clang  9.0.0svn
BackendUtil.cpp
Go to the documentation of this file.
1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
11 #include "clang/Basic/Diagnostic.h"
15 #include "clang/Frontend/Utils.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringSwitch.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Bitcode/BitcodeReader.h"
24 #include "llvm/Bitcode/BitcodeWriter.h"
25 #include "llvm/Bitcode/BitcodeWriterPass.h"
26 #include "llvm/CodeGen/RegAllocRegistry.h"
27 #include "llvm/CodeGen/SchedulerRegistry.h"
28 #include "llvm/CodeGen/TargetSubtargetInfo.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/IRPrintingPasses.h"
31 #include "llvm/IR/LegacyPassManager.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ModuleSummaryIndex.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/LTO/LTOBackend.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/MC/SubtargetFeature.h"
38 #include "llvm/Passes/PassBuilder.h"
39 #include "llvm/Passes/PassPlugin.h"
40 #include "llvm/Support/BuryPointer.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/MemoryBuffer.h"
43 #include "llvm/Support/PrettyStackTrace.h"
44 #include "llvm/Support/TargetRegistry.h"
45 #include "llvm/Support/TimeProfiler.h"
46 #include "llvm/Support/Timer.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include "llvm/Transforms/Coroutines.h"
51 #include "llvm/Transforms/IPO.h"
52 #include "llvm/Transforms/IPO/AlwaysInliner.h"
53 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
54 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
55 #include "llvm/Transforms/InstCombine/InstCombine.h"
56 #include "llvm/Transforms/Instrumentation.h"
57 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
58 #include "llvm/Transforms/Instrumentation/BoundsChecking.h"
59 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
60 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
61 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
62 #include "llvm/Transforms/ObjCARC.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Scalar/GVN.h"
65 #include "llvm/Transforms/Utils.h"
66 #include "llvm/Transforms/Utils/CanonicalizeAliases.h"
67 #include "llvm/Transforms/Utils/NameAnonGlobals.h"
68 #include "llvm/Transforms/Utils/SymbolRewriter.h"
69 #include <memory>
70 using namespace clang;
71 using namespace llvm;
72 
73 namespace {
74 
75 // Default filename used for profile generation.
76 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw";
77 
78 class EmitAssemblyHelper {
79  DiagnosticsEngine &Diags;
80  const HeaderSearchOptions &HSOpts;
81  const CodeGenOptions &CodeGenOpts;
82  const clang::TargetOptions &TargetOpts;
83  const LangOptions &LangOpts;
84  Module *TheModule;
85 
86  Timer CodeGenerationTime;
87 
88  std::unique_ptr<raw_pwrite_stream> OS;
89 
90  TargetIRAnalysis getTargetIRAnalysis() const {
91  if (TM)
92  return TM->getTargetIRAnalysis();
93 
94  return TargetIRAnalysis();
95  }
96 
97  void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM);
98 
99  /// Generates the TargetMachine.
100  /// Leaves TM unchanged if it is unable to create the target machine.
101  /// Some of our clang tests specify triples which are not built
102  /// into clang. This is okay because these tests check the generated
103  /// IR, and they require DataLayout which depends on the triple.
104  /// In this case, we allow this method to fail and not report an error.
105  /// When MustCreateTM is used, we print an error if we are unable to load
106  /// the requested target.
107  void CreateTargetMachine(bool MustCreateTM);
108 
109  /// Add passes necessary to emit assembly or LLVM IR.
110  ///
111  /// \return True on success.
112  bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
113  raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS);
114 
115  std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) {
116  std::error_code EC;
117  auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC,
118  llvm::sys::fs::F_None);
119  if (EC) {
120  Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message();
121  F.reset();
122  }
123  return F;
124  }
125 
126 public:
127  EmitAssemblyHelper(DiagnosticsEngine &_Diags,
128  const HeaderSearchOptions &HeaderSearchOpts,
129  const CodeGenOptions &CGOpts,
130  const clang::TargetOptions &TOpts,
131  const LangOptions &LOpts, Module *M)
132  : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts),
133  TargetOpts(TOpts), LangOpts(LOpts), TheModule(M),
134  CodeGenerationTime("codegen", "Code Generation Time") {}
135 
136  ~EmitAssemblyHelper() {
137  if (CodeGenOpts.DisableFree)
138  BuryPointer(std::move(TM));
139  }
140 
141  std::unique_ptr<TargetMachine> TM;
142 
143  void EmitAssembly(BackendAction Action,
144  std::unique_ptr<raw_pwrite_stream> OS);
145 
146  void EmitAssemblyWithNewPassManager(BackendAction Action,
147  std::unique_ptr<raw_pwrite_stream> OS);
148 };
149 
150 // We need this wrapper to access LangOpts and CGOpts from extension functions
151 // that we add to the PassManagerBuilder.
152 class PassManagerBuilderWrapper : public PassManagerBuilder {
153 public:
154  PassManagerBuilderWrapper(const Triple &TargetTriple,
155  const CodeGenOptions &CGOpts,
156  const LangOptions &LangOpts)
157  : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts),
158  LangOpts(LangOpts) {}
159  const Triple &getTargetTriple() const { return TargetTriple; }
160  const CodeGenOptions &getCGOpts() const { return CGOpts; }
161  const LangOptions &getLangOpts() const { return LangOpts; }
162 
163 private:
164  const Triple &TargetTriple;
165  const CodeGenOptions &CGOpts;
166  const LangOptions &LangOpts;
167 };
168 }
169 
170 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
171  if (Builder.OptLevel > 0)
172  PM.add(createObjCARCAPElimPass());
173 }
174 
175 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
176  if (Builder.OptLevel > 0)
177  PM.add(createObjCARCExpandPass());
178 }
179 
180 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
181  if (Builder.OptLevel > 0)
182  PM.add(createObjCARCOptPass());
183 }
184 
185 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder,
186  legacy::PassManagerBase &PM) {
187  PM.add(createAddDiscriminatorsPass());
188 }
189 
190 static void addBoundsCheckingPass(const PassManagerBuilder &Builder,
191  legacy::PassManagerBase &PM) {
192  PM.add(createBoundsCheckingLegacyPass());
193 }
194 
195 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder,
196  legacy::PassManagerBase &PM) {
197  const PassManagerBuilderWrapper &BuilderWrapper =
198  static_cast<const PassManagerBuilderWrapper&>(Builder);
199  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
200  SanitizerCoverageOptions Opts;
201  Opts.CoverageType =
202  static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
203  Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
204  Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
205  Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
206  Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
207  Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
208  Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
209  Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
210  Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
211  Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
212  Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
213  Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
214  Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
215  PM.add(createSanitizerCoverageModulePass(Opts));
216 }
217 
218 // Check if ASan should use GC-friendly instrumentation for globals.
219 // First of all, there is no point if -fdata-sections is off (expect for MachO,
220 // where this is not a factor). Also, on ELF this feature requires an assembler
221 // extension that only works with -integrated-as at the moment.
