clang  8.0.0svn
CGExprCXX.cpp
Go to the documentation of this file.
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "ConstantEmitter.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Intrinsics.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 
28 namespace {
29 struct MemberCallInfo {
30  RequiredArgs ReqArgs;
31  // Number of prefix arguments for the call. Ignores the `this` pointer.
32  unsigned PrefixSize;
33 };
34 }
35 
36 static MemberCallInfo
38  llvm::Value *This, llvm::Value *ImplicitParam,
39  QualType ImplicitParamTy, const CallExpr *CE,
40  CallArgList &Args, CallArgList *RtlArgs) {
41  assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
42  isa<CXXOperatorCallExpr>(CE));
43  assert(MD->isInstance() &&
44  "Trying to emit a member or operator call expr on a static method!");
45  ASTContext &C = CGF.getContext();
46 
47  // Push the this ptr.
48  const CXXRecordDecl *RD =
50  Args.add(RValue::get(This),
51  RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
52 
53  // If there is an implicit parameter (e.g. VTT), emit it.
54  if (ImplicitParam) {
55  Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
56  }
57 
58  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
59  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
60  unsigned PrefixSize = Args.size() - 1;
61 
62  // And the rest of the call args.
63  if (RtlArgs) {
64  // Special case: if the caller emitted the arguments right-to-left already
65  // (prior to emitting the *this argument), we're done. This happens for
66  // assignment operators.
67  Args.addFrom(*RtlArgs);
68  } else if (CE) {
69  // Special case: skip first argument of CXXOperatorCall (it is "this").
70  unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
71  CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
72  CE->getDirectCallee());
73  } else {
74  assert(
75  FPT->getNumParams() == 0 &&
76  "No CallExpr specified for function with non-zero number of arguments");
77  }
78  return {required, PrefixSize};
79 }
80 
82  const CXXMethodDecl *MD, const CGCallee &Callee,
83  ReturnValueSlot ReturnValue,
84  llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
85  const CallExpr *CE, CallArgList *RtlArgs) {
86  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
87  CallArgList Args;
88  MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
89  *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
90  auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
91  Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
92  return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
93  CE ? CE->getExprLoc() : SourceLocation());
94 }
95 
97  const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
98  llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
100  CallArgList Args;
101  commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
102  ImplicitParamTy, CE, Args, nullptr);
103  return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
104  Callee, ReturnValueSlot(), Args);
105 }
106 
108  const CXXPseudoDestructorExpr *E) {
109  QualType DestroyedType = E->getDestroyedType();
110  if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
111  // Automatic Reference Counting:
112  // If the pseudo-expression names a retainable object with weak or
113  // strong lifetime, the object shall be released.
114  Expr *BaseExpr = E->getBase();
115  Address BaseValue = Address::invalid();
116  Qualifiers BaseQuals;
117 
118  // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
119  if (E->isArrow()) {
120  BaseValue = EmitPointerWithAlignment(BaseExpr);
121  const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
122  BaseQuals = PTy->getPointeeType().getQualifiers();
123  } else {
124  LValue BaseLV = EmitLValue(BaseExpr);
125  BaseValue = BaseLV.getAddress();
126  QualType BaseTy = BaseExpr->getType();
127  BaseQuals = BaseTy.getQualifiers();
128  }
129 
130  switch (DestroyedType.getObjCLifetime()) {
134  break;
135 
137  EmitARCRelease(Builder.CreateLoad(BaseValue,
138  DestroyedType.isVolatileQualified()),
140  break;
141 
143  EmitARCDestroyWeak(BaseValue);
144  break;
145  }
146  } else {
147  // C++ [expr.pseudo]p1:
148  // The result shall only be used as the operand for the function call
149  // operator (), and the result of such a call has type void. The only
150  // effect is the evaluation of the postfix-expression before the dot or
151  // arrow.
152  EmitIgnoredExpr(E->getBase());
153  }
154 
155  return RValue::get(nullptr);
156 }
157 
158 static CXXRecordDecl *getCXXRecord(const Expr *E) {
159  QualType T = E->getType();
160  if (const PointerType *PTy = T->getAs<PointerType>())
161  T = PTy->getPointeeType();
162  const RecordType *Ty = T->castAs<RecordType>();
163  return cast<CXXRecordDecl>(Ty->getDecl());
164 }
165 
166 // Note: This function also emit constructor calls to support a MSVC
167 // extensions allowing explicit constructor function call.
169  ReturnValueSlot ReturnValue) {
170  const Expr *callee = CE->getCallee()->IgnoreParens();
171 
172  if (isa<BinaryOperator>(callee))
173  return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
174 
175  const MemberExpr *ME = cast<MemberExpr>(callee);
176  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
177 
178  if (MD->isStatic()) {
179  // The method is static, emit it as we would a regular call.
180  CGCallee callee =
181  CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
182  return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
183  ReturnValue);
184  }
185 
186  bool HasQualifier = ME->hasQualifier();
187  NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
188  bool IsArrow = ME->isArrow();
189  const Expr *Base = ME->getBase();
190 
191  return EmitCXXMemberOrOperatorMemberCallExpr(
192  CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
193 }
194 
196  const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
197  bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
198  const Expr *Base) {
199  assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
200 
201  // Compute the object pointer.
202  bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
203 
204  const CXXMethodDecl *DevirtualizedMethod = nullptr;
205  if (CanUseVirtualCall &&
206  MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
207  const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
208  DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
209  assert(DevirtualizedMethod);
210  const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
211  const Expr *Inner = Base->ignoreParenBaseCasts();
212  if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
214  // If the return types are not the same, this might be a case where more
215  // code needs to run to compensate for it. For example, the derived
216  // method might return a type that inherits form from the return
217  // type of MD and has a prefix.
218  // For now we just avoid devirtualizing these covariant cases.
219  DevirtualizedMethod = nullptr;
220  else if (getCXXRecord(Inner) == DevirtualizedClass)
221  // If the class of the Inner expression is where the dynamic method
222  // is defined, build the this pointer from it.
223  Base = Inner;
224  else if (getCXXRecord(Base) != DevirtualizedClass) {
225  // If the method is defined in a class that is not the best dynamic
226  // one or the one of the full expression, we would have to build
227  // a derived-to-base cast to compute the correct this pointer, but
228  // we don't have support for that yet, so do a virtual call.
229  DevirtualizedMethod = nullptr;
230  }
231  }
232 
233  // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
234  // operator before the LHS.
235  CallArgList RtlArgStorage;
236  CallArgList *RtlArgs = nullptr;
237  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
238  if (OCE->isAssignmentOp()) {
239  RtlArgs = &RtlArgStorage;
240  EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
241  drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
242  /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
243  }
244  }
245 
246  LValue This;
247  if (IsArrow) {
248  LValueBaseInfo BaseInfo;
249  TBAAAccessInfo TBAAInfo;
250  Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
251  This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
252  } else {
253  This = EmitLValue(Base);
254  }
255 
256 
257  if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
258  if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
259  if (isa<CXXConstructorDecl>(MD) &&
260  cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
261  return RValue::get(nullptr);
262 
263  if (!MD->getParent()->mayInsertExtraPadding()) {
265  // We don't like to generate the trivial copy/move assignment operator
266  // when it isn't necessary; just produce the proper effect here.
267  LValue RHS = isa<CXXOperatorCallExpr>(CE)
268  ? MakeNaturalAlignAddrLValue(
269  (*RtlArgs)[0].getRValue(*this).getScalarVal(),
270  (*(CE->arg_begin() + 1))->getType())
271  : EmitLValue(*CE->arg_begin());
272  EmitAggregateAssign(This, RHS, CE->getType());
273  return RValue::get(This.getPointer());
274  }
275 
276  if (isa<CXXConstructorDecl>(MD) &&
277  cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
278  // Trivial move and copy ctor are the same.
279  assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
280  const Expr *Arg = *CE->arg_begin();
281  LValue RHS = EmitLValue(Arg);
282  LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType());
283  // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
284  // constructing a new complete object of type Ctor.
285  EmitAggregateCopy(Dest, RHS, Arg->getType(),
287  return RValue::get(This.getPointer());
288  }
289  llvm_unreachable("unknown trivial member function");
290  }
291  }
292 
293  // Compute the function type we're calling.
294  const CXXMethodDecl *CalleeDecl =
295  DevirtualizedMethod ? DevirtualizedMethod : MD;
296  const CGFunctionInfo *FInfo = nullptr;
297  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
298  FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
299  Dtor, StructorType::Complete);
300  else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
301  FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
302  Ctor, StructorType::Complete);
303  else
304  FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
305 
306  llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
307 
308  // C++11 [class.mfct.non-static]p2:
309  // If a non-static member function of a class X is called for an object that
310  // is not of type X, or of a type derived from X, the behavior is undefined.
311  SourceLocation CallLoc;
312  ASTContext &C = getContext();
313  if (CE)
314  CallLoc = CE->getExprLoc();
315 
316  SanitizerSet SkippedChecks;
317  if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
318  auto *IOA = CMCE->getImplicitObjectArgument();
319  bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
320  if (IsImplicitObjectCXXThis)
321  SkippedChecks.set(SanitizerKind::Alignment, true);
322  if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
323  SkippedChecks.set(SanitizerKind::Null, true);
324  }
325  EmitTypeCheck(
326  isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall
328  CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()),
329  /*Alignment=*/CharUnits::Zero(), SkippedChecks);
330 
331  // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
332  // 'CalleeDecl' instead.
333 
334  // C++ [class.virtual]p12:
335  // Explicit qualification with the scope operator (5.1) suppresses the
336  // virtual call mechanism.
337  //
338  // We also don't emit a virtual call if the base expression has a record type
339  // because then we know what the type is.
340  bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
341 
342  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
343  assert(CE->arg_begin() == CE->arg_end() &&
344  "Destructor shouldn't have explicit parameters");
345  assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
346  if (UseVirtualCall) {
347  CGM.getCXXABI().EmitVirtualDestructorCall(
348  *this, Dtor, Dtor_Complete, This.getAddress(),
349  cast<CXXMemberCallExpr>(CE));
350  } else {
351  CGCallee Callee;
352  if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
353  Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
354  else if (!DevirtualizedMethod)
355  Callee = CGCallee::forDirect(
356  CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
357  GlobalDecl(Dtor, Dtor_Complete));
358  else {
359  const CXXDestructorDecl *DDtor =
360  cast<CXXDestructorDecl>(DevirtualizedMethod);
361  Callee = CGCallee::forDirect(
362  CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
363  GlobalDecl(DDtor, Dtor_Complete));
364  }
365  EmitCXXMemberOrOperatorCall(
366  CalleeDecl, Callee, ReturnValue, This.getPointer(),
367  /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
368  }
369  return RValue::get(nullptr);
370  }
371 
372  CGCallee Callee;
373  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
374  Callee = CGCallee::forDirect(
375  CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
376  GlobalDecl(Ctor, Ctor_Complete));
377  } else if (UseVirtualCall) {
378  Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
379  } else {
380  if (SanOpts.has(SanitizerKind::CFINVCall) &&
381  MD->getParent()->isDynamicClass()) {
382  llvm::Value *VTable;
383  const CXXRecordDecl *RD;
384  std::tie(VTable, RD) =
385  CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
386  MD->getParent());
387  EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
388  }
389 
390  if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
391  Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
392  else if (!DevirtualizedMethod)
393  Callee =
394  CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
395  else {
396  Callee =
397  CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
398  GlobalDecl(DevirtualizedMethod));
399  }
400  }
401 
402  if (MD->isVirtual()) {
403  Address NewThisAddr =
404  CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
405  *this, CalleeDecl, This.getAddress(), UseVirtualCall);
406  This.setAddress(NewThisAddr);
407  }
408 
409  return EmitCXXMemberOrOperatorCall(
410  CalleeDecl, Callee, ReturnValue, This.getPointer(),
411  /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
412 }
413 
414 RValue
416  ReturnValueSlot ReturnValue) {
417  const BinaryOperator *BO =
418  cast<BinaryOperator>(E->getCallee()->IgnoreParens());
419  const Expr *BaseExpr = BO->getLHS();
420  const Expr *MemFnExpr = BO->getRHS();
421 
422  const MemberPointerType *MPT =
423  MemFnExpr->getType()->castAs<MemberPointerType>();
424 
425  const FunctionProtoType *FPT =
427  const CXXRecordDecl *RD =
428  cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
429 
430  // Emit the 'this' pointer.
431  Address This = Address::invalid();
432  if (BO->getOpcode() == BO_PtrMemI)
433  This = EmitPointerWithAlignment(BaseExpr);
434  else
435  This = EmitLValue(BaseExpr).getAddress();
436 
437  EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
438  QualType(MPT->getClass(), 0));
439 
440  // Get the member function pointer.
441  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
442 
443  // Ask the ABI to load the callee. Note that This is modified.
444  llvm::Value *ThisPtrForCall = nullptr;
445  CGCallee Callee =
446  CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
447  ThisPtrForCall, MemFnPtr, MPT);
448 
449  CallArgList Args;
450 
451  QualType ThisType =
452  getContext().getPointerType(getContext().getTagDeclType(RD));
453 
454  // Push the this ptr.
455  Args.add(RValue::get(ThisPtrForCall), ThisType);
456 
457  RequiredArgs required =
458  RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
459 
460  // And the rest of the call args
461  EmitCallArgs(Args, FPT, E->arguments());
462  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
463  /*PrefixSize=*/0),
464  Callee, ReturnValue, Args, nullptr, E->getExprLoc());
465 }
466 
467 RValue
469  const CXXMethodDecl *MD,
470  ReturnValueSlot ReturnValue) {
471  assert(MD->isInstance() &&
472  "Trying to emit a member call expr on a static method!");
473  return EmitCXXMemberOrOperatorMemberCallExpr(
474  E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
475  /*IsArrow=*/false, E->getArg(0));
476 }
477 
479  ReturnValueSlot ReturnValue) {
480  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
481 }
482 
484  Address DestPtr,
485  const CXXRecordDecl *Base) {
486  if (Base->isEmpty())
487  return;
488 
489  DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
490 
491  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
492  CharUnits NVSize = Layout.getNonVirtualSize();
493 
494  // We cannot simply zero-initialize the entire base sub-object if vbptrs are
495  // present, they are initialized by the most derived class before calling the
496  // constructor.
498  Stores.emplace_back(CharUnits::Zero(), NVSize);
499 
500  // Each store is split by the existence of a vbptr.
501  CharUnits VBPtrWidth = CGF.getPointerSize();
502  std::vector<CharUnits> VBPtrOffsets =
503  CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
504  for (CharUnits VBPtrOffset : VBPtrOffsets) {
505  // Stop before we hit any virtual base pointers located in virtual bases.
506  if (VBPtrOffset >= NVSize)
507  break;
508  std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
509  CharUnits LastStoreOffset = LastStore.first;
510  CharUnits LastStoreSize = LastStore.second;
511 
512  CharUnits SplitBeforeOffset = LastStoreOffset;
513  CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
514  assert(!SplitBeforeSize.isNegative() && "negative store size!");
515  if (!SplitBeforeSize.isZero())
516  Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
517 
518  CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
519  CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
520  assert(!SplitAfterSize.isNegative() && "negative store size!");
521  if (!SplitAfterSize.isZero())
522  Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
523  }
524 
525  // If the type contains a pointer to data member we can't memset it to zero.
526  // Instead, create a null constant and copy it to the destination.
527  // TODO: there are other patterns besides zero that we can usefully memset,
528  // like -1, which happens to be the pattern used by member-pointers.
529  // TODO: isZeroInitializable can be over-conservative in the case where a
530  // virtual base contains a member pointer.
531  llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
532  if (!NullConstantForBase->isNullValue()) {
533  llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
534  CGF.CGM.getModule(), NullConstantForBase->getType(),
535  /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
536  NullConstantForBase, Twine());
537 
538  CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
539  DestPtr.getAlignment());
540  NullVariable->setAlignment(Align.getQuantity());
541 
542  Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
543 
544  // Get and call the appropriate llvm.memcpy overload.
545  for (std::pair<CharUnits, CharUnits> Store : Stores) {
546  CharUnits StoreOffset = Store.first;
547  CharUnits StoreSize = Store.second;
548  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
549  CGF.Builder.CreateMemCpy(
550  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
551  CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
552  StoreSizeVal);
553  }
554 
555  // Otherwise, just memset the whole thing to zero. This is legal
556  // because in LLVM, all default initializers (other than the ones we just
557  // handled above) are guaranteed to have a bit pattern of all zeros.
558  } else {
559  for (std::pair<CharUnits, CharUnits> Store : Stores) {
560  CharUnits StoreOffset = Store.first;
561  CharUnits StoreSize = Store.second;
562  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
563  CGF.Builder.CreateMemSet(
564  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
565  CGF.Builder.getInt8(0), StoreSizeVal);
566  }
567  }
568 }
569 
570 void
572  AggValueSlot Dest) {
573  assert(!Dest.isIgnored() && "Must have a destination!");
574  const CXXConstructorDecl *CD = E->getConstructor();
575 
576  // If we require zero initialization before (or instead of) calling the
577  // constructor, as can be the case with a non-user-provided default
578  // constructor, emit the zero initialization now, unless destination is
579  // already zeroed.
580  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
581  switch (E->getConstructionKind()) {
584  EmitNullInitialization(Dest.getAddress(), E->getType());
585  break;
589  CD->getParent());
590  break;
591  }
592  }
593 
594  // If this is a call to a trivial default constructor, do nothing.
595  if (CD->isTrivial() && CD->isDefaultConstructor())
596  return;
597 
598  // Elide the constructor if we're constructing from a temporary.
599  // The temporary check is required because Sema sets this on NRVO
600  // returns.
601  if (getLangOpts().ElideConstructors && E->isElidable()) {
602  assert(getContext().hasSameUnqualifiedType(E->getType(),
603  E->getArg(0)->getType()));
604  if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
605  EmitAggExpr(E->getArg(0), Dest);
606  return;
607  }
608  }
609 
610  if (const ArrayType *arrayType
611  = getContext().getAsArrayType(E->getType())) {
612  EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
613  Dest.isSanitizerChecked());
614  } else {
616  bool ForVirtualBase = false;
617  bool Delegating = false;
618 
619  switch (E->getConstructionKind()) {
621  // We should be emitting a constructor; GlobalDecl will assert this
622  Type = CurGD.getCtorType();
623  Delegating = true;
624  break;
625 
627  Type = Ctor_Complete;
628  break;
629 
631  ForVirtualBase = true;
632  LLVM_FALLTHROUGH;
633 
635  Type = Ctor_Base;
636  }
637 
638  // Call the constructor.
639  EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
640  Dest.getAddress(), E, Dest.mayOverlap(),
641  Dest.isSanitizerChecked());
642  }
643 }
644 
646  const Expr *Exp) {
647  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
648  Exp = E->getSubExpr();
649  assert(isa<CXXConstructExpr>(Exp) &&
650  "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
651  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
652  const CXXConstructorDecl *CD = E->getConstructor();
653  RunCleanupsScope Scope(*this);
654 
655  // If we require zero initialization before (or instead of) calling the
656  // constructor, as can be the case with a non-user-provided default
657  // constructor, emit the zero initialization now.
658  // FIXME. Do I still need this for a copy ctor synthesis?
660  EmitNullInitialization(Dest, E->getType());
661 
662  assert(!getContext().getAsConstantArrayType(E->getType())
663  && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
664  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
665 }
666 
668  const CXXNewExpr *E) {
669  if (!E->isArray())
670  return CharUnits::Zero();
671 
672  // No cookie is required if the operator new[] being used is the
673  // reserved placement operator new[].
675  return CharUnits::Zero();
676 
677  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
678 }
679 
681  const CXXNewExpr *e,
682  unsigned minElements,
683  llvm::Value *&numElements,
684  llvm::Value *&sizeWithoutCookie) {
686 
687  if (!e->isArray()) {
688  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
689  sizeWithoutCookie
690  = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
691  return sizeWithoutCookie;
692  }
693 
694  // The width of size_t.
695  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
696 
697  // Figure out the cookie size.
698  llvm::APInt cookieSize(sizeWidth,
699  CalculateCookiePadding(CGF, e).getQuantity());
700 
701  // Emit the array size expression.
702  // We multiply the size of all dimensions for NumElements.
703  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
704  numElements =
706  if (!numElements)
707  numElements = CGF.EmitScalarExpr(e->getArraySize());
708  assert(isa<llvm::IntegerType>(numElements->getType()));
709 
710  // The number of elements can be have an arbitrary integer type;
711  // essentially, we need to multiply it by a constant factor, add a
712  // cookie size, and verify that the result is representable as a
713  // size_t. That's just a gloss, though, and it's wrong in one
714  // important way: if the count is negative, it's an error even if
715  // the cookie size would bring the total size >= 0.
716  bool isSigned
718  llvm::IntegerType *numElementsType
719  = cast<llvm::IntegerType>(numElements->getType());
720  unsigned numElementsWidth = numElementsType->getBitWidth();
721 
722  // Compute the constant factor.
723  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
724  while (const ConstantArrayType *CAT
725  = CGF.getContext().getAsConstantArrayType(type)) {
726  type = CAT->getElementType();
727  arraySizeMultiplier *= CAT->getSize();
728  }
729 
730  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
731  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
732  typeSizeMultiplier *= arraySizeMultiplier;
733 
734  // This will be a size_t.
735  llvm::Value *size;
736 
737  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
738  // Don't bloat the -O0 code.
739  if (llvm::ConstantInt *numElementsC =
740  dyn_cast<llvm::ConstantInt>(numElements)) {
741  const llvm::APInt &count = numElementsC->getValue();
742 
743  bool hasAnyOverflow = false;
744 
745  // If 'count' was a negative number, it's an overflow.
746  if (isSigned && count.isNegative())
747  hasAnyOverflow = true;
748 
749  // We want to do all this arithmetic in size_t. If numElements is
750  // wider than that, check whether it's already too big, and if so,
751  // overflow.
752  else if (numElementsWidth > sizeWidth &&
753  numElementsWidth - sizeWidth > count.countLeadingZeros())
754  hasAnyOverflow = true;
755 
756  // Okay, compute a count at the right width.
757  llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
758 
759  // If there is a brace-initializer, we cannot allocate fewer elements than
760  // there are initializers. If we do, that's treated like an overflow.
761  if (adjustedCount.ult(minElements))
762  hasAnyOverflow = true;
763 
764  // Scale numElements by that. This might overflow, but we don't
765  // care because it only overflows if allocationSize does, too, and
766  // if that overflows then we shouldn't use this.
767  numElements = llvm::ConstantInt::get(CGF.SizeTy,
768  adjustedCount * arraySizeMultiplier);
769 
770  // Compute the size before cookie, and track whether it overflowed.
771  bool overflow;
772  llvm::APInt allocationSize
773  = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
774  hasAnyOverflow |= overflow;
775 
776  // Add in the cookie, and check whether it's overflowed.
777  if (cookieSize != 0) {
778  // Save the current size without a cookie. This shouldn't be
779  // used if there was overflow.
780  sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
781 
782  allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
783  hasAnyOverflow |= overflow;
784  }
785 
786  // On overflow, produce a -1 so operator new will fail.
787  if (hasAnyOverflow) {
788  size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
789  } else {
790  size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
791  }
792 
793  // Otherwise, we might need to use the overflow intrinsics.
794  } else {
795  // There are up to five conditions we need to test for:
796  // 1) if isSigned, we need to check whether numElements is negative;
797  // 2) if numElementsWidth > sizeWidth, we need to check whether
798  // numElements is larger than something representable in size_t;
799  // 3) if minElements > 0, we need to check whether numElements is smaller
800  // than that.
801  // 4) we need to compute
802  // sizeWithoutCookie := numElements * typeSizeMultiplier
803  // and check whether it overflows; and
804  // 5) if we need a cookie, we need to compute
805  // size := sizeWithoutCookie + cookieSize
806  // and check whether it overflows.
807 
808  llvm::Value *hasOverflow = nullptr;
809 
810  // If numElementsWidth > sizeWidth, then one way or another, we're
811  // going to have to do a comparison for (2), and this happens to
812  // take care of (1), too.
813  if (numElementsWidth > sizeWidth) {
814  llvm::APInt threshold(numElementsWidth, 1);
815  threshold <<= sizeWidth;
816 
817  llvm::Value *thresholdV
818  = llvm::ConstantInt::get(numElementsType, threshold);
819 
820  hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
821  numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
822 
823  // Otherwise, if we're signed, we want to sext up to size_t.
824  } else if (isSigned) {
825  if (numElementsWidth < sizeWidth)
826  numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
827 
828  // If there's a non-1 type size multiplier, then we can do the
829  // signedness check at the same time as we do the multiply
830  // because a negative number times anything will cause an
831  // unsigned overflow. Otherwise, we have to do it here. But at least
832  // in this case, we can subsume the >= minElements check.
833  if (typeSizeMultiplier == 1)
834  hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
835  llvm::ConstantInt::get(CGF.SizeTy, minElements));
836 
837  // Otherwise, zext up to size_t if necessary.
838  } else if (numElementsWidth < sizeWidth) {
839  numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
840  }
841 
842  assert(numElements->getType() == CGF.SizeTy);
843 
844  if (minElements) {
845  // Don't allow allocation of fewer elements than we have initializers.
846  if (!hasOverflow) {
847  hasOverflow = CGF.Builder.CreateICmpULT(numElements,
848  llvm::ConstantInt::get(CGF.SizeTy, minElements));
849  } else if (numElementsWidth > sizeWidth) {
850  // The other existing overflow subsumes this check.
851  // We do an unsigned comparison, since any signed value < -1 is
852  // taken care of either above or below.
853  hasOverflow = CGF.Builder.CreateOr(hasOverflow,
854  CGF.Builder.CreateICmpULT(numElements,
855  llvm::ConstantInt::get(CGF.SizeTy, minElements)));
856  }
857  }
858 
859  size = numElements;
860 
861  // Multiply by the type size if necessary. This multiplier
862  // includes all the factors for nested arrays.
863  //
864  // This step also causes numElements to be scaled up by the
865  // nested-array factor if necessary. Overflow on this computation
866  // can be ignored because the result shouldn't be used if
867  // allocation fails.
868  if (typeSizeMultiplier != 1) {
869  llvm::Value *umul_with_overflow
870  = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
871 
872  llvm::Value *tsmV =
873  llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
874  llvm::Value *result =
875  CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
876 
877  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
878  if (hasOverflow)
879  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
880  else
881  hasOverflow = overflowed;
882 
883  size = CGF.Builder.CreateExtractValue(result, 0);
884 
885  // Also scale up numElements by the array size multiplier.
886  if (arraySizeMultiplier != 1) {
887  // If the base element type size is 1, then we can re-use the
888  // multiply we just did.
889  if (typeSize.isOne()) {
890  assert(arraySizeMultiplier == typeSizeMultiplier);
891  numElements = size;
892 
893  // Otherwise we need a separate multiply.
894  } else {
895  llvm::Value *asmV =
896  llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
897  numElements = CGF.Builder.CreateMul(numElements, asmV);
898  }
899  }
900  } else {
901  // numElements doesn't need to be scaled.
902  assert(arraySizeMultiplier == 1);
903  }
904 
905  // Add in the cookie size if necessary.
906  if (cookieSize != 0) {
907  sizeWithoutCookie = size;
908 
909  llvm::Value *uadd_with_overflow
910  = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
911 
912  llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
913  llvm::Value *result =
914  CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
915 
916  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
917  if (hasOverflow)
918  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
919  else
920  hasOverflow = overflowed;
921 
922  size = CGF.Builder.CreateExtractValue(result, 0);
923  }
924 
925  // If we had any possibility of dynamic overflow, make a select to
926  // overwrite 'size' with an all-ones value, which should cause
927  // operator new to throw.
928  if (hasOverflow)
929  size = CGF.Builder.CreateSelect(hasOverflow,
930  llvm::Constant::getAllOnesValue(CGF.SizeTy),
931  size);
932  }
933 
934  if (cookieSize == 0)
935  sizeWithoutCookie = size;
936  else
937  assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
938 
939  return size;
940 }
941 
942 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
943  QualType AllocType, Address NewPtr,
944  AggValueSlot::Overlap_t MayOverlap) {
945  // FIXME: Refactor with EmitExprAsInit.
946  switch (CGF.getEvaluationKind(AllocType)) {
947  case TEK_Scalar:
948  CGF.EmitScalarInit(Init, nullptr,
949  CGF.MakeAddrLValue(NewPtr, AllocType), false);
950  return;
951  case TEK_Complex:
952  CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
953  /*isInit*/ true);
954  return;
955  case TEK_Aggregate: {
956  AggValueSlot Slot
957  = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
961  MayOverlap, AggValueSlot::IsNotZeroed,
963  CGF.EmitAggExpr(Init, Slot);
964  return;
965  }
966  }
967  llvm_unreachable("bad evaluation kind");
968 }
969 
971  const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
972  Address BeginPtr, llvm::Value *NumElements,
973  llvm::Value *AllocSizeWithoutCookie) {
974  // If we have a type with trivial initialization and no initializer,
975  // there's nothing to do.
976  if (!E->hasInitializer())
977  return;
978 
979  Address CurPtr = BeginPtr;
980 
981  unsigned InitListElements = 0;
982 
983  const Expr *Init = E->getInitializer();
984  Address EndOfInit = Address::invalid();
985  QualType::DestructionKind DtorKind = ElementType.isDestructedType();
987  llvm::Instruction *CleanupDominator = nullptr;
988 
989  CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
990  CharUnits ElementAlign =
991  BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
992 
993  // Attempt to perform zero-initialization using memset.
994  auto TryMemsetInitialization = [&]() -> bool {
995  // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
996  // we can initialize with a memset to -1.
997  if (!CGM.getTypes().isZeroInitializable(ElementType))
998  return false;
999 
1000  // Optimization: since zero initialization will just set the memory
1001  // to all zeroes, generate a single memset to do it in one shot.
1002 
1003  // Subtract out the size of any elements we've already initialized.
1004  auto *RemainingSize = AllocSizeWithoutCookie;
1005  if (InitListElements) {
1006  // We know this can't overflow; we check this when doing the allocation.
1007  auto *InitializedSize = llvm::ConstantInt::get(
1008  RemainingSize->getType(),
1009  getContext().getTypeSizeInChars(ElementType).getQuantity() *
1010  InitListElements);
1011  RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1012  }
1013 
1014  // Create the memset.
1015  Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1016  return true;
1017  };
1018 
1019  // If the initializer is an initializer list, first do the explicit elements.
1020  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1021  // Initializing from a (braced) string literal is a special case; the init
1022  // list element does not initialize a (single) array element.
1023  if (ILE->isStringLiteralInit()) {
1024  // Initialize the initial portion of length equal to that of the string
1025  // literal. The allocation must be for at least this much; we emitted a
1026  // check for that earlier.
1027  AggValueSlot Slot =
1028  AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1035  EmitAggExpr(ILE->getInit(0), Slot);
1036 
1037  // Move past these elements.
1038  InitListElements =
1039  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1040  ->getSize().getZExtValue();
1041  CurPtr =
1042  Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1043  Builder.getSize(InitListElements),
1044  "string.init.end"),
1045  CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1046  ElementSize));
1047 
1048  // Zero out the rest, if any remain.
1049  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1050  if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1051  bool OK = TryMemsetInitialization();
1052  (void)OK;
1053  assert(OK && "couldn't memset character type?");
1054  }
1055  return;
1056  }
1057 
1058  InitListElements = ILE->getNumInits();
1059 
1060  // If this is a multi-dimensional array new, we will initialize multiple
1061  // elements with each init list element.
1062  QualType AllocType = E->getAllocatedType();
1063  if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1064  AllocType->getAsArrayTypeUnsafe())) {
1065  ElementTy = ConvertTypeForMem(AllocType);
1066  CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1067  InitListElements *= getContext().getConstantArrayElementCount(CAT);
1068  }
1069 
1070  // Enter a partial-destruction Cleanup if necessary.
1071  if (needsEHCleanup(DtorKind)) {
1072  // In principle we could tell the Cleanup where we are more
1073  // directly, but the control flow can get so varied here that it
1074  // would actually be quite complex. Therefore we go through an
1075  // alloca.
1076  EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1077  "array.init.end");
1078  CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1079  pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1080  ElementType, ElementAlign,
1081  getDestroyer(DtorKind));
1082  Cleanup = EHStack.stable_begin();
1083  }
1084 
1085  CharUnits StartAlign = CurPtr.getAlignment();
1086  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1087  // Tell the cleanup that it needs to destroy up to this
1088  // element. TODO: some of these stores can be trivially
1089  // observed to be unnecessary.
1090  if (EndOfInit.isValid()) {
1091  auto FinishedPtr =
1092  Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1093  Builder.CreateStore(FinishedPtr, EndOfInit);
1094  }
1095  // FIXME: If the last initializer is an incomplete initializer list for
1096  // an array, and we have an array filler, we can fold together the two
1097  // initialization loops.
1098  StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1099  ILE->getInit(i)->getType(), CurPtr,
1101  CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1102  Builder.getSize(1),
1103  "array.exp.next"),
1104  StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1105  }
1106 
1107  // The remaining elements are filled with the array filler expression.
1108  Init = ILE->getArrayFiller();
1109 
1110  // Extract the initializer for the individual array elements by pulling
1111  // out the array filler from all the nested initializer lists. This avoids
1112  // generating a nested loop for the initialization.
1113  while (Init && Init->getType()->isConstantArrayType()) {
1114  auto *SubILE = dyn_cast<InitListExpr>(Init);
1115  if (!SubILE)
1116  break;
1117  assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1118  Init = SubILE->getArrayFiller();
1119  }
1120 
1121  // Switch back to initializing one base element at a time.
1122  CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1123  }
1124 
1125  // If all elements have already been initialized, skip any further
1126  // initialization.
1127  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1128  if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1129  // If there was a Cleanup, deactivate it.
1130  if (CleanupDominator)
1131  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1132  return;
1133  }
1134 
1135  assert(Init && "have trailing elements to initialize but no initializer");
1136 
1137  // If this is a constructor call, try to optimize it out, and failing that
1138  // emit a single loop to initialize all remaining elements.
1139  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1140  CXXConstructorDecl *Ctor = CCE->getConstructor();
1141  if (Ctor->isTrivial()) {
1142  // If new expression did not specify value-initialization, then there
1143  // is no initialization.
1144  if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1145  return;
1146 
1147  if (TryMemsetInitialization())
1148  return;
1149  }
1150 
1151  // Store the new Cleanup position for irregular Cleanups.
1152  //
1153  // FIXME: Share this cleanup with the constructor call emission rather than
1154  // having it create a cleanup of its own.
1155  if (EndOfInit.isValid())
1156  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1157 
1158  // Emit a constructor call loop to initialize the remaining elements.
1159  if (InitListElements)
1160  NumElements = Builder.CreateSub(
1161  NumElements,
1162  llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1163  EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1164  /*NewPointerIsChecked*/true,
1165  CCE->requiresZeroInitialization());
1166  return;
1167  }
1168 
1169  // If this is value-initialization, we can usually use memset.
1170  ImplicitValueInitExpr IVIE(ElementType);
1171  if (isa<ImplicitValueInitExpr>(Init)) {
1172  if (TryMemsetInitialization())
1173  return;
1174 
1175  // Switch to an ImplicitValueInitExpr for the element type. This handles
1176  // only one case: multidimensional array new of pointers to members. In
1177  // all other cases, we already have an initializer for the array element.
1178  Init = &IVIE;
1179  }
1180 
1181  // At this point we should have found an initializer for the individual
1182  // elements of the array.
1183  assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1184  "got wrong type of element to initialize");
1185 
1186  // If we have an empty initializer list, we can usually use memset.
1187  if (auto *ILE = dyn_cast<InitListExpr>(Init))
1188  if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1189  return;
1190 
1191  // If we have a struct whose every field is value-initialized, we can
1192  // usually use memset.
1193  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1194  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1195  if (RType->getDecl()->isStruct()) {
1196  unsigned NumElements = 0;
1197  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1198  NumElements = CXXRD->getNumBases();
1199  for (auto *Field : RType->getDecl()->fields())
1200  if (!Field->isUnnamedBitfield())
1201  ++NumElements;
1202  // FIXME: Recurse into nested InitListExprs.
1203  if (ILE->getNumInits() == NumElements)
1204  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1205  if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1206  --NumElements;
1207  if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1208  return;
1209  }
1210  }
1211  }
1212 
1213  // Create the loop blocks.
1214  llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1215  llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1216  llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1217 
1218  // Find the end of the array, hoisted out of the loop.
1219  llvm::Value *EndPtr =
1220  Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1221 
1222  // If the number of elements isn't constant, we have to now check if there is
1223  // anything left to initialize.
1224  if (!ConstNum) {
1225  llvm::Value *IsEmpty =
1226  Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1227  Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1228  }
1229 
1230  // Enter the loop.
1231  EmitBlock(LoopBB);
1232 
1233  // Set up the current-element phi.
1234  llvm::PHINode *CurPtrPhi =
1235  Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1236  CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1237 
1238  CurPtr = Address(CurPtrPhi, ElementAlign);
1239 
1240  // Store the new Cleanup position for irregular Cleanups.
1241  if (EndOfInit.isValid())
1242  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1243 
1244  // Enter a partial-destruction Cleanup if necessary.
1245  if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1246  pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1247  ElementType, ElementAlign,
1248  getDestroyer(DtorKind));
1249  Cleanup = EHStack.stable_begin();
1250  CleanupDominator = Builder.CreateUnreachable();
1251  }
1252 
1253  // Emit the initializer into this element.
1254  StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1256 
1257  // Leave the Cleanup if we entered one.
1258  if (CleanupDominator) {
1259  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1260  CleanupDominator->eraseFromParent();
1261  }
1262 
1263  // Advance to the next element by adjusting the pointer type as necessary.
1264  llvm::Value *NextPtr =
1265  Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1266  "array.next");
1267 
1268  // Check whether we've gotten to the end of the array and, if so,
1269  // exit the loop.
1270  llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1271  Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1272  CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1273 
1274  EmitBlock(ContBB);
1275 }
1276 
1277 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1278  QualType ElementType, llvm::Type *ElementTy,
1279  Address NewPtr, llvm::Value *NumElements,
1280  llvm::Value *AllocSizeWithoutCookie) {
1281  ApplyDebugLocation DL(CGF, E);
1282  if (E->isArray())
1283  CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1284  AllocSizeWithoutCookie);
1285  else if (const Expr *Init = E->getInitializer())
1286  StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1288 }
1289 
1290 /// Emit a call to an operator new or operator delete function, as implicitly
1291 /// created by new-expressions and delete-expressions.
1293  const FunctionDecl *CalleeDecl,
1294  const FunctionProtoType *CalleeType,
1295  const CallArgList &Args) {
1296  llvm::Instruction *CallOrInvoke;
1297  llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1298  CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1299  RValue RV =
1301  Args, CalleeType, /*chainCall=*/false),
1302  Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1303 
1304  /// C++1y [expr.new]p10:
1305  /// [In a new-expression,] an implementation is allowed to omit a call
1306  /// to a replaceable global allocation function.
1307  ///
1308  /// We model such elidable calls with the 'builtin' attribute.
1309  llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1310  if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1311  Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1312  // FIXME: Add addAttribute to CallSite.
1313  if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1314  CI->addAttribute(llvm::AttributeList::FunctionIndex,
1315  llvm::Attribute::Builtin);
1316  else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1317  II->addAttribute(llvm::AttributeList::FunctionIndex,
1318  llvm::Attribute::Builtin);
1319  else
1320  llvm_unreachable("unexpected kind of call instruction");
1321  }
1322 
1323  return RV;
1324 }
1325 
1327  const CallExpr *TheCall,
1328  bool IsDelete) {
1329  CallArgList Args;
1330  EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1331  // Find the allocation or deallocation function that we're calling.
1332  ASTContext &Ctx = getContext();
1333  DeclarationName Name = Ctx.DeclarationNames
1334  .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1335 
1336  for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1337  if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1338  if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1339  return EmitNewDeleteCall(*this, FD, Type, Args);
1340  llvm_unreachable("predeclared global operator new/delete is missing");
1341 }
1342 
1343 namespace {
1344 /// The parameters to pass to a usual operator delete.
1345 struct UsualDeleteParams {
1346  bool DestroyingDelete = false;
1347  bool Size = false;
1348  bool Alignment = false;
1349 };
1350 }
1351 
1352 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1353  UsualDeleteParams Params;
1354 
1355  const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1356  auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1357 
1358  // The first argument is always a void*.
1359  ++AI;
1360 
1361  // The next parameter may be a std::destroying_delete_t.
1362  if (FD->isDestroyingOperatorDelete()) {
1363  Params.DestroyingDelete = true;
1364  assert(AI != AE);
1365  ++AI;
1366  }
1367 
1368  // Figure out what other parameters we should be implicitly passing.
1369  if (AI != AE && (*AI)->isIntegerType()) {
1370  Params.Size = true;
1371  ++AI;
1372  }
1373 
1374  if (AI != AE && (*AI)->isAlignValT()) {
1375  Params.Alignment = true;
1376  ++AI;
1377  }
1378 
1379  assert(AI == AE && "unexpected usual deallocation function parameter");
1380  return Params;
1381 }
1382 
1383 namespace {
1384  /// A cleanup to call the given 'operator delete' function upon abnormal
1385  /// exit from a new expression. Templated on a traits type that deals with
1386  /// ensuring that the arguments dominate the cleanup if necessary.
1387  template<typename Traits>
1388  class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1389  /// Type used to hold llvm::Value*s.
1390  typedef typename Traits::ValueTy ValueTy;
1391  /// Type used to hold RValues.
1392  typedef typename Traits::RValueTy RValueTy;
1393  struct PlacementArg {
1394  RValueTy ArgValue;
1395  QualType ArgType;
1396  };
1397 
1398  unsigned NumPlacementArgs : 31;
1399  unsigned PassAlignmentToPlacementDelete : 1;
1400  const FunctionDecl *OperatorDelete;
1401  ValueTy Ptr;
1402  ValueTy AllocSize;
1403  CharUnits AllocAlign;
1404 
1405  PlacementArg *getPlacementArgs() {
1406  return reinterpret_cast<PlacementArg *>(this + 1);
1407  }
1408 
1409  public:
1410  static size_t getExtraSize(size_t NumPlacementArgs) {
1411  return NumPlacementArgs * sizeof(PlacementArg);
1412  }
1413 
1414  CallDeleteDuringNew(size_t NumPlacementArgs,
1415  const FunctionDecl *OperatorDelete, ValueTy Ptr,
1416  ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1417  CharUnits AllocAlign)
1418  : NumPlacementArgs(NumPlacementArgs),
1419  PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1420  OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1421  AllocAlign(AllocAlign) {}
1422 
1423  void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1424  assert(I < NumPlacementArgs && "index out of range");
1425  getPlacementArgs()[I] = {Arg, Type};
1426  }
1427 
1428  void Emit(CodeGenFunction &CGF, Flags flags) override {
1429  const FunctionProtoType *FPT =
1430  OperatorDelete->getType()->getAs<FunctionProtoType>();
1431  CallArgList DeleteArgs;
1432 
1433  // The first argument is always a void* (or C* for a destroying operator
1434  // delete for class type C).
1435  DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1436 
1437  // Figure out what other parameters we should be implicitly passing.
1438  UsualDeleteParams Params;
1439  if (NumPlacementArgs) {
1440  // A placement deallocation function is implicitly passed an alignment
1441  // if the placement allocation function was, but is never passed a size.
1442  Params.Alignment = PassAlignmentToPlacementDelete;
1443  } else {
1444  // For a non-placement new-expression, 'operator delete' can take a
1445  // size and/or an alignment if it has the right parameters.
1446  Params = getUsualDeleteParams(OperatorDelete);
1447  }
1448 
1449  assert(!Params.DestroyingDelete &&
1450  "should not call destroying delete in a new-expression");
1451 
1452  // The second argument can be a std::size_t (for non-placement delete).
1453  if (Params.Size)
1454  DeleteArgs.add(Traits::get(CGF, AllocSize),
1455  CGF.getContext().getSizeType());
1456 
1457  // The next (second or third) argument can be a std::align_val_t, which
1458  // is an enum whose underlying type is std::size_t.
1459  // FIXME: Use the right type as the parameter type. Note that in a call
1460  // to operator delete(size_t, ...), we may not have it available.
1461  if (Params.Alignment)
1462  DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1463  CGF.SizeTy, AllocAlign.getQuantity())),
1464  CGF.getContext().getSizeType());
1465 
1466  // Pass the rest of the arguments, which must match exactly.
1467  for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1468  auto Arg = getPlacementArgs()[I];
1469  DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1470  }
1471 
1472  // Call 'operator delete'.
1473  EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1474  }
1475  };
1476 }
1477 
1478 /// Enter a cleanup to call 'operator delete' if the initializer in a
1479 /// new-expression throws.
1481  const CXXNewExpr *E,
1482  Address NewPtr,
1483  llvm::Value *AllocSize,
1484  CharUnits AllocAlign,
1485  const CallArgList &NewArgs) {
1486  unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1487 
1488  // If we're not inside a conditional branch, then the cleanup will
1489  // dominate and we can do the easier (and more efficient) thing.
1490  if (!CGF.isInConditionalBranch()) {
1491  struct DirectCleanupTraits {
1492  typedef llvm::Value *ValueTy;
1493  typedef RValue RValueTy;
1494  static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1495  static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1496  };
1497 
1498  typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1499 
1500  DirectCleanup *Cleanup = CGF.EHStack
1501  .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1502  E->getNumPlacementArgs(),
1503  E->getOperatorDelete(),
1504  NewPtr.getPointer(),
1505  AllocSize,
1506  E->passAlignment(),
1507  AllocAlign);
1508  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1509  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1510  Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1511  }
1512 
1513  return;
1514  }
1515 
1516  // Otherwise, we need to save all this stuff.
1519  DominatingValue<RValue>::saved_type SavedAllocSize =
1520  DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1521 
1522  struct ConditionalCleanupTraits {
1523  typedef DominatingValue<RValue>::saved_type ValueTy;
1524  typedef DominatingValue<RValue>::saved_type RValueTy;
1525  static RValue get(CodeGenFunction &CGF, ValueTy V) {
1526  return V.restore(CGF);
1527  }
1528  };
1529  typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1530 
1531  ConditionalCleanup *Cleanup = CGF.EHStack
1532  .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1533  E->getNumPlacementArgs(),
1534  E->getOperatorDelete(),
1535  SavedNewPtr,
1536  SavedAllocSize,
1537  E->passAlignment(),
1538  AllocAlign);
1539  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1540  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1541  Cleanup->setPlacementArg(
1542  I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1543  }
1544 
1545  CGF.initFullExprCleanup();
1546 }
1547 
1549  // The element type being allocated.
1550  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1551 
1552  // 1. Build a call to the allocation function.
1553  FunctionDecl *allocator = E->getOperatorNew();
1554 
1555  // If there is a brace-initializer, cannot allocate fewer elements than inits.
1556  unsigned minElements = 0;
1557  if (E->isArray() && E->hasInitializer()) {
1558  const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1559  if (ILE && ILE->isStringLiteralInit())
1560  minElements =
1561  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1562  ->getSize().getZExtValue();
1563  else if (ILE)
1564  minElements = ILE->getNumInits();
1565  }
1566 
1567  llvm::Value *numElements = nullptr;
1568  llvm::Value *allocSizeWithoutCookie = nullptr;
1569  llvm::Value *allocSize =
1570  EmitCXXNewAllocSize(*this, E, minElements, numElements,
1571  allocSizeWithoutCookie);
1572  CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1573 
1574  // Emit the allocation call. If the allocator is a global placement
1575  // operator, just "inline" it directly.
1576  Address allocation = Address::invalid();
1577  CallArgList allocatorArgs;
1578  if (allocator->isReservedGlobalPlacementOperator()) {
1579  assert(E->getNumPlacementArgs() == 1);
1580  const Expr *arg = *E->placement_arguments().begin();
1581 
1582  LValueBaseInfo BaseInfo;
1583  allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1584 
1585  // The pointer expression will, in many cases, be an opaque void*.
1586  // In these cases, discard the computed alignment and use the
1587  // formal alignment of the allocated type.
1588  if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1589  allocation = Address(allocation.getPointer(), allocAlign);
1590 
1591  // Set up allocatorArgs for the call to operator delete if it's not
1592  // the reserved global operator.
1593  if (E->getOperatorDelete() &&
1595  allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1596  allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1597  }
1598 
1599  } else {
1600  const FunctionProtoType *allocatorType =
1601  allocator->getType()->castAs<FunctionProtoType>();
1602  unsigned ParamsToSkip = 0;
1603 
1604  // The allocation size is the first argument.
1605  QualType sizeType = getContext().getSizeType();
1606  allocatorArgs.add(RValue::get(allocSize), sizeType);
1607  ++ParamsToSkip;
1608 
1609  if (allocSize != allocSizeWithoutCookie) {
1610  CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1611  allocAlign = std::max(allocAlign, cookieAlign);
1612  }
1613 
1614  // The allocation alignment may be passed as the second argument.
1615  if (E->passAlignment()) {
1616  QualType AlignValT = sizeType;
1617  if (allocatorType->getNumParams() > 1) {
1618  AlignValT = allocatorType->getParamType(1);
1619  assert(getContext().hasSameUnqualifiedType(
1620  AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1621  sizeType) &&
1622  "wrong type for alignment parameter");
1623  ++ParamsToSkip;
1624  } else {
1625  // Corner case, passing alignment to 'operator new(size_t, ...)'.
1626  assert(allocator->isVariadic() && "can't pass alignment to allocator");
1627  }
1628  allocatorArgs.add(
1629  RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1630  AlignValT);
1631  }
1632 
1633  // FIXME: Why do we not pass a CalleeDecl here?
1634  EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1635  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1636 
1637  RValue RV =
1638  EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1639 
1640  // If this was a call to a global replaceable allocation function that does
1641  // not take an alignment argument, the allocator is known to produce
1642  // storage that's suitably aligned for any object that fits, up to a known
1643  // threshold. Otherwise assume it's suitably aligned for the allocated type.
1644  CharUnits allocationAlign = allocAlign;
1645  if (!E->passAlignment() &&
1647  unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1648  Target.getNewAlign(), getContext().getTypeSize(allocType)));
1649  allocationAlign = std::max(
1650  allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1651  }
1652 
1653  allocation = Address(RV.getScalarVal(), allocationAlign);
1654  }
1655 
1656  // Emit a null check on the allocation result if the allocation
1657  // function is allowed to return null (because it has a non-throwing
1658  // exception spec or is the reserved placement new) and we have an
1659  // interesting initializer.
1660  bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1661  (!allocType.isPODType(getContext()) || E->hasInitializer());
1662 
1663  llvm::BasicBlock *nullCheckBB = nullptr;
1664  llvm::BasicBlock *contBB = nullptr;
1665 
1666  // The null-check means that the initializer is conditionally
1667  // evaluated.
1668  ConditionalEvaluation conditional(*this);
1669 
1670  if (nullCheck) {
1671  conditional.begin(*this);
1672 
1673  nullCheckBB = Builder.GetInsertBlock();
1674  llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1675  contBB = createBasicBlock("new.cont");
1676 
1677  llvm::Value *isNull =
1678  Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1679  Builder.CreateCondBr(isNull, contBB, notNullBB);
1680  EmitBlock(notNullBB);
1681  }
1682 
1683  // If there's an operator delete, enter a cleanup to call it if an
1684  // exception is thrown.
1685  EHScopeStack::stable_iterator operatorDeleteCleanup;
1686  llvm::Instruction *cleanupDominator = nullptr;
1687  if (E->getOperatorDelete() &&
1689  EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1690  allocatorArgs);
1691  operatorDeleteCleanup = EHStack.stable_begin();
1692  cleanupDominator = Builder.CreateUnreachable();
1693  }
1694 
1695  assert((allocSize == allocSizeWithoutCookie) ==
1696  CalculateCookiePadding(*this, E).isZero());
1697  if (allocSize != allocSizeWithoutCookie) {
1698  assert(E->isArray());
1699  allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1700  numElements,
1701  E, allocType);
1702  }
1703 
1704  llvm::Type *elementTy = ConvertTypeForMem(allocType);
1705  Address result = Builder.CreateElementBitCast(allocation, elementTy);
1706 
1707  // Passing pointer through launder.invariant.group to avoid propagation of
1708  // vptrs information which may be included in previous type.
1709  // To not break LTO with different optimizations levels, we do it regardless
1710  // of optimization level.
1711  if (CGM.getCodeGenOpts().StrictVTablePointers &&
1712  allocator->isReservedGlobalPlacementOperator())
1713  result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1714  result.getAlignment());
1715 
1716  // Emit sanitizer checks for pointer value now, so that in the case of an
1717  // array it was checked only once and not at each constructor call.
1720  result.getPointer(), allocType);
1721 
1722  EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1723  allocSizeWithoutCookie);
1724  if (E->isArray()) {
1725  // NewPtr is a pointer to the base element type. If we're
1726  // allocating an array of arrays, we'll need to cast back to the
1727  // array pointer type.
1728  llvm::Type *resultType = ConvertTypeForMem(E->getType());
1729  if (result.getType() != resultType)
1730  result = Builder.CreateBitCast(result, resultType);
1731  }
1732 
1733  // Deactivate the 'operator delete' cleanup if we finished
1734  // initialization.
1735  if (operatorDeleteCleanup.isValid()) {
1736  DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1737  cleanupDominator->eraseFromParent();
1738  }
1739 
1740  llvm::Value *resultPtr = result.getPointer();
1741  if (nullCheck) {
1742  conditional.end(*this);
1743 
1744  llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1745  EmitBlock(contBB);
1746 
1747  llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1748  PHI->addIncoming(resultPtr, notNullBB);
1749  PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1750  nullCheckBB);
1751 
1752  resultPtr = PHI;
1753  }
1754 
1755  return resultPtr;
1756 }
1757 
1759  llvm::Value *Ptr, QualType DeleteTy,
1760  llvm::Value *NumElements,
1761  CharUnits CookieSize) {
1762  assert((!NumElements && CookieSize.isZero()) ||
1763  DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1764 
1765  const FunctionProtoType *DeleteFTy =
1766  DeleteFD->getType()->getAs<FunctionProtoType>();
1767 
1768  CallArgList DeleteArgs;
1769 
1770  auto Params = getUsualDeleteParams(DeleteFD);
1771  auto ParamTypeIt = DeleteFTy->param_type_begin();
1772 
1773  // Pass the pointer itself.
1774  QualType ArgTy = *ParamTypeIt++;
1775  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1776  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1777 
1778  // Pass the std::destroying_delete tag if present.
1779  if (Params.DestroyingDelete) {
1780  QualType DDTag = *ParamTypeIt++;
1781  // Just pass an 'undef'. We expect the tag type to be an empty struct.
1782  auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1783  DeleteArgs.add(RValue::get(V), DDTag);
1784  }
1785 
1786  // Pass the size if the delete function has a size_t parameter.
1787  if (Params.Size) {
1788  QualType SizeType = *ParamTypeIt++;
1789  CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1790  llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1791  DeleteTypeSize.getQuantity());
1792 
1793  // For array new, multiply by the number of elements.
1794  if (NumElements)
1795  Size = Builder.CreateMul(Size, NumElements);
1796 
1797  // If there is a cookie, add the cookie size.
1798  if (!CookieSize.isZero())
1799  Size = Builder.CreateAdd(
1800  Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1801 
1802  DeleteArgs.add(RValue::get(Size), SizeType);
1803  }
1804 
1805  // Pass the alignment if the delete function has an align_val_t parameter.
1806  if (Params.Alignment) {
1807  QualType AlignValType = *ParamTypeIt++;
1808  CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1809  getContext().getTypeAlignIfKnown(DeleteTy));
1810  llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1811  DeleteTypeAlign.getQuantity());
1812  DeleteArgs.add(RValue::get(Align), AlignValType);
1813  }
1814 
1815  assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1816  "unknown parameter to usual delete function");
1817 
1818  // Emit the call to delete.
1819  EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1820 }
1821 
1822 namespace {
1823  /// Calls the given 'operator delete' on a single object.
1824  struct CallObjectDelete final : EHScopeStack::Cleanup {
1825  llvm::Value *Ptr;
1826  const FunctionDecl *OperatorDelete;
1827  QualType ElementType;
1828 
1829  CallObjectDelete(llvm::Value *Ptr,
1830  const FunctionDecl *OperatorDelete,
1831  QualType ElementType)
1832  : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1833 
1834  void Emit(CodeGenFunction &CGF, Flags flags) override {
1835  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1836  }
1837  };
1838 }
1839 
1840 void
1842  llvm::Value *CompletePtr,
1843  QualType ElementType) {
1844  EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1845  OperatorDelete, ElementType);
1846 }
1847 
1848 /// Emit the code for deleting a single object with a destroying operator
1849 /// delete. If the element type has a non-virtual destructor, Ptr has already
1850 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1851 /// Ptr points to an object of the static type.
1853  const CXXDeleteExpr *DE, Address Ptr,
1854  QualType ElementType) {
1855  auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1856  if (Dtor && Dtor->isVirtual())
1857  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1858  Dtor);
1859  else
1860  CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1861 }
1862 
1863 /// Emit the code for deleting a single object.
1865  const CXXDeleteExpr *DE,
1866  Address Ptr,
1867  QualType ElementType) {
1868  // C++11 [expr.delete]p3:
1869  // If the static type of the object to be deleted is different from its
1870  // dynamic type, the static type shall be a base class of the dynamic type
1871  // of the object to be deleted and the static type shall have a virtual
1872  // destructor or the behavior is undefined.
1874  DE->getExprLoc(), Ptr.getPointer(),
1875  ElementType);
1876 
1877  const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1878  assert(!OperatorDelete->isDestroyingOperatorDelete());
1879 
1880  // Find the destructor for the type, if applicable. If the
1881  // destructor is virtual, we'll just emit the vcall and return.
1882  const CXXDestructorDecl *Dtor = nullptr;
1883  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1884  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1885  if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1886  Dtor = RD->getDestructor();
1887 
1888  if (Dtor->isVirtual()) {
1889  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1890  Dtor);
1891  return;
1892  }
1893  }
1894  }
1895 
1896  // Make sure that we call delete even if the dtor throws.
1897  // This doesn't have to a conditional cleanup because we're going
1898  // to pop it off in a second.
1899  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1900  Ptr.getPointer(),
1901  OperatorDelete, ElementType);
1902 
1903  if (Dtor)
1905  /*ForVirtualBase=*/false,
1906  /*Delegating=*/false,
1907  Ptr);
1908  else if (auto Lifetime = ElementType.getObjCLifetime()) {
1909  switch (Lifetime) {
1910  case Qualifiers::OCL_None:
1913  break;
1914 
1917  break;
1918 
1919  case Qualifiers::OCL_Weak:
1920  CGF.EmitARCDestroyWeak(Ptr);
1921  break;
1922  }
1923  }
1924 
1925  CGF.PopCleanupBlock();
1926 }
1927 
1928 namespace {
1929  /// Calls the given 'operator delete' on an array of objects.
1930  struct CallArrayDelete final : EHScopeStack::Cleanup {
1931  llvm::Value *Ptr;
1932  const FunctionDecl *OperatorDelete;
1933  llvm::Value *NumElements;
1934  QualType ElementType;
1935  CharUnits CookieSize;
1936 
1937  CallArrayDelete(llvm::Value *Ptr,
1938  const FunctionDecl *OperatorDelete,
1939  llvm::Value *NumElements,
1940  QualType ElementType,
1941  CharUnits CookieSize)
1942  : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1943  ElementType(ElementType), CookieSize(CookieSize) {}
1944 
1945  void Emit(CodeGenFunction &CGF, Flags flags) override {
1946  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1947  CookieSize);
1948  }
1949  };
1950 }
1951 
1952 /// Emit the code for deleting an array of objects.
1954  const CXXDeleteExpr *E,
1955  Address deletedPtr,
1956  QualType elementType) {
1957  llvm::Value *numElements = nullptr;
1958  llvm::Value *allocatedPtr = nullptr;
1959  CharUnits cookieSize;
1960  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1961  numElements, allocatedPtr, cookieSize);
1962 
1963  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1964 
1965  // Make sure that we call delete even if one of the dtors throws.
1966  const FunctionDecl *operatorDelete = E->getOperatorDelete();
1967  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1968  allocatedPtr, operatorDelete,
1969  numElements, elementType,
1970  cookieSize);
1971 
1972  // Destroy the elements.
1973  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1974  assert(numElements && "no element count for a type with a destructor!");
1975 
1976  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1977  CharUnits elementAlign =
1978  deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1979 
1980  llvm::Value *arrayBegin = deletedPtr.getPointer();
1981  llvm::Value *arrayEnd =
1982  CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1983 
1984  // Note that it is legal to allocate a zero-length array, and we
1985  // can never fold the check away because the length should always
1986  // come from a cookie.
1987  CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1988  CGF.getDestroyer(dtorKind),
1989  /*checkZeroLength*/ true,
1990  CGF.needsEHCleanup(dtorKind));
1991  }
1992 
1993  // Pop the cleanup block.
1994  CGF.PopCleanupBlock();
1995 }
1996 
1998  const Expr *Arg = E->getArgument();
1999  Address Ptr = EmitPointerWithAlignment(Arg);
2000 
2001  // Null check the pointer.
2002  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
2003  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
2004 
2005  llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
2006 
2007  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
2008  EmitBlock(DeleteNotNull);
2009 
2010  QualType DeleteTy = E->getDestroyedType();
2011 
2012  // A destroying operator delete overrides the entire operation of the
2013  // delete expression.
2015  EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2016  EmitBlock(DeleteEnd);
2017  return;
2018  }
2019 
2020  // We might be deleting a pointer to array. If so, GEP down to the
2021  // first non-array element.
2022  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2023  if (DeleteTy->isConstantArrayType()) {
2024  llvm::Value *Zero = Builder.getInt32(0);
2026 
2027  GEP.push_back(Zero); // point at the outermost array
2028 
2029  // For each layer of array type we're pointing at:
2030  while (const ConstantArrayType *Arr
2031  = getContext().getAsConstantArrayType(DeleteTy)) {
2032  // 1. Unpeel the array type.
2033  DeleteTy = Arr->getElementType();
2034 
2035  // 2. GEP to the first element of the array.
2036  GEP.push_back(Zero);
2037  }
2038 
2039  Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2040  Ptr.getAlignment());
2041  }
2042 
2043  assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2044 
2045  if (E->isArrayForm()) {
2046  EmitArrayDelete(*this, E, Ptr, DeleteTy);
2047  } else {
2048  EmitObjectDelete(*this, E, Ptr, DeleteTy);
2049  }
2050 
2051  EmitBlock(DeleteEnd);
2052 }
2053 
2054 static bool isGLValueFromPointerDeref(const Expr *E) {
2055  E = E->IgnoreParens();
2056 
2057  if (const auto *CE = dyn_cast<CastExpr>(E)) {
2058  if (!CE->getSubExpr()->isGLValue())
2059  return false;
2060  return isGLValueFromPointerDeref(CE->getSubExpr());
2061  }
2062 
2063  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2064  return isGLValueFromPointerDeref(OVE->getSourceExpr());
2065 
2066  if (const auto *BO = dyn_cast<BinaryOperator>(E))
2067  if (BO->getOpcode() == BO_Comma)
2068  return isGLValueFromPointerDeref(BO->getRHS());
2069 
2070  if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2071  return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2072  isGLValueFromPointerDeref(ACO->getFalseExpr());
2073 
2074  // C++11 [expr.sub]p1:
2075  // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2076  if (isa<ArraySubscriptExpr>(E))
2077  return true;
2078 
2079  if (const auto *UO = dyn_cast<UnaryOperator>(E))
2080  if (UO->getOpcode() == UO_Deref)
2081  return true;
2082 
2083  return false;
2084 }
2085 
2087  llvm::Type *StdTypeInfoPtrTy) {
2088  // Get the vtable pointer.
2089  Address ThisPtr = CGF.EmitLValue(E).getAddress();
2090 
2091  QualType SrcRecordTy = E->getType();
2092 
2093  // C++ [class.cdtor]p4:
2094  // If the operand of typeid refers to the object under construction or
2095  // destruction and the static type of the operand is neither the constructor
2096  // or destructor’s class nor one of its bases, the behavior is undefined.
2098  ThisPtr.getPointer(), SrcRecordTy);
2099 
2100  // C++ [expr.typeid]p2:
2101  // If the glvalue expression is obtained by applying the unary * operator to
2102  // a pointer and the pointer is a null pointer value, the typeid expression
2103  // throws the std::bad_typeid exception.
2104  //
2105  // However, this paragraph's intent is not clear. We choose a very generous
2106  // interpretation which implores us to consider comma operators, conditional
2107  // operators, parentheses and other such constructs.
2109  isGLValueFromPointerDeref(E), SrcRecordTy)) {
2110  llvm::BasicBlock *BadTypeidBlock =
2111  CGF.createBasicBlock("typeid.bad_typeid");
2112  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2113 
2114  llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2115  CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2116 
2117  CGF.EmitBlock(BadTypeidBlock);
2118  CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2119  CGF.EmitBlock(EndBlock);
2120  }
2121 
2122  return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2123  StdTypeInfoPtrTy);
2124 }
2125 
2127  llvm::Type *StdTypeInfoPtrTy =
2128  ConvertType(E->getType())->getPointerTo();
2129 
2130  if (E->isTypeOperand()) {
2131  llvm::Constant *TypeInfo =
2132  CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2133  return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2134  }
2135 
2136  // C++ [expr.typeid]p2:
2137  // When typeid is applied to a glvalue expression whose type is a
2138  // polymorphic class type, the result refers to a std::type_info object
2139  // representing the type of the most derived object (that is, the dynamic
2140  // type) to which the glvalue refers.
2141  if (E->isPotentiallyEvaluated())
2142  return EmitTypeidFromVTable(*this, E->getExprOperand(),
2143  StdTypeInfoPtrTy);
2144 
2145  QualType OperandTy = E->getExprOperand()->getType();
2146  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2147  StdTypeInfoPtrTy);
2148 }
2149 
2151  QualType DestTy) {
2152  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2153  if (DestTy->isPointerType())
2154  return llvm::Constant::getNullValue(DestLTy);
2155 
2156  /// C++ [expr.dynamic.cast]p9:
2157  /// A failed cast to reference type throws std::bad_cast
2158  if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2159  return nullptr;
2160 
2161  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2162  return llvm::UndefValue::get(DestLTy);
2163 }
2164 
2166  const CXXDynamicCastExpr *DCE) {
2167  CGM.EmitExplicitCastExprType(DCE, this);
2168  QualType DestTy = DCE->getTypeAsWritten();
2169 
2170  QualType SrcTy = DCE->getSubExpr()->getType();
2171 
2172  // C++ [expr.dynamic.cast]p7:
2173  // If T is "pointer to cv void," then the result is a pointer to the most
2174  // derived object pointed to by v.
2175  const PointerType *DestPTy = DestTy->getAs<PointerType>();
2176 
2177  bool isDynamicCastToVoid;
2178  QualType SrcRecordTy;
2179  QualType DestRecordTy;
2180  if (DestPTy) {
2181  isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2182  SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2183  DestRecordTy = DestPTy->getPointeeType();
2184  } else {
2185  isDynamicCastToVoid = false;
2186  SrcRecordTy = SrcTy;
2187  DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2188  }
2189 
2190  // C++ [class.cdtor]p5:
2191  // If the operand of the dynamic_cast refers to the object under
2192  // construction or destruction and the static type of the operand is not a
2193  // pointer to or object of the constructor or destructor’s own class or one
2194  // of its bases, the dynamic_cast results in undefined behavior.
2195  EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2196  SrcRecordTy);
2197 
2198  if (DCE->isAlwaysNull())
2199  if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2200  return T;
2201 
2202  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2203 
2204  // C++ [expr.dynamic.cast]p4:
2205  // If the value of v is a null pointer value in the pointer case, the result
2206  // is the null pointer value of type T.
2207  bool ShouldNullCheckSrcValue =
2208  CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2209  SrcRecordTy);
2210 
2211  llvm::BasicBlock *CastNull = nullptr;
2212  llvm::BasicBlock *CastNotNull = nullptr;
2213  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2214 
2215  if (ShouldNullCheckSrcValue) {
2216  CastNull = createBasicBlock("dynamic_cast.null");
2217  CastNotNull = createBasicBlock("dynamic_cast.notnull");
2218 
2219  llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2220  Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2221  EmitBlock(CastNotNull);
2222  }
2223 
2224  llvm::Value *Value;
2225  if (isDynamicCastToVoid) {
2226  Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2227  DestTy);
2228  } else {
2229  assert(DestRecordTy->isRecordType() &&
2230  "destination type must be a record type!");
2231  Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2232  DestTy, DestRecordTy, CastEnd);
2233  CastNotNull = Builder.GetInsertBlock();
2234  }
2235 
2236  if (ShouldNullCheckSrcValue) {
2237  EmitBranch(CastEnd);
2238 
2239  EmitBlock(CastNull);
2240  EmitBranch(CastEnd);
2241  }
2242 
2243  EmitBlock(CastEnd);
2244 
2245  if (ShouldNullCheckSrcValue) {
2246  llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2247  PHI->addIncoming(Value, CastNotNull);
2248  PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2249 
2250  Value = PHI;
2251  }
2252 
2253  return Value;
2254 }
2255 
2257  LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2258 
2261  e = E->capture_init_end();
2262  i != e; ++i, ++CurField) {
2263  // Emit initialization
2264  LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2265  if (CurField->hasCapturedVLAType()) {
2266  auto VAT = CurField->getCapturedVLAType();
2267  EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2268  } else {
2269  EmitInitializerForField(*CurField, LV, *i);
2270  }
2271  }
2272 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:361
virtual void EmitBadTypeidCall(CodeGenFunction &CGF)=0
Represents a function declaration or definition.
Definition: Decl.h:1739
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2795
Address getAddress() const
Definition: CGValue.h:580
Complete object ctor.
Definition: ABI.h:26
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2543
QualType getPointeeType() const
Definition: Type.h:2556
llvm::iterator_range< arg_iterator > placement_arguments()
Definition: ExprCXX.h:2041
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
Definition: CGDecl.cpp:1684
A (possibly-)qualified type.
Definition: Type.h:642
static RValue EmitNewDeleteCall(CodeGenFunction &CGF, const FunctionDecl *CalleeDecl, const FunctionProtoType *CalleeType, const CallArgList &Args)
Emit a call to an operator new or operator delete function, as implicitly created by new-expressions ...
Definition: CGExprCXX.cpp:1292
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2101
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:258
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2692
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2480
void EmitARCDestroyWeak(Address addr)
void @objc_destroyWeak(i8** addr) Essentially objc_storeWeak(addr, nil).
Definition: CGObjC.cpp:2338
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D...
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2468
void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:970
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
virtual bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy)=0
Checking the &#39;this&#39; pointer for a constructor call.
bool isRecordType() const
Definition: Type.h:6355
Expr * getBase() const
Definition: Expr.h:2686
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:87
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, QualType Type, CharUnits Alignment=CharUnits::Zero(), SanitizerSet SkippedChecks=SanitizerSet())
Emit a check that V is the address of storage of the appropriate size and alignment for an object of ...
Definition: CGExpr.cpp:649
bool isVirtual() const
Definition: DeclCXX.h:2086
FunctionDecl * getOperatorNew() const
Definition: ExprCXX.h:1968
Opcode getOpcode() const
Definition: Expr.h:3268
bool hasQualifier() const
Determines whether this member expression actually had a C++ nested-name-specifier prior to the name ...
Definition: Expr.h:2706
The base class of the type hierarchy.
Definition: Type.h:1415
bool requiresZeroInitialization() const
Whether this construction first requires zero-initialization before the initializer is called...
Definition: ExprCXX.h:1347
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2818
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1257
RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:168
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:116
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
bool isZero(ProgramStateRef State, const NonLoc &Val)
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2481
Expr * ignoreParenBaseCasts() LLVM_READONLY
Ignore parentheses and derived-to-base casts.
Definition: Expr.cpp:2635
static llvm::Value * EmitCXXNewAllocSize(CodeGenFunction &CGF, const CXXNewExpr *e, unsigned minElements, llvm::Value *&numElements, llvm::Value *&sizeWithoutCookie)
Definition: CGExprCXX.cpp:680
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::Instruction **callOrInvoke, SourceLocation Loc)
EmitCall - Generate a call of the given function, expecting the given result type, and using the given argument list which specifies both the LLVM arguments and the types they were derived from.
Definition: CGCall.cpp:3795
static saved_type save(CodeGenFunction &CGF, type value)
Definition: EHScopeStack.h:60
QualType getReturnType() const
Definition: Decl.h:2303
unsigned getNumParams() const
Definition: Type.h:3879
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6716
const void * Store
Store - This opaque type encapsulates an immutable mapping from locations to values.
Definition: StoreRef.h:28
IsZeroed_t isZeroed() const
Definition: CGValue.h:613
Address CreateConstInBoundsByteGEP(Address Addr, CharUnits Offset, const llvm::Twine &Name="")
Given a pointer to i8, adjust it by a given constant offset.
Definition: CGBuilder.h:234
llvm::Value * getPointer() const
Definition: Address.h:38
unsigned getNumPlacementArgs() const
Definition: ExprCXX.h:1982
static MemberCallInfo commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:37
RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:478
bool hasDefinition() const
Definition: DeclCXX.h:776
Expr * getExprOperand() const
Definition: ExprCXX.h:721
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3012
RValue EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, const CGCallee &Callee, ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:81
The collection of all-type qualifiers we support.
Definition: Type.h:141
void add(RValue rvalue, QualType type)
Definition: CGCall.h:285
CXXRecordDecl * getLambdaClass() const
Retrieve the class that corresponds to the lambda.
Definition: ExprCXX.cpp:1015
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:4206
bool isMoveAssignmentOperator() const
Determine whether this is a move assignment operator.
Definition: DeclCXX.cpp:2124
bool isEmpty() const
Determine whether this is an empty class in the sense of (C++11 [meta.unary.prop]).
Definition: DeclCXX.h:1327
An object to manage conditionally-evaluated expressions.
llvm::Value * EmitCXXNewExpr(const CXXNewExpr *E)
Definition: CGExprCXX.cpp:1548
Address getAddress() const
Definition: CGValue.h:327
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:3886
llvm::Value * EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE)
Definition: CGExprCXX.cpp:2165
static llvm::Value * EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, llvm::Type *StdTypeInfoPtrTy)
Definition: CGExprCXX.cpp:2086
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:81
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:246
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:514
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:53
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:66
Expr * getSubExpr()
Definition: Expr.h:2982
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2818
Describes an C or C++ initializer list.
Definition: Expr.h:4131
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:664
Expr * getArraySize()
Definition: ExprCXX.h:1975
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:2135
Base object ctor.
Definition: ABI.h:27
bool isElidable() const
Whether this construction is elidable.
Definition: ExprCXX.h:1326
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:157
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise)
Destroy a __strong variable.
Definition: CGObjC.cpp:2162
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6765
capture_init_iterator capture_init_begin()
Retrieve the first initialization argument for this lambda expression (which initializes the first ca...
Definition: ExprCXX.h:1751
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:119
Expr * getInitializer()
The initializer of this new-expression.
Definition: ExprCXX.h:2013
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:67
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3233
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6128
Checking the operand of a dynamic_cast or a typeid expression.
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:274
const Type * getClass() const
Definition: Type.h:2796
bool isArrow() const
Definition: Expr.h:2793
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, QualType DeleteTy, llvm::Value *NumElements=nullptr, CharUnits CookieSize=CharUnits())
Definition: CGExprCXX.cpp:1758
field_iterator field_begin() const
Definition: Decl.cpp:4159
param_type_iterator param_type_begin() const
Definition: Type.h:4020
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, Address DestPtr, const CXXRecordDecl *Base)
Definition: CGExprCXX.cpp:483
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1606
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1478
bool isInstance() const
Definition: DeclCXX.h:2069
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:1697
CXXMethodDecl * getCorrespondingMethodInClass(const CXXRecordDecl *RD, bool MayBeBase=false)
Find the method in RD that corresponds to this one.
Definition: DeclCXX.cpp:1894
bool isNegative() const
isNegative - Test whether the quantity is less than zero.
Definition: CharUnits.h:125
This object can be modified without requiring retains or releases.
Definition: Type.h:162
arg_iterator arg_end()
Definition: Expr.h:2519
Checking the &#39;this&#39; pointer for a call to a non-static member function.
TypeSourceInfo * getAllocatedTypeSourceInfo() const
Definition: ExprCXX.h:1947
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1587
bool isArrayForm() const
Definition: ExprCXX.h:2122
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition: Expr.h:3154
bool isValid() const
Definition: Address.h:36
void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest)
Definition: CGExprCXX.cpp:571
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2211
void addFrom(const CallArgList &other)
Add all the arguments from another CallArgList to this one.
Definition: CGCall.h:294
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1613
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3686
bool isDynamicClass() const
Definition: DeclCXX.h:789
virtual CharUnits GetArrayCookieSize(const CXXNewExpr *expr)
Returns the extra size required in order to store the array cookie for the given new-expression.
Definition: CGCXXABI.cpp:168
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any...
Definition: Decl.cpp:3314
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1320
NestedNameSpecifier * getQualifier() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name...
Definition: Expr.h:2720
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:39
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
SourceLocation getBeginLoc() const
Get the begin source location.
Definition: TypeLoc.cpp:190
This represents one expression.
Definition: Expr.h:106
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2689
bool isDefaulted() const
Whether this function is defaulted per C++0x.
Definition: Decl.h:2035
static Address invalid()
Definition: Address.h:35
static void EnterNewDeleteCleanup(CodeGenFunction &CGF, const CXXNewExpr *E, Address NewPtr, llvm::Value *AllocSize, CharUnits AllocAlign, const CallArgList &NewArgs)
Enter a cleanup to call &#39;operator delete&#39; if the initializer in a new-expression throws.
Definition: CGExprCXX.cpp:1480
virtual void ReadArrayCookie(CodeGenFunction &CGF, Address Ptr, const CXXDeleteExpr *expr, QualType ElementType, llvm::Value *&NumElements, llvm::Value *&AllocPtr, CharUnits &CookieSize)
Reads the array cookie associated with the given pointer, if it has one.
Definition: CGCXXABI.cpp:208
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E)
Definition: CGExprCXX.cpp:107
void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, llvm::Value *CompletePtr, QualType ElementType)
Definition: CGExprCXX.cpp:1841
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6779
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:134
SourceLocation getExprLoc() const LLVM_READONLY
Definition: ExprCXX.h:192
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2703
bool isSanitizerChecked() const
Definition: CGValue.h:600
unsigned getNumInits() const
Definition: Expr.h:4161
const Expr * getCallee() const
Definition: Expr.h:2451
bool isArrow() const
Determine whether this pseudo-destructor expression was written using an &#39;->&#39; (otherwise, it used a &#39;.
Definition: ExprCXX.h:2274
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:44
virtual bool EmitBadCastCall(CodeGenFunction &CGF)=0
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
A class for recording the number of arguments that a function signature requires. ...
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const
Determine whether the result of this expression is a temporary object of the given class type...
Definition: Expr.cpp:2763
QualType getType() const
Definition: Expr.h:128
void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest)
Definition: CGExprCXX.cpp:2256
RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, const Expr *Base)
Definition: CGExprCXX.cpp:195
CharUnits alignmentOfArrayElement(CharUnits elementSize) const
Given that this is the alignment of the first element of an array, return the minimum alignment of an...
Definition: CharUnits.h:197
bool hasInitializer() const
Whether this new-expression has any initializer at all.
Definition: ExprCXX.h:2003
QualType getRecordType(const RecordDecl *Decl) const
static void EmitObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object.
Definition: CGExprCXX.cpp:1864
llvm::CallInst * CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:296
llvm::Value * EmitCastToVoidPtr(llvm::Value *value)
Emit a cast to void* in the appropriate address space.
Definition: CGExpr.cpp:50
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this typeid() expression after various required adjustments (removing r...
Definition: ExprCXX.cpp:77
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, QualType elementType, CharUnits elementAlign, Destroyer *destroyer, bool checkZeroLength, bool useEHCleanup)
emitArrayDestroy - Destroys all the elements of the given array, beginning from last to first...
Definition: CGDecl.cpp:1798
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2027
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:178
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:35
The l-value was considered opaque, so the alignment was determined from a type.
RecordDecl * getDecl() const
Definition: Type.h:4366
Expr * getArgument()
Definition: ExprCXX.h:2137
bool isAlignValT() const
Definition: Type.cpp:2437
There is no lifetime qualification on this type.
Definition: Type.h:158
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:348
void set(SanitizerMask K, bool Value)
Enable or disable a certain (single) sanitizer.
Definition: Sanitizers.h:61
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:169
QualType getCanonicalType() const
Definition: Type.h:6097
void initFullExprCleanup()
Set up the last cleanup that was pushed as a conditional full-expression cleanup. ...
llvm::Value * EmitCXXTypeidExpr(const CXXTypeidExpr *E)
Definition: CGExprCXX.cpp:2126
Encodes a location in the source.
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4382
virtual llvm::Value * EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, Address ThisPtr, llvm::Type *StdTypeInfoPtrTy)=0
A saved depth on the scope stack.
Definition: EHScopeStack.h:107
static CXXRecordDecl * getCXXRecord(const Expr *E)
Definition: CGExprCXX.cpp:158
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1868
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:166
An aggregate value slot.
Definition: CGValue.h:437
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:680
static void EmitArrayDelete(CodeGenFunction &CGF, const CXXDeleteExpr *E, Address deletedPtr, QualType elementType)
Emit the code for deleting an array of objects.
Definition: CGExprCXX.cpp:1953
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2041
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2412
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
llvm::Constant * EmitNullConstantForBase(const CXXRecordDecl *Record)
Return a null constant appropriate for zero-initializing a base class with the given type...
QualType getAllocatedType() const
Definition: ExprCXX.h:1942
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1860
bool isArray() const
Definition: ExprCXX.h:1973
arg_range arguments()
Definition: Expr.h:2513
virtual void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType, const CXXDestructorDecl *Dtor)=0
An aligned address.
Definition: Address.h:25
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after...
Definition: Type.h:1160
All available information about a concrete callee.
Definition: CGCall.h:67
const CXXRecordDecl * getBestDynamicClassType() const
For an expression of class type or pointer to class type, return the most derived class decl the expr...
Definition: Expr.cpp:63
Complete object dtor.
Definition: ABI.h:36
EnumDecl * getDecl() const
Definition: Type.h:4389
RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:415
Assigning into this object requires a lifetime extension.
Definition: Type.h:175
static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object with a destroying operator delete.
Definition: CGExprCXX.cpp:1852
QualType getType() const
Definition: CGValue.h:264
bool passAlignment() const
Indicates whether the required alignment should be implicitly passed to the allocation function...
Definition: ExprCXX.h:2027
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:1970
CXXCtorType
C++ constructor types.
Definition: ABI.h:25
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
Expr * getLHS() const
Definition: Expr.h:3273
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, const CXXNewExpr *E)
Definition: CGExprCXX.cpp:667
CharUnits getNonVirtualAlignment() const
getNonVirtualSize - Get the non-virtual alignment (in chars) of an object, which is the alignment of ...
Definition: RecordLayout.h:211
CGFunctionInfo - Class to encapsulate the information about a function definition.
CharUnits alignmentAtOffset(CharUnits offset) const
Given that this is a non-zero alignment value, what is the alignment at the given offset...
Definition: CharUnits.h:190
bool isTypeOperand() const
Definition: ExprCXX.h:704
Dataflow Directional Tag Classes.
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This)
Definition: CGClass.cpp:2376
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2095
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return 0.
Definition: Expr.cpp:1283
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we&#39;re currently emitting one branch or the other of a conditio...
The name of a declaration.
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2166
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type *> Tys=None)
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2762
bool isCopyAssignmentOperator() const
Determine whether this is a copy-assignment operator, regardless of whether it was declared implicitl...
Definition: DeclCXX.cpp:2103
bool isDestroyingOperatorDelete() const
Determine whether this is a destroying operator delete.
Definition: Decl.cpp:2884
llvm::Module & getModule() const
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:2017
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type. ...
Definition: CGExprAgg.cpp:1777
bool isStringLiteralInit() const
Definition: Expr.cpp:2004
static llvm::Value * EmitDynamicCastToNull(CodeGenFunction &CGF, QualType DestTy)
Definition: CGExprCXX.cpp:2150
AlignmentSource getAlignmentSource() const
Definition: CGValue.h:156
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4356
CXXMethodDecl * getDevirtualizedMethod(const Expr *Base, bool IsAppleKext)
If it&#39;s possible to devirtualize a call to this method, return the called function.
Definition: DeclCXX.cpp:1952
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6564
arg_iterator arg_begin()
Definition: Expr.h:2518
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:52
Represents a call to a CUDA kernel function.
Definition: ExprCXX.h:206
void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit)
Definition: CGDecl.cpp:740
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition: ExprCXX.h:1383
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2679
void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp)
Definition: CGExprCXX.cpp:645
llvm::Constant * GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty=nullptr, bool ForVTable=false, bool DontDefer=false, ForDefinition_t IsForDefinition=NotForDefinition)
Return the address of the given function.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:443
bool isConstantArrayType() const
Definition: Type.h:6335
static bool isGLValueFromPointerDeref(const Expr *E)
Definition: CGExprCXX.cpp:2054
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:238
Reading or writing from this object requires a barrier call.
Definition: Type.h:172
Overlap_t mayOverlap() const
Definition: CGValue.h:596
QualType getParamType(unsigned i) const
Definition: Type.h:3881
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2601
Represents a C++ struct/union/class.
Definition: DeclCXX.h:300
virtual const CXXRecordDecl * getThisArgumentTypeForMethod(const CXXMethodDecl *MD)
Get the type of the implicit "this" parameter used by a method.
Definition: CGCXXABI.h:338
bool isVoidType() const
Definition: Type.h:6530
bool hasStrongOrWeakObjCLifetime() const
Definition: Type.h:1074
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:1277
llvm::Type * ConvertType(QualType T)
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:6085
RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, const CallExpr *TheCallExpr, bool IsDelete)
Definition: CGExprCXX.cpp:1326
void EmitCXXDeleteExpr(const CXXDeleteExpr *E)
Definition: CGExprCXX.cpp:1997
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1232
CharUnits getNonVirtualSize() const
getNonVirtualSize - Get the non-virtual size (in chars) of an object, which is the size of the object...
Definition: RecordLayout.h:203
T * pushCleanupWithExtra(CleanupKind Kind, size_t N, As... A)
Push a cleanup with non-constant storage requirements on the stack.
Definition: EHScopeStack.h:305
static CGCallee forVirtual(const CallExpr *CE, GlobalDecl MD, Address Addr, llvm::FunctionType *FTy)
Definition: CGCall.h:139
static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD)
Definition: CGExprCXX.cpp:1352
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2407
QualType getIntegerType() const
Return the integer type this enum decl corresponds to.
Definition: Decl.h:3489
llvm::Constant * tryEmitAbstract(const Expr *E, QualType T)
Try to emit the result of the given expression as an abstract constant.
CGCXXABI & getCXXABI() const
__DEVICE__ int max(int __a, int __b)
capture_init_iterator capture_init_end()
Retrieve the iterator pointing one past the last initialization argument for this lambda expression...
Definition: ExprCXX.h:1763
bool isAlwaysNull() const
isAlwaysNull - Return whether the result of the dynamic_cast is proven to always be null...
Definition: ExprCXX.cpp:619
static RValue get(llvm::Value *V)
Definition: CGValue.h:86
bool isUnion() const
Definition: Decl.h:3261
static RequiredArgs forPrototypePlus(const FunctionProtoType *prototype, unsigned additional, const FunctionDecl *FD)
Compute the arguments required by the given formal prototype, given that there may be some additional...
Expr * getRHS() const
Definition: Expr.h:3275
Expr *const * const_capture_init_iterator
Const iterator that walks over the capture initialization arguments.
Definition: ExprCXX.h:1737
bool isPointerType() const
Definition: Type.h:6282
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, QualType AllocType, Address NewPtr, AggValueSlot::Overlap_t MayOverlap)
Definition: CGExprCXX.cpp:942
const CGFunctionInfo & arrangeFreeFunctionCall(const CallArgList &Args, const FunctionType *Ty, bool ChainCall)
Figure out the rules for calling a function with the given formal type using the given arguments...
Definition: CGCall.cpp:614
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
virtual std::vector< CharUnits > getVBPtrOffsets(const CXXRecordDecl *RD)
Gets the offsets of all the virtual base pointers in a given class.
Definition: CGCXXABI.cpp:319
QualType getType() const
Definition: Decl.h:647
bool shouldNullCheckAllocation(const ASTContext &Ctx) const
True if the allocation result needs to be null-checked.
Definition: ExprCXX.cpp:171
LValue - This represents an lvalue references.
Definition: CGValue.h:167
An abstract representation of regular/ObjC call/message targets.
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:147
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1364
bool isPotentiallyEvaluated() const
Determine whether this typeid has a type operand which is potentially evaluated, per C++11 [expr...
Definition: ExprCXX.cpp:62
RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:468
TranslationUnitDecl * getTranslationUnitDecl()
Definition: DeclBase.cpp:361
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:260
void PopCleanupBlock(bool FallThroughIsBranchThrough=false)
PopCleanupBlock - Will pop the cleanup entry on the stack and process all branch fixups.
Definition: CGCleanup.cpp:651
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2878
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:4839
QualType getPointeeType() const
Definition: Type.h:2782
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2523
ConstructionKind getConstructionKind() const
Determine whether this constructor is actually constructing a base class (rather than a complete obje...
Definition: ExprCXX.h:1354
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1066
param_type_iterator param_type_end() const
Definition: Type.h:4024