  case llvm::Triple::AMDHSA:
4574  TC = llvm::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
4575  break;
4576  case llvm::Triple::Win32:
4577  switch (Target.getEnvironment()) {
4578  default:
4579  if (Target.isOSBinFormatELF())
4580  TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4581  else if (Target.isOSBinFormatMachO())
4582  TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4583  else
4584  TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4585  break;
4586  case llvm::Triple::GNU:
4587  TC = llvm::make_unique<toolchains::MinGW>(*this, Target, Args);
4588  break;
4589  case llvm::Triple::Itanium:
4590  TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
4591  Args);
4592  break;
4593  case llvm::Triple::MSVC:
4594  case llvm::Triple::UnknownEnvironment:
4595  if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4596  .startswith_lower("bfd"))
4597  TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(
4598  *this, Target, Args);
4599  else
4600  TC =
4601  llvm::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
4602  break;
4603  }
4604  break;
4605  case llvm::Triple::PS4:
4606  TC = llvm::make_unique<toolchains::PS4CPU>(*this, Target, Args);
4607  break;
4608  case llvm::Triple::Contiki:
4609  TC = llvm::make_unique<toolchains::Contiki>(*this, Target, Args);
4610  break;
4611  case llvm::Triple::Hurd:
4612  TC = llvm::make_unique<toolchains::Hurd>(*this, Target, Args);
4613  break;
4614  default:
4615  // Of these targets, Hexagon is the only one that might have
4616  // an OS of Linux, in which case it got handled above already.
4617  switch (Target.getArch()) {
4618  case llvm::Triple::tce:
4619  TC = llvm::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
4620  break;
4621  case llvm::Triple::tcele:
4622  TC = llvm::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
4623  break;
4624  case llvm::Triple::hexagon:
4625  TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4626  Args);
4627  break;
4628  case llvm::Triple::lanai:
4629  TC = llvm::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
4630  break;
4631  case llvm::Triple::xcore:
4632  TC = llvm::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
4633  break;
4634  case llvm::Triple::wasm32:
4635  case llvm::Triple::wasm64:
4636  TC = llvm::make_unique<toolchains::WebAssembly>(*this, Target, Args);
4637  break;
4638  case llvm::Triple::avr:
4639  TC = llvm::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
4640  break;
4641  case llvm::Triple::msp430:
4642  TC =
4643  llvm::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
4644  break;
4645  case llvm::Triple::riscv32:
4646  case llvm::Triple::riscv64:
4647  TC = llvm::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
4648  break;
4649  default:
4650  if (Target.getVendor() == llvm::Triple::Myriad)
4651  TC = llvm::make_unique<toolchains::MyriadToolChain>(*this, Target,
4652  Args);
4653  else if (toolchains::BareMetal::handlesTarget(Target))
4654  TC = llvm::make_unique<toolchains::BareMetal>(*this, Target, Args);
4655  else if (Target.isOSBinFormatELF())
4656  TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4657  else if (Target.isOSBinFormatMachO())
4658  TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4659  else
4660  TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4661  }
4662  }
4663  }
4664 
4665  // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA
4666  // compiles always need two toolchains, the CUDA toolchain and the host
4667  // toolchain. So the only valid way to create a CUDA toolchain is via
4668  // CreateOffloadingDeviceToolChains.
4669 
4670  return *TC;
4671 }
4672 
4674  // Say "no" if there is not exactly one input of a type clang understands.
4675  if (JA.size() != 1 ||
4676  !types::isAcceptedByClang((*JA.input_begin())->getType()))
4677  return false;
4678 
4679  // And say "no" if this is not a kind of action clang understands.
4680  if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
4681  !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
4682  return false;
4683 
4684  return true;
4685 }
4686 
4687 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
4688 /// grouped values as integers. Numbers which are not provided are set to 0.
4689 ///
4690 /// \return True if the entire string was parsed (9.2), or all groups were
4691 /// parsed (10.3.5extrastuff).
