clang  11.0.0git
BackendUtil.cpp
Go to the documentation of this file.
1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
11 #include "clang/Basic/Diagnostic.h"
15 #include "clang/Frontend/Utils.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringSwitch.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/StackSafetyAnalysis.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Bitcode/BitcodeReader.h"
25 #include "llvm/Bitcode/BitcodeWriter.h"
26 #include "llvm/Bitcode/BitcodeWriterPass.h"
27 #include "llvm/CodeGen/RegAllocRegistry.h"
28 #include "llvm/CodeGen/SchedulerRegistry.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/IRPrintingPasses.h"
32 #include "llvm/IR/LegacyPassManager.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/ModuleSummaryIndex.h"
35 #include "llvm/IR/PassManager.h"
36 #include "llvm/IR/Verifier.h"
37 #include "llvm/LTO/LTOBackend.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/SubtargetFeature.h"
40 #include "llvm/Passes/PassBuilder.h"
41 #include "llvm/Passes/PassPlugin.h"
42 #include "llvm/Passes/StandardInstrumentations.h"
43 #include "llvm/Support/BuryPointer.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/MemoryBuffer.h"
46 #include "llvm/Support/PrettyStackTrace.h"
47 #include "llvm/Support/TargetRegistry.h"
48 #include "llvm/Support/TimeProfiler.h"
49 #include "llvm/Support/Timer.h"
50 #include "llvm/Support/ToolOutputFile.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetMachine.h"
53 #include "llvm/Target/TargetOptions.h"
54 #include "llvm/Transforms/Coroutines.h"
55 #include "llvm/Transforms/Coroutines/CoroCleanup.h"
56 #include "llvm/Transforms/Coroutines/CoroEarly.h"
57 #include "llvm/Transforms/Coroutines/CoroElide.h"
58 #include "llvm/Transforms/Coroutines/CoroSplit.h"
59 #include "llvm/Transforms/IPO.h"
60 #include "llvm/Transforms/IPO/AlwaysInliner.h"
61 #include "llvm/Transforms/IPO/LowerTypeTests.h"
62 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
63 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
64 #include "llvm/Transforms/InstCombine/InstCombine.h"
65 #include "llvm/Transforms/Instrumentation.h"
66 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
67 #include "llvm/Transforms/Instrumentation/BoundsChecking.h"
68 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
69 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
70 #include "llvm/Transforms/Instrumentation/InstrProfiling.h"
71 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
72 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h"
73 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
74 #include "llvm/Transforms/ObjCARC.h"
75 #include "llvm/Transforms/Scalar.h"
76 #include "llvm/Transforms/Scalar/GVN.h"
77 #include "llvm/Transforms/Utils.h"
78 #include "llvm/Transforms/Utils/CanonicalizeAliases.h"
79 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h"
80 #include "llvm/Transforms/Utils/NameAnonGlobals.h"
81 #include "llvm/Transforms/Utils/SymbolRewriter.h"
82 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h"
83 #include <memory>
84 using namespace clang;
85 using namespace llvm;
86 
87 #define HANDLE_EXTENSION(Ext) \
88  llvm::PassPluginLibraryInfo get##Ext##PluginInfo();
89 #include "llvm/Support/Extension.def"
90 
91 namespace {
92 
93 // Default filename used for profile generation.
94 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw";
95 
96 class EmitAssemblyHelper {
97  DiagnosticsEngine &Diags;
98  const HeaderSearchOptions &HSOpts;
99  const CodeGenOptions &CodeGenOpts;
100  const clang::TargetOptions &TargetOpts;
101  const LangOptions &LangOpts;
102  Module *TheModule;
103 
104  Timer CodeGenerationTime;
105 
106  std::unique_ptr<raw_pwrite_stream> OS;
107 
108  TargetIRAnalysis getTargetIRAnalysis() const {
109  if (TM)
110  return TM->getTargetIRAnalysis();
111 
112  return TargetIRAnalysis();
113  }
114 
115  void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM);
116 
117  /// Generates the TargetMachine.
118  /// Leaves TM unchanged if it is unable to create the target machine.
119  /// Some of our clang tests specify triples which are not built
120  /// into clang. This is okay because these tests check the generated
121  /// IR, and they require DataLayout which depends on the triple.
122  /// In this case, we allow this method to fail and not report an error.
123  /// When MustCreateTM is used, we print an error if we are unable to load
124  /// the requested target.
125  void CreateTargetMachine(bool MustCreateTM);
126 
127  /// Add passes necessary to emit assembly or LLVM IR.
128  ///
129  /// \return True on success.
130  bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
131  raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS);
132 
133  std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) {
134  std::error_code EC;
135  auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC,
136  llvm::sys::fs::OF_None);
137  if (EC) {
138  Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message();
139  F.reset();
140  }
141  return F;
142  }
143 
144 public:
145  EmitAssemblyHelper(DiagnosticsEngine &_Diags,
146  const HeaderSearchOptions &HeaderSearchOpts,
147  const CodeGenOptions &CGOpts,
148  const clang::TargetOptions &TOpts,
149  const LangOptions &LOpts, Module *M)
150  : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts),
151  TargetOpts(TOpts), LangOpts(LOpts), TheModule(M),
152  CodeGenerationTime("codegen", "Code Generation Time") {}
153 
154  ~EmitAssemblyHelper() {
155  if (CodeGenOpts.DisableFree)
156  BuryPointer(std::move(TM));
157  }
158 
159  std::unique_ptr<TargetMachine> TM;
160 
161  void EmitAssembly(BackendAction Action,
162  std::unique_ptr<raw_pwrite_stream> OS);
163 
164  void EmitAssemblyWithNewPassManager(BackendAction Action,
165  std::unique_ptr<raw_pwrite_stream> OS);
166 };
167 
168 // We need this wrapper to access LangOpts and CGOpts from extension functions
169 // that we add to the PassManagerBuilder.
170 class PassManagerBuilderWrapper : public PassManagerBuilder {
171 public:
172  PassManagerBuilderWrapper(const Triple &TargetTriple,
173  const CodeGenOptions &CGOpts,
174  const LangOptions &LangOpts)
175  : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts),
176  LangOpts(LangOpts) {}
177  const Triple &getTargetTriple() const { return TargetTriple; }
178  const CodeGenOptions &getCGOpts() const { return CGOpts; }
179  const LangOptions &getLangOpts() const { return LangOpts; }
180 
181 private:
182  const Triple &TargetTriple;
183  const CodeGenOptions &CGOpts;
184  const LangOptions &LangOpts;
185 };
186 }
187 
188 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
189  if (Builder.OptLevel > 0)
190  PM.add(createObjCARCAPElimPass());
191 }
192 
193 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
194  if (Builder.OptLevel > 0)
195  PM.add(createObjCARCExpandPass());
196 }
197 
198 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
199  if (Builder.OptLevel > 0)
200  PM.add(createObjCARCOptPass());
201 }
202 
203 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder,
204  legacy::PassManagerBase &PM) {
205  PM.add(createAddDiscriminatorsPass());
206 }
207 
208 static void addBoundsCheckingPass(const PassManagerBuilder &Builder,
209  legacy::PassManagerBase &PM) {
210  PM.add(createBoundsCheckingLegacyPass());
211 }
212 
213 static SanitizerCoverageOptions
215  SanitizerCoverageOptions Opts;
216  Opts.CoverageType =
217  static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
218  Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
219  Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
220  Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
221  Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
222  Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
223  Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
224  Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
225  Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
226  Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
227  Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
228  Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag;
229  Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
230  Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
231  return Opts;
232 }
233 
234 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder,
235  legacy::PassManagerBase &PM) {
236  const PassManagerBuilderWrapper &BuilderWrapper =
237  static_cast<const PassManagerBuilderWrapper &>(Builder);
238  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
239  auto Opts = getSancovOptsFromCGOpts(CGOpts);
240  PM.add(createModuleSanitizerCoverageLegacyPassPass(
241  Opts, CGOpts.SanitizeCoverageAllowlistFiles,
243 }
244 
245 // Check if ASan should use GC-friendly instrumentation for globals.
246 // First of all, there is no point if -fdata-sections is off (expect for MachO,
247 // where this is not a factor). Also, on ELF this feature requires an assembler
248 // extension that only works with -integrated-as at the moment.
