clang  6.0.0svn
ThreadSafetyCommon.cpp
Go to the documentation of this file.
1 //===- ThreadSafetyCommon.cpp -----------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the interfaces declared in ThreadSafetyCommon.h
11 //
12 //===----------------------------------------------------------------------===//
13 
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/StmtCXX.h"
23 #include "clang/Analysis/CFG.h"
26 #include "llvm/ADT/StringRef.h"
27 #include <algorithm>
28 
29 using namespace clang;
30 using namespace threadSafety;
31 
32 // From ThreadSafetyUtil.h
34  switch (CE->getStmtClass()) {
35  case Stmt::IntegerLiteralClass:
36  return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
37  case Stmt::StringLiteralClass: {
38  std::string ret("\"");
39  ret += cast<StringLiteral>(CE)->getString();
40  ret += "\"";
41  return ret;
42  }
43  case Stmt::CharacterLiteralClass:
44  case Stmt::CXXNullPtrLiteralExprClass:
45  case Stmt::GNUNullExprClass:
46  case Stmt::CXXBoolLiteralExprClass:
47  case Stmt::FloatingLiteralClass:
48  case Stmt::ImaginaryLiteralClass:
49  case Stmt::ObjCStringLiteralClass:
50  default:
51  return "#lit";
52  }
53 }
54 
55 // Return true if E is a variable that points to an incomplete Phi node.
56 static bool isIncompletePhi(const til::SExpr *E) {
57  if (const auto *Ph = dyn_cast<til::Phi>(E))
58  return Ph->status() == til::Phi::PH_Incomplete;
59  return false;
60 }
61 
63 
65  auto It = SMap.find(S);
66  if (It != SMap.end())
67  return It->second;
68  return nullptr;
69 }
70 
72  Walker.walk(*this);
73  return Scfg;
74 }
75 
76 static bool isCalleeArrow(const Expr *E) {
77  const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
78  return ME ? ME->isArrow() : false;
79 }
80 
81 /// \brief Translate a clang expression in an attribute to a til::SExpr.
82 /// Constructs the context from D, DeclExp, and SelfDecl.
83 ///
84 /// \param AttrExp The expression to translate.
85 /// \param D The declaration to which the attribute is attached.
86 /// \param DeclExp An expression involving the Decl to which the attribute
87 /// is attached. E.g. the call to a function.
89  const NamedDecl *D,
90  const Expr *DeclExp,
91  VarDecl *SelfDecl) {
92  // If we are processing a raw attribute expression, with no substitutions.
93  if (!DeclExp)
94  return translateAttrExpr(AttrExp, nullptr);
95 
96  CallingContext Ctx(nullptr, D);
97 
98  // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
99  // for formal parameters when we call buildMutexID later.
100  if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
101  Ctx.SelfArg = ME->getBase();
102  Ctx.SelfArrow = ME->isArrow();
103  } else if (const CXXMemberCallExpr *CE =
104  dyn_cast<CXXMemberCallExpr>(DeclExp)) {
105  Ctx.SelfArg = CE->getImplicitObjectArgument();
106  Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
107  Ctx.NumArgs = CE->getNumArgs();
108  Ctx.FunArgs = CE->getArgs();
109  } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
110  Ctx.NumArgs = CE->getNumArgs();
111  Ctx.FunArgs = CE->getArgs();
112  } else if (const CXXConstructExpr *CE =
113  dyn_cast<CXXConstructExpr>(DeclExp)) {
114  Ctx.SelfArg = nullptr; // Will be set below
115  Ctx.NumArgs = CE->getNumArgs();
116  Ctx.FunArgs = CE->getArgs();
117  } else if (D && isa<CXXDestructorDecl>(D)) {
118  // There's no such thing as a "destructor call" in the AST.
119  Ctx.SelfArg = DeclExp;
120  }
121 
122  // Hack to handle constructors, where self cannot be recovered from
123  // the expression.
124  if (SelfDecl && !Ctx.SelfArg) {
125  DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
126  SelfDecl->getLocation());
127  Ctx.SelfArg = &SelfDRE;
128 
129  // If the attribute has no arguments, then assume the argument is "this".
130  if (!AttrExp)
131  return translateAttrExpr(Ctx.SelfArg, nullptr);
132  else // For most attributes.
133  return translateAttrExpr(AttrExp, &Ctx);
134  }
135 
136  // If the attribute has no arguments, then assume the argument is "this".
137  if (!AttrExp)
138  return translateAttrExpr(Ctx.SelfArg, nullptr);
139  else // For most attributes.
140  return translateAttrExpr(AttrExp, &Ctx);
141 }
142 
143 /// \brief Translate a clang expression in an attribute to a til::SExpr.
144 // This assumes a CallingContext has already been created.