4692 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
4693  unsigned &Micro, bool &HadExtra) {
4694  HadExtra = false;
4695 
4696  Major = Minor = Micro = 0;
4697  if (Str.empty())
4698  return false;
4699 
4700  if (Str.consumeInteger(10, Major))
4701  return false;
4702  if (Str.empty())
4703  return true;
4704  if (Str[0] != '.')
4705  return false;
4706 
4707  Str = Str.drop_front(1);
4708 
4709  if (Str.consumeInteger(10, Minor))
4710  return false;
4711  if (Str.empty())
4712  return true;
4713  if (Str[0] != '.')
4714  return false;
4715  Str = Str.drop_front(1);
4716 
4717  if (Str.consumeInteger(10, Micro))
4718  return false;
4719  if (!Str.empty())
4720  HadExtra = true;
4721  return true;
4722 }
4723 
4724 /// Parse digits from a string \p Str and fulfill \p Digits with
4725 /// the parsed numbers. This method assumes that the max number of
4726 /// digits to look for is equal to Digits.size().
4727 ///
4728 /// \return True if the entire string was parsed and there are
4729 /// no extra characters remaining at the end.
4730 bool Driver::GetReleaseVersion(StringRef Str,
4731  MutableArrayRef<unsigned> Digits) {
4732  if (Str.empty())
4733  return false;
4734 
4735  unsigned CurDigit = 0;
4736  while (CurDigit < Digits.size()) {
4737  unsigned Digit;
4738  if (Str.consumeInteger(10, Digit))
4739  return false;
4740  Digits[CurDigit] = Digit;
4741  if (Str.empty())
4742  return true;
4743  if (Str[0] != '.')
4744  return false;
4745  Str = Str.drop_front(1);
4746  CurDigit++;
4747  }
4748 
4749  // More digits than requested, bail out...
4750  return false;
4751 }
4752 
4753 std::pair<unsigned, unsigned> Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
4754  unsigned IncludedFlagsBitmask = 0;
4755  unsigned ExcludedFlagsBitmask = options::NoDriverOption;
4756 
4757  if (IsClCompatMode) {
4758  // Include CL and Core options.
4759  IncludedFlagsBitmask |= options::CLOption;
4760  IncludedFlagsBitmask |= options::CoreOption;
4761  } else {
4762  ExcludedFlagsBitmask |= options::CLOption;
4763  }
4764 
4765  return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
4766 }
4767 
4768 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
4769  return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
4770 }
StringRef getSysRoot() const
Returns the sysroot path.
static bool GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, unsigned &Micro, bool &HadExtra)
GetReleaseVersion - Parse (([0-9]+)(.
Definition: Driver.cpp:4692
static bool DiagnoseInputExistence(const Driver &D, const DerivedArgList &Args, StringRef Value, types::ID Ty)
Check that the file referenced by Value exists.
Definition: Driver.cpp:1965
ID
ID - Ordered values for successive stages in the compilation process which interact with user options...
Definition: Phases.h:18
static bool ContainsCompileOrAssembleAction(const Action *A)
Check whether the given input tree contains any compilation or assembly actions.
Definition: Driver.cpp:1864
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
SmallVector< std::string, 16 > path_list
Definition: ToolChain.h:91
bool isCollapsingWithNextDependentActionLegal() const
Return true if this function can be collapsed with others.
Definition: Action.h:163
const llvm::opt::ArgStringList & getTempFiles() const
Definition: Compilation.h:208
std::string ModeSuffix
Driver mode part of the executable name, as g++.
Definition: ToolChain.h:67
CudaArch
Definition: Cuda.h:35
const char * CudaArchToString(CudaArch A)
Definition: Cuda.cpp:31
OpenMPRuntimeKind getOpenMPRuntime(const llvm::opt::ArgList &Args) const
Compute the desired OpenMP runtime from the flags provided.
Definition: Driver.cpp:550
std::string getClangFullVersion()
Retrieves a string representing the complete clang version, which includes the clang version number...
Definition: Version.cpp:118
prefix_list PrefixDirs
Definition: Driver.h:145
std::string GetTemporaryPath(StringRef Prefix, StringRef Suffix) const
GetTemporaryPath - Return the pathname of a temporary file to use as part of compilation; the file wi...
