clang 20.0.0git
BackendUtil.cpp
Go to the documentation of this file.
1//===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10#include "BackendConsumer.h"
11#include "LinkInModulesPass.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/StringSwitch.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/GlobalsModRef.h"
24#include "llvm/Analysis/TargetLibraryInfo.h"
25#include "llvm/Analysis/TargetTransformInfo.h"
26#include "llvm/Bitcode/BitcodeReader.h"
27#include "llvm/Bitcode/BitcodeWriter.h"
28#include "llvm/Bitcode/BitcodeWriterPass.h"
29#include "llvm/CodeGen/RegAllocRegistry.h"
30#include "llvm/CodeGen/SchedulerRegistry.h"
31#include "llvm/CodeGen/TargetSubtargetInfo.h"
32#include "llvm/Frontend/Driver/CodeGenOptions.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/DebugInfo.h"
35#include "llvm/IR/LegacyPassManager.h"
36#include "llvm/IR/Module.h"
37#include "llvm/IR/ModuleSummaryIndex.h"
38#include "llvm/IR/PassManager.h"
39#include "llvm/IR/Verifier.h"
40#include "llvm/IRPrinter/IRPrintingPasses.h"
41#include "llvm/LTO/LTOBackend.h"
42#include "llvm/MC/MCAsmInfo.h"
43#include "llvm/MC/TargetRegistry.h"
44#include "llvm/Object/OffloadBinary.h"
45#include "llvm/Passes/PassBuilder.h"
46#include "llvm/Passes/PassPlugin.h"
47#include "llvm/Passes/StandardInstrumentations.h"
48#include "llvm/ProfileData/InstrProfCorrelator.h"
49#include "llvm/Support/BuryPointer.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/MemoryBuffer.h"
52#include "llvm/Support/PrettyStackTrace.h"
53#include "llvm/Support/TimeProfiler.h"
54#include "llvm/Support/Timer.h"
55#include "llvm/Support/ToolOutputFile.h"
56#include "llvm/Support/VirtualFileSystem.h"
57#include "llvm/Support/raw_ostream.h"
58#include "llvm/Target/TargetMachine.h"
59#include "llvm/Target/TargetOptions.h"
60#include "llvm/TargetParser/SubtargetFeature.h"
61#include "llvm/TargetParser/Triple.h"
62#include "llvm/Transforms/HipStdPar/HipStdPar.h"
63#include "llvm/Transforms/IPO/EmbedBitcodePass.h"
64#include "llvm/Transforms/IPO/LowerTypeTests.h"
65#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
66#include "llvm/Transforms/InstCombine/InstCombine.h"
67#include "llvm/Transforms/Instrumentation.h"
68#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
69#include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
70#include "llvm/Transforms/Instrumentation/BoundsChecking.h"
71#include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
72#include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
73#include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
74#include "llvm/Transforms/Instrumentation/InstrProfiling.h"
75#include "llvm/Transforms/Instrumentation/KCFI.h"
76#include "llvm/Transforms/Instrumentation/LowerAllowCheckPass.h"
77#include "llvm/Transforms/Instrumentation/MemProfiler.h"
78#include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
79#include "llvm/Transforms/Instrumentation/NumericalStabilitySanitizer.h"
80#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
81#include "llvm/Transforms/Instrumentation/SanitizerBinaryMetadata.h"
82#include "llvm/Transforms/Instrumentation/SanitizerCoverage.h"
83#include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
84#include "llvm/Transforms/ObjCARC.h"
85#include "llvm/Transforms/Scalar/EarlyCSE.h"
86#include "llvm/Transforms/Scalar/GVN.h"
87#include "llvm/Transforms/Scalar/JumpThreading.h"
88#include "llvm/Transforms/Utils/Debugify.h"
89#include "llvm/Transforms/Utils/ModuleUtils.h"
90#include <memory>
91#include <optional>
92using namespace clang;
93using namespace llvm;
94
95#define HANDLE_EXTENSION(Ext) \
96 llvm::PassPluginLibraryInfo get##Ext##PluginInfo();
97#include "llvm/Support/Extension.def"
98
99namespace llvm {
100extern cl::opt<bool> PrintPipelinePasses;
101
102// Experiment to move sanitizers earlier.
103static cl::opt<bool> ClSanitizeOnOptimizerEarlyEP(
104 "sanitizer-early-opt-ep", cl::Optional,
105 cl::desc("Insert sanitizers on OptimizerEarlyEP."));
106
107// Experiment to mark cold functions as optsize/minsize/optnone.
108// TODO: remove once this is exposed as a proper driver flag.
109static cl::opt<PGOOptions::ColdFuncOpt> ClPGOColdFuncAttr(
110 "pgo-cold-func-opt", cl::init(PGOOptions::ColdFuncOpt::Default), cl::Hidden,
111 cl::desc(
112 "Function attribute to apply to cold functions as determined by PGO"),
113 cl::values(clEnumValN(PGOOptions::ColdFuncOpt::Default, "default",
114 "Default (no attribute)"),
115 clEnumValN(PGOOptions::ColdFuncOpt::OptSize, "optsize",
116 "Mark cold functions with optsize."),
117 clEnumValN(PGOOptions::ColdFuncOpt::MinSize, "minsize",
118 "Mark cold functions with minsize."),
119 clEnumValN(PGOOptions::ColdFuncOpt::OptNone, "optnone",
120 "Mark cold functions with optnone.")));
121
122extern cl::opt<InstrProfCorrelator::ProfCorrelatorKind> ProfileCorrelate;
123} // namespace llvm
124
125namespace {
126
127// Default filename used for profile generation.
128std::string getDefaultProfileGenName() {
129 return DebugInfoCorrelate || ProfileCorrelate != InstrProfCorrelator::NONE
130 ? "default_%m.proflite"
131 : "default_%m.profraw";
132}
133
134class EmitAssemblyHelper {
135 DiagnosticsEngine &Diags;
136 const HeaderSearchOptions &HSOpts;
137 const CodeGenOptions &CodeGenOpts;
138 const clang::TargetOptions &TargetOpts;
139 const LangOptions &LangOpts;
140 llvm::Module *TheModule;
142
143 Timer CodeGenerationTime;
144
145 std::unique_ptr<raw_pwrite_stream> OS;
146
147 Triple TargetTriple;
148
149 TargetIRAnalysis getTargetIRAnalysis() const {
150 if (TM)
151 return TM->getTargetIRAnalysis();
152
153 return TargetIRAnalysis();
154 }
155
156 /// Generates the TargetMachine.
157 /// Leaves TM unchanged if it is unable to create the target machine.
158 /// Some of our clang tests specify triples which are not built
159 /// into clang. This is okay because these tests check the generated
160 /// IR, and they require DataLayout which depends on the triple.
161 /// In this case, we allow this method to fail and not report an error.
162 /// When MustCreateTM is used, we print an error if we are unable to load
163 /// the requested target.
164 void CreateTargetMachine(bool MustCreateTM);
165
166 /// Add passes necessary to emit assembly or LLVM IR.
167 ///
168 /// \return True on success.
169 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
170 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS);
171
172 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) {
173 std::error_code EC;
174 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC,
175 llvm::sys::fs::OF_None);
176 if (EC) {
177 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message();
178 F.reset();
179 }
180 return F;
181 }
182
183 void RunOptimizationPipeline(
184 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
185 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC);
186 void RunCodegenPipeline(BackendAction Action,
187 std::unique_ptr<raw_pwrite_stream> &OS,
188 std::unique_ptr<llvm::ToolOutputFile> &DwoOS);
189
190 /// Check whether we should emit a module summary for regular LTO.
191 /// The module summary should be emitted by default for regular LTO
192 /// except for ld64 targets.
193 ///
194 /// \return True if the module summary should be emitted.
195 bool shouldEmitRegularLTOSummary() const {
196 return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses &&
197 TargetTriple.getVendor() != llvm::Triple::Apple;
198 }
199
200 /// Check whether we should emit a flag for UnifiedLTO.
