clang  9.0.0svn
CGExprCXX.cpp
Go to the documentation of this file.
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "ConstantEmitter.h"
21 #include "llvm/IR/Intrinsics.h"
22 
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 struct MemberCallInfo {
28  RequiredArgs ReqArgs;
29  // Number of prefix arguments for the call. Ignores the `this` pointer.
30  unsigned PrefixSize;
31 };
32 }
33 
34 static MemberCallInfo
36  llvm::Value *This, llvm::Value *ImplicitParam,
37  QualType ImplicitParamTy, const CallExpr *CE,
38  CallArgList &Args, CallArgList *RtlArgs) {
39  assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
40  isa<CXXOperatorCallExpr>(CE));
41  assert(MD->isInstance() &&
42  "Trying to emit a member or operator call expr on a static method!");
43 
44  // Push the this ptr.
45  const CXXRecordDecl *RD =
47  Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
48 
49  // If there is an implicit parameter (e.g. VTT), emit it.
50  if (ImplicitParam) {
51  Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
52  }
53 
54  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
55  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
56  unsigned PrefixSize = Args.size() - 1;
57 
58  // And the rest of the call args.
59  if (RtlArgs) {
60  // Special case: if the caller emitted the arguments right-to-left already
61  // (prior to emitting the *this argument), we're done. This happens for
62  // assignment operators.
63  Args.addFrom(*RtlArgs);
64  } else if (CE) {
65  // Special case: skip first argument of CXXOperatorCall (it is "this").
66  unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
67  CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
68  CE->getDirectCallee());
69  } else {
70  assert(
71  FPT->getNumParams() == 0 &&
72  "No CallExpr specified for function with non-zero number of arguments");
73  }
74  return {required, PrefixSize};
75 }
76 
78  const CXXMethodDecl *MD, const CGCallee &Callee,
79  ReturnValueSlot ReturnValue,
80  llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
81  const CallExpr *CE, CallArgList *RtlArgs) {
82  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
83  CallArgList Args;
84  MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
85  *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
86  auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
87  Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
88  return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
89  CE ? CE->getExprLoc() : SourceLocation());
90 }
91 
93  const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
94  llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
96  CallArgList Args;
97  commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
98  ImplicitParamTy, CE, Args, nullptr);
99  return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
100  Callee, ReturnValueSlot(), Args);
101 }
102 
104  const CXXPseudoDestructorExpr *E) {
105  QualType DestroyedType = E->getDestroyedType();
106  if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
107  // Automatic Reference Counting:
108  // If the pseudo-expression names a retainable object with weak or
109  // strong lifetime, the object shall be released.
110  Expr *BaseExpr = E->getBase();
111  Address BaseValue = Address::invalid();
112  Qualifiers BaseQuals;
113 
114  // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
115  if (E->isArrow()) {
116  BaseValue = EmitPointerWithAlignment(BaseExpr);
117  const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
118  BaseQuals = PTy->getPointeeType().getQualifiers();
119  } else {
120  LValue BaseLV = EmitLValue(BaseExpr);
121  BaseValue = BaseLV.getAddress();
122  QualType BaseTy = BaseExpr->getType();
123  BaseQuals = BaseTy.getQualifiers();
124  }
125 
126  switch (DestroyedType.getObjCLifetime()) {
130  break;
131 
133  EmitARCRelease(Builder.CreateLoad(BaseValue,
134  DestroyedType.isVolatileQualified()),
136  break;
137 
139  EmitARCDestroyWeak(BaseValue);
140  break;
141  }
142  } else {
143  // C++ [expr.pseudo]p1:
144  // The result shall only be used as the operand for the function call
145  // operator (), and the result of such a call has type void. The only
146  // effect is the evaluation of the postfix-expression before the dot or
147  // arrow.
148  EmitIgnoredExpr(E->getBase());
149  }
150 
151  return RValue::get(nullptr);
152 }
153 
154 static CXXRecordDecl *getCXXRecord(const Expr *E) {
155  QualType T = E->getType();
156  if (const PointerType *PTy = T->getAs<PointerType>())
157  T = PTy->getPointeeType();
158  const RecordType *Ty = T->castAs<RecordType>();
159  return cast<CXXRecordDecl>(Ty->getDecl());
160 }
161 
162 // Note: This function also emit constructor calls to support a MSVC
163 // extensions allowing explicit constructor function call.
165  ReturnValueSlot ReturnValue) {
166  const Expr *callee = CE->getCallee()->IgnoreParens();
167 
168  if (isa<BinaryOperator>(callee))
169  return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
170 
171  const MemberExpr *ME = cast<MemberExpr>(callee);
172  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
173 
174  if (MD->isStatic()) {
175  // The method is static, emit it as we would a regular call.
176  CGCallee callee =
177  CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
178  return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
179  ReturnValue);
180  }
181 
182  bool HasQualifier = ME->hasQualifier();
183  NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
184  bool IsArrow = ME->isArrow();
185  const Expr *Base = ME->getBase();
186 
187  return EmitCXXMemberOrOperatorMemberCallExpr(
188  CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
189 }
190 
192  const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
193  bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
194  const Expr *Base) {
195  assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
196 
197  // Compute the object pointer.
198  bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
199 
200  const CXXMethodDecl *DevirtualizedMethod = nullptr;
201  if (CanUseVirtualCall &&
202  MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
203  const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
204  DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
205  assert(DevirtualizedMethod);
206  const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
207  const Expr *Inner = Base->ignoreParenBaseCasts();
208  if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
210  // If the return types are not the same, this might be a case where more
211  // code needs to run to compensate for it. For example, the derived
212  // method might return a type that inherits form from the return
213  // type of MD and has a prefix.
214  // For now we just avoid devirtualizing these covariant cases.
215  DevirtualizedMethod = nullptr;
216  else if (getCXXRecord(Inner) == DevirtualizedClass)
217  // If the class of the Inner expression is where the dynamic method
218  // is defined, build the this pointer from it.
219  Base = Inner;
220  else if (getCXXRecord(Base) != DevirtualizedClass) {
221  // If the method is defined in a class that is not the best dynamic
222  // one or the one of the full expression, we would have to build
223  // a derived-to-base cast to compute the correct this pointer, but
224  // we don't have support for that yet, so do a virtual call.
225  DevirtualizedMethod = nullptr;
226  }
227  }
228 
229  // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
230  // operator before the LHS.
231  CallArgList RtlArgStorage;
232  CallArgList *RtlArgs = nullptr;
233  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
234  if (OCE->isAssignmentOp()) {
235  RtlArgs = &RtlArgStorage;
236  EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
237  drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
238  /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
239  }
240  }
241 
242  LValue This;
243  if (IsArrow) {
244  LValueBaseInfo BaseInfo;
245  TBAAAccessInfo TBAAInfo;
246  Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
247  This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
248  } else {
249  This = EmitLValue(Base);
250  }
251 
252  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
253  // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
254  // constructing a new complete object of type Ctor.
255  assert(!RtlArgs);
256  assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
257  CallArgList Args;
259  *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr,
260  /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
261 
262  EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
263  /*Delegating=*/false, This.getAddress(), Args,
265  /*NewPointerIsChecked=*/false);
266  return RValue::get(nullptr);
267  }
268 
269  if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
270  if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
271  if (!MD->getParent()->mayInsertExtraPadding()) {
273  // We don't like to generate the trivial copy/move assignment operator
274  // when it isn't necessary; just produce the proper effect here.
275  LValue RHS = isa<CXXOperatorCallExpr>(CE)
276  ? MakeNaturalAlignAddrLValue(
277  (*RtlArgs)[0].getRValue(*this).getScalarVal(),
278  (*(CE->arg_begin() + 1))->getType())
279  : EmitLValue(*CE->arg_begin());
280  EmitAggregateAssign(This, RHS, CE->getType());
281  return RValue::get(This.getPointer());
282  }
283  llvm_unreachable("unknown trivial member function");
284  }
285  }
286 
287  // Compute the function type we're calling.
288  const CXXMethodDecl *CalleeDecl =
289  DevirtualizedMethod ? DevirtualizedMethod : MD;
290  const CGFunctionInfo *FInfo = nullptr;
291  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
292  FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
293  Dtor, StructorType::Complete);
294  else
295  FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
296 
297  llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
298 
299  // C++11 [class.mfct.non-static]p2:
300  // If a non-static member function of a class X is called for an object that
301  // is not of type X, or of a type derived from X, the behavior is undefined.
302  SourceLocation CallLoc;
303  ASTContext &C = getContext();
304  if (CE)
305  CallLoc = CE->getExprLoc();
306 
307  SanitizerSet SkippedChecks;
308  if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
309  auto *IOA = CMCE->getImplicitObjectArgument();
310  bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
311  if (IsImplicitObjectCXXThis)
312  SkippedChecks.set(SanitizerKind::Alignment, true);
313  if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
314  SkippedChecks.set(SanitizerKind::Null, true);
315  }
316  EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(),
317  C.getRecordType(CalleeDecl->getParent()),
318  /*Alignment=*/CharUnits::Zero(), SkippedChecks);
319 
320  // C++ [class.virtual]p12:
321  // Explicit qualification with the scope operator (5.1) suppresses the
322  // virtual call mechanism.
323  //
324  // We also don't emit a virtual call if the base expression has a record type
325  // because then we know what the type is.
326  bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
327 
328  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
329  assert(CE->arg_begin() == CE->arg_end() &&
330  "Destructor shouldn't have explicit parameters");
331  assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
332  if (UseVirtualCall) {
333  CGM.getCXXABI().EmitVirtualDestructorCall(
334  *this, Dtor, Dtor_Complete, This.getAddress(),
335  cast<CXXMemberCallExpr>(CE));
336  } else {
337  CGCallee Callee;
338  if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
339  Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
340  else if (!DevirtualizedMethod)
341  Callee = CGCallee::forDirect(
342  CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
343  GlobalDecl(Dtor, Dtor_Complete));
344  else {
345  Callee = CGCallee::forDirect(
346  CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty),
347  GlobalDecl(Dtor, Dtor_Complete));
348  }
349 
350  EmitCXXDestructorCall(Dtor, Callee, This.getPointer(),
351  /*ImplicitParam=*/nullptr,
352  /*ImplicitParamTy=*/QualType(), nullptr,
354  }
355  return RValue::get(nullptr);
356  }
357 
358  // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
359  // 'CalleeDecl' instead.
360 
361  CGCallee Callee;
362  if (UseVirtualCall) {
363  Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
364  } else {
365  if (SanOpts.has(SanitizerKind::CFINVCall) &&
366  MD->getParent()->isDynamicClass()) {
367  llvm::Value *VTable;
368  const CXXRecordDecl *RD;
369  std::tie(VTable, RD) =
370  CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
371  MD->getParent());
372  EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
373  }
374 
375  if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
376  Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
377  else if (!DevirtualizedMethod)
378  Callee =
379  CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
380  else {
381  Callee =
382  CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
383  GlobalDecl(DevirtualizedMethod));
384  }
385  }
386 
387  if (MD->isVirtual()) {
388  Address NewThisAddr =
389  CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
390  *this, CalleeDecl, This.getAddress(), UseVirtualCall);
391  This.setAddress(NewThisAddr);
392  }
393 
394  return EmitCXXMemberOrOperatorCall(
395  CalleeDecl, Callee, ReturnValue, This.getPointer(),
396  /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
397 }
398 
399 RValue
401  ReturnValueSlot ReturnValue) {
402  const BinaryOperator *BO =
403  cast<BinaryOperator>(E->getCallee()->IgnoreParens());
404  const Expr *BaseExpr = BO->getLHS();
405  const Expr *MemFnExpr = BO->getRHS();
406 
407  const MemberPointerType *MPT =
408  MemFnExpr->getType()->castAs<MemberPointerType>();
409 
410  const FunctionProtoType *FPT =
412  const CXXRecordDecl *RD =
413  cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
414 
415  // Emit the 'this' pointer.