Definition: Driver.cpp:4471
const MultilibSet & getMultilibs() const
Definition: ToolChain.h:230
StringRef getArchName() const
Definition: ToolChain.h:203
T * MakeAction(Args &&... Arg)
Creates a new Action owned by this Compilation.
Definition: Compilation.h:197
bool canLipoType(ID Id)
canLipoType - Is this type acceptable as the output of a universal build (currently, just the Nothing, Image, and Object types).
Definition: Types.cpp:88
Set a ToolChain&#39;s effective triple.
Definition: ToolChain.h:572
const char * getTypeTempSuffix(ID Id, bool CLMode=false)
getTypeTempSuffix - Return the suffix to use when creating a temp file of this type, or null if unspecified.
Definition: Types.cpp:55
void BuildInputs(const ToolChain &TC, llvm::opt::DerivedArgList &Args, InputList &Inputs) const
BuildInputs - Construct the list of inputs and their types from the given arguments.
Definition: Driver.cpp:2004
StringRef P
void setResponseFile(const char *FileName)
Set to pass arguments via a response file when launching the command.
Definition: Job.cpp:305
bool isUsingLTO() const
Returns true if we are performing any kind of LTO.
Definition: Driver.h:520
virtual std::string getThreadModel() const
getThreadModel() - Which thread model does this target use?
Definition: ToolChain.h:457
virtual void ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const =0
ConstructJob - Construct jobs to perform the action JA, writing to Output and with Inputs...
input_range inputs()
Definition: Action.h:150
virtual bool isLinkJob() const
Definition: Tool.h:89
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1295
std::string GetProgramPath(StringRef Name, const ToolChain &TC) const
GetProgramPath - Lookup Name in the list of program search paths.
Definition: Driver.cpp:4437
virtual bool isThreadModelSupported(const StringRef Model) const
isThreadModelSupported() - Does this target support a thread model?
Definition: ToolChain.cpp:505
std::string DyldPrefix
Dynamic loader prefix, if present.
Definition: Driver.h:151
virtual void printVerboseInfo(raw_ostream &OS) const
Dispatch to the specific toolchain for verbose printing.
Definition: ToolChain.h:303
static StringRef getCategoryNameFromID(unsigned CategoryID)
Given a category ID, return the name of the category.
DiagnosticBuilder Diag(unsigned DiagID) const
Definition: Driver.h:109
InputInfo BuildJobsForAction(Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, std::map< std::pair< const Action *, std::string >, InputInfo > &CachedResults, Action::OffloadKind TargetDeviceOffloadKind) const
BuildJobsForAction - Construct the jobs to perform for the action A and return an InputInfo for the r...
Definition: Driver.cpp:3871
static ParsedClangName getTargetAndModeFromProgramName(StringRef ProgName)
Return any implicit target and/or mode flag for an invocation of the compiler driver as ProgName...
Definition: ToolChain.cpp:204
ResponseFileSupport getResponseFilesSupport() const
Returns the level of support for response files of this tool, whether it accepts arguments to be pass...
Definition: Tool.h:93
CudaArch StringToCudaArch(llvm::StringRef S)
Definition: Cuda.cpp:103
Type used to communicate device actions.
Definition: Action.h:254
const char * getClassName() const
Definition: Action.h:138
RAII class that determines when any errors have occurred between the time the instance was created an...
Definition: Diagnostic.h:999
virtual void ConstructJobMultipleOutputs(Compilation &C, const JobAction &JA, const InputInfoList &Outputs, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const
Construct jobs to perform the action JA, writing to the Outputs and with Inputs, and add the jobs to ...
Definition: Tool.cpp:26
void registerDependentActionInfo(const ToolChain *TC, StringRef BoundArch, OffloadKind Kind)
Register information about a dependent action.
Definition: Action.h:602
const ArgStringMap & getFailureResultFiles() const
Definition: Compilation.h:212
float __ovld __cnfn normalize(float p)
Returns a vector in the same direction as p but with a length of 1.
const llvm::opt::DerivedArgList & getArgsForToolChain(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind)
getArgsForToolChain - Return the derived argument list for the tool chain TC (or the default tool cha...
Definition: Compilation.cpp:63
const Multilib & getMultilib() const
Definition: ToolChain.h:232
void addOffloadDeviceToolChain(const ToolChain *DeviceToolChain, Action::OffloadKind OffloadKind)
Definition: Compilation.h:174
Compilation * BuildCompilation(ArrayRef< const char *> Args)
BuildCompilation - Construct a compilation object for a command line argument vector.
Definition: Driver.cpp:912
std::string TargetPrefix
Target part of the executable name, as i686-linux-android.
Definition: ToolChain.h:64
path_list & getProgramPaths()
Definition: ToolChain.h:227
Contains the files in the compilation diagnostic report generated by generateCompilationDiagnostics.
Definition: Driver.h:409
static bool ScanDirForExecutable(SmallString< 128 > &Dir, ArrayRef< std::string > Names)
Definition: Driver.cpp:4426
Definition: Format.h:2072
ActionList & getInputs()
Definition: Action.h:143
std::string Dir
The path the driver executable was in, as invoked from the command line.
Definition: Driver.h:120
ID lookupCXXTypeForCType(ID Id)
lookupCXXTypeForCType - Lookup CXX input type that corresponds to given C type (used for clang++ emul...
Definition: Types.cpp:294
const std::string & gccSuffix() const
Get the detected GCC installation path suffix for the multi-arch target variant.
Definition: Multilib.h:45
Type used to communicate host actions.
Definition: Action.h:295
static unsigned getNumberOfCategories()
Return the number of diagnostic categories.
BackendAction
Definition: BackendUtil.h:31
std::string GetClPchPath(Compilation &C, StringRef BaseName) const
Return the pathname of the pch file in clang-cl mode.
Definition: Driver.cpp:4493
Action - Represent an abstract compilation step to perform.
Definition: Action.h:48
std::string getTripleString() const
Definition: ToolChain.h:211
bool HandleImmediateArgs(const Compilation &C)
HandleImmediateArgs - Handle any arguments which should be treated before building actions or binding...
Definition: Driver.cpp:1616
InputInfo - Wrapper for information about an input source.
Definition: InputInfo.h:23
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
types::ID getType() const
Definition: Action.h:141
bool isOptimizationLevelFast(const llvm::opt::ArgList &Args)
path_list & getFilePaths()
Definition: ToolChain.h:224
CompileCommand Cmd
The LLVM OpenMP runtime.
Definition: Driver.h:95
OffloadKind getOffloadingDeviceKind() const
Definition: Action.h:197
std::unique_ptr< llvm::opt::OptTable > createDriverOptTable()
virtual bool isDsymutilJob() const
Definition: Tool.h:90
Driver - Encapsulate logic for constructing compilation processes from a set of gcc-driver-like comma...
Definition: Driver.h:58
An unknown OpenMP runtime.
Definition: Driver.h:91
const llvm::opt::InputArgList & getInputArgs() const
Definition: Compilation.h:185
input_iterator input_begin()
Definition: Action.h:148
llvm::vfs::FileSystem & getVFS() const
Definition: Driver.h:297
bool isHIP(ID Id)
isHIP - Is this a HIP input.
Definition: Types.cpp:179
return Out str()
static Arg * MakeInputArg(DerivedArgList &Args, OptTable &Opts, StringRef Value, bool Claim=true)
Definition: Driver.cpp:293
bool hasOffloadToolChain() const
Return true if an offloading tool chain of a given kind exists.
Definition: Compilation.h:156
ID getPreprocessedType(ID Id)
getPreprocessedType - Get the ID of the type for this input when it has been preprocessed, or INVALID if this input is not preprocessed.
Definition: Types.cpp:43
StringRef Filename
Definition: Format.cpp:1629
void add(Action &A, const ToolChain &TC, const char *BoundArch, OffloadKind OKind)
Add a action along with the associated toolchain, bound arch, and offload kind.
Definition: Action.cpp:288
void PrintActions(const Compilation &C) const
PrintActions - Print the list of actions.
Definition: Driver.cpp:1856
const ToolChain & getDefaultToolChain() const
Definition: Compilation.h:136
const ArgStringMap & getResultFiles() const
Definition: Compilation.h:210
unsigned GenReproducer
Force clang to emit reproducer for driver invocation.
Definition: Driver.h:233
ID lookupHeaderTypeForSourceType(ID Id)
Lookup header file input type that corresponds to given source file type (used for clang-cl emulation...
Definition: Types.cpp:310
const char * getTypeName(ID Id)
getTypeName - Return the name of the type for Id.
Definition: Types.cpp:39
std::string getAsString() const
getAsString - Return a string name for this input, for debugging.
Definition: InputInfo.h:95
ActionClass getKind() const
Definition: Action.h:140
std::string GetTemporaryDirectory(StringRef Prefix) const
GetTemporaryDirectory - Return the pathname of a temporary directory to use as part of compilation; t...
Definition: Driver.cpp:4482
SourceLocation End
const char * getPhaseName(ID Id)
Definition: Phases.cpp:16
int Id
Definition: ASTDiff.cpp:191
const Tool & getCreator() const
getCreator - Return the Tool which caused the creation of this job.
Definition: Job.h:108
StateNode * Previous
bool isSaveTempsObj() const
Definition: Driver.h:326
Defines version macros and version-related utility functions for Clang.
bool IsCLMode() const
Whether the driver should follow cl.exe like behavior.
Definition: Driver.h:182
virtual types::ID LookupTypeForExtension(StringRef Ext) const
LookupTypeForExtension - Return the default language type to use for the given extension.
Definition: ToolChain.cpp:471
llvm::opt::InputArgList ParseArgStrings(ArrayRef< const char *> Args, bool IsClCompatMode, bool &ContainsError)
ParseArgStrings - Parse the given list of strings into an ArgList.
Definition: Driver.cpp:169
This corresponds to a single GCC Multilib, or a segment of one controlled by a command line flag...
Definition: Multilib.h:29
static std::string GetTriplePlusArchString(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind OffloadKind)
Return a string that uniquely identifies the result of a job.
Definition: Driver.cpp:3858
void HandleAutocompletions(StringRef PassedFlags) const
HandleAutocompletions - Handle –autocomplete by searching and printing possible flags, descriptions, and its arguments.
Definition: Driver.cpp:1535
virtual std::string getCompilerRT(const llvm::opt::ArgList &Args, StringRef Component, bool Shared=false) const
Definition: ToolChain.cpp:365
void getCompilationPhases(ID Id, llvm::SmallVectorImpl< phases::ID > &Phases)
getCompilationPhases - Get the list of compilation phases (&#39;Phases&#39;) to be done for type &#39;Id&#39;...
Definition: Types.cpp:268
void BuildUniversalActions(Compilation &C, const ToolChain &TC, const InputList &BAInputs) const
BuildUniversalActions - Construct the list of actions to perform for the given arguments, which may require a universal build.
Definition: Driver.cpp:1876
size_type size() const
Definition: Action.h:146
void setCannotBeCollapsedWithNextDependentAction()
Mark this action as not legal to collapse.
Definition: Action.h:158
Action * ConstructPhaseAction(Compilation &C, const llvm::opt::ArgList &Args, phases::ID Phase, Action *Input, Action::OffloadKind TargetDeviceOffloadKind=Action::OFK_None) const
ConstructAction - Construct the appropriate action to do for Phase on the Input, taking in to account...
Definition: Driver.cpp:3353
llvm::Triple::ArchType getArchTypeForMachOArchName(StringRef Str)
Definition: Darwin.cpp:34
const ActionList & getActions() const
Get each of the individual arrays.
Definition: Action.h:285
const_offload_toolchains_range getOffloadToolChains() const
Definition: Compilation.h:151
static void PrintDiagnosticCategories(raw_ostream &OS)
PrintDiagnosticCategories - Implement the –print-diagnostic-categories option.
Definition: Driver.cpp:1528
void Print(llvm::raw_ostream &OS, const char *Terminator, bool Quote, CrashReportInfo *CrashInfo=nullptr) const
Definition: Job.cpp:436
path_list & getLibraryPaths()
Definition: ToolChain.h:221
void PrintHelp(bool ShowHidden) const
PrintHelp - Print the help text.
Definition: Driver.cpp:1486
virtual bool canEmitIR() const
Definition: Tool.h:87
static void printArg(llvm::raw_ostream &OS, StringRef Arg, bool Quote)
Print a command argument, and optionally quote it.
Definition: Job.cpp:102
#define false
Definition: stdbool.h:33
virtual bool hasIntegratedCPP() const =0
void generateCompilationDiagnostics(Compilation &C, const Command &FailingCommand, StringRef AdditionalInformation="", CompilationDiagnosticReport *GeneratedReport=nullptr)
generateCompilationDiagnostics - Generate diagnostics information including preprocessed source file(...
Definition: Driver.cpp:1213
static unsigned PrintActions1(const Compilation &C, Action *A, std::map< Action *, unsigned > &Ids)
Definition: Driver.cpp:1779
bool embedBitcodeInObject() const
Definition: Driver.h:329
Encodes a location in the source.
const llvm::opt::DerivedArgList & getArgs() const
Definition: Compilation.h:187
bool hasErrorOccurred() const
Determine whether any errors have occurred since this object instance was created.
Definition: Diagnostic.h:1010
Command - An executable path/name and argument vector to execute.
Definition: Job.h:42
bool isCuda(ID Id)
isCuda - Is this a CUDA input.
Definition: Types.cpp:167
The legacy name for the LLVM OpenMP runtime from when it was the Intel OpenMP runtime.
Definition: Driver.h:105
std::string InstalledDir
The path to the installed clang directory, if any.
Definition: Driver.h:129
bool CCCIsCXX() const
Whether the driver should follow g++ like behavior.
Definition: Driver.h:173
const char * addResultFile(const char *Name, const JobAction *JA)
addResultFile - Add a file to remove on failure, and returns its argument.
Definition: Compilation.h:240
bool isSaveTempsEnabled() const
Definition: Driver.h:325
static std::vector< std::string > getDiagnosticFlags()
Get the string of all diagnostic flags.
std::string UserConfigDir
User directory for config files.
Definition: Driver.h:138
bool isAcceptedByClang(ID Id)
isAcceptedByClang - Can clang handle this input type.
Definition: Types.cpp:95
virtual bool hasIntegratedAssembler() const
Definition: Tool.h:86
An offload action combines host or/and device actions according to the programming model implementati...
Definition: Action.h:248
const char * getDefaultImageName() const
Returns the default name for linked images (e.g., "a.out").
Definition: Driver.cpp:4158
virtual RuntimeLibType GetRuntimeLibType(const llvm::opt::ArgList &Args) const
Definition: ToolChain.cpp:664
void ExecuteJobs(const JobList &Jobs, SmallVectorImpl< std::pair< int, const Command *>> &FailingCommands) const
ExecuteJob - Execute a single job.
const char * getShortName() const
Definition: Tool.h:82
void setIgnoreAllWarnings(bool Val)
When set to true, any unmapped warnings are ignored.
Definition: Diagnostic.h:588
static bool searchForFile(SmallVectorImpl< char > &FilePath, ArrayRef< std::string > Dirs, StringRef FileName)
Looks the given directories for the specified file.
Definition: Driver.cpp:712
unsigned getOffloadingHostActiveKinds() const
Definition: Action.h:193
void EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf)
const Action & getSource() const
getSource - Return the Action which caused the creation of this job.
Definition: Job.h:105
Dataflow Directional Tag Classes.
Level getDiagnosticLevel(unsigned DiagID, SourceLocation Loc) const
Based on the way the client configured the DiagnosticsEngine object, classify the specified diagnosti...
Definition: Diagnostic.h:834
const char * getExecutable() const
Definition: Job.h:125
unsigned CCCPrintBindings
Only print tool bindings, don&#39;t build any jobs.