201 /// The UnifiedLTO module flag should be set when UnifiedLTO is enabled for
202 /// ThinLTO or Full LTO with module summaries.
203 bool shouldEmitUnifiedLTOModueFlag() const {
204 return CodeGenOpts.UnifiedLTO &&
205 (CodeGenOpts.PrepareForThinLTO || shouldEmitRegularLTOSummary());
206 }
207
208public:
209 EmitAssemblyHelper(DiagnosticsEngine &_Diags,
210 const HeaderSearchOptions &HeaderSearchOpts,
211 const CodeGenOptions &CGOpts,
212 const clang::TargetOptions &TOpts,
213 const LangOptions &LOpts, llvm::Module *M,
215 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts),
216 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), VFS(std::move(VFS)),
217 CodeGenerationTime("codegen", "Code Generation Time"),
218 TargetTriple(TheModule->getTargetTriple()) {}
219
220 ~EmitAssemblyHelper() {
221 if (CodeGenOpts.DisableFree)
222 BuryPointer(std::move(TM));
223 }
224
225 std::unique_ptr<TargetMachine> TM;
226
227 // Emit output using the new pass manager for the optimization pipeline.
228 void EmitAssembly(BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS,
229 BackendConsumer *BC);
230};
231} // namespace
232
233static SanitizerCoverageOptions
235 SanitizerCoverageOptions Opts;
236 Opts.CoverageType =
237 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
238 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
239 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
240 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
241 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
242 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
243 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
244 Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
245 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
246 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
247 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
248 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag;
249 Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
250 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
251 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads;
252 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores;
253 Opts.CollectControlFlow = CGOpts.SanitizeCoverageControlFlow;
254 return Opts;
255}
256
257static SanitizerBinaryMetadataOptions
259 SanitizerBinaryMetadataOptions Opts;
260 Opts.Covered = CGOpts.SanitizeBinaryMetadataCovered;
261 Opts.Atomics = CGOpts.SanitizeBinaryMetadataAtomics;
262 Opts.UAR = CGOpts.SanitizeBinaryMetadataUAR;
263 return Opts;
264}
265
266// Check if ASan should use GC-friendly instrumentation for globals.
267// First of all, there is no point if -fdata-sections is off (expect for MachO,
268// where this is not a factor). Also, on ELF this feature requires an assembler
269// extension that only works with -integrated-as at the moment.
270static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
271 if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
272 return false;
273 switch (T.getObjectFormat()) {
274 case Triple::MachO:
275 case Triple::COFF:
276 return true;
277 case Triple::ELF:
278 return !CGOpts.DisableIntegratedAS;
279 case Triple::GOFF:
280 llvm::report_fatal_error("ASan not implemented for GOFF");
281 case Triple::XCOFF:
282 llvm::report_fatal_error("ASan not implemented for XCOFF.");
283 case Triple::Wasm:
284 case Triple::DXContainer:
285 case Triple::SPIRV:
286 case Triple::UnknownObjectFormat:
287 break;
288 }
289 return false;
290}
291
292static std::optional<llvm::CodeModel::Model>
293getCodeModel(const CodeGenOptions &CodeGenOpts) {
294 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
295 .Case("tiny", llvm::CodeModel::Tiny)
296 .Case("small", llvm::CodeModel::Small)
297 .Case("kernel", llvm::CodeModel::Kernel)
298 .Case("medium", llvm::CodeModel::Medium)
299 .Case("large", llvm::CodeModel::Large)
300 .Case("default", ~1u)
301 .Default(~0u);
302 assert(CodeModel != ~0u && "invalid code model!");
303 if (CodeModel == ~1u)
304 return std::nullopt;
305 return static_cast<llvm::CodeModel::Model>(CodeModel);
306}
307
308static CodeGenFileType getCodeGenFileType(BackendAction Action) {
309 if (Action == Backend_EmitObj)
310 return CodeGenFileType::ObjectFile;
311 else if (Action == Backend_EmitMCNull)
312 return CodeGenFileType::Null;
313 else {
314 assert(Action == Backend_EmitAssembly && "Invalid action!");
315 return CodeGenFileType::AssemblyFile;
316 }
317}
318
320 return Action != Backend_EmitNothing && Action != Backend_EmitBC &&
321 Action != Backend_EmitLL;
322}
323
325 llvm::TargetOptions &Options,
326 const CodeGenOptions &CodeGenOpts,
327 const clang::TargetOptions &TargetOpts,
328 const LangOptions &LangOpts,
329 const HeaderSearchOptions &HSOpts) {
330 switch (LangOpts.getThreadModel()) {
331 case LangOptions::ThreadModelKind::POSIX:
332 Options.ThreadModel = llvm::ThreadModel::POSIX;
333 break;
334 case LangOptions::ThreadModelKind::Single:
335 Options.ThreadModel = llvm::ThreadModel::Single;
336 break;
337 }
338
339 // Set float ABI type.
340 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
341 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
342 "Invalid Floating Point ABI!");
343 Options.FloatABIType =
344 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
345 .Case("soft", llvm::FloatABI::Soft)
346 .Case("softfp", llvm::FloatABI::Soft)
347 .Case("hard", llvm::FloatABI::Hard)
348 .Default(llvm::FloatABI::Default);
349
350 // Set FP fusion mode.
351 switch (LangOpts.getDefaultFPContractMode()) {
352 case LangOptions::FPM_Off:
353 // Preserve any contraction performed by the front-end. (Strict performs
354 // splitting of the muladd intrinsic in the backend.)
355 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
356 break;
357 case LangOptions::FPM_On:
358 case LangOptions::FPM_FastHonorPragmas:
359 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
360 break;
361 case LangOptions::FPM_Fast:
362 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
363 break;
364 }
365
366 Options.BinutilsVersion =
367 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion);
368 Options.UseInitArray = CodeGenOpts.UseInitArray;
369 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
370
371 // Set EABI version.
