clang 22.0.0git
X86.cpp
Go to the documentation of this file.
1//===- X86.cpp ------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "ABIInfoImpl.h"
10#include "TargetInfo.h"
12#include "llvm/ADT/SmallBitVector.h"
13
14using namespace clang;
15using namespace clang::CodeGen;
16
17namespace {
18
19/// IsX86_MMXType - Return true if this is an MMX type.
20bool IsX86_MMXType(llvm::Type *IRType) {
21 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
22 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
23 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
24 IRType->getScalarSizeInBits() != 64;
25}
26
27static llvm::Type *X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
28 StringRef Constraint,
29 llvm::Type *Ty) {
30 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
31 .Cases({"y", "&y", "^Ym"}, true)
32 .Default(false);
33 if (IsMMXCons && Ty->isVectorTy() &&
34 cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() !=
35 64)
36 return nullptr; // Invalid MMX constraint
37
38 if (Constraint == "k") {
39 llvm::Type *Int1Ty = llvm::Type::getInt1Ty(CGF.getLLVMContext());
40 return llvm::FixedVectorType::get(Int1Ty, Ty->getScalarSizeInBits());
41 }
42
43 // No operation needed
44 return Ty;
45}
46
47/// Returns true if this type can be passed in SSE registers with the
48/// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
49static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
50 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
51 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
52 if (BT->getKind() == BuiltinType::LongDouble) {
53 if (&Context.getTargetInfo().getLongDoubleFormat() ==
54 &llvm::APFloat::x87DoubleExtended())
55 return false;
56 }
57 return true;
58 }
59 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
60 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
61 // registers specially.
62 unsigned VecSize = Context.getTypeSize(VT);
63 if (VecSize == 128 || VecSize == 256 || VecSize == 512)
64 return true;
65 }
66 return false;
67}
68
69/// Returns true if this aggregate is small enough to be passed in SSE registers
70/// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
71static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
72 return NumMembers <= 4;
73}
74
75/// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
76static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
77 auto AI = ABIArgInfo::getDirect(T);
78 AI.setInReg(true);
79 AI.setCanBeFlattened(false);
80 return AI;
81}
82
83//===----------------------------------------------------------------------===//
84// X86-32 ABI Implementation
85//===----------------------------------------------------------------------===//
86
87/// Similar to llvm::CCState, but for Clang.
88struct CCState {
89 CCState(CGFunctionInfo &FI)
90 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()),
91 Required(FI.getRequiredArgs()), IsDelegateCall(FI.isDelegateCall()) {}
92
93 llvm::SmallBitVector IsPreassigned;
94 unsigned CC = CallingConv::CC_C;
95 unsigned FreeRegs = 0;
96 unsigned FreeSSERegs = 0;
97 RequiredArgs Required;
98 bool IsDelegateCall = false;
99};
100
101/// X86_32ABIInfo - The X86-32 ABI information.
102class X86_32ABIInfo : public ABIInfo {
103 enum Class {
104 Integer,
105 Float
106 };
107
108 static const unsigned MinABIStackAlignInBytes = 4;
109
110 bool IsDarwinVectorABI;
111 bool IsRetSmallStructInRegABI;
112 bool IsWin32StructABI;
113 bool IsSoftFloatABI;
114 bool IsMCUABI;
115 bool IsLinuxABI;
116 unsigned DefaultNumRegisterParameters;
117
118 static bool isRegisterSize(unsigned Size) {
119 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
120 }
121
122 bool isHomogeneousAggregateBaseType(QualType Ty) const override {
123 // FIXME: Assumes vectorcall is in use.
124 return isX86VectorTypeForVectorCall(getContext(), Ty);
125 }
126
127 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
128 uint64_t NumMembers) const override {
129 // FIXME: Assumes vectorcall is in use.
130 return isX86VectorCallAggregateSmallEnough(NumMembers);
131 }
132
133 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
134
135 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
136 /// such that the argument will be passed in memory.
137 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
138
139 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
140
141 /// Return the alignment to use for the given type on the stack.
142 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
143
144 Class classify(QualType Ty) const;
145 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
146 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State,
147 unsigned ArgIndex) const;
148
149 /// Updates the number of available free registers, returns
150 /// true if any registers were allocated.
151 bool updateFreeRegs(QualType Ty, CCState &State) const;
152
153 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
154 bool &NeedsPadding) const;
155 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
156
157 bool canExpandIndirectArgument(QualType Ty) const;
158
159 /// Rewrite the function info so that all memory arguments use
160 /// inalloca.
161 void rewriteWithInAlloca(CGFunctionInfo &FI) const;
162
163 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
164 CharUnits &StackOffset, ABIArgInfo &Info,
165 QualType Type) const;
166 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
167
168public:
169
170 void computeInfo(CGFunctionInfo &FI) const override;
171 RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
172 AggValueSlot Slot) const override;
173
174 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
175 bool RetSmallStructInRegABI, bool Win32StructABI,
176 unsigned NumRegisterParameters, bool SoftFloatABI)
177 : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
178 IsRetSmallStructInRegABI(RetSmallStructInRegABI),
179 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
180 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
181 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
182 CGT.getTarget().getTriple().isOSCygMing()),
183 DefaultNumRegisterParameters(NumRegisterParameters) {}
184};
185
186class X86_32SwiftABIInfo : public SwiftABIInfo {
187public:
188 explicit X86_32SwiftABIInfo(CodeGenTypes &CGT)
189 : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {}
190
191 bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
192 bool AsReturnValue) const override {
193 // LLVM's x86-32 lowering currently only assigns up to three
194 // integer registers and three fp registers. Oddly, it'll use up to
195 // four vector registers for vectors, but those can overlap with the
196 // scalar registers.
197 return occupiesMoreThan(ComponentTys, /*total=*/3);
198 }
199};
200
201class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
202public:
203 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
204 bool RetSmallStructInRegABI, bool Win32StructABI,
205 unsigned NumRegisterParameters, bool SoftFloatABI)
206 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
207 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
208 NumRegisterParameters, SoftFloatABI)) {
209 SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT);
210 }
211
212 static bool isStructReturnInRegABI(
213 const llvm::Triple &Triple, const CodeGenOptions &Opts);
214
215 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
216 CodeGen::CodeGenModule &CGM) const override;
217
218 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
219 // Darwin uses different dwarf register numbers for EH.
220 if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
221 return 4;
222 }
223
224 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
225 llvm::Value *Address) const override;
226
227 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
228 StringRef Constraint,
229 llvm::Type* Ty) const override {
230 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
231 }
232
233 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
234 std::string &Constraints,
235 std::vector<llvm::Type *> &ResultRegTypes,
236 std::vector<llvm::Type *> &ResultTruncRegTypes,
237 std::vector<LValue> &ResultRegDests,
238 std::string &AsmString,
239 unsigned NumOutputs) const override;
240
241 StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
242 return "movl\t%ebp, %ebp"
243 "\t\t// marker for objc_retainAutoreleaseReturnValue";
244 }
245};
246
247}
248
249/// Rewrite input constraint references after adding some output constraints.
250/// In the case where there is one output and one input and we add one output,
251/// we need to replace all operand references greater than or equal to 1:
252/// mov $0, $1
253/// mov eax, $1
254/// The result will be:
255/// mov $0, $2
256/// mov eax, $2
257static void rewriteInputConstraintReferences(unsigned FirstIn,
258 unsigned NumNewOuts,
259 std::string &AsmString) {
260 std::string Buf;
261 llvm::raw_string_ostream OS(Buf);
262 size_t Pos = 0;
263 while (Pos < AsmString.size()) {
264 size_t DollarStart = AsmString.find('$', Pos);
265 if (DollarStart == std::string::npos)
266 DollarStart = AsmString.size();
267 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
268 if (DollarEnd == std::string::npos)
269 DollarEnd = AsmString.size();
270 OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
271 Pos = DollarEnd;
272 size_t NumDollars = DollarEnd - DollarStart;
273 if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
274 // We have an operand reference.
275 size_t DigitStart = Pos;
276 if (AsmString[DigitStart] == '{') {
277 OS << '{';
278 ++DigitStart;
279 }
280 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
281 if (DigitEnd == std::string::npos)
282 DigitEnd = AsmString.size();
283 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
284 unsigned OperandIndex;
285 if (!OperandStr.getAsInteger(10, OperandIndex)) {
286 if (OperandIndex >= FirstIn)
287 OperandIndex += NumNewOuts;
288 OS << OperandIndex;
289 } else {
290 OS << OperandStr;
291 }
292 Pos = DigitEnd;
293 }
294 }
295 AsmString = std::move(Buf);
296}
297
298/// Add output constraints for EAX:EDX because they are return registers.
299void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
300 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
301 std::vector<llvm::Type *> &ResultRegTypes,
302 std::vector<llvm::Type *> &ResultTruncRegTypes,
303 std::vector<LValue> &ResultRegDests, std::string &AsmString,
304 unsigned NumOutputs) const {
305 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
306
307 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
308 // larger.
309 if (!Constraints.empty())
310 Constraints += ',';
311 if (RetWidth <= 32) {
312 Constraints += "={eax}";
313 ResultRegTypes.push_back(CGF.Int32Ty);
314 } else {
315 // Use the 'A' constraint for EAX:EDX.
316 Constraints += "=A";
317 ResultRegTypes.push_back(CGF.Int64Ty);
318 }
319
320 // Truncate EAX or EAX:EDX to an integer of the appropriate size.
321 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
322 ResultTruncRegTypes.push_back(CoerceTy);
323
324 // Coerce the integer by bitcasting the return slot pointer.
325 ReturnSlot.setAddress(ReturnSlot.getAddress().withElementType(CoerceTy));
326 ResultRegDests.push_back(ReturnSlot);
327
328 rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
329}
330
331/// shouldReturnTypeInRegister - Determine if the given type should be
332/// returned in a register (for the Darwin and MCU ABI).
333bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
334 ASTContext &Context) const {
335 uint64_t Size = Context.getTypeSize(Ty);
336
337 // For i386, type must be register sized.
338 // For the MCU ABI, it only needs to be <= 8-byte
339 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
340 return false;
341
342 if (Ty->isVectorType()) {
343 // 64- and 128- bit vectors inside structures are not returned in
344 // registers.
345 if (Size == 64 || Size == 128)
346 return false;
347
348 return true;
349 }
350
351 // If this is a builtin, pointer, enum, complex type, member pointer, or
352 // member function pointer it is ok.
353 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
354 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
356 return true;
357
358 // Arrays are treated like records.
359 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
360 return shouldReturnTypeInRegister(AT->getElementType(), Context);
361
362 // Otherwise, it must be a record type.
363 const auto *RD = Ty->getAsRecordDecl();
364 if (!RD)
365 return false;
366
367 // FIXME: Traverse bases here too.
368
369 // Structure types are passed in register if all fields would be
370 // passed in a register.
371 for (const auto *FD : RD->fields()) {
372 // Empty fields are ignored.
373 if (isEmptyField(Context, FD, true))
374 continue;
375
376 // Check fields recursively.
377 if (!shouldReturnTypeInRegister(FD->getType(), Context))
378 return false;
379 }
380 return true;
381}
382
383static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
384 // Treat complex types as the element type.
385 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
386 Ty = CTy->getElementType();
387
388 // Check for a type which we know has a simple scalar argument-passing
389 // convention without any padding. (We're specifically looking for 32
390 // and 64-bit integer and integer-equivalents, float, and double.)
391 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
392 !Ty->isEnumeralType() && !Ty->isBlockPointerType())
393 return false;
394
395 uint64_t Size = Context.getTypeSize(Ty);
396 return Size == 32 || Size == 64;
397}
398
399static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
400 uint64_t &Size) {
401 for (const auto *FD : RD->fields()) {
402 // Scalar arguments on the stack get 4 byte alignment on x86. If the
403 // argument is smaller than 32-bits, expanding the struct will create
404 // alignment padding.
405 if (!is32Or64BitBasicType(FD->getType(), Context))
406 return false;
407
408 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
409 // how to expand them yet, and the predicate for telling if a bitfield still
410 // counts as "basic" is more complicated than what we were doing previously.
411 if (FD->isBitField())
412 return false;
413
414 Size += Context.getTypeSize(FD->getType());
415 }
416 return true;
417}
418
419static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
420 uint64_t &Size) {
421 // Don't do this if there are any non-empty bases.
422 for (const CXXBaseSpecifier &Base : RD->bases()) {
423 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
424 Size))
425 return false;
426 }
427 if (!addFieldSizes(Context, RD, Size))
428 return false;
429 return true;
430}
431
432/// Test whether an argument type which is to be passed indirectly (on the
433/// stack) would have the equivalent layout if it was expanded into separate
434/// arguments. If so, we prefer to do the latter to avoid inhibiting
435/// optimizations.
436bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
437 // We can only expand structure types.
438 const RecordDecl *RD = Ty->getAsRecordDecl();
439 if (!RD)
440 return false;
441 uint64_t Size = 0;
442 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
443 if (!IsWin32StructABI) {
444 // On non-Windows, we have to conservatively match our old bitcode
445 // prototypes in order to be ABI-compatible at the bitcode level.
446 if (!CXXRD->isCLike())
447 return false;
448 } else {
449 // Don't do this for dynamic classes.
450 if (CXXRD->isDynamicClass())
451 return false;
452 }
453 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
454 return false;
455 } else {
456 if (!addFieldSizes(getContext(), RD, Size))
457 return false;
458 }
459
460 // We can do this if there was no alignment padding.
461 return Size == getContext().getTypeSize(Ty);
462}
463
464ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
465 // If the return value is indirect, then the hidden argument is consuming one
466 // integer register.
467 if (State.CC != llvm::CallingConv::X86_FastCall &&
468 State.CC != llvm::CallingConv::X86_VectorCall && State.FreeRegs) {
469 --State.FreeRegs;
470 if (!IsMCUABI)
471 return getNaturalAlignIndirectInReg(RetTy);
472 }
473 return getNaturalAlignIndirect(
474 RetTy, /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(),
475 /*ByVal=*/false);
476}
477
478ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
479 CCState &State) const {
480 if (RetTy->isVoidType())
481 return ABIArgInfo::getIgnore();
482
483 const Type *Base = nullptr;
484 uint64_t NumElts = 0;
485 if ((State.CC == llvm::CallingConv::X86_VectorCall ||
486 State.CC == llvm::CallingConv::X86_RegCall) &&
487 isHomogeneousAggregate(RetTy, Base, NumElts)) {
488 // The LLVM struct type for such an aggregate should lower properly.
489 return ABIArgInfo::getDirect();
490 }
491
492 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
493 // On Darwin, some vectors are returned in registers.
494 if (IsDarwinVectorABI) {
495 uint64_t Size = getContext().getTypeSize(RetTy);
496
497 // 128-bit vectors are a special case; they are returned in
498 // registers and we need to make sure to pick a type the LLVM
499 // backend will like.
500 if (Size == 128)
501 return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
502 llvm::Type::getInt64Ty(getVMContext()), 2));
503
504 // Always return in register if it fits in a general purpose
505 // register, or if it is 64 bits and has a single element.
506 if ((Size == 8 || Size == 16 || Size == 32) ||
507 (Size == 64 && VT->getNumElements() == 1))
508 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
509 Size));
510
511 return getIndirectReturnResult(RetTy, State);
512 }
513
514 return ABIArgInfo::getDirect();
515 }
516
517 if (isAggregateTypeForABI(RetTy)) {
518 if (const auto *RD = RetTy->getAsRecordDecl();
519 RD && RD->hasFlexibleArrayMember())
520 // Structures with flexible arrays are always indirect.
521 return getIndirectReturnResult(RetTy, State);
522
523 // If specified, structs and unions are always indirect.
524 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
525 return getIndirectReturnResult(RetTy, State);
526
527 // Ignore empty structs/unions.
528 if (isEmptyRecord(getContext(), RetTy, true))
529 return ABIArgInfo::getIgnore();
530
531 // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
532 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
533 QualType ET = getContext().getCanonicalType(CT->getElementType());
534 if (ET->isFloat16Type())
535 return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
536 llvm::Type::getHalfTy(getVMContext()), 2));
537 }
538
539 // Small structures which are register sized are generally returned
540 // in a register.
541 if (shouldReturnTypeInRegister(RetTy, getContext())) {
542 uint64_t Size = getContext().getTypeSize(RetTy);
543
544 // As a special-case, if the struct is a "single-element" struct, and
545 // the field is of type "float" or "double", return it in a
546 // floating-point register. (MSVC does not apply this special case.)
547 // We apply a similar transformation for pointer types to improve the
548 // quality of the generated IR.
549 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
550 if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
551 || SeltTy->hasPointerRepresentation())
552 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
553
554 // FIXME: We should be able to narrow this integer in cases with dead
555 // padding.
556 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
557 }
558
559 return getIndirectReturnResult(RetTy, State);
560 }
561
562 // Treat an enum type as its underlying type.
563 if (const auto *ED = RetTy->getAsEnumDecl())
564 RetTy = ED->getIntegerType();
565
566 if (const auto *EIT = RetTy->getAs<BitIntType>())
567 if (EIT->getNumBits() > 64)
568 return getIndirectReturnResult(RetTy, State);
569
570 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
572}
573
574unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
575 unsigned Align) const {
576 // Otherwise, if the alignment is less than or equal to the minimum ABI
577 // alignment, just use the default; the backend will handle this.
578 if (Align <= MinABIStackAlignInBytes)
579 return 0; // Use default alignment.
580
581 if (IsLinuxABI) {
582 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
583 // want to spend any effort dealing with the ramifications of ABI breaks.
584 //
585 // If the vector type is __m128/__m256/__m512, return the default alignment.
586 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
587 return Align;
588 }
589 // On non-Darwin, the stack type alignment is always 4.
590 if (!IsDarwinVectorABI) {
591 // Set explicit alignment, since we may need to realign the top.
592 return MinABIStackAlignInBytes;
593 }
594
595 // Otherwise, if the type contains an SSE vector type, the alignment is 16.
596 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
597 isRecordWithSIMDVectorType(getContext(), Ty)))
598 return 16;
599
600 return MinABIStackAlignInBytes;
601}
602
603ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
604 CCState &State) const {
605 if (!ByVal) {
606 if (State.FreeRegs) {
607 --State.FreeRegs; // Non-byval indirects just use one pointer.
608 if (!IsMCUABI)
609 return getNaturalAlignIndirectInReg(Ty);
610 }
611 return getNaturalAlignIndirect(Ty, getDataLayout().getAllocaAddrSpace(),
612 false);
613 }
614
615 // Compute the byval alignment.
616 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
617 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
618 if (StackAlign == 0)
621 /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(),
622 /*ByVal=*/true);
623
624 // If the stack alignment is less than the type alignment, realign the
625 // argument.
626 bool Realign = TypeAlign > StackAlign;
628 CharUnits::fromQuantity(StackAlign),
629 /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(), /*ByVal=*/true,
630 Realign);
631}
632
633X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
634 const Type *T = isSingleElementStruct(Ty, getContext());
635 if (!T)
636 T = Ty.getTypePtr();
637
638 if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
639 BuiltinType::Kind K = BT->getKind();
640 if (K == BuiltinType::Float || K == BuiltinType::Double)
641 return Float;
642 }
643 return Integer;
644}
645
646bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
647 if (!IsSoftFloatABI) {
648 Class C = classify(Ty);
649 if (C == Float)
650 return false;
651 }
652
653 unsigned Size = getContext().getTypeSize(Ty);
654 unsigned SizeInRegs = (Size + 31) / 32;
655
656 if (SizeInRegs == 0)
657 return false;
658
659 if (!IsMCUABI) {
660 if (SizeInRegs > State.FreeRegs) {
661 State.FreeRegs = 0;
662 return false;
663 }
664 } else {
665 // The MCU psABI allows passing parameters in-reg even if there are
666 // earlier parameters that are passed on the stack. Also,
667 // it does not allow passing >8-byte structs in-register,
668 // even if there are 3 free registers available.
669 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
670 return false;
671 }
672
673 State.FreeRegs -= SizeInRegs;
674 return true;
675}
676
677bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
678 bool &InReg,
679 bool &NeedsPadding) const {
680 // On Windows, aggregates other than HFAs are never passed in registers, and
681 // they do not consume register slots. Homogenous floating-point aggregates
682 // (HFAs) have already been dealt with at this point.
683 if (IsWin32StructABI && isAggregateTypeForABI(Ty))
684 return false;
685
686 NeedsPadding = false;
687 InReg = !IsMCUABI;
688
689 if (!updateFreeRegs(Ty, State))
690 return false;
691
692 if (IsMCUABI)
693 return true;
694
695 if (State.CC == llvm::CallingConv::X86_FastCall ||
696 State.CC == llvm::CallingConv::X86_VectorCall ||
697 State.CC == llvm::CallingConv::X86_RegCall) {
698 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
699 NeedsPadding = true;
700
701 return false;
702 }
703
704 return true;
705}
706
707bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
708 bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) &&
710 Ty->isReferenceType());
711
712 if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall ||
713 State.CC == llvm::CallingConv::X86_VectorCall))
714 return false;
715
716 if (!updateFreeRegs(Ty, State))
717 return false;
718
719 if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall)
720 return false;
721
722 // Return true to apply inreg to all legal parameters except for MCU targets.
723 return !IsMCUABI;
724}
725
726void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
727 // Vectorcall x86 works subtly different than in x64, so the format is
728 // a bit different than the x64 version. First, all vector types (not HVAs)
729 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
730 // This differs from the x64 implementation, where the first 6 by INDEX get
731 // registers.
732 // In the second pass over the arguments, HVAs are passed in the remaining
733 // vector registers if possible, or indirectly by address. The address will be
734 // passed in ECX/EDX if available. Any other arguments are passed according to
735 // the usual fastcall rules.
736 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
737 for (int I = 0, E = Args.size(); I < E; ++I) {
738 const Type *Base = nullptr;
739 uint64_t NumElts = 0;
740 const QualType &Ty = Args[I].type;
741 if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
742 isHomogeneousAggregate(Ty, Base, NumElts)) {
743 if (State.FreeSSERegs >= NumElts) {
744 State.FreeSSERegs -= NumElts;
745 Args[I].info = ABIArgInfo::getDirectInReg();
746 State.IsPreassigned.set(I);
747 }
748 }
749 }
750}
751
752ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State,
753 unsigned ArgIndex) const {
754 // FIXME: Set alignment on indirect arguments.
755 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
756 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
757 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
758
760 TypeInfo TI = getContext().getTypeInfo(Ty);
761
762 // Check with the C++ ABI first.
763 const RecordType *RT = Ty->getAsCanonical<RecordType>();
764 if (RT) {
765 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
766 if (RAA == CGCXXABI::RAA_Indirect) {
767 return getIndirectResult(Ty, false, State);
768 } else if (State.IsDelegateCall) {
769 // Avoid having different alignments on delegate call args by always
770 // setting the alignment to 4, which is what we do for inallocas.
771 ABIArgInfo Res = getIndirectResult(Ty, false, State);
773 return Res;
774 } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
775 // The field index doesn't matter, we'll fix it up later.
776 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
777 }
778 }
779
780 // Regcall uses the concept of a homogenous vector aggregate, similar
781 // to other targets.
782 const Type *Base = nullptr;
783 uint64_t NumElts = 0;
784 if ((IsRegCall || IsVectorCall) &&
785 isHomogeneousAggregate(Ty, Base, NumElts)) {
786 if (State.FreeSSERegs >= NumElts) {
787 State.FreeSSERegs -= NumElts;
788
789 // Vectorcall passes HVAs directly and does not flatten them, but regcall
790 // does.
791 if (IsVectorCall)
792 return getDirectX86Hva();
793
794 if (Ty->isBuiltinType() || Ty->isVectorType())
795 return ABIArgInfo::getDirect();
796 return ABIArgInfo::getExpand();
797 }
798 if (IsVectorCall && Ty->isBuiltinType())
799 return ABIArgInfo::getDirect();
800 return getIndirectResult(Ty, /*ByVal=*/false, State);
801 }
802
803 if (isAggregateTypeForABI(Ty)) {
804 // Structures with flexible arrays are always indirect.
805 // FIXME: This should not be byval!
806 if (RT && RT->getDecl()->getDefinitionOrSelf()->hasFlexibleArrayMember())
807 return getIndirectResult(Ty, true, State);
808
809 // Ignore empty structs/unions on non-Windows.
810 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
811 return ABIArgInfo::getIgnore();
812
813 // Ignore 0 sized structs.
814 if (TI.Width == 0)
815 return ABIArgInfo::getIgnore();
816
817 llvm::LLVMContext &LLVMContext = getVMContext();
818 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
819 bool NeedsPadding = false;
820 bool InReg;
821 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
822 unsigned SizeInRegs = (TI.Width + 31) / 32;
823 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
824 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
825 if (InReg)
827 else
829 }
830 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
831
832 // Pass over-aligned aggregates to non-variadic functions on Windows
833 // indirectly. This behavior was added in MSVC 2015. Use the required
834 // alignment from the record layout, since that may be less than the
835 // regular type alignment, and types with required alignment of less than 4
836 // bytes are not passed indirectly.
837 if (IsWin32StructABI && State.Required.isRequiredArg(ArgIndex)) {
838 unsigned AlignInBits = 0;
839 if (RT) {
840 const ASTRecordLayout &Layout =
841 getContext().getASTRecordLayout(RT->getDecl());
842 AlignInBits = getContext().toBits(Layout.getRequiredAlignment());
843 } else if (TI.isAlignRequired()) {
844 AlignInBits = TI.Align;
845 }
846 if (AlignInBits > 32)
847 return getIndirectResult(Ty, /*ByVal=*/false, State);
848 }
849
850 // Expand small (<= 128-bit) record types when we know that the stack layout
851 // of those arguments will match the struct. This is important because the
852 // LLVM backend isn't smart enough to remove byval, which inhibits many
853 // optimizations.
854 // Don't do this for the MCU if there are still free integer registers
855 // (see X86_64 ABI for full explanation).
856 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
857 canExpandIndirectArgument(Ty))
859 IsFastCall || IsVectorCall || IsRegCall, PaddingType);
860
861 return getIndirectResult(Ty, true, State);
862 }
863
864 if (const VectorType *VT = Ty->getAs<VectorType>()) {
865 // On Windows, vectors are passed directly if registers are available, or
866 // indirectly if not. This avoids the need to align argument memory. Pass
867 // user-defined vector types larger than 512 bits indirectly for simplicity.
868 if (IsWin32StructABI) {
869 if (TI.Width <= 512 && State.FreeSSERegs > 0) {
870 --State.FreeSSERegs;
872 }
873 return getIndirectResult(Ty, /*ByVal=*/false, State);
874 }
875
876 // On Darwin, some vectors are passed in memory, we handle this by passing
877 // it as an i8/i16/i32/i64.
878 if (IsDarwinVectorABI) {
879 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
880 (TI.Width == 64 && VT->getNumElements() == 1))
882 llvm::IntegerType::get(getVMContext(), TI.Width));
883 }
884
885 if (IsX86_MMXType(CGT.ConvertType(Ty)))
886 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
887
888 return ABIArgInfo::getDirect();
889 }
890
891 if (const auto *ED = Ty->getAsEnumDecl())
892 Ty = ED->getIntegerType();
893
894 bool InReg = shouldPrimitiveUseInReg(Ty, State);
895
896 if (isPromotableIntegerTypeForABI(Ty)) {
897 if (InReg)
898 return ABIArgInfo::getExtendInReg(Ty, CGT.ConvertType(Ty));
899 return ABIArgInfo::getExtend(Ty, CGT.ConvertType(Ty));
900 }
901
902 if (const auto *EIT = Ty->getAs<BitIntType>()) {
903 if (EIT->getNumBits() <= 64) {
904 if (InReg)
906 return ABIArgInfo::getDirect();
907 }
908 return getIndirectResult(Ty, /*ByVal=*/false, State);
909 }
910
911 if (InReg)
913 return ABIArgInfo::getDirect();
914}
915
916void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
917 CCState State(FI);
918 if (IsMCUABI)
919 State.FreeRegs = 3;
920 else if (State.CC == llvm::CallingConv::X86_FastCall) {
921 State.FreeRegs = 2;
922 State.FreeSSERegs = 3;
923 } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
924 State.FreeRegs = 2;
925 State.FreeSSERegs = 6;
926 } else if (FI.getHasRegParm())
927 State.FreeRegs = FI.getRegParm();
928 else if (State.CC == llvm::CallingConv::X86_RegCall) {
929 State.FreeRegs = 5;
930 State.FreeSSERegs = 8;
931 } else if (IsWin32StructABI) {
932 // Since MSVC 2015, the first three SSE vectors have been passed in
933 // registers. The rest are passed indirectly.
934 State.FreeRegs = DefaultNumRegisterParameters;
935 State.FreeSSERegs = 3;
936 } else
937 State.FreeRegs = DefaultNumRegisterParameters;
938
939 if (!::classifyReturnType(getCXXABI(), FI, *this)) {
941 } else if (FI.getReturnInfo().isIndirect()) {
942 // The C++ ABI is not aware of register usage, so we have to check if the
943 // return value was sret and put it in a register ourselves if appropriate.
944 if (State.FreeRegs) {
945 --State.FreeRegs; // The sret parameter consumes a register.
946 if (!IsMCUABI)
947 FI.getReturnInfo().setInReg(true);
948 }
949 }
950
951 // The chain argument effectively gives us another free register.
952 if (FI.isChainCall())
953 ++State.FreeRegs;
954
955 // For vectorcall, do a first pass over the arguments, assigning FP and vector
956 // arguments to XMM registers as available.
957 if (State.CC == llvm::CallingConv::X86_VectorCall)
958 runVectorCallFirstPass(FI, State);
959
960 bool UsedInAlloca = false;
961 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
962 for (unsigned I = 0, E = Args.size(); I < E; ++I) {
963 // Skip arguments that have already been assigned.
964 if (State.IsPreassigned.test(I))
965 continue;
966
967 Args[I].info =
968 classifyArgumentType(Args[I].type, State, I);
969 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
970 }
971
972 // If we needed to use inalloca for any argument, do a second pass and rewrite
973 // all the memory arguments to use inalloca.
974 if (UsedInAlloca)
975 rewriteWithInAlloca(FI);
976}
977
978void
979X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
980 CharUnits &StackOffset, ABIArgInfo &Info,
981 QualType Type) const {
982 // Arguments are always 4-byte-aligned.
983 CharUnits WordSize = CharUnits::fromQuantity(4);
984 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
985
986 // sret pointers and indirect things will require an extra pointer
987 // indirection, unless they are byval. Most things are byval, and will not
988 // require this indirection.
989 bool IsIndirect = false;
990 if (Info.isIndirect() && !Info.getIndirectByVal())
991 IsIndirect = true;
992 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
993 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
994 if (IsIndirect)
995 LLTy = llvm::PointerType::getUnqual(getVMContext());
996 FrameFields.push_back(LLTy);
997 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
998
999 // Insert padding bytes to respect alignment.
1000 CharUnits FieldEnd = StackOffset;
1001 StackOffset = FieldEnd.alignTo(WordSize);
1002 if (StackOffset != FieldEnd) {
1003 CharUnits NumBytes = StackOffset - FieldEnd;
1004 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1005 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1006 FrameFields.push_back(Ty);
1007 }
1008}
1009
1010static bool isArgInAlloca(const ABIArgInfo &Info) {
1011 // Leave ignored and inreg arguments alone.
1012 switch (Info.getKind()) {
1014 return true;
1015 case ABIArgInfo::Ignore:
1018 return false;
1020 case ABIArgInfo::Direct:
1021 case ABIArgInfo::Extend:
1022 return !Info.getInReg();
1023 case ABIArgInfo::Expand:
1025 // These are aggregate types which are never passed in registers when
1026 // inalloca is involved.
1027 return true;
1028 }
1029 llvm_unreachable("invalid enum");
1030}
1031
1032void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1033 assert(IsWin32StructABI && "inalloca only supported on win32");
1034
1035 // Build a packed struct type for all of the arguments in memory.
1036 SmallVector<llvm::Type *, 6> FrameFields;
1037
1038 // The stack alignment is always 4.
1039 CharUnits StackAlign = CharUnits::fromQuantity(4);
1040
1041 CharUnits StackOffset;
1043
1044 // Put 'this' into the struct before 'sret', if necessary.
1045 bool IsThisCall =
1046 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1047 ABIArgInfo &Ret = FI.getReturnInfo();
1048 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1049 isArgInAlloca(I->info)) {
1050 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1051 ++I;
1052 }
1053
1054 // Put the sret parameter into the inalloca struct if it's in memory.
1055 if (Ret.isIndirect() && !Ret.getInReg()) {
1056 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
1057 // On Windows, the hidden sret parameter is always returned in eax.
1058 Ret.setInAllocaSRet(IsWin32StructABI);
1059 }
1060
1061 // Skip the 'this' parameter in ecx.
1062 if (IsThisCall)
1063 ++I;
1064
1065 // Put arguments passed in memory into the struct.
1066 for (; I != E; ++I) {
1067 if (isArgInAlloca(I->info))
1068 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1069 }
1070
1071 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1072 /*isPacked=*/true),
1073 StackAlign);
1074}
1075
1076RValue X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1077 QualType Ty, AggValueSlot Slot) const {
1078
1079 auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1080
1081 CCState State(*const_cast<CGFunctionInfo *>(CGF.CurFnInfo));
1082 ABIArgInfo AI = classifyArgumentType(Ty, State, /*ArgIndex*/ 0);
1083 // Empty records are ignored for parameter passing purposes.
1084 if (AI.isIgnore())
1085 return Slot.asRValue();
1086
1087 // x86-32 changes the alignment of certain arguments on the stack.
1088 //
1089 // Just messing with TypeInfo like this works because we never pass
1090 // anything indirectly.
1091 TypeInfo.Align = CharUnits::fromQuantity(
1092 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
1093
1094 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
1096 /*AllowHigherAlign*/ true, Slot);
1097}
1098
1099bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1100 const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1101 assert(Triple.getArch() == llvm::Triple::x86);
1102
1103 switch (Opts.getStructReturnConvention()) {
1105 break;
1106 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
1107 return false;
1108 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
1109 return true;
1110 }
1111
1112 if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1113 return true;
1114
1115 switch (Triple.getOS()) {
1116 case llvm::Triple::DragonFly:
1117 case llvm::Triple::FreeBSD:
1118 case llvm::Triple::OpenBSD:
1119 case llvm::Triple::Win32:
1120 return true;
1121 default:
1122 return false;
1123 }
1124}
1125
1126static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
1128 if (!FD->hasAttr<AnyX86InterruptAttr>())
1129 return;
1130
1131 llvm::Function *Fn = cast<llvm::Function>(GV);
1132 Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1133 if (FD->getNumParams() == 0)
1134 return;
1135
1136 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
1137 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
1138 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
1139 Fn->getContext(), ByValTy);
1140 Fn->addParamAttr(0, NewAttr);
1141}
1142
1143void X86_32TargetCodeGenInfo::setTargetAttributes(
1144 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1145 if (GV->isDeclaration())
1146 return;
1147 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1148 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1149 llvm::Function *Fn = cast<llvm::Function>(GV);
1150 Fn->addFnAttr("stackrealign");
1151 }
1152
1153 addX86InterruptAttrs(FD, GV, CGM);
1154 }
1155}
1156
1157bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1158 CodeGen::CodeGenFunction &CGF,
1159 llvm::Value *Address) const {
1160 CodeGen::CGBuilderTy &Builder = CGF.Builder;
1161
1162 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1163
1164 // 0-7 are the eight integer registers; the order is different
1165 // on Darwin (for EH), but the range is the same.
1166 // 8 is %eip.
1167 AssignToArrayRange(Builder, Address, Four8, 0, 8);
1168
1169 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1170 // 12-16 are st(0..4). Not sure why we stop at 4.
1171 // These have size 16, which is sizeof(long double) on
1172 // platforms with 8-byte alignment for that type.
1173 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1174 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1175
1176 } else {
1177 // 9 is %eflags, which doesn't get a size on Darwin for some
1178 // reason.
1179 Builder.CreateAlignedStore(
1180 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1181 CharUnits::One());
1182
1183 // 11-16 are st(0..5). Not sure why we stop at 5.
1184 // These have size 12, which is sizeof(long double) on
1185 // platforms with 4-byte alignment for that type.
1186 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1187 AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1188 }
1189
1190 return false;
1191}
1192
1193//===----------------------------------------------------------------------===//
1194// X86-64 ABI Implementation
1195//===----------------------------------------------------------------------===//
1196
1197
1198namespace {
1199
1200/// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1201static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1202 switch (AVXLevel) {
1203 case X86AVXABILevel::AVX512:
1204 return 512;
1205 case X86AVXABILevel::AVX:
1206 return 256;
1207 case X86AVXABILevel::None:
1208 return 128;
1209 }
1210 llvm_unreachable("Unknown AVXLevel");
1211}
1212
1213/// X86_64ABIInfo - The X86_64 ABI information.
1214class X86_64ABIInfo : public ABIInfo {
1215 enum Class {
1216 Integer = 0,
1217 SSE,
1218 SSEUp,
1219 X87,
1220 X87Up,
1221 ComplexX87,
1222 NoClass,
1223 Memory
1224 };
1225
1226 /// merge - Implement the X86_64 ABI merging algorithm.
1227 ///
1228 /// Merge an accumulating classification \arg Accum with a field
1229 /// classification \arg Field.
1230 ///
1231 /// \param Accum - The accumulating classification. This should
1232 /// always be either NoClass or the result of a previous merge
1233 /// call. In addition, this should never be Memory (the caller
1234 /// should just return Memory for the aggregate).
1235 static Class merge(Class Accum, Class Field);
1236
1237 /// postMerge - Implement the X86_64 ABI post merging algorithm.
1238 ///
1239 /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1240 /// final MEMORY or SSE classes when necessary.
1241 ///
1242 /// \param AggregateSize - The size of the current aggregate in
1243 /// the classification process.
1244 ///
1245 /// \param Lo - The classification for the parts of the type
1246 /// residing in the low word of the containing object.
1247 ///
1248 /// \param Hi - The classification for the parts of the type
1249 /// residing in the higher words of the containing object.
1250 ///
1251 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1252
1253 /// classify - Determine the x86_64 register classes in which the
1254 /// given type T should be passed.
1255 ///
1256 /// \param Lo - The classification for the parts of the type
1257 /// residing in the low word of the containing object.
1258 ///
1259 /// \param Hi - The classification for the parts of the type
1260 /// residing in the high word of the containing object.
1261 ///
1262 /// \param OffsetBase - The bit offset of this type in the
1263 /// containing object. Some parameters are classified different
1264 /// depending on whether they straddle an eightbyte boundary.
1265 ///
1266 /// \param isNamedArg - Whether the argument in question is a "named"
1267 /// argument, as used in AMD64-ABI 3.5.7.
1268 ///
1269 /// \param IsRegCall - Whether the calling conversion is regcall.
1270 ///
1271 /// If a word is unused its result will be NoClass; if a type should
1272 /// be passed in Memory then at least the classification of \arg Lo
1273 /// will be Memory.
1274 ///
1275 /// The \arg Lo class will be NoClass iff the argument is ignored.
1276 ///
1277 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1278 /// also be ComplexX87.
1279 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1280 bool isNamedArg, bool IsRegCall = false) const;
1281
1282 llvm::Type *GetByteVectorType(QualType Ty) const;
1283 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1284 unsigned IROffset, QualType SourceTy,
1285 unsigned SourceOffset) const;
1286 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1287 unsigned IROffset, QualType SourceTy,
1288 unsigned SourceOffset) const;
1289
1290 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1291 /// such that the argument will be returned in memory.
1292 ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1293
1294 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1295 /// such that the argument will be passed in memory.
1296 ///
1297 /// \param freeIntRegs - The number of free integer registers remaining
1298 /// available.
1299 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1300
1301 ABIArgInfo classifyReturnType(QualType RetTy) const;
1302
1303 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
1304 unsigned &neededInt, unsigned &neededSSE,
1305 bool isNamedArg,
1306 bool IsRegCall = false) const;
1307
1308 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
1309 unsigned &NeededSSE,
1310 unsigned &MaxVectorWidth) const;
1311
1312 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
1313 unsigned &NeededSSE,
1314 unsigned &MaxVectorWidth) const;
1315
1316 bool IsIllegalVectorType(QualType Ty) const;
1317
1318 /// The 0.98 ABI revision clarified a lot of ambiguities,
1319 /// unfortunately in ways that were not always consistent with
1320 /// certain previous compilers. In particular, platforms which
1321 /// required strict binary compatibility with older versions of GCC
1322 /// may need to exempt themselves.
1323 bool honorsRevision0_98() const {
1324 return !getTarget().getTriple().isOSDarwin();
1325 }
1326
1327 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
1328 /// classify it as INTEGER (for compatibility with older clang compilers).
1329 bool classifyIntegerMMXAsSSE() const {
1330 // Clang <= 3.8 did not do this.
1331 if (getContext().getLangOpts().getClangABICompat() <=
1332 LangOptions::ClangABI::Ver3_8)
1333 return false;
1334
1335 const llvm::Triple &Triple = getTarget().getTriple();
1336 if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD())
1337 return false;
1338 return true;
1339 }
1340
1341 // GCC classifies vectors of __int128 as memory.
1342 bool passInt128VectorsInMem() const {
1343 // Clang <= 9.0 did not do this.
1344 if (getContext().getLangOpts().getClangABICompat() <=
1345 LangOptions::ClangABI::Ver9)
1346 return false;
1347
1348 const llvm::Triple &T = getTarget().getTriple();
1349 return T.isOSLinux() || T.isOSNetBSD();
1350 }
1351
1352 bool returnCXXRecordGreaterThan128InMem() const {
1353 // Clang <= 20.0 did not do this, and PlayStation does not do this.
1354 if (getContext().getLangOpts().getClangABICompat() <=
1355 LangOptions::ClangABI::Ver20 ||
1356 getTarget().getTriple().isPS())
1357 return false;
1358
1359 return true;
1360 }
1361
1362 X86AVXABILevel AVXLevel;
1363 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1364 // 64-bit hardware.
1365 bool Has64BitPointers;
1366
1367public:
1368 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1369 : ABIInfo(CGT), AVXLevel(AVXLevel),
1370 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {}
1371
1372 bool isPassedUsingAVXType(QualType type) const {
1373 unsigned neededInt, neededSSE;
1374 // The freeIntRegs argument doesn't matter here.
1375 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1376 /*isNamedArg*/true);
1377 if (info.isDirect()) {
1378 llvm::Type *ty = info.getCoerceToType();
1379 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1380 return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128;
1381 }
1382 return false;
1383 }
1384
1385 void computeInfo(CGFunctionInfo &FI) const override;
1386
1387 RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
1388 AggValueSlot Slot) const override;
1389 RValue EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
1390 AggValueSlot Slot) const override;
1391
1392 bool has64BitPointers() const {
1393 return Has64BitPointers;
1394 }
1395};
1396
1397/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1398class WinX86_64ABIInfo : public ABIInfo {
1399public:
1400 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1401 : ABIInfo(CGT), AVXLevel(AVXLevel),
1402 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
1403
1404 void computeInfo(CGFunctionInfo &FI) const override;
1405
1406 RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
1407 AggValueSlot Slot) const override;
1408
1409 bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1410 // FIXME: Assumes vectorcall is in use.
1411 return isX86VectorTypeForVectorCall(getContext(), Ty);
1412 }
1413
1414 bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1415 uint64_t NumMembers) const override {
1416 // FIXME: Assumes vectorcall is in use.
1417 return isX86VectorCallAggregateSmallEnough(NumMembers);
1418 }
1419
1420 ABIArgInfo classifyArgForArm64ECVarArg(QualType Ty) const override {
1421 unsigned FreeSSERegs = 0;
1422 return classify(Ty, FreeSSERegs, /*IsReturnType=*/false,
1423 /*IsVectorCall=*/false, /*IsRegCall=*/false);
1424 }
1425
1426private:
1427 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
1428 bool IsVectorCall, bool IsRegCall) const;
1429 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
1430 const ABIArgInfo &current) const;
1431
1432 X86AVXABILevel AVXLevel;
1433
1434 bool IsMingw64;
1435};
1436
1437class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1438public:
1439 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1440 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {
1441 SwiftInfo =
1442 std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
1443 }
1444
1445 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
1446 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
1447 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
1448
1449 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1450 return 7;
1451 }
1452
1453 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1454 llvm::Value *Address) const override {
1455 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1456
1457 // 0-15 are the 16 integer registers.
1458 // 16 is %rip.
1459 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1460 return false;
1461 }
1462
1463 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1464 StringRef Constraint,
1465 llvm::Type* Ty) const override {
1466 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1467 }
1468
1469 bool isNoProtoCallVariadic(const CallArgList &args,
1470 const FunctionNoProtoType *fnType) const override {
1471 // The default CC on x86-64 sets %al to the number of SSA
1472 // registers used, and GCC sets this when calling an unprototyped
1473 // function, so we override the default behavior. However, don't do
1474 // that when AVX types are involved: the ABI explicitly states it is
1475 // undefined, and it doesn't work in practice because of how the ABI
1476 // defines varargs anyway.
1477 if (fnType->getCallConv() == CC_C) {
1478 bool HasAVXType = false;
1479 for (const CallArg &arg : args) {
1480 if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(arg.Ty)) {
1481 HasAVXType = true;
1482 break;
1483 }
1484 }
1485
1486 if (!HasAVXType)
1487 return true;
1488 }
1489
1490 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1491 }
1492
1493 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1494 CodeGen::CodeGenModule &CGM) const override {
1495 if (GV->isDeclaration())
1496 return;
1497 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1498 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1499 llvm::Function *Fn = cast<llvm::Function>(GV);
1500 Fn->addFnAttr("stackrealign");
1501 }
1502
1503 addX86InterruptAttrs(FD, GV, CGM);
1504 }
1505 }
1506
1507 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
1508 const FunctionDecl *Caller,
1509 const FunctionDecl *Callee, const CallArgList &Args,
1510 QualType ReturnType) const override;
1511};
1512} // namespace
1513
1514static void initFeatureMaps(const ASTContext &Ctx,
1515 llvm::StringMap<bool> &CallerMap,
1516 const FunctionDecl *Caller,
1517 llvm::StringMap<bool> &CalleeMap,
1518 const FunctionDecl *Callee) {
1519 if (CalleeMap.empty() && CallerMap.empty()) {
1520 // The caller is potentially nullptr in the case where the call isn't in a
1521 // function. In this case, the getFunctionFeatureMap ensures we just get
1522 // the TU level setting (since it cannot be modified by 'target'..
1523 Ctx.getFunctionFeatureMap(CallerMap, Caller);
1524 Ctx.getFunctionFeatureMap(CalleeMap, Callee);
1525 }
1526}
1527
1529 SourceLocation CallLoc,
1530 const FunctionDecl &Callee,
1531 const llvm::StringMap<bool> &CallerMap,
1532 const llvm::StringMap<bool> &CalleeMap,
1533 QualType Ty, StringRef Feature,
1534 bool IsArgument) {
1535 bool CallerHasFeat = CallerMap.lookup(Feature);
1536 bool CalleeHasFeat = CalleeMap.lookup(Feature);
1537 // No explicit features and the function is internal, be permissive.
1538 if (!CallerHasFeat && !CalleeHasFeat &&
1539 (!Callee.isExternallyVisible() || Callee.hasAttr<AlwaysInlineAttr>()))
1540 return false;
1541
1542 if (!CallerHasFeat && !CalleeHasFeat)
1543 return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
1544 << IsArgument << Ty << Feature;
1545
1546 // Mixing calling conventions here is very clearly an error.
1547 if (!CallerHasFeat || !CalleeHasFeat)
1548 return Diag.Report(CallLoc, diag::err_avx_calling_convention)
1549 << IsArgument << Ty << Feature;
1550
1551 // Else, both caller and callee have the required feature, so there is no need
1552 // to diagnose.
1553 return false;
1554}
1555
1557 SourceLocation CallLoc, const FunctionDecl &Callee,
1558 const llvm::StringMap<bool> &CallerMap,
1559 const llvm::StringMap<bool> &CalleeMap, QualType Ty,
1560 bool IsArgument) {
1561 uint64_t Size = Ctx.getTypeSize(Ty);
1562 if (Size > 256)
1563 return checkAVXParamFeature(Diag, CallLoc, Callee, CallerMap, CalleeMap, Ty,
1564 "avx512f", IsArgument);
1565
1566 if (Size > 128)
1567 return checkAVXParamFeature(Diag, CallLoc, Callee, CallerMap, CalleeMap, Ty,
1568 "avx", IsArgument);
1569
1570 return false;
1571}
1572
1573void X86_64TargetCodeGenInfo::checkFunctionCallABI(CodeGenModule &CGM,
1574 SourceLocation CallLoc,
1575 const FunctionDecl *Caller,
1576 const FunctionDecl *Callee,
1577 const CallArgList &Args,
1578 QualType ReturnType) const {
1579 if (!Callee)
1580 return;
1581
1582 llvm::StringMap<bool> CallerMap;
1583 llvm::StringMap<bool> CalleeMap;
1584 unsigned ArgIndex = 0;
1585
1586 // We need to loop through the actual call arguments rather than the
1587 // function's parameters, in case this variadic.
1588 for (const CallArg &Arg : Args) {
1589 // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
1590 // additionally changes how vectors >256 in size are passed. Like GCC, we
1591 // warn when a function is called with an argument where this will change.
1592 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
1593 // the caller and callee features are mismatched.
1594 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
1595 // change its ABI with attribute-target after this call.
1596 if (Arg.getType()->isVectorType() &&
1597 CGM.getContext().getTypeSize(Arg.getType()) > 128) {
1598 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
1599 QualType Ty = Arg.getType();
1600 // The CallArg seems to have desugared the type already, so for clearer
1601 // diagnostics, replace it with the type in the FunctionDecl if possible.
1602 if (ArgIndex < Callee->getNumParams())
1603 Ty = Callee->getParamDecl(ArgIndex)->getType();
1604
1605 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, *Callee,
1606 CallerMap, CalleeMap, Ty, /*IsArgument*/ true))
1607 return;
1608 }
1609 ++ArgIndex;
1610 }
1611
1612 // Check return always, as we don't have a good way of knowing in codegen
1613 // whether this value is used, tail-called, etc.
1614 if (Callee->getReturnType()->isVectorType() &&
1615 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
1616 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
1617 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, *Callee, CallerMap,
1618 CalleeMap, Callee->getReturnType(),
1619 /*IsArgument*/ false);
1620 }
1621}
1622
1624 // If the argument does not end in .lib, automatically add the suffix.
1625 // If the argument contains a space, enclose it in quotes.
1626 // This matches the behavior of MSVC.
1627 bool Quote = Lib.contains(' ');
1628 std::string ArgStr = Quote ? "\"" : "";
1629 ArgStr += Lib;
1630 if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a"))
1631 ArgStr += ".lib";
1632 ArgStr += Quote ? "\"" : "";
1633 return ArgStr;
1634}
1635
1636namespace {
1637class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1638public:
1639 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1640 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
1641 unsigned NumRegisterParameters)
1642 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
1643 Win32StructABI, NumRegisterParameters, false) {}
1644
1645 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1646 CodeGen::CodeGenModule &CGM) const override;
1647
1648 void getDependentLibraryOption(llvm::StringRef Lib,
1649 llvm::SmallString<24> &Opt) const override {
1650 Opt = "/DEFAULTLIB:";
1651 Opt += qualifyWindowsLibrary(Lib);
1652 }
1653
1654 void getDetectMismatchOption(llvm::StringRef Name,
1655 llvm::StringRef Value,
1656 llvm::SmallString<32> &Opt) const override {
1657 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1658 }
1659};
1660} // namespace
1661
1662void WinX86_32TargetCodeGenInfo::setTargetAttributes(
1663 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1664 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1665 if (GV->isDeclaration())
1666 return;
1667 addStackProbeTargetAttributes(D, GV, CGM);
1668}
1669
1670namespace {
1671class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1672public:
1673 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1674 X86AVXABILevel AVXLevel)
1675 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {
1676 SwiftInfo =
1677 std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
1678 }
1679
1680 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1681 CodeGen::CodeGenModule &CGM) const override;
1682
1683 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1684 return 7;
1685 }
1686
1687 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1688 llvm::Value *Address) const override {
1689 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1690
1691 // 0-15 are the 16 integer registers.
1692 // 16 is %rip.
1693 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1694 return false;
1695 }
1696
1697 void getDependentLibraryOption(llvm::StringRef Lib,
1698 llvm::SmallString<24> &Opt) const override {
1699 Opt = "/DEFAULTLIB:";
1700 Opt += qualifyWindowsLibrary(Lib);
1701 }
1702
1703 void getDetectMismatchOption(llvm::StringRef Name,
1704 llvm::StringRef Value,
1705 llvm::SmallString<32> &Opt) const override {
1706 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1707 }
1708};
1709} // namespace
1710
1711void WinX86_64TargetCodeGenInfo::setTargetAttributes(
1712 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1714 if (GV->isDeclaration())
1715 return;
1716 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1717 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1718 llvm::Function *Fn = cast<llvm::Function>(GV);
1719 Fn->addFnAttr("stackrealign");
1720 }
1721
1722 addX86InterruptAttrs(FD, GV, CGM);
1723 }
1724
1725 addStackProbeTargetAttributes(D, GV, CGM);
1726}
1727
1728void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1729 Class &Hi) const {
1730 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1731 //
1732 // (a) If one of the classes is Memory, the whole argument is passed in
1733 // memory.
1734 //
1735 // (b) If X87UP is not preceded by X87, the whole argument is passed in
1736 // memory.
1737 //
1738 // (c) If the size of the aggregate exceeds two eightbytes and the first
1739 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1740 // argument is passed in memory. NOTE: This is necessary to keep the
1741 // ABI working for processors that don't support the __m256 type.
1742 //
1743 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1744 //
1745 // Some of these are enforced by the merging logic. Others can arise
1746 // only with unions; for example:
1747 // union { _Complex double; unsigned; }
1748 //
1749 // Note that clauses (b) and (c) were added in 0.98.
1750 //
1751 if (Hi == Memory)
1752 Lo = Memory;
1753 if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1754 Lo = Memory;
1755 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1756 Lo = Memory;
1757 if (Hi == SSEUp && Lo != SSE)
1758 Hi = SSE;
1759}
1760
1761X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1762 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1763 // classified recursively so that always two fields are
1764 // considered. The resulting class is calculated according to
1765 // the classes of the fields in the eightbyte:
1766 //
1767 // (a) If both classes are equal, this is the resulting class.
1768 //
1769 // (b) If one of the classes is NO_CLASS, the resulting class is
1770 // the other class.
1771 //
1772 // (c) If one of the classes is MEMORY, the result is the MEMORY
1773 // class.
1774 //
1775 // (d) If one of the classes is INTEGER, the result is the
1776 // INTEGER.
1777 //
1778 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1779 // MEMORY is used as class.
1780 //
1781 // (f) Otherwise class SSE is used.
1782
1783 // Accum should never be memory (we should have returned) or
1784 // ComplexX87 (because this cannot be passed in a structure).
1785 assert((Accum != Memory && Accum != ComplexX87) &&
1786 "Invalid accumulated classification during merge.");
1787 if (Accum == Field || Field == NoClass)
1788 return Accum;
1789 if (Field == Memory)
1790 return Memory;
1791 if (Accum == NoClass)
1792 return Field;
1793 if (Accum == Integer || Field == Integer)
1794 return Integer;
1795 if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1796 Accum == X87 || Accum == X87Up)
1797 return Memory;
1798 return SSE;
1799}
1800
1801void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo,
1802 Class &Hi, bool isNamedArg, bool IsRegCall) const {
1803 // FIXME: This code can be simplified by introducing a simple value class for
1804 // Class pairs with appropriate constructor methods for the various
1805 // situations.
1806
1807 // FIXME: Some of the split computations are wrong; unaligned vectors
1808 // shouldn't be passed in registers for example, so there is no chance they
1809 // can straddle an eightbyte. Verify & simplify.
1810
1811 Lo = Hi = NoClass;
1812
1813 Class &Current = OffsetBase < 64 ? Lo : Hi;
1814 Current = Memory;
1815
1816 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1817 BuiltinType::Kind k = BT->getKind();
1818
1819 if (k == BuiltinType::Void) {
1820 Current = NoClass;
1821 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1822 Lo = Integer;
1823 Hi = Integer;
1824 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1825 Current = Integer;
1826 } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
1827 k == BuiltinType::Float16 || k == BuiltinType::BFloat16) {
1828 Current = SSE;
1829 } else if (k == BuiltinType::Float128) {
1830 Lo = SSE;
1831 Hi = SSEUp;
1832 } else if (k == BuiltinType::LongDouble) {
1833 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
1834 if (LDF == &llvm::APFloat::IEEEquad()) {
1835 Lo = SSE;
1836 Hi = SSEUp;
1837 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
1838 Lo = X87;
1839 Hi = X87Up;
1840 } else if (LDF == &llvm::APFloat::IEEEdouble()) {
1841 Current = SSE;
1842 } else
1843 llvm_unreachable("unexpected long double representation!");
1844 }
1845 // FIXME: _Decimal32 and _Decimal64 are SSE.
1846 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1847 return;
1848 }
1849
1850 if (const auto *ED = Ty->getAsEnumDecl()) {
1851 // Classify the underlying integer type.
1852 classify(ED->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1853 return;
1854 }
1855
1856 if (Ty->hasPointerRepresentation()) {
1857 Current = Integer;
1858 return;
1859 }
1860
1861 if (Ty->isMemberPointerType()) {
1862 if (Ty->isMemberFunctionPointerType()) {
1863 if (Has64BitPointers) {
1864 // If Has64BitPointers, this is an {i64, i64}, so classify both
1865 // Lo and Hi now.
1866 Lo = Hi = Integer;
1867 } else {
1868 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1869 // straddles an eightbyte boundary, Hi should be classified as well.
1870 uint64_t EB_FuncPtr = (OffsetBase) / 64;
1871 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1872 if (EB_FuncPtr != EB_ThisAdj) {
1873 Lo = Hi = Integer;
1874 } else {
1875 Current = Integer;
1876 }
1877 }
1878 } else {
1879 Current = Integer;
1880 }
1881 return;
1882 }
1883
1884 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1885 uint64_t Size = getContext().getTypeSize(VT);
1886 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
1887 // gcc passes the following as integer:
1888 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
1889 // 2 bytes - <2 x char>, <1 x short>
1890 // 1 byte - <1 x char>
1891 Current = Integer;
1892
1893 // If this type crosses an eightbyte boundary, it should be
1894 // split.
1895 uint64_t EB_Lo = (OffsetBase) / 64;
1896 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
1897 if (EB_Lo != EB_Hi)
1898 Hi = Lo;
1899 } else if (Size == 64) {
1900 QualType ElementType = VT->getElementType();
1901
1902 // gcc passes <1 x double> in memory. :(
1903 if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
1904 return;
1905
1906 // gcc passes <1 x long long> as SSE but clang used to unconditionally
1907 // pass them as integer. For platforms where clang is the de facto
1908 // platform compiler, we must continue to use integer.
1909 if (!classifyIntegerMMXAsSSE() &&
1910 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
1911 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1912 ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
1913 ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
1914 Current = Integer;
1915 else
1916 Current = SSE;
1917
1918 // If this type crosses an eightbyte boundary, it should be
1919 // split.
1920 if (OffsetBase && OffsetBase != 64)
1921 Hi = Lo;
1922 } else if (Size == 128 ||
1923 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
1924 QualType ElementType = VT->getElementType();
1925
1926 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
1927 if (passInt128VectorsInMem() && Size != 128 &&
1928 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
1929 ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
1930 return;
1931
1932 // Arguments of 256-bits are split into four eightbyte chunks. The
1933 // least significant one belongs to class SSE and all the others to class
1934 // SSEUP. The original Lo and Hi design considers that types can't be
1935 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1936 // This design isn't correct for 256-bits, but since there're no cases
1937 // where the upper parts would need to be inspected, avoid adding
1938 // complexity and just consider Hi to match the 64-256 part.
1939 //
1940 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1941 // registers if they are "named", i.e. not part of the "..." of a
1942 // variadic function.
1943 //
1944 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
1945 // split into eight eightbyte chunks, one SSE and seven SSEUP.
1946 Lo = SSE;
1947 Hi = SSEUp;
1948 }
1949 return;
1950 }
1951
1952 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1953 QualType ET = getContext().getCanonicalType(CT->getElementType());
1954
1955 uint64_t Size = getContext().getTypeSize(Ty);
1956 if (ET->isIntegralOrEnumerationType()) {
1957 if (Size <= 64)
1958 Current = Integer;
1959 else if (Size <= 128)
1960 Lo = Hi = Integer;
1961 } else if (ET->isFloat16Type() || ET == getContext().FloatTy ||
1962 ET->isBFloat16Type()) {
1963 Current = SSE;
1964 } else if (ET == getContext().DoubleTy) {
1965 Lo = Hi = SSE;
1966 } else if (ET == getContext().LongDoubleTy) {
1967 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
1968 if (LDF == &llvm::APFloat::IEEEquad())
1969 Current = Memory;
1970 else if (LDF == &llvm::APFloat::x87DoubleExtended())
1971 Current = ComplexX87;
1972 else if (LDF == &llvm::APFloat::IEEEdouble())
1973 Lo = Hi = SSE;
1974 else
1975 llvm_unreachable("unexpected long double representation!");
1976 }
1977
1978 // If this complex type crosses an eightbyte boundary then it
1979 // should be split.
1980 uint64_t EB_Real = (OffsetBase) / 64;
1981 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1982 if (Hi == NoClass && EB_Real != EB_Imag)
1983 Hi = Lo;
1984
1985 return;
1986 }
1987
1988 if (const auto *EITy = Ty->getAs<BitIntType>()) {
1989 if (EITy->getNumBits() <= 64)
1990 Current = Integer;
1991 else if (EITy->getNumBits() <= 128)
1992 Lo = Hi = Integer;
1993 // Larger values need to get passed in memory.
1994 return;
1995 }
1996
1997 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1998 // Arrays are treated like structures.
1999
2000 uint64_t Size = getContext().getTypeSize(Ty);
2001
2002 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2003 // than eight eightbytes, ..., it has class MEMORY.
2004 // regcall ABI doesn't have limitation to an object. The only limitation
2005 // is the free registers, which will be checked in computeInfo.
2006 if (!IsRegCall && Size > 512)
2007 return;
2008
2009 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2010 // fields, it has class MEMORY.
2011 //
2012 // Only need to check alignment of array base.
2013 if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2014 return;
2015
2016 // Otherwise implement simplified merge. We could be smarter about
2017 // this, but it isn't worth it and would be harder to verify.
2018 Current = NoClass;
2019 uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2020 uint64_t ArraySize = AT->getZExtSize();
2021
2022 // The only case a 256-bit wide vector could be used is when the array
2023 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2024 // to work for sizes wider than 128, early check and fallback to memory.
2025 //
2026 if (Size > 128 &&
2027 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2028 return;
2029
2030 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2031 Class FieldLo, FieldHi;
2032 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2033 Lo = merge(Lo, FieldLo);
2034 Hi = merge(Hi, FieldHi);
2035 if (Lo == Memory || Hi == Memory)
2036 break;
2037 }
2038
2039 postMerge(Size, Lo, Hi);
2040 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2041 return;
2042 }
2043
2044 if (const RecordType *RT = Ty->getAsCanonical<RecordType>()) {
2045 uint64_t Size = getContext().getTypeSize(Ty);
2046
2047 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2048 // than eight eightbytes, ..., it has class MEMORY.
2049 if (Size > 512)
2050 return;
2051
2052 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2053 // copy constructor or a non-trivial destructor, it is passed by invisible
2054 // reference.
2055 if (getRecordArgABI(RT, getCXXABI()))
2056 return;
2057
2058 const RecordDecl *RD = RT->getDecl()->getDefinitionOrSelf();
2059
2060 // Assume variable sized types are passed in memory.
2061 if (RD->hasFlexibleArrayMember())
2062 return;
2063
2064 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2065
2066 // Reset Lo class, this will be recomputed.
2067 Current = NoClass;
2068
2069 // If this is a C++ record, classify the bases first.
2070 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2071 for (const auto &I : CXXRD->bases()) {
2072 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2073 "Unexpected base class!");
2074 const auto *Base = I.getType()->castAsCXXRecordDecl();
2075 // Classify this field.
2076 //
2077 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2078 // single eightbyte, each is classified separately. Each eightbyte gets
2079 // initialized to class NO_CLASS.
2080 Class FieldLo, FieldHi;
2081 uint64_t Offset =
2082 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2083 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2084 Lo = merge(Lo, FieldLo);
2085 Hi = merge(Hi, FieldHi);
2086 if (returnCXXRecordGreaterThan128InMem() &&
2087 (Size > 128 && (Size != getContext().getTypeSize(I.getType()) ||
2088 Size > getNativeVectorSizeForAVXABI(AVXLevel)))) {
2089 // The only case a 256(or 512)-bit wide vector could be used to return
2090 // is when CXX record contains a single 256(or 512)-bit element.
2091 Lo = Memory;
2092 }
2093 if (Lo == Memory || Hi == Memory) {
2094 postMerge(Size, Lo, Hi);
2095 return;
2096 }
2097 }
2098 }
2099
2100 // Classify the fields one at a time, merging the results.
2101 unsigned idx = 0;
2102 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
2103 LangOptions::ClangABI::Ver11 ||
2104 getContext().getTargetInfo().getTriple().isPS();
2105 bool IsUnion = RT->isUnionType() && !UseClang11Compat;
2106
2107 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2108 i != e; ++i, ++idx) {
2109 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2110 bool BitField = i->isBitField();
2111
2112 // Ignore padding bit-fields.
2113 if (BitField && i->isUnnamedBitField())
2114 continue;
2115
2116 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2117 // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
2118 //
2119 // The only case a 256-bit or a 512-bit wide vector could be used is when
2120 // the struct contains a single 256-bit or 512-bit element. Early check
2121 // and fallback to memory.
2122 //
2123 // FIXME: Extended the Lo and Hi logic properly to work for size wider
2124 // than 128.
2125 if (Size > 128 &&
2126 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
2127 Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2128 Lo = Memory;
2129 postMerge(Size, Lo, Hi);
2130 return;
2131 }
2132
2133 bool IsInMemory =
2134 Offset % getContext().getTypeAlign(i->getType().getCanonicalType());
2135 // Note, skip this test for bit-fields, see below.
2136 if (!BitField && IsInMemory) {
2137 Lo = Memory;
2138 postMerge(Size, Lo, Hi);
2139 return;
2140 }
2141
2142 // Classify this field.
2143 //
2144 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2145 // exceeds a single eightbyte, each is classified
2146 // separately. Each eightbyte gets initialized to class
2147 // NO_CLASS.
2148 Class FieldLo, FieldHi;
2149
2150 // Bit-fields require special handling, they do not force the
2151 // structure to be passed in memory even if unaligned, and
2152 // therefore they can straddle an eightbyte.
2153 if (BitField) {
2154 assert(!i->isUnnamedBitField());
2155 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2156 uint64_t Size = i->getBitWidthValue();
2157
2158 uint64_t EB_Lo = Offset / 64;
2159 uint64_t EB_Hi = (Offset + Size - 1) / 64;
2160
2161 if (EB_Lo) {
2162 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2163 FieldLo = NoClass;
2164 FieldHi = Integer;
2165 } else {
2166 FieldLo = Integer;
2167 FieldHi = EB_Hi ? Integer : NoClass;
2168 }
2169 } else
2170 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2171 Lo = merge(Lo, FieldLo);
2172 Hi = merge(Hi, FieldHi);
2173 if (Lo == Memory || Hi == Memory)
2174 break;
2175 }
2176
2177 postMerge(Size, Lo, Hi);
2178 }
2179}
2180
2181ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2182 // If this is a scalar LLVM value then assume LLVM will pass it in the right
2183 // place naturally.
2184 if (!isAggregateTypeForABI(Ty)) {
2185 // Treat an enum type as its underlying type.
2186 if (const auto *ED = Ty->getAsEnumDecl())
2187 Ty = ED->getIntegerType();
2188
2189 if (Ty->isBitIntType())
2190 return getNaturalAlignIndirect(Ty, getDataLayout().getAllocaAddrSpace());
2191
2192 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
2194 }
2195
2196 return getNaturalAlignIndirect(Ty, getDataLayout().getAllocaAddrSpace());
2197}
2198
2199bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2200 if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2201 uint64_t Size = getContext().getTypeSize(VecTy);
2202 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2203 if (Size <= 64 || Size > LargestVector)
2204 return true;
2205 QualType EltTy = VecTy->getElementType();
2206 if (passInt128VectorsInMem() &&
2207 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
2208 EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
2209 return true;
2210 }
2211
2212 return false;
2213}
2214
2215ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2216 unsigned freeIntRegs) const {
2217 // If this is a scalar LLVM value then assume LLVM will pass it in the right
2218 // place naturally.
2219 //
2220 // This assumption is optimistic, as there could be free registers available
2221 // when we need to pass this argument in memory, and LLVM could try to pass
2222 // the argument in the free register. This does not seem to happen currently,
2223 // but this code would be much safer if we could mark the argument with
2224 // 'onstack'. See PR12193.
2225 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
2226 !Ty->isBitIntType()) {
2227 // Treat an enum type as its underlying type.
2228 if (const auto *ED = Ty->getAsEnumDecl())
2229 Ty = ED->getIntegerType();
2230
2231 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
2233 }
2234
2235 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2236 return getNaturalAlignIndirect(Ty, getDataLayout().getAllocaAddrSpace(),
2238
2239 // Compute the byval alignment. We specify the alignment of the byval in all
2240 // cases so that the mid-level optimizer knows the alignment of the byval.
2241 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2242
2243 // Attempt to avoid passing indirect results using byval when possible. This
2244 // is important for good codegen.
2245 //
2246 // We do this by coercing the value into a scalar type which the backend can
2247 // handle naturally (i.e., without using byval).
2248 //
2249 // For simplicity, we currently only do this when we have exhausted all of the
2250 // free integer registers. Doing this when there are free integer registers
2251 // would require more care, as we would have to ensure that the coerced value
2252 // did not claim the unused register. That would require either reording the
2253 // arguments to the function (so that any subsequent inreg values came first),
2254 // or only doing this optimization when there were no following arguments that
2255 // might be inreg.
2256 //
2257 // We currently expect it to be rare (particularly in well written code) for
2258 // arguments to be passed on the stack when there are still free integer
2259 // registers available (this would typically imply large structs being passed
2260 // by value), so this seems like a fair tradeoff for now.
2261 //
2262 // We can revisit this if the backend grows support for 'onstack' parameter
2263 // attributes. See PR12193.
2264 if (freeIntRegs == 0) {
2265 uint64_t Size = getContext().getTypeSize(Ty);
2266
2267 // If this type fits in an eightbyte, coerce it into the matching integral
2268 // type, which will end up on the stack (with alignment 8).
2269 if (Align == 8 && Size <= 64)
2270 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2271 Size));
2272 }
2273
2275 getDataLayout().getAllocaAddrSpace());
2276}
2277
2278/// The ABI specifies that a value should be passed in a full vector XMM/YMM
2279/// register. Pick an LLVM IR type that will be passed as a vector register.
2280llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2281 // Wrapper structs/arrays that only contain vectors are passed just like
2282 // vectors; strip them off if present.
2283 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2284 Ty = QualType(InnerTy, 0);
2285
2286 llvm::Type *IRType = CGT.ConvertType(Ty);
2287 if (isa<llvm::VectorType>(IRType)) {
2288 // Don't pass vXi128 vectors in their native type, the backend can't
2289 // legalize them.
2290 if (passInt128VectorsInMem() &&
2291 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
2292 // Use a vXi64 vector.
2293 uint64_t Size = getContext().getTypeSize(Ty);
2294 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
2295 Size / 64);
2296 }
2297
2298 return IRType;
2299 }
2300
2301 if (IRType->getTypeID() == llvm::Type::FP128TyID)
2302 return IRType;
2303
2304 // We couldn't find the preferred IR vector type for 'Ty'.
2305 uint64_t Size = getContext().getTypeSize(Ty);
2306 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2307
2308
2309 // Return a LLVM IR vector type based on the size of 'Ty'.
2310 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2311 Size / 64);
2312}
2313
2314/// BitsContainNoUserData - Return true if the specified [start,end) bit range
2315/// is known to either be off the end of the specified type or being in
2316/// alignment padding. The user type specified is known to be at most 128 bits
2317/// in size, and have passed through X86_64ABIInfo::classify with a successful
2318/// classification that put one of the two halves in the INTEGER class.
2319///
2320/// It is conservatively correct to return false.
2321static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2322 unsigned EndBit, ASTContext &Context) {
2323 // If the bytes being queried are off the end of the type, there is no user
2324 // data hiding here. This handles analysis of builtins, vectors and other
2325 // types that don't contain interesting padding.
2326 unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2327 if (TySize <= StartBit)
2328 return true;
2329
2330 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2331 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2332 unsigned NumElts = (unsigned)AT->getZExtSize();
2333
2334 // Check each element to see if the element overlaps with the queried range.
2335 for (unsigned i = 0; i != NumElts; ++i) {
2336 // If the element is after the span we care about, then we're done..
2337 unsigned EltOffset = i*EltSize;
2338 if (EltOffset >= EndBit) break;
2339
2340 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2341 if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2342 EndBit-EltOffset, Context))
2343 return false;
2344 }
2345 // If it overlaps no elements, then it is safe to process as padding.
2346 return true;
2347 }
2348
2349 if (const auto *RD = Ty->getAsRecordDecl()) {
2350 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2351
2352 // If this is a C++ record, check the bases first.
2353 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2354 for (const auto &I : CXXRD->bases()) {
2355 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2356 "Unexpected base class!");
2357 const auto *Base = I.getType()->castAsCXXRecordDecl();
2358
2359 // If the base is after the span we care about, ignore it.
2360 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2361 if (BaseOffset >= EndBit) continue;
2362
2363 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2364 if (!BitsContainNoUserData(I.getType(), BaseStart,
2365 EndBit-BaseOffset, Context))
2366 return false;
2367 }
2368 }
2369
2370 // Verify that no field has data that overlaps the region of interest. Yes
2371 // this could be sped up a lot by being smarter about queried fields,
2372 // however we're only looking at structs up to 16 bytes, so we don't care
2373 // much.
2374 unsigned idx = 0;
2375 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2376 i != e; ++i, ++idx) {
2377 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2378
2379 // If we found a field after the region we care about, then we're done.
2380 if (FieldOffset >= EndBit) break;
2381
2382 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2383 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2384 Context))
2385 return false;
2386 }
2387
2388 // If nothing in this record overlapped the area of interest, then we're
2389 // clean.
2390 return true;
2391 }
2392
2393 return false;
2394}
2395
2396/// getFPTypeAtOffset - Return a floating point type at the specified offset.
2397static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2398 const llvm::DataLayout &TD) {
2399 if (IROffset == 0 && IRType->isFloatingPointTy())
2400 return IRType;
2401
2402 // If this is a struct, recurse into the field at the specified offset.
2403 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2404 if (!STy->getNumContainedTypes())
2405 return nullptr;
2406
2407 const llvm::StructLayout *SL = TD.getStructLayout(STy);
2408 unsigned Elt = SL->getElementContainingOffset(IROffset);
2409 IROffset -= SL->getElementOffset(Elt);
2410 return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
2411 }
2412
2413 // If this is an array, recurse into the field at the specified offset.
2414 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2415 llvm::Type *EltTy = ATy->getElementType();
2416 unsigned EltSize = TD.getTypeAllocSize(EltTy);
2417 IROffset -= IROffset / EltSize * EltSize;
2418 return getFPTypeAtOffset(EltTy, IROffset, TD);
2419 }
2420
2421 return nullptr;
2422}
2423
2424/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2425/// low 8 bytes of an XMM register, corresponding to the SSE class.
2426llvm::Type *X86_64ABIInfo::
2427GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2428 QualType SourceTy, unsigned SourceOffset) const {
2429 const llvm::DataLayout &TD = getDataLayout();
2430 unsigned SourceSize =
2431 (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
2432 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
2433 if (!T0 || T0->isDoubleTy())
2434 return llvm::Type::getDoubleTy(getVMContext());
2435
2436 // Get the adjacent FP type.
2437 llvm::Type *T1 = nullptr;
2438 unsigned T0Size = TD.getTypeAllocSize(T0);
2439 if (SourceSize > T0Size)
2440 T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
2441 if (T1 == nullptr) {
2442 // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due
2443 // to its alignment.
2444 if (T0->is16bitFPTy() && SourceSize > 4)
2445 T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
2446 // If we can't get a second FP type, return a simple half or float.
2447 // avx512fp16-abi.c:pr51813_2 shows it works to return float for
2448 // {float, i8} too.
2449 if (T1 == nullptr)
2450 return T0;
2451 }
2452
2453 if (T0->isFloatTy() && T1->isFloatTy())
2454 return llvm::FixedVectorType::get(T0, 2);
2455
2456 if (T0->is16bitFPTy() && T1->is16bitFPTy()) {
2457 llvm::Type *T2 = nullptr;
2458 if (SourceSize > 4)
2459 T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
2460 if (T2 == nullptr)
2461 return llvm::FixedVectorType::get(T0, 2);
2462 return llvm::FixedVectorType::get(T0, 4);
2463 }
2464
2465 if (T0->is16bitFPTy() || T1->is16bitFPTy())
2466 return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
2467
2468 return llvm::Type::getDoubleTy(getVMContext());
2469}
2470
2471/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2472/// one or more 8-byte GPRs. This means that we either have a scalar or we are
2473/// talking about the high and/or low part of an up-to-16-byte struct. This
2474/// routine picks the best LLVM IR type to represent this, which may be i64 or
2475/// may be anything else that the backend will pass in GPRs that works better
2476/// (e.g. i8, %foo*, etc).
2477///
2478/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2479/// the source type. IROffset is an offset in bytes into the LLVM IR type that
2480/// the 8-byte value references. PrefType may be null.
2481///
2482/// SourceTy is the source-level type for the entire argument. SourceOffset is
2483/// an offset into this that we're processing (which is always either 0 or 8).
2484///
2485llvm::Type *X86_64ABIInfo::
2486GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2487 QualType SourceTy, unsigned SourceOffset) const {
2488 // If we're dealing with an un-offset LLVM IR type, then it means that we're
2489 // returning an 8-byte unit starting with it. See if we can safely use it.
2490 if (IROffset == 0) {
2491 // Pointers and int64's always fill the 8-byte unit.
2492 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2493 IRType->isIntegerTy(64))
2494 return IRType;
2495
2496 // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2497 // goodness in the source type is just tail padding. This is allowed to
2498 // kick in for struct {double,int} on the int, but not on
2499 // struct{double,int,int} because we wouldn't return the second int. We
2500 // have to do this analysis on the source type because we can't depend on
2501 // unions being lowered a specific way etc.
2502 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2503 IRType->isIntegerTy(32) ||
2504 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2505 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2506 cast<llvm::IntegerType>(IRType)->getBitWidth();
2507
2508 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2509 SourceOffset*8+64, getContext()))
2510 return IRType;
2511 }
2512 }
2513
2514 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2515 // If this is a struct, recurse into the field at the specified offset.
2516 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2517 if (IROffset < SL->getSizeInBytes()) {
2518 unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2519 IROffset -= SL->getElementOffset(FieldIdx);
2520
2521 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2522 SourceTy, SourceOffset);
2523 }
2524 }
2525
2526 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2527 llvm::Type *EltTy = ATy->getElementType();
2528 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2529 unsigned EltOffset = IROffset/EltSize*EltSize;
2530 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2531 SourceOffset);
2532 }
2533
2534 // if we have a 128-bit integer, we can pass it safely using an i128
2535 // so we return that
2536 if (IRType->isIntegerTy(128)) {
2537 assert(IROffset == 0);
2538 return IRType;
2539 }
2540
2541 // Okay, we don't have any better idea of what to pass, so we pass this in an
2542 // integer register that isn't too big to fit the rest of the struct.
2543 unsigned TySizeInBytes =
2544 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2545
2546 assert(TySizeInBytes != SourceOffset && "Empty field?");
2547
2548 // It is always safe to classify this as an integer type up to i64 that
2549 // isn't larger than the structure.
2550 return llvm::IntegerType::get(getVMContext(),
2551 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2552}
2553
2554
2555/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2556/// be used as elements of a two register pair to pass or return, return a
2557/// first class aggregate to represent them. For example, if the low part of
2558/// a by-value argument should be passed as i32* and the high part as float,
2559/// return {i32*, float}.
2560static llvm::Type *
2561GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2562 const llvm::DataLayout &TD) {
2563 // In order to correctly satisfy the ABI, we need to the high part to start
2564 // at offset 8. If the high and low parts we inferred are both 4-byte types
2565 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2566 // the second element at offset 8. Check for this:
2567 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2568 llvm::Align HiAlign = TD.getABITypeAlign(Hi);
2569 unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
2570 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2571
2572 // To handle this, we have to increase the size of the low part so that the
2573 // second element will start at an 8 byte offset. We can't increase the size
2574 // of the second element because it might make us access off the end of the
2575 // struct.
2576 if (HiStart != 8) {
2577 // There are usually two sorts of types the ABI generation code can produce
2578 // for the low part of a pair that aren't 8 bytes in size: half, float or
2579 // i8/i16/i32. This can also include pointers when they are 32-bit (X32).
2580 // Promote these to a larger type.
2581 if (Lo->isHalfTy() || Lo->isFloatTy())
2582 Lo = llvm::Type::getDoubleTy(Lo->getContext());
2583 else {
2584 assert((Lo->isIntegerTy() || Lo->isPointerTy())
2585 && "Invalid/unknown lo type");
2586 Lo = llvm::Type::getInt64Ty(Lo->getContext());
2587 }
2588 }
2589
2590 llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
2591
2592 // Verify that the second element is at an 8-byte offset.
2593 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2594 "Invalid x86-64 argument pair!");
2595 return Result;
2596}
2597
2598ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy) const {
2599 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2600 // classification algorithm.
2601 X86_64ABIInfo::Class Lo, Hi;
2602 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2603
2604 // Check some invariants.
2605 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2606 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2607
2608 llvm::Type *ResType = nullptr;
2609 switch (Lo) {
2610 case NoClass:
2611 if (Hi == NoClass)
2612 return ABIArgInfo::getIgnore();
2613 // If the low part is just padding, it takes no register, leave ResType
2614 // null.
2615 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2616 "Unknown missing lo part");
2617 break;
2618
2619 case SSEUp:
2620 case X87Up:
2621 llvm_unreachable("Invalid classification for lo word.");
2622
2623 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2624 // hidden argument.
2625 case Memory:
2626 return getIndirectReturnResult(RetTy);
2627
2628 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2629 // available register of the sequence %rax, %rdx is used.
2630 case Integer:
2631 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2632
2633 // If we have a sign or zero extended integer, make sure to return Extend
2634 // so that the parameter gets the right LLVM IR attributes.
2635 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2636 // Treat an enum type as its underlying type.
2637 if (const auto *ED = RetTy->getAsEnumDecl())
2638 RetTy = ED->getIntegerType();
2639
2640 if (RetTy->isIntegralOrEnumerationType() &&
2641 isPromotableIntegerTypeForABI(RetTy))
2642 return ABIArgInfo::getExtend(RetTy);
2643 }
2644
2645 if (ResType->isIntegerTy(128)) {
2646 // i128 are passed directly
2647 assert(Hi == Integer);
2648 return ABIArgInfo::getDirect(ResType);
2649 }
2650 break;
2651
2652 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2653 // available SSE register of the sequence %xmm0, %xmm1 is used.
2654 case SSE:
2655 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2656 break;
2657
2658 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2659 // returned on the X87 stack in %st0 as 80-bit x87 number.
2660 case X87:
2661 ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2662 break;
2663
2664 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2665 // part of the value is returned in %st0 and the imaginary part in
2666 // %st1.
2667 case ComplexX87:
2668 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2669 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2670 llvm::Type::getX86_FP80Ty(getVMContext()));
2671 break;
2672 }
2673
2674 llvm::Type *HighPart = nullptr;
2675 switch (Hi) {
2676 // Memory was handled previously and X87 should
2677 // never occur as a hi class.
2678 case Memory:
2679 case X87:
2680 llvm_unreachable("Invalid classification for hi word.");
2681
2682 case ComplexX87: // Previously handled.
2683 case NoClass:
2684 break;
2685
2686 case Integer:
2687 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2688 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2689 return ABIArgInfo::getDirect(HighPart, 8);
2690 break;
2691 case SSE:
2692 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2693 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2694 return ABIArgInfo::getDirect(HighPart, 8);
2695 break;
2696
2697 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2698 // is passed in the next available eightbyte chunk if the last used
2699 // vector register.
2700 //
2701 // SSEUP should always be preceded by SSE, just widen.
2702 case SSEUp:
2703 assert(Lo == SSE && "Unexpected SSEUp classification.");
2704 ResType = GetByteVectorType(RetTy);
2705 break;
2706
2707 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2708 // returned together with the previous X87 value in %st0.
2709 case X87Up:
2710 // If X87Up is preceded by X87, we don't need to do
2711 // anything. However, in some cases with unions it may not be
2712 // preceded by X87. In such situations we follow gcc and pass the
2713 // extra bits in an SSE reg.
2714 if (Lo != X87) {
2715 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2716 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2717 return ABIArgInfo::getDirect(HighPart, 8);
2718 }
2719 break;
2720 }
2721
2722 // If a high part was specified, merge it together with the low part. It is
2723 // known to pass in the high eightbyte of the result. We do this by forming a
2724 // first class struct aggregate with the high and low part: {low, high}
2725 if (HighPart)
2726 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2727
2728 return ABIArgInfo::getDirect(ResType);
2729}
2730
2731ABIArgInfo
2732X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2733 unsigned &neededInt, unsigned &neededSSE,
2734 bool isNamedArg, bool IsRegCall) const {
2736
2737 X86_64ABIInfo::Class Lo, Hi;
2738 classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall);
2739
2740 // Check some invariants.
2741 // FIXME: Enforce these by construction.
2742 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2743 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2744
2745 neededInt = 0;
2746 neededSSE = 0;
2747 llvm::Type *ResType = nullptr;
2748 switch (Lo) {
2749 case NoClass:
2750 if (Hi == NoClass)
2751 return ABIArgInfo::getIgnore();
2752 // If the low part is just padding, it takes no register, leave ResType
2753 // null.
2754 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2755 "Unknown missing lo part");
2756 break;
2757
2758 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2759 // on the stack.
2760 case Memory:
2761
2762 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2763 // COMPLEX_X87, it is passed in memory.
2764 case X87:
2765 case ComplexX87:
2766 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2767 ++neededInt;
2768 return getIndirectResult(Ty, freeIntRegs);
2769
2770 case SSEUp:
2771 case X87Up:
2772 llvm_unreachable("Invalid classification for lo word.");
2773
2774 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2775 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2776 // and %r9 is used.
2777 case Integer:
2778 ++neededInt;
2779
2780 // Pick an 8-byte type based on the preferred type.
2781 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2782
2783 // If we have a sign or zero extended integer, make sure to return Extend
2784 // so that the parameter gets the right LLVM IR attributes.
2785 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2786 // Treat an enum type as its underlying type.
2787 if (const auto *ED = Ty->getAsEnumDecl())
2788 Ty = ED->getIntegerType();
2789
2790 if (Ty->isIntegralOrEnumerationType() &&
2791 isPromotableIntegerTypeForABI(Ty))
2792 return ABIArgInfo::getExtend(Ty, CGT.ConvertType(Ty));
2793 }
2794
2795 if (ResType->isIntegerTy(128)) {
2796 assert(Hi == Integer);
2797 ++neededInt;
2798 return ABIArgInfo::getDirect(ResType);
2799 }
2800 break;
2801
2802 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2803 // available SSE register is used, the registers are taken in the
2804 // order from %xmm0 to %xmm7.
2805 case SSE: {
2806 llvm::Type *IRType = CGT.ConvertType(Ty);
2807 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2808 ++neededSSE;
2809 break;
2810 }
2811 }
2812
2813 llvm::Type *HighPart = nullptr;
2814 switch (Hi) {
2815 // Memory was handled previously, ComplexX87 and X87 should
2816 // never occur as hi classes, and X87Up must be preceded by X87,
2817 // which is passed in memory.
2818 case Memory:
2819 case X87:
2820 case ComplexX87:
2821 llvm_unreachable("Invalid classification for hi word.");
2822
2823 case NoClass: break;
2824
2825 case Integer:
2826 ++neededInt;
2827 // Pick an 8-byte type based on the preferred type.
2828 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2829
2830 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2831 return ABIArgInfo::getDirect(HighPart, 8);
2832 break;
2833
2834 // X87Up generally doesn't occur here (long double is passed in
2835 // memory), except in situations involving unions.
2836 case X87Up:
2837 case SSE:
2838 ++neededSSE;
2839 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2840
2841 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2842 return ABIArgInfo::getDirect(HighPart, 8);
2843 break;
2844
2845 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2846 // eightbyte is passed in the upper half of the last used SSE
2847 // register. This only happens when 128-bit vectors are passed.
2848 case SSEUp:
2849 assert(Lo == SSE && "Unexpected SSEUp classification");
2850 ResType = GetByteVectorType(Ty);
2851 break;
2852 }
2853
2854 // If a high part was specified, merge it together with the low part. It is
2855 // known to pass in the high eightbyte of the result. We do this by forming a
2856 // first class struct aggregate with the high and low part: {low, high}
2857 if (HighPart)
2858 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2859
2860 return ABIArgInfo::getDirect(ResType);
2861}
2862
2863ABIArgInfo
2864X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2865 unsigned &NeededSSE,
2866 unsigned &MaxVectorWidth) const {
2867 auto *RD =
2868 cast<RecordType>(Ty.getCanonicalType())->getDecl()->getDefinitionOrSelf();
2869
2870 if (RD->hasFlexibleArrayMember())
2871 return getIndirectReturnResult(Ty);
2872
2873 // Sum up bases
2874 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2875 if (CXXRD->isDynamicClass()) {
2876 NeededInt = NeededSSE = 0;
2877 return getIndirectReturnResult(Ty);
2878 }
2879
2880 for (const auto &I : CXXRD->bases())
2881 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE,
2882 MaxVectorWidth)
2883 .isIndirect()) {
2884 NeededInt = NeededSSE = 0;
2885 return getIndirectReturnResult(Ty);
2886 }
2887 }
2888
2889 // Sum up members
2890 for (const auto *FD : RD->fields()) {
2891 QualType MTy = FD->getType();
2892 if (MTy->isRecordType() && !MTy->isUnionType()) {
2893 if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE,
2894 MaxVectorWidth)
2895 .isIndirect()) {
2896 NeededInt = NeededSSE = 0;
2897 return getIndirectReturnResult(Ty);
2898 }
2899 } else {
2900 unsigned LocalNeededInt, LocalNeededSSE;
2901 if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE,
2902 true, true)
2903 .isIndirect()) {
2904 NeededInt = NeededSSE = 0;
2905 return getIndirectReturnResult(Ty);
2906 }
2907 if (const auto *AT = getContext().getAsConstantArrayType(MTy))
2908 MTy = AT->getElementType();
2909 if (const auto *VT = MTy->getAs<VectorType>())
2910 if (getContext().getTypeSize(VT) > MaxVectorWidth)
2911 MaxVectorWidth = getContext().getTypeSize(VT);
2912 NeededInt += LocalNeededInt;
2913 NeededSSE += LocalNeededSSE;
2914 }
2915 }
2916
2917 return ABIArgInfo::getDirect();
2918}
2919
2920ABIArgInfo
2921X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2922 unsigned &NeededSSE,
2923 unsigned &MaxVectorWidth) const {
2924
2925 NeededInt = 0;
2926 NeededSSE = 0;
2927 MaxVectorWidth = 0;
2928
2929 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE,
2930 MaxVectorWidth);
2931}
2932
2933void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2934
2935 const unsigned CallingConv = FI.getCallingConvention();
2936 // It is possible to force Win64 calling convention on any x86_64 target by
2937 // using __attribute__((ms_abi)). In such case to correctly emit Win64
2938 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
2939 if (CallingConv == llvm::CallingConv::Win64) {
2940 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
2941 Win64ABIInfo.computeInfo(FI);
2942 return;
2943 }
2944
2945 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
2946
2947 // Keep track of the number of assigned registers.
2948 unsigned FreeIntRegs = IsRegCall ? 11 : 6;
2949 unsigned FreeSSERegs = IsRegCall ? 16 : 8;
2950 unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0;
2951
2952 if (!::classifyReturnType(getCXXABI(), FI, *this)) {
2953 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
2954 !FI.getReturnType()->getTypePtr()->isUnionType()) {
2955 FI.getReturnInfo() = classifyRegCallStructType(
2956 FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth);
2957 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
2958 FreeIntRegs -= NeededInt;
2959 FreeSSERegs -= NeededSSE;
2960 } else {
2961 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
2962 }
2963 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
2964 getContext().getCanonicalType(FI.getReturnType()
2965 ->getAs<ComplexType>()
2966 ->getElementType()) ==
2967 getContext().LongDoubleTy)
2968 // Complex Long Double Type is passed in Memory when Regcall
2969 // calling convention is used.
2970 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
2971 else
2973 }
2974
2975 // If the return value is indirect, then the hidden argument is consuming one
2976 // integer register.
2977 if (FI.getReturnInfo().isIndirect())
2978 --FreeIntRegs;
2979 else if (NeededSSE && MaxVectorWidth > 0)
2980 FI.setMaxVectorWidth(MaxVectorWidth);
2981
2982 // The chain argument effectively gives us another free register.
2983 if (FI.isChainCall())
2984 ++FreeIntRegs;
2985
2986 unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2987 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2988 // get assigned (in left-to-right order) for passing as follows...
2989 unsigned ArgNo = 0;
2990 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2991 it != ie; ++it, ++ArgNo) {
2992 bool IsNamedArg = ArgNo < NumRequiredArgs;
2993
2994 if (IsRegCall && it->type->isStructureOrClassType())
2995 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE,
2996 MaxVectorWidth);
2997 else
2998 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
2999 NeededSSE, IsNamedArg);
3000
3001 // AMD64-ABI 3.2.3p3: If there are no registers available for any
3002 // eightbyte of an argument, the whole argument is passed on the
3003 // stack. If registers have already been assigned for some
3004 // eightbytes of such an argument, the assignments get reverted.
3005 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3006 FreeIntRegs -= NeededInt;
3007 FreeSSERegs -= NeededSSE;
3008 if (MaxVectorWidth > FI.getMaxVectorWidth())
3009 FI.setMaxVectorWidth(MaxVectorWidth);
3010 } else {
3011 it->info = getIndirectResult(it->type, FreeIntRegs);
3012 }
3013 }
3014}
3015
3017 Address VAListAddr, QualType Ty) {
3018 Address overflow_arg_area_p =
3019 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3020 llvm::Value *overflow_arg_area =
3021 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3022
3023 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3024 // byte boundary if alignment needed by type exceeds 8 byte boundary.
3025 // It isn't stated explicitly in the standard, but in practice we use
3026 // alignment greater than 16 where necessary.
3027 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3028 if (Align > CharUnits::fromQuantity(8)) {
3029 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3030 Align);
3031 }
3032
3033 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3034 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3035 llvm::Value *Res = overflow_arg_area;
3036
3037 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3038 // l->overflow_arg_area + sizeof(type).
3039 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3040 // an 8 byte boundary.
3041
3042 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3043 llvm::Value *Offset =
3044 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
3045 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
3046 Offset, "overflow_arg_area.next");
3047 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3048
3049 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3050 return Address(Res, LTy, Align);
3051}
3052
3053RValue X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3054 QualType Ty, AggValueSlot Slot) const {
3055 // Assume that va_list type is correct; should be pointer to LLVM type:
3056 // struct {
3057 // i32 gp_offset;
3058 // i32 fp_offset;
3059 // i8* overflow_arg_area;
3060 // i8* reg_save_area;
3061 // };
3062 unsigned neededInt, neededSSE;
3063
3064 Ty = getContext().getCanonicalType(Ty);
3065 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3066 /*isNamedArg*/false);
3067
3068 // Empty records are ignored for parameter passing purposes.
3069 if (AI.isIgnore())
3070 return Slot.asRValue();
3071
3072 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3073 // in the registers. If not go to step 7.
3074 if (!neededInt && !neededSSE)
3075 return CGF.EmitLoadOfAnyValue(
3076 CGF.MakeAddrLValue(EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty), Ty),
3077 Slot);
3078
3079 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3080 // general purpose registers needed to pass type and num_fp to hold
3081 // the number of floating point registers needed.
3082
3083 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3084 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3085 // l->fp_offset > 304 - num_fp * 16 go to step 7.
3086 //
3087 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3088 // register save space).
3089
3090 llvm::Value *InRegs = nullptr;
3091 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3092 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3093 if (neededInt) {
3094 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3095 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3096 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3097 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3098 }
3099
3100 if (neededSSE) {
3101 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3102 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3103 llvm::Value *FitsInFP =
3104 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3105 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3106 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3107 }
3108
3109 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3110 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3111 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3112 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3113
3114 // Emit code to load the value if it was passed in registers.
3115
3116 CGF.EmitBlock(InRegBlock);
3117
3118 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3119 // an offset of l->gp_offset and/or l->fp_offset. This may require
3120 // copying to a temporary location in case the parameter is passed
3121 // in different register classes or requires an alignment greater
3122 // than 8 for general purpose registers and 16 for XMM registers.
3123 //
3124 // FIXME: This really results in shameful code when we end up needing to
3125 // collect arguments from different places; often what should result in a
3126 // simple assembling of a structure from scattered addresses has many more
3127 // loads than necessary. Can we clean this up?
3128 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3129 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3130 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3131
3132 Address RegAddr = Address::invalid();
3133 if (neededInt && neededSSE) {
3134 // FIXME: Cleanup.
3135 assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3136 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3137 Address Tmp = CGF.CreateMemTemp(Ty);
3138 Tmp = Tmp.withElementType(ST);
3139 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3140 llvm::Type *TyLo = ST->getElementType(0);
3141 llvm::Type *TyHi = ST->getElementType(1);
3142 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3143 "Unexpected ABI info for mixed regs");
3144 llvm::Value *GPAddr =
3145 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
3146 llvm::Value *FPAddr =
3147 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
3148 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3149 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3150
3151 // Copy the first element.
3152 // FIXME: Our choice of alignment here and below is probably pessimistic.
3153 llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3154 TyLo, RegLoAddr,
3155 CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo)));
3156 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3157
3158 // Copy the second element.
3160 TyHi, RegHiAddr,
3161 CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi)));
3162 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3163
3164 RegAddr = Tmp.withElementType(LTy);
3165 } else if (neededInt || neededSSE == 1) {
3166 // Copy to a temporary if necessary to ensure the appropriate alignment.
3167 auto TInfo = getContext().getTypeInfoInChars(Ty);
3168 uint64_t TySize = TInfo.Width.getQuantity();
3169 CharUnits TyAlign = TInfo.Align;
3170 llvm::Type *CoTy = nullptr;
3171 if (AI.isDirect())
3172 CoTy = AI.getCoerceToType();
3173
3174 llvm::Value *GpOrFpOffset = neededInt ? gp_offset : fp_offset;
3175 uint64_t Alignment = neededInt ? 8 : 16;
3176 uint64_t RegSize = neededInt ? neededInt * 8 : 16;
3177 // There are two cases require special handling:
3178 // 1)
3179 // ```
3180 // struct {
3181 // struct {} a[8];
3182 // int b;
3183 // };
3184 // ```
3185 // The lower 8 bytes of the structure are not stored,
3186 // so an 8-byte offset is needed when accessing the structure.
3187 // 2)
3188 // ```
3189 // struct {
3190 // long long a;
3191 // struct {} b;
3192 // };
3193 // ```
3194 // The stored size of this structure is smaller than its actual size,
3195 // which may lead to reading past the end of the register save area.
3196 if (CoTy && (AI.getDirectOffset() == 8 || RegSize < TySize)) {
3197 Address Tmp = CGF.CreateMemTemp(Ty);
3198 llvm::Value *Addr =
3199 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, GpOrFpOffset);
3200 llvm::Value *Src = CGF.Builder.CreateAlignedLoad(CoTy, Addr, TyAlign);
3201 llvm::Value *PtrOffset =
3202 llvm::ConstantInt::get(CGF.Int32Ty, AI.getDirectOffset());
3203 Address Dst = Address(
3204 CGF.Builder.CreateGEP(CGF.Int8Ty, Tmp.getBasePointer(), PtrOffset),
3205 LTy, TyAlign);
3206 CGF.Builder.CreateStore(Src, Dst);
3207 RegAddr = Tmp.withElementType(LTy);
3208 } else {
3209 RegAddr =
3210 Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, GpOrFpOffset),
3211 LTy, CharUnits::fromQuantity(Alignment));
3212
3213 // Copy into a temporary if the type is more aligned than the
3214 // register save area.
3215 if (neededInt && TyAlign.getQuantity() > 8) {
3216 Address Tmp = CGF.CreateMemTemp(Ty);
3217 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3218 RegAddr = Tmp;
3219 }
3220 }
3221
3222 } else {
3223 assert(neededSSE == 2 && "Invalid number of needed registers!");
3224 // SSE registers are spaced 16 bytes apart in the register save
3225 // area, we need to collect the two eightbytes together.
3226 // The ABI isn't explicit about this, but it seems reasonable
3227 // to assume that the slots are 16-byte aligned, since the stack is
3228 // naturally 16-byte aligned and the prologue is expected to store
3229 // all the SSE registers to the RSA.
3230 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
3231 fp_offset),
3233 Address RegAddrHi =
3234 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3236 llvm::Type *ST = AI.canHaveCoerceToType()
3237 ? AI.getCoerceToType()
3238 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3239 llvm::Value *V;
3240 Address Tmp = CGF.CreateMemTemp(Ty);
3241 Tmp = Tmp.withElementType(ST);
3242 V = CGF.Builder.CreateLoad(
3243 RegAddrLo.withElementType(ST->getStructElementType(0)));
3244 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3245 V = CGF.Builder.CreateLoad(
3246 RegAddrHi.withElementType(ST->getStructElementType(1)));
3247 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3248
3249 RegAddr = Tmp.withElementType(LTy);
3250 }
3251
3252 // AMD64-ABI 3.5.7p5: Step 5. Set:
3253 // l->gp_offset = l->gp_offset + num_gp * 8
3254 // l->fp_offset = l->fp_offset + num_fp * 16.
3255 if (neededInt) {
3256 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3257 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3258 gp_offset_p);
3259 }
3260 if (neededSSE) {
3261 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3262 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3263 fp_offset_p);
3264 }
3265 CGF.EmitBranch(ContBlock);
3266
3267 // Emit code to load the value if it was passed in memory.
3268
3269 CGF.EmitBlock(InMemBlock);
3270 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3271
3272 // Return the appropriate result.
3273
3274 CGF.EmitBlock(ContBlock);
3275 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3276 "vaarg.addr");
3277 return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(ResAddr, Ty), Slot);
3278}
3279
3280RValue X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3281 QualType Ty, AggValueSlot Slot) const {
3282 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3283 // not 1, 2, 4, or 8 bytes, must be passed by reference."
3284 uint64_t Width = getContext().getTypeSize(Ty);
3285 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
3286
3287 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
3290 /*allowHigherAlign*/ false, Slot);
3291}
3292
3293ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
3294 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
3295 const Type *Base = nullptr;
3296 uint64_t NumElts = 0;
3297
3298 if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3299 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3300 FreeSSERegs -= NumElts;
3301 return getDirectX86Hva();
3302 }
3303 return current;
3304}
3305
3306ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3307 bool IsReturnType, bool IsVectorCall,
3308 bool IsRegCall) const {
3309
3310 if (Ty->isVoidType())
3311 return ABIArgInfo::getIgnore();
3312
3313 if (const auto *ED = Ty->getAsEnumDecl())
3314 Ty = ED->getIntegerType();
3315
3316 TypeInfo Info = getContext().getTypeInfo(Ty);
3317 uint64_t Width = Info.Width;
3318 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3319
3320 const RecordType *RT = Ty->getAsCanonical<RecordType>();
3321 if (RT) {
3322 if (!IsReturnType) {
3323 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3324 return getNaturalAlignIndirect(Ty, getDataLayout().getAllocaAddrSpace(),
3326 }
3327
3328 if (RT->getDecl()->getDefinitionOrSelf()->hasFlexibleArrayMember())
3329 return getNaturalAlignIndirect(Ty, getDataLayout().getAllocaAddrSpace(),
3330 /*ByVal=*/false);
3331 }
3332
3333 const Type *Base = nullptr;
3334 uint64_t NumElts = 0;
3335 // vectorcall adds the concept of a homogenous vector aggregate, similar to
3336 // other targets.
3337 if ((IsVectorCall || IsRegCall) &&
3338 isHomogeneousAggregate(Ty, Base, NumElts)) {
3339 if (IsRegCall) {
3340 if (FreeSSERegs >= NumElts) {
3341 FreeSSERegs -= NumElts;
3342 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3343 return ABIArgInfo::getDirect();
3344 return ABIArgInfo::getExpand();
3345 }
3347 Align, /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(),
3348 /*ByVal=*/false);
3349 } else if (IsVectorCall) {
3350 if (FreeSSERegs >= NumElts &&
3351 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3352 FreeSSERegs -= NumElts;
3353 return ABIArgInfo::getDirect();
3354 } else if (IsReturnType) {
3355 return ABIArgInfo::getExpand();
3356 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3357 // HVAs are delayed and reclassified in the 2nd step.
3359 Align, /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(),
3360 /*ByVal=*/false);
3361 }
3362 }
3363 }
3364
3365 if (Ty->isMemberPointerType()) {
3366 // If the member pointer is represented by an LLVM int or ptr, pass it
3367 // directly.
3368 llvm::Type *LLTy = CGT.ConvertType(Ty);
3369 if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3370 return ABIArgInfo::getDirect();
3371 }
3372
3373 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3374 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3375 // not 1, 2, 4, or 8 bytes, must be passed by reference."
3376 if (Width > 64 || !llvm::isPowerOf2_64(Width))
3377 return getNaturalAlignIndirect(Ty, getDataLayout().getAllocaAddrSpace(),
3378 /*ByVal=*/false);
3379
3380 // Otherwise, coerce it to a small integer.
3381 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3382 }
3383
3384 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3385 switch (BT->getKind()) {
3386 case BuiltinType::Bool:
3387 // Bool type is always extended to the ABI, other builtin types are not
3388 // extended.
3389 return ABIArgInfo::getExtend(Ty);
3390
3391 case BuiltinType::LongDouble:
3392 // Mingw64 GCC uses the old 80 bit extended precision floating point
3393 // unit. It passes them indirectly through memory.
3394 if (IsMingw64) {
3395 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3396 if (LDF == &llvm::APFloat::x87DoubleExtended())
3398 Align, /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(),
3399 /*ByVal=*/false);
3400 }
3401 break;
3402
3403 case BuiltinType::Int128:
3404 case BuiltinType::UInt128:
3405 case BuiltinType::Float128:
3406 // 128-bit float and integer types share the same ABI.
3407
3408 // If it's a parameter type, the normal ABI rule is that arguments larger
3409 // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3410 // even though it isn't particularly efficient.
3411 if (!IsReturnType)
3413 Align, /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(),
3414 /*ByVal=*/false);
3415
3416 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3417 // Clang matches them for compatibility.
3418 // NOTE: GCC actually returns f128 indirectly but will hopefully change.
3419 // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=115054#c8.
3420 return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
3421 llvm::Type::getInt64Ty(getVMContext()), 2));
3422
3423 default:
3424 break;
3425 }
3426 }
3427
3428 if (Ty->isBitIntType()) {
3429 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3430 // not 1, 2, 4, or 8 bytes, must be passed by reference."
3431 // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4,
3432 // or 8 bytes anyway as long is it fits in them, so we don't have to check
3433 // the power of 2.
3434 if (Width <= 64)
3435 return ABIArgInfo::getDirect();
3437 Align, /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(),
3438 /*ByVal=*/false);
3439 }
3440
3441 return ABIArgInfo::getDirect();
3442}
3443
3444void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3445 const unsigned CC = FI.getCallingConvention();
3446 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
3447 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
3448
3449 // If __attribute__((sysv_abi)) is in use, use the SysV argument
3450 // classification rules.
3451 if (CC == llvm::CallingConv::X86_64_SysV) {
3452 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
3453 SysVABIInfo.computeInfo(FI);
3454 return;
3455 }
3456
3457 unsigned FreeSSERegs = 0;
3458 if (IsVectorCall) {
3459 // We can use up to 4 SSE return registers with vectorcall.
3460 FreeSSERegs = 4;
3461 } else if (IsRegCall) {
3462 // RegCall gives us 16 SSE registers.
3463 FreeSSERegs = 16;
3464 }
3465
3466 if (!getCXXABI().classifyReturnType(FI))
3467 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
3468 IsVectorCall, IsRegCall);
3469
3470 if (IsVectorCall) {
3471 // We can use up to 6 SSE register parameters with vectorcall.
3472 FreeSSERegs = 6;
3473 } else if (IsRegCall) {
3474 // RegCall gives us 16 SSE registers, we can reuse the return registers.
3475 FreeSSERegs = 16;
3476 }
3477
3478 unsigned ArgNum = 0;
3479 unsigned ZeroSSERegs = 0;
3480 for (auto &I : FI.arguments()) {
3481 // Vectorcall in x64 only permits the first 6 arguments to be passed as
3482 // XMM/YMM registers. After the sixth argument, pretend no vector
3483 // registers are left.
3484 unsigned *MaybeFreeSSERegs =
3485 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
3486 I.info =
3487 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
3488 ++ArgNum;
3489 }
3490
3491 if (IsVectorCall) {
3492 // For vectorcall, assign aggregate HVAs to any free vector registers in a
3493 // second pass.
3494 for (auto &I : FI.arguments())
3495 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
3496 }
3497}
3498
3499RValue WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3500 QualType Ty, AggValueSlot Slot) const {
3501 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3502 // not 1, 2, 4, or 8 bytes, must be passed by reference."
3503 uint64_t Width = getContext().getTypeSize(Ty);
3504 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
3505
3506 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
3509 /*allowHigherAlign*/ false, Slot);
3510}
3511
3512std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo(
3513 CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
3514 unsigned NumRegisterParameters, bool SoftFloatABI) {
3515 bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
3516 CGM.getTriple(), CGM.getCodeGenOpts());
3517 return std::make_unique<X86_32TargetCodeGenInfo>(
3518 CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
3519 NumRegisterParameters, SoftFloatABI);
3520}
3521
3522std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo(
3523 CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
3524 unsigned NumRegisterParameters) {
3525 bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
3526 CGM.getTriple(), CGM.getCodeGenOpts());
3527 return std::make_unique<WinX86_32TargetCodeGenInfo>(
3528 CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
3529 NumRegisterParameters);
3530}
3531
3532std::unique_ptr<TargetCodeGenInfo>
3534 X86AVXABILevel AVXLevel) {
3535 return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
3536}
3537
3538std::unique_ptr<TargetCodeGenInfo>
3540 X86AVXABILevel AVXLevel) {
3541 return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
3542}
#define V(N, I)
static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context)
Definition X86.cpp:383
static bool checkAVXParamFeature(DiagnosticsEngine &Diag, SourceLocation CallLoc, const FunctionDecl &Callee, const llvm::StringMap< bool > &CallerMap, const llvm::StringMap< bool > &CalleeMap, QualType Ty, StringRef Feature, bool IsArgument)
Definition X86.cpp:1528
static void rewriteInputConstraintReferences(unsigned FirstIn, unsigned NumNewOuts, std::string &AsmString)
Rewrite input constraint references after adding some output constraints.
Definition X86.cpp:257
static void initFeatureMaps(const ASTContext &Ctx, llvm::StringMap< bool > &CallerMap, const FunctionDecl *Caller, llvm::StringMap< bool > &CalleeMap, const FunctionDecl *Callee)
Definition X86.cpp:1514
static llvm::Type * GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, const llvm::DataLayout &TD)
GetX86_64ByValArgumentPair - Given a high and low type that can ideally be used as elements of a two ...
Definition X86.cpp:2561
static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, SourceLocation CallLoc, const FunctionDecl &Callee, const llvm::StringMap< bool > &CallerMap, const llvm::StringMap< bool > &CalleeMap, QualType Ty, bool IsArgument)
Definition X86.cpp:1556
static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, uint64_t &Size)
Definition X86.cpp:419
static llvm::Type * getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, const llvm::DataLayout &TD)
getFPTypeAtOffset - Return a floating point type at the specified offset.
Definition X86.cpp:2397
static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, uint64_t &Size)
Definition X86.cpp:399
static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, unsigned EndBit, ASTContext &Context)
BitsContainNoUserData - Return true if the specified [start,end) bit range is known to either be off ...
Definition X86.cpp:2321
static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, Address VAListAddr, QualType Ty)
Definition X86.cpp:3016
static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM)
Definition X86.cpp:1126
static bool isArgInAlloca(const ABIArgInfo &Info)
Definition X86.cpp:1010
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition ASTContext.h:220
const ConstantArrayType * getAsConstantArrayType(QualType T) const
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
TypeInfoChars getTypeInfoInChars(const Type *T) const
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
void getFunctionFeatureMap(llvm::StringMap< bool > &FeatureMap, const FunctionDecl *) const
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
uint64_t getFieldOffset(unsigned FieldNo) const
getFieldOffset - Get the offset of the given field index, in bits.
CharUnits getRequiredAlignment() const
CharUnits getBaseClassOffset(const CXXRecordDecl *Base) const
getBaseClassOffset - Get the offset, in chars, for the given base class.
This class is used for builtin types like 'int'.
Definition TypeBase.h:3164
Represents a base class of a C++ class.
Definition DeclCXX.h:146
Represents a C++ struct/union/class.
Definition DeclCXX.h:258
base_class_range bases()
Definition DeclCXX.h:608
CanProxy< U > getAs() const
Retrieve a canonical type pointer with a different static type, upcasting or downcasting as needed.
const T * getTypePtr() const
Retrieve the underlying type pointer, which refers to a canonical type.
CharUnits - This is an opaque type for sizes expressed in character units.
Definition CharUnits.h:38
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition CharUnits.h:185
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition CharUnits.h:58
bool isMultipleOf(CharUnits N) const
Test whether this is a multiple of the other value.
Definition CharUnits.h:143
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition CharUnits.h:63
CharUnits alignTo(const CharUnits &Align) const
alignTo - Returns the next integer (mod 2**64) that is greater than or equal to this quantity and is ...
Definition CharUnits.h:201
ABIArgInfo - Helper class to encapsulate information about how a specific C type should be passed to ...
static ABIArgInfo getInAlloca(unsigned FieldIndex, bool Indirect=false)
static ABIArgInfo getIgnore()
static ABIArgInfo getExpand()
unsigned getDirectOffset() const
void setIndirectAlign(CharUnits IA)
static ABIArgInfo getExtendInReg(QualType Ty, llvm::Type *T=nullptr)
static ABIArgInfo getExpandWithPadding(bool PaddingInReg, llvm::Type *Padding)
static ABIArgInfo getDirect(llvm::Type *T=nullptr, unsigned Offset=0, llvm::Type *Padding=nullptr, bool CanBeFlattened=true, unsigned Align=0)
@ Extend
Extend - Valid only for integer argument types.
@ Ignore
Ignore - Ignore the argument (treat as void).
@ IndirectAliased
IndirectAliased - Similar to Indirect, but the pointer may be to an object that is otherwise referenc...
@ Expand
Expand - Only valid for aggregate argument types.
@ TargetSpecific
TargetSpecific - Some argument types are passed as target specific types such as RISC-V's tuple type,...
@ InAlloca
InAlloca - Pass the argument directly using the LLVM inalloca attribute.
@ Indirect
Indirect - Pass the argument indirectly via a hidden pointer with the specified alignment (0 indicate...
@ CoerceAndExpand
CoerceAndExpand - Only valid for aggregate argument types.
@ Direct
Direct - Pass the argument directly using the normal converted LLVM type, or by coercing to another s...
static ABIArgInfo getIndirect(CharUnits Alignment, unsigned AddrSpace, bool ByVal=true, bool Realign=false, llvm::Type *Padding=nullptr)
static ABIArgInfo getExtend(QualType Ty, llvm::Type *T=nullptr)
llvm::Type * getCoerceToType() const
static ABIArgInfo getDirectInReg(llvm::Type *T=nullptr)
ABIInfo - Target specific hooks for defining how a type should be passed or returned from functions.
Definition ABIInfo.h:48
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition Address.h:128
llvm::Value * getBasePointer() const
Definition Address.h:198
static Address invalid()
Definition Address.h:176
Address withElementType(llvm::Type *ElemTy) const
Return address with different element type, but same pointer and alignment.
Definition Address.h:276
RValue asRValue() const
Definition CGValue.h:667
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition CGBuilder.h:140
Address CreateConstInBoundsByteGEP(Address Addr, CharUnits Offset, const llvm::Twine &Name="")
Given a pointer to i8, adjust it by a given constant offset.
Definition CGBuilder.h:309
Address CreateGEP(CodeGenFunction &CGF, Address Addr, llvm::Value *Index, const llvm::Twine &Name="")
Definition CGBuilder.h:296
Address CreateStructGEP(Address Addr, unsigned Index, const llvm::Twine &Name="")
Definition CGBuilder.h:223
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition CGBuilder.h:112
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition CGBuilder.h:369
llvm::LoadInst * CreateAlignedLoad(llvm::Type *Ty, llvm::Value *Addr, CharUnits Align, const llvm::Twine &Name="")
Definition CGBuilder.h:132
RecordArgABI
Specify how one should pass an argument of a record type.
Definition CGCXXABI.h:150
@ RAA_Indirect
Pass it as a pointer to temporary memory.
Definition CGCXXABI.h:161
@ RAA_DirectInMemory
Pass it on the stack using its defined layout.
Definition CGCXXABI.h:158
unsigned getCallingConvention() const
getCallingConvention - Return the user specified calling convention, which has been translated into a...
const_arg_iterator arg_begin() const
CanQualType getReturnType() const
MutableArrayRef< ArgInfo > arguments()
const_arg_iterator arg_end() const
void setArgStruct(llvm::StructType *Ty, CharUnits Align)
unsigned getMaxVectorWidth() const
Return the maximum vector width in the arguments.
void setMaxVectorWidth(unsigned Width)
Set the maximum vector width in the arguments.
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
RValue EmitLoadOfAnyValue(LValue V, AggValueSlot Slot=AggValueSlot::ignored(), SourceLocation Loc={})
Like EmitLoadOfLValue but also handles complex and aggregate types.
Definition CGExpr.cpp:2359
llvm::Type * ConvertTypeForMem(QualType T)
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block,...
Definition CGStmt.cpp:672
RawAddress CreateMemTemp(QualType T, const Twine &Name="tmp", RawAddress *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
Definition CGExpr.cpp:188
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
const CGFunctionInfo * CurFnInfo
llvm::LLVMContext & getLLVMContext()
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition CGStmt.cpp:652
This class organizes the cross-function state that is used while generating LLVM code.
DiagnosticsEngine & getDiags() const
const TargetInfo & getTarget() const
const llvm::Triple & getTriple() const
ASTContext & getContext() const
const CodeGenOptions & getCodeGenOpts() const
This class organizes the cross-module state that is used while lowering AST types to LLVM types.
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
bool isRequiredArg(unsigned argIdx) const
Return true if the argument at a given index is required.
Target specific hooks for defining how a type should be passed or returned from functions with one of...
Definition ABIInfo.h:149
TargetCodeGenInfo - This class organizes various target-specific codegeneration issues,...
Definition TargetInfo.h:49
virtual void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const
setTargetAttributes - Provides a convenient hook to handle extra target-specific attributes for the g...
Definition TargetInfo.h:82
static std::string qualifyWindowsLibrary(StringRef Lib)
Definition X86.cpp:1623
virtual bool isNoProtoCallVariadic(const CodeGen::CallArgList &args, const FunctionNoProtoType *fnType) const
Determine whether a call to an unprototyped functions under the given calling convention should use t...
Complex values, per C99 6.2.5p11.
Definition TypeBase.h:3275
Represents the canonical version of C arrays with a specified constant size.
Definition TypeBase.h:3760
Decl - This represents one declaration (or definition), e.g.
Definition DeclBase.h:86
bool hasAttr() const
Definition DeclBase.h:577
Concrete class used by the front-end to report problems and issues.
Definition Diagnostic.h:232
Represents a function declaration or definition.
Definition Decl.h:2000
const ParmVarDecl * getParamDecl(unsigned i) const
Definition Decl.h:2797
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition Decl.cpp:3818
CallingConv getCallConv() const
Definition TypeBase.h:4805
A (possibly-)qualified type.
Definition TypeBase.h:937
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition TypeBase.h:8278
QualType getCanonicalType() const
Definition TypeBase.h:8330
Represents a struct/union/class.
Definition Decl.h:4312
bool hasFlexibleArrayMember() const
Definition Decl.h:4345
field_iterator field_end() const
Definition Decl.h:4518
field_range fields() const
Definition Decl.h:4515
specific_decl_iterator< FieldDecl > field_iterator
Definition Decl.h:4512
field_iterator field_begin() const
Definition Decl.cpp:5205
Encodes a location in the source.
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
bool isBlockPointerType() const
Definition TypeBase.h:8535
bool isVoidType() const
Definition TypeBase.h:8871
bool isFloat16Type() const
Definition TypeBase.h:8880
RecordDecl * getAsRecordDecl() const
Retrieves the RecordDecl this type refers to.
Definition Type.h:41
bool isPointerType() const
Definition TypeBase.h:8515
bool isReferenceType() const
Definition TypeBase.h:8539
bool isEnumeralType() const
Definition TypeBase.h:8646
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition TypeBase.h:8989
bool isBitIntType() const
Definition TypeBase.h:8780
bool isSpecificBuiltinType(unsigned K) const
Test for a particular builtin type.
Definition TypeBase.h:8840
bool isBuiltinType() const
Helper methods to distinguish type categories.
Definition TypeBase.h:8638
bool isAnyComplexType() const
Definition TypeBase.h:8650
bool isMemberPointerType() const
Definition TypeBase.h:8596
EnumDecl * getAsEnumDecl() const
Retrieves the EnumDecl this type refers to.
Definition Type.h:53
bool isBFloat16Type() const
Definition TypeBase.h:8892
bool isMemberFunctionPointerType() const
Definition TypeBase.h:8600
bool isVectorType() const
Definition TypeBase.h:8654
const T * getAsCanonical() const
If this type is canonically the specified type, return its canonical type cast to that specified type...
Definition TypeBase.h:2921
const T * getAs() const
Member-template getAs<specific type>'.
Definition TypeBase.h:9091
bool isRecordType() const
Definition TypeBase.h:8642
bool isUnionType() const
Definition Type.cpp:718
bool hasPointerRepresentation() const
Whether this type is represented natively as a pointer.
Definition TypeBase.h:9035
QualType getType() const
Definition Decl.h:723
Represents a GCC generic vector type.
Definition TypeBase.h:4175
#define UINT_MAX
Definition limits.h:64
bool shouldPassIndirectly(CodeGenModule &CGM, ArrayRef< llvm::Type * > types, bool asReturnValue)
Should an aggregate which expands to the given type sequence be passed/returned indirectly under swif...
ABIArgInfo classifyArgumentType(CodeGenModule &CGM, CanQualType type)
Classify the rules for how to pass a particular type.
@ Decl
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
Definition CGValue.h:146
CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, CGCXXABI &CXXABI)
std::unique_ptr< TargetCodeGenInfo > createX86_64TargetCodeGenInfo(CodeGenModule &CGM, X86AVXABILevel AVXLevel)
Definition X86.cpp:3533
bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, const ABIInfo &Info)
std::unique_ptr< TargetCodeGenInfo > createWinX86_32TargetCodeGenInfo(CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, unsigned NumRegisterParameters)
Definition X86.cpp:3522
bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty)
RValue emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType ValueTy, bool IsIndirect, TypeInfoChars ValueInfo, CharUnits SlotSizeAndAlign, bool AllowHigherAlign, AggValueSlot Slot, bool ForceRightAdjust=false)
Emit va_arg for a platform using the common void* representation, where arguments are simply emitted ...
Address emitMergePHI(CodeGenFunction &CGF, Address Addr1, llvm::BasicBlock *Block1, Address Addr2, llvm::BasicBlock *Block2, const llvm::Twine &Name="")
X86AVXABILevel
The AVX ABI level for X86 targets.
Definition TargetInfo.h:613
bool isEmptyField(ASTContext &Context, const FieldDecl *FD, bool AllowArrays, bool AsIfNoUniqueAddr=false)
isEmptyField - Return true iff a the field is "empty", that is it is an unnamed bit-field or an (arra...
llvm::Value * emitRoundPointerUpToAlignment(CodeGenFunction &CGF, llvm::Value *Ptr, CharUnits Align)
bool isAggregateTypeForABI(QualType T)
const Type * isSingleElementStruct(QualType T, ASTContext &Context)
isSingleElementStruct - Determine if a structure is a "singleelement struct", i.e.
void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, llvm::Value *Array, llvm::Value *Value, unsigned FirstIndex, unsigned LastIndex)
QualType useFirstFieldIfTransparentUnion(QualType Ty)
Pass transparent unions as if they were the type of the first element.
std::unique_ptr< TargetCodeGenInfo > createX86_32TargetCodeGenInfo(CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, unsigned NumRegisterParameters, bool SoftFloatABI)
Definition X86.cpp:3512
bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays, bool AsIfNoUniqueAddr=false)
isEmptyRecord - Return true iff a structure contains only empty fields.
std::unique_ptr< TargetCodeGenInfo > createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM, X86AVXABILevel AVXLevel)
Definition X86.cpp:3539
bool isSIMDVectorType(ASTContext &Context, QualType Ty)
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
bool Ret(InterpState &S, CodePtr &PC)
Definition Interp.h:224
The JSON file list parser is used to communicate input to InstallAPI.
bool isa(CodeGen::Address addr)
Definition Address.h:330
@ Result
The result type of a method or function.
Definition TypeBase.h:905
const FunctionProtoType * T
@ Type
The name was classified as a type.
Definition Sema.h:562
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition Specifiers.h:278
U cast(CodeGen::Address addr)
Definition Address.h:327
@ Class
The "class" keyword introduces the elaborated-type-specifier.
Definition TypeBase.h:5864
unsigned long uint64_t
__DEVICE__ _Tp arg(const std::complex< _Tp > &__c)
#define false
Definition stdbool.h:26
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
bool isAlignRequired()
Definition ASTContext.h:199