clang 22.0.0git
CGHLSLBuiltins.cpp
Go to the documentation of this file.
1//===------- CGHLSLBuiltins.cpp - Emit LLVM Code for HLSL builtins --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit HLSL Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGBuiltin.h"
14#include "CGHLSLRuntime.h"
15#include "CodeGenFunction.h"
16
17using namespace clang;
18using namespace CodeGen;
19using namespace llvm;
20
24 "asdouble operands types mismatch");
25 Value *OpLowBits = CGF.EmitScalarExpr(E->getArg(0));
26 Value *OpHighBits = CGF.EmitScalarExpr(E->getArg(1));
27
28 llvm::Type *ResultType = CGF.DoubleTy;
29 int N = 1;
30 if (auto *VTy = E->getArg(0)->getType()->getAs<clang::VectorType>()) {
31 N = VTy->getNumElements();
32 ResultType = llvm::FixedVectorType::get(CGF.DoubleTy, N);
33 }
34
35 if (CGF.CGM.getTarget().getTriple().isDXIL())
36 return CGF.Builder.CreateIntrinsic(
37 /*ReturnType=*/ResultType, Intrinsic::dx_asdouble,
38 {OpLowBits, OpHighBits}, nullptr, "hlsl.asdouble");
39
40 if (!E->getArg(0)->getType()->isVectorType()) {
41 OpLowBits = CGF.Builder.CreateVectorSplat(1, OpLowBits);
42 OpHighBits = CGF.Builder.CreateVectorSplat(1, OpHighBits);
43 }
44
46 for (int i = 0; i < N; i++) {
47 Mask.push_back(i);
48 Mask.push_back(i + N);
49 }
50
51 Value *BitVec = CGF.Builder.CreateShuffleVector(OpLowBits, OpHighBits, Mask);
52
53 return CGF.Builder.CreateBitCast(BitVec, ResultType);
54}
55
57 Value *Op0 = CGF->EmitScalarExpr(E->getArg(0));
58
59 Constant *FZeroConst = ConstantFP::getZero(CGF->FloatTy);
60 Value *CMP;
61 Value *LastInstr;
62
63 if (const auto *VecTy = E->getArg(0)->getType()->getAs<clang::VectorType>()) {
64 FZeroConst = ConstantVector::getSplat(
65 ElementCount::getFixed(VecTy->getNumElements()), FZeroConst);
66 auto *FCompInst = CGF->Builder.CreateFCmpOLT(Op0, FZeroConst);
67 CMP = CGF->Builder.CreateIntrinsic(
68 CGF->Builder.getInt1Ty(), CGF->CGM.getHLSLRuntime().getAnyIntrinsic(),
69 {FCompInst});
70 } else {
71 CMP = CGF->Builder.CreateFCmpOLT(Op0, FZeroConst);
72 }
73
74 if (CGF->CGM.getTarget().getTriple().isDXIL()) {
75 LastInstr = CGF->Builder.CreateIntrinsic(Intrinsic::dx_discard, {CMP});
76 } else if (CGF->CGM.getTarget().getTriple().isSPIRV()) {
77 BasicBlock *LT0 = CGF->createBasicBlock("lt0", CGF->CurFn);
78 BasicBlock *End = CGF->createBasicBlock("end", CGF->CurFn);
79
80 CGF->Builder.CreateCondBr(CMP, LT0, End);
81
82 CGF->Builder.SetInsertPoint(LT0);
83
84 CGF->Builder.CreateIntrinsic(Intrinsic::spv_discard, {});
85
86 LastInstr = CGF->Builder.CreateBr(End);
87 CGF->Builder.SetInsertPoint(End);
88 } else {
89 llvm_unreachable("Backend Codegen not supported.");
90 }
91
92 return LastInstr;
93}
94
96 Value *Op0 = CGF->EmitScalarExpr(E->getArg(0));
97 const auto *OutArg1 = dyn_cast<HLSLOutArgExpr>(E->getArg(1));
98 const auto *OutArg2 = dyn_cast<HLSLOutArgExpr>(E->getArg(2));
99
100 CallArgList Args;
101 LValue Op1TmpLValue =
102 CGF->EmitHLSLOutArgExpr(OutArg1, Args, OutArg1->getType());
103 LValue Op2TmpLValue =
104 CGF->EmitHLSLOutArgExpr(OutArg2, Args, OutArg2->getType());
105
107 Args.reverseWritebacks();
108
109 Value *LowBits = nullptr;
110 Value *HighBits = nullptr;
111
112 if (CGF->CGM.getTarget().getTriple().isDXIL()) {
113 llvm::Type *RetElementTy = CGF->Int32Ty;
114 if (auto *Op0VecTy = E->getArg(0)->getType()->getAs<clang::VectorType>())
115 RetElementTy = llvm::VectorType::get(
116 CGF->Int32Ty, ElementCount::getFixed(Op0VecTy->getNumElements()));
117 auto *RetTy = llvm::StructType::get(RetElementTy, RetElementTy);
118
119 CallInst *CI = CGF->Builder.CreateIntrinsic(
120 RetTy, Intrinsic::dx_splitdouble, {Op0}, nullptr, "hlsl.splitdouble");
121
122 LowBits = CGF->Builder.CreateExtractValue(CI, 0);
123 HighBits = CGF->Builder.CreateExtractValue(CI, 1);
124 } else {
125 // For Non DXIL targets we generate the instructions.
126
127 if (!Op0->getType()->isVectorTy()) {
128 FixedVectorType *DestTy = FixedVectorType::get(CGF->Int32Ty, 2);
129 Value *Bitcast = CGF->Builder.CreateBitCast(Op0, DestTy);
130
131 LowBits = CGF->Builder.CreateExtractElement(Bitcast, (uint64_t)0);
132 HighBits = CGF->Builder.CreateExtractElement(Bitcast, 1);
133 } else {
134 int NumElements = 1;
135 if (const auto *VecTy =
137 NumElements = VecTy->getNumElements();
138
139 FixedVectorType *Uint32VecTy =
140 FixedVectorType::get(CGF->Int32Ty, NumElements * 2);
141 Value *Uint32Vec = CGF->Builder.CreateBitCast(Op0, Uint32VecTy);
142 if (NumElements == 1) {
143 LowBits = CGF->Builder.CreateExtractElement(Uint32Vec, (uint64_t)0);
144 HighBits = CGF->Builder.CreateExtractElement(Uint32Vec, 1);
145 } else {
146 SmallVector<int> EvenMask, OddMask;
147 for (int I = 0, E = NumElements; I != E; ++I) {
148 EvenMask.push_back(I * 2);
149 OddMask.push_back(I * 2 + 1);
150 }
151 LowBits = CGF->Builder.CreateShuffleVector(Uint32Vec, EvenMask);
152 HighBits = CGF->Builder.CreateShuffleVector(Uint32Vec, OddMask);
153 }
154 }
155 }
156 CGF->Builder.CreateStore(LowBits, Op1TmpLValue.getAddress());
157 auto *LastInst =
158 CGF->Builder.CreateStore(HighBits, Op2TmpLValue.getAddress());
159 CGF->EmitWritebacks(Args);
160 return LastInst;
161}
162
163// Return dot product intrinsic that corresponds to the QT scalar type
164static Intrinsic::ID getDotProductIntrinsic(CGHLSLRuntime &RT, QualType QT) {
165 if (QT->isFloatingType())
166 return RT.getFDotIntrinsic();
167 if (QT->isSignedIntegerType())
168 return RT.getSDotIntrinsic();
169 assert(QT->isUnsignedIntegerType());
170 return RT.getUDotIntrinsic();
171}
172
173static Intrinsic::ID getFirstBitHighIntrinsic(CGHLSLRuntime &RT, QualType QT) {
175 return RT.getFirstBitSHighIntrinsic();
176 }
177
179 return RT.getFirstBitUHighIntrinsic();
180}
181
182// Return wave active sum that corresponds to the QT scalar type
183static Intrinsic::ID getWaveActiveSumIntrinsic(llvm::Triple::ArchType Arch,
184 CGHLSLRuntime &RT, QualType QT) {
185 switch (Arch) {
186 case llvm::Triple::spirv:
187 return Intrinsic::spv_wave_reduce_sum;
188 case llvm::Triple::dxil: {
189 if (QT->isUnsignedIntegerType())
190 return Intrinsic::dx_wave_reduce_usum;
191 return Intrinsic::dx_wave_reduce_sum;
192 }
193 default:
194 llvm_unreachable("Intrinsic WaveActiveSum"
195 " not supported by target architecture");
196 }
197}
198
199// Return wave active sum that corresponds to the QT scalar type
200static Intrinsic::ID getWaveActiveMaxIntrinsic(llvm::Triple::ArchType Arch,
201 CGHLSLRuntime &RT, QualType QT) {
202 switch (Arch) {
203 case llvm::Triple::spirv:
204 if (QT->isUnsignedIntegerType())
205 return Intrinsic::spv_wave_reduce_umax;
206 return Intrinsic::spv_wave_reduce_max;
207 case llvm::Triple::dxil: {
208 if (QT->isUnsignedIntegerType())
209 return Intrinsic::dx_wave_reduce_umax;
210 return Intrinsic::dx_wave_reduce_max;
211 }
212 default:
213 llvm_unreachable("Intrinsic WaveActiveMax"
214 " not supported by target architecture");
215 }
216}
217
218// Returns the mangled name for a builtin function that the SPIR-V backend
219// will expand into a spec Constant.
220static std::string getSpecConstantFunctionName(clang::QualType SpecConstantType,
221 ASTContext &Context) {
222 // The parameter types for our conceptual intrinsic function.
223 QualType ClangParamTypes[] = {Context.IntTy, SpecConstantType};
224
225 // Create a temporary FunctionDecl for the builtin fuction. It won't be
226 // added to the AST.
228 QualType FnType =
229 Context.getFunctionType(SpecConstantType, ClangParamTypes, EPI);
230 DeclarationName FuncName = &Context.Idents.get("__spirv_SpecConstant");
231 FunctionDecl *FnDeclForMangling = FunctionDecl::Create(
232 Context, Context.getTranslationUnitDecl(), SourceLocation(),
233 SourceLocation(), FuncName, FnType, /*TSI=*/nullptr, SC_Extern);
234
235 // Attach the created parameter declarations to the function declaration.
237 for (QualType ParamType : ClangParamTypes) {
239 Context, FnDeclForMangling, SourceLocation(), SourceLocation(),
240 /*IdentifierInfo*/ nullptr, ParamType, /*TSI*/ nullptr, SC_None,
241 /*DefaultArg*/ nullptr);
242 ParamDecls.push_back(PD);
243 }
244 FnDeclForMangling->setParams(ParamDecls);
245
246 // Get the mangled name.
247 std::string Name;
248 llvm::raw_string_ostream MangledNameStream(Name);
249 std::unique_ptr<MangleContext> Mangler(Context.createMangleContext());
250 Mangler->mangleName(FnDeclForMangling, MangledNameStream);
251 MangledNameStream.flush();
252
253 return Name;
254}
255
257 const CallExpr *E,
259 if (!getLangOpts().HLSL)
260 return nullptr;
261
262 switch (BuiltinID) {
263 case Builtin::BI__builtin_hlsl_adduint64: {
264 Value *OpA = EmitScalarExpr(E->getArg(0));
265 Value *OpB = EmitScalarExpr(E->getArg(1));
266 QualType Arg0Ty = E->getArg(0)->getType();
267 uint64_t NumElements = Arg0Ty->castAs<VectorType>()->getNumElements();
268 assert(Arg0Ty == E->getArg(1)->getType() &&
269 "AddUint64 operand types must match");
270 assert(Arg0Ty->hasIntegerRepresentation() &&
271 "AddUint64 operands must have an integer representation");
272 assert((NumElements == 2 || NumElements == 4) &&
273 "AddUint64 operands must have 2 or 4 elements");
274
275 llvm::Value *LowA;
276 llvm::Value *HighA;
277 llvm::Value *LowB;
278 llvm::Value *HighB;
279
280 // Obtain low and high words of inputs A and B
281 if (NumElements == 2) {
282 LowA = Builder.CreateExtractElement(OpA, (uint64_t)0, "LowA");
283 HighA = Builder.CreateExtractElement(OpA, (uint64_t)1, "HighA");
284 LowB = Builder.CreateExtractElement(OpB, (uint64_t)0, "LowB");
285 HighB = Builder.CreateExtractElement(OpB, (uint64_t)1, "HighB");
286 } else {
287 LowA = Builder.CreateShuffleVector(OpA, {0, 2}, "LowA");
288 HighA = Builder.CreateShuffleVector(OpA, {1, 3}, "HighA");
289 LowB = Builder.CreateShuffleVector(OpB, {0, 2}, "LowB");
290 HighB = Builder.CreateShuffleVector(OpB, {1, 3}, "HighB");
291 }
292
293 // Use an uadd_with_overflow to compute the sum of low words and obtain a
294 // carry value
295 llvm::Value *Carry;
296 llvm::Value *LowSum = EmitOverflowIntrinsic(
297 *this, Intrinsic::uadd_with_overflow, LowA, LowB, Carry);
298 llvm::Value *ZExtCarry =
299 Builder.CreateZExt(Carry, HighA->getType(), "CarryZExt");
300
301 // Sum the high words and the carry
302 llvm::Value *HighSum = Builder.CreateAdd(HighA, HighB, "HighSum");
303 llvm::Value *HighSumPlusCarry =
304 Builder.CreateAdd(HighSum, ZExtCarry, "HighSumPlusCarry");
305
306 if (NumElements == 4) {
307 return Builder.CreateShuffleVector(LowSum, HighSumPlusCarry, {0, 2, 1, 3},
308 "hlsl.AddUint64");
309 }
310
311 llvm::Value *Result = PoisonValue::get(OpA->getType());
312 Result = Builder.CreateInsertElement(Result, LowSum, (uint64_t)0,
313 "hlsl.AddUint64.upto0");
314 Result = Builder.CreateInsertElement(Result, HighSumPlusCarry, (uint64_t)1,
315 "hlsl.AddUint64");
316 return Result;
317 }
318 case Builtin::BI__builtin_hlsl_resource_getpointer: {
319 Value *HandleOp = EmitScalarExpr(E->getArg(0));
320 Value *IndexOp = EmitScalarExpr(E->getArg(1));
321
322 llvm::Type *RetTy = ConvertType(E->getType());
323 return Builder.CreateIntrinsic(
324 RetTy, CGM.getHLSLRuntime().getCreateResourceGetPointerIntrinsic(),
325 ArrayRef<Value *>{HandleOp, IndexOp});
326 }
327 case Builtin::BI__builtin_hlsl_resource_uninitializedhandle: {
328 llvm::Type *HandleTy = CGM.getTypes().ConvertType(E->getType());
329 return llvm::PoisonValue::get(HandleTy);
330 }
331 case Builtin::BI__builtin_hlsl_resource_handlefrombinding: {
332 llvm::Type *HandleTy = CGM.getTypes().ConvertType(E->getType());
333 Value *RegisterOp = EmitScalarExpr(E->getArg(1));
334 Value *SpaceOp = EmitScalarExpr(E->getArg(2));
335 Value *RangeOp = EmitScalarExpr(E->getArg(3));
336 Value *IndexOp = EmitScalarExpr(E->getArg(4));
337 Value *Name = EmitScalarExpr(E->getArg(5));
338 llvm::Intrinsic::ID IntrinsicID =
339 CGM.getHLSLRuntime().getCreateHandleFromBindingIntrinsic();
340 SmallVector<Value *> Args{SpaceOp, RegisterOp, RangeOp, IndexOp, Name};
341 return Builder.CreateIntrinsic(HandleTy, IntrinsicID, Args);
342 }
343 case Builtin::BI__builtin_hlsl_resource_handlefromimplicitbinding: {
344 llvm::Type *HandleTy = CGM.getTypes().ConvertType(E->getType());
345 Value *OrderID = EmitScalarExpr(E->getArg(1));
346 Value *SpaceOp = EmitScalarExpr(E->getArg(2));
347 Value *RangeOp = EmitScalarExpr(E->getArg(3));
348 Value *IndexOp = EmitScalarExpr(E->getArg(4));
349 Value *Name = EmitScalarExpr(E->getArg(5));
350 llvm::Intrinsic::ID IntrinsicID =
351 CGM.getHLSLRuntime().getCreateHandleFromImplicitBindingIntrinsic();
352 SmallVector<Value *> Args{OrderID, SpaceOp, RangeOp, IndexOp, Name};
353 return Builder.CreateIntrinsic(HandleTy, IntrinsicID, Args);
354 }
355 case Builtin::BI__builtin_hlsl_resource_counterhandlefromimplicitbinding: {
356 Value *MainHandle = EmitScalarExpr(E->getArg(0));
357 if (!CGM.getTriple().isSPIRV())
358 return MainHandle;
359
360 llvm::Type *HandleTy = CGM.getTypes().ConvertType(E->getType());
361 Value *OrderID = EmitScalarExpr(E->getArg(1));
362 Value *SpaceOp = EmitScalarExpr(E->getArg(2));
363 llvm::Intrinsic::ID IntrinsicID =
364 llvm::Intrinsic::spv_resource_counterhandlefromimplicitbinding;
365 SmallVector<Value *> Args{MainHandle, OrderID, SpaceOp};
366 return Builder.CreateIntrinsic(HandleTy, IntrinsicID, Args);
367 }
368 case Builtin::BI__builtin_hlsl_resource_nonuniformindex: {
369 Value *IndexOp = EmitScalarExpr(E->getArg(0));
370 llvm::Type *RetTy = ConvertType(E->getType());
371 return Builder.CreateIntrinsic(
372 RetTy, CGM.getHLSLRuntime().getNonUniformResourceIndexIntrinsic(),
373 ArrayRef<Value *>{IndexOp});
374 }
375 case Builtin::BI__builtin_hlsl_all: {
376 Value *Op0 = EmitScalarExpr(E->getArg(0));
377 return Builder.CreateIntrinsic(
378 /*ReturnType=*/llvm::Type::getInt1Ty(getLLVMContext()),
379 CGM.getHLSLRuntime().getAllIntrinsic(), ArrayRef<Value *>{Op0}, nullptr,
380 "hlsl.all");
381 }
382 case Builtin::BI__builtin_hlsl_and: {
383 Value *Op0 = EmitScalarExpr(E->getArg(0));
384 Value *Op1 = EmitScalarExpr(E->getArg(1));
385 return Builder.CreateAnd(Op0, Op1, "hlsl.and");
386 }
387 case Builtin::BI__builtin_hlsl_or: {
388 Value *Op0 = EmitScalarExpr(E->getArg(0));
389 Value *Op1 = EmitScalarExpr(E->getArg(1));
390 return Builder.CreateOr(Op0, Op1, "hlsl.or");
391 }
392 case Builtin::BI__builtin_hlsl_any: {
393 Value *Op0 = EmitScalarExpr(E->getArg(0));
394 return Builder.CreateIntrinsic(
395 /*ReturnType=*/llvm::Type::getInt1Ty(getLLVMContext()),
396 CGM.getHLSLRuntime().getAnyIntrinsic(), ArrayRef<Value *>{Op0}, nullptr,
397 "hlsl.any");
398 }
399 case Builtin::BI__builtin_hlsl_asdouble:
400 return handleAsDoubleBuiltin(*this, E);
401 case Builtin::BI__builtin_hlsl_elementwise_clamp: {
402 Value *OpX = EmitScalarExpr(E->getArg(0));
403 Value *OpMin = EmitScalarExpr(E->getArg(1));
404 Value *OpMax = EmitScalarExpr(E->getArg(2));
405
406 QualType Ty = E->getArg(0)->getType();
407 if (auto *VecTy = Ty->getAs<VectorType>())
408 Ty = VecTy->getElementType();
409
410 Intrinsic::ID Intr;
411 if (Ty->isFloatingType()) {
412 Intr = CGM.getHLSLRuntime().getNClampIntrinsic();
413 } else if (Ty->isUnsignedIntegerType()) {
414 Intr = CGM.getHLSLRuntime().getUClampIntrinsic();
415 } else {
416 assert(Ty->isSignedIntegerType());
417 Intr = CGM.getHLSLRuntime().getSClampIntrinsic();
418 }
419 return Builder.CreateIntrinsic(
420 /*ReturnType=*/OpX->getType(), Intr,
421 ArrayRef<Value *>{OpX, OpMin, OpMax}, nullptr, "hlsl.clamp");
422 }
423 case Builtin::BI__builtin_hlsl_crossf16:
424 case Builtin::BI__builtin_hlsl_crossf32: {
425 Value *Op0 = EmitScalarExpr(E->getArg(0));
426 Value *Op1 = EmitScalarExpr(E->getArg(1));
427 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
429 "cross operands must have a float representation");
430 // make sure each vector has exactly 3 elements
431 assert(
432 E->getArg(0)->getType()->castAs<VectorType>()->getNumElements() == 3 &&
433 E->getArg(1)->getType()->castAs<VectorType>()->getNumElements() == 3 &&
434 "input vectors must have 3 elements each");
435 return Builder.CreateIntrinsic(
436 /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getCrossIntrinsic(),
437 ArrayRef<Value *>{Op0, Op1}, nullptr, "hlsl.cross");
438 }
439 case Builtin::BI__builtin_hlsl_dot: {
440 Value *Op0 = EmitScalarExpr(E->getArg(0));
441 Value *Op1 = EmitScalarExpr(E->getArg(1));
442 llvm::Type *T0 = Op0->getType();
443 llvm::Type *T1 = Op1->getType();
444
445 // If the arguments are scalars, just emit a multiply
446 if (!T0->isVectorTy() && !T1->isVectorTy()) {
447 if (T0->isFloatingPointTy())
448 return Builder.CreateFMul(Op0, Op1, "hlsl.dot");
449
450 if (T0->isIntegerTy())
451 return Builder.CreateMul(Op0, Op1, "hlsl.dot");
452
453 llvm_unreachable(
454 "Scalar dot product is only supported on ints and floats.");
455 }
456 // For vectors, validate types and emit the appropriate intrinsic
457 assert(CGM.getContext().hasSameUnqualifiedType(E->getArg(0)->getType(),
458 E->getArg(1)->getType()) &&
459 "Dot product operands must have the same type.");
460
461 auto *VecTy0 = E->getArg(0)->getType()->castAs<VectorType>();
462 assert(VecTy0 && "Dot product argument must be a vector.");
463
464 return Builder.CreateIntrinsic(
465 /*ReturnType=*/T0->getScalarType(),
466 getDotProductIntrinsic(CGM.getHLSLRuntime(), VecTy0->getElementType()),
467 ArrayRef<Value *>{Op0, Op1}, nullptr, "hlsl.dot");
468 }
469 case Builtin::BI__builtin_hlsl_dot4add_i8packed: {
470 Value *X = EmitScalarExpr(E->getArg(0));
471 Value *Y = EmitScalarExpr(E->getArg(1));
472 Value *Acc = EmitScalarExpr(E->getArg(2));
473
474 Intrinsic::ID ID = CGM.getHLSLRuntime().getDot4AddI8PackedIntrinsic();
475 // Note that the argument order disagrees between the builtin and the
476 // intrinsic here.
477 return Builder.CreateIntrinsic(
478 /*ReturnType=*/Acc->getType(), ID, ArrayRef<Value *>{Acc, X, Y},
479 nullptr, "hlsl.dot4add.i8packed");
480 }
481 case Builtin::BI__builtin_hlsl_dot4add_u8packed: {
482 Value *X = EmitScalarExpr(E->getArg(0));
483 Value *Y = EmitScalarExpr(E->getArg(1));
484 Value *Acc = EmitScalarExpr(E->getArg(2));
485
486 Intrinsic::ID ID = CGM.getHLSLRuntime().getDot4AddU8PackedIntrinsic();
487 // Note that the argument order disagrees between the builtin and the
488 // intrinsic here.
489 return Builder.CreateIntrinsic(
490 /*ReturnType=*/Acc->getType(), ID, ArrayRef<Value *>{Acc, X, Y},
491 nullptr, "hlsl.dot4add.u8packed");
492 }
493 case Builtin::BI__builtin_hlsl_elementwise_firstbithigh: {
494 Value *X = EmitScalarExpr(E->getArg(0));
495
496 return Builder.CreateIntrinsic(
497 /*ReturnType=*/ConvertType(E->getType()),
498 getFirstBitHighIntrinsic(CGM.getHLSLRuntime(), E->getArg(0)->getType()),
499 ArrayRef<Value *>{X}, nullptr, "hlsl.firstbithigh");
500 }
501 case Builtin::BI__builtin_hlsl_elementwise_firstbitlow: {
502 Value *X = EmitScalarExpr(E->getArg(0));
503
504 return Builder.CreateIntrinsic(
505 /*ReturnType=*/ConvertType(E->getType()),
506 CGM.getHLSLRuntime().getFirstBitLowIntrinsic(), ArrayRef<Value *>{X},
507 nullptr, "hlsl.firstbitlow");
508 }
509 case Builtin::BI__builtin_hlsl_lerp: {
510 Value *X = EmitScalarExpr(E->getArg(0));
511 Value *Y = EmitScalarExpr(E->getArg(1));
512 Value *S = EmitScalarExpr(E->getArg(2));
514 llvm_unreachable("lerp operand must have a float representation");
515 return Builder.CreateIntrinsic(
516 /*ReturnType=*/X->getType(), CGM.getHLSLRuntime().getLerpIntrinsic(),
517 ArrayRef<Value *>{X, Y, S}, nullptr, "hlsl.lerp");
518 }
519 case Builtin::BI__builtin_hlsl_normalize: {
520 Value *X = EmitScalarExpr(E->getArg(0));
521
522 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
523 "normalize operand must have a float representation");
524
525 return Builder.CreateIntrinsic(
526 /*ReturnType=*/X->getType(),
527 CGM.getHLSLRuntime().getNormalizeIntrinsic(), ArrayRef<Value *>{X},
528 nullptr, "hlsl.normalize");
529 }
530 case Builtin::BI__builtin_hlsl_elementwise_degrees: {
531 Value *X = EmitScalarExpr(E->getArg(0));
532
533 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
534 "degree operand must have a float representation");
535
536 return Builder.CreateIntrinsic(
537 /*ReturnType=*/X->getType(), CGM.getHLSLRuntime().getDegreesIntrinsic(),
538 ArrayRef<Value *>{X}, nullptr, "hlsl.degrees");
539 }
540 case Builtin::BI__builtin_hlsl_elementwise_frac: {
541 Value *Op0 = EmitScalarExpr(E->getArg(0));
543 llvm_unreachable("frac operand must have a float representation");
544 return Builder.CreateIntrinsic(
545 /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getFracIntrinsic(),
546 ArrayRef<Value *>{Op0}, nullptr, "hlsl.frac");
547 }
548 case Builtin::BI__builtin_hlsl_elementwise_isinf: {
549 Value *Op0 = EmitScalarExpr(E->getArg(0));
550 llvm::Type *Xty = Op0->getType();
551 llvm::Type *retType = llvm::Type::getInt1Ty(this->getLLVMContext());
552 if (Xty->isVectorTy()) {
553 auto *XVecTy = E->getArg(0)->getType()->castAs<VectorType>();
554 retType = llvm::VectorType::get(
555 retType, ElementCount::getFixed(XVecTy->getNumElements()));
556 }
558 llvm_unreachable("isinf operand must have a float representation");
559 return Builder.CreateIntrinsic(
560 retType, CGM.getHLSLRuntime().getIsInfIntrinsic(),
561 ArrayRef<Value *>{Op0}, nullptr, "hlsl.isinf");
562 }
563 case Builtin::BI__builtin_hlsl_elementwise_isnan: {
564 Value *Op0 = EmitScalarExpr(E->getArg(0));
565 llvm::Type *Xty = Op0->getType();
566 llvm::Type *retType = llvm::Type::getInt1Ty(this->getLLVMContext());
567 if (Xty->isVectorTy()) {
568 auto *XVecTy = E->getArg(0)->getType()->castAs<VectorType>();
569 retType = llvm::VectorType::get(
570 retType, ElementCount::getFixed(XVecTy->getNumElements()));
571 }
573 llvm_unreachable("isnan operand must have a float representation");
574 return Builder.CreateIntrinsic(
575 retType, CGM.getHLSLRuntime().getIsNaNIntrinsic(),
576 ArrayRef<Value *>{Op0}, nullptr, "hlsl.isnan");
577 }
578 case Builtin::BI__builtin_hlsl_mad: {
579 Value *M = EmitScalarExpr(E->getArg(0));
580 Value *A = EmitScalarExpr(E->getArg(1));
581 Value *B = EmitScalarExpr(E->getArg(2));
583 return Builder.CreateIntrinsic(
584 /*ReturnType*/ M->getType(), Intrinsic::fmuladd,
585 ArrayRef<Value *>{M, A, B}, nullptr, "hlsl.fmad");
586
588 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil)
589 return Builder.CreateIntrinsic(
590 /*ReturnType*/ M->getType(), Intrinsic::dx_imad,
591 ArrayRef<Value *>{M, A, B}, nullptr, "dx.imad");
592
593 Value *Mul = Builder.CreateNSWMul(M, A);
594 return Builder.CreateNSWAdd(Mul, B);
595 }
597 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil)
598 return Builder.CreateIntrinsic(
599 /*ReturnType=*/M->getType(), Intrinsic::dx_umad,
600 ArrayRef<Value *>{M, A, B}, nullptr, "dx.umad");
601
602 Value *Mul = Builder.CreateNUWMul(M, A);
603 return Builder.CreateNUWAdd(Mul, B);
604 }
605 case Builtin::BI__builtin_hlsl_elementwise_rcp: {
606 Value *Op0 = EmitScalarExpr(E->getArg(0));
608 llvm_unreachable("rcp operand must have a float representation");
609 llvm::Type *Ty = Op0->getType();
610 llvm::Type *EltTy = Ty->getScalarType();
611 Constant *One = Ty->isVectorTy()
612 ? ConstantVector::getSplat(
613 ElementCount::getFixed(
614 cast<FixedVectorType>(Ty)->getNumElements()),
615 ConstantFP::get(EltTy, 1.0))
616 : ConstantFP::get(EltTy, 1.0);
617 return Builder.CreateFDiv(One, Op0, "hlsl.rcp");
618 }
619 case Builtin::BI__builtin_hlsl_elementwise_rsqrt: {
620 Value *Op0 = EmitScalarExpr(E->getArg(0));
622 llvm_unreachable("rsqrt operand must have a float representation");
623 return Builder.CreateIntrinsic(
624 /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getRsqrtIntrinsic(),
625 ArrayRef<Value *>{Op0}, nullptr, "hlsl.rsqrt");
626 }
627 case Builtin::BI__builtin_hlsl_elementwise_saturate: {
628 Value *Op0 = EmitScalarExpr(E->getArg(0));
629 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
630 "saturate operand must have a float representation");
631 return Builder.CreateIntrinsic(
632 /*ReturnType=*/Op0->getType(),
633 CGM.getHLSLRuntime().getSaturateIntrinsic(), ArrayRef<Value *>{Op0},
634 nullptr, "hlsl.saturate");
635 }
636 case Builtin::BI__builtin_hlsl_select: {
637 Value *OpCond = EmitScalarExpr(E->getArg(0));
638 RValue RValTrue = EmitAnyExpr(E->getArg(1));
639 Value *OpTrue =
640 RValTrue.isScalar()
641 ? RValTrue.getScalarVal()
642 : Builder.CreateLoad(RValTrue.getAggregateAddress(), "true_val");
643 RValue RValFalse = EmitAnyExpr(E->getArg(2));
644 Value *OpFalse =
645 RValFalse.isScalar()
646 ? RValFalse.getScalarVal()
647 : Builder.CreateLoad(RValFalse.getAggregateAddress(), "false_val");
648 if (auto *VTy = E->getType()->getAs<VectorType>()) {
649 if (!OpTrue->getType()->isVectorTy())
650 OpTrue =
651 Builder.CreateVectorSplat(VTy->getNumElements(), OpTrue, "splat");
652 if (!OpFalse->getType()->isVectorTy())
653 OpFalse =
654 Builder.CreateVectorSplat(VTy->getNumElements(), OpFalse, "splat");
655 }
656
657 Value *SelectVal =
658 Builder.CreateSelect(OpCond, OpTrue, OpFalse, "hlsl.select");
659 if (!RValTrue.isScalar())
660 Builder.CreateStore(SelectVal, ReturnValue.getAddress(),
661 ReturnValue.isVolatile());
662
663 return SelectVal;
664 }
665 case Builtin::BI__builtin_hlsl_step: {
666 Value *Op0 = EmitScalarExpr(E->getArg(0));
667 Value *Op1 = EmitScalarExpr(E->getArg(1));
668 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
670 "step operands must have a float representation");
671 return Builder.CreateIntrinsic(
672 /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getStepIntrinsic(),
673 ArrayRef<Value *>{Op0, Op1}, nullptr, "hlsl.step");
674 }
675 case Builtin::BI__builtin_hlsl_wave_active_all_true: {
676 Value *Op = EmitScalarExpr(E->getArg(0));
677 assert(Op->getType()->isIntegerTy(1) &&
678 "Intrinsic WaveActiveAllTrue operand must be a bool");
679
680 Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveAllTrueIntrinsic();
681 return EmitRuntimeCall(
682 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID), {Op});
683 }
684 case Builtin::BI__builtin_hlsl_wave_active_any_true: {
685 Value *Op = EmitScalarExpr(E->getArg(0));
686 assert(Op->getType()->isIntegerTy(1) &&
687 "Intrinsic WaveActiveAnyTrue operand must be a bool");
688
689 Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveAnyTrueIntrinsic();
690 return EmitRuntimeCall(
691 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID), {Op});
692 }
693 case Builtin::BI__builtin_hlsl_wave_active_count_bits: {
694 Value *OpExpr = EmitScalarExpr(E->getArg(0));
695 Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveCountBitsIntrinsic();
696 return EmitRuntimeCall(
697 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID),
698 ArrayRef{OpExpr});
699 }
700 case Builtin::BI__builtin_hlsl_wave_active_sum: {
701 // Due to the use of variadic arguments, explicitly retreive argument
702 Value *OpExpr = EmitScalarExpr(E->getArg(0));
703 Intrinsic::ID IID = getWaveActiveSumIntrinsic(
704 getTarget().getTriple().getArch(), CGM.getHLSLRuntime(),
705 E->getArg(0)->getType());
706
707 return EmitRuntimeCall(Intrinsic::getOrInsertDeclaration(
708 &CGM.getModule(), IID, {OpExpr->getType()}),
709 ArrayRef{OpExpr}, "hlsl.wave.active.sum");
710 }
711 case Builtin::BI__builtin_hlsl_wave_active_max: {
712 // Due to the use of variadic arguments, explicitly retreive argument
713 Value *OpExpr = EmitScalarExpr(E->getArg(0));
714 Intrinsic::ID IID = getWaveActiveMaxIntrinsic(
715 getTarget().getTriple().getArch(), CGM.getHLSLRuntime(),
716 E->getArg(0)->getType());
717
718 return EmitRuntimeCall(Intrinsic::getOrInsertDeclaration(
719 &CGM.getModule(), IID, {OpExpr->getType()}),
720 ArrayRef{OpExpr}, "hlsl.wave.active.max");
721 }
722 case Builtin::BI__builtin_hlsl_wave_get_lane_index: {
723 // We don't define a SPIR-V intrinsic, instead it is a SPIR-V built-in
724 // defined in SPIRVBuiltins.td. So instead we manually get the matching name
725 // for the DirectX intrinsic and the demangled builtin name
726 switch (CGM.getTarget().getTriple().getArch()) {
727 case llvm::Triple::dxil:
728 return EmitRuntimeCall(Intrinsic::getOrInsertDeclaration(
729 &CGM.getModule(), Intrinsic::dx_wave_getlaneindex));
730 case llvm::Triple::spirv:
731 return EmitRuntimeCall(CGM.CreateRuntimeFunction(
732 llvm::FunctionType::get(IntTy, {}, false),
733 "__hlsl_wave_get_lane_index", {}, false, true));
734 default:
735 llvm_unreachable(
736 "Intrinsic WaveGetLaneIndex not supported by target architecture");
737 }
738 }
739 case Builtin::BI__builtin_hlsl_wave_is_first_lane: {
740 Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveIsFirstLaneIntrinsic();
741 return EmitRuntimeCall(
742 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID));
743 }
744 case Builtin::BI__builtin_hlsl_wave_get_lane_count: {
745 Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveGetLaneCountIntrinsic();
746 return EmitRuntimeCall(
747 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID));
748 }
749 case Builtin::BI__builtin_hlsl_wave_read_lane_at: {
750 // Due to the use of variadic arguments we must explicitly retreive them and
751 // create our function type.
752 Value *OpExpr = EmitScalarExpr(E->getArg(0));
753 Value *OpIndex = EmitScalarExpr(E->getArg(1));
754 return EmitRuntimeCall(
755 Intrinsic::getOrInsertDeclaration(
756 &CGM.getModule(), CGM.getHLSLRuntime().getWaveReadLaneAtIntrinsic(),
757 {OpExpr->getType()}),
758 ArrayRef{OpExpr, OpIndex}, "hlsl.wave.readlane");
759 }
760 case Builtin::BI__builtin_hlsl_elementwise_sign: {
761 auto *Arg0 = E->getArg(0);
762 Value *Op0 = EmitScalarExpr(Arg0);
763 llvm::Type *Xty = Op0->getType();
764 llvm::Type *retType = llvm::Type::getInt32Ty(this->getLLVMContext());
765 if (Xty->isVectorTy()) {
766 auto *XVecTy = Arg0->getType()->castAs<VectorType>();
767 retType = llvm::VectorType::get(
768 retType, ElementCount::getFixed(XVecTy->getNumElements()));
769 }
770 assert((Arg0->getType()->hasFloatingRepresentation() ||
771 Arg0->getType()->hasIntegerRepresentation()) &&
772 "sign operand must have a float or int representation");
773
774 if (Arg0->getType()->hasUnsignedIntegerRepresentation()) {
775 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::get(Xty, 0));
776 return Builder.CreateSelect(Cmp, ConstantInt::get(retType, 0),
777 ConstantInt::get(retType, 1), "hlsl.sign");
778 }
779
780 return Builder.CreateIntrinsic(
781 retType, CGM.getHLSLRuntime().getSignIntrinsic(),
782 ArrayRef<Value *>{Op0}, nullptr, "hlsl.sign");
783 }
784 case Builtin::BI__builtin_hlsl_elementwise_radians: {
785 Value *Op0 = EmitScalarExpr(E->getArg(0));
786 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
787 "radians operand must have a float representation");
788 return Builder.CreateIntrinsic(
789 /*ReturnType=*/Op0->getType(),
790 CGM.getHLSLRuntime().getRadiansIntrinsic(), ArrayRef<Value *>{Op0},
791 nullptr, "hlsl.radians");
792 }
793 case Builtin::BI__builtin_hlsl_buffer_update_counter: {
794 Value *ResHandle = EmitScalarExpr(E->getArg(0));
795 Value *Offset = EmitScalarExpr(E->getArg(1));
796 Value *OffsetI8 = Builder.CreateIntCast(Offset, Int8Ty, true);
797 return Builder.CreateIntrinsic(
798 /*ReturnType=*/Offset->getType(),
799 CGM.getHLSLRuntime().getBufferUpdateCounterIntrinsic(),
800 ArrayRef<Value *>{ResHandle, OffsetI8}, nullptr);
801 }
802 case Builtin::BI__builtin_hlsl_elementwise_splitdouble: {
803
804 assert((E->getArg(0)->getType()->hasFloatingRepresentation() &&
807 "asuint operands types mismatch");
808 return handleHlslSplitdouble(E, this);
809 }
810 case Builtin::BI__builtin_hlsl_elementwise_clip:
811 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
812 "clip operands types mismatch");
813 return handleHlslClip(E, this);
814 case Builtin::BI__builtin_hlsl_group_memory_barrier_with_group_sync: {
815 Intrinsic::ID ID =
816 CGM.getHLSLRuntime().getGroupMemoryBarrierWithGroupSyncIntrinsic();
817 return EmitRuntimeCall(
818 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID));
819 }
820 case Builtin::BI__builtin_get_spirv_spec_constant_bool:
821 case Builtin::BI__builtin_get_spirv_spec_constant_short:
822 case Builtin::BI__builtin_get_spirv_spec_constant_ushort:
823 case Builtin::BI__builtin_get_spirv_spec_constant_int:
824 case Builtin::BI__builtin_get_spirv_spec_constant_uint:
825 case Builtin::BI__builtin_get_spirv_spec_constant_longlong:
826 case Builtin::BI__builtin_get_spirv_spec_constant_ulonglong:
827 case Builtin::BI__builtin_get_spirv_spec_constant_half:
828 case Builtin::BI__builtin_get_spirv_spec_constant_float:
829 case Builtin::BI__builtin_get_spirv_spec_constant_double: {
830 llvm::Function *SpecConstantFn = getSpecConstantFunction(E->getType());
831 llvm::Value *SpecId = EmitScalarExpr(E->getArg(0));
832 llvm::Value *DefaultVal = EmitScalarExpr(E->getArg(1));
833 llvm::Value *Args[] = {SpecId, DefaultVal};
834 return Builder.CreateCall(SpecConstantFn, Args);
835 }
836 }
837 return nullptr;
838}
839
841 const clang::QualType &SpecConstantType) {
842
843 // Find or create the declaration for the function.
844 llvm::Module *M = &CGM.getModule();
845 std::string MangledName =
846 getSpecConstantFunctionName(SpecConstantType, getContext());
847 llvm::Function *SpecConstantFn = M->getFunction(MangledName);
848
849 if (!SpecConstantFn) {
850 llvm::Type *IntType = ConvertType(getContext().IntTy);
851 llvm::Type *RetTy = ConvertType(SpecConstantType);
852 llvm::Type *ArgTypes[] = {IntType, RetTy};
853 llvm::FunctionType *FnTy = llvm::FunctionType::get(RetTy, ArgTypes, false);
854 SpecConstantFn = llvm::Function::Create(
855 FnTy, llvm::GlobalValue::ExternalLinkage, MangledName, M);
856 }
857 return SpecConstantFn;
858}
llvm::Value * EmitOverflowIntrinsic(CodeGenFunction &CGF, const Intrinsic::ID IntrinsicID, llvm::Value *X, llvm::Value *Y, llvm::Value *&Carry)
Emit a call to llvm.
static Intrinsic::ID getWaveActiveSumIntrinsic(llvm::Triple::ArchType Arch, CGHLSLRuntime &RT, QualType QT)
static Intrinsic::ID getWaveActiveMaxIntrinsic(llvm::Triple::ArchType Arch, CGHLSLRuntime &RT, QualType QT)
static Intrinsic::ID getDotProductIntrinsic(CGHLSLRuntime &RT, QualType QT)
static std::string getSpecConstantFunctionName(clang::QualType SpecConstantType, ASTContext &Context)
static Value * handleHlslSplitdouble(const CallExpr *E, CodeGenFunction *CGF)
static Intrinsic::ID getFirstBitHighIntrinsic(CGHLSLRuntime &RT, QualType QT)
static Value * handleAsDoubleBuiltin(CodeGenFunction &CGF, const CallExpr *E)
static Value * handleHlslClip(const CallExpr *E, CodeGenFunction *CGF)
#define X(type, name)
Definition Value.h:97
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition ASTContext.h:220
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition Expr.h:2877
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition Expr.h:3081
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition CGBuilder.h:140
CallArgList - Type for representing both the value and type of arguments in a call.
Definition CGCall.h:274
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::Type * ConvertType(QualType T)
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
const LangOptions & getLangOpts() const
const TargetInfo & getTarget() const
llvm::Function * getSpecConstantFunction(const clang::QualType &SpecConstantType)
LValue EmitHLSLOutArgExpr(const HLSLOutArgExpr *E, CallArgList &Args, QualType Ty)
Definition CGExpr.cpp:6047
void EmitWritebacks(const CallArgList &Args)
EmitWriteback - Emit callbacks for function.
Definition CGCall.cpp:4867
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition CGExpr.cpp:265
llvm::CallInst * EmitRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type,...
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
llvm::LLVMContext & getLLVMContext()
llvm::Value * EmitHLSLBuiltinExpr(unsigned BuiltinID, const CallExpr *E, ReturnValueSlot ReturnValue)
CGHLSLRuntime & getHLSLRuntime()
Return a reference to the configured HLSL runtime.
const TargetInfo & getTarget() const
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition CGValue.h:42
bool isScalar() const
Definition CGValue.h:64
Address getAggregateAddress() const
getAggregateAddr() - Return the Value* of the address of the aggregate.
Definition CGValue.h:83
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition CGValue.h:71
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Definition CGCall.h:379
The name of a declaration.
QualType getType() const
Definition Expr.h:144
Represents a function declaration or definition.
Definition Decl.h:2000
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin=false, bool isInlineSpecified=false, bool hasWrittenPrototype=true, ConstexprSpecKind ConstexprKind=ConstexprSpecKind::Unspecified, const AssociatedConstraint &TrailingRequiresClause={})
Definition Decl.h:2189
Represents a parameter to a function.
Definition Decl.h:1790
static ParmVarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
Definition Decl.cpp:2946
A (possibly-)qualified type.
Definition TypeBase.h:937
Encodes a location in the source.
bool areArgsDestroyedLeftToRightInCallee() const
Are arguments to a call destroyed left to right in the callee?
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char,...
Definition Type.cpp:2205
bool hasIntegerRepresentation() const
Determine whether this type has an integer representation of some sort, e.g., it is an integer type o...
Definition Type.cpp:2066
const T * castAs() const
Member-template castAs<specific type>.
Definition TypeBase.h:9170
bool hasUnsignedIntegerRepresentation() const
Determine whether this type has an unsigned integer representation of some sort, e....
Definition Type.cpp:2291
bool hasSignedIntegerRepresentation() const
Determine whether this type has an signed integer representation of some sort, e.g....
Definition Type.cpp:2243
bool hasFloatingRepresentation() const
Determine whether this type has a floating-point representation of some sort, e.g....
Definition Type.cpp:2312
bool isVectorType() const
Definition TypeBase.h:8666
bool isFloatingType() const
Definition Type.cpp:2304
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition Type.cpp:2253
const T * getAs() const
Member-template getAs<specific type>'.
Definition TypeBase.h:9103
QualType getType() const
Definition Value.cpp:237
Represents a GCC generic vector type.
Definition TypeBase.h:4175
unsigned getNumElements() const
Definition TypeBase.h:4190
The JSON file list parser is used to communicate input to InstallAPI.
@ SC_Extern
Definition Specifiers.h:251
@ SC_None
Definition Specifiers.h:250
@ Result
The result type of a method or function.
Definition TypeBase.h:905
U cast(CodeGen::Address addr)
Definition Address.h:327
Diagnostic wrappers for TextAPI types for error reporting.
Definition Dominators.h:30
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Extra information about a function prototype.
Definition TypeBase.h:5351