372 Options.EABIVersion = TargetOpts.EABIVersion;
373
374 if (LangOpts.hasSjLjExceptions())
375 Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
376 if (LangOpts.hasSEHExceptions())
377 Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
378 if (LangOpts.hasDWARFExceptions())
379 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
380 if (LangOpts.hasWasmExceptions())
381 Options.ExceptionModel = llvm::ExceptionHandling::Wasm;
382
383 Options.NoInfsFPMath = LangOpts.NoHonorInfs;
384 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs;
385 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
386 Options.UnsafeFPMath = LangOpts.AllowFPReassoc && LangOpts.AllowRecip &&
387 LangOpts.NoSignedZero && LangOpts.ApproxFunc &&
388 (LangOpts.getDefaultFPContractMode() ==
389 LangOptions::FPModeKind::FPM_Fast ||
390 LangOpts.getDefaultFPContractMode() ==
391 LangOptions::FPModeKind::FPM_FastHonorPragmas);
392 Options.ApproxFuncFPMath = LangOpts.ApproxFunc;
393
394 Options.BBAddrMap = CodeGenOpts.BBAddrMap;
395 Options.BBSections =
396 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections)
397 .Case("all", llvm::BasicBlockSection::All)
398 .Case("labels", llvm::BasicBlockSection::Labels)
399 .StartsWith("list=", llvm::BasicBlockSection::List)
400 .Case("none", llvm::BasicBlockSection::None)
401 .Default(llvm::BasicBlockSection::None);
402
403 if (Options.BBSections == llvm::BasicBlockSection::List) {
404 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr =
405 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5));
406 if (!MBOrErr) {
407 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file)
408 << MBOrErr.getError().message();
409 return false;
410 }
411 Options.BBSectionsFuncListBuf = std::move(*MBOrErr);
412 }
413
414 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions;
415 Options.FunctionSections = CodeGenOpts.FunctionSections;
416 Options.DataSections = CodeGenOpts.DataSections;
417 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility;
418 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
419 Options.UniqueBasicBlockSectionNames =
420 CodeGenOpts.UniqueBasicBlockSectionNames;
421 Options.SeparateNamedSections = CodeGenOpts.SeparateNamedSections;
422 Options.TLSSize = CodeGenOpts.TLSSize;
423 Options.EnableTLSDESC = CodeGenOpts.EnableTLSDESC;
424 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
425 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
426 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
427 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput;
428 Options.EmitAddrsig = CodeGenOpts.Addrsig;
429 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection;
430 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo;
431 Options.EnableAIXExtendedAltivecABI = LangOpts.EnableAIXExtendedAltivecABI;
432 Options.XRayFunctionIndex = CodeGenOpts.XRayFunctionIndex;
433 Options.LoopAlignment = CodeGenOpts.LoopAlignment;
434 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf;
435 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug;
436 Options.Hotpatch = CodeGenOpts.HotPatch;
437 Options.JMCInstrument = CodeGenOpts.JMCInstrument;
438 Options.XCOFFReadOnlyPointers = CodeGenOpts.XCOFFReadOnlyPointers;
439
440 switch (CodeGenOpts.getSwiftAsyncFramePointer()) {
441 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto:
442 Options.SwiftAsyncFramePointer =
443 SwiftAsyncFramePointerMode::DeploymentBased;
444 break;
445
446 case CodeGenOptions::SwiftAsyncFramePointerKind::Always:
447 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always;
448 break;
449
450 case CodeGenOptions::SwiftAsyncFramePointerKind::Never:
451 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never;
452 break;
453 }
454
455 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
456 Options.MCOptions.EmitDwarfUnwind = CodeGenOpts.getEmitDwarfUnwind();
457 Options.MCOptions.EmitCompactUnwindNonCanonical =
458 CodeGenOpts.EmitCompactUnwindNonCanonical;
459 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
460 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
461 Options.MCOptions.MCUseDwarfDirectory =
462 CodeGenOpts.NoDwarfDirectoryAsm
463 ? llvm::MCTargetOptions::DisableDwarfDirectory
464 : llvm::MCTargetOptions::EnableDwarfDirectory;
465 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
466 Options.MCOptions.MCIncrementalLinkerCompatible =
467 CodeGenOpts.IncrementalLinkerCompatible;
468 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
469 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn;
470 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
471 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64;
472 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
473 Options.MCOptions.Crel = CodeGenOpts.Crel;
474 Options.MCOptions.X86RelaxRelocations = CodeGenOpts.RelaxELFRelocations;
475 Options.MCOptions.CompressDebugSections =
476 CodeGenOpts.getCompressDebugSections();
477 Options.MCOptions.ABIName = TargetOpts.ABI;
478 for (const auto &Entry : HSOpts.UserEntries)
479 if (!Entry.IsFramework &&
480 (Entry.Group == frontend::IncludeDirGroup::Quoted ||
481 Entry.Group == frontend::IncludeDirGroup::Angled ||
482 Entry.Group == frontend::IncludeDirGroup::System))
483 Options.MCOptions.IASSearchPaths.push_back(
484 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
485 Options.MCOptions.Argv0 = CodeGenOpts.Argv0;
486 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs;
487 Options.MCOptions.AsSecureLogFile = CodeGenOpts.AsSecureLogFile;
488 Options.MCOptions.PPCUseFullRegisterNames =
489 CodeGenOpts.PPCUseFullRegisterNames;
490 Options.MisExpect = CodeGenOpts.MisExpect;
491
492 return true;
493}
494
495static std::optional<GCOVOptions>
496getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts) {
497 if (CodeGenOpts.CoverageNotesFile.empty() &&
498 CodeGenOpts.CoverageDataFile.empty())
499 return std::nullopt;
500 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
501 // LLVM's -default-gcov-version flag is set to something invalid.
502 GCOVOptions Options;
503 Options.EmitNotes = !CodeGenOpts.CoverageNotesFile.empty();
504 Options.EmitData = !CodeGenOpts.CoverageDataFile.empty();
505 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version));
506 Options.NoRedZone = CodeGenOpts.DisableRedZone;
507 Options.Filter = CodeGenOpts.ProfileFilterFiles;
508 Options.Exclude = CodeGenOpts.ProfileExcludeFiles;
509 Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
510 return Options;
511}
512
513static std::optional<InstrProfOptions>
515 const LangOptions &LangOpts) {
516 if (!CodeGenOpts.hasProfileClangInstr())
517 return std::nullopt;
518 InstrProfOptions Options;
519 Options.NoRedZone = CodeGenOpts.DisableRedZone;
520 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
521 Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
522 return Options;
523}
524
525static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
527 BackendArgs.push_back("clang"); // Fake program name.
528 if (!CodeGenOpts.DebugPass.empty()) {
529 BackendArgs.push_back("-debug-pass");
530 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
531 }
532 if (!CodeGenOpts.LimitFloatPrecision.empty()) {
533 BackendArgs.push_back("-limit-float-precision");
534 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
535 }
536 // Check for the default "clang" invocation that won't set any cl::opt values.
537 // Skip trying to parse the command line invocation to avoid the issues
538 // described below.
539 if (BackendArgs.size() == 1)
540 return;
541 BackendArgs.push_back(nullptr);
542 // FIXME: The command line parser below is not thread-safe and shares a global
543 // state, so this call might crash or overwrite the options of another Clang
544 // instance in the same process.
545 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
546 BackendArgs.data());
547}
548
549void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
550 // Create the TargetMachine for generating code.
551 std::string Error;
552 std::string Triple = TheModule->getTargetTriple();
553 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
554 if (!TheTarget) {
555 if (MustCreateTM)
556 Diags.Report(diag::err_fe_unable_to_create_target) << Error;
557 return;
558 }
559
560 std::optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts);
561 std::string FeaturesStr =
562 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
563 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
564 std::optional<CodeGenOptLevel> OptLevelOrNone =
565 CodeGenOpt::getLevel(CodeGenOpts.OptimizationLevel);
566 assert(OptLevelOrNone && "Invalid optimization level!");
567 CodeGenOptLevel OptLevel = *OptLevelOrNone;
568
569 llvm::TargetOptions Options;
570 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts,
571 HSOpts))
572 return;
573 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
574 Options, RM, CM, OptLevel));
575 TM->setLargeDataThreshold(CodeGenOpts.LargeDataThreshold);
576}
577
578bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
579 BackendAction Action,
580 raw_pwrite_stream &OS,
581 raw_pwrite_stream *DwoOS) {
582 // Add LibraryInfo.
583 std::unique_ptr<TargetLibraryInfoImpl> TLII(
584 llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib()));
585 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
586
587 // Normal mode, emit a .s or .o file by running the code generator. Note,
588 // this also adds codegenerator level optimization passes.
589 CodeGenFileType CGFT = getCodeGenFileType(Action);
590
591 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT,
592 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
593 Diags.Report(diag::err_fe_unable_to_interface_with_target);
594 return false;
595 }
596
597 return true;
598}
599
600static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
601 switch (Opts.OptimizationLevel) {
602 default:
603 llvm_unreachable("Invalid optimization level!");
604
605 case 0:
606 return OptimizationLevel::O0;
607
608 case 1:
609 return OptimizationLevel::O1;
610
611 case 2:
612 switch (Opts.OptimizeSize) {
613 default:
614 llvm_unreachable("Invalid optimization level for size!");
615
616 case 0:
617 return OptimizationLevel::O2;
618
619 case 1:
620 return OptimizationLevel::Os;
621
622 case 2:
623 return OptimizationLevel::Oz;
624 }
625
626 case 3:
627 return OptimizationLevel::O3;
628 }
629}
630
631static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts,
632 PassBuilder &PB) {
633 // If the back-end supports KCFI operand bundle lowering, skip KCFIPass.
634 if (TargetTriple.getArch() == llvm::Triple::x86_64 ||
635 TargetTriple.isAArch64(64) || TargetTriple.isRISCV())
636 return;
637
638 // Ensure we lower KCFI operand bundles with -O0.
639 PB.registerOptimizerLastEPCallback(
640 [&](ModulePassManager &MPM, OptimizationLevel Level) {
641 if (Level == OptimizationLevel::O0 &&
642 LangOpts.Sanitize.has(SanitizerKind::KCFI))
643 MPM.addPass(createModuleToFunctionPassAdaptor(KCFIPass()));
644 });
645
646 // When optimizations are requested, run KCIFPass after InstCombine to
647 // avoid unnecessary checks.
648 PB.registerPeepholeEPCallback(
649 [&](FunctionPassManager &FPM, OptimizationLevel Level) {
650 if (Level != OptimizationLevel::O0 &&
651 LangOpts.Sanitize.has(SanitizerKind::KCFI))
652 FPM.addPass(KCFIPass());
653 });
654}
655
656static void addSanitizers(const Triple &TargetTriple,
657 const CodeGenOptions &CodeGenOpts,
658 const LangOptions &LangOpts, PassBuilder &PB) {
659 auto SanitizersCallback = [&](ModulePassManager &MPM,
660 OptimizationLevel Level) {
661 if (CodeGenOpts.hasSanitizeCoverage()) {
662 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts);
663 MPM.addPass(SanitizerCoveragePass(
664 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles,
666 }
667
668 if (CodeGenOpts.hasSanitizeBinaryMetadata()) {
669 MPM.addPass(SanitizerBinaryMetadataPass(
672 }
673
674 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) {
675 if (LangOpts.Sanitize.has(Mask)) {
676 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins;
677 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
678
679 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel,
680 CodeGenOpts.SanitizeMemoryParamRetval);
681 MPM.addPass(MemorySanitizerPass(options));
682 if (Level != OptimizationLevel::O0) {
683 // MemorySanitizer inserts complex instrumentation that mostly follows
684 // the logic of the original code, but operates on "shadow" values. It
685 // can benefit from re-running some general purpose optimization
686 // passes.
687 MPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>());
688 FunctionPassManager FPM;
689 FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));
690 FPM.addPass(InstCombinePass());
691 FPM.addPass(JumpThreadingPass());
692 FPM.addPass(GVNPass());
693 FPM.addPass(InstCombinePass());
694 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
695 }
696 }
697 };
698 MSanPass(SanitizerKind::Memory, false);
699 MSanPass(SanitizerKind::KernelMemory, true);
700
701 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
702 MPM.addPass(ModuleThreadSanitizerPass());
703 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
704 }
705
706 if (LangOpts.Sanitize.has(SanitizerKind::NumericalStability))
707 MPM.addPass(NumericalStabilitySanitizerPass());
708
709 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
710 if (LangOpts.Sanitize.has(Mask)) {
711 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
712 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator;
713 llvm::AsanDtorKind DestructorKind =
714 CodeGenOpts.getSanitizeAddressDtor();
715 AddressSanitizerOptions Opts;
716 Opts.CompileKernel = CompileKernel;
717 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask);
718 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope;
719 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn();
720 MPM.addPass(AddressSanitizerPass(Opts, UseGlobalGC, UseOdrIndicator,
721 DestructorKind));
722 }
723 };
724 ASanPass(SanitizerKind::Address, false);
725 ASanPass(SanitizerKind::KernelAddress, true);
726
727 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
728 if (LangOpts.Sanitize.has(Mask)) {
729 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
730 MPM.addPass(HWAddressSanitizerPass(
731 {CompileKernel, Recover,
732 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0}));
733 }
734 };
735 HWASanPass(SanitizerKind::HWAddress, false);
736 HWASanPass(SanitizerKind::KernelHWAddress, true);
737
738 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
739 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles));
740 }
741 };
743 PB.registerOptimizerEarlyEPCallback(
744 [SanitizersCallback](ModulePassManager &MPM, OptimizationLevel Level) {
745 ModulePassManager NewMPM;
746 SanitizersCallback(NewMPM, Level);
747 if (!NewMPM.isEmpty()) {
748 // Sanitizers can abandon<GlobalsAA>.
749 NewMPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>());
750 MPM.addPass(std::move(NewMPM));
751 }
752 });
753 } else {
754 // LastEP does not need GlobalsAA.
755 PB.registerOptimizerLastEPCallback(SanitizersCallback);
756 }
757
758 if (LowerAllowCheckPass::IsRequested()) {
759 // We can optimize after inliner, and PGO profile matching. The hook below
760 // is called at the end `buildFunctionSimplificationPipeline`, which called
761 // from `buildInlinerPipeline`, which called after profile matching.
762 PB.registerScalarOptimizerLateEPCallback(
763 [](FunctionPassManager &FPM, OptimizationLevel Level) {
764 FPM.addPass(LowerAllowCheckPass());
765 });
766 }
767}
768
769void EmitAssemblyHelper::RunOptimizationPipeline(
770 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
771 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC) {
772 std::optional<PGOOptions> PGOOpt;
773
774 if (CodeGenOpts.hasProfileIRInstr())
775 // -fprofile-generate.
776 PGOOpt = PGOOptions(
777 CodeGenOpts.InstrProfileOutput.empty() ? getDefaultProfileGenName()
778 : CodeGenOpts.InstrProfileOutput,
779 "", "", CodeGenOpts.MemoryProfileUsePath, nullptr, PGOOptions::IRInstr,
780 PGOOptions::NoCSAction, ClPGOColdFuncAttr,
781 CodeGenOpts.DebugInfoForProfiling,
782 /*PseudoProbeForProfiling=*/false, CodeGenOpts.AtomicProfileUpdate);
783 else if (CodeGenOpts.hasProfileIRUse()) {
784 // -fprofile-use.
785 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse
786 : PGOOptions::NoCSAction;
787 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "",
788 CodeGenOpts.ProfileRemappingFile,
789 CodeGenOpts.MemoryProfileUsePath, VFS,
790 PGOOptions::IRUse, CSAction, ClPGOColdFuncAttr,
791 CodeGenOpts.DebugInfoForProfiling);
792 } else if (!CodeGenOpts.SampleProfileFile.empty())
793 // -fprofile-sample-use
794 PGOOpt = PGOOptions(
795 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile,
796 CodeGenOpts.MemoryProfileUsePath, VFS, PGOOptions::SampleUse,
797 PGOOptions::NoCSAction, ClPGOColdFuncAttr,
798 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling);
799 else if (!CodeGenOpts.MemoryProfileUsePath.empty())
800 // -fmemory-profile-use (without any of the above options)
801 PGOOpt = PGOOptions("", "", "", CodeGenOpts.MemoryProfileUsePath, VFS,
802 PGOOptions::NoAction, PGOOptions::NoCSAction,
803 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling);
804 else if (CodeGenOpts.PseudoProbeForProfiling)
805 // -fpseudo-probe-for-profiling
806 PGOOpt =
807 PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr,
808 PGOOptions::NoAction, PGOOptions::NoCSAction,
809 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling, true);
810 else if (CodeGenOpts.DebugInfoForProfiling)
811 // -fdebug-info-for-profiling
812 PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr,
813 PGOOptions::NoAction, PGOOptions::NoCSAction,
814 ClPGOColdFuncAttr, true);
815
816 // Check to see if we want to generate a CS profile.
817 if (CodeGenOpts.hasProfileCSIRInstr()) {
818 assert(!CodeGenOpts.hasProfileCSIRUse() &&
819 "Cannot have both CSProfileUse pass and CSProfileGen pass at "
820 "the same time");
821 if (PGOOpt) {
822 assert(PGOOpt->Action != PGOOptions::IRInstr &&
823 PGOOpt->Action != PGOOptions::SampleUse &&
824 "Cannot run CSProfileGen pass with ProfileGen or SampleUse "
825 " pass");
826 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty()
827 ? getDefaultProfileGenName()
828 : CodeGenOpts.InstrProfileOutput;
829 PGOOpt->CSAction = PGOOptions::CSIRInstr;
830 } else
831 PGOOpt = PGOOptions("",
832 CodeGenOpts.InstrProfileOutput.empty()
833 ? getDefaultProfileGenName()
834 : CodeGenOpts.InstrProfileOutput,
835 "", /*MemoryProfile=*/"", nullptr,
836 PGOOptions::NoAction, PGOOptions::CSIRInstr,
837 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling);
838 }
839 if (TM)
840 TM->setPGOOption(PGOOpt);
841
842 PipelineTuningOptions PTO;
843 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops;
844 // For historical reasons, loop interleaving is set to mirror setting for loop
845 // unrolling.
