clang 23.0.0git
CGHLSLBuiltins.cpp
Go to the documentation of this file.
1//===------- CGHLSLBuiltins.cpp - Emit LLVM Code for HLSL builtins --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit HLSL Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGBuiltin.h"
14#include "CGHLSLRuntime.h"
15#include "CodeGenFunction.h"
16
17using namespace clang;
18using namespace CodeGen;
19using namespace llvm;
20
24 "asdouble operands types mismatch");
25 Value *OpLowBits = CGF.EmitScalarExpr(E->getArg(0));
26 Value *OpHighBits = CGF.EmitScalarExpr(E->getArg(1));
27
28 llvm::Type *ResultType = CGF.DoubleTy;
29 int N = 1;
30 if (auto *VTy = E->getArg(0)->getType()->getAs<clang::VectorType>()) {
31 N = VTy->getNumElements();
32 ResultType = llvm::FixedVectorType::get(CGF.DoubleTy, N);
33 }
34
35 if (CGF.CGM.getTarget().getTriple().isDXIL())
36 return CGF.Builder.CreateIntrinsic(
37 /*ReturnType=*/ResultType, Intrinsic::dx_asdouble,
38 {OpLowBits, OpHighBits}, nullptr, "hlsl.asdouble");
39
40 if (!E->getArg(0)->getType()->isVectorType()) {
41 OpLowBits = CGF.Builder.CreateVectorSplat(1, OpLowBits);
42 OpHighBits = CGF.Builder.CreateVectorSplat(1, OpHighBits);
43 }
44
46 for (int i = 0; i < N; i++) {
47 Mask.push_back(i);
48 Mask.push_back(i + N);
49 }
50
51 Value *BitVec = CGF.Builder.CreateShuffleVector(OpLowBits, OpHighBits, Mask);
52
53 return CGF.Builder.CreateBitCast(BitVec, ResultType);
54}
55
57 Value *Op0 = CGF->EmitScalarExpr(E->getArg(0));
58
59 Constant *FZeroConst = ConstantFP::getZero(CGF->FloatTy);
60 Value *CMP;
61 Value *LastInstr;
62
63 if (const auto *VecTy = E->getArg(0)->getType()->getAs<clang::VectorType>()) {
64 FZeroConst = ConstantVector::getSplat(
65 ElementCount::getFixed(VecTy->getNumElements()), FZeroConst);
66 auto *FCompInst = CGF->Builder.CreateFCmpOLT(Op0, FZeroConst);
67 CMP = CGF->Builder.CreateIntrinsic(
68 CGF->Builder.getInt1Ty(), CGF->CGM.getHLSLRuntime().getAnyIntrinsic(),
69 {FCompInst});
70 } else {
71 CMP = CGF->Builder.CreateFCmpOLT(Op0, FZeroConst);
72 }
73
74 if (CGF->CGM.getTarget().getTriple().isDXIL()) {
75 LastInstr = CGF->Builder.CreateIntrinsic(Intrinsic::dx_discard, {CMP});
76 } else if (CGF->CGM.getTarget().getTriple().isSPIRV()) {
77 BasicBlock *LT0 = CGF->createBasicBlock("lt0", CGF->CurFn);
78 BasicBlock *End = CGF->createBasicBlock("end", CGF->CurFn);
79
80 CGF->Builder.CreateCondBr(CMP, LT0, End);
81
82 CGF->Builder.SetInsertPoint(LT0);
83
84 CGF->Builder.CreateIntrinsic(Intrinsic::spv_discard, {});
85
86 LastInstr = CGF->Builder.CreateBr(End);
87 CGF->Builder.SetInsertPoint(End);
88 } else {
89 llvm_unreachable("Backend Codegen not supported.");
90 }
91
92 return LastInstr;
93}
94
96 Value *Op0 = CGF->EmitScalarExpr(E->getArg(0));
97 const auto *OutArg1 = dyn_cast<HLSLOutArgExpr>(E->getArg(1));
98 const auto *OutArg2 = dyn_cast<HLSLOutArgExpr>(E->getArg(2));
99
100 CallArgList Args;
101 LValue Op1TmpLValue =
102 CGF->EmitHLSLOutArgExpr(OutArg1, Args, OutArg1->getType());
103 LValue Op2TmpLValue =
104 CGF->EmitHLSLOutArgExpr(OutArg2, Args, OutArg2->getType());
105
107 Args.reverseWritebacks();
108
109 Value *LowBits = nullptr;
110 Value *HighBits = nullptr;
111
112 if (CGF->CGM.getTarget().getTriple().isDXIL()) {
113 llvm::Type *RetElementTy = CGF->Int32Ty;
114 if (auto *Op0VecTy = E->getArg(0)->getType()->getAs<clang::VectorType>())
115 RetElementTy = llvm::VectorType::get(
116 CGF->Int32Ty, ElementCount::getFixed(Op0VecTy->getNumElements()));
117 auto *RetTy = llvm::StructType::get(RetElementTy, RetElementTy);
118
119 CallInst *CI = CGF->Builder.CreateIntrinsic(
120 RetTy, Intrinsic::dx_splitdouble, {Op0}, nullptr, "hlsl.splitdouble");
121
122 LowBits = CGF->Builder.CreateExtractValue(CI, 0);
123 HighBits = CGF->Builder.CreateExtractValue(CI, 1);
124 } else {
125 // For Non DXIL targets we generate the instructions.
126
127 if (!Op0->getType()->isVectorTy()) {
128 FixedVectorType *DestTy = FixedVectorType::get(CGF->Int32Ty, 2);
129 Value *Bitcast = CGF->Builder.CreateBitCast(Op0, DestTy);
130
131 LowBits = CGF->Builder.CreateExtractElement(Bitcast, (uint64_t)0);
132 HighBits = CGF->Builder.CreateExtractElement(Bitcast, 1);
133 } else {
134 int NumElements = 1;
135 if (const auto *VecTy =
137 NumElements = VecTy->getNumElements();
138
139 FixedVectorType *Uint32VecTy =
140 FixedVectorType::get(CGF->Int32Ty, NumElements * 2);
141 Value *Uint32Vec = CGF->Builder.CreateBitCast(Op0, Uint32VecTy);
142 if (NumElements == 1) {
143 LowBits = CGF->Builder.CreateExtractElement(Uint32Vec, (uint64_t)0);
144 HighBits = CGF->Builder.CreateExtractElement(Uint32Vec, 1);
145 } else {
146 SmallVector<int> EvenMask, OddMask;
147 for (int I = 0, E = NumElements; I != E; ++I) {
148 EvenMask.push_back(I * 2);
149 OddMask.push_back(I * 2 + 1);
150 }
151 LowBits = CGF->Builder.CreateShuffleVector(Uint32Vec, EvenMask);
152 HighBits = CGF->Builder.CreateShuffleVector(Uint32Vec, OddMask);
153 }
154 }
155 }
156 CGF->Builder.CreateStore(LowBits, Op1TmpLValue.getAddress());
157 auto *LastInst =
158 CGF->Builder.CreateStore(HighBits, Op2TmpLValue.getAddress());
159 CGF->EmitWritebacks(Args);
160 return LastInst;
161}
162
164 const CallExpr *E) {
165 Value *Cond = CGF.EmitScalarExpr(E->getArg(0));
166 llvm::Type *I32 = CGF.Int32Ty;
167
168 llvm::Type *Vec4I32 = llvm::FixedVectorType::get(I32, 4);
169 [[maybe_unused]] llvm::StructType *Struct4I32 =
170 llvm::StructType::get(CGF.getLLVMContext(), {I32, I32, I32, I32});
171
172 if (CGF.CGM.getTarget().getTriple().isDXIL()) {
173 // Call DXIL intrinsic: returns { i32, i32, i32, i32 }
174 llvm::Function *Fn = CGF.CGM.getIntrinsic(Intrinsic::dx_wave_ballot, {I32});
175
176 Value *StructVal = CGF.EmitRuntimeCall(Fn, Cond);
177 assert(StructVal->getType() == Struct4I32 &&
178 "dx.wave.ballot must return {i32,i32,i32,i32}");
179
180 // Reassemble struct to <4 x i32>
181 llvm::Value *VecVal = llvm::PoisonValue::get(Vec4I32);
182 for (unsigned I = 0; I < 4; ++I) {
183 Value *Elt = CGF.Builder.CreateExtractValue(StructVal, I);
184 VecVal =
185 CGF.Builder.CreateInsertElement(VecVal, Elt, CGF.Builder.getInt32(I));
186 }
187
188 return VecVal;
189 }
190
191 if (CGF.CGM.getTarget().getTriple().isSPIRV())
192 return CGF.EmitRuntimeCall(
193 CGF.CGM.getIntrinsic(Intrinsic::spv_subgroup_ballot), Cond);
194
195 llvm_unreachable(
196 "WaveActiveBallot is only supported for DXIL and SPIRV targets");
197}
198
200 const CallExpr *E) {
201 Value *Op0 = CGF.EmitScalarExpr(E->getArg(0));
202 QualType Op0Ty = E->getArg(0)->getType();
203 llvm::Type *ResType = CGF.FloatTy;
204 uint64_t NumElements = 0;
205 if (Op0->getType()->isVectorTy()) {
206 NumElements =
207 E->getArg(0)->getType()->castAs<clang::VectorType>()->getNumElements();
208 ResType =
209 llvm::VectorType::get(ResType, ElementCount::getFixed(NumElements));
210 }
212 llvm_unreachable(
213 "f16tof32 operand must have an unsigned int representation");
214
215 if (CGF.CGM.getTriple().isDXIL())
216 return CGF.Builder.CreateIntrinsic(ResType, Intrinsic::dx_legacyf16tof32,
217 ArrayRef<Value *>{Op0}, nullptr,
218 "hlsl.f16tof32");
219
220 if (CGF.CGM.getTriple().isSPIRV()) {
221 // We use the SPIRV UnpackHalf2x16 operation to avoid the need for the
222 // Int16 and Float16 capabilities
223 auto *UnpackType =
224 llvm::VectorType::get(CGF.FloatTy, ElementCount::getFixed(2));
225
226 if (NumElements == 0) {
227 // a scalar input - simply extract the first element of the unpacked
228 // vector
229 Value *Unpack = CGF.Builder.CreateIntrinsic(
230 UnpackType, Intrinsic::spv_unpackhalf2x16, ArrayRef<Value *>{Op0});
231 return CGF.Builder.CreateExtractElement(Unpack, (uint64_t)0);
232 }
233
234 // a vector input - build a congruent output vector by iterating through
235 // the input vector calling unpackhalf2x16 for each element
236 Value *Result = PoisonValue::get(ResType);
237 for (uint64_t I = 0; I < NumElements; I++) {
238 Value *InVal = CGF.Builder.CreateExtractElement(Op0, I);
239 Value *Unpack = CGF.Builder.CreateIntrinsic(
240 UnpackType, Intrinsic::spv_unpackhalf2x16, ArrayRef<Value *>{InVal});
241 Value *Res = CGF.Builder.CreateExtractElement(Unpack, (uint64_t)0);
242 Result = CGF.Builder.CreateInsertElement(Result, Res, I);
243 }
244 return Result;
245 }
246
247 llvm_unreachable("Intrinsic F16ToF32 not supported by target architecture");
248}
249
251 const CallExpr *E) {
252 Value *Op0 = CGF.EmitScalarExpr(E->getArg(0));
253 QualType Op0Ty = E->getArg(0)->getType();
254 llvm::Type *ResType = CGF.IntTy;
255 uint64_t NumElements = 0;
256 if (Op0->getType()->isVectorTy()) {
257 NumElements =
258 E->getArg(0)->getType()->castAs<clang::VectorType>()->getNumElements();
259 ResType =
260 llvm::VectorType::get(ResType, ElementCount::getFixed(NumElements));
261 }
262 if (!Op0Ty->hasFloatingRepresentation())
263 llvm_unreachable("f32tof16 operand must have a float representation");
264
265 if (CGF.CGM.getTriple().isDXIL())
266 return CGF.Builder.CreateIntrinsic(ResType, Intrinsic::dx_legacyf32tof16,
267 ArrayRef<Value *>{Op0}, nullptr,
268 "hlsl.f32tof16");
269
270 if (CGF.CGM.getTriple().isSPIRV()) {
271 // We use the SPIRV PackHalf2x16 operation to avoid the need for the
272 // Int16 and Float16 capabilities
273 auto *PackType =
274 llvm::VectorType::get(CGF.FloatTy, ElementCount::getFixed(2));
275
276 if (NumElements == 0) {
277 // a scalar input - simply insert the scalar in the first element
278 // of the 2 element float vector
279 Value *Float2 = Constant::getNullValue(PackType);
280 Float2 = CGF.Builder.CreateInsertElement(Float2, Op0, (uint64_t)0);
281 Value *Result = CGF.Builder.CreateIntrinsic(
282 ResType, Intrinsic::spv_packhalf2x16, ArrayRef<Value *>{Float2});
283 return Result;
284 }
285
286 // a vector input - build a congruent output vector by iterating through
287 // the input vector calling packhalf2x16 for each element
288 Value *Result = PoisonValue::get(ResType);
289 for (uint64_t I = 0; I < NumElements; I++) {
290 Value *Float2 = Constant::getNullValue(PackType);
291 Value *InVal = CGF.Builder.CreateExtractElement(Op0, I);
292 Float2 = CGF.Builder.CreateInsertElement(Float2, InVal, (uint64_t)0);
293 Value *Res = CGF.Builder.CreateIntrinsic(
294 CGF.IntTy, Intrinsic::spv_packhalf2x16, ArrayRef<Value *>{Float2});
295 Result = CGF.Builder.CreateInsertElement(Result, Res, I);
296 }
297 return Result;
298 }
299
300 llvm_unreachable("Intrinsic F32ToF16 not supported by target architecture");
301}
302
303static Value *emitBufferStride(CodeGenFunction *CGF, const Expr *HandleExpr,
304 LValue &Stride) {
305 // Figure out the stride of the buffer elements from the handle type.
306 auto *HandleTy =
308 QualType ElementTy = HandleTy->getContainedType();
309 Value *StrideValue = CGF->getTypeSize(ElementTy);
310 return CGF->Builder.CreateStore(StrideValue, Stride.getAddress());
311}
312
313// Return dot product intrinsic that corresponds to the QT scalar type
314static Intrinsic::ID getDotProductIntrinsic(CGHLSLRuntime &RT, QualType QT) {
315 if (QT->isFloatingType())
316 return RT.getFDotIntrinsic();
317 if (QT->isSignedIntegerType())
318 return RT.getSDotIntrinsic();
319 assert(QT->isUnsignedIntegerType());
320 return RT.getUDotIntrinsic();
321}
322
323static Intrinsic::ID getFirstBitHighIntrinsic(CGHLSLRuntime &RT, QualType QT) {
325 return RT.getFirstBitSHighIntrinsic();
326 }
327
329 return RT.getFirstBitUHighIntrinsic();
330}
331
332// Return wave active sum that corresponds to the QT scalar type
333static Intrinsic::ID getWaveActiveSumIntrinsic(llvm::Triple::ArchType Arch,
334 CGHLSLRuntime &RT, QualType QT) {
335 switch (Arch) {
336 case llvm::Triple::spirv:
337 return Intrinsic::spv_wave_reduce_sum;
338 case llvm::Triple::dxil: {
339 if (QT->isUnsignedIntegerType())
340 return Intrinsic::dx_wave_reduce_usum;
341 return Intrinsic::dx_wave_reduce_sum;
342 }
343 default:
344 llvm_unreachable("Intrinsic WaveActiveSum"
345 " not supported by target architecture");
346 }
347}
348
349// Return wave active max that corresponds to the QT scalar type
350static Intrinsic::ID getWaveActiveMaxIntrinsic(llvm::Triple::ArchType Arch,
351 CGHLSLRuntime &RT, QualType QT) {
352 switch (Arch) {
353 case llvm::Triple::spirv:
354 if (QT->isUnsignedIntegerType())
355 return Intrinsic::spv_wave_reduce_umax;
356 return Intrinsic::spv_wave_reduce_max;
357 case llvm::Triple::dxil: {
358 if (QT->isUnsignedIntegerType())
359 return Intrinsic::dx_wave_reduce_umax;
360 return Intrinsic::dx_wave_reduce_max;
361 }
362 default:
363 llvm_unreachable("Intrinsic WaveActiveMax"
364 " not supported by target architecture");
365 }
366}
367
368// Return wave active min that corresponds to the QT scalar type
369static Intrinsic::ID getWaveActiveMinIntrinsic(llvm::Triple::ArchType Arch,
370 CGHLSLRuntime &RT, QualType QT) {
371 switch (Arch) {
372 case llvm::Triple::spirv:
373 if (QT->isUnsignedIntegerType())
374 return Intrinsic::spv_wave_reduce_umin;
375 return Intrinsic::spv_wave_reduce_min;
376 case llvm::Triple::dxil: {
377 if (QT->isUnsignedIntegerType())
378 return Intrinsic::dx_wave_reduce_umin;
379 return Intrinsic::dx_wave_reduce_min;
380 }
381 default:
382 llvm_unreachable("Intrinsic WaveActiveMin"
383 " not supported by target architecture");
384 }
385}
386
387// Returns the mangled name for a builtin function that the SPIR-V backend
388// will expand into a spec Constant.
389static std::string getSpecConstantFunctionName(clang::QualType SpecConstantType,
390 ASTContext &Context) {
391 // The parameter types for our conceptual intrinsic function.
392 QualType ClangParamTypes[] = {Context.IntTy, SpecConstantType};
393
394 // Create a temporary FunctionDecl for the builtin fuction. It won't be
395 // added to the AST.
397 QualType FnType =
398 Context.getFunctionType(SpecConstantType, ClangParamTypes, EPI);
399 DeclarationName FuncName = &Context.Idents.get("__spirv_SpecConstant");
400 FunctionDecl *FnDeclForMangling = FunctionDecl::Create(
401 Context, Context.getTranslationUnitDecl(), SourceLocation(),
402 SourceLocation(), FuncName, FnType, /*TSI=*/nullptr, SC_Extern);
403
404 // Attach the created parameter declarations to the function declaration.
406 for (QualType ParamType : ClangParamTypes) {
408 Context, FnDeclForMangling, SourceLocation(), SourceLocation(),
409 /*IdentifierInfo*/ nullptr, ParamType, /*TSI*/ nullptr, SC_None,
410 /*DefaultArg*/ nullptr);
411 ParamDecls.push_back(PD);
412 }
413 FnDeclForMangling->setParams(ParamDecls);
414
415 // Get the mangled name.
416 std::string Name;
417 llvm::raw_string_ostream MangledNameStream(Name);
418 std::unique_ptr<MangleContext> Mangler(Context.createMangleContext());
419 Mangler->mangleName(FnDeclForMangling, MangledNameStream);
420 MangledNameStream.flush();
421
422 return Name;
423}
424
426 const CallExpr *E,
428 if (!getLangOpts().HLSL)
429 return nullptr;
430
431 switch (BuiltinID) {
432 case Builtin::BI__builtin_hlsl_adduint64: {
433 Value *OpA = EmitScalarExpr(E->getArg(0));
434 Value *OpB = EmitScalarExpr(E->getArg(1));
435 QualType Arg0Ty = E->getArg(0)->getType();
436 uint64_t NumElements = Arg0Ty->castAs<VectorType>()->getNumElements();
437 assert(Arg0Ty == E->getArg(1)->getType() &&
438 "AddUint64 operand types must match");
439 assert(Arg0Ty->hasIntegerRepresentation() &&
440 "AddUint64 operands must have an integer representation");
441 assert((NumElements == 2 || NumElements == 4) &&
442 "AddUint64 operands must have 2 or 4 elements");
443
444 llvm::Value *LowA;
445 llvm::Value *HighA;
446 llvm::Value *LowB;
447 llvm::Value *HighB;
448
449 // Obtain low and high words of inputs A and B
450 if (NumElements == 2) {
451 LowA = Builder.CreateExtractElement(OpA, (uint64_t)0, "LowA");
452 HighA = Builder.CreateExtractElement(OpA, (uint64_t)1, "HighA");
453 LowB = Builder.CreateExtractElement(OpB, (uint64_t)0, "LowB");
454 HighB = Builder.CreateExtractElement(OpB, (uint64_t)1, "HighB");
455 } else {
456 LowA = Builder.CreateShuffleVector(OpA, {0, 2}, "LowA");
457 HighA = Builder.CreateShuffleVector(OpA, {1, 3}, "HighA");
458 LowB = Builder.CreateShuffleVector(OpB, {0, 2}, "LowB");
459 HighB = Builder.CreateShuffleVector(OpB, {1, 3}, "HighB");
460 }
461
462 // Use an uadd_with_overflow to compute the sum of low words and obtain a
463 // carry value
464 llvm::Value *Carry;
465 llvm::Value *LowSum = EmitOverflowIntrinsic(
466 *this, Intrinsic::uadd_with_overflow, LowA, LowB, Carry);
467 llvm::Value *ZExtCarry =
468 Builder.CreateZExt(Carry, HighA->getType(), "CarryZExt");
469
470 // Sum the high words and the carry
471 llvm::Value *HighSum = Builder.CreateAdd(HighA, HighB, "HighSum");
472 llvm::Value *HighSumPlusCarry =
473 Builder.CreateAdd(HighSum, ZExtCarry, "HighSumPlusCarry");
474
475 if (NumElements == 4) {
476 return Builder.CreateShuffleVector(LowSum, HighSumPlusCarry, {0, 2, 1, 3},
477 "hlsl.AddUint64");
478 }
479
480 llvm::Value *Result = PoisonValue::get(OpA->getType());
481 Result = Builder.CreateInsertElement(Result, LowSum, (uint64_t)0,
482 "hlsl.AddUint64.upto0");
483 Result = Builder.CreateInsertElement(Result, HighSumPlusCarry, (uint64_t)1,
484 "hlsl.AddUint64");
485 return Result;
486 }
487 case Builtin::BI__builtin_hlsl_resource_getpointer: {
488 Value *HandleOp = EmitScalarExpr(E->getArg(0));
489 Value *IndexOp = EmitScalarExpr(E->getArg(1));
490
491 llvm::Type *RetTy = ConvertType(E->getType());
492 return Builder.CreateIntrinsic(
493 RetTy, CGM.getHLSLRuntime().getCreateResourceGetPointerIntrinsic(),
494 ArrayRef<Value *>{HandleOp, IndexOp});
495 }
496 case Builtin::BI__builtin_hlsl_resource_load_with_status: {
497 Value *HandleOp = EmitScalarExpr(E->getArg(0));
498 Value *IndexOp = EmitScalarExpr(E->getArg(1));
499
500 // Get the *address* of the status argument to write to it by reference
501 LValue StatusLVal = EmitLValue(E->getArg(2));
502 Address StatusAddr = StatusLVal.getAddress();
503
504 QualType HandleTy = E->getArg(0)->getType();
505 const HLSLAttributedResourceType *RT =
506 HandleTy->getAs<HLSLAttributedResourceType>();
507 assert(CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil &&
508 "Only DXIL currently implements load with status");
509
510 Intrinsic::ID IntrID = RT->getAttrs().RawBuffer
511 ? llvm::Intrinsic::dx_resource_load_rawbuffer
512 : llvm::Intrinsic::dx_resource_load_typedbuffer;
513
514 llvm::Type *DataTy = ConvertType(E->getType());
515 llvm::Type *RetTy = llvm::StructType::get(Builder.getContext(),
516 {DataTy, Builder.getInt1Ty()});
517
519 Args.push_back(HandleOp);
520 Args.push_back(IndexOp);
521
522 if (RT->getAttrs().RawBuffer) {
523 Value *Offset = Builder.getInt32(0);
524 Args.push_back(Offset);
525 }
526
527 // The load intrinsics give us a (T value, i1 status) pair -
528 // shepherd these into the return value and out reference respectively.
529 Value *ResRet =
530 Builder.CreateIntrinsic(RetTy, IntrID, Args, {}, "ld.struct");
531 Value *LoadedValue = Builder.CreateExtractValue(ResRet, {0}, "ld.value");
532 Value *StatusBit = Builder.CreateExtractValue(ResRet, {1}, "ld.status");
533 Value *ExtendedStatus =
534 Builder.CreateZExt(StatusBit, Builder.getInt32Ty(), "ld.status.ext");
535 Builder.CreateStore(ExtendedStatus, StatusAddr);
536
537 return LoadedValue;
538 }
539 case Builtin::BI__builtin_hlsl_resource_uninitializedhandle: {
540 llvm::Type *HandleTy = CGM.getTypes().ConvertType(E->getType());
541 return llvm::PoisonValue::get(HandleTy);
542 }
543 case Builtin::BI__builtin_hlsl_resource_handlefrombinding: {
544 llvm::Type *HandleTy = CGM.getTypes().ConvertType(E->getType());
545 Value *RegisterOp = EmitScalarExpr(E->getArg(1));
546 Value *SpaceOp = EmitScalarExpr(E->getArg(2));
547 Value *RangeOp = EmitScalarExpr(E->getArg(3));
548 Value *IndexOp = EmitScalarExpr(E->getArg(4));
549 Value *Name = EmitScalarExpr(E->getArg(5));
550 llvm::Intrinsic::ID IntrinsicID =
551 CGM.getHLSLRuntime().getCreateHandleFromBindingIntrinsic();
552 SmallVector<Value *> Args{SpaceOp, RegisterOp, RangeOp, IndexOp, Name};
553 return Builder.CreateIntrinsic(HandleTy, IntrinsicID, Args);
554 }
555 case Builtin::BI__builtin_hlsl_resource_handlefromimplicitbinding: {
556 llvm::Type *HandleTy = CGM.getTypes().ConvertType(E->getType());
557 Value *OrderID = EmitScalarExpr(E->getArg(1));
558 Value *SpaceOp = EmitScalarExpr(E->getArg(2));
559 Value *RangeOp = EmitScalarExpr(E->getArg(3));
560 Value *IndexOp = EmitScalarExpr(E->getArg(4));
561 Value *Name = EmitScalarExpr(E->getArg(5));
562 llvm::Intrinsic::ID IntrinsicID =
563 CGM.getHLSLRuntime().getCreateHandleFromImplicitBindingIntrinsic();
564 SmallVector<Value *> Args{OrderID, SpaceOp, RangeOp, IndexOp, Name};
565 return Builder.CreateIntrinsic(HandleTy, IntrinsicID, Args);
566 }
567 case Builtin::BI__builtin_hlsl_resource_counterhandlefromimplicitbinding: {
568 Value *MainHandle = EmitScalarExpr(E->getArg(0));
569 if (!CGM.getTriple().isSPIRV())
570 return MainHandle;
571
572 llvm::Type *HandleTy = CGM.getTypes().ConvertType(E->getType());
573 Value *OrderID = EmitScalarExpr(E->getArg(1));
574 Value *SpaceOp = EmitScalarExpr(E->getArg(2));
575 llvm::Intrinsic::ID IntrinsicID =
576 llvm::Intrinsic::spv_resource_counterhandlefromimplicitbinding;
577 SmallVector<Value *> Args{MainHandle, OrderID, SpaceOp};
578 return Builder.CreateIntrinsic(HandleTy, IntrinsicID, Args);
579 }
580 case Builtin::BI__builtin_hlsl_resource_nonuniformindex: {
581 Value *IndexOp = EmitScalarExpr(E->getArg(0));
582 llvm::Type *RetTy = ConvertType(E->getType());
583 return Builder.CreateIntrinsic(
584 RetTy, CGM.getHLSLRuntime().getNonUniformResourceIndexIntrinsic(),
585 ArrayRef<Value *>{IndexOp});
586 }
587 case Builtin::BI__builtin_hlsl_resource_getdimensions_x: {
588 Value *Handle = EmitScalarExpr(E->getArg(0));
589 LValue Dim = EmitLValue(E->getArg(1));
590 llvm::Type *RetTy = llvm::Type::getInt32Ty(getLLVMContext());
591 Value *DimValue = Builder.CreateIntrinsic(
592 RetTy, CGM.getHLSLRuntime().getGetDimensionsXIntrinsic(),
593 ArrayRef<Value *>{Handle});
594 return Builder.CreateStore(DimValue, Dim.getAddress());
595 }
596 case Builtin::BI__builtin_hlsl_resource_getstride: {
597 LValue Stride = EmitLValue(E->getArg(1));
598 return emitBufferStride(this, E->getArg(0), Stride);
599 }
600 case Builtin::BI__builtin_hlsl_all: {
601 Value *Op0 = EmitScalarExpr(E->getArg(0));
602 return Builder.CreateIntrinsic(
603 /*ReturnType=*/llvm::Type::getInt1Ty(getLLVMContext()),
604 CGM.getHLSLRuntime().getAllIntrinsic(), ArrayRef<Value *>{Op0}, nullptr,
605 "hlsl.all");
606 }
607 case Builtin::BI__builtin_hlsl_and: {
608 Value *Op0 = EmitScalarExpr(E->getArg(0));
609 Value *Op1 = EmitScalarExpr(E->getArg(1));
610 return Builder.CreateAnd(Op0, Op1, "hlsl.and");
611 }
612 case Builtin::BI__builtin_hlsl_or: {
613 Value *Op0 = EmitScalarExpr(E->getArg(0));
614 Value *Op1 = EmitScalarExpr(E->getArg(1));
615 return Builder.CreateOr(Op0, Op1, "hlsl.or");
616 }
617 case Builtin::BI__builtin_hlsl_any: {
618 Value *Op0 = EmitScalarExpr(E->getArg(0));
619 return Builder.CreateIntrinsic(
620 /*ReturnType=*/llvm::Type::getInt1Ty(getLLVMContext()),
621 CGM.getHLSLRuntime().getAnyIntrinsic(), ArrayRef<Value *>{Op0}, nullptr,
622 "hlsl.any");
623 }
624 case Builtin::BI__builtin_hlsl_asdouble:
625 return handleAsDoubleBuiltin(*this, E);
626 case Builtin::BI__builtin_hlsl_elementwise_clamp: {
627 Value *OpX = EmitScalarExpr(E->getArg(0));
628 Value *OpMin = EmitScalarExpr(E->getArg(1));
629 Value *OpMax = EmitScalarExpr(E->getArg(2));
630
631 QualType Ty = E->getArg(0)->getType();
632 if (auto *VecTy = Ty->getAs<VectorType>())
633 Ty = VecTy->getElementType();
634
635 Intrinsic::ID Intr;
636 if (Ty->isFloatingType()) {
637 Intr = CGM.getHLSLRuntime().getNClampIntrinsic();
638 } else if (Ty->isUnsignedIntegerType()) {
639 Intr = CGM.getHLSLRuntime().getUClampIntrinsic();
640 } else {
641 assert(Ty->isSignedIntegerType());
642 Intr = CGM.getHLSLRuntime().getSClampIntrinsic();
643 }
644 return Builder.CreateIntrinsic(
645 /*ReturnType=*/OpX->getType(), Intr,
646 ArrayRef<Value *>{OpX, OpMin, OpMax}, nullptr, "hlsl.clamp");
647 }
648 case Builtin::BI__builtin_hlsl_crossf16:
649 case Builtin::BI__builtin_hlsl_crossf32: {
650 Value *Op0 = EmitScalarExpr(E->getArg(0));
651 Value *Op1 = EmitScalarExpr(E->getArg(1));
652 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
654 "cross operands must have a float representation");
655 // make sure each vector has exactly 3 elements
656 assert(
657 E->getArg(0)->getType()->castAs<VectorType>()->getNumElements() == 3 &&
658 E->getArg(1)->getType()->castAs<VectorType>()->getNumElements() == 3 &&
659 "input vectors must have 3 elements each");
660 return Builder.CreateIntrinsic(
661 /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getCrossIntrinsic(),
662 ArrayRef<Value *>{Op0, Op1}, nullptr, "hlsl.cross");
663 }
664 case Builtin::BI__builtin_hlsl_dot: {
665 Value *Op0 = EmitScalarExpr(E->getArg(0));
666 Value *Op1 = EmitScalarExpr(E->getArg(1));
667 llvm::Type *T0 = Op0->getType();
668 llvm::Type *T1 = Op1->getType();
669
670 // If the arguments are scalars, just emit a multiply
671 if (!T0->isVectorTy() && !T1->isVectorTy()) {
672 if (T0->isFloatingPointTy())
673 return Builder.CreateFMul(Op0, Op1, "hlsl.dot");
674
675 if (T0->isIntegerTy())
676 return Builder.CreateMul(Op0, Op1, "hlsl.dot");
677
678 llvm_unreachable(
679 "Scalar dot product is only supported on ints and floats.");
680 }
681 // For vectors, validate types and emit the appropriate intrinsic
682 assert(CGM.getContext().hasSameUnqualifiedType(E->getArg(0)->getType(),
683 E->getArg(1)->getType()) &&
684 "Dot product operands must have the same type.");
685
686 auto *VecTy0 = E->getArg(0)->getType()->castAs<VectorType>();
687 assert(VecTy0 && "Dot product argument must be a vector.");
688
689 return Builder.CreateIntrinsic(
690 /*ReturnType=*/T0->getScalarType(),
691 getDotProductIntrinsic(CGM.getHLSLRuntime(), VecTy0->getElementType()),
692 ArrayRef<Value *>{Op0, Op1}, nullptr, "hlsl.dot");
693 }
694 case Builtin::BI__builtin_hlsl_dot4add_i8packed: {
695 Value *X = EmitScalarExpr(E->getArg(0));
696 Value *Y = EmitScalarExpr(E->getArg(1));
697 Value *Acc = EmitScalarExpr(E->getArg(2));
698
699 Intrinsic::ID ID = CGM.getHLSLRuntime().getDot4AddI8PackedIntrinsic();
700 // Note that the argument order disagrees between the builtin and the
701 // intrinsic here.
702 return Builder.CreateIntrinsic(
703 /*ReturnType=*/Acc->getType(), ID, ArrayRef<Value *>{Acc, X, Y},
704 nullptr, "hlsl.dot4add.i8packed");
705 }
706 case Builtin::BI__builtin_hlsl_dot4add_u8packed: {
707 Value *X = EmitScalarExpr(E->getArg(0));
708 Value *Y = EmitScalarExpr(E->getArg(1));
709 Value *Acc = EmitScalarExpr(E->getArg(2));
710
711 Intrinsic::ID ID = CGM.getHLSLRuntime().getDot4AddU8PackedIntrinsic();
712 // Note that the argument order disagrees between the builtin and the
713 // intrinsic here.
714 return Builder.CreateIntrinsic(
715 /*ReturnType=*/Acc->getType(), ID, ArrayRef<Value *>{Acc, X, Y},
716 nullptr, "hlsl.dot4add.u8packed");
717 }
718 case Builtin::BI__builtin_hlsl_elementwise_firstbithigh: {
719 Value *X = EmitScalarExpr(E->getArg(0));
720
721 return Builder.CreateIntrinsic(
722 /*ReturnType=*/ConvertType(E->getType()),
723 getFirstBitHighIntrinsic(CGM.getHLSLRuntime(), E->getArg(0)->getType()),
724 ArrayRef<Value *>{X}, nullptr, "hlsl.firstbithigh");
725 }
726 case Builtin::BI__builtin_hlsl_elementwise_firstbitlow: {
727 Value *X = EmitScalarExpr(E->getArg(0));
728
729 return Builder.CreateIntrinsic(
730 /*ReturnType=*/ConvertType(E->getType()),
731 CGM.getHLSLRuntime().getFirstBitLowIntrinsic(), ArrayRef<Value *>{X},
732 nullptr, "hlsl.firstbitlow");
733 }
734 case Builtin::BI__builtin_hlsl_lerp: {
735 Value *X = EmitScalarExpr(E->getArg(0));
736 Value *Y = EmitScalarExpr(E->getArg(1));
737 Value *S = EmitScalarExpr(E->getArg(2));
739 llvm_unreachable("lerp operand must have a float representation");
740 return Builder.CreateIntrinsic(
741 /*ReturnType=*/X->getType(), CGM.getHLSLRuntime().getLerpIntrinsic(),
742 ArrayRef<Value *>{X, Y, S}, nullptr, "hlsl.lerp");
743 }
744 case Builtin::BI__builtin_hlsl_normalize: {
745 Value *X = EmitScalarExpr(E->getArg(0));
746
747 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
748 "normalize operand must have a float representation");
749
750 return Builder.CreateIntrinsic(
751 /*ReturnType=*/X->getType(),
752 CGM.getHLSLRuntime().getNormalizeIntrinsic(), ArrayRef<Value *>{X},
753 nullptr, "hlsl.normalize");
754 }
755 case Builtin::BI__builtin_hlsl_elementwise_degrees: {
756 Value *X = EmitScalarExpr(E->getArg(0));
757
758 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
759 "degree operand must have a float representation");
760
761 return Builder.CreateIntrinsic(
762 /*ReturnType=*/X->getType(), CGM.getHLSLRuntime().getDegreesIntrinsic(),
763 ArrayRef<Value *>{X}, nullptr, "hlsl.degrees");
764 }
765 case Builtin::BI__builtin_hlsl_elementwise_f16tof32: {
766 return handleElementwiseF16ToF32(*this, E);
767 }
768 case Builtin::BI__builtin_hlsl_elementwise_f32tof16: {
769 return handleElementwiseF32ToF16(*this, E);
770 }
771 case Builtin::BI__builtin_hlsl_elementwise_frac: {
772 Value *Op0 = EmitScalarExpr(E->getArg(0));
774 llvm_unreachable("frac operand must have a float representation");
775 return Builder.CreateIntrinsic(
776 /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getFracIntrinsic(),
777 ArrayRef<Value *>{Op0}, nullptr, "hlsl.frac");
778 }
779 case Builtin::BI__builtin_hlsl_elementwise_isinf: {
780 Value *Op0 = EmitScalarExpr(E->getArg(0));
781 llvm::Type *Xty = Op0->getType();
782 llvm::Type *retType = llvm::Type::getInt1Ty(this->getLLVMContext());
783 if (Xty->isVectorTy()) {
784 auto *XVecTy = E->getArg(0)->getType()->castAs<VectorType>();
785 retType = llvm::VectorType::get(
786 retType, ElementCount::getFixed(XVecTy->getNumElements()));
787 }
789 llvm_unreachable("isinf operand must have a float representation");
790 return Builder.CreateIntrinsic(
791 retType, CGM.getHLSLRuntime().getIsInfIntrinsic(),
792 ArrayRef<Value *>{Op0}, nullptr, "hlsl.isinf");
793 }
794 case Builtin::BI__builtin_hlsl_elementwise_isnan: {
795 Value *Op0 = EmitScalarExpr(E->getArg(0));
796 llvm::Type *Xty = Op0->getType();
797 llvm::Type *retType = llvm::Type::getInt1Ty(this->getLLVMContext());
798 if (Xty->isVectorTy()) {
799 auto *XVecTy = E->getArg(0)->getType()->castAs<VectorType>();
800 retType = llvm::VectorType::get(
801 retType, ElementCount::getFixed(XVecTy->getNumElements()));
802 }
804 llvm_unreachable("isnan operand must have a float representation");
805 return Builder.CreateIntrinsic(
806 retType, CGM.getHLSLRuntime().getIsNaNIntrinsic(),
807 ArrayRef<Value *>{Op0}, nullptr, "hlsl.isnan");
808 }
809 case Builtin::BI__builtin_hlsl_mad: {
810 Value *M = EmitScalarExpr(E->getArg(0));
811 Value *A = EmitScalarExpr(E->getArg(1));
812 Value *B = EmitScalarExpr(E->getArg(2));
814 return Builder.CreateIntrinsic(
815 /*ReturnType*/ M->getType(), Intrinsic::fmuladd,
816 ArrayRef<Value *>{M, A, B}, nullptr, "hlsl.fmad");
817
819 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil)
820 return Builder.CreateIntrinsic(
821 /*ReturnType*/ M->getType(), Intrinsic::dx_imad,
822 ArrayRef<Value *>{M, A, B}, nullptr, "dx.imad");
823
824 Value *Mul = Builder.CreateNSWMul(M, A);
825 return Builder.CreateNSWAdd(Mul, B);
826 }
828 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil)
829 return Builder.CreateIntrinsic(
830 /*ReturnType=*/M->getType(), Intrinsic::dx_umad,
831 ArrayRef<Value *>{M, A, B}, nullptr, "dx.umad");
832
833 Value *Mul = Builder.CreateNUWMul(M, A);
834 return Builder.CreateNUWAdd(Mul, B);
835 }
836 case Builtin::BI__builtin_hlsl_elementwise_rcp: {
837 Value *Op0 = EmitScalarExpr(E->getArg(0));
839 llvm_unreachable("rcp operand must have a float representation");
840 llvm::Type *Ty = Op0->getType();
841 llvm::Type *EltTy = Ty->getScalarType();
842 Constant *One = Ty->isVectorTy()
843 ? ConstantVector::getSplat(
844 ElementCount::getFixed(
845 cast<FixedVectorType>(Ty)->getNumElements()),
846 ConstantFP::get(EltTy, 1.0))
847 : ConstantFP::get(EltTy, 1.0);
848 return Builder.CreateFDiv(One, Op0, "hlsl.rcp");
849 }
850 case Builtin::BI__builtin_hlsl_elementwise_rsqrt: {
851 Value *Op0 = EmitScalarExpr(E->getArg(0));
853 llvm_unreachable("rsqrt operand must have a float representation");
854 return Builder.CreateIntrinsic(
855 /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getRsqrtIntrinsic(),
856 ArrayRef<Value *>{Op0}, nullptr, "hlsl.rsqrt");
857 }
858 case Builtin::BI__builtin_hlsl_elementwise_saturate: {
859 Value *Op0 = EmitScalarExpr(E->getArg(0));
860 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
861 "saturate operand must have a float representation");
862 return Builder.CreateIntrinsic(
863 /*ReturnType=*/Op0->getType(),
864 CGM.getHLSLRuntime().getSaturateIntrinsic(), ArrayRef<Value *>{Op0},
865 nullptr, "hlsl.saturate");
866 }
867 case Builtin::BI__builtin_hlsl_select: {
868 Value *OpCond = EmitScalarExpr(E->getArg(0));
869 RValue RValTrue = EmitAnyExpr(E->getArg(1));
870 Value *OpTrue =
871 RValTrue.isScalar()
872 ? RValTrue.getScalarVal()
873 : Builder.CreateLoad(RValTrue.getAggregateAddress(), "true_val");
874 RValue RValFalse = EmitAnyExpr(E->getArg(2));
875 Value *OpFalse =
876 RValFalse.isScalar()
877 ? RValFalse.getScalarVal()
878 : Builder.CreateLoad(RValFalse.getAggregateAddress(), "false_val");
879 if (auto *VTy = E->getType()->getAs<VectorType>()) {
880 if (!OpTrue->getType()->isVectorTy())
881 OpTrue =
882 Builder.CreateVectorSplat(VTy->getNumElements(), OpTrue, "splat");
883 if (!OpFalse->getType()->isVectorTy())
884 OpFalse =
885 Builder.CreateVectorSplat(VTy->getNumElements(), OpFalse, "splat");
886 }
887
888 Value *SelectVal =
889 Builder.CreateSelect(OpCond, OpTrue, OpFalse, "hlsl.select");
890 if (!RValTrue.isScalar())
891 Builder.CreateStore(SelectVal, ReturnValue.getAddress(),
892 ReturnValue.isVolatile());
893
894 return SelectVal;
895 }
896 case Builtin::BI__builtin_hlsl_step: {
897 Value *Op0 = EmitScalarExpr(E->getArg(0));
898 Value *Op1 = EmitScalarExpr(E->getArg(1));
899 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
901 "step operands must have a float representation");
902 return Builder.CreateIntrinsic(
903 /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getStepIntrinsic(),
904 ArrayRef<Value *>{Op0, Op1}, nullptr, "hlsl.step");
905 }
906 case Builtin::BI__builtin_hlsl_wave_active_all_true: {
907 Value *Op = EmitScalarExpr(E->getArg(0));
908 assert(Op->getType()->isIntegerTy(1) &&
909 "Intrinsic WaveActiveAllTrue operand must be a bool");
910
911 Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveAllTrueIntrinsic();
912 return EmitRuntimeCall(
913 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID), {Op});
914 }
915 case Builtin::BI__builtin_hlsl_wave_active_any_true: {
916 Value *Op = EmitScalarExpr(E->getArg(0));
917 assert(Op->getType()->isIntegerTy(1) &&
918 "Intrinsic WaveActiveAnyTrue operand must be a bool");
919
920 Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveAnyTrueIntrinsic();
921 return EmitRuntimeCall(
922 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID), {Op});
923 }
924 case Builtin::BI__builtin_hlsl_wave_active_ballot: {
925 [[maybe_unused]] Value *Op = EmitScalarExpr(E->getArg(0));
926 assert(Op->getType()->isIntegerTy(1) &&
927 "Intrinsic WaveActiveBallot operand must be a bool");
928
929 return handleHlslWaveActiveBallot(*this, E);
930 }
931 case Builtin::BI__builtin_hlsl_wave_active_count_bits: {
932 Value *OpExpr = EmitScalarExpr(E->getArg(0));
933 Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveCountBitsIntrinsic();
934 return EmitRuntimeCall(
935 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID),
936 ArrayRef{OpExpr});
937 }
938 case Builtin::BI__builtin_hlsl_wave_active_sum: {
939 // Due to the use of variadic arguments, explicitly retreive argument
940 Value *OpExpr = EmitScalarExpr(E->getArg(0));
941 Intrinsic::ID IID = getWaveActiveSumIntrinsic(
942 getTarget().getTriple().getArch(), CGM.getHLSLRuntime(),
943 E->getArg(0)->getType());
944
945 return EmitRuntimeCall(Intrinsic::getOrInsertDeclaration(
946 &CGM.getModule(), IID, {OpExpr->getType()}),
947 ArrayRef{OpExpr}, "hlsl.wave.active.sum");
948 }
949 case Builtin::BI__builtin_hlsl_wave_active_max: {
950 // Due to the use of variadic arguments, explicitly retreive argument
951 Value *OpExpr = EmitScalarExpr(E->getArg(0));
952 Intrinsic::ID IID = getWaveActiveMaxIntrinsic(
953 getTarget().getTriple().getArch(), CGM.getHLSLRuntime(),
954 E->getArg(0)->getType());
955
956 return EmitRuntimeCall(Intrinsic::getOrInsertDeclaration(
957 &CGM.getModule(), IID, {OpExpr->getType()}),
958 ArrayRef{OpExpr}, "hlsl.wave.active.max");
959 }
960 case Builtin::BI__builtin_hlsl_wave_active_min: {
961 // Due to the use of variadic arguments, explicitly retreive argument
962 Value *OpExpr = EmitScalarExpr(E->getArg(0));
963 Intrinsic::ID IID = getWaveActiveMinIntrinsic(
964 getTarget().getTriple().getArch(), CGM.getHLSLRuntime(),
965 E->getArg(0)->getType());
966
967 return EmitRuntimeCall(Intrinsic::getOrInsertDeclaration(
968 &CGM.getModule(), IID, {OpExpr->getType()}),
969 ArrayRef{OpExpr}, "hlsl.wave.active.min");
970 }
971 case Builtin::BI__builtin_hlsl_wave_get_lane_index: {
972 // We don't define a SPIR-V intrinsic, instead it is a SPIR-V built-in
973 // defined in SPIRVBuiltins.td. So instead we manually get the matching name
974 // for the DirectX intrinsic and the demangled builtin name
975 switch (CGM.getTarget().getTriple().getArch()) {
976 case llvm::Triple::dxil:
977 return EmitRuntimeCall(Intrinsic::getOrInsertDeclaration(
978 &CGM.getModule(), Intrinsic::dx_wave_getlaneindex));
979 case llvm::Triple::spirv:
980 return EmitRuntimeCall(CGM.CreateRuntimeFunction(
981 llvm::FunctionType::get(IntTy, {}, false),
982 "__hlsl_wave_get_lane_index", {}, false, true));
983 default:
984 llvm_unreachable(
985 "Intrinsic WaveGetLaneIndex not supported by target architecture");
986 }
987 }
988 case Builtin::BI__builtin_hlsl_wave_is_first_lane: {
989 Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveIsFirstLaneIntrinsic();
990 return EmitRuntimeCall(
991 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID));
992 }
993 case Builtin::BI__builtin_hlsl_wave_get_lane_count: {
994 Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveGetLaneCountIntrinsic();
995 return EmitRuntimeCall(
996 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID));
997 }
998 case Builtin::BI__builtin_hlsl_wave_read_lane_at: {
999 // Due to the use of variadic arguments we must explicitly retreive them and
1000 // create our function type.
1001 Value *OpExpr = EmitScalarExpr(E->getArg(0));
1002 Value *OpIndex = EmitScalarExpr(E->getArg(1));
1003 return EmitRuntimeCall(
1004 Intrinsic::getOrInsertDeclaration(
1005 &CGM.getModule(), CGM.getHLSLRuntime().getWaveReadLaneAtIntrinsic(),
1006 {OpExpr->getType()}),
1007 ArrayRef{OpExpr, OpIndex}, "hlsl.wave.readlane");
1008 }
1009 case Builtin::BI__builtin_hlsl_elementwise_sign: {
1010 auto *Arg0 = E->getArg(0);
1011 Value *Op0 = EmitScalarExpr(Arg0);
1012 llvm::Type *Xty = Op0->getType();
1013 llvm::Type *retType = llvm::Type::getInt32Ty(this->getLLVMContext());
1014 if (Xty->isVectorTy()) {
1015 auto *XVecTy = Arg0->getType()->castAs<VectorType>();
1016 retType = llvm::VectorType::get(
1017 retType, ElementCount::getFixed(XVecTy->getNumElements()));
1018 }
1019 assert((Arg0->getType()->hasFloatingRepresentation() ||
1020 Arg0->getType()->hasIntegerRepresentation()) &&
1021 "sign operand must have a float or int representation");
1022
1023 if (Arg0->getType()->hasUnsignedIntegerRepresentation()) {
1024 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::get(Xty, 0));
1025 return Builder.CreateSelect(Cmp, ConstantInt::get(retType, 0),
1026 ConstantInt::get(retType, 1), "hlsl.sign");
1027 }
1028
1029 return Builder.CreateIntrinsic(
1030 retType, CGM.getHLSLRuntime().getSignIntrinsic(),
1031 ArrayRef<Value *>{Op0}, nullptr, "hlsl.sign");
1032 }
1033 case Builtin::BI__builtin_hlsl_elementwise_radians: {
1034 Value *Op0 = EmitScalarExpr(E->getArg(0));
1035 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
1036 "radians operand must have a float representation");
1037 return Builder.CreateIntrinsic(
1038 /*ReturnType=*/Op0->getType(),
1039 CGM.getHLSLRuntime().getRadiansIntrinsic(), ArrayRef<Value *>{Op0},
1040 nullptr, "hlsl.radians");
1041 }
1042 case Builtin::BI__builtin_hlsl_buffer_update_counter: {
1043 Value *ResHandle = EmitScalarExpr(E->getArg(0));
1044 Value *Offset = EmitScalarExpr(E->getArg(1));
1045 Value *OffsetI8 = Builder.CreateIntCast(Offset, Int8Ty, true);
1046 return Builder.CreateIntrinsic(
1047 /*ReturnType=*/Offset->getType(),
1048 CGM.getHLSLRuntime().getBufferUpdateCounterIntrinsic(),
1049 ArrayRef<Value *>{ResHandle, OffsetI8}, nullptr);
1050 }
1051 case Builtin::BI__builtin_hlsl_elementwise_splitdouble: {
1052
1053 assert((E->getArg(0)->getType()->hasFloatingRepresentation() &&
1056 "asuint operands types mismatch");
1057 return handleHlslSplitdouble(E, this);
1058 }
1059 case Builtin::BI__builtin_hlsl_elementwise_clip:
1060 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
1061 "clip operands types mismatch");
1062 return handleHlslClip(E, this);
1063 case Builtin::BI__builtin_hlsl_group_memory_barrier_with_group_sync: {
1064 Intrinsic::ID ID =
1065 CGM.getHLSLRuntime().getGroupMemoryBarrierWithGroupSyncIntrinsic();
1066 return EmitRuntimeCall(
1067 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID));
1068 }
1069 case Builtin::BI__builtin_hlsl_elementwise_ddx_coarse: {
1070 Value *Op0 = EmitScalarExpr(E->getArg(0));
1071 if (!E->getArg(0)->getType()->hasFloatingRepresentation())
1072 llvm_unreachable("ddx_coarse operand must have a float representation");
1073 Intrinsic::ID ID = CGM.getHLSLRuntime().getDdxCoarseIntrinsic();
1074 return Builder.CreateIntrinsic(/*ReturnType=*/Op0->getType(), ID,
1075 ArrayRef<Value *>{Op0}, nullptr,
1076 "hlsl.ddx.coarse");
1077 }
1078 case Builtin::BI__builtin_hlsl_elementwise_ddy_coarse: {
1079 Value *Op0 = EmitScalarExpr(E->getArg(0));
1080 if (!E->getArg(0)->getType()->hasFloatingRepresentation())
1081 llvm_unreachable("ddy_coarse operand must have a float representation");
1082 Intrinsic::ID ID = CGM.getHLSLRuntime().getDdyCoarseIntrinsic();
1083 return Builder.CreateIntrinsic(/*ReturnType=*/Op0->getType(), ID,
1084 ArrayRef<Value *>{Op0}, nullptr,
1085 "hlsl.ddy.coarse");
1086 }
1087 case Builtin::BI__builtin_hlsl_elementwise_ddx_fine: {
1088 Value *Op0 = EmitScalarExpr(E->getArg(0));
1089 if (!E->getArg(0)->getType()->hasFloatingRepresentation())
1090 llvm_unreachable("ddx_fine operand must have a float representation");
1091 Intrinsic::ID ID = CGM.getHLSLRuntime().getDdxFineIntrinsic();
1092 return Builder.CreateIntrinsic(/*ReturnType=*/Op0->getType(), ID,
1093 ArrayRef<Value *>{Op0}, nullptr,
1094 "hlsl.ddx.fine");
1095 }
1096 case Builtin::BI__builtin_hlsl_elementwise_ddy_fine: {
1097 Value *Op0 = EmitScalarExpr(E->getArg(0));
1098 if (!E->getArg(0)->getType()->hasFloatingRepresentation())
1099 llvm_unreachable("ddy_fine operand must have a float representation");
1100 Intrinsic::ID ID = CGM.getHLSLRuntime().getDdyFineIntrinsic();
1101 return Builder.CreateIntrinsic(/*ReturnType=*/Op0->getType(), ID,
1102 ArrayRef<Value *>{Op0}, nullptr,
1103 "hlsl.ddy.fine");
1104 }
1105 case Builtin::BI__builtin_get_spirv_spec_constant_bool:
1106 case Builtin::BI__builtin_get_spirv_spec_constant_short:
1107 case Builtin::BI__builtin_get_spirv_spec_constant_ushort:
1108 case Builtin::BI__builtin_get_spirv_spec_constant_int:
1109 case Builtin::BI__builtin_get_spirv_spec_constant_uint:
1110 case Builtin::BI__builtin_get_spirv_spec_constant_longlong:
1111 case Builtin::BI__builtin_get_spirv_spec_constant_ulonglong:
1112 case Builtin::BI__builtin_get_spirv_spec_constant_half:
1113 case Builtin::BI__builtin_get_spirv_spec_constant_float:
1114 case Builtin::BI__builtin_get_spirv_spec_constant_double: {
1115 llvm::Function *SpecConstantFn = getSpecConstantFunction(E->getType());
1116 llvm::Value *SpecId = EmitScalarExpr(E->getArg(0));
1117 llvm::Value *DefaultVal = EmitScalarExpr(E->getArg(1));
1118 llvm::Value *Args[] = {SpecId, DefaultVal};
1119 return Builder.CreateCall(SpecConstantFn, Args);
1120 }
1121 }
1122 return nullptr;
1123}
1124
1126 const clang::QualType &SpecConstantType) {
1127
1128 // Find or create the declaration for the function.
1129 llvm::Module *M = &CGM.getModule();
1130 std::string MangledName =
1131 getSpecConstantFunctionName(SpecConstantType, getContext());
1132 llvm::Function *SpecConstantFn = M->getFunction(MangledName);
1133
1134 if (!SpecConstantFn) {
1135 llvm::Type *IntType = ConvertType(getContext().IntTy);
1136 llvm::Type *RetTy = ConvertType(SpecConstantType);
1137 llvm::Type *ArgTypes[] = {IntType, RetTy};
1138 llvm::FunctionType *FnTy = llvm::FunctionType::get(RetTy, ArgTypes, false);
1139 SpecConstantFn = llvm::Function::Create(
1140 FnTy, llvm::GlobalValue::ExternalLinkage, MangledName, M);
1141 }
1142 return SpecConstantFn;
1143}
llvm::Value * EmitOverflowIntrinsic(CodeGenFunction &CGF, const Intrinsic::ID IntrinsicID, llvm::Value *X, llvm::Value *Y, llvm::Value *&Carry)
Emit a call to llvm.
static Intrinsic::ID getWaveActiveSumIntrinsic(llvm::Triple::ArchType Arch, CGHLSLRuntime &RT, QualType QT)
static Intrinsic::ID getWaveActiveMaxIntrinsic(llvm::Triple::ArchType Arch, CGHLSLRuntime &RT, QualType QT)
static Intrinsic::ID getDotProductIntrinsic(CGHLSLRuntime &RT, QualType QT)
static std::string getSpecConstantFunctionName(clang::QualType SpecConstantType, ASTContext &Context)
static Intrinsic::ID getWaveActiveMinIntrinsic(llvm::Triple::ArchType Arch, CGHLSLRuntime &RT, QualType QT)
static Value * handleHlslSplitdouble(const CallExpr *E, CodeGenFunction *CGF)
static Value * emitBufferStride(CodeGenFunction *CGF, const Expr *HandleExpr, LValue &Stride)
static Intrinsic::ID getFirstBitHighIntrinsic(CGHLSLRuntime &RT, QualType QT)
static Value * handleElementwiseF16ToF32(CodeGenFunction &CGF, const CallExpr *E)
static Value * handleAsDoubleBuiltin(CodeGenFunction &CGF, const CallExpr *E)
static Value * handleHlslWaveActiveBallot(CodeGenFunction &CGF, const CallExpr *E)
static Value * handleElementwiseF32ToF16(CodeGenFunction &CGF, const CallExpr *E)
static Value * handleHlslClip(const CallExpr *E, CodeGenFunction *CGF)
#define X(type, name)
Definition Value.h:97
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition ASTContext.h:220
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition Expr.h:2943
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition Expr.h:3147
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition Address.h:128
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition CGBuilder.h:140
CallArgList - Type for representing both the value and type of arguments in a call.
Definition CGCall.h:274
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::Type * ConvertType(QualType T)
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
const LangOptions & getLangOpts() const
const TargetInfo & getTarget() const
llvm::Function * getSpecConstantFunction(const clang::QualType &SpecConstantType)
LValue EmitHLSLOutArgExpr(const HLSLOutArgExpr *E, CallArgList &Args, QualType Ty)
Definition CGExpr.cpp:6170
void EmitWritebacks(const CallArgList &Args)
EmitWriteback - Emit callbacks for function.
Definition CGCall.cpp:4883
llvm::Value * getTypeSize(QualType Ty)
Returns calculated size of the specified type.
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition CGExpr.cpp:267
llvm::CallInst * EmitRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type,...
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
LValue EmitLValue(const Expr *E, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitLValue - Emit code to compute a designator that specifies the location of the expression.
Definition CGExpr.cpp:1692
llvm::LLVMContext & getLLVMContext()
llvm::Value * EmitHLSLBuiltinExpr(unsigned BuiltinID, const CallExpr *E, ReturnValueSlot ReturnValue)
CGHLSLRuntime & getHLSLRuntime()
Return a reference to the configured HLSL runtime.
const TargetInfo & getTarget() const
const llvm::Triple & getTriple() const
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type * > Tys={})
LValue - This represents an lvalue references.
Definition CGValue.h:183
Address getAddress() const
Definition CGValue.h:373
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition CGValue.h:42
bool isScalar() const
Definition CGValue.h:64
Address getAggregateAddress() const
getAggregateAddr() - Return the Value* of the address of the aggregate.
Definition CGValue.h:84
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition CGValue.h:72
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Definition CGCall.h:379
The name of a declaration.
This represents one expression.
Definition Expr.h:112
QualType getType() const
Definition Expr.h:144
Represents a function declaration or definition.
Definition Decl.h:2000
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin=false, bool isInlineSpecified=false, bool hasWrittenPrototype=true, ConstexprSpecKind ConstexprKind=ConstexprSpecKind::Unspecified, const AssociatedConstraint &TrailingRequiresClause={})
Definition Decl.h:2189
Represents a parameter to a function.
Definition Decl.h:1790
static ParmVarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
Definition Decl.cpp:2957
A (possibly-)qualified type.
Definition TypeBase.h:937
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition TypeBase.h:8292
Encodes a location in the source.
bool areArgsDestroyedLeftToRightInCallee() const
Are arguments to a call destroyed left to right in the callee?
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char,...
Definition Type.cpp:2206
bool hasIntegerRepresentation() const
Determine whether this type has an integer representation of some sort, e.g., it is an integer type o...
Definition Type.cpp:2067
const T * castAs() const
Member-template castAs<specific type>.
Definition TypeBase.h:9178
bool hasUnsignedIntegerRepresentation() const
Determine whether this type has an unsigned integer representation of some sort, e....
Definition Type.cpp:2292
bool hasSignedIntegerRepresentation() const
Determine whether this type has an signed integer representation of some sort, e.g....
Definition Type.cpp:2244
bool hasFloatingRepresentation() const
Determine whether this type has a floating-point representation of some sort, e.g....
Definition Type.cpp:2313
bool isVectorType() const
Definition TypeBase.h:8668
bool isFloatingType() const
Definition Type.cpp:2305
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition Type.cpp:2254
const T * getAs() const
Member-template getAs<specific type>'.
Definition TypeBase.h:9111
QualType getType() const
Definition Value.cpp:237
Represents a GCC generic vector type.
Definition TypeBase.h:4176
unsigned getNumElements() const
Definition TypeBase.h:4191
The JSON file list parser is used to communicate input to InstallAPI.
@ SC_Extern
Definition Specifiers.h:251
@ SC_None
Definition Specifiers.h:250
Expr * Cond
};
@ Result
The result type of a method or function.
Definition TypeBase.h:905
U cast(CodeGen::Address addr)
Definition Address.h:327
Diagnostic wrappers for TextAPI types for error reporting.
Definition Dominators.h:30
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Extra information about a function prototype.
Definition TypeBase.h:5354