clang 22.0.0git
CGHLSLBuiltins.cpp
Go to the documentation of this file.
1//===------- CGHLSLBuiltins.cpp - Emit LLVM Code for HLSL builtins --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit HLSL Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGBuiltin.h"
14#include "CGHLSLRuntime.h"
15#include "CodeGenFunction.h"
16
17using namespace clang;
18using namespace CodeGen;
19using namespace llvm;
20
24 "asdouble operands types mismatch");
25 Value *OpLowBits = CGF.EmitScalarExpr(E->getArg(0));
26 Value *OpHighBits = CGF.EmitScalarExpr(E->getArg(1));
27
28 llvm::Type *ResultType = CGF.DoubleTy;
29 int N = 1;
30 if (auto *VTy = E->getArg(0)->getType()->getAs<clang::VectorType>()) {
31 N = VTy->getNumElements();
32 ResultType = llvm::FixedVectorType::get(CGF.DoubleTy, N);
33 }
34
35 if (CGF.CGM.getTarget().getTriple().isDXIL())
36 return CGF.Builder.CreateIntrinsic(
37 /*ReturnType=*/ResultType, Intrinsic::dx_asdouble,
38 {OpLowBits, OpHighBits}, nullptr, "hlsl.asdouble");
39
40 if (!E->getArg(0)->getType()->isVectorType()) {
41 OpLowBits = CGF.Builder.CreateVectorSplat(1, OpLowBits);
42 OpHighBits = CGF.Builder.CreateVectorSplat(1, OpHighBits);
43 }
44
46 for (int i = 0; i < N; i++) {
47 Mask.push_back(i);
48 Mask.push_back(i + N);
49 }
50
51 Value *BitVec = CGF.Builder.CreateShuffleVector(OpLowBits, OpHighBits, Mask);
52
53 return CGF.Builder.CreateBitCast(BitVec, ResultType);
54}
55
57 Value *Op0 = CGF->EmitScalarExpr(E->getArg(0));
58
59 Constant *FZeroConst = ConstantFP::getZero(CGF->FloatTy);
60 Value *CMP;
61 Value *LastInstr;
62
63 if (const auto *VecTy = E->getArg(0)->getType()->getAs<clang::VectorType>()) {
64 FZeroConst = ConstantVector::getSplat(
65 ElementCount::getFixed(VecTy->getNumElements()), FZeroConst);
66 auto *FCompInst = CGF->Builder.CreateFCmpOLT(Op0, FZeroConst);
67 CMP = CGF->Builder.CreateIntrinsic(
68 CGF->Builder.getInt1Ty(), CGF->CGM.getHLSLRuntime().getAnyIntrinsic(),
69 {FCompInst});
70 } else {
71 CMP = CGF->Builder.CreateFCmpOLT(Op0, FZeroConst);
72 }
73
74 if (CGF->CGM.getTarget().getTriple().isDXIL()) {
75 LastInstr = CGF->Builder.CreateIntrinsic(Intrinsic::dx_discard, {CMP});
76 } else if (CGF->CGM.getTarget().getTriple().isSPIRV()) {
77 BasicBlock *LT0 = CGF->createBasicBlock("lt0", CGF->CurFn);
78 BasicBlock *End = CGF->createBasicBlock("end", CGF->CurFn);
79
80 CGF->Builder.CreateCondBr(CMP, LT0, End);
81
82 CGF->Builder.SetInsertPoint(LT0);
83
84 CGF->Builder.CreateIntrinsic(Intrinsic::spv_discard, {});
85
86 LastInstr = CGF->Builder.CreateBr(End);
87 CGF->Builder.SetInsertPoint(End);
88 } else {
89 llvm_unreachable("Backend Codegen not supported.");
90 }
91
92 return LastInstr;
93}
94
96 Value *Op0 = CGF->EmitScalarExpr(E->getArg(0));
97 const auto *OutArg1 = dyn_cast<HLSLOutArgExpr>(E->getArg(1));
98 const auto *OutArg2 = dyn_cast<HLSLOutArgExpr>(E->getArg(2));
99
100 CallArgList Args;
101 LValue Op1TmpLValue =
102 CGF->EmitHLSLOutArgExpr(OutArg1, Args, OutArg1->getType());
103 LValue Op2TmpLValue =
104 CGF->EmitHLSLOutArgExpr(OutArg2, Args, OutArg2->getType());
105
107 Args.reverseWritebacks();
108
109 Value *LowBits = nullptr;
110 Value *HighBits = nullptr;
111
112 if (CGF->CGM.getTarget().getTriple().isDXIL()) {
113 llvm::Type *RetElementTy = CGF->Int32Ty;
114 if (auto *Op0VecTy = E->getArg(0)->getType()->getAs<clang::VectorType>())
115 RetElementTy = llvm::VectorType::get(
116 CGF->Int32Ty, ElementCount::getFixed(Op0VecTy->getNumElements()));
117 auto *RetTy = llvm::StructType::get(RetElementTy, RetElementTy);
118
119 CallInst *CI = CGF->Builder.CreateIntrinsic(
120 RetTy, Intrinsic::dx_splitdouble, {Op0}, nullptr, "hlsl.splitdouble");
121
122 LowBits = CGF->Builder.CreateExtractValue(CI, 0);
123 HighBits = CGF->Builder.CreateExtractValue(CI, 1);
124 } else {
125 // For Non DXIL targets we generate the instructions.
126
127 if (!Op0->getType()->isVectorTy()) {
128 FixedVectorType *DestTy = FixedVectorType::get(CGF->Int32Ty, 2);
129 Value *Bitcast = CGF->Builder.CreateBitCast(Op0, DestTy);
130
131 LowBits = CGF->Builder.CreateExtractElement(Bitcast, (uint64_t)0);
132 HighBits = CGF->Builder.CreateExtractElement(Bitcast, 1);
133 } else {
134 int NumElements = 1;
135 if (const auto *VecTy =
137 NumElements = VecTy->getNumElements();
138
139 FixedVectorType *Uint32VecTy =
140 FixedVectorType::get(CGF->Int32Ty, NumElements * 2);
141 Value *Uint32Vec = CGF->Builder.CreateBitCast(Op0, Uint32VecTy);
142 if (NumElements == 1) {
143 LowBits = CGF->Builder.CreateExtractElement(Uint32Vec, (uint64_t)0);
144 HighBits = CGF->Builder.CreateExtractElement(Uint32Vec, 1);
145 } else {
146 SmallVector<int> EvenMask, OddMask;
147 for (int I = 0, E = NumElements; I != E; ++I) {
148 EvenMask.push_back(I * 2);
149 OddMask.push_back(I * 2 + 1);
150 }
151 LowBits = CGF->Builder.CreateShuffleVector(Uint32Vec, EvenMask);
152 HighBits = CGF->Builder.CreateShuffleVector(Uint32Vec, OddMask);
153 }
154 }
155 }
156 CGF->Builder.CreateStore(LowBits, Op1TmpLValue.getAddress());
157 auto *LastInst =
158 CGF->Builder.CreateStore(HighBits, Op2TmpLValue.getAddress());
159 CGF->EmitWritebacks(Args);
160 return LastInst;
161}
162
163static Value *emitBufferStride(CodeGenFunction *CGF, const Expr *HandleExpr,
164 LValue &Stride) {
165 // Figure out the stride of the buffer elements from the handle type.
166 auto *HandleTy =
168 QualType ElementTy = HandleTy->getContainedType();
169 Value *StrideValue = CGF->getTypeSize(ElementTy);
170 return CGF->Builder.CreateStore(StrideValue, Stride.getAddress());
171}
172
173// Return dot product intrinsic that corresponds to the QT scalar type
174static Intrinsic::ID getDotProductIntrinsic(CGHLSLRuntime &RT, QualType QT) {
175 if (QT->isFloatingType())
176 return RT.getFDotIntrinsic();
177 if (QT->isSignedIntegerType())
178 return RT.getSDotIntrinsic();
179 assert(QT->isUnsignedIntegerType());
180 return RT.getUDotIntrinsic();
181}
182
183static Intrinsic::ID getFirstBitHighIntrinsic(CGHLSLRuntime &RT, QualType QT) {
185 return RT.getFirstBitSHighIntrinsic();
186 }
187
189 return RT.getFirstBitUHighIntrinsic();
190}
191
192// Return wave active sum that corresponds to the QT scalar type
193static Intrinsic::ID getWaveActiveSumIntrinsic(llvm::Triple::ArchType Arch,
194 CGHLSLRuntime &RT, QualType QT) {
195 switch (Arch) {
196 case llvm::Triple::spirv:
197 return Intrinsic::spv_wave_reduce_sum;
198 case llvm::Triple::dxil: {
199 if (QT->isUnsignedIntegerType())
200 return Intrinsic::dx_wave_reduce_usum;
201 return Intrinsic::dx_wave_reduce_sum;
202 }
203 default:
204 llvm_unreachable("Intrinsic WaveActiveSum"
205 " not supported by target architecture");
206 }
207}
208
209// Return wave active max that corresponds to the QT scalar type
210static Intrinsic::ID getWaveActiveMaxIntrinsic(llvm::Triple::ArchType Arch,
211 CGHLSLRuntime &RT, QualType QT) {
212 switch (Arch) {
213 case llvm::Triple::spirv:
214 if (QT->isUnsignedIntegerType())
215 return Intrinsic::spv_wave_reduce_umax;
216 return Intrinsic::spv_wave_reduce_max;
217 case llvm::Triple::dxil: {
218 if (QT->isUnsignedIntegerType())
219 return Intrinsic::dx_wave_reduce_umax;
220 return Intrinsic::dx_wave_reduce_max;
221 }
222 default:
223 llvm_unreachable("Intrinsic WaveActiveMax"
224 " not supported by target architecture");
225 }
226}
227
228// Return wave active min that corresponds to the QT scalar type
229static Intrinsic::ID getWaveActiveMinIntrinsic(llvm::Triple::ArchType Arch,
230 CGHLSLRuntime &RT, QualType QT) {
231 switch (Arch) {
232 case llvm::Triple::spirv:
233 if (QT->isUnsignedIntegerType())
234 return Intrinsic::spv_wave_reduce_umin;
235 return Intrinsic::spv_wave_reduce_min;
236 case llvm::Triple::dxil: {
237 if (QT->isUnsignedIntegerType())
238 return Intrinsic::dx_wave_reduce_umin;
239 return Intrinsic::dx_wave_reduce_min;
240 }
241 default:
242 llvm_unreachable("Intrinsic WaveActiveMin"
243 " not supported by target architecture");
244 }
245}
246
247// Returns the mangled name for a builtin function that the SPIR-V backend
248// will expand into a spec Constant.
249static std::string getSpecConstantFunctionName(clang::QualType SpecConstantType,
250 ASTContext &Context) {
251 // The parameter types for our conceptual intrinsic function.
252 QualType ClangParamTypes[] = {Context.IntTy, SpecConstantType};
253
254 // Create a temporary FunctionDecl for the builtin fuction. It won't be
255 // added to the AST.
257 QualType FnType =
258 Context.getFunctionType(SpecConstantType, ClangParamTypes, EPI);
259 DeclarationName FuncName = &Context.Idents.get("__spirv_SpecConstant");
260 FunctionDecl *FnDeclForMangling = FunctionDecl::Create(
261 Context, Context.getTranslationUnitDecl(), SourceLocation(),
262 SourceLocation(), FuncName, FnType, /*TSI=*/nullptr, SC_Extern);
263
264 // Attach the created parameter declarations to the function declaration.
266 for (QualType ParamType : ClangParamTypes) {
268 Context, FnDeclForMangling, SourceLocation(), SourceLocation(),
269 /*IdentifierInfo*/ nullptr, ParamType, /*TSI*/ nullptr, SC_None,
270 /*DefaultArg*/ nullptr);
271 ParamDecls.push_back(PD);
272 }
273 FnDeclForMangling->setParams(ParamDecls);
274
275 // Get the mangled name.
276 std::string Name;
277 llvm::raw_string_ostream MangledNameStream(Name);
278 std::unique_ptr<MangleContext> Mangler(Context.createMangleContext());
279 Mangler->mangleName(FnDeclForMangling, MangledNameStream);
280 MangledNameStream.flush();
281
282 return Name;
283}
284
286 const CallExpr *E,
288 if (!getLangOpts().HLSL)
289 return nullptr;
290
291 switch (BuiltinID) {
292 case Builtin::BI__builtin_hlsl_adduint64: {
293 Value *OpA = EmitScalarExpr(E->getArg(0));
294 Value *OpB = EmitScalarExpr(E->getArg(1));
295 QualType Arg0Ty = E->getArg(0)->getType();
296 uint64_t NumElements = Arg0Ty->castAs<VectorType>()->getNumElements();
297 assert(Arg0Ty == E->getArg(1)->getType() &&
298 "AddUint64 operand types must match");
299 assert(Arg0Ty->hasIntegerRepresentation() &&
300 "AddUint64 operands must have an integer representation");
301 assert((NumElements == 2 || NumElements == 4) &&
302 "AddUint64 operands must have 2 or 4 elements");
303
304 llvm::Value *LowA;
305 llvm::Value *HighA;
306 llvm::Value *LowB;
307 llvm::Value *HighB;
308
309 // Obtain low and high words of inputs A and B
310 if (NumElements == 2) {
311 LowA = Builder.CreateExtractElement(OpA, (uint64_t)0, "LowA");
312 HighA = Builder.CreateExtractElement(OpA, (uint64_t)1, "HighA");
313 LowB = Builder.CreateExtractElement(OpB, (uint64_t)0, "LowB");
314 HighB = Builder.CreateExtractElement(OpB, (uint64_t)1, "HighB");
315 } else {
316 LowA = Builder.CreateShuffleVector(OpA, {0, 2}, "LowA");
317 HighA = Builder.CreateShuffleVector(OpA, {1, 3}, "HighA");
318 LowB = Builder.CreateShuffleVector(OpB, {0, 2}, "LowB");
319 HighB = Builder.CreateShuffleVector(OpB, {1, 3}, "HighB");
320 }
321
322 // Use an uadd_with_overflow to compute the sum of low words and obtain a
323 // carry value
324 llvm::Value *Carry;
325 llvm::Value *LowSum = EmitOverflowIntrinsic(
326 *this, Intrinsic::uadd_with_overflow, LowA, LowB, Carry);
327 llvm::Value *ZExtCarry =
328 Builder.CreateZExt(Carry, HighA->getType(), "CarryZExt");
329
330 // Sum the high words and the carry
331 llvm::Value *HighSum = Builder.CreateAdd(HighA, HighB, "HighSum");
332 llvm::Value *HighSumPlusCarry =
333 Builder.CreateAdd(HighSum, ZExtCarry, "HighSumPlusCarry");
334
335 if (NumElements == 4) {
336 return Builder.CreateShuffleVector(LowSum, HighSumPlusCarry, {0, 2, 1, 3},
337 "hlsl.AddUint64");
338 }
339
340 llvm::Value *Result = PoisonValue::get(OpA->getType());
341 Result = Builder.CreateInsertElement(Result, LowSum, (uint64_t)0,
342 "hlsl.AddUint64.upto0");
343 Result = Builder.CreateInsertElement(Result, HighSumPlusCarry, (uint64_t)1,
344 "hlsl.AddUint64");
345 return Result;
346 }
347 case Builtin::BI__builtin_hlsl_resource_getpointer: {
348 Value *HandleOp = EmitScalarExpr(E->getArg(0));
349 Value *IndexOp = EmitScalarExpr(E->getArg(1));
350
351 llvm::Type *RetTy = ConvertType(E->getType());
352 return Builder.CreateIntrinsic(
353 RetTy, CGM.getHLSLRuntime().getCreateResourceGetPointerIntrinsic(),
354 ArrayRef<Value *>{HandleOp, IndexOp});
355 }
356 case Builtin::BI__builtin_hlsl_resource_uninitializedhandle: {
357 llvm::Type *HandleTy = CGM.getTypes().ConvertType(E->getType());
358 return llvm::PoisonValue::get(HandleTy);
359 }
360 case Builtin::BI__builtin_hlsl_resource_handlefrombinding: {
361 llvm::Type *HandleTy = CGM.getTypes().ConvertType(E->getType());
362 Value *RegisterOp = EmitScalarExpr(E->getArg(1));
363 Value *SpaceOp = EmitScalarExpr(E->getArg(2));
364 Value *RangeOp = EmitScalarExpr(E->getArg(3));
365 Value *IndexOp = EmitScalarExpr(E->getArg(4));
366 Value *Name = EmitScalarExpr(E->getArg(5));
367 llvm::Intrinsic::ID IntrinsicID =
368 CGM.getHLSLRuntime().getCreateHandleFromBindingIntrinsic();
369 SmallVector<Value *> Args{SpaceOp, RegisterOp, RangeOp, IndexOp, Name};
370 return Builder.CreateIntrinsic(HandleTy, IntrinsicID, Args);
371 }
372 case Builtin::BI__builtin_hlsl_resource_handlefromimplicitbinding: {
373 llvm::Type *HandleTy = CGM.getTypes().ConvertType(E->getType());
374 Value *OrderID = EmitScalarExpr(E->getArg(1));
375 Value *SpaceOp = EmitScalarExpr(E->getArg(2));
376 Value *RangeOp = EmitScalarExpr(E->getArg(3));
377 Value *IndexOp = EmitScalarExpr(E->getArg(4));
378 Value *Name = EmitScalarExpr(E->getArg(5));
379 llvm::Intrinsic::ID IntrinsicID =
380 CGM.getHLSLRuntime().getCreateHandleFromImplicitBindingIntrinsic();
381 SmallVector<Value *> Args{OrderID, SpaceOp, RangeOp, IndexOp, Name};
382 return Builder.CreateIntrinsic(HandleTy, IntrinsicID, Args);
383 }
384 case Builtin::BI__builtin_hlsl_resource_counterhandlefromimplicitbinding: {
385 Value *MainHandle = EmitScalarExpr(E->getArg(0));
386 if (!CGM.getTriple().isSPIRV())
387 return MainHandle;
388
389 llvm::Type *HandleTy = CGM.getTypes().ConvertType(E->getType());
390 Value *OrderID = EmitScalarExpr(E->getArg(1));
391 Value *SpaceOp = EmitScalarExpr(E->getArg(2));
392 llvm::Intrinsic::ID IntrinsicID =
393 llvm::Intrinsic::spv_resource_counterhandlefromimplicitbinding;
394 SmallVector<Value *> Args{MainHandle, OrderID, SpaceOp};
395 return Builder.CreateIntrinsic(HandleTy, IntrinsicID, Args);
396 }
397 case Builtin::BI__builtin_hlsl_resource_nonuniformindex: {
398 Value *IndexOp = EmitScalarExpr(E->getArg(0));
399 llvm::Type *RetTy = ConvertType(E->getType());
400 return Builder.CreateIntrinsic(
401 RetTy, CGM.getHLSLRuntime().getNonUniformResourceIndexIntrinsic(),
402 ArrayRef<Value *>{IndexOp});
403 }
404 case Builtin::BI__builtin_hlsl_resource_getdimensions_x: {
405 Value *Handle = EmitScalarExpr(E->getArg(0));
406 LValue Dim = EmitLValue(E->getArg(1));
407 llvm::Type *RetTy = llvm::Type::getInt32Ty(getLLVMContext());
408 Value *DimValue = Builder.CreateIntrinsic(
409 RetTy, CGM.getHLSLRuntime().getGetDimensionsXIntrinsic(),
410 ArrayRef<Value *>{Handle});
411 return Builder.CreateStore(DimValue, Dim.getAddress());
412 }
413 case Builtin::BI__builtin_hlsl_resource_getstride: {
414 LValue Stride = EmitLValue(E->getArg(1));
415 return emitBufferStride(this, E->getArg(0), Stride);
416 }
417 case Builtin::BI__builtin_hlsl_all: {
418 Value *Op0 = EmitScalarExpr(E->getArg(0));
419 return Builder.CreateIntrinsic(
420 /*ReturnType=*/llvm::Type::getInt1Ty(getLLVMContext()),
421 CGM.getHLSLRuntime().getAllIntrinsic(), ArrayRef<Value *>{Op0}, nullptr,
422 "hlsl.all");
423 }
424 case Builtin::BI__builtin_hlsl_and: {
425 Value *Op0 = EmitScalarExpr(E->getArg(0));
426 Value *Op1 = EmitScalarExpr(E->getArg(1));
427 return Builder.CreateAnd(Op0, Op1, "hlsl.and");
428 }
429 case Builtin::BI__builtin_hlsl_or: {
430 Value *Op0 = EmitScalarExpr(E->getArg(0));
431 Value *Op1 = EmitScalarExpr(E->getArg(1));
432 return Builder.CreateOr(Op0, Op1, "hlsl.or");
433 }
434 case Builtin::BI__builtin_hlsl_any: {
435 Value *Op0 = EmitScalarExpr(E->getArg(0));
436 return Builder.CreateIntrinsic(
437 /*ReturnType=*/llvm::Type::getInt1Ty(getLLVMContext()),
438 CGM.getHLSLRuntime().getAnyIntrinsic(), ArrayRef<Value *>{Op0}, nullptr,
439 "hlsl.any");
440 }
441 case Builtin::BI__builtin_hlsl_asdouble:
442 return handleAsDoubleBuiltin(*this, E);
443 case Builtin::BI__builtin_hlsl_elementwise_clamp: {
444 Value *OpX = EmitScalarExpr(E->getArg(0));
445 Value *OpMin = EmitScalarExpr(E->getArg(1));
446 Value *OpMax = EmitScalarExpr(E->getArg(2));
447
448 QualType Ty = E->getArg(0)->getType();
449 if (auto *VecTy = Ty->getAs<VectorType>())
450 Ty = VecTy->getElementType();
451
452 Intrinsic::ID Intr;
453 if (Ty->isFloatingType()) {
454 Intr = CGM.getHLSLRuntime().getNClampIntrinsic();
455 } else if (Ty->isUnsignedIntegerType()) {
456 Intr = CGM.getHLSLRuntime().getUClampIntrinsic();
457 } else {
458 assert(Ty->isSignedIntegerType());
459 Intr = CGM.getHLSLRuntime().getSClampIntrinsic();
460 }
461 return Builder.CreateIntrinsic(
462 /*ReturnType=*/OpX->getType(), Intr,
463 ArrayRef<Value *>{OpX, OpMin, OpMax}, nullptr, "hlsl.clamp");
464 }
465 case Builtin::BI__builtin_hlsl_crossf16:
466 case Builtin::BI__builtin_hlsl_crossf32: {
467 Value *Op0 = EmitScalarExpr(E->getArg(0));
468 Value *Op1 = EmitScalarExpr(E->getArg(1));
469 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
471 "cross operands must have a float representation");
472 // make sure each vector has exactly 3 elements
473 assert(
474 E->getArg(0)->getType()->castAs<VectorType>()->getNumElements() == 3 &&
475 E->getArg(1)->getType()->castAs<VectorType>()->getNumElements() == 3 &&
476 "input vectors must have 3 elements each");
477 return Builder.CreateIntrinsic(
478 /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getCrossIntrinsic(),
479 ArrayRef<Value *>{Op0, Op1}, nullptr, "hlsl.cross");
480 }
481 case Builtin::BI__builtin_hlsl_dot: {
482 Value *Op0 = EmitScalarExpr(E->getArg(0));
483 Value *Op1 = EmitScalarExpr(E->getArg(1));
484 llvm::Type *T0 = Op0->getType();
485 llvm::Type *T1 = Op1->getType();
486
487 // If the arguments are scalars, just emit a multiply
488 if (!T0->isVectorTy() && !T1->isVectorTy()) {
489 if (T0->isFloatingPointTy())
490 return Builder.CreateFMul(Op0, Op1, "hlsl.dot");
491
492 if (T0->isIntegerTy())
493 return Builder.CreateMul(Op0, Op1, "hlsl.dot");
494
495 llvm_unreachable(
496 "Scalar dot product is only supported on ints and floats.");
497 }
498 // For vectors, validate types and emit the appropriate intrinsic
499 assert(CGM.getContext().hasSameUnqualifiedType(E->getArg(0)->getType(),
500 E->getArg(1)->getType()) &&
501 "Dot product operands must have the same type.");
502
503 auto *VecTy0 = E->getArg(0)->getType()->castAs<VectorType>();
504 assert(VecTy0 && "Dot product argument must be a vector.");
505
506 return Builder.CreateIntrinsic(
507 /*ReturnType=*/T0->getScalarType(),
508 getDotProductIntrinsic(CGM.getHLSLRuntime(), VecTy0->getElementType()),
509 ArrayRef<Value *>{Op0, Op1}, nullptr, "hlsl.dot");
510 }
511 case Builtin::BI__builtin_hlsl_dot4add_i8packed: {
512 Value *X = EmitScalarExpr(E->getArg(0));
513 Value *Y = EmitScalarExpr(E->getArg(1));
514 Value *Acc = EmitScalarExpr(E->getArg(2));
515
516 Intrinsic::ID ID = CGM.getHLSLRuntime().getDot4AddI8PackedIntrinsic();
517 // Note that the argument order disagrees between the builtin and the
518 // intrinsic here.
519 return Builder.CreateIntrinsic(
520 /*ReturnType=*/Acc->getType(), ID, ArrayRef<Value *>{Acc, X, Y},
521 nullptr, "hlsl.dot4add.i8packed");
522 }
523 case Builtin::BI__builtin_hlsl_dot4add_u8packed: {
524 Value *X = EmitScalarExpr(E->getArg(0));
525 Value *Y = EmitScalarExpr(E->getArg(1));
526 Value *Acc = EmitScalarExpr(E->getArg(2));
527
528 Intrinsic::ID ID = CGM.getHLSLRuntime().getDot4AddU8PackedIntrinsic();
529 // Note that the argument order disagrees between the builtin and the
530 // intrinsic here.
531 return Builder.CreateIntrinsic(
532 /*ReturnType=*/Acc->getType(), ID, ArrayRef<Value *>{Acc, X, Y},
533 nullptr, "hlsl.dot4add.u8packed");
534 }
535 case Builtin::BI__builtin_hlsl_elementwise_firstbithigh: {
536 Value *X = EmitScalarExpr(E->getArg(0));
537
538 return Builder.CreateIntrinsic(
539 /*ReturnType=*/ConvertType(E->getType()),
540 getFirstBitHighIntrinsic(CGM.getHLSLRuntime(), E->getArg(0)->getType()),
541 ArrayRef<Value *>{X}, nullptr, "hlsl.firstbithigh");
542 }
543 case Builtin::BI__builtin_hlsl_elementwise_firstbitlow: {
544 Value *X = EmitScalarExpr(E->getArg(0));
545
546 return Builder.CreateIntrinsic(
547 /*ReturnType=*/ConvertType(E->getType()),
548 CGM.getHLSLRuntime().getFirstBitLowIntrinsic(), ArrayRef<Value *>{X},
549 nullptr, "hlsl.firstbitlow");
550 }
551 case Builtin::BI__builtin_hlsl_lerp: {
552 Value *X = EmitScalarExpr(E->getArg(0));
553 Value *Y = EmitScalarExpr(E->getArg(1));
554 Value *S = EmitScalarExpr(E->getArg(2));
556 llvm_unreachable("lerp operand must have a float representation");
557 return Builder.CreateIntrinsic(
558 /*ReturnType=*/X->getType(), CGM.getHLSLRuntime().getLerpIntrinsic(),
559 ArrayRef<Value *>{X, Y, S}, nullptr, "hlsl.lerp");
560 }
561 case Builtin::BI__builtin_hlsl_normalize: {
562 Value *X = EmitScalarExpr(E->getArg(0));
563
564 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
565 "normalize operand must have a float representation");
566
567 return Builder.CreateIntrinsic(
568 /*ReturnType=*/X->getType(),
569 CGM.getHLSLRuntime().getNormalizeIntrinsic(), ArrayRef<Value *>{X},
570 nullptr, "hlsl.normalize");
571 }
572 case Builtin::BI__builtin_hlsl_elementwise_degrees: {
573 Value *X = EmitScalarExpr(E->getArg(0));
574
575 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
576 "degree operand must have a float representation");
577
578 return Builder.CreateIntrinsic(
579 /*ReturnType=*/X->getType(), CGM.getHLSLRuntime().getDegreesIntrinsic(),
580 ArrayRef<Value *>{X}, nullptr, "hlsl.degrees");
581 }
582 case Builtin::BI__builtin_hlsl_elementwise_frac: {
583 Value *Op0 = EmitScalarExpr(E->getArg(0));
585 llvm_unreachable("frac operand must have a float representation");
586 return Builder.CreateIntrinsic(
587 /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getFracIntrinsic(),
588 ArrayRef<Value *>{Op0}, nullptr, "hlsl.frac");
589 }
590 case Builtin::BI__builtin_hlsl_elementwise_isinf: {
591 Value *Op0 = EmitScalarExpr(E->getArg(0));
592 llvm::Type *Xty = Op0->getType();
593 llvm::Type *retType = llvm::Type::getInt1Ty(this->getLLVMContext());
594 if (Xty->isVectorTy()) {
595 auto *XVecTy = E->getArg(0)->getType()->castAs<VectorType>();
596 retType = llvm::VectorType::get(
597 retType, ElementCount::getFixed(XVecTy->getNumElements()));
598 }
600 llvm_unreachable("isinf operand must have a float representation");
601 return Builder.CreateIntrinsic(
602 retType, CGM.getHLSLRuntime().getIsInfIntrinsic(),
603 ArrayRef<Value *>{Op0}, nullptr, "hlsl.isinf");
604 }
605 case Builtin::BI__builtin_hlsl_elementwise_isnan: {
606 Value *Op0 = EmitScalarExpr(E->getArg(0));
607 llvm::Type *Xty = Op0->getType();
608 llvm::Type *retType = llvm::Type::getInt1Ty(this->getLLVMContext());
609 if (Xty->isVectorTy()) {
610 auto *XVecTy = E->getArg(0)->getType()->castAs<VectorType>();
611 retType = llvm::VectorType::get(
612 retType, ElementCount::getFixed(XVecTy->getNumElements()));
613 }
615 llvm_unreachable("isnan operand must have a float representation");
616 return Builder.CreateIntrinsic(
617 retType, CGM.getHLSLRuntime().getIsNaNIntrinsic(),
618 ArrayRef<Value *>{Op0}, nullptr, "hlsl.isnan");
619 }
620 case Builtin::BI__builtin_hlsl_mad: {
621 Value *M = EmitScalarExpr(E->getArg(0));
622 Value *A = EmitScalarExpr(E->getArg(1));
623 Value *B = EmitScalarExpr(E->getArg(2));
625 return Builder.CreateIntrinsic(
626 /*ReturnType*/ M->getType(), Intrinsic::fmuladd,
627 ArrayRef<Value *>{M, A, B}, nullptr, "hlsl.fmad");
628
630 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil)
631 return Builder.CreateIntrinsic(
632 /*ReturnType*/ M->getType(), Intrinsic::dx_imad,
633 ArrayRef<Value *>{M, A, B}, nullptr, "dx.imad");
634
635 Value *Mul = Builder.CreateNSWMul(M, A);
636 return Builder.CreateNSWAdd(Mul, B);
637 }
639 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil)
640 return Builder.CreateIntrinsic(
641 /*ReturnType=*/M->getType(), Intrinsic::dx_umad,
642 ArrayRef<Value *>{M, A, B}, nullptr, "dx.umad");
643
644 Value *Mul = Builder.CreateNUWMul(M, A);
645 return Builder.CreateNUWAdd(Mul, B);
646 }
647 case Builtin::BI__builtin_hlsl_elementwise_rcp: {
648 Value *Op0 = EmitScalarExpr(E->getArg(0));
650 llvm_unreachable("rcp operand must have a float representation");
651 llvm::Type *Ty = Op0->getType();
652 llvm::Type *EltTy = Ty->getScalarType();
653 Constant *One = Ty->isVectorTy()
654 ? ConstantVector::getSplat(
655 ElementCount::getFixed(
656 cast<FixedVectorType>(Ty)->getNumElements()),
657 ConstantFP::get(EltTy, 1.0))
658 : ConstantFP::get(EltTy, 1.0);
659 return Builder.CreateFDiv(One, Op0, "hlsl.rcp");
660 }
661 case Builtin::BI__builtin_hlsl_elementwise_rsqrt: {
662 Value *Op0 = EmitScalarExpr(E->getArg(0));
664 llvm_unreachable("rsqrt operand must have a float representation");
665 return Builder.CreateIntrinsic(
666 /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getRsqrtIntrinsic(),
667 ArrayRef<Value *>{Op0}, nullptr, "hlsl.rsqrt");
668 }
669 case Builtin::BI__builtin_hlsl_elementwise_saturate: {
670 Value *Op0 = EmitScalarExpr(E->getArg(0));
671 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
672 "saturate operand must have a float representation");
673 return Builder.CreateIntrinsic(
674 /*ReturnType=*/Op0->getType(),
675 CGM.getHLSLRuntime().getSaturateIntrinsic(), ArrayRef<Value *>{Op0},
676 nullptr, "hlsl.saturate");
677 }
678 case Builtin::BI__builtin_hlsl_select: {
679 Value *OpCond = EmitScalarExpr(E->getArg(0));
680 RValue RValTrue = EmitAnyExpr(E->getArg(1));
681 Value *OpTrue =
682 RValTrue.isScalar()
683 ? RValTrue.getScalarVal()
684 : Builder.CreateLoad(RValTrue.getAggregateAddress(), "true_val");
685 RValue RValFalse = EmitAnyExpr(E->getArg(2));
686 Value *OpFalse =
687 RValFalse.isScalar()
688 ? RValFalse.getScalarVal()
689 : Builder.CreateLoad(RValFalse.getAggregateAddress(), "false_val");
690 if (auto *VTy = E->getType()->getAs<VectorType>()) {
691 if (!OpTrue->getType()->isVectorTy())
692 OpTrue =
693 Builder.CreateVectorSplat(VTy->getNumElements(), OpTrue, "splat");
694 if (!OpFalse->getType()->isVectorTy())
695 OpFalse =
696 Builder.CreateVectorSplat(VTy->getNumElements(), OpFalse, "splat");
697 }
698
699 Value *SelectVal =
700 Builder.CreateSelect(OpCond, OpTrue, OpFalse, "hlsl.select");
701 if (!RValTrue.isScalar())
702 Builder.CreateStore(SelectVal, ReturnValue.getAddress(),
703 ReturnValue.isVolatile());
704
705 return SelectVal;
706 }
707 case Builtin::BI__builtin_hlsl_step: {
708 Value *Op0 = EmitScalarExpr(E->getArg(0));
709 Value *Op1 = EmitScalarExpr(E->getArg(1));
710 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
712 "step operands must have a float representation");
713 return Builder.CreateIntrinsic(
714 /*ReturnType=*/Op0->getType(), CGM.getHLSLRuntime().getStepIntrinsic(),
715 ArrayRef<Value *>{Op0, Op1}, nullptr, "hlsl.step");
716 }
717 case Builtin::BI__builtin_hlsl_wave_active_all_true: {
718 Value *Op = EmitScalarExpr(E->getArg(0));
719 assert(Op->getType()->isIntegerTy(1) &&
720 "Intrinsic WaveActiveAllTrue operand must be a bool");
721
722 Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveAllTrueIntrinsic();
723 return EmitRuntimeCall(
724 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID), {Op});
725 }
726 case Builtin::BI__builtin_hlsl_wave_active_any_true: {
727 Value *Op = EmitScalarExpr(E->getArg(0));
728 assert(Op->getType()->isIntegerTy(1) &&
729 "Intrinsic WaveActiveAnyTrue operand must be a bool");
730
731 Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveAnyTrueIntrinsic();
732 return EmitRuntimeCall(
733 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID), {Op});
734 }
735 case Builtin::BI__builtin_hlsl_wave_active_count_bits: {
736 Value *OpExpr = EmitScalarExpr(E->getArg(0));
737 Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveCountBitsIntrinsic();
738 return EmitRuntimeCall(
739 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID),
740 ArrayRef{OpExpr});
741 }
742 case Builtin::BI__builtin_hlsl_wave_active_sum: {
743 // Due to the use of variadic arguments, explicitly retreive argument
744 Value *OpExpr = EmitScalarExpr(E->getArg(0));
745 Intrinsic::ID IID = getWaveActiveSumIntrinsic(
746 getTarget().getTriple().getArch(), CGM.getHLSLRuntime(),
747 E->getArg(0)->getType());
748
749 return EmitRuntimeCall(Intrinsic::getOrInsertDeclaration(
750 &CGM.getModule(), IID, {OpExpr->getType()}),
751 ArrayRef{OpExpr}, "hlsl.wave.active.sum");
752 }
753 case Builtin::BI__builtin_hlsl_wave_active_max: {
754 // Due to the use of variadic arguments, explicitly retreive argument
755 Value *OpExpr = EmitScalarExpr(E->getArg(0));
756 Intrinsic::ID IID = getWaveActiveMaxIntrinsic(
757 getTarget().getTriple().getArch(), CGM.getHLSLRuntime(),
758 E->getArg(0)->getType());
759
760 return EmitRuntimeCall(Intrinsic::getOrInsertDeclaration(
761 &CGM.getModule(), IID, {OpExpr->getType()}),
762 ArrayRef{OpExpr}, "hlsl.wave.active.max");
763 }
764 case Builtin::BI__builtin_hlsl_wave_active_min: {
765 // Due to the use of variadic arguments, explicitly retreive argument
766 Value *OpExpr = EmitScalarExpr(E->getArg(0));
767 Intrinsic::ID IID = getWaveActiveMinIntrinsic(
768 getTarget().getTriple().getArch(), CGM.getHLSLRuntime(),
769 E->getArg(0)->getType());
770
771 return EmitRuntimeCall(Intrinsic::getOrInsertDeclaration(
772 &CGM.getModule(), IID, {OpExpr->getType()}),
773 ArrayRef{OpExpr}, "hlsl.wave.active.min");
774 }
775 case Builtin::BI__builtin_hlsl_wave_get_lane_index: {
776 // We don't define a SPIR-V intrinsic, instead it is a SPIR-V built-in
777 // defined in SPIRVBuiltins.td. So instead we manually get the matching name
778 // for the DirectX intrinsic and the demangled builtin name
779 switch (CGM.getTarget().getTriple().getArch()) {
780 case llvm::Triple::dxil:
781 return EmitRuntimeCall(Intrinsic::getOrInsertDeclaration(
782 &CGM.getModule(), Intrinsic::dx_wave_getlaneindex));
783 case llvm::Triple::spirv:
784 return EmitRuntimeCall(CGM.CreateRuntimeFunction(
785 llvm::FunctionType::get(IntTy, {}, false),
786 "__hlsl_wave_get_lane_index", {}, false, true));
787 default:
788 llvm_unreachable(
789 "Intrinsic WaveGetLaneIndex not supported by target architecture");
790 }
791 }
792 case Builtin::BI__builtin_hlsl_wave_is_first_lane: {
793 Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveIsFirstLaneIntrinsic();
794 return EmitRuntimeCall(
795 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID));
796 }
797 case Builtin::BI__builtin_hlsl_wave_get_lane_count: {
798 Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveGetLaneCountIntrinsic();
799 return EmitRuntimeCall(
800 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID));
801 }
802 case Builtin::BI__builtin_hlsl_wave_read_lane_at: {
803 // Due to the use of variadic arguments we must explicitly retreive them and
804 // create our function type.
805 Value *OpExpr = EmitScalarExpr(E->getArg(0));
806 Value *OpIndex = EmitScalarExpr(E->getArg(1));
807 return EmitRuntimeCall(
808 Intrinsic::getOrInsertDeclaration(
809 &CGM.getModule(), CGM.getHLSLRuntime().getWaveReadLaneAtIntrinsic(),
810 {OpExpr->getType()}),
811 ArrayRef{OpExpr, OpIndex}, "hlsl.wave.readlane");
812 }
813 case Builtin::BI__builtin_hlsl_elementwise_sign: {
814 auto *Arg0 = E->getArg(0);
815 Value *Op0 = EmitScalarExpr(Arg0);
816 llvm::Type *Xty = Op0->getType();
817 llvm::Type *retType = llvm::Type::getInt32Ty(this->getLLVMContext());
818 if (Xty->isVectorTy()) {
819 auto *XVecTy = Arg0->getType()->castAs<VectorType>();
820 retType = llvm::VectorType::get(
821 retType, ElementCount::getFixed(XVecTy->getNumElements()));
822 }
823 assert((Arg0->getType()->hasFloatingRepresentation() ||
824 Arg0->getType()->hasIntegerRepresentation()) &&
825 "sign operand must have a float or int representation");
826
827 if (Arg0->getType()->hasUnsignedIntegerRepresentation()) {
828 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::get(Xty, 0));
829 return Builder.CreateSelect(Cmp, ConstantInt::get(retType, 0),
830 ConstantInt::get(retType, 1), "hlsl.sign");
831 }
832
833 return Builder.CreateIntrinsic(
834 retType, CGM.getHLSLRuntime().getSignIntrinsic(),
835 ArrayRef<Value *>{Op0}, nullptr, "hlsl.sign");
836 }
837 case Builtin::BI__builtin_hlsl_elementwise_radians: {
838 Value *Op0 = EmitScalarExpr(E->getArg(0));
839 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
840 "radians operand must have a float representation");
841 return Builder.CreateIntrinsic(
842 /*ReturnType=*/Op0->getType(),
843 CGM.getHLSLRuntime().getRadiansIntrinsic(), ArrayRef<Value *>{Op0},
844 nullptr, "hlsl.radians");
845 }
846 case Builtin::BI__builtin_hlsl_buffer_update_counter: {
847 Value *ResHandle = EmitScalarExpr(E->getArg(0));
848 Value *Offset = EmitScalarExpr(E->getArg(1));
849 Value *OffsetI8 = Builder.CreateIntCast(Offset, Int8Ty, true);
850 return Builder.CreateIntrinsic(
851 /*ReturnType=*/Offset->getType(),
852 CGM.getHLSLRuntime().getBufferUpdateCounterIntrinsic(),
853 ArrayRef<Value *>{ResHandle, OffsetI8}, nullptr);
854 }
855 case Builtin::BI__builtin_hlsl_elementwise_splitdouble: {
856
857 assert((E->getArg(0)->getType()->hasFloatingRepresentation() &&
860 "asuint operands types mismatch");
861 return handleHlslSplitdouble(E, this);
862 }
863 case Builtin::BI__builtin_hlsl_elementwise_clip:
864 assert(E->getArg(0)->getType()->hasFloatingRepresentation() &&
865 "clip operands types mismatch");
866 return handleHlslClip(E, this);
867 case Builtin::BI__builtin_hlsl_group_memory_barrier_with_group_sync: {
868 Intrinsic::ID ID =
869 CGM.getHLSLRuntime().getGroupMemoryBarrierWithGroupSyncIntrinsic();
870 return EmitRuntimeCall(
871 Intrinsic::getOrInsertDeclaration(&CGM.getModule(), ID));
872 }
873 case Builtin::BI__builtin_get_spirv_spec_constant_bool:
874 case Builtin::BI__builtin_get_spirv_spec_constant_short:
875 case Builtin::BI__builtin_get_spirv_spec_constant_ushort:
876 case Builtin::BI__builtin_get_spirv_spec_constant_int:
877 case Builtin::BI__builtin_get_spirv_spec_constant_uint:
878 case Builtin::BI__builtin_get_spirv_spec_constant_longlong:
879 case Builtin::BI__builtin_get_spirv_spec_constant_ulonglong:
880 case Builtin::BI__builtin_get_spirv_spec_constant_half:
881 case Builtin::BI__builtin_get_spirv_spec_constant_float:
882 case Builtin::BI__builtin_get_spirv_spec_constant_double: {
883 llvm::Function *SpecConstantFn = getSpecConstantFunction(E->getType());
884 llvm::Value *SpecId = EmitScalarExpr(E->getArg(0));
885 llvm::Value *DefaultVal = EmitScalarExpr(E->getArg(1));
886 llvm::Value *Args[] = {SpecId, DefaultVal};
887 return Builder.CreateCall(SpecConstantFn, Args);
888 }
889 }
890 return nullptr;
891}
892
894 const clang::QualType &SpecConstantType) {
895
896 // Find or create the declaration for the function.
897 llvm::Module *M = &CGM.getModule();
898 std::string MangledName =
899 getSpecConstantFunctionName(SpecConstantType, getContext());
900 llvm::Function *SpecConstantFn = M->getFunction(MangledName);
901
902 if (!SpecConstantFn) {
903 llvm::Type *IntType = ConvertType(getContext().IntTy);
904 llvm::Type *RetTy = ConvertType(SpecConstantType);
905 llvm::Type *ArgTypes[] = {IntType, RetTy};
906 llvm::FunctionType *FnTy = llvm::FunctionType::get(RetTy, ArgTypes, false);
907 SpecConstantFn = llvm::Function::Create(
908 FnTy, llvm::GlobalValue::ExternalLinkage, MangledName, M);
909 }
910 return SpecConstantFn;
911}
llvm::Value * EmitOverflowIntrinsic(CodeGenFunction &CGF, const Intrinsic::ID IntrinsicID, llvm::Value *X, llvm::Value *Y, llvm::Value *&Carry)
Emit a call to llvm.
static Intrinsic::ID getWaveActiveSumIntrinsic(llvm::Triple::ArchType Arch, CGHLSLRuntime &RT, QualType QT)
static Intrinsic::ID getWaveActiveMaxIntrinsic(llvm::Triple::ArchType Arch, CGHLSLRuntime &RT, QualType QT)
static Intrinsic::ID getDotProductIntrinsic(CGHLSLRuntime &RT, QualType QT)
static std::string getSpecConstantFunctionName(clang::QualType SpecConstantType, ASTContext &Context)
static Intrinsic::ID getWaveActiveMinIntrinsic(llvm::Triple::ArchType Arch, CGHLSLRuntime &RT, QualType QT)
static Value * handleHlslSplitdouble(const CallExpr *E, CodeGenFunction *CGF)
static Value * emitBufferStride(CodeGenFunction *CGF, const Expr *HandleExpr, LValue &Stride)
static Intrinsic::ID getFirstBitHighIntrinsic(CGHLSLRuntime &RT, QualType QT)
static Value * handleAsDoubleBuiltin(CodeGenFunction &CGF, const CallExpr *E)
static Value * handleHlslClip(const CallExpr *E, CodeGenFunction *CGF)
#define X(type, name)
Definition Value.h:97
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition ASTContext.h:220
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition Expr.h:2877
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition Expr.h:3081
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition CGBuilder.h:140
CallArgList - Type for representing both the value and type of arguments in a call.
Definition CGCall.h:274
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::Type * ConvertType(QualType T)
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
const LangOptions & getLangOpts() const
const TargetInfo & getTarget() const
llvm::Function * getSpecConstantFunction(const clang::QualType &SpecConstantType)
LValue EmitHLSLOutArgExpr(const HLSLOutArgExpr *E, CallArgList &Args, QualType Ty)
Definition CGExpr.cpp:5897
void EmitWritebacks(const CallArgList &Args)
EmitWriteback - Emit callbacks for function.
Definition CGCall.cpp:4867
llvm::Value * getTypeSize(QualType Ty)
Returns calculated size of the specified type.
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition CGExpr.cpp:266
llvm::CallInst * EmitRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type,...
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
LValue EmitLValue(const Expr *E, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitLValue - Emit code to compute a designator that specifies the location of the expression.
Definition CGExpr.cpp:1668
llvm::LLVMContext & getLLVMContext()
llvm::Value * EmitHLSLBuiltinExpr(unsigned BuiltinID, const CallExpr *E, ReturnValueSlot ReturnValue)
CGHLSLRuntime & getHLSLRuntime()
Return a reference to the configured HLSL runtime.
const TargetInfo & getTarget() const
LValue - This represents an lvalue references.
Definition CGValue.h:182
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition CGValue.h:42
bool isScalar() const
Definition CGValue.h:64
Address getAggregateAddress() const
getAggregateAddr() - Return the Value* of the address of the aggregate.
Definition CGValue.h:83
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition CGValue.h:71
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Definition CGCall.h:379
The name of a declaration.
This represents one expression.
Definition Expr.h:112
QualType getType() const
Definition Expr.h:144
Represents a function declaration or definition.
Definition Decl.h:2000
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin=false, bool isInlineSpecified=false, bool hasWrittenPrototype=true, ConstexprSpecKind ConstexprKind=ConstexprSpecKind::Unspecified, const AssociatedConstraint &TrailingRequiresClause={})
Definition Decl.h:2189
Represents a parameter to a function.
Definition Decl.h:1790
static ParmVarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
Definition Decl.cpp:2946
A (possibly-)qualified type.
Definition TypeBase.h:937
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition TypeBase.h:8278
Encodes a location in the source.
bool areArgsDestroyedLeftToRightInCallee() const
Are arguments to a call destroyed left to right in the callee?
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char,...
Definition Type.cpp:2205
bool hasIntegerRepresentation() const
Determine whether this type has an integer representation of some sort, e.g., it is an integer type o...
Definition Type.cpp:2066
const T * castAs() const
Member-template castAs<specific type>.
Definition TypeBase.h:9158
bool hasUnsignedIntegerRepresentation() const
Determine whether this type has an unsigned integer representation of some sort, e....
Definition Type.cpp:2291
bool hasSignedIntegerRepresentation() const
Determine whether this type has an signed integer representation of some sort, e.g....
Definition Type.cpp:2243
bool hasFloatingRepresentation() const
Determine whether this type has a floating-point representation of some sort, e.g....
Definition Type.cpp:2312
bool isVectorType() const
Definition TypeBase.h:8654
bool isFloatingType() const
Definition Type.cpp:2304
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition Type.cpp:2253
const T * getAs() const
Member-template getAs<specific type>'.
Definition TypeBase.h:9091
QualType getType() const
Definition Value.cpp:237
Represents a GCC generic vector type.
Definition TypeBase.h:4175
unsigned getNumElements() const
Definition TypeBase.h:4190
The JSON file list parser is used to communicate input to InstallAPI.
@ SC_Extern
Definition Specifiers.h:251
@ SC_None
Definition Specifiers.h:250
@ Result
The result type of a method or function.
Definition TypeBase.h:905
U cast(CodeGen::Address addr)
Definition Address.h:327
Diagnostic wrappers for TextAPI types for error reporting.
Definition Dominators.h:30
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Extra information about a function prototype.
Definition TypeBase.h:5339