clang  12.0.0git
CGCUDANV.cpp
Go to the documentation of this file.
1 //===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for CUDA code generation targeting the NVIDIA CUDA
10 // runtime library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCUDARuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/Basic/Cuda.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/Support/Format.h"
25 
26 using namespace clang;
27 using namespace CodeGen;
28 
29 namespace {
30 constexpr unsigned CudaFatMagic = 0x466243b1;
31 constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF"
32 
33 class CGNVCUDARuntime : public CGCUDARuntime {
34 
35 private:
36  llvm::IntegerType *IntTy, *SizeTy;
37  llvm::Type *VoidTy;
38  llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;
39 
40  /// Convenience reference to LLVM Context
41  llvm::LLVMContext &Context;
42  /// Convenience reference to the current module
43  llvm::Module &TheModule;
44  /// Keeps track of kernel launch stubs emitted in this module
45  struct KernelInfo {
46  llvm::Function *Kernel;
47  const Decl *D;
48  };
49  llvm::SmallVector<KernelInfo, 16> EmittedKernels;
50  struct VarInfo {
51  llvm::GlobalVariable *Var;
52  const VarDecl *D;
53  DeviceVarFlags Flags;
54  };
56  /// Keeps track of variable containing handle of GPU binary. Populated by
57  /// ModuleCtorFunction() and used to create corresponding cleanup calls in
58  /// ModuleDtorFunction()
59  llvm::GlobalVariable *GpuBinaryHandle = nullptr;
60  /// Whether we generate relocatable device code.
61  bool RelocatableDeviceCode;
62  /// Mangle context for device.
63  std::unique_ptr<MangleContext> DeviceMC;
64 
65  llvm::FunctionCallee getSetupArgumentFn() const;
66  llvm::FunctionCallee getLaunchFn() const;
67 
68  llvm::FunctionType *getRegisterGlobalsFnTy() const;
69  llvm::FunctionType *getCallbackFnTy() const;
70  llvm::FunctionType *getRegisterLinkedBinaryFnTy() const;
71  std::string addPrefixToName(StringRef FuncName) const;
72  std::string addUnderscoredPrefixToName(StringRef FuncName) const;
73 
74  /// Creates a function to register all kernel stubs generated in this module.
75  llvm::Function *makeRegisterGlobalsFn();
76 
77  /// Helper function that generates a constant string and returns a pointer to
78  /// the start of the string. The result of this function can be used anywhere
79  /// where the C code specifies const char*.
80  llvm::Constant *makeConstantString(const std::string &Str,
81  const std::string &Name = "",
82  const std::string &SectionName = "",
83  unsigned Alignment = 0) {
84  llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
85  llvm::ConstantInt::get(SizeTy, 0)};
86  auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
87  llvm::GlobalVariable *GV =
88  cast<llvm::GlobalVariable>(ConstStr.getPointer());
89  if (!SectionName.empty()) {
90  GV->setSection(SectionName);
91  // Mark the address as used which make sure that this section isn't
92  // merged and we will really have it in the object file.
93  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
94  }
95  if (Alignment)
96  GV->setAlignment(llvm::Align(Alignment));
97 
98  return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
99  ConstStr.getPointer(), Zeros);
100  }
101 
102  /// Helper function that generates an empty dummy function returning void.
103  llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) {
104  assert(FnTy->getReturnType()->isVoidTy() &&
105  "Can only generate dummy functions returning void!");
106  llvm::Function *DummyFunc = llvm::Function::Create(
107  FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule);
108 
109  llvm::BasicBlock *DummyBlock =
110  llvm::BasicBlock::Create(Context, "", DummyFunc);
111  CGBuilderTy FuncBuilder(CGM, Context);
112  FuncBuilder.SetInsertPoint(DummyBlock);
113  FuncBuilder.CreateRetVoid();
114 
115  return DummyFunc;
116  }
117 
118  void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args);
119  void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args);
120  std::string getDeviceSideName(const NamedDecl *ND) override;
121 
122 public:
123  CGNVCUDARuntime(CodeGenModule &CGM);
124 
125  void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
126  void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var,
127  bool Extern, bool Constant) override {
128  DeviceVars.push_back({&Var,
129  VD,
130  {DeviceVarFlags::Variable, Extern, Constant,
131  /*Normalized*/ false, /*Type*/ 0}});
132  }
133  void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var,
134  bool Extern, int Type) override {
135  DeviceVars.push_back({&Var,
136  VD,
137  {DeviceVarFlags::Surface, Extern, /*Constant*/ false,
138  /*Normalized*/ false, Type}});
139  }
140  void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var,
141  bool Extern, int Type, bool Normalized) override {
142  DeviceVars.push_back({&Var,
143  VD,
144  {DeviceVarFlags::Texture, Extern, /*Constant*/ false,
145  Normalized, Type}});
146  }
147 
148  /// Creates module constructor function
149  llvm::Function *makeModuleCtorFunction() override;
150  /// Creates module destructor function
151  llvm::Function *makeModuleDtorFunction() override;
152 };
153 
154 }
155 
156 std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const {
157  if (CGM.getLangOpts().HIP)
158  return ((Twine("hip") + Twine(FuncName)).str());
159  return ((Twine("cuda") + Twine(FuncName)).str());
160 }
161 std::string
162 CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const {
163  if (CGM.getLangOpts().HIP)
164  return ((Twine("__hip") + Twine(FuncName)).str());
165  return ((Twine("__cuda") + Twine(FuncName)).str());
166 }
167 
168 CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
169  : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
170  TheModule(CGM.getModule()),
171  RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode),
172  DeviceMC(CGM.getContext().createMangleContext(
173  CGM.getContext().getAuxTargetInfo())) {
174  CodeGen::CodeGenTypes &Types = CGM.getTypes();
175  ASTContext &Ctx = CGM.getContext();
176 
177  IntTy = CGM.IntTy;
178  SizeTy = CGM.SizeTy;
179  VoidTy = CGM.VoidTy;
180 
181  CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy));
182  VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy));
183  VoidPtrPtrTy = VoidPtrTy->getPointerTo();
184 }
185 
186 llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const {
187  // cudaError_t cudaSetupArgument(void *, size_t, size_t)
188  llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy};
189  return CGM.CreateRuntimeFunction(
190  llvm::FunctionType::get(IntTy, Params, false),
191  addPrefixToName("SetupArgument"));
192 }
193 
194 llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const {
195  if (CGM.getLangOpts().HIP) {
196  // hipError_t hipLaunchByPtr(char *);
197  return CGM.CreateRuntimeFunction(
198  llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr");
199  } else {
200  // cudaError_t cudaLaunch(char *);
201  return CGM.CreateRuntimeFunction(
202  llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
203  }
204 }
205 
206 llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
207  return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false);
208 }
209 
210 llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const {
211  return llvm::FunctionType::get(VoidTy, VoidPtrTy, false);
212 }
213 
214 llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
215  auto CallbackFnTy = getCallbackFnTy();
216  auto RegisterGlobalsFnTy = getRegisterGlobalsFnTy();
217  llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy,
218  VoidPtrTy, CallbackFnTy->getPointerTo()};
219  return llvm::FunctionType::get(VoidTy, Params, false);
220 }
221 
222 std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) {
223  GlobalDecl GD;
224  // D could be either a kernel or a variable.
225  if (auto *FD = dyn_cast<FunctionDecl>(ND))
227  else
228  GD = GlobalDecl(ND);
229  std::string DeviceSideName;
230  if (DeviceMC->shouldMangleDeclName(ND)) {
231  SmallString<256> Buffer;
232  llvm::raw_svector_ostream Out(Buffer);
233  DeviceMC->mangleName(GD, Out);
234  DeviceSideName = std::string(Out.str());
235  } else
236  DeviceSideName = std::string(ND->getIdentifier()->getName());
237  return DeviceSideName;
238 }
239 
240 void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
241  FunctionArgList &Args) {
242  EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl});
245  (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI))
246  emitDeviceStubBodyNew(CGF, Args);
247  else
248  emitDeviceStubBodyLegacy(CGF, Args);
249 }
250 
251 // CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
252 // array and kernels are launched using cudaLaunchKernel().
253 void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF,
254  FunctionArgList &Args) {
255  // Build the shadow stack entry at the very start of the function.
256 
257  // Calculate amount of space we will need for all arguments. If we have no
258  // args, allocate a single pointer so we still have a valid pointer to the
259  // argument array that we can pass to runtime, even if it will be unused.
260  Address KernelArgs = CGF.CreateTempAlloca(
261  VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args",
262  llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size())));
263  // Store pointers to the arguments in a locally allocated launch_args.
264  for (unsigned i = 0; i < Args.size(); ++i) {
265  llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer();
266  llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy);
268  VoidVarPtr, CGF.Builder.CreateConstGEP1_32(KernelArgs.getPointer(), i));
269  }
270 
271  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
272 
273  // Lookup cudaLaunchKernel/hipLaunchKernel function.
274  // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
275  // void **args, size_t sharedMem,
276  // cudaStream_t stream);
277  // hipError_t hipLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
278  // void **args, size_t sharedMem,
279  // hipStream_t stream);
282  auto LaunchKernelName = addPrefixToName("LaunchKernel");
283  IdentifierInfo &cudaLaunchKernelII =
284  CGM.getContext().Idents.get(LaunchKernelName);
285  FunctionDecl *cudaLaunchKernelFD = nullptr;
286  for (const auto &Result : DC->lookup(&cudaLaunchKernelII)) {
287  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result))
288  cudaLaunchKernelFD = FD;
289  }
290 
291  if (cudaLaunchKernelFD == nullptr) {
292  CGM.Error(CGF.CurFuncDecl->getLocation(),
293  "Can't find declaration for " + LaunchKernelName);
294  return;
295  }
296  // Create temporary dim3 grid_dim, block_dim.
297  ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1);
298  QualType Dim3Ty = GridDimParam->getType();
299  Address GridDim =
300  CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim");
301  Address BlockDim =
302  CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim");
303  Address ShmemSize =
304  CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size");
305  Address Stream =
306  CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream");
307  llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction(
308  llvm::FunctionType::get(IntTy,
309  {/*gridDim=*/GridDim.getType(),
310  /*blockDim=*/BlockDim.getType(),
311  /*ShmemSize=*/ShmemSize.getType(),
312  /*Stream=*/Stream.getType()},
313  /*isVarArg=*/false),
314  addUnderscoredPrefixToName("PopCallConfiguration"));
315 
316  CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn,
317  {GridDim.getPointer(), BlockDim.getPointer(),
318  ShmemSize.getPointer(), Stream.getPointer()});
319 
320  // Emit the call to cudaLaunch
321  llvm::Value *Kernel = CGF.Builder.CreatePointerCast(CGF.CurFn, VoidPtrTy);
322  CallArgList LaunchKernelArgs;
323  LaunchKernelArgs.add(RValue::get(Kernel),
324  cudaLaunchKernelFD->getParamDecl(0)->getType());
325  LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty);
326  LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty);
327  LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()),
328  cudaLaunchKernelFD->getParamDecl(3)->getType());
329  LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)),
330  cudaLaunchKernelFD->getParamDecl(4)->getType());
331  LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)),
332  cudaLaunchKernelFD->getParamDecl(5)->getType());
333 
334  QualType QT = cudaLaunchKernelFD->getType();
335  QualType CQT = QT.getCanonicalType();
336  llvm::Type *Ty = CGM.getTypes().ConvertType(CQT);
337  llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(Ty);
338 
339  const CGFunctionInfo &FI =
340  CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD);
341  llvm::FunctionCallee cudaLaunchKernelFn =
342  CGM.CreateRuntimeFunction(FTy, LaunchKernelName);
343  CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(),
344  LaunchKernelArgs);
345  CGF.EmitBranch(EndBlock);
346 
347  CGF.EmitBlock(EndBlock);
348 }
349 
350 void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
351  FunctionArgList &Args) {
352  // Emit a call to cudaSetupArgument for each arg in Args.
353  llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn();
354  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
356  for (const VarDecl *A : Args) {
357  CharUnits TyWidth, TyAlign;
358  std::tie(TyWidth, TyAlign) =
359  CGM.getContext().getTypeInfoInChars(A->getType());
360  Offset = Offset.alignTo(TyAlign);
361  llvm::Value *Args[] = {
362  CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
363  VoidPtrTy),
364  llvm::ConstantInt::get(SizeTy, TyWidth.getQuantity()),
365  llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
366  };
367  llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
368  llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
369  llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero);
370  llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
371  CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock);
372  CGF.EmitBlock(NextBlock);
373  Offset += TyWidth;
374  }
375 
376  // Emit the call to cudaLaunch
377  llvm::FunctionCallee cudaLaunchFn = getLaunchFn();
378  llvm::Value *Arg = CGF.Builder.CreatePointerCast(CGF.CurFn, CharPtrTy);
379  CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
380  CGF.EmitBranch(EndBlock);
381 
382  CGF.EmitBlock(EndBlock);
383 }
384 
385 /// Creates a function that sets up state on the host side for CUDA objects that
386 /// have a presence on both the host and device sides. Specifically, registers
387 /// the host side of kernel functions and device global variables with the CUDA
388 /// runtime.
389 /// \code
390 /// void __cuda_register_globals(void** GpuBinaryHandle) {
391 /// __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
392 /// ...
393 /// __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
394 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
395 /// ...
396 /// __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
397 /// }
398 /// \endcode
399 llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() {
400  // No need to register anything
401  if (EmittedKernels.empty() && DeviceVars.empty())
402  return nullptr;
403 
404  llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
405  getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage,
406  addUnderscoredPrefixToName("_register_globals"), &TheModule);
407  llvm::BasicBlock *EntryBB =
408  llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
409  CGBuilderTy Builder(CGM, Context);
410  Builder.SetInsertPoint(EntryBB);
411 
412  // void __cudaRegisterFunction(void **, const char *, char *, const char *,
413  // int, uint3*, uint3*, dim3*, dim3*, int*)
414  llvm::Type *RegisterFuncParams[] = {
415  VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy,
416  VoidPtrTy, VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()};
417  llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction(
418  llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
419  addUnderscoredPrefixToName("RegisterFunction"));
420 
421  // Extract GpuBinaryHandle passed as the first argument passed to
422  // __cuda_register_globals() and generate __cudaRegisterFunction() call for
423  // each emitted kernel.
424  llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
425  for (auto &&I : EmittedKernels) {
426  llvm::Constant *KernelName =
427  makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D)));
428  llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
429  llvm::Value *Args[] = {
430  &GpuBinaryHandlePtr,
431  Builder.CreateBitCast(I.Kernel, VoidPtrTy),
432  KernelName,
433  KernelName,
434  llvm::ConstantInt::get(IntTy, -1),
435  NullPtr,
436  NullPtr,
437  NullPtr,
438  NullPtr,
439  llvm::ConstantPointerNull::get(IntTy->getPointerTo())};
440  Builder.CreateCall(RegisterFunc, Args);
441  }
442 
443  llvm::Type *VarSizeTy = IntTy;
444  // For HIP or CUDA 9.0+, device variable size is type of `size_t`.
445  if (CGM.getLangOpts().HIP ||
447  VarSizeTy = SizeTy;
448 
449  // void __cudaRegisterVar(void **, char *, char *, const char *,
450  // int, int, int, int)
451  llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
452  CharPtrTy, IntTy, VarSizeTy,
453  IntTy, IntTy};
454  llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction(
455  llvm::FunctionType::get(VoidTy, RegisterVarParams, false),
456  addUnderscoredPrefixToName("RegisterVar"));
457  // void __cudaRegisterSurface(void **, const struct surfaceReference *,
458  // const void **, const char *, int, int);
459  llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction(
460  llvm::FunctionType::get(
461  VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy},
462  false),
463  addUnderscoredPrefixToName("RegisterSurface"));
464  // void __cudaRegisterTexture(void **, const struct textureReference *,
465  // const void **, const char *, int, int, int)
466  llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction(
467  llvm::FunctionType::get(
468  VoidTy,
469  {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy},
470  false),
471  addUnderscoredPrefixToName("RegisterTexture"));
472  for (auto &&Info : DeviceVars) {
473  llvm::GlobalVariable *Var = Info.Var;
474  llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D));
475  switch (Info.Flags.getKind()) {
476  case DeviceVarFlags::Variable: {
477  uint64_t VarSize =
478  CGM.getDataLayout().getTypeAllocSize(Var->getValueType());
479  llvm::Value *Args[] = {
480  &GpuBinaryHandlePtr,
481  Builder.CreateBitCast(Var, VoidPtrTy),
482  VarName,
483  VarName,
484  llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()),
485  llvm::ConstantInt::get(VarSizeTy, VarSize),
486  llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()),
487  llvm::ConstantInt::get(IntTy, 0)};
488  Builder.CreateCall(RegisterVar, Args);
489  break;
490  }
491  case DeviceVarFlags::Surface:
492  Builder.CreateCall(
493  RegisterSurf,
494  {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
495  VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
496  llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
497  break;
498  case DeviceVarFlags::Texture:
499  Builder.CreateCall(
500  RegisterTex,
501  {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
502  VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
503  llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()),
504  llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
505  break;
506  }
507  }
508 
509  Builder.CreateRetVoid();
510  return RegisterKernelsFunc;
511 }
512 
513 /// Creates a global constructor function for the module:
514 ///
515 /// For CUDA:
516 /// \code
517 /// void __cuda_module_ctor(void*) {
518 /// Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
519 /// __cuda_register_globals(Handle);
520 /// }
521 /// \endcode
522 ///
523 /// For HIP:
524 /// \code
525 /// void __hip_module_ctor(void*) {
526 /// if (__hip_gpubin_handle == 0) {
527 /// __hip_gpubin_handle = __hipRegisterFatBinary(GpuBinaryBlob);
528 /// __hip_register_globals(__hip_gpubin_handle);
529 /// }
530 /// }
531 /// \endcode
532 llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
533  bool IsHIP = CGM.getLangOpts().HIP;
534  bool IsCUDA = CGM.getLangOpts().CUDA;
535  // No need to generate ctors/dtors if there is no GPU binary.
536  StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName;
537  if (CudaGpuBinaryFileName.empty() && !IsHIP)
538  return nullptr;
539  if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() &&
540  DeviceVars.empty())
541  return nullptr;
542 
543  // void __{cuda|hip}_register_globals(void* handle);
544  llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn();
545  // We always need a function to pass in as callback. Create a dummy
546  // implementation if we don't need to register anything.
547  if (RelocatableDeviceCode && !RegisterGlobalsFunc)
548  RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy());
549 
550  // void ** __{cuda|hip}RegisterFatBinary(void *);
551  llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction(
552  llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
553  addUnderscoredPrefixToName("RegisterFatBinary"));
554  // struct { int magic, int version, void * gpu_binary, void * dont_care };
555  llvm::StructType *FatbinWrapperTy =
556  llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy);
557 
558  // Register GPU binary with the CUDA runtime, store returned handle in a
559  // global variable and save a reference in GpuBinaryHandle to be cleaned up
560  // in destructor on exit. Then associate all known kernels with the GPU binary
561  // handle so CUDA runtime can figure out what to call on the GPU side.
562  std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr;
563  if (!CudaGpuBinaryFileName.empty()) {
564  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr =
565  llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName);
566  if (std::error_code EC = CudaGpuBinaryOrErr.getError()) {
567  CGM.getDiags().Report(diag::err_cannot_open_file)
568  << CudaGpuBinaryFileName << EC.message();
569  return nullptr;
570  }
571  CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get());
572  }
573 
574  llvm::Function *ModuleCtorFunc = llvm::Function::Create(
575  llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
577  addUnderscoredPrefixToName("_module_ctor"), &TheModule);
578  llvm::BasicBlock *CtorEntryBB =
579  llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
580  CGBuilderTy CtorBuilder(CGM, Context);
581 
582  CtorBuilder.SetInsertPoint(CtorEntryBB);
583 
584  const char *FatbinConstantName;
585  const char *FatbinSectionName;
586  const char *ModuleIDSectionName;
587  StringRef ModuleIDPrefix;
588  llvm::Constant *FatBinStr;
589  unsigned FatMagic;
590  if (IsHIP) {
591  FatbinConstantName = ".hip_fatbin";
592  FatbinSectionName = ".hipFatBinSegment";
593 
594  ModuleIDSectionName = "__hip_module_id";
595  ModuleIDPrefix = "__hip_";
596 
597  if (CudaGpuBinary) {
598  // If fatbin is available from early finalization, create a string
599  // literal containing the fat binary loaded from the given file.
600  FatBinStr = makeConstantString(std::string(CudaGpuBinary->getBuffer()),
601  "", FatbinConstantName, 8);
602  } else {
603  // If fatbin is not available, create an external symbol
604  // __hip_fatbin in section .hip_fatbin. The external symbol is supposed
605  // to contain the fat binary but will be populated somewhere else,
606  // e.g. by lld through link script.
607  FatBinStr = new llvm::GlobalVariable(
608  CGM.getModule(), CGM.Int8Ty,
609  /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr,
610  "__hip_fatbin", nullptr,
611  llvm::GlobalVariable::NotThreadLocal);
612  cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName);
613  }
614 
615  FatMagic = HIPFatMagic;
616  } else {
617  if (RelocatableDeviceCode)
618  FatbinConstantName = CGM.getTriple().isMacOSX()
619  ? "__NV_CUDA,__nv_relfatbin"
620  : "__nv_relfatbin";
621  else
622  FatbinConstantName =
623  CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
624  // NVIDIA's cuobjdump looks for fatbins in this section.
625  FatbinSectionName =
626  CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";
627 
628  ModuleIDSectionName = CGM.getTriple().isMacOSX()
629  ? "__NV_CUDA,__nv_module_id"
630  : "__nv_module_id";
631  ModuleIDPrefix = "__nv_";
632 
633  // For CUDA, create a string literal containing the fat binary loaded from
634  // the given file.
635  FatBinStr = makeConstantString(std::string(CudaGpuBinary->getBuffer()), "",
636  FatbinConstantName, 8);
637  FatMagic = CudaFatMagic;
638  }
639 
640  // Create initialized wrapper structure that points to the loaded GPU binary
642  auto Values = Builder.beginStruct(FatbinWrapperTy);
643  // Fatbin wrapper magic.
644  Values.addInt(IntTy, FatMagic);
645  // Fatbin version.
646  Values.addInt(IntTy, 1);
647  // Data.
648  Values.add(FatBinStr);
649  // Unused in fatbin v1.
650  Values.add(llvm::ConstantPointerNull::get(VoidPtrTy));
651  llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal(
652  addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(),
653  /*constant*/ true);
654  FatbinWrapper->setSection(FatbinSectionName);
655 
656  // There is only one HIP fat binary per linked module, however there are
657  // multiple constructor functions. Make sure the fat binary is registered
658  // only once. The constructor functions are executed by the dynamic loader
659  // before the program gains control. The dynamic loader cannot execute the
660  // constructor functions concurrently since doing that would not guarantee
661  // thread safety of the loaded program. Therefore we can assume sequential
662  // execution of constructor functions here.
663  if (IsHIP) {
664  auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage :
665  llvm::GlobalValue::LinkOnceAnyLinkage;
666  llvm::BasicBlock *IfBlock =
667  llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc);
668  llvm::BasicBlock *ExitBlock =
669  llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc);
670  // The name, size, and initialization pattern of this variable is part
671  // of HIP ABI.
672  GpuBinaryHandle = new llvm::GlobalVariable(
673  TheModule, VoidPtrPtrTy, /*isConstant=*/false,
674  Linkage,
675  /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy),
676  "__hip_gpubin_handle");
677  GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
678  // Prevent the weak symbol in different shared libraries being merged.
680  GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility);
681  Address GpuBinaryAddr(
682  GpuBinaryHandle,
683  CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
684  {
685  auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
686  llvm::Constant *Zero =
687  llvm::Constant::getNullValue(HandleValue->getType());
688  llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero);
689  CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock);
690  }
691  {
692  CtorBuilder.SetInsertPoint(IfBlock);
693  // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
694  llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
695  RegisterFatbinFunc,
696  CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
697  CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr);
698  CtorBuilder.CreateBr(ExitBlock);
699  }
700  {
701  CtorBuilder.SetInsertPoint(ExitBlock);
702  // Call __hip_register_globals(GpuBinaryHandle);
703  if (RegisterGlobalsFunc) {
704  auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
705  CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue);
706  }
707  }
708  } else if (!RelocatableDeviceCode) {
709  // Register binary with CUDA runtime. This is substantially different in
710  // default mode vs. separate compilation!
711  // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
712  llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
713  RegisterFatbinFunc,
714  CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
715  GpuBinaryHandle = new llvm::GlobalVariable(
716  TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
717  llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
718  GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
719  CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
720  CGM.getPointerAlign());
721 
722  // Call __cuda_register_globals(GpuBinaryHandle);
723  if (RegisterGlobalsFunc)
724  CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall);
725 
726  // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
729  // void __cudaRegisterFatBinaryEnd(void **);
730  llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction(
731  llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
732  "__cudaRegisterFatBinaryEnd");
733  CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall);
734  }
735  } else {
736  // Generate a unique module ID.
737  SmallString<64> ModuleID;
738  llvm::raw_svector_ostream OS(ModuleID);
739  OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID());
740  llvm::Constant *ModuleIDConstant = makeConstantString(
741  std::string(ModuleID.str()), "", ModuleIDSectionName, 32);
742 
743  // Create an alias for the FatbinWrapper that nvcc will look for.
745  Twine("__fatbinwrap") + ModuleID, FatbinWrapper);
746 
747  // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
748  // void *, void (*)(void **))
749  SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
750  RegisterLinkedBinaryName += ModuleID;
751  llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction(
752  getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName);
753 
754  assert(RegisterGlobalsFunc && "Expecting at least dummy function!");
755  llvm::Value *Args[] = {RegisterGlobalsFunc,
756  CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy),
757  ModuleIDConstant,
758  makeDummyFunction(getCallbackFnTy())};
759  CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args);
760  }
761 
762  // Create destructor and register it with atexit() the way NVCC does it. Doing
763  // it during regular destructor phase worked in CUDA before 9.2 but results in
764  // double-free in 9.2.
765  if (llvm::Function *CleanupFn = makeModuleDtorFunction()) {
766  // extern "C" int atexit(void (*f)(void));
767  llvm::FunctionType *AtExitTy =
768  llvm::FunctionType::get(IntTy, CleanupFn->getType(), false);
769  llvm::FunctionCallee AtExitFunc =
770  CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(),
771  /*Local=*/true);
772  CtorBuilder.CreateCall(AtExitFunc, CleanupFn);
773  }
774 
775  CtorBuilder.CreateRetVoid();
776  return ModuleCtorFunc;
777 }
778 
779 /// Creates a global destructor function that unregisters the GPU code blob
780 /// registered by constructor.
781 ///
782 /// For CUDA:
783 /// \code
784 /// void __cuda_module_dtor(void*) {
785 /// __cudaUnregisterFatBinary(Handle);
786 /// }
787 /// \endcode
788 ///
789 /// For HIP:
790 /// \code
791 /// void __hip_module_dtor(void*) {
792 /// if (__hip_gpubin_handle) {
793 /// __hipUnregisterFatBinary(__hip_gpubin_handle);
794 /// __hip_gpubin_handle = 0;
795 /// }
796 /// }
797 /// \endcode
798 llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
799  // No need for destructor if we don't have a handle to unregister.
800  if (!GpuBinaryHandle)
801  return nullptr;
802 
803  // void __cudaUnregisterFatBinary(void ** handle);
804  llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
805  llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
806  addUnderscoredPrefixToName("UnregisterFatBinary"));
807 
808  llvm::Function *ModuleDtorFunc = llvm::Function::Create(
809  llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
811  addUnderscoredPrefixToName("_module_dtor"), &TheModule);
812 
813  llvm::BasicBlock *DtorEntryBB =
814  llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
815  CGBuilderTy DtorBuilder(CGM, Context);
816  DtorBuilder.SetInsertPoint(DtorEntryBB);
817 
818  Address GpuBinaryAddr(GpuBinaryHandle, CharUnits::fromQuantity(
819  GpuBinaryHandle->getAlignment()));
820  auto HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr);
821  // There is only one HIP fat binary per linked module, however there are
822  // multiple destructor functions. Make sure the fat binary is unregistered
823  // only once.
824  if (CGM.getLangOpts().HIP) {
825  llvm::BasicBlock *IfBlock =
826  llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc);
827  llvm::BasicBlock *ExitBlock =
828  llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc);
829  llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType());
830  llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero);
831  DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock);
832 
833  DtorBuilder.SetInsertPoint(IfBlock);
834  DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
835  DtorBuilder.CreateStore(Zero, GpuBinaryAddr);
836  DtorBuilder.CreateBr(ExitBlock);
837 
838  DtorBuilder.SetInsertPoint(ExitBlock);
839  } else {
840  DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
841  }
842  DtorBuilder.CreateRetVoid();
843  return ModuleDtorFunc;
844 }
845 
847  return new CGNVCUDARuntime(CGM);
848 }
const llvm::DataLayout & getDataLayout() const
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:360
CharUnits alignTo(const CharUnits &Align) const
alignTo - Returns the next integer (mod 2**64) that is greater than or equal to this quantity and is ...
Definition: CharUnits.h:188
llvm::StoreInst * CreateDefaultAlignedStore(llvm::Value *Val, llvm::Value *Addr, bool IsVolatile=false)
Definition: CGBuilder.h:116
Represents a function declaration or definition.
Definition: Decl.h:1783
llvm::IntegerType * IntTy
int
External linkage, which indicates that the entity can be referred to from other translation units...
Definition: Linkage.h:59
CanQualType VoidPtrTy
Definition: ASTContext.h:971
A (possibly-)qualified type.
Definition: Type.h:655
const CodeGenOptions & getCodeGenOpts() const
Address CreateMemTemp(QualType T, const Twine &Name="tmp", Address *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
Definition: CGExpr.cpp:140
The standard implementation of ConstantInitBuilder used in Clang.
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:89
The base class of the type hierarchy.
Definition: Type.h:1472
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1330
CudaVersion ToCudaVersion(llvm::VersionTuple)
Definition: Cuda.cpp:173
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
Represents a variable declaration or definition.
Definition: Decl.h:820
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:36
DiagnosticsEngine & getDiags() const
llvm::Value * getPointer() const
Definition: Address.h:37
Represents a parameter to a function.
Definition: Decl.h:1595
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:23
void add(RValue rvalue, QualType type)
Definition: CGCall.h:286
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:244
One of these records is kept for each identifier that is lexed.
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:174
bool Zero(InterpState &S, CodePtr OpPC)
Definition: Interp.h:812
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:53
IdentifierTable & Idents
Definition: ASTContext.h:584
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition: CharUnits.h:183
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
Definition: CGExpr.cpp:107
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1661
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
unsigned Offset
Definition: Format.cpp:2020
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:134
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:43
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
const TargetInfo & getTarget() const
const LangOptions & getLangOpts() const
ASTContext & getContext() const
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:54
The l-value was considered opaque, so the alignment was determined from a type.
const llvm::VersionTuple & getSDKVersion() const
Definition: TargetInfo.h:1444
Address CreateBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Definition: CGBuilder.h:136
QualType getCanonicalType() const
Definition: Type.h:6441
static DeclContext * castToDeclContext(const TranslationUnitDecl *D)
Definition: Decl.h:104
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **callOrInvoke, SourceLocation Loc)
EmitCall - Generate a call of the given function, expecting the given result type, and using the given argument list which specifies both the LLVM arguments and the types they were derived from.
Definition: CGCall.cpp:4232
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2425
An aligned address.
Definition: Address.h:24
bool CudaFeatureEnabled(llvm::VersionTuple, CudaFeature)
Definition: Cuda.cpp:202
constexpr XRayInstrMask None
Definition: XRayInstr.h:38
void Error(SourceLocation loc, StringRef error)
Emit a general error that something can&#39;t be done.
std::pair< CharUnits, CharUnits > getTypeInfoInChars(const Type *T) const
StringRef getName() const
Return the actual identifier string.
FunctionArgList - Type for representing both the decl and type of parameters to a function...
Definition: CGCall.h:356
CanQualType CharTy
Definition: ASTContext.h:944
CGFunctionInfo - Class to encapsulate the information about a function definition.
This class organizes the cross-function state that is used while generating LLVM code.
std::string CudaGpuBinaryFileName
Name of file passed with -fcuda-include-gpubinary option to forward to CUDA runtime back-end for inco...
Dataflow Directional Tag Classes.
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1303
const CGFunctionInfo & arrangeFunctionDeclaration(const FunctionDecl *FD)
Free functions are functions that are compatible with an ordinary C function pointer type...
Definition: CGCall.cpp:435
std::unique_ptr< DiagnosticConsumer > create(StringRef OutputFile, DiagnosticOptions *Diags, bool MergeChildRecords=false)
Returns a DiagnosticConsumer that serializes diagnostics to a bitcode file.
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:68
llvm::FunctionCallee CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false, bool AssumeConvergent=false)
Create or return a runtime function declaration with the specified type and name. ...
llvm::Module & getModule() const
Indicates that the tracking object is a descendant of a referenced-counted OSObject, used in the Darwin kernel.
This class organizes the cross-module state that is used while lowering AST types to LLVM types...
Definition: CodeGenTypes.h:59
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition: Linkage.h:31
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:482
CGCUDARuntime * CreateNVCUDARuntime(CodeGenModule &CGM)
Creates an instance of a CUDA runtime class.
Definition: CGCUDANV.cpp:846
const Decl * CurFuncDecl
CurFuncDecl - Holds the Decl for the current outermost non-closure context.
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:935
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block, taking care to avoid creation of branches from dummy blocks.
Definition: CGStmt.cpp:502
The top declaration context.
Definition: Decl.h:82
static RValue get(llvm::Value *V)
Definition: CGValue.h:86
QualType getType() const
Definition: Decl.h:630
static RValue getAggregate(Address addr, bool isVolatile=false)
Definition: CGValue.h:107
This represents a decl that may have a name.
Definition: Decl.h:223
const LangOptions & getLangOpts() const
llvm::CallBase * EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, ArrayRef< llvm::Value *> args, const Twine &name="")
Emits a call or invoke instruction to the given runtime function.
Definition: CGCall.cpp:4088
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:262
SourceLocation getLocation() const
Definition: DeclBase.h:430
static OMPLinearClause * Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef< Expr *> VL, ArrayRef< Expr *> PL, ArrayRef< Expr *> IL, Expr *Step, Expr *CalcStep, Stmt *PreInit, Expr *PostUpdate)
Creates clause with a list of variables VL and a linear step Step.
const llvm::Triple & getTriple() const