Definition: Driver.h:185
static llvm::Triple computeTargetTriple(const Driver &D, StringRef TargetTriple, const ArgList &Args, StringRef DarwinArchName="")
Compute target triple from args.
Definition: Driver.cpp:398
virtual std::string ComputeEffectiveClangTriple(const llvm::opt::ArgList &Args, types::ID InputType=types::TY_INVALID) const
ComputeEffectiveClangTriple - Return the Clang triple to use for this target, which may take into acc...
Definition: ToolChain.cpp:641
const llvm::opt::ArgStringList & getArguments() const
Definition: Job.h:127
virtual bool hasGoodDiagnostics() const
Does this tool have "good" standardized diagnostics, or should the driver add an additional "command ...
Definition: Tool.h:117
std::string SysRoot
sysroot, if present
Definition: Driver.h:148
Tool - Information on a specific compilation tool.
Definition: Tool.h:34
void setTripleTypeForMachOArchName(llvm::Triple &T, StringRef Str)
Definition: Darwin.cpp:69
std::string Name
The name the driver was invoked as.
Definition: Driver.h:116
static bool handlesTarget(const llvm::Triple &Triple)
Definition: BareMetal.cpp:60
The GNU OpenMP runtime.
Definition: Driver.h:100
llvm::SmallVector< std::string, 4 > TemporaryFiles
Definition: Driver.h:410
int ExecuteCompilation(Compilation &C, SmallVectorImpl< std::pair< int, const Command *> > &FailingCommands)
ExecuteCompilation - Execute the compilation according to the command line arguments and return an ap...
Definition: Driver.cpp:1415
ActionList & getActions()
Definition: Compilation.h:191
ParsedClangName ClangNameParts
Target and driver mode components extracted from clang executable name.
Definition: Driver.h:126
bool getCheckInputsExist() const
Definition: Driver.h:299
std::string ClangExecutable
The original path to the clang executable.
Definition: Driver.h:123
void BuildJobs(Compilation &C) const
BuildJobs - Bind actions to concrete tools and translate arguments to form the list of jobs to run...
Definition: Driver.cpp:3451
ID getPrecompiledType(ID Id)
getPrecompiledType - Get the ID of the type for this input when it has been precompiled, or INVALID if this input is not precompiled.
Definition: Types.cpp:47
bool ShouldUseClangCompiler(const JobAction &JA) const
ShouldUseClangCompiler - Should the clang compiler be used to handle this action. ...
Definition: Driver.cpp:4673
StringRef getDefaultUniversalArchName() const
Provide the default architecture name (as expected by -arch) for this toolchain.
Definition: ToolChain.cpp:226
Compilation - A set of tasks to perform for a single driver invocation.
Definition: Compilation.h:46
void BuildActions(Compilation &C, llvm::opt::DerivedArgList &Args, const InputList &Inputs, ActionList &Actions) const
BuildActions - Construct the list of actions to perform for the given arguments, which are only done ...
Definition: Driver.cpp:3105
const Driver & getDriver() const
Definition: Compilation.h:134
const llvm::Triple & getTriple() const
Definition: ToolChain.h:188
static StringRef GetOffloadKindName(OffloadKind Kind)
Return a string containing a offload kind name.
Definition: Action.cpp:144
std::string GetFilePath(StringRef Name, const ToolChain &TC) const
GetFilePath - Lookup Name in the list of file search paths.
Definition: Driver.cpp:4374
static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args)
Definition: Driver.cpp:1108
ID lookupTypeForExtension(llvm::StringRef Ext)
lookupTypeForExtension - Lookup the type to use for the file extension Ext.
Definition: Types.cpp:195
const ToolChain & getToolChain() const
Definition: Tool.h:84
bool CleanupFileMap(const ArgStringMap &Files, const JobAction *JA, bool IssueErrors=false) const
CleanupFileMap - Remove the files in the given map.
virtual std::string getCompilerRTPath() const
Definition: ToolChain.cpp:355
X
Add a minimal nested name specifier fixit hint to allow lookup of a tag name from an outer enclosing ...