222 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
223  if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
224  return false;
225  switch (T.getObjectFormat()) {
226  case Triple::MachO:
227  case Triple::COFF:
228  return true;
229  case Triple::ELF:
230  return CGOpts.DataSections && !CGOpts.DisableIntegratedAS;
231  default:
232  return false;
233  }
234 }
235 
236 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
237  legacy::PassManagerBase &PM) {
238  const PassManagerBuilderWrapper &BuilderWrapper =
239  static_cast<const PassManagerBuilderWrapper&>(Builder);
240  const Triple &T = BuilderWrapper.getTargetTriple();
241  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
242  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address);
243  bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope;
244  bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator;
245  bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts);
246  PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover,
247  UseAfterScope));
248  PM.add(createModuleAddressSanitizerLegacyPassPass(
249  /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator));
250 }
251 
252 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder,
253  legacy::PassManagerBase &PM) {
254  PM.add(createAddressSanitizerFunctionPass(
255  /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false));
256  PM.add(createModuleAddressSanitizerLegacyPassPass(
257  /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true,
258  /*UseOdrIndicator*/ false));
259 }
260 
261 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
262  legacy::PassManagerBase &PM) {
263  const PassManagerBuilderWrapper &BuilderWrapper =
264  static_cast<const PassManagerBuilderWrapper &>(Builder);
265  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
266  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress);
267  PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover));
268 }
269 
270 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
271  legacy::PassManagerBase &PM) {
272  PM.add(createHWAddressSanitizerPass(
273  /*CompileKernel*/ true, /*Recover*/ true));
274 }
275 
276 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder,
277  legacy::PassManagerBase &PM,
278  bool CompileKernel) {
279  const PassManagerBuilderWrapper &BuilderWrapper =
280  static_cast<const PassManagerBuilderWrapper&>(Builder);
281  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
282  int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins;
283  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory);
284  PM.add(createMemorySanitizerLegacyPassPass(
285  MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel}));
286 
287  // MemorySanitizer inserts complex instrumentation that mostly follows
288  // the logic of the original code, but operates on "shadow" values.
289  // It can benefit from re-running some general purpose optimization passes.
290  if (Builder.OptLevel > 0) {
291  PM.add(createEarlyCSEPass());
292  PM.add(createReassociatePass());
293  PM.add(createLICMPass());
294  PM.add(createGVNPass());
295  PM.add(createInstructionCombiningPass());
296  PM.add(createDeadStoreEliminationPass());
297  }
298 }
299 
300 static void addMemorySanitizerPass(const PassManagerBuilder &Builder,
301  legacy::PassManagerBase &PM) {
302  addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false);
303 }
304 
305 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder,
306  legacy::PassManagerBase &PM) {
307  addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true);
308 }
309 
310 static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
311  legacy::PassManagerBase &PM) {
312  PM.add(createThreadSanitizerLegacyPassPass());
313 }
314 
315 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder,
316  legacy::PassManagerBase &PM) {
317  const PassManagerBuilderWrapper &BuilderWrapper =
318  static_cast<const PassManagerBuilderWrapper&>(Builder);
319  const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
320  PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles));
321 }
322 
323 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple,
324  const CodeGenOptions &CodeGenOpts) {
325  TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple);
326  if (!CodeGenOpts.SimplifyLibCalls)
327  TLII->disableAllFunctions();
328  else {
329  // Disable individual libc/libm calls in TargetLibraryInfo.
330  LibFunc F;
331  for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs())
332  if (TLII->getLibFunc(FuncName, F))
333  TLII->setUnavailable(F);
334  }
335 
336  switch (CodeGenOpts.getVecLib()) {
338  TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate);
339  break;
341  TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML);
342  break;
343  default:
344  break;
345  }
346  return TLII;
347 }
348 
349 static void addSymbolRewriterPass(const CodeGenOptions &Opts,
350  legacy::PassManager *MPM) {
351  llvm::SymbolRewriter::RewriteDescriptorList DL;
352 
353  llvm::SymbolRewriter::RewriteMapParser MapParser;
354  for (const auto &MapFile : Opts.RewriteMapFiles)
355  MapParser.parse(MapFile, &DL);
356 
357  MPM->add(createRewriteSymbolsPass(DL));
358 }
359 
360 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) {
361  switch (CodeGenOpts.OptimizationLevel) {
362  default:
363  llvm_unreachable("Invalid optimization level!");
364  case 0:
365  return CodeGenOpt::None;
366  case 1:
367  return CodeGenOpt::Less;
368  case 2:
369  return CodeGenOpt::Default; // O2/Os/Oz
370  case 3:
371  return CodeGenOpt::Aggressive;
372  }
373 }
374 
376 getCodeModel(const CodeGenOptions &CodeGenOpts) {
377  unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
378  .Case("tiny", llvm::CodeModel::Tiny)
379  .Case("small", llvm::CodeModel::Small)
380  .Case("kernel", llvm::CodeModel::Kernel)
381  .Case("medium", llvm::CodeModel::Medium)
382  .Case("large", llvm::CodeModel::Large)
383  .Case("default", ~1u)
384  .Default(~0u);
385  assert(CodeModel != ~0u && "invalid code model!");
386  if (CodeModel == ~1u)
387  return None;
388  return static_cast<llvm::CodeModel::Model>(CodeModel);
389 }
390 
391 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) {
392  if (Action == Backend_EmitObj)
393  return TargetMachine::CGFT_ObjectFile;
394  else if (Action == Backend_EmitMCNull)
395  return TargetMachine::CGFT_Null;
396  else {
397  assert(Action == Backend_EmitAssembly && "Invalid action!");
398  return TargetMachine::CGFT_AssemblyFile;
399  }
400 }
401 
402 static void initTargetOptions(llvm::TargetOptions &Options,
403  const CodeGenOptions &CodeGenOpts,
404  const clang::TargetOptions &TargetOpts,
405  const LangOptions &LangOpts,
406  const HeaderSearchOptions &HSOpts) {
407  Options.ThreadModel =
408  llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel)
409  .Case("posix", llvm::ThreadModel::POSIX)
410  .Case("single", llvm::ThreadModel::Single);
411 
412  // Set float ABI type.
413  assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
414  CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
415  "Invalid Floating Point ABI!");
416  Options.FloatABIType =
417  llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
418  .Case("soft", llvm::FloatABI::Soft)
419  .Case("softfp", llvm::FloatABI::Soft)
420  .Case("hard", llvm::FloatABI::Hard)
421  .Default(llvm::FloatABI::Default);
422 
423  // Set FP fusion mode.
424  switch (LangOpts.getDefaultFPContractMode()) {
426  // Preserve any contraction performed by the front-end. (Strict performs
427  // splitting of the muladd intrinsic in the backend.)
428  Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
429  break;
430  case LangOptions::FPC_On:
431  Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
432  break;
434  Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
435  break;
436  }
437 
438  Options.UseInitArray = CodeGenOpts.UseInitArray;
439  Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
440  Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections();
441  Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations;
442 
443  // Set EABI version.