846 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops;
847 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop;
848 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP;
849 PTO.MergeFunctions = CodeGenOpts.MergeFunctions;
850 // Only enable CGProfilePass when using integrated assembler, since
851 // non-integrated assemblers don't recognize .cgprofile section.
852 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS;
853 PTO.UnifiedLTO = CodeGenOpts.UnifiedLTO;
854
855 LoopAnalysisManager LAM;
856 FunctionAnalysisManager FAM;
857 CGSCCAnalysisManager CGAM;
858 ModuleAnalysisManager MAM;
859
860 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure";
861 PassInstrumentationCallbacks PIC;
862 PrintPassOptions PrintPassOpts;
863 PrintPassOpts.Indent = DebugPassStructure;
864 PrintPassOpts.SkipAnalyses = DebugPassStructure;
865 StandardInstrumentations SI(
866 TheModule->getContext(),
867 (CodeGenOpts.DebugPassManager || DebugPassStructure),
868 CodeGenOpts.VerifyEach, PrintPassOpts);
869 SI.registerCallbacks(PIC, &MAM);
870 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC);
871
872 // Handle the assignment tracking feature options.
873 switch (CodeGenOpts.getAssignmentTrackingMode()) {
874 case CodeGenOptions::AssignmentTrackingOpts::Forced:
875 PB.registerPipelineStartEPCallback(
876 [&](ModulePassManager &MPM, OptimizationLevel Level) {
877 MPM.addPass(AssignmentTrackingPass());
878 });
879 break;
880 case CodeGenOptions::AssignmentTrackingOpts::Enabled:
881 // Disable assignment tracking in LTO builds for now as the performance
882 // cost is too high. Disable for LLDB tuning due to llvm.org/PR43126.
883 if (!CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.PrepareForLTO &&
884 CodeGenOpts.getDebuggerTuning() != llvm::DebuggerKind::LLDB) {
885 PB.registerPipelineStartEPCallback(
886 [&](ModulePassManager &MPM, OptimizationLevel Level) {
887 // Only use assignment tracking if optimisations are enabled.
888 if (Level != OptimizationLevel::O0)
889 MPM.addPass(AssignmentTrackingPass());
890 });
891 }
892 break;
893 case CodeGenOptions::AssignmentTrackingOpts::Disabled:
894 break;
895 }
896
897 // Enable verify-debuginfo-preserve-each for new PM.
898 DebugifyEachInstrumentation Debugify;
899 DebugInfoPerPass DebugInfoBeforePass;
900 if (CodeGenOpts.EnableDIPreservationVerify) {
901 Debugify.setDebugifyMode(DebugifyMode::OriginalDebugInfo);
902 Debugify.setDebugInfoBeforePass(DebugInfoBeforePass);
903
904 if (!CodeGenOpts.DIBugsReportFilePath.empty())
905 Debugify.setOrigDIVerifyBugsReportFilePath(
906 CodeGenOpts.DIBugsReportFilePath);
907 Debugify.registerCallbacks(PIC, MAM);
908 }
909 // Attempt to load pass plugins and register their callbacks with PB.
910 for (auto &PluginFN : CodeGenOpts.PassPlugins) {
911 auto PassPlugin = PassPlugin::Load(PluginFN);
912 if (PassPlugin) {
913 PassPlugin->registerPassBuilderCallbacks(PB);
914 } else {
915 Diags.Report(diag::err_fe_unable_to_load_plugin)
916 << PluginFN << toString(PassPlugin.takeError());
917 }
918 }
919 for (const auto &PassCallback : CodeGenOpts.PassBuilderCallbacks)
920 PassCallback(PB);
921#define HANDLE_EXTENSION(Ext) \
922 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB);
923#include "llvm/Support/Extension.def"
924
925 // Register the target library analysis directly and give it a customized
926 // preset TLI.
927 std::unique_ptr<TargetLibraryInfoImpl> TLII(
928 llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib()));
929 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
930
931 // Register all the basic analyses with the managers.
932 PB.registerModuleAnalyses(MAM);
933 PB.registerCGSCCAnalyses(CGAM);
934 PB.registerFunctionAnalyses(FAM);
935 PB.registerLoopAnalyses(LAM);
936 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
937
938 ModulePassManager MPM;
939 // Add a verifier pass, before any other passes, to catch CodeGen issues.
940 if (CodeGenOpts.VerifyModule)
941 MPM.addPass(VerifierPass());
942
943 if (!CodeGenOpts.DisableLLVMPasses) {
944 // Map our optimization levels into one of the distinct levels used to
945 // configure the pipeline.
946 OptimizationLevel Level = mapToLevel(CodeGenOpts);
947
948 const bool PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO;
949 const bool PrepareForLTO = CodeGenOpts.PrepareForLTO;
950
951 if (LangOpts.ObjCAutoRefCount) {
952 PB.registerPipelineStartEPCallback(
953 [](ModulePassManager &MPM, OptimizationLevel Level) {
954 if (Level != OptimizationLevel::O0)
955 MPM.addPass(
956 createModuleToFunctionPassAdaptor(ObjCARCExpandPass()));
957 });
958 PB.registerPipelineEarlySimplificationEPCallback(
959 [](ModulePassManager &MPM, OptimizationLevel Level) {
960 if (Level != OptimizationLevel::O0)
961 MPM.addPass(ObjCARCAPElimPass());
962 });
963 PB.registerScalarOptimizerLateEPCallback(
964 [](FunctionPassManager &FPM, OptimizationLevel Level) {
965 if (Level != OptimizationLevel::O0)
966 FPM.addPass(ObjCARCOptPass());
967 });
968 }
969
970 // If we reached here with a non-empty index file name, then the index
971 // file was empty and we are not performing ThinLTO backend compilation
972 // (used in testing in a distributed build environment).
973 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty();
974 // If so drop any the type test assume sequences inserted for whole program
975 // vtables so that codegen doesn't complain.
976 if (IsThinLTOPostLink)
977 PB.registerPipelineStartEPCallback(
978 [](ModulePassManager &MPM, OptimizationLevel Level) {
979 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr,
980 /*ImportSummary=*/nullptr,
981 /*DropTypeTests=*/true));
982 });
983
984 // Register callbacks to schedule sanitizer passes at the appropriate part
985 // of the pipeline.
986 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
987 PB.registerScalarOptimizerLateEPCallback(
988 [](FunctionPassManager &FPM, OptimizationLevel Level) {
989 FPM.addPass(BoundsCheckingPass());
990 });
991
992 // Don't add sanitizers if we are here from ThinLTO PostLink. That already
993 // done on PreLink stage.
994 if (!IsThinLTOPostLink) {
995 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB);
996 addKCFIPass(TargetTriple, LangOpts, PB);
997 }
998
999 if (std::optional<GCOVOptions> Options =
1000 getGCOVOptions(CodeGenOpts, LangOpts))
1001 PB.registerPipelineStartEPCallback(
1002 [Options](ModulePassManager &MPM, OptimizationLevel Level) {
1003 MPM.addPass(GCOVProfilerPass(*Options));
1004 });
1005 if (std::optional<InstrProfOptions> Options =
1006 getInstrProfOptions(CodeGenOpts, LangOpts))
1007 PB.registerPipelineStartEPCallback(
1008 [Options](ModulePassManager &MPM, OptimizationLevel Level) {
1009 MPM.addPass(InstrProfilingLoweringPass(*Options, false));
1010 });
1011
1012 // TODO: Consider passing the MemoryProfileOutput to the pass builder via
1013 // the PGOOptions, and set this up there.
