clang 20.0.0git
X86.cpp
Go to the documentation of this file.
1//===- X86.cpp ------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "ABIInfoImpl.h"
10#include "TargetInfo.h"
12#include "llvm/ADT/SmallBitVector.h"
13
14using namespace clang;
15using namespace clang::CodeGen;
16
17namespace {
18
19/// IsX86_MMXType - Return true if this is an MMX type.
20bool IsX86_MMXType(llvm::Type *IRType) {
21 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
22 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
23 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
24 IRType->getScalarSizeInBits() != 64;
25}
26
27static llvm::Type *X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
28 StringRef Constraint,
29 llvm::Type *Ty) {
30 if (Constraint == "k") {
31 llvm::Type *Int1Ty = llvm::Type::getInt1Ty(CGF.getLLVMContext());
32 return llvm::FixedVectorType::get(Int1Ty, Ty->getScalarSizeInBits());
33 }
34
35 // No operation needed
36 return Ty;
37}
38
39/// Returns true if this type can be passed in SSE registers with the
40/// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
41static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
42 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
43 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
44 if (BT->getKind() == BuiltinType::LongDouble) {
45 if (&Context.getTargetInfo().getLongDoubleFormat() ==
46 &llvm::APFloat::x87DoubleExtended())
47 return false;
48 }
49 return true;
50 }
51 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
52 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
53 // registers specially.
54 unsigned VecSize = Context.getTypeSize(VT);
55 if (VecSize == 128 || VecSize == 256 || VecSize == 512)
56 return true;
57 }
58 return false;
59}
60
61/// Returns true if this aggregate is small enough to be passed in SSE registers
62/// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
63static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
64 return NumMembers <= 4;
65}
66
67/// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
68static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
69 auto AI = ABIArgInfo::getDirect(T);
70 AI.setInReg(true);
71 AI.setCanBeFlattened(false);
72 return AI;
73}
74
75//===----------------------------------------------------------------------===//
76// X86-32 ABI Implementation
77//===----------------------------------------------------------------------===//
78
79/// Similar to llvm::CCState, but for Clang.
80struct CCState {
81 CCState(CGFunctionInfo &FI)
82 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()),
83 Required(FI.getRequiredArgs()), IsDelegateCall(FI.isDelegateCall()) {}
84
85 llvm::SmallBitVector IsPreassigned;
86 unsigned CC = CallingConv::CC_C;
87 unsigned FreeRegs = 0;
88 unsigned FreeSSERegs = 0;
90 bool IsDelegateCall = false;
91};
92
93/// X86_32ABIInfo - The X86-32 ABI information.
94class X86_32ABIInfo : public ABIInfo {
95 enum Class {
96 Integer,
97 Float
98 };
99
100 static const unsigned MinABIStackAlignInBytes = 4;
101
102 bool IsDarwinVectorABI;
103 bool IsRetSmallStructInRegABI;
104 bool IsWin32StructABI;
105 bool IsSoftFloatABI;
106 bool IsMCUABI;
107 bool IsLinuxABI;
108 unsigned DefaultNumRegisterParameters;
109
110 static bool isRegisterSize(unsigned Size) {
111 return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
112 }
113
114 bool isHomogeneousAggregateBaseType(QualType Ty) const override {
115 // FIXME: Assumes vectorcall is in use.
116 return isX86VectorTypeForVectorCall(getContext(), Ty);
117 }
118
120 uint64_t NumMembers) const override {
121 // FIXME: Assumes vectorcall is in use.
122 return isX86VectorCallAggregateSmallEnough(NumMembers);
123 }
124
125 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
126
127 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
128 /// such that the argument will be passed in memory.
129 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
130
131 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
132
133 /// Return the alignment to use for the given type on the stack.
134 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
135
136 Class classify(QualType Ty) const;
137 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
138 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State,
139 unsigned ArgIndex) const;
140
141 /// Updates the number of available free registers, returns
142 /// true if any registers were allocated.
143 bool updateFreeRegs(QualType Ty, CCState &State) const;
144
145 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
146 bool &NeedsPadding) const;
147 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
148
149 bool canExpandIndirectArgument(QualType Ty) const;
150
151 /// Rewrite the function info so that all memory arguments use
152 /// inalloca.
153 void rewriteWithInAlloca(CGFunctionInfo &FI) const;
154
155 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
156 CharUnits &StackOffset, ABIArgInfo &Info,
157 QualType Type) const;
158 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
159
160public:
161
162 void computeInfo(CGFunctionInfo &FI) const override;
163 RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
164 AggValueSlot Slot) const override;
165
166 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
167 bool RetSmallStructInRegABI, bool Win32StructABI,
168 unsigned NumRegisterParameters, bool SoftFloatABI)
169 : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
170 IsRetSmallStructInRegABI(RetSmallStructInRegABI),
171 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
172 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
173 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
174 CGT.getTarget().getTriple().isOSCygMing()),
175 DefaultNumRegisterParameters(NumRegisterParameters) {}
176};
177
178class X86_32SwiftABIInfo : public SwiftABIInfo {
179public:
180 explicit X86_32SwiftABIInfo(CodeGenTypes &CGT)
181 : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {}
182
184 bool AsReturnValue) const override {
185 // LLVM's x86-32 lowering currently only assigns up to three
186 // integer registers and three fp registers. Oddly, it'll use up to
187 // four vector registers for vectors, but those can overlap with the
188 // scalar registers.
189 return occupiesMoreThan(ComponentTys, /*total=*/3);
190 }
191};
192
193class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
194public:
195 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
196 bool RetSmallStructInRegABI, bool Win32StructABI,
197 unsigned NumRegisterParameters, bool SoftFloatABI)
198 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
199 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
200 NumRegisterParameters, SoftFloatABI)) {
201 SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT);
202 }
203
204 static bool isStructReturnInRegABI(
205 const llvm::Triple &Triple, const CodeGenOptions &Opts);
206
207 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
208 CodeGen::CodeGenModule &CGM) const override;
209
210 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
211 // Darwin uses different dwarf register numbers for EH.
212 if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
213 return 4;
214 }
215
217 llvm::Value *Address) const override;
218
220 StringRef Constraint,
221 llvm::Type* Ty) const override {
222 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
223 }
224
225 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
226 std::string &Constraints,
227 std::vector<llvm::Type *> &ResultRegTypes,
228 std::vector<llvm::Type *> &ResultTruncRegTypes,
229 std::vector<LValue> &ResultRegDests,
230 std::string &AsmString,
231 unsigned NumOutputs) const override;
232
233 StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
234 return "movl\t%ebp, %ebp"
235 "\t\t// marker for objc_retainAutoreleaseReturnValue";
236 }
237};
238
239}
240
241/// Rewrite input constraint references after adding some output constraints.
242/// In the case where there is one output and one input and we add one output,
243/// we need to replace all operand references greater than or equal to 1:
244/// mov $0, $1
245/// mov eax, $1
246/// The result will be:
247/// mov $0, $2
248/// mov eax, $2
249static void rewriteInputConstraintReferences(unsigned FirstIn,
250 unsigned NumNewOuts,
251 std::string &AsmString) {
252 std::string Buf;
253 llvm::raw_string_ostream OS(Buf);
254 size_t Pos = 0;
255 while (Pos < AsmString.size()) {
256 size_t DollarStart = AsmString.find('$', Pos);
257 if (DollarStart == std::string::npos)
258 DollarStart = AsmString.size();
259 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
260 if (DollarEnd == std::string::npos)
261 DollarEnd = AsmString.size();
262 OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
263 Pos = DollarEnd;
264 size_t NumDollars = DollarEnd - DollarStart;
265 if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
266 // We have an operand reference.
267 size_t DigitStart = Pos;
268 if (AsmString[DigitStart] == '{') {
269 OS << '{';
270 ++DigitStart;
271 }
272 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
273 if (DigitEnd == std::string::npos)
274 DigitEnd = AsmString.size();
275 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
276 unsigned OperandIndex;
277 if (!OperandStr.getAsInteger(10, OperandIndex)) {
278 if (OperandIndex >= FirstIn)
279 OperandIndex += NumNewOuts;
280 OS << OperandIndex;
281 } else {
282 OS << OperandStr;
283 }
284 Pos = DigitEnd;
285 }
286 }
287 AsmString = std::move(Buf);
288}
289
290/// Add output constraints for EAX:EDX because they are return registers.
291void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
292 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
293 std::vector<llvm::Type *> &ResultRegTypes,
294 std::vector<llvm::Type *> &ResultTruncRegTypes,
295 std::vector<LValue> &ResultRegDests, std::string &AsmString,
296 unsigned NumOutputs) const {
297 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
298
299 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
300 // larger.
301 if (!Constraints.empty())
302 Constraints += ',';
303 if (RetWidth <= 32) {
304 Constraints += "={eax}";
305 ResultRegTypes.push_back(CGF.Int32Ty);
306 } else {
307 // Use the 'A' constraint for EAX:EDX.
308 Constraints += "=A";
309 ResultRegTypes.push_back(CGF.Int64Ty);
310 }
311
312 // Truncate EAX or EAX:EDX to an integer of the appropriate size.
313 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
314 ResultTruncRegTypes.push_back(CoerceTy);
315
316 // Coerce the integer by bitcasting the return slot pointer.
317 ReturnSlot.setAddress(ReturnSlot.getAddress().withElementType(CoerceTy));
318 ResultRegDests.push_back(ReturnSlot);
319
320 rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
321}
322
323/// shouldReturnTypeInRegister - Determine if the given type should be
324/// returned in a register (for the Darwin and MCU ABI).
325bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
326 ASTContext &Context) const {
327 uint64_t Size = Context.getTypeSize(Ty);
328
329 // For i386, type must be register sized.
330 // For the MCU ABI, it only needs to be <= 8-byte
331 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
332 return false;
333
334 if (Ty->isVectorType()) {
335 // 64- and 128- bit vectors inside structures are not returned in
336 // registers.
337 if (Size == 64 || Size == 128)
338 return false;
339
340 return true;
341 }
342
343 // If this is a builtin, pointer, enum, complex type, member pointer, or
344 // member function pointer it is ok.
345 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
346 Ty->isAnyComplexType() || Ty->isEnumeralType() ||
348 return true;
349
350 // Arrays are treated like records.
351 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
352 return shouldReturnTypeInRegister(AT->getElementType(), Context);
353
354 // Otherwise, it must be a record type.
355 const RecordType *RT = Ty->getAs<RecordType>();
356 if (!RT) return false;
357
358 // FIXME: Traverse bases here too.
359
360 // Structure types are passed in register if all fields would be
361 // passed in a register.
362 for (const auto *FD : RT->getDecl()->fields()) {
363 // Empty fields are ignored.
364 if (isEmptyField(Context, FD, true))
365 continue;
366
367 // Check fields recursively.
368 if (!shouldReturnTypeInRegister(FD->getType(), Context))
369 return false;
370 }
371 return true;
372}
373
374static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
375 // Treat complex types as the element type.
376 if (const ComplexType *CTy = Ty->getAs<ComplexType>())
377 Ty = CTy->getElementType();
378
379 // Check for a type which we know has a simple scalar argument-passing
380 // convention without any padding. (We're specifically looking for 32
381 // and 64-bit integer and integer-equivalents, float, and double.)
382 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
383 !Ty->isEnumeralType() && !Ty->isBlockPointerType())
384 return false;
385
386 uint64_t Size = Context.getTypeSize(Ty);
387 return Size == 32 || Size == 64;
388}
389
390static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
391 uint64_t &Size) {
392 for (const auto *FD : RD->fields()) {
393 // Scalar arguments on the stack get 4 byte alignment on x86. If the
394 // argument is smaller than 32-bits, expanding the struct will create
395 // alignment padding.
396 if (!is32Or64BitBasicType(FD->getType(), Context))
397 return false;
398
399 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
400 // how to expand them yet, and the predicate for telling if a bitfield still
401 // counts as "basic" is more complicated than what we were doing previously.
402 if (FD->isBitField())
403 return false;
404
405 Size += Context.getTypeSize(FD->getType());
406 }
407 return true;
408}
409
410static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
411 uint64_t &Size) {
412 // Don't do this if there are any non-empty bases.
413 for (const CXXBaseSpecifier &Base : RD->bases()) {
414 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
415 Size))
416 return false;
417 }
418 if (!addFieldSizes(Context, RD, Size))
419 return false;
420 return true;
421}
422
423/// Test whether an argument type which is to be passed indirectly (on the
424/// stack) would have the equivalent layout if it was expanded into separate
425/// arguments. If so, we prefer to do the latter to avoid inhibiting
426/// optimizations.
427bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
428 // We can only expand structure types.
429 const RecordType *RT = Ty->getAs<RecordType>();
430 if (!RT)
431 return false;
432 const RecordDecl *RD = RT->getDecl();
433 uint64_t Size = 0;
434 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
435 if (!IsWin32StructABI) {
436 // On non-Windows, we have to conservatively match our old bitcode
437 // prototypes in order to be ABI-compatible at the bitcode level.
438 if (!CXXRD->isCLike())
439 return false;
440 } else {
441 // Don't do this for dynamic classes.
442 if (CXXRD->isDynamicClass())
443 return false;
444 }
445 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
446 return false;
447 } else {
448 if (!addFieldSizes(getContext(), RD, Size))
449 return false;
450 }
451
452 // We can do this if there was no alignment padding.
453 return Size == getContext().getTypeSize(Ty);
454}
455
456ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
457 // If the return value is indirect, then the hidden argument is consuming one
458 // integer register.
459 if (State.CC != llvm::CallingConv::X86_FastCall &&
460 State.CC != llvm::CallingConv::X86_VectorCall && State.FreeRegs) {
461 --State.FreeRegs;
462 if (!IsMCUABI)
463 return getNaturalAlignIndirectInReg(RetTy);
464 }
465 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
466}
467
468ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
469 CCState &State) const {
470 if (RetTy->isVoidType())
471 return ABIArgInfo::getIgnore();
472
473 const Type *Base = nullptr;
474 uint64_t NumElts = 0;
475 if ((State.CC == llvm::CallingConv::X86_VectorCall ||
476 State.CC == llvm::CallingConv::X86_RegCall) &&
477 isHomogeneousAggregate(RetTy, Base, NumElts)) {
478 // The LLVM struct type for such an aggregate should lower properly.
479 return ABIArgInfo::getDirect();
480 }
481
482 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
483 // On Darwin, some vectors are returned in registers.
484 if (IsDarwinVectorABI) {
485 uint64_t Size = getContext().getTypeSize(RetTy);
486
487 // 128-bit vectors are a special case; they are returned in
488 // registers and we need to make sure to pick a type the LLVM
489 // backend will like.
490 if (Size == 128)
491 return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
492 llvm::Type::getInt64Ty(getVMContext()), 2));
493
494 // Always return in register if it fits in a general purpose
495 // register, or if it is 64 bits and has a single element.
496 if ((Size == 8 || Size == 16 || Size == 32) ||
497 (Size == 64 && VT->getNumElements() == 1))
498 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
499 Size));
500
501 return getIndirectReturnResult(RetTy, State);
502 }
503
504 return ABIArgInfo::getDirect();
505 }
506
507 if (isAggregateTypeForABI(RetTy)) {
508 if (const RecordType *RT = RetTy->getAs<RecordType>()) {
509 // Structures with flexible arrays are always indirect.
510 if (RT->getDecl()->hasFlexibleArrayMember())
511 return getIndirectReturnResult(RetTy, State);
512 }
513
514 // If specified, structs and unions are always indirect.
515 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
516 return getIndirectReturnResult(RetTy, State);
517
518 // Ignore empty structs/unions.
519 if (isEmptyRecord(getContext(), RetTy, true))
520 return ABIArgInfo::getIgnore();
521
522 // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
523 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
524 QualType ET = getContext().getCanonicalType(CT->getElementType());
525 if (ET->isFloat16Type())
526 return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
527 llvm::Type::getHalfTy(getVMContext()), 2));
528 }
529
530 // Small structures which are register sized are generally returned
531 // in a register.