444  Options.EABIVersion = TargetOpts.EABIVersion;
445 
446  if (LangOpts.SjLjExceptions)
447  Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
448  if (LangOpts.SEHExceptions)
449  Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
450  if (LangOpts.DWARFExceptions)
451  Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
452 
453  Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath;
454  Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath;
455  Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
456  Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath;
457  Options.StackAlignmentOverride = CodeGenOpts.StackAlignment;
458  Options.FunctionSections = CodeGenOpts.FunctionSections;
459  Options.DataSections = CodeGenOpts.DataSections;
460  Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
461  Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
462  Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS;
463  Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
464  Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
465  Options.EmitAddrsig = CodeGenOpts.Addrsig;
466 
467  if (CodeGenOpts.getSplitDwarfMode() != CodeGenOptions::NoFission)
468  Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
469  Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
470  Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
471  Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm;
472  Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
473  Options.MCOptions.MCIncrementalLinkerCompatible =
474  CodeGenOpts.IncrementalLinkerCompatible;
475  Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations;
476  Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
477  Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
478  Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
479  Options.MCOptions.ABIName = TargetOpts.ABI;
480  for (const auto &Entry : HSOpts.UserEntries)
481  if (!Entry.IsFramework &&
482  (Entry.Group == frontend::IncludeDirGroup::Quoted ||
483  Entry.Group == frontend::IncludeDirGroup::Angled ||
484  Entry.Group == frontend::IncludeDirGroup::System))
485  Options.MCOptions.IASSearchPaths.push_back(
486  Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
487 }
489  if (CodeGenOpts.DisableGCov)
490  return None;
491  if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes)
492  return None;
493  // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
494  // LLVM's -default-gcov-version flag is set to something invalid.
495  GCOVOptions Options;
496  Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
497  Options.EmitData = CodeGenOpts.EmitGcovArcs;
498  llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version));
499  Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum;
500  Options.NoRedZone = CodeGenOpts.DisableRedZone;
501  Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData;
502  Options.Filter = CodeGenOpts.ProfileFilterFiles;
503  Options.Exclude = CodeGenOpts.ProfileExcludeFiles;
504  Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody;
505  return Options;
506 }
507 
508 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM,
509  legacy::FunctionPassManager &FPM) {
510  // Handle disabling of all LLVM passes, where we want to preserve the
511  // internal module before any optimization.
512  if (CodeGenOpts.DisableLLVMPasses)
513  return;
514 
515  // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM
516  // manually (and not via PMBuilder), since some passes (eg. InstrProfiling)
517  // are inserted before PMBuilder ones - they'd get the default-constructed
518  // TLI with an unknown target otherwise.
519  Triple TargetTriple(TheModule->getTargetTriple());
520  std::unique_ptr<TargetLibraryInfoImpl> TLII(
521  createTLII(TargetTriple, CodeGenOpts));
522 
523  PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts);
524 
525  // At O0 and O1 we only run the always inliner which is more efficient. At
526  // higher optimization levels we run the normal inliner.
527  if (CodeGenOpts.OptimizationLevel <= 1) {
528  bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 &&
529  !CodeGenOpts.DisableLifetimeMarkers);
530  PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics);
531  } else {
532  // We do not want to inline hot callsites for SamplePGO module-summary build
533  // because profile annotation will happen again in ThinLTO backend, and we
534  // want the IR of the hot path to match the profile.
535  PMBuilder.Inliner = createFunctionInliningPass(
536  CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize,
537  (!CodeGenOpts.SampleProfileFile.empty() &&
538  CodeGenOpts.PrepareForThinLTO));
539  }
540 
541  PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel;
542  PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
543  PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
544  PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;
545 
546  PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;
547  PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions;
548  PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO;
549  PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO;
550  PMBuilder.RerollLoops = CodeGenOpts.RerollLoops;
551 
552  MPM.add(new TargetLibraryInfoWrapperPass(*TLII));
553 
554  if (TM)
555  TM->adjustPassManager(PMBuilder);
556 
557  if (CodeGenOpts.DebugInfoForProfiling ||
558  !CodeGenOpts.SampleProfileFile.empty())
559  PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
561 
562  // In ObjC ARC mode, add the main ARC optimization passes.
563  if (LangOpts.ObjCAutoRefCount) {
564  PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
566  PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
568  PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
570  }
571 
572  if (LangOpts.Coroutines)
573  addCoroutinePassesToExtensionPoints(PMBuilder);
574 
575  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) {
576  PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
578  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
580  }
581 
582  if (CodeGenOpts.SanitizeCoverageType ||
583  CodeGenOpts.SanitizeCoverageIndirectCalls ||
584  CodeGenOpts.SanitizeCoverageTraceCmp) {
585  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
587  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
589  }
590 
591  if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
592  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
594  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
596  }
597 
598  if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) {
599  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
601  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
603  }
604 
605  if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) {
606  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
608  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
610  }
611 
612  if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) {
613  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
615  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
617  }
618 
619  if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
620  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
622  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
624  }
625 
626  if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) {
627  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
629  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
631  }
632 
633  if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
634  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
636  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
638  }
639 
640  if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
641  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
643  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
645  }
646 
647  // Set up the per-function pass manager.
648  FPM.add(new TargetLibraryInfoWrapperPass(*TLII));
649  if (CodeGenOpts.VerifyModule)
650  FPM.add(createVerifierPass());
651 
652  // Set up the per-module pass manager.
653  if (!CodeGenOpts.RewriteMapFiles.empty())
654  addSymbolRewriterPass(CodeGenOpts, &MPM);
655 
656  if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) {
657  MPM.add(createGCOVProfilerPass(*Options));
658  if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo)
659  MPM.add(createStripSymbolsPass(true));
660  }
661 
662  if (CodeGenOpts.hasProfileClangInstr()) {
663  InstrProfOptions Options;
664  Options.NoRedZone = CodeGenOpts.DisableRedZone;
665  Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
666 
667  // TODO: Surface the option to emit atomic profile counter increments at
668  // the driver level.
669  Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread);
670 
671  MPM.add(createInstrProfilingLegacyPass(Options, false));
672  }
673  bool hasIRInstr = false;
674  if (CodeGenOpts.hasProfileIRInstr()) {
675  PMBuilder.EnablePGOInstrGen = true;
676  hasIRInstr = true;
677  }
678  if (CodeGenOpts.hasProfileCSIRInstr()) {
679  assert(!CodeGenOpts.hasProfileCSIRUse() &&
680  "Cannot have both CSProfileUse pass and CSProfileGen pass at the "
681  "same time");
682  assert(!hasIRInstr &&
683  "Cannot have both ProfileGen pass and CSProfileGen pass at the "
684  "same time");
685  PMBuilder.EnablePGOCSInstrGen = true;
686  hasIRInstr = true;
687  }
688  if (hasIRInstr) {
689  if (!CodeGenOpts.InstrProfileOutput.empty())
690  PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput;
691  else
692  PMBuilder.PGOInstrGen = DefaultProfileGenName;
693  }
694  if (CodeGenOpts.hasProfileIRUse()) {
695  PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath;
696  PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse();
697  }
698 
699  if (!CodeGenOpts.SampleProfileFile.empty())
700  PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile;
701 
702  PMBuilder.populateFunctionPassManager(FPM);
703  PMBuilder.populateModulePassManager(MPM);
704 }
705 
706 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
707  SmallVector<const char *, 16> BackendArgs;
708  BackendArgs.push_back("clang"); // Fake program name.
709  if (!CodeGenOpts.DebugPass.empty()) {
710  BackendArgs.push_back("-debug-pass");
711  BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
712  }
713  if (!CodeGenOpts.LimitFloatPrecision.empty()) {
714  BackendArgs.push_back("-limit-float-precision");
715  BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
716  }
717  BackendArgs.push_back(nullptr);
718  llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
719  BackendArgs.data());
720 }
721 
722 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
723  // Create the TargetMachine for generating code.
