clang  10.0.0svn
CGCUDANV.cpp
Go to the documentation of this file.
1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA
10 // runtime library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCUDARuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/Basic/Cuda.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/Support/Format.h"
25 
26 using namespace clang;
27 using namespace CodeGen;
28 
29 namespace {
30 constexpr unsigned CudaFatMagic = 0x466243b1;
31 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF"
32 
33 class CGNVCUDARuntime : public CGCUDARuntime {
34 
35 private:
36  llvm::IntegerType *IntTy, *SizeTy;
37  llvm::Type *VoidTy;
38  llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;
39 
40  /// Convenience reference to LLVM Context
41  llvm::LLVMContext &Context;
42  /// Convenience reference to the current module
43  llvm::Module &TheModule;
44  /// Keeps track of kernel launch stubs emitted in this module
45  struct KernelInfo {
46  llvm::Function *Kernel;
47  const Decl *D;
48  };
49  llvm::SmallVector<KernelInfo, 16> EmittedKernels;
50  struct VarInfo {
51  llvm::GlobalVariable *Var;
52  const VarDecl *D;
53  unsigned Flag;
54  };
56  /// Keeps track of variable containing handle of GPU binary. Populated by
57  /// ModuleCtorFunction() and used to create corresponding cleanup calls in
58  /// ModuleDtorFunction()
59  llvm::GlobalVariable *GpuBinaryHandle = nullptr;
60  /// Whether we generate relocatable device code.
61  bool RelocatableDeviceCode;
62  /// Mangle context for device.
63  std::unique_ptr<MangleContext> DeviceMC;
64 
65  llvm::FunctionCallee getSetupArgumentFn() const;
66  llvm::FunctionCallee getLaunchFn() const;
67 
68  llvm::FunctionType *getRegisterGlobalsFnTy() const;
69  llvm::FunctionType *getCallbackFnTy() const;
70  llvm::FunctionType *getRegisterLinkedBinaryFnTy() const;
71  std::string addPrefixToName(StringRef FuncName) const;
72  std::string addUnderscoredPrefixToName(StringRef FuncName) const;
73 
74  /// Creates a function to register all kernel stubs generated in this module.
75  llvm::Function *makeRegisterGlobalsFn();
76 
77  /// Helper function that generates a constant string and returns a pointer to
78  /// the start of the string. The result of this function can be used anywhere
79  /// where the C code specifies const char*.
80  llvm::Constant *makeConstantString(const std::string &Str,
81  const std::string &Name = "",
82  const std::string &SectionName = "",
83  unsigned Alignment = 0) {
84  llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
85  llvm::ConstantInt::get(SizeTy, 0)};
86  auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
87  llvm::GlobalVariable *GV =
88  cast<llvm::GlobalVariable>(ConstStr.getPointer());
89  if (!SectionName.empty()) {
90  GV->setSection(SectionName);
91  // Mark the address as used which make sure that this section isn't
92  // merged and we will really have it in the object file.
93  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
94  }
95  if (Alignment)
96  GV->setAlignment(llvm::Align(Alignment));
97 
98  return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
99  ConstStr.getPointer(), Zeros);
100  }
101 
102  /// Helper function that generates an empty dummy function returning void.
103  llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) {
104  assert(FnTy->getReturnType()->isVoidTy() &&
105  "Can only generate dummy functions returning void!");
106  llvm::Function *DummyFunc = llvm::Function::Create(
107  FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule);
108 
109  llvm::BasicBlock *DummyBlock =
110  llvm::BasicBlock::Create(Context, "", DummyFunc);
111  CGBuilderTy FuncBuilder(CGM, Context);
112  FuncBuilder.SetInsertPoint(DummyBlock);
113  FuncBuilder.CreateRetVoid();
114 
115  return DummyFunc;
116  }
117 
118  void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args);
119  void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args);
120  std::string getDeviceSideName(const Decl *ND);
121 
122 public:
123  CGNVCUDARuntime(CodeGenModule &CGM);
124 
125  void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
126  void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var,
127  unsigned Flags) override {
128  DeviceVars.push_back({&Var, VD, Flags});
129  }
130 
131  /// Creates module constructor function
132  llvm::Function *makeModuleCtorFunction() override;
133  /// Creates module destructor function
134  llvm::Function *makeModuleDtorFunction() override;
135  /// Construct and return the stub name of a kernel.
136  std::string getDeviceStubName(llvm::StringRef Name) const override;
137 };
138 
139 }
140 
141 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const {
142  if (CGM.getLangOpts().HIP)
143  return ((Twine("hip") + Twine(FuncName)).str());
144  return ((Twine("cuda") + Twine(FuncName)).str());
145 }
146 std::string
147 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const {
148  if (CGM.getLangOpts().HIP)
149  return ((Twine("__hip") + Twine(FuncName)).str());
150  return ((Twine("__cuda") + Twine(FuncName)).str());
151 }
152 
153 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
154  : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
155  TheModule(CGM.getModule()),
156  RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode),
157  DeviceMC(CGM.getContext().createMangleContext(
158  CGM.getContext().getAuxTargetInfo())) {
159  CodeGen::CodeGenTypes &Types = CGM.getTypes();
160  ASTContext &Ctx = CGM.getContext();
161 
162  IntTy = CGM.IntTy;
163  SizeTy = CGM.SizeTy;
164  VoidTy = CGM.VoidTy;
165 
166  CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy));
167  VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy));
168  VoidPtrPtrTy = VoidPtrTy->getPointerTo();
169 }
170 
171 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const {
172  // cudaError_t cudaSetupArgument(void *, size_t, size_t)
173  llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy};
174  return CGM.CreateRuntimeFunction(
175  llvm::FunctionType::get(IntTy, Params, false),
176  addPrefixToName("SetupArgument"));
177 }
178 
179 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const {
180  if (CGM.getLangOpts().HIP) {
181  // hipError_t hipLaunchByPtr(char *);
182  return CGM.CreateRuntimeFunction(
183  llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr");
184  } else {
185  // cudaError_t cudaLaunch(char *);
186  return CGM.CreateRuntimeFunction(
187  llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
188  }
189 }
190 
191 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
192  return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false);
193 }
194 
195 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const {
196  return llvm::FunctionType::get(VoidTy, VoidPtrTy, false);
197 }
198 
199 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
200  auto CallbackFnTy = getCallbackFnTy();
201  auto RegisterGlobalsFnTy = getRegisterGlobalsFnTy();
202  llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy,
203  VoidPtrTy, CallbackFnTy->getPointerTo()};
204  return llvm::FunctionType::get(VoidTy, Params, false);
205 }
206 
207 std::string CGNVCUDARuntime::getDeviceSideName(const Decl *D) {
208  auto *ND = cast<const NamedDecl>(D);
209  std::string DeviceSideName;
210  if (DeviceMC->shouldMangleDeclName(ND)) {
211  SmallString<256> Buffer;
212  llvm::raw_svector_ostream Out(Buffer);
213  DeviceMC->mangleName(ND, Out);
214  DeviceSideName = Out.str();
215  } else
216  DeviceSideName = ND->getIdentifier()->getName();
217  return DeviceSideName;
218 }
219 
220 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
221  FunctionArgList &Args) {
222  // Ensure either we have different ABIs between host and device compilations,
223  // says host compilation following MSVC ABI but device compilation follows
224  // Itanium C++ ABI or, if they follow the same ABI, kernel names after
225  // mangling should be the same after name stubbing. The later checking is
226  // very important as the device kernel name being mangled in host-compilation
227  // is used to resolve the device binaries to be executed. Inconsistent naming
228  // result in undefined behavior. Even though we cannot check that naming
229  // directly between host- and device-compilations, the host- and
230  // device-mangling in host compilation could help catching certain ones.
231  assert((CGF.CGM.getContext().getAuxTargetInfo() &&
233  CGF.CGM.getContext().getTargetInfo().getCXXABI())) ||
234  getDeviceStubName(getDeviceSideName(CGF.CurFuncDecl)) ==
235  CGF.CurFn->getName());
236 
237  EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl});
240  CGF.getLangOpts().HIPUseNewLaunchAPI)
241  emitDeviceStubBodyNew(CGF, Args);
242  else
243  emitDeviceStubBodyLegacy(CGF, Args);
244 }
245 
246 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
247 // array and kernels are launched using cudaLaunchKernel().
248 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF,
249  FunctionArgList &Args) {
250  // Build the shadow stack entry at the very start of the function.
251 
252  // Calculate amount of space we will need for all arguments. If we have no
253  // args, allocate a single pointer so we still have a valid pointer to the
254  // argument array that we can pass to runtime, even if it will be unused.
255  Address KernelArgs = CGF.CreateTempAlloca(
256  VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args",
257  llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size())));
258  // Store pointers to the arguments in a locally allocated launch_args.
259  for (unsigned i = 0; i < Args.size(); ++i) {
260  llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer();
261  llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy);
263  VoidVarPtr, CGF.Builder.CreateConstGEP1_32(KernelArgs.getPointer(), i));
264  }
265 
266  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
267 
268  // Lookup cudaLaunchKernel/hipLaunchKernel function.
269  // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
270  // void **args, size_t sharedMem,
271  // cudaStream_t stream);
272  // hipError_t hipLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
273  // void **args, size_t sharedMem,
274  // hipStream_t stream);
277  auto LaunchKernelName = addPrefixToName("LaunchKernel");
278  IdentifierInfo &cudaLaunchKernelII =
279  CGM.getContext().Idents.get(LaunchKernelName);
280  FunctionDecl *cudaLaunchKernelFD = nullptr;
281  for (const auto &Result : DC->lookup(&cudaLaunchKernelII)) {
282  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result))
283  cudaLaunchKernelFD = FD;
284  }
285 
286  if (cudaLaunchKernelFD == nullptr) {
287  CGM.Error(CGF.CurFuncDecl->getLocation(),
288  "Can't find declaration for " + LaunchKernelName);
289  return;
290  }
291  // Create temporary dim3 grid_dim, block_dim.
292  ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1);
293  QualType Dim3Ty = GridDimParam->getType();
294  Address GridDim =
295  CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim");
296  Address BlockDim =
297  CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim");
298  Address ShmemSize =
299  CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size");
300  Address Stream =
301  CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream");
302  llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction(
303  llvm::FunctionType::get(IntTy,
304  {/*gridDim=*/GridDim.getType(),
305  /*blockDim=*/BlockDim.getType(),
306  /*ShmemSize=*/ShmemSize.getType(),
307  /*Stream=*/Stream.getType()},
308  /*isVarArg=*/false),
309  addUnderscoredPrefixToName("PopCallConfiguration"));
310 
311  CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn,
312  {GridDim.getPointer(), BlockDim.getPointer(),
313  ShmemSize.getPointer(), Stream.getPointer()});
314 
315  // Emit the call to cudaLaunch
316  llvm::Value *Kernel = CGF.Builder.CreatePointerCast(CGF.CurFn, VoidPtrTy);
317  CallArgList LaunchKernelArgs;
318  LaunchKernelArgs.add(RValue::get(Kernel),
319  cudaLaunchKernelFD->getParamDecl(0)->getType());
320  LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty);
321  LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty);
322  LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()),
323  cudaLaunchKernelFD->getParamDecl(3)->getType());
324  LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)),
325  cudaLaunchKernelFD->getParamDecl(4)->getType());
326  LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)),
327  cudaLaunchKernelFD->getParamDecl(5)->getType());
328 
329  QualType QT = cudaLaunchKernelFD->getType();
330  QualType CQT = QT.getCanonicalType();
331  llvm::Type *Ty = CGM.getTypes().ConvertType(CQT);
332  llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(Ty);
333 
334  const CGFunctionInfo &FI =
335  CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD);
336  llvm::FunctionCallee cudaLaunchKernelFn =
337  CGM.CreateRuntimeFunction(FTy, LaunchKernelName);
338  CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(),
339  LaunchKernelArgs);
340  CGF.EmitBranch(EndBlock);
341 
342  CGF.EmitBlock(EndBlock);
343 }
344 
345 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
346  FunctionArgList &Args) {
347  // Emit a call to cudaSetupArgument for each arg in Args.
348  llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn();
349  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
351  for (const VarDecl *A : Args) {
352  CharUnits TyWidth, TyAlign;
353  std::tie(TyWidth, TyAlign) =
354  CGM.getContext().getTypeInfoInChars(A->getType());
355  Offset = Offset.alignTo(TyAlign);
356  llvm::Value *Args[] = {
357  CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
358  VoidPtrTy),
359  llvm::ConstantInt::get(SizeTy, TyWidth.getQuantity()),
360  llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
361  };
362  llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
363  llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
364  llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero);
365  llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
366  CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock);
367  CGF.EmitBlock(NextBlock);
368  Offset += TyWidth;
369  }
370 
371  // Emit the call to cudaLaunch
372  llvm::FunctionCallee cudaLaunchFn = getLaunchFn();
373  llvm::Value *Arg = CGF.Builder.CreatePointerCast(CGF.CurFn, CharPtrTy);
374  CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
375  CGF.EmitBranch(EndBlock);
376 
377  CGF.EmitBlock(EndBlock);
378 }
379 
380 /// Creates a function that sets up state on the host side for CUDA objects that
381 /// have a presence on both the host and device sides. Specifically, registers
382 /// the host side of kernel functions and device global variables with the CUDA
383 /// runtime.
384 /// \code
385 /// void __cuda_register_globals(void** GpuBinaryHandle) {
386 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
387 /// ...
388 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
389 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
390 /// ...
391 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
392 /// }
393 /// \endcode
394 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() {
395  // No need to register anything
396  if (EmittedKernels.empty() && DeviceVars.empty())
397  return nullptr;
398 
399  llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
400  getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage,
401  addUnderscoredPrefixToName("_register_globals"), &TheModule);
402  llvm::BasicBlock *EntryBB =
403  llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
404  CGBuilderTy Builder(CGM, Context);
405  Builder.SetInsertPoint(EntryBB);
406 
407  // void __cudaRegisterFunction(void **, const char *, char *, const char *,
408  // int, uint3*, uint3*, dim3*, dim3*, int*)
409  llvm::Type *RegisterFuncParams[] = {
410  VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy,
411  VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()};
412  llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction(
413  llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
414  addUnderscoredPrefixToName("RegisterFunction"));
415 
416  // Extract GpuBinaryHandle passed as the first argument passed to
417  // __cuda_register_globals() and generate __cudaRegisterFunction() call for
418  // each emitted kernel.
419  llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
420  for (auto &&I : EmittedKernels) {
421  llvm::Constant *KernelName = makeConstantString(getDeviceSideName(I.D));
422  llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
423  llvm::Value *Args[] = {
424  &GpuBinaryHandlePtr,
425  Builder.CreateBitCast(I.Kernel, VoidPtrTy),
426  KernelName,
427  KernelName,
428  llvm::ConstantInt::get(IntTy, -1),
429  NullPtr,
430  NullPtr,
431  NullPtr,
432  NullPtr,
433  llvm::ConstantPointerNull::get(IntTy->getPointerTo())};
434  Builder.CreateCall(RegisterFunc, Args);
435  }
436 
437  // void __cudaRegisterVar(void **, char *, char *, const char *,
438  // int, int, int, int)
439  llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
440  CharPtrTy, IntTy, IntTy,
441  IntTy, IntTy};
442  llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction(
443  llvm::FunctionType::get(IntTy, RegisterVarParams, false),
444  addUnderscoredPrefixToName("RegisterVar"));
445  for (auto &&Info : DeviceVars) {
446  llvm::GlobalVariable *Var = Info.Var;
447  unsigned Flags = Info.Flag;
448  llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D));
449  uint64_t VarSize =
450  CGM.getDataLayout().getTypeAllocSize(Var->getValueType());
451  llvm::Value *Args[] = {
452  &GpuBinaryHandlePtr,
453  Builder.CreateBitCast(Var, VoidPtrTy),
454  VarName,
455  VarName,
456  llvm::ConstantInt::get(IntTy, (Flags & ExternDeviceVar) ? 1 : 0),
457  llvm::ConstantInt::get(IntTy, VarSize),
458  llvm::ConstantInt::get(IntTy, (Flags & ConstantDeviceVar) ? 1 : 0),
459  llvm::ConstantInt::get(IntTy, 0)};
460  Builder.CreateCall(RegisterVar, Args);
461  }
462 
463  Builder.CreateRetVoid();
464  return RegisterKernelsFunc;
465 }
466 
467 /// Creates a global constructor function for the module:
468 ///
469 /// For CUDA:
470 /// \code
471 /// void __cuda_module_ctor(void*) {
472 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
473 /// __cuda_register_globals(Handle);
474 /// }
475 /// \endcode
476 ///
477 /// For HIP:
478 /// \code
479 /// void __hip_module_ctor(void*) {
480 /// if (__hip_gpubin_handle == 0) {
481 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob);
482 /// __hip_register_globals(__hip_gpubin_handle);
483 /// }
484 /// }
485 /// \endcode
486 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
487  bool IsHIP = CGM.getLangOpts().HIP;
488  bool IsCUDA = CGM.getLangOpts().CUDA;
489  // No need to generate ctors/dtors if there is no GPU binary.
490  StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName;
491  if (CudaGpuBinaryFileName.empty() && !IsHIP)
492  return nullptr;
493  if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() &&
494  DeviceVars.empty())
495  return nullptr;
496 
497  // void __{cuda|hip}_register_globals(void* handle);
498  llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn();
499  // We always need a function to pass in as callback. Create a dummy
500  // implementation if we don't need to register anything.
501  if (RelocatableDeviceCode && !RegisterGlobalsFunc)
502  RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy());
503 
504  // void ** __{cuda|hip}RegisterFatBinary(void *);
505  llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction(
506  llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
507  addUnderscoredPrefixToName("RegisterFatBinary"));
508  // struct { int magic, int version, void * gpu_binary, void * dont_care };
509  llvm::StructType *FatbinWrapperTy =
510  llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy);
511 
512  // Register GPU binary with the CUDA runtime, store returned handle in a
513  // global variable and save a reference in GpuBinaryHandle to be cleaned up
514  // in destructor on exit. Then associate all known kernels with the GPU binary
515  // handle so CUDA runtime can figure out what to call on the GPU side.
516  std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr;
517  if (!CudaGpuBinaryFileName.empty()) {
518  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr =
519  llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName);
520  if (std::error_code EC = CudaGpuBinaryOrErr.getError()) {
521  CGM.getDiags().Report(diag::err_cannot_open_file)
522  << CudaGpuBinaryFileName << EC.message();
523  return nullptr;
524  }
525  CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get());
526  }
527 
528  llvm::Function *ModuleCtorFunc = llvm::Function::Create(
529  llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
531  addUnderscoredPrefixToName("_module_ctor"), &TheModule);
532  llvm::BasicBlock *CtorEntryBB =
533  llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
534  CGBuilderTy CtorBuilder(CGM, Context);
535 
536  CtorBuilder.SetInsertPoint(CtorEntryBB);
537 
538  const char *FatbinConstantName;
539  const char *FatbinSectionName;
540  const char *ModuleIDSectionName;
541  StringRef ModuleIDPrefix;
542  llvm::Constant *FatBinStr;
543  unsigned FatMagic;
544  if (IsHIP) {
545  FatbinConstantName = ".hip_fatbin";
546  FatbinSectionName = ".hipFatBinSegment";
547 
548  ModuleIDSectionName = "__hip_module_id";
549  ModuleIDPrefix = "__hip_";
550 
551  if (CudaGpuBinary) {
552  // If fatbin is available from early finalization, create a string
553  // literal containing the fat binary loaded from the given file.
554  FatBinStr = makeConstantString(CudaGpuBinary->getBuffer(), "",
555  FatbinConstantName, 8);
556  } else {
557  // If fatbin is not available, create an external symbol
558  // __hip_fatbin in section .hip_fatbin. The external symbol is supposed
559  // to contain the fat binary but will be populated somewhere else,
560  // e.g. by lld through link script.
561  FatBinStr = new llvm::GlobalVariable(
562  CGM.getModule(), CGM.Int8Ty,
563  /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr,
564  "__hip_fatbin", nullptr,
565  llvm::GlobalVariable::NotThreadLocal);
566  cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName);
567  }
568 
569  FatMagic = HIPFatMagic;
570  } else {
571  if (RelocatableDeviceCode)
572  FatbinConstantName = CGM.getTriple().isMacOSX()
573  ? "__NV_CUDA,__nv_relfatbin"
574  : "__nv_relfatbin";
575  else
576  FatbinConstantName =
577  CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
578  // NVIDIA's cuobjdump looks for fatbins in this section.
579  FatbinSectionName =
580  CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
581 
582  ModuleIDSectionName = CGM.getTriple().isMacOSX()
583  ? "__NV_CUDA,__nv_module_id"
584  : "__nv_module_id";
585  ModuleIDPrefix = "__nv_";
586 
587  // For CUDA, create a string literal containing the fat binary loaded from
588  // the given file.
589  FatBinStr = makeConstantString(CudaGpuBinary->getBuffer(), "",
590  FatbinConstantName, 8);
591  FatMagic = CudaFatMagic;
592  }
593 
594  // Create initialized wrapper structure that points to the loaded GPU binary
596  auto Values = Builder.beginStruct(FatbinWrapperTy);
597  // Fatbin wrapper magic.
598  Values.addInt(IntTy, FatMagic);
599  // Fatbin version.
600  Values.addInt(IntTy, 1);
601  // Data.
602  Values.add(FatBinStr);
603  // Unused in fatbin v1.
604  Values.add(llvm::ConstantPointerNull::get(VoidPtrTy));
605  llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal(
606  addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(),
607  /*constant*/ true);
608  FatbinWrapper->setSection(FatbinSectionName);
609 
610  // There is only one HIP fat binary per linked module, however there are
611  // multiple constructor functions. Make sure the fat binary is registered
612  // only once. The constructor functions are executed by the dynamic loader
613  // before the program gains control. The dynamic loader cannot execute the
614  // constructor functions concurrently since doing that would not guarantee
615  // thread safety of the loaded program. Therefore we can assume sequential
616  // execution of constructor functions here.
617  if (IsHIP) {
618  auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage :
619  llvm::GlobalValue::LinkOnceAnyLinkage;
620  llvm::BasicBlock *IfBlock =
621  llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc);
622  llvm::BasicBlock *ExitBlock =
623  llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc);
624  // The name, size, and initialization pattern of this variable is part
625  // of HIP ABI.
626  GpuBinaryHandle = new llvm::GlobalVariable(
627  TheModule, VoidPtrPtrTy, /*isConstant=*/false,
628  Linkage,
629  /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy),
630  "__hip_gpubin_handle");
631  GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
632  // Prevent the weak symbol in different shared libraries being merged.
634  GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility);
635  Address GpuBinaryAddr(
636  GpuBinaryHandle,
637  CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
638  {
639  auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
640  llvm::Constant *Zero =
641  llvm::Constant::getNullValue(HandleValue->getType());
642  llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero);
643  CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock);
644  }
645  {
646  CtorBuilder.SetInsertPoint(IfBlock);
647  // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
648  llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
649  RegisterFatbinFunc,
650  CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
651  CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr);
652  CtorBuilder.CreateBr(ExitBlock);
653  }
654  {
655  CtorBuilder.SetInsertPoint(ExitBlock);
656  // Call __hip_register_globals(GpuBinaryHandle);
657  if (RegisterGlobalsFunc) {
658  auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
659  CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue);
660  }
661  }
662  } else if (!RelocatableDeviceCode) {
663  // Register binary with CUDA runtime. This is substantially different in
664  // default mode vs. separate compilation!
665  // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
666  llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
667  RegisterFatbinFunc,
668  CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
669  GpuBinaryHandle = new llvm::GlobalVariable(
670  TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
671  llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
672  GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
673  CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
674  CGM.getPointerAlign());
675 
676  // Call __cuda_register_globals(GpuBinaryHandle);
677  if (RegisterGlobalsFunc)
678  CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall);
679 
680  // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
683  // void __cudaRegisterFatBinaryEnd(void **);
684  llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction(
685  llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
686  "__cudaRegisterFatBinaryEnd");
687  CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall);
688  }
689  } else {
690  // Generate a unique module ID.
691  SmallString<64> ModuleID;
692  llvm::raw_svector_ostream OS(ModuleID);
693  OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID());
694  llvm::Constant *ModuleIDConstant =
695  makeConstantString(ModuleID.str(), "", ModuleIDSectionName, 32);
696 
697  // Create an alias for the FatbinWrapper that nvcc will look for.
699  Twine("__fatbinwrap") + ModuleID, FatbinWrapper);
700 
701  // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
702  // void *, void (*)(void **))
703  SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
704  RegisterLinkedBinaryName += ModuleID;
705  llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction(
706  getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName);
707 
708  assert(RegisterGlobalsFunc && "Expecting at least dummy function!");
709  llvm::Value *Args[] = {RegisterGlobalsFunc,
710  CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy),
711  ModuleIDConstant,
712  makeDummyFunction(getCallbackFnTy())};
713  CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args);
714  }
715 
716  // Create destructor and register it with atexit() the way NVCC does it. Doing
717  // it during regular destructor phase worked in CUDA before 9.2 but results in
718  // double-free in 9.2.
719  if (llvm::Function *CleanupFn = makeModuleDtorFunction()) {
720  // extern "C" int atexit(void (*f)(void));
721  llvm::FunctionType *AtExitTy =
722  llvm::FunctionType::get(IntTy, CleanupFn->getType(), false);
723  llvm::FunctionCallee AtExitFunc =
724  CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(),
725  /*Local=*/true);
726  CtorBuilder.CreateCall(AtExitFunc, CleanupFn);
727  }
728 
729  CtorBuilder.CreateRetVoid();
730  return ModuleCtorFunc;
731 }
732 
733 /// Creates a global destructor function that unregisters the GPU code blob
734 /// registered by constructor.
735 ///
736 /// For CUDA:
737 /// \code
738 /// void __cuda_module_dtor(void*) {
739 /// __cudaUnregisterFatBinary(Handle);
740 /// }
741 /// \endcode
742 ///
743 /// For HIP:
744 /// \code
745 /// void __hip_module_dtor(void*) {
746 /// if (__hip_gpubin_handle) {
747 /// __hipUnregisterFatBinary(__hip_gpubin_handle);
748 /// __hip_gpubin_handle = 0;
749 /// }
750 /// }
751 /// \endcode
752 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
753  // No need for destructor if we don't have a handle to unregister.
754  if (!GpuBinaryHandle)
755  return nullptr;
756 
757  // void __cudaUnregisterFatBinary(void ** handle);
758  llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
759  llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
760  addUnderscoredPrefixToName("UnregisterFatBinary"));
761 
762  llvm::Function *ModuleDtorFunc = llvm::Function::Create(
763  llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
765  addUnderscoredPrefixToName("_module_dtor"), &TheModule);
766 
767  llvm::BasicBlock *DtorEntryBB =
768  llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
769  CGBuilderTy DtorBuilder(CGM, Context);
770  DtorBuilder.SetInsertPoint(DtorEntryBB);
771 
772  Address GpuBinaryAddr(GpuBinaryHandle, CharUnits::fromQuantity(
773  GpuBinaryHandle->getAlignment()));
774  auto HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr);
775  // There is only one HIP fat binary per linked module, however there are
776  // multiple destructor functions. Make sure the fat binary is unregistered
777  // only once.
778  if (CGM.getLangOpts().HIP) {
779  llvm::BasicBlock *IfBlock =
780  llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc);
781  llvm::BasicBlock *ExitBlock =
782  llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc);
783  llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType());
784  llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero);
785  DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock);
786 
787  DtorBuilder.SetInsertPoint(IfBlock);
788  DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
789  DtorBuilder.CreateStore(Zero, GpuBinaryAddr);
790  DtorBuilder.CreateBr(ExitBlock);
791 
792  DtorBuilder.SetInsertPoint(ExitBlock);
793  } else {
794  DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
795  }
796  DtorBuilder.CreateRetVoid();
797  return ModuleDtorFunc;
798 }
799 
800 std::string CGNVCUDARuntime::getDeviceStubName(llvm::StringRef Name) const {
801  if (!CGM.getLangOpts().HIP)
802  return Name;
803  return (Name + ".stub").str();
804 }
805 
807  return new CGNVCUDARuntime(CGM);
808 }
const llvm::DataLayout & getDataLayout() const
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:363
CharUnits alignTo(const CharUnits &Align) const
alignTo - Returns the next integer (mod 2**64) that is greater than or equal to this quantity and is ...
Definition: CharUnits.h:188
llvm::StoreInst * CreateDefaultAlignedStore(llvm::Value *Val, llvm::Value *Addr, bool IsVolatile=false)
Definition: CGBuilder.h:121
Represents a function declaration or definition.
Definition: Decl.h:1784
llvm::IntegerType * IntTy
int
External linkage, which indicates that the entity can be referred to from other translation units...
Definition: Linkage.h:59
CanQualType VoidPtrTy
Definition: ASTContext.h:1043
A (possibly-)qualified type.
Definition: Type.h:643
const CodeGenOptions & getCodeGenOpts() const
Address CreateMemTemp(QualType T, const Twine &Name="tmp", Address *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
Definition: CGExpr.cpp:139
The standard implementation of ConstantInitBuilder used in Clang.
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1290
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:706
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
Represents a variable declaration or definition.
Definition: Decl.h:827
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:36
DiagnosticsEngine & getDiags() const
llvm::Value * getPointer() const
Definition: Address.h:37
Represents a parameter to a function.
Definition: Decl.h:1600
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:23
void add(RValue rvalue, QualType type)
Definition: CGCall.h:287
One of these records is kept for each identifier that is lexed.
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1060
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:160
bool Zero(InterpState &S, CodePtr OpPC)
Definition: Interp.h:815
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:53
IdentifierTable & Idents
Definition: ASTContext.h:579
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition: CharUnits.h:183
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
Definition: CGExpr.cpp:106
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1609
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
unsigned Offset
Definition: Format.cpp:1809
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:133
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:43
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
const TargetInfo & getTarget() const
const LangOptions & getLangOpts() const
ASTContext & getContext() const
The l-value was considered opaque, so the alignment was determined from a type.
const llvm::VersionTuple & getSDKVersion() const
Definition: TargetInfo.h:1363
Address CreateBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Definition: CGBuilder.h:141
QualType getCanonicalType() const
Definition: Type.h:6187
static DeclContext * castToDeclContext(const TranslationUnitDecl *D)
Definition: Decl.h:129
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **callOrInvoke, SourceLocation Loc)
EmitCall - Generate a call of the given function, expecting the given result type, and using the given argument list which specifies both the LLVM arguments and the types they were derived from.
Definition: CGCall.cpp:3779
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2348
An aligned address.
Definition: Address.h:24
bool CudaFeatureEnabled(llvm::VersionTuple, CudaFeature)
Definition: Cuda.cpp:388
constexpr XRayInstrMask None
Definition: XRayInstr.h:37
void Error(SourceLocation loc, StringRef error)
Emit a general error that something can&#39;t be done.
std::pair< CharUnits, CharUnits > getTypeInfoInChars(const Type *T) const
FunctionArgList - Type for representing both the decl and type of parameters to a function...
Definition: CGCall.h:358
CanQualType CharTy
Definition: ASTContext.h:1017
CGFunctionInfo - Class to encapsulate the information about a function definition.
This class organizes the cross-function state that is used while generating LLVM code.
std::string CudaGpuBinaryFileName
Name of file passed with -fcuda-include-gpubinary option to forward to CUDA runtime back-end for inco...
Dataflow Directional Tag Classes.
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1271
const CGFunctionInfo & arrangeFunctionDeclaration(const FunctionDecl *FD)
Free functions are functions that are compatible with an ordinary C function pointer type...
Definition: CGCall.cpp:433
std::unique_ptr< DiagnosticConsumer > create(StringRef OutputFile, DiagnosticOptions *Diags, bool MergeChildRecords=false)
Returns a DiagnosticConsumer that serializes diagnostics to a bitcode file.
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:69
llvm::Module & getModule() const
Indicates that the tracking object is a descendant of a referenced-counted OSObject, used in the Darwin kernel.
This class organizes the cross-module state that is used while lowering AST types to LLVM types...
Definition: CodeGenTypes.h:59
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition: Linkage.h:31
llvm::FunctionCallee CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false)
Create or return a runtime function declaration with the specified type and name. ...
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:465
CGCUDARuntime * CreateNVCUDARuntime(CodeGenModule &CGM)
Creates an instance of a CUDA runtime class.
Definition: CGCUDANV.cpp:806
const Decl * CurFuncDecl
CurFuncDecl - Holds the Decl for the current outermost non-closure context.
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:1008
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block, taking care to avoid creation of branches from dummy blocks.
Definition: CGStmt.cpp:485
The top declaration context.
Definition: Decl.h:107
static RValue get(llvm::Value *V)
Definition: CGValue.h:85
QualType getType() const
Definition: Decl.h:655
static RValue getAggregate(Address addr, bool isVolatile=false)
Definition: CGValue.h:106
const TargetInfo * getAuxTargetInfo() const
Definition: ASTContext.h:707
const LangOptions & getLangOpts() const
llvm::CallBase * EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, ArrayRef< llvm::Value *> args, const Twine &name="")
Emits a call or invoke instruction to the given runtime function.
Definition: CGCall.cpp:3739
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:262
SourceLocation getLocation() const
Definition: DeclBase.h:429
static OMPLinearClause * Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef< Expr *> VL, ArrayRef< Expr *> PL, ArrayRef< Expr *> IL, Expr *Step, Expr *CalcStep, Stmt *PreInit, Expr *PostUpdate)
Creates clause with a list of variables VL and a linear step Step.
const llvm::Triple & getTriple() const