146  CallingContext *Ctx) {
147  if (!AttrExp)
148  return CapabilityExpr(nullptr, false);
149 
150  if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
151  if (SLit->getString() == StringRef("*"))
152  // The "*" expr is a universal lock, which essentially turns off
153  // checks until it is removed from the lockset.
154  return CapabilityExpr(new (Arena) til::Wildcard(), false);
155  else
156  // Ignore other string literals for now.
157  return CapabilityExpr(nullptr, false);
158  }
159 
160  bool Neg = false;
161  if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
162  if (OE->getOperator() == OO_Exclaim) {
163  Neg = true;
164  AttrExp = OE->getArg(0);
165  }
166  }
167  else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
168  if (UO->getOpcode() == UO_LNot) {
169  Neg = true;
170  AttrExp = UO->getSubExpr();
171  }
172  }
173 
174  til::SExpr *E = translate(AttrExp, Ctx);
175 
176  // Trap mutex expressions like nullptr, or 0.
177  // Any literal value is nonsense.
178  if (!E || isa<til::Literal>(E))
179  return CapabilityExpr(nullptr, false);
180 
181  // Hack to deal with smart pointers -- strip off top-level pointer casts.
182  if (auto *CE = dyn_cast_or_null<til::Cast>(E)) {
183  if (CE->castOpcode() == til::CAST_objToPtr)
184  return CapabilityExpr(CE->expr(), Neg);
185  }
186  return CapabilityExpr(E, Neg);
187 }
188 
189 // Translate a clang statement or expression to a TIL expression.
190 // Also performs substitution of variables; Ctx provides the context.
191 // Dispatches on the type of S.
193  if (!S)
194  return nullptr;
195 
196  // Check if S has already been translated and cached.
197  // This handles the lookup of SSA names for DeclRefExprs here.
198  if (til::SExpr *E = lookupStmt(S))
199  return E;
200 
201  switch (S->getStmtClass()) {
202  case Stmt::DeclRefExprClass:
203  return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
204  case Stmt::CXXThisExprClass:
205  return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
206  case Stmt::MemberExprClass:
207  return translateMemberExpr(cast<MemberExpr>(S), Ctx);
208  case Stmt::CallExprClass:
209  return translateCallExpr(cast<CallExpr>(S), Ctx);
210  case Stmt::CXXMemberCallExprClass:
211  return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
212  case Stmt::CXXOperatorCallExprClass:
213  return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
214  case Stmt::UnaryOperatorClass:
215  return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
216  case Stmt::BinaryOperatorClass:
217  case Stmt::CompoundAssignOperatorClass:
218  return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
219 
220  case Stmt::ArraySubscriptExprClass:
221  return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
222  case Stmt::ConditionalOperatorClass:
223  return translateAbstractConditionalOperator(
224  cast<ConditionalOperator>(S), Ctx);
225  case Stmt::BinaryConditionalOperatorClass:
226  return translateAbstractConditionalOperator(
227  cast<BinaryConditionalOperator>(S), Ctx);
228 
229  // We treat these as no-ops
230  case Stmt::ParenExprClass:
231  return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
232  case Stmt::ExprWithCleanupsClass:
233  return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
234  case Stmt::CXXBindTemporaryExprClass:
235  return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
236  case Stmt::MaterializeTemporaryExprClass:
237  return translate(cast<MaterializeTemporaryExpr>(S)->GetTemporaryExpr(),
238  Ctx);
239 
240  // Collect all literals
241  case Stmt::CharacterLiteralClass:
242  case Stmt::CXXNullPtrLiteralExprClass:
243  case Stmt::GNUNullExprClass:
244  case Stmt::CXXBoolLiteralExprClass:
245  case Stmt::FloatingLiteralClass:
246  case Stmt::ImaginaryLiteralClass:
247  case Stmt::IntegerLiteralClass:
248  case Stmt::StringLiteralClass:
249  case Stmt::ObjCStringLiteralClass:
250  return new (Arena) til::Literal(cast<Expr>(S));
251 
252  case Stmt::DeclStmtClass:
253  return translateDeclStmt(cast<DeclStmt>(S), Ctx);
254  default:
255  break;
256  }
257  if (const CastExpr *CE = dyn_cast<CastExpr>(S))
258  return translateCastExpr(CE, Ctx);
259 
260  return new (Arena) til::Undefined(S);
261 }
262 
263 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
264  CallingContext *Ctx) {
265  const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
266 
267  // Function parameters require substitution and/or renaming.
268  if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) {
269  const FunctionDecl *FD =
270  cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
271  unsigned I = PV->getFunctionScopeIndex();
272 
273  if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) {
274  // Substitute call arguments for references to function parameters
275  assert(I < Ctx->NumArgs);
276  return translate(Ctx->FunArgs[I], Ctx->Prev);
277  }
278  // Map the param back to the param of the original function declaration
279  // for consistent comparisons.
280  VD = FD->getParamDecl(I);
281  }
282 
283  // For non-local variables, treat it as a reference to a named object.
284  return new (Arena) til::LiteralPtr(VD);
285 }
286 
287 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
288  CallingContext *Ctx) {
289  // Substitute for 'this'
290  if (Ctx && Ctx->SelfArg)
291  return translate(Ctx->SelfArg, Ctx->Prev);
292  assert(SelfVar && "We have no variable for 'this'!");
293  return SelfVar;
294 }
295 
296 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
297  if (auto *V = dyn_cast<til::Variable>(E))
298  return V->clangDecl();
299  if (auto *Ph = dyn_cast<til::Phi>(E))
300  return Ph->clangDecl();
301  if (auto *P = dyn_cast<til::Project>(E))
302  return P->clangDecl();
303  if (auto *L = dyn_cast<til::LiteralPtr>(E))
304  return L->clangDecl();
305  return nullptr;
306 }
307 
308 static bool hasCppPointerType(const til::SExpr *E) {
309  auto *VD = getValueDeclFromSExpr(E);
310  if (VD && VD->getType()->isPointerType())
311  return true;
312  if (auto *C = dyn_cast<til::Cast>(E))
313  return C->castOpcode() == til::CAST_objToPtr;
314 
315  return false;
316 }
317 
318 // Grab the very first declaration of virtual method D
320  while (true) {
321  D = D->getCanonicalDecl();
323  E = D->end_overridden_methods();
324  if (I == E)
325  return D; // Method does not override anything
326  D = *I; // FIXME: this does not work with multiple inheritance.
327  }
328  return nullptr;
329 }
330 
331 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
332  CallingContext *Ctx) {
333  til::SExpr *BE = translate(ME->getBase(), Ctx);
334  til::SExpr *E = new (Arena) til::SApply(BE);
335 
336  const ValueDecl *D =
337  cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
338  if (auto *VD = dyn_cast<CXXMethodDecl>(D))
339  D = getFirstVirtualDecl(VD);
340 
341  til::Project *P = new (Arena) til::Project(E, D);
342  if (hasCppPointerType(BE))
343  P->setArrow(true);
344  return P;
345 }
346 
347 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
348  CallingContext *Ctx,
349  const Expr *SelfE) {
350  if (CapabilityExprMode) {
351  // Handle LOCK_RETURNED
352  const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl();
353  if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
354  CallingContext LRCallCtx(Ctx);
355  LRCallCtx.AttrDecl = CE->getDirectCallee();
356  LRCallCtx.SelfArg = SelfE;
357  LRCallCtx.NumArgs = CE->getNumArgs();
358  LRCallCtx.FunArgs = CE->getArgs();
359  return const_cast<til::SExpr*>(
360  translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
361  }
362  }
363 
364  til::SExpr *E = translate(CE->getCallee(), Ctx);
365  for (const auto *Arg : CE->arguments()) {
366  til::SExpr *A = translate(Arg, Ctx);
367  E = new (Arena) til::Apply(E, A);
368  }
369  return new (Arena) til::Call(E, CE);
370 }
371 
372 til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
373  const CXXMemberCallExpr *ME, CallingContext *Ctx) {
374  if (CapabilityExprMode) {
375  // Ignore calls to get() on smart pointers.
376  if (ME->getMethodDecl()->getNameAsString() == "get" &&
377  ME->getNumArgs() == 0) {
378  auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
379  return new (Arena) til::Cast(til::CAST_objToPtr, E);
380  // return E;
381  }
382  }
383  return translateCallExpr(cast<CallExpr>(ME), Ctx,
385 }
386 
387 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
388  const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
389  if (CapabilityExprMode) {
390  // Ignore operator * and operator -> on smart pointers.
392  if (k == OO_Star || k == OO_Arrow) {
393  auto *E = translate(OCE->getArg(0), Ctx);
394  return new (Arena) til::Cast(til::CAST_objToPtr, E);
395  // return E;
396  }
397  }
398  return translateCallExpr(cast<CallExpr>(OCE), Ctx);
399 }
400 
401 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
402  CallingContext *Ctx) {
403  switch (UO->getOpcode()) {
404  case UO_PostInc:
405  case UO_PostDec:
406  case UO_PreInc:
407  case UO_PreDec:
408  return new (Arena) til::Undefined(UO);
409 
410  case UO_AddrOf: {
411  if (CapabilityExprMode) {
412  // interpret &Graph::mu_ as an existential.
413  if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
414  if (DRE->getDecl()->isCXXInstanceMember()) {
415  // This is a pointer-to-member expression, e.g. &MyClass::mu_.
416  // We interpret this syntax specially, as a wildcard.
417  auto *W = new (Arena) til::Wildcard();
418  return new (Arena) til::Project(W, DRE->getDecl());
419  }
420  }
421  }
422  // otherwise, & is a no-op
423  return translate(UO->getSubExpr(), Ctx);
424  }
425 
426  // We treat these as no-ops
427  case UO_Deref:
428  case UO_Plus:
429  return translate(UO->getSubExpr(), Ctx);
430 
431  case UO_Minus:
432  return new (Arena)
434  case UO_Not:
435  return new (Arena)
437  case UO_LNot:
438  return new (Arena)
440 
441  // Currently unsupported
442  case UO_Real:
443  case UO_Imag:
444  case UO_Extension:
445  case UO_Coawait:
446  return new (Arena) til::Undefined(UO);
447  }
448  return new (Arena) til::Undefined(UO);
449 }
450 
451 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
452  const BinaryOperator *BO,
453  CallingContext *Ctx, bool Reverse) {
454  til::SExpr *E0 = translate(BO->getLHS(), Ctx);
455  til::SExpr *E1 = translate(BO->getRHS(), Ctx);
456  if (Reverse)
457  return new (Arena) til::BinaryOp(Op, E1, E0);
458  else
459  return new (Arena) til::BinaryOp(Op, E0, E1);
460 }
461 
462 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
463  const BinaryOperator *BO,
464  CallingContext *Ctx,
465  bool Assign) {
466  const Expr *LHS = BO->getLHS();
467  const Expr *RHS = BO->getRHS();
468  til::SExpr *E0 = translate(LHS, Ctx);
469  til::SExpr *E1 = translate(RHS, Ctx);
470 
471  const ValueDecl *VD = nullptr;
472  til::SExpr *CV = nullptr;
473  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) {
474  VD = DRE->getDecl();
475  CV = lookupVarDecl(VD);
476  }
477 
478  if (!Assign) {
479  til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
480  E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
481  E1 = addStatement(E1, nullptr, VD);
482  }
483  if (VD && CV)
484  return updateVarDecl(VD, E1);
485  return new (Arena) til::Store(E0, E1);
486 }
487 
488 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
489  CallingContext *Ctx) {
490  switch (BO->getOpcode()) {
491  case BO_PtrMemD:
492  case BO_PtrMemI:
493  return new (Arena) til::Undefined(BO);
494 
495  case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx);
496  case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx);
497  case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx);
498  case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx);
499  case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx);
500  case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx);
501  case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx);
502  case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx);
503  case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true);
504  case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx);
505  case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true);
506  case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx);
507  case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx);
508  case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx);
509  case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx);
510  case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx);
511  case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
512  case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx);
513 
514  case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true);
515  case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
516  case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
517  case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
518  case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
519  case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
520  case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
521  case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
522  case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
523  case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
524  case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx);
525 
526  case BO_Comma:
527  // The clang CFG should have already processed both sides.
528  return translate(BO->getRHS(), Ctx);
529  }
530  return new (Arena) til::Undefined(BO);
531 }
532 
533 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
534  CallingContext *Ctx) {
535  clang::CastKind K = CE->getCastKind();
536  switch (K) {
537  case CK_LValueToRValue: {
538  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
539  til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
540  if (E0)
541  return E0;
542  }
543  til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
544  return E0;
545  // FIXME!! -- get Load working properly
546  // return new (Arena) til::Load(E0);
547  }
548  case CK_NoOp:
549  case CK_DerivedToBase:
550  case CK_UncheckedDerivedToBase:
551  case CK_ArrayToPointerDecay:
552  case CK_FunctionToPointerDecay: {
553  til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
554  return E0;
555  }
556  default: {
557  // FIXME: handle different kinds of casts.
558  til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
559  if (CapabilityExprMode)
560  return E0;
561  return new (Arena) til::Cast(til::CAST_none, E0);
562  }
563  }
564 }
565 
566 til::SExpr *
567 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
568  CallingContext *Ctx) {
569  til::SExpr *E0 = translate(E->getBase(), Ctx);
570  til::SExpr *E1 = translate(E->getIdx(), Ctx);
571  return new (Arena) til::ArrayIndex(E0, E1);
572 }
573 
574 til::SExpr *
575 SExprBuilder::translateAbstractConditionalOperator(
577  auto *C = translate(CO->getCond(), Ctx);
578  auto *T = translate(CO->getTrueExpr(), Ctx);
579  auto *E = translate(CO->getFalseExpr(), Ctx);
580  return new (Arena) til::IfThenElse(C, T, E);
581 }
582 
583 til::SExpr *
584 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
585  DeclGroupRef DGrp = S->getDeclGroup();
586  for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
587  if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
588  Expr *E = VD->getInit();
589  til::SExpr* SE = translate(E, Ctx);
590 
591  // Add local variables with trivial type to the variable map
592  QualType T = VD->getType();
593  if (T.isTrivialType(VD->getASTContext())) {
594  return addVarDecl(VD, SE);
595  }
596  else {
597  // TODO: add alloca
598  }
599  }
600  }
601  return nullptr;
602 }
603 
604 // If (E) is non-trivial, then add it to the current basic block, and
605 // update the statement map so that S refers to E. Returns a new variable
606 // that refers to E.
607 // If E is trivial returns E.
608 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
609  const ValueDecl *VD) {
610  if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
611  return E;
612  if (VD)
613  E = new (Arena) til::Variable(E, VD);
614  CurrentInstructions.push_back(E);
615  if (S)
616  insertStmt(S, E);
617  return E;
618 }
619 
620 // Returns the current value of VD, if known, and nullptr otherwise.
621 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
622  auto It = LVarIdxMap.find(VD);
623  if (It != LVarIdxMap.end()) {
624  assert(CurrentLVarMap[It->second].first == VD);
625  return CurrentLVarMap[It->second].second;
626  }
627  return nullptr;
628 }
629 
630 // if E is a til::Variable, update its clangDecl.
631 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
632  if (!E)
633  return;
634  if (til::Variable *V = dyn_cast<til::Variable>(E)) {
635  if (!V->clangDecl())
636  V->setClangDecl(VD);
637  }
638 }
639 
640 // Adds a new variable declaration.
641 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
642  maybeUpdateVD(E, VD);
643  LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
644  CurrentLVarMap.makeWritable();
645  CurrentLVarMap.push_back(std::make_pair(VD, E));
646  return E;
647 }
648 
649 // Updates a current variable declaration. (E.g. by assignment)
650 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
651  maybeUpdateVD(E, VD);
652  auto It = LVarIdxMap.find(VD);
653  if (It == LVarIdxMap.end()) {
654  til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
655  til::SExpr *St = new (Arena) til::Store(Ptr, E);
656  return St;
657  }
658  CurrentLVarMap.makeWritable();
659  CurrentLVarMap.elem(It->second).second = E;
660  return E;
661 }
662 
663 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
664 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
665 // If E == null, this is a backedge and will be set later.
666 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
667  unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
668  assert(ArgIndex > 0 && ArgIndex < NPreds);
669 
670  til::SExpr *CurrE = CurrentLVarMap[i].second;
671  if (CurrE->block() == CurrentBB) {
672  // We already have a Phi node in the current block,
673  // so just add the new variable to the Phi node.
674  til::Phi *Ph = dyn_cast<til::Phi>(CurrE);
675  assert(Ph && "Expecting Phi node.");
676  if (E)
677  Ph->values()[ArgIndex] = E;
678  return;
679  }
680 
681  // Make a new phi node: phi(..., E)
682  // All phi args up to the current index are set to the current value.
683  til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
684  Ph->values().setValues(NPreds, nullptr);
685  for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
686  Ph->values()[PIdx] = CurrE;
687  if (E)
688  Ph->values()[ArgIndex] = E;
689  Ph->setClangDecl(CurrentLVarMap[i].first);
690  // If E is from a back-edge, or either E or CurrE are incomplete, then
691  // mark this node as incomplete; we may need to remove it later.
692  if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) {
694  }
695 
696  // Add Phi node to current block, and update CurrentLVarMap[i]
697  CurrentArguments.push_back(Ph);
698  if (Ph->status() == til::Phi::PH_Incomplete)
699  IncompleteArgs.push_back(Ph);
700 
701  CurrentLVarMap.makeWritable();
702  CurrentLVarMap.elem(i).second = Ph;
703 }
704 
705 // Merge values from Map into the current variable map.
706 // This will construct Phi nodes in the current basic block as necessary.
707 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
708  assert(CurrentBlockInfo && "Not processing a block!");
709 
710  if (!CurrentLVarMap.valid()) {
711  // Steal Map, using copy-on-write.
712  CurrentLVarMap = std::move(Map);
713  return;
714  }
715  if (CurrentLVarMap.sameAs(Map))
716  return; // Easy merge: maps from different predecessors are unchanged.
717 
718  unsigned NPreds = CurrentBB->numPredecessors();
719  unsigned ESz = CurrentLVarMap.size();
720  unsigned MSz = Map.size();
721  unsigned Sz = std::min(ESz, MSz);
722 
723  for (unsigned i=0; i<Sz; ++i) {
724  if (CurrentLVarMap[i].first != Map[i].first) {
725  // We've reached the end of variables in common.
726  CurrentLVarMap.makeWritable();
727  CurrentLVarMap.downsize(i);
728  break;
729  }
730  if (CurrentLVarMap[i].second != Map[i].second)
731  makePhiNodeVar(i, NPreds, Map[i].second);
732  }
733  if (ESz > MSz) {
734  CurrentLVarMap.makeWritable();
735  CurrentLVarMap.downsize(Map.size());
736  }
737 }
738 
739 // Merge a back edge into the current variable map.
740 // This will create phi nodes for all variables in the variable map.
741 void SExprBuilder::mergeEntryMapBackEdge() {
742  // We don't have definitions for variables on the backedge, because we
743  // haven't gotten that far in the CFG. Thus, when encountering a back edge,
744  // we conservatively create Phi nodes for all variables. Unnecessary Phi
745  // nodes will be marked as incomplete, and stripped out at the end.
746  //
747  // An Phi node is unnecessary if it only refers to itself and one other
748  // variable, e.g. x = Phi(y, y, x) can be reduced to x = y.
749 
750  assert(CurrentBlockInfo && "Not processing a block!");
751 
752  if (CurrentBlockInfo->HasBackEdges)
753  return;
754  CurrentBlockInfo->HasBackEdges = true;
755 
756  CurrentLVarMap.makeWritable();
757  unsigned Sz = CurrentLVarMap.size();
758  unsigned NPreds = CurrentBB->numPredecessors();
759 
760  for (unsigned i=0; i < Sz; ++i) {
761  makePhiNodeVar(i, NPreds, nullptr);
762  }
763 }
764 
765 // Update the phi nodes that were initially created for a back edge
766 // once the variable definitions have been computed.
767 // I.e., merge the current variable map into the phi nodes for Blk.
768 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
769  til::BasicBlock *BB = lookupBlock(Blk);
770  unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
771  assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
772 
773  for (til::SExpr *PE : BB->arguments()) {
774  til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE);
775  assert(Ph && "Expecting Phi Node.");
776  assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
777 
778  til::SExpr *E = lookupVarDecl(Ph->clangDecl());
779  assert(E && "Couldn't find local variable for Phi node.");
780  Ph->values()[ArgIndex] = E;
781  }
782 }
783 
784 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
785  const CFGBlock *First) {
786  // Perform initial setup operations.
787  unsigned NBlocks = Cfg->getNumBlockIDs();
788  Scfg = new (Arena) til::SCFG(Arena, NBlocks);
789 
790  // allocate all basic blocks immediately, to handle forward references.
791  BBInfo.resize(NBlocks);
792  BlockMap.resize(NBlocks, nullptr);
793  // create map from clang blockID to til::BasicBlocks
794  for (auto *B : *Cfg) {
795  auto *BB = new (Arena) til::BasicBlock(Arena);
796  BB->reserveInstructions(B->size());
797  BlockMap[B->getBlockID()] = BB;
798  }
799 
800  CurrentBB = lookupBlock(&Cfg->getEntry());
801  auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
802  : cast<FunctionDecl>(D)->parameters();
803  for (auto *Pm : Parms) {
804  QualType T = Pm->getType();
805  if (!T.isTrivialType(Pm->getASTContext()))
806  continue;
807 
808  // Add parameters to local variable map.
809  // FIXME: right now we emulate params with loads; that should be fixed.
810  til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
811  til::SExpr *Ld = new (Arena) til::Load(Lp);
812  til::SExpr *V = addStatement(Ld, nullptr, Pm);
813  addVarDecl(Pm, V);
814  }
815 }
816 
817 void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
818  // Intialize TIL basic block and add it to the CFG.
819  CurrentBB = lookupBlock(B);
820  CurrentBB->reservePredecessors(B->pred_size());
821  Scfg->add(CurrentBB);
822 
823  CurrentBlockInfo = &BBInfo[B->getBlockID()];
824 
825  // CurrentLVarMap is moved to ExitMap on block exit.
826  // FIXME: the entry block will hold function parameters.
827  // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
828 }
829 
830 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
831  // Compute CurrentLVarMap on entry from ExitMaps of predecessors
832 
833  CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
834  BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
835  assert(PredInfo->UnprocessedSuccessors > 0);
836 
837  if (--PredInfo->UnprocessedSuccessors == 0)
838  mergeEntryMap(std::move(PredInfo->ExitMap));
839  else
840  mergeEntryMap(PredInfo->ExitMap.clone());
841 
842  ++CurrentBlockInfo->ProcessedPredecessors;
843 }
844 
845 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
846  mergeEntryMapBackEdge();
847 }
848 
849 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
850  // The merge*() methods have created arguments.
851  // Push those arguments onto the basic block.
852  CurrentBB->arguments().reserve(
853  static_cast<unsigned>(CurrentArguments.size()), Arena);
854  for (auto *A : CurrentArguments)
855  CurrentBB->addArgument(A);
856 }
857 
858 void SExprBuilder::handleStatement(const Stmt *S) {
859  til::SExpr *E = translate(S, nullptr);
860  addStatement(E, S);
861 }
862 
863 void SExprBuilder::handleDestructorCall(const VarDecl *VD,
864  const CXXDestructorDecl *DD) {
865  til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
866  til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
867  til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
868  til::SExpr *E = new (Arena) til::Call(Ap);
869  addStatement(E, nullptr);
870 }
871 
872 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
873  CurrentBB->instructions().reserve(
874  static_cast<unsigned>(CurrentInstructions.size()), Arena);
875  for (auto *V : CurrentInstructions)
876  CurrentBB->addInstruction(V);
877 
878  // Create an appropriate terminator
879  unsigned N = B->succ_size();
880  auto It = B->succ_begin();
881  if (N == 1) {
882  til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
883  // TODO: set index
884  unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
885  auto *Tm = new (Arena) til::Goto(BB, Idx);
886  CurrentBB->setTerminator(Tm);
887  }
888  else if (N == 2) {
889  til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
890  til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
891  ++It;
892  til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
893  // FIXME: make sure these arent' critical edges.
894  auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
895  CurrentBB->setTerminator(Tm);
896  }
897 }
898 
899 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
900  ++CurrentBlockInfo->UnprocessedSuccessors;
901 }
902 
903 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
904  mergePhiNodesBackEdge(Succ);
905  ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
906 }
907 
908 void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
909  CurrentArguments.clear();
910  CurrentInstructions.clear();
911  CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
912  CurrentBB = nullptr;
913  CurrentBlockInfo = nullptr;
914 }
915 
916 void SExprBuilder::exitCFG(const CFGBlock *Last) {
917  for (auto *Ph : IncompleteArgs) {
918  if (Ph->status() == til::Phi::PH_Incomplete)
920  }
921 
922  CurrentArguments.clear();
923  CurrentInstructions.clear();
924  IncompleteArgs.clear();
925 }
926 
927 /*
928 void printSCFG(CFGWalker &Walker) {
929  llvm::BumpPtrAllocator Bpa;
930  til::MemRegionRef Arena(&Bpa);
931  SExprBuilder SxBuilder(Arena);
932  til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
933  TILPrinter::print(Scfg, llvm::errs());
934 }
935 */
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
Simple arithmetic unary operations, e.g.
static const Decl * getCanonicalDecl(const Decl *D)
FunctionDecl - An instance of this class is created to represent a function declaration or definition...
Definition: Decl.h:1698
Apply a self-argument to a self-applicable function.
Expr ** getArgs()
Retrieve the call arguments.
Definition: Expr.h:2269
til::SExpr * lookupStmt(const Stmt *S)
A (possibly-)qualified type.
Definition: Type.h:653
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2483
const CXXMethodDecl *const * method_iterator
Definition: DeclCXX.h:2073
A conditional branch to two other blocks.
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2278
succ_iterator succ_begin()
Definition: CFG.h:624
static bool hasCppPointerType(const til::SExpr *E)
Stmt - This represents one statement.
Definition: Stmt.h:66
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2266
Expr * getBase() const
Definition: Expr.h:2477
unsigned getBlockID() const
Definition: CFG.h:729
iterator end()
Definition: DeclGroup.h:106
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
Expr * getImplicitObjectArgument() const
Retrieves the implicit object argument for the member call.
Definition: ExprCXX.cpp:505
Opcode getOpcode() const
Definition: Expr.h:3026
StringRef P
til::SExpr * translate(const Stmt *S, CallingContext *Ctx)
static const ValueDecl * getValueDeclFromSExpr(const til::SExpr *E)
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1239
unsigned succ_size() const
Definition: CFG.h:642
bool isTrivialType(const ASTContext &Context) const
Return true if this is a trivial type per (C++0x [basic.types]p9)
Definition: Type.cpp:2117
VarDecl - An instance of this class is created to represent a variable declaration or definition...
Definition: Decl.h:807
static bool isCalleeArrow(const Expr *E)
unsigned addPredecessor(BasicBlock *Pred)
static const CXXMethodDecl * getFirstVirtualDecl(const CXXMethodDecl *D)
size_t numPredecessors() const
Returns the number of predecessors.
ParmVarDecl - Represents a parameter to a function.
Definition: Decl.h:1514
Defines the clang::Expr interface and subclasses for C++ expressions.
If p is a reference to an array, then p[i] is a reference to the i&#39;th element of the array...
til::SCFG * buildCFG(CFGWalker &Walker)
Project a named slot from a C++ struct or class.
CXXMethodDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclCXX.h:2046
const DeclGroupRef getDeclGroup() const
Definition: Stmt.h:507
Expr * getSubExpr()
Definition: Expr.h:2761
unsigned findPredecessorIndex(const BasicBlock *BB) const
Return the index of BB, or Predecessors.size if BB is not a predecessor.
static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD)
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2985
iterator begin()
Definition: DeclGroup.h:100
bool isArrow() const
Definition: Expr.h:2582
Expr * IgnoreParenCasts() LLVM_READONLY
IgnoreParenCasts - Ignore parentheses and casts.
Definition: Expr.cpp:2463
A basic block is part of an SCFG.
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2710
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:865
Placeholder for expressions that cannot be represented in the TIL.
Represents the this expression in C++.
Definition: ExprCXX.h:945
void addInstruction(SExpr *V)
Add a new instruction.
An SCFG is a control-flow graph.
CastKind
CastKind - The kind of operation required for a conversion.
method_iterator end_overridden_methods() const
Definition: DeclCXX.cpp:1917
CFGBlock - Represents a single basic block in a source-level CFG.
Definition: CFG.h:422
void addArgument(Phi *V)
Add a new argument.
Apply an argument to a function.
ValueDecl - Represent the declaration of a variable (in which case it is an lvalue) a function (in wh...
Definition: Decl.h:628
Expr - This represents one expression.
Definition: Expr.h:106
Stmt * getTerminatorCondition(bool StripParens=true)
Definition: CFG.cpp:4898
CFG - Represents a source-level, intra-procedural CFG that represents the control-flow of a Stmt...
Definition: CFG.h:834
const FunctionProtoType * T
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2620
Defines an enumeration for C++ overloaded operators.
const Expr * getCallee() const
Definition: Expr.h:2249
char __ovld __cnfn min(char x, char y)
Returns y if y < x, otherwise it returns x.
static SVal getValue(SVal val, SValBuilder &svalBuilder)
Jump to another basic block.
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1717
CXXMethodDecl * getMethodDecl() const
Retrieves the declaration of the called method.
Definition: ExprCXX.cpp:517
ValueDecl * getDecl()
Definition: Expr.h:1041
TIL_BinaryOpcode
Opcode for binary arithmetic operations.
void reservePredecessors(unsigned NumPreds)
Expr * getSubExpr() const
Definition: Expr.h:1744
CastKind getCastKind() const
Definition: Expr.h:2757
std::string getNameAsString() const
getNameAsString - Get a human-readable name for the declaration, even if it is one of the special kin...
Definition: Decl.h:285
const ValArray & values() const
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:164
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:487
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1964
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2187
arg_range arguments()
Definition: Expr.h:2303
unsigned getNumBlockIDs() const
getNumBlockIDs - Returns the total number of BlockIDs allocated (which start at 0).
Definition: CFG.h:998
std::string getSourceLiteralString(const clang::Expr *CE)
SExprBuilder::CallingContext CallingContext
Placeholder for a wildcard that matches any other expression.
bool sameAs(const CopyOnWriteVector &V) const
Encapsulates the lexical context of a function call.
const InstrArray & arguments() const
Expr * getLHS() const
Definition: Expr.h:3029
Load a value from memory.
Dataflow Directional Tag Classes.
OverloadedOperatorKind getOperator() const
Returns the kind of overloaded operator that this expression refers to.
Definition: ExprCXX.h:106
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:22
method_iterator begin_overridden_methods() const
Definition: DeclCXX.cpp:1912
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return 0.
Definition: Expr.cpp:1216
unsigned pred_size() const
Definition: CFG.h:645
void setClangDecl(const clang::ValueDecl *Cvd)
Set the clang variable associated with this Phi node.
An if-then-else expression.
StmtClass getStmtClass() const
Definition: Stmt.h:378
BasicBlock * block() const
Returns the block, if this is an instruction in a basic block, otherwise returns null.
til::BasicBlock * lookupBlock(const CFGBlock *B)
Phi Node, for code in SSA form.
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2121
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:3227
Simple arithmetic binary operations, e.g.
T * getAttr() const
Definition: DeclBase.h:531
Opcode getOpcode() const
Definition: Expr.h:1741
void setValues(unsigned Sz, const T &C)
CapabilityExpr translateAttrExpr(const Expr *AttrExp, const NamedDecl *D, const Expr *DeclExp, VarDecl *SelfD=nullptr)
Translate a clang expression in an attribute to a til::SExpr.
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2387
void reserve(size_t Ncp, MemRegionRef A)
Defines the clang::SourceLocation class and associated facilities.
void simplifyIncompleteArg(til::Phi *Ph)
Store a value to memory.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2209
static bool isIncompletePhi(const til::SExpr *E)
decl_type * getMostRecentDecl()
Returns the most recent (re)declaration of this declaration.
Definition: Redeclarable.h:230
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:956
Expr * getRHS() const
Definition: Expr.h:3031
Base class for AST nodes in the typed intermediate language.
A Literal pointer to an object allocated in memory.
QualType getType() const
Definition: Decl.h:639
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:111
Call a function (after all arguments have been applied).
const clang::ValueDecl * clangDecl() const
Return the clang declaration of the variable for this Phi node, if any.
NamedDecl - This represents a decl with a name.
Definition: Decl.h:245
llvm::DenseMap< const Stmt *, CFGBlock * > SMap
Definition: CFGStmtMap.cpp:22
SourceLocation getLocation() const
Definition: DeclBase.h:416
bool isCXXInstanceMember() const
Determine whether the given declaration is an instance member of a C++ class.
Definition: Decl.cpp:1685