724  std::string Error;
725  std::string Triple = TheModule->getTargetTriple();
726  const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
727  if (!TheTarget) {
728  if (MustCreateTM)
729  Diags.Report(diag::err_fe_unable_to_create_target) << Error;
730  return;
731  }
732 
734  std::string FeaturesStr =
735  llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
736  llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
737  CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts);
738 
739  llvm::TargetOptions Options;
740  initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts);
741  TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
742  Options, RM, CM, OptLevel));
743 }
744 
745 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
746  BackendAction Action,
747  raw_pwrite_stream &OS,
748  raw_pwrite_stream *DwoOS) {
749  // Add LibraryInfo.
750  llvm::Triple TargetTriple(TheModule->getTargetTriple());
751  std::unique_ptr<TargetLibraryInfoImpl> TLII(
752  createTLII(TargetTriple, CodeGenOpts));
753  CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
754 
755  // Normal mode, emit a .s or .o file by running the code generator. Note,
756  // this also adds codegenerator level optimization passes.
757  TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action);
758 
759  // Add ObjC ARC final-cleanup optimizations. This is done as part of the
760  // "codegen" passes so that it isn't run multiple times when there is
761  // inlining happening.
762  if (CodeGenOpts.OptimizationLevel > 0)
763  CodeGenPasses.add(createObjCARCContractPass());
764 
765  if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT,
766  /*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
767  Diags.Report(diag::err_fe_unable_to_interface_with_target);
768  return false;
769  }
770 
771  return true;
772 }
773 
775  std::unique_ptr<raw_pwrite_stream> OS) {
776  TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr);
777 
778  setCommandLineOpts(CodeGenOpts);
779 
780  bool UsesCodeGen = (Action != Backend_EmitNothing &&
781  Action != Backend_EmitBC &&
782  Action != Backend_EmitLL);
783  CreateTargetMachine(UsesCodeGen);
784 
785  if (UsesCodeGen && !TM)
786  return;
787  if (TM)
788  TheModule->setDataLayout(TM->createDataLayout());
789 
790  legacy::PassManager PerModulePasses;
791  PerModulePasses.add(
792  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
793 
794  legacy::FunctionPassManager PerFunctionPasses(TheModule);
795  PerFunctionPasses.add(
796  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
797 
798  CreatePasses(PerModulePasses, PerFunctionPasses);
799 
800  legacy::PassManager CodeGenPasses;
801  CodeGenPasses.add(
802  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
803 
804  std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
805 
806  switch (Action) {
807  case Backend_EmitNothing:
808  break;
809 
810  case Backend_EmitBC:
811  if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
812  if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
813  ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
814  if (!ThinLinkOS)
815  return;
816  }
817  TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
818  CodeGenOpts.EnableSplitLTOUnit);
819  PerModulePasses.add(createWriteThinLTOBitcodePass(
820  *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr));
821  } else {
822  // Emit a module summary by default for Regular LTO except for ld64
823  // targets
824  bool EmitLTOSummary =
825  (CodeGenOpts.PrepareForLTO &&
826  !CodeGenOpts.DisableLLVMPasses &&
827  llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
828  llvm::Triple::Apple);
829  if (EmitLTOSummary) {
830  if (!TheModule->getModuleFlag("ThinLTO"))
831  TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
832  TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
833  CodeGenOpts.EnableSplitLTOUnit);
834  }
835 
836  PerModulePasses.add(createBitcodeWriterPass(
837  *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary));
838  }
839  break;
840 
841  case Backend_EmitLL:
842  PerModulePasses.add(
843  createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
844  break;
845 
846  default:
847  if (!CodeGenOpts.SplitDwarfFile.empty() &&
848  (CodeGenOpts.getSplitDwarfMode() == CodeGenOptions::SplitFileFission)) {
849  DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile);
850  if (!DwoOS)
851  return;
852  }
853  if (!AddEmitPasses(CodeGenPasses, Action, *OS,
854  DwoOS ? &DwoOS->os() : nullptr))
855  return;
856  }
857 
858  // Before executing passes, print the final values of the LLVM options.
859  cl::PrintOptionValues();
860 
861  // Run passes. For now we do all passes at once, but eventually we
862  // would like to have the option of streaming code generation.
863 
864  {
865  PrettyStackTraceString CrashInfo("Per-function optimization");
866 
867  PerFunctionPasses.doInitialization();
868  for (Function &F : *TheModule)
869  if (!F.isDeclaration())
870  PerFunctionPasses.run(F);
871  PerFunctionPasses.doFinalization();
872  }
873 
874  {
875  PrettyStackTraceString CrashInfo("Per-module optimization passes");
876  PerModulePasses.run(*TheModule);
877  }
878 
879  {
880  PrettyStackTraceString CrashInfo("Code generation");
881  CodeGenPasses.run(*TheModule);
882  }
883 
884  if (ThinLinkOS)
885  ThinLinkOS->keep();
886  if (DwoOS)
887  DwoOS->keep();
888 }
889 
890 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
891  switch (Opts.OptimizationLevel) {
892  default:
893  llvm_unreachable("Invalid optimization level!");
894 
895  case 1:
896  return PassBuilder::O1;
897 
898  case 2:
899  switch (Opts.OptimizeSize) {
900  default:
901  llvm_unreachable("Invalid optimization level for size!");
902 
903  case 0:
904  return PassBuilder::O2;
905 
906  case 1:
907  return PassBuilder::Os;
908 
909  case 2:
910  return PassBuilder::Oz;
911  }
912 
913  case 3:
914  return PassBuilder::O3;
915  }
916 }
917 
918 static void addSanitizersAtO0(ModulePassManager &MPM,
919  const Triple &TargetTriple,
920  const LangOptions &LangOpts,
921  const CodeGenOptions &CodeGenOpts) {
922  if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
923  MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>());
924  bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address);
925  MPM.addPass(createModuleToFunctionPassAdaptor(
926  AddressSanitizerPass(/*CompileKernel=*/false, Recover,
927  CodeGenOpts.SanitizeAddressUseAfterScope)));
928  bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
929  MPM.addPass(ModuleAddressSanitizerPass(
930  /*CompileKernel=*/false, Recover, ModuleUseAfterScope,
931  CodeGenOpts.SanitizeAddressUseOdrIndicator));
932  }
933 
934  if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
935  MPM.addPass(createModuleToFunctionPassAdaptor(MemorySanitizerPass({})));
936  }
937 
938  if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
939  MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
940  }
941 }
942 
943 /// A clean version of `EmitAssembly` that uses the new pass manager.
944 ///
945 /// Not all features are currently supported in this system, but where
946 /// necessary it falls back to the legacy pass manager to at least provide
947 /// basic functionality.
948 ///
949 /// This API is planned to have its functionality finished and then to replace
950 /// `EmitAssembly` at some point in the future when the default switches.
951 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager(
952  BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) {
953  TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr);
954  setCommandLineOpts(CodeGenOpts);
955 
956  // The new pass manager always makes a target machine available to passes
957  // during construction.
958  CreateTargetMachine(/*MustCreateTM*/ true);
959  if (!TM)
960  // This will already be diagnosed, just bail.
961  return;
962  TheModule->setDataLayout(TM->createDataLayout());
963 
964  Optional<PGOOptions> PGOOpt;
965 
966  if (CodeGenOpts.hasProfileIRInstr())
967  // -fprofile-generate.
968  PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty()
969  ? DefaultProfileGenName
970  : CodeGenOpts.InstrProfileOutput,
971  "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction,
972  CodeGenOpts.DebugInfoForProfiling);
973  else if (CodeGenOpts.hasProfileIRUse()) {
974  // -fprofile-use.
975  auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse
976  : PGOOptions::NoCSAction;
977  PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "",
978  CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse,
979  CSAction, CodeGenOpts.DebugInfoForProfiling);
980  } else if (!CodeGenOpts.SampleProfileFile.empty())
981  // -fprofile-sample-use
982  PGOOpt =
983  PGOOptions(CodeGenOpts.SampleProfileFile, "",
984  CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse,
985  PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling);
986  else if (CodeGenOpts.DebugInfoForProfiling)
987  // -fdebug-info-for-profiling
988  PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction,
989  PGOOptions::NoCSAction, true);
990 
991  // Check to see if we want to generate a CS profile.
992  if (CodeGenOpts.hasProfileCSIRInstr()) {
993  assert(!CodeGenOpts.hasProfileCSIRUse() &&
994  "Cannot have both CSProfileUse pass and CSProfileGen pass at "
995  "the same time");
996  if (PGOOpt.hasValue()) {
997  assert(PGOOpt->Action != PGOOptions::IRInstr &&
998  PGOOpt->Action != PGOOptions::SampleUse &&
999  "Cannot run CSProfileGen pass with ProfileGen or SampleUse "
1000  " pass");
1001  PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty()
1002  ? DefaultProfileGenName
1003  : CodeGenOpts.InstrProfileOutput;
1004  PGOOpt->CSAction = PGOOptions::CSIRInstr;
1005  } else
1006  PGOOpt = PGOOptions("",
1007  CodeGenOpts.InstrProfileOutput.empty()
1008  ? DefaultProfileGenName
1009  : CodeGenOpts.InstrProfileOutput,
1010  "", PGOOptions::NoAction, PGOOptions::CSIRInstr,
1011  CodeGenOpts.DebugInfoForProfiling);
1012  }
1013 
1014  PassBuilder PB(TM.get(), PipelineTuningOptions(), PGOOpt);
1015 
1016  // Attempt to load pass plugins and register their callbacks with PB.
1017  for (auto &PluginFN : CodeGenOpts.PassPlugins) {
1018  auto PassPlugin = PassPlugin::Load(PluginFN);
1019  if (PassPlugin) {
1020  PassPlugin->registerPassBuilderCallbacks(PB);
1021  } else {
1022  Diags.Report(diag::err_fe_unable_to_load_plugin)
1023  << PluginFN << toString(PassPlugin.takeError());
1024  }
1025  }
1026 
1027  LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager);
1028  FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager);
1029  CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager);
1030  ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager);
1031 
1032  // Register the AA manager first so that our version is the one used.
1033  FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); });
1034 
1035  // Register the target library analysis directly and give it a customized
1036  // preset TLI.
1037  Triple TargetTriple(TheModule->getTargetTriple());
1038  std::unique_ptr<TargetLibraryInfoImpl> TLII(
1039  createTLII(TargetTriple, CodeGenOpts));
1040  FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
1041  MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
1042 
1043  // Register all the basic analyses with the managers.
1044  PB.registerModuleAnalyses(MAM);
1045  PB.registerCGSCCAnalyses(CGAM);
1046  PB.registerFunctionAnalyses(FAM);
1047  PB.registerLoopAnalyses(LAM);
1048  PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
1049 
1050  ModulePassManager MPM(CodeGenOpts.DebugPassManager);
1051 
1052  if (!CodeGenOpts.DisableLLVMPasses) {
1053  bool IsThinLTO = CodeGenOpts.PrepareForThinLTO;
1054  bool IsLTO = CodeGenOpts.PrepareForLTO;
1055 
1056  if (CodeGenOpts.OptimizationLevel == 0) {
1057  if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts))
1058  MPM.addPass(GCOVProfilerPass(*Options));
1059 
1060  // Build a minimal pipeline based on the semantics required by Clang,
1061  // which is just that always inlining occurs.
1062  MPM.addPass(AlwaysInlinerPass());
1063 
1064  // At -O0 we directly run necessary sanitizer passes.
1065  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
1066  MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass()));
1067 
1068  // Lastly, add semantically necessary passes for LTO.
1069  if (IsLTO || IsThinLTO) {
1070  MPM.addPass(CanonicalizeAliasesPass());
1071  MPM.addPass(NameAnonGlobalPass());
1072  }
1073  } else {
1074  // Map our optimization levels into one of the distinct levels used to
1075  // configure the pipeline.
1076  PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts);
1077 
1078  // Register callbacks to schedule sanitizer passes at the appropriate part of
1079  // the pipeline.
1080  // FIXME: either handle asan/the remaining sanitizers or error out
1081  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
1082  PB.registerScalarOptimizerLateEPCallback(
1083  [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
1084  FPM.addPass(BoundsCheckingPass());
1085  });
1086  if (LangOpts.Sanitize.has(SanitizerKind::Memory))
1087  PB.registerOptimizerLastEPCallback(
1088  [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
1089  FPM.addPass(MemorySanitizerPass({}));
1090  });
1091  if (LangOpts.Sanitize.has(SanitizerKind::Thread))
1092  PB.registerOptimizerLastEPCallback(
1093  [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
1094  FPM.addPass(ThreadSanitizerPass());
1095  });
1096  if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
1097  PB.registerPipelineStartEPCallback([&](ModulePassManager &MPM) {
1098  MPM.addPass(
1099  RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>());
1100  });
1101  bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address);
1102  bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope;
1103  PB.registerOptimizerLastEPCallback(
1104  [Recover, UseAfterScope](FunctionPassManager &FPM,
1105  PassBuilder::OptimizationLevel Level) {
1106  FPM.addPass(AddressSanitizerPass(
1107  /*CompileKernel=*/false, Recover, UseAfterScope));
1108  });
1109  bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
1110  bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator;
1111  PB.registerPipelineStartEPCallback(
1112  [Recover, ModuleUseAfterScope,
1113  UseOdrIndicator](ModulePassManager &MPM) {
1114  MPM.addPass(ModuleAddressSanitizerPass(
1115  /*CompileKernel=*/false, Recover, ModuleUseAfterScope,
1116  UseOdrIndicator));
1117  });
1118  }
1119  if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts))
1120  PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) {
1121  MPM.addPass(GCOVProfilerPass(*Options));
1122  });
1123 
1124  if (IsThinLTO) {
1125  MPM = PB.buildThinLTOPreLinkDefaultPipeline(
1126  Level, CodeGenOpts.DebugPassManager);
1127  MPM.addPass(CanonicalizeAliasesPass());
1128  MPM.addPass(NameAnonGlobalPass());
1129  } else if (IsLTO) {
1130  MPM = PB.buildLTOPreLinkDefaultPipeline(Level,
1131  CodeGenOpts.DebugPassManager);
1132  MPM.addPass(CanonicalizeAliasesPass());
1133  MPM.addPass(NameAnonGlobalPass());
1134  } else {
1135  MPM = PB.buildPerModuleDefaultPipeline(Level,
1136  CodeGenOpts.DebugPassManager);
1137  }
1138  }
1139 
1140  if (CodeGenOpts.OptimizationLevel == 0)
1141  addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts);
1142  }
1143 
1144  // FIXME: We still use the legacy pass manager to do code generation. We
1145  // create that pass manager here and use it as needed below.
1146  legacy::PassManager CodeGenPasses;
1147  bool NeedCodeGen = false;
1148  std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
1149 
1150  // Append any output we need to the pass manager.
1151  switch (Action) {
1152  case Backend_EmitNothing:
1153  break;
1154 
1155  case Backend_EmitBC:
1156  if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
1157  if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
1158  ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
1159  if (!ThinLinkOS)
1160  return;
1161  }
1162  TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
1163  CodeGenOpts.EnableSplitLTOUnit);
1164  MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os()
1165  : nullptr));
1166  } else {
1167  // Emit a module summary by default for Regular LTO except for ld64
1168  // targets
1169  bool EmitLTOSummary =
1170  (CodeGenOpts.PrepareForLTO &&
1171  !CodeGenOpts.DisableLLVMPasses &&
1172  llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
1173  llvm::Triple::Apple);
1174  if (EmitLTOSummary) {
1175  if (!TheModule->getModuleFlag("ThinLTO"))
1176  TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
1177  TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
1178  CodeGenOpts.EnableSplitLTOUnit);
1179  }
1180  MPM.addPass(
1181  BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary));
1182  }
1183  break;
1184 
1185  case Backend_EmitLL:
1186  MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
1187  break;
1188 
1189  case Backend_EmitAssembly:
1190  case Backend_EmitMCNull:
1191  case Backend_EmitObj:
1192  NeedCodeGen = true;
1193  CodeGenPasses.add(
1194  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
1195  if (!CodeGenOpts.SplitDwarfFile.empty()) {
1196  DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile);
1197  if (!DwoOS)
1198  return;
1199  }
1200  if (!AddEmitPasses(CodeGenPasses, Action, *OS,
1201  DwoOS ? &DwoOS->os() : nullptr))
1202  // FIXME: Should we handle this error differently?
1203  return;
1204  break;
1205  }
1206 
1207  // Before executing passes, print the final values of the LLVM options.
1208  cl::PrintOptionValues();
1209 
1210  // Now that we have all of the passes ready, run them.
1211  {
1212  PrettyStackTraceString CrashInfo("Optimizer");
1213  MPM.run(*TheModule, MAM);
1214  }
1215 
1216  // Now if needed, run the legacy PM for codegen.
1217  if (NeedCodeGen) {
1218  PrettyStackTraceString CrashInfo("Code generation");
1219  CodeGenPasses.run(*TheModule);
1220  }
1221 
1222  if (ThinLinkOS)
1223  ThinLinkOS->keep();
1224  if (DwoOS)
1225  DwoOS->keep();
1226 }
1227 
1228 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) {
1229  Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef);
1230  if (!BMsOrErr)
1231  return BMsOrErr.takeError();
1232 
1233  // The bitcode file may contain multiple modules, we want the one that is
1234  // marked as being the ThinLTO module.
1235  if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr))
1236  return *Bm;
1237 
1238  return make_error<StringError>("Could not find module summary",
1239  inconvertibleErrorCode());
1240 }
1241 
1243  for (BitcodeModule &BM : BMs) {
1244  Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo();
1245  if (LTOInfo && LTOInfo->IsThinLTO)
1246  return &BM;
1247  }
1248  return nullptr;
1249 }
1250 
1251 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M,
1252  const HeaderSearchOptions &HeaderOpts,
1253  const CodeGenOptions &CGOpts,
1254  const clang::TargetOptions &TOpts,
1255  const LangOptions &LOpts,
1256  std::unique_ptr<raw_pwrite_stream> OS,
1257  std::string SampleProfile,
1258  std::string ProfileRemapping,
1259  BackendAction Action) {
1260  StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
1261  ModuleToDefinedGVSummaries;
1262  CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
1263 
1264  setCommandLineOpts(CGOpts);
1265 
1266  // We can simply import the values mentioned in the combined index, since
1267  // we should only invoke this using the individual indexes written out
1268  // via a WriteIndexesThinBackend.
1269  FunctionImporter::ImportMapTy ImportList;
1270  for (auto &GlobalList : *CombinedIndex) {
1271  // Ignore entries for undefined references.
1272  if (GlobalList.second.SummaryList.empty())
1273  continue;
1274 
1275  auto GUID = GlobalList.first;
1276  for (auto &Summary : GlobalList.second.SummaryList) {
1277  // Skip the summaries for the importing module. These are included to
1278  // e.g. record required linkage changes.
1279  if (Summary->modulePath() == M->getModuleIdentifier())
1280  continue;
1281  // Add an entry to provoke importing by thinBackend.
1282  ImportList[Summary->modulePath()].insert(GUID);
1283  }
1284  }
1285 
1286  std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports;
1287  MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap;
1288 
1289  for (auto &I : ImportList) {
1290  ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr =
1291  llvm::MemoryBuffer::getFile(I.first());
1292  if (!MBOrErr) {
1293  errs() << "Error loading imported file '" << I.first()
1294  << "': " << MBOrErr.getError().message() << "\n";
1295  return;
1296  }
1297 
1298  Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr);
1299  if (!BMOrErr) {
1300  handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) {
1301  errs() << "Error loading imported file '" << I.first()
1302  << "': " << EIB.message() << '\n';
1303  });
1304  return;
1305  }
1306  ModuleMap.insert({I.first(), *BMOrErr});
1307 
1308  OwnedImports.push_back(std::move(*MBOrErr));
1309  }
1310  auto AddStream = [&](size_t Task) {
1311  return llvm::make_unique<lto::NativeObjectStream>(std::move(OS));
1312  };
1313  lto::Config Conf;
1314  if (CGOpts.SaveTempsFilePrefix != "") {
1315  if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".",
1316  /* UseInputModulePath */ false)) {
1317  handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1318  errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
1319  << '\n';
1320  });
1321  }
1322  }
1323  Conf.CPU = TOpts.CPU;
1324  Conf.CodeModel = getCodeModel(CGOpts);
1325  Conf.MAttrs = TOpts.Features;
1326  Conf.RelocModel = CGOpts.RelocationModel;
1327  Conf.CGOptLevel = getCGOptLevel(CGOpts);
1328  initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts);
1329  Conf.SampleProfile = std::move(SampleProfile);
1330 
1331  // Context sensitive profile.
1332  if (CGOpts.hasProfileCSIRInstr()) {
1333  Conf.RunCSIRInstr = true;
1334  Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput);
1335  } else if (CGOpts.hasProfileCSIRUse()) {
1336  Conf.RunCSIRInstr = false;
1337  Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath);
1338  }
1339 
1340  Conf.ProfileRemapping = std::move(ProfileRemapping);
1341  Conf.UseNewPM = CGOpts.ExperimentalNewPassManager;
1342  Conf.DebugPassManager = CGOpts.DebugPassManager;
1343  Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness;
1344  Conf.RemarksFilename = CGOpts.OptRecordFile;
1345  Conf.RemarksPasses = CGOpts.OptRecordPasses;
1346  Conf.DwoPath = CGOpts.SplitDwarfFile;
1347  switch (Action) {
1348  case Backend_EmitNothing:
1349  Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) {
1350  return false;
1351  };
1352  break;
1353  case Backend_EmitLL:
1354  Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1355  M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
1356  return false;
1357  };
1358  break;
1359  case Backend_EmitBC:
1360  Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1361  WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists);
1362  return false;
1363  };
1364  break;
1365  default:
1366  Conf.CGFileType = getCodeGenFileType(Action);
1367  break;
1368  }
1369  if (Error E = thinBackend(
1370  Conf, -1, AddStream, *M, *CombinedIndex, ImportList,
1371  ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) {
1372  handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1373  errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
1374  });
1375  }
1376 }
1377 
1379  const HeaderSearchOptions &HeaderOpts,
1380  const CodeGenOptions &CGOpts,
1381  const clang::TargetOptions &TOpts,
1382  const LangOptions &LOpts,
1383  const llvm::DataLayout &TDesc, Module *M,
1384  BackendAction Action,
1385  std::unique_ptr<raw_pwrite_stream> OS) {
1386 
1387  llvm::TimeTraceScope TimeScope("Backend", StringRef(""));
1388 
1389  std::unique_ptr<llvm::Module> EmptyModule;
1390  if (!CGOpts.ThinLTOIndexFile.empty()) {
1391  // If we are performing a ThinLTO importing compile, load the function index
1392  // into memory and pass it into runThinLTOBackend, which will run the
1393  // function importer and invoke LTO passes.
1395  llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile,
1396  /*IgnoreEmptyThinLTOIndexFile*/true);
1397  if (!IndexOrErr) {
1398  logAllUnhandledErrors(IndexOrErr.takeError(), errs(),
1399  "Error loading index file '" +
1400  CGOpts.ThinLTOIndexFile + "': ");
1401  return;
1402  }
1403  std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr);
1404  // A null CombinedIndex means we should skip ThinLTO compilation
1405  // (LLVM will optionally ignore empty index files, returning null instead
1406  // of an error).
1407  if (CombinedIndex) {
1408  if (!CombinedIndex->skipModuleByDistributedBackend()) {
1409  runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts,
1410  LOpts, std::move(OS), CGOpts.SampleProfileFile,
1411  CGOpts.ProfileRemappingFile, Action);
1412  return;
1413  }
1414  // Distributed indexing detected that nothing from the module is needed
1415  // for the final linking. So we can skip the compilation. We sill need to
1416  // output an empty object file to make sure that a linker does not fail
1417  // trying to read it. Also for some features, like CFI, we must skip
1418  // the compilation as CombinedIndex does not contain all required
1419  // information.
1420  EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext());
1421  EmptyModule->setTargetTriple(M->getTargetTriple());
1422  M = EmptyModule.get();
1423  }
1424  }
1425 
1426  EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M);
1427 
1428  if (CGOpts.ExperimentalNewPassManager)
1429  AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS));
1430  else
1431  AsmHelper.EmitAssembly(Action, std::move(OS));
1432 
1433  // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
1434  // DataLayout.
1435  if (AsmHelper.TM) {
1436  std::string DLDesc = M->getDataLayout().getStringRepresentation();
1437  if (DLDesc != TDesc.getStringRepresentation()) {
1438  unsigned DiagID = Diags.getCustomDiagID(
1439  DiagnosticsEngine::Error, "backend data layout '%0' does not match "
1440  "expected target description '%1'");
1441  Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation();
1442  }
1443  }
1444 }
1445 
1446 static const char* getSectionNameForBitcode(const Triple &T) {
1447  switch (T.getObjectFormat()) {
1448  case Triple::MachO:
1449  return "__LLVM,__bitcode";
1450  case Triple::COFF:
1451  case Triple::ELF:
1452  case Triple::Wasm:
1453  case Triple::UnknownObjectFormat:
1454  return ".llvmbc";
1455  case Triple::XCOFF:
1456  llvm_unreachable("XCOFF is not yet implemented");
1457  break;
1458  }
1459  llvm_unreachable("Unimplemented ObjectFormatType");
1460 }
1461 
1462 static const char* getSectionNameForCommandline(const Triple &T) {
1463  switch (T.getObjectFormat()) {
1464  case Triple::MachO:
1465  return "__LLVM,__cmdline";
1466  case Triple::COFF:
1467  case Triple::ELF:
1468  case Triple::Wasm:
1469  case Triple::UnknownObjectFormat:
1470  return ".llvmcmd";
1471  case Triple::XCOFF:
1472  llvm_unreachable("XCOFF is not yet implemented");
1473  break;
1474  }
1475  llvm_unreachable("Unimplemented ObjectFormatType");
1476 }
1477 
1478 // With -fembed-bitcode, save a copy of the llvm IR as data in the
1479 // __LLVM,__bitcode section.
1480 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
1481  llvm::MemoryBufferRef Buf) {
1482  if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
1483  return;
1484 
1485  // Save llvm.compiler.used and remote it.
1486  SmallVector<Constant*, 2> UsedArray;
1487  SmallPtrSet<GlobalValue*, 4> UsedGlobals;
1488  Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0);
1489  GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true);
1490  for (auto *GV : UsedGlobals) {
1491  if (GV->getName() != "llvm.embedded.module" &&
1492  GV->getName() != "llvm.cmdline")
1493  UsedArray.push_back(
1494  ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1495  }
1496  if (Used)
1497  Used->eraseFromParent();
1498 
1499  // Embed the bitcode for the llvm module.
1500  std::string Data;
1501  ArrayRef<uint8_t> ModuleData;
1502  Triple T(M->getTargetTriple());
1503  // Create a constant that contains the bitcode.
1504  // In case of embedding a marker, ignore the input Buf and use the empty
1505  // ArrayRef. It is also legal to create a bitcode marker even Buf is empty.
1506  if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) {
1507  if (!isBitcode((const unsigned char *)Buf.getBufferStart(),
1508  (const unsigned char *)Buf.getBufferEnd())) {
1509  // If the input is LLVM Assembly, bitcode is produced by serializing
1510  // the module. Use-lists order need to be perserved in this case.
1511  llvm::raw_string_ostream OS(Data);
1512  llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true);
1513  ModuleData =
1514  ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
1515  } else
1516  // If the input is LLVM bitcode, write the input byte stream directly.
1517  ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
1518  Buf.getBufferSize());
1519  }
1520  llvm::Constant *ModuleConstant =
1521  llvm::ConstantDataArray::get(M->getContext(), ModuleData);
1522  llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1523  *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
1524  ModuleConstant);
1525  GV->setSection(getSectionNameForBitcode(T));
1526  UsedArray.push_back(
1527  ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1528  if (llvm::GlobalVariable *Old =
1529  M->getGlobalVariable("llvm.embedded.module", true)) {
1530  assert(Old->hasOneUse() &&
1531  "llvm.embedded.module can only be used once in llvm.compiler.used");
1532  GV->takeName(Old);
1533  Old->eraseFromParent();
1534  } else {
1535  GV->setName("llvm.embedded.module");
1536  }
1537 
1538  // Skip if only bitcode needs to be embedded.
1539  if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) {
1540  // Embed command-line options.
1541  ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()),
1542  CGOpts.CmdArgs.size());
1543  llvm::Constant *CmdConstant =
1544  llvm::ConstantDataArray::get(M->getContext(), CmdData);
1545  GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true,
1546  llvm::GlobalValue::PrivateLinkage,
1547  CmdConstant);
1548  GV->setSection(getSectionNameForCommandline(T));
1549  UsedArray.push_back(
1550  ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1551  if (llvm::GlobalVariable *Old =
1552  M->getGlobalVariable("llvm.cmdline", true)) {
1553  assert(Old->hasOneUse() &&
1554  "llvm.cmdline can only be used once in llvm.compiler.used");
1555  GV->takeName(Old);
1556  Old->eraseFromParent();
1557  } else {
1558  GV->setName("llvm.cmdline");
1559  }
1560  }
1561 
1562  if (UsedArray.empty())
1563  return;
1564 
1565  // Recreate llvm.compiler.used.
1566  ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
1567  auto *NewUsed = new GlobalVariable(
1568  *M, ATy, false, llvm::GlobalValue::AppendingLinkage,
1569  llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
1570  NewUsed->setSection("llvm.metadata");
1571 }
std::string ProfileInstrumentUsePath
Name of the profile file to use as input for -fprofile-instr-use.
Paths for &#39;#include <>&#39; added by &#39;-I&#39;.
static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
std::string SaveTempsFilePrefix
Prefix to use for -save-temps output.
Emit human-readable LLVM assembly.
Definition: BackendUtil.h:33
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:29
Run CodeGen, but don&#39;t emit anything.
Definition: BackendUtil.h:35
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:183
std::string OptRecordPasses
The regex that filters the passes that should be saved to the optimization records.
The base class of the type hierarchy.
Definition: Type.h:1414
std::string SampleProfileFile
Name of the profile file to use with -fprofile-sample-use.
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1296
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2824
static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static Optional< GCOVOptions > getGCOVOptions(const CodeGenOptions &CodeGenOpts)
std::vector< std::string > RewriteMapFiles
Set of files defining the rules for the symbol rewriting.
Don&#39;t emit anything (benchmarking mode)
Definition: BackendUtil.h:34
Options for controlling the target.
Definition: TargetOptions.h:26
std::string SplitDwarfFile
The name for the split debug info file that we&#39;ll break out.
static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, const LangOptions &LOpts, std::unique_ptr< raw_pwrite_stream > OS, std::string SampleProfile, std::string ProfileRemapping, BackendAction Action)
std::string DebugPass
Enable additional debugging information.
SanitizerSet SanitizeRecover
Set of sanitizer checks that are non-fatal (i.e.
Emit LLVM bitcode files.
Definition: BackendUtil.h:32
static std::string toString(const clang::SanitizerSet &Sanitizers)
Produce a string containing comma-separated names of sanitizers in Sanitizers set.
std::vector< Entry > UserEntries
User specified include entries.
std::vector< uint8_t > CmdArgs
List of backend command-line options for -fembed-bitcode.
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:49
std::string CodeModel
The code model to use (-mcmodel).
Describes a module or submodule.
Definition: Module.h:64
BackendAction
Definition: BackendUtil.h:30
bool hasProfileCSIRUse() const
Check if CSIR profile use is on.
std::vector< std::string > PassPlugins
List of dynamic shared object files to be loaded as pass plugins.
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:148
static void addThreadSanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
Defines the Diagnostic-related interfaces.
static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts)
static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts)
static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
std::string FloatABI
The ABI to use for passing floating point arguments.
std::string ThreadModel
The thread model to use.
std::string ProfileFilterFiles
Regexes separated by a semi-colon to filter the files to instrument.
std::string ProfileRemappingFile
Name of the profile remapping file to apply to the profile data supplied by -fprofile-sample-use or -...
char CoverageVersion[4]
The version string to put into coverage files.
static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
std::string LimitFloatPrecision
The float precision limit to use, if non-empty.
for(unsigned I=0, E=TL.getNumArgs();I !=E;++I)
Defines the clang::LangOptions interface.
static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
void print(raw_ostream &OS, unsigned Indent=0) const
Print the module map for this module to the given stream.
Definition: Module.cpp:404
static TargetLibraryInfoImpl * createTLII(llvm::Triple &TargetTriple, const CodeGenOptions &CodeGenOpts)
static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
Emit native object files.
Definition: BackendUtil.h:36
Emit native assembly files.
Definition: BackendUtil.h:31
static void addSanitizersAtO0(ModulePassManager &MPM, const Triple &TargetTriple, const LangOptions &LangOpts, const CodeGenOptions &CodeGenOpts)
std::string CPU
If given, the name of the target CPU to generate code for.
Definition: TargetOptions.h:36
std::string ABI
If given, the name of the target ABI to use.
Definition: TargetOptions.h:42
bool hasProfileCSIRInstr() const
Check if CS IR level profile instrumentation is on.
static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addSymbolRewriterPass(const CodeGenOptions &Opts, legacy::PassManager *MPM)
static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
Defines the clang::TargetOptions class.
std::vector< std::string > Features
The list of target specific features to enable or disable – this should be a list of strings startin...
Definition: TargetOptions.h:55
static void initTargetOptions(llvm::TargetOptions &Options, const CodeGenOptions &CodeGenOpts, const clang::TargetOptions &TargetOpts, const LangOptions &LangOpts, const HeaderSearchOptions &HSOpts)
static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts)
unsigned getCustomDiagID(Level L, const char(&FormatString)[N])
Return an ID for a diagnostic with the specified format string and level.
Definition: Diagnostic.h:777
llvm::EABI EABIVersion
The EABI version to use.
Definition: TargetOptions.h:45
&#39;#include ""&#39; paths, added by &#39;gcc -iquote&#39;.
std::string ThinLTOIndexFile
Name of the function summary index file to use for ThinLTO function importing.
Like Angled, but marks system directories.
static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action)
void EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf)
Optional< types::ID > Type
Dataflow Directional Tag Classes.
static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM, bool CompileKernel)
bool FrontendTimesIsEnabled
If the user specifies the -ftime-report argument on an Clang command line then the value of this bool...
llvm::Reloc::Model RelocationModel
The name of the relocation model to use.
bool hasProfileIRUse() const
Check if IR level profile use is on.
void EmitBackendOutput(DiagnosticsEngine &Diags, const HeaderSearchOptions &, const CodeGenOptions &CGOpts, const TargetOptions &TOpts, const LangOptions &LOpts, const llvm::DataLayout &TDesc, llvm::Module *M, BackendAction Action, std::unique_ptr< raw_pwrite_stream > OS)
bool hasProfileClangInstr() const
Check if Clang profile instrumenation is on.
llvm::Expected< llvm::BitcodeModule > FindThinLTOModule(llvm::MemoryBufferRef MBRef)
static const char * getSectionNameForBitcode(const Triple &T)
static const char * getSectionNameForCommandline(const Triple &T)
Indicates that the tracking object is a descendant of a referenced-counted OSObject, used in the Darwin kernel.
std::string ProfileExcludeFiles
Regexes separated by a semi-colon to filter the files to not instrument.
static void addBoundsCheckingPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static Optional< llvm::CodeModel::Model > getCodeModel(const CodeGenOptions &CodeGenOpts)
CodeGenOptions - Track various options which control how the code is optimized and passed to the back...
static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
bool hasProfileIRInstr() const
Check if IR level profile instrumentation is on.
const std::vector< std::string > & getNoBuiltinFuncs() const
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:152
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1599
static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
HeaderSearchOptions - Helper class for storing options related to the initialization of the HeaderSea...
std::string InstrProfileOutput
Name of the profile file to use as output for -fprofile-instr-generate, -fprofile-generate, and -fcs-profile-generate.
std::string OptRecordFile
The name of the file to which the backend should save YAML optimization records.
std::string ThinLinkBitcodeFile
Name of a file that can optionally be written with minimized bitcode to be used as input for the Thin...
std::vector< std::string > SanitizerBlacklistFiles
Paths to blacklist files specifying which objects (files, functions, variables) should not be instrum...
Definition: LangOptions.h:187
std::string Sysroot
If non-empty, the directory to use as a "virtual system root" for include paths.
static void addMemorySanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts)