clang  8.0.0svn
BackendUtil.cpp
Go to the documentation of this file.
1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
12 #include "clang/Basic/Diagnostic.h"
16 #include "clang/Frontend/Utils.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringSwitch.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Bitcode/BitcodeReader.h"
25 #include "llvm/Bitcode/BitcodeWriter.h"
26 #include "llvm/Bitcode/BitcodeWriterPass.h"
27 #include "llvm/CodeGen/RegAllocRegistry.h"
28 #include "llvm/CodeGen/SchedulerRegistry.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/IRPrintingPasses.h"
32 #include "llvm/IR/LegacyPassManager.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/ModuleSummaryIndex.h"
35 #include "llvm/IR/Verifier.h"
36 #include "llvm/LTO/LTOBackend.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/SubtargetFeature.h"
39 #include "llvm/Passes/PassBuilder.h"
40 #include "llvm/Support/BuryPointer.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/MemoryBuffer.h"
43 #include "llvm/Support/PrettyStackTrace.h"
44 #include "llvm/Support/TargetRegistry.h"
45 #include "llvm/Support/Timer.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/Transforms/Coroutines.h"
50 #include "llvm/Transforms/IPO.h"
51 #include "llvm/Transforms/IPO/AlwaysInliner.h"
52 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
53 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
54 #include "llvm/Transforms/InstCombine/InstCombine.h"
55 #include "llvm/Transforms/Instrumentation.h"
56 #include "llvm/Transforms/Instrumentation/BoundsChecking.h"
57 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
58 #include "llvm/Transforms/ObjCARC.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include "llvm/Transforms/Scalar/GVN.h"
61 #include "llvm/Transforms/Utils.h"
62 #include "llvm/Transforms/Utils/NameAnonGlobals.h"
63 #include "llvm/Transforms/Utils/SymbolRewriter.h"
64 #include <memory>
65 using namespace clang;
66 using namespace llvm;
67 
68 namespace {
69 
70 // Default filename used for profile generation.
71 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw";
72 
73 class EmitAssemblyHelper {
74  DiagnosticsEngine &Diags;
75  const HeaderSearchOptions &HSOpts;
76  const CodeGenOptions &CodeGenOpts;
77  const clang::TargetOptions &TargetOpts;
78  const LangOptions &LangOpts;
79  Module *TheModule;
80 
81  Timer CodeGenerationTime;
82 
83  std::unique_ptr<raw_pwrite_stream> OS;
84 
85  TargetIRAnalysis getTargetIRAnalysis() const {
86  if (TM)
87  return TM->getTargetIRAnalysis();
88 
89  return TargetIRAnalysis();
90  }
91 
92  void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM);
93 
94  /// Generates the TargetMachine.
95  /// Leaves TM unchanged if it is unable to create the target machine.
96  /// Some of our clang tests specify triples which are not built
97  /// into clang. This is okay because these tests check the generated
98  /// IR, and they require DataLayout which depends on the triple.
99  /// In this case, we allow this method to fail and not report an error.
100  /// When MustCreateTM is used, we print an error if we are unable to load
101  /// the requested target.
102  void CreateTargetMachine(bool MustCreateTM);
103 
104  /// Add passes necessary to emit assembly or LLVM IR.
105  ///
106  /// \return True on success.
107  bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
108  raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS);
109 
110  std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) {
111  std::error_code EC;
112  auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC,
113  llvm::sys::fs::F_None);
114  if (EC) {
115  Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message();
116  F.reset();
117  }
118  return F;
119  }
120 
121 public:
122  EmitAssemblyHelper(DiagnosticsEngine &_Diags,
123  const HeaderSearchOptions &HeaderSearchOpts,
124  const CodeGenOptions &CGOpts,
125  const clang::TargetOptions &TOpts,
126  const LangOptions &LOpts, Module *M)
127  : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts),
128  TargetOpts(TOpts), LangOpts(LOpts), TheModule(M),
129  CodeGenerationTime("codegen", "Code Generation Time") {}
130 
131  ~EmitAssemblyHelper() {
132  if (CodeGenOpts.DisableFree)
133  BuryPointer(std::move(TM));
134  }
135 
136  std::unique_ptr<TargetMachine> TM;
137 
138  void EmitAssembly(BackendAction Action,
139  std::unique_ptr<raw_pwrite_stream> OS);
140 
141  void EmitAssemblyWithNewPassManager(BackendAction Action,
142  std::unique_ptr<raw_pwrite_stream> OS);
143 };
144 
145 // We need this wrapper to access LangOpts and CGOpts from extension functions
146 // that we add to the PassManagerBuilder.
147 class PassManagerBuilderWrapper : public PassManagerBuilder {
148 public:
149  PassManagerBuilderWrapper(const Triple &TargetTriple,
150  const CodeGenOptions &CGOpts,
151  const LangOptions &LangOpts)
152  : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts),
153  LangOpts(LangOpts) {}
154  const Triple &getTargetTriple() const { return TargetTriple; }
155  const CodeGenOptions &getCGOpts() const { return CGOpts; }
156  const LangOptions &getLangOpts() const { return LangOpts; }
157 
158 private:
159  const Triple &TargetTriple;
160  const CodeGenOptions &CGOpts;
161  const LangOptions &LangOpts;
162 };
163 }
164 
165 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
166  if (Builder.OptLevel > 0)
167  PM.add(createObjCARCAPElimPass());
168 }
169 
170 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
171  if (Builder.OptLevel > 0)
172  PM.add(createObjCARCExpandPass());
173 }
174 
175 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
176  if (Builder.OptLevel > 0)
177  PM.add(createObjCARCOptPass());
178 }
179 
180 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder,
181  legacy::PassManagerBase &PM) {
182  PM.add(createAddDiscriminatorsPass());
183 }
184 
185 static void addBoundsCheckingPass(const PassManagerBuilder &Builder,
186  legacy::PassManagerBase &PM) {
187  PM.add(createBoundsCheckingLegacyPass());
188 }
189 
190 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder,
191  legacy::PassManagerBase &PM) {
192  const PassManagerBuilderWrapper &BuilderWrapper =
193  static_cast<const PassManagerBuilderWrapper&>(Builder);
194  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
195  SanitizerCoverageOptions Opts;
196  Opts.CoverageType =
197  static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
198  Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
199  Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
200  Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
201  Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
202  Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
203  Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
204  Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
205  Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
206  Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
207  Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
208  Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
209  Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
210  PM.add(createSanitizerCoverageModulePass(Opts));
211 }
212 
213 // Check if ASan should use GC-friendly instrumentation for globals.