532 if (shouldReturnTypeInRegister(RetTy, getContext())) {
533 uint64_t Size = getContext().getTypeSize(RetTy);
534
535 // As a special-case, if the struct is a "single-element" struct, and
536 // the field is of type "float" or "double", return it in a
537 // floating-point register. (MSVC does not apply this special case.)
538 // We apply a similar transformation for pointer types to improve the
539 // quality of the generated IR.
540 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
541 if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
542 || SeltTy->hasPointerRepresentation())
543 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
544
545 // FIXME: We should be able to narrow this integer in cases with dead
546 // padding.
547 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
548 }
549
550 return getIndirectReturnResult(RetTy, State);
551 }
552
553 // Treat an enum type as its underlying type.
554 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
555 RetTy = EnumTy->getDecl()->getIntegerType();
556
557 if (const auto *EIT = RetTy->getAs<BitIntType>())
558 if (EIT->getNumBits() > 64)
559 return getIndirectReturnResult(RetTy, State);
560
561 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
563}
564
565unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
566 unsigned Align) const {
567 // Otherwise, if the alignment is less than or equal to the minimum ABI
568 // alignment, just use the default; the backend will handle this.
569 if (Align <= MinABIStackAlignInBytes)
570 return 0; // Use default alignment.
571
572 if (IsLinuxABI) {
573 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
574 // want to spend any effort dealing with the ramifications of ABI breaks.
575 //
576 // If the vector type is __m128/__m256/__m512, return the default alignment.
577 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
578 return Align;
579 }
580 // On non-Darwin, the stack type alignment is always 4.
581 if (!IsDarwinVectorABI) {
582 // Set explicit alignment, since we may need to realign the top.
583 return MinABIStackAlignInBytes;
584 }
585
586 // Otherwise, if the type contains an SSE vector type, the alignment is 16.
587 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
588 isRecordWithSIMDVectorType(getContext(), Ty)))
589 return 16;
590
591 return MinABIStackAlignInBytes;
592}
593
594ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
595 CCState &State) const {
596 if (!ByVal) {
597 if (State.FreeRegs) {
598 --State.FreeRegs; // Non-byval indirects just use one pointer.
599 if (!IsMCUABI)
600 return getNaturalAlignIndirectInReg(Ty);
601 }
602 return getNaturalAlignIndirect(Ty, false);
603 }
604
605 // Compute the byval alignment.
606 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
607 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
608 if (StackAlign == 0)
609 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
610
611 // If the stack alignment is less than the type alignment, realign the
612 // argument.
613 bool Realign = TypeAlign > StackAlign;
615 /*ByVal=*/true, Realign);
616}
617
618X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
619 const Type *T = isSingleElementStruct(Ty, getContext());
620 if (!T)
621 T = Ty.getTypePtr();
622
623 if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
624 BuiltinType::Kind K = BT->getKind();
625 if (K == BuiltinType::Float || K == BuiltinType::Double)
626 return Float;
627 }
628 return Integer;
629}
630
631bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
632 if (!IsSoftFloatABI) {
633 Class C = classify(Ty);
634 if (C == Float)
635 return false;
636 }
637
638 unsigned Size = getContext().getTypeSize(Ty);
639 unsigned SizeInRegs = (Size + 31) / 32;
640
641 if (SizeInRegs == 0)
642 return false;
643
644 if (!IsMCUABI) {
645 if (SizeInRegs > State.FreeRegs) {
646 State.FreeRegs = 0;
647 return false;
648 }
649 } else {
650 // The MCU psABI allows passing parameters in-reg even if there are
651 // earlier parameters that are passed on the stack. Also,
652 // it does not allow passing >8-byte structs in-register,
653 // even if there are 3 free registers available.
654 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
655 return false;
656 }
657
658 State.FreeRegs -= SizeInRegs;
659 return true;
660}
661
662bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
663 bool &InReg,
664 bool &NeedsPadding) const {
665 // On Windows, aggregates other than HFAs are never passed in registers, and
666 // they do not consume register slots. Homogenous floating-point aggregates
667 // (HFAs) have already been dealt with at this point.
668 if (IsWin32StructABI && isAggregateTypeForABI(Ty))
669 return false;
670
671 NeedsPadding = false;
672 InReg = !IsMCUABI;
673
674 if (!updateFreeRegs(Ty, State))
675 return false;
676
677 if (IsMCUABI)
678 return true;
679
680 if (State.CC == llvm::CallingConv::X86_FastCall ||
681 State.CC == llvm::CallingConv::X86_VectorCall ||
682 State.CC == llvm::CallingConv::X86_RegCall) {
683 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
684 NeedsPadding = true;
685
686 return false;
687 }
688
689 return true;
690}
691
692bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
693 bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) &&
695 Ty->isReferenceType());
696
697 if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall ||
698 State.CC == llvm::CallingConv::X86_VectorCall))
699 return false;
700
701 if (!updateFreeRegs(Ty, State))
702 return false;
703
704 if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall)
705 return false;
706
707 // Return true to apply inreg to all legal parameters except for MCU targets.
708 return !IsMCUABI;
709}
710
711void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
712 // Vectorcall x86 works subtly different than in x64, so the format is
713 // a bit different than the x64 version. First, all vector types (not HVAs)
714 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
715 // This differs from the x64 implementation, where the first 6 by INDEX get
716 // registers.
717 // In the second pass over the arguments, HVAs are passed in the remaining
718 // vector registers if possible, or indirectly by address. The address will be
719 // passed in ECX/EDX if available. Any other arguments are passed according to
720 // the usual fastcall rules.
722 for (int I = 0, E = Args.size(); I < E; ++I) {
723 const Type *Base = nullptr;
724 uint64_t NumElts = 0;
725 const QualType &Ty = Args[I].type;
726 if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
727 isHomogeneousAggregate(Ty, Base, NumElts)) {
728 if (State.FreeSSERegs >= NumElts) {
729 State.FreeSSERegs -= NumElts;
730 Args[I].info = ABIArgInfo::getDirectInReg();
731 State.IsPreassigned.set(I);
732 }
733 }
734 }
735}
736
737ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State,
738 unsigned ArgIndex) const {
739 // FIXME: Set alignment on indirect arguments.
740 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
741 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
742 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
743
745 TypeInfo TI = getContext().getTypeInfo(Ty);
746
747 // Check with the C++ ABI first.
748 const RecordType *RT = Ty->getAs<RecordType>();
749 if (RT) {
750 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
751 if (RAA == CGCXXABI::RAA_Indirect) {
752 return getIndirectResult(Ty, false, State);
753 } else if (State.IsDelegateCall) {
754 // Avoid having different alignments on delegate call args by always
755 // setting the alignment to 4, which is what we do for inallocas.
756 ABIArgInfo Res = getIndirectResult(Ty, false, State);
758 return Res;
759 } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
760 // The field index doesn't matter, we'll fix it up later.
761 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
762 }
763 }
764
765 // Regcall uses the concept of a homogenous vector aggregate, similar
766 // to other targets.
767 const Type *Base = nullptr;
768 uint64_t NumElts = 0;
769 if ((IsRegCall || IsVectorCall) &&
770 isHomogeneousAggregate(Ty, Base, NumElts)) {
771 if (State.FreeSSERegs >= NumElts) {
772 State.FreeSSERegs -= NumElts;
773
774 // Vectorcall passes HVAs directly and does not flatten them, but regcall
775 // does.
776 if (IsVectorCall)
777 return getDirectX86Hva();
778
779 if (Ty->isBuiltinType() || Ty->isVectorType())
780 return ABIArgInfo::getDirect();
781 return ABIArgInfo::getExpand();
782 }
783 if (IsVectorCall && Ty->isBuiltinType())
784 return ABIArgInfo::getDirect();
785 return getIndirectResult(Ty, /*ByVal=*/false, State);
786 }
787
788 if (isAggregateTypeForABI(Ty)) {
789 // Structures with flexible arrays are always indirect.
790 // FIXME: This should not be byval!
791 if (RT && RT->getDecl()->hasFlexibleArrayMember())
792 return getIndirectResult(Ty, true, State);
793
794 // Ignore empty structs/unions on non-Windows.
795 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
796 return ABIArgInfo::getIgnore();
797
798 // Ignore 0 sized structs.
799 if (TI.Width == 0)
800 return ABIArgInfo::getIgnore();
801
802 llvm::LLVMContext &LLVMContext = getVMContext();
803 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
804 bool NeedsPadding = false;
805 bool InReg;
806 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
807 unsigned SizeInRegs = (TI.Width + 31) / 32;
808 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
809 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
810 if (InReg)
811 return ABIArgInfo::getDirectInReg(Result);
812 else
813 return ABIArgInfo::getDirect(Result);
814 }
815 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
816
817 // Pass over-aligned aggregates to non-variadic functions on Windows
818 // indirectly. This behavior was added in MSVC 2015. Use the required
819 // alignment from the record layout, since that may be less than the
820 // regular type alignment, and types with required alignment of less than 4
821 // bytes are not passed indirectly.
822 if (IsWin32StructABI && State.Required.isRequiredArg(ArgIndex)) {
823 unsigned AlignInBits = 0;
824 if (RT) {
825 const ASTRecordLayout &Layout =
826 getContext().getASTRecordLayout(RT->getDecl());
827 AlignInBits = getContext().toBits(Layout.getRequiredAlignment());
828 } else if (TI.isAlignRequired()) {
829 AlignInBits = TI.Align;
830 }
831 if (AlignInBits > 32)
832 return getIndirectResult(Ty, /*ByVal=*/false, State);
833 }
834
835 // Expand small (<= 128-bit) record types when we know that the stack layout
836 // of those arguments will match the struct. This is important because the
837 // LLVM backend isn't smart enough to remove byval, which inhibits many
838 // optimizations.
839 // Don't do this for the MCU if there are still free integer registers
840 // (see X86_64 ABI for full explanation).
841 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
842 canExpandIndirectArgument(Ty))
844 IsFastCall || IsVectorCall || IsRegCall, PaddingType);
845
846 return getIndirectResult(Ty, true, State);
847 }
848
849 if (const VectorType *VT = Ty->getAs<VectorType>()) {
850 // On Windows, vectors are passed directly if registers are available, or
851 // indirectly if not. This avoids the need to align argument memory. Pass
852 // user-defined vector types larger than 512 bits indirectly for simplicity.
853 if (IsWin32StructABI) {
854 if (TI.Width <= 512 && State.FreeSSERegs > 0) {
855 --State.FreeSSERegs;
857 }
858 return getIndirectResult(Ty, /*ByVal=*/false, State);
859 }
860
861 // On Darwin, some vectors are passed in memory, we handle this by passing
862 // it as an i8/i16/i32/i64.
863 if (IsDarwinVectorABI) {
864 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
865 (TI.Width == 64 && VT->getNumElements() == 1))
867 llvm::IntegerType::get(getVMContext(), TI.Width));
868 }
869
870 if (IsX86_MMXType(CGT.ConvertType(Ty)))
871 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
872
873 return ABIArgInfo::getDirect();
874 }
875
876
877 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
878 Ty = EnumTy->getDecl()->getIntegerType();
879
880 bool InReg = shouldPrimitiveUseInReg(Ty, State);
881
882 if (isPromotableIntegerTypeForABI(Ty)) {
883 if (InReg)
884 return ABIArgInfo::getExtendInReg(Ty, CGT.ConvertType(Ty));
885 return ABIArgInfo::getExtend(Ty, CGT.ConvertType(Ty));
886 }
887
888 if (const auto *EIT = Ty->getAs<BitIntType>()) {
889 if (EIT->getNumBits() <= 64) {
890 if (InReg)
892 return ABIArgInfo::getDirect();
893 }
894 return getIndirectResult(Ty, /*ByVal=*/false, State);
895 }
896
897 if (InReg)
899 return ABIArgInfo::getDirect();
900}
901
902void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
903 CCState State(FI);
904 if (IsMCUABI)
905 State.FreeRegs = 3;
906 else if (State.CC == llvm::CallingConv::X86_FastCall) {
907 State.FreeRegs = 2;
908 State.FreeSSERegs = 3;
909 } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
910 State.FreeRegs = 2;
911 State.FreeSSERegs = 6;
912 } else if (FI.getHasRegParm())
913 State.FreeRegs = FI.getRegParm();
914 else if (State.CC == llvm::CallingConv::X86_RegCall) {
915 State.FreeRegs = 5;
916 State.FreeSSERegs = 8;
917 } else if (IsWin32StructABI) {
918 // Since MSVC 2015, the first three SSE vectors have been passed in
919 // registers. The rest are passed indirectly.
920 State.FreeRegs = DefaultNumRegisterParameters;
921 State.FreeSSERegs = 3;
922 } else
923 State.FreeRegs = DefaultNumRegisterParameters;
924
925 if (!::classifyReturnType(getCXXABI(), FI, *this)) {
927 } else if (FI.getReturnInfo().isIndirect()) {
928 // The C++ ABI is not aware of register usage, so we have to check if the
929 // return value was sret and put it in a register ourselves if appropriate.
930 if (State.FreeRegs) {
931 --State.FreeRegs; // The sret parameter consumes a register.
932 if (!IsMCUABI)
933 FI.getReturnInfo().setInReg(true);
934 }
935 }
936
937 // The chain argument effectively gives us another free register.
938 if (FI.isChainCall())
939 ++State.FreeRegs;
940
941 // For vectorcall, do a first pass over the arguments, assigning FP and vector
942 // arguments to XMM registers as available.
943 if (State.CC == llvm::CallingConv::X86_VectorCall)
944 runVectorCallFirstPass(FI, State);
945
946 bool UsedInAlloca = false;
948 for (unsigned I = 0, E = Args.size(); I < E; ++I) {
949 // Skip arguments that have already been assigned.
950 if (State.IsPreassigned.test(I))
951 continue;
952
953 Args[I].info =
954 classifyArgumentType(Args[I].type, State, I);
955 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
956 }
957
958 // If we needed to use inalloca for any argument, do a second pass and rewrite
959 // all the memory arguments to use inalloca.
960 if (UsedInAlloca)
961 rewriteWithInAlloca(FI);
962}
963
964void
965X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
966 CharUnits &StackOffset, ABIArgInfo &Info,
967 QualType Type) const {
968 // Arguments are always 4-byte-aligned.
970 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
971
972 // sret pointers and indirect things will require an extra pointer
973 // indirection, unless they are byval. Most things are byval, and will not
974 // require this indirection.
975 bool IsIndirect = false;
976 if (Info.isIndirect() && !Info.getIndirectByVal())
977 IsIndirect = true;
978 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
979 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
980 if (IsIndirect)
981 LLTy = llvm::PointerType::getUnqual(getVMContext());
982 FrameFields.push_back(LLTy);
983 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
984
985 // Insert padding bytes to respect alignment.
986 CharUnits FieldEnd = StackOffset;
987 StackOffset = FieldEnd.alignTo(WordSize);
988 if (StackOffset != FieldEnd) {
989 CharUnits NumBytes = StackOffset - FieldEnd;
990 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
991 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
992 FrameFields.push_back(Ty);
993 }
994}
995
996static bool isArgInAlloca(const ABIArgInfo &Info) {
997 // Leave ignored and inreg arguments alone.
998 switch (Info.getKind()) {
1000 return true;
1001 case ABIArgInfo::Ignore:
1003 return false;
1005 case ABIArgInfo::Direct:
1006 case ABIArgInfo::Extend:
1007 return !Info.getInReg();
1008 case ABIArgInfo::Expand:
1010 // These are aggregate types which are never passed in registers when
1011 // inalloca is involved.
1012 return true;
1013 }
1014 llvm_unreachable("invalid enum");
1015}
1016
1017void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1018 assert(IsWin32StructABI && "inalloca only supported on win32");
1019
1020 // Build a packed struct type for all of the arguments in memory.
1021 SmallVector<llvm::Type *, 6> FrameFields;
1022
1023 // The stack alignment is always 4.
1024 CharUnits StackAlign = CharUnits::fromQuantity(4);
1025
1026 CharUnits StackOffset;
1028
1029 // Put 'this' into the struct before 'sret', if necessary.
1030 bool IsThisCall =
1031 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1033 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1034 isArgInAlloca(I->info)) {
1035 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1036 ++I;
1037 }
1038
1039 // Put the sret parameter into the inalloca struct if it's in memory.
1040 if (Ret.isIndirect() && !Ret.getInReg()) {
1041 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
1042 // On Windows, the hidden sret parameter is always returned in eax.
1043 Ret.setInAllocaSRet(IsWin32StructABI);
1044 }
1045
1046 // Skip the 'this' parameter in ecx.
1047 if (IsThisCall)
1048 ++I;
1049
1050 // Put arguments passed in memory into the struct.
1051 for (; I != E; ++I) {
1052 if (isArgInAlloca(I->info))
1053 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1054 }
1055
1056 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1057 /*isPacked=*/true),
1058 StackAlign);
1059}
1060
1061RValue X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1062 QualType Ty, AggValueSlot Slot) const {
1063
1064 auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1065
1066 CCState State(*const_cast<CGFunctionInfo *>(CGF.CurFnInfo));
1067 ABIArgInfo AI = classifyArgumentType(Ty, State, /*ArgIndex*/ 0);
1068 // Empty records are ignored for parameter passing purposes.
1069 if (AI.isIgnore())
1070 return Slot.asRValue();
1071
1072 // x86-32 changes the alignment of certain arguments on the stack.
1073 //
1074 // Just messing with TypeInfo like this works because we never pass
1075 // anything indirectly.
1077 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
1078
1079 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
1081 /*AllowHigherAlign*/ true, Slot);
1082}
1083
1084bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1085 const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1086 assert(Triple.getArch() == llvm::Triple::x86);
1087
1088 switch (Opts.getStructReturnConvention()) {
1090 break;
1091 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
1092 return false;
1093 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
1094 return true;
1095 }
1096
1097 if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1098 return true;
1099
1100 switch (Triple.getOS()) {
1101 case llvm::Triple::DragonFly:
1102 case llvm::Triple::FreeBSD:
1103 case llvm::Triple::OpenBSD:
1104 case llvm::Triple::Win32:
1105 return true;
1106 default:
1107 return false;
1108 }
1109}
1110
1111static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
1113 if (!FD->hasAttr<AnyX86InterruptAttr>())
1114 return;
1115
1116 llvm::Function *Fn = cast<llvm::Function>(GV);
1117 Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1118 if (FD->getNumParams() == 0)
1119 return;
1120
1121 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
1122 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
1123 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
1124 Fn->getContext(), ByValTy);
1125 Fn->addParamAttr(0, NewAttr);
1126}
1127
1128void X86_32TargetCodeGenInfo::setTargetAttributes(
1129 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1130 if (GV->isDeclaration())
1131 return;
1132 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1133 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1134 llvm::Function *Fn = cast<llvm::Function>(GV);
1135 Fn->addFnAttr("stackrealign");
1136 }
1137
1138 addX86InterruptAttrs(FD, GV, CGM);
1139 }
1140}
1141
1142bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1144 llvm::Value *Address) const {
1145 CodeGen::CGBuilderTy &Builder = CGF.Builder;
1146
1147 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1148
1149 // 0-7 are the eight integer registers; the order is different
1150 // on Darwin (for EH), but the range is the same.
1151 // 8 is %eip.
1152 AssignToArrayRange(Builder, Address, Four8, 0, 8);
1153
1154 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1155 // 12-16 are st(0..4). Not sure why we stop at 4.
1156 // These have size 16, which is sizeof(long double) on
1157 // platforms with 8-byte alignment for that type.
1158 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1159 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1160
1161 } else {
1162 // 9 is %eflags, which doesn't get a size on Darwin for some
1163 // reason.
1164 Builder.CreateAlignedStore(
1165 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1166 CharUnits::One());
1167
1168 // 11-16 are st(0..5). Not sure why we stop at 5.
1169 // These have size 12, which is sizeof(long double) on
1170 // platforms with 4-byte alignment for that type.
1171 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1172 AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1173 }
1174
1175 return false;
1176}
1177
1178//===----------------------------------------------------------------------===//
1179// X86-64 ABI Implementation
1180//===----------------------------------------------------------------------===//
1181
1182
1183namespace {
1184
1185/// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1186static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1187 switch (AVXLevel) {
1188 case X86AVXABILevel::AVX512:
1189 return 512;
1190 case X86AVXABILevel::AVX:
1191 return 256;
1192 case X86AVXABILevel::None:
1193 return 128;
1194 }
1195 llvm_unreachable("Unknown AVXLevel");
1196}
1197
1198/// X86_64ABIInfo - The X86_64 ABI information.
1199class X86_64ABIInfo : public ABIInfo {
1200 enum Class {
1201 Integer = 0,
1202 SSE,
1203 SSEUp,
1204 X87,
1205 X87Up,
1206 ComplexX87,
1207 NoClass,
1208 Memory
1209 };
1210
1211 /// merge - Implement the X86_64 ABI merging algorithm.
1212 ///
1213 /// Merge an accumulating classification \arg Accum with a field
1214 /// classification \arg Field.
1215 ///
1216 /// \param Accum - The accumulating classification. This should
1217 /// always be either NoClass or the result of a previous merge
1218 /// call. In addition, this should never be Memory (the caller
1219 /// should just return Memory for the aggregate).
1220 static Class merge(Class Accum, Class Field);
1221
1222 /// postMerge - Implement the X86_64 ABI post merging algorithm.
1223 ///
1224 /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1225 /// final MEMORY or SSE classes when necessary.
1226 ///
1227 /// \param AggregateSize - The size of the current aggregate in
1228 /// the classification process.
1229 ///
1230 /// \param Lo - The classification for the parts of the type
1231 /// residing in the low word of the containing object.
1232 ///
1233 /// \param Hi - The classification for the parts of the type
1234 /// residing in the higher words of the containing object.
1235 ///
1236 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1237
1238 /// classify - Determine the x86_64 register classes in which the
1239 /// given type T should be passed.
1240 ///
1241 /// \param Lo - The classification for the parts of the type
1242 /// residing in the low word of the containing object.
1243 ///
1244 /// \param Hi - The classification for the parts of the type
1245 /// residing in the high word of the containing object.
1246 ///
1247 /// \param OffsetBase - The bit offset of this type in the
1248 /// containing object. Some parameters are classified different
1249 /// depending on whether they straddle an eightbyte boundary.
1250 ///
1251 /// \param isNamedArg - Whether the argument in question is a "named"
1252 /// argument, as used in AMD64-ABI 3.5.7.
1253 ///
1254 /// \param IsRegCall - Whether the calling conversion is regcall.
1255 ///
1256 /// If a word is unused its result will be NoClass; if a type should
1257 /// be passed in Memory then at least the classification of \arg Lo
1258 /// will be Memory.
1259 ///
1260 /// The \arg Lo class will be NoClass iff the argument is ignored.
1261 ///
1262 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1263 /// also be ComplexX87.
1264 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1265 bool isNamedArg, bool IsRegCall = false) const;
1266
1267 llvm::Type *GetByteVectorType(QualType Ty) const;
1268 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1269 unsigned IROffset, QualType SourceTy,
1270 unsigned SourceOffset) const;
1271 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1272 unsigned IROffset, QualType SourceTy,
1273 unsigned SourceOffset) const;
1274
1275 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1276 /// such that the argument will be returned in memory.
1277 ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1278
1279 /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1280 /// such that the argument will be passed in memory.
1281 ///
1282 /// \param freeIntRegs - The number of free integer registers remaining
1283 /// available.
1284 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1285
1287
1288 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
1289 unsigned &neededInt, unsigned &neededSSE,
1290 bool isNamedArg,
1291 bool IsRegCall = false) const;
1292
1293 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
1294 unsigned &NeededSSE,
1295 unsigned &MaxVectorWidth) const;
1296
1297 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
1298 unsigned &NeededSSE,
1299 unsigned &MaxVectorWidth) const;
1300
1301 bool IsIllegalVectorType(QualType Ty) const;
1302
1303 /// The 0.98 ABI revision clarified a lot of ambiguities,
1304 /// unfortunately in ways that were not always consistent with
1305 /// certain previous compilers. In particular, platforms which
1306 /// required strict binary compatibility with older versions of GCC
1307 /// may need to exempt themselves.
1308 bool honorsRevision0_98() const {
1309 return !getTarget().getTriple().isOSDarwin();
1310 }
1311
1312 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
1313 /// classify it as INTEGER (for compatibility with older clang compilers).
1314 bool classifyIntegerMMXAsSSE() const {
1315 // Clang <= 3.8 did not do this.
1316 if (getContext().getLangOpts().getClangABICompat() <=
1317 LangOptions::ClangABI::Ver3_8)
1318 return false;
1319
1320 const llvm::Triple &Triple = getTarget().getTriple();
1321 if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD())
1322 return false;
1323 return true;
1324 }
1325
1326 // GCC classifies vectors of __int128 as memory.
1327 bool passInt128VectorsInMem() const {
1328 // Clang <= 9.0 did not do this.
1329 if (getContext().getLangOpts().getClangABICompat() <=
1330 LangOptions::ClangABI::Ver9)
1331 return false;
1332
1333 const llvm::Triple &T = getTarget().getTriple();
1334 return T.isOSLinux() || T.isOSNetBSD();
1335 }
1336
1337 X86AVXABILevel AVXLevel;
1338 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1339 // 64-bit hardware.
1340 bool Has64BitPointers;
1341
1342public:
1343 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1344 : ABIInfo(CGT), AVXLevel(AVXLevel),
1345 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {}
1346
1347 bool isPassedUsingAVXType(QualType type) const {
1348 unsigned neededInt, neededSSE;
1349 // The freeIntRegs argument doesn't matter here.
1350 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1351 /*isNamedArg*/true);
1352 if (info.isDirect()) {
1353 llvm::Type *ty = info.getCoerceToType();
1354 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1355 return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128;
1356 }
1357 return false;
1358 }
1359
1360 void computeInfo(CGFunctionInfo &FI) const override;
1361
1362 RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
1363 AggValueSlot Slot) const override;
1364 RValue EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
1365 AggValueSlot Slot) const override;
1366
1367 bool has64BitPointers() const {
1368 return Has64BitPointers;
1369 }
1370};
1371
1372/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1373class WinX86_64ABIInfo : public ABIInfo {
1374public:
1375 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1376 : ABIInfo(CGT), AVXLevel(AVXLevel),
1377 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
1378
1379 void computeInfo(CGFunctionInfo &FI) const override;
1380
1381 RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
1382 AggValueSlot Slot) const override;
1383
1384 bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1385 // FIXME: Assumes vectorcall is in use.
1386 return isX86VectorTypeForVectorCall(getContext(), Ty);
1387 }
1388
1390 uint64_t NumMembers) const override {
1391 // FIXME: Assumes vectorcall is in use.
1392 return isX86VectorCallAggregateSmallEnough(NumMembers);
1393 }
1394
1395private:
1396 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
1397 bool IsVectorCall, bool IsRegCall) const;
1398 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
1399 const ABIArgInfo &current) const;
1400
1401 X86AVXABILevel AVXLevel;
1402
1403 bool IsMingw64;
1404};
1405
1406class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1407public:
1408 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1409 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {
1410 SwiftInfo =
1411 std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
1412 }
1413
1414 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
1415 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
1416 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
1417
1418 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1419 return 7;
1420 }
1421
1423 llvm::Value *Address) const override {
1424 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1425
1426 // 0-15 are the 16 integer registers.
1427 // 16 is %rip.
1428 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1429 return false;
1430 }
1431
1433 StringRef Constraint,
1434 llvm::Type* Ty) const override {
1435 return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1436 }
1437
1438 bool isNoProtoCallVariadic(const CallArgList &args,
1439 const FunctionNoProtoType *fnType) const override {
1440 // The default CC on x86-64 sets %al to the number of SSA
1441 // registers used, and GCC sets this when calling an unprototyped
1442 // function, so we override the default behavior. However, don't do
1443 // that when AVX types are involved: the ABI explicitly states it is
1444 // undefined, and it doesn't work in practice because of how the ABI
1445 // defines varargs anyway.
1446 if (fnType->getCallConv() == CC_C) {
1447 bool HasAVXType = false;
1448 for (CallArgList::const_iterator
1449 it = args.begin(), ie = args.end(); it != ie; ++it) {
1450 if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) {
1451 HasAVXType = true;
1452 break;
1453 }
1454 }
1455
1456 if (!HasAVXType)
1457 return true;
1458 }
1459
1460 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1461 }
1462
1463 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1464 CodeGen::CodeGenModule &CGM) const override {
1465 if (GV->isDeclaration())
1466 return;
1467 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1468 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1469 llvm::Function *Fn = cast<llvm::Function>(GV);
1470 Fn->addFnAttr("stackrealign");
1471 }
1472
1473 addX86InterruptAttrs(FD, GV, CGM);
1474 }
1475 }
1476
1478 const FunctionDecl *Caller,
1479 const FunctionDecl *Callee, const CallArgList &Args,
1480 QualType ReturnType) const override;
1481};
1482} // namespace
1483
1484static void initFeatureMaps(const ASTContext &Ctx,
1485 llvm::StringMap<bool> &CallerMap,
1486 const FunctionDecl *Caller,
1487 llvm::StringMap<bool> &CalleeMap,
1488 const FunctionDecl *Callee) {
1489 if (CalleeMap.empty() && CallerMap.empty()) {
1490 // The caller is potentially nullptr in the case where the call isn't in a
1491 // function. In this case, the getFunctionFeatureMap ensures we just get
1492 // the TU level setting (since it cannot be modified by 'target'..
1493 Ctx.getFunctionFeatureMap(CallerMap, Caller);
1494 Ctx.getFunctionFeatureMap(CalleeMap, Callee);
1495 }
1496}
1497
1499 SourceLocation CallLoc,
1500 const llvm::StringMap<bool> &CallerMap,
1501 const llvm::StringMap<bool> &CalleeMap,
1502 QualType Ty, StringRef Feature,
1503 bool IsArgument) {
1504 bool CallerHasFeat = CallerMap.lookup(Feature);
1505 bool CalleeHasFeat = CalleeMap.lookup(Feature);
1506 if (!CallerHasFeat && !CalleeHasFeat)
1507 return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
1508 << IsArgument << Ty << Feature;
1509
1510 // Mixing calling conventions here is very clearly an error.
1511 if (!CallerHasFeat || !CalleeHasFeat)
1512 return Diag.Report(CallLoc, diag::err_avx_calling_convention)
1513 << IsArgument << Ty << Feature;
1514
1515 // Else, both caller and callee have the required feature, so there is no need
1516 // to diagnose.
1517 return false;
1518}
1519
1521 SourceLocation CallLoc,
1522 const llvm::StringMap<bool> &CallerMap,
1523 const llvm::StringMap<bool> &CalleeMap,
1524 QualType Ty, bool IsArgument) {
1525 bool Caller256 = CallerMap.lookup("avx512f") && !CallerMap.lookup("evex512");
1526 bool Callee256 = CalleeMap.lookup("avx512f") && !CalleeMap.lookup("evex512");
1527
1528 // Forbid 512-bit or larger vector pass or return when we disabled ZMM
1529 // instructions.
1530 if (Caller256 || Callee256)
1531 return Diag.Report(CallLoc, diag::err_avx_calling_convention)
1532 << IsArgument << Ty << "evex512";
1533
1534 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
1535 "avx512f", IsArgument);
1536}
1537
1539 SourceLocation CallLoc,
1540 const llvm::StringMap<bool> &CallerMap,
1541 const llvm::StringMap<bool> &CalleeMap, QualType Ty,
1542 bool IsArgument) {
1543 uint64_t Size = Ctx.getTypeSize(Ty);
1544 if (Size > 256)
1545 return checkAVX512ParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
1546 IsArgument);
1547
1548 if (Size > 128)
1549 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
1550 IsArgument);
1551
1552 return false;
1553}
1554
1555void X86_64TargetCodeGenInfo::checkFunctionCallABI(CodeGenModule &CGM,
1556 SourceLocation CallLoc,
1557 const FunctionDecl *Caller,
1558 const FunctionDecl *Callee,
1559 const CallArgList &Args,
1560 QualType ReturnType) const {
1561 if (!Callee)
1562 return;
1563
1564 llvm::StringMap<bool> CallerMap;
1565 llvm::StringMap<bool> CalleeMap;
1566 unsigned ArgIndex = 0;
1567
1568 // We need to loop through the actual call arguments rather than the
1569 // function's parameters, in case this variadic.
1570 for (const CallArg &Arg : Args) {
1571 // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
1572 // additionally changes how vectors >256 in size are passed. Like GCC, we
1573 // warn when a function is called with an argument where this will change.
1574 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
1575 // the caller and callee features are mismatched.
1576 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
1577 // change its ABI with attribute-target after this call.
1578 if (Arg.getType()->isVectorType() &&
1579 CGM.getContext().getTypeSize(Arg.getType()) > 128) {
1580 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
1581 QualType Ty = Arg.getType();
1582 // The CallArg seems to have desugared the type already, so for clearer
1583 // diagnostics, replace it with the type in the FunctionDecl if possible.
1584 if (ArgIndex < Callee->getNumParams())
1585 Ty = Callee->getParamDecl(ArgIndex)->getType();
1586
1587 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
1588 CalleeMap, Ty, /*IsArgument*/ true))
1589 return;
1590 }
1591 ++ArgIndex;
1592 }
1593
1594 // Check return always, as we don't have a good way of knowing in codegen
1595 // whether this value is used, tail-called, etc.
1596 if (Callee->getReturnType()->isVectorType() &&
1597 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
1598 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
1599 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
1600 CalleeMap, Callee->getReturnType(),
1601 /*IsArgument*/ false);
1602 }
1603}
1604
1606 // If the argument does not end in .lib, automatically add the suffix.
1607 // If the argument contains a space, enclose it in quotes.
1608 // This matches the behavior of MSVC.
1609 bool Quote = Lib.contains(' ');
1610 std::string ArgStr = Quote ? "\"" : "";
1611 ArgStr += Lib;
1612 if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a"))
1613 ArgStr += ".lib";
1614 ArgStr += Quote ? "\"" : "";
1615 return ArgStr;
1616}
1617
1618namespace {
1619class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1620public:
1621 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1622 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
1623 unsigned NumRegisterParameters)
1624 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
1625 Win32StructABI, NumRegisterParameters, false) {}
1626
1627 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1628 CodeGen::CodeGenModule &CGM) const override;
1629
1630 void getDependentLibraryOption(llvm::StringRef Lib,
1631 llvm::SmallString<24> &Opt) const override {
1632 Opt = "/DEFAULTLIB:";
1633 Opt += qualifyWindowsLibrary(Lib);
1634 }
1635
1636 void getDetectMismatchOption(llvm::StringRef Name,
1637 llvm::StringRef Value,
1638 llvm::SmallString<32> &Opt) const override {
1639 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1640 }
1641};
1642} // namespace
1643
1644void WinX86_32TargetCodeGenInfo::setTargetAttributes(
1645 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1646 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1647 if (GV->isDeclaration())
1648 return;
1649 addStackProbeTargetAttributes(D, GV, CGM);
1650}
1651
1652namespace {
1653class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1654public:
1655 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1656 X86AVXABILevel AVXLevel)
1657 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {
1658 SwiftInfo =
1659 std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
1660 }
1661
1662 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1663 CodeGen::CodeGenModule &CGM) const override;
1664
1665 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1666 return 7;
1667 }
1668
1669 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1670 llvm::Value *Address) const override {
1671 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1672
1673 // 0-15 are the 16 integer registers.
1674 // 16 is %rip.
1675 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1676 return false;
1677 }
1678
1679 void getDependentLibraryOption(llvm::StringRef Lib,
1680 llvm::SmallString<24> &Opt) const override {
1681 Opt = "/DEFAULTLIB:";
1682 Opt += qualifyWindowsLibrary(Lib);
1683 }
1684
1685 void getDetectMismatchOption(llvm::StringRef Name,
1686 llvm::StringRef Value,
1687 llvm::SmallString<32> &Opt) const override {
1688 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1689 }
1690};
1691} // namespace
1692
1693void WinX86_64TargetCodeGenInfo::setTargetAttributes(
1694 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1696 if (GV->isDeclaration())
1697 return;
1698 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1699 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1700 llvm::Function *Fn = cast<llvm::Function>(GV);
1701 Fn->addFnAttr("stackrealign");
1702 }
1703
1704 addX86InterruptAttrs(FD, GV, CGM);
1705 }
1706
1707 addStackProbeTargetAttributes(D, GV, CGM);
1708}
1709
1710void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1711 Class &Hi) const {
1712 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1713 //
1714 // (a) If one of the classes is Memory, the whole argument is passed in
1715 // memory.
1716 //
1717 // (b) If X87UP is not preceded by X87, the whole argument is passed in
1718 // memory.
1719 //
1720 // (c) If the size of the aggregate exceeds two eightbytes and the first
1721 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1722 // argument is passed in memory. NOTE: This is necessary to keep the
1723 // ABI working for processors that don't support the __m256 type.
1724 //
1725 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1726 //
1727 // Some of these are enforced by the merging logic. Others can arise
1728 // only with unions; for example:
1729 // union { _Complex double; unsigned; }
1730 //
1731 // Note that clauses (b) and (c) were added in 0.98.
1732 //
1733 if (Hi == Memory)
1734 Lo = Memory;
1735 if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1736 Lo = Memory;
1737 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1738 Lo = Memory;
1739 if (Hi == SSEUp && Lo != SSE)
1740 Hi = SSE;
1741}
1742
1743X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1744 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1745 // classified recursively so that always two fields are
1746 // considered. The resulting class is calculated according to
1747 // the classes of the fields in the eightbyte:
1748 //
1749 // (a) If both classes are equal, this is the resulting class.
1750 //
1751 // (b) If one of the classes is NO_CLASS, the resulting class is
1752 // the other class.
1753 //
1754 // (c) If one of the classes is MEMORY, the result is the MEMORY
1755 // class.
1756 //
1757 // (d) If one of the classes is INTEGER, the result is the
1758 // INTEGER.
1759 //
1760 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1761 // MEMORY is used as class.
1762 //
1763 // (f) Otherwise class SSE is used.
1764
1765 // Accum should never be memory (we should have returned) or
1766 // ComplexX87 (because this cannot be passed in a structure).
1767 assert((Accum != Memory && Accum != ComplexX87) &&
1768 "Invalid accumulated classification during merge.");
1769 if (Accum == Field || Field == NoClass)
1770 return Accum;
1771 if (Field == Memory)
1772 return Memory;
1773 if (Accum == NoClass)
1774 return Field;
1775 if (Accum == Integer || Field == Integer)
1776 return Integer;
1777 if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1778 Accum == X87 || Accum == X87Up)
1779 return Memory;
1780 return SSE;
1781}
1782
1783void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo,
1784 Class &Hi, bool isNamedArg, bool IsRegCall) const {
1785 // FIXME: This code can be simplified by introducing a simple value class for
1786 // Class pairs with appropriate constructor methods for the various
1787 // situations.
1788
1789 // FIXME: Some of the split computations are wrong; unaligned vectors
1790 // shouldn't be passed in registers for example, so there is no chance they
1791 // can straddle an eightbyte. Verify & simplify.
1792
1793 Lo = Hi = NoClass;
1794
1795 Class &Current = OffsetBase < 64 ? Lo : Hi;
1796 Current = Memory;
1797
1798 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1799 BuiltinType::Kind k = BT->getKind();
1800
1801 if (k == BuiltinType::Void) {
1802 Current = NoClass;
1803 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1804 Lo = Integer;
1805 Hi = Integer;
1806 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1807 Current = Integer;
1808 } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
1809 k == BuiltinType::Float16 || k == BuiltinType::BFloat16) {
1810 Current = SSE;
1811 } else if (k == BuiltinType::Float128) {
1812 Lo = SSE;
1813 Hi = SSEUp;
1814 } else if (k == BuiltinType::LongDouble) {
1815 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
1816 if (LDF == &llvm::APFloat::IEEEquad()) {
1817 Lo = SSE;
1818 Hi = SSEUp;
1819 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
1820 Lo = X87;
1821 Hi = X87Up;
1822 } else if (LDF == &llvm::APFloat::IEEEdouble()) {
1823 Current = SSE;
1824 } else
1825 llvm_unreachable("unexpected long double representation!");
1826 }
1827 // FIXME: _Decimal32 and _Decimal64 are SSE.
1828 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1829 return;
1830 }
1831
1832 if (const EnumType *ET = Ty->getAs<EnumType>()) {
1833 // Classify the underlying integer type.
1834 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1835 return;
1836 }
1837
1838 if (Ty->hasPointerRepresentation()) {
1839 Current = Integer;
1840 return;
1841 }
1842
1843 if (Ty->isMemberPointerType()) {
1844 if (Ty->isMemberFunctionPointerType()) {
1845 if (Has64BitPointers) {
1846 // If Has64BitPointers, this is an {i64, i64}, so classify both
1847 // Lo and Hi now.
1848 Lo = Hi = Integer;
1849 } else {
1850 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1851 // straddles an eightbyte boundary, Hi should be classified as well.
1852 uint64_t EB_FuncPtr = (OffsetBase) / 64;
1853 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1854 if (EB_FuncPtr != EB_ThisAdj) {
1855 Lo = Hi = Integer;
1856 } else {
1857 Current = Integer;
1858 }
1859 }
1860 } else {
1861 Current = Integer;
1862 }
1863 return;
1864 }
1865
1866 if (const VectorType *VT = Ty->getAs<VectorType>()) {
1867 uint64_t Size = getContext().getTypeSize(VT);
1868 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
1869 // gcc passes the following as integer:
1870 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
1871 // 2 bytes - <2 x char>, <1 x short>
1872 // 1 byte - <1 x char>
1873 Current = Integer;
1874
1875 // If this type crosses an eightbyte boundary, it should be
1876 // split.
1877 uint64_t EB_Lo = (OffsetBase) / 64;
1878 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
1879 if (EB_Lo != EB_Hi)
1880 Hi = Lo;
1881 } else if (Size == 64) {
1882 QualType ElementType = VT->getElementType();
1883
1884 // gcc passes <1 x double> in memory. :(
1885 if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
1886 return;
1887
1888 // gcc passes <1 x long long> as SSE but clang used to unconditionally
1889 // pass them as integer. For platforms where clang is the de facto
1890 // platform compiler, we must continue to use integer.
1891 if (!classifyIntegerMMXAsSSE() &&
1892 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
1893 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1894 ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
1895 ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
1896 Current = Integer;
1897 else
1898 Current = SSE;
1899
1900 // If this type crosses an eightbyte boundary, it should be
1901 // split.
1902 if (OffsetBase && OffsetBase != 64)
1903 Hi = Lo;
1904 } else if (Size == 128 ||
1905 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
1906 QualType ElementType = VT->getElementType();
1907
1908 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
1909 if (passInt128VectorsInMem() && Size != 128 &&
1910 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
1911 ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
1912 return;
1913
1914 // Arguments of 256-bits are split into four eightbyte chunks. The
1915 // least significant one belongs to class SSE and all the others to class
1916 // SSEUP. The original Lo and Hi design considers that types can't be
1917 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1918 // This design isn't correct for 256-bits, but since there're no cases
1919 // where the upper parts would need to be inspected, avoid adding
1920 // complexity and just consider Hi to match the 64-256 part.
1921 //
1922 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1923 // registers if they are "named", i.e. not part of the "..." of a
1924 // variadic function.
1925 //
1926 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
1927 // split into eight eightbyte chunks, one SSE and seven SSEUP.
1928 Lo = SSE;
1929 Hi = SSEUp;
1930 }
1931 return;
1932 }
1933
1934 if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1935 QualType ET = getContext().getCanonicalType(CT->getElementType());
1936
1937 uint64_t Size = getContext().getTypeSize(Ty);
1938 if (ET->isIntegralOrEnumerationType()) {
1939 if (Size <= 64)
1940 Current = Integer;
1941 else if (Size <= 128)
1942 Lo = Hi = Integer;
1943 } else if (ET->isFloat16Type() || ET == getContext().FloatTy ||
1944 ET->isBFloat16Type()) {
1945 Current = SSE;
1946 } else if (ET == getContext().DoubleTy) {
1947 Lo = Hi = SSE;
1948 } else if (ET == getContext().LongDoubleTy) {
1949 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
1950 if (LDF == &llvm::APFloat::IEEEquad())
1951 Current = Memory;
1952 else if (LDF == &llvm::APFloat::x87DoubleExtended())
1953 Current = ComplexX87;
1954 else if (LDF == &llvm::APFloat::IEEEdouble())
1955 Lo = Hi = SSE;
1956 else
1957 llvm_unreachable("unexpected long double representation!");
1958 }
1959
1960 // If this complex type crosses an eightbyte boundary then it
1961 // should be split.
1962 uint64_t EB_Real = (OffsetBase) / 64;
1963 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1964 if (Hi == NoClass && EB_Real != EB_Imag)
1965 Hi = Lo;
1966
1967 return;
1968 }
1969
1970 if (const auto *EITy = Ty->getAs<BitIntType>()) {
1971 if (EITy->getNumBits() <= 64)
1972 Current = Integer;
1973 else if (EITy->getNumBits() <= 128)
1974 Lo = Hi = Integer;
1975 // Larger values need to get passed in memory.
1976 return;
1977 }
1978
1979 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1980 // Arrays are treated like structures.
1981
1982 uint64_t Size = getContext().getTypeSize(Ty);
1983
1984 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1985 // than eight eightbytes, ..., it has class MEMORY.
1986 // regcall ABI doesn't have limitation to an object. The only limitation
1987 // is the free registers, which will be checked in computeInfo.
1988 if (!IsRegCall && Size > 512)
1989 return;
1990
1991 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1992 // fields, it has class MEMORY.
1993 //
1994 // Only need to check alignment of array base.
1995 if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1996 return;
1997
1998 // Otherwise implement simplified merge. We could be smarter about
1999 // this, but it isn't worth it and would be harder to verify.
2000 Current = NoClass;
2001 uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2002 uint64_t ArraySize = AT->getZExtSize();
2003
2004 // The only case a 256-bit wide vector could be used is when the array
2005 // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2006 // to work for sizes wider than 128, early check and fallback to memory.
2007 //
2008 if (Size > 128 &&
2009 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2010 return;
2011
2012 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2013 Class FieldLo, FieldHi;
2014 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2015 Lo = merge(Lo, FieldLo);
2016 Hi = merge(Hi, FieldHi);
2017 if (Lo == Memory || Hi == Memory)
2018 break;
2019 }
2020
2021 postMerge(Size, Lo, Hi);
2022 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2023 return;
2024 }
2025
2026 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2027 uint64_t Size = getContext().getTypeSize(Ty);
2028
2029 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2030 // than eight eightbytes, ..., it has class MEMORY.
2031 if (Size > 512)
2032 return;
2033
2034 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2035 // copy constructor or a non-trivial destructor, it is passed by invisible
2036 // reference.
2037 if (getRecordArgABI(RT, getCXXABI()))
2038 return;
2039
2040 const RecordDecl *RD = RT->getDecl();
2041
2042 // Assume variable sized types are passed in memory.
2043 if (RD->hasFlexibleArrayMember())
2044 return;
2045
2046 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2047
2048 // Reset Lo class, this will be recomputed.
2049 Current = NoClass;
2050
2051 // If this is a C++ record, classify the bases first.
2052 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2053 for (const auto &I : CXXRD->bases()) {
2054 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2055 "Unexpected base class!");
2056 const auto *Base =
2057 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2058
2059 // Classify this field.
2060 //
2061 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2062 // single eightbyte, each is classified separately. Each eightbyte gets
2063 // initialized to class NO_CLASS.
2064 Class FieldLo, FieldHi;
2065 uint64_t Offset =
2066 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2067 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2068 Lo = merge(Lo, FieldLo);
2069 Hi = merge(Hi, FieldHi);
2070 if (Lo == Memory || Hi == Memory) {
2071 postMerge(Size, Lo, Hi);
2072 return;
2073 }
2074 }
2075 }
2076
2077 // Classify the fields one at a time, merging the results.
2078 unsigned idx = 0;
2079 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
2081 getContext().getTargetInfo().getTriple().isPS();
2082 bool IsUnion = RT->isUnionType() && !UseClang11Compat;
2083
2084 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2085 i != e; ++i, ++idx) {
2086 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2087 bool BitField = i->isBitField();
2088
2089 // Ignore padding bit-fields.
2090 if (BitField && i->isUnnamedBitField())
2091 continue;
2092
2093 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2094 // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
2095 //
2096 // The only case a 256-bit or a 512-bit wide vector could be used is when
2097 // the struct contains a single 256-bit or 512-bit element. Early check
2098 // and fallback to memory.
2099 //
2100 // FIXME: Extended the Lo and Hi logic properly to work for size wider
2101 // than 128.
2102 if (Size > 128 &&
2103 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
2104 Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2105 Lo = Memory;
2106 postMerge(Size, Lo, Hi);
2107 return;
2108 }
2109
2110 bool IsInMemory =
2111 Offset % getContext().getTypeAlign(i->getType().getCanonicalType());
2112 // Note, skip this test for bit-fields, see below.
2113 if (!BitField && IsInMemory) {
2114 Lo = Memory;
2115 postMerge(Size, Lo, Hi);
2116 return;
2117 }
2118
2119 // Classify this field.
2120 //
2121 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2122 // exceeds a single eightbyte, each is classified
2123 // separately. Each eightbyte gets initialized to class
2124 // NO_CLASS.
2125 Class FieldLo, FieldHi;
2126
2127 // Bit-fields require special handling, they do not force the
2128 // structure to be passed in memory even if unaligned, and
2129 // therefore they can straddle an eightbyte.
2130 if (BitField) {
2131 assert(!i->isUnnamedBitField());
2132 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2133 uint64_t Size = i->getBitWidthValue(getContext());
2134
2135 uint64_t EB_Lo = Offset / 64;
2136 uint64_t EB_Hi = (Offset + Size - 1) / 64;
2137
2138 if (EB_Lo) {
2139 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2140 FieldLo = NoClass;
2141 FieldHi = Integer;
2142 } else {
2143 FieldLo = Integer;
2144 FieldHi = EB_Hi ? Integer : NoClass;
2145 }
2146 } else
2147 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2148 Lo = merge(Lo, FieldLo);
2149 Hi = merge(Hi, FieldHi);
2150 if (Lo == Memory || Hi == Memory)
2151 break;
2152 }
2153
2154 postMerge(Size, Lo, Hi);
2155 }
2156}
2157
2158ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2159 // If this is a scalar LLVM value then assume LLVM will pass it in the right
2160 // place naturally.
2161 if (!isAggregateTypeForABI(Ty)) {
2162 // Treat an enum type as its underlying type.
2163 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2164 Ty = EnumTy->getDecl()->getIntegerType();
2165
2166 if (Ty->isBitIntType())
2167 return getNaturalAlignIndirect(Ty);
2168
2169 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
2171 }
2172
2173 return getNaturalAlignIndirect(Ty);
2174}
2175
2176bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2177 if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2178 uint64_t Size = getContext().getTypeSize(VecTy);
2179 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2180 if (Size <= 64 || Size > LargestVector)
2181 return true;
2182 QualType EltTy = VecTy->getElementType();
2183 if (passInt128VectorsInMem() &&
2184 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
2185 EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
2186 return true;
2187 }
2188
2189 return false;
2190}
2191
2192ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2193 unsigned freeIntRegs) const {
2194 // If this is a scalar LLVM value then assume LLVM will pass it in the right
2195 // place naturally.
2196 //
2197 // This assumption is optimistic, as there could be free registers available
2198 // when we need to pass this argument in memory, and LLVM could try to pass
2199 // the argument in the free register. This does not seem to happen currently,
2200 // but this code would be much safer if we could mark the argument with
2201 // 'onstack'. See PR12193.
2202 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
2203 !Ty->isBitIntType()) {
2204 // Treat an enum type as its underlying type.
2205 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2206 Ty = EnumTy->getDecl()->getIntegerType();
2207
2208 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
2210 }
2211
2212 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2213 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2214
2215 // Compute the byval alignment. We specify the alignment of the byval in all
2216 // cases so that the mid-level optimizer knows the alignment of the byval.
2217 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2218
2219 // Attempt to avoid passing indirect results using byval when possible. This
2220 // is important for good codegen.
2221 //
2222 // We do this by coercing the value into a scalar type which the backend can
2223 // handle naturally (i.e., without using byval).
2224 //
2225 // For simplicity, we currently only do this when we have exhausted all of the
2226 // free integer registers. Doing this when there are free integer registers
2227 // would require more care, as we would have to ensure that the coerced value
2228 // did not claim the unused register. That would require either reording the
2229 // arguments to the function (so that any subsequent inreg values came first),
2230 // or only doing this optimization when there were no following arguments that
2231 // might be inreg.
2232 //
2233 // We currently expect it to be rare (particularly in well written code) for
2234 // arguments to be passed on the stack when there are still free integer
2235 // registers available (this would typically imply large structs being passed
2236 // by value), so this seems like a fair tradeoff for now.
2237 //
2238 // We can revisit this if the backend grows support for 'onstack' parameter
2239 // attributes. See PR12193.
2240 if (freeIntRegs == 0) {
2241 uint64_t Size = getContext().getTypeSize(Ty);
2242
2243 // If this type fits in an eightbyte, coerce it into the matching integral
2244 // type, which will end up on the stack (with alignment 8).
2245 if (Align == 8 && Size <= 64)
2246 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2247 Size));
2248 }
2249
2251}
2252
2253/// The ABI specifies that a value should be passed in a full vector XMM/YMM
2254/// register. Pick an LLVM IR type that will be passed as a vector register.
2255llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2256 // Wrapper structs/arrays that only contain vectors are passed just like
2257 // vectors; strip them off if present.
2258 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2259 Ty = QualType(InnerTy, 0);
2260
2261 llvm::Type *IRType = CGT.ConvertType(Ty);
2262 if (isa<llvm::VectorType>(IRType)) {
2263 // Don't pass vXi128 vectors in their native type, the backend can't
2264 // legalize them.
2265 if (passInt128VectorsInMem() &&
2266 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
2267 // Use a vXi64 vector.
2268 uint64_t Size = getContext().getTypeSize(Ty);
2269 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
2270 Size / 64);
2271 }
2272
2273 return IRType;
2274 }
2275
2276 if (IRType->getTypeID() == llvm::Type::FP128TyID)
2277 return IRType;
2278
2279 // We couldn't find the preferred IR vector type for 'Ty'.
2280 uint64_t Size = getContext().getTypeSize(Ty);
2281 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2282
2283
2284 // Return a LLVM IR vector type based on the size of 'Ty'.
2285 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2286 Size / 64);
2287}
2288
2289/// BitsContainNoUserData - Return true if the specified [start,end) bit range
2290/// is known to either be off the end of the specified type or being in
2291/// alignment padding. The user type specified is known to be at most 128 bits
2292/// in size, and have passed through X86_64ABIInfo::classify with a successful
2293/// classification that put one of the two halves in the INTEGER class.
2294///
2295/// It is conservatively correct to return false.
2296static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2297 unsigned EndBit, ASTContext &Context) {
2298 // If the bytes being queried are off the end of the type, there is no user
2299 // data hiding here. This handles analysis of builtins, vectors and other
2300 // types that don't contain interesting padding.
2301 unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2302 if (TySize <= StartBit)
2303 return true;
2304
2305 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2306 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2307 unsigned NumElts = (unsigned)AT->getZExtSize();
2308
2309 // Check each element to see if the element overlaps with the queried range.
2310 for (unsigned i = 0; i != NumElts; ++i) {
2311 // If the element is after the span we care about, then we're done..
2312 unsigned EltOffset = i*EltSize;
2313 if (EltOffset >= EndBit) break;
2314
2315 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2316 if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2317 EndBit-EltOffset, Context))
2318 return false;
2319 }
2320 // If it overlaps no elements, then it is safe to process as padding.
2321 return true;
2322 }
2323
2324 if (const RecordType *RT = Ty->getAs<RecordType>()) {
2325 const RecordDecl *RD = RT->getDecl();
2326 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2327
2328 // If this is a C++ record, check the bases first.
2329 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2330 for (const auto &I : CXXRD->bases()) {
2331 assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2332 "Unexpected base class!");
2333 const auto *Base =
2334 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2335
2336 // If the base is after the span we care about, ignore it.
2337 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2338 if (BaseOffset >= EndBit) continue;
2339
2340 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2341 if (!BitsContainNoUserData(I.getType(), BaseStart,
2342 EndBit-BaseOffset, Context))
2343 return false;
2344 }
2345 }
2346
2347 // Verify that no field has data that overlaps the region of interest. Yes
2348 // this could be sped up a lot by being smarter about queried fields,
2349 // however we're only looking at structs up to 16 bytes, so we don't care
2350 // much.
2351 unsigned idx = 0;
2352 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2353 i != e; ++i, ++idx) {
2354 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2355
2356 // If we found a field after the region we care about, then we're done.
2357 if (FieldOffset >= EndBit) break;
2358
2359 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2360 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2361 Context))
2362 return false;
2363 }
2364
2365 // If nothing in this record overlapped the area of interest, then we're
2366 // clean.
2367 return true;
2368 }
2369
2370 return false;
2371}
2372
2373/// getFPTypeAtOffset - Return a floating point type at the specified offset.
2374static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2375 const llvm::DataLayout &TD) {
2376 if (IROffset == 0 && IRType->isFloatingPointTy())
2377 return IRType;
2378
2379 // If this is a struct, recurse into the field at the specified offset.
2380 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2381 if (!STy->getNumContainedTypes())
2382 return nullptr;
2383
2384 const llvm::StructLayout *SL = TD.getStructLayout(STy);
2385 unsigned Elt = SL->getElementContainingOffset(IROffset);
2386 IROffset -= SL->getElementOffset(Elt);
2387 return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
2388 }
2389
2390 // If this is an array, recurse into the field at the specified offset.
2391 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2392 llvm::Type *EltTy = ATy->getElementType();
2393 unsigned EltSize = TD.getTypeAllocSize(EltTy);
2394 IROffset -= IROffset / EltSize * EltSize;
2395 return getFPTypeAtOffset(EltTy, IROffset, TD);
2396 }
2397
2398 return nullptr;
2399}
2400
2401/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2402/// low 8 bytes of an XMM register, corresponding to the SSE class.
2403llvm::Type *X86_64ABIInfo::
2404GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2405 QualType SourceTy, unsigned SourceOffset) const {
2406 const llvm::DataLayout &TD = getDataLayout();
2407 unsigned SourceSize =
2408 (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
2409 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
2410 if (!T0 || T0->isDoubleTy())
2411 return llvm::Type::getDoubleTy(getVMContext());
2412
2413 // Get the adjacent FP type.
2414 llvm::Type *T1 = nullptr;
2415 unsigned T0Size = TD.getTypeAllocSize(T0);
2416 if (SourceSize > T0Size)
2417 T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
2418 if (T1 == nullptr) {
2419 // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due
2420 // to its alignment.
2421 if (T0->is16bitFPTy() && SourceSize > 4)
2422 T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
2423 // If we can't get a second FP type, return a simple half or float.
2424 // avx512fp16-abi.c:pr51813_2 shows it works to return float for
2425 // {float, i8} too.
2426 if (T1 == nullptr)
2427 return T0;
2428 }
2429
2430 if (T0->isFloatTy() && T1->isFloatTy())
2431 return llvm::FixedVectorType::get(T0, 2);
2432
2433 if (T0->is16bitFPTy() && T1->is16bitFPTy()) {
2434 llvm::Type *T2 = nullptr;
2435 if (SourceSize > 4)
2436 T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
2437 if (T2 == nullptr)
2438 return llvm::FixedVectorType::get(T0, 2);
2439 return llvm::FixedVectorType::get(T0, 4);
2440 }
2441
2442 if (T0->is16bitFPTy() || T1->is16bitFPTy())
2443 return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
2444
2445 return llvm::Type::getDoubleTy(getVMContext());
2446}
2447
2448
2449/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2450/// an 8-byte GPR. This means that we either have a scalar or we are talking
2451/// about the high or low part of an up-to-16-byte struct. This routine picks
2452/// the best LLVM IR type to represent this, which may be i64 or may be anything
2453/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2454/// etc).
2455///
2456/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2457/// the source type. IROffset is an offset in bytes into the LLVM IR type that
2458/// the 8-byte value references. PrefType may be null.
2459///
2460/// SourceTy is the source-level type for the entire argument. SourceOffset is
2461/// an offset into this that we're processing (which is always either 0 or 8).
2462///
2463llvm::Type *X86_64ABIInfo::
2464GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2465 QualType SourceTy, unsigned SourceOffset) const {
2466 // If we're dealing with an un-offset LLVM IR type, then it means that we're
2467 // returning an 8-byte unit starting with it. See if we can safely use it.
2468 if (IROffset == 0) {
2469 // Pointers and int64's always fill the 8-byte unit.
2470 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2471 IRType->isIntegerTy(64))
2472 return IRType;
2473
2474 // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2475 // goodness in the source type is just tail padding. This is allowed to
2476 // kick in for struct {double,int} on the int, but not on
2477 // struct{double,int,int} because we wouldn't return the second int. We
2478 // have to do this analysis on the source type because we can't depend on
2479 // unions being lowered a specific way etc.
2480 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2481 IRType->isIntegerTy(32) ||
2482 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2483 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2484 cast<llvm::IntegerType>(IRType)->getBitWidth();
2485
2486 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2487 SourceOffset*8+64, getContext()))
2488 return IRType;
2489 }
2490 }
2491
2492 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2493 // If this is a struct, recurse into the field at the specified offset.
2494 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2495 if (IROffset < SL->getSizeInBytes()) {
2496 unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2497 IROffset -= SL->getElementOffset(FieldIdx);
2498
2499 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2500 SourceTy, SourceOffset);
2501 }
2502 }
2503
2504 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2505 llvm::Type *EltTy = ATy->getElementType();
2506 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2507 unsigned EltOffset = IROffset/EltSize*EltSize;
2508 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2509 SourceOffset);
2510 }
2511
2512 // Okay, we don't have any better idea of what to pass, so we pass this in an
2513 // integer register that isn't too big to fit the rest of the struct.
2514 unsigned TySizeInBytes =
2515 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2516
2517 assert(TySizeInBytes != SourceOffset && "Empty field?");
2518
2519 // It is always safe to classify this as an integer type up to i64 that
2520 // isn't larger than the structure.
2521 return llvm::IntegerType::get(getVMContext(),
2522 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2523}
2524
2525
2526/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2527/// be used as elements of a two register pair to pass or return, return a
2528/// first class aggregate to represent them. For example, if the low part of
2529/// a by-value argument should be passed as i32* and the high part as float,
2530/// return {i32*, float}.
2531static llvm::Type *
2532GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2533 const llvm::DataLayout &TD) {
2534 // In order to correctly satisfy the ABI, we need to the high part to start
2535 // at offset 8. If the high and low parts we inferred are both 4-byte types
2536 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2537 // the second element at offset 8. Check for this:
2538 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2539 llvm::Align HiAlign = TD.getABITypeAlign(Hi);
2540 unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
2541 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2542
2543 // To handle this, we have to increase the size of the low part so that the
2544 // second element will start at an 8 byte offset. We can't increase the size
2545 // of the second element because it might make us access off the end of the
2546 // struct.
2547 if (HiStart != 8) {
2548 // There are usually two sorts of types the ABI generation code can produce
2549 // for the low part of a pair that aren't 8 bytes in size: half, float or
2550 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and
2551 // NaCl).
2552 // Promote these to a larger type.
2553 if (Lo->isHalfTy() || Lo->isFloatTy())
2554 Lo = llvm::Type::getDoubleTy(Lo->getContext());
2555 else {
2556 assert((Lo->isIntegerTy() || Lo->isPointerTy())
2557 && "Invalid/unknown lo type");
2558 Lo = llvm::Type::getInt64Ty(Lo->getContext());
2559 }
2560 }
2561
2562 llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
2563
2564 // Verify that the second element is at an 8-byte offset.
2565 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2566 "Invalid x86-64 argument pair!");
2567 return Result;
2568}
2569
2570ABIArgInfo X86_64ABIInfo::
2571classifyReturnType(QualType RetTy) const {
2572 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2573 // classification algorithm.
2574 X86_64ABIInfo::Class Lo, Hi;
2575 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2576
2577 // Check some invariants.
2578 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2579 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2580
2581 llvm::Type *ResType = nullptr;
2582 switch (Lo) {
2583 case NoClass:
2584 if (Hi == NoClass)
2585 return ABIArgInfo::getIgnore();
2586 // If the low part is just padding, it takes no register, leave ResType
2587 // null.
2588 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2589 "Unknown missing lo part");
2590 break;
2591
2592 case SSEUp:
2593 case X87Up:
2594 llvm_unreachable("Invalid classification for lo word.");
2595
2596 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2597 // hidden argument.
2598 case Memory:
2599 return getIndirectReturnResult(RetTy);
2600
2601 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2602 // available register of the sequence %rax, %rdx is used.
2603 case Integer:
2604 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2605
2606 // If we have a sign or zero extended integer, make sure to return Extend
2607 // so that the parameter gets the right LLVM IR attributes.
2608 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2609 // Treat an enum type as its underlying type.
2610 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2611 RetTy = EnumTy->getDecl()->getIntegerType();
2612
2613 if (RetTy->isIntegralOrEnumerationType() &&
2614 isPromotableIntegerTypeForABI(RetTy))
2615 return ABIArgInfo::getExtend(RetTy);
2616 }
2617 break;
2618
2619 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2620 // available SSE register of the sequence %xmm0, %xmm1 is used.
2621 case SSE:
2622 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2623 break;
2624
2625 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2626 // returned on the X87 stack in %st0 as 80-bit x87 number.
2627 case X87:
2628 ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2629 break;
2630
2631 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2632 // part of the value is returned in %st0 and the imaginary part in
2633 // %st1.
2634 case ComplexX87:
2635 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2636 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2637 llvm::Type::getX86_FP80Ty(getVMContext()));
2638 break;
2639 }
2640
2641 llvm::Type *HighPart = nullptr;
2642 switch (Hi) {
2643 // Memory was handled previously and X87 should
2644 // never occur as a hi class.
2645 case Memory:
2646 case X87:
2647 llvm_unreachable("Invalid classification for hi word.");
2648
2649 case ComplexX87: // Previously handled.
2650 case NoClass:
2651 break;
2652
2653 case Integer:
2654 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2655 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2656 return ABIArgInfo::getDirect(HighPart, 8);
2657 break;
2658 case SSE:
2659 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2660 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2661 return ABIArgInfo::getDirect(HighPart, 8);
2662 break;
2663
2664 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2665 // is passed in the next available eightbyte chunk if the last used
2666 // vector register.
2667 //
2668 // SSEUP should always be preceded by SSE, just widen.
2669 case SSEUp:
2670 assert(Lo == SSE && "Unexpected SSEUp classification.");
2671 ResType = GetByteVectorType(RetTy);
2672 break;
2673
2674 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2675 // returned together with the previous X87 value in %st0.
2676 case X87Up:
2677 // If X87Up is preceded by X87, we don't need to do
2678 // anything. However, in some cases with unions it may not be
2679 // preceded by X87. In such situations we follow gcc and pass the
2680 // extra bits in an SSE reg.
2681 if (Lo != X87) {
2682 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2683 if (Lo == NoClass) // Return HighPart at offset 8 in memory.
2684 return ABIArgInfo::getDirect(HighPart, 8);
2685 }
2686 break;
2687 }
2688
2689 // If a high part was specified, merge it together with the low part. It is
2690 // known to pass in the high eightbyte of the result. We do this by forming a
2691 // first class struct aggregate with the high and low part: {low, high}
2692 if (HighPart)
2693 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2694
2695 return ABIArgInfo::getDirect(ResType);
2696}
2697
2699X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2700 unsigned &neededInt, unsigned &neededSSE,
2701 bool isNamedArg, bool IsRegCall) const {
2703
2704 X86_64ABIInfo::Class Lo, Hi;
2705 classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall);
2706
2707 // Check some invariants.
2708 // FIXME: Enforce these by construction.
2709 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2710 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2711
2712 neededInt = 0;
2713 neededSSE = 0;
2714 llvm::Type *ResType = nullptr;
2715 switch (Lo) {
2716 case NoClass:
2717 if (Hi == NoClass)
2718 return ABIArgInfo::getIgnore();
2719 // If the low part is just padding, it takes no register, leave ResType
2720 // null.
2721 assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2722 "Unknown missing lo part");
2723 break;
2724
2725 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2726 // on the stack.
2727 case Memory:
2728
2729 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2730 // COMPLEX_X87, it is passed in memory.
2731 case X87:
2732 case ComplexX87:
2733 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2734 ++neededInt;
2735 return getIndirectResult(Ty, freeIntRegs);
2736
2737 case SSEUp:
2738 case X87Up:
2739 llvm_unreachable("Invalid classification for lo word.");
2740
2741 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2742 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2743 // and %r9 is used.
2744 case Integer:
2745 ++neededInt;
2746
2747 // Pick an 8-byte type based on the preferred type.
2748 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2749
2750 // If we have a sign or zero extended integer, make sure to return Extend
2751 // so that the parameter gets the right LLVM IR attributes.
2752 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2753 // Treat an enum type as its underlying type.
2754 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2755 Ty = EnumTy->getDecl()->getIntegerType();
2756
2757 if (Ty->isIntegralOrEnumerationType() &&
2758 isPromotableIntegerTypeForABI(Ty))
2759 return ABIArgInfo::getExtend(Ty, CGT.ConvertType(Ty));
2760 }
2761
2762 break;
2763
2764 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2765 // available SSE register is used, the registers are taken in the
2766 // order from %xmm0 to %xmm7.
2767 case SSE: {
2768 llvm::Type *IRType = CGT.ConvertType(Ty);
2769 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2770 ++neededSSE;
2771 break;
2772 }
2773 }
2774
2775 llvm::Type *HighPart = nullptr;
2776 switch (Hi) {
2777 // Memory was handled previously, ComplexX87 and X87 should
2778 // never occur as hi classes, and X87Up must be preceded by X87,
2779 // which is passed in memory.
2780 case Memory:
2781 case X87:
2782 case ComplexX87:
2783 llvm_unreachable("Invalid classification for hi word.");
2784
2785 case NoClass: break;
2786
2787 case Integer:
2788 ++neededInt;
2789 // Pick an 8-byte type based on the preferred type.
2790 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2791
2792 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2793 return ABIArgInfo::getDirect(HighPart, 8);
2794 break;
2795
2796 // X87Up generally doesn't occur here (long double is passed in
2797 // memory), except in situations involving unions.
2798 case X87Up:
2799 case SSE:
2800 ++neededSSE;
2801 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2802
2803 if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
2804 return ABIArgInfo::getDirect(HighPart, 8);
2805 break;
2806
2807 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2808 // eightbyte is passed in the upper half of the last used SSE
2809 // register. This only happens when 128-bit vectors are passed.
2810 case SSEUp:
2811 assert(Lo == SSE && "Unexpected SSEUp classification");
2812 ResType = GetByteVectorType(Ty);
2813 break;
2814 }
2815
2816 // If a high part was specified, merge it together with the low part. It is
2817 // known to pass in the high eightbyte of the result. We do this by forming a
2818 // first class struct aggregate with the high and low part: {low, high}
2819 if (HighPart)
2820 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2821
2822 return ABIArgInfo::getDirect(ResType);
2823}
2824
2826X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2827 unsigned &NeededSSE,
2828 unsigned &MaxVectorWidth) const {
2829 auto RT = Ty->getAs<RecordType>();
2830 assert(RT && "classifyRegCallStructType only valid with struct types");
2831
2832 if (RT->getDecl()->hasFlexibleArrayMember())
2833 return getIndirectReturnResult(Ty);
2834
2835 // Sum up bases
2836 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2837 if (CXXRD->isDynamicClass()) {
2838 NeededInt = NeededSSE = 0;
2839 return getIndirectReturnResult(Ty);
2840 }
2841
2842 for (const auto &I : CXXRD->bases())
2843 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE,
2844 MaxVectorWidth)
2845 .isIndirect()) {
2846 NeededInt = NeededSSE = 0;
2847 return getIndirectReturnResult(Ty);
2848 }
2849 }
2850
2851 // Sum up members
2852 for (const auto *FD : RT->getDecl()->fields()) {
2853 QualType MTy = FD->getType();
2854 if (MTy->isRecordType() && !MTy->isUnionType()) {
2855 if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE,
2856 MaxVectorWidth)
2857 .isIndirect()) {
2858 NeededInt = NeededSSE = 0;
2859 return getIndirectReturnResult(Ty);
2860 }
2861 } else {
2862 unsigned LocalNeededInt, LocalNeededSSE;
2863 if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE,
2864 true, true)
2865 .isIndirect()) {
2866 NeededInt = NeededSSE = 0;
2867 return getIndirectReturnResult(Ty);
2868 }
2869 if (const auto *AT = getContext().getAsConstantArrayType(MTy))
2870 MTy = AT->getElementType();
2871 if (const auto *VT = MTy->getAs<VectorType>())
2872 if (getContext().getTypeSize(VT) > MaxVectorWidth)
2873 MaxVectorWidth = getContext().getTypeSize(VT);
2874 NeededInt += LocalNeededInt;
2875 NeededSSE += LocalNeededSSE;
2876 }
2877 }
2878
2879 return ABIArgInfo::getDirect();
2880}
2881
2883X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2884 unsigned &NeededSSE,
2885 unsigned &MaxVectorWidth) const {
2886
2887 NeededInt = 0;
2888 NeededSSE = 0;
2889 MaxVectorWidth = 0;
2890
2891 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE,
2892 MaxVectorWidth);
2893}
2894
2895void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2896
2897 const unsigned CallingConv = FI.getCallingConvention();
2898 // It is possible to force Win64 calling convention on any x86_64 target by
2899 // using __attribute__((ms_abi)). In such case to correctly emit Win64
2900 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
2901 if (CallingConv == llvm::CallingConv::Win64) {
2902 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
2903 Win64ABIInfo.computeInfo(FI);
2904 return;
2905 }
2906
2907 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
2908
2909 // Keep track of the number of assigned registers.
2910 unsigned FreeIntRegs = IsRegCall ? 11 : 6;
2911 unsigned FreeSSERegs = IsRegCall ? 16 : 8;
2912 unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0;
2913
2914 if (!::classifyReturnType(getCXXABI(), FI, *this)) {
2915 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
2916 !FI.getReturnType()->getTypePtr()->isUnionType()) {
2917 FI.getReturnInfo() = classifyRegCallStructType(
2918 FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth);
2919 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
2920 FreeIntRegs -= NeededInt;
2921 FreeSSERegs -= NeededSSE;
2922 } else {
2923 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
2924 }
2925 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
2926 getContext().getCanonicalType(FI.getReturnType()
2927 ->getAs<ComplexType>()
2928 ->getElementType()) ==
2929 getContext().LongDoubleTy)
2930 // Complex Long Double Type is passed in Memory when Regcall
2931 // calling convention is used.
2932 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
2933 else
2935 }
2936
2937 // If the return value is indirect, then the hidden argument is consuming one
2938 // integer register.
2939 if (FI.getReturnInfo().isIndirect())
2940 --FreeIntRegs;
2941 else if (NeededSSE && MaxVectorWidth > 0)
2942 FI.setMaxVectorWidth(MaxVectorWidth);
2943
2944 // The chain argument effectively gives us another free register.
2945 if (FI.isChainCall())
2946 ++FreeIntRegs;
2947
2948 unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2949 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2950 // get assigned (in left-to-right order) for passing as follows...
2951 unsigned ArgNo = 0;
2952 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2953 it != ie; ++it, ++ArgNo) {
2954 bool IsNamedArg = ArgNo < NumRequiredArgs;
2955
2956 if (IsRegCall && it->type->isStructureOrClassType())
2957 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE,
2958 MaxVectorWidth);
2959 else
2960 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
2961 NeededSSE, IsNamedArg);
2962
2963 // AMD64-ABI 3.2.3p3: If there are no registers available for any
2964 // eightbyte of an argument, the whole argument is passed on the
2965 // stack. If registers have already been assigned for some
2966 // eightbytes of such an argument, the assignments get reverted.
2967 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
2968 FreeIntRegs -= NeededInt;
2969 FreeSSERegs -= NeededSSE;
2970 if (MaxVectorWidth > FI.getMaxVectorWidth())
2971 FI.setMaxVectorWidth(MaxVectorWidth);
2972 } else {
2973 it->info = getIndirectResult(it->type, FreeIntRegs);
2974 }
2975 }
2976}
2977
2979 Address VAListAddr, QualType Ty) {
2980 Address overflow_arg_area_p =
2981 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2982 llvm::Value *overflow_arg_area =
2983 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2984
2985 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2986 // byte boundary if alignment needed by type exceeds 8 byte boundary.
2987 // It isn't stated explicitly in the standard, but in practice we use
2988 // alignment greater than 16 where necessary.
2989 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
2990 if (Align > CharUnits::fromQuantity(8)) {
2991 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
2992 Align);
2993 }
2994
2995 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2996 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2997 llvm::Value *Res = overflow_arg_area;
2998
2999 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3000 // l->overflow_arg_area + sizeof(type).
3001 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3002 // an 8 byte boundary.
3003
3004 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3005 llvm::Value *Offset =
3006 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
3007 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
3008 Offset, "overflow_arg_area.next");
3009 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3010
3011 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3012 return Address(Res, LTy, Align);
3013}
3014
3015RValue X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3016 QualType Ty, AggValueSlot Slot) const {
3017 // Assume that va_list type is correct; should be pointer to LLVM type:
3018 // struct {
3019 // i32 gp_offset;
3020 // i32 fp_offset;
3021 // i8* overflow_arg_area;
3022 // i8* reg_save_area;
3023 // };
3024 unsigned neededInt, neededSSE;
3025
3026 Ty = getContext().getCanonicalType(Ty);
3027 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3028 /*isNamedArg*/false);
3029
3030 // Empty records are ignored for parameter passing purposes.
3031 if (AI.isIgnore())
3032 return Slot.asRValue();
3033
3034 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3035 // in the registers. If not go to step 7.
3036 if (!neededInt && !neededSSE)
3037 return CGF.EmitLoadOfAnyValue(
3038 CGF.MakeAddrLValue(EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty), Ty),
3039 Slot);
3040
3041 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3042 // general purpose registers needed to pass type and num_fp to hold
3043 // the number of floating point registers needed.
3044
3045 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3046 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3047 // l->fp_offset > 304 - num_fp * 16 go to step 7.
3048 //
3049 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3050 // register save space).
3051
3052 llvm::Value *InRegs = nullptr;
3053 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3054 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3055 if (neededInt) {
3056 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3057 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3058 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3059 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3060 }
3061
3062 if (neededSSE) {
3063 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3064 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3065 llvm::Value *FitsInFP =
3066 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3067 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3068 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3069 }
3070
3071 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3072 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3073 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3074 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3075
3076 // Emit code to load the value if it was passed in registers.
3077
3078 CGF.EmitBlock(InRegBlock);
3079
3080 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3081 // an offset of l->gp_offset and/or l->fp_offset. This may require
3082 // copying to a temporary location in case the parameter is passed
3083 // in different register classes or requires an alignment greater
3084 // than 8 for general purpose registers and 16 for XMM registers.
3085 //
3086 // FIXME: This really results in shameful code when we end up needing to
3087 // collect arguments from different places; often what should result in a
3088 // simple assembling of a structure from scattered addresses has many more
3089 // loads than necessary. Can we clean this up?
3090 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3091 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3092 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3093
3094 Address RegAddr = Address::invalid();
3095 if (neededInt && neededSSE) {
3096 // FIXME: Cleanup.
3097 assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3098 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3099 Address Tmp = CGF.CreateMemTemp(Ty);
3100 Tmp = Tmp.withElementType(ST);
3101 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3102 llvm::Type *TyLo = ST->getElementType(0);
3103 llvm::Type *TyHi = ST->getElementType(1);
3104 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3105 "Unexpected ABI info for mixed regs");
3106 llvm::Value *GPAddr =
3107 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
3108 llvm::Value *FPAddr =
3109 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
3110 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3111 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3112
3113 // Copy the first element.
3114 // FIXME: Our choice of alignment here and below is probably pessimistic.
3115 llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3116 TyLo, RegLoAddr,
3117 CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo)));
3118 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3119
3120 // Copy the second element.
3122 TyHi, RegHiAddr,
3123 CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi)));
3124 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3125
3126 RegAddr = Tmp.withElementType(LTy);
3127 } else if (neededInt || neededSSE == 1) {
3128 // Copy to a temporary if necessary to ensure the appropriate alignment.
3129 auto TInfo = getContext().getTypeInfoInChars(Ty);
3130 uint64_t TySize = TInfo.Width.getQuantity();
3131 CharUnits TyAlign = TInfo.Align;
3132 llvm::Type *CoTy = nullptr;
3133 if (AI.isDirect())
3134 CoTy = AI.getCoerceToType();
3135
3136 llvm::Value *GpOrFpOffset = neededInt ? gp_offset : fp_offset;
3137 uint64_t Alignment = neededInt ? 8 : 16;
3138 uint64_t RegSize = neededInt ? neededInt * 8 : 16;
3139 // There are two cases require special handling:
3140 // 1)
3141 // ```
3142 // struct {
3143 // struct {} a[8];
3144 // int b;
3145 // };
3146 // ```
3147 // The lower 8 bytes of the structure are not stored,
3148 // so an 8-byte offset is needed when accessing the structure.
3149 // 2)
3150 // ```
3151 // struct {
3152 // long long a;
3153 // struct {} b;
3154 // };
3155 // ```
3156 // The stored size of this structure is smaller than its actual size,
3157 // which may lead to reading past the end of the register save area.
3158 if (CoTy && (AI.getDirectOffset() == 8 || RegSize < TySize)) {
3159 Address Tmp = CGF.CreateMemTemp(Ty);
3160 llvm::Value *Addr =
3161 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, GpOrFpOffset);
3162 llvm::Value *Src = CGF.Builder.CreateAlignedLoad(CoTy, Addr, TyAlign);
3163 llvm::Value *PtrOffset =
3164 llvm::ConstantInt::get(CGF.Int32Ty, AI.getDirectOffset());
3165 Address Dst = Address(
3166 CGF.Builder.CreateGEP(CGF.Int8Ty, Tmp.getBasePointer(), PtrOffset),
3167 LTy, TyAlign);
3168 CGF.Builder.CreateStore(Src, Dst);
3169 RegAddr = Tmp.withElementType(LTy);
3170 } else {
3171 RegAddr =
3172 Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, GpOrFpOffset),
3173 LTy, CharUnits::fromQuantity(Alignment));
3174
3175 // Copy into a temporary if the type is more aligned than the
3176 // register save area.
3177 if (neededInt && TyAlign.getQuantity() > 8) {
3178 Address Tmp = CGF.CreateMemTemp(Ty);
3179 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3180 RegAddr = Tmp;
3181 }
3182 }
3183
3184 } else {
3185 assert(neededSSE == 2 && "Invalid number of needed registers!");
3186 // SSE registers are spaced 16 bytes apart in the register save
3187 // area, we need to collect the two eightbytes together.
3188 // The ABI isn't explicit about this, but it seems reasonable
3189 // to assume that the slots are 16-byte aligned, since the stack is
3190 // naturally 16-byte aligned and the prologue is expected to store
3191 // all the SSE registers to the RSA.
3192 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
3193 fp_offset),
3195 Address RegAddrHi =
3196 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3198 llvm::Type *ST = AI.canHaveCoerceToType()
3199 ? AI.getCoerceToType()
3200 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3201 llvm::Value *V;
3202 Address Tmp = CGF.CreateMemTemp(Ty);
3203 Tmp = Tmp.withElementType(ST);
3204 V = CGF.Builder.CreateLoad(
3205 RegAddrLo.withElementType(ST->getStructElementType(0)));
3206 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3207 V = CGF.Builder.CreateLoad(
3208 RegAddrHi.withElementType(ST->getStructElementType(1)));
3209 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3210
3211 RegAddr = Tmp.withElementType(LTy);
3212 }
3213
3214 // AMD64-ABI 3.5.7p5: Step 5. Set:
3215 // l->gp_offset = l->gp_offset + num_gp * 8
3216 // l->fp_offset = l->fp_offset + num_fp * 16.
3217 if (neededInt) {
3218 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3219 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3220 gp_offset_p);
3221 }
3222 if (neededSSE) {
3223 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3224 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3225 fp_offset_p);
3226 }
3227 CGF.EmitBranch(ContBlock);
3228
3229 // Emit code to load the value if it was passed in memory.
3230
3231 CGF.EmitBlock(InMemBlock);
3232 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3233
3234 // Return the appropriate result.
3235
3236 CGF.EmitBlock(ContBlock);
3237 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3238 "vaarg.addr");
3239 return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(ResAddr, Ty), Slot);
3240}
3241
3242RValue X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3243 QualType Ty, AggValueSlot Slot) const {
3244 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3245 // not 1, 2, 4, or 8 bytes, must be passed by reference."
3246 uint64_t Width = getContext().getTypeSize(Ty);
3247 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
3248
3249 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
3252 /*allowHigherAlign*/ false, Slot);
3253}
3254
3255ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
3256 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
3257 const Type *Base = nullptr;
3258 uint64_t NumElts = 0;
3259
3260 if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3261 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3262 FreeSSERegs -= NumElts;
3263 return getDirectX86Hva();
3264 }
3265 return current;
3266}
3267
3268ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3269 bool IsReturnType, bool IsVectorCall,
3270 bool IsRegCall) const {
3271
3272 if (Ty->isVoidType())
3273 return ABIArgInfo::getIgnore();
3274
3275 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3276 Ty = EnumTy->getDecl()->getIntegerType();
3277
3278 TypeInfo Info = getContext().getTypeInfo(Ty);
3279 uint64_t Width = Info.Width;
3280 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3281
3282 const RecordType *RT = Ty->getAs<RecordType>();
3283 if (RT) {
3284 if (!IsReturnType) {
3285 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3286 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3287 }
3288
3289 if (RT->getDecl()->hasFlexibleArrayMember())
3290 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3291
3292 }
3293
3294 const Type *Base = nullptr;
3295 uint64_t NumElts = 0;
3296 // vectorcall adds the concept of a homogenous vector aggregate, similar to
3297 // other targets.
3298 if ((IsVectorCall || IsRegCall) &&
3299 isHomogeneousAggregate(Ty, Base, NumElts)) {
3300 if (IsRegCall) {
3301 if (FreeSSERegs >= NumElts) {
3302 FreeSSERegs -= NumElts;
3303 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3304 return ABIArgInfo::getDirect();
3305 return ABIArgInfo::getExpand();
3306 }
3307 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3308 } else if (IsVectorCall) {
3309 if (FreeSSERegs >= NumElts &&
3310 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3311 FreeSSERegs -= NumElts;
3312 return ABIArgInfo::getDirect();
3313 } else if (IsReturnType) {
3314 return ABIArgInfo::getExpand();
3315 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3316 // HVAs are delayed and reclassified in the 2nd step.
3317 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3318 }
3319 }
3320 }
3321
3322 if (Ty->isMemberPointerType()) {
3323 // If the member pointer is represented by an LLVM int or ptr, pass it
3324 // directly.
3325 llvm::Type *LLTy = CGT.ConvertType(Ty);
3326 if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3327 return ABIArgInfo::getDirect();
3328 }
3329
3330 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3331 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3332 // not 1, 2, 4, or 8 bytes, must be passed by reference."
3333 if (Width > 64 || !llvm::isPowerOf2_64(Width))
3334 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3335
3336 // Otherwise, coerce it to a small integer.
3337 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3338 }
3339
3340 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3341 switch (BT->getKind()) {
3342 case BuiltinType::Bool:
3343 // Bool type is always extended to the ABI, other builtin types are not
3344 // extended.
3345 return ABIArgInfo::getExtend(Ty);
3346
3347 case BuiltinType::LongDouble:
3348 // Mingw64 GCC uses the old 80 bit extended precision floating point
3349 // unit. It passes them indirectly through memory.
3350 if (IsMingw64) {
3351 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3352 if (LDF == &llvm::APFloat::x87DoubleExtended())
3353 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3354 }
3355 break;
3356
3357 case BuiltinType::Int128:
3358 case BuiltinType::UInt128:
3359 // If it's a parameter type, the normal ABI rule is that arguments larger
3360 // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3361 // even though it isn't particularly efficient.
3362 if (!IsReturnType)
3363 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3364
3365 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3366 // Clang matches them for compatibility.
3367 return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
3368 llvm::Type::getInt64Ty(getVMContext()), 2));
3369
3370 default:
3371 break;
3372 }
3373 }
3374
3375 if (Ty->isBitIntType()) {
3376 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3377 // not 1, 2, 4, or 8 bytes, must be passed by reference."
3378 // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4,
3379 // or 8 bytes anyway as long is it fits in them, so we don't have to check
3380 // the power of 2.
3381 if (Width <= 64)
3382 return ABIArgInfo::getDirect();
3383 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3384 }
3385
3386 return ABIArgInfo::getDirect();
3387}
3388
3389void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3390 const unsigned CC = FI.getCallingConvention();
3391 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
3392 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
3393
3394 // If __attribute__((sysv_abi)) is in use, use the SysV argument
3395 // classification rules.
3396 if (CC == llvm::CallingConv::X86_64_SysV) {
3397 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
3398 SysVABIInfo.computeInfo(FI);
3399 return;
3400 }
3401
3402 unsigned FreeSSERegs = 0;
3403 if (IsVectorCall) {
3404 // We can use up to 4 SSE return registers with vectorcall.
3405 FreeSSERegs = 4;
3406 } else if (IsRegCall) {
3407 // RegCall gives us 16 SSE registers.
3408 FreeSSERegs = 16;
3409 }
3410
3411 if (!getCXXABI().classifyReturnType(FI))
3412 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
3413 IsVectorCall, IsRegCall);
3414
3415 if (IsVectorCall) {
3416 // We can use up to 6 SSE register parameters with vectorcall.
3417 FreeSSERegs = 6;
3418 } else if (IsRegCall) {
3419 // RegCall gives us 16 SSE registers, we can reuse the return registers.
3420 FreeSSERegs = 16;
3421 }
3422
3423 unsigned ArgNum = 0;
3424 unsigned ZeroSSERegs = 0;
3425 for (auto &I : FI.arguments()) {
3426 // Vectorcall in x64 only permits the first 6 arguments to be passed as
3427 // XMM/YMM registers. After the sixth argument, pretend no vector
3428 // registers are left.
3429 unsigned *MaybeFreeSSERegs =
3430 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
3431 I.info =
3432 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
3433 ++ArgNum;
3434 }
3435
3436 if (IsVectorCall) {
3437 // For vectorcall, assign aggregate HVAs to any free vector registers in a
3438 // second pass.
3439 for (auto &I : FI.arguments())
3440 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
3441 }
3442}
3443
3444RValue WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3445 QualType Ty, AggValueSlot Slot) const {
3446 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3447 // not 1, 2, 4, or 8 bytes, must be passed by reference."
3448 uint64_t Width = getContext().getTypeSize(Ty);
3449 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
3450
3451 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
3454 /*allowHigherAlign*/ false, Slot);
3455}
3456
3457std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo(
3458 CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
3459 unsigned NumRegisterParameters, bool SoftFloatABI) {
3460 bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
3461 CGM.getTriple(), CGM.getCodeGenOpts());
3462 return std::make_unique<X86_32TargetCodeGenInfo>(
3463 CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
3464 NumRegisterParameters, SoftFloatABI);
3465}
3466
3467std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo(
3468 CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
3469 unsigned NumRegisterParameters) {
3470 bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
3471 CGM.getTriple(), CGM.getCodeGenOpts());
3472 return std::make_unique<WinX86_32TargetCodeGenInfo>(
3473 CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
3474 NumRegisterParameters);
3475}
3476
3477std::unique_ptr<TargetCodeGenInfo>
3479 X86AVXABILevel AVXLevel) {
3480 return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
3481}
3482
3483std::unique_ptr<TargetCodeGenInfo>
3485 X86AVXABILevel AVXLevel) {
3486 return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
3487}
#define V(N, I)
Definition: ASTContext.h:3443
const Decl * D
Expr * E
static bool checkAVX512ParamFeature(DiagnosticsEngine &Diag, SourceLocation CallLoc, const llvm::StringMap< bool > &CallerMap, const llvm::StringMap< bool > &CalleeMap, QualType Ty, bool IsArgument)
Definition: X86.cpp:1520
static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context)
Definition: X86.cpp:374
static void rewriteInputConstraintReferences(unsigned FirstIn, unsigned NumNewOuts, std::string &AsmString)
Rewrite input constraint references after adding some output constraints.
Definition: X86.cpp:249
static void initFeatureMaps(const ASTContext &Ctx, llvm::StringMap< bool > &CallerMap, const FunctionDecl *Caller, llvm::StringMap< bool > &CalleeMap, const FunctionDecl *Callee)
Definition: X86.cpp:1484
static llvm::Type * GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, const llvm::DataLayout &TD)
GetX86_64ByValArgumentPair - Given a high and low type that can ideally be used as elements of a two ...
Definition: X86.cpp:2532
static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, SourceLocation CallLoc, const llvm::StringMap< bool > &CallerMap, const llvm::StringMap< bool > &CalleeMap, QualType Ty, bool IsArgument)
Definition: X86.cpp:1538
static bool checkAVXParamFeature(DiagnosticsEngine &Diag, SourceLocation CallLoc, const llvm::StringMap< bool > &CallerMap, const llvm::StringMap< bool > &CalleeMap, QualType Ty, StringRef Feature, bool IsArgument)
Definition: X86.cpp:1498
static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, uint64_t &Size)
Definition: X86.cpp:410
static llvm::Type * getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, const llvm::DataLayout &TD)
getFPTypeAtOffset - Return a floating point type at the specified offset.
Definition: X86.cpp:2374
static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, uint64_t &Size)
Definition: X86.cpp:390
static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, unsigned EndBit, ASTContext &Context)
BitsContainNoUserData - Return true if the specified [start,end) bit range is known to either be off ...
Definition: X86.cpp:2296
static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, Address VAListAddr, QualType Ty)
Definition: X86.cpp:2978
static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM)
Definition: X86.cpp:1111
static bool isArgInAlloca(const ABIArgInfo &Info)
Definition: X86.cpp:996
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:188
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2915
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D,...
TypeInfoChars getTypeInfoInChars(const Type *T) const
int64_t toBits(CharUnits CharSize) const
Convert a size in characters to a size in bits.
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2482
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:799
void getFunctionFeatureMap(llvm::StringMap< bool > &FeatureMap, const FunctionDecl *) const
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:38
uint64_t getFieldOffset(unsigned FieldNo) const
getFieldOffset - Get the offset of the given field index, in bits.
Definition: RecordLayout.h:200
CharUnits getRequiredAlignment() const
Definition: RecordLayout.h:311
CharUnits getBaseClassOffset(const CXXRecordDecl *Base) const
getBaseClassOffset - Get the offset, in chars, for the given base class.
Definition: RecordLayout.h:249
A fixed int type of a specified bitwidth.
Definition: Type.h:7814
This class is used for builtin types like 'int'.
Definition: Type.h:3034
Represents a base class of a C++ class.
Definition: DeclCXX.h:146
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
base_class_range bases()
Definition: DeclCXX.h:620
CanProxy< U > getAs() const
Retrieve a canonical type pointer with a different static type, upcasting or downcasting as needed.
const T * getTypePtr() const
Retrieve the underlying type pointer, which refers to a canonical type.
Definition: CanonicalType.h:84
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:185
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition: CharUnits.h:58
bool isMultipleOf(CharUnits N) const
Test whether this is a multiple of the other value.
Definition: CharUnits.h:143
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
CharUnits alignTo(const CharUnits &Align) const
alignTo - Returns the next integer (mod 2**64) that is greater than or equal to this quantity and is ...
Definition: CharUnits.h:201
CodeGenOptions - Track various options which control how the code is optimized and passed to the back...
ABIArgInfo - Helper class to encapsulate information about how a specific C type should be passed to ...
static ABIArgInfo getInAlloca(unsigned FieldIndex, bool Indirect=false)
static ABIArgInfo getIgnore()
static ABIArgInfo getExpand()
unsigned getDirectOffset() const
void setIndirectAlign(CharUnits IA)
static ABIArgInfo getExtendInReg(QualType Ty, llvm::Type *T=nullptr)
static ABIArgInfo getExpandWithPadding(bool PaddingInReg, llvm::Type *Padding)
static ABIArgInfo getIndirect(CharUnits Alignment, bool ByVal=true, bool Realign=false, llvm::Type *Padding=nullptr)
static ABIArgInfo getDirect(llvm::Type *T=nullptr, unsigned Offset=0, llvm::Type *Padding=nullptr, bool CanBeFlattened=true, unsigned Align=0)
@ Extend
Extend - Valid only for integer argument types.
@ Ignore
Ignore - Ignore the argument (treat as void).
@ IndirectAliased
IndirectAliased - Similar to Indirect, but the pointer may be to an object that is otherwise referenc...
@ Expand
Expand - Only valid for aggregate argument types.
@ InAlloca
InAlloca - Pass the argument directly using the LLVM inalloca attribute.
@ Indirect
Indirect - Pass the argument indirectly via a hidden pointer with the specified alignment (0 indicate...
@ CoerceAndExpand
CoerceAndExpand - Only valid for aggregate argument types.
@ Direct
Direct - Pass the argument directly using the normal converted LLVM type, or by coercing to another s...
static ABIArgInfo getExtend(QualType Ty, llvm::Type *T=nullptr)
llvm::Type * getCoerceToType() const
static ABIArgInfo getDirectInReg(llvm::Type *T=nullptr)
ABIInfo - Target specific hooks for defining how a type should be passed or returned from functions.
Definition: ABIInfo.h:47
ASTContext & getContext() const
Definition: ABIInfo.cpp:20
virtual bool isHomogeneousAggregateBaseType(QualType Ty) const
Definition: ABIInfo.cpp:47
virtual RValue EmitMSVAArg(CodeGen::CodeGenFunction &CGF, CodeGen::Address VAListAddr, QualType Ty, AggValueSlot Slot) const
Emit the target dependent code to load a value of.
Definition: ABIInfo.cpp:42
virtual bool isHomogeneousAggregateSmallEnough(const Type *Base, uint64_t Members) const
Definition: ABIInfo.cpp:51
const TargetInfo & getTarget() const
Definition: ABIInfo.cpp:30
virtual RValue EmitVAArg(CodeGen::CodeGenFunction &CGF, CodeGen::Address VAListAddr, QualType Ty, AggValueSlot Slot) const =0
EmitVAArg - Emit the target dependent code to load a value of.
virtual void computeInfo(CodeGen::CGFunctionInfo &FI) const =0
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition: Address.h:128
llvm::Value * getBasePointer() const
Definition: Address.h:193
static Address invalid()
Definition: Address.h:176
Address withElementType(llvm::Type *ElemTy) const
Return address with different element type, but same pointer and alignment.
Definition: Address.h:274
An aggregate value slot.
Definition: CGValue.h:504
RValue asRValue() const
Definition: CGValue.h:666
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:136
Address CreateConstInBoundsByteGEP(Address Addr, CharUnits Offset, const llvm::Twine &Name="")
Given a pointer to i8, adjust it by a given constant offset.
Definition: CGBuilder.h:305
Address CreateGEP(CodeGenFunction &CGF, Address Addr, llvm::Value *Index, const llvm::Twine &Name="")
Definition: CGBuilder.h:292
Address CreateStructGEP(Address Addr, unsigned Index, const llvm::Twine &Name="")
Definition: CGBuilder.h:219
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:108
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:365
llvm::LoadInst * CreateAlignedLoad(llvm::Type *Ty, llvm::Value *Addr, CharUnits Align, const llvm::Twine &Name="")
Definition: CGBuilder.h:128
RecordArgABI
Specify how one should pass an argument of a record type.
Definition: CGCXXABI.h:150
@ RAA_Indirect
Pass it as a pointer to temporary memory.
Definition: CGCXXABI.h:161
@ RAA_DirectInMemory
Pass it on the stack using its defined layout.
Definition: CGCXXABI.h:158
CGFunctionInfo - Class to encapsulate the information about a function definition.
unsigned getCallingConvention() const
getCallingConvention - Return the user specified calling convention, which has been translated into a...
const_arg_iterator arg_begin() const
CanQualType getReturnType() const
MutableArrayRef< ArgInfo > arguments()
const_arg_iterator arg_end() const
void setArgStruct(llvm::StructType *Ty, CharUnits Align)
unsigned getMaxVectorWidth() const
Return the maximum vector width in the arguments.
unsigned getNumRequiredArgs() const
void setMaxVectorWidth(unsigned Width)
Set the maximum vector width in the arguments.
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:274
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
llvm::Type * ConvertTypeForMem(QualType T)
RawAddress CreateMemTemp(QualType T, const Twine &Name="tmp", RawAddress *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block,...
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
const CGFunctionInfo * CurFnInfo
llvm::LLVMContext & getLLVMContext()
RValue EmitLoadOfAnyValue(LValue V, AggValueSlot Slot=AggValueSlot::ignored(), SourceLocation Loc={})
Like EmitLoadOfLValue but also handles complex and aggregate types.
This class organizes the cross-function state that is used while generating LLVM code.
DiagnosticsEngine & getDiags() const
const TargetInfo & getTarget() const
const llvm::Triple & getTriple() const
ASTContext & getContext() const
const CodeGenOptions & getCodeGenOpts() const
This class organizes the cross-module state that is used while lowering AST types to LLVM types.
Definition: CodeGenTypes.h:54
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
LValue - This represents an lvalue references.
Definition: CGValue.h:182
Address getAddress() const
Definition: CGValue.h:361
QualType getType() const
Definition: CGValue.h:291
void setAddress(Address address)
Definition: CGValue.h:363
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition: CGValue.h:42
A class for recording the number of arguments that a function signature requires.
Target specific hooks for defining how a type should be passed or returned from functions with one of...
Definition: ABIInfo.h:130
bool occupiesMoreThan(ArrayRef< llvm::Type * > scalarTypes, unsigned maxAllRegisters) const
Does the given lowering require more than the given number of registers when expanded?
Definition: ABIInfo.cpp:255
virtual bool shouldPassIndirectly(ArrayRef< llvm::Type * > ComponentTys, bool AsReturnValue) const
Returns true if an aggregate which expands to the given type sequence should be passed / returned ind...
Definition: ABIInfo.cpp:273
TargetCodeGenInfo - This class organizes various target-specific codegeneration issues,...
Definition: TargetInfo.h:47
virtual void addReturnRegisterOutputs(CodeGen::CodeGenFunction &CGF, CodeGen::LValue ReturnValue, std::string &Constraints, std::vector< llvm::Type * > &ResultRegTypes, std::vector< llvm::Type * > &ResultTruncRegTypes, std::vector< CodeGen::LValue > &ResultRegDests, std::string &AsmString, unsigned NumOutputs) const
Adds constraints and types for result registers.
Definition: TargetInfo.h:204
virtual llvm::Type * adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type *Ty) const
Corrects the low-level LLVM type for a given constraint and "usual" type.
Definition: TargetInfo.h:190
virtual StringRef getARCRetainAutoreleasedReturnValueMarker() const
Retrieve the address of a function to call immediately before calling objc_retainAutoreleasedReturnVa...
Definition: TargetInfo.h:225
virtual void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, const FunctionDecl *Callee, const CallArgList &Args, QualType ReturnType) const
Any further codegen related checks that need to be done on a function call in a target specific manne...
Definition: TargetInfo.h:95
virtual bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const
Initializes the given DWARF EH register-size table, a char*.
Definition: TargetInfo.h:150
virtual void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const
setTargetAttributes - Provides a convenient hook to handle extra target-specific attributes for the g...
Definition: TargetInfo.h:76
static std::string qualifyWindowsLibrary(StringRef Lib)
Definition: X86.cpp:1605
virtual int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const
Determines the DWARF register number for the stack pointer, for exception-handling purposes.
Definition: TargetInfo.h:142
virtual bool markARCOptimizedReturnCallsAsNoTail() const
Determine whether a call to objc_retainAutoreleasedReturnValue or objc_unsafeClaimAutoreleasedReturnV...
Definition: TargetInfo.h:231
virtual bool isNoProtoCallVariadic(const CodeGen::CallArgList &args, const FunctionNoProtoType *fnType) const
Determine whether a call to an unprototyped functions under the given calling convention should use t...
Definition: TargetInfo.cpp:87
Complex values, per C99 6.2.5p11.
Definition: Type.h:3145
QualType getElementType() const
Definition: Type.h:3155
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:3615
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext,...
Definition: DeclBase.h:2369
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
bool hasAttr() const
Definition: DeclBase.h:580
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:231
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums.
Definition: Type.h:6098
Represents a function declaration or definition.
Definition: Decl.h:1935
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2672
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition: Decl.cpp:3702
Represents a K&R-style 'int foo()' function, which has no information available about its arguments.
Definition: Type.h:4681
CallingConv getCallConv() const
Definition: Type.h:4654
@ Ver11
Attempt to be ABI-compatible with code generated by Clang 11.0.x (git 2e10b7a39b93).
A (possibly-)qualified type.
Definition: Type.h:929
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:7931
QualType getCanonicalType() const
Definition: Type.h:7983
Represents a struct/union/class.
Definition: Decl.h:4148
bool hasFlexibleArrayMember() const
Definition: Decl.h:4181
field_iterator field_end() const
Definition: Decl.h:4357
field_range fields() const
Definition: Decl.h:4354
field_iterator field_begin() const
Definition: Decl.cpp:5092
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:6072
RecordDecl * getDecl() const
Definition: Type.h:6082
Encodes a location in the source.
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:1255
const llvm::fltSemantics & getLongDoubleFormat() const
Definition: TargetInfo.h:788
The base class of the type hierarchy.
Definition: Type.h:1828
bool isBlockPointerType() const
Definition: Type.h:8200
bool isVoidType() const
Definition: Type.h:8510
bool isFloat16Type() const
Definition: Type.h:8519
bool isPointerType() const
Definition: Type.h:8186
bool isReferenceType() const
Definition: Type.h:8204
bool isEnumeralType() const
Definition: Type.h:8290
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:8625
bool isBitIntType() const
Definition: Type.h:8424
bool isSpecificBuiltinType(unsigned K) const
Test for a particular builtin type.
Definition: Type.h:8479
bool isBuiltinType() const
Helper methods to distinguish type categories.
Definition: Type.h:8282
bool isAnyComplexType() const
Definition: Type.h:8294
bool isMemberPointerType() const
Definition: Type.h:8240
bool isBFloat16Type() const
Definition: Type.h:8531
bool isMemberFunctionPointerType() const
Definition: Type.h:8244
bool isVectorType() const
Definition: Type.h:8298
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8731
bool isRecordType() const
Definition: Type.h:8286
bool isUnionType() const
Definition: Type.cpp:704
bool hasPointerRepresentation() const
Whether this type is represented natively as a pointer.
Definition: Type.h:8672
QualType getType() const
Definition: Decl.h:682
Represents a GCC generic vector type.
Definition: Type.h:4034
#define UINT_MAX
Definition: limits.h:64
ABIArgInfo classifyArgumentType(CodeGenModule &CGM, CanQualType type)
Classify the rules for how to pass a particular type.
CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, CGCXXABI &CXXABI)
std::unique_ptr< TargetCodeGenInfo > createX86_64TargetCodeGenInfo(CodeGenModule &CGM, X86AVXABILevel AVXLevel)
Definition: X86.cpp:3478
bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, const ABIInfo &Info)
std::unique_ptr< TargetCodeGenInfo > createWinX86_32TargetCodeGenInfo(CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, unsigned NumRegisterParameters)
Definition: X86.cpp:3467
bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty)
RValue emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType ValueTy, bool IsIndirect, TypeInfoChars ValueInfo, CharUnits SlotSizeAndAlign, bool AllowHigherAlign, AggValueSlot Slot, bool ForceRightAdjust=false)
Emit va_arg for a platform using the common void* representation, where arguments are simply emitted ...
Address emitMergePHI(CodeGenFunction &CGF, Address Addr1, llvm::BasicBlock *Block1, Address Addr2, llvm::BasicBlock *Block2, const llvm::Twine &Name="")
X86AVXABILevel
The AVX ABI level for X86 targets.
Definition: TargetInfo.h:590
bool isEmptyField(ASTContext &Context, const FieldDecl *FD, bool AllowArrays, bool AsIfNoUniqueAddr=false)
isEmptyField - Return true iff a the field is "empty", that is it is an unnamed bit-field or an (arra...
llvm::Value * emitRoundPointerUpToAlignment(CodeGenFunction &CGF, llvm::Value *Ptr, CharUnits Align)
bool isAggregateTypeForABI(QualType T)
Definition: ABIInfoImpl.cpp:94
const Type * isSingleElementStruct(QualType T, ASTContext &Context)
isSingleElementStruct - Determine if a structure is a "single element struct", i.e.
void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, llvm::Value *Array, llvm::Value *Value, unsigned FirstIndex, unsigned LastIndex)
Definition: ABIInfoImpl.cpp:83
QualType useFirstFieldIfTransparentUnion(QualType Ty)
Pass transparent unions as if they were the type of the first element.
std::unique_ptr< TargetCodeGenInfo > createX86_32TargetCodeGenInfo(CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, unsigned NumRegisterParameters, bool SoftFloatABI)
Definition: X86.cpp:3457
bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays, bool AsIfNoUniqueAddr=false)
isEmptyRecord - Return true iff a structure contains only empty fields.
std::unique_ptr< TargetCodeGenInfo > createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM, X86AVXABILevel AVXLevel)
Definition: X86.cpp:3484
bool isSIMDVectorType(ASTContext &Context, QualType Ty)
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
bool Ret(InterpState &S, CodePtr &PC)
Definition: Interp.h:318
The JSON file list parser is used to communicate input to InstallAPI.
@ Result
The result type of a method or function.
const FunctionProtoType * T
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:278
@ CC_C
Definition: Specifiers.h:279
@ Class
The "class" keyword introduces the elaborated-type-specifier.
unsigned long uint64_t
#define false
Definition: stdbool.h:26
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
bool isAlignRequired()
Definition: ASTContext.h:167
uint64_t Width
Definition: ASTContext.h:159
unsigned Align
Definition: ASTContext.h:160