clang  6.0.0svn
CGExprCXX.cpp
Go to the documentation of this file.
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "ConstantEmitter.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Intrinsics.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 
28 namespace {
29 struct MemberCallInfo {
30  RequiredArgs ReqArgs;
31  // Number of prefix arguments for the call. Ignores the `this` pointer.
32  unsigned PrefixSize;
33 };
34 }
35 
36 static MemberCallInfo
38  llvm::Value *This, llvm::Value *ImplicitParam,
39  QualType ImplicitParamTy, const CallExpr *CE,
40  CallArgList &Args, CallArgList *RtlArgs) {
41  assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
42  isa<CXXOperatorCallExpr>(CE));
43  assert(MD->isInstance() &&
44  "Trying to emit a member or operator call expr on a static method!");
45  ASTContext &C = CGF.getContext();
46 
47  // Push the this ptr.
48  const CXXRecordDecl *RD =
50  Args.add(RValue::get(This),
51  RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
52 
53  // If there is an implicit parameter (e.g. VTT), emit it.
54  if (ImplicitParam) {
55  Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
56  }
57 
58  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
59  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
60  unsigned PrefixSize = Args.size() - 1;
61 
62  // And the rest of the call args.
63  if (RtlArgs) {
64  // Special case: if the caller emitted the arguments right-to-left already
65  // (prior to emitting the *this argument), we're done. This happens for
66  // assignment operators.
67  Args.addFrom(*RtlArgs);
68  } else if (CE) {
69  // Special case: skip first argument of CXXOperatorCall (it is "this").
70  unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
71  CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
72  CE->getDirectCallee());
73  } else {
74  assert(
75  FPT->getNumParams() == 0 &&
76  "No CallExpr specified for function with non-zero number of arguments");
77  }
78  return {required, PrefixSize};
79 }
80 
82  const CXXMethodDecl *MD, const CGCallee &Callee,
83  ReturnValueSlot ReturnValue,
84  llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
85  const CallExpr *CE, CallArgList *RtlArgs) {
86  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
87  CallArgList Args;
88  MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
89  *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
90  auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
91  Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
92  return EmitCall(FnInfo, Callee, ReturnValue, Args);
93 }
94 
96  const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
97  llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
99  CallArgList Args;
100  commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
101  ImplicitParamTy, CE, Args, nullptr);
102  return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
103  Callee, ReturnValueSlot(), Args);
104 }
105 
107  const CXXPseudoDestructorExpr *E) {
108  QualType DestroyedType = E->getDestroyedType();
109  if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
110  // Automatic Reference Counting:
111  // If the pseudo-expression names a retainable object with weak or
112  // strong lifetime, the object shall be released.
113  Expr *BaseExpr = E->getBase();
114  Address BaseValue = Address::invalid();
115  Qualifiers BaseQuals;
116 
117  // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
118  if (E->isArrow()) {
119  BaseValue = EmitPointerWithAlignment(BaseExpr);
120  const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
121  BaseQuals = PTy->getPointeeType().getQualifiers();
122  } else {
123  LValue BaseLV = EmitLValue(BaseExpr);
124  BaseValue = BaseLV.getAddress();
125  QualType BaseTy = BaseExpr->getType();
126  BaseQuals = BaseTy.getQualifiers();
127  }
128 
129  switch (DestroyedType.getObjCLifetime()) {
133  break;
134 
136  EmitARCRelease(Builder.CreateLoad(BaseValue,
137  DestroyedType.isVolatileQualified()),
139  break;
140 
142  EmitARCDestroyWeak(BaseValue);
143  break;
144  }
145  } else {
146  // C++ [expr.pseudo]p1:
147  // The result shall only be used as the operand for the function call
148  // operator (), and the result of such a call has type void. The only
149  // effect is the evaluation of the postfix-expression before the dot or
150  // arrow.
151  EmitIgnoredExpr(E->getBase());
152  }
153 
154  return RValue::get(nullptr);
155 }
156 
157 static CXXRecordDecl *getCXXRecord(const Expr *E) {
158  QualType T = E->getType();
159  if (const PointerType *PTy = T->getAs<PointerType>())
160  T = PTy->getPointeeType();
161  const RecordType *Ty = T->castAs<RecordType>();
162  return cast<CXXRecordDecl>(Ty->getDecl());
163 }
164 
165 // Note: This function also emit constructor calls to support a MSVC
166 // extensions allowing explicit constructor function call.
168  ReturnValueSlot ReturnValue) {
169  const Expr *callee = CE->getCallee()->IgnoreParens();
170 
171  if (isa<BinaryOperator>(callee))
172  return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
173 
174  const MemberExpr *ME = cast<MemberExpr>(callee);
175  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
176 
177  if (MD->isStatic()) {
178  // The method is static, emit it as we would a regular call.
179  CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD);
180  return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
181  ReturnValue);
182  }
183 
184  bool HasQualifier = ME->hasQualifier();
185  NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
186  bool IsArrow = ME->isArrow();
187  const Expr *Base = ME->getBase();
188 
189  return EmitCXXMemberOrOperatorMemberCallExpr(
190  CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
191 }
192 
194  const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
195  bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
196  const Expr *Base) {
197  assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
198 
199  // Compute the object pointer.
200  bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
201 
202  const CXXMethodDecl *DevirtualizedMethod = nullptr;
203  if (CanUseVirtualCall &&
204  MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
205  const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
206  DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
207  assert(DevirtualizedMethod);
208  const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
209  const Expr *Inner = Base->ignoreParenBaseCasts();
210  if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
212  // If the return types are not the same, this might be a case where more
213  // code needs to run to compensate for it. For example, the derived
214  // method might return a type that inherits form from the return
215  // type of MD and has a prefix.
216  // For now we just avoid devirtualizing these covariant cases.
217  DevirtualizedMethod = nullptr;
218  else if (getCXXRecord(Inner) == DevirtualizedClass)
219  // If the class of the Inner expression is where the dynamic method
220  // is defined, build the this pointer from it.
221  Base = Inner;
222  else if (getCXXRecord(Base) != DevirtualizedClass) {
223  // If the method is defined in a class that is not the best dynamic
224  // one or the one of the full expression, we would have to build
225  // a derived-to-base cast to compute the correct this pointer, but
226  // we don't have support for that yet, so do a virtual call.
227  DevirtualizedMethod = nullptr;
228  }
229  }
230 
231  // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
232  // operator before the LHS.
233  CallArgList RtlArgStorage;
234  CallArgList *RtlArgs = nullptr;
235  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
236  if (OCE->isAssignmentOp()) {
237  RtlArgs = &RtlArgStorage;
238  EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
239  drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
240  /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
241  }
242  }
243 
244  Address This = Address::invalid();
245  if (IsArrow)
246  This = EmitPointerWithAlignment(Base);
247  else
248  This = EmitLValue(Base).getAddress();
249 
250 
251  if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
252  if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
253  if (isa<CXXConstructorDecl>(MD) &&
254  cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
255  return RValue::get(nullptr);
256 
257  if (!MD->getParent()->mayInsertExtraPadding()) {
259  // We don't like to generate the trivial copy/move assignment operator
260  // when it isn't necessary; just produce the proper effect here.
261  LValue RHS = isa<CXXOperatorCallExpr>(CE)
262  ? MakeNaturalAlignAddrLValue(
263  (*RtlArgs)[0].RV.getScalarVal(),
264  (*(CE->arg_begin() + 1))->getType())
265  : EmitLValue(*CE->arg_begin());
266  EmitAggregateAssign(This, RHS.getAddress(), CE->getType());
267  return RValue::get(This.getPointer());
268  }
269 
270  if (isa<CXXConstructorDecl>(MD) &&
271  cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
272  // Trivial move and copy ctor are the same.
273  assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
274  Address RHS = EmitLValue(*CE->arg_begin()).getAddress();
275  EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType());
276  return RValue::get(This.getPointer());
277  }
278  llvm_unreachable("unknown trivial member function");
279  }
280  }
281 
282  // Compute the function type we're calling.
283  const CXXMethodDecl *CalleeDecl =
284  DevirtualizedMethod ? DevirtualizedMethod : MD;
285  const CGFunctionInfo *FInfo = nullptr;
286  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
287  FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
288  Dtor, StructorType::Complete);
289  else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
290  FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
291  Ctor, StructorType::Complete);
292  else
293  FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
294 
295  llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
296 
297  // C++11 [class.mfct.non-static]p2:
298  // If a non-static member function of a class X is called for an object that
299  // is not of type X, or of a type derived from X, the behavior is undefined.
300  SourceLocation CallLoc;
301  ASTContext &C = getContext();
302  if (CE)
303  CallLoc = CE->getExprLoc();
304 
305  SanitizerSet SkippedChecks;
306  if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
307  auto *IOA = CMCE->getImplicitObjectArgument();
308  bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
309  if (IsImplicitObjectCXXThis)
310  SkippedChecks.set(SanitizerKind::Alignment, true);
311  if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
312  SkippedChecks.set(SanitizerKind::Null, true);
313  }
314  EmitTypeCheck(
315  isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall
317  CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()),
318  /*Alignment=*/CharUnits::Zero(), SkippedChecks);
319 
320  // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
321  // 'CalleeDecl' instead.
322 
323  // C++ [class.virtual]p12:
324  // Explicit qualification with the scope operator (5.1) suppresses the
325  // virtual call mechanism.
326  //
327  // We also don't emit a virtual call if the base expression has a record type
328  // because then we know what the type is.
329  bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
330 
331  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
332  assert(CE->arg_begin() == CE->arg_end() &&
333  "Destructor shouldn't have explicit parameters");
334  assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
335  if (UseVirtualCall) {
336  CGM.getCXXABI().EmitVirtualDestructorCall(
337  *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
338  } else {
339  CGCallee Callee;
340  if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
341  Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
342  else if (!DevirtualizedMethod)
343  Callee = CGCallee::forDirect(
344  CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
345  Dtor);
346  else {
347  const CXXDestructorDecl *DDtor =
348  cast<CXXDestructorDecl>(DevirtualizedMethod);
349  Callee = CGCallee::forDirect(
350  CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
351  DDtor);
352  }
353  EmitCXXMemberOrOperatorCall(
354  CalleeDecl, Callee, ReturnValue, This.getPointer(),
355  /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
356  }
357  return RValue::get(nullptr);
358  }
359 
360  CGCallee Callee;
361  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
362  Callee = CGCallee::forDirect(
363  CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
364  Ctor);
365  } else if (UseVirtualCall) {
366  Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
367  CE->getLocStart());
368  } else {
369  if (SanOpts.has(SanitizerKind::CFINVCall) &&
370  MD->getParent()->isDynamicClass()) {
371  llvm::Value *VTable;
372  const CXXRecordDecl *RD;
373  std::tie(VTable, RD) =
374  CGM.getCXXABI().LoadVTablePtr(*this, This, MD->getParent());
375  EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getLocStart());
376  }
377 
378  if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
379  Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
380  else if (!DevirtualizedMethod)
381  Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD);
382  else {
383  Callee = CGCallee::forDirect(
384  CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
385  DevirtualizedMethod);
386  }
387  }
388 
389  if (MD->isVirtual()) {
390  This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
391  *this, CalleeDecl, This, UseVirtualCall);
392  }
393 
394  return EmitCXXMemberOrOperatorCall(
395  CalleeDecl, Callee, ReturnValue, This.getPointer(),
396  /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
397 }
398 
399 RValue
401  ReturnValueSlot ReturnValue) {
402  const BinaryOperator *BO =
403  cast<BinaryOperator>(E->getCallee()->IgnoreParens());
404  const Expr *BaseExpr = BO->getLHS();
405  const Expr *MemFnExpr = BO->getRHS();
406 
407  const MemberPointerType *MPT =
408  MemFnExpr->getType()->castAs<MemberPointerType>();
409 
410  const FunctionProtoType *FPT =
412  const CXXRecordDecl *RD =
413  cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
414 
415  // Emit the 'this' pointer.
416  Address This = Address::invalid();
417  if (BO->getOpcode() == BO_PtrMemI)
418  This = EmitPointerWithAlignment(BaseExpr);
419  else
420  This = EmitLValue(BaseExpr).getAddress();
421 
422  EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
423  QualType(MPT->getClass(), 0));
424 
425  // Get the member function pointer.
426  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
427 
428  // Ask the ABI to load the callee. Note that This is modified.
429  llvm::Value *ThisPtrForCall = nullptr;
430  CGCallee Callee =
431  CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
432  ThisPtrForCall, MemFnPtr, MPT);
433 
434  CallArgList Args;
435 
436  QualType ThisType =
437  getContext().getPointerType(getContext().getTagDeclType(RD));
438 
439  // Push the this ptr.
440  Args.add(RValue::get(ThisPtrForCall), ThisType);
441 
442  RequiredArgs required =
443  RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
444 
445  // And the rest of the call args
446  EmitCallArgs(Args, FPT, E->arguments());
447  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
448  /*PrefixSize=*/0),
449  Callee, ReturnValue, Args);
450 }
451 
452 RValue
454  const CXXMethodDecl *MD,
455  ReturnValueSlot ReturnValue) {
456  assert(MD->isInstance() &&
457  "Trying to emit a member call expr on a static method!");
458  return EmitCXXMemberOrOperatorMemberCallExpr(
459  E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
460  /*IsArrow=*/false, E->getArg(0));
461 }
462 
464  ReturnValueSlot ReturnValue) {
465  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
466 }
467 
469  Address DestPtr,
470  const CXXRecordDecl *Base) {
471  if (Base->isEmpty())
472  return;
473 
474  DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
475 
476  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
477  CharUnits NVSize = Layout.getNonVirtualSize();
478 
479  // We cannot simply zero-initialize the entire base sub-object if vbptrs are
480  // present, they are initialized by the most derived class before calling the
481  // constructor.
483  Stores.emplace_back(CharUnits::Zero(), NVSize);
484 
485  // Each store is split by the existence of a vbptr.
486  CharUnits VBPtrWidth = CGF.getPointerSize();
487  std::vector<CharUnits> VBPtrOffsets =
488  CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
489  for (CharUnits VBPtrOffset : VBPtrOffsets) {
490  // Stop before we hit any virtual base pointers located in virtual bases.
491  if (VBPtrOffset >= NVSize)
492  break;
493  std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
494  CharUnits LastStoreOffset = LastStore.first;
495  CharUnits LastStoreSize = LastStore.second;
496 
497  CharUnits SplitBeforeOffset = LastStoreOffset;
498  CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
499  assert(!SplitBeforeSize.isNegative() && "negative store size!");
500  if (!SplitBeforeSize.isZero())
501  Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
502 
503  CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
504  CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
505  assert(!SplitAfterSize.isNegative() && "negative store size!");
506  if (!SplitAfterSize.isZero())
507  Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
508  }
509 
510  // If the type contains a pointer to data member we can't memset it to zero.
511  // Instead, create a null constant and copy it to the destination.
512  // TODO: there are other patterns besides zero that we can usefully memset,
513  // like -1, which happens to be the pattern used by member-pointers.
514  // TODO: isZeroInitializable can be over-conservative in the case where a
515  // virtual base contains a member pointer.
516  llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
517  if (!NullConstantForBase->isNullValue()) {
518  llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
519  CGF.CGM.getModule(), NullConstantForBase->getType(),
520  /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
521  NullConstantForBase, Twine());
522 
523  CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
524  DestPtr.getAlignment());
525  NullVariable->setAlignment(Align.getQuantity());
526 
527  Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
528 
529  // Get and call the appropriate llvm.memcpy overload.
530  for (std::pair<CharUnits, CharUnits> Store : Stores) {
531  CharUnits StoreOffset = Store.first;
532  CharUnits StoreSize = Store.second;
533  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
534  CGF.Builder.CreateMemCpy(
535  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
536  CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
537  StoreSizeVal);
538  }
539 
540  // Otherwise, just memset the whole thing to zero. This is legal
541  // because in LLVM, all default initializers (other than the ones we just
542  // handled above) are guaranteed to have a bit pattern of all zeros.
543  } else {
544  for (std::pair<CharUnits, CharUnits> Store : Stores) {
545  CharUnits StoreOffset = Store.first;
546  CharUnits StoreSize = Store.second;
547  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
548  CGF.Builder.CreateMemSet(
549  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
550  CGF.Builder.getInt8(0), StoreSizeVal);
551  }
552  }
553 }
554 
555 void
557  AggValueSlot Dest) {
558  assert(!Dest.isIgnored() && "Must have a destination!");
559  const CXXConstructorDecl *CD = E->getConstructor();
560 
561  // If we require zero initialization before (or instead of) calling the
562  // constructor, as can be the case with a non-user-provided default
563  // constructor, emit the zero initialization now, unless destination is
564  // already zeroed.
565  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
566  switch (E->getConstructionKind()) {
569  EmitNullInitialization(Dest.getAddress(), E->getType());
570  break;
574  CD->getParent());
575  break;
576  }
577  }
578 
579  // If this is a call to a trivial default constructor, do nothing.
580  if (CD->isTrivial() && CD->isDefaultConstructor())
581  return;
582 
583  // Elide the constructor if we're constructing from a temporary.
584  // The temporary check is required because Sema sets this on NRVO
585  // returns.
586  if (getLangOpts().ElideConstructors && E->isElidable()) {
587  assert(getContext().hasSameUnqualifiedType(E->getType(),
588  E->getArg(0)->getType()));
589  if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
590  EmitAggExpr(E->getArg(0), Dest);
591  return;
592  }
593  }
594 
595  if (const ArrayType *arrayType
596  = getContext().getAsArrayType(E->getType())) {
597  EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
598  } else {
600  bool ForVirtualBase = false;
601  bool Delegating = false;
602 
603  switch (E->getConstructionKind()) {
605  // We should be emitting a constructor; GlobalDecl will assert this
606  Type = CurGD.getCtorType();
607  Delegating = true;
608  break;
609 
611  Type = Ctor_Complete;
612  break;
613 
615  ForVirtualBase = true;
616  // fall-through
617 
619  Type = Ctor_Base;
620  }
621 
622  // Call the constructor.
623  EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
624  Dest.getAddress(), E);
625  }
626 }
627 
629  const Expr *Exp) {
630  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
631  Exp = E->getSubExpr();
632  assert(isa<CXXConstructExpr>(Exp) &&
633  "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
634  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
635  const CXXConstructorDecl *CD = E->getConstructor();
636  RunCleanupsScope Scope(*this);
637 
638  // If we require zero initialization before (or instead of) calling the
639  // constructor, as can be the case with a non-user-provided default
640  // constructor, emit the zero initialization now.
641  // FIXME. Do I still need this for a copy ctor synthesis?
643  EmitNullInitialization(Dest, E->getType());
644 
645  assert(!getContext().getAsConstantArrayType(E->getType())
646  && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
647  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
648 }
649 
651  const CXXNewExpr *E) {
652  if (!E->isArray())
653  return CharUnits::Zero();
654 
655  // No cookie is required if the operator new[] being used is the
656  // reserved placement operator new[].
658  return CharUnits::Zero();
659 
660  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
661 }
662 
664  const CXXNewExpr *e,
665  unsigned minElements,
666  llvm::Value *&numElements,
667  llvm::Value *&sizeWithoutCookie) {
669 
670  if (!e->isArray()) {
671  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
672  sizeWithoutCookie
673  = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
674  return sizeWithoutCookie;
675  }
676 
677  // The width of size_t.
678  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
679 
680  // Figure out the cookie size.
681  llvm::APInt cookieSize(sizeWidth,
682  CalculateCookiePadding(CGF, e).getQuantity());
683 
684  // Emit the array size expression.
685  // We multiply the size of all dimensions for NumElements.
686  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
687  numElements =
689  if (!numElements)
690  numElements = CGF.EmitScalarExpr(e->getArraySize());
691  assert(isa<llvm::IntegerType>(numElements->getType()));
692 
693  // The number of elements can be have an arbitrary integer type;
694  // essentially, we need to multiply it by a constant factor, add a
695  // cookie size, and verify that the result is representable as a
696  // size_t. That's just a gloss, though, and it's wrong in one
697  // important way: if the count is negative, it's an error even if
698  // the cookie size would bring the total size >= 0.
699  bool isSigned
701  llvm::IntegerType *numElementsType
702  = cast<llvm::IntegerType>(numElements->getType());
703  unsigned numElementsWidth = numElementsType->getBitWidth();
704 
705  // Compute the constant factor.
706  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
707  while (const ConstantArrayType *CAT
708  = CGF.getContext().getAsConstantArrayType(type)) {
709  type = CAT->getElementType();
710  arraySizeMultiplier *= CAT->getSize();
711  }
712 
713  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
714  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
715  typeSizeMultiplier *= arraySizeMultiplier;
716 
717  // This will be a size_t.
718  llvm::Value *size;
719 
720  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
721  // Don't bloat the -O0 code.
722  if (llvm::ConstantInt *numElementsC =
723  dyn_cast<llvm::ConstantInt>(numElements)) {
724  const llvm::APInt &count = numElementsC->getValue();
725 
726  bool hasAnyOverflow = false;
727 
728  // If 'count' was a negative number, it's an overflow.
729  if (isSigned && count.isNegative())
730  hasAnyOverflow = true;
731 
732  // We want to do all this arithmetic in size_t. If numElements is
733  // wider than that, check whether it's already too big, and if so,
734  // overflow.
735  else if (numElementsWidth > sizeWidth &&
736  numElementsWidth - sizeWidth > count.countLeadingZeros())
737  hasAnyOverflow = true;
738 
739  // Okay, compute a count at the right width.
740  llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
741 
742  // If there is a brace-initializer, we cannot allocate fewer elements than
743  // there are initializers. If we do, that's treated like an overflow.
744  if (adjustedCount.ult(minElements))
745  hasAnyOverflow = true;
746 
747  // Scale numElements by that. This might overflow, but we don't
748  // care because it only overflows if allocationSize does, too, and
749  // if that overflows then we shouldn't use this.
750  numElements = llvm::ConstantInt::get(CGF.SizeTy,
751  adjustedCount * arraySizeMultiplier);
752 
753  // Compute the size before cookie, and track whether it overflowed.
754  bool overflow;
755  llvm::APInt allocationSize
756  = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
757  hasAnyOverflow |= overflow;
758 
759  // Add in the cookie, and check whether it's overflowed.
760  if (cookieSize != 0) {
761  // Save the current size without a cookie. This shouldn't be
762  // used if there was overflow.
763  sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
764 
765  allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
766  hasAnyOverflow |= overflow;
767  }
768 
769  // On overflow, produce a -1 so operator new will fail.
770  if (hasAnyOverflow) {
771  size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
772  } else {
773  size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
774  }
775 
776  // Otherwise, we might need to use the overflow intrinsics.
777  } else {
778  // There are up to five conditions we need to test for:
779  // 1) if isSigned, we need to check whether numElements is negative;
780  // 2) if numElementsWidth > sizeWidth, we need to check whether
781  // numElements is larger than something representable in size_t;
782  // 3) if minElements > 0, we need to check whether numElements is smaller
783  // than that.
784  // 4) we need to compute
785  // sizeWithoutCookie := numElements * typeSizeMultiplier
786  // and check whether it overflows; and
787  // 5) if we need a cookie, we need to compute
788  // size := sizeWithoutCookie + cookieSize
789  // and check whether it overflows.
790 
791  llvm::Value *hasOverflow = nullptr;
792 
793  // If numElementsWidth > sizeWidth, then one way or another, we're
794  // going to have to do a comparison for (2), and this happens to
795  // take care of (1), too.
796  if (numElementsWidth > sizeWidth) {
797  llvm::APInt threshold(numElementsWidth, 1);
798  threshold <<= sizeWidth;
799 
800  llvm::Value *thresholdV
801  = llvm::ConstantInt::get(numElementsType, threshold);
802 
803  hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
804  numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
805 
806  // Otherwise, if we're signed, we want to sext up to size_t.
807  } else if (isSigned) {
808  if (numElementsWidth < sizeWidth)
809  numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
810 
811  // If there's a non-1 type size multiplier, then we can do the
812  // signedness check at the same time as we do the multiply
813  // because a negative number times anything will cause an
814  // unsigned overflow. Otherwise, we have to do it here. But at least
815  // in this case, we can subsume the >= minElements check.
816  if (typeSizeMultiplier == 1)
817  hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
818  llvm::ConstantInt::get(CGF.SizeTy, minElements));
819 
820  // Otherwise, zext up to size_t if necessary.
821  } else if (numElementsWidth < sizeWidth) {
822  numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
823  }
824 
825  assert(numElements->getType() == CGF.SizeTy);
826 
827  if (minElements) {
828  // Don't allow allocation of fewer elements than we have initializers.
829  if (!hasOverflow) {
830  hasOverflow = CGF.Builder.CreateICmpULT(numElements,
831  llvm::ConstantInt::get(CGF.SizeTy, minElements));
832  } else if (numElementsWidth > sizeWidth) {
833  // The other existing overflow subsumes this check.
834  // We do an unsigned comparison, since any signed value < -1 is
835  // taken care of either above or below.
836  hasOverflow = CGF.Builder.CreateOr(hasOverflow,
837  CGF.Builder.CreateICmpULT(numElements,
838  llvm::ConstantInt::get(CGF.SizeTy, minElements)));
839  }
840  }
841 
842  size = numElements;
843 
844  // Multiply by the type size if necessary. This multiplier
845  // includes all the factors for nested arrays.
846  //
847  // This step also causes numElements to be scaled up by the
848  // nested-array factor if necessary. Overflow on this computation
849  // can be ignored because the result shouldn't be used if
850  // allocation fails.
851  if (typeSizeMultiplier != 1) {
852  llvm::Value *umul_with_overflow
853  = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
854 
855  llvm::Value *tsmV =
856  llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
857  llvm::Value *result =
858  CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
859 
860  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
861  if (hasOverflow)
862  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
863  else
864  hasOverflow = overflowed;
865 
866  size = CGF.Builder.CreateExtractValue(result, 0);
867 
868  // Also scale up numElements by the array size multiplier.
869  if (arraySizeMultiplier != 1) {
870  // If the base element type size is 1, then we can re-use the
871  // multiply we just did.
872  if (typeSize.isOne()) {
873  assert(arraySizeMultiplier == typeSizeMultiplier);
874  numElements = size;
875 
876  // Otherwise we need a separate multiply.
877  } else {
878  llvm::Value *asmV =
879  llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
880  numElements = CGF.Builder.CreateMul(numElements, asmV);
881  }
882  }
883  } else {
884  // numElements doesn't need to be scaled.
885  assert(arraySizeMultiplier == 1);
886  }
887 
888  // Add in the cookie size if necessary.
889  if (cookieSize != 0) {
890  sizeWithoutCookie = size;
891 
892  llvm::Value *uadd_with_overflow
893  = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
894 
895  llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
896  llvm::Value *result =
897  CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
898 
899  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
900  if (hasOverflow)
901  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
902  else
903  hasOverflow = overflowed;
904 
905  size = CGF.Builder.CreateExtractValue(result, 0);
906  }
907 
908  // If we had any possibility of dynamic overflow, make a select to
909  // overwrite 'size' with an all-ones value, which should cause
910  // operator new to throw.
911  if (hasOverflow)
912  size = CGF.Builder.CreateSelect(hasOverflow,
913  llvm::Constant::getAllOnesValue(CGF.SizeTy),
914  size);
915  }
916 
917  if (cookieSize == 0)
918  sizeWithoutCookie = size;
919  else
920  assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
921 
922  return size;
923 }
924 
925 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
926  QualType AllocType, Address NewPtr) {
927  // FIXME: Refactor with EmitExprAsInit.
928  switch (CGF.getEvaluationKind(AllocType)) {
929  case TEK_Scalar:
930  CGF.EmitScalarInit(Init, nullptr,
931  CGF.MakeAddrLValue(NewPtr, AllocType), false);
932  return;
933  case TEK_Complex:
934  CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
935  /*isInit*/ true);
936  return;
937  case TEK_Aggregate: {
938  AggValueSlot Slot
939  = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
943  CGF.EmitAggExpr(Init, Slot);
944  return;
945  }
946  }
947  llvm_unreachable("bad evaluation kind");
948 }
949 
951  const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
952  Address BeginPtr, llvm::Value *NumElements,
953  llvm::Value *AllocSizeWithoutCookie) {
954  // If we have a type with trivial initialization and no initializer,
955  // there's nothing to do.
956  if (!E->hasInitializer())
957  return;
958 
959  Address CurPtr = BeginPtr;
960 
961  unsigned InitListElements = 0;
962 
963  const Expr *Init = E->getInitializer();
964  Address EndOfInit = Address::invalid();
965  QualType::DestructionKind DtorKind = ElementType.isDestructedType();
967  llvm::Instruction *CleanupDominator = nullptr;
968 
969  CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
970  CharUnits ElementAlign =
971  BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
972 
973  // Attempt to perform zero-initialization using memset.
974  auto TryMemsetInitialization = [&]() -> bool {
975  // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
976  // we can initialize with a memset to -1.
977  if (!CGM.getTypes().isZeroInitializable(ElementType))
978  return false;
979 
980  // Optimization: since zero initialization will just set the memory
981  // to all zeroes, generate a single memset to do it in one shot.
982 
983  // Subtract out the size of any elements we've already initialized.
984  auto *RemainingSize = AllocSizeWithoutCookie;
985  if (InitListElements) {
986  // We know this can't overflow; we check this when doing the allocation.
987  auto *InitializedSize = llvm::ConstantInt::get(
988  RemainingSize->getType(),
989  getContext().getTypeSizeInChars(ElementType).getQuantity() *
990  InitListElements);
991  RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
992  }
993 
994  // Create the memset.
995  Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
996  return true;
997  };
998 
999  // If the initializer is an initializer list, first do the explicit elements.
1000  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1001  // Initializing from a (braced) string literal is a special case; the init
1002  // list element does not initialize a (single) array element.
1003  if (ILE->isStringLiteralInit()) {
1004  // Initialize the initial portion of length equal to that of the string
1005  // literal. The allocation must be for at least this much; we emitted a
1006  // check for that earlier.
1007  AggValueSlot Slot =
1008  AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1012  EmitAggExpr(ILE->getInit(0), Slot);
1013 
1014  // Move past these elements.
1015  InitListElements =
1016  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1017  ->getSize().getZExtValue();
1018  CurPtr =
1019  Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1020  Builder.getSize(InitListElements),
1021  "string.init.end"),
1022  CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1023  ElementSize));
1024 
1025  // Zero out the rest, if any remain.
1026  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1027  if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1028  bool OK = TryMemsetInitialization();
1029  (void)OK;
1030  assert(OK && "couldn't memset character type?");
1031  }
1032  return;
1033  }
1034 
1035  InitListElements = ILE->getNumInits();
1036 
1037  // If this is a multi-dimensional array new, we will initialize multiple
1038  // elements with each init list element.
1039  QualType AllocType = E->getAllocatedType();
1040  if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1041  AllocType->getAsArrayTypeUnsafe())) {
1042  ElementTy = ConvertTypeForMem(AllocType);
1043  CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1044  InitListElements *= getContext().getConstantArrayElementCount(CAT);
1045  }
1046 
1047  // Enter a partial-destruction Cleanup if necessary.
1048  if (needsEHCleanup(DtorKind)) {
1049  // In principle we could tell the Cleanup where we are more
1050  // directly, but the control flow can get so varied here that it
1051  // would actually be quite complex. Therefore we go through an
1052  // alloca.
1053  EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1054  "array.init.end");
1055  CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1056  pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1057  ElementType, ElementAlign,
1058  getDestroyer(DtorKind));
1059  Cleanup = EHStack.stable_begin();
1060  }
1061 
1062  CharUnits StartAlign = CurPtr.getAlignment();
1063  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1064  // Tell the cleanup that it needs to destroy up to this
1065  // element. TODO: some of these stores can be trivially
1066  // observed to be unnecessary.
1067  if (EndOfInit.isValid()) {
1068  auto FinishedPtr =
1069  Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1070  Builder.CreateStore(FinishedPtr, EndOfInit);
1071  }
1072  // FIXME: If the last initializer is an incomplete initializer list for
1073  // an array, and we have an array filler, we can fold together the two
1074  // initialization loops.
1075  StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1076  ILE->getInit(i)->getType(), CurPtr);
1077  CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1078  Builder.getSize(1),
1079  "array.exp.next"),
1080  StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1081  }
1082 
1083  // The remaining elements are filled with the array filler expression.
1084  Init = ILE->getArrayFiller();
1085 
1086  // Extract the initializer for the individual array elements by pulling
1087  // out the array filler from all the nested initializer lists. This avoids
1088  // generating a nested loop for the initialization.
1089  while (Init && Init->getType()->isConstantArrayType()) {
1090  auto *SubILE = dyn_cast<InitListExpr>(Init);
1091  if (!SubILE)
1092  break;
1093  assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1094  Init = SubILE->getArrayFiller();
1095  }
1096 
1097  // Switch back to initializing one base element at a time.
1098  CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1099  }
1100 
1101  // If all elements have already been initialized, skip any further
1102  // initialization.
1103  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1104  if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1105  // If there was a Cleanup, deactivate it.
1106  if (CleanupDominator)
1107  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1108  return;
1109  }
1110 
1111  assert(Init && "have trailing elements to initialize but no initializer");
1112 
1113  // If this is a constructor call, try to optimize it out, and failing that
1114  // emit a single loop to initialize all remaining elements.
1115  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1116  CXXConstructorDecl *Ctor = CCE->getConstructor();
1117  if (Ctor->isTrivial()) {
1118  // If new expression did not specify value-initialization, then there
1119  // is no initialization.
1120  if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1121  return;
1122 
1123  if (TryMemsetInitialization())
1124  return;
1125  }
1126 
1127  // Store the new Cleanup position for irregular Cleanups.
1128  //
1129  // FIXME: Share this cleanup with the constructor call emission rather than
1130  // having it create a cleanup of its own.
1131  if (EndOfInit.isValid())
1132  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1133 
1134  // Emit a constructor call loop to initialize the remaining elements.
1135  if (InitListElements)
1136  NumElements = Builder.CreateSub(
1137  NumElements,
1138  llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1139  EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1140  CCE->requiresZeroInitialization());
1141  return;
1142  }
1143 
1144  // If this is value-initialization, we can usually use memset.
1145  ImplicitValueInitExpr IVIE(ElementType);
1146  if (isa<ImplicitValueInitExpr>(Init)) {
1147  if (TryMemsetInitialization())
1148  return;
1149 
1150  // Switch to an ImplicitValueInitExpr for the element type. This handles
1151  // only one case: multidimensional array new of pointers to members. In
1152  // all other cases, we already have an initializer for the array element.
1153  Init = &IVIE;
1154  }
1155 
1156  // At this point we should have found an initializer for the individual
1157  // elements of the array.
1158  assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1159  "got wrong type of element to initialize");
1160 
1161  // If we have an empty initializer list, we can usually use memset.
1162  if (auto *ILE = dyn_cast<InitListExpr>(Init))
1163  if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1164  return;
1165 
1166  // If we have a struct whose every field is value-initialized, we can
1167  // usually use memset.
1168  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1169  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1170  if (RType->getDecl()->isStruct()) {
1171  unsigned NumElements = 0;
1172  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1173  NumElements = CXXRD->getNumBases();
1174  for (auto *Field : RType->getDecl()->fields())
1175  if (!Field->isUnnamedBitfield())
1176  ++NumElements;
1177  // FIXME: Recurse into nested InitListExprs.
1178  if (ILE->getNumInits() == NumElements)
1179  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1180  if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1181  --NumElements;
1182  if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1183  return;
1184  }
1185  }
1186  }
1187 
1188  // Create the loop blocks.
1189  llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1190  llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1191  llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1192 
1193  // Find the end of the array, hoisted out of the loop.
1194  llvm::Value *EndPtr =
1195  Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1196 
1197  // If the number of elements isn't constant, we have to now check if there is
1198  // anything left to initialize.
1199  if (!ConstNum) {
1200  llvm::Value *IsEmpty =
1201  Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1202  Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1203  }
1204 
1205  // Enter the loop.
1206  EmitBlock(LoopBB);
1207 
1208  // Set up the current-element phi.
1209  llvm::PHINode *CurPtrPhi =
1210  Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1211  CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1212 
1213  CurPtr = Address(CurPtrPhi, ElementAlign);
1214 
1215  // Store the new Cleanup position for irregular Cleanups.
1216  if (EndOfInit.isValid())
1217  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1218 
1219  // Enter a partial-destruction Cleanup if necessary.
1220  if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1221  pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1222  ElementType, ElementAlign,
1223  getDestroyer(DtorKind));
1224  Cleanup = EHStack.stable_begin();
1225  CleanupDominator = Builder.CreateUnreachable();
1226  }
1227 
1228  // Emit the initializer into this element.
1229  StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1230 
1231  // Leave the Cleanup if we entered one.
1232  if (CleanupDominator) {
1233  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1234  CleanupDominator->eraseFromParent();
1235  }
1236 
1237  // Advance to the next element by adjusting the pointer type as necessary.
1238  llvm::Value *NextPtr =
1239  Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1240  "array.next");
1241 
1242  // Check whether we've gotten to the end of the array and, if so,
1243  // exit the loop.
1244  llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1245  Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1246  CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1247 
1248  EmitBlock(ContBB);
1249 }
1250 
1251 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1252  QualType ElementType, llvm::Type *ElementTy,
1253  Address NewPtr, llvm::Value *NumElements,
1254  llvm::Value *AllocSizeWithoutCookie) {
1255  ApplyDebugLocation DL(CGF, E);
1256  if (E->isArray())
1257  CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1258  AllocSizeWithoutCookie);
1259  else if (const Expr *Init = E->getInitializer())
1260  StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1261 }
1262 
1263 /// Emit a call to an operator new or operator delete function, as implicitly
1264 /// created by new-expressions and delete-expressions.
1266  const FunctionDecl *CalleeDecl,
1267  const FunctionProtoType *CalleeType,
1268  const CallArgList &Args) {
1269  llvm::Instruction *CallOrInvoke;
1270  llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1271  CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl);
1272  RValue RV =
1274  Args, CalleeType, /*chainCall=*/false),
1275  Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1276 
1277  /// C++1y [expr.new]p10:
1278  /// [In a new-expression,] an implementation is allowed to omit a call
1279  /// to a replaceable global allocation function.
1280  ///
1281  /// We model such elidable calls with the 'builtin' attribute.
1282  llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1283  if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1284  Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1285  // FIXME: Add addAttribute to CallSite.
1286  if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1287  CI->addAttribute(llvm::AttributeList::FunctionIndex,
1288  llvm::Attribute::Builtin);
1289  else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1290  II->addAttribute(llvm::AttributeList::FunctionIndex,
1291  llvm::Attribute::Builtin);
1292  else
1293  llvm_unreachable("unexpected kind of call instruction");
1294  }
1295 
1296  return RV;
1297 }
1298 
1300  const Expr *Arg,
1301  bool IsDelete) {
1302  CallArgList Args;
1303  const Stmt *ArgS = Arg;
1304  EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
1305  // Find the allocation or deallocation function that we're calling.
1306  ASTContext &Ctx = getContext();
1307  DeclarationName Name = Ctx.DeclarationNames
1308  .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1309  for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1310  if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1311  if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1312  return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1313  llvm_unreachable("predeclared global operator new/delete is missing");
1314 }
1315 
1316 namespace {
1317 /// The parameters to pass to a usual operator delete.
1318 struct UsualDeleteParams {
1319  bool DestroyingDelete = false;
1320  bool Size = false;
1321  bool Alignment = false;
1322 };
1323 }
1324 
1325 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1326  UsualDeleteParams Params;
1327 
1328  const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1329  auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1330 
1331  // The first argument is always a void*.
1332  ++AI;
1333 
1334  // The next parameter may be a std::destroying_delete_t.
1335  if (FD->isDestroyingOperatorDelete()) {
1336  Params.DestroyingDelete = true;
1337  assert(AI != AE);
1338  ++AI;
1339  }
1340 
1341  // Figure out what other parameters we should be implicitly passing.
1342  if (AI != AE && (*AI)->isIntegerType()) {
1343  Params.Size = true;
1344  ++AI;
1345  }
1346 
1347  if (AI != AE && (*AI)->isAlignValT()) {
1348  Params.Alignment = true;
1349  ++AI;
1350  }
1351 
1352  assert(AI == AE && "unexpected usual deallocation function parameter");
1353  return Params;
1354 }
1355 
1356 namespace {
1357  /// A cleanup to call the given 'operator delete' function upon abnormal
1358  /// exit from a new expression. Templated on a traits type that deals with
1359  /// ensuring that the arguments dominate the cleanup if necessary.
1360  template<typename Traits>
1361  class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1362  /// Type used to hold llvm::Value*s.
1363  typedef typename Traits::ValueTy ValueTy;
1364  /// Type used to hold RValues.
1365  typedef typename Traits::RValueTy RValueTy;
1366  struct PlacementArg {
1367  RValueTy ArgValue;
1368  QualType ArgType;
1369  };
1370 
1371  unsigned NumPlacementArgs : 31;
1372  unsigned PassAlignmentToPlacementDelete : 1;
1373  const FunctionDecl *OperatorDelete;
1374  ValueTy Ptr;
1375  ValueTy AllocSize;
1376  CharUnits AllocAlign;
1377 
1378  PlacementArg *getPlacementArgs() {
1379  return reinterpret_cast<PlacementArg *>(this + 1);
1380  }
1381 
1382  public:
1383  static size_t getExtraSize(size_t NumPlacementArgs) {
1384  return NumPlacementArgs * sizeof(PlacementArg);
1385  }
1386 
1387  CallDeleteDuringNew(size_t NumPlacementArgs,
1388  const FunctionDecl *OperatorDelete, ValueTy Ptr,
1389  ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1390  CharUnits AllocAlign)
1391  : NumPlacementArgs(NumPlacementArgs),
1392  PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1393  OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1394  AllocAlign(AllocAlign) {}
1395 
1396  void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1397  assert(I < NumPlacementArgs && "index out of range");
1398  getPlacementArgs()[I] = {Arg, Type};
1399  }
1400 
1401  void Emit(CodeGenFunction &CGF, Flags flags) override {
1402  const FunctionProtoType *FPT =
1403  OperatorDelete->getType()->getAs<FunctionProtoType>();
1404  CallArgList DeleteArgs;
1405 
1406  // The first argument is always a void* (or C* for a destroying operator
1407  // delete for class type C).
1408  DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1409 
1410  // Figure out what other parameters we should be implicitly passing.
1411  UsualDeleteParams Params;
1412  if (NumPlacementArgs) {
1413  // A placement deallocation function is implicitly passed an alignment
1414  // if the placement allocation function was, but is never passed a size.
1415  Params.Alignment = PassAlignmentToPlacementDelete;
1416  } else {
1417  // For a non-placement new-expression, 'operator delete' can take a
1418  // size and/or an alignment if it has the right parameters.
1419  Params = getUsualDeleteParams(OperatorDelete);
1420  }
1421 
1422  assert(!Params.DestroyingDelete &&
1423  "should not call destroying delete in a new-expression");
1424 
1425  // The second argument can be a std::size_t (for non-placement delete).
1426  if (Params.Size)
1427  DeleteArgs.add(Traits::get(CGF, AllocSize),
1428  CGF.getContext().getSizeType());
1429 
1430  // The next (second or third) argument can be a std::align_val_t, which
1431  // is an enum whose underlying type is std::size_t.
1432  // FIXME: Use the right type as the parameter type. Note that in a call
1433  // to operator delete(size_t, ...), we may not have it available.
1434  if (Params.Alignment)
1435  DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1436  CGF.SizeTy, AllocAlign.getQuantity())),
1437  CGF.getContext().getSizeType());
1438 
1439  // Pass the rest of the arguments, which must match exactly.
1440  for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1441  auto Arg = getPlacementArgs()[I];
1442  DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1443  }
1444 
1445  // Call 'operator delete'.
1446  EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1447  }
1448  };
1449 }
1450 
1451 /// Enter a cleanup to call 'operator delete' if the initializer in a
1452 /// new-expression throws.
1454  const CXXNewExpr *E,
1455  Address NewPtr,
1456  llvm::Value *AllocSize,
1457  CharUnits AllocAlign,
1458  const CallArgList &NewArgs) {
1459  unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1460 
1461  // If we're not inside a conditional branch, then the cleanup will
1462  // dominate and we can do the easier (and more efficient) thing.
1463  if (!CGF.isInConditionalBranch()) {
1464  struct DirectCleanupTraits {
1465  typedef llvm::Value *ValueTy;
1466  typedef RValue RValueTy;
1467  static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1468  static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1469  };
1470 
1471  typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1472 
1473  DirectCleanup *Cleanup = CGF.EHStack
1474  .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1475  E->getNumPlacementArgs(),
1476  E->getOperatorDelete(),
1477  NewPtr.getPointer(),
1478  AllocSize,
1479  E->passAlignment(),
1480  AllocAlign);
1481  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1482  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1483  Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty);
1484  }
1485 
1486  return;
1487  }
1488 
1489  // Otherwise, we need to save all this stuff.
1492  DominatingValue<RValue>::saved_type SavedAllocSize =
1493  DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1494 
1495  struct ConditionalCleanupTraits {
1496  typedef DominatingValue<RValue>::saved_type ValueTy;
1497  typedef DominatingValue<RValue>::saved_type RValueTy;
1498  static RValue get(CodeGenFunction &CGF, ValueTy V) {
1499  return V.restore(CGF);
1500  }
1501  };
1502  typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1503 
1504  ConditionalCleanup *Cleanup = CGF.EHStack
1505  .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1506  E->getNumPlacementArgs(),
1507  E->getOperatorDelete(),
1508  SavedNewPtr,
1509  SavedAllocSize,
1510  E->passAlignment(),
1511  AllocAlign);
1512  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1513  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1514  Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV),
1515  Arg.Ty);
1516  }
1517 
1518  CGF.initFullExprCleanup();
1519 }
1520 
1522  // The element type being allocated.
1523  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1524 
1525  // 1. Build a call to the allocation function.
1526  FunctionDecl *allocator = E->getOperatorNew();
1527 
1528  // If there is a brace-initializer, cannot allocate fewer elements than inits.
1529  unsigned minElements = 0;
1530  if (E->isArray() && E->hasInitializer()) {
1531  const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1532  if (ILE && ILE->isStringLiteralInit())
1533  minElements =
1534  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1535  ->getSize().getZExtValue();
1536  else if (ILE)
1537  minElements = ILE->getNumInits();
1538  }
1539 
1540  llvm::Value *numElements = nullptr;
1541  llvm::Value *allocSizeWithoutCookie = nullptr;
1542  llvm::Value *allocSize =
1543  EmitCXXNewAllocSize(*this, E, minElements, numElements,
1544  allocSizeWithoutCookie);
1545  CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1546 
1547  // Emit the allocation call. If the allocator is a global placement
1548  // operator, just "inline" it directly.
1549  Address allocation = Address::invalid();
1550  CallArgList allocatorArgs;
1551  if (allocator->isReservedGlobalPlacementOperator()) {
1552  assert(E->getNumPlacementArgs() == 1);
1553  const Expr *arg = *E->placement_arguments().begin();
1554 
1555  LValueBaseInfo BaseInfo;
1556  allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1557 
1558  // The pointer expression will, in many cases, be an opaque void*.
1559  // In these cases, discard the computed alignment and use the
1560  // formal alignment of the allocated type.
1561  if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1562  allocation = Address(allocation.getPointer(), allocAlign);
1563 
1564  // Set up allocatorArgs for the call to operator delete if it's not
1565  // the reserved global operator.
1566  if (E->getOperatorDelete() &&
1568  allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1569  allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1570  }
1571 
1572  } else {
1573  const FunctionProtoType *allocatorType =
1574  allocator->getType()->castAs<FunctionProtoType>();
1575  unsigned ParamsToSkip = 0;
1576 
1577  // The allocation size is the first argument.
1578  QualType sizeType = getContext().getSizeType();
1579  allocatorArgs.add(RValue::get(allocSize), sizeType);
1580  ++ParamsToSkip;
1581 
1582  if (allocSize != allocSizeWithoutCookie) {
1583  CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1584  allocAlign = std::max(allocAlign, cookieAlign);
1585  }
1586 
1587  // The allocation alignment may be passed as the second argument.
1588  if (E->passAlignment()) {
1589  QualType AlignValT = sizeType;
1590  if (allocatorType->getNumParams() > 1) {
1591  AlignValT = allocatorType->getParamType(1);
1592  assert(getContext().hasSameUnqualifiedType(
1593  AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1594  sizeType) &&
1595  "wrong type for alignment parameter");
1596  ++ParamsToSkip;
1597  } else {
1598  // Corner case, passing alignment to 'operator new(size_t, ...)'.
1599  assert(allocator->isVariadic() && "can't pass alignment to allocator");
1600  }
1601  allocatorArgs.add(
1602  RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1603  AlignValT);
1604  }
1605 
1606  // FIXME: Why do we not pass a CalleeDecl here?
1607  EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1608  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1609 
1610  RValue RV =
1611  EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1612 
1613  // If this was a call to a global replaceable allocation function that does
1614  // not take an alignment argument, the allocator is known to produce
1615  // storage that's suitably aligned for any object that fits, up to a known
1616  // threshold. Otherwise assume it's suitably aligned for the allocated type.
1617  CharUnits allocationAlign = allocAlign;
1618  if (!E->passAlignment() &&
1620  unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1621  Target.getNewAlign(), getContext().getTypeSize(allocType)));
1622  allocationAlign = std::max(
1623  allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1624  }
1625 
1626  allocation = Address(RV.getScalarVal(), allocationAlign);
1627  }
1628 
1629  // Emit a null check on the allocation result if the allocation
1630  // function is allowed to return null (because it has a non-throwing
1631  // exception spec or is the reserved placement new) and we have an
1632  // interesting initializer.
1633  bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1634  (!allocType.isPODType(getContext()) || E->hasInitializer());
1635 
1636  llvm::BasicBlock *nullCheckBB = nullptr;
1637  llvm::BasicBlock *contBB = nullptr;
1638 
1639  // The null-check means that the initializer is conditionally
1640  // evaluated.
1641  ConditionalEvaluation conditional(*this);
1642 
1643  if (nullCheck) {
1644  conditional.begin(*this);
1645 
1646  nullCheckBB = Builder.GetInsertBlock();
1647  llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1648  contBB = createBasicBlock("new.cont");
1649 
1650  llvm::Value *isNull =
1651  Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1652  Builder.CreateCondBr(isNull, contBB, notNullBB);
1653  EmitBlock(notNullBB);
1654  }
1655 
1656  // If there's an operator delete, enter a cleanup to call it if an
1657  // exception is thrown.
1658  EHScopeStack::stable_iterator operatorDeleteCleanup;
1659  llvm::Instruction *cleanupDominator = nullptr;
1660  if (E->getOperatorDelete() &&
1662  EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1663  allocatorArgs);
1664  operatorDeleteCleanup = EHStack.stable_begin();
1665  cleanupDominator = Builder.CreateUnreachable();
1666  }
1667 
1668  assert((allocSize == allocSizeWithoutCookie) ==
1669  CalculateCookiePadding(*this, E).isZero());
1670  if (allocSize != allocSizeWithoutCookie) {
1671  assert(E->isArray());
1672  allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1673  numElements,
1674  E, allocType);
1675  }
1676 
1677  llvm::Type *elementTy = ConvertTypeForMem(allocType);
1678  Address result = Builder.CreateElementBitCast(allocation, elementTy);
1679 
1680  // Passing pointer through invariant.group.barrier to avoid propagation of
1681  // vptrs information which may be included in previous type.
1682  // To not break LTO with different optimizations levels, we do it regardless
1683  // of optimization level.
1684  if (CGM.getCodeGenOpts().StrictVTablePointers &&
1685  allocator->isReservedGlobalPlacementOperator())
1686  result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1687  result.getAlignment());
1688 
1689  EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1690  allocSizeWithoutCookie);
1691  if (E->isArray()) {
1692  // NewPtr is a pointer to the base element type. If we're
1693  // allocating an array of arrays, we'll need to cast back to the
1694  // array pointer type.
1695  llvm::Type *resultType = ConvertTypeForMem(E->getType());
1696  if (result.getType() != resultType)
1697  result = Builder.CreateBitCast(result, resultType);
1698  }
1699 
1700  // Deactivate the 'operator delete' cleanup if we finished
1701  // initialization.
1702  if (operatorDeleteCleanup.isValid()) {
1703  DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1704  cleanupDominator->eraseFromParent();
1705  }
1706 
1707  llvm::Value *resultPtr = result.getPointer();
1708  if (nullCheck) {
1709  conditional.end(*this);
1710 
1711  llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1712  EmitBlock(contBB);
1713 
1714  llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1715  PHI->addIncoming(resultPtr, notNullBB);
1716  PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1717  nullCheckBB);
1718 
1719  resultPtr = PHI;
1720  }
1721 
1722  return resultPtr;
1723 }
1724 
1726  llvm::Value *Ptr, QualType DeleteTy,
1727  llvm::Value *NumElements,
1728  CharUnits CookieSize) {
1729  assert((!NumElements && CookieSize.isZero()) ||
1730  DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1731 
1732  const FunctionProtoType *DeleteFTy =
1733  DeleteFD->getType()->getAs<FunctionProtoType>();
1734 
1735  CallArgList DeleteArgs;
1736 
1737  auto Params = getUsualDeleteParams(DeleteFD);
1738  auto ParamTypeIt = DeleteFTy->param_type_begin();
1739 
1740  // Pass the pointer itself.
1741  QualType ArgTy = *ParamTypeIt++;
1742  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1743  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1744 
1745  // Pass the std::destroying_delete tag if present.
1746  if (Params.DestroyingDelete) {
1747  QualType DDTag = *ParamTypeIt++;
1748  // Just pass an 'undef'. We expect the tag type to be an empty struct.
1749  auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1750  DeleteArgs.add(RValue::get(V), DDTag);
1751  }
1752 
1753  // Pass the size if the delete function has a size_t parameter.
1754  if (Params.Size) {
1755  QualType SizeType = *ParamTypeIt++;
1756  CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1757  llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1758  DeleteTypeSize.getQuantity());
1759 
1760  // For array new, multiply by the number of elements.
1761  if (NumElements)
1762  Size = Builder.CreateMul(Size, NumElements);
1763 
1764  // If there is a cookie, add the cookie size.
1765  if (!CookieSize.isZero())
1766  Size = Builder.CreateAdd(
1767  Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1768 
1769  DeleteArgs.add(RValue::get(Size), SizeType);
1770  }
1771 
1772  // Pass the alignment if the delete function has an align_val_t parameter.
1773  if (Params.Alignment) {
1774  QualType AlignValType = *ParamTypeIt++;
1775  CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1776  getContext().getTypeAlignIfKnown(DeleteTy));
1777  llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1778  DeleteTypeAlign.getQuantity());
1779  DeleteArgs.add(RValue::get(Align), AlignValType);
1780  }
1781 
1782  assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1783  "unknown parameter to usual delete function");
1784 
1785  // Emit the call to delete.
1786  EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1787 }
1788 
1789 namespace {
1790  /// Calls the given 'operator delete' on a single object.
1791  struct CallObjectDelete final : EHScopeStack::Cleanup {
1792  llvm::Value *Ptr;
1793  const FunctionDecl *OperatorDelete;
1794  QualType ElementType;
1795 
1796  CallObjectDelete(llvm::Value *Ptr,
1797  const FunctionDecl *OperatorDelete,
1798  QualType ElementType)
1799  : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1800 
1801  void Emit(CodeGenFunction &CGF, Flags flags) override {
1802  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1803  }
1804  };
1805 }
1806 
1807 void
1809  llvm::Value *CompletePtr,
1810  QualType ElementType) {
1811  EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1812  OperatorDelete, ElementType);
1813 }
1814 
1815 /// Emit the code for deleting a single object with a destroying operator
1816 /// delete. If the element type has a non-virtual destructor, Ptr has already
1817 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1818 /// Ptr points to an object of the static type.
1820  const CXXDeleteExpr *DE, Address Ptr,
1821  QualType ElementType) {
1822  auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1823  if (Dtor && Dtor->isVirtual())
1824  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1825  Dtor);
1826  else
1827  CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1828 }
1829 
1830 /// Emit the code for deleting a single object.
1832  const CXXDeleteExpr *DE,
1833  Address Ptr,
1834  QualType ElementType) {
1835  // C++11 [expr.delete]p3:
1836  // If the static type of the object to be deleted is different from its
1837  // dynamic type, the static type shall be a base class of the dynamic type
1838  // of the object to be deleted and the static type shall have a virtual
1839  // destructor or the behavior is undefined.
1841  DE->getExprLoc(), Ptr.getPointer(),
1842  ElementType);
1843 
1844  const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1845  assert(!OperatorDelete->isDestroyingOperatorDelete());
1846 
1847  // Find the destructor for the type, if applicable. If the
1848  // destructor is virtual, we'll just emit the vcall and return.
1849  const CXXDestructorDecl *Dtor = nullptr;
1850  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1851  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1852  if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1853  Dtor = RD->getDestructor();
1854 
1855  if (Dtor->isVirtual()) {
1856  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1857  Dtor);
1858  return;
1859  }
1860  }
1861  }
1862 
1863  // Make sure that we call delete even if the dtor throws.
1864  // This doesn't have to a conditional cleanup because we're going
1865  // to pop it off in a second.
1866  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1867  Ptr.getPointer(),
1868  OperatorDelete, ElementType);
1869 
1870  if (Dtor)
1872  /*ForVirtualBase=*/false,
1873  /*Delegating=*/false,
1874  Ptr);
1875  else if (auto Lifetime = ElementType.getObjCLifetime()) {
1876  switch (Lifetime) {
1877  case Qualifiers::OCL_None:
1880  break;
1881 
1884  break;
1885 
1886  case Qualifiers::OCL_Weak:
1887  CGF.EmitARCDestroyWeak(Ptr);
1888  break;
1889  }
1890  }
1891 
1892  CGF.PopCleanupBlock();
1893 }
1894 
1895 namespace {
1896  /// Calls the given 'operator delete' on an array of objects.
1897  struct CallArrayDelete final : EHScopeStack::Cleanup {
1898  llvm::Value *Ptr;
1899  const FunctionDecl *OperatorDelete;
1900  llvm::Value *NumElements;
1901  QualType ElementType;
1902  CharUnits CookieSize;
1903 
1904  CallArrayDelete(llvm::Value *Ptr,
1905  const FunctionDecl *OperatorDelete,
1906  llvm::Value *NumElements,
1907  QualType ElementType,
1908  CharUnits CookieSize)
1909  : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1910  ElementType(ElementType), CookieSize(CookieSize) {}
1911 
1912  void Emit(CodeGenFunction &CGF, Flags flags) override {
1913  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1914  CookieSize);
1915  }
1916  };
1917 }
1918 
1919 /// Emit the code for deleting an array of objects.
1921  const CXXDeleteExpr *E,
1922  Address deletedPtr,
1923  QualType elementType) {
1924  llvm::Value *numElements = nullptr;
1925  llvm::Value *allocatedPtr = nullptr;
1926  CharUnits cookieSize;
1927  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1928  numElements, allocatedPtr, cookieSize);
1929 
1930  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1931 
1932  // Make sure that we call delete even if one of the dtors throws.
1933  const FunctionDecl *operatorDelete = E->getOperatorDelete();
1934  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1935  allocatedPtr, operatorDelete,
1936  numElements, elementType,
1937  cookieSize);
1938 
1939  // Destroy the elements.
1940  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1941  assert(numElements && "no element count for a type with a destructor!");
1942 
1943  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1944  CharUnits elementAlign =
1945  deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1946 
1947  llvm::Value *arrayBegin = deletedPtr.getPointer();
1948  llvm::Value *arrayEnd =
1949  CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1950 
1951  // Note that it is legal to allocate a zero-length array, and we
1952  // can never fold the check away because the length should always
1953  // come from a cookie.
1954  CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1955  CGF.getDestroyer(dtorKind),
1956  /*checkZeroLength*/ true,
1957  CGF.needsEHCleanup(dtorKind));
1958  }
1959 
1960  // Pop the cleanup block.
1961  CGF.PopCleanupBlock();
1962 }
1963 
1965  const Expr *Arg = E->getArgument();
1966  Address Ptr = EmitPointerWithAlignment(Arg);
1967 
1968  // Null check the pointer.
1969  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1970  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1971 
1972  llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1973 
1974  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1975  EmitBlock(DeleteNotNull);
1976 
1977  QualType DeleteTy = E->getDestroyedType();
1978 
1979  // A destroying operator delete overrides the entire operation of the
1980  // delete expression.
1982  EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
1983  EmitBlock(DeleteEnd);
1984  return;
1985  }
1986 
1987  // We might be deleting a pointer to array. If so, GEP down to the
1988  // first non-array element.
1989  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1990  if (DeleteTy->isConstantArrayType()) {
1991  llvm::Value *Zero = Builder.getInt32(0);
1993 
1994  GEP.push_back(Zero); // point at the outermost array
1995 
1996  // For each layer of array type we're pointing at:
1997  while (const ConstantArrayType *Arr
1998  = getContext().getAsConstantArrayType(DeleteTy)) {
1999  // 1. Unpeel the array type.
2000  DeleteTy = Arr->getElementType();
2001 
2002  // 2. GEP to the first element of the array.
2003  GEP.push_back(Zero);
2004  }
2005 
2006  Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2007  Ptr.getAlignment());
2008  }
2009 
2010  assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2011 
2012  if (E->isArrayForm()) {
2013  EmitArrayDelete(*this, E, Ptr, DeleteTy);
2014  } else {
2015  EmitObjectDelete(*this, E, Ptr, DeleteTy);
2016  }
2017 
2018  EmitBlock(DeleteEnd);
2019 }
2020 
2021 static bool isGLValueFromPointerDeref(const Expr *E) {
2022  E = E->IgnoreParens();
2023 
2024  if (const auto *CE = dyn_cast<CastExpr>(E)) {
2025  if (!CE->getSubExpr()->isGLValue())
2026  return false;
2027  return isGLValueFromPointerDeref(CE->getSubExpr());
2028  }
2029 
2030  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2031  return isGLValueFromPointerDeref(OVE->getSourceExpr());
2032 
2033  if (const auto *BO = dyn_cast<BinaryOperator>(E))
2034  if (BO->getOpcode() == BO_Comma)
2035  return isGLValueFromPointerDeref(BO->getRHS());
2036 
2037  if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2038  return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2039  isGLValueFromPointerDeref(ACO->getFalseExpr());
2040 
2041  // C++11 [expr.sub]p1:
2042  // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2043  if (isa<ArraySubscriptExpr>(E))
2044  return true;
2045 
2046  if (const auto *UO = dyn_cast<UnaryOperator>(E))
2047  if (UO->getOpcode() == UO_Deref)
2048  return true;
2049 
2050  return false;
2051 }
2052 
2054  llvm::Type *StdTypeInfoPtrTy) {
2055  // Get the vtable pointer.
2056  Address ThisPtr = CGF.EmitLValue(E).getAddress();
2057 
2058  // C++ [expr.typeid]p2:
2059  // If the glvalue expression is obtained by applying the unary * operator to
2060  // a pointer and the pointer is a null pointer value, the typeid expression
2061  // throws the std::bad_typeid exception.
2062  //
2063  // However, this paragraph's intent is not clear. We choose a very generous
2064  // interpretation which implores us to consider comma operators, conditional
2065  // operators, parentheses and other such constructs.
2066  QualType SrcRecordTy = E->getType();
2068  isGLValueFromPointerDeref(E), SrcRecordTy)) {
2069  llvm::BasicBlock *BadTypeidBlock =
2070  CGF.createBasicBlock("typeid.bad_typeid");
2071  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2072 
2073  llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2074  CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2075 
2076  CGF.EmitBlock(BadTypeidBlock);
2077  CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2078  CGF.EmitBlock(EndBlock);
2079  }
2080 
2081  return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2082  StdTypeInfoPtrTy);
2083 }
2084 
2086  llvm::Type *StdTypeInfoPtrTy =
2087  ConvertType(E->getType())->getPointerTo();
2088 
2089  if (E->isTypeOperand()) {
2090  llvm::Constant *TypeInfo =
2091  CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2092  return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2093  }
2094 
2095  // C++ [expr.typeid]p2:
2096  // When typeid is applied to a glvalue expression whose type is a
2097  // polymorphic class type, the result refers to a std::type_info object
2098  // representing the type of the most derived object (that is, the dynamic
2099  // type) to which the glvalue refers.
2100  if (E->isPotentiallyEvaluated())
2101  return EmitTypeidFromVTable(*this, E->getExprOperand(),
2102  StdTypeInfoPtrTy);
2103 
2104  QualType OperandTy = E->getExprOperand()->getType();
2105  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2106  StdTypeInfoPtrTy);
2107 }
2108 
2110  QualType DestTy) {
2111  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2112  if (DestTy->isPointerType())
2113  return llvm::Constant::getNullValue(DestLTy);
2114 
2115  /// C++ [expr.dynamic.cast]p9:
2116  /// A failed cast to reference type throws std::bad_cast
2117  if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2118  return nullptr;
2119 
2120  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2121  return llvm::UndefValue::get(DestLTy);
2122 }
2123 
2125  const CXXDynamicCastExpr *DCE) {
2126  CGM.EmitExplicitCastExprType(DCE, this);
2127  QualType DestTy = DCE->getTypeAsWritten();
2128 
2129  if (DCE->isAlwaysNull())
2130  if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2131  return T;
2132 
2133  QualType SrcTy = DCE->getSubExpr()->getType();
2134 
2135  // C++ [expr.dynamic.cast]p7:
2136  // If T is "pointer to cv void," then the result is a pointer to the most
2137  // derived object pointed to by v.
2138  const PointerType *DestPTy = DestTy->getAs<PointerType>();
2139 
2140  bool isDynamicCastToVoid;
2141  QualType SrcRecordTy;
2142  QualType DestRecordTy;
2143  if (DestPTy) {
2144  isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2145  SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2146  DestRecordTy = DestPTy->getPointeeType();
2147  } else {
2148  isDynamicCastToVoid = false;
2149  SrcRecordTy = SrcTy;
2150  DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2151  }
2152 
2153  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2154 
2155  // C++ [expr.dynamic.cast]p4:
2156  // If the value of v is a null pointer value in the pointer case, the result
2157  // is the null pointer value of type T.
2158  bool ShouldNullCheckSrcValue =
2159  CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2160  SrcRecordTy);
2161 
2162  llvm::BasicBlock *CastNull = nullptr;
2163  llvm::BasicBlock *CastNotNull = nullptr;
2164  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2165 
2166  if (ShouldNullCheckSrcValue) {
2167  CastNull = createBasicBlock("dynamic_cast.null");
2168  CastNotNull = createBasicBlock("dynamic_cast.notnull");
2169 
2170  llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2171  Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2172  EmitBlock(CastNotNull);
2173  }
2174 
2175  llvm::Value *Value;
2176  if (isDynamicCastToVoid) {
2177  Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2178  DestTy);
2179  } else {
2180  assert(DestRecordTy->isRecordType() &&
2181  "destination type must be a record type!");
2182  Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2183  DestTy, DestRecordTy, CastEnd);
2184  CastNotNull = Builder.GetInsertBlock();
2185  }
2186 
2187  if (ShouldNullCheckSrcValue) {
2188  EmitBranch(CastEnd);
2189 
2190  EmitBlock(CastNull);
2191  EmitBranch(CastEnd);
2192  }
2193 
2194  EmitBlock(CastEnd);
2195 
2196  if (ShouldNullCheckSrcValue) {
2197  llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2198  PHI->addIncoming(Value, CastNotNull);
2199  PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2200 
2201  Value = PHI;
2202  }
2203 
2204  return Value;
2205 }
2206 
2208  RunCleanupsScope Scope(*this);
2209  LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2210 
2213  e = E->capture_init_end();
2214  i != e; ++i, ++CurField) {
2215  // Emit initialization
2216  LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2217  if (CurField->hasCapturedVLAType()) {
2218  auto VAT = CurField->getCapturedVLAType();
2219  EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2220  } else {
2221  EmitInitializerForField(*CurField, LV, *i);
2222  }
2223  }
2224 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:281
virtual void EmitBadTypeidCall(CodeGenFunction &CGF)=0
FunctionDecl - An instance of this class is created to represent a function declaration or definition...
Definition: Decl.h:1698
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2676
Address getAddress() const
Definition: CGValue.h:555
Complete object ctor.
Definition: ABI.h:26
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2285
QualType getPointeeType() const
Definition: Type.h:2298
llvm::iterator_range< arg_iterator > placement_arguments()
Definition: ExprCXX.h:2015
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
Definition: CGDecl.cpp:1461
A (possibly-)qualified type.
Definition: Type.h:653
static RValue EmitNewDeleteCall(CodeGenFunction &CGF, const FunctionDecl *CalleeDecl, const FunctionProtoType *CalleeType, const CallArgList &Args)
Emit a call to an operator new or operator delete function, as implicitly created by new-expressions ...
Definition: CGExprCXX.cpp:1265
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2061
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:260
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2483
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2278
void EmitARCDestroyWeak(Address addr)
void @objc_destroyWeak(i8** addr) Essentially objc_storeWeak(addr, nil).
Definition: CGObjC.cpp:2296
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D...
Stmt - This represents one statement.
Definition: Stmt.h:66
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2266
void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:950
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:456
virtual bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy)=0
Checking the &#39;this&#39; pointer for a constructor call.
bool isRecordType() const
Definition: Type.h:6017
Expr * getBase() const
Definition: Expr.h:2477
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, QualType Type, CharUnits Alignment=CharUnits::Zero(), SanitizerSet SkippedChecks=SanitizerSet())
Emit a check that V is the address of storage of the appropriate size and alignment for an object of ...
Definition: CGExpr.cpp:591
bool isVirtual() const
Definition: DeclCXX.h:2009
FunctionDecl * getOperatorNew() const
Definition: ExprCXX.h:1942
Opcode getOpcode() const
Definition: Expr.h:3026
bool hasQualifier() const
Determines whether this member expression actually had a C++ nested-name-specifier prior to the name ...
Definition: Expr.h:2497
const void * Store
Store - This opaque type encapsulates an immutable mapping from locations to values.
Definition: StoreRef.h:26
The base class of the type hierarchy.
Definition: Type.h:1353
bool requiresZeroInitialization() const
Whether this construction first requires zero-initialization before the initializer is called...
Definition: ExprCXX.h:1329
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2560
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1239
RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:167
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:116
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2397
Expr * ignoreParenBaseCasts() LLVM_READONLY
Ignore parentheses and derived-to-base casts.
Definition: Expr.cpp:2533
static llvm::Value * EmitCXXNewAllocSize(CodeGenFunction &CGF, const CXXNewExpr *e, unsigned minElements, llvm::Value *&numElements, llvm::Value *&sizeWithoutCookie)
Definition: CGExprCXX.cpp:663
static saved_type save(CodeGenFunction &CGF, type value)
Definition: EHScopeStack.h:60
QualType getReturnType() const
Definition: Decl.h:2205
unsigned getNumParams() const
Definition: Type.h:3491
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6307
IsZeroed_t isZeroed() const
Definition: CGValue.h:580
Address CreateConstInBoundsByteGEP(Address Addr, CharUnits Offset, const llvm::Twine &Name="")
Given a pointer to i8, adjust it by a given constant offset.
Definition: CGBuilder.h:234
llvm::Value * getPointer() const
Definition: Address.h:38
unsigned getNumPlacementArgs() const
Definition: ExprCXX.h:1956
static MemberCallInfo commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:37
RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:463
bool hasDefinition() const
Definition: DeclCXX.h:738
Expr * getExprOperand() const
Definition: ExprCXX.h:695
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3000
RValue EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, const CGCallee &Callee, ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:81
The collection of all-type qualifiers we support.
Definition: Type.h:152
CXXRecordDecl * getLambdaClass() const
Retrieve the class that corresponds to the lambda.
Definition: ExprCXX.cpp:999
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:3984
bool isMoveAssignmentOperator() const
Determine whether this is a move assignment operator.
Definition: DeclCXX.cpp:1882
bool isEmpty() const
Determine whether this is an empty class in the sense of (C++11 [meta.unary.prop]).
Definition: DeclCXX.h:1279
An object to manage conditionally-evaluated expressions.
llvm::Value * EmitCXXNewExpr(const CXXNewExpr *E)
Definition: CGExprCXX.cpp:1521
Address getAddress() const
Definition: CGValue.h:324
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:149
llvm::Value * EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE)
Definition: CGExprCXX.cpp:2124
static llvm::Value * EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, llvm::Type *StdTypeInfoPtrTy)
Definition: CGExprCXX.cpp:2053
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:81
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:246
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:53
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:66
Expr * getSubExpr()
Definition: Expr.h:2761
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2699
Describes an C or C++ initializer list.
Definition: Expr.h:3872
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:638
Expr * getArraySize()
Definition: ExprCXX.h:1949
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:2123
Base object ctor.
Definition: ABI.h:27
bool isElidable() const
Whether this construction is elidable.
Definition: ExprCXX.h:1308
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:157
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise)
Destroy a __strong variable.
Definition: CGObjC.cpp:2120
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6356
capture_init_iterator capture_init_begin()
Retrieve the first initialization argument for this lambda expression (which initializes the first ca...
Definition: ExprCXX.h:1725
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:119
Expr * getInitializer()
The initializer of this new-expression.
Definition: ExprCXX.h:1987
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:67
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2985
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:5790
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:259
const Type * getClass() const
Definition: Type.h:2538
bool isArrow() const
Definition: Expr.h:2582
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:39
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, QualType AllocType, Address NewPtr)
Definition: CGExprCXX.cpp:925
void initFullExprCleanup()
Set up the last cleaup that was pushed as a conditional full-expression cleanup.
Definition: CGCleanup.cpp:284
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, QualType DeleteTy, llvm::Value *NumElements=nullptr, CharUnits CookieSize=CharUnits())
Definition: CGExprCXX.cpp:1725
field_iterator field_begin() const
Definition: Decl.cpp:3937
param_type_iterator param_type_begin() const
Definition: Type.h:3643
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, Address DestPtr, const CXXRecordDecl *Base)
Definition: CGExprCXX.cpp:468
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1580
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1404
bool isInstance() const
Definition: DeclCXX.h:1992
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:1458
CXXMethodDecl * getCorrespondingMethodInClass(const CXXRecordDecl *RD, bool MayBeBase=false)
Find the method in RD that corresponds to this one.
Definition: DeclCXX.cpp:1657
bool isNegative() const
isNegative - Test whether the quantity is less than zero.
Definition: CharUnits.h:125
This object can be modified without requiring retains or releases.
Definition: Type.h:173
arg_iterator arg_end()
Definition: Expr.h:2309
Checking the &#39;this&#39; pointer for a call to a non-static member function.
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1521
bool isArrayForm() const
Definition: ExprCXX.h:2112
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition: Expr.h:2911
bool isValid() const
Definition: Address.h:36
void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest)
Definition: CGExprCXX.cpp:556
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2197
void addFrom(const CallArgList &other)
Add all the arguments from another CallArgList to this one.
Definition: CGCall.h:214
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1590
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3270
bool isDynamicClass() const
Definition: DeclCXX.h:751
virtual CharUnits GetArrayCookieSize(const CXXNewExpr *expr)
Returns the extra size required in order to store the array cookie for the given new-expression.
Definition: CGCXXABI.cpp:168
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any...
Definition: Decl.cpp:3168
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1302
NestedNameSpecifier * getQualifier() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name...
Definition: Expr.h:2512
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:39
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
Expr - This represents one expression.
Definition: Expr.h:106
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2570
bool isDefaulted() const
Whether this function is defaulted per C++0x.
Definition: Decl.h:2009
static Address invalid()
Definition: Address.h:35
static void EnterNewDeleteCleanup(CodeGenFunction &CGF, const CXXNewExpr *E, Address NewPtr, llvm::Value *AllocSize, CharUnits AllocAlign, const CallArgList &NewArgs)
Enter a cleanup to call &#39;operator delete&#39; if the initializer in a new-expression throws.
Definition: CGExprCXX.cpp:1453
virtual void ReadArrayCookie(CodeGenFunction &CGF, Address Ptr, const CXXDeleteExpr *expr, QualType ElementType, llvm::Value *&NumElements, llvm::Value *&AllocPtr, CharUnits &CookieSize)
Reads the array cookie associated with the given pointer, if it has one.
Definition: CGCXXABI.cpp:208
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
const FunctionProtoType * T
RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E)
Definition: CGExprCXX.cpp:106
void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, llvm::Value *CompletePtr, QualType ElementType)
Definition: CGExprCXX.cpp:1808
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6370
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:125
SourceLocation getExprLoc() const LLVM_READONLY
Definition: ExprCXX.h:189
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2620
unsigned getNumInits() const
Definition: Expr.h:3902
const Expr * getCallee() const
Definition: Expr.h:2249
bool isArrow() const
Determine whether this pseudo-destructor expression was written using an &#39;->&#39; (otherwise, it used a &#39;.
Definition: ExprCXX.h:2260
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:44
virtual bool EmitBadCastCall(CodeGenFunction &CGF)=0
void add(RValue rvalue, QualType type, bool needscopy=false)
Definition: CGCall.h:207
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
A class for recording the number of arguments that a function signature requires. ...
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const
Determine whether the result of this expression is a temporary object of the given class type...
Definition: Expr.cpp:2657
QualType getType() const
Definition: Expr.h:128
void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest)
Definition: CGExprCXX.cpp:2207
RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, const Expr *Base)
Definition: CGExprCXX.cpp:193
CharUnits alignmentOfArrayElement(CharUnits elementSize) const
Given that this is the alignment of the first element of an array, return the minimum alignment of an...
Definition: CharUnits.h:197
bool hasInitializer() const
Whether this new-expression has any initializer at all.
Definition: ExprCXX.h:1977
QualType getRecordType(const RecordDecl *Decl) const
static void EmitObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object.
Definition: CGExprCXX.cpp:1831
llvm::CallInst * CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:281
llvm::Value * EmitCastToVoidPtr(llvm::Value *value)
Emit a cast to void* in the appropriate address space.
Definition: CGExpr.cpp:50
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this typeid() expression after various required adjustments (removing r...
Definition: ExprCXX.cpp:77
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, QualType elementType, CharUnits elementAlign, Destroyer *destroyer, bool checkZeroLength, bool useEHCleanup)
emitArrayDestroy - Destroys all the elements of the given array, beginning from last to first...
Definition: CGDecl.cpp:1576
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2004
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:178
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, IsZeroed_t isZeroed=IsNotZeroed)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:495
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:35
The l-value was considered opaque, so the alignment was determined from a type.
RecordDecl * getDecl() const
Definition: Type.h:3988
Expr * getArgument()
Definition: ExprCXX.h:2125
bool isAlignValT() const
Definition: Type.cpp:2363
There is no lifetime qualification on this type.
Definition: Type.h:169
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:338
void set(SanitizerMask K, bool Value)
Enable or disable a certain (single) sanitizer.
Definition: Sanitizers.h:59
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:180
QualType getCanonicalType() const
Definition: Type.h:5759
llvm::Value * EmitCXXTypeidExpr(const CXXTypeidExpr *E)
Definition: CGExprCXX.cpp:2085
Encodes a location in the source.
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4004
virtual llvm::Value * EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, Address ThisPtr, llvm::Type *StdTypeInfoPtrTy)=0
A saved depth on the scope stack.
Definition: EHScopeStack.h:107
static CXXRecordDecl * getCXXRecord(const Expr *E)
Definition: CGExprCXX.cpp:157
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1842
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:164
An aggregate value slot.
Definition: CGValue.h:434
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:620
static void EmitArrayDelete(CodeGenFunction &CGF, const CXXDeleteExpr *E, Address deletedPtr, QualType elementType)
Emit the code for deleting an array of objects.
Definition: CGExprCXX.cpp:1920
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1964
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2321
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
llvm::Constant * EmitNullConstantForBase(const CXXRecordDecl *Record)
Return a null constant appropriate for zero-initializing a base class with the given type...
QualType getAllocatedType() const
Definition: ExprCXX.h:1916
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1816
bool isArray() const
Definition: ExprCXX.h:1947
arg_range arguments()
Definition: Expr.h:2303
virtual void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType, const CXXDestructorDecl *Dtor)=0
An aligned address.
Definition: Address.h:25
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after...
Definition: Type.h:1098
All available information about a concrete callee.
Definition: CGCall.h:66
const CXXRecordDecl * getBestDynamicClassType() const
For an expression of class type or pointer to class type, return the most derived class decl the expr...
Definition: Expr.cpp:63
Complete object dtor.
Definition: ABI.h:36
EnumDecl * getDecl() const
Definition: Type.h:4011
RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:400
Assigning into this object requires a lifetime extension.
Definition: Type.h:186
static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object with a destroying operator delete.
Definition: CGExprCXX.cpp:1819
RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, const Expr *Arg, bool IsDelete)
Definition: CGExprCXX.cpp:1299
bool passAlignment() const
Indicates whether the required alignment should be implicitly passed to the allocation function...
Definition: ExprCXX.h:2001
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:1944
CXXCtorType
C++ constructor types.
Definition: ABI.h:25
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
Expr * getLHS() const
Definition: Expr.h:3029
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, const CXXNewExpr *E)
Definition: CGExprCXX.cpp:650
CharUnits getNonVirtualAlignment() const
getNonVirtualSize - Get the non-virtual alignment (in chars) of an object, which is the alignment of ...
Definition: RecordLayout.h:201
CGFunctionInfo - Class to encapsulate the information about a function definition.
CharUnits alignmentAtOffset(CharUnits offset) const
Given that this is a non-zero alignment value, what is the alignment at the given offset...
Definition: CharUnits.h:190
bool isTypeOperand() const
Definition: ExprCXX.h:678
Dataflow Directional Tag Classes.
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This)
Definition: CGClass.cpp:2343
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2071
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return 0.
Definition: Expr.cpp:1216
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we&#39;re currently emitting one branch or the other of a conditio...
DeclarationName - The name of a declaration.
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2085
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type *> Tys=None)
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2504
bool isCopyAssignmentOperator() const
Determine whether this is a copy-assignment operator, regardless of whether it was declared implicitl...
Definition: DeclCXX.cpp:1861
bool isDestroyingOperatorDelete() const
Determine whether this is a destroying operator delete.
Definition: Decl.cpp:2765
llvm::Module & getModule() const
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:1596
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type. ...
Definition: CGExprAgg.cpp:1522
bool isStringLiteralInit() const
Definition: Expr.cpp:1917
static llvm::Value * EmitDynamicCastToNull(CodeGenFunction &CGF, QualType DestTy)
Definition: CGExprCXX.cpp:2109
AlignmentSource getAlignmentSource() const
Definition: CGValue.h:156
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:3978
CXXMethodDecl * getDevirtualizedMethod(const Expr *Base, bool IsAppleKext)
If it&#39;s possible to devirtualize a call to this method, return the called function.
Definition: DeclCXX.cpp:1715
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6193
arg_iterator arg_begin()
Definition: Expr.h:2308
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:52
Represents a call to a CUDA kernel function.
Definition: ExprCXX.h:203
SourceLocation getLocStart() const LLVM_READONLY
Definition: Expr.cpp:1326
void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit)
Definition: CGDecl.cpp:713
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition: ExprCXX.h:1365
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2421
void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp)
Definition: CGExprCXX.cpp:628
llvm::Constant * GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty=nullptr, bool ForVTable=false, bool DontDefer=false, ForDefinition_t IsForDefinition=NotForDefinition)
Return the address of the given function.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:436
bool isConstantArrayType() const
Definition: Type.h:5997
char __ovld __cnfn max(char x, char y)
Returns y if x < y, otherwise it returns x.
static bool isGLValueFromPointerDeref(const Expr *E)
Definition: CGExprCXX.cpp:2021
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
Reading or writing from this object requires a barrier call.
Definition: Type.h:183
QualType getParamType(unsigned i) const
Definition: Type.h:3493
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2387
Represents a C++ struct/union/class.
Definition: DeclCXX.h:299
virtual const CXXRecordDecl * getThisArgumentTypeForMethod(const CXXMethodDecl *MD)
Get the type of the implicit "this" parameter used by a method.
Definition: CGCXXABI.h:330
bool isVoidType() const
Definition: Type.h:6171
bool hasStrongOrWeakObjCLifetime() const
Definition: Type.h:1080
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:1251
llvm::Type * ConvertType(QualType T)
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:5747
void EmitCXXDeleteExpr(const CXXDeleteExpr *E)
Definition: CGExprCXX.cpp:1964
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1170
CharUnits getNonVirtualSize() const
getNonVirtualSize - Get the non-virtual size (in chars) of an object, which is the size of the object...
Definition: RecordLayout.h:193
T * pushCleanupWithExtra(CleanupKind Kind, size_t N, As... A)
Push a cleanup with non-constant storage requirements on the stack.
Definition: EHScopeStack.h:305
static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD)
Definition: CGExprCXX.cpp:1325
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2209
QualType getIntegerType() const
getIntegerType - Return the integer type this enum decl corresponds to.
Definition: Decl.h:3358
llvm::Constant * tryEmitAbstract(const Expr *E, QualType T)
Try to emit the result of the given expression as an abstract constant.
CGCXXABI & getCXXABI() const
capture_init_iterator capture_init_end()
Retrieve the iterator pointing one past the last initialization argument for this lambda expression...
Definition: ExprCXX.h:1737
bool isAlwaysNull() const
isAlwaysNull - Return whether the result of the dynamic_cast is proven to always be null...
Definition: ExprCXX.cpp:612
static RValue get(llvm::Value *V)
Definition: CGValue.h:86
bool isUnion() const
Definition: Decl.h:3159
static RequiredArgs forPrototypePlus(const FunctionProtoType *prototype, unsigned additional, const FunctionDecl *FD)
Compute the arguments required by the given formal prototype, given that there may be some additional...
Expr * getRHS() const
Definition: Expr.h:3031
Expr *const * const_capture_init_iterator
Const iterator that walks over the capture initialization arguments.
Definition: ExprCXX.h:1711
bool isPointerType() const
Definition: Type.h:5944
const CGFunctionInfo & arrangeFreeFunctionCall(const CallArgList &Args, const FunctionType *Ty, bool ChainCall)
Figure out the rules for calling a function with the given formal type using the given arguments...
Definition: CGCall.cpp:597
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
virtual std::vector< CharUnits > getVBPtrOffsets(const CXXRecordDecl *RD)
Gets the offsets of all the virtual base pointers in a given class.
Definition: CGCXXABI.cpp:305
QualType getType() const
Definition: Decl.h:639
bool shouldNullCheckAllocation(const ASTContext &Ctx) const
True if the allocation result needs to be null-checked.
Definition: ExprCXX.cpp:171
LValue - This represents an lvalue references.
Definition: CGValue.h:167
An abstract representation of regular/ObjC call/message targets.
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:147
bool isPotentiallyEvaluated() const
Determine whether this typeid has a type operand which is potentially evaluated, per C++11 [expr...
Definition: ExprCXX.cpp:62
RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:453
TranslationUnitDecl * getTranslationUnitDecl()
Definition: DeclBase.cpp:350
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:182
void PopCleanupBlock(bool FallThroughIsBranchThrough=false)
PopCleanupBlock - Will pop the cleanup entry on the stack and process all branch fixups.
Definition: CGCleanup.cpp:640
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2620
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:4580
QualType getPointeeType() const
Definition: Type.h:2524
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::Instruction **callOrInvoke=nullptr)
EmitCall - Generate a call of the given function, expecting the given result type, and using the given argument list which specifies both the LLVM arguments and the types they were derived from.
Definition: CGCall.cpp:3717
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2432
ConstructionKind getConstructionKind() const
Determine whether this constructor is actually constructing a base class (rather than a complete obje...
Definition: ExprCXX.h:1336
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1072
param_type_iterator param_type_end() const
Definition: Type.h:3647