clang  10.0.0svn
CGExprCXX.cpp
Go to the documentation of this file.
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenFunction.h"
18 #include "ConstantEmitter.h"
19 #include "TargetInfo.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace clang;
25 using namespace CodeGen;
26 
27 namespace {
28 struct MemberCallInfo {
29  RequiredArgs ReqArgs;
30  // Number of prefix arguments for the call. Ignores the `this` pointer.
31  unsigned PrefixSize;
32 };
33 }
34 
35 static MemberCallInfo
37  llvm::Value *This, llvm::Value *ImplicitParam,
38  QualType ImplicitParamTy, const CallExpr *CE,
39  CallArgList &Args, CallArgList *RtlArgs) {
40  assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
41  isa<CXXOperatorCallExpr>(CE));
42  assert(MD->isInstance() &&
43  "Trying to emit a member or operator call expr on a static method!");
44 
45  // Push the this ptr.
46  const CXXRecordDecl *RD =
48  Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
49 
50  // If there is an implicit parameter (e.g. VTT), emit it.
51  if (ImplicitParam) {
52  Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53  }
54 
55  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57  unsigned PrefixSize = Args.size() - 1;
58 
59  // And the rest of the call args.
60  if (RtlArgs) {
61  // Special case: if the caller emitted the arguments right-to-left already
62  // (prior to emitting the *this argument), we're done. This happens for
63  // assignment operators.
64  Args.addFrom(*RtlArgs);
65  } else if (CE) {
66  // Special case: skip first argument of CXXOperatorCall (it is "this").
67  unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
68  CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
69  CE->getDirectCallee());
70  } else {
71  assert(
72  FPT->getNumParams() == 0 &&
73  "No CallExpr specified for function with non-zero number of arguments");
74  }
75  return {required, PrefixSize};
76 }
77 
79  const CXXMethodDecl *MD, const CGCallee &Callee,
80  ReturnValueSlot ReturnValue,
81  llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
82  const CallExpr *CE, CallArgList *RtlArgs) {
83  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
84  CallArgList Args;
85  MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
86  *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
87  auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
88  Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
89  return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
90  CE ? CE->getExprLoc() : SourceLocation());
91 }
92 
94  GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
95  llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
96  const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl());
97 
98  assert(!ThisTy.isNull());
99  assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
100  "Pointer/Object mixup");
101 
102  LangAS SrcAS = ThisTy.getAddressSpace();
103  LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
104  if (SrcAS != DstAS) {
105  QualType DstTy = DtorDecl->getThisType();
106  llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy);
107  This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS,
108  NewType);
109  }
110 
111  CallArgList Args;
112  commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam,
113  ImplicitParamTy, CE, Args, nullptr);
114  return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
115  ReturnValueSlot(), Args);
116 }
117 
119  const CXXPseudoDestructorExpr *E) {
120  QualType DestroyedType = E->getDestroyedType();
121  if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
122  // Automatic Reference Counting:
123  // If the pseudo-expression names a retainable object with weak or
124  // strong lifetime, the object shall be released.
125  Expr *BaseExpr = E->getBase();
126  Address BaseValue = Address::invalid();
127  Qualifiers BaseQuals;
128 
129  // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
130  if (E->isArrow()) {
131  BaseValue = EmitPointerWithAlignment(BaseExpr);
132  const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
133  BaseQuals = PTy->getPointeeType().getQualifiers();
134  } else {
135  LValue BaseLV = EmitLValue(BaseExpr);
136  BaseValue = BaseLV.getAddress();
137  QualType BaseTy = BaseExpr->getType();
138  BaseQuals = BaseTy.getQualifiers();
139  }
140 
141  switch (DestroyedType.getObjCLifetime()) {
145  break;
146 
148  EmitARCRelease(Builder.CreateLoad(BaseValue,
149  DestroyedType.isVolatileQualified()),
151  break;
152 
154  EmitARCDestroyWeak(BaseValue);
155  break;
156  }
157  } else {
158  // C++ [expr.pseudo]p1:
159  // The result shall only be used as the operand for the function call
160  // operator (), and the result of such a call has type void. The only
161  // effect is the evaluation of the postfix-expression before the dot or
162  // arrow.
163  EmitIgnoredExpr(E->getBase());
164  }
165 
166  return RValue::get(nullptr);
167 }
168 
169 static CXXRecordDecl *getCXXRecord(const Expr *E) {
170  QualType T = E->getType();
171  if (const PointerType *PTy = T->getAs<PointerType>())
172  T = PTy->getPointeeType();
173  const RecordType *Ty = T->castAs<RecordType>();
174  return cast<CXXRecordDecl>(Ty->getDecl());
175 }
176 
177 // Note: This function also emit constructor calls to support a MSVC
178 // extensions allowing explicit constructor function call.
180  ReturnValueSlot ReturnValue) {
181  const Expr *callee = CE->getCallee()->IgnoreParens();
182 
183  if (isa<BinaryOperator>(callee))
184  return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
185 
186  const MemberExpr *ME = cast<MemberExpr>(callee);
187  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
188 
189  if (MD->isStatic()) {
190  // The method is static, emit it as we would a regular call.
191  CGCallee callee =
192  CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
193  return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
194  ReturnValue);
195  }
196 
197  bool HasQualifier = ME->hasQualifier();
198  NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
199  bool IsArrow = ME->isArrow();
200  const Expr *Base = ME->getBase();
201 
202  return EmitCXXMemberOrOperatorMemberCallExpr(
203  CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
204 }
205 
207  const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
208  bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
209  const Expr *Base) {
210  assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
211 
212  // Compute the object pointer.
213  bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
214 
215  const CXXMethodDecl *DevirtualizedMethod = nullptr;
216  if (CanUseVirtualCall &&
217  MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
218  const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
219  DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
220  assert(DevirtualizedMethod);
221  const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
222  const Expr *Inner = Base->ignoreParenBaseCasts();
223  if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
225  // If the return types are not the same, this might be a case where more
226  // code needs to run to compensate for it. For example, the derived
227  // method might return a type that inherits form from the return
228  // type of MD and has a prefix.
229  // For now we just avoid devirtualizing these covariant cases.
230  DevirtualizedMethod = nullptr;
231  else if (getCXXRecord(Inner) == DevirtualizedClass)
232  // If the class of the Inner expression is where the dynamic method
233  // is defined, build the this pointer from it.
234  Base = Inner;
235  else if (getCXXRecord(Base) != DevirtualizedClass) {
236  // If the method is defined in a class that is not the best dynamic
237  // one or the one of the full expression, we would have to build
238  // a derived-to-base cast to compute the correct this pointer, but
239  // we don't have support for that yet, so do a virtual call.
240  DevirtualizedMethod = nullptr;
241  }
242  }
243 
244  // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
245  // operator before the LHS.
246  CallArgList RtlArgStorage;
247  CallArgList *RtlArgs = nullptr;
248  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
249  if (OCE->isAssignmentOp()) {
250  RtlArgs = &RtlArgStorage;
251  EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
252  drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
253  /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
254  }
255  }
256 
257  LValue This;
258  if (IsArrow) {
259  LValueBaseInfo BaseInfo;
260  TBAAAccessInfo TBAAInfo;
261  Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
262  This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
263  } else {
264  This = EmitLValue(Base);
265  }
266 
267  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
268  // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
269  // constructing a new complete object of type Ctor.
270  assert(!RtlArgs);
271  assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
272  CallArgList Args;
274  *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr,
275  /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
276 
277  EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
278  /*Delegating=*/false, This.getAddress(), Args,
280  /*NewPointerIsChecked=*/false);
281  return RValue::get(nullptr);
282  }
283 
284  if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
285  if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
286  if (!MD->getParent()->mayInsertExtraPadding()) {
288  // We don't like to generate the trivial copy/move assignment operator
289  // when it isn't necessary; just produce the proper effect here.
290  LValue RHS = isa<CXXOperatorCallExpr>(CE)
291  ? MakeNaturalAlignAddrLValue(
292  (*RtlArgs)[0].getRValue(*this).getScalarVal(),
293  (*(CE->arg_begin() + 1))->getType())
294  : EmitLValue(*CE->arg_begin());
295  EmitAggregateAssign(This, RHS, CE->getType());
296  return RValue::get(This.getPointer());
297  }
298  llvm_unreachable("unknown trivial member function");
299  }
300  }
301 
302  // Compute the function type we're calling.
303  const CXXMethodDecl *CalleeDecl =
304  DevirtualizedMethod ? DevirtualizedMethod : MD;
305  const CGFunctionInfo *FInfo = nullptr;
306  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
307  FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
308  GlobalDecl(Dtor, Dtor_Complete));
309  else
310  FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
311 
312  llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
313 
314  // C++11 [class.mfct.non-static]p2:
315  // If a non-static member function of a class X is called for an object that
316  // is not of type X, or of a type derived from X, the behavior is undefined.
317  SourceLocation CallLoc;
318  ASTContext &C = getContext();
319  if (CE)
320  CallLoc = CE->getExprLoc();
321 
322  SanitizerSet SkippedChecks;
323  if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
324  auto *IOA = CMCE->getImplicitObjectArgument();
325  bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
326  if (IsImplicitObjectCXXThis)
327  SkippedChecks.set(SanitizerKind::Alignment, true);
328  if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
329  SkippedChecks.set(SanitizerKind::Null, true);
330  }
331  EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(),
332  C.getRecordType(CalleeDecl->getParent()),
333  /*Alignment=*/CharUnits::Zero(), SkippedChecks);
334 
335  // C++ [class.virtual]p12:
336  // Explicit qualification with the scope operator (5.1) suppresses the
337  // virtual call mechanism.
338  //
339  // We also don't emit a virtual call if the base expression has a record type
340  // because then we know what the type is.
341  bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
342 
343  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
344  assert(CE->arg_begin() == CE->arg_end() &&
345  "Destructor shouldn't have explicit parameters");
346  assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
347  if (UseVirtualCall) {
348  CGM.getCXXABI().EmitVirtualDestructorCall(
349  *this, Dtor, Dtor_Complete, This.getAddress(),
350  cast<CXXMemberCallExpr>(CE));
351  } else {
352  GlobalDecl GD(Dtor, Dtor_Complete);
353  CGCallee Callee;
354  if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
355  Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
356  else if (!DevirtualizedMethod)
357  Callee =
358  CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
359  else {
360  Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
361  }
362 
363  QualType ThisTy =
364  IsArrow ? Base->getType()->getPointeeType() : Base->getType();
365  EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
366  /*ImplicitParam=*/nullptr,
367  /*ImplicitParamTy=*/QualType(), nullptr);
368  }
369  return RValue::get(nullptr);
370  }
371 
372  // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
373  // 'CalleeDecl' instead.
374 
375  CGCallee Callee;
376  if (UseVirtualCall) {
377  Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
378  } else {
379  if (SanOpts.has(SanitizerKind::CFINVCall) &&
380  MD->getParent()->isDynamicClass()) {
381  llvm::Value *VTable;
382  const CXXRecordDecl *RD;
383  std::tie(VTable, RD) =
384  CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
385  MD->getParent());
386  EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
387  }
388 
389  if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
390  Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
391  else if (!DevirtualizedMethod)
392  Callee =
393  CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
394  else {
395  Callee =
396  CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
397  GlobalDecl(DevirtualizedMethod));
398  }
399  }
400 
401  if (MD->isVirtual()) {
402  Address NewThisAddr =
403  CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
404  *this, CalleeDecl, This.getAddress(), UseVirtualCall);
405  This.setAddress(NewThisAddr);
406  }
407 
408  return EmitCXXMemberOrOperatorCall(
409  CalleeDecl, Callee, ReturnValue, This.getPointer(),
410  /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
411 }
412 
413 RValue
415  ReturnValueSlot ReturnValue) {
416  const BinaryOperator *BO =
417  cast<BinaryOperator>(E->getCallee()->IgnoreParens());
418  const Expr *BaseExpr = BO->getLHS();
419  const Expr *MemFnExpr = BO->getRHS();
420 
421  const MemberPointerType *MPT =
422  MemFnExpr->getType()->castAs<MemberPointerType>();
423 
424  const FunctionProtoType *FPT =
426  const CXXRecordDecl *RD =
427  cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
428 
429  // Emit the 'this' pointer.
430  Address This = Address::invalid();
431  if (BO->getOpcode() == BO_PtrMemI)
432  This = EmitPointerWithAlignment(BaseExpr);
433  else
434  This = EmitLValue(BaseExpr).getAddress();
435 
436  EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
437  QualType(MPT->getClass(), 0));
438 
439  // Get the member function pointer.
440  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
441 
442  // Ask the ABI to load the callee. Note that This is modified.
443  llvm::Value *ThisPtrForCall = nullptr;
444  CGCallee Callee =
445  CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
446  ThisPtrForCall, MemFnPtr, MPT);
447 
448  CallArgList Args;
449 
450  QualType ThisType =
451  getContext().getPointerType(getContext().getTagDeclType(RD));
452 
453  // Push the this ptr.
454  Args.add(RValue::get(ThisPtrForCall), ThisType);
455 
456  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
457 
458  // And the rest of the call args
459  EmitCallArgs(Args, FPT, E->arguments());
460  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
461  /*PrefixSize=*/0),
462  Callee, ReturnValue, Args, nullptr, E->getExprLoc());
463 }
464 
465 RValue
467  const CXXMethodDecl *MD,
468  ReturnValueSlot ReturnValue) {
469  assert(MD->isInstance() &&
470  "Trying to emit a member call expr on a static method!");
471  return EmitCXXMemberOrOperatorMemberCallExpr(
472  E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
473  /*IsArrow=*/false, E->getArg(0));
474 }
475 
477  ReturnValueSlot ReturnValue) {
478  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
479 }
480 
482  Address DestPtr,
483  const CXXRecordDecl *Base) {
484  if (Base->isEmpty())
485  return;
486 
487  DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
488 
489  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
490  CharUnits NVSize = Layout.getNonVirtualSize();
491 
492  // We cannot simply zero-initialize the entire base sub-object if vbptrs are
493  // present, they are initialized by the most derived class before calling the
494  // constructor.
496  Stores.emplace_back(CharUnits::Zero(), NVSize);
497 
498  // Each store is split by the existence of a vbptr.
499  CharUnits VBPtrWidth = CGF.getPointerSize();
500  std::vector<CharUnits> VBPtrOffsets =
501  CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
502  for (CharUnits VBPtrOffset : VBPtrOffsets) {
503  // Stop before we hit any virtual base pointers located in virtual bases.
504  if (VBPtrOffset >= NVSize)
505  break;
506  std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
507  CharUnits LastStoreOffset = LastStore.first;
508  CharUnits LastStoreSize = LastStore.second;
509 
510  CharUnits SplitBeforeOffset = LastStoreOffset;
511  CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
512  assert(!SplitBeforeSize.isNegative() && "negative store size!");
513  if (!SplitBeforeSize.isZero())
514  Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
515 
516  CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
517  CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
518  assert(!SplitAfterSize.isNegative() && "negative store size!");
519  if (!SplitAfterSize.isZero())
520  Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
521  }
522 
523  // If the type contains a pointer to data member we can't memset it to zero.
524  // Instead, create a null constant and copy it to the destination.
525  // TODO: there are other patterns besides zero that we can usefully memset,
526  // like -1, which happens to be the pattern used by member-pointers.
527  // TODO: isZeroInitializable can be over-conservative in the case where a
528  // virtual base contains a member pointer.
529  llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
530  if (!NullConstantForBase->isNullValue()) {
531  llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
532  CGF.CGM.getModule(), NullConstantForBase->getType(),
533  /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
534  NullConstantForBase, Twine());
535 
536  CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
537  DestPtr.getAlignment());
538  NullVariable->setAlignment(Align.getQuantity());
539 
540  Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
541 
542  // Get and call the appropriate llvm.memcpy overload.
543  for (std::pair<CharUnits, CharUnits> Store : Stores) {
544  CharUnits StoreOffset = Store.first;
545  CharUnits StoreSize = Store.second;
546  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
547  CGF.Builder.CreateMemCpy(
548  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
549  CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
550  StoreSizeVal);
551  }
552 
553  // Otherwise, just memset the whole thing to zero. This is legal
554  // because in LLVM, all default initializers (other than the ones we just
555  // handled above) are guaranteed to have a bit pattern of all zeros.
556  } else {
557  for (std::pair<CharUnits, CharUnits> Store : Stores) {
558  CharUnits StoreOffset = Store.first;
559  CharUnits StoreSize = Store.second;
560  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
561  CGF.Builder.CreateMemSet(
562  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
563  CGF.Builder.getInt8(0), StoreSizeVal);
564  }
565  }
566 }
567 
568 void
570  AggValueSlot Dest) {
571  assert(!Dest.isIgnored() && "Must have a destination!");
572  const CXXConstructorDecl *CD = E->getConstructor();
573 
574  // If we require zero initialization before (or instead of) calling the
575  // constructor, as can be the case with a non-user-provided default
576  // constructor, emit the zero initialization now, unless destination is
577  // already zeroed.
578  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
579  switch (E->getConstructionKind()) {
582  EmitNullInitialization(Dest.getAddress(), E->getType());
583  break;
587  CD->getParent());
588  break;
589  }
590  }
591 
592  // If this is a call to a trivial default constructor, do nothing.
593  if (CD->isTrivial() && CD->isDefaultConstructor())
594  return;
595 
596  // Elide the constructor if we're constructing from a temporary.
597  // The temporary check is required because Sema sets this on NRVO
598  // returns.
599  if (getLangOpts().ElideConstructors && E->isElidable()) {
600  assert(getContext().hasSameUnqualifiedType(E->getType(),
601  E->getArg(0)->getType()));
602  if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
603  EmitAggExpr(E->getArg(0), Dest);
604  return;
605  }
606  }
607 
608  if (const ArrayType *arrayType
609  = getContext().getAsArrayType(E->getType())) {
610  EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
611  Dest.isSanitizerChecked());
612  } else {
614  bool ForVirtualBase = false;
615  bool Delegating = false;
616 
617  switch (E->getConstructionKind()) {
619  // We should be emitting a constructor; GlobalDecl will assert this
620  Type = CurGD.getCtorType();
621  Delegating = true;
622  break;
623 
625  Type = Ctor_Complete;
626  break;
627 
629  ForVirtualBase = true;
630  LLVM_FALLTHROUGH;
631 
633  Type = Ctor_Base;
634  }
635 
636  // Call the constructor.
637  EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
638  }
639 }
640 
642  const Expr *Exp) {
643  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
644  Exp = E->getSubExpr();
645  assert(isa<CXXConstructExpr>(Exp) &&
646  "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
647  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
648  const CXXConstructorDecl *CD = E->getConstructor();
649  RunCleanupsScope Scope(*this);
650 
651  // If we require zero initialization before (or instead of) calling the
652  // constructor, as can be the case with a non-user-provided default
653  // constructor, emit the zero initialization now.
654  // FIXME. Do I still need this for a copy ctor synthesis?
656  EmitNullInitialization(Dest, E->getType());
657 
658  assert(!getContext().getAsConstantArrayType(E->getType())
659  && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
660  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
661 }
662 
664  const CXXNewExpr *E) {
665  if (!E->isArray())
666  return CharUnits::Zero();
667 
668  // No cookie is required if the operator new[] being used is the
669  // reserved placement operator new[].
671  return CharUnits::Zero();
672 
673  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
674 }
675 
677  const CXXNewExpr *e,
678  unsigned minElements,
679  llvm::Value *&numElements,
680  llvm::Value *&sizeWithoutCookie) {
682 
683  if (!e->isArray()) {
684  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
685  sizeWithoutCookie
686  = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
687  return sizeWithoutCookie;
688  }
689 
690  // The width of size_t.
691  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
692 
693  // Figure out the cookie size.
694  llvm::APInt cookieSize(sizeWidth,
695  CalculateCookiePadding(CGF, e).getQuantity());
696 
697  // Emit the array size expression.
698  // We multiply the size of all dimensions for NumElements.
699  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
700  numElements =
702  if (!numElements)
703  numElements = CGF.EmitScalarExpr(*e->getArraySize());
704  assert(isa<llvm::IntegerType>(numElements->getType()));
705 
706  // The number of elements can be have an arbitrary integer type;
707  // essentially, we need to multiply it by a constant factor, add a
708  // cookie size, and verify that the result is representable as a
709  // size_t. That's just a gloss, though, and it's wrong in one
710  // important way: if the count is negative, it's an error even if
711  // the cookie size would bring the total size >= 0.
712  bool isSigned
713  = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
714  llvm::IntegerType *numElementsType
715  = cast<llvm::IntegerType>(numElements->getType());
716  unsigned numElementsWidth = numElementsType->getBitWidth();
717 
718  // Compute the constant factor.
719  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
720  while (const ConstantArrayType *CAT
721  = CGF.getContext().getAsConstantArrayType(type)) {
722  type = CAT->getElementType();
723  arraySizeMultiplier *= CAT->getSize();
724  }
725 
726  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
727  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
728  typeSizeMultiplier *= arraySizeMultiplier;
729 
730  // This will be a size_t.
731  llvm::Value *size;
732 
733  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
734  // Don't bloat the -O0 code.
735  if (llvm::ConstantInt *numElementsC =
736  dyn_cast<llvm::ConstantInt>(numElements)) {
737  const llvm::APInt &count = numElementsC->getValue();
738 
739  bool hasAnyOverflow = false;
740 
741  // If 'count' was a negative number, it's an overflow.
742  if (isSigned && count.isNegative())
743  hasAnyOverflow = true;
744 
745  // We want to do all this arithmetic in size_t. If numElements is
746  // wider than that, check whether it's already too big, and if so,
747  // overflow.
748  else if (numElementsWidth > sizeWidth &&
749  numElementsWidth - sizeWidth > count.countLeadingZeros())
750  hasAnyOverflow = true;
751 
752  // Okay, compute a count at the right width.
753  llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
754 
755  // If there is a brace-initializer, we cannot allocate fewer elements than
756  // there are initializers. If we do, that's treated like an overflow.
757  if (adjustedCount.ult(minElements))
758  hasAnyOverflow = true;
759 
760  // Scale numElements by that. This might overflow, but we don't
761  // care because it only overflows if allocationSize does, too, and
762  // if that overflows then we shouldn't use this.
763  numElements = llvm::ConstantInt::get(CGF.SizeTy,
764  adjustedCount * arraySizeMultiplier);
765 
766  // Compute the size before cookie, and track whether it overflowed.
767  bool overflow;
768  llvm::APInt allocationSize
769  = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
770  hasAnyOverflow |= overflow;
771 
772  // Add in the cookie, and check whether it's overflowed.
773  if (cookieSize != 0) {
774  // Save the current size without a cookie. This shouldn't be
775  // used if there was overflow.
776  sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
777 
778  allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
779  hasAnyOverflow |= overflow;
780  }
781 
782  // On overflow, produce a -1 so operator new will fail.
783  if (hasAnyOverflow) {
784  size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
785  } else {
786  size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
787  }
788 
789  // Otherwise, we might need to use the overflow intrinsics.
790  } else {
791  // There are up to five conditions we need to test for:
792  // 1) if isSigned, we need to check whether numElements is negative;
793  // 2) if numElementsWidth > sizeWidth, we need to check whether
794  // numElements is larger than something representable in size_t;
795  // 3) if minElements > 0, we need to check whether numElements is smaller
796  // than that.
797  // 4) we need to compute
798  // sizeWithoutCookie := numElements * typeSizeMultiplier
799  // and check whether it overflows; and
800  // 5) if we need a cookie, we need to compute
801  // size := sizeWithoutCookie + cookieSize
802  // and check whether it overflows.
803 
804  llvm::Value *hasOverflow = nullptr;
805 
806  // If numElementsWidth > sizeWidth, then one way or another, we're
807  // going to have to do a comparison for (2), and this happens to
808  // take care of (1), too.
809  if (numElementsWidth > sizeWidth) {
810  llvm::APInt threshold(numElementsWidth, 1);
811  threshold <<= sizeWidth;
812 
813  llvm::Value *thresholdV
814  = llvm::ConstantInt::get(numElementsType, threshold);
815 
816  hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
817  numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
818 
819  // Otherwise, if we're signed, we want to sext up to size_t.
820  } else if (isSigned) {
821  if (numElementsWidth < sizeWidth)
822  numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
823 
824  // If there's a non-1 type size multiplier, then we can do the
825  // signedness check at the same time as we do the multiply
826  // because a negative number times anything will cause an
827  // unsigned overflow. Otherwise, we have to do it here. But at least
828  // in this case, we can subsume the >= minElements check.
829  if (typeSizeMultiplier == 1)
830  hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
831  llvm::ConstantInt::get(CGF.SizeTy, minElements));
832 
833  // Otherwise, zext up to size_t if necessary.
834  } else if (numElementsWidth < sizeWidth) {
835  numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
836  }
837 
838  assert(numElements->getType() == CGF.SizeTy);
839 
840  if (minElements) {
841  // Don't allow allocation of fewer elements than we have initializers.
842  if (!hasOverflow) {
843  hasOverflow = CGF.Builder.CreateICmpULT(numElements,
844  llvm::ConstantInt::get(CGF.SizeTy, minElements));
845  } else if (numElementsWidth > sizeWidth) {
846  // The other existing overflow subsumes this check.
847  // We do an unsigned comparison, since any signed value < -1 is
848  // taken care of either above or below.
849  hasOverflow = CGF.Builder.CreateOr(hasOverflow,
850  CGF.Builder.CreateICmpULT(numElements,
851  llvm::ConstantInt::get(CGF.SizeTy, minElements)));
852  }
853  }
854 
855  size = numElements;
856 
857  // Multiply by the type size if necessary. This multiplier
858  // includes all the factors for nested arrays.
859  //
860  // This step also causes numElements to be scaled up by the
861  // nested-array factor if necessary. Overflow on this computation
862  // can be ignored because the result shouldn't be used if
863  // allocation fails.
864  if (typeSizeMultiplier != 1) {
865  llvm::Function *umul_with_overflow
866  = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
867 
868  llvm::Value *tsmV =
869  llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
871  CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
872 
873  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
874  if (hasOverflow)
875  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
876  else
877  hasOverflow = overflowed;
878 
879  size = CGF.Builder.CreateExtractValue(result, 0);
880 
881  // Also scale up numElements by the array size multiplier.
882  if (arraySizeMultiplier != 1) {
883  // If the base element type size is 1, then we can re-use the
884  // multiply we just did.
885  if (typeSize.isOne()) {
886  assert(arraySizeMultiplier == typeSizeMultiplier);
887  numElements = size;
888 
889  // Otherwise we need a separate multiply.
890  } else {
891  llvm::Value *asmV =
892  llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
893  numElements = CGF.Builder.CreateMul(numElements, asmV);
894  }
895  }
896  } else {
897  // numElements doesn't need to be scaled.
898  assert(arraySizeMultiplier == 1);
899  }
900 
901  // Add in the cookie size if necessary.
902  if (cookieSize != 0) {
903  sizeWithoutCookie = size;
904 
905  llvm::Function *uadd_with_overflow
906  = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
907 
908  llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
910  CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
911 
912  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
913  if (hasOverflow)
914  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
915  else
916  hasOverflow = overflowed;
917 
918  size = CGF.Builder.CreateExtractValue(result, 0);
919  }
920 
921  // If we had any possibility of dynamic overflow, make a select to
922  // overwrite 'size' with an all-ones value, which should cause
923  // operator new to throw.
924  if (hasOverflow)
925  size = CGF.Builder.CreateSelect(hasOverflow,
926  llvm::Constant::getAllOnesValue(CGF.SizeTy),
927  size);
928  }
929 
930  if (cookieSize == 0)
931  sizeWithoutCookie = size;
932  else
933  assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
934 
935  return size;
936 }
937 
938 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
939  QualType AllocType, Address NewPtr,
940  AggValueSlot::Overlap_t MayOverlap) {
941  // FIXME: Refactor with EmitExprAsInit.
942  switch (CGF.getEvaluationKind(AllocType)) {
943  case TEK_Scalar:
944  CGF.EmitScalarInit(Init, nullptr,
945  CGF.MakeAddrLValue(NewPtr, AllocType), false);
946  return;
947  case TEK_Complex:
948  CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
949  /*isInit*/ true);
950  return;
951  case TEK_Aggregate: {
952  AggValueSlot Slot
953  = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
957  MayOverlap, AggValueSlot::IsNotZeroed,
959  CGF.EmitAggExpr(Init, Slot);
960  return;
961  }
962  }
963  llvm_unreachable("bad evaluation kind");
964 }
965 
967  const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
968  Address BeginPtr, llvm::Value *NumElements,
969  llvm::Value *AllocSizeWithoutCookie) {
970  // If we have a type with trivial initialization and no initializer,
971  // there's nothing to do.
972  if (!E->hasInitializer())
973  return;
974 
975  Address CurPtr = BeginPtr;
976 
977  unsigned InitListElements = 0;
978 
979  const Expr *Init = E->getInitializer();
980  Address EndOfInit = Address::invalid();
981  QualType::DestructionKind DtorKind = ElementType.isDestructedType();
983  llvm::Instruction *CleanupDominator = nullptr;
984 
985  CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
986  CharUnits ElementAlign =
987  BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
988 
989  // Attempt to perform zero-initialization using memset.
990  auto TryMemsetInitialization = [&]() -> bool {
991  // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
992  // we can initialize with a memset to -1.
993  if (!CGM.getTypes().isZeroInitializable(ElementType))
994  return false;
995 
996  // Optimization: since zero initialization will just set the memory
997  // to all zeroes, generate a single memset to do it in one shot.
998 
999  // Subtract out the size of any elements we've already initialized.
1000  auto *RemainingSize = AllocSizeWithoutCookie;
1001  if (InitListElements) {
1002  // We know this can't overflow; we check this when doing the allocation.
1003  auto *InitializedSize = llvm::ConstantInt::get(
1004  RemainingSize->getType(),
1005  getContext().getTypeSizeInChars(ElementType).getQuantity() *
1006  InitListElements);
1007  RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1008  }
1009 
1010  // Create the memset.
1011  Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1012  return true;
1013  };
1014 
1015  // If the initializer is an initializer list, first do the explicit elements.
1016  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1017  // Initializing from a (braced) string literal is a special case; the init
1018  // list element does not initialize a (single) array element.
1019  if (ILE->isStringLiteralInit()) {
1020  // Initialize the initial portion of length equal to that of the string
1021  // literal. The allocation must be for at least this much; we emitted a
1022  // check for that earlier.
1023  AggValueSlot Slot =
1024  AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1031  EmitAggExpr(ILE->getInit(0), Slot);
1032 
1033  // Move past these elements.
1034  InitListElements =
1035  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1036  ->getSize().getZExtValue();
1037  CurPtr =
1038  Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1039  Builder.getSize(InitListElements),
1040  "string.init.end"),
1041  CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1042  ElementSize));
1043 
1044  // Zero out the rest, if any remain.
1045  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1046  if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1047  bool OK = TryMemsetInitialization();
1048  (void)OK;
1049  assert(OK && "couldn't memset character type?");
1050  }
1051  return;
1052  }
1053 
1054  InitListElements = ILE->getNumInits();
1055 
1056  // If this is a multi-dimensional array new, we will initialize multiple
1057  // elements with each init list element.
1058  QualType AllocType = E->getAllocatedType();
1059  if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1060  AllocType->getAsArrayTypeUnsafe())) {
1061  ElementTy = ConvertTypeForMem(AllocType);
1062  CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1063  InitListElements *= getContext().getConstantArrayElementCount(CAT);
1064  }
1065 
1066  // Enter a partial-destruction Cleanup if necessary.
1067  if (needsEHCleanup(DtorKind)) {
1068  // In principle we could tell the Cleanup where we are more
1069  // directly, but the control flow can get so varied here that it
1070  // would actually be quite complex. Therefore we go through an
1071  // alloca.
1072  EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1073  "array.init.end");
1074  CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1075  pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1076  ElementType, ElementAlign,
1077  getDestroyer(DtorKind));
1078  Cleanup = EHStack.stable_begin();
1079  }
1080 
1081  CharUnits StartAlign = CurPtr.getAlignment();
1082  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1083  // Tell the cleanup that it needs to destroy up to this
1084  // element. TODO: some of these stores can be trivially
1085  // observed to be unnecessary.
1086  if (EndOfInit.isValid()) {
1087  auto FinishedPtr =
1088  Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1089  Builder.CreateStore(FinishedPtr, EndOfInit);
1090  }
1091  // FIXME: If the last initializer is an incomplete initializer list for
1092  // an array, and we have an array filler, we can fold together the two
1093  // initialization loops.
1094  StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1095  ILE->getInit(i)->getType(), CurPtr,
1097  CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1098  Builder.getSize(1),
1099  "array.exp.next"),
1100  StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1101  }
1102 
1103  // The remaining elements are filled with the array filler expression.
1104  Init = ILE->getArrayFiller();
1105 
1106  // Extract the initializer for the individual array elements by pulling
1107  // out the array filler from all the nested initializer lists. This avoids
1108  // generating a nested loop for the initialization.
1109  while (Init && Init->getType()->isConstantArrayType()) {
1110  auto *SubILE = dyn_cast<InitListExpr>(Init);
1111  if (!SubILE)
1112  break;
1113  assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1114  Init = SubILE->getArrayFiller();
1115  }
1116 
1117  // Switch back to initializing one base element at a time.
1118  CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1119  }
1120 
1121  // If all elements have already been initialized, skip any further
1122  // initialization.
1123  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1124  if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1125  // If there was a Cleanup, deactivate it.
1126  if (CleanupDominator)
1127  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1128  return;
1129  }
1130 
1131  assert(Init && "have trailing elements to initialize but no initializer");
1132 
1133  // If this is a constructor call, try to optimize it out, and failing that
1134  // emit a single loop to initialize all remaining elements.
1135  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1136  CXXConstructorDecl *Ctor = CCE->getConstructor();
1137  if (Ctor->isTrivial()) {
1138  // If new expression did not specify value-initialization, then there
1139  // is no initialization.
1140  if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1141  return;
1142 
1143  if (TryMemsetInitialization())
1144  return;
1145  }
1146 
1147  // Store the new Cleanup position for irregular Cleanups.
1148  //
1149  // FIXME: Share this cleanup with the constructor call emission rather than
1150  // having it create a cleanup of its own.
1151  if (EndOfInit.isValid())
1152  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1153 
1154  // Emit a constructor call loop to initialize the remaining elements.
1155  if (InitListElements)
1156  NumElements = Builder.CreateSub(
1157  NumElements,
1158  llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1159  EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1160  /*NewPointerIsChecked*/true,
1161  CCE->requiresZeroInitialization());
1162  return;
1163  }
1164 
1165  // If this is value-initialization, we can usually use memset.
1166  ImplicitValueInitExpr IVIE(ElementType);
1167  if (isa<ImplicitValueInitExpr>(Init)) {
1168  if (TryMemsetInitialization())
1169  return;
1170 
1171  // Switch to an ImplicitValueInitExpr for the element type. This handles
1172  // only one case: multidimensional array new of pointers to members. In
1173  // all other cases, we already have an initializer for the array element.
1174  Init = &IVIE;
1175  }
1176 
1177  // At this point we should have found an initializer for the individual
1178  // elements of the array.
1179  assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1180  "got wrong type of element to initialize");
1181 
1182  // If we have an empty initializer list, we can usually use memset.
1183  if (auto *ILE = dyn_cast<InitListExpr>(Init))
1184  if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1185  return;
1186 
1187  // If we have a struct whose every field is value-initialized, we can
1188  // usually use memset.
1189  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1190  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1191  if (RType->getDecl()->isStruct()) {
1192  unsigned NumElements = 0;
1193  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1194  NumElements = CXXRD->getNumBases();
1195  for (auto *Field : RType->getDecl()->fields())
1196  if (!Field->isUnnamedBitfield())
1197  ++NumElements;
1198  // FIXME: Recurse into nested InitListExprs.
1199  if (ILE->getNumInits() == NumElements)
1200  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1201  if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1202  --NumElements;
1203  if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1204  return;
1205  }
1206  }
1207  }
1208 
1209  // Create the loop blocks.
1210  llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1211  llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1212  llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1213 
1214  // Find the end of the array, hoisted out of the loop.
1215  llvm::Value *EndPtr =
1216  Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1217 
1218  // If the number of elements isn't constant, we have to now check if there is
1219  // anything left to initialize.
1220  if (!ConstNum) {
1221  llvm::Value *IsEmpty =
1222  Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1223  Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1224  }
1225 
1226  // Enter the loop.
1227  EmitBlock(LoopBB);
1228 
1229  // Set up the current-element phi.
1230  llvm::PHINode *CurPtrPhi =
1231  Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1232  CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1233 
1234  CurPtr = Address(CurPtrPhi, ElementAlign);
1235 
1236  // Store the new Cleanup position for irregular Cleanups.
1237  if (EndOfInit.isValid())
1238  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1239 
1240  // Enter a partial-destruction Cleanup if necessary.
1241  if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1242  pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1243  ElementType, ElementAlign,
1244  getDestroyer(DtorKind));
1245  Cleanup = EHStack.stable_begin();
1246  CleanupDominator = Builder.CreateUnreachable();
1247  }
1248 
1249  // Emit the initializer into this element.
1250  StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1252 
1253  // Leave the Cleanup if we entered one.
1254  if (CleanupDominator) {
1255  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1256  CleanupDominator->eraseFromParent();
1257  }
1258 
1259  // Advance to the next element by adjusting the pointer type as necessary.
1260  llvm::Value *NextPtr =
1261  Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1262  "array.next");
1263 
1264  // Check whether we've gotten to the end of the array and, if so,
1265  // exit the loop.
1266  llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1267  Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1268  CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1269 
1270  EmitBlock(ContBB);
1271 }
1272 
1273 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1274  QualType ElementType, llvm::Type *ElementTy,
1275  Address NewPtr, llvm::Value *NumElements,
1276  llvm::Value *AllocSizeWithoutCookie) {
1277  ApplyDebugLocation DL(CGF, E);
1278  if (E->isArray())
1279  CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1280  AllocSizeWithoutCookie);
1281  else if (const Expr *Init = E->getInitializer())
1282  StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1284 }
1285 
1286 /// Emit a call to an operator new or operator delete function, as implicitly
1287 /// created by new-expressions and delete-expressions.
1289  const FunctionDecl *CalleeDecl,
1290  const FunctionProtoType *CalleeType,
1291  const CallArgList &Args) {
1292  llvm::CallBase *CallOrInvoke;
1293  llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1294  CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1295  RValue RV =
1297  Args, CalleeType, /*ChainCall=*/false),
1298  Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1299 
1300  /// C++1y [expr.new]p10:
1301  /// [In a new-expression,] an implementation is allowed to omit a call
1302  /// to a replaceable global allocation function.
1303  ///
1304  /// We model such elidable calls with the 'builtin' attribute.
1305  llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1306  if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1307  Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1308  CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1309  llvm::Attribute::Builtin);
1310  }
1311 
1312  return RV;
1313 }
1314 
1316  const CallExpr *TheCall,
1317  bool IsDelete) {
1318  CallArgList Args;
1319  EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1320  // Find the allocation or deallocation function that we're calling.
1321  ASTContext &Ctx = getContext();
1322  DeclarationName Name = Ctx.DeclarationNames
1323  .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1324 
1325  for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1326  if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1327  if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1328  return EmitNewDeleteCall(*this, FD, Type, Args);
1329  llvm_unreachable("predeclared global operator new/delete is missing");
1330 }
1331 
1332 namespace {
1333 /// The parameters to pass to a usual operator delete.
1334 struct UsualDeleteParams {
1335  bool DestroyingDelete = false;
1336  bool Size = false;
1337  bool Alignment = false;
1338 };
1339 }
1340 
1341 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1342  UsualDeleteParams Params;
1343 
1344  const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1345  auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1346 
1347  // The first argument is always a void*.
1348  ++AI;
1349 
1350  // The next parameter may be a std::destroying_delete_t.
1351  if (FD->isDestroyingOperatorDelete()) {
1352  Params.DestroyingDelete = true;
1353  assert(AI != AE);
1354  ++AI;
1355  }
1356 
1357  // Figure out what other parameters we should be implicitly passing.
1358  if (AI != AE && (*AI)->isIntegerType()) {
1359  Params.Size = true;
1360  ++AI;
1361  }
1362 
1363  if (AI != AE && (*AI)->isAlignValT()) {
1364  Params.Alignment = true;
1365  ++AI;
1366  }
1367 
1368  assert(AI == AE && "unexpected usual deallocation function parameter");
1369  return Params;
1370 }
1371 
1372 namespace {
1373  /// A cleanup to call the given 'operator delete' function upon abnormal
1374  /// exit from a new expression. Templated on a traits type that deals with
1375  /// ensuring that the arguments dominate the cleanup if necessary.
1376  template<typename Traits>
1377  class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1378  /// Type used to hold llvm::Value*s.
1379  typedef typename Traits::ValueTy ValueTy;
1380  /// Type used to hold RValues.
1381  typedef typename Traits::RValueTy RValueTy;
1382  struct PlacementArg {
1383  RValueTy ArgValue;
1384  QualType ArgType;
1385  };
1386 
1387  unsigned NumPlacementArgs : 31;
1388  unsigned PassAlignmentToPlacementDelete : 1;
1389  const FunctionDecl *OperatorDelete;
1390  ValueTy Ptr;
1391  ValueTy AllocSize;
1392  CharUnits AllocAlign;
1393 
1394  PlacementArg *getPlacementArgs() {
1395  return reinterpret_cast<PlacementArg *>(this + 1);
1396  }
1397 
1398  public:
1399  static size_t getExtraSize(size_t NumPlacementArgs) {
1400  return NumPlacementArgs * sizeof(PlacementArg);
1401  }
1402 
1403  CallDeleteDuringNew(size_t NumPlacementArgs,
1404  const FunctionDecl *OperatorDelete, ValueTy Ptr,
1405  ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1406  CharUnits AllocAlign)
1407  : NumPlacementArgs(NumPlacementArgs),
1408  PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1409  OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1410  AllocAlign(AllocAlign) {}
1411 
1412  void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1413  assert(I < NumPlacementArgs && "index out of range");
1414  getPlacementArgs()[I] = {Arg, Type};
1415  }
1416 
1417  void Emit(CodeGenFunction &CGF, Flags flags) override {
1418  const FunctionProtoType *FPT =
1419  OperatorDelete->getType()->getAs<FunctionProtoType>();
1420  CallArgList DeleteArgs;
1421 
1422  // The first argument is always a void* (or C* for a destroying operator
1423  // delete for class type C).
1424  DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1425 
1426  // Figure out what other parameters we should be implicitly passing.
1427  UsualDeleteParams Params;
1428  if (NumPlacementArgs) {
1429  // A placement deallocation function is implicitly passed an alignment
1430  // if the placement allocation function was, but is never passed a size.
1431  Params.Alignment = PassAlignmentToPlacementDelete;
1432  } else {
1433  // For a non-placement new-expression, 'operator delete' can take a
1434  // size and/or an alignment if it has the right parameters.
1435  Params = getUsualDeleteParams(OperatorDelete);
1436  }
1437 
1438  assert(!Params.DestroyingDelete &&
1439  "should not call destroying delete in a new-expression");
1440 
1441  // The second argument can be a std::size_t (for non-placement delete).
1442  if (Params.Size)
1443  DeleteArgs.add(Traits::get(CGF, AllocSize),
1444  CGF.getContext().getSizeType());
1445 
1446  // The next (second or third) argument can be a std::align_val_t, which
1447  // is an enum whose underlying type is std::size_t.
1448  // FIXME: Use the right type as the parameter type. Note that in a call
1449  // to operator delete(size_t, ...), we may not have it available.
1450  if (Params.Alignment)
1451  DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1452  CGF.SizeTy, AllocAlign.getQuantity())),
1453  CGF.getContext().getSizeType());
1454 
1455  // Pass the rest of the arguments, which must match exactly.
1456  for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1457  auto Arg = getPlacementArgs()[I];
1458  DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1459  }
1460 
1461  // Call 'operator delete'.
1462  EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1463  }
1464  };
1465 }
1466 
1467 /// Enter a cleanup to call 'operator delete' if the initializer in a
1468 /// new-expression throws.
1470  const CXXNewExpr *E,
1471  Address NewPtr,
1472  llvm::Value *AllocSize,
1473  CharUnits AllocAlign,
1474  const CallArgList &NewArgs) {
1475  unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1476 
1477  // If we're not inside a conditional branch, then the cleanup will
1478  // dominate and we can do the easier (and more efficient) thing.
1479  if (!CGF.isInConditionalBranch()) {
1480  struct DirectCleanupTraits {
1481  typedef llvm::Value *ValueTy;
1482  typedef RValue RValueTy;
1483  static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1484  static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1485  };
1486 
1487  typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1488 
1489  DirectCleanup *Cleanup = CGF.EHStack
1490  .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1491  E->getNumPlacementArgs(),
1492  E->getOperatorDelete(),
1493  NewPtr.getPointer(),
1494  AllocSize,
1495  E->passAlignment(),
1496  AllocAlign);
1497  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1498  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1499  Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1500  }
1501 
1502  return;
1503  }
1504 
1505  // Otherwise, we need to save all this stuff.
1508  DominatingValue<RValue>::saved_type SavedAllocSize =
1509  DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1510 
1511  struct ConditionalCleanupTraits {
1512  typedef DominatingValue<RValue>::saved_type ValueTy;
1513  typedef DominatingValue<RValue>::saved_type RValueTy;
1514  static RValue get(CodeGenFunction &CGF, ValueTy V) {
1515  return V.restore(CGF);
1516  }
1517  };
1518  typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1519 
1520  ConditionalCleanup *Cleanup = CGF.EHStack
1521  .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1522  E->getNumPlacementArgs(),
1523  E->getOperatorDelete(),
1524  SavedNewPtr,
1525  SavedAllocSize,
1526  E->passAlignment(),
1527  AllocAlign);
1528  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1529  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1530  Cleanup->setPlacementArg(
1531  I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1532  }
1533 
1534  CGF.initFullExprCleanup();
1535 }
1536 
1538  // The element type being allocated.
1539  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1540 
1541  // 1. Build a call to the allocation function.
1542  FunctionDecl *allocator = E->getOperatorNew();
1543 
1544  // If there is a brace-initializer, cannot allocate fewer elements than inits.
1545  unsigned minElements = 0;
1546  if (E->isArray() && E->hasInitializer()) {
1547  const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1548  if (ILE && ILE->isStringLiteralInit())
1549  minElements =
1550  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1551  ->getSize().getZExtValue();
1552  else if (ILE)
1553  minElements = ILE->getNumInits();
1554  }
1555 
1556  llvm::Value *numElements = nullptr;
1557  llvm::Value *allocSizeWithoutCookie = nullptr;
1558  llvm::Value *allocSize =
1559  EmitCXXNewAllocSize(*this, E, minElements, numElements,
1560  allocSizeWithoutCookie);
1561  CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1562 
1563  // Emit the allocation call. If the allocator is a global placement
1564  // operator, just "inline" it directly.
1565  Address allocation = Address::invalid();
1566  CallArgList allocatorArgs;
1567  if (allocator->isReservedGlobalPlacementOperator()) {
1568  assert(E->getNumPlacementArgs() == 1);
1569  const Expr *arg = *E->placement_arguments().begin();
1570 
1571  LValueBaseInfo BaseInfo;
1572  allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1573 
1574  // The pointer expression will, in many cases, be an opaque void*.
1575  // In these cases, discard the computed alignment and use the
1576  // formal alignment of the allocated type.
1577  if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1578  allocation = Address(allocation.getPointer(), allocAlign);
1579 
1580  // Set up allocatorArgs for the call to operator delete if it's not
1581  // the reserved global operator.
1582  if (E->getOperatorDelete() &&
1584  allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1585  allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1586  }
1587 
1588  } else {
1589  const FunctionProtoType *allocatorType =
1590  allocator->getType()->castAs<FunctionProtoType>();
1591  unsigned ParamsToSkip = 0;
1592 
1593  // The allocation size is the first argument.
1594  QualType sizeType = getContext().getSizeType();
1595  allocatorArgs.add(RValue::get(allocSize), sizeType);
1596  ++ParamsToSkip;
1597 
1598  if (allocSize != allocSizeWithoutCookie) {
1599  CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1600  allocAlign = std::max(allocAlign, cookieAlign);
1601  }
1602 
1603  // The allocation alignment may be passed as the second argument.
1604  if (E->passAlignment()) {
1605  QualType AlignValT = sizeType;
1606  if (allocatorType->getNumParams() > 1) {
1607  AlignValT = allocatorType->getParamType(1);
1608  assert(getContext().hasSameUnqualifiedType(
1609  AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1610  sizeType) &&
1611  "wrong type for alignment parameter");
1612  ++ParamsToSkip;
1613  } else {
1614  // Corner case, passing alignment to 'operator new(size_t, ...)'.
1615  assert(allocator->isVariadic() && "can't pass alignment to allocator");
1616  }
1617  allocatorArgs.add(
1618  RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1619  AlignValT);
1620  }
1621 
1622  // FIXME: Why do we not pass a CalleeDecl here?
1623  EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1624  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1625 
1626  RValue RV =
1627  EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1628 
1629  // If this was a call to a global replaceable allocation function that does
1630  // not take an alignment argument, the allocator is known to produce
1631  // storage that's suitably aligned for any object that fits, up to a known
1632  // threshold. Otherwise assume it's suitably aligned for the allocated type.
1633  CharUnits allocationAlign = allocAlign;
1634  if (!E->passAlignment() &&
1636  unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1637  Target.getNewAlign(), getContext().getTypeSize(allocType)));
1638  allocationAlign = std::max(
1639  allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1640  }
1641 
1642  allocation = Address(RV.getScalarVal(), allocationAlign);
1643  }
1644 
1645  // Emit a null check on the allocation result if the allocation
1646  // function is allowed to return null (because it has a non-throwing
1647  // exception spec or is the reserved placement new) and we have an
1648  // interesting initializer will be running sanitizers on the initialization.
1649  bool nullCheck = E->shouldNullCheckAllocation() &&
1650  (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1651  sanitizePerformTypeCheck());
1652 
1653  llvm::BasicBlock *nullCheckBB = nullptr;
1654  llvm::BasicBlock *contBB = nullptr;
1655 
1656  // The null-check means that the initializer is conditionally
1657  // evaluated.
1658  ConditionalEvaluation conditional(*this);
1659 
1660  if (nullCheck) {
1661  conditional.begin(*this);
1662 
1663  nullCheckBB = Builder.GetInsertBlock();
1664  llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1665  contBB = createBasicBlock("new.cont");
1666 
1667  llvm::Value *isNull =
1668  Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1669  Builder.CreateCondBr(isNull, contBB, notNullBB);
1670  EmitBlock(notNullBB);
1671  }
1672 
1673  // If there's an operator delete, enter a cleanup to call it if an
1674  // exception is thrown.
1675  EHScopeStack::stable_iterator operatorDeleteCleanup;
1676  llvm::Instruction *cleanupDominator = nullptr;
1677  if (E->getOperatorDelete() &&
1679  EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1680  allocatorArgs);
1681  operatorDeleteCleanup = EHStack.stable_begin();
1682  cleanupDominator = Builder.CreateUnreachable();
1683  }
1684 
1685  assert((allocSize == allocSizeWithoutCookie) ==
1686  CalculateCookiePadding(*this, E).isZero());
1687  if (allocSize != allocSizeWithoutCookie) {
1688  assert(E->isArray());
1689  allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1690  numElements,
1691  E, allocType);
1692  }
1693 
1694  llvm::Type *elementTy = ConvertTypeForMem(allocType);
1695  Address result = Builder.CreateElementBitCast(allocation, elementTy);
1696 
1697  // Passing pointer through launder.invariant.group to avoid propagation of
1698  // vptrs information which may be included in previous type.
1699  // To not break LTO with different optimizations levels, we do it regardless
1700  // of optimization level.
1701  if (CGM.getCodeGenOpts().StrictVTablePointers &&
1702  allocator->isReservedGlobalPlacementOperator())
1703  result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1704  result.getAlignment());
1705 
1706  // Emit sanitizer checks for pointer value now, so that in the case of an
1707  // array it was checked only once and not at each constructor call. We may
1708  // have already checked that the pointer is non-null.
1709  // FIXME: If we have an array cookie and a potentially-throwing allocator,
1710  // we'll null check the wrong pointer here.
1711  SanitizerSet SkippedChecks;
1712  SkippedChecks.set(SanitizerKind::Null, nullCheck);
1715  result.getPointer(), allocType, result.getAlignment(),
1716  SkippedChecks, numElements);
1717 
1718  EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1719  allocSizeWithoutCookie);
1720  if (E->isArray()) {
1721  // NewPtr is a pointer to the base element type. If we're
1722  // allocating an array of arrays, we'll need to cast back to the
1723  // array pointer type.
1724  llvm::Type *resultType = ConvertTypeForMem(E->getType());
1725  if (result.getType() != resultType)
1726  result = Builder.CreateBitCast(result, resultType);
1727  }
1728 
1729  // Deactivate the 'operator delete' cleanup if we finished
1730  // initialization.
1731  if (operatorDeleteCleanup.isValid()) {
1732  DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1733  cleanupDominator->eraseFromParent();
1734  }
1735 
1736  llvm::Value *resultPtr = result.getPointer();
1737  if (nullCheck) {
1738  conditional.end(*this);
1739 
1740  llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1741  EmitBlock(contBB);
1742 
1743  llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1744  PHI->addIncoming(resultPtr, notNullBB);
1745  PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1746  nullCheckBB);
1747 
1748  resultPtr = PHI;
1749  }
1750 
1751  return resultPtr;
1752 }
1753 
1755  llvm::Value *Ptr, QualType DeleteTy,
1756  llvm::Value *NumElements,
1757  CharUnits CookieSize) {
1758  assert((!NumElements && CookieSize.isZero()) ||
1759  DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1760 
1761  const FunctionProtoType *DeleteFTy =
1762  DeleteFD->getType()->getAs<FunctionProtoType>();
1763 
1764  CallArgList DeleteArgs;
1765 
1766  auto Params = getUsualDeleteParams(DeleteFD);
1767  auto ParamTypeIt = DeleteFTy->param_type_begin();
1768 
1769  // Pass the pointer itself.
1770  QualType ArgTy = *ParamTypeIt++;
1771  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1772  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1773 
1774  // Pass the std::destroying_delete tag if present.
1775  if (Params.DestroyingDelete) {
1776  QualType DDTag = *ParamTypeIt++;
1777  // Just pass an 'undef'. We expect the tag type to be an empty struct.
1778  auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1779  DeleteArgs.add(RValue::get(V), DDTag);
1780  }
1781 
1782  // Pass the size if the delete function has a size_t parameter.
1783  if (Params.Size) {
1784  QualType SizeType = *ParamTypeIt++;
1785  CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1786  llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1787  DeleteTypeSize.getQuantity());
1788 
1789  // For array new, multiply by the number of elements.
1790  if (NumElements)
1791  Size = Builder.CreateMul(Size, NumElements);
1792 
1793  // If there is a cookie, add the cookie size.
1794  if (!CookieSize.isZero())
1795  Size = Builder.CreateAdd(
1796  Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1797 
1798  DeleteArgs.add(RValue::get(Size), SizeType);
1799  }
1800 
1801  // Pass the alignment if the delete function has an align_val_t parameter.
1802  if (Params.Alignment) {
1803  QualType AlignValType = *ParamTypeIt++;
1804  CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1805  getContext().getTypeAlignIfKnown(DeleteTy));
1806  llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1807  DeleteTypeAlign.getQuantity());
1808  DeleteArgs.add(RValue::get(Align), AlignValType);
1809  }
1810 
1811  assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1812  "unknown parameter to usual delete function");
1813 
1814  // Emit the call to delete.
1815  EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1816 }
1817 
1818 namespace {
1819  /// Calls the given 'operator delete' on a single object.
1820  struct CallObjectDelete final : EHScopeStack::Cleanup {
1821  llvm::Value *Ptr;
1822  const FunctionDecl *OperatorDelete;
1823  QualType ElementType;
1824 
1825  CallObjectDelete(llvm::Value *Ptr,
1826  const FunctionDecl *OperatorDelete,
1827  QualType ElementType)
1828  : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1829 
1830  void Emit(CodeGenFunction &CGF, Flags flags) override {
1831  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1832  }
1833  };
1834 }
1835 
1836 void
1838  llvm::Value *CompletePtr,
1839  QualType ElementType) {
1840  EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1841  OperatorDelete, ElementType);
1842 }
1843 
1844 /// Emit the code for deleting a single object with a destroying operator
1845 /// delete. If the element type has a non-virtual destructor, Ptr has already
1846 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1847 /// Ptr points to an object of the static type.
1849  const CXXDeleteExpr *DE, Address Ptr,
1850  QualType ElementType) {
1851  auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1852  if (Dtor && Dtor->isVirtual())
1853  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1854  Dtor);
1855  else
1856  CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1857 }
1858 
1859 /// Emit the code for deleting a single object.
1861  const CXXDeleteExpr *DE,
1862  Address Ptr,
1863  QualType ElementType) {
1864  // C++11 [expr.delete]p3:
1865  // If the static type of the object to be deleted is different from its
1866  // dynamic type, the static type shall be a base class of the dynamic type
1867  // of the object to be deleted and the static type shall have a virtual
1868  // destructor or the behavior is undefined.
1870  DE->getExprLoc(), Ptr.getPointer(),
1871  ElementType);
1872 
1873  const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1874  assert(!OperatorDelete->isDestroyingOperatorDelete());
1875 
1876  // Find the destructor for the type, if applicable. If the
1877  // destructor is virtual, we'll just emit the vcall and return.
1878  const CXXDestructorDecl *Dtor = nullptr;
1879  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1880  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1881  if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1882  Dtor = RD->getDestructor();
1883 
1884  if (Dtor->isVirtual()) {
1885  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1886  Dtor);
1887  return;
1888  }
1889  }
1890  }
1891 
1892  // Make sure that we call delete even if the dtor throws.
1893  // This doesn't have to a conditional cleanup because we're going
1894  // to pop it off in a second.
1895  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1896  Ptr.getPointer(),
1897  OperatorDelete, ElementType);
1898 
1899  if (Dtor)
1901  /*ForVirtualBase=*/false,
1902  /*Delegating=*/false,
1903  Ptr, ElementType);
1904  else if (auto Lifetime = ElementType.getObjCLifetime()) {
1905  switch (Lifetime) {
1906  case Qualifiers::OCL_None:
1909  break;
1910 
1913  break;
1914 
1915  case Qualifiers::OCL_Weak:
1916  CGF.EmitARCDestroyWeak(Ptr);
1917  break;
1918  }
1919  }
1920 
1921  CGF.PopCleanupBlock();
1922 }
1923 
1924 namespace {
1925  /// Calls the given 'operator delete' on an array of objects.
1926  struct CallArrayDelete final : EHScopeStack::Cleanup {
1927  llvm::Value *Ptr;
1928  const FunctionDecl *OperatorDelete;
1929  llvm::Value *NumElements;
1930  QualType ElementType;
1931  CharUnits CookieSize;
1932 
1933  CallArrayDelete(llvm::Value *Ptr,
1934  const FunctionDecl *OperatorDelete,
1935  llvm::Value *NumElements,
1936  QualType ElementType,
1937  CharUnits CookieSize)
1938  : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1939  ElementType(ElementType), CookieSize(CookieSize) {}
1940 
1941  void Emit(CodeGenFunction &CGF, Flags flags) override {
1942  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1943  CookieSize);
1944  }
1945  };
1946 }
1947 
1948 /// Emit the code for deleting an array of objects.
1950  const CXXDeleteExpr *E,
1951  Address deletedPtr,
1952  QualType elementType) {
1953  llvm::Value *numElements = nullptr;
1954  llvm::Value *allocatedPtr = nullptr;
1955  CharUnits cookieSize;
1956  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1957  numElements, allocatedPtr, cookieSize);
1958 
1959  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1960 
1961  // Make sure that we call delete even if one of the dtors throws.
1962  const FunctionDecl *operatorDelete = E->getOperatorDelete();
1963  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1964  allocatedPtr, operatorDelete,
1965  numElements, elementType,
1966  cookieSize);
1967 
1968  // Destroy the elements.
1969  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1970  assert(numElements && "no element count for a type with a destructor!");
1971 
1972  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1973  CharUnits elementAlign =
1974  deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1975 
1976  llvm::Value *arrayBegin = deletedPtr.getPointer();
1977  llvm::Value *arrayEnd =
1978  CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1979 
1980  // Note that it is legal to allocate a zero-length array, and we
1981  // can never fold the check away because the length should always
1982  // come from a cookie.
1983  CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1984  CGF.getDestroyer(dtorKind),
1985  /*checkZeroLength*/ true,
1986  CGF.needsEHCleanup(dtorKind));
1987  }
1988 
1989  // Pop the cleanup block.
1990  CGF.PopCleanupBlock();
1991 }
1992 
1994  const Expr *Arg = E->getArgument();
1995  Address Ptr = EmitPointerWithAlignment(Arg);
1996 
1997  // Null check the pointer.
1998  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1999  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2000 
2001  llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2002 
2003  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2004  EmitBlock(DeleteNotNull);
2005 
2006  QualType DeleteTy = E->getDestroyedType();
2007 
2008  // A destroying operator delete overrides the entire operation of the
2009  // delete expression.
2011  EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2012  EmitBlock(DeleteEnd);
2013  return;
2014  }
2015 
2016  // We might be deleting a pointer to array. If so, GEP down to the
2017  // first non-array element.
2018  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2019  if (DeleteTy->isConstantArrayType()) {
2020  llvm::Value *Zero = Builder.getInt32(0);
2022 
2023  GEP.push_back(Zero); // point at the outermost array
2024 
2025  // For each layer of array type we're pointing at:
2026  while (const ConstantArrayType *Arr
2027  = getContext().getAsConstantArrayType(DeleteTy)) {
2028  // 1. Unpeel the array type.
2029  DeleteTy = Arr->getElementType();
2030 
2031  // 2. GEP to the first element of the array.
2032  GEP.push_back(Zero);
2033  }
2034 
2035  Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2036  Ptr.getAlignment());
2037  }
2038 
2039  assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2040 
2041  if (E->isArrayForm()) {
2042  EmitArrayDelete(*this, E, Ptr, DeleteTy);
2043  } else {
2044  EmitObjectDelete(*this, E, Ptr, DeleteTy);
2045  }
2046 
2047  EmitBlock(DeleteEnd);
2048 }
2049 
2050 static bool isGLValueFromPointerDeref(const Expr *E) {
2051  E = E->IgnoreParens();
2052 
2053  if (const auto *CE = dyn_cast<CastExpr>(E)) {
2054  if (!CE->getSubExpr()->isGLValue())
2055  return false;
2056  return isGLValueFromPointerDeref(CE->getSubExpr());
2057  }
2058 
2059  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2060  return isGLValueFromPointerDeref(OVE->getSourceExpr());
2061 
2062  if (const auto *BO = dyn_cast<BinaryOperator>(E))
2063  if (BO->getOpcode() == BO_Comma)
2064  return isGLValueFromPointerDeref(BO->getRHS());
2065 
2066  if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2067  return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2068  isGLValueFromPointerDeref(ACO->getFalseExpr());
2069 
2070  // C++11 [expr.sub]p1:
2071  // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2072  if (isa<ArraySubscriptExpr>(E))
2073  return true;
2074 
2075  if (const auto *UO = dyn_cast<UnaryOperator>(E))
2076  if (UO->getOpcode() == UO_Deref)
2077  return true;
2078 
2079  return false;
2080 }
2081 
2083  llvm::Type *StdTypeInfoPtrTy) {
2084  // Get the vtable pointer.
2085  Address ThisPtr = CGF.EmitLValue(E).getAddress();
2086 
2087  QualType SrcRecordTy = E->getType();
2088 
2089  // C++ [class.cdtor]p4:
2090  // If the operand of typeid refers to the object under construction or
2091  // destruction and the static type of the operand is neither the constructor
2092  // or destructor’s class nor one of its bases, the behavior is undefined.
2094  ThisPtr.getPointer(), SrcRecordTy);
2095 
2096  // C++ [expr.typeid]p2:
2097  // If the glvalue expression is obtained by applying the unary * operator to
2098  // a pointer and the pointer is a null pointer value, the typeid expression
2099  // throws the std::bad_typeid exception.
2100  //
2101  // However, this paragraph's intent is not clear. We choose a very generous
2102  // interpretation which implores us to consider comma operators, conditional
2103  // operators, parentheses and other such constructs.
2105  isGLValueFromPointerDeref(E), SrcRecordTy)) {
2106  llvm::BasicBlock *BadTypeidBlock =
2107  CGF.createBasicBlock("typeid.bad_typeid");
2108  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2109 
2110  llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2111  CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2112 
2113  CGF.EmitBlock(BadTypeidBlock);
2114  CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2115  CGF.EmitBlock(EndBlock);
2116  }
2117 
2118  return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2119  StdTypeInfoPtrTy);
2120 }
2121 
2123  llvm::Type *StdTypeInfoPtrTy =
2124  ConvertType(E->getType())->getPointerTo();
2125 
2126  if (E->isTypeOperand()) {
2127  llvm::Constant *TypeInfo =
2128  CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2129  return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2130  }
2131 
2132  // C++ [expr.typeid]p2:
2133  // When typeid is applied to a glvalue expression whose type is a
2134  // polymorphic class type, the result refers to a std::type_info object
2135  // representing the type of the most derived object (that is, the dynamic
2136  // type) to which the glvalue refers.
2137  if (E->isPotentiallyEvaluated())
2138  return EmitTypeidFromVTable(*this, E->getExprOperand(),
2139  StdTypeInfoPtrTy);
2140 
2141  QualType OperandTy = E->getExprOperand()->getType();
2142  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2143  StdTypeInfoPtrTy);
2144 }
2145 
2147  QualType DestTy) {
2148  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2149  if (DestTy->isPointerType())
2150  return llvm::Constant::getNullValue(DestLTy);
2151 
2152  /// C++ [expr.dynamic.cast]p9:
2153  /// A failed cast to reference type throws std::bad_cast
2154  if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2155  return nullptr;
2156 
2157  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2158  return llvm::UndefValue::get(DestLTy);
2159 }
2160 
2162  const CXXDynamicCastExpr *DCE) {
2163  CGM.EmitExplicitCastExprType(DCE, this);
2164  QualType DestTy = DCE->getTypeAsWritten();
2165 
2166  QualType SrcTy = DCE->getSubExpr()->getType();
2167 
2168  // C++ [expr.dynamic.cast]p7:
2169  // If T is "pointer to cv void," then the result is a pointer to the most
2170  // derived object pointed to by v.
2171  const PointerType *DestPTy = DestTy->getAs<PointerType>();
2172 
2173  bool isDynamicCastToVoid;
2174  QualType SrcRecordTy;
2175  QualType DestRecordTy;
2176  if (DestPTy) {
2177  isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2178  SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2179  DestRecordTy = DestPTy->getPointeeType();
2180  } else {
2181  isDynamicCastToVoid = false;
2182  SrcRecordTy = SrcTy;
2183  DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2184  }
2185 
2186  // C++ [class.cdtor]p5:
2187  // If the operand of the dynamic_cast refers to the object under
2188  // construction or destruction and the static type of the operand is not a
2189  // pointer to or object of the constructor or destructor’s own class or one
2190  // of its bases, the dynamic_cast results in undefined behavior.
2191  EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2192  SrcRecordTy);
2193 
2194  if (DCE->isAlwaysNull())
2195  if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2196  return T;
2197 
2198  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2199 
2200  // C++ [expr.dynamic.cast]p4:
2201  // If the value of v is a null pointer value in the pointer case, the result
2202  // is the null pointer value of type T.
2203  bool ShouldNullCheckSrcValue =
2204  CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2205  SrcRecordTy);
2206 
2207  llvm::BasicBlock *CastNull = nullptr;
2208  llvm::BasicBlock *CastNotNull = nullptr;
2209  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2210 
2211  if (ShouldNullCheckSrcValue) {
2212  CastNull = createBasicBlock("dynamic_cast.null");
2213  CastNotNull = createBasicBlock("dynamic_cast.notnull");
2214 
2215  llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2216  Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2217  EmitBlock(CastNotNull);
2218  }
2219 
2220  llvm::Value *Value;
2221  if (isDynamicCastToVoid) {
2222  Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2223  DestTy);
2224  } else {
2225  assert(DestRecordTy->isRecordType() &&
2226  "destination type must be a record type!");
2227  Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2228  DestTy, DestRecordTy, CastEnd);
2229  CastNotNull = Builder.GetInsertBlock();
2230  }
2231 
2232  if (ShouldNullCheckSrcValue) {
2233  EmitBranch(CastEnd);
2234 
2235  EmitBlock(CastNull);
2236  EmitBranch(CastEnd);
2237  }
2238 
2239  EmitBlock(CastEnd);
2240 
2241  if (ShouldNullCheckSrcValue) {
2242  llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2243  PHI->addIncoming(Value, CastNotNull);
2244  PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2245 
2246  Value = PHI;
2247  }
2248 
2249  return Value;
2250 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:77
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:363
virtual void EmitBadTypeidCall(CodeGenFunction &CGF)=0
CanQualType DeriveThisType(const CXXRecordDecl *RD, const CXXMethodDecl *MD)
Derives the &#39;this&#39; type for codegen purposes, i.e.
Definition: CGCall.cpp:73
Represents a function declaration or definition.
Definition: Decl.h:1748
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2872
Address getAddress() const
Definition: CGValue.h:582
Complete object ctor.
Definition: ABI.h:25
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2569
QualType getPointeeType() const
Definition: Type.h:2582
llvm::iterator_range< arg_iterator > placement_arguments()
Definition: ExprCXX.h:2211
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
Definition: CGDecl.cpp:2032
A (possibly-)qualified type.
Definition: Type.h:643
static RValue EmitNewDeleteCall(CodeGenFunction &CGF, const FunctionDecl *CalleeDecl, const FunctionProtoType *CalleeType, const CallArgList &Args)
Emit a call to an operator new or operator delete function, as implicitly created by new-expressions ...
Definition: CGExprCXX.cpp:1288
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2132
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:246
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2890
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2673
void EmitARCDestroyWeak(Address addr)
void @objc_destroyWeak(i8** addr) Essentially objc_storeWeak(addr, nil).
Definition: CGObjC.cpp:2436
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D...
void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:966
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
virtual bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy)=0
QualType getThisType() const
Return the type of the this pointer.
Definition: DeclCXX.cpp:2275
Checking the &#39;this&#39; pointer for a constructor call.
bool isRecordType() const
Definition: Type.h:6464
Expr * getBase() const
Definition: Expr.h:2884
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
bool isVirtual() const
Definition: DeclCXX.h:2157
FunctionDecl * getOperatorNew() const
Definition: ExprCXX.h:2124
Opcode getOpcode() const
Definition: Expr.h:3440
bool hasQualifier() const
Determines whether this member expression actually had a C++ nested-name-specifier prior to the name ...
Definition: Expr.h:2904
The base class of the type hierarchy.
Definition: Type.h:1433
bool requiresZeroInitialization() const
Whether this construction first requires zero-initialization before the initializer is called...
Definition: ExprCXX.h:1442
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2844
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1331
RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:179
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:115
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2574
Expr * ignoreParenBaseCasts() LLVM_READONLY
Skip past any parentheses and derived-to-base casts until reaching a fixed point. ...
Definition: Expr.cpp:2964
static llvm::Value * EmitCXXNewAllocSize(CodeGenFunction &CGF, const CXXNewExpr *e, unsigned minElements, llvm::Value *&numElements, llvm::Value *&sizeWithoutCookie)
Definition: CGExprCXX.cpp:676
static saved_type save(CodeGenFunction &CGF, type value)
Definition: EHScopeStack.h:59
QualType getReturnType() const
Definition: Decl.h:2329
unsigned getNumParams() const
Definition: Type.h:3921
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6851
const void * Store
Store - This opaque type encapsulates an immutable mapping from locations to values.
Definition: StoreRef.h:27
LangAS
Defines the address space values used by the address space qualifier of QualType. ...
Definition: AddressSpaces.h:25
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This, QualType ThisTy)
Definition: CGClass.cpp:2411
IsZeroed_t isZeroed() const
Definition: CGValue.h:615
Address CreateConstInBoundsByteGEP(Address Addr, CharUnits Offset, const llvm::Twine &Name="")
Given a pointer to i8, adjust it by a given constant offset.
Definition: CGBuilder.h:244
llvm::Value * getPointer() const
Definition: Address.h:37
unsigned getNumPlacementArgs() const
Definition: ExprCXX.h:2142
static MemberCallInfo commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:36
RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:476
bool hasDefinition() const
Definition: DeclCXX.h:778
Expr * getExprOperand() const
Definition: ExprCXX.h:730
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3212
long i
Definition: xmmintrin.h:1456
RValue EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, const CGCallee &Callee, ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:78
The collection of all-type qualifiers we support.
Definition: Type.h:137
void add(RValue rvalue, QualType type)
Definition: CGCall.h:287
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:4347
bool isMoveAssignmentOperator() const
Determine whether this is a move assignment operator.
Definition: DeclCXX.cpp:2204
bool isEmpty() const
Determine whether this is an empty class in the sense of (C++11 [meta.unary.prop]).
Definition: DeclCXX.h:1332
An object to manage conditionally-evaluated expressions.
llvm::Value * EmitCXXNewExpr(const CXXNewExpr *E)
Definition: CGExprCXX.cpp:1537
Address getAddress() const
Definition: CGValue.h:326
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:3928
llvm::Value * EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE)
Definition: CGExprCXX.cpp:2161
static llvm::Value * EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, llvm::Type *StdTypeInfoPtrTy)
Definition: CGExprCXX.cpp:2082
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:80
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:292
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:513
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:52
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:65
__DEVICE__ int max(int __a, int __b)
Expr * getSubExpr()
Definition: Expr.h:3173
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2895
Describes an C or C++ initializer list.
Definition: Expr.h:4371
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:673
Optional< Expr * > getArraySize()
Definition: ExprCXX.h:2131
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:2305
Base object ctor.
Definition: ABI.h:26
bool isElidable() const
Whether this construction is elidable.
Definition: ExprCXX.h:1409
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:156
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:37
void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise)
Destroy a __strong variable.
Definition: CGObjC.cpp:2262
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6902
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:118
Expr * getInitializer()
The initializer of this new-expression.
Definition: ExprCXX.h:2181
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:66
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3405
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6212
Checking the operand of a dynamic_cast or a typeid expression.
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
LangAS getAddressSpace() const
Definition: Type.h:353
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:274
const Type * getClass() const
Definition: Type.h:2822
bool isArrow() const
Definition: Expr.h:2991
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, QualType DeleteTy, llvm::Value *NumElements=nullptr, CharUnits CookieSize=CharUnits())
Definition: CGExprCXX.cpp:1754
param_type_iterator param_type_begin() const
Definition: Type.h:4067
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, Address DestPtr, const CXXRecordDecl *Base)
Definition: CGExprCXX.cpp:481
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1491
bool isInstance() const
Definition: DeclCXX.h:2140
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:1735
CXXMethodDecl * getCorrespondingMethodInClass(const CXXRecordDecl *RD, bool MayBeBase=false)
Find the method in RD that corresponds to this one.
Definition: DeclCXX.cpp:1991
bool isNegative() const
isNegative - Test whether the quantity is less than zero.
Definition: CharUnits.h:124
This object can be modified without requiring retains or releases.
Definition: Type.h:158
arg_iterator arg_end()
Definition: Expr.h:2718
Checking the &#39;this&#39; pointer for a call to a non-static member function.
TypeSourceInfo * getAllocatedTypeSourceInfo() const
Definition: ExprCXX.h:2103
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1602
bool isArrayForm() const
Definition: ExprCXX.h:2292
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition: Expr.h:3331
bool isValid() const
Definition: Address.h:35
void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest)
Definition: CGExprCXX.cpp:569
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2385
void addFrom(const CallArgList &other)
Add all the arguments from another CallArgList to this one.
Definition: CGCall.h:296
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1636
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3719
bool isDynamicClass() const
Definition: DeclCXX.h:791
virtual CharUnits GetArrayCookieSize(const CXXNewExpr *expr)
Returns the extra size required in order to store the array cookie for the given new-expression.
Definition: CGCXXABI.cpp:161
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any...
Definition: Decl.cpp:3383
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1403
NestedNameSpecifier * getQualifier() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name...
Definition: Expr.h:2918
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:38
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:178
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:38
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
SourceLocation getBeginLoc() const
Get the begin source location.
Definition: TypeLoc.cpp:189
This represents one expression.
Definition: Expr.h:108
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2766
bool isDefaulted() const
Whether this function is defaulted per C++0x.
Definition: Decl.h:2048
static Address invalid()
Definition: Address.h:34
static void EnterNewDeleteCleanup(CodeGenFunction &CGF, const CXXNewExpr *E, Address NewPtr, llvm::Value *AllocSize, CharUnits AllocAlign, const CallArgList &NewArgs)
Enter a cleanup to call &#39;operator delete&#39; if the initializer in a new-expression throws.
Definition: CGExprCXX.cpp:1469
virtual void ReadArrayCookie(CodeGenFunction &CGF, Address Ptr, const CXXDeleteExpr *expr, QualType ElementType, llvm::Value *&NumElements, llvm::Value *&AllocPtr, CharUnits &CookieSize)
Reads the array cookie associated with the given pointer, if it has one.
Definition: CGCXXABI.cpp:201
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E)
Definition: CGExprCXX.cpp:118
void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, llvm::Value *CompletePtr, QualType ElementType)
Definition: CGExprCXX.cpp:1837
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6916
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:133
SourceLocation getExprLoc() const LLVM_READONLY
Definition: ExprCXX.h:209
#define V(N, I)
Definition: ASTContext.h:2907
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2838
Expr * getCallee()
Definition: Expr.h:2634
bool isSanitizerChecked() const
Definition: CGValue.h:602
unsigned getNumInits() const
Definition: Expr.h:4401
bool isArrow() const
Determine whether this pseudo-destructor expression was written using an &#39;->&#39; (otherwise, it used a &#39;.
Definition: ExprCXX.h:2448
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:43
virtual bool EmitBadCastCall(CodeGenFunction &CGF)=0
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return null.
Definition: Expr.h:2652
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
A class for recording the number of arguments that a function signature requires. ...
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const
Determine whether the result of this expression is a temporary object of the given class type...
Definition: Expr.cpp:3014
QualType getType() const
Definition: Expr.h:137
RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, const Expr *Base)
Definition: CGExprCXX.cpp:206
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, QualType Type, CharUnits Alignment=CharUnits::Zero(), SanitizerSet SkippedChecks=SanitizerSet(), llvm::Value *ArraySize=nullptr)
Emit a check that V is the address of storage of the appropriate size and alignment for an object of ...
Definition: CGExpr.cpp:653
CharUnits alignmentOfArrayElement(CharUnits elementSize) const
Given that this is the alignment of the first element of an array, return the minimum alignment of an...
Definition: CharUnits.h:196
bool hasInitializer() const
Whether this new-expression has any initializer at all.
Definition: ExprCXX.h:2168
QualType getRecordType(const RecordDecl *Decl) const
static void EmitObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object.
Definition: CGExprCXX.cpp:1860
llvm::CallInst * CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:296
llvm::Value * EmitCastToVoidPtr(llvm::Value *value)
Emit a cast to void* in the appropriate address space.
Definition: CGExpr.cpp:50
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this typeid() expression after various required adjustments (removing r...
Definition: ExprCXX.cpp:76
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, QualType elementType, CharUnits elementAlign, Destroyer *destroyer, bool checkZeroLength, bool useEHCleanup)
emitArrayDestroy - Destroys all the elements of the given array, beginning from last to first...
Definition: CGDecl.cpp:2146
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2040
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:224
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:708
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:40
The l-value was considered opaque, so the alignment was determined from a type.
RecordDecl * getDecl() const
Definition: Type.h:4448
Expr * getArgument()
Definition: ExprCXX.h:2307
bool isAlignValT() const
Definition: Type.cpp:2480
There is no lifetime qualification on this type.
Definition: Type.h:154
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:354
void set(SanitizerMask K, bool Value)
Enable or disable a certain (single) sanitizer.
Definition: Sanitizers.h:161
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:165
QualType getCanonicalType() const
Definition: Type.h:6181
void initFullExprCleanup()
Set up the last cleanup that was pushed as a conditional full-expression cleanup. ...
llvm::Value * EmitCXXTypeidExpr(const CXXTypeidExpr *E)
Definition: CGExprCXX.cpp:2122
Encodes a location in the source.
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4464
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:6258
virtual llvm::Value * EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, Address ThisPtr, llvm::Type *StdTypeInfoPtrTy)=0
A saved depth on the scope stack.
Definition: EHScopeStack.h:106
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **callOrInvoke, SourceLocation Loc)
EmitCall - Generate a call of the given function, expecting the given result type, and using the given argument list which specifies both the LLVM arguments and the types they were derived from.
Definition: CGCall.cpp:3779
bool shouldNullCheckAllocation() const
True if the allocation result needs to be null-checked.
Definition: ExprCXX.cpp:215
static CXXRecordDecl * getCXXRecord(const Expr *E)
Definition: CGExprCXX.cpp:169
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:2005
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:170
const Decl * getDecl() const
Definition: GlobalDecl.h:76
An aggregate value slot.
Definition: CGValue.h:436
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:711
static void EmitArrayDelete(CodeGenFunction &CGF, const CXXDeleteExpr *E, Address deletedPtr, QualType elementType)
Emit the code for deleting an array of objects.
Definition: CGExprCXX.cpp:1949
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2114
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2441
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
llvm::Constant * EmitNullConstantForBase(const CXXRecordDecl *Record)
Return a null constant appropriate for zero-initializing a base class with the given type...
QualType getAllocatedType() const
Definition: ExprCXX.h:2098
bool isArray() const
Definition: ExprCXX.h:2129
arg_range arguments()
Definition: Expr.h:2710
virtual void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType, const CXXDestructorDecl *Dtor)=0
An aligned address.
Definition: Address.h:24
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after...
Definition: Type.h:1157
All available information about a concrete callee.
Definition: CGCall.h:66
const CXXRecordDecl * getBestDynamicClassType() const
For an expression of class type or pointer to class type, return the most derived class decl the expr...
Definition: Expr.cpp:62
Complete object dtor.
Definition: ABI.h:35
EnumDecl * getDecl() const
Definition: Type.h:4471
RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:414
Assigning into this object requires a lifetime extension.
Definition: Type.h:171
static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object with a destroying operator delete.
Definition: CGExprCXX.cpp:1848
bool passAlignment() const
Indicates whether the required alignment should be implicitly passed to the allocation function...
Definition: ExprCXX.h:2199
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:2126
CXXCtorType
C++ constructor types.
Definition: ABI.h:24
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:215
Expr * getLHS() const
Definition: Expr.h:3445
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, const CXXNewExpr *E)
Definition: CGExprCXX.cpp:663
CharUnits getNonVirtualAlignment() const
getNonVirtualSize - Get the non-virtual alignment (in chars) of an object, which is the alignment of ...
Definition: RecordLayout.h:210
CGFunctionInfo - Class to encapsulate the information about a function definition.
CharUnits alignmentAtOffset(CharUnits offset) const
Given that this is a non-zero alignment value, what is the alignment at the given offset...
Definition: CharUnits.h:189
bool isTypeOperand() const
Definition: ExprCXX.h:713
Dataflow Directional Tag Classes.
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2265
Qualifiers getMethodQualifiers() const
Definition: DeclCXX.h:2267
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we&#39;re currently emitting one branch or the other of a conditio...
The name of a declaration.
const CXXRecordDecl * getParent() const
Return the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2237
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type *> Tys=None)
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2788
bool isCopyAssignmentOperator() const
Determine whether this is a copy-assignment operator, regardless of whether it was declared implicitl...
Definition: DeclCXX.cpp:2183
bool isDestroyingOperatorDelete() const
Determine whether this is a destroying operator delete.
Definition: Decl.cpp:2961
llvm::Module & getModule() const
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type. ...
Definition: CGExprAgg.cpp:1845
bool isStringLiteralInit() const
Definition: Expr.cpp:2266
static llvm::Value * EmitDynamicCastToNull(CodeGenFunction &CGF, QualType DestTy)
Definition: CGExprCXX.cpp:2146
AlignmentSource getAlignmentSource() const
Definition: CGValue.h:155
static RequiredArgs forPrototypePlus(const FunctionProtoType *prototype, unsigned additional)
Compute the arguments required by the given formal prototype, given that there may be some additional...
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4438
CXXMethodDecl * getDevirtualizedMethod(const Expr *Base, bool IsAppleKext)
If it&#39;s possible to devirtualize a call to this method, return the called function.
Definition: DeclCXX.cpp:2027
CodeGenTypes & getTypes() const
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6677
arg_iterator arg_begin()
Definition: Expr.h:2715
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:51
Represents a call to a CUDA kernel function.
Definition: ExprCXX.h:223
void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit)
Definition: CGDecl.cpp:746
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition: ExprCXX.h:1482
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2705
void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp)
Definition: CGExprCXX.cpp:641
llvm::Constant * GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty=nullptr, bool ForVTable=false, bool DontDefer=false, ForDefinition_t IsForDefinition=NotForDefinition)
Return the address of the given function.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:454
bool isConstantArrayType() const
Definition: Type.h:6444
static bool isGLValueFromPointerDeref(const Expr *E)
Definition: CGExprCXX.cpp:2050
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:240
Reading or writing from this object requires a barrier call.
Definition: Type.h:168
QualType getParamType(unsigned i) const
Definition: Type.h:3923
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2807
Represents a C++ struct/union/class.
Definition: DeclCXX.h:300
virtual const CXXRecordDecl * getThisArgumentTypeForMethod(const CXXMethodDecl *MD)
Get the type of the implicit "this" parameter used by a method.
Definition: CGCXXABI.h:333
bool isVoidType() const
Definition: Type.h:6643
bool hasStrongOrWeakObjCLifetime() const
Definition: Type.h:1071
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:1273
llvm::Type * ConvertType(QualType T)
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:6169
RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, const CallExpr *TheCallExpr, bool IsDelete)
Definition: CGExprCXX.cpp:1315
void EmitCXXDeleteExpr(const CXXDeleteExpr *E)
Definition: CGExprCXX.cpp:1993
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1244
CharUnits getNonVirtualSize() const
getNonVirtualSize - Get the non-virtual size (in chars) of an object, which is the size of the object...
Definition: RecordLayout.h:202
T * pushCleanupWithExtra(CleanupKind Kind, size_t N, As... A)
Push a cleanup with non-constant storage requirements on the stack.
Definition: EHScopeStack.h:304
static CGCallee forVirtual(const CallExpr *CE, GlobalDecl MD, Address Addr, llvm::FunctionType *FTy)
Definition: CGCall.h:144
static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD)
Definition: CGExprCXX.cpp:1341
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2516
QualType getIntegerType() const
Return the integer type this enum decl corresponds to.
Definition: Decl.h:3513
llvm::Constant * tryEmitAbstract(const Expr *E, QualType T)
Try to emit the result of the given expression as an abstract constant.
CGCXXABI & getCXXABI() const
bool isAlwaysNull() const
isAlwaysNull - Return whether the result of the dynamic_cast is proven to always be null...
Definition: ExprCXX.cpp:755
static RValue get(llvm::Value *V)
Definition: CGValue.h:85
result[0]
Definition: emmintrin.h:120
bool isUnion() const
Definition: Decl.h:3285
Expr * getRHS() const
Definition: Expr.h:3447
bool isPointerType() const
Definition: Type.h:6384
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, QualType AllocType, Address NewPtr, AggValueSlot::Overlap_t MayOverlap)
Definition: CGExprCXX.cpp:938
const CGFunctionInfo & arrangeFreeFunctionCall(const CallArgList &Args, const FunctionType *Ty, bool ChainCall)
Figure out the rules for calling a function with the given formal type using the given arguments...
Definition: CGCall.cpp:610
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
virtual std::vector< CharUnits > getVBPtrOffsets(const CXXRecordDecl *RD)
Gets the offsets of all the virtual base pointers in a given class.
Definition: CGCXXABI.cpp:312
QualType getType() const
Definition: Decl.h:647
LValue - This represents an lvalue references.
Definition: CGValue.h:166
An abstract representation of regular/ObjC call/message targets.
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:146
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1522
bool isPotentiallyEvaluated() const
Determine whether this typeid has a type operand which is potentially evaluated, per C++11 [expr...
Definition: ExprCXX.cpp:61
RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:466
TranslationUnitDecl * getTranslationUnitDecl()
Definition: DeclBase.cpp:361
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:262
void PopCleanupBlock(bool FallThroughIsBranchThrough=false)
PopCleanupBlock - Will pop the cleanup entry on the stack and process all branch fixups.
Definition: CGCleanup.cpp:644
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2904
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:5079
QualType getPointeeType() const
Definition: Type.h:2808
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:2938
ConstructionKind getConstructionKind() const
Determine whether this constructor is actually constructing a base class (rather than a complete obje...
Definition: ExprCXX.h:1451
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1063
param_type_iterator param_type_end() const
Definition: Type.h:4071