Definition: SemaDecl.cpp:13954
Driver(StringRef ClangExecutable, StringRef TargetTriple, DiagnosticsEngine &Diags, IntrusiveRefCntPtr< llvm::vfs::FileSystem > VFS=nullptr)
Definition: Driver.cpp:93
void propagateHostOffloadInfo(unsigned OKinds, const char *OArch)
Append the host offload info of this action and propagate it to its dependences.
Definition: Action.cpp:67
static std::string GetOffloadingFileNamePrefix(OffloadKind Kind, StringRef NormalizedTriple, bool CreatePrefixForHost=false)
Return a string that can be used as prefix in order to generate unique files for each offloading kind...
Definition: Action.cpp:128
void ParseDriverMode(StringRef ProgramName, ArrayRef< const char *> Args)
ParseDriverMode - Look for and handle the driver mode option in Args.
Definition: Driver.cpp:136
const char * getName() const
Definition: Tool.h:80
const llvm::opt::OptTable & getOpts() const
Definition: Driver.h:293
virtual Tool * SelectTool(const JobAction &JA) const
Choose a tool to use to handle the action JA.
Definition: ToolChain.cpp:423
const char * addTempFile(const char *Name)
addTempFile - Add a file to remove on exit, and returns its argument.
Definition: Compilation.h:233
std::string getOffloadingKindPrefix() const
Return a string containing the offload kind of the action.
Definition: Action.cpp:89
const ToolChain * getSingleOffloadToolChain() const
Return an offload toolchain of the provided kind.
Definition: Compilation.h:164
__DEVICE__ int max(int __a, int __b)
std::string DriverTitle
Driver title to use with help.
Definition: Driver.h:154
static const char * MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, StringRef BaseName, types::ID FileType)
Create output filename based on ArgValue, which could either be a full filename, filename without ext...
Definition: Driver.cpp:4167
void initialize(TemplateInstantiationCallbackPtrs &Callbacks, const Sema &TheSema)
bool CCCIsCPP() const
Whether the driver is just the preprocessor.
Definition: Driver.h:176
void PrintVersion(const Compilation &C, raw_ostream &OS) const
PrintVersion - Print the driver version.
Definition: Driver.cpp:1502
void CreateOffloadingDeviceToolChains(Compilation &C, InputList &Inputs)
CreateOffloadingDeviceToolChains - create all the toolchains required to support offloading devices g...
Definition: Driver.cpp:575
bool appendSuffixForType(ID Id)
appendSuffixForType - When generating outputs of this type, should the suffix be appended (instead of...
Definition: Types.cpp:84
ID lookupTypeForTypeSpecifier(const char *Name)
lookupTypeForTypSpecifier - Lookup the type to use for a user specified type name.
Definition: Types.cpp:256
const char * GetNamedOutputPath(Compilation &C, const JobAction &JA, const char *BaseInput, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, StringRef NormalizedTriple) const
GetNamedOutputPath - Return the name to use for the output of the action JA.
Definition: Driver.cpp:4196
#define true
Definition: stdbool.h:32
void initCompilationForDiagnostics()
initCompilationForDiagnostics - Remove stale state and suppress output so compilation can be reexecut...
bool isSrcFile(ID Id)
isSrcFile - Is this a source file, i.e.
Definition: Types.cpp:191
const char * DriverMode
Corresponding driver mode argument, as &#39;–driver-mode=g++&#39;.
Definition: ToolChain.h:70
const char * getOffloadingArch() const
Definition: Action.h:198
virtual void Print(llvm::raw_ostream &OS, const char *Terminator, bool Quote, CrashReportInfo *CrashInfo=nullptr) const
Definition: Job.cpp:215
unsigned CCGenDiagnostics
Whether the driver is generating diagnostics for debugging purposes.
Definition: Driver.h:201
std::string SystemConfigDir
System directory for config files.
Definition: Driver.h:135
ToolChain - Access to tools for a single platform.
Definition: ToolChain.h:89
std::string ResourceDir
The path to the compiler resource directory.
Definition: Driver.h:132