1014 if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1015 PB.registerOptimizerLastEPCallback(
1016 [](ModulePassManager &MPM, OptimizationLevel Level) {
1017 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass()));
1018 MPM.addPass(ModuleMemProfilerPass());
1019 });
1020 }
1021
1022 if (CodeGenOpts.FatLTO) {
1023 MPM.addPass(PB.buildFatLTODefaultPipeline(
1024 Level, PrepareForThinLTO,
1025 PrepareForThinLTO || shouldEmitRegularLTOSummary()));
1026 } else if (PrepareForThinLTO) {
1027 MPM.addPass(PB.buildThinLTOPreLinkDefaultPipeline(Level));
1028 } else if (PrepareForLTO) {
1029 MPM.addPass(PB.buildLTOPreLinkDefaultPipeline(Level));
1030 } else {
1031 MPM.addPass(PB.buildPerModuleDefaultPipeline(Level));
1032 }
1033 }
1034
1035 // Link against bitcodes supplied via the -mlink-builtin-bitcode option
1036 if (CodeGenOpts.LinkBitcodePostopt)
1037 MPM.addPass(LinkInModulesPass(BC));
1038
1039 // Add a verifier pass if requested. We don't have to do this if the action
1040 // requires code generation because there will already be a verifier pass in
1041 // the code-generation pipeline.
1042 // Since we already added a verifier pass above, this
1043 // might even not run the analysis, if previous passes caused no changes.
1044 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule)
1045 MPM.addPass(VerifierPass());
1046
1047 if (Action == Backend_EmitBC || Action == Backend_EmitLL ||
1048 CodeGenOpts.FatLTO) {
1049 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
1050 if (!TheModule->getModuleFlag("EnableSplitLTOUnit"))
1051 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit",
1052 CodeGenOpts.EnableSplitLTOUnit);
1053 if (Action == Backend_EmitBC) {
1054 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
1055 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
1056 if (!ThinLinkOS)
1057 return;
1058 }
1059 MPM.addPass(ThinLTOBitcodeWriterPass(
1060 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr));
1061 } else if (Action == Backend_EmitLL) {
1062 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists,
1063 /*EmitLTOSummary=*/true));
1064 }
1065 } else {
1066 // Emit a module summary by default for Regular LTO except for ld64
1067 // targets
1068 bool EmitLTOSummary = shouldEmitRegularLTOSummary();
1069 if (EmitLTOSummary) {
1070 if (!TheModule->getModuleFlag("ThinLTO") && !CodeGenOpts.UnifiedLTO)
1071 TheModule->addModuleFlag(llvm::Module::Error, "ThinLTO", uint32_t(0));
1072 if (!TheModule->getModuleFlag("EnableSplitLTOUnit"))
1073 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit",
1074 uint32_t(1));
1075 }
1076 if (Action == Backend_EmitBC) {
1077 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists,
1078 EmitLTOSummary));
1079 } else if (Action == Backend_EmitLL) {
1080 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists,
1081 EmitLTOSummary));
1082 }
1083 }
1084
1085 if (shouldEmitUnifiedLTOModueFlag())
1086 TheModule->addModuleFlag(llvm::Module::Error, "UnifiedLTO", uint32_t(1));
1087 }
1088
1089 // Print a textual, '-passes=' compatible, representation of pipeline if
1090 // requested.
1091 if (PrintPipelinePasses) {
1092 MPM.printPipeline(outs(), [&PIC](StringRef ClassName) {
1093 auto PassName = PIC.getPassNameForClassName(ClassName);
1094 return PassName.empty() ? ClassName : PassName;
1095 });
1096 outs() << "\n";
1097 return;
1098 }
1099
1100 if (LangOpts.HIPStdPar && !LangOpts.CUDAIsDevice &&
1101 LangOpts.HIPStdParInterposeAlloc)
1102 MPM.addPass(HipStdParAllocationInterpositionPass());
1103
1104 // Now that we have all of the passes ready, run them.
1105 {
1106 PrettyStackTraceString CrashInfo("Optimizer");
1107 llvm::TimeTraceScope TimeScope("Optimizer");
1108 MPM.run(*TheModule, MAM);
1109 }
1110}
1111
1112void EmitAssemblyHelper::RunCodegenPipeline(
1113 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
1114 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) {
1115 // We still use the legacy PM to run the codegen pipeline since the new PM
1116 // does not work with the codegen pipeline.
1117 // FIXME: make the new PM work with the codegen pipeline.
1118 legacy::PassManager CodeGenPasses;
1119
1120 // Append any output we need to the pass manager.
1121 switch (Action) {
1123 case Backend_EmitMCNull:
1124 case Backend_EmitObj:
1125 CodeGenPasses.add(
1126 createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
1127 if (!CodeGenOpts.SplitDwarfOutput.empty()) {
1128 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
1129 if (!DwoOS)
1130 return;
1131 }
1132 if (!AddEmitPasses(CodeGenPasses, Action, *OS,
1133 DwoOS ? &DwoOS->os() : nullptr))
1134 // FIXME: Should we handle this error differently?
1135 return;
1136 break;
1137 default:
1138 return;
1139 }
1140
1141 // If -print-pipeline-passes is requested, don't run the legacy pass manager.
1142 // FIXME: when codegen is switched to use the new pass manager, it should also
1143 // emit pass names here.
1144 if (PrintPipelinePasses) {
1145 return;
1146 }
1147
1148 {
1149 PrettyStackTraceString CrashInfo("Code generation");
1150 llvm::TimeTraceScope TimeScope("CodeGenPasses");
1151 CodeGenPasses.run(*TheModule);
1152 }
1153}
1154
1155void EmitAssemblyHelper::EmitAssembly(BackendAction Action,
1156 std::unique_ptr<raw_pwrite_stream> OS,
1157 BackendConsumer *BC) {
1158 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr);
1159 setCommandLineOpts(CodeGenOpts);
1160
1161 bool RequiresCodeGen = actionRequiresCodeGen(Action);
1162 CreateTargetMachine(RequiresCodeGen);
1163
1164 if (RequiresCodeGen && !TM)
1165 return;
1166 if (TM)
1167 TheModule->setDataLayout(TM->createDataLayout());
1168
1169 // Before executing passes, print the final values of the LLVM options.
1170 cl::PrintOptionValues();
1171
1172 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
1173 RunOptimizationPipeline(Action, OS, ThinLinkOS, BC);
1174 RunCodegenPipeline(Action, OS, DwoOS);
1175
1176 if (ThinLinkOS)
1177 ThinLinkOS->keep();
1178 if (DwoOS)
1179 DwoOS->keep();
1180}
1181
1183 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex,
1184 llvm::Module *M, const HeaderSearchOptions &HeaderOpts,
1185 const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts,
1186 const LangOptions &LOpts, std::unique_ptr<raw_pwrite_stream> OS,
1187 std::string SampleProfile, std::string ProfileRemapping,
1188 BackendAction Action) {
1189 DenseMap<StringRef, DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
1190 ModuleToDefinedGVSummaries;
1191 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
1192
1193 setCommandLineOpts(CGOpts);
1194
1195 // We can simply import the values mentioned in the combined index, since
1196 // we should only invoke this using the individual indexes written out
1197 // via a WriteIndexesThinBackend.
1198 FunctionImporter::ImportMapTy ImportList;
1199 if (!lto::initImportList(*M, *CombinedIndex, ImportList))
1200 return;
1201
1202 auto AddStream = [&](size_t Task, const Twine &ModuleName) {
1203 return std::make_unique<CachedFileStream>(std::move(OS),
1204 CGOpts.ObjectFilenameForDebug);
1205 };
1206 lto::Config Conf;
1207 if (CGOpts.SaveTempsFilePrefix != "") {
1208 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".",
1209 /* UseInputModulePath */ false)) {
1210 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1211 errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
1212 << '\n';
1213 });
1214 }
1215 }
1216 Conf.CPU = TOpts.CPU;
1217 Conf.CodeModel = getCodeModel(CGOpts);
1218 Conf.MAttrs = TOpts.Features;
1219 Conf.RelocModel = CGOpts.RelocationModel;
1220 std::optional<CodeGenOptLevel> OptLevelOrNone =
1221 CodeGenOpt::getLevel(CGOpts.OptimizationLevel);
1222 assert(OptLevelOrNone && "Invalid optimization level!");
1223 Conf.CGOptLevel = *OptLevelOrNone;
1224 Conf.OptLevel = CGOpts.OptimizationLevel;
1225 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts);
1226 Conf.SampleProfile = std::move(SampleProfile);
1227 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops;
1228 // For historical reasons, loop interleaving is set to mirror setting for loop
1229 // unrolling.
1230 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops;
1231 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop;
1232 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP;
1233 // Only enable CGProfilePass when using integrated assembler, since
1234 // non-integrated assemblers don't recognize .cgprofile section.
1235 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS;
1236
1237 // Context sensitive profile.
1238 if (CGOpts.hasProfileCSIRInstr()) {
1239 Conf.RunCSIRInstr = true;
1240 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput);
1241 } else if (CGOpts.hasProfileCSIRUse()) {
1242 Conf.RunCSIRInstr = false;
1243 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath);
1244 }
1245
1246 Conf.ProfileRemapping = std::move(ProfileRemapping);
1247 Conf.DebugPassManager = CGOpts.DebugPassManager;
1248 Conf.VerifyEach = CGOpts.VerifyEach;
1249 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness;
1250 Conf.RemarksFilename = CGOpts.OptRecordFile;
1251 Conf.RemarksPasses = CGOpts.OptRecordPasses;
1252 Conf.RemarksFormat = CGOpts.OptRecordFormat;
1253 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile;
1254 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput;
1255 switch (Action) {
1257 Conf.PreCodeGenModuleHook = [](size_t Task, const llvm::Module &Mod) {
1258 return false;
1259 };
1260 break;
1261 case Backend_EmitLL:
1262 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) {
1263 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
1264 return false;
1265 };
1266 break;
1267 case Backend_EmitBC:
1268 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) {
1269 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists);
1270 return false;
1271 };
1272 break;
1273 default:
1274 Conf.CGFileType = getCodeGenFileType(Action);
1275 break;
1276 }
1277 if (Error E =
1278 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList,
1279 ModuleToDefinedGVSummaries[M->getModuleIdentifier()],
1280 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) {
1281 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1282 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
1283 });
1284 }
1285}
1286
1288 DiagnosticsEngine &Diags, const HeaderSearchOptions &HeaderOpts,
1289 const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts,
1290 const LangOptions &LOpts, StringRef TDesc, llvm::Module *M,
1292 std::unique_ptr<raw_pwrite_stream> OS, BackendConsumer *BC) {
1293
1294 llvm::TimeTraceScope TimeScope("Backend");
1295
1296 std::unique_ptr<llvm::Module> EmptyModule;
1297 if (!CGOpts.ThinLTOIndexFile.empty()) {
1298 // If we are performing a ThinLTO importing compile, load the function index
1299 // into memory and pass it into runThinLTOBackend, which will run the
1300 // function importer and invoke LTO passes.
1301 std::unique_ptr<ModuleSummaryIndex> CombinedIndex;
1302 if (Error E = llvm::getModuleSummaryIndexForFile(
1303 CGOpts.ThinLTOIndexFile,
1304 /*IgnoreEmptyThinLTOIndexFile*/ true)
1305 .moveInto(CombinedIndex)) {
1306 logAllUnhandledErrors(std::move(E), errs(),
1307 "Error loading index file '" +
1308 CGOpts.ThinLTOIndexFile + "': ");
1309 return;
1310 }
1311
1312 // A null CombinedIndex means we should skip ThinLTO compilation
1313 // (LLVM will optionally ignore empty index files, returning null instead
1314 // of an error).
1315 if (CombinedIndex) {
1316 if (!CombinedIndex->skipModuleByDistributedBackend()) {
1317 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts,
1318 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile,
1319 CGOpts.ProfileRemappingFile, Action);
1320 return;
1321 }
1322 // Distributed indexing detected that nothing from the module is needed
1323 // for the final linking. So we can skip the compilation. We sill need to
1324 // output an empty object file to make sure that a linker does not fail
1325 // trying to read it. Also for some features, like CFI, we must skip
1326 // the compilation as CombinedIndex does not contain all required
1327 // information.
1328 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext());
1329 EmptyModule->setTargetTriple(M->getTargetTriple());
1330 M = EmptyModule.get();
1331 }
1332 }
1333
1334 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M, VFS);
1335 AsmHelper.EmitAssembly(Action, std::move(OS), BC);
1336
1337 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
1338 // DataLayout.
1339 if (AsmHelper.TM) {
1340 std::string DLDesc = M->getDataLayout().getStringRepresentation();
1341 if (DLDesc != TDesc) {
1342 unsigned DiagID = Diags.getCustomDiagID(
1343 DiagnosticsEngine::Error, "backend data layout '%0' does not match "
1344 "expected target description '%1'");
1345 Diags.Report(DiagID) << DLDesc << TDesc;
1346 }
1347 }
1348}
1349
1350// With -fembed-bitcode, save a copy of the llvm IR as data in the
1351// __LLVM,__bitcode section.
1352void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
1353 llvm::MemoryBufferRef Buf) {
1354 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
1355 return;
1356 llvm::embedBitcodeInModule(
1357 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker,
1358 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode,
1359 CGOpts.CmdArgs);
1360}
1361
1362void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts,
1363 DiagnosticsEngine &Diags) {
1364 if (CGOpts.OffloadObjects.empty())
1365 return;
1366
1367 for (StringRef OffloadObject : CGOpts.OffloadObjects) {
1368 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr =
1369 llvm::MemoryBuffer::getFileOrSTDIN(OffloadObject);
1370 if (ObjectOrErr.getError()) {
1371 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1372 "could not open '%0' for embedding");
1373 Diags.Report(DiagID) << OffloadObject;
1374 return;
1375 }
1376
1377 llvm::embedBufferInModule(*M, **ObjectOrErr, ".llvm.offloading",
1378 Align(object::OffloadBinary::getAlignment()));
1379 }
1380}
static bool actionRequiresCodeGen(BackendAction Action)
static void addSanitizers(const Triple &TargetTriple, const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts, PassBuilder &PB)
static std::optional< llvm::CodeModel::Model > getCodeModel(const CodeGenOptions &CodeGenOpts)
static SanitizerBinaryMetadataOptions getSanitizerBinaryMetadataOptions(const CodeGenOptions &CGOpts)
static std::optional< GCOVOptions > getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts)
static bool initTargetOptions(DiagnosticsEngine &Diags, llvm::TargetOptions &Options, const CodeGenOptions &CodeGenOpts, const clang::TargetOptions &TargetOpts, const LangOptions &LangOpts, const HeaderSearchOptions &HSOpts)
static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts, PassBuilder &PB)
static void runThinLTOBackend(DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, llvm::Module *M, const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, const LangOptions &LOpts, std::unique_ptr< raw_pwrite_stream > OS, std::string SampleProfile, std::string ProfileRemapping, BackendAction Action)
static SanitizerCoverageOptions getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts)
static OptimizationLevel mapToLevel(const CodeGenOptions &Opts)
static std::optional< InstrProfOptions > getInstrProfOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts)
static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts)
static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts)
static CodeGenFileType getCodeGenFileType(BackendAction Action)
Defines the Diagnostic-related interfaces.
IndirectLocalPath & Path
Expr * E
Defines the clang::LangOptions interface.
This file provides a pass to link in Modules from a provided BackendConsumer.
static std::string toString(const clang::SanitizerSet &Sanitizers)
Produce a string containing comma-separated names of sanitizers in Sanitizers set.
Defines the clang::TargetOptions class.
CodeGenOptions - Track various options which control how the code is optimized and passed to the back...
std::string OptRecordFile
The name of the file to which the backend should save YAML optimization records.
std::string InstrProfileOutput
Name of the profile file to use as output for -fprofile-instr-generate, -fprofile-generate,...
std::string BinutilsVersion
bool hasProfileIRUse() const
Check if IR level profile use is on.
char CoverageVersion[4]
The version string to put into coverage files.
std::string FloatABI
The ABI to use for passing floating point arguments.
std::string ThinLinkBitcodeFile
Name of a file that can optionally be written with minimized bitcode to be used as input for the Thin...
bool hasProfileCSIRInstr() const
Check if CS IR level profile instrumentation is on.
std::string DebugPass
Enable additional debugging information.
llvm::Reloc::Model RelocationModel
The name of the relocation model to use.
std::string CoverageNotesFile
The filename with path we use for coverage notes files.
std::string ProfileInstrumentUsePath
Name of the profile file to use as input for -fprofile-instr-use.
std::string SampleProfileFile
Name of the profile file to use with -fprofile-sample-use.
uint64_t LargeDataThreshold
The code model-specific large data threshold to use (-mlarge-data-threshold).
std::string MemoryProfileOutput
Name of the profile file to use as output for with -fmemory-profile.
std::vector< std::function< void(llvm::PassBuilder &)> > PassBuilderCallbacks
List of pass builder callbacks.
std::string LimitFloatPrecision
The float precision limit to use, if non-empty.
std::string CodeModel
The code model to use (-mcmodel).
std::string CoverageDataFile
The filename with path we use for coverage data files.
std::vector< std::string > PassPlugins
List of dynamic shared object files to be loaded as pass plugins.
bool hasProfileClangInstr() const
Check if Clang profile instrumenation is on.
std::string StackUsageOutput
Name of the stack usage file (i.e., .su file) if user passes -fstack-usage.
std::string OptRecordPasses
The regex that filters the passes that should be saved to the optimization records.
std::vector< std::string > SanitizeCoverageAllowlistFiles
Path to allowlist file specifying which objects (files, functions) should exclusively be instrumented...
std::string SaveTempsFilePrefix
Prefix to use for -save-temps output.
std::vector< std::string > SanitizeCoverageIgnorelistFiles
Path to ignorelist file specifying which objects (files, functions) listed for instrumentation by san...
bool hasSanitizeCoverage() const
bool hasProfileIRInstr() const
Check if IR level profile instrumentation is on.
bool hasProfileCSIRUse() const
Check if CSIR profile use is on.
std::vector< std::string > SanitizeMetadataIgnorelistFiles
Path to ignorelist file specifying which objects (files, functions) listed for instrumentation by san...
SanitizerSet SanitizeRecover
Set of sanitizer checks that are non-fatal (i.e.
std::string ProfileExcludeFiles
Regexes separated by a semi-colon to filter the files to not instrument.
std::string AsSecureLogFile
The name of a file to use with .secure_log_unique directives.
std::string ProfileRemappingFile
Name of the profile remapping file to apply to the profile data supplied by -fprofile-sample-use or -...
bool hasSanitizeBinaryMetadata() const
std::string ThinLTOIndexFile
Name of the function summary index file to use for ThinLTO function importing.
const char * Argv0
Executable and command-line used to create a given CompilerInvocation.
std::string SplitDwarfFile
The name for the split debug info file used for the DW_AT_[GNU_]dwo_name attribute in the skeleton CU...
std::vector< uint8_t > CmdArgs
List of backend command-line options for -fembed-bitcode.
std::vector< std::string > CommandLineArgs
std::string MemoryProfileUsePath
Name of the profile file to use as input for -fmemory-profile-use.
std::string OptRecordFormat
The format used for serializing remarks (default: YAML)
std::vector< std::string > OffloadObjects
List of filenames passed in using the -fembed-offload-object option.
std::string ProfileFilterFiles
Regexes separated by a semi-colon to filter the files to instrument.
std::string ObjectFilenameForDebug
Output filename used in the COFF debug information.
std::string SplitDwarfOutput
Output filename for the split debug info, not used in the skeleton CU.
std::string DIBugsReportFilePath
The file to use for dumping bug report by Debugify for original debug info.
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:192
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1547
unsigned getCustomDiagID(Level L, const char(&FormatString)[N])
Return an ID for a diagnostic with the specified format string and level.
Definition: Diagnostic.h:873
HeaderSearchOptions - Helper class for storing options related to the initialization of the HeaderSea...
std::string Sysroot
If non-empty, the directory to use as a "virtual system root" for include paths.
std::vector< Entry > UserEntries
User specified include entries.
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:461
bool hasWasmExceptions() const
Definition: LangOptions.h:708
bool hasSjLjExceptions() const
Definition: LangOptions.h:696
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:467
bool hasDWARFExceptions() const
Definition: LangOptions.h:704
bool hasSEHExceptions() const
Definition: LangOptions.h:700
std::vector< std::string > NoSanitizeFiles
Paths to files specifying which objects (files, functions, variables) should not be instrumented.
Definition: LangOptions.h:473
Options for controlling the target.
Definition: TargetOptions.h:26
std::vector< std::string > Features
The list of target specific features to enable or disable – this should be a list of strings starting...
Definition: TargetOptions.h:58
std::string ABI
If given, the name of the target ABI to use.
Definition: TargetOptions.h:45
std::string CPU
If given, the name of the target CPU to generate code for.
Definition: TargetOptions.h:36
llvm::EABI EABIVersion
The EABI version to use.
Definition: TargetOptions.h:48
Create and return a pass that links in Moduels from a provided BackendConsumer to a given primary Mod...
@ EmitAssembly
Emit a .s file.
@ VFS
Remove unused -ivfsoverlay arguments.
The JSON file list parser is used to communicate input to InstallAPI.
void EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, DiagnosticsEngine &Diags)
void EmitBackendOutput(DiagnosticsEngine &Diags, const HeaderSearchOptions &, const CodeGenOptions &CGOpts, const TargetOptions &TOpts, const LangOptions &LOpts, StringRef TDesc, llvm::Module *M, BackendAction Action, llvm::IntrusiveRefCntPtr< llvm::vfs::FileSystem > VFS, std::unique_ptr< raw_pwrite_stream > OS, BackendConsumer *BC=nullptr)
void EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf)
BackendAction
Definition: BackendUtil.h:35
@ Backend_EmitAssembly
Emit native assembly files.
Definition: BackendUtil.h:36
@ Backend_EmitLL
Emit human-readable LLVM assembly.
Definition: BackendUtil.h:38
@ Backend_EmitBC
Emit LLVM bitcode files.
Definition: BackendUtil.h:37
@ Backend_EmitObj
Emit native object files.
Definition: BackendUtil.h:41
@ Backend_EmitMCNull
Run CodeGen, but don't emit anything.
Definition: BackendUtil.h:40
@ Backend_EmitNothing
Don't emit anything (benchmarking mode)
Definition: BackendUtil.h:39
const FunctionProtoType * T
Diagnostic wrappers for TextAPI types for error reporting.
Definition: Dominators.h:30
cl::opt< bool > PrintPipelinePasses
cl::opt< InstrProfCorrelator::ProfCorrelatorKind > ProfileCorrelate
static cl::opt< PGOOptions::ColdFuncOpt > ClPGOColdFuncAttr("pgo-cold-func-opt", cl::init(PGOOptions::ColdFuncOpt::Default), cl::Hidden, cl::desc("Function attribute to apply to cold functions as determined by PGO"), cl::values(clEnumValN(PGOOptions::ColdFuncOpt::Default, "default", "Default (no attribute)"), clEnumValN(PGOOptions::ColdFuncOpt::OptSize, "optsize", "Mark cold functions with optsize."), clEnumValN(PGOOptions::ColdFuncOpt::MinSize, "minsize", "Mark cold functions with minsize."), clEnumValN(PGOOptions::ColdFuncOpt::OptNone, "optnone", "Mark cold functions with optnone.")))
static cl::opt< bool > ClSanitizeOnOptimizerEarlyEP("sanitizer-early-opt-ep", cl::Optional, cl::desc("Insert sanitizers on OptimizerEarlyEP."))
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:159