249 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
250  if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
251  return false;
252  switch (T.getObjectFormat()) {
253  case Triple::MachO:
254  case Triple::COFF:
255  return true;
256  case Triple::ELF:
257  return CGOpts.DataSections && !CGOpts.DisableIntegratedAS;
258  case Triple::XCOFF:
259  llvm::report_fatal_error("ASan not implemented for XCOFF.");
260  case Triple::Wasm:
261  case Triple::UnknownObjectFormat:
262  break;
263  }
264  return false;
265 }
266 
267 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
268  legacy::PassManagerBase &PM) {
269  const PassManagerBuilderWrapper &BuilderWrapper =
270  static_cast<const PassManagerBuilderWrapper&>(Builder);
271  const Triple &T = BuilderWrapper.getTargetTriple();
272  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
273  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address);
274  bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope;
275  bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator;
276  bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts);
277  PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover,
278  UseAfterScope));
279  PM.add(createModuleAddressSanitizerLegacyPassPass(
280  /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator));
281 }
282 
283 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder,
284  legacy::PassManagerBase &PM) {
285  PM.add(createAddressSanitizerFunctionPass(
286  /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false));
287  PM.add(createModuleAddressSanitizerLegacyPassPass(
288  /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true,
289  /*UseOdrIndicator*/ false));
290 }
291 
292 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
293  legacy::PassManagerBase &PM) {
294  const PassManagerBuilderWrapper &BuilderWrapper =
295  static_cast<const PassManagerBuilderWrapper &>(Builder);
296  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
297  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress);
298  PM.add(
299  createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover));
300 }
301 
302 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
303  legacy::PassManagerBase &PM) {
304  PM.add(createHWAddressSanitizerLegacyPassPass(
305  /*CompileKernel*/ true, /*Recover*/ true));
306 }
307 
308 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder,
309  legacy::PassManagerBase &PM,
310  bool CompileKernel) {
311  const PassManagerBuilderWrapper &BuilderWrapper =
312  static_cast<const PassManagerBuilderWrapper&>(Builder);
313  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
314  int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins;
315  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory);
316  PM.add(createMemorySanitizerLegacyPassPass(
317  MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel}));
318 
319  // MemorySanitizer inserts complex instrumentation that mostly follows
320  // the logic of the original code, but operates on "shadow" values.
321  // It can benefit from re-running some general purpose optimization passes.
322  if (Builder.OptLevel > 0) {
323  PM.add(createEarlyCSEPass());
324  PM.add(createReassociatePass());
325  PM.add(createLICMPass());
326  PM.add(createGVNPass());
327  PM.add(createInstructionCombiningPass());
328  PM.add(createDeadStoreEliminationPass());
329  }
330 }
331 
332 static void addMemorySanitizerPass(const PassManagerBuilder &Builder,
333  legacy::PassManagerBase &PM) {
334  addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false);
335 }
336 
337 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder,
338  legacy::PassManagerBase &PM) {
339  addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true);
340 }
341 
342 static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
343  legacy::PassManagerBase &PM) {
344  PM.add(createThreadSanitizerLegacyPassPass());
345 }
346 
347 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder,
348  legacy::PassManagerBase &PM) {
349  const PassManagerBuilderWrapper &BuilderWrapper =
350  static_cast<const PassManagerBuilderWrapper&>(Builder);
351  const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
352  PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles));
353 }
354 
355 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple,
356  const CodeGenOptions &CodeGenOpts) {
357  TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple);
358 
359  switch (CodeGenOpts.getVecLib()) {
361  TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate);
362  break;
364  TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV);
365  break;
367  TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML);
368  break;
369  default:
370  break;
371  }
372  return TLII;
373 }
374 
375 static void addSymbolRewriterPass(const CodeGenOptions &Opts,
376  legacy::PassManager *MPM) {
377  llvm::SymbolRewriter::RewriteDescriptorList DL;
378 
379  llvm::SymbolRewriter::RewriteMapParser MapParser;
380  for (const auto &MapFile : Opts.RewriteMapFiles)
381  MapParser.parse(MapFile, &DL);
382 
383  MPM->add(createRewriteSymbolsPass(DL));
384 }
385 
386 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) {
387  switch (CodeGenOpts.OptimizationLevel) {
388  default:
389  llvm_unreachable("Invalid optimization level!");
390  case 0:
391  return CodeGenOpt::None;
392  case 1:
393  return CodeGenOpt::Less;
394  case 2:
395  return CodeGenOpt::Default; // O2/Os/Oz
396  case 3:
397  return CodeGenOpt::Aggressive;
398  }
399 }
400 
402 getCodeModel(const CodeGenOptions &CodeGenOpts) {
403  unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
404  .Case("tiny", llvm::CodeModel::Tiny)
405  .Case("small", llvm::CodeModel::Small)
406  .Case("kernel", llvm::CodeModel::Kernel)
407  .Case("medium", llvm::CodeModel::Medium)
408  .Case("large", llvm::CodeModel::Large)
409  .Case("default", ~1u)
410  .Default(~0u);
411  assert(CodeModel != ~0u && "invalid code model!");
412  if (CodeModel == ~1u)
413  return None;
414  return static_cast<llvm::CodeModel::Model>(CodeModel);
415 }
416 
417 static CodeGenFileType getCodeGenFileType(BackendAction Action) {
418  if (Action == Backend_EmitObj)
419  return CGFT_ObjectFile;
420  else if (Action == Backend_EmitMCNull)
421  return CGFT_Null;
422  else {
423  assert(Action == Backend_EmitAssembly && "Invalid action!");
424  return CGFT_AssemblyFile;
425  }
426 }
427 
429  llvm::TargetOptions &Options,
430  const CodeGenOptions &CodeGenOpts,
431  const clang::TargetOptions &TargetOpts,
432  const LangOptions &LangOpts,
433  const HeaderSearchOptions &HSOpts) {
434  Options.ThreadModel =
435  llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel)
436  .Case("posix", llvm::ThreadModel::POSIX)
437  .Case("single", llvm::ThreadModel::Single);
438 
439  // Set float ABI type.
440  assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
441  CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
442  "Invalid Floating Point ABI!");
443  Options.FloatABIType =
444  llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
445  .Case("soft", llvm::FloatABI::Soft)
446  .Case("softfp", llvm::FloatABI::Soft)
447  .Case("hard", llvm::FloatABI::Hard)
448  .Default(llvm::FloatABI::Default);
449 
450  // Set FP fusion mode.
451  switch (LangOpts.getDefaultFPContractMode()) {
453  // Preserve any contraction performed by the front-end. (Strict performs
454  // splitting of the muladd intrinsic in the backend.)
455  Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
456  break;
457  case LangOptions::FPM_On:
458  Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
459  break;
461  Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
462  break;
463  }
464 
465  Options.UseInitArray = CodeGenOpts.UseInitArray;
466  Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
467  Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections();
468  Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations;
469 
470  // Set EABI version.
471  Options.EABIVersion = TargetOpts.EABIVersion;
472 
473  if (LangOpts.SjLjExceptions)
474  Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
475  if (LangOpts.SEHExceptions)
476  Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
477  if (LangOpts.DWARFExceptions)
478  Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
479  if (LangOpts.WasmExceptions)
480  Options.ExceptionModel = llvm::ExceptionHandling::Wasm;
481 
482  Options.NoInfsFPMath = LangOpts.NoHonorInfs;
483  Options.NoNaNsFPMath = LangOpts.NoHonorNaNs;
484  Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
485  Options.UnsafeFPMath = LangOpts.UnsafeFPMath;
486  Options.StackAlignmentOverride = CodeGenOpts.StackAlignment;
487 
488  Options.BBSections =
489  llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections)
490  .Case("all", llvm::BasicBlockSection::All)
491  .Case("labels", llvm::BasicBlockSection::Labels)
492  .StartsWith("list=", llvm::BasicBlockSection::List)
493  .Case("none", llvm::BasicBlockSection::None)
495 
496  if (Options.BBSections == llvm::BasicBlockSection::List) {
497  ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr =
498  MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5));
499  if (!MBOrErr)
500  Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file)
501  << MBOrErr.getError().message();
502  else
503  Options.BBSectionsFuncListBuf = std::move(*MBOrErr);
504  }
505 
506  Options.FunctionSections = CodeGenOpts.FunctionSections;
507  Options.DataSections = CodeGenOpts.DataSections;
508  Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
509  Options.UniqueBasicBlockSectionNames =
510  CodeGenOpts.UniqueBasicBlockSectionNames;
511  Options.TLSSize = CodeGenOpts.TLSSize;
512  Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
513  Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS;
514  Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
515  Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
516  Options.EmitAddrsig = CodeGenOpts.Addrsig;
517  Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection;
518  Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo;
519  Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex;
520 
521  Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
522  Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
523  Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
524  Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm;
525  Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
526  Options.MCOptions.MCIncrementalLinkerCompatible =
527  CodeGenOpts.IncrementalLinkerCompatible;
528  Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
529  Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn;
530  Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
531  Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
532  Options.MCOptions.ABIName = TargetOpts.ABI;
533  for (const auto &Entry : HSOpts.UserEntries)
534  if (!Entry.IsFramework &&
535  (Entry.Group == frontend::IncludeDirGroup::Quoted ||
536  Entry.Group == frontend::IncludeDirGroup::Angled ||
537  Entry.Group == frontend::IncludeDirGroup::System))
538  Options.MCOptions.IASSearchPaths.push_back(
539  Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
540  Options.MCOptions.Argv0 = CodeGenOpts.Argv0;
541  Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs;
542 }
544  if (CodeGenOpts.DisableGCov)
545  return None;
546  if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes)
547  return None;
548  // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
549  // LLVM's -default-gcov-version flag is set to something invalid.
550  GCOVOptions Options;
551  Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
552  Options.EmitData = CodeGenOpts.EmitGcovArcs;
553  llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version));
554  Options.NoRedZone = CodeGenOpts.DisableRedZone;
555  Options.Filter = CodeGenOpts.ProfileFilterFiles;
556  Options.Exclude = CodeGenOpts.ProfileExcludeFiles;
557  return Options;
558 }
559 
562  const LangOptions &LangOpts) {
563  if (!CodeGenOpts.hasProfileClangInstr())
564  return None;
565  InstrProfOptions Options;
566  Options.NoRedZone = CodeGenOpts.DisableRedZone;
567  Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
568 
569  // TODO: Surface the option to emit atomic profile counter increments at
570  // the driver level.
571  Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread);
572  return Options;
573 }
574 
575 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM,
576  legacy::FunctionPassManager &FPM) {
577  // Handle disabling of all LLVM passes, where we want to preserve the
578  // internal module before any optimization.
579  if (CodeGenOpts.DisableLLVMPasses)
580  return;
581 
582  // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM
583  // manually (and not via PMBuilder), since some passes (eg. InstrProfiling)
584  // are inserted before PMBuilder ones - they'd get the default-constructed
585  // TLI with an unknown target otherwise.
586  Triple TargetTriple(TheModule->getTargetTriple());
587  std::unique_ptr<TargetLibraryInfoImpl> TLII(
588  createTLII(TargetTriple, CodeGenOpts));
589 
590  // If we reached here with a non-empty index file name, then the index file
591  // was empty and we are not performing ThinLTO backend compilation (used in
592  // testing in a distributed build environment). Drop any the type test
593  // assume sequences inserted for whole program vtables so that codegen doesn't
594  // complain.
595  if (!CodeGenOpts.ThinLTOIndexFile.empty())
596  MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr,
597  /*ImportSummary=*/nullptr,
598  /*DropTypeTests=*/true));
599 
600  PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts);
601 
602  // At O0 and O1 we only run the always inliner which is more efficient. At
603  // higher optimization levels we run the normal inliner.
604  if (CodeGenOpts.OptimizationLevel <= 1) {
605  bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 &&
606  !CodeGenOpts.DisableLifetimeMarkers) ||
607  LangOpts.Coroutines);
608  PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics);
609  } else {
610  // We do not want to inline hot callsites for SamplePGO module-summary build
611  // because profile annotation will happen again in ThinLTO backend, and we
612  // want the IR of the hot path to match the profile.
613  PMBuilder.Inliner = createFunctionInliningPass(
614  CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize,
615  (!CodeGenOpts.SampleProfileFile.empty() &&
616  CodeGenOpts.PrepareForThinLTO));
617  }
618 
619  PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel;
620  PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
621  PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
622  PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;
623  // Only enable CGProfilePass when using integrated assembler, since
624  // non-integrated assemblers don't recognize .cgprofile section.
625  PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS;
626 
627  PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;
628  // Loop interleaving in the loop vectorizer has historically been set to be
629  // enabled when loop unrolling is enabled.
630  PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops;
631  PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions;
632  PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO;
633  PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO;
634  PMBuilder.RerollLoops = CodeGenOpts.RerollLoops;
635 
636  MPM.add(new TargetLibraryInfoWrapperPass(*TLII));
637 
638  if (TM)
639  TM->adjustPassManager(PMBuilder);
640 
641  if (CodeGenOpts.DebugInfoForProfiling ||
642  !CodeGenOpts.SampleProfileFile.empty())
643  PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
645 
646  // In ObjC ARC mode, add the main ARC optimization passes.
647  if (LangOpts.ObjCAutoRefCount) {
648  PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
650  PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
652  PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
654  }
655 
656  if (LangOpts.Coroutines)
657  addCoroutinePassesToExtensionPoints(PMBuilder);
658 
659  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) {
660  PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
662  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
664  }
665 
666  if (CodeGenOpts.SanitizeCoverageType ||
667  CodeGenOpts.SanitizeCoverageIndirectCalls ||
668  CodeGenOpts.SanitizeCoverageTraceCmp) {
669  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
671  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
673  }
674 
675  if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
676  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
678  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
680  }
681 
682  if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) {
683  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
685  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
687  }
688 
689  if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) {
690  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
692  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
694  }
695 
696  if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) {
697  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
699  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
701  }
702 
703  if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
704  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
706  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
708  }
709 
710  if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) {
711  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
713  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
715  }
716 
717  if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
718  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
720  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
722  }
723 
724  if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
725  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
727  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
729  }
730 
731  // Set up the per-function pass manager.
732  FPM.add(new TargetLibraryInfoWrapperPass(*TLII));
733  if (CodeGenOpts.VerifyModule)
734  FPM.add(createVerifierPass());
735 
736  // Set up the per-module pass manager.
737  if (!CodeGenOpts.RewriteMapFiles.empty())
738  addSymbolRewriterPass(CodeGenOpts, &MPM);
739 
740  // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols
741  // with unique names.
742  if (CodeGenOpts.UniqueInternalLinkageNames) {
743  MPM.add(createUniqueInternalLinkageNamesPass());
744  }
745 
746  if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) {
747  MPM.add(createGCOVProfilerPass(*Options));
748  if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo)
749  MPM.add(createStripSymbolsPass(true));
750  }
751 
752  if (Optional<InstrProfOptions> Options =
753  getInstrProfOptions(CodeGenOpts, LangOpts))
754  MPM.add(createInstrProfilingLegacyPass(*Options, false));
755 
756  bool hasIRInstr = false;
757  if (CodeGenOpts.hasProfileIRInstr()) {
758  PMBuilder.EnablePGOInstrGen = true;
759  hasIRInstr = true;
760  }
761  if (CodeGenOpts.hasProfileCSIRInstr()) {
762  assert(!CodeGenOpts.hasProfileCSIRUse() &&
763  "Cannot have both CSProfileUse pass and CSProfileGen pass at the "
764  "same time");
765  assert(!hasIRInstr &&
766  "Cannot have both ProfileGen pass and CSProfileGen pass at the "
767  "same time");
768  PMBuilder.EnablePGOCSInstrGen = true;
769  hasIRInstr = true;
770  }
771  if (hasIRInstr) {
772  if (!CodeGenOpts.InstrProfileOutput.empty())
773  PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput;
774  else
775  PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName);
776  }
777  if (CodeGenOpts.hasProfileIRUse()) {
778  PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath;
779  PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse();
780  }
781 
782  if (!CodeGenOpts.SampleProfileFile.empty())
783  PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile;
784 
785  PMBuilder.populateFunctionPassManager(FPM);
786  PMBuilder.populateModulePassManager(MPM);
787 }
788 
789 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
790  SmallVector<const char *, 16> BackendArgs;
791  BackendArgs.push_back("clang"); // Fake program name.
792  if (!CodeGenOpts.DebugPass.empty()) {
793  BackendArgs.push_back("-debug-pass");
794  BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
795  }
796  if (!CodeGenOpts.LimitFloatPrecision.empty()) {
797  BackendArgs.push_back("-limit-float-precision");
798  BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
799  }
800  BackendArgs.push_back(nullptr);
801  llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
802  BackendArgs.data());
803 }
804 
805 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
806  // Create the TargetMachine for generating code.
807  std::string Error;
808  std::string Triple = TheModule->getTargetTriple();
809  const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
810  if (!TheTarget) {
811  if (MustCreateTM)
812  Diags.Report(diag::err_fe_unable_to_create_target) << Error;
813  return;
814  }
815 
817  std::string FeaturesStr =
818  llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
819  llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
820  CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts);
821 
822  llvm::TargetOptions Options;
823  initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts);
824  TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
825  Options, RM, CM, OptLevel));
826 }
827 
828 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
829  BackendAction Action,
830  raw_pwrite_stream &OS,
831  raw_pwrite_stream *DwoOS) {
832  // Add LibraryInfo.
833  llvm::Triple TargetTriple(TheModule->getTargetTriple());
834  std::unique_ptr<TargetLibraryInfoImpl> TLII(
835  createTLII(TargetTriple, CodeGenOpts));
836  CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
837 
838  // Normal mode, emit a .s or .o file by running the code generator. Note,
839  // this also adds codegenerator level optimization passes.
840  CodeGenFileType CGFT = getCodeGenFileType(Action);
841 
842  // Add ObjC ARC final-cleanup optimizations. This is done as part of the
843  // "codegen" passes so that it isn't run multiple times when there is
844  // inlining happening.
845  if (CodeGenOpts.OptimizationLevel > 0)
846  CodeGenPasses.add(createObjCARCContractPass());
847 
848  if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT,
849  /*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
850  Diags.Report(diag::err_fe_unable_to_interface_with_target);
851  return false;
852  }
853 
854  return true;
855 }
856 
858  std::unique_ptr<raw_pwrite_stream> OS) {
859  TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr);
860 
861  setCommandLineOpts(CodeGenOpts);
862 
863  bool UsesCodeGen = (Action != Backend_EmitNothing &&
864  Action != Backend_EmitBC &&
865  Action != Backend_EmitLL);
866  CreateTargetMachine(UsesCodeGen);
867 
868  if (UsesCodeGen && !TM)
869  return;
870  if (TM)
871  TheModule->setDataLayout(TM->createDataLayout());
872 
873  legacy::PassManager PerModulePasses;
874  PerModulePasses.add(
875  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
876 
877  legacy::FunctionPassManager PerFunctionPasses(TheModule);
878  PerFunctionPasses.add(
879  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
880 
881  CreatePasses(PerModulePasses, PerFunctionPasses);
882 
883  legacy::PassManager CodeGenPasses;
884  CodeGenPasses.add(
885  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
886 
887  std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
888 
889  switch (Action) {
890  case Backend_EmitNothing:
891  break;
892 
893  case Backend_EmitBC:
894  if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
895  if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
896  ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
897  if (!ThinLinkOS)
898  return;
899  }
900  TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
901  CodeGenOpts.EnableSplitLTOUnit);
902  PerModulePasses.add(createWriteThinLTOBitcodePass(
903  *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr));
904  } else {
905  // Emit a module summary by default for Regular LTO except for ld64
906  // targets
907  bool EmitLTOSummary =
908  (CodeGenOpts.PrepareForLTO &&
909  !CodeGenOpts.DisableLLVMPasses &&
910  llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
911  llvm::Triple::Apple);
912  if (EmitLTOSummary) {
913  if (!TheModule->getModuleFlag("ThinLTO"))
914  TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
915  TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
916  uint32_t(1));
917  }
918 
919  PerModulePasses.add(createBitcodeWriterPass(
920  *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary));
921  }
922  break;
923 
924  case Backend_EmitLL:
925  PerModulePasses.add(
926  createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
927  break;
928 
929  default:
930  if (!CodeGenOpts.SplitDwarfOutput.empty()) {
931  DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
932  if (!DwoOS)
933  return;
934  }
935  if (!AddEmitPasses(CodeGenPasses, Action, *OS,
936  DwoOS ? &DwoOS->os() : nullptr))
937  return;
938  }
939 
940  // Before executing passes, print the final values of the LLVM options.
941  cl::PrintOptionValues();
942 
943  // Run passes. For now we do all passes at once, but eventually we
944  // would like to have the option of streaming code generation.
945 
946  {
947  PrettyStackTraceString CrashInfo("Per-function optimization");
948  llvm::TimeTraceScope TimeScope("PerFunctionPasses");
949 
950  PerFunctionPasses.doInitialization();
951  for (Function &F : *TheModule)
952  if (!F.isDeclaration())
953  PerFunctionPasses.run(F);
954  PerFunctionPasses.doFinalization();
955  }
956 
957  {
958  PrettyStackTraceString CrashInfo("Per-module optimization passes");
959  llvm::TimeTraceScope TimeScope("PerModulePasses");
960  PerModulePasses.run(*TheModule);
961  }
962 
963  {
964  PrettyStackTraceString CrashInfo("Code generation");
965  llvm::TimeTraceScope TimeScope("CodeGenPasses");
966  CodeGenPasses.run(*TheModule);
967  }
968 
969  if (ThinLinkOS)
970  ThinLinkOS->keep();
971  if (DwoOS)
972  DwoOS->keep();
973 }
974 
975 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
976  switch (Opts.OptimizationLevel) {
977  default:
978  llvm_unreachable("Invalid optimization level!");
979 
980  case 1:
981  return PassBuilder::OptimizationLevel::O1;
982 
983  case 2:
984  switch (Opts.OptimizeSize) {
985  default:
986  llvm_unreachable("Invalid optimization level for size!");
987 
988  case 0:
989  return PassBuilder::OptimizationLevel::O2;
990 
991  case 1:
992  return PassBuilder::OptimizationLevel::Os;
993 
994  case 2:
995  return PassBuilder::OptimizationLevel::Oz;
996  }
997 
998  case 3:
999  return PassBuilder::OptimizationLevel::O3;
1000  }
1001 }
1002 
1003 static void addCoroutinePassesAtO0(ModulePassManager &MPM,
1004  const LangOptions &LangOpts,
1005  const CodeGenOptions &CodeGenOpts) {
1006  if (!LangOpts.Coroutines)
1007  return;
1008 
1009  MPM.addPass(createModuleToFunctionPassAdaptor(CoroEarlyPass()));
1010 
1011  CGSCCPassManager CGPM(CodeGenOpts.DebugPassManager);
1012  CGPM.addPass(CoroSplitPass());
1013  CGPM.addPass(createCGSCCToFunctionPassAdaptor(CoroElidePass()));
1014  MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
1015 
1016  MPM.addPass(createModuleToFunctionPassAdaptor(CoroCleanupPass()));
1017 }
1018 
1019 static void addSanitizersAtO0(ModulePassManager &MPM,
1020  const Triple &TargetTriple,
1021  const LangOptions &LangOpts,
1022  const CodeGenOptions &CodeGenOpts) {
1023  if (CodeGenOpts.SanitizeCoverageType ||
1024  CodeGenOpts.SanitizeCoverageIndirectCalls ||
1025  CodeGenOpts.SanitizeCoverageTraceCmp) {
1026  auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts);
1027  MPM.addPass(ModuleSanitizerCoveragePass(
1028  SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles,
1029  CodeGenOpts.SanitizeCoverageBlocklistFiles));
1030  }
1031 
1032  auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
1033  MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>());
1034  bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
1035  MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass(
1036  CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope)));
1037  bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
1038  MPM.addPass(
1039  ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope,
1040  CodeGenOpts.SanitizeAddressUseOdrIndicator));
1041  };
1042 
1043  if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
1044  ASanPass(SanitizerKind::Address, /*CompileKernel=*/false);
1045  }
1046 
1047  if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) {
1048  ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true);
1049  }
1050 
1051  if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
1052  bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory);
1053  int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins;
1054  MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false}));
1055  MPM.addPass(createModuleToFunctionPassAdaptor(
1056  MemorySanitizerPass({TrackOrigins, Recover, false})));
1057  }
1058 
1059  if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) {
1060  MPM.addPass(createModuleToFunctionPassAdaptor(
1061  MemorySanitizerPass({0, false, /*Kernel=*/true})));
1062  }
1063 
1064  if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
1065  MPM.addPass(ThreadSanitizerPass());
1066  MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
1067  }
1068 }
1069 
1070 /// A clean version of `EmitAssembly` that uses the new pass manager.
1071 ///
1072 /// Not all features are currently supported in this system, but where
1073 /// necessary it falls back to the legacy pass manager to at least provide
1074 /// basic functionality.
1075 ///
1076 /// This API is planned to have its functionality finished and then to replace
1077 /// `EmitAssembly` at some point in the future when the default switches.
1078 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager(
1079  BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) {
1080  TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr);
1081  setCommandLineOpts(CodeGenOpts);
1082 
1083  bool RequiresCodeGen = (Action != Backend_EmitNothing &&
1084  Action != Backend_EmitBC &&
1085  Action != Backend_EmitLL);
1086  CreateTargetMachine(RequiresCodeGen);
1087 
1088  if (RequiresCodeGen && !TM)
1089  return;
1090  if (TM)
1091  TheModule->setDataLayout(TM->createDataLayout());
1092 
1093  Optional<PGOOptions> PGOOpt;
1094 
1095  if (CodeGenOpts.hasProfileIRInstr())
1096  // -fprofile-generate.
1097  PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty()
1098  ? std::string(DefaultProfileGenName)
1099  : CodeGenOpts.InstrProfileOutput,
1100  "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction,
1101  CodeGenOpts.DebugInfoForProfiling);
1102  else if (CodeGenOpts.hasProfileIRUse()) {
1103  // -fprofile-use.
1104  auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse
1105  : PGOOptions::NoCSAction;
1106  PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "",
1107  CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse,
1108  CSAction, CodeGenOpts.DebugInfoForProfiling);
1109  } else if (!CodeGenOpts.SampleProfileFile.empty())
1110  // -fprofile-sample-use
1111  PGOOpt =
1112  PGOOptions(CodeGenOpts.SampleProfileFile, "",
1113  CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse,
1114  PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling);
1115  else if (CodeGenOpts.DebugInfoForProfiling)
1116  // -fdebug-info-for-profiling
1117  PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction,
1118  PGOOptions::NoCSAction, true);
1119 
1120  // Check to see if we want to generate a CS profile.
1121  if (CodeGenOpts.hasProfileCSIRInstr()) {
1122  assert(!CodeGenOpts.hasProfileCSIRUse() &&
1123  "Cannot have both CSProfileUse pass and CSProfileGen pass at "
1124  "the same time");
1125  if (PGOOpt.hasValue()) {
1126  assert(PGOOpt->Action != PGOOptions::IRInstr &&
1127  PGOOpt->Action != PGOOptions::SampleUse &&
1128  "Cannot run CSProfileGen pass with ProfileGen or SampleUse "
1129  " pass");
1130  PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty()
1131  ? std::string(DefaultProfileGenName)
1132  : CodeGenOpts.InstrProfileOutput;
1133  PGOOpt->CSAction = PGOOptions::CSIRInstr;
1134  } else
1135  PGOOpt = PGOOptions("",
1136  CodeGenOpts.InstrProfileOutput.empty()
1137  ? std::string(DefaultProfileGenName)
1138  : CodeGenOpts.InstrProfileOutput,
1139  "", PGOOptions::NoAction, PGOOptions::CSIRInstr,
1140  CodeGenOpts.DebugInfoForProfiling);
1141  }
1142 
1143  PipelineTuningOptions PTO;
1144  PTO.LoopUnrolling = CodeGenOpts.UnrollLoops;
1145  // For historical reasons, loop interleaving is set to mirror setting for loop
1146  // unrolling.
1147  PTO.LoopInterleaving = CodeGenOpts.UnrollLoops;
1148  PTO.LoopVectorization = CodeGenOpts.VectorizeLoop;
1149  PTO.SLPVectorization = CodeGenOpts.VectorizeSLP;
1150  // Only enable CGProfilePass when using integrated assembler, since
1151  // non-integrated assemblers don't recognize .cgprofile section.
1152  PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS;
1153  PTO.Coroutines = LangOpts.Coroutines;
1154 
1155  PassInstrumentationCallbacks PIC;
1156  StandardInstrumentations SI;
1157  SI.registerCallbacks(PIC);
1158  PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC);
1159 
1160  // Attempt to load pass plugins and register their callbacks with PB.
1161  for (auto &PluginFN : CodeGenOpts.PassPlugins) {
1162  auto PassPlugin = PassPlugin::Load(PluginFN);
1163  if (PassPlugin) {
1164  PassPlugin->registerPassBuilderCallbacks(PB);
1165  } else {
1166  Diags.Report(diag::err_fe_unable_to_load_plugin)
1167  << PluginFN << toString(PassPlugin.takeError());
1168  }
1169  }
1170 #define HANDLE_EXTENSION(Ext) \
1171  get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB);
1172 #include "llvm/Support/Extension.def"
1173 
1174  LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager);
1175  FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager);
1176  CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager);
1177  ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager);
1178 
1179  // Register the AA manager first so that our version is the one used.
1180  FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); });
1181 
1182  // Register the target library analysis directly and give it a customized
1183  // preset TLI.
1184  Triple TargetTriple(TheModule->getTargetTriple());
1185  std::unique_ptr<TargetLibraryInfoImpl> TLII(
1186  createTLII(TargetTriple, CodeGenOpts));
1187  FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
1188 
1189  // Register all the basic analyses with the managers.
1190  PB.registerModuleAnalyses(MAM);
1191  PB.registerCGSCCAnalyses(CGAM);
1192  PB.registerFunctionAnalyses(FAM);
1193  PB.registerLoopAnalyses(LAM);
1194  PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
1195 
1196  ModulePassManager MPM(CodeGenOpts.DebugPassManager);
1197 
1198  if (!CodeGenOpts.DisableLLVMPasses) {
1199  bool IsThinLTO = CodeGenOpts.PrepareForThinLTO;
1200  bool IsLTO = CodeGenOpts.PrepareForLTO;
1201 
1202  if (CodeGenOpts.OptimizationLevel == 0) {
1203  // If we reached here with a non-empty index file name, then the index
1204  // file was empty and we are not performing ThinLTO backend compilation
1205  // (used in testing in a distributed build environment). Drop any the type
1206  // test assume sequences inserted for whole program vtables so that
1207  // codegen doesn't complain.
1208  if (!CodeGenOpts.ThinLTOIndexFile.empty())
1209  MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr,
1210  /*ImportSummary=*/nullptr,
1211  /*DropTypeTests=*/true));
1212  if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts))
1213  MPM.addPass(GCOVProfilerPass(*Options));
1214  if (Optional<InstrProfOptions> Options =
1215  getInstrProfOptions(CodeGenOpts, LangOpts))
1216  MPM.addPass(InstrProfiling(*Options, false));
1217 
1218  // Build a minimal pipeline based on the semantics required by Clang,
1219  // which is just that always inlining occurs. Further, disable generating
1220  // lifetime intrinsics to avoid enabling further optimizations during
1221  // code generation.
1222  // However, we need to insert lifetime intrinsics to avoid invalid access
1223  // caused by multithreaded coroutines.
1224  MPM.addPass(
1225  AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/LangOpts.Coroutines));
1226 
1227  // At -O0, we can still do PGO. Add all the requested passes for
1228  // instrumentation PGO, if requested.
1229  if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr ||
1230  PGOOpt->Action == PGOOptions::IRUse))
1231  PB.addPGOInstrPassesForO0(
1232  MPM, CodeGenOpts.DebugPassManager,
1233  /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr),
1234  /* IsCS */ false, PGOOpt->ProfileFile,
1235  PGOOpt->ProfileRemappingFile);
1236 
1237  // At -O0 we directly run necessary sanitizer passes.
1238  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
1239  MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass()));
1240 
1241  // Add UniqueInternalLinkageNames Pass which renames internal linkage
1242  // symbols with unique names.
1243  if (CodeGenOpts.UniqueInternalLinkageNames) {
1244  MPM.addPass(UniqueInternalLinkageNamesPass());
1245  }
1246 
1247  // Lastly, add semantically necessary passes for LTO.
1248  if (IsLTO || IsThinLTO) {
1249  MPM.addPass(CanonicalizeAliasesPass());
1250  MPM.addPass(NameAnonGlobalPass());
1251  }
1252  } else {
1253  // Map our optimization levels into one of the distinct levels used to
1254  // configure the pipeline.
1255  PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts);
1256 
1257  // If we reached here with a non-empty index file name, then the index
1258  // file was empty and we are not performing ThinLTO backend compilation
1259  // (used in testing in a distributed build environment). Drop any the type
1260  // test assume sequences inserted for whole program vtables so that
1261  // codegen doesn't complain.
1262  if (!CodeGenOpts.ThinLTOIndexFile.empty())
1263  PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) {
1264  MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr,
1265  /*ImportSummary=*/nullptr,
1266  /*DropTypeTests=*/true));
1267  });
1268 
1269  PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) {
1270  MPM.addPass(createModuleToFunctionPassAdaptor(
1271  EntryExitInstrumenterPass(/*PostInlining=*/false)));
1272  });
1273 
1274  // Register callbacks to schedule sanitizer passes at the appropriate part of
1275  // the pipeline.
1276  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
1277  PB.registerScalarOptimizerLateEPCallback(
1278  [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
1279  FPM.addPass(BoundsCheckingPass());
1280  });
1281 
1282  if (CodeGenOpts.SanitizeCoverageType ||
1283  CodeGenOpts.SanitizeCoverageIndirectCalls ||
1284  CodeGenOpts.SanitizeCoverageTraceCmp) {
1285  PB.registerOptimizerLastEPCallback(
1286  [this](ModulePassManager &MPM,
1287  PassBuilder::OptimizationLevel Level) {
1288  auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts);
1289  MPM.addPass(ModuleSanitizerCoveragePass(
1290  SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles,
1291  CodeGenOpts.SanitizeCoverageBlocklistFiles));
1292  });
1293  }
1294 
1295  if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
1296  int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins;
1297  bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory);
1298  PB.registerOptimizerLastEPCallback(
1299  [TrackOrigins, Recover](ModulePassManager &MPM,
1300  PassBuilder::OptimizationLevel Level) {
1301  MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false}));
1302  MPM.addPass(createModuleToFunctionPassAdaptor(
1303  MemorySanitizerPass({TrackOrigins, Recover, false})));
1304  });
1305  }
1306  if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
1307  PB.registerOptimizerLastEPCallback(
1308  [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
1309  MPM.addPass(ThreadSanitizerPass());
1310  MPM.addPass(
1311  createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
1312  });
1313  }
1314  if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
1315  bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address);
1316  bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope;
1317  bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
1318  bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator;
1319  PB.registerOptimizerLastEPCallback(
1320  [Recover, UseAfterScope, ModuleUseAfterScope, UseOdrIndicator](
1321  ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
1322  MPM.addPass(
1323  RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>());
1324  MPM.addPass(ModuleAddressSanitizerPass(
1325  /*CompileKernel=*/false, Recover, ModuleUseAfterScope,
1326  UseOdrIndicator));
1327  MPM.addPass(
1328  createModuleToFunctionPassAdaptor(AddressSanitizerPass(
1329  /*CompileKernel=*/false, Recover, UseAfterScope)));
1330  });
1331  }
1332  if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts))
1333  PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) {
1334  MPM.addPass(GCOVProfilerPass(*Options));
1335  });
1336  if (Optional<InstrProfOptions> Options =
1337  getInstrProfOptions(CodeGenOpts, LangOpts))
1338  PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) {
1339  MPM.addPass(InstrProfiling(*Options, false));
1340  });
1341 
1342  // Add UniqueInternalLinkageNames Pass which renames internal linkage
1343  // symbols with unique names.
1344  if (CodeGenOpts.UniqueInternalLinkageNames) {
1345  MPM.addPass(UniqueInternalLinkageNamesPass());
1346  }
1347 
1348  if (IsThinLTO) {
1349  MPM = PB.buildThinLTOPreLinkDefaultPipeline(
1350  Level, CodeGenOpts.DebugPassManager);
1351  MPM.addPass(CanonicalizeAliasesPass());
1352  MPM.addPass(NameAnonGlobalPass());
1353  } else if (IsLTO) {
1354  MPM = PB.buildLTOPreLinkDefaultPipeline(Level,
1355  CodeGenOpts.DebugPassManager);
1356  MPM.addPass(CanonicalizeAliasesPass());
1357  MPM.addPass(NameAnonGlobalPass());
1358  } else {
1359  MPM = PB.buildPerModuleDefaultPipeline(Level,
1360  CodeGenOpts.DebugPassManager);
1361  }
1362  }
1363 
1364  if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) {
1365  bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress);
1366  MPM.addPass(HWAddressSanitizerPass(
1367  /*CompileKernel=*/false, Recover));
1368  }
1369  if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) {
1370  MPM.addPass(HWAddressSanitizerPass(
1371  /*CompileKernel=*/true, /*Recover=*/true));
1372  }
1373 
1374  if (CodeGenOpts.OptimizationLevel == 0) {
1375  addCoroutinePassesAtO0(MPM, LangOpts, CodeGenOpts);
1376  addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts);
1377  }
1378  }
1379 
1380  // FIXME: We still use the legacy pass manager to do code generation. We
1381  // create that pass manager here and use it as needed below.
1382  legacy::PassManager CodeGenPasses;
1383  bool NeedCodeGen = false;
1384  std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
1385 
1386  // Append any output we need to the pass manager.
1387  switch (Action) {
1388  case Backend_EmitNothing:
1389  break;
1390 
1391  case Backend_EmitBC:
1392  if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
1393  if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
1394  ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
1395  if (!ThinLinkOS)
1396  return;
1397  }
1398  TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
1399  CodeGenOpts.EnableSplitLTOUnit);
1400  MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os()
1401  : nullptr));
1402  } else {
1403  // Emit a module summary by default for Regular LTO except for ld64
1404  // targets
1405  bool EmitLTOSummary =
1406  (CodeGenOpts.PrepareForLTO &&
1407  !CodeGenOpts.DisableLLVMPasses &&
1408  llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
1409  llvm::Triple::Apple);
1410  if (EmitLTOSummary) {
1411  if (!TheModule->getModuleFlag("ThinLTO"))
1412  TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
1413  TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
1414  uint32_t(1));
1415  }
1416  MPM.addPass(
1417  BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary));
1418  }
1419  break;
1420 
1421  case Backend_EmitLL:
1422  MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
1423  break;
1424 
1425  case Backend_EmitAssembly:
1426  case Backend_EmitMCNull:
1427  case Backend_EmitObj:
1428  NeedCodeGen = true;
1429  CodeGenPasses.add(
1430  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
1431  if (!CodeGenOpts.SplitDwarfOutput.empty()) {
1432  DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
1433  if (!DwoOS)
1434  return;
1435  }
1436  if (!AddEmitPasses(CodeGenPasses, Action, *OS,
1437  DwoOS ? &DwoOS->os() : nullptr))
1438  // FIXME: Should we handle this error differently?
1439  return;
1440  break;
1441  }
1442 
1443  // Before executing passes, print the final values of the LLVM options.
1444  cl::PrintOptionValues();
1445 
1446  // Now that we have all of the passes ready, run them.
1447  {
1448  PrettyStackTraceString CrashInfo("Optimizer");
1449  MPM.run(*TheModule, MAM);
1450  }
1451 
1452  // Now if needed, run the legacy PM for codegen.
1453  if (NeedCodeGen) {
1454  PrettyStackTraceString CrashInfo("Code generation");
1455  CodeGenPasses.run(*TheModule);
1456  }
1457 
1458  if (ThinLinkOS)
1459  ThinLinkOS->keep();
1460  if (DwoOS)
1461  DwoOS->keep();
1462 }
1463 
1464 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) {
1465  Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef);
1466  if (!BMsOrErr)
1467  return BMsOrErr.takeError();
1468 
1469  // The bitcode file may contain multiple modules, we want the one that is
1470  // marked as being the ThinLTO module.
1471  if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr))
1472  return *Bm;
1473 
1474  return make_error<StringError>("Could not find module summary",
1475  inconvertibleErrorCode());
1476 }
1477 
1479  for (BitcodeModule &BM : BMs) {
1480  Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo();
1481  if (LTOInfo && LTOInfo->IsThinLTO)
1482  return &BM;
1483  }
1484  return nullptr;
1485 }
1486 
1487 static void runThinLTOBackend(
1488  DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M,
1489  const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts,
1490  const clang::TargetOptions &TOpts, const LangOptions &LOpts,
1491  std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile,
1492  std::string ProfileRemapping, BackendAction Action) {
1493  StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
1494  ModuleToDefinedGVSummaries;
1495  CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
1496 
1497  setCommandLineOpts(CGOpts);
1498 
1499  // We can simply import the values mentioned in the combined index, since
1500  // we should only invoke this using the individual indexes written out
1501  // via a WriteIndexesThinBackend.
1502  FunctionImporter::ImportMapTy ImportList;
1503  for (auto &GlobalList : *CombinedIndex) {
1504  // Ignore entries for undefined references.
1505  if (GlobalList.second.SummaryList.empty())
1506  continue;
1507 
1508  auto GUID = GlobalList.first;
1509  for (auto &Summary : GlobalList.second.SummaryList) {
1510  // Skip the summaries for the importing module. These are included to
1511  // e.g. record required linkage changes.
1512  if (Summary->modulePath() == M->getModuleIdentifier())
1513  continue;
1514  // Add an entry to provoke importing by thinBackend.
1515  ImportList[Summary->modulePath()].insert(GUID);
1516  }
1517  }
1518 
1519  std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports;
1520  MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap;
1521 
1522  for (auto &I : ImportList) {
1523  ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr =
1524  llvm::MemoryBuffer::getFile(I.first());
1525  if (!MBOrErr) {
1526  errs() << "Error loading imported file '" << I.first()
1527  << "': " << MBOrErr.getError().message() << "\n";
1528  return;
1529  }
1530 
1531  Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr);
1532  if (!BMOrErr) {
1533  handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) {
1534  errs() << "Error loading imported file '" << I.first()
1535  << "': " << EIB.message() << '\n';
1536  });
1537  return;
1538  }
1539  ModuleMap.insert({I.first(), *BMOrErr});
1540 
1541  OwnedImports.push_back(std::move(*MBOrErr));
1542  }
1543  auto AddStream = [&](size_t Task) {
1544  return std::make_unique<lto::NativeObjectStream>(std::move(OS));
1545  };
1546  lto::Config Conf;
1547  if (CGOpts.SaveTempsFilePrefix != "") {
1548  if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".",
1549  /* UseInputModulePath */ false)) {
1550  handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1551  errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
1552  << '\n';
1553  });
1554  }
1555  }
1556  Conf.CPU = TOpts.CPU;
1557  Conf.CodeModel = getCodeModel(CGOpts);
1558  Conf.MAttrs = TOpts.Features;
1559  Conf.RelocModel = CGOpts.RelocationModel;
1560  Conf.CGOptLevel = getCGOptLevel(CGOpts);
1561  Conf.OptLevel = CGOpts.OptimizationLevel;
1562  initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts);
1563  Conf.SampleProfile = std::move(SampleProfile);
1564  Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops;
1565  // For historical reasons, loop interleaving is set to mirror setting for loop
1566  // unrolling.
1567  Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops;
1568  Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop;
1569  Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP;
1570  // Only enable CGProfilePass when using integrated assembler, since
1571  // non-integrated assemblers don't recognize .cgprofile section.
1572  Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS;
1573 
1574  // Context sensitive profile.
1575  if (CGOpts.hasProfileCSIRInstr()) {
1576  Conf.RunCSIRInstr = true;
1577  Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput);
1578  } else if (CGOpts.hasProfileCSIRUse()) {
1579  Conf.RunCSIRInstr = false;
1580  Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath);
1581  }
1582 
1583  Conf.ProfileRemapping = std::move(ProfileRemapping);
1584  Conf.UseNewPM = CGOpts.ExperimentalNewPassManager;
1585  Conf.DebugPassManager = CGOpts.DebugPassManager;
1586  Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness;
1587  Conf.RemarksFilename = CGOpts.OptRecordFile;
1588  Conf.RemarksPasses = CGOpts.OptRecordPasses;
1589  Conf.RemarksFormat = CGOpts.OptRecordFormat;
1590  Conf.SplitDwarfFile = CGOpts.SplitDwarfFile;
1591  Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput;
1592  switch (Action) {
1593  case Backend_EmitNothing:
1594  Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) {
1595  return false;
1596  };
1597  break;
1598  case Backend_EmitLL:
1599  Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1600  M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
1601  return false;
1602  };
1603  break;
1604  case Backend_EmitBC:
1605  Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1606  WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists);
1607  return false;
1608  };
1609  break;
1610  default:
1611  Conf.CGFileType = getCodeGenFileType(Action);
1612  break;
1613  }
1614  if (Error E = thinBackend(
1615  Conf, -1, AddStream, *M, *CombinedIndex, ImportList,
1616  ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) {
1617  handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1618  errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
1619  });
1620  }
1621 }
1622 
1624  const HeaderSearchOptions &HeaderOpts,
1625  const CodeGenOptions &CGOpts,
1626  const clang::TargetOptions &TOpts,
1627  const LangOptions &LOpts,
1628  const llvm::DataLayout &TDesc, Module *M,
1629  BackendAction Action,
1630  std::unique_ptr<raw_pwrite_stream> OS) {
1631 
1632  llvm::TimeTraceScope TimeScope("Backend");
1633 
1634  std::unique_ptr<llvm::Module> EmptyModule;
1635  if (!CGOpts.ThinLTOIndexFile.empty()) {
1636  // If we are performing a ThinLTO importing compile, load the function index
1637  // into memory and pass it into runThinLTOBackend, which will run the
1638  // function importer and invoke LTO passes.
1640  llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile,
1641  /*IgnoreEmptyThinLTOIndexFile*/true);
1642  if (!IndexOrErr) {
1643  logAllUnhandledErrors(IndexOrErr.takeError(), errs(),
1644  "Error loading index file '" +
1645  CGOpts.ThinLTOIndexFile + "': ");
1646  return;
1647  }
1648  std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr);
1649  // A null CombinedIndex means we should skip ThinLTO compilation
1650  // (LLVM will optionally ignore empty index files, returning null instead
1651  // of an error).
1652  if (CombinedIndex) {
1653  if (!CombinedIndex->skipModuleByDistributedBackend()) {
1654  runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts,
1655  TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile,
1656  CGOpts.ProfileRemappingFile, Action);
1657  return;
1658  }
1659  // Distributed indexing detected that nothing from the module is needed
1660  // for the final linking. So we can skip the compilation. We sill need to
1661  // output an empty object file to make sure that a linker does not fail
1662  // trying to read it. Also for some features, like CFI, we must skip
1663  // the compilation as CombinedIndex does not contain all required
1664  // information.
1665  EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext());
1666  EmptyModule->setTargetTriple(M->getTargetTriple());
1667  M = EmptyModule.get();
1668  }
1669  }
1670 
1671  EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M);
1672 
1673  if (CGOpts.ExperimentalNewPassManager)
1674  AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS));
1675  else
1676  AsmHelper.EmitAssembly(Action, std::move(OS));
1677 
1678  // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
1679  // DataLayout.
1680  if (AsmHelper.TM) {
1681  std::string DLDesc = M->getDataLayout().getStringRepresentation();
1682  if (DLDesc != TDesc.getStringRepresentation()) {
1683  unsigned DiagID = Diags.getCustomDiagID(
1684  DiagnosticsEngine::Error, "backend data layout '%0' does not match "
1685  "expected target description '%1'");
1686  Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation();
1687  }
1688  }
1689 }
1690 
1691 // With -fembed-bitcode, save a copy of the llvm IR as data in the
1692 // __LLVM,__bitcode section.
1693 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
1694  llvm::MemoryBufferRef Buf) {
1695  if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
1696  return;
1697  llvm::EmbedBitcodeInModule(
1698  *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker,
1699  CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode,
1700  &CGOpts.CmdArgs);
1701 }
std::string ProfileInstrumentUsePath
Name of the profile file to use as input for -fprofile-instr-use.
Paths for &#39;#include <>&#39; added by &#39;-I&#39;.
static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
std::string SaveTempsFilePrefix
Prefix to use for -save-temps output.
Emit human-readable LLVM assembly.
Definition: BackendUtil.h:33
Specialize PointerLikeTypeTraits to allow LazyGenerationalUpdatePtr to be placed into a PointerUnion...
Definition: Dominators.h:30
Run CodeGen, but don&#39;t emit anything.
Definition: BackendUtil.h:35
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:231
std::vector< std::string > SanitizeCoverageAllowlistFiles
Path to allowlist file specifying which objects (files, functions) should exclusively be instrumented...
std::string OptRecordPasses
The regex that filters the passes that should be saved to the optimization records.
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1330
static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static Optional< GCOVOptions > getGCOVOptions(const CodeGenOptions &CodeGenOpts)
ArrayRef< const char * > CommandLineArgs
std::vector< std::string > RewriteMapFiles
Set of files defining the rules for the symbol rewriting.
Don&#39;t emit anything (benchmarking mode)
Definition: BackendUtil.h:34
const char * Argv0
Executable and command-line used to create a given CompilerInvocation.
Options for controlling the target.
Definition: TargetOptions.h:26
std::string SplitDwarfFile
The name for the split debug info file used for the DW_AT_[GNU_]dwo_name attribute in the skeleton CU...
std::string DebugPass
Enable additional debugging information.
Don&#39;t generate debug info.
SanitizerSet SanitizeRecover
Set of sanitizer checks that are non-fatal (i.e.
MatchType Type
Emit LLVM bitcode files.
Definition: BackendUtil.h:32
std::vector< Entry > UserEntries
User specified include entries.
std::string SplitDwarfOutput
Output filename for the split debug info, not used in the skeleton CU.
std::vector< uint8_t > CmdArgs
List of backend command-line options for -fembed-bitcode.
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:54
std::string CodeModel
The code model to use (-mcmodel).
Describes a module or submodule.
Definition: Module.h:87
BackendAction
Definition: BackendUtil.h:30
bool hasProfileCSIRUse() const
Check if CSIR profile use is on.
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:153
static void addThreadSanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
llvm::Error Error
Defines the Diagnostic-related interfaces.
static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts)
static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts)
static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
constexpr XRayInstrMask All
Definition: XRayInstr.h:43
std::string FloatABI
The ABI to use for passing floating point arguments.
std::string ThreadModel
The thread model to use.
std::string ProfileFilterFiles
Regexes separated by a semi-colon to filter the files to instrument.
char CoverageVersion[4]
The version string to put into coverage files.
static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
std::string LimitFloatPrecision
The float precision limit to use, if non-empty.
Defines the clang::LangOptions interface.
std::vector< std::string > SanitizeCoverageBlocklistFiles
Path to blocklist file specifying which objects (files, functions) listed for instrumentation by sani...
static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
void print(raw_ostream &OS, unsigned Indent=0) const
Print the module map for this module to the given stream.
Definition: Module.cpp:436
static TargetLibraryInfoImpl * createTLII(llvm::Triple &TargetTriple, const CodeGenOptions &CodeGenOpts)
static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
Emit native object files.
Definition: BackendUtil.h:36
std::string OptRecordFormat
The format used for serializing remarks (default: YAML)
Emit native assembly files.
Definition: BackendUtil.h:31
static void addSanitizersAtO0(ModulePassManager &MPM, const Triple &TargetTriple, const LangOptions &LangOpts, const CodeGenOptions &CodeGenOpts)
std::string CPU
If given, the name of the target CPU to generate code for.
Definition: TargetOptions.h:36
std::string ABI
If given, the name of the target ABI to use.
Definition: TargetOptions.h:42
static void runThinLTOBackend(DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, const LangOptions &LOpts, std::unique_ptr< raw_pwrite_stream > OS, std::string SampleProfile, std::string ProfileRemapping, BackendAction Action)
bool hasProfileCSIRInstr() const
Check if CS IR level profile instrumentation is on.
static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addSymbolRewriterPass(const CodeGenOptions &Opts, legacy::PassManager *MPM)
static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
Defines the clang::TargetOptions class.
std::vector< std::string > Features
The list of target specific features to enable or disable – this should be a list of strings startin...
Definition: TargetOptions.h:55
static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts)
unsigned getCustomDiagID(Level L, const char(&FormatString)[N])
Return an ID for a diagnostic with the specified format string and level.
Definition: Diagnostic.h:786
constexpr XRayInstrMask None
Definition: XRayInstr.h:38
static void initTargetOptions(DiagnosticsEngine &Diags, llvm::TargetOptions &Options, const CodeGenOptions &CodeGenOpts, const clang::TargetOptions &TargetOpts, const LangOptions &LangOpts, const HeaderSearchOptions &HSOpts)
llvm::EABI EABIVersion
The EABI version to use.
Definition: TargetOptions.h:45
&#39;#include ""&#39; paths, added by &#39;gcc -iquote&#39;.
std::string ThinLTOIndexFile
Name of the function summary index file to use for ThinLTO function importing.
Like Angled, but marks system directories.
void EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf)
Dataflow Directional Tag Classes.
static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM, bool CompileKernel)
bool FrontendTimesIsEnabled
If the user specifies the -ftime-report argument on an Clang command line then the value of this bool...
static CodeGenFileType getCodeGenFileType(BackendAction Action)
llvm::Reloc::Model RelocationModel
The name of the relocation model to use.
void EmitBackendOutput(DiagnosticsEngine &Diags, const HeaderSearchOptions &, const CodeGenOptions &CGOpts, const TargetOptions &TOpts, const LangOptions &LOpts, const llvm::DataLayout &TDesc, llvm::Module *M, BackendAction Action, std::unique_ptr< raw_pwrite_stream > OS)
static SanitizerCoverageOptions getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts)
bool hasProfileClangInstr() const
Check if Clang profile instrumenation is on.
llvm::Expected< llvm::BitcodeModule > FindThinLTOModule(llvm::MemoryBufferRef MBRef)
std::string toString(const til::SExpr *E)
std::string ProfileExcludeFiles
Regexes separated by a semi-colon to filter the files to not instrument.
static void addBoundsCheckingPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addCoroutinePassesAtO0(ModulePassManager &MPM, const LangOptions &LangOpts, const CodeGenOptions &CodeGenOpts)
static Optional< llvm::CodeModel::Model > getCodeModel(const CodeGenOptions &CodeGenOpts)
CodeGenOptions - Track various options which control how the code is optimized and passed to the back...
static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:153
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1720
static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
HeaderSearchOptions - Helper class for storing options related to the initialization of the HeaderSea...
std::string InstrProfileOutput
Name of the profile file to use as output for -fprofile-instr-generate, -fprofile-generate, and -fcs-profile-generate.
std::string OptRecordFile
The name of the file to which the backend should save YAML optimization records.
std::vector< std::string > SanitizerBlacklistFiles
Paths to blacklist files specifying which objects (files, functions, variables) should not be instrum...
Definition: LangOptions.h:235
std::string Sysroot
If non-empty, the directory to use as a "virtual system root" for include paths.
bool Load(InterpState &S, CodePtr OpPC)
Definition: Interp.h:616
static void addMemorySanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static Optional< InstrProfOptions > getInstrProfOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts)
static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts)