clang 19.0.0git
ARM.cpp
Go to the documentation of this file.
1//===- ARM.cpp ------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "ABIInfoImpl.h"
10#include "TargetInfo.h"
11
12using namespace clang;
13using namespace clang::CodeGen;
14
15//===----------------------------------------------------------------------===//
16// ARM ABI Implementation
17//===----------------------------------------------------------------------===//
18
19namespace {
20
21class ARMABIInfo : public ABIInfo {
23 bool IsFloatABISoftFP;
24
25public:
26 ARMABIInfo(CodeGenTypes &CGT, ARMABIKind Kind) : ABIInfo(CGT), Kind(Kind) {
27 setCCs();
28 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
29 CGT.getCodeGenOpts().FloatABI == ""; // default
30 }
31
32 bool isEABI() const {
33 switch (getTarget().getTriple().getEnvironment()) {
34 case llvm::Triple::Android:
35 case llvm::Triple::EABI:
36 case llvm::Triple::EABIHF:
37 case llvm::Triple::GNUEABI:
38 case llvm::Triple::GNUEABIHF:
39 case llvm::Triple::MuslEABI:
40 case llvm::Triple::MuslEABIHF:
41 return true;
42 default:
43 return getTarget().getTriple().isOHOSFamily();
44 }
45 }
46
47 bool isEABIHF() const {
48 switch (getTarget().getTriple().getEnvironment()) {
49 case llvm::Triple::EABIHF:
50 case llvm::Triple::GNUEABIHF:
51 case llvm::Triple::MuslEABIHF:
52 return true;
53 default:
54 return false;
55 }
56 }
57
58 ARMABIKind getABIKind() const { return Kind; }
59
60 bool allowBFloatArgsAndRet() const override {
61 return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
62 }
63
64private:
65 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
66 unsigned functionCallConv) const;
67 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
68 unsigned functionCallConv) const;
69 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
70 uint64_t Members) const;
71 ABIArgInfo coerceIllegalVector(QualType Ty) const;
72 bool isIllegalVectorType(QualType Ty) const;
73 bool containsAnyFP16Vectors(QualType Ty) const;
74
75 bool isHomogeneousAggregateBaseType(QualType Ty) const override;
77 uint64_t Members) const override;
79
80 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
81
82 void computeInfo(CGFunctionInfo &FI) const override;
83
85 QualType Ty) const override;
86
87 llvm::CallingConv::ID getLLVMDefaultCC() const;
88 llvm::CallingConv::ID getABIDefaultCC() const;
89 void setCCs();
90};
91
92class ARMSwiftABIInfo : public SwiftABIInfo {
93public:
94 explicit ARMSwiftABIInfo(CodeGenTypes &CGT)
95 : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/true) {}
96
97 bool isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
98 unsigned NumElts) const override;
99};
100
101class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
102public:
103 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIKind K)
104 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {
105 SwiftInfo = std::make_unique<ARMSwiftABIInfo>(CGT);
106 }
107
108 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
109 return 13;
110 }
111
112 StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
113 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
114 }
115
117 llvm::Value *Address) const override {
118 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
119
120 // 0-15 are the 16 integer registers.
121 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
122 return false;
123 }
124
125 unsigned getSizeOfUnwindException() const override {
126 if (getABIInfo<ARMABIInfo>().isEABI())
127 return 88;
129 }
130
131 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
132 CodeGen::CodeGenModule &CGM) const override {
133 if (GV->isDeclaration())
134 return;
135 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
136 if (!FD)
137 return;
138 auto *Fn = cast<llvm::Function>(GV);
139
140 if (const auto *TA = FD->getAttr<TargetAttr>()) {
142 CGM.getTarget().parseTargetAttr(TA->getFeaturesStr());
143 if (!Attr.BranchProtection.empty()) {
145 StringRef DiagMsg;
146 StringRef Arch =
147 Attr.CPU.empty() ? CGM.getTarget().getTargetOpts().CPU : Attr.CPU;
148 if (!CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
149 Arch, BPI, DiagMsg)) {
150 CGM.getDiags().Report(
151 D->getLocation(),
152 diag::warn_target_unsupported_branch_protection_attribute)
153 << Arch;
154 } else {
155 Fn->addFnAttr("sign-return-address", BPI.getSignReturnAddrStr());
156 Fn->addFnAttr("branch-target-enforcement",
157 BPI.BranchTargetEnforcement ? "true" : "false");
158 }
159 } else if (CGM.getLangOpts().BranchTargetEnforcement ||
161 // If the Branch Protection attribute is missing, validate the target
162 // Architecture attribute against Branch Protection command line
163 // settings.
165 CGM.getDiags().Report(
166 D->getLocation(),
167 diag::warn_target_unsupported_branch_protection_attribute)
168 << Attr.CPU;
169 }
170 }
171
172 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
173 if (!Attr)
174 return;
175
176 const char *Kind;
177 switch (Attr->getInterrupt()) {
178 case ARMInterruptAttr::Generic: Kind = ""; break;
179 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break;
180 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break;
181 case ARMInterruptAttr::SWI: Kind = "SWI"; break;
182 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break;
183 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break;
184 }
185
186 Fn->addFnAttr("interrupt", Kind);
187
188 ARMABIKind ABI = getABIInfo<ARMABIInfo>().getABIKind();
189 if (ABI == ARMABIKind::APCS)
190 return;
191
192 // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
193 // however this is not necessarily true on taking any interrupt. Instruct
194 // the backend to perform a realignment as part of the function prologue.
195 llvm::AttrBuilder B(Fn->getContext());
196 B.addStackAlignmentAttr(8);
197 Fn->addFnAttrs(B);
198 }
199};
200
201class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
202public:
203 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIKind K)
204 : ARMTargetCodeGenInfo(CGT, K) {}
205
206 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
207 CodeGen::CodeGenModule &CGM) const override;
208
209 void getDependentLibraryOption(llvm::StringRef Lib,
210 llvm::SmallString<24> &Opt) const override {
211 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
212 }
213
214 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
215 llvm::SmallString<32> &Opt) const override {
216 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
217 }
218};
219
220void WindowsARMTargetCodeGenInfo::setTargetAttributes(
221 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
222 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
223 if (GV->isDeclaration())
224 return;
225 addStackProbeTargetAttributes(D, GV, CGM);
226}
227}
228
229void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
230 if (!::classifyReturnType(getCXXABI(), FI, *this))
233
234 for (auto &I : FI.arguments())
235 I.info = classifyArgumentType(I.type, FI.isVariadic(),
237
238
239 // Always honor user-specified calling convention.
240 if (FI.getCallingConvention() != llvm::CallingConv::C)
241 return;
242
243 llvm::CallingConv::ID cc = getRuntimeCC();
244 if (cc != llvm::CallingConv::C)
246}
247
248/// Return the default calling convention that LLVM will use.
249llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
250 // The default calling convention that LLVM will infer.
251 if (isEABIHF() || getTarget().getTriple().isWatchABI())
252 return llvm::CallingConv::ARM_AAPCS_VFP;
253 else if (isEABI())
254 return llvm::CallingConv::ARM_AAPCS;
255 else
256 return llvm::CallingConv::ARM_APCS;
257}
258
259/// Return the calling convention that our ABI would like us to use
260/// as the C calling convention.
261llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
262 switch (getABIKind()) {
263 case ARMABIKind::APCS:
264 return llvm::CallingConv::ARM_APCS;
265 case ARMABIKind::AAPCS:
266 return llvm::CallingConv::ARM_AAPCS;
267 case ARMABIKind::AAPCS_VFP:
268 return llvm::CallingConv::ARM_AAPCS_VFP;
269 case ARMABIKind::AAPCS16_VFP:
270 return llvm::CallingConv::ARM_AAPCS_VFP;
271 }
272 llvm_unreachable("bad ABI kind");
273}
274
275void ARMABIInfo::setCCs() {
276 assert(getRuntimeCC() == llvm::CallingConv::C);
277
278 // Don't muddy up the IR with a ton of explicit annotations if
279 // they'd just match what LLVM will infer from the triple.
280 llvm::CallingConv::ID abiCC = getABIDefaultCC();
281 if (abiCC != getLLVMDefaultCC())
282 RuntimeCC = abiCC;
283}
284
285ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
286 uint64_t Size = getContext().getTypeSize(Ty);
287 if (Size <= 32) {
288 llvm::Type *ResType =
289 llvm::Type::getInt32Ty(getVMContext());
290 return ABIArgInfo::getDirect(ResType);
291 }
292 if (Size == 64 || Size == 128) {
293 auto *ResType = llvm::FixedVectorType::get(
294 llvm::Type::getInt32Ty(getVMContext()), Size / 32);
295 return ABIArgInfo::getDirect(ResType);
296 }
297 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
298}
299
300ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
301 const Type *Base,
302 uint64_t Members) const {
303 assert(Base && "Base class should be set for homogeneous aggregate");
304 // Base can be a floating-point or a vector.
305 if (const VectorType *VT = Base->getAs<VectorType>()) {
306 // FP16 vectors should be converted to integer vectors
307 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
308 uint64_t Size = getContext().getTypeSize(VT);
309 auto *NewVecTy = llvm::FixedVectorType::get(
310 llvm::Type::getInt32Ty(getVMContext()), Size / 32);
311 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
312 return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
313 }
314 }
315 unsigned Align = 0;
316 if (getABIKind() == ARMABIKind::AAPCS ||
317 getABIKind() == ARMABIKind::AAPCS_VFP) {
318 // For alignment adjusted HFAs, cap the argument alignment to 8, leave it
319 // default otherwise.
320 Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
321 unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
322 Align = (Align > BaseAlign && Align >= 8) ? 8 : 0;
323 }
324 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align);
325}
326
327ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
328 unsigned functionCallConv) const {
329 // 6.1.2.1 The following argument types are VFP CPRCs:
330 // A single-precision floating-point type (including promoted
331 // half-precision types); A double-precision floating-point type;
332 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
333 // with a Base Type of a single- or double-precision floating-point type,
334 // 64-bit containerized vectors or 128-bit containerized vectors with one
335 // to four Elements.
336 // Variadic functions should always marshal to the base standard.
337 bool IsAAPCS_VFP =
338 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
339
341
342 // Handle illegal vector types here.
343 if (isIllegalVectorType(Ty))
344 return coerceIllegalVector(Ty);
345
346 if (!isAggregateTypeForABI(Ty)) {
347 // Treat an enum type as its underlying type.
348 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
349 Ty = EnumTy->getDecl()->getIntegerType();
350 }
351
352 if (const auto *EIT = Ty->getAs<BitIntType>())
353 if (EIT->getNumBits() > 64)
354 return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
355
356 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
358 }
359
360 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
361 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
362 }
363
364 // Ignore empty records.
365 if (isEmptyRecord(getContext(), Ty, true))
366 return ABIArgInfo::getIgnore();
367
368 if (IsAAPCS_VFP) {
369 // Homogeneous Aggregates need to be expanded when we can fit the aggregate
370 // into VFP registers.
371 const Type *Base = nullptr;
372 uint64_t Members = 0;
373 if (isHomogeneousAggregate(Ty, Base, Members))
374 return classifyHomogeneousAggregate(Ty, Base, Members);
375 } else if (getABIKind() == ARMABIKind::AAPCS16_VFP) {
376 // WatchOS does have homogeneous aggregates. Note that we intentionally use
377 // this convention even for a variadic function: the backend will use GPRs
378 // if needed.
379 const Type *Base = nullptr;
380 uint64_t Members = 0;
381 if (isHomogeneousAggregate(Ty, Base, Members)) {
382 assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
383 llvm::Type *Ty =
384 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
385 return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
386 }
387 }
388
389 if (getABIKind() == ARMABIKind::AAPCS16_VFP &&
390 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
391 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
392 // bigger than 128-bits, they get placed in space allocated by the caller,
393 // and a pointer is passed.
395 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
396 }
397
398 // Support byval for ARM.
399 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
400 // most 8-byte. We realign the indirect argument if type alignment is bigger
401 // than ABI alignment.
402 uint64_t ABIAlign = 4;
403 uint64_t TyAlign;
404 if (getABIKind() == ARMABIKind::AAPCS_VFP ||
405 getABIKind() == ARMABIKind::AAPCS) {
406 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
407 ABIAlign = std::clamp(TyAlign, (uint64_t)4, (uint64_t)8);
408 } else {
409 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
410 }
411 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
412 assert(getABIKind() != ARMABIKind::AAPCS16_VFP && "unexpected byval");
414 /*ByVal=*/true,
415 /*Realign=*/TyAlign > ABIAlign);
416 }
417
418 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
419 // same size and alignment.
420 if (getTarget().isRenderScriptTarget()) {
421 return coerceToIntArray(Ty, getContext(), getVMContext());
422 }
423
424 // Otherwise, pass by coercing to a structure of the appropriate size.
425 llvm::Type* ElemTy;
426 unsigned SizeRegs;
427 // FIXME: Try to match the types of the arguments more accurately where
428 // we can.
429 if (TyAlign <= 4) {
430 ElemTy = llvm::Type::getInt32Ty(getVMContext());
431 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
432 } else {
433 ElemTy = llvm::Type::getInt64Ty(getVMContext());
434 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
435 }
436
437 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
438}
439
440static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
441 llvm::LLVMContext &VMContext) {
442 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
443 // is called integer-like if its size is less than or equal to one word, and
444 // the offset of each of its addressable sub-fields is zero.
445
446 uint64_t Size = Context.getTypeSize(Ty);
447
448 // Check that the type fits in a word.
449 if (Size > 32)
450 return false;
451
452 // FIXME: Handle vector types!
453 if (Ty->isVectorType())
454 return false;
455
456 // Float types are never treated as "integer like".
457 if (Ty->isRealFloatingType())
458 return false;
459
460 // If this is a builtin or pointer type then it is ok.
461 if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
462 return true;
463
464 // Small complex integer types are "integer like".
465 if (const ComplexType *CT = Ty->getAs<ComplexType>())
466 return isIntegerLikeType(CT->getElementType(), Context, VMContext);
467
468 // Single element and zero sized arrays should be allowed, by the definition
469 // above, but they are not.
470
471 // Otherwise, it must be a record type.
472 const RecordType *RT = Ty->getAs<RecordType>();
473 if (!RT) return false;
474
475 // Ignore records with flexible arrays.
476 const RecordDecl *RD = RT->getDecl();
477 if (RD->hasFlexibleArrayMember())
478 return false;
479
480 // Check that all sub-fields are at offset 0, and are themselves "integer
481 // like".
482 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
483
484 bool HadField = false;
485 unsigned idx = 0;
486 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
487 i != e; ++i, ++idx) {
488 const FieldDecl *FD = *i;
489
490 // Bit-fields are not addressable, we only need to verify they are "integer
491 // like". We still have to disallow a subsequent non-bitfield, for example:
492 // struct { int : 0; int x }
493 // is non-integer like according to gcc.
494 if (FD->isBitField()) {
495 if (!RD->isUnion())
496 HadField = true;
497
498 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
499 return false;
500
501 continue;
502 }
503
504 // Check if this field is at offset 0.
505 if (Layout.getFieldOffset(idx) != 0)
506 return false;
507
508 if (!isIntegerLikeType(FD->getType(), Context, VMContext))
509 return false;
510
511 // Only allow at most one field in a structure. This doesn't match the
512 // wording above, but follows gcc in situations with a field following an
513 // empty structure.
514 if (!RD->isUnion()) {
515 if (HadField)
516 return false;
517
518 HadField = true;
519 }
520 }
521
522 return true;
523}
524
525ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
526 unsigned functionCallConv) const {
527
528 // Variadic functions should always marshal to the base standard.
529 bool IsAAPCS_VFP =
530 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
531
532 if (RetTy->isVoidType())
533 return ABIArgInfo::getIgnore();
534
535 if (const VectorType *VT = RetTy->getAs<VectorType>()) {
536 // Large vector types should be returned via memory.
537 if (getContext().getTypeSize(RetTy) > 128)
538 return getNaturalAlignIndirect(RetTy);
539 // TODO: FP16/BF16 vectors should be converted to integer vectors
540 // This check is similar to isIllegalVectorType - refactor?
541 if ((!getTarget().hasLegalHalfType() &&
542 (VT->getElementType()->isFloat16Type() ||
543 VT->getElementType()->isHalfType())) ||
544 (IsFloatABISoftFP &&
545 VT->getElementType()->isBFloat16Type()))
546 return coerceIllegalVector(RetTy);
547 }
548
549 if (!isAggregateTypeForABI(RetTy)) {
550 // Treat an enum type as its underlying type.
551 if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
552 RetTy = EnumTy->getDecl()->getIntegerType();
553
554 if (const auto *EIT = RetTy->getAs<BitIntType>())
555 if (EIT->getNumBits() > 64)
556 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
557
558 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
559 : ABIArgInfo::getDirect();
560 }
561
562 // Are we following APCS?
563 if (getABIKind() == ARMABIKind::APCS) {
564 if (isEmptyRecord(getContext(), RetTy, false))
565 return ABIArgInfo::getIgnore();
566
567 // Complex types are all returned as packed integers.
568 //
569 // FIXME: Consider using 2 x vector types if the back end handles them
570 // correctly.
571 if (RetTy->isAnyComplexType())
572 return ABIArgInfo::getDirect(llvm::IntegerType::get(
573 getVMContext(), getContext().getTypeSize(RetTy)));
574
575 // Integer like structures are returned in r0.
576 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
577 // Return in the smallest viable integer type.
578 uint64_t Size = getContext().getTypeSize(RetTy);
579 if (Size <= 8)
580 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
581 if (Size <= 16)
582 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
583 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
584 }
585
586 // Otherwise return in memory.
587 return getNaturalAlignIndirect(RetTy);
588 }
589
590 // Otherwise this is an AAPCS variant.
591
592 if (isEmptyRecord(getContext(), RetTy, true))
593 return ABIArgInfo::getIgnore();
594
595 // Check for homogeneous aggregates with AAPCS-VFP.
596 if (IsAAPCS_VFP) {
597 const Type *Base = nullptr;
598 uint64_t Members = 0;
599 if (isHomogeneousAggregate(RetTy, Base, Members))
600 return classifyHomogeneousAggregate(RetTy, Base, Members);
601 }
602
603 // Aggregates <= 4 bytes are returned in r0; other aggregates
604 // are returned indirectly.
605 uint64_t Size = getContext().getTypeSize(RetTy);
606 if (Size <= 32) {
607 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
608 // same size and alignment.
609 if (getTarget().isRenderScriptTarget()) {
610 return coerceToIntArray(RetTy, getContext(), getVMContext());
611 }
612 if (getDataLayout().isBigEndian())
613 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
614 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
615
616 // Return in the smallest viable integer type.
617 if (Size <= 8)
618 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
619 if (Size <= 16)
620 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
621 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
622 } else if (Size <= 128 && getABIKind() == ARMABIKind::AAPCS16_VFP) {
623 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
624 llvm::Type *CoerceTy =
625 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
626 return ABIArgInfo::getDirect(CoerceTy);
627 }
628
629 return getNaturalAlignIndirect(RetTy);
630}
631
632/// isIllegalVector - check whether Ty is an illegal vector type.
633bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
634 if (const VectorType *VT = Ty->getAs<VectorType> ()) {
635 // On targets that don't support half, fp16 or bfloat, they are expanded
636 // into float, and we don't want the ABI to depend on whether or not they
637 // are supported in hardware. Thus return false to coerce vectors of these
638 // types into integer vectors.
639 // We do not depend on hasLegalHalfType for bfloat as it is a
640 // separate IR type.
641 if ((!getTarget().hasLegalHalfType() &&
642 (VT->getElementType()->isFloat16Type() ||
643 VT->getElementType()->isHalfType())) ||
644 (IsFloatABISoftFP &&
645 VT->getElementType()->isBFloat16Type()))
646 return true;
647 if (isAndroid()) {
648 // Android shipped using Clang 3.1, which supported a slightly different
649 // vector ABI. The primary differences were that 3-element vector types
650 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
651 // accepts that legacy behavior for Android only.
652 // Check whether VT is legal.
653 unsigned NumElements = VT->getNumElements();
654 // NumElements should be power of 2 or equal to 3.
655 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
656 return true;
657 } else {
658 // Check whether VT is legal.
659 unsigned NumElements = VT->getNumElements();
660 uint64_t Size = getContext().getTypeSize(VT);
661 // NumElements should be power of 2.
662 if (!llvm::isPowerOf2_32(NumElements))
663 return true;
664 // Size should be greater than 32 bits.
665 return Size <= 32;
666 }
667 }
668 return false;
669}
670
671/// Return true if a type contains any 16-bit floating point vectors
672bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
673 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
674 uint64_t NElements = AT->getZExtSize();
675 if (NElements == 0)
676 return false;
677 return containsAnyFP16Vectors(AT->getElementType());
678 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
679 const RecordDecl *RD = RT->getDecl();
680
681 // If this is a C++ record, check the bases first.
682 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
683 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
684 return containsAnyFP16Vectors(B.getType());
685 }))
686 return true;
687
688 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
689 return FD && containsAnyFP16Vectors(FD->getType());
690 }))
691 return true;
692
693 return false;
694 } else {
695 if (const VectorType *VT = Ty->getAs<VectorType>())
696 return (VT->getElementType()->isFloat16Type() ||
697 VT->getElementType()->isBFloat16Type() ||
698 VT->getElementType()->isHalfType());
699 return false;
700 }
701}
702
703bool ARMSwiftABIInfo::isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
704 unsigned NumElts) const {
705 if (!llvm::isPowerOf2_32(NumElts))
706 return false;
707 unsigned size = CGT.getDataLayout().getTypeStoreSizeInBits(EltTy);
708 if (size > 64)
709 return false;
710 if (VectorSize.getQuantity() != 8 &&
711 (VectorSize.getQuantity() != 16 || NumElts == 1))
712 return false;
713 return true;
714}
715
716bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
717 // Homogeneous aggregates for AAPCS-VFP must have base types of float,
718 // double, or 64-bit or 128-bit vectors.
719 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
720 if (BT->getKind() == BuiltinType::Float ||
721 BT->getKind() == BuiltinType::Double ||
722 BT->getKind() == BuiltinType::LongDouble)
723 return true;
724 } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
725 unsigned VecSize = getContext().getTypeSize(VT);
726 if (VecSize == 64 || VecSize == 128)
727 return true;
728 }
729 return false;
730}
731
732bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
733 uint64_t Members) const {
734 return Members <= 4;
735}
736
737bool ARMABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const {
738 // AAPCS32 says that the rule for whether something is a homogeneous
739 // aggregate is applied to the output of the data layout decision. So
740 // anything that doesn't affect the data layout also does not affect
741 // homogeneity. In particular, zero-length bitfields don't stop a struct
742 // being homogeneous.
743 return true;
744}
745
746bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
747 bool acceptHalf) const {
748 // Give precedence to user-specified calling conventions.
749 if (callConvention != llvm::CallingConv::C)
750 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
751 else
752 return (getABIKind() == ARMABIKind::AAPCS_VFP) ||
753 (acceptHalf && (getABIKind() == ARMABIKind::AAPCS16_VFP));
754}
755
756Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
757 QualType Ty) const {
759
760 // Empty records are ignored for parameter passing purposes.
761 if (isEmptyRecord(getContext(), Ty, true)) {
762 VAListAddr = VAListAddr.withElementType(CGF.Int8PtrTy);
763 auto *Load = CGF.Builder.CreateLoad(VAListAddr);
764 return Address(Load, CGF.ConvertTypeForMem(Ty), SlotSize);
765 }
766
767 CharUnits TySize = getContext().getTypeSizeInChars(Ty);
768 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
769
770 // Use indirect if size of the illegal vector is bigger than 16 bytes.
771 bool IsIndirect = false;
772 const Type *Base = nullptr;
773 uint64_t Members = 0;
774 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
775 IsIndirect = true;
776
777 // ARMv7k passes structs bigger than 16 bytes indirectly, in space
778 // allocated by the caller.
779 } else if (TySize > CharUnits::fromQuantity(16) &&
780 getABIKind() == ARMABIKind::AAPCS16_VFP &&
781 !isHomogeneousAggregate(Ty, Base, Members)) {
782 IsIndirect = true;
783
784 // Otherwise, bound the type's ABI alignment.
785 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
786 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
787 // Our callers should be prepared to handle an under-aligned address.
788 } else if (getABIKind() == ARMABIKind::AAPCS_VFP ||
789 getABIKind() == ARMABIKind::AAPCS) {
790 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
791 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
792 } else if (getABIKind() == ARMABIKind::AAPCS16_VFP) {
793 // ARMv7k allows type alignment up to 16 bytes.
794 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
795 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
796 } else {
797 TyAlignForABI = CharUnits::fromQuantity(4);
798 }
799
800 TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None);
801 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
802 SlotSize, /*AllowHigherAlign*/ true);
803}
804
805std::unique_ptr<TargetCodeGenInfo>
807 return std::make_unique<ARMTargetCodeGenInfo>(CGM.getTypes(), Kind);
808}
809
810std::unique_ptr<TargetCodeGenInfo>
812 return std::make_unique<WindowsARMTargetCodeGenInfo>(CGM.getTypes(), K);
813}
static bool isIntegerLikeType(QualType Ty, ASTContext &Context, llvm::LLVMContext &VMContext)
Definition: ARM.cpp:440
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:182
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D,...
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2340
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:38
uint64_t getFieldOffset(unsigned FieldNo) const
getFieldOffset - Get the offset of the given field index, in bits.
Definition: RecordLayout.h:200
Attr - This represents one attribute.
Definition: Attr.h:42
A fixed int type of a specified bitwidth.
Definition: Type.h:7242
This class is used for builtin types like 'int'.
Definition: Type.h:2981
Represents a base class of a C++ class.
Definition: DeclCXX.h:146
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:185
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
std::string FloatABI
The ABI to use for passing floating point arguments.
ABIArgInfo - Helper class to encapsulate information about how a specific C type should be passed to ...
static ABIArgInfo getIgnore()
static ABIArgInfo getIndirect(CharUnits Alignment, bool ByVal=true, bool Realign=false, llvm::Type *Padding=nullptr)
static ABIArgInfo getDirect(llvm::Type *T=nullptr, unsigned Offset=0, llvm::Type *Padding=nullptr, bool CanBeFlattened=true, unsigned Align=0)
static ABIArgInfo getExtend(QualType Ty, llvm::Type *T=nullptr)
ABIInfo - Target specific hooks for defining how a type should be passed or returned from functions.
Definition: ABIInfo.h:45
virtual bool allowBFloatArgsAndRet() const
Definition: ABIInfo.h:56
virtual bool isHomogeneousAggregateBaseType(QualType Ty) const
Definition: ABIInfo.cpp:47
virtual CodeGen::Address EmitVAArg(CodeGen::CodeGenFunction &CGF, CodeGen::Address VAListAddr, QualType Ty) const =0
EmitVAArg - Emit the target dependent code to load a value of.
virtual bool isHomogeneousAggregateSmallEnough(const Type *Base, uint64_t Members) const
Definition: ABIInfo.cpp:51
const TargetInfo & getTarget() const
Definition: ABIInfo.cpp:30
virtual bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const
Definition: ABIInfo.cpp:56
virtual void computeInfo(CodeGen::CGFunctionInfo &FI) const =0
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition: Address.h:111
Address withElementType(llvm::Type *ElemTy) const
Return address with different element type, but same pointer and alignment.
Definition: Address.h:241
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:108
RecordArgABI
Specify how one should pass an argument of a record type.
Definition: CGCXXABI.h:150
@ RAA_DirectInMemory
Pass it on the stack using its defined layout.
Definition: CGCXXABI.h:158
CGFunctionInfo - Class to encapsulate the information about a function definition.
unsigned getCallingConvention() const
getCallingConvention - Return the user specified calling convention, which has been translated into a...
CanQualType getReturnType() const
MutableArrayRef< ArgInfo > arguments()
void setEffectiveCallingConvention(unsigned Value)
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::Type * ConvertTypeForMem(QualType T)
This class organizes the cross-function state that is used while generating LLVM code.
DiagnosticsEngine & getDiags() const
const LangOptions & getLangOpts() const
const TargetInfo & getTarget() const
This class organizes the cross-module state that is used while lowering AST types to LLVM types.
Definition: CodeGenTypes.h:54
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
const CodeGenOptions & getCodeGenOpts() const
const llvm::DataLayout & getDataLayout() const
Definition: CodeGenTypes.h:104
Target specific hooks for defining how a type should be passed or returned from functions with one of...
Definition: ABIInfo.h:128
virtual bool isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy, unsigned NumElts) const
Returns true if the given vector type is legal from Swift's calling convention perspective.
Definition: ABIInfo.cpp:278
TargetCodeGenInfo - This class organizes various target-specific codegeneration issues,...
Definition: TargetInfo.h:46
virtual unsigned getSizeOfUnwindException() const
Determines the size of struct _Unwind_Exception on this platform, in 8-bit units.
Definition: TargetInfo.cpp:76
virtual StringRef getARCRetainAutoreleasedReturnValueMarker() const
Retrieve the address of a function to call immediately before calling objc_retainAutoreleasedReturnVa...
Definition: TargetInfo.h:205
virtual bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const
Initializes the given DWARF EH register-size table, a char*.
Definition: TargetInfo.h:130
virtual void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const
setTargetAttributes - Provides a convenient hook to handle extra target-specific attributes for the g...
Definition: TargetInfo.h:75
virtual int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const
Determines the DWARF register number for the stack pointer, for exception-handling purposes.
Definition: TargetInfo.h:122
Complex values, per C99 6.2.5p11.
Definition: Type.h:3086
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:3556
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext,...
Definition: DeclBase.h:2342
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
T * getAttr() const
Definition: DeclBase.h:579
SourceLocation getLocation() const
Definition: DeclBase.h:445
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1547
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums.
Definition: Type.h:5575
Represents a member of a struct/union/class.
Definition: Decl.h:3058
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:3149
Represents a function declaration or definition.
Definition: Decl.h:1971
bool hasSignReturnAddress() const
Check if return address signing is enabled.
Definition: LangOptions.h:678
A (possibly-)qualified type.
Definition: Type.h:940
Represents a struct/union/class.
Definition: Decl.h:4169
bool hasFlexibleArrayMember() const
Definition: Decl.h:4202
field_iterator field_end() const
Definition: Decl.h:4378
field_range fields() const
Definition: Decl.h:4375
field_iterator field_begin() const
Definition: Decl.cpp:5071
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:5549
RecordDecl * getDecl() const
Definition: Type.h:5559
bool isUnion() const
Definition: Decl.h:3791
TargetOptions & getTargetOpts() const
Retrieve the target options.
Definition: TargetInfo.h:308
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:1236
virtual bool isBranchProtectionSupportedArch(StringRef Arch) const
Determine if the Architecture in this TargetInfo supports branch protection.
Definition: TargetInfo.h:1422
virtual ParsedTargetAttr parseTargetAttr(StringRef Str) const
Definition: TargetInfo.cpp:538
virtual bool hasBFloat16Type() const
Determine whether the _BFloat16 type is supported on this target.
Definition: TargetInfo.h:679
virtual bool validateBranchProtection(StringRef Spec, StringRef Arch, BranchProtectionInfo &BPI, StringRef &Err) const
Determine if this TargetInfo supports the given branch protection specification.
Definition: TargetInfo.h:1428
std::string CPU
If given, the name of the target CPU to generate code for.
Definition: TargetOptions.h:36
The base class of the type hierarchy.
Definition: Type.h:1813
bool isVoidType() const
Definition: Type.h:7905
bool isPointerType() const
Definition: Type.h:7612
bool isAnyComplexType() const
Definition: Type.h:7714
bool isVectorType() const
Definition: Type.h:7718
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:2254
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8123
QualType getType() const
Definition: Decl.h:717
Represents a GCC generic vector type.
Definition: Type.h:3969
ABIArgInfo classifyArgumentType(CodeGenModule &CGM, CanQualType type)
Classify the rules for how to pass a particular type.
std::unique_ptr< TargetCodeGenInfo > createARMTargetCodeGenInfo(CodeGenModule &CGM, ARMABIKind Kind)
Definition: ARM.cpp:806
CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, CGCXXABI &CXXABI)
bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, const ABIInfo &Info)
Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType ValueTy, bool IsIndirect, TypeInfoChars ValueInfo, CharUnits SlotSizeAndAlign, bool AllowHigherAlign, bool ForceRightAdjust=false)
Emit va_arg for a platform using the common void* representation, where arguments are simply emitted ...
ABIArgInfo coerceToIntArray(QualType Ty, ASTContext &Context, llvm::LLVMContext &LLVMContext)
Definition: ABIInfoImpl.cpp:79
bool isAggregateTypeForABI(QualType T)
std::unique_ptr< TargetCodeGenInfo > createWindowsARMTargetCodeGenInfo(CodeGenModule &CGM, ARMABIKind K)
Definition: ARM.cpp:811
void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, llvm::Value *Array, llvm::Value *Value, unsigned FirstIndex, unsigned LastIndex)
Definition: ABIInfoImpl.cpp:89
QualType useFirstFieldIfTransparentUnion(QualType Ty)
Pass transparent unions as if they were the type of the first element.
bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays, bool AsIfNoUniqueAddr=false)
isEmptyRecord - Return true iff a structure contains only empty fields.
bool Load(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1391
The JSON file list parser is used to communicate input to InstallAPI.
unsigned long uint64_t
Definition: Format.h:5394
#define true
Definition: stdbool.h:25
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Contains information gathered from parsing the contents of TargetAttr.
Definition: TargetInfo.h:57
const char * getSignReturnAddrStr() const
Definition: TargetInfo.h:1397