416  Address This = Address::invalid();
417  if (BO->getOpcode() == BO_PtrMemI)
418  This = EmitPointerWithAlignment(BaseExpr);
419  else
420  This = EmitLValue(BaseExpr).getAddress();
421 
422  EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
423  QualType(MPT->getClass(), 0));
424 
425  // Get the member function pointer.
426  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
427 
428  // Ask the ABI to load the callee. Note that This is modified.
429  llvm::Value *ThisPtrForCall = nullptr;
430  CGCallee Callee =
431  CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
432  ThisPtrForCall, MemFnPtr, MPT);
433 
434  CallArgList Args;
435 
436  QualType ThisType =
437  getContext().getPointerType(getContext().getTagDeclType(RD));
438 
439  // Push the this ptr.
440  Args.add(RValue::get(ThisPtrForCall), ThisType);
441 
442  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
443 
444  // And the rest of the call args
445  EmitCallArgs(Args, FPT, E->arguments());
446  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
447  /*PrefixSize=*/0),
448  Callee, ReturnValue, Args, nullptr, E->getExprLoc());
449 }
450 
451 RValue
453  const CXXMethodDecl *MD,
454  ReturnValueSlot ReturnValue) {
455  assert(MD->isInstance() &&
456  "Trying to emit a member call expr on a static method!");
457  return EmitCXXMemberOrOperatorMemberCallExpr(
458  E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
459  /*IsArrow=*/false, E->getArg(0));
460 }
461 
463  ReturnValueSlot ReturnValue) {
464  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
465 }
466 
468  Address DestPtr,
469  const CXXRecordDecl *Base) {
470  if (Base->isEmpty())
471  return;
472 
473  DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
474 
475  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
476  CharUnits NVSize = Layout.getNonVirtualSize();
477 
478  // We cannot simply zero-initialize the entire base sub-object if vbptrs are
479  // present, they are initialized by the most derived class before calling the
480  // constructor.
482  Stores.emplace_back(CharUnits::Zero(), NVSize);
483 
484  // Each store is split by the existence of a vbptr.
485  CharUnits VBPtrWidth = CGF.getPointerSize();
486  std::vector<CharUnits> VBPtrOffsets =
487  CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
488  for (CharUnits VBPtrOffset : VBPtrOffsets) {
489  // Stop before we hit any virtual base pointers located in virtual bases.
490  if (VBPtrOffset >= NVSize)
491  break;
492  std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
493  CharUnits LastStoreOffset = LastStore.first;
494  CharUnits LastStoreSize = LastStore.second;
495 
496  CharUnits SplitBeforeOffset = LastStoreOffset;
497  CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
498  assert(!SplitBeforeSize.isNegative() && "negative store size!");
499  if (!SplitBeforeSize.isZero())
500  Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
501 
502  CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
503  CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
504  assert(!SplitAfterSize.isNegative() && "negative store size!");
505  if (!SplitAfterSize.isZero())
506  Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
507  }
508 
509  // If the type contains a pointer to data member we can't memset it to zero.
510  // Instead, create a null constant and copy it to the destination.
511  // TODO: there are other patterns besides zero that we can usefully memset,
512  // like -1, which happens to be the pattern used by member-pointers.
513  // TODO: isZeroInitializable can be over-conservative in the case where a
514  // virtual base contains a member pointer.
515  llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
516  if (!NullConstantForBase->isNullValue()) {
517  llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
518  CGF.CGM.getModule(), NullConstantForBase->getType(),
519  /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
520  NullConstantForBase, Twine());
521 
522  CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
523  DestPtr.getAlignment());
524  NullVariable->setAlignment(Align.getQuantity());
525 
526  Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
527 
528  // Get and call the appropriate llvm.memcpy overload.
529  for (std::pair<CharUnits, CharUnits> Store : Stores) {
530  CharUnits StoreOffset = Store.first;
531  CharUnits StoreSize = Store.second;
532  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
533  CGF.Builder.CreateMemCpy(
534  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
535  CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
536  StoreSizeVal);
537  }
538 
539  // Otherwise, just memset the whole thing to zero. This is legal
540  // because in LLVM, all default initializers (other than the ones we just
541  // handled above) are guaranteed to have a bit pattern of all zeros.
542  } else {
543  for (std::pair<CharUnits, CharUnits> Store : Stores) {
544  CharUnits StoreOffset = Store.first;
545  CharUnits StoreSize = Store.second;
546  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
547  CGF.Builder.CreateMemSet(
548  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
549  CGF.Builder.getInt8(0), StoreSizeVal);
550  }
551  }
552 }
553 
554 void
556  AggValueSlot Dest) {
557  assert(!Dest.isIgnored() && "Must have a destination!");
558  const CXXConstructorDecl *CD = E->getConstructor();
559 
560  // If we require zero initialization before (or instead of) calling the
561  // constructor, as can be the case with a non-user-provided default
562  // constructor, emit the zero initialization now, unless destination is
563  // already zeroed.
564  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
565  switch (E->getConstructionKind()) {
568  EmitNullInitialization(Dest.getAddress(), E->getType());
569  break;
573  CD->getParent());
574  break;
575  }
576  }
577 
578  // If this is a call to a trivial default constructor, do nothing.
579  if (CD->isTrivial() && CD->isDefaultConstructor())
580  return;
581 
582  // Elide the constructor if we're constructing from a temporary.
583  // The temporary check is required because Sema sets this on NRVO
584  // returns.
585  if (getLangOpts().ElideConstructors && E->isElidable()) {
586  assert(getContext().hasSameUnqualifiedType(E->getType(),
587  E->getArg(0)->getType()));
588  if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
589  EmitAggExpr(E->getArg(0), Dest);
590  return;
591  }
592  }
593 
594  if (const ArrayType *arrayType
595  = getContext().getAsArrayType(E->getType())) {
596  EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
597  Dest.isSanitizerChecked());
598  } else {
600  bool ForVirtualBase = false;
601  bool Delegating = false;
602 
603  switch (E->getConstructionKind()) {
605  // We should be emitting a constructor; GlobalDecl will assert this
606  Type = CurGD.getCtorType();
607  Delegating = true;
608  break;
609 
611  Type = Ctor_Complete;
612  break;
613 
615  ForVirtualBase = true;
616  LLVM_FALLTHROUGH;
617 
619  Type = Ctor_Base;
620  }
621 
622  // Call the constructor.
623  EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
624  Dest.getAddress(), E, Dest.mayOverlap(),
625  Dest.isSanitizerChecked());
626  }
627 }
628 
630  const Expr *Exp) {
631  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
632  Exp = E->getSubExpr();
633  assert(isa<CXXConstructExpr>(Exp) &&
634  "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
635  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
636  const CXXConstructorDecl *CD = E->getConstructor();
637  RunCleanupsScope Scope(*this);
638 
639  // If we require zero initialization before (or instead of) calling the
640  // constructor, as can be the case with a non-user-provided default
641  // constructor, emit the zero initialization now.
642  // FIXME. Do I still need this for a copy ctor synthesis?
644  EmitNullInitialization(Dest, E->getType());
645 
646  assert(!getContext().getAsConstantArrayType(E->getType())
647  && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
648  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
649 }
650 
652  const CXXNewExpr *E) {
653  if (!E->isArray())
654  return CharUnits::Zero();
655 
656  // No cookie is required if the operator new[] being used is the
657  // reserved placement operator new[].
659  return CharUnits::Zero();
660 
661  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
662 }
663 
665  const CXXNewExpr *e,
666  unsigned minElements,
667  llvm::Value *&numElements,
668  llvm::Value *&sizeWithoutCookie) {
670 
671  if (!e->isArray()) {
672  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
673  sizeWithoutCookie
674  = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
675  return sizeWithoutCookie;
676  }
677 
678  // The width of size_t.
679  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
680 
681  // Figure out the cookie size.
682  llvm::APInt cookieSize(sizeWidth,
683  CalculateCookiePadding(CGF, e).getQuantity());
684 
685  // Emit the array size expression.
686  // We multiply the size of all dimensions for NumElements.
687  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
688  numElements =
690  if (!numElements)
691  numElements = CGF.EmitScalarExpr(e->getArraySize());
692  assert(isa<llvm::IntegerType>(numElements->getType()));
693 
694  // The number of elements can be have an arbitrary integer type;
695  // essentially, we need to multiply it by a constant factor, add a
696  // cookie size, and verify that the result is representable as a
697  // size_t. That's just a gloss, though, and it's wrong in one
698  // important way: if the count is negative, it's an error even if
699  // the cookie size would bring the total size >= 0.
700  bool isSigned
702  llvm::IntegerType *numElementsType
703  = cast<llvm::IntegerType>(numElements->getType());
704  unsigned numElementsWidth = numElementsType->getBitWidth();
705 
706  // Compute the constant factor.
707  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
708  while (const ConstantArrayType *CAT
709  = CGF.getContext().getAsConstantArrayType(type)) {
710  type = CAT->getElementType();
711  arraySizeMultiplier *= CAT->getSize();
712  }
713 
714  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
715  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
716  typeSizeMultiplier *= arraySizeMultiplier;
717 
718  // This will be a size_t.
719  llvm::Value *size;
720 
721  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
722  // Don't bloat the -O0 code.
723  if (llvm::ConstantInt *numElementsC =
724  dyn_cast<llvm::ConstantInt>(numElements)) {
725  const llvm::APInt &count = numElementsC->getValue();
726 
727  bool hasAnyOverflow = false;
728 
729  // If 'count' was a negative number, it's an overflow.
730  if (isSigned && count.isNegative())
731  hasAnyOverflow = true;
732 
733  // We want to do all this arithmetic in size_t. If numElements is
734  // wider than that, check whether it's already too big, and if so,
735  // overflow.
736  else if (numElementsWidth > sizeWidth &&
737  numElementsWidth - sizeWidth > count.countLeadingZeros())
738  hasAnyOverflow = true;
739 
740  // Okay, compute a count at the right width.
741  llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
742 
743  // If there is a brace-initializer, we cannot allocate fewer elements than
744  // there are initializers. If we do, that's treated like an overflow.
745  if (adjustedCount.ult(minElements))
746  hasAnyOverflow = true;
747 
748  // Scale numElements by that. This might overflow, but we don't
749  // care because it only overflows if allocationSize does, too, and
750  // if that overflows then we shouldn't use this.
751  numElements = llvm::ConstantInt::get(CGF.SizeTy,
752  adjustedCount * arraySizeMultiplier);
753 
754  // Compute the size before cookie, and track whether it overflowed.
755  bool overflow;
756  llvm::APInt allocationSize
757  = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
758  hasAnyOverflow |= overflow;
759 
760  // Add in the cookie, and check whether it's overflowed.
761  if (cookieSize != 0) {
762  // Save the current size without a cookie. This shouldn't be
763  // used if there was overflow.
764  sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
765 
766  allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
767  hasAnyOverflow |= overflow;
768  }
769 
770  // On overflow, produce a -1 so operator new will fail.
771  if (hasAnyOverflow) {
772  size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
773  } else {
774  size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
775  }
776 
777  // Otherwise, we might need to use the overflow intrinsics.
778  } else {
779  // There are up to five conditions we need to test for:
780  // 1) if isSigned, we need to check whether numElements is negative;
781  // 2) if numElementsWidth > sizeWidth, we need to check whether
782  // numElements is larger than something representable in size_t;
783  // 3) if minElements > 0, we need to check whether numElements is smaller
784  // than that.
785  // 4) we need to compute
786  // sizeWithoutCookie := numElements * typeSizeMultiplier
787  // and check whether it overflows; and
788  // 5) if we need a cookie, we need to compute
789  // size := sizeWithoutCookie + cookieSize
790  // and check whether it overflows.
791 
792  llvm::Value *hasOverflow = nullptr;
793 
794  // If numElementsWidth > sizeWidth, then one way or another, we're
795  // going to have to do a comparison for (2), and this happens to
796  // take care of (1), too.
797  if (numElementsWidth > sizeWidth) {
798  llvm::APInt threshold(numElementsWidth, 1);
799  threshold <<= sizeWidth;
800 
801  llvm::Value *thresholdV
802  = llvm::ConstantInt::get(numElementsType, threshold);
803 
804  hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
805  numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
806 
807  // Otherwise, if we're signed, we want to sext up to size_t.
808  } else if (isSigned) {
809  if (numElementsWidth < sizeWidth)
810  numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
811 
812  // If there's a non-1 type size multiplier, then we can do the
813  // signedness check at the same time as we do the multiply
814  // because a negative number times anything will cause an
815  // unsigned overflow. Otherwise, we have to do it here. But at least
816  // in this case, we can subsume the >= minElements check.
817  if (typeSizeMultiplier == 1)
818  hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
819  llvm::ConstantInt::get(CGF.SizeTy, minElements));
820 
821  // Otherwise, zext up to size_t if necessary.
822  } else if (numElementsWidth < sizeWidth) {
823  numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
824  }
825 
826  assert(numElements->getType() == CGF.SizeTy);
827 
828  if (minElements) {
829  // Don't allow allocation of fewer elements than we have initializers.
830  if (!hasOverflow) {
831  hasOverflow = CGF.Builder.CreateICmpULT(numElements,
832  llvm::ConstantInt::get(CGF.SizeTy, minElements));
833  } else if (numElementsWidth > sizeWidth) {
834  // The other existing overflow subsumes this check.
835  // We do an unsigned comparison, since any signed value < -1 is
836  // taken care of either above or below.
837  hasOverflow = CGF.Builder.CreateOr(hasOverflow,
838  CGF.Builder.CreateICmpULT(numElements,
839  llvm::ConstantInt::get(CGF.SizeTy, minElements)));
840  }
841  }
842 
843  size = numElements;
844 
845  // Multiply by the type size if necessary. This multiplier
846  // includes all the factors for nested arrays.
847  //
848  // This step also causes numElements to be scaled up by the
849  // nested-array factor if necessary. Overflow on this computation
850  // can be ignored because the result shouldn't be used if
851  // allocation fails.
852  if (typeSizeMultiplier != 1) {
853  llvm::Function *umul_with_overflow
854  = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
855 
856  llvm::Value *tsmV =
857  llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
858  llvm::Value *result =
859  CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
860 
861  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
862  if (hasOverflow)
863  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
864  else
865  hasOverflow = overflowed;
866 
867  size = CGF.Builder.CreateExtractValue(result, 0);
868 
869  // Also scale up numElements by the array size multiplier.
870  if (arraySizeMultiplier != 1) {
871  // If the base element type size is 1, then we can re-use the
872  // multiply we just did.
873  if (typeSize.isOne()) {
874  assert(arraySizeMultiplier == typeSizeMultiplier);
875  numElements = size;
876 
877  // Otherwise we need a separate multiply.
878  } else {
879  llvm::Value *asmV =
880  llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
881  numElements = CGF.Builder.CreateMul(numElements, asmV);
882  }
883  }
884  } else {
885  // numElements doesn't need to be scaled.
886  assert(arraySizeMultiplier == 1);
887  }
888 
889  // Add in the cookie size if necessary.
890  if (cookieSize != 0) {
891  sizeWithoutCookie = size;
892 
893  llvm::Function *uadd_with_overflow
894  = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
895 
896  llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
897  llvm::Value *result =
898  CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
899 
900  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
901  if (hasOverflow)
902  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
903  else
904  hasOverflow = overflowed;
905 
906  size = CGF.Builder.CreateExtractValue(result, 0);
907  }
908 
909  // If we had any possibility of dynamic overflow, make a select to
910  // overwrite 'size' with an all-ones value, which should cause
911  // operator new to throw.
912  if (hasOverflow)
913  size = CGF.Builder.CreateSelect(hasOverflow,
914  llvm::Constant::getAllOnesValue(CGF.SizeTy),
915  size);
916  }
917 
918  if (cookieSize == 0)
919  sizeWithoutCookie = size;
920  else
921  assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
922 
923  return size;
924 }
925 
926 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
927  QualType AllocType, Address NewPtr,
928  AggValueSlot::Overlap_t MayOverlap) {
929  // FIXME: Refactor with EmitExprAsInit.
930  switch (CGF.getEvaluationKind(AllocType)) {
931  case TEK_Scalar:
932  CGF.EmitScalarInit(Init, nullptr,
933  CGF.MakeAddrLValue(NewPtr, AllocType), false);
934  return;
935  case TEK_Complex:
936  CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
937  /*isInit*/ true);
938  return;
939  case TEK_Aggregate: {
940  AggValueSlot Slot
941  = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
945  MayOverlap, AggValueSlot::IsNotZeroed,
947  CGF.EmitAggExpr(Init, Slot);
948  return;
949  }
950  }
951  llvm_unreachable("bad evaluation kind");
952 }
953 
955  const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
956  Address BeginPtr, llvm::Value *NumElements,
957  llvm::Value *AllocSizeWithoutCookie) {
958  // If we have a type with trivial initialization and no initializer,
959  // there's nothing to do.
960  if (!E->hasInitializer())
961  return;
962 
963  Address CurPtr = BeginPtr;
964 
965  unsigned InitListElements = 0;
966 
967  const Expr *Init = E->getInitializer();
968  Address EndOfInit = Address::invalid();
969  QualType::DestructionKind DtorKind = ElementType.isDestructedType();
971  llvm::Instruction *CleanupDominator = nullptr;
972 
973  CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
974  CharUnits ElementAlign =
975  BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
976 
977  // Attempt to perform zero-initialization using memset.
978  auto TryMemsetInitialization = [&]() -> bool {
979  // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
980  // we can initialize with a memset to -1.
981  if (!CGM.getTypes().isZeroInitializable(ElementType))
982  return false;
983 
984  // Optimization: since zero initialization will just set the memory
985  // to all zeroes, generate a single memset to do it in one shot.
986 
987  // Subtract out the size of any elements we've already initialized.
988  auto *RemainingSize = AllocSizeWithoutCookie;
989  if (InitListElements) {
990  // We know this can't overflow; we check this when doing the allocation.
991  auto *InitializedSize = llvm::ConstantInt::get(
992  RemainingSize->getType(),
993  getContext().getTypeSizeInChars(ElementType).getQuantity() *
994  InitListElements);
995  RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
996  }
997 
998  // Create the memset.
999  Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1000  return true;
1001  };
1002 
1003  // If the initializer is an initializer list, first do the explicit elements.
1004  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1005  // Initializing from a (braced) string literal is a special case; the init
1006  // list element does not initialize a (single) array element.
1007  if (ILE->isStringLiteralInit()) {
1008  // Initialize the initial portion of length equal to that of the string
1009  // literal. The allocation must be for at least this much; we emitted a
1010  // check for that earlier.
1011  AggValueSlot Slot =
1012  AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1019  EmitAggExpr(ILE->getInit(0), Slot);
1020 
1021  // Move past these elements.
1022  InitListElements =
1023  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1024  ->getSize().getZExtValue();
1025  CurPtr =
1026  Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1027  Builder.getSize(InitListElements),
1028  "string.init.end"),
1029  CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1030  ElementSize));
1031 
1032  // Zero out the rest, if any remain.
1033  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1034  if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1035  bool OK = TryMemsetInitialization();
1036  (void)OK;
1037  assert(OK && "couldn't memset character type?");
1038  }
1039  return;
1040  }
1041 
1042  InitListElements = ILE->getNumInits();
1043 
1044  // If this is a multi-dimensional array new, we will initialize multiple
1045  // elements with each init list element.
1046  QualType AllocType = E->getAllocatedType();
1047  if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1048  AllocType->getAsArrayTypeUnsafe())) {
1049  ElementTy = ConvertTypeForMem(AllocType);
1050  CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1051  InitListElements *= getContext().getConstantArrayElementCount(CAT);
1052  }
1053 
1054  // Enter a partial-destruction Cleanup if necessary.
1055  if (needsEHCleanup(DtorKind)) {
1056  // In principle we could tell the Cleanup where we are more
1057  // directly, but the control flow can get so varied here that it
1058  // would actually be quite complex. Therefore we go through an
1059  // alloca.
1060  EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1061  "array.init.end");
1062  CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1063  pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1064  ElementType, ElementAlign,
1065  getDestroyer(DtorKind));
1066  Cleanup = EHStack.stable_begin();
1067  }
1068 
1069  CharUnits StartAlign = CurPtr.getAlignment();
1070  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1071  // Tell the cleanup that it needs to destroy up to this
1072  // element. TODO: some of these stores can be trivially
1073  // observed to be unnecessary.
1074  if (EndOfInit.isValid()) {
1075  auto FinishedPtr =
1076  Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1077  Builder.CreateStore(FinishedPtr, EndOfInit);
1078  }
1079  // FIXME: If the last initializer is an incomplete initializer list for
1080  // an array, and we have an array filler, we can fold together the two
1081  // initialization loops.
1082  StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1083  ILE->getInit(i)->getType(), CurPtr,
1085  CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1086  Builder.getSize(1),
1087  "array.exp.next"),
1088  StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1089  }
1090 
1091  // The remaining elements are filled with the array filler expression.
1092  Init = ILE->getArrayFiller();
1093 
1094  // Extract the initializer for the individual array elements by pulling
1095  // out the array filler from all the nested initializer lists. This avoids
1096  // generating a nested loop for the initialization.
1097  while (Init && Init->getType()->isConstantArrayType()) {
1098  auto *SubILE = dyn_cast<InitListExpr>(Init);
1099  if (!SubILE)
1100  break;
1101  assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1102  Init = SubILE->getArrayFiller();
1103  }
1104 
1105  // Switch back to initializing one base element at a time.
1106  CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1107  }
1108 
1109  // If all elements have already been initialized, skip any further
1110  // initialization.
1111  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1112  if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1113  // If there was a Cleanup, deactivate it.
1114  if (CleanupDominator)
1115  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1116  return;
1117  }
1118 
1119  assert(Init && "have trailing elements to initialize but no initializer");
1120 
1121  // If this is a constructor call, try to optimize it out, and failing that
1122  // emit a single loop to initialize all remaining elements.
1123  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1124  CXXConstructorDecl *Ctor = CCE->getConstructor();
1125  if (Ctor->isTrivial()) {
1126  // If new expression did not specify value-initialization, then there
1127  // is no initialization.
1128  if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1129  return;
1130 
1131  if (TryMemsetInitialization())
1132  return;
1133  }
1134 
1135  // Store the new Cleanup position for irregular Cleanups.
1136  //
1137  // FIXME: Share this cleanup with the constructor call emission rather than
1138  // having it create a cleanup of its own.
1139  if (EndOfInit.isValid())
1140  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1141 
1142  // Emit a constructor call loop to initialize the remaining elements.
1143  if (InitListElements)
1144  NumElements = Builder.CreateSub(
1145  NumElements,
1146  llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1147  EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1148  /*NewPointerIsChecked*/true,
1149  CCE->requiresZeroInitialization());
1150  return;
1151  }
1152 
1153  // If this is value-initialization, we can usually use memset.
1154  ImplicitValueInitExpr IVIE(ElementType);
1155  if (isa<ImplicitValueInitExpr>(Init)) {
1156  if (TryMemsetInitialization())
1157  return;
1158 
1159  // Switch to an ImplicitValueInitExpr for the element type. This handles
1160  // only one case: multidimensional array new of pointers to members. In
1161  // all other cases, we already have an initializer for the array element.
1162  Init = &IVIE;
1163  }
1164 
1165  // At this point we should have found an initializer for the individual
1166  // elements of the array.
1167  assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1168  "got wrong type of element to initialize");
1169 
1170  // If we have an empty initializer list, we can usually use memset.
1171  if (auto *ILE = dyn_cast<InitListExpr>(Init))
1172  if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1173  return;
1174 
1175  // If we have a struct whose every field is value-initialized, we can
1176  // usually use memset.
1177  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1178  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1179  if (RType->getDecl()->isStruct()) {
1180  unsigned NumElements = 0;
1181  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1182  NumElements = CXXRD->getNumBases();
1183  for (auto *Field : RType->getDecl()->fields())
1184  if (!Field->isUnnamedBitfield())
1185  ++NumElements;
1186  // FIXME: Recurse into nested InitListExprs.
1187  if (ILE->getNumInits() == NumElements)
1188  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1189  if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1190  --NumElements;
1191  if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1192  return;
1193  }
1194  }
1195  }
1196 
1197  // Create the loop blocks.
1198  llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1199  llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1200  llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1201 
1202  // Find the end of the array, hoisted out of the loop.
1203  llvm::Value *EndPtr =
1204  Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1205 
1206  // If the number of elements isn't constant, we have to now check if there is
1207  // anything left to initialize.
1208  if (!ConstNum) {
1209  llvm::Value *IsEmpty =
1210  Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1211  Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1212  }
1213 
1214  // Enter the loop.
1215  EmitBlock(LoopBB);
1216 
1217  // Set up the current-element phi.
1218  llvm::PHINode *CurPtrPhi =
1219  Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1220  CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1221 
1222  CurPtr = Address(CurPtrPhi, ElementAlign);
1223 
1224  // Store the new Cleanup position for irregular Cleanups.
1225  if (EndOfInit.isValid())
1226  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1227 
1228  // Enter a partial-destruction Cleanup if necessary.
1229  if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1230  pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1231  ElementType, ElementAlign,
1232  getDestroyer(DtorKind));
1233  Cleanup = EHStack.stable_begin();
1234  CleanupDominator = Builder.CreateUnreachable();
1235  }
1236 
1237  // Emit the initializer into this element.
1238  StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1240 
1241  // Leave the Cleanup if we entered one.
1242  if (CleanupDominator) {
1243  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1244  CleanupDominator->eraseFromParent();
1245  }
1246 
1247  // Advance to the next element by adjusting the pointer type as necessary.
1248  llvm::Value *NextPtr =
1249  Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1250  "array.next");
1251 
1252  // Check whether we've gotten to the end of the array and, if so,
1253  // exit the loop.
1254  llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1255  Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1256  CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1257 
1258  EmitBlock(ContBB);
1259 }
1260 
1261 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1262  QualType ElementType, llvm::Type *ElementTy,
1263  Address NewPtr, llvm::Value *NumElements,
1264  llvm::Value *AllocSizeWithoutCookie) {
1265  ApplyDebugLocation DL(CGF, E);
1266  if (E->isArray())
1267  CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1268  AllocSizeWithoutCookie);
1269  else if (const Expr *Init = E->getInitializer())
1270  StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1272 }
1273 
1274 /// Emit a call to an operator new or operator delete function, as implicitly
1275 /// created by new-expressions and delete-expressions.
1277  const FunctionDecl *CalleeDecl,
1278  const FunctionProtoType *CalleeType,
1279  const CallArgList &Args) {
1280  llvm::CallBase *CallOrInvoke;
1281  llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1282  CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1283  RValue RV =
1285  Args, CalleeType, /*chainCall=*/false),
1286  Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1287 
1288  /// C++1y [expr.new]p10:
1289  /// [In a new-expression,] an implementation is allowed to omit a call
1290  /// to a replaceable global allocation function.
1291  ///
1292  /// We model such elidable calls with the 'builtin' attribute.
1293  llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1294  if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1295  Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1296  CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1297  llvm::Attribute::Builtin);
1298  }
1299 
1300  return RV;
1301 }
1302 
1304  const CallExpr *TheCall,
1305  bool IsDelete) {
1306  CallArgList Args;
1307  EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1308  // Find the allocation or deallocation function that we're calling.
1309  ASTContext &Ctx = getContext();
1310  DeclarationName Name = Ctx.DeclarationNames
1311  .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1312 
1313  for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1314  if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1315  if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1316  return EmitNewDeleteCall(*this, FD, Type, Args);
1317  llvm_unreachable("predeclared global operator new/delete is missing");
1318 }
1319 
1320 namespace {
1321 /// The parameters to pass to a usual operator delete.
1322 struct UsualDeleteParams {
1323  bool DestroyingDelete = false;
1324  bool Size = false;
1325  bool Alignment = false;
1326 };
1327 }
1328 
1329 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1330  UsualDeleteParams Params;
1331 
1332  const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1333  auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1334 
1335  // The first argument is always a void*.
1336  ++AI;
1337 
1338  // The next parameter may be a std::destroying_delete_t.
1339  if (FD->isDestroyingOperatorDelete()) {
1340  Params.DestroyingDelete = true;
1341  assert(AI != AE);
1342  ++AI;
1343  }
1344 
1345  // Figure out what other parameters we should be implicitly passing.
1346  if (AI != AE && (*AI)->isIntegerType()) {
1347  Params.Size = true;
1348  ++AI;
1349  }
1350 
1351  if (AI != AE && (*AI)->isAlignValT()) {
1352  Params.Alignment = true;
1353  ++AI;
1354  }
1355 
1356  assert(AI == AE && "unexpected usual deallocation function parameter");
1357  return Params;
1358 }
1359 
1360 namespace {
1361  /// A cleanup to call the given 'operator delete' function upon abnormal
1362  /// exit from a new expression. Templated on a traits type that deals with
1363  /// ensuring that the arguments dominate the cleanup if necessary.
1364  template<typename Traits>
1365  class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1366  /// Type used to hold llvm::Value*s.
1367  typedef typename Traits::ValueTy ValueTy;
1368  /// Type used to hold RValues.
1369  typedef typename Traits::RValueTy RValueTy;
1370  struct PlacementArg {
1371  RValueTy ArgValue;
1372  QualType ArgType;
1373  };
1374 
1375  unsigned NumPlacementArgs : 31;
1376  unsigned PassAlignmentToPlacementDelete : 1;
1377  const FunctionDecl *OperatorDelete;
1378  ValueTy Ptr;
1379  ValueTy AllocSize;
1380  CharUnits AllocAlign;
1381 
1382  PlacementArg *getPlacementArgs() {
1383  return reinterpret_cast<PlacementArg *>(this + 1);
1384  }
1385 
1386  public:
1387  static size_t getExtraSize(size_t NumPlacementArgs) {
1388  return NumPlacementArgs * sizeof(PlacementArg);
1389  }
1390 
1391  CallDeleteDuringNew(size_t NumPlacementArgs,
1392  const FunctionDecl *OperatorDelete, ValueTy Ptr,
1393  ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1394  CharUnits AllocAlign)
1395  : NumPlacementArgs(NumPlacementArgs),
1396  PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1397  OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1398  AllocAlign(AllocAlign) {}
1399 
1400  void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1401  assert(I < NumPlacementArgs && "index out of range");
1402  getPlacementArgs()[I] = {Arg, Type};
1403  }
1404 
1405  void Emit(CodeGenFunction &CGF, Flags flags) override {
1406  const FunctionProtoType *FPT =
1407  OperatorDelete->getType()->getAs<FunctionProtoType>();
1408  CallArgList DeleteArgs;
1409 
1410  // The first argument is always a void* (or C* for a destroying operator
1411  // delete for class type C).
1412  DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1413 
1414  // Figure out what other parameters we should be implicitly passing.
1415  UsualDeleteParams Params;
1416  if (NumPlacementArgs) {
1417  // A placement deallocation function is implicitly passed an alignment
1418  // if the placement allocation function was, but is never passed a size.
1419  Params.Alignment = PassAlignmentToPlacementDelete;
1420  } else {
1421  // For a non-placement new-expression, 'operator delete' can take a
1422  // size and/or an alignment if it has the right parameters.
1423  Params = getUsualDeleteParams(OperatorDelete);
1424  }
1425 
1426  assert(!Params.DestroyingDelete &&
1427  "should not call destroying delete in a new-expression");
1428 
1429  // The second argument can be a std::size_t (for non-placement delete).
1430  if (Params.Size)
1431  DeleteArgs.add(Traits::get(CGF, AllocSize),
1432  CGF.getContext().getSizeType());
1433 
1434  // The next (second or third) argument can be a std::align_val_t, which
1435  // is an enum whose underlying type is std::size_t.
1436  // FIXME: Use the right type as the parameter type. Note that in a call
1437  // to operator delete(size_t, ...), we may not have it available.
1438  if (Params.Alignment)
1439  DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1440  CGF.SizeTy, AllocAlign.getQuantity())),
1441  CGF.getContext().getSizeType());
1442 
1443  // Pass the rest of the arguments, which must match exactly.
1444  for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1445  auto Arg = getPlacementArgs()[I];
1446  DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1447  }
1448 
1449  // Call 'operator delete'.
1450  EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1451  }
1452  };
1453 }
1454 
1455 /// Enter a cleanup to call 'operator delete' if the initializer in a
1456 /// new-expression throws.
1458  const CXXNewExpr *E,
1459  Address NewPtr,
1460  llvm::Value *AllocSize,
1461  CharUnits AllocAlign,
1462  const CallArgList &NewArgs) {
1463  unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1464 
1465  // If we're not inside a conditional branch, then the cleanup will
1466  // dominate and we can do the easier (and more efficient) thing.
1467  if (!CGF.isInConditionalBranch()) {
1468  struct DirectCleanupTraits {
1469  typedef llvm::Value *ValueTy;
1470  typedef RValue RValueTy;
1471  static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1472  static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1473  };
1474 
1475  typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1476 
1477  DirectCleanup *Cleanup = CGF.EHStack
1478  .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1479  E->getNumPlacementArgs(),
1480  E->getOperatorDelete(),
1481  NewPtr.getPointer(),
1482  AllocSize,
1483  E->passAlignment(),
1484  AllocAlign);
1485  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1486  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1487  Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1488  }
1489 
1490  return;
1491  }
1492 
1493  // Otherwise, we need to save all this stuff.
1496  DominatingValue<RValue>::saved_type SavedAllocSize =
1497  DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1498 
1499  struct ConditionalCleanupTraits {
1500  typedef DominatingValue<RValue>::saved_type ValueTy;
1501  typedef DominatingValue<RValue>::saved_type RValueTy;
1502  static RValue get(CodeGenFunction &CGF, ValueTy V) {
1503  return V.restore(CGF);
1504  }
1505  };
1506  typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1507 
1508  ConditionalCleanup *Cleanup = CGF.EHStack
1509  .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1510  E->getNumPlacementArgs(),
1511  E->getOperatorDelete(),
1512  SavedNewPtr,
1513  SavedAllocSize,
1514  E->passAlignment(),
1515  AllocAlign);
1516  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1517  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1518  Cleanup->setPlacementArg(
1519  I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1520  }
1521 
1522  CGF.initFullExprCleanup();
1523 }
1524 
1526  // The element type being allocated.
1527  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1528 
1529  // 1. Build a call to the allocation function.
1530  FunctionDecl *allocator = E->getOperatorNew();
1531 
1532  // If there is a brace-initializer, cannot allocate fewer elements than inits.
1533  unsigned minElements = 0;
1534  if (E->isArray() && E->hasInitializer()) {
1535  const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1536  if (ILE && ILE->isStringLiteralInit())
1537  minElements =
1538  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1539  ->getSize().getZExtValue();
1540  else if (ILE)
1541  minElements = ILE->getNumInits();
1542  }
1543 
1544  llvm::Value *numElements = nullptr;
1545  llvm::Value *allocSizeWithoutCookie = nullptr;
1546  llvm::Value *allocSize =
1547  EmitCXXNewAllocSize(*this, E, minElements, numElements,
1548  allocSizeWithoutCookie);
1549  CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1550 
1551  // Emit the allocation call. If the allocator is a global placement
1552  // operator, just "inline" it directly.
1553  Address allocation = Address::invalid();
1554  CallArgList allocatorArgs;
1555  if (allocator->isReservedGlobalPlacementOperator()) {
1556  assert(E->getNumPlacementArgs() == 1);
1557  const Expr *arg = *E->placement_arguments().begin();
1558 
1559  LValueBaseInfo BaseInfo;
1560  allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1561 
1562  // The pointer expression will, in many cases, be an opaque void*.
1563  // In these cases, discard the computed alignment and use the
1564  // formal alignment of the allocated type.
1565  if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1566  allocation = Address(allocation.getPointer(), allocAlign);
1567 
1568  // Set up allocatorArgs for the call to operator delete if it's not
1569  // the reserved global operator.
1570  if (E->getOperatorDelete() &&
1572  allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1573  allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1574  }
1575 
1576  } else {
1577  const FunctionProtoType *allocatorType =
1578  allocator->getType()->castAs<FunctionProtoType>();
1579  unsigned ParamsToSkip = 0;
1580 
1581  // The allocation size is the first argument.
1582  QualType sizeType = getContext().getSizeType();
1583  allocatorArgs.add(RValue::get(allocSize), sizeType);
1584  ++ParamsToSkip;
1585 
1586  if (allocSize != allocSizeWithoutCookie) {
1587  CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1588  allocAlign = std::max(allocAlign, cookieAlign);
1589  }
1590 
1591  // The allocation alignment may be passed as the second argument.
1592  if (E->passAlignment()) {
1593  QualType AlignValT = sizeType;
1594  if (allocatorType->getNumParams() > 1) {
1595  AlignValT = allocatorType->getParamType(1);
1596  assert(getContext().hasSameUnqualifiedType(
1597  AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1598  sizeType) &&
1599  "wrong type for alignment parameter");
1600  ++ParamsToSkip;
1601  } else {
1602  // Corner case, passing alignment to 'operator new(size_t, ...)'.
1603  assert(allocator->isVariadic() && "can't pass alignment to allocator");
1604  }
1605  allocatorArgs.add(
1606  RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1607  AlignValT);
1608  }
1609 
1610  // FIXME: Why do we not pass a CalleeDecl here?
1611  EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1612  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1613 
1614  RValue RV =
1615  EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1616 
1617  // If this was a call to a global replaceable allocation function that does
1618  // not take an alignment argument, the allocator is known to produce
1619  // storage that's suitably aligned for any object that fits, up to a known
1620  // threshold. Otherwise assume it's suitably aligned for the allocated type.
1621  CharUnits allocationAlign = allocAlign;
1622  if (!E->passAlignment() &&
1624  unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1625  Target.getNewAlign(), getContext().getTypeSize(allocType)));
1626  allocationAlign = std::max(
1627  allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1628  }
1629 
1630  allocation = Address(RV.getScalarVal(), allocationAlign);
1631  }
1632 
1633  // Emit a null check on the allocation result if the allocation
1634  // function is allowed to return null (because it has a non-throwing
1635  // exception spec or is the reserved placement new) and we have an
1636  // interesting initializer will be running sanitizers on the initialization.
1637  bool nullCheck = E->shouldNullCheckAllocation() &&
1638  (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1639  sanitizePerformTypeCheck());
1640 
1641  llvm::BasicBlock *nullCheckBB = nullptr;
1642  llvm::BasicBlock *contBB = nullptr;
1643 
1644  // The null-check means that the initializer is conditionally
1645  // evaluated.
1646  ConditionalEvaluation conditional(*this);
1647 
1648  if (nullCheck) {
1649  conditional.begin(*this);
1650 
1651  nullCheckBB = Builder.GetInsertBlock();
1652  llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1653  contBB = createBasicBlock("new.cont");
1654 
1655  llvm::Value *isNull =
1656  Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1657  Builder.CreateCondBr(isNull, contBB, notNullBB);
1658  EmitBlock(notNullBB);
1659  }
1660 
1661  // If there's an operator delete, enter a cleanup to call it if an
1662  // exception is thrown.
1663  EHScopeStack::stable_iterator operatorDeleteCleanup;
1664  llvm::Instruction *cleanupDominator = nullptr;
1665  if (E->getOperatorDelete() &&
1667  EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1668  allocatorArgs);
1669  operatorDeleteCleanup = EHStack.stable_begin();
1670  cleanupDominator = Builder.CreateUnreachable();
1671  }
1672 
1673  assert((allocSize == allocSizeWithoutCookie) ==
1674  CalculateCookiePadding(*this, E).isZero());
1675  if (allocSize != allocSizeWithoutCookie) {
1676  assert(E->isArray());
1677  allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1678  numElements,
1679  E, allocType);
1680  }
1681 
1682  llvm::Type *elementTy = ConvertTypeForMem(allocType);
1683  Address result = Builder.CreateElementBitCast(allocation, elementTy);
1684 
1685  // Passing pointer through launder.invariant.group to avoid propagation of
1686  // vptrs information which may be included in previous type.
1687  // To not break LTO with different optimizations levels, we do it regardless
1688  // of optimization level.
1689  if (CGM.getCodeGenOpts().StrictVTablePointers &&
1690  allocator->isReservedGlobalPlacementOperator())
1691  result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1692  result.getAlignment());
1693 
1694  // Emit sanitizer checks for pointer value now, so that in the case of an
1695  // array it was checked only once and not at each constructor call. We may
1696  // have already checked that the pointer is non-null.
1697  // FIXME: If we have an array cookie and a potentially-throwing allocator,
1698  // we'll null check the wrong pointer here.
1699  SanitizerSet SkippedChecks;
1700  SkippedChecks.set(SanitizerKind::Null, nullCheck);
1703  result.getPointer(), allocType, result.getAlignment(),
1704  SkippedChecks, numElements);
1705 
1706  EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1707  allocSizeWithoutCookie);
1708  if (E->isArray()) {
1709  // NewPtr is a pointer to the base element type. If we're
1710  // allocating an array of arrays, we'll need to cast back to the
1711  // array pointer type.
1712  llvm::Type *resultType = ConvertTypeForMem(E->getType());
1713  if (result.getType() != resultType)
1714  result = Builder.CreateBitCast(result, resultType);
1715  }
1716 
1717  // Deactivate the 'operator delete' cleanup if we finished
1718  // initialization.
1719  if (operatorDeleteCleanup.isValid()) {
1720  DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1721  cleanupDominator->eraseFromParent();
1722  }
1723 
1724  llvm::Value *resultPtr = result.getPointer();
1725  if (nullCheck) {
1726  conditional.end(*this);
1727 
1728  llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1729  EmitBlock(contBB);
1730 
1731  llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1732  PHI->addIncoming(resultPtr, notNullBB);
1733  PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1734  nullCheckBB);
1735 
1736  resultPtr = PHI;
1737  }
1738 
1739  return resultPtr;
1740 }
1741 
1743  llvm::Value *Ptr, QualType DeleteTy,
1744  llvm::Value *NumElements,
1745  CharUnits CookieSize) {
1746  assert((!NumElements && CookieSize.isZero()) ||
1747  DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1748 
1749  const FunctionProtoType *DeleteFTy =
1750  DeleteFD->getType()->getAs<FunctionProtoType>();
1751 
1752  CallArgList DeleteArgs;
1753 
1754  auto Params = getUsualDeleteParams(DeleteFD);
1755  auto ParamTypeIt = DeleteFTy->param_type_begin();
1756 
1757  // Pass the pointer itself.
1758  QualType ArgTy = *ParamTypeIt++;
1759  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1760  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1761 
1762  // Pass the std::destroying_delete tag if present.
1763  if (Params.DestroyingDelete) {
1764  QualType DDTag = *ParamTypeIt++;
1765  // Just pass an 'undef'. We expect the tag type to be an empty struct.
1766  auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1767  DeleteArgs.add(RValue::get(V), DDTag);
1768  }
1769 
1770  // Pass the size if the delete function has a size_t parameter.
1771  if (Params.Size) {
1772  QualType SizeType = *ParamTypeIt++;
1773  CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1774  llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1775  DeleteTypeSize.getQuantity());
1776 
1777  // For array new, multiply by the number of elements.
1778  if (NumElements)
1779  Size = Builder.CreateMul(Size, NumElements);
1780 
1781  // If there is a cookie, add the cookie size.
1782  if (!CookieSize.isZero())
1783  Size = Builder.CreateAdd(
1784  Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1785 
1786  DeleteArgs.add(RValue::get(Size), SizeType);
1787  }
1788 
1789  // Pass the alignment if the delete function has an align_val_t parameter.
1790  if (Params.Alignment) {
1791  QualType AlignValType = *ParamTypeIt++;
1792  CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1793  getContext().getTypeAlignIfKnown(DeleteTy));
1794  llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1795  DeleteTypeAlign.getQuantity());
1796  DeleteArgs.add(RValue::get(Align), AlignValType);
1797  }
1798 
1799  assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1800  "unknown parameter to usual delete function");
1801 
1802  // Emit the call to delete.
1803  EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1804 }
1805 
1806 namespace {
1807  /// Calls the given 'operator delete' on a single object.
1808  struct CallObjectDelete final : EHScopeStack::Cleanup {
1809  llvm::Value *Ptr;
1810  const FunctionDecl *OperatorDelete;
1811  QualType ElementType;
1812 
1813  CallObjectDelete(llvm::Value *Ptr,
1814  const FunctionDecl *OperatorDelete,
1815  QualType ElementType)
1816  : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1817 
1818  void Emit(CodeGenFunction &CGF, Flags flags) override {
1819  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1820  }
1821  };
1822 }
1823 
1824 void
1826  llvm::Value *CompletePtr,
1827  QualType ElementType) {
1828  EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1829  OperatorDelete, ElementType);
1830 }
1831 
1832 /// Emit the code for deleting a single object with a destroying operator
1833 /// delete. If the element type has a non-virtual destructor, Ptr has already
1834 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1835 /// Ptr points to an object of the static type.
1837  const CXXDeleteExpr *DE, Address Ptr,
1838  QualType ElementType) {
1839  auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1840  if (Dtor && Dtor->isVirtual())
1841  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1842  Dtor);
1843  else
1844  CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1845 }
1846 
1847 /// Emit the code for deleting a single object.
1849  const CXXDeleteExpr *DE,
1850  Address Ptr,
1851  QualType ElementType) {
1852  // C++11 [expr.delete]p3:
1853  // If the static type of the object to be deleted is different from its
1854  // dynamic type, the static type shall be a base class of the dynamic type
1855  // of the object to be deleted and the static type shall have a virtual
1856  // destructor or the behavior is undefined.
1858  DE->getExprLoc(), Ptr.getPointer(),
1859  ElementType);
1860 
1861  const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1862  assert(!OperatorDelete->isDestroyingOperatorDelete());
1863 
1864  // Find the destructor for the type, if applicable. If the
1865  // destructor is virtual, we'll just emit the vcall and return.
1866  const CXXDestructorDecl *Dtor = nullptr;
1867  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1868  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1869  if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1870  Dtor = RD->getDestructor();
1871 
1872  if (Dtor->isVirtual()) {
1873  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1874  Dtor);
1875  return;
1876  }
1877  }
1878  }
1879 
1880  // Make sure that we call delete even if the dtor throws.
1881  // This doesn't have to a conditional cleanup because we're going
1882  // to pop it off in a second.
1883  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1884  Ptr.getPointer(),
1885  OperatorDelete, ElementType);
1886 
1887  if (Dtor)
1889  /*ForVirtualBase=*/false,
1890  /*Delegating=*/false,
1891  Ptr);
1892  else if (auto Lifetime = ElementType.getObjCLifetime()) {
1893  switch (Lifetime) {
1894  case Qualifiers::OCL_None:
1897  break;
1898 
1901  break;
1902 
1903  case Qualifiers::OCL_Weak:
1904  CGF.EmitARCDestroyWeak(Ptr);
1905  break;
1906  }
1907  }
1908 
1909  CGF.PopCleanupBlock();
1910 }
1911 
1912 namespace {
1913  /// Calls the given 'operator delete' on an array of objects.
1914  struct CallArrayDelete final : EHScopeStack::Cleanup {
1915  llvm::Value *Ptr;
1916  const FunctionDecl *OperatorDelete;
1917  llvm::Value *NumElements;
1918  QualType ElementType;
1919  CharUnits CookieSize;
1920 
1921  CallArrayDelete(llvm::Value *Ptr,
1922  const FunctionDecl *OperatorDelete,
1923  llvm::Value *NumElements,
1924  QualType ElementType,
1925  CharUnits CookieSize)
1926  : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1927  ElementType(ElementType), CookieSize(CookieSize) {}
1928 
1929  void Emit(CodeGenFunction &CGF, Flags flags) override {
1930  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1931  CookieSize);
1932  }
1933  };
1934 }
1935 
1936 /// Emit the code for deleting an array of objects.
1938  const CXXDeleteExpr *E,
1939  Address deletedPtr,
1940  QualType elementType) {
1941  llvm::Value *numElements = nullptr;
1942  llvm::Value *allocatedPtr = nullptr;
1943  CharUnits cookieSize;
1944  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1945  numElements, allocatedPtr, cookieSize);
1946 
1947  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1948 
1949  // Make sure that we call delete even if one of the dtors throws.
1950  const FunctionDecl *operatorDelete = E->getOperatorDelete();
1951  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1952  allocatedPtr, operatorDelete,
1953  numElements, elementType,
1954  cookieSize);
1955 
1956  // Destroy the elements.
1957  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1958  assert(numElements && "no element count for a type with a destructor!");
1959 
1960  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1961  CharUnits elementAlign =
1962  deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1963 
1964  llvm::Value *arrayBegin = deletedPtr.getPointer();
1965  llvm::Value *arrayEnd =
1966  CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1967 
1968  // Note that it is legal to allocate a zero-length array, and we
1969  // can never fold the check away because the length should always
1970  // come from a cookie.
1971  CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1972  CGF.getDestroyer(dtorKind),
1973  /*checkZeroLength*/ true,
1974  CGF.needsEHCleanup(dtorKind));
1975  }
1976 
1977  // Pop the cleanup block.
1978  CGF.PopCleanupBlock();
1979 }
1980 
1982  const Expr *Arg = E->getArgument();
1983  Address Ptr = EmitPointerWithAlignment(Arg);
1984 
1985  // Null check the pointer.
1986  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1987  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1988 
1989  llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1990 
1991  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1992  EmitBlock(DeleteNotNull);
1993 
1994  QualType DeleteTy = E->getDestroyedType();
1995 
1996  // A destroying operator delete overrides the entire operation of the
1997  // delete expression.
1999  EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2000  EmitBlock(DeleteEnd);
2001  return;
2002  }
2003 
2004  // We might be deleting a pointer to array. If so, GEP down to the
2005  // first non-array element.
2006  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2007  if (DeleteTy->isConstantArrayType()) {
2008  llvm::Value *Zero = Builder.getInt32(0);
2010 
2011  GEP.push_back(Zero); // point at the outermost array
2012 
2013  // For each layer of array type we're pointing at:
2014  while (const ConstantArrayType *Arr
2015  = getContext().getAsConstantArrayType(DeleteTy)) {
2016  // 1. Unpeel the array type.
2017  DeleteTy = Arr->getElementType();
2018 
2019  // 2. GEP to the first element of the array.
2020  GEP.push_back(Zero);
2021  }
2022 
2023  Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2024  Ptr.getAlignment());
2025  }
2026 
2027  assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2028 
2029  if (E->isArrayForm()) {
2030  EmitArrayDelete(*this, E, Ptr, DeleteTy);
2031  } else {
2032  EmitObjectDelete(*this, E, Ptr, DeleteTy);
2033  }
2034 
2035  EmitBlock(DeleteEnd);
2036 }
2037 
2038 static bool isGLValueFromPointerDeref(const Expr *E) {
2039  E = E->IgnoreParens();
2040 
2041  if (const auto *CE = dyn_cast<CastExpr>(E)) {
2042  if (!CE->getSubExpr()->isGLValue())
2043  return false;
2044  return isGLValueFromPointerDeref(CE->getSubExpr());
2045  }
2046 
2047  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2048  return isGLValueFromPointerDeref(OVE->getSourceExpr());
2049 
2050  if (const auto *BO = dyn_cast<BinaryOperator>(E))
2051  if (BO->getOpcode() == BO_Comma)
2052  return isGLValueFromPointerDeref(BO->getRHS());
2053 
2054  if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2055  return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2056  isGLValueFromPointerDeref(ACO->getFalseExpr());
2057 
2058  // C++11 [expr.sub]p1:
2059  // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2060  if (isa<ArraySubscriptExpr>(E))
2061  return true;
2062 
2063  if (const auto *UO = dyn_cast<UnaryOperator>(E))
2064  if (UO->getOpcode() == UO_Deref)
2065  return true;
2066 
2067  return false;
2068 }
2069 
2071  llvm::Type *StdTypeInfoPtrTy) {
2072  // Get the vtable pointer.
2073  Address ThisPtr = CGF.EmitLValue(E).getAddress();
2074 
2075  QualType SrcRecordTy = E->getType();
2076 
2077  // C++ [class.cdtor]p4:
2078  // If the operand of typeid refers to the object under construction or
2079  // destruction and the static type of the operand is neither the constructor
2080  // or destructor’s class nor one of its bases, the behavior is undefined.
2082  ThisPtr.getPointer(), SrcRecordTy);
2083 
2084  // C++ [expr.typeid]p2:
2085  // If the glvalue expression is obtained by applying the unary * operator to
2086  // a pointer and the pointer is a null pointer value, the typeid expression
2087  // throws the std::bad_typeid exception.
2088  //
2089  // However, this paragraph's intent is not clear. We choose a very generous
2090  // interpretation which implores us to consider comma operators, conditional
2091  // operators, parentheses and other such constructs.
2093  isGLValueFromPointerDeref(E), SrcRecordTy)) {
2094  llvm::BasicBlock *BadTypeidBlock =
2095  CGF.createBasicBlock("typeid.bad_typeid");
2096  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2097 
2098  llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2099  CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2100 
2101  CGF.EmitBlock(BadTypeidBlock);
2102  CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2103  CGF.EmitBlock(EndBlock);
2104  }
2105 
2106  return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2107  StdTypeInfoPtrTy);
2108 }
2109 
2111  llvm::Type *StdTypeInfoPtrTy =
2112  ConvertType(E->getType())->getPointerTo();
2113 
2114  if (E->isTypeOperand()) {
2115  llvm::Constant *TypeInfo =
2116  CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2117  return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2118  }
2119 
2120  // C++ [expr.typeid]p2:
2121  // When typeid is applied to a glvalue expression whose type is a
2122  // polymorphic class type, the result refers to a std::type_info object
2123  // representing the type of the most derived object (that is, the dynamic
2124  // type) to which the glvalue refers.
2125  if (E->isPotentiallyEvaluated())
2126  return EmitTypeidFromVTable(*this, E->getExprOperand(),
2127  StdTypeInfoPtrTy);
2128 
2129  QualType OperandTy = E->getExprOperand()->getType();
2130  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2131  StdTypeInfoPtrTy);
2132 }
2133 
2135  QualType DestTy) {
2136  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2137  if (DestTy->isPointerType())
2138  return llvm::Constant::getNullValue(DestLTy);
2139 
2140  /// C++ [expr.dynamic.cast]p9:
2141  /// A failed cast to reference type throws std::bad_cast
2142  if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2143  return nullptr;
2144 
2145  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2146  return llvm::UndefValue::get(DestLTy);
2147 }
2148 
2150  const CXXDynamicCastExpr *DCE) {
2151  CGM.EmitExplicitCastExprType(DCE, this);
2152  QualType DestTy = DCE->getTypeAsWritten();
2153 
2154  QualType SrcTy = DCE->getSubExpr()->getType();
2155 
2156  // C++ [expr.dynamic.cast]p7:
2157  // If T is "pointer to cv void," then the result is a pointer to the most
2158  // derived object pointed to by v.
2159  const PointerType *DestPTy = DestTy->getAs<PointerType>();
2160 
2161  bool isDynamicCastToVoid;
2162  QualType SrcRecordTy;
2163  QualType DestRecordTy;
2164  if (DestPTy) {
2165  isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2166  SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2167  DestRecordTy = DestPTy->getPointeeType();
2168  } else {
2169  isDynamicCastToVoid = false;
2170  SrcRecordTy = SrcTy;
2171  DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2172  }
2173 
2174  // C++ [class.cdtor]p5:
2175  // If the operand of the dynamic_cast refers to the object under
2176  // construction or destruction and the static type of the operand is not a
2177  // pointer to or object of the constructor or destructor’s own class or one
2178  // of its bases, the dynamic_cast results in undefined behavior.
2179  EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2180  SrcRecordTy);
2181 
2182  if (DCE->isAlwaysNull())
2183  if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2184  return T;
2185 
2186  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2187 
2188  // C++ [expr.dynamic.cast]p4:
2189  // If the value of v is a null pointer value in the pointer case, the result
2190  // is the null pointer value of type T.
2191  bool ShouldNullCheckSrcValue =
2192  CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2193  SrcRecordTy);
2194 
2195  llvm::BasicBlock *CastNull = nullptr;
2196  llvm::BasicBlock *CastNotNull = nullptr;
2197  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2198 
2199  if (ShouldNullCheckSrcValue) {
2200  CastNull = createBasicBlock("dynamic_cast.null");
2201  CastNotNull = createBasicBlock("dynamic_cast.notnull");
2202 
2203  llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2204  Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2205  EmitBlock(CastNotNull);
2206  }
2207 
2208  llvm::Value *Value;
2209  if (isDynamicCastToVoid) {
2210  Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2211  DestTy);
2212  } else {
2213  assert(DestRecordTy->isRecordType() &&
2214  "destination type must be a record type!");
2215  Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2216  DestTy, DestRecordTy, CastEnd);
2217  CastNotNull = Builder.GetInsertBlock();
2218  }
2219 
2220  if (ShouldNullCheckSrcValue) {
2221  EmitBranch(CastEnd);
2222 
2223  EmitBlock(CastNull);
2224  EmitBranch(CastEnd);
2225  }
2226 
2227  EmitBlock(CastEnd);
2228 
2229  if (ShouldNullCheckSrcValue) {
2230  llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2231  PHI->addIncoming(Value, CastNotNull);
2232  PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2233 
2234  Value = PHI;
2235  }
2236 
2237  return Value;
2238 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:77
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:363
virtual void EmitBadTypeidCall(CodeGenFunction &CGF)=0
CanQualType DeriveThisType(const CXXRecordDecl *RD, const CXXMethodDecl *MD)
Derives the &#39;this&#39; type for codegen purposes, i.e.
Definition: CGCall.cpp:73
Represents a function declaration or definition.
Definition: Decl.h:1737
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2794
Address getAddress() const
Definition: CGValue.h:582
Complete object ctor.
Definition: ABI.h:25
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2542
QualType getPointeeType() const
Definition: Type.h:2555
llvm::iterator_range< arg_iterator > placement_arguments()
Definition: ExprCXX.h:2119
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
Definition: CGDecl.cpp:1924
A (possibly-)qualified type.
Definition: Type.h:634
static RValue EmitNewDeleteCall(CodeGenFunction &CGF, const FunctionDecl *CalleeDecl, const FunctionProtoType *CalleeType, const CallArgList &Args)
Emit a call to an operator new or operator delete function, as implicitly created by new-expressions ...
Definition: CGExprCXX.cpp:1276
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2123
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:259
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2811
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2586
void EmitARCDestroyWeak(Address addr)
void @objc_destroyWeak(i8** addr) Essentially objc_storeWeak(addr, nil).
Definition: CGObjC.cpp:2410
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D...
void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:954
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
virtual bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy)=0
Checking the &#39;this&#39; pointer for a constructor call.
bool isRecordType() const
Definition: Type.h:6374
Expr * getBase() const
Definition: Expr.h:2805
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
bool isVirtual() const
Definition: DeclCXX.h:2093
FunctionDecl * getOperatorNew() const
Definition: ExprCXX.h:2032
Opcode getOpcode() const
Definition: Expr.h:3348
bool hasQualifier() const
Determines whether this member expression actually had a C++ nested-name-specifier prior to the name ...
Definition: Expr.h:2825
The base class of the type hierarchy.
Definition: Type.h:1409
bool requiresZeroInitialization() const
Whether this construction first requires zero-initialization before the initializer is called...
Definition: ExprCXX.h:1372
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2817
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1261
RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:164
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:115
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
bool isZero(ProgramStateRef State, const NonLoc &Val)
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2491
Expr * ignoreParenBaseCasts() LLVM_READONLY
Skip past any parentheses and derived-to-base casts until reaching a fixed point. ...
Definition: Expr.cpp:2741
static llvm::Value * EmitCXXNewAllocSize(CodeGenFunction &CGF, const CXXNewExpr *e, unsigned minElements, llvm::Value *&numElements, llvm::Value *&sizeWithoutCookie)
Definition: CGExprCXX.cpp:664
static saved_type save(CodeGenFunction &CGF, type value)
Definition: EHScopeStack.h:59
QualType getReturnType() const
Definition: Decl.h:2301
unsigned getNumParams() const
Definition: Type.h:3893
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6761
const void * Store
Store - This opaque type encapsulates an immutable mapping from locations to values.
Definition: StoreRef.h:27
IsZeroed_t isZeroed() const
Definition: CGValue.h:615
Address CreateConstInBoundsByteGEP(Address Addr, CharUnits Offset, const llvm::Twine &Name="")
Given a pointer to i8, adjust it by a given constant offset.
Definition: CGBuilder.h:244
llvm::Value * getPointer() const
Definition: Address.h:37
unsigned getNumPlacementArgs() const
Definition: ExprCXX.h:2050
static MemberCallInfo commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:35
RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:462
bool hasDefinition() const
Definition: DeclCXX.h:775
Expr * getExprOperand() const
Definition: ExprCXX.h:725
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3088
RValue EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, const CGCallee &Callee, ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:77
The collection of all-type qualifiers we support.
Definition: Type.h:137
void add(RValue rvalue, QualType type)
Definition: CGCall.h:287
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:4197
bool isMoveAssignmentOperator() const
Determine whether this is a move assignment operator.
Definition: DeclCXX.cpp:2139
bool isEmpty() const
Determine whether this is an empty class in the sense of (C++11 [meta.unary.prop]).
Definition: DeclCXX.h:1326
An object to manage conditionally-evaluated expressions.
llvm::Value * EmitCXXNewExpr(const CXXNewExpr *E)
Definition: CGExprCXX.cpp:1525
Address getAddress() const
Definition: CGValue.h:326
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:3900
llvm::Value * EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE)
Definition: CGExprCXX.cpp:2149
static llvm::Value * EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, llvm::Type *StdTypeInfoPtrTy)
Definition: CGExprCXX.cpp:2070
StructorType getFromDtorType(CXXDtorType T)
Definition: CodeGenTypes.h:102
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:80
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:289
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:513
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:52
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:65
Expr * getSubExpr()
Definition: Expr.h:3088
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2817
Describes an C or C++ initializer list.
Definition: Expr.h:4211
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:668
Expr * getArraySize()
Definition: ExprCXX.h:2039
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:2209
Base object ctor.
Definition: ABI.h:26
bool isElidable() const
Whether this construction is elidable.
Definition: ExprCXX.h:1339
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:156
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:37
void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise)
Destroy a __strong variable.
Definition: CGObjC.cpp:2236
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6810
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:118
Expr * getInitializer()
The initializer of this new-expression.
Definition: ExprCXX.h:2089
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:66
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3313
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6147
Checking the operand of a dynamic_cast or a typeid expression.
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:274
const Type * getClass() const
Definition: Type.h:2795
bool isArrow() const
Definition: Expr.h:2912
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, QualType DeleteTy, llvm::Value *NumElements=nullptr, CharUnits CookieSize=CharUnits())
Definition: CGExprCXX.cpp:1742
param_type_iterator param_type_begin() const
Definition: Type.h:4039
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, Address DestPtr, const CXXRecordDecl *Base)
Definition: CGExprCXX.cpp:467
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1477
bool isInstance() const
Definition: DeclCXX.h:2076
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:1707
CXXMethodDecl * getCorrespondingMethodInClass(const CXXRecordDecl *RD, bool MayBeBase=false)
Find the method in RD that corresponds to this one.
Definition: DeclCXX.cpp:1904
bool isNegative() const
isNegative - Test whether the quantity is less than zero.
Definition: CharUnits.h:124
This object can be modified without requiring retains or releases.
Definition: Type.h:158
arg_iterator arg_end()
Definition: Expr.h:2631
Checking the &#39;this&#39; pointer for a call to a non-static member function.
TypeSourceInfo * getAllocatedTypeSourceInfo() const
Definition: ExprCXX.h:2011
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1598
bool isArrayForm() const
Definition: ExprCXX.h:2196
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition: Expr.h:3239
bool isValid() const
Definition: Address.h:35
void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest)
Definition: CGExprCXX.cpp:555
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2285
void addFrom(const CallArgList &other)
Add all the arguments from another CallArgList to this one.
Definition: CGCall.h:296
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1635
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3692
bool isDynamicClass() const
Definition: DeclCXX.h:788
virtual CharUnits GetArrayCookieSize(const CXXNewExpr *expr)
Returns the extra size required in order to store the array cookie for the given new-expression.
Definition: CGCXXABI.cpp:167
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any...
Definition: Decl.cpp:3299
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1333
NestedNameSpecifier * getQualifier() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name...
Definition: Expr.h:2839
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:38
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:178
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:38
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
SourceLocation getBeginLoc() const
Get the begin source location.
Definition: TypeLoc.cpp:189
This represents one expression.
Definition: Expr.h:108
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2688
bool isDefaulted() const
Whether this function is defaulted per C++0x.
Definition: Decl.h:2033
static Address invalid()
Definition: Address.h:34
static void EnterNewDeleteCleanup(CodeGenFunction &CGF, const CXXNewExpr *E, Address NewPtr, llvm::Value *AllocSize, CharUnits AllocAlign, const CallArgList &NewArgs)
Enter a cleanup to call &#39;operator delete&#39; if the initializer in a new-expression throws.
Definition: CGExprCXX.cpp:1457
virtual void ReadArrayCookie(CodeGenFunction &CGF, Address Ptr, const CXXDeleteExpr *expr, QualType ElementType, llvm::Value *&NumElements, llvm::Value *&AllocPtr, CharUnits &CookieSize)
Reads the array cookie associated with the given pointer, if it has one.
Definition: CGCXXABI.cpp:207
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E)
Definition: CGExprCXX.cpp:103
void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, llvm::Value *CompletePtr, QualType ElementType)
Definition: CGExprCXX.cpp:1825
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6824
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:133
SourceLocation getExprLoc() const LLVM_READONLY
Definition: ExprCXX.h:204
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2713
Expr * getCallee()
Definition: Expr.h:2547
bool isSanitizerChecked() const
Definition: CGValue.h:602
unsigned getNumInits() const
Definition: Expr.h:4241
bool isArrow() const
Determine whether this pseudo-destructor expression was written using an &#39;->&#39; (otherwise, it used a &#39;.
Definition: ExprCXX.h:2348
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:43
virtual bool EmitBadCastCall(CodeGenFunction &CGF)=0
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return null.
Definition: Expr.h:2565
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
A class for recording the number of arguments that a function signature requires. ...
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const
Determine whether the result of this expression is a temporary object of the given class type...
Definition: Expr.cpp:2791
QualType getType() const
Definition: Expr.h:130
RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, const Expr *Base)
Definition: CGExprCXX.cpp:191
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, QualType Type, CharUnits Alignment=CharUnits::Zero(), SanitizerSet SkippedChecks=SanitizerSet(), llvm::Value *ArraySize=nullptr)
Emit a check that V is the address of storage of the appropriate size and alignment for an object of ...
Definition: CGExpr.cpp:652
CharUnits alignmentOfArrayElement(CharUnits elementSize) const
Given that this is the alignment of the first element of an array, return the minimum alignment of an...
Definition: CharUnits.h:196
bool hasInitializer() const
Whether this new-expression has any initializer at all.
Definition: ExprCXX.h:2076
QualType getRecordType(const RecordDecl *Decl) const
static void EmitObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object.
Definition: CGExprCXX.cpp:1848
llvm::CallInst * CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:296
llvm::Value * EmitCastToVoidPtr(llvm::Value *value)
Emit a cast to void* in the appropriate address space.
Definition: CGExpr.cpp:49
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this typeid() expression after various required adjustments (removing r...
Definition: ExprCXX.cpp:76
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, QualType elementType, CharUnits elementAlign, Destroyer *destroyer, bool checkZeroLength, bool useEHCleanup)
emitArrayDestroy - Destroys all the elements of the given array, beginning from last to first...
Definition: CGDecl.cpp:2038
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2025
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:221
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:34
The l-value was considered opaque, so the alignment was determined from a type.
RecordDecl * getDecl() const
Definition: Type.h:4385
Expr * getArgument()
Definition: ExprCXX.h:2211
bool isAlignValT() const
Definition: Type.cpp:2515
There is no lifetime qualification on this type.
Definition: Type.h:154
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:361
void set(SanitizerMask K, bool Value)
Enable or disable a certain (single) sanitizer.
Definition: Sanitizers.h:60
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:165
QualType getCanonicalType() const
Definition: Type.h:6116
void initFullExprCleanup()
Set up the last cleanup that was pushed as a conditional full-expression cleanup. ...
llvm::Value * EmitCXXTypeidExpr(const CXXTypeidExpr *E)
Definition: CGExprCXX.cpp:2110
Encodes a location in the source.
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4401
virtual llvm::Value * EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, Address ThisPtr, llvm::Type *StdTypeInfoPtrTy)=0
A saved depth on the scope stack.
Definition: EHScopeStack.h:106
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **callOrInvoke, SourceLocation Loc)
EmitCall - Generate a call of the given function, expecting the given result type, and using the given argument list which specifies both the LLVM arguments and the types they were derived from.
Definition: CGCall.cpp:3801
bool shouldNullCheckAllocation() const
True if the allocation result needs to be null-checked.
Definition: ExprCXX.cpp:212
static CXXRecordDecl * getCXXRecord(const Expr *E)
Definition: CGExprCXX.cpp:154
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1913
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:170
An aggregate value slot.
Definition: CGValue.h:436
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:686
static void EmitArrayDelete(CodeGenFunction &CGF, const CXXDeleteExpr *E, Address deletedPtr, QualType elementType)
Emit the code for deleting an array of objects.
Definition: CGExprCXX.cpp:1937
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2048
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2426
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
llvm::Constant * EmitNullConstantForBase(const CXXRecordDecl *Record)
Return a null constant appropriate for zero-initializing a base class with the given type...
QualType getAllocatedType() const
Definition: ExprCXX.h:2006
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1882
bool isArray() const
Definition: ExprCXX.h:2037
arg_range arguments()
Definition: Expr.h:2623
virtual void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType, const CXXDestructorDecl *Dtor)=0
An aligned address.
Definition: Address.h:24
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after...
Definition: Type.h:1154
All available information about a concrete callee.
Definition: CGCall.h:66
const CXXRecordDecl * getBestDynamicClassType() const
For an expression of class type or pointer to class type, return the most derived class decl the expr...
Definition: Expr.cpp:61
Complete object dtor.
Definition: ABI.h:35
EnumDecl * getDecl() const
Definition: Type.h:4408
RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:400
Assigning into this object requires a lifetime extension.
Definition: Type.h:171
static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object with a destroying operator delete.
Definition: CGExprCXX.cpp:1836
bool passAlignment() const
Indicates whether the required alignment should be implicitly passed to the allocation function...
Definition: ExprCXX.h:2107
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:2034
CXXCtorType
C++ constructor types.
Definition: ABI.h:24
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:214
Expr * getLHS() const
Definition: Expr.h:3353
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, const CXXNewExpr *E)
Definition: CGExprCXX.cpp:651
CharUnits getNonVirtualAlignment() const
getNonVirtualSize - Get the non-virtual alignment (in chars) of an object, which is the alignment of ...
Definition: RecordLayout.h:210
CGFunctionInfo - Class to encapsulate the information about a function definition.
CharUnits alignmentAtOffset(CharUnits offset) const
Given that this is a non-zero alignment value, what is the alignment at the given offset...
Definition: CharUnits.h:189
bool isTypeOperand() const
Definition: ExprCXX.h:708
Dataflow Directional Tag Classes.
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This)
Definition: CGClass.cpp:2388
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2169
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we&#39;re currently emitting one branch or the other of a conditio...
The name of a declaration.
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2173
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type *> Tys=None)
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2761
bool isCopyAssignmentOperator() const
Determine whether this is a copy-assignment operator, regardless of whether it was declared implicitl...
Definition: DeclCXX.cpp:2118
bool isDestroyingOperatorDelete() const
Determine whether this is a destroying operator delete.
Definition: Decl.cpp:2883
llvm::Module & getModule() const
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type. ...
Definition: CGExprAgg.cpp:1819
bool isStringLiteralInit() const
Definition: Expr.cpp:2044
static llvm::Value * EmitDynamicCastToNull(CodeGenFunction &CGF, QualType DestTy)
Definition: CGExprCXX.cpp:2134
AlignmentSource getAlignmentSource() const
Definition: CGValue.h:155
static RequiredArgs forPrototypePlus(const FunctionProtoType *prototype, unsigned additional)
Compute the arguments required by the given formal prototype, given that there may be some additional...
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4375
CXXMethodDecl * getDevirtualizedMethod(const Expr *Base, bool IsAppleKext)
If it&#39;s possible to devirtualize a call to this method, return the called function.
Definition: DeclCXX.cpp:1962
CodeGenTypes & getTypes() const
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6587
arg_iterator arg_begin()
Definition: Expr.h:2628
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:51
Represents a call to a CUDA kernel function.
Definition: ExprCXX.h:218
void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit)
Definition: CGDecl.cpp:742
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition: ExprCXX.h:1412
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2678
void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp)
Definition: CGExprCXX.cpp:629
llvm::Constant * GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty=nullptr, bool ForVTable=false, bool DontDefer=false, ForDefinition_t IsForDefinition=NotForDefinition)
Return the address of the given function.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:450
bool isConstantArrayType() const
Definition: Type.h:6354
static bool isGLValueFromPointerDeref(const Expr *E)
Definition: CGExprCXX.cpp:2038
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:237
Reading or writing from this object requires a barrier call.
Definition: Type.h:168
Overlap_t mayOverlap() const
Definition: CGValue.h:598
QualType getParamType(unsigned i) const
Definition: Type.h:3895
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2720
Represents a C++ struct/union/class.
Definition: DeclCXX.h:299
virtual const CXXRecordDecl * getThisArgumentTypeForMethod(const CXXMethodDecl *MD)
Get the type of the implicit "this" parameter used by a method.
Definition: CGCXXABI.h:337
bool isVoidType() const
Definition: Type.h:6553
bool hasStrongOrWeakObjCLifetime() const
Definition: Type.h:1062
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:1261
llvm::Type * ConvertType(QualType T)
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:6104
RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, const CallExpr *TheCallExpr, bool IsDelete)
Definition: CGExprCXX.cpp:1303
void EmitCXXDeleteExpr(const CXXDeleteExpr *E)
Definition: CGExprCXX.cpp:1981
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1243
CharUnits getNonVirtualSize() const
getNonVirtualSize - Get the non-virtual size (in chars) of an object, which is the size of the object...
Definition: RecordLayout.h:202
T * pushCleanupWithExtra(CleanupKind Kind, size_t N, As... A)
Push a cleanup with non-constant storage requirements on the stack.
Definition: EHScopeStack.h:304
static CGCallee forVirtual(const CallExpr *CE, GlobalDecl MD, Address Addr, llvm::FunctionType *FTy)
Definition: CGCall.h:144
static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD)
Definition: CGExprCXX.cpp:1329
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2429
QualType getIntegerType() const
Return the integer type this enum decl corresponds to.
Definition: Decl.h:3479
llvm::Constant * tryEmitAbstract(const Expr *E, QualType T)
Try to emit the result of the given expression as an abstract constant.
CGCXXABI & getCXXABI() const
__DEVICE__ int max(int __a, int __b)
bool isAlwaysNull() const
isAlwaysNull - Return whether the result of the dynamic_cast is proven to always be null...
Definition: ExprCXX.cpp:745
static RValue get(llvm::Value *V)
Definition: CGValue.h:85
bool isUnion() const
Definition: Decl.h:3251
Expr * getRHS() const
Definition: Expr.h:3355
bool isPointerType() const
Definition: Type.h:6301
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, QualType AllocType, Address NewPtr, AggValueSlot::Overlap_t MayOverlap)
Definition: CGExprCXX.cpp:926
const CGFunctionInfo & arrangeFreeFunctionCall(const CallArgList &Args, const FunctionType *Ty, bool ChainCall)
Figure out the rules for calling a function with the given formal type using the given arguments...
Definition: CGCall.cpp:618
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
virtual std::vector< CharUnits > getVBPtrOffsets(const CXXRecordDecl *RD)
Gets the offsets of all the virtual base pointers in a given class.
Definition: CGCXXABI.cpp:318
QualType getType() const
Definition: Decl.h:647
LValue - This represents an lvalue references.
Definition: CGValue.h:166
An abstract representation of regular/ObjC call/message targets.
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:146
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1427
bool isPotentiallyEvaluated() const
Determine whether this typeid has a type operand which is potentially evaluated, per C++11 [expr...
Definition: ExprCXX.cpp:61
RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:452
TranslationUnitDecl * getTranslationUnitDecl()
Definition: DeclBase.cpp:360
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:262
void PopCleanupBlock(bool FallThroughIsBranchThrough=false)
PopCleanupBlock - Will pop the cleanup entry on the stack and process all branch fixups.
Definition: CGCleanup.cpp:644
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2877
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:4919
QualType getPointeeType() const
Definition: Type.h:2781
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:2715
ConstructionKind getConstructionKind() const
Determine whether this constructor is actually constructing a base class (rather than a complete obje...
Definition: ExprCXX.h:1381
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1054
param_type_iterator param_type_end() const
Definition: Type.h:4043