clang  8.0.0svn
CGExprCXX.cpp
Go to the documentation of this file.
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "ConstantEmitter.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Intrinsics.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 
28 namespace {
29 struct MemberCallInfo {
30  RequiredArgs ReqArgs;
31  // Number of prefix arguments for the call. Ignores the `this` pointer.
32  unsigned PrefixSize;
33 };
34 }
35 
36 static MemberCallInfo
38  llvm::Value *This, llvm::Value *ImplicitParam,
39  QualType ImplicitParamTy, const CallExpr *CE,
40  CallArgList &Args, CallArgList *RtlArgs) {
41  assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
42  isa<CXXOperatorCallExpr>(CE));
43  assert(MD->isInstance() &&
44  "Trying to emit a member or operator call expr on a static method!");
45  ASTContext &C = CGF.getContext();
46 
47  // Push the this ptr.
48  const CXXRecordDecl *RD =
50  Args.add(RValue::get(This),
51  RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
52 
53  // If there is an implicit parameter (e.g. VTT), emit it.
54  if (ImplicitParam) {
55  Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
56  }
57 
58  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
59  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
60  unsigned PrefixSize = Args.size() - 1;
61 
62  // And the rest of the call args.
63  if (RtlArgs) {
64  // Special case: if the caller emitted the arguments right-to-left already
65  // (prior to emitting the *this argument), we're done. This happens for
66  // assignment operators.
67  Args.addFrom(*RtlArgs);
68  } else if (CE) {
69  // Special case: skip first argument of CXXOperatorCall (it is "this").
70  unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
71  CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
72  CE->getDirectCallee());
73  } else {
74  assert(
75  FPT->getNumParams() == 0 &&
76  "No CallExpr specified for function with non-zero number of arguments");
77  }
78  return {required, PrefixSize};
79 }
80 
82  const CXXMethodDecl *MD, const CGCallee &Callee,
83  ReturnValueSlot ReturnValue,
84  llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
85  const CallExpr *CE, CallArgList *RtlArgs) {
86  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
87  CallArgList Args;
88  MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
89  *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
90  auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
91  Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
92  return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
93  CE ? CE->getExprLoc() : SourceLocation());
94 }
95 
97  const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
98  llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
100  CallArgList Args;
101  commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
102  ImplicitParamTy, CE, Args, nullptr);
103  return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
104  Callee, ReturnValueSlot(), Args);
105 }
106 
108  const CXXPseudoDestructorExpr *E) {
109  QualType DestroyedType = E->getDestroyedType();
110  if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
111  // Automatic Reference Counting:
112  // If the pseudo-expression names a retainable object with weak or
113  // strong lifetime, the object shall be released.
114  Expr *BaseExpr = E->getBase();
115  Address BaseValue = Address::invalid();
116  Qualifiers BaseQuals;
117 
118  // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
119  if (E->isArrow()) {
120  BaseValue = EmitPointerWithAlignment(BaseExpr);
121  const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
122  BaseQuals = PTy->getPointeeType().getQualifiers();
123  } else {
124  LValue BaseLV = EmitLValue(BaseExpr);
125  BaseValue = BaseLV.getAddress();
126  QualType BaseTy = BaseExpr->getType();
127  BaseQuals = BaseTy.getQualifiers();
128  }
129 
130  switch (DestroyedType.getObjCLifetime()) {
134  break;
135 
137  EmitARCRelease(Builder.CreateLoad(BaseValue,
138  DestroyedType.isVolatileQualified()),
140  break;
141 
143  EmitARCDestroyWeak(BaseValue);
144  break;
145  }
146  } else {
147  // C++ [expr.pseudo]p1:
148  // The result shall only be used as the operand for the function call
149  // operator (), and the result of such a call has type void. The only
150  // effect is the evaluation of the postfix-expression before the dot or
151  // arrow.
152  EmitIgnoredExpr(E->getBase());
153  }
154 
155  return RValue::get(nullptr);
156 }
157 
158 static CXXRecordDecl *getCXXRecord(const Expr *E) {
159  QualType T = E->getType();
160  if (const PointerType *PTy = T->getAs<PointerType>())
161  T = PTy->getPointeeType();
162  const RecordType *Ty = T->castAs<RecordType>();
163  return cast<CXXRecordDecl>(Ty->getDecl());
164 }
165 
166 // Note: This function also emit constructor calls to support a MSVC
167 // extensions allowing explicit constructor function call.
169  ReturnValueSlot ReturnValue) {
170  const Expr *callee = CE->getCallee()->IgnoreParens();
171 
172  if (isa<BinaryOperator>(callee))
173  return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
174 
175  const MemberExpr *ME = cast<MemberExpr>(callee);
176  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
177 
178  if (MD->isStatic()) {
179  // The method is static, emit it as we would a regular call.
180  CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD);
181  return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
182  ReturnValue);
183  }
184 
185  bool HasQualifier = ME->hasQualifier();
186  NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
187  bool IsArrow = ME->isArrow();
188  const Expr *Base = ME->getBase();
189 
190  return EmitCXXMemberOrOperatorMemberCallExpr(
191  CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
192 }
193 
195  const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
196  bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
197  const Expr *Base) {
198  assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
199 
200  // Compute the object pointer.
201  bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
202 
203  const CXXMethodDecl *DevirtualizedMethod = nullptr;
204  if (CanUseVirtualCall &&
205  MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
206  const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
207  DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
208  assert(DevirtualizedMethod);
209  const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
210  const Expr *Inner = Base->ignoreParenBaseCasts();
211  if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
213  // If the return types are not the same, this might be a case where more
214  // code needs to run to compensate for it. For example, the derived
215  // method might return a type that inherits form from the return
216  // type of MD and has a prefix.
217  // For now we just avoid devirtualizing these covariant cases.
218  DevirtualizedMethod = nullptr;
219  else if (getCXXRecord(Inner) == DevirtualizedClass)
220  // If the class of the Inner expression is where the dynamic method
221  // is defined, build the this pointer from it.
222  Base = Inner;
223  else if (getCXXRecord(Base) != DevirtualizedClass) {
224  // If the method is defined in a class that is not the best dynamic
225  // one or the one of the full expression, we would have to build
226  // a derived-to-base cast to compute the correct this pointer, but
227  // we don't have support for that yet, so do a virtual call.
228  DevirtualizedMethod = nullptr;
229  }
230  }
231 
232  // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
233  // operator before the LHS.
234  CallArgList RtlArgStorage;
235  CallArgList *RtlArgs = nullptr;
236  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
237  if (OCE->isAssignmentOp()) {
238  RtlArgs = &RtlArgStorage;
239  EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
240  drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
241  /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
242  }
243  }
244 
245  LValue This;
246  if (IsArrow) {
247  LValueBaseInfo BaseInfo;
248  TBAAAccessInfo TBAAInfo;
249  Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
250  This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
251  } else {
252  This = EmitLValue(Base);
253  }
254 
255 
256  if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
257  if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
258  if (isa<CXXConstructorDecl>(MD) &&
259  cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
260  return RValue::get(nullptr);
261 
262  if (!MD->getParent()->mayInsertExtraPadding()) {
264  // We don't like to generate the trivial copy/move assignment operator
265  // when it isn't necessary; just produce the proper effect here.
266  LValue RHS = isa<CXXOperatorCallExpr>(CE)
267  ? MakeNaturalAlignAddrLValue(
268  (*RtlArgs)[0].getRValue(*this).getScalarVal(),
269  (*(CE->arg_begin() + 1))->getType())
270  : EmitLValue(*CE->arg_begin());
271  EmitAggregateAssign(This, RHS, CE->getType());
272  return RValue::get(This.getPointer());
273  }
274 
275  if (isa<CXXConstructorDecl>(MD) &&
276  cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
277  // Trivial move and copy ctor are the same.
278  assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
279  const Expr *Arg = *CE->arg_begin();
280  LValue RHS = EmitLValue(Arg);
281  LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType());
282  // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
283  // constructing a new complete object of type Ctor.
284  EmitAggregateCopy(Dest, RHS, Arg->getType(),
286  return RValue::get(This.getPointer());
287  }
288  llvm_unreachable("unknown trivial member function");
289  }
290  }
291 
292  // Compute the function type we're calling.
293  const CXXMethodDecl *CalleeDecl =
294  DevirtualizedMethod ? DevirtualizedMethod : MD;
295  const CGFunctionInfo *FInfo = nullptr;
296  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
297  FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
298  Dtor, StructorType::Complete);
299  else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
300  FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
301  Ctor, StructorType::Complete);
302  else
303  FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
304 
305  llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
306 
307  // C++11 [class.mfct.non-static]p2:
308  // If a non-static member function of a class X is called for an object that
309  // is not of type X, or of a type derived from X, the behavior is undefined.
310  SourceLocation CallLoc;
311  ASTContext &C = getContext();
312  if (CE)
313  CallLoc = CE->getExprLoc();
314 
315  SanitizerSet SkippedChecks;
316  if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
317  auto *IOA = CMCE->getImplicitObjectArgument();
318  bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
319  if (IsImplicitObjectCXXThis)
320  SkippedChecks.set(SanitizerKind::Alignment, true);
321  if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
322  SkippedChecks.set(SanitizerKind::Null, true);
323  }
324  EmitTypeCheck(
325  isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall
327  CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()),
328  /*Alignment=*/CharUnits::Zero(), SkippedChecks);
329 
330  // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
331  // 'CalleeDecl' instead.
332 
333  // C++ [class.virtual]p12:
334  // Explicit qualification with the scope operator (5.1) suppresses the
335  // virtual call mechanism.
336  //
337  // We also don't emit a virtual call if the base expression has a record type
338  // because then we know what the type is.
339  bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
340 
341  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
342  assert(CE->arg_begin() == CE->arg_end() &&
343  "Destructor shouldn't have explicit parameters");
344  assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
345  if (UseVirtualCall) {
346  CGM.getCXXABI().EmitVirtualDestructorCall(
347  *this, Dtor, Dtor_Complete, This.getAddress(),
348  cast<CXXMemberCallExpr>(CE));
349  } else {
350  CGCallee Callee;
351  if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
352  Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
353  else if (!DevirtualizedMethod)
354  Callee = CGCallee::forDirect(
355  CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
356  Dtor);
357  else {
358  const CXXDestructorDecl *DDtor =
359  cast<CXXDestructorDecl>(DevirtualizedMethod);
360  Callee = CGCallee::forDirect(
361  CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
362  DDtor);
363  }
364  EmitCXXMemberOrOperatorCall(
365  CalleeDecl, Callee, ReturnValue, This.getPointer(),
366  /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
367  }
368  return RValue::get(nullptr);
369  }
370 
371  CGCallee Callee;
372  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
373  Callee = CGCallee::forDirect(
374  CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
375  Ctor);
376  } else if (UseVirtualCall) {
377  Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
378  } else {
379  if (SanOpts.has(SanitizerKind::CFINVCall) &&
380  MD->getParent()->isDynamicClass()) {
381  llvm::Value *VTable;
382  const CXXRecordDecl *RD;
383  std::tie(VTable, RD) =
384  CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
385  MD->getParent());
386  EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
387  }
388 
389  if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
390  Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
391  else if (!DevirtualizedMethod)
392  Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD);
393  else {
394  Callee = CGCallee::forDirect(
395  CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
396  DevirtualizedMethod);
397  }
398  }
399 
400  if (MD->isVirtual()) {
401  Address NewThisAddr =
402  CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
403  *this, CalleeDecl, This.getAddress(), UseVirtualCall);
404  This.setAddress(NewThisAddr);
405  }
406 
407  return EmitCXXMemberOrOperatorCall(
408  CalleeDecl, Callee, ReturnValue, This.getPointer(),
409  /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
410 }
411 
412 RValue
414  ReturnValueSlot ReturnValue) {
415  const BinaryOperator *BO =
416  cast<BinaryOperator>(E->getCallee()->IgnoreParens());
417  const Expr *BaseExpr = BO->getLHS();
418  const Expr *MemFnExpr = BO->getRHS();
419 
420  const MemberPointerType *MPT =
421  MemFnExpr->getType()->castAs<MemberPointerType>();
422 
423  const FunctionProtoType *FPT =
425  const CXXRecordDecl *RD =
426  cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
427 
428  // Emit the 'this' pointer.
429  Address This = Address::invalid();
430  if (BO->getOpcode() == BO_PtrMemI)
431  This = EmitPointerWithAlignment(BaseExpr);
432  else
433  This = EmitLValue(BaseExpr).getAddress();
434 
435  EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
436  QualType(MPT->getClass(), 0));
437 
438  // Get the member function pointer.
439  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
440 
441  // Ask the ABI to load the callee. Note that This is modified.
442  llvm::Value *ThisPtrForCall = nullptr;
443  CGCallee Callee =
444  CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
445  ThisPtrForCall, MemFnPtr, MPT);
446 
447  CallArgList Args;
448 
449  QualType ThisType =
450  getContext().getPointerType(getContext().getTagDeclType(RD));
451 
452  // Push the this ptr.
453  Args.add(RValue::get(ThisPtrForCall), ThisType);
454 
455  RequiredArgs required =
456  RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
457 
458  // And the rest of the call args
459  EmitCallArgs(Args, FPT, E->arguments());
460  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
461  /*PrefixSize=*/0),
462  Callee, ReturnValue, Args, nullptr, E->getExprLoc());
463 }
464 
465 RValue
467  const CXXMethodDecl *MD,
468  ReturnValueSlot ReturnValue) {
469  assert(MD->isInstance() &&
470  "Trying to emit a member call expr on a static method!");
471  return EmitCXXMemberOrOperatorMemberCallExpr(
472  E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
473  /*IsArrow=*/false, E->getArg(0));
474 }
475 
477  ReturnValueSlot ReturnValue) {
478  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
479 }
480 
482  Address DestPtr,
483  const CXXRecordDecl *Base) {
484  if (Base->isEmpty())
485  return;
486 
487  DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
488 
489  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
490  CharUnits NVSize = Layout.getNonVirtualSize();
491 
492  // We cannot simply zero-initialize the entire base sub-object if vbptrs are
493  // present, they are initialized by the most derived class before calling the
494  // constructor.
496  Stores.emplace_back(CharUnits::Zero(), NVSize);
497 
498  // Each store is split by the existence of a vbptr.
499  CharUnits VBPtrWidth = CGF.getPointerSize();
500  std::vector<CharUnits> VBPtrOffsets =
501  CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
502  for (CharUnits VBPtrOffset : VBPtrOffsets) {
503  // Stop before we hit any virtual base pointers located in virtual bases.
504  if (VBPtrOffset >= NVSize)
505  break;
506  std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
507  CharUnits LastStoreOffset = LastStore.first;
508  CharUnits LastStoreSize = LastStore.second;
509 
510  CharUnits SplitBeforeOffset = LastStoreOffset;
511  CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
512  assert(!SplitBeforeSize.isNegative() && "negative store size!");
513  if (!SplitBeforeSize.isZero())
514  Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
515 
516  CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
517  CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
518  assert(!SplitAfterSize.isNegative() && "negative store size!");
519  if (!SplitAfterSize.isZero())
520  Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
521  }
522 
523  // If the type contains a pointer to data member we can't memset it to zero.
524  // Instead, create a null constant and copy it to the destination.
525  // TODO: there are other patterns besides zero that we can usefully memset,
526  // like -1, which happens to be the pattern used by member-pointers.
527  // TODO: isZeroInitializable can be over-conservative in the case where a
528  // virtual base contains a member pointer.
529  llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
530  if (!NullConstantForBase->isNullValue()) {
531  llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
532  CGF.CGM.getModule(), NullConstantForBase->getType(),
533  /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
534  NullConstantForBase, Twine());
535 
536  CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
537  DestPtr.getAlignment());
538  NullVariable->setAlignment(Align.getQuantity());
539 
540  Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
541 
542  // Get and call the appropriate llvm.memcpy overload.
543  for (std::pair<CharUnits, CharUnits> Store : Stores) {
544  CharUnits StoreOffset = Store.first;
545  CharUnits StoreSize = Store.second;
546  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
547  CGF.Builder.CreateMemCpy(
548  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
549  CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
550  StoreSizeVal);
551  }
552 
553  // Otherwise, just memset the whole thing to zero. This is legal
554  // because in LLVM, all default initializers (other than the ones we just
555  // handled above) are guaranteed to have a bit pattern of all zeros.
556  } else {
557  for (std::pair<CharUnits, CharUnits> Store : Stores) {
558  CharUnits StoreOffset = Store.first;
559  CharUnits StoreSize = Store.second;
560  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
561  CGF.Builder.CreateMemSet(
562  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
563  CGF.Builder.getInt8(0), StoreSizeVal);
564  }
565  }
566 }
567 
568 void
570  AggValueSlot Dest) {
571  assert(!Dest.isIgnored() && "Must have a destination!");
572  const CXXConstructorDecl *CD = E->getConstructor();
573 
574  // If we require zero initialization before (or instead of) calling the
575  // constructor, as can be the case with a non-user-provided default
576  // constructor, emit the zero initialization now, unless destination is
577  // already zeroed.
578  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
579  switch (E->getConstructionKind()) {
582  EmitNullInitialization(Dest.getAddress(), E->getType());
583  break;
587  CD->getParent());
588  break;
589  }
590  }
591 
592  // If this is a call to a trivial default constructor, do nothing.
593  if (CD->isTrivial() && CD->isDefaultConstructor())
594  return;
595 
596  // Elide the constructor if we're constructing from a temporary.
597  // The temporary check is required because Sema sets this on NRVO
598  // returns.
599  if (getLangOpts().ElideConstructors && E->isElidable()) {
600  assert(getContext().hasSameUnqualifiedType(E->getType(),
601  E->getArg(0)->getType()));
602  if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
603  EmitAggExpr(E->getArg(0), Dest);
604  return;
605  }
606  }
607 
608  if (const ArrayType *arrayType
609  = getContext().getAsArrayType(E->getType())) {
610  EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
611  Dest.isSanitizerChecked());
612  } else {
614  bool ForVirtualBase = false;
615  bool Delegating = false;
616 
617  switch (E->getConstructionKind()) {
619  // We should be emitting a constructor; GlobalDecl will assert this
620  Type = CurGD.getCtorType();
621  Delegating = true;
622  break;
623 
625  Type = Ctor_Complete;
626  break;
627 
629  ForVirtualBase = true;
630  LLVM_FALLTHROUGH;
631 
633  Type = Ctor_Base;
634  }
635 
636  // Call the constructor.
637  EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
638  Dest.getAddress(), E, Dest.mayOverlap(),
639  Dest.isSanitizerChecked());
640  }
641 }
642 
644  const Expr *Exp) {
645  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
646  Exp = E->getSubExpr();
647  assert(isa<CXXConstructExpr>(Exp) &&
648  "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
649  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
650  const CXXConstructorDecl *CD = E->getConstructor();
651  RunCleanupsScope Scope(*this);
652 
653  // If we require zero initialization before (or instead of) calling the
654  // constructor, as can be the case with a non-user-provided default
655  // constructor, emit the zero initialization now.
656  // FIXME. Do I still need this for a copy ctor synthesis?
658  EmitNullInitialization(Dest, E->getType());
659 
660  assert(!getContext().getAsConstantArrayType(E->getType())
661  && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
662  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
663 }
664 
666  const CXXNewExpr *E) {
667  if (!E->isArray())
668  return CharUnits::Zero();
669 
670  // No cookie is required if the operator new[] being used is the
671  // reserved placement operator new[].
673  return CharUnits::Zero();
674 
675  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
676 }
677 
679  const CXXNewExpr *e,
680  unsigned minElements,
681  llvm::Value *&numElements,
682  llvm::Value *&sizeWithoutCookie) {
684 
685  if (!e->isArray()) {
686  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
687  sizeWithoutCookie
688  = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
689  return sizeWithoutCookie;
690  }
691 
692  // The width of size_t.
693  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
694 
695  // Figure out the cookie size.
696  llvm::APInt cookieSize(sizeWidth,
697  CalculateCookiePadding(CGF, e).getQuantity());
698 
699  // Emit the array size expression.
700  // We multiply the size of all dimensions for NumElements.
701  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
702  numElements =
704  if (!numElements)
705  numElements = CGF.EmitScalarExpr(e->getArraySize());
706  assert(isa<llvm::IntegerType>(numElements->getType()));
707 
708  // The number of elements can be have an arbitrary integer type;
709  // essentially, we need to multiply it by a constant factor, add a
710  // cookie size, and verify that the result is representable as a
711  // size_t. That's just a gloss, though, and it's wrong in one
712  // important way: if the count is negative, it's an error even if
713  // the cookie size would bring the total size >= 0.
714  bool isSigned
716  llvm::IntegerType *numElementsType
717  = cast<llvm::IntegerType>(numElements->getType());
718  unsigned numElementsWidth = numElementsType->getBitWidth();
719 
720  // Compute the constant factor.
721  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
722  while (const ConstantArrayType *CAT
723  = CGF.getContext().getAsConstantArrayType(type)) {
724  type = CAT->getElementType();
725  arraySizeMultiplier *= CAT->getSize();
726  }
727 
728  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
729  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
730  typeSizeMultiplier *= arraySizeMultiplier;
731 
732  // This will be a size_t.
733  llvm::Value *size;
734 
735  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
736  // Don't bloat the -O0 code.
737  if (llvm::ConstantInt *numElementsC =
738  dyn_cast<llvm::ConstantInt>(numElements)) {
739  const llvm::APInt &count = numElementsC->getValue();
740 
741  bool hasAnyOverflow = false;
742 
743  // If 'count' was a negative number, it's an overflow.
744  if (isSigned && count.isNegative())
745  hasAnyOverflow = true;
746 
747  // We want to do all this arithmetic in size_t. If numElements is
748  // wider than that, check whether it's already too big, and if so,
749  // overflow.
750  else if (numElementsWidth > sizeWidth &&
751  numElementsWidth - sizeWidth > count.countLeadingZeros())
752  hasAnyOverflow = true;
753 
754  // Okay, compute a count at the right width.
755  llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
756 
757  // If there is a brace-initializer, we cannot allocate fewer elements than
758  // there are initializers. If we do, that's treated like an overflow.
759  if (adjustedCount.ult(minElements))
760  hasAnyOverflow = true;
761 
762  // Scale numElements by that. This might overflow, but we don't
763  // care because it only overflows if allocationSize does, too, and
764  // if that overflows then we shouldn't use this.
765  numElements = llvm::ConstantInt::get(CGF.SizeTy,
766  adjustedCount * arraySizeMultiplier);
767 
768  // Compute the size before cookie, and track whether it overflowed.
769  bool overflow;
770  llvm::APInt allocationSize
771  = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
772  hasAnyOverflow |= overflow;
773 
774  // Add in the cookie, and check whether it's overflowed.
775  if (cookieSize != 0) {
776  // Save the current size without a cookie. This shouldn't be
777  // used if there was overflow.
778  sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
779 
780  allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
781  hasAnyOverflow |= overflow;
782  }
783 
784  // On overflow, produce a -1 so operator new will fail.
785  if (hasAnyOverflow) {
786  size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
787  } else {
788  size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
789  }
790 
791  // Otherwise, we might need to use the overflow intrinsics.
792  } else {
793  // There are up to five conditions we need to test for:
794  // 1) if isSigned, we need to check whether numElements is negative;
795  // 2) if numElementsWidth > sizeWidth, we need to check whether
796  // numElements is larger than something representable in size_t;
797  // 3) if minElements > 0, we need to check whether numElements is smaller
798  // than that.
799  // 4) we need to compute
800  // sizeWithoutCookie := numElements * typeSizeMultiplier
801  // and check whether it overflows; and
802  // 5) if we need a cookie, we need to compute
803  // size := sizeWithoutCookie + cookieSize
804  // and check whether it overflows.
805 
806  llvm::Value *hasOverflow = nullptr;
807 
808  // If numElementsWidth > sizeWidth, then one way or another, we're
809  // going to have to do a comparison for (2), and this happens to
810  // take care of (1), too.
811  if (numElementsWidth > sizeWidth) {
812  llvm::APInt threshold(numElementsWidth, 1);
813  threshold <<= sizeWidth;
814 
815  llvm::Value *thresholdV
816  = llvm::ConstantInt::get(numElementsType, threshold);
817 
818  hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
819  numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
820 
821  // Otherwise, if we're signed, we want to sext up to size_t.
822  } else if (isSigned) {
823  if (numElementsWidth < sizeWidth)
824  numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
825 
826  // If there's a non-1 type size multiplier, then we can do the
827  // signedness check at the same time as we do the multiply
828  // because a negative number times anything will cause an
829  // unsigned overflow. Otherwise, we have to do it here. But at least
830  // in this case, we can subsume the >= minElements check.
831  if (typeSizeMultiplier == 1)
832  hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
833  llvm::ConstantInt::get(CGF.SizeTy, minElements));
834 
835  // Otherwise, zext up to size_t if necessary.
836  } else if (numElementsWidth < sizeWidth) {
837  numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
838  }
839 
840  assert(numElements->getType() == CGF.SizeTy);
841 
842  if (minElements) {
843  // Don't allow allocation of fewer elements than we have initializers.
844  if (!hasOverflow) {
845  hasOverflow = CGF.Builder.CreateICmpULT(numElements,
846  llvm::ConstantInt::get(CGF.SizeTy, minElements));
847  } else if (numElementsWidth > sizeWidth) {
848  // The other existing overflow subsumes this check.
849  // We do an unsigned comparison, since any signed value < -1 is
850  // taken care of either above or below.
851  hasOverflow = CGF.Builder.CreateOr(hasOverflow,
852  CGF.Builder.CreateICmpULT(numElements,
853  llvm::ConstantInt::get(CGF.SizeTy, minElements)));
854  }
855  }
856 
857  size = numElements;
858 
859  // Multiply by the type size if necessary. This multiplier
860  // includes all the factors for nested arrays.
861  //
862  // This step also causes numElements to be scaled up by the
863  // nested-array factor if necessary. Overflow on this computation
864  // can be ignored because the result shouldn't be used if
865  // allocation fails.
866  if (typeSizeMultiplier != 1) {
867  llvm::Value *umul_with_overflow
868  = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
869 
870  llvm::Value *tsmV =
871  llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
872  llvm::Value *result =
873  CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
874 
875  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
876  if (hasOverflow)
877  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
878  else
879  hasOverflow = overflowed;
880 
881  size = CGF.Builder.CreateExtractValue(result, 0);
882 
883  // Also scale up numElements by the array size multiplier.
884  if (arraySizeMultiplier != 1) {
885  // If the base element type size is 1, then we can re-use the
886  // multiply we just did.
887  if (typeSize.isOne()) {
888  assert(arraySizeMultiplier == typeSizeMultiplier);
889  numElements = size;
890 
891  // Otherwise we need a separate multiply.
892  } else {
893  llvm::Value *asmV =
894  llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
895  numElements = CGF.Builder.CreateMul(numElements, asmV);
896  }
897  }
898  } else {
899  // numElements doesn't need to be scaled.
900  assert(arraySizeMultiplier == 1);
901  }
902 
903  // Add in the cookie size if necessary.
904  if (cookieSize != 0) {
905  sizeWithoutCookie = size;
906 
907  llvm::Value *uadd_with_overflow
908  = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
909 
910  llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
911  llvm::Value *result =
912  CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
913 
914  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
915  if (hasOverflow)
916  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
917  else
918  hasOverflow = overflowed;
919 
920  size = CGF.Builder.CreateExtractValue(result, 0);
921  }
922 
923  // If we had any possibility of dynamic overflow, make a select to
924  // overwrite 'size' with an all-ones value, which should cause
925  // operator new to throw.
926  if (hasOverflow)
927  size = CGF.Builder.CreateSelect(hasOverflow,
928  llvm::Constant::getAllOnesValue(CGF.SizeTy),
929  size);
930  }
931 
932  if (cookieSize == 0)
933  sizeWithoutCookie = size;
934  else
935  assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
936 
937  return size;
938 }
939 
940 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
941  QualType AllocType, Address NewPtr,
942  AggValueSlot::Overlap_t MayOverlap) {
943  // FIXME: Refactor with EmitExprAsInit.
944  switch (CGF.getEvaluationKind(AllocType)) {
945  case TEK_Scalar:
946  CGF.EmitScalarInit(Init, nullptr,
947  CGF.MakeAddrLValue(NewPtr, AllocType), false);
948  return;
949  case TEK_Complex:
950  CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
951  /*isInit*/ true);
952  return;
953  case TEK_Aggregate: {
954  AggValueSlot Slot
955  = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
959  MayOverlap, AggValueSlot::IsNotZeroed,
961  CGF.EmitAggExpr(Init, Slot);
962  return;
963  }
964  }
965  llvm_unreachable("bad evaluation kind");
966 }
967 
969  const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
970  Address BeginPtr, llvm::Value *NumElements,
971  llvm::Value *AllocSizeWithoutCookie) {
972  // If we have a type with trivial initialization and no initializer,
973  // there's nothing to do.
974  if (!E->hasInitializer())
975  return;
976 
977  Address CurPtr = BeginPtr;
978 
979  unsigned InitListElements = 0;
980 
981  const Expr *Init = E->getInitializer();
982  Address EndOfInit = Address::invalid();
983  QualType::DestructionKind DtorKind = ElementType.isDestructedType();
985  llvm::Instruction *CleanupDominator = nullptr;
986 
987  CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
988  CharUnits ElementAlign =
989  BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
990 
991  // Attempt to perform zero-initialization using memset.
992  auto TryMemsetInitialization = [&]() -> bool {
993  // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
994  // we can initialize with a memset to -1.
995  if (!CGM.getTypes().isZeroInitializable(ElementType))
996  return false;
997 
998  // Optimization: since zero initialization will just set the memory
999  // to all zeroes, generate a single memset to do it in one shot.
1000 
1001  // Subtract out the size of any elements we've already initialized.
1002  auto *RemainingSize = AllocSizeWithoutCookie;
1003  if (InitListElements) {
1004  // We know this can't overflow; we check this when doing the allocation.
1005  auto *InitializedSize = llvm::ConstantInt::get(
1006  RemainingSize->getType(),
1007  getContext().getTypeSizeInChars(ElementType).getQuantity() *
1008  InitListElements);
1009  RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1010  }
1011 
1012  // Create the memset.
1013  Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1014  return true;
1015  };
1016 
1017  // If the initializer is an initializer list, first do the explicit elements.
1018  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1019  // Initializing from a (braced) string literal is a special case; the init
1020  // list element does not initialize a (single) array element.
1021  if (ILE->isStringLiteralInit()) {
1022  // Initialize the initial portion of length equal to that of the string
1023  // literal. The allocation must be for at least this much; we emitted a
1024  // check for that earlier.
1025  AggValueSlot Slot =
1026  AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1033  EmitAggExpr(ILE->getInit(0), Slot);
1034 
1035  // Move past these elements.
1036  InitListElements =
1037  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1038  ->getSize().getZExtValue();
1039  CurPtr =
1040  Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1041  Builder.getSize(InitListElements),
1042  "string.init.end"),
1043  CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1044  ElementSize));
1045 
1046  // Zero out the rest, if any remain.
1047  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1048  if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1049  bool OK = TryMemsetInitialization();
1050  (void)OK;
1051  assert(OK && "couldn't memset character type?");
1052  }
1053  return;
1054  }
1055 
1056  InitListElements = ILE->getNumInits();
1057 
1058  // If this is a multi-dimensional array new, we will initialize multiple
1059  // elements with each init list element.
1060  QualType AllocType = E->getAllocatedType();
1061  if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1062  AllocType->getAsArrayTypeUnsafe())) {
1063  ElementTy = ConvertTypeForMem(AllocType);
1064  CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1065  InitListElements *= getContext().getConstantArrayElementCount(CAT);
1066  }
1067 
1068  // Enter a partial-destruction Cleanup if necessary.
1069  if (needsEHCleanup(DtorKind)) {
1070  // In principle we could tell the Cleanup where we are more
1071  // directly, but the control flow can get so varied here that it
1072  // would actually be quite complex. Therefore we go through an
1073  // alloca.
1074  EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1075  "array.init.end");
1076  CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1077  pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1078  ElementType, ElementAlign,
1079  getDestroyer(DtorKind));
1080  Cleanup = EHStack.stable_begin();
1081  }
1082 
1083  CharUnits StartAlign = CurPtr.getAlignment();
1084  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1085  // Tell the cleanup that it needs to destroy up to this
1086  // element. TODO: some of these stores can be trivially
1087  // observed to be unnecessary.
1088  if (EndOfInit.isValid()) {
1089  auto FinishedPtr =
1090  Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1091  Builder.CreateStore(FinishedPtr, EndOfInit);
1092  }
1093  // FIXME: If the last initializer is an incomplete initializer list for
1094  // an array, and we have an array filler, we can fold together the two
1095  // initialization loops.
1096  StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1097  ILE->getInit(i)->getType(), CurPtr,
1099  CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1100  Builder.getSize(1),
1101  "array.exp.next"),
1102  StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1103  }
1104 
1105  // The remaining elements are filled with the array filler expression.
1106  Init = ILE->getArrayFiller();
1107 
1108  // Extract the initializer for the individual array elements by pulling
1109  // out the array filler from all the nested initializer lists. This avoids
1110  // generating a nested loop for the initialization.
1111  while (Init && Init->getType()->isConstantArrayType()) {
1112  auto *SubILE = dyn_cast<InitListExpr>(Init);
1113  if (!SubILE)
1114  break;
1115  assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1116  Init = SubILE->getArrayFiller();
1117  }
1118 
1119  // Switch back to initializing one base element at a time.
1120  CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1121  }
1122 
1123  // If all elements have already been initialized, skip any further
1124  // initialization.
1125  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1126  if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1127  // If there was a Cleanup, deactivate it.
1128  if (CleanupDominator)
1129  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1130  return;
1131  }
1132 
1133  assert(Init && "have trailing elements to initialize but no initializer");
1134 
1135  // If this is a constructor call, try to optimize it out, and failing that
1136  // emit a single loop to initialize all remaining elements.
1137  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1138  CXXConstructorDecl *Ctor = CCE->getConstructor();
1139  if (Ctor->isTrivial()) {
1140  // If new expression did not specify value-initialization, then there
1141  // is no initialization.
1142  if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1143  return;
1144 
1145  if (TryMemsetInitialization())
1146  return;
1147  }
1148 
1149  // Store the new Cleanup position for irregular Cleanups.
1150  //
1151  // FIXME: Share this cleanup with the constructor call emission rather than
1152  // having it create a cleanup of its own.
1153  if (EndOfInit.isValid())
1154  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1155 
1156  // Emit a constructor call loop to initialize the remaining elements.
1157  if (InitListElements)
1158  NumElements = Builder.CreateSub(
1159  NumElements,
1160  llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1161  EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1162  /*NewPointerIsChecked*/true,
1163  CCE->requiresZeroInitialization());
1164  return;
1165  }
1166 
1167  // If this is value-initialization, we can usually use memset.
1168  ImplicitValueInitExpr IVIE(ElementType);
1169  if (isa<ImplicitValueInitExpr>(Init)) {
1170  if (TryMemsetInitialization())
1171  return;
1172 
1173  // Switch to an ImplicitValueInitExpr for the element type. This handles
1174  // only one case: multidimensional array new of pointers to members. In
1175  // all other cases, we already have an initializer for the array element.
1176  Init = &IVIE;
1177  }
1178 
1179  // At this point we should have found an initializer for the individual
1180  // elements of the array.
1181  assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1182  "got wrong type of element to initialize");
1183 
1184  // If we have an empty initializer list, we can usually use memset.
1185  if (auto *ILE = dyn_cast<InitListExpr>(Init))
1186  if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1187  return;
1188 
1189  // If we have a struct whose every field is value-initialized, we can
1190  // usually use memset.
1191  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1192  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1193  if (RType->getDecl()->isStruct()) {
1194  unsigned NumElements = 0;
1195  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1196  NumElements = CXXRD->getNumBases();
1197  for (auto *Field : RType->getDecl()->fields())
1198  if (!Field->isUnnamedBitfield())
1199  ++NumElements;
1200  // FIXME: Recurse into nested InitListExprs.
1201  if (ILE->getNumInits() == NumElements)
1202  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1203  if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1204  --NumElements;
1205  if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1206  return;
1207  }
1208  }
1209  }
1210 
1211  // Create the loop blocks.
1212  llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1213  llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1214  llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1215 
1216  // Find the end of the array, hoisted out of the loop.
1217  llvm::Value *EndPtr =
1218  Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1219 
1220  // If the number of elements isn't constant, we have to now check if there is
1221  // anything left to initialize.
1222  if (!ConstNum) {
1223  llvm::Value *IsEmpty =
1224  Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1225  Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1226  }
1227 
1228  // Enter the loop.
1229  EmitBlock(LoopBB);
1230 
1231  // Set up the current-element phi.
1232  llvm::PHINode *CurPtrPhi =
1233  Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1234  CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1235 
1236  CurPtr = Address(CurPtrPhi, ElementAlign);
1237 
1238  // Store the new Cleanup position for irregular Cleanups.
1239  if (EndOfInit.isValid())
1240  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1241 
1242  // Enter a partial-destruction Cleanup if necessary.
1243  if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1244  pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1245  ElementType, ElementAlign,
1246  getDestroyer(DtorKind));
1247  Cleanup = EHStack.stable_begin();
1248  CleanupDominator = Builder.CreateUnreachable();
1249  }
1250 
1251  // Emit the initializer into this element.
1252  StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1254 
1255  // Leave the Cleanup if we entered one.
1256  if (CleanupDominator) {
1257  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1258  CleanupDominator->eraseFromParent();
1259  }
1260 
1261  // Advance to the next element by adjusting the pointer type as necessary.
1262  llvm::Value *NextPtr =
1263  Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1264  "array.next");
1265 
1266  // Check whether we've gotten to the end of the array and, if so,
1267  // exit the loop.
1268  llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1269  Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1270  CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1271 
1272  EmitBlock(ContBB);
1273 }
1274 
1275 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1276  QualType ElementType, llvm::Type *ElementTy,
1277  Address NewPtr, llvm::Value *NumElements,
1278  llvm::Value *AllocSizeWithoutCookie) {
1279  ApplyDebugLocation DL(CGF, E);
1280  if (E->isArray())
1281  CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1282  AllocSizeWithoutCookie);
1283  else if (const Expr *Init = E->getInitializer())
1284  StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1286 }
1287 
1288 /// Emit a call to an operator new or operator delete function, as implicitly
1289 /// created by new-expressions and delete-expressions.
1291  const FunctionDecl *CalleeDecl,
1292  const FunctionProtoType *CalleeType,
1293  const CallArgList &Args) {
1294  llvm::Instruction *CallOrInvoke;
1295  llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1296  CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl);
1297  RValue RV =
1299  Args, CalleeType, /*chainCall=*/false),
1300  Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1301 
1302  /// C++1y [expr.new]p10:
1303  /// [In a new-expression,] an implementation is allowed to omit a call
1304  /// to a replaceable global allocation function.
1305  ///
1306  /// We model such elidable calls with the 'builtin' attribute.
1307  llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1308  if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1309  Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1310  // FIXME: Add addAttribute to CallSite.
1311  if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1312  CI->addAttribute(llvm::AttributeList::FunctionIndex,
1313  llvm::Attribute::Builtin);
1314  else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1315  II->addAttribute(llvm::AttributeList::FunctionIndex,
1316  llvm::Attribute::Builtin);
1317  else
1318  llvm_unreachable("unexpected kind of call instruction");
1319  }
1320 
1321  return RV;
1322 }
1323 
1325  const CallExpr *TheCall,
1326  bool IsDelete) {
1327  CallArgList Args;
1328  EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1329  // Find the allocation or deallocation function that we're calling.
1330  ASTContext &Ctx = getContext();
1331  DeclarationName Name = Ctx.DeclarationNames
1332  .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1333 
1334  for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1335  if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1336  if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1337  return EmitNewDeleteCall(*this, FD, Type, Args);
1338  llvm_unreachable("predeclared global operator new/delete is missing");
1339 }
1340 
1341 namespace {
1342 /// The parameters to pass to a usual operator delete.
1343 struct UsualDeleteParams {
1344  bool DestroyingDelete = false;
1345  bool Size = false;
1346  bool Alignment = false;
1347 };
1348 }
1349 
1350 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1351  UsualDeleteParams Params;
1352 
1353  const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1354  auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1355 
1356  // The first argument is always a void*.
1357  ++AI;
1358 
1359  // The next parameter may be a std::destroying_delete_t.
1360  if (FD->isDestroyingOperatorDelete()) {
1361  Params.DestroyingDelete = true;
1362  assert(AI != AE);
1363  ++AI;
1364  }
1365 
1366  // Figure out what other parameters we should be implicitly passing.
1367  if (AI != AE && (*AI)->isIntegerType()) {
1368  Params.Size = true;
1369  ++AI;
1370  }
1371 
1372  if (AI != AE && (*AI)->isAlignValT()) {
1373  Params.Alignment = true;
1374  ++AI;
1375  }
1376 
1377  assert(AI == AE && "unexpected usual deallocation function parameter");
1378  return Params;
1379 }
1380 
1381 namespace {
1382  /// A cleanup to call the given 'operator delete' function upon abnormal
1383  /// exit from a new expression. Templated on a traits type that deals with
1384  /// ensuring that the arguments dominate the cleanup if necessary.
1385  template<typename Traits>
1386  class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1387  /// Type used to hold llvm::Value*s.
1388  typedef typename Traits::ValueTy ValueTy;
1389  /// Type used to hold RValues.
1390  typedef typename Traits::RValueTy RValueTy;
1391  struct PlacementArg {
1392  RValueTy ArgValue;
1393  QualType ArgType;
1394  };
1395 
1396  unsigned NumPlacementArgs : 31;
1397  unsigned PassAlignmentToPlacementDelete : 1;
1398  const FunctionDecl *OperatorDelete;
1399  ValueTy Ptr;
1400  ValueTy AllocSize;
1401  CharUnits AllocAlign;
1402 
1403  PlacementArg *getPlacementArgs() {
1404  return reinterpret_cast<PlacementArg *>(this + 1);
1405  }
1406 
1407  public:
1408  static size_t getExtraSize(size_t NumPlacementArgs) {
1409  return NumPlacementArgs * sizeof(PlacementArg);
1410  }
1411 
1412  CallDeleteDuringNew(size_t NumPlacementArgs,
1413  const FunctionDecl *OperatorDelete, ValueTy Ptr,
1414  ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1415  CharUnits AllocAlign)
1416  : NumPlacementArgs(NumPlacementArgs),
1417  PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1418  OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1419  AllocAlign(AllocAlign) {}
1420 
1421  void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1422  assert(I < NumPlacementArgs && "index out of range");
1423  getPlacementArgs()[I] = {Arg, Type};
1424  }
1425 
1426  void Emit(CodeGenFunction &CGF, Flags flags) override {
1427  const FunctionProtoType *FPT =
1428  OperatorDelete->getType()->getAs<FunctionProtoType>();
1429  CallArgList DeleteArgs;
1430 
1431  // The first argument is always a void* (or C* for a destroying operator
1432  // delete for class type C).
1433  DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1434 
1435  // Figure out what other parameters we should be implicitly passing.
1436  UsualDeleteParams Params;
1437  if (NumPlacementArgs) {
1438  // A placement deallocation function is implicitly passed an alignment
1439  // if the placement allocation function was, but is never passed a size.
1440  Params.Alignment = PassAlignmentToPlacementDelete;
1441  } else {
1442  // For a non-placement new-expression, 'operator delete' can take a
1443  // size and/or an alignment if it has the right parameters.
1444  Params = getUsualDeleteParams(OperatorDelete);
1445  }
1446 
1447  assert(!Params.DestroyingDelete &&
1448  "should not call destroying delete in a new-expression");
1449 
1450  // The second argument can be a std::size_t (for non-placement delete).
1451  if (Params.Size)
1452  DeleteArgs.add(Traits::get(CGF, AllocSize),
1453  CGF.getContext().getSizeType());
1454 
1455  // The next (second or third) argument can be a std::align_val_t, which
1456  // is an enum whose underlying type is std::size_t.
1457  // FIXME: Use the right type as the parameter type. Note that in a call
1458  // to operator delete(size_t, ...), we may not have it available.
1459  if (Params.Alignment)
1460  DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1461  CGF.SizeTy, AllocAlign.getQuantity())),
1462  CGF.getContext().getSizeType());
1463 
1464  // Pass the rest of the arguments, which must match exactly.
1465  for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1466  auto Arg = getPlacementArgs()[I];
1467  DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1468  }
1469 
1470  // Call 'operator delete'.
1471  EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1472  }
1473  };
1474 }
1475 
1476 /// Enter a cleanup to call 'operator delete' if the initializer in a
1477 /// new-expression throws.
1479  const CXXNewExpr *E,
1480  Address NewPtr,
1481  llvm::Value *AllocSize,
1482  CharUnits AllocAlign,
1483  const CallArgList &NewArgs) {
1484  unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1485 
1486  // If we're not inside a conditional branch, then the cleanup will
1487  // dominate and we can do the easier (and more efficient) thing.
1488  if (!CGF.isInConditionalBranch()) {
1489  struct DirectCleanupTraits {
1490  typedef llvm::Value *ValueTy;
1491  typedef RValue RValueTy;
1492  static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1493  static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1494  };
1495 
1496  typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1497 
1498  DirectCleanup *Cleanup = CGF.EHStack
1499  .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1500  E->getNumPlacementArgs(),
1501  E->getOperatorDelete(),
1502  NewPtr.getPointer(),
1503  AllocSize,
1504  E->passAlignment(),
1505  AllocAlign);
1506  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1507  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1508  Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1509  }
1510 
1511  return;
1512  }
1513 
1514  // Otherwise, we need to save all this stuff.
1517  DominatingValue<RValue>::saved_type SavedAllocSize =
1518  DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1519 
1520  struct ConditionalCleanupTraits {
1521  typedef DominatingValue<RValue>::saved_type ValueTy;
1522  typedef DominatingValue<RValue>::saved_type RValueTy;
1523  static RValue get(CodeGenFunction &CGF, ValueTy V) {
1524  return V.restore(CGF);
1525  }
1526  };
1527  typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1528 
1529  ConditionalCleanup *Cleanup = CGF.EHStack
1530  .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1531  E->getNumPlacementArgs(),
1532  E->getOperatorDelete(),
1533  SavedNewPtr,
1534  SavedAllocSize,
1535  E->passAlignment(),
1536  AllocAlign);
1537  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1538  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1539  Cleanup->setPlacementArg(
1540  I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1541  }
1542 
1543  CGF.initFullExprCleanup();
1544 }
1545 
1547  // The element type being allocated.
1548  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1549 
1550  // 1. Build a call to the allocation function.
1551  FunctionDecl *allocator = E->getOperatorNew();
1552 
1553  // If there is a brace-initializer, cannot allocate fewer elements than inits.
1554  unsigned minElements = 0;
1555  if (E->isArray() && E->hasInitializer()) {
1556  const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1557  if (ILE && ILE->isStringLiteralInit())
1558  minElements =
1559  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1560  ->getSize().getZExtValue();
1561  else if (ILE)
1562  minElements = ILE->getNumInits();
1563  }
1564 
1565  llvm::Value *numElements = nullptr;
1566  llvm::Value *allocSizeWithoutCookie = nullptr;
1567  llvm::Value *allocSize =
1568  EmitCXXNewAllocSize(*this, E, minElements, numElements,
1569  allocSizeWithoutCookie);
1570  CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1571 
1572  // Emit the allocation call. If the allocator is a global placement
1573  // operator, just "inline" it directly.
1574  Address allocation = Address::invalid();
1575  CallArgList allocatorArgs;
1576  if (allocator->isReservedGlobalPlacementOperator()) {
1577  assert(E->getNumPlacementArgs() == 1);
1578  const Expr *arg = *E->placement_arguments().begin();
1579 
1580  LValueBaseInfo BaseInfo;
1581  allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1582 
1583  // The pointer expression will, in many cases, be an opaque void*.
1584  // In these cases, discard the computed alignment and use the
1585  // formal alignment of the allocated type.
1586  if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1587  allocation = Address(allocation.getPointer(), allocAlign);
1588 
1589  // Set up allocatorArgs for the call to operator delete if it's not
1590  // the reserved global operator.
1591  if (E->getOperatorDelete() &&
1593  allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1594  allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1595  }
1596 
1597  } else {
1598  const FunctionProtoType *allocatorType =
1599  allocator->getType()->castAs<FunctionProtoType>();
1600  unsigned ParamsToSkip = 0;
1601 
1602  // The allocation size is the first argument.
1603  QualType sizeType = getContext().getSizeType();
1604  allocatorArgs.add(RValue::get(allocSize), sizeType);
1605  ++ParamsToSkip;
1606 
1607  if (allocSize != allocSizeWithoutCookie) {
1608  CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1609  allocAlign = std::max(allocAlign, cookieAlign);
1610  }
1611 
1612  // The allocation alignment may be passed as the second argument.
1613  if (E->passAlignment()) {
1614  QualType AlignValT = sizeType;
1615  if (allocatorType->getNumParams() > 1) {
1616  AlignValT = allocatorType->getParamType(1);
1617  assert(getContext().hasSameUnqualifiedType(
1618  AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1619  sizeType) &&
1620  "wrong type for alignment parameter");
1621  ++ParamsToSkip;
1622  } else {
1623  // Corner case, passing alignment to 'operator new(size_t, ...)'.
1624  assert(allocator->isVariadic() && "can't pass alignment to allocator");
1625  }
1626  allocatorArgs.add(
1627  RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1628  AlignValT);
1629  }
1630 
1631  // FIXME: Why do we not pass a CalleeDecl here?
1632  EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1633  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1634 
1635  RValue RV =
1636  EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1637 
1638  // If this was a call to a global replaceable allocation function that does
1639  // not take an alignment argument, the allocator is known to produce
1640  // storage that's suitably aligned for any object that fits, up to a known
1641  // threshold. Otherwise assume it's suitably aligned for the allocated type.
1642  CharUnits allocationAlign = allocAlign;
1643  if (!E->passAlignment() &&
1645  unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1646  Target.getNewAlign(), getContext().getTypeSize(allocType)));
1647  allocationAlign = std::max(
1648  allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1649  }
1650 
1651  allocation = Address(RV.getScalarVal(), allocationAlign);
1652  }
1653 
1654  // Emit a null check on the allocation result if the allocation
1655  // function is allowed to return null (because it has a non-throwing
1656  // exception spec or is the reserved placement new) and we have an
1657  // interesting initializer.
1658  bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1659  (!allocType.isPODType(getContext()) || E->hasInitializer());
1660 
1661  llvm::BasicBlock *nullCheckBB = nullptr;
1662  llvm::BasicBlock *contBB = nullptr;
1663 
1664  // The null-check means that the initializer is conditionally
1665  // evaluated.
1666  ConditionalEvaluation conditional(*this);
1667 
1668  if (nullCheck) {
1669  conditional.begin(*this);
1670 
1671  nullCheckBB = Builder.GetInsertBlock();
1672  llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1673  contBB = createBasicBlock("new.cont");
1674 
1675  llvm::Value *isNull =
1676  Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1677  Builder.CreateCondBr(isNull, contBB, notNullBB);
1678  EmitBlock(notNullBB);
1679  }
1680 
1681  // If there's an operator delete, enter a cleanup to call it if an
1682  // exception is thrown.
1683  EHScopeStack::stable_iterator operatorDeleteCleanup;
1684  llvm::Instruction *cleanupDominator = nullptr;
1685  if (E->getOperatorDelete() &&
1687  EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1688  allocatorArgs);
1689  operatorDeleteCleanup = EHStack.stable_begin();
1690  cleanupDominator = Builder.CreateUnreachable();
1691  }
1692 
1693  assert((allocSize == allocSizeWithoutCookie) ==
1694  CalculateCookiePadding(*this, E).isZero());
1695  if (allocSize != allocSizeWithoutCookie) {
1696  assert(E->isArray());
1697  allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1698  numElements,
1699  E, allocType);
1700  }
1701 
1702  llvm::Type *elementTy = ConvertTypeForMem(allocType);
1703  Address result = Builder.CreateElementBitCast(allocation, elementTy);
1704 
1705  // Passing pointer through launder.invariant.group to avoid propagation of
1706  // vptrs information which may be included in previous type.
1707  // To not break LTO with different optimizations levels, we do it regardless
1708  // of optimization level.
1709  if (CGM.getCodeGenOpts().StrictVTablePointers &&
1710  allocator->isReservedGlobalPlacementOperator())
1711  result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1712  result.getAlignment());
1713 
1714  // Emit sanitizer checks for pointer value now, so that in the case of an
1715  // array it was checked only once and not at each constructor call.
1718  result.getPointer(), allocType);
1719 
1720  EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1721  allocSizeWithoutCookie);
1722  if (E->isArray()) {
1723  // NewPtr is a pointer to the base element type. If we're
1724  // allocating an array of arrays, we'll need to cast back to the
1725  // array pointer type.
1726  llvm::Type *resultType = ConvertTypeForMem(E->getType());
1727  if (result.getType() != resultType)
1728  result = Builder.CreateBitCast(result, resultType);
1729  }
1730 
1731  // Deactivate the 'operator delete' cleanup if we finished
1732  // initialization.
1733  if (operatorDeleteCleanup.isValid()) {
1734  DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1735  cleanupDominator->eraseFromParent();
1736  }
1737 
1738  llvm::Value *resultPtr = result.getPointer();
1739  if (nullCheck) {
1740  conditional.end(*this);
1741 
1742  llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1743  EmitBlock(contBB);
1744 
1745  llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1746  PHI->addIncoming(resultPtr, notNullBB);
1747  PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1748  nullCheckBB);
1749 
1750  resultPtr = PHI;
1751  }
1752 
1753  return resultPtr;
1754 }
1755 
1757  llvm::Value *Ptr, QualType DeleteTy,
1758  llvm::Value *NumElements,
1759  CharUnits CookieSize) {
1760  assert((!NumElements && CookieSize.isZero()) ||
1761  DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1762 
1763  const FunctionProtoType *DeleteFTy =
1764  DeleteFD->getType()->getAs<FunctionProtoType>();
1765 
1766  CallArgList DeleteArgs;
1767 
1768  auto Params = getUsualDeleteParams(DeleteFD);
1769  auto ParamTypeIt = DeleteFTy->param_type_begin();
1770 
1771  // Pass the pointer itself.
1772  QualType ArgTy = *ParamTypeIt++;
1773  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1774  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1775 
1776  // Pass the std::destroying_delete tag if present.
1777  if (Params.DestroyingDelete) {
1778  QualType DDTag = *ParamTypeIt++;
1779  // Just pass an 'undef'. We expect the tag type to be an empty struct.
1780  auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1781  DeleteArgs.add(RValue::get(V), DDTag);
1782  }
1783 
1784  // Pass the size if the delete function has a size_t parameter.
1785  if (Params.Size) {
1786  QualType SizeType = *ParamTypeIt++;
1787  CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1788  llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1789  DeleteTypeSize.getQuantity());
1790 
1791  // For array new, multiply by the number of elements.
1792  if (NumElements)
1793  Size = Builder.CreateMul(Size, NumElements);
1794 
1795  // If there is a cookie, add the cookie size.
1796  if (!CookieSize.isZero())
1797  Size = Builder.CreateAdd(
1798  Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1799 
1800  DeleteArgs.add(RValue::get(Size), SizeType);
1801  }
1802 
1803  // Pass the alignment if the delete function has an align_val_t parameter.
1804  if (Params.Alignment) {
1805  QualType AlignValType = *ParamTypeIt++;
1806  CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1807  getContext().getTypeAlignIfKnown(DeleteTy));
1808  llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1809  DeleteTypeAlign.getQuantity());
1810  DeleteArgs.add(RValue::get(Align), AlignValType);
1811  }
1812 
1813  assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1814  "unknown parameter to usual delete function");
1815 
1816  // Emit the call to delete.
1817  EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1818 }
1819 
1820 namespace {
1821  /// Calls the given 'operator delete' on a single object.
1822  struct CallObjectDelete final : EHScopeStack::Cleanup {
1823  llvm::Value *Ptr;
1824  const FunctionDecl *OperatorDelete;
1825  QualType ElementType;
1826 
1827  CallObjectDelete(llvm::Value *Ptr,
1828  const FunctionDecl *OperatorDelete,
1829  QualType ElementType)
1830  : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1831 
1832  void Emit(CodeGenFunction &CGF, Flags flags) override {
1833  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1834  }
1835  };
1836 }
1837 
1838 void
1840  llvm::Value *CompletePtr,
1841  QualType ElementType) {
1842  EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1843  OperatorDelete, ElementType);
1844 }
1845 
1846 /// Emit the code for deleting a single object with a destroying operator
1847 /// delete. If the element type has a non-virtual destructor, Ptr has already
1848 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1849 /// Ptr points to an object of the static type.
1851  const CXXDeleteExpr *DE, Address Ptr,
1852  QualType ElementType) {
1853  auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1854  if (Dtor && Dtor->isVirtual())
1855  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1856  Dtor);
1857  else
1858  CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1859 }
1860 
1861 /// Emit the code for deleting a single object.
1863  const CXXDeleteExpr *DE,
1864  Address Ptr,
1865  QualType ElementType) {
1866  // C++11 [expr.delete]p3:
1867  // If the static type of the object to be deleted is different from its
1868  // dynamic type, the static type shall be a base class of the dynamic type
1869  // of the object to be deleted and the static type shall have a virtual
1870  // destructor or the behavior is undefined.
1872  DE->getExprLoc(), Ptr.getPointer(),
1873  ElementType);
1874 
1875  const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1876  assert(!OperatorDelete->isDestroyingOperatorDelete());
1877 
1878  // Find the destructor for the type, if applicable. If the
1879  // destructor is virtual, we'll just emit the vcall and return.
1880  const CXXDestructorDecl *Dtor = nullptr;
1881  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1882  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1883  if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1884  Dtor = RD->getDestructor();
1885 
1886  if (Dtor->isVirtual()) {
1887  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1888  Dtor);
1889  return;
1890  }
1891  }
1892  }
1893 
1894  // Make sure that we call delete even if the dtor throws.
1895  // This doesn't have to a conditional cleanup because we're going
1896  // to pop it off in a second.
1897  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1898  Ptr.getPointer(),
1899  OperatorDelete, ElementType);
1900 
1901  if (Dtor)
1903  /*ForVirtualBase=*/false,
1904  /*Delegating=*/false,
1905  Ptr);
1906  else if (auto Lifetime = ElementType.getObjCLifetime()) {
1907  switch (Lifetime) {
1908  case Qualifiers::OCL_None:
1911  break;
1912 
1915  break;
1916 
1917  case Qualifiers::OCL_Weak:
1918  CGF.EmitARCDestroyWeak(Ptr);
1919  break;
1920  }
1921  }
1922 
1923  CGF.PopCleanupBlock();
1924 }
1925 
1926 namespace {
1927  /// Calls the given 'operator delete' on an array of objects.
1928  struct CallArrayDelete final : EHScopeStack::Cleanup {
1929  llvm::Value *Ptr;
1930  const FunctionDecl *OperatorDelete;
1931  llvm::Value *NumElements;
1932  QualType ElementType;
1933  CharUnits CookieSize;
1934 
1935  CallArrayDelete(llvm::Value *Ptr,
1936  const FunctionDecl *OperatorDelete,
1937  llvm::Value *NumElements,
1938  QualType ElementType,
1939  CharUnits CookieSize)
1940  : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1941  ElementType(ElementType), CookieSize(CookieSize) {}
1942 
1943  void Emit(CodeGenFunction &CGF, Flags flags) override {
1944  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1945  CookieSize);
1946  }
1947  };
1948 }
1949 
1950 /// Emit the code for deleting an array of objects.
1952  const CXXDeleteExpr *E,
1953  Address deletedPtr,
1954  QualType elementType) {
1955  llvm::Value *numElements = nullptr;
1956  llvm::Value *allocatedPtr = nullptr;
1957  CharUnits cookieSize;
1958  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1959  numElements, allocatedPtr, cookieSize);
1960 
1961  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1962 
1963  // Make sure that we call delete even if one of the dtors throws.
1964  const FunctionDecl *operatorDelete = E->getOperatorDelete();
1965  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1966  allocatedPtr, operatorDelete,
1967  numElements, elementType,
1968  cookieSize);
1969 
1970  // Destroy the elements.
1971  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1972  assert(numElements && "no element count for a type with a destructor!");
1973 
1974  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1975  CharUnits elementAlign =
1976  deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1977 
1978  llvm::Value *arrayBegin = deletedPtr.getPointer();
1979  llvm::Value *arrayEnd =
1980  CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1981 
1982  // Note that it is legal to allocate a zero-length array, and we
1983  // can never fold the check away because the length should always
1984  // come from a cookie.
1985  CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1986  CGF.getDestroyer(dtorKind),
1987  /*checkZeroLength*/ true,
1988  CGF.needsEHCleanup(dtorKind));
1989  }
1990 
1991  // Pop the cleanup block.
1992  CGF.PopCleanupBlock();
1993 }
1994 
1996  const Expr *Arg = E->getArgument();
1997  Address Ptr = EmitPointerWithAlignment(Arg);
1998 
1999  // Null check the pointer.
2000  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2001  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2002 
2003  llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2004 
2005  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2006  EmitBlock(DeleteNotNull);
2007 
2008  QualType DeleteTy = E->getDestroyedType();
2009 
2010  // A destroying operator delete overrides the entire operation of the
2011  // delete expression.
2013  EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2014  EmitBlock(DeleteEnd);
2015  return;
2016  }
2017 
2018  // We might be deleting a pointer to array. If so, GEP down to the
2019  // first non-array element.
2020  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2021  if (DeleteTy->isConstantArrayType()) {
2022  llvm::Value *Zero = Builder.getInt32(0);
2024 
2025  GEP.push_back(Zero); // point at the outermost array
2026 
2027  // For each layer of array type we're pointing at:
2028  while (const ConstantArrayType *Arr
2029  = getContext().getAsConstantArrayType(DeleteTy)) {
2030  // 1. Unpeel the array type.
2031  DeleteTy = Arr->getElementType();
2032 
2033  // 2. GEP to the first element of the array.
2034  GEP.push_back(Zero);
2035  }
2036 
2037  Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2038  Ptr.getAlignment());
2039  }
2040 
2041  assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2042 
2043  if (E->isArrayForm()) {
2044  EmitArrayDelete(*this, E, Ptr, DeleteTy);
2045  } else {
2046  EmitObjectDelete(*this, E, Ptr, DeleteTy);
2047  }
2048 
2049  EmitBlock(DeleteEnd);
2050 }
2051 
2052 static bool isGLValueFromPointerDeref(const Expr *E) {
2053  E = E->IgnoreParens();
2054 
2055  if (const auto *CE = dyn_cast<CastExpr>(E)) {
2056  if (!CE->getSubExpr()->isGLValue())
2057  return false;
2058  return isGLValueFromPointerDeref(CE->getSubExpr());
2059  }
2060 
2061  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2062  return isGLValueFromPointerDeref(OVE->getSourceExpr());
2063 
2064  if (const auto *BO = dyn_cast<BinaryOperator>(E))
2065  if (BO->getOpcode() == BO_Comma)
2066  return isGLValueFromPointerDeref(BO->getRHS());
2067 
2068  if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2069  return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2070  isGLValueFromPointerDeref(ACO->getFalseExpr());
2071 
2072  // C++11 [expr.sub]p1:
2073  // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2074  if (isa<ArraySubscriptExpr>(E))
2075  return true;
2076 
2077  if (const auto *UO = dyn_cast<UnaryOperator>(E))
2078  if (UO->getOpcode() == UO_Deref)
2079  return true;
2080 
2081  return false;
2082 }
2083 
2085  llvm::Type *StdTypeInfoPtrTy) {
2086  // Get the vtable pointer.
2087  Address ThisPtr = CGF.EmitLValue(E).getAddress();
2088 
2089  QualType SrcRecordTy = E->getType();
2090 
2091  // C++ [class.cdtor]p4:
2092  // If the operand of typeid refers to the object under construction or
2093  // destruction and the static type of the operand is neither the constructor
2094  // or destructor’s class nor one of its bases, the behavior is undefined.
2096  ThisPtr.getPointer(), SrcRecordTy);
2097 
2098  // C++ [expr.typeid]p2:
2099  // If the glvalue expression is obtained by applying the unary * operator to
2100  // a pointer and the pointer is a null pointer value, the typeid expression
2101  // throws the std::bad_typeid exception.
2102  //
2103  // However, this paragraph's intent is not clear. We choose a very generous
2104  // interpretation which implores us to consider comma operators, conditional
2105  // operators, parentheses and other such constructs.
2107  isGLValueFromPointerDeref(E), SrcRecordTy)) {
2108  llvm::BasicBlock *BadTypeidBlock =
2109  CGF.createBasicBlock("typeid.bad_typeid");
2110  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2111 
2112  llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2113  CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2114 
2115  CGF.EmitBlock(BadTypeidBlock);
2116  CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2117  CGF.EmitBlock(EndBlock);
2118  }
2119 
2120  return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2121  StdTypeInfoPtrTy);
2122 }
2123 
2125  llvm::Type *StdTypeInfoPtrTy =
2126  ConvertType(E->getType())->getPointerTo();
2127 
2128  if (E->isTypeOperand()) {
2129  llvm::Constant *TypeInfo =
2130  CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2131  return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2132  }
2133 
2134  // C++ [expr.typeid]p2:
2135  // When typeid is applied to a glvalue expression whose type is a
2136  // polymorphic class type, the result refers to a std::type_info object
2137  // representing the type of the most derived object (that is, the dynamic
2138  // type) to which the glvalue refers.
2139  if (E->isPotentiallyEvaluated())
2140  return EmitTypeidFromVTable(*this, E->getExprOperand(),
2141  StdTypeInfoPtrTy);
2142 
2143  QualType OperandTy = E->getExprOperand()->getType();
2144  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2145  StdTypeInfoPtrTy);
2146 }
2147 
2149  QualType DestTy) {
2150  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2151  if (DestTy->isPointerType())
2152  return llvm::Constant::getNullValue(DestLTy);
2153 
2154  /// C++ [expr.dynamic.cast]p9:
2155  /// A failed cast to reference type throws std::bad_cast
2156  if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2157  return nullptr;
2158 
2159  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2160  return llvm::UndefValue::get(DestLTy);
2161 }
2162 
2164  const CXXDynamicCastExpr *DCE) {
2165  CGM.EmitExplicitCastExprType(DCE, this);
2166  QualType DestTy = DCE->getTypeAsWritten();
2167 
2168  QualType SrcTy = DCE->getSubExpr()->getType();
2169 
2170  // C++ [expr.dynamic.cast]p7:
2171  // If T is "pointer to cv void," then the result is a pointer to the most
2172  // derived object pointed to by v.
2173  const PointerType *DestPTy = DestTy->getAs<PointerType>();
2174 
2175  bool isDynamicCastToVoid;
2176  QualType SrcRecordTy;
2177  QualType DestRecordTy;
2178  if (DestPTy) {
2179  isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2180  SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2181  DestRecordTy = DestPTy->getPointeeType();
2182  } else {
2183  isDynamicCastToVoid = false;
2184  SrcRecordTy = SrcTy;
2185  DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2186  }
2187 
2188  // C++ [class.cdtor]p5:
2189  // If the operand of the dynamic_cast refers to the object under
2190  // construction or destruction and the static type of the operand is not a
2191  // pointer to or object of the constructor or destructor’s own class or one
2192  // of its bases, the dynamic_cast results in undefined behavior.
2193  EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2194  SrcRecordTy);
2195 
2196  if (DCE->isAlwaysNull())
2197  if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2198  return T;
2199 
2200  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2201 
2202  // C++ [expr.dynamic.cast]p4:
2203  // If the value of v is a null pointer value in the pointer case, the result
2204  // is the null pointer value of type T.
2205  bool ShouldNullCheckSrcValue =
2206  CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2207  SrcRecordTy);
2208 
2209  llvm::BasicBlock *CastNull = nullptr;
2210  llvm::BasicBlock *CastNotNull = nullptr;
2211  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2212 
2213  if (ShouldNullCheckSrcValue) {
2214  CastNull = createBasicBlock("dynamic_cast.null");
2215  CastNotNull = createBasicBlock("dynamic_cast.notnull");
2216 
2217  llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2218  Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2219  EmitBlock(CastNotNull);
2220  }
2221 
2222  llvm::Value *Value;
2223  if (isDynamicCastToVoid) {
2224  Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2225  DestTy);
2226  } else {
2227  assert(DestRecordTy->isRecordType() &&
2228  "destination type must be a record type!");
2229  Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2230  DestTy, DestRecordTy, CastEnd);
2231  CastNotNull = Builder.GetInsertBlock();
2232  }
2233 
2234  if (ShouldNullCheckSrcValue) {
2235  EmitBranch(CastEnd);
2236 
2237  EmitBlock(CastNull);
2238  EmitBranch(CastEnd);
2239  }
2240 
2241  EmitBlock(CastEnd);
2242 
2243  if (ShouldNullCheckSrcValue) {
2244  llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2245  PHI->addIncoming(Value, CastNotNull);
2246  PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2247 
2248  Value = PHI;
2249  }
2250 
2251  return Value;
2252 }
2253 
2255  RunCleanupsScope Scope(*this);
2256  LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2257 
2260  e = E->capture_init_end();
2261  i != e; ++i, ++CurField) {
2262  // Emit initialization
2263  LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2264  if (CurField->hasCapturedVLAType()) {
2265  auto VAT = CurField->getCapturedVLAType();
2266  EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2267  } else {
2268  EmitInitializerForField(*CurField, LV, *i);
2269  }
2270  }
2271 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:361
virtual void EmitBadTypeidCall(CodeGenFunction &CGF)=0
Represents a function declaration or definition.
Definition: Decl.h:1717
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2774
Address getAddress() const
Definition: CGValue.h:580
Complete object ctor.
Definition: ABI.h:26
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2511
QualType getPointeeType() const
Definition: Type.h:2524
llvm::iterator_range< arg_iterator > placement_arguments()
Definition: ExprCXX.h:2046
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
Definition: CGDecl.cpp:1735
A (possibly-)qualified type.
Definition: Type.h:642
static RValue EmitNewDeleteCall(CodeGenFunction &CGF, const FunctionDecl *CalleeDecl, const FunctionProtoType *CalleeType, const CallArgList &Args)
Emit a call to an operator new or operator delete function, as implicitly created by new-expressions ...
Definition: CGExprCXX.cpp:1290
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2092
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:258
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2563
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2354
void EmitARCDestroyWeak(Address addr)
void @objc_destroyWeak(i8** addr) Essentially objc_storeWeak(addr, nil).
Definition: CGObjC.cpp:2280
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D...
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2342
void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:968
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:497
virtual bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy)=0
Checking the &#39;this&#39; pointer for a constructor call.
bool isRecordType() const
Definition: Type.h:6250
Expr * getBase() const
Definition: Expr.h:2557
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, QualType Type, CharUnits Alignment=CharUnits::Zero(), SanitizerSet SkippedChecks=SanitizerSet())
Emit a check that V is the address of storage of the appropriate size and alignment for an object of ...
Definition: CGExpr.cpp:649
bool isVirtual() const
Definition: DeclCXX.h:2088
FunctionDecl * getOperatorNew() const
Definition: ExprCXX.h:1973
Opcode getOpcode() const
Definition: Expr.h:3143
bool hasQualifier() const
Determines whether this member expression actually had a C++ nested-name-specifier prior to the name ...
Definition: Expr.h:2577
The base class of the type hierarchy.
Definition: Type.h:1415
bool requiresZeroInitialization() const
Whether this construction first requires zero-initialization before the initializer is called...
Definition: ExprCXX.h:1352
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2786
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1262
RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:168
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:116
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
bool isZero(ProgramStateRef State, const NonLoc &Val)
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2475
Expr * ignoreParenBaseCasts() LLVM_READONLY
Ignore parentheses and derived-to-base casts.
Definition: Expr.cpp:2614
static llvm::Value * EmitCXXNewAllocSize(CodeGenFunction &CGF, const CXXNewExpr *e, unsigned minElements, llvm::Value *&numElements, llvm::Value *&sizeWithoutCookie)
Definition: CGExprCXX.cpp:678
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::Instruction **callOrInvoke, SourceLocation Loc)
EmitCall - Generate a call of the given function, expecting the given result type, and using the given argument list which specifies both the LLVM arguments and the types they were derived from.
Definition: CGCall.cpp:3785
static saved_type save(CodeGenFunction &CGF, type value)
Definition: EHScopeStack.h:60
QualType getReturnType() const
Definition: Decl.h:2271
unsigned getNumParams() const
Definition: Type.h:3786
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6590
const void * Store
Store - This opaque type encapsulates an immutable mapping from locations to values.
Definition: StoreRef.h:28
IsZeroed_t isZeroed() const
Definition: CGValue.h:613
Address CreateConstInBoundsByteGEP(Address Addr, CharUnits Offset, const llvm::Twine &Name="")
Given a pointer to i8, adjust it by a given constant offset.
Definition: CGBuilder.h:234
llvm::Value * getPointer() const
Definition: Address.h:38
unsigned getNumPlacementArgs() const
Definition: ExprCXX.h:1987
static MemberCallInfo commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:37
RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:476
bool hasDefinition() const
Definition: DeclCXX.h:776
Expr * getExprOperand() const
Definition: ExprCXX.h:716
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3033
RValue EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, const CGCallee &Callee, ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:81
The collection of all-type qualifiers we support.
Definition: Type.h:141
void add(RValue rvalue, QualType type)
Definition: CGCall.h:285
CXXRecordDecl * getLambdaClass() const
Retrieve the class that corresponds to the lambda.
Definition: ExprCXX.cpp:1014
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:4170
bool isMoveAssignmentOperator() const
Determine whether this is a move assignment operator.
Definition: DeclCXX.cpp:2097
bool isEmpty() const
Determine whether this is an empty class in the sense of (C++11 [meta.unary.prop]).
Definition: DeclCXX.h:1329
An object to manage conditionally-evaluated expressions.
llvm::Value * EmitCXXNewExpr(const CXXNewExpr *E)
Definition: CGExprCXX.cpp:1546
Address getAddress() const
Definition: CGValue.h:327
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:3793
llvm::Value * EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE)
Definition: CGExprCXX.cpp:2163
static llvm::Value * EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, llvm::Type *StdTypeInfoPtrTy)
Definition: CGExprCXX.cpp:2084
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:81
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:246
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:514
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:53
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:66
Expr * getSubExpr()
Definition: Expr.h:2855
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2797
Describes an C or C++ initializer list.
Definition: Expr.h:3995
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:659
Expr * getArraySize()
Definition: ExprCXX.h:1980
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:2152
Base object ctor.
Definition: ABI.h:27
bool isElidable() const
Whether this construction is elidable.
Definition: ExprCXX.h:1331
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:157
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise)
Destroy a __strong variable.
Definition: CGObjC.cpp:2104
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6639
capture_init_iterator capture_init_begin()
Retrieve the first initialization argument for this lambda expression (which initializes the first ca...
Definition: ExprCXX.h:1756
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:119
Expr * getInitializer()
The initializer of this new-expression.
Definition: ExprCXX.h:2018
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:67
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3102
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6023
Checking the operand of a dynamic_cast or a typeid expression.
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:274
const Type * getClass() const
Definition: Type.h:2764
bool isArrow() const
Definition: Expr.h:2662
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, QualType DeleteTy, llvm::Value *NumElements=nullptr, CharUnits CookieSize=CharUnits())
Definition: CGExprCXX.cpp:1756
field_iterator field_begin() const
Definition: Decl.cpp:4123
param_type_iterator param_type_begin() const
Definition: Type.h:3918
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, Address DestPtr, const CXXRecordDecl *Base)
Definition: CGExprCXX.cpp:481
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1611
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1480
bool isInstance() const
Definition: DeclCXX.h:2071
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:1674
CXXMethodDecl * getCorrespondingMethodInClass(const CXXRecordDecl *RD, bool MayBeBase=false)
Find the method in RD that corresponds to this one.
Definition: DeclCXX.cpp:1871
bool isNegative() const
isNegative - Test whether the quantity is less than zero.
Definition: CharUnits.h:125
This object can be modified without requiring retains or releases.
Definition: Type.h:162
arg_iterator arg_end()
Definition: Expr.h:2385
Checking the &#39;this&#39; pointer for a call to a non-static member function.
TypeSourceInfo * getAllocatedTypeSourceInfo() const
Definition: ExprCXX.h:1952
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1566
bool isArrayForm() const
Definition: ExprCXX.h:2141
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition: Expr.h:3023
bool isValid() const
Definition: Address.h:36
void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest)
Definition: CGExprCXX.cpp:569
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2228
void addFrom(const CallArgList &other)
Add all the arguments from another CallArgList to this one.
Definition: CGCall.h:294
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1605
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3550
bool isDynamicClass() const
Definition: DeclCXX.h:789
virtual CharUnits GetArrayCookieSize(const CXXNewExpr *expr)
Returns the extra size required in order to store the array cookie for the given new-expression.
Definition: CGCXXABI.cpp:168
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any...
Definition: Decl.cpp:3278
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1325
NestedNameSpecifier * getQualifier() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name...
Definition: Expr.h:2592
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:39
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
SourceLocation getBeginLoc() const
Get the begin source location.
Definition: TypeLoc.cpp:190
This represents one expression.
Definition: Expr.h:105
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2668
bool isDefaulted() const
Whether this function is defaulted per C++0x.
Definition: Decl.h:2013
static Address invalid()
Definition: Address.h:35
static void EnterNewDeleteCleanup(CodeGenFunction &CGF, const CXXNewExpr *E, Address NewPtr, llvm::Value *AllocSize, CharUnits AllocAlign, const CallArgList &NewArgs)
Enter a cleanup to call &#39;operator delete&#39; if the initializer in a new-expression throws.
Definition: CGExprCXX.cpp:1478
virtual void ReadArrayCookie(CodeGenFunction &CGF, Address Ptr, const CXXDeleteExpr *expr, QualType ElementType, llvm::Value *&NumElements, llvm::Value *&AllocPtr, CharUnits &CookieSize)
Reads the array cookie associated with the given pointer, if it has one.
Definition: CGCXXABI.cpp:208
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E)
Definition: CGExprCXX.cpp:107
void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, llvm::Value *CompletePtr, QualType ElementType)
Definition: CGExprCXX.cpp:1839
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6653
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:134
SourceLocation getExprLoc() const LLVM_READONLY
Definition: ExprCXX.h:189
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2697
bool isSanitizerChecked() const
Definition: CGValue.h:600
unsigned getNumInits() const
Definition: Expr.h:4025
const Expr * getCallee() const
Definition: Expr.h:2325
bool isArrow() const
Determine whether this pseudo-destructor expression was written using an &#39;->&#39; (otherwise, it used a &#39;.
Definition: ExprCXX.h:2291
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:44
virtual bool EmitBadCastCall(CodeGenFunction &CGF)=0
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
A class for recording the number of arguments that a function signature requires. ...
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const
Determine whether the result of this expression is a temporary object of the given class type...
Definition: Expr.cpp:2738
QualType getType() const
Definition: Expr.h:127
void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest)
Definition: CGExprCXX.cpp:2254
RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, const Expr *Base)
Definition: CGExprCXX.cpp:194
CharUnits alignmentOfArrayElement(CharUnits elementSize) const
Given that this is the alignment of the first element of an array, return the minimum alignment of an...
Definition: CharUnits.h:197
bool hasInitializer() const
Whether this new-expression has any initializer at all.
Definition: ExprCXX.h:2008
QualType getRecordType(const RecordDecl *Decl) const
static void EmitObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object.
Definition: CGExprCXX.cpp:1862
llvm::CallInst * CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:296
llvm::Value * EmitCastToVoidPtr(llvm::Value *value)
Emit a cast to void* in the appropriate address space.
Definition: CGExpr.cpp:50
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this typeid() expression after various required adjustments (removing r...
Definition: ExprCXX.cpp:77
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, QualType elementType, CharUnits elementAlign, Destroyer *destroyer, bool checkZeroLength, bool useEHCleanup)
emitArrayDestroy - Destroys all the elements of the given array, beginning from last to first...
Definition: CGDecl.cpp:1849
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2005
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:178
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:35
The l-value was considered opaque, so the alignment was determined from a type.
RecordDecl * getDecl() const
Definition: Type.h:4263
Expr * getArgument()
Definition: ExprCXX.h:2154
bool isAlignValT() const
Definition: Type.cpp:2428
There is no lifetime qualification on this type.
Definition: Type.h:158
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:343
void set(SanitizerMask K, bool Value)
Enable or disable a certain (single) sanitizer.
Definition: Sanitizers.h:61
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:169
QualType getCanonicalType() const
Definition: Type.h:5992
void initFullExprCleanup()
Set up the last cleanup that was pushed as a conditional full-expression cleanup. ...
llvm::Value * EmitCXXTypeidExpr(const CXXTypeidExpr *E)
Definition: CGExprCXX.cpp:2124
Encodes a location in the source.
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4279
virtual llvm::Value * EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, Address ThisPtr, llvm::Type *StdTypeInfoPtrTy)=0
A saved depth on the scope stack.
Definition: EHScopeStack.h:107
static CXXRecordDecl * getCXXRecord(const Expr *E)
Definition: CGExprCXX.cpp:158
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1873
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:164
An aggregate value slot.
Definition: CGValue.h:437
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:665
static void EmitArrayDelete(CodeGenFunction &CGF, const CXXDeleteExpr *E, Address deletedPtr, QualType elementType)
Emit the code for deleting an array of objects.
Definition: CGExprCXX.cpp:1951
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2043
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2419
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
llvm::Constant * EmitNullConstantForBase(const CXXRecordDecl *Record)
Return a null constant appropriate for zero-initializing a base class with the given type...
QualType getAllocatedType() const
Definition: ExprCXX.h:1947
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1852
bool isArray() const
Definition: ExprCXX.h:1978
arg_range arguments()
Definition: Expr.h:2379
virtual void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType, const CXXDestructorDecl *Dtor)=0
An aligned address.
Definition: Address.h:25
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after...
Definition: Type.h:1160
All available information about a concrete callee.
Definition: CGCall.h:67
const CXXRecordDecl * getBestDynamicClassType() const
For an expression of class type or pointer to class type, return the most derived class decl the expr...
Definition: Expr.cpp:63
Complete object dtor.
Definition: ABI.h:36
EnumDecl * getDecl() const
Definition: Type.h:4286
RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:413
Assigning into this object requires a lifetime extension.
Definition: Type.h:175
static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object with a destroying operator delete.
Definition: CGExprCXX.cpp:1850
QualType getType() const
Definition: CGValue.h:264
bool passAlignment() const
Indicates whether the required alignment should be implicitly passed to the allocation function...
Definition: ExprCXX.h:2032
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:1975
CXXCtorType
C++ constructor types.
Definition: ABI.h:25
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
Expr * getLHS() const
Definition: Expr.h:3146
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, const CXXNewExpr *E)
Definition: CGExprCXX.cpp:665
CharUnits getNonVirtualAlignment() const
getNonVirtualSize - Get the non-virtual alignment (in chars) of an object, which is the alignment of ...
Definition: RecordLayout.h:211
CGFunctionInfo - Class to encapsulate the information about a function definition.
CharUnits alignmentAtOffset(CharUnits offset) const
Given that this is a non-zero alignment value, what is the alignment at the given offset...
Definition: CharUnits.h:190
bool isTypeOperand() const
Definition: ExprCXX.h:699
Dataflow Directional Tag Classes.
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This)
Definition: CGClass.cpp:2376
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2100
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return 0.
Definition: Expr.cpp:1251
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we&#39;re currently emitting one branch or the other of a conditio...
DeclarationName - The name of a declaration.
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2163
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type *> Tys=None)
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2730
bool isCopyAssignmentOperator() const
Determine whether this is a copy-assignment operator, regardless of whether it was declared implicitl...
Definition: DeclCXX.cpp:2076
bool isDestroyingOperatorDelete() const
Determine whether this is a destroying operator delete.
Definition: Decl.cpp:2863
llvm::Module & getModule() const
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:2029
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type. ...
Definition: CGExprAgg.cpp:1772
bool isStringLiteralInit() const
Definition: Expr.cpp:1994
static llvm::Value * EmitDynamicCastToNull(CodeGenFunction &CGF, QualType DestTy)
Definition: CGExprCXX.cpp:2148
AlignmentSource getAlignmentSource() const
Definition: CGValue.h:156
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4253
CXXMethodDecl * getDevirtualizedMethod(const Expr *Base, bool IsAppleKext)
If it&#39;s possible to devirtualize a call to this method, return the called function.
Definition: DeclCXX.cpp:1929
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6438
arg_iterator arg_begin()
Definition: Expr.h:2384
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:52
Represents a call to a CUDA kernel function.
Definition: ExprCXX.h:203
void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit)
Definition: CGDecl.cpp:738
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition: ExprCXX.h:1388
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2647
void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp)
Definition: CGExprCXX.cpp:643
llvm::Constant * GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty=nullptr, bool ForVTable=false, bool DontDefer=false, ForDefinition_t IsForDefinition=NotForDefinition)
Return the address of the given function.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:445
bool isConstantArrayType() const
Definition: Type.h:6230
static bool isGLValueFromPointerDeref(const Expr *E)
Definition: CGExprCXX.cpp:2052
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:238
Reading or writing from this object requires a barrier call.
Definition: Type.h:172
Overlap_t mayOverlap() const
Definition: CGValue.h:596
QualType getParamType(unsigned i) const
Definition: Type.h:3788
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2467
Represents a C++ struct/union/class.
Definition: DeclCXX.h:300
virtual const CXXRecordDecl * getThisArgumentTypeForMethod(const CXXMethodDecl *MD)
Get the type of the implicit "this" parameter used by a method.
Definition: CGCXXABI.h:338
bool isVoidType() const
Definition: Type.h:6404
bool hasStrongOrWeakObjCLifetime() const
Definition: Type.h:1074
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:1275
llvm::Type * ConvertType(QualType T)
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:5980
RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, const CallExpr *TheCallExpr, bool IsDelete)
Definition: CGExprCXX.cpp:1324
void EmitCXXDeleteExpr(const CXXDeleteExpr *E)
Definition: CGExprCXX.cpp:1995
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1232
CharUnits getNonVirtualSize() const
getNonVirtualSize - Get the non-virtual size (in chars) of an object, which is the size of the object...
Definition: RecordLayout.h:203
T * pushCleanupWithExtra(CleanupKind Kind, size_t N, As... A)
Push a cleanup with non-constant storage requirements on the stack.
Definition: EHScopeStack.h:305
static CGCallee forVirtual(const CallExpr *CE, GlobalDecl MD, Address Addr, llvm::FunctionType *FTy)
Definition: CGCall.h:139
static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD)
Definition: CGExprCXX.cpp:1350
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2285
QualType getIntegerType() const
Return the integer type this enum decl corresponds to.
Definition: Decl.h:3457
llvm::Constant * tryEmitAbstract(const Expr *E, QualType T)
Try to emit the result of the given expression as an abstract constant.
CGCXXABI & getCXXABI() const
__DEVICE__ int max(int __a, int __b)
capture_init_iterator capture_init_end()
Retrieve the iterator pointing one past the last initialization argument for this lambda expression...
Definition: ExprCXX.h:1768
bool isAlwaysNull() const
isAlwaysNull - Return whether the result of the dynamic_cast is proven to always be null...
Definition: ExprCXX.cpp:619
static RValue get(llvm::Value *V)
Definition: CGValue.h:86
bool isUnion() const
Definition: Decl.h:3229
static RequiredArgs forPrototypePlus(const FunctionProtoType *prototype, unsigned additional, const FunctionDecl *FD)
Compute the arguments required by the given formal prototype, given that there may be some additional...
Expr * getRHS() const
Definition: Expr.h:3148
Expr *const * const_capture_init_iterator
Const iterator that walks over the capture initialization arguments.
Definition: ExprCXX.h:1742
bool isPointerType() const
Definition: Type.h:6177
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, QualType AllocType, Address NewPtr, AggValueSlot::Overlap_t MayOverlap)
Definition: CGExprCXX.cpp:940
const CGFunctionInfo & arrangeFreeFunctionCall(const CallArgList &Args, const FunctionType *Ty, bool ChainCall)
Figure out the rules for calling a function with the given formal type using the given arguments...
Definition: CGCall.cpp:610
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
virtual std::vector< CharUnits > getVBPtrOffsets(const CXXRecordDecl *RD)
Gets the offsets of all the virtual base pointers in a given class.
Definition: CGCXXABI.cpp:319
QualType getType() const
Definition: Decl.h:647
bool shouldNullCheckAllocation(const ASTContext &Ctx) const
True if the allocation result needs to be null-checked.
Definition: ExprCXX.cpp:171
LValue - This represents an lvalue references.
Definition: CGValue.h:167
An abstract representation of regular/ObjC call/message targets.
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:147
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1361
bool isPotentiallyEvaluated() const
Determine whether this typeid has a type operand which is potentially evaluated, per C++11 [expr...
Definition: ExprCXX.cpp:62
RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:466
TranslationUnitDecl * getTranslationUnitDecl()
Definition: DeclBase.cpp:361
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:260
void PopCleanupBlock(bool FallThroughIsBranchThrough=false)
PopCleanupBlock - Will pop the cleanup entry on the stack and process all branch fixups.
Definition: CGCleanup.cpp:651
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2846
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:4703
QualType getPointeeType() const
Definition: Type.h:2750
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2513
ConstructionKind getConstructionKind() const
Determine whether this constructor is actually constructing a base class (rather than a complete obje...
Definition: ExprCXX.h:1359
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1066
param_type_iterator param_type_end() const
Definition: Type.h:3922