214 // First of all, there is no point if -fdata-sections is off (expect for MachO,
215 // where this is not a factor). Also, on ELF this feature requires an assembler
216 // extension that only works with -integrated-as at the moment.
217 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
218  if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
219  return false;
220  switch (T.getObjectFormat()) {
221  case Triple::MachO:
222  case Triple::COFF:
223  return true;
224  case Triple::ELF:
225  return CGOpts.DataSections && !CGOpts.DisableIntegratedAS;
226  default:
227  return false;
228  }
229 }
230 
231 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
232  legacy::PassManagerBase &PM) {
233  const PassManagerBuilderWrapper &BuilderWrapper =
234  static_cast<const PassManagerBuilderWrapper&>(Builder);
235  const Triple &T = BuilderWrapper.getTargetTriple();
236  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
237  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address);
238  bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope;
239  bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator;
240  bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts);
241  PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover,
242  UseAfterScope));
243  PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover,
244  UseGlobalsGC, UseOdrIndicator));
245 }
246 
247 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder,
248  legacy::PassManagerBase &PM) {
249  PM.add(createAddressSanitizerFunctionPass(
250  /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false));
251  PM.add(createAddressSanitizerModulePass(
252  /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true,
253  /*UseOdrIndicator*/ false));
254 }
255 
256 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
257  legacy::PassManagerBase &PM) {
258  const PassManagerBuilderWrapper &BuilderWrapper =
259  static_cast<const PassManagerBuilderWrapper &>(Builder);
260  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
261  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress);
262  PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover));
263 }
264 
265 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
266  legacy::PassManagerBase &PM) {
267  PM.add(createHWAddressSanitizerPass(
268  /*CompileKernel*/ true, /*Recover*/ true));
269 }
270 
271 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder,
272  legacy::PassManagerBase &PM,
273  bool CompileKernel) {
274  const PassManagerBuilderWrapper &BuilderWrapper =
275  static_cast<const PassManagerBuilderWrapper&>(Builder);
276  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
277  int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins;
278  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory);
279  PM.add(createMemorySanitizerPass(TrackOrigins, Recover, CompileKernel));
280 
281  // MemorySanitizer inserts complex instrumentation that mostly follows
282  // the logic of the original code, but operates on "shadow" values.
283  // It can benefit from re-running some general purpose optimization passes.
284  if (Builder.OptLevel > 0) {
285  PM.add(createEarlyCSEPass());
286  PM.add(createReassociatePass());
287  PM.add(createLICMPass());
288  PM.add(createGVNPass());
289  PM.add(createInstructionCombiningPass());
290  PM.add(createDeadStoreEliminationPass());
291  }
292 }
293 
294 static void addMemorySanitizerPass(const PassManagerBuilder &Builder,
295  legacy::PassManagerBase &PM) {
296  addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false);
297 }
298 
299 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder,
300  legacy::PassManagerBase &PM) {
301  addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true);
302 }
303 
304 static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
305  legacy::PassManagerBase &PM) {
306  PM.add(createThreadSanitizerPass());
307 }
308 
309 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder,
310  legacy::PassManagerBase &PM) {
311  const PassManagerBuilderWrapper &BuilderWrapper =
312  static_cast<const PassManagerBuilderWrapper&>(Builder);
313  const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
314  PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles));
315 }
316 
317 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder,
318  legacy::PassManagerBase &PM) {
319  const PassManagerBuilderWrapper &BuilderWrapper =
320  static_cast<const PassManagerBuilderWrapper&>(Builder);
321  const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
322  EfficiencySanitizerOptions Opts;
323  if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag))
324  Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag;
325  else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet))
326  Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet;
327  PM.add(createEfficiencySanitizerPass(Opts));
328 }
329 
330 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple,
331  const CodeGenOptions &CodeGenOpts) {
332  TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple);
333  if (!CodeGenOpts.SimplifyLibCalls)
334  TLII->disableAllFunctions();
335  else {
336  // Disable individual libc/libm calls in TargetLibraryInfo.
337  LibFunc F;
338  for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs())
339  if (TLII->getLibFunc(FuncName, F))
340  TLII->setUnavailable(F);
341  }
342 
343  switch (CodeGenOpts.getVecLib()) {
345  TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate);
346  break;
348  TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML);
349  break;
350  default:
351  break;
352  }
353  return TLII;
354 }
355 
356 static void addSymbolRewriterPass(const CodeGenOptions &Opts,
357  legacy::PassManager *MPM) {
358  llvm::SymbolRewriter::RewriteDescriptorList DL;
359 
360  llvm::SymbolRewriter::RewriteMapParser MapParser;
361  for (const auto &MapFile : Opts.RewriteMapFiles)
362  MapParser.parse(MapFile, &DL);
363 
364  MPM->add(createRewriteSymbolsPass(DL));
365 }
366 
367 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) {
368  switch (CodeGenOpts.OptimizationLevel) {
369  default:
370  llvm_unreachable("Invalid optimization level!");
371  case 0:
372  return CodeGenOpt::None;
373  case 1:
374  return CodeGenOpt::Less;
375  case 2:
376  return CodeGenOpt::Default; // O2/Os/Oz
377  case 3:
378  return CodeGenOpt::Aggressive;
379  }
380 }
381 
383 getCodeModel(const CodeGenOptions &CodeGenOpts) {
384  unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
385  .Case("tiny", llvm::CodeModel::Tiny)
386  .Case("small", llvm::CodeModel::Small)
387  .Case("kernel", llvm::CodeModel::Kernel)
388  .Case("medium", llvm::CodeModel::Medium)
389  .Case("large", llvm::CodeModel::Large)
390  .Case("default", ~1u)
391  .Default(~0u);
392  assert(CodeModel != ~0u && "invalid code model!");
393  if (CodeModel == ~1u)
394  return None;
395  return static_cast<llvm::CodeModel::Model>(CodeModel);
396 }
397 
398 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) {
399  if (Action == Backend_EmitObj)
400  return TargetMachine::CGFT_ObjectFile;
401  else if (Action == Backend_EmitMCNull)
402  return TargetMachine::CGFT_Null;
403  else {
404  assert(Action == Backend_EmitAssembly && "Invalid action!");
405  return TargetMachine::CGFT_AssemblyFile;
406  }
407 }
408 
409 static void initTargetOptions(llvm::TargetOptions &Options,
410  const CodeGenOptions &CodeGenOpts,
411  const clang::TargetOptions &TargetOpts,
412  const LangOptions &LangOpts,
413  const HeaderSearchOptions &HSOpts) {
414  Options.ThreadModel =
415  llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel)
416  .Case("posix", llvm::ThreadModel::POSIX)
417  .Case("single", llvm::ThreadModel::Single);
418 
419  // Set float ABI type.
420  assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
421  CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
422  "Invalid Floating Point ABI!");
423  Options.FloatABIType =
424  llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
425  .Case("soft", llvm::FloatABI::Soft)
426  .Case("softfp", llvm::FloatABI::Soft)
427  .Case("hard", llvm::FloatABI::Hard)
428  .Default(llvm::FloatABI::Default);
429 
430  // Set FP fusion mode.
431  switch (LangOpts.getDefaultFPContractMode()) {
433  // Preserve any contraction performed by the front-end. (Strict performs
434  // splitting of the muladd intrinsic in the backend.)
435  Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
436  break;
437  case LangOptions::FPC_On:
438  Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
439  break;
441  Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
442  break;
443  }
444 
445  Options.UseInitArray = CodeGenOpts.UseInitArray;
446  Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
447  Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections();
448  Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations;
449 
450  // Set EABI version.
451  Options.EABIVersion = TargetOpts.EABIVersion;
452 
453  if (LangOpts.SjLjExceptions)
454  Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
455  if (LangOpts.SEHExceptions)
456  Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
457  if (LangOpts.DWARFExceptions)
458  Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
459 
460  Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath;
461  Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath;
462  Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
463  Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath;
464  Options.StackAlignmentOverride = CodeGenOpts.StackAlignment;
465  Options.FunctionSections = CodeGenOpts.FunctionSections;
466  Options.DataSections = CodeGenOpts.DataSections;
467  Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
468  Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
469  Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS;
470  Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
471  Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
472  Options.EmitAddrsig = CodeGenOpts.Addrsig;
473 
474  if (CodeGenOpts.getSplitDwarfMode() != CodeGenOptions::NoFission)
475  Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
476  Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
477  Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
478  Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm;
479  Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
480  Options.MCOptions.MCIncrementalLinkerCompatible =
481  CodeGenOpts.IncrementalLinkerCompatible;
482  Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations;
483  Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
484  Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
485  Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
486  Options.MCOptions.ABIName = TargetOpts.ABI;
487  for (const auto &Entry : HSOpts.UserEntries)
488  if (!Entry.IsFramework &&
489  (Entry.Group == frontend::IncludeDirGroup::Quoted ||
490  Entry.Group == frontend::IncludeDirGroup::Angled ||
491  Entry.Group == frontend::IncludeDirGroup::System))
492  Options.MCOptions.IASSearchPaths.push_back(
493  Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
494 }
496  if (CodeGenOpts.DisableGCov)
497  return None;
498  if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes)
499  return None;
500  // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
501  // LLVM's -default-gcov-version flag is set to something invalid.
502  GCOVOptions Options;
503  Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
504  Options.EmitData = CodeGenOpts.EmitGcovArcs;
505  llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version));
506  Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum;
507  Options.NoRedZone = CodeGenOpts.DisableRedZone;
508  Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData;
509  Options.Filter = CodeGenOpts.ProfileFilterFiles;
510  Options.Exclude = CodeGenOpts.ProfileExcludeFiles;
511  Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody;
512  return Options;
513 }
514 
515 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM,
516  legacy::FunctionPassManager &FPM) {
517  // Handle disabling of all LLVM passes, where we want to preserve the
518  // internal module before any optimization.
519  if (CodeGenOpts.DisableLLVMPasses)
520  return;
521 
522  // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM
523  // manually (and not via PMBuilder), since some passes (eg. InstrProfiling)
524  // are inserted before PMBuilder ones - they'd get the default-constructed
525  // TLI with an unknown target otherwise.
526  Triple TargetTriple(TheModule->getTargetTriple());
527  std::unique_ptr<TargetLibraryInfoImpl> TLII(
528  createTLII(TargetTriple, CodeGenOpts));
529 
530  PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts);
531 
532  // At O0 and O1 we only run the always inliner which is more efficient. At
533  // higher optimization levels we run the normal inliner.
534  if (CodeGenOpts.OptimizationLevel <= 1) {
535  bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 &&
536  !CodeGenOpts.DisableLifetimeMarkers);
537  PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics);
538  } else {
539  // We do not want to inline hot callsites for SamplePGO module-summary build
540  // because profile annotation will happen again in ThinLTO backend, and we
541  // want the IR of the hot path to match the profile.
542  PMBuilder.Inliner = createFunctionInliningPass(
543  CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize,
544  (!CodeGenOpts.SampleProfileFile.empty() &&
545  CodeGenOpts.PrepareForThinLTO));
546  }
547 
548  PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel;
549  PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
550  PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
551  PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;
552 
553  PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;
554  PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions;
555  PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO;
556  PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO;
557  PMBuilder.RerollLoops = CodeGenOpts.RerollLoops;
558 
559  MPM.add(new TargetLibraryInfoWrapperPass(*TLII));
560 
561  if (TM)
562  TM->adjustPassManager(PMBuilder);
563 
564  if (CodeGenOpts.DebugInfoForProfiling ||
565  !CodeGenOpts.SampleProfileFile.empty())
566  PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
568 
569  // In ObjC ARC mode, add the main ARC optimization passes.
570  if (LangOpts.ObjCAutoRefCount) {
571  PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
573  PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
575  PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
577  }
578 
579  if (LangOpts.CoroutinesTS)
580  addCoroutinePassesToExtensionPoints(PMBuilder);
581 
582  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) {
583  PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
585  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
587  }
588 
589  if (CodeGenOpts.SanitizeCoverageType ||
590  CodeGenOpts.SanitizeCoverageIndirectCalls ||
591  CodeGenOpts.SanitizeCoverageTraceCmp) {
592  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
594  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
596  }
597 
598  if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
599  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
601  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
603  }
604 
605  if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) {
606  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
608  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
610  }
611 
612  if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) {
613  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
615  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
617  }
618 
619  if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) {
620  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
622  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
624  }
625 
626  if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
627  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
629  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
631  }
632 
633  if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) {
634  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
636  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
638  }
639 
640  if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
641  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
643  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
645  }
646 
647  if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
648  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
650  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
652  }
653 
654  if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) {
655  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
657  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
659  }
660 
661  // Set up the per-function pass manager.
662  FPM.add(new TargetLibraryInfoWrapperPass(*TLII));
663  if (CodeGenOpts.VerifyModule)
664  FPM.add(createVerifierPass());
665 
666  // Set up the per-module pass manager.
667  if (!CodeGenOpts.RewriteMapFiles.empty())
668  addSymbolRewriterPass(CodeGenOpts, &MPM);
669 
670  if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) {
671  MPM.add(createGCOVProfilerPass(*Options));
672  if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo)
673  MPM.add(createStripSymbolsPass(true));
674  }
675 
676  if (CodeGenOpts.hasProfileClangInstr()) {
677  InstrProfOptions Options;
678  Options.NoRedZone = CodeGenOpts.DisableRedZone;
679  Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
680 
681  // TODO: Surface the option to emit atomic profile counter increments at
682  // the driver level.
683  Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread);
684 
685  MPM.add(createInstrProfilingLegacyPass(Options));
686  }
687  if (CodeGenOpts.hasProfileIRInstr()) {
688  PMBuilder.EnablePGOInstrGen = true;
689  if (!CodeGenOpts.InstrProfileOutput.empty())
690  PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput;
691  else
692  PMBuilder.PGOInstrGen = DefaultProfileGenName;
693  }
694  if (CodeGenOpts.hasProfileIRUse())
695  PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath;
696 
697  if (!CodeGenOpts.SampleProfileFile.empty())
698  PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile;
699 
700  PMBuilder.populateFunctionPassManager(FPM);
701  PMBuilder.populateModulePassManager(MPM);
702 }
703 
704 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
705  SmallVector<const char *, 16> BackendArgs;
706  BackendArgs.push_back("clang"); // Fake program name.
707  if (!CodeGenOpts.DebugPass.empty()) {
708  BackendArgs.push_back("-debug-pass");
709  BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
710  }
711  if (!CodeGenOpts.LimitFloatPrecision.empty()) {
712  BackendArgs.push_back("-limit-float-precision");
713  BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
714  }
715  BackendArgs.push_back(nullptr);
716  llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
717  BackendArgs.data());
718 }
719 
720 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
721  // Create the TargetMachine for generating code.
722  std::string Error;
723  std::string Triple = TheModule->getTargetTriple();
724  const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
725  if (!TheTarget) {
726  if (MustCreateTM)
727  Diags.Report(diag::err_fe_unable_to_create_target) << Error;
728  return;
729  }
730 
732  std::string FeaturesStr =
733  llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
734  llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
735  CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts);
736 
737  llvm::TargetOptions Options;
738  initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts);
739  TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
740  Options, RM, CM, OptLevel));
741 }
742 
743 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
744  BackendAction Action,
745  raw_pwrite_stream &OS,
746  raw_pwrite_stream *DwoOS) {
747  // Add LibraryInfo.
748  llvm::Triple TargetTriple(TheModule->getTargetTriple());
749  std::unique_ptr<TargetLibraryInfoImpl> TLII(
750  createTLII(TargetTriple, CodeGenOpts));
751  CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
752 
753  // Normal mode, emit a .s or .o file by running the code generator. Note,
754  // this also adds codegenerator level optimization passes.
755  TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action);
756 
757  // Add ObjC ARC final-cleanup optimizations. This is done as part of the
758  // "codegen" passes so that it isn't run multiple times when there is
759  // inlining happening.
760  if (CodeGenOpts.OptimizationLevel > 0)
761  CodeGenPasses.add(createObjCARCContractPass());
762 
763  if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT,
764  /*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
765  Diags.Report(diag::err_fe_unable_to_interface_with_target);
766  return false;
767  }
768 
769  return true;
770 }
771 
773  std::unique_ptr<raw_pwrite_stream> OS) {
774  TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr);
775 
776  setCommandLineOpts(CodeGenOpts);
777 
778  bool UsesCodeGen = (Action != Backend_EmitNothing &&
779  Action != Backend_EmitBC &&
780  Action != Backend_EmitLL);
781  CreateTargetMachine(UsesCodeGen);
782 
783  if (UsesCodeGen && !TM)
784  return;
785  if (TM)
786  TheModule->setDataLayout(TM->createDataLayout());
787 
788  legacy::PassManager PerModulePasses;
789  PerModulePasses.add(
790  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
791 
792  legacy::FunctionPassManager PerFunctionPasses(TheModule);
793  PerFunctionPasses.add(
794  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
795 
796  CreatePasses(PerModulePasses, PerFunctionPasses);
797 
798  legacy::PassManager CodeGenPasses;
799  CodeGenPasses.add(
800  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
801 
802  std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
803 
804  switch (Action) {
805  case Backend_EmitNothing:
806  break;
807 
808  case Backend_EmitBC:
809  if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
810  if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
811  ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
812  if (!ThinLinkOS)
813  return;
814  }
815  PerModulePasses.add(createWriteThinLTOBitcodePass(
816  *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr));
817  } else {
818  // Emit a module summary by default for Regular LTO except for ld64
819  // targets
820  bool EmitLTOSummary =
821  (CodeGenOpts.PrepareForLTO &&
822  !CodeGenOpts.DisableLLVMPasses &&
823  llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
824  llvm::Triple::Apple);
825  if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO"))
826  TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
827 
828  PerModulePasses.add(
829  createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists,
830  EmitLTOSummary));
831  }
832  break;
833 
834  case Backend_EmitLL:
835  PerModulePasses.add(
836  createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
837  break;
838 
839  default:
840  if (!CodeGenOpts.SplitDwarfFile.empty() &&
841  (CodeGenOpts.getSplitDwarfMode() == CodeGenOptions::SplitFileFission)) {
842  DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile);
843  if (!DwoOS)
844  return;
845  }
846  if (!AddEmitPasses(CodeGenPasses, Action, *OS,
847  DwoOS ? &DwoOS->os() : nullptr))
848  return;
849  }
850 
851  // Before executing passes, print the final values of the LLVM options.
852  cl::PrintOptionValues();
853 
854  // Run passes. For now we do all passes at once, but eventually we
855  // would like to have the option of streaming code generation.
856 
857  {
858  PrettyStackTraceString CrashInfo("Per-function optimization");
859 
860  PerFunctionPasses.doInitialization();
861  for (Function &F : *TheModule)
862  if (!F.isDeclaration())
863  PerFunctionPasses.run(F);
864  PerFunctionPasses.doFinalization();
865  }
866 
867  {
868  PrettyStackTraceString CrashInfo("Per-module optimization passes");
869  PerModulePasses.run(*TheModule);
870  }
871 
872  {
873  PrettyStackTraceString CrashInfo("Code generation");
874  CodeGenPasses.run(*TheModule);
875  }
876 
877  if (ThinLinkOS)
878  ThinLinkOS->keep();
879  if (DwoOS)
880  DwoOS->keep();
881 }
882 
883 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
884  switch (Opts.OptimizationLevel) {
885  default:
886  llvm_unreachable("Invalid optimization level!");
887 
888  case 1:
889  return PassBuilder::O1;
890 
891  case 2:
892  switch (Opts.OptimizeSize) {
893  default:
894  llvm_unreachable("Invalid optimization level for size!");
895 
896  case 0:
897  return PassBuilder::O2;
898 
899  case 1:
900  return PassBuilder::Os;
901 
902  case 2:
903  return PassBuilder::Oz;
904  }
905 
906  case 3:
907  return PassBuilder::O3;
908  }
909 }
910 
911 /// A clean version of `EmitAssembly` that uses the new pass manager.
912 ///
913 /// Not all features are currently supported in this system, but where
914 /// necessary it falls back to the legacy pass manager to at least provide
915 /// basic functionality.
916 ///
917 /// This API is planned to have its functionality finished and then to replace
918 /// `EmitAssembly` at some point in the future when the default switches.
919 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager(
920  BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) {
921  TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr);
922  setCommandLineOpts(CodeGenOpts);
923 
924  // The new pass manager always makes a target machine available to passes
925  // during construction.
926  CreateTargetMachine(/*MustCreateTM*/ true);
927  if (!TM)
928  // This will already be diagnosed, just bail.
929  return;
930  TheModule->setDataLayout(TM->createDataLayout());
931 
932  Optional<PGOOptions> PGOOpt;
933 
934  if (CodeGenOpts.hasProfileIRInstr())
935  // -fprofile-generate.
936  PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty()
937  ? DefaultProfileGenName
938  : CodeGenOpts.InstrProfileOutput,
939  "", "", "", true,
940  CodeGenOpts.DebugInfoForProfiling);
941  else if (CodeGenOpts.hasProfileIRUse())
942  // -fprofile-use.
943  PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "",
944  CodeGenOpts.ProfileRemappingFile, false,
945  CodeGenOpts.DebugInfoForProfiling);
946  else if (!CodeGenOpts.SampleProfileFile.empty())
947  // -fprofile-sample-use
948  PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile,
949  CodeGenOpts.ProfileRemappingFile, false,
950  CodeGenOpts.DebugInfoForProfiling);
951  else if (CodeGenOpts.DebugInfoForProfiling)
952  // -fdebug-info-for-profiling
953  PGOOpt = PGOOptions("", "", "", "", false, true);
954 
955  PassBuilder PB(TM.get(), PGOOpt);
956 
957  LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager);
958  FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager);
959  CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager);
960  ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager);
961 
962  // Register the AA manager first so that our version is the one used.
963  FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); });
964 
965  // Register the target library analysis directly and give it a customized
966  // preset TLI.
967  Triple TargetTriple(TheModule->getTargetTriple());
968  std::unique_ptr<TargetLibraryInfoImpl> TLII(
969  createTLII(TargetTriple, CodeGenOpts));
970  FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
971  MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
972 
973  // Register all the basic analyses with the managers.
974  PB.registerModuleAnalyses(MAM);
975  PB.registerCGSCCAnalyses(CGAM);
976  PB.registerFunctionAnalyses(FAM);
977  PB.registerLoopAnalyses(LAM);
978  PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
979 
980  ModulePassManager MPM(CodeGenOpts.DebugPassManager);
981 
982  if (!CodeGenOpts.DisableLLVMPasses) {
983  bool IsThinLTO = CodeGenOpts.PrepareForThinLTO;
984  bool IsLTO = CodeGenOpts.PrepareForLTO;
985 
986  if (CodeGenOpts.OptimizationLevel == 0) {
987  if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts))
988  MPM.addPass(GCOVProfilerPass(*Options));
989 
990  // Build a minimal pipeline based on the semantics required by Clang,
991  // which is just that always inlining occurs.
992  MPM.addPass(AlwaysInlinerPass());
993 
994  // At -O0 we directly run necessary sanitizer passes.
995  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
996  MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass()));
997 
998  // Lastly, add a semantically necessary pass for LTO.
999  if (IsLTO || IsThinLTO)
1000  MPM.addPass(NameAnonGlobalPass());
1001  } else {
1002  // Map our optimization levels into one of the distinct levels used to
1003  // configure the pipeline.
1004  PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts);
1005 
1006  // Register callbacks to schedule sanitizer passes at the appropriate part of
1007  // the pipeline.
1008  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
1009  PB.registerScalarOptimizerLateEPCallback(
1010  [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
1011  FPM.addPass(BoundsCheckingPass());
1012  });
1013  if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts))
1014  PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) {
1015  MPM.addPass(GCOVProfilerPass(*Options));
1016  });
1017 
1018  if (IsThinLTO) {
1019  MPM = PB.buildThinLTOPreLinkDefaultPipeline(
1020  Level, CodeGenOpts.DebugPassManager);
1021  MPM.addPass(NameAnonGlobalPass());
1022  } else if (IsLTO) {
1023  MPM = PB.buildLTOPreLinkDefaultPipeline(Level,
1024  CodeGenOpts.DebugPassManager);
1025  MPM.addPass(NameAnonGlobalPass());
1026  } else {
1027  MPM = PB.buildPerModuleDefaultPipeline(Level,
1028  CodeGenOpts.DebugPassManager);
1029  }
1030  }
1031  }
1032 
1033  // FIXME: We still use the legacy pass manager to do code generation. We
1034  // create that pass manager here and use it as needed below.
1035  legacy::PassManager CodeGenPasses;
1036  bool NeedCodeGen = false;
1037  std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
1038 
1039  // Append any output we need to the pass manager.
1040  switch (Action) {
1041  case Backend_EmitNothing:
1042  break;
1043 
1044  case Backend_EmitBC:
1045  if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
1046  if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
1047  ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
1048  if (!ThinLinkOS)
1049  return;
1050  }
1051  MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os()
1052  : nullptr));
1053  } else {
1054  // Emit a module summary by default for Regular LTO except for ld64
1055  // targets
1056  bool EmitLTOSummary =
1057  (CodeGenOpts.PrepareForLTO &&
1058  !CodeGenOpts.DisableLLVMPasses &&
1059  llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
1060  llvm::Triple::Apple);
1061  if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO"))
1062  TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
1063 
1064  MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists,
1065  EmitLTOSummary));
1066  }
1067  break;
1068 
1069  case Backend_EmitLL:
1070  MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
1071  break;
1072 
1073  case Backend_EmitAssembly:
1074  case Backend_EmitMCNull:
1075  case Backend_EmitObj:
1076  NeedCodeGen = true;
1077  CodeGenPasses.add(
1078  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
1079  if (!CodeGenOpts.SplitDwarfFile.empty()) {
1080  DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile);
1081  if (!DwoOS)
1082  return;
1083  }
1084  if (!AddEmitPasses(CodeGenPasses, Action, *OS,
1085  DwoOS ? &DwoOS->os() : nullptr))
1086  // FIXME: Should we handle this error differently?
1087  return;
1088  break;
1089  }
1090 
1091  // Before executing passes, print the final values of the LLVM options.
1092  cl::PrintOptionValues();
1093 
1094  // Now that we have all of the passes ready, run them.
1095  {
1096  PrettyStackTraceString CrashInfo("Optimizer");
1097  MPM.run(*TheModule, MAM);
1098  }
1099 
1100  // Now if needed, run the legacy PM for codegen.
1101  if (NeedCodeGen) {
1102  PrettyStackTraceString CrashInfo("Code generation");
1103  CodeGenPasses.run(*TheModule);
1104  }
1105 
1106  if (ThinLinkOS)
1107  ThinLinkOS->keep();
1108  if (DwoOS)
1109  DwoOS->keep();
1110 }
1111 
1112 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) {
1113  Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef);
1114  if (!BMsOrErr)
1115  return BMsOrErr.takeError();
1116 
1117  // The bitcode file may contain multiple modules, we want the one that is
1118  // marked as being the ThinLTO module.
1119  if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr))
1120  return *Bm;
1121 
1122  return make_error<StringError>("Could not find module summary",
1123  inconvertibleErrorCode());
1124 }
1125 
1127  for (BitcodeModule &BM : BMs) {
1128  Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo();
1129  if (LTOInfo && LTOInfo->IsThinLTO)
1130  return &BM;
1131  }
1132  return nullptr;
1133 }
1134 
1135 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M,
1136  const HeaderSearchOptions &HeaderOpts,
1137  const CodeGenOptions &CGOpts,
1138  const clang::TargetOptions &TOpts,
1139  const LangOptions &LOpts,
1140  std::unique_ptr<raw_pwrite_stream> OS,
1141  std::string SampleProfile,
1142  std::string ProfileRemapping,
1143  BackendAction Action) {
1144  StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
1145  ModuleToDefinedGVSummaries;
1146  CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
1147 
1148  setCommandLineOpts(CGOpts);
1149 
1150  // We can simply import the values mentioned in the combined index, since
1151  // we should only invoke this using the individual indexes written out
1152  // via a WriteIndexesThinBackend.
1153  FunctionImporter::ImportMapTy ImportList;
1154  for (auto &GlobalList : *CombinedIndex) {
1155  // Ignore entries for undefined references.
1156  if (GlobalList.second.SummaryList.empty())
1157  continue;
1158 
1159  auto GUID = GlobalList.first;
1160  for (auto &Summary : GlobalList.second.SummaryList) {
1161  // Skip the summaries for the importing module. These are included to
1162  // e.g. record required linkage changes.
1163  if (Summary->modulePath() == M->getModuleIdentifier())
1164  continue;
1165  // Add an entry to provoke importing by thinBackend.
1166  ImportList[Summary->modulePath()].insert(GUID);
1167  }
1168  }
1169 
1170  std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports;
1171  MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap;
1172 
1173  for (auto &I : ImportList) {
1174  ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr =
1175  llvm::MemoryBuffer::getFile(I.first());
1176  if (!MBOrErr) {
1177  errs() << "Error loading imported file '" << I.first()
1178  << "': " << MBOrErr.getError().message() << "\n";
1179  return;
1180  }
1181 
1182  Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr);
1183  if (!BMOrErr) {
1184  handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) {
1185  errs() << "Error loading imported file '" << I.first()
1186  << "': " << EIB.message() << '\n';
1187  });
1188  return;
1189  }
1190  ModuleMap.insert({I.first(), *BMOrErr});
1191 
1192  OwnedImports.push_back(std::move(*MBOrErr));
1193  }
1194  auto AddStream = [&](size_t Task) {
1195  return llvm::make_unique<lto::NativeObjectStream>(std::move(OS));
1196  };
1197  lto::Config Conf;
1198  if (CGOpts.SaveTempsFilePrefix != "") {
1199  if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".",
1200  /* UseInputModulePath */ false)) {
1201  handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1202  errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
1203  << '\n';
1204  });
1205  }
1206  }
1207  Conf.CPU = TOpts.CPU;
1208  Conf.CodeModel = getCodeModel(CGOpts);
1209  Conf.MAttrs = TOpts.Features;
1210  Conf.RelocModel = CGOpts.RelocationModel;
1211  Conf.CGOptLevel = getCGOptLevel(CGOpts);
1212  initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts);
1213  Conf.SampleProfile = std::move(SampleProfile);
1214  Conf.ProfileRemapping = std::move(ProfileRemapping);
1215  Conf.UseNewPM = CGOpts.ExperimentalNewPassManager;
1216  Conf.DebugPassManager = CGOpts.DebugPassManager;
1217  Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness;
1218  Conf.RemarksFilename = CGOpts.OptRecordFile;
1219  Conf.DwoPath = CGOpts.SplitDwarfFile;
1220  switch (Action) {
1221  case Backend_EmitNothing:
1222  Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) {
1223  return false;
1224  };
1225  break;
1226  case Backend_EmitLL:
1227  Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1228  M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
1229  return false;
1230  };
1231  break;
1232  case Backend_EmitBC:
1233  Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1234  WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists);
1235  return false;
1236  };
1237  break;
1238  default:
1239  Conf.CGFileType = getCodeGenFileType(Action);
1240  break;
1241  }
1242  if (Error E = thinBackend(
1243  Conf, -1, AddStream, *M, *CombinedIndex, ImportList,
1244  ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) {
1245  handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1246  errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
1247  });
1248  }
1249 }
1250 
1252  const HeaderSearchOptions &HeaderOpts,
1253  const CodeGenOptions &CGOpts,
1254  const clang::TargetOptions &TOpts,
1255  const LangOptions &LOpts,
1256  const llvm::DataLayout &TDesc, Module *M,
1257  BackendAction Action,
1258  std::unique_ptr<raw_pwrite_stream> OS) {
1259  std::unique_ptr<llvm::Module> EmptyModule;
1260  if (!CGOpts.ThinLTOIndexFile.empty()) {
1261  // If we are performing a ThinLTO importing compile, load the function index
1262  // into memory and pass it into runThinLTOBackend, which will run the
1263  // function importer and invoke LTO passes.
1265  llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile,
1266  /*IgnoreEmptyThinLTOIndexFile*/true);
1267  if (!IndexOrErr) {
1268  logAllUnhandledErrors(IndexOrErr.takeError(), errs(),
1269  "Error loading index file '" +
1270  CGOpts.ThinLTOIndexFile + "': ");
1271  return;
1272  }
1273  std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr);
1274  // A null CombinedIndex means we should skip ThinLTO compilation
1275  // (LLVM will optionally ignore empty index files, returning null instead
1276  // of an error).
1277  if (CombinedIndex) {
1278  if (!CombinedIndex->skipModuleByDistributedBackend()) {
1279  runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts,
1280  LOpts, std::move(OS), CGOpts.SampleProfileFile,
1281  CGOpts.ProfileRemappingFile, Action);
1282  return;
1283  }
1284  // Distributed indexing detected that nothing from the module is needed
1285  // for the final linking. So we can skip the compilation. We sill need to
1286  // output an empty object file to make sure that a linker does not fail
1287  // trying to read it. Also for some features, like CFI, we must skip
1288  // the compilation as CombinedIndex does not contain all required
1289  // information.
1290  EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext());
1291  EmptyModule->setTargetTriple(M->getTargetTriple());
1292  M = EmptyModule.get();
1293  }
1294  }
1295 
1296  EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M);
1297 
1298  if (CGOpts.ExperimentalNewPassManager)
1299  AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS));
1300  else
1301  AsmHelper.EmitAssembly(Action, std::move(OS));
1302 
1303  // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
1304  // DataLayout.
1305  if (AsmHelper.TM) {
1306  std::string DLDesc = M->getDataLayout().getStringRepresentation();
1307  if (DLDesc != TDesc.getStringRepresentation()) {
1308  unsigned DiagID = Diags.getCustomDiagID(
1309  DiagnosticsEngine::Error, "backend data layout '%0' does not match "
1310  "expected target description '%1'");
1311  Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation();
1312  }
1313  }
1314 }
1315 
1316 static const char* getSectionNameForBitcode(const Triple &T) {
1317  switch (T.getObjectFormat()) {
1318  case Triple::MachO:
1319  return "__LLVM,__bitcode";
1320  case Triple::COFF:
1321  case Triple::ELF:
1322  case Triple::Wasm:
1323  case Triple::UnknownObjectFormat:
1324  return ".llvmbc";
1325  }
1326  llvm_unreachable("Unimplemented ObjectFormatType");
1327 }
1328 
1329 static const char* getSectionNameForCommandline(const Triple &T) {
1330  switch (T.getObjectFormat()) {
1331  case Triple::MachO:
1332  return "__LLVM,__cmdline";
1333  case Triple::COFF:
1334  case Triple::ELF:
1335  case Triple::Wasm:
1336  case Triple::UnknownObjectFormat:
1337  return ".llvmcmd";
1338  }
1339  llvm_unreachable("Unimplemented ObjectFormatType");
1340 }
1341 
1342 // With -fembed-bitcode, save a copy of the llvm IR as data in the
1343 // __LLVM,__bitcode section.
1344 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
1345  llvm::MemoryBufferRef Buf) {
1346  if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
1347  return;
1348 
1349  // Save llvm.compiler.used and remote it.
1350  SmallVector<Constant*, 2> UsedArray;
1351  SmallPtrSet<GlobalValue*, 4> UsedGlobals;
1352  Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0);
1353  GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true);
1354  for (auto *GV : UsedGlobals) {
1355  if (GV->getName() != "llvm.embedded.module" &&
1356  GV->getName() != "llvm.cmdline")
1357  UsedArray.push_back(
1358  ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1359  }
1360  if (Used)
1361  Used->eraseFromParent();
1362 
1363  // Embed the bitcode for the llvm module.
1364  std::string Data;
1365  ArrayRef<uint8_t> ModuleData;
1366  Triple T(M->getTargetTriple());
1367  // Create a constant that contains the bitcode.
1368  // In case of embedding a marker, ignore the input Buf and use the empty
1369  // ArrayRef. It is also legal to create a bitcode marker even Buf is empty.
1370  if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) {
1371  if (!isBitcode((const unsigned char *)Buf.getBufferStart(),
1372  (const unsigned char *)Buf.getBufferEnd())) {
1373  // If the input is LLVM Assembly, bitcode is produced by serializing
1374  // the module. Use-lists order need to be perserved in this case.
1375  llvm::raw_string_ostream OS(Data);
1376  llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true);
1377  ModuleData =
1378  ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
1379  } else
1380  // If the input is LLVM bitcode, write the input byte stream directly.
1381  ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
1382  Buf.getBufferSize());
1383  }
1384  llvm::Constant *ModuleConstant =
1385  llvm::ConstantDataArray::get(M->getContext(), ModuleData);
1386  llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1387  *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
1388  ModuleConstant);
1389  GV->setSection(getSectionNameForBitcode(T));
1390  UsedArray.push_back(
1391  ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1392  if (llvm::GlobalVariable *Old =
1393  M->getGlobalVariable("llvm.embedded.module", true)) {
1394  assert(Old->hasOneUse() &&
1395  "llvm.embedded.module can only be used once in llvm.compiler.used");
1396  GV->takeName(Old);
1397  Old->eraseFromParent();
1398  } else {
1399  GV->setName("llvm.embedded.module");
1400  }
1401 
1402  // Skip if only bitcode needs to be embedded.
1403  if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) {
1404  // Embed command-line options.
1405  ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()),
1406  CGOpts.CmdArgs.size());
1407  llvm::Constant *CmdConstant =
1408  llvm::ConstantDataArray::get(M->getContext(), CmdData);
1409  GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true,
1410  llvm::GlobalValue::PrivateLinkage,
1411  CmdConstant);
1412  GV->setSection(getSectionNameForCommandline(T));
1413  UsedArray.push_back(
1414  ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1415  if (llvm::GlobalVariable *Old =
1416  M->getGlobalVariable("llvm.cmdline", true)) {
1417  assert(Old->hasOneUse() &&
1418  "llvm.cmdline can only be used once in llvm.compiler.used");
1419  GV->takeName(Old);
1420  Old->eraseFromParent();
1421  } else {
1422  GV->setName("llvm.cmdline");
1423  }
1424  }
1425 
1426  if (UsedArray.empty())
1427  return;
1428 
1429  // Recreate llvm.compiler.used.
1430  ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
1431  auto *NewUsed = new GlobalVariable(
1432  *M, ATy, false, llvm::GlobalValue::AppendingLinkage,
1433  llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
1434  NewUsed->setSection("llvm.metadata");
1435 }
std::string ProfileInstrumentUsePath
Name of the profile file to use as input for -fprofile-instr-use.
Paths for &#39;#include <>&#39; added by &#39;-I&#39;.
static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
std::string SaveTempsFilePrefix
Prefix to use for -save-temps output.
Emit human-readable LLVM assembly.
Definition: BackendUtil.h:34
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:30
Run CodeGen, but don&#39;t emit anything.
Definition: BackendUtil.h:36
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:176
The base class of the type hierarchy.
Definition: Type.h:1411
std::string SampleProfileFile
Name of the profile file to use with -fprofile-sample-use.
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1292
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2816
static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static Optional< GCOVOptions > getGCOVOptions(const CodeGenOptions &CodeGenOpts)
std::vector< std::string > RewriteMapFiles
Set of files defining the rules for the symbol rewriting.
Don&#39;t emit anything (benchmarking mode)
Definition: BackendUtil.h:35
Options for controlling the target.
Definition: TargetOptions.h:26
std::string SplitDwarfFile
The name for the split debug info file that we&#39;ll break out.
static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, const LangOptions &LOpts, std::unique_ptr< raw_pwrite_stream > OS, std::string SampleProfile, std::string ProfileRemapping, BackendAction Action)
std::string DebugPass
Enable additional debugging information.
SanitizerSet SanitizeRecover
Set of sanitizer checks that are non-fatal (i.e.
bool hasOneOf(SanitizerMask K) const
Check if one or more sanitizers are enabled.
Definition: Sanitizers.h:58
Emit LLVM bitcode files.
Definition: BackendUtil.h:33
std::vector< Entry > UserEntries
User specified include entries.
std::vector< uint8_t > CmdArgs
List of backend command-line options for -fembed-bitcode.
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
std::string CodeModel
The code model to use (-mcmodel).
Describes a module or submodule.
Definition: Module.h:65
BackendAction
Definition: BackendUtil.h:31
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
static void addThreadSanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
Defines the Diagnostic-related interfaces.
static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts)
static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts)
static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
std::string FloatABI
The ABI to use for passing floating point arguments.
std::string ThreadModel
The thread model to use.
std::string ProfileFilterFiles
Regexes separated by a semi-colon to filter the files to instrument.
std::string ProfileRemappingFile
Name of the profile remapping file to apply to the profile data supplied by -fprofile-sample-use or -...
char CoverageVersion[4]
The version string to put into coverage files.
static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
std::string LimitFloatPrecision
The float precision limit to use, if non-empty.
for(unsigned I=0, E=TL.getNumArgs();I !=E;++I)
Defines the clang::LangOptions interface.
static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
void print(raw_ostream &OS, unsigned Indent=0) const
Print the module map for this module to the given stream.
Definition: Module.cpp:405
static TargetLibraryInfoImpl * createTLII(llvm::Triple &TargetTriple, const CodeGenOptions &CodeGenOpts)
static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
Emit native object files.
Definition: BackendUtil.h:37
Emit native assembly files.
Definition: BackendUtil.h:32
std::string CPU
If given, the name of the target CPU to generate code for.
Definition: TargetOptions.h:36
std::string ABI
If given, the name of the target ABI to use.
Definition: TargetOptions.h:42
static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addSymbolRewriterPass(const CodeGenOptions &Opts, legacy::PassManager *MPM)
static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
Defines the clang::TargetOptions class.
std::vector< std::string > Features
The list of target specific features to enable or disable – this should be a list of strings startin...
Definition: TargetOptions.h:55
static void initTargetOptions(llvm::TargetOptions &Options, const CodeGenOptions &CodeGenOpts, const clang::TargetOptions &TargetOpts, const LangOptions &LangOpts, const HeaderSearchOptions &HSOpts)
static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts)
unsigned getCustomDiagID(Level L, const char(&FormatString)[N])
Return an ID for a diagnostic with the specified format string and level.
Definition: Diagnostic.h:773
llvm::EABI EABIVersion
The EABI version to use.
Definition: TargetOptions.h:45
&#39;#include ""&#39; paths, added by &#39;gcc -iquote&#39;.
std::string ThinLTOIndexFile
Name of the function summary index file to use for ThinLTO function importing.
Like Angled, but marks system directories.
static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action)
void EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf)
Optional< types::ID > Type
Dataflow Directional Tag Classes.
static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM, bool CompileKernel)
bool FrontendTimesIsEnabled
If the user specifies the -ftime-report argument on an Clang command line then the value of this bool...
llvm::Reloc::Model RelocationModel
The name of the relocation model to use.
bool hasProfileIRUse() const
Check if IR level profile use is on.
void EmitBackendOutput(DiagnosticsEngine &Diags, const HeaderSearchOptions &, const CodeGenOptions &CGOpts, const TargetOptions &TOpts, const LangOptions &LOpts, const llvm::DataLayout &TDesc, llvm::Module *M, BackendAction Action, std::unique_ptr< raw_pwrite_stream > OS)
bool hasProfileClangInstr() const
Check if Clang profile instrumenation is on.
llvm::Expected< llvm::BitcodeModule > FindThinLTOModule(llvm::MemoryBufferRef MBRef)
static const char * getSectionNameForBitcode(const Triple &T)
static const char * getSectionNameForCommandline(const Triple &T)
std::string ProfileExcludeFiles
Regexes separated by a semi-colon to filter the files to not instrument.
static void addBoundsCheckingPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static Optional< llvm::CodeModel::Model > getCodeModel(const CodeGenOptions &CodeGenOpts)
CodeGenOptions - Track various options which control how the code is optimized and passed to the back...
static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
bool hasProfileIRInstr() const
Check if IR level profile instrumentation is on.
const std::vector< std::string > & getNoBuiltinFuncs() const
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:52
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1577
static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
HeaderSearchOptions - Helper class for storing options related to the initialization of the HeaderSea...
std::string InstrProfileOutput
Name of the profile file to use as output for -fprofile-instr-generate and -fprofile-generate.
std::string OptRecordFile
The name of the file to which the backend should save YAML optimization records.
std::string ThinLinkBitcodeFile
Name of a file that can optionally be written with minimized bitcode to be used as input for the Thin...
std::vector< std::string > SanitizerBlacklistFiles
Paths to blacklist files specifying which objects (files, functions, variables) should not be instrum...
Definition: LangOptions.h:180
std::string Sysroot
If non-empty, the directory to use as a "virtual system root" for include paths.
static void addMemorySanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts)