clang  11.0.0git
Store.cpp
Go to the documentation of this file.
1 //===- Store.cpp - Interface for maps from Locations to Values ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defined the types Store and StoreManager.
10 //
11 //===----------------------------------------------------------------------===//
12 
14 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Basic/LLVM.h"
31 #include "llvm/ADT/APSInt.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include <cassert>
37 #include <cstdint>
38 
39 using namespace clang;
40 using namespace ento;
41 
43  : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
44  MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
45 
47  const CallEvent &Call,
48  const StackFrameContext *LCtx) {
49  StoreRef Store = StoreRef(OldStore, *this);
50 
52  Call.getInitialStackFrameContents(LCtx, InitialBindings);
53 
54  for (const auto &I : InitialBindings)
55  Store = Bind(Store.getStore(), I.first.castAs<Loc>(), I.second);
56 
57  return Store;
58 }
59 
61  QualType EleTy,
62  uint64_t index) {
63  NonLoc idx = svalBuilder.makeArrayIndex(index);
64  return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
65 }
66 
68  QualType T) {
70  assert(!T.isNull());
71  return MRMgr.getElementRegion(T, idx, R, Ctx);
72 }
73 
76 
77  // Handle casts to Objective-C objects.
78  if (CastToTy->isObjCObjectPointerType())
79  return R->StripCasts();
80 
81  if (CastToTy->isBlockPointerType()) {
82  // FIXME: We may need different solutions, depending on the symbol
83  // involved. Blocks can be casted to/from 'id', as they can be treated
84  // as Objective-C objects. This could possibly be handled by enhancing
85  // our reasoning of downcasts of symbolic objects.
86  if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
87  return R;
88 
89  // We don't know what to make of it. Return a NULL region, which
90  // will be interpreted as UnknownVal.
91  return nullptr;
92  }
93 
94  // Now assume we are casting from pointer to pointer. Other cases should
95  // already be handled.
96  QualType PointeeTy = CastToTy->getPointeeType();
97  QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
98 
99  // Handle casts to void*. We just pass the region through.
100  if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
101  return R;
102 
103  // Handle casts from compatible types.
104  if (R->isBoundable())
105  if (const auto *TR = dyn_cast<TypedValueRegion>(R)) {
106  QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
107  if (CanonPointeeTy == ObjTy)
108  return R;
109  }
110 
111  // Process region cast according to the kind of the region being cast.
112  switch (R->getKind()) {
113  case MemRegion::CXXThisRegionKind:
114  case MemRegion::CodeSpaceRegionKind:
115  case MemRegion::StackLocalsSpaceRegionKind:
116  case MemRegion::StackArgumentsSpaceRegionKind:
117  case MemRegion::HeapSpaceRegionKind:
118  case MemRegion::UnknownSpaceRegionKind:
119  case MemRegion::StaticGlobalSpaceRegionKind:
120  case MemRegion::GlobalInternalSpaceRegionKind:
121  case MemRegion::GlobalSystemSpaceRegionKind:
122  case MemRegion::GlobalImmutableSpaceRegionKind: {
123  llvm_unreachable("Invalid region cast");
124  }
125 
126  case MemRegion::FunctionCodeRegionKind:
127  case MemRegion::BlockCodeRegionKind:
128  case MemRegion::BlockDataRegionKind:
129  case MemRegion::StringRegionKind:
130  // FIXME: Need to handle arbitrary downcasts.
131  case MemRegion::SymbolicRegionKind:
132  case MemRegion::AllocaRegionKind:
133  case MemRegion::CompoundLiteralRegionKind:
134  case MemRegion::FieldRegionKind:
135  case MemRegion::ObjCIvarRegionKind:
136  case MemRegion::ObjCStringRegionKind:
137  case MemRegion::NonParamVarRegionKind:
138  case MemRegion::ParamVarRegionKind:
139  case MemRegion::CXXTempObjectRegionKind:
140  case MemRegion::CXXBaseObjectRegionKind:
141  case MemRegion::CXXDerivedObjectRegionKind:
142  return MakeElementRegion(cast<SubRegion>(R), PointeeTy);
143 
144  case MemRegion::ElementRegionKind: {
145  // If we are casting from an ElementRegion to another type, the
146  // algorithm is as follows:
147  //
148  // (1) Compute the "raw offset" of the ElementRegion from the
149  // base region. This is done by calling 'getAsRawOffset()'.
150  //
151  // (2a) If we get a 'RegionRawOffset' after calling
152  // 'getAsRawOffset()', determine if the absolute offset
153  // can be exactly divided into chunks of the size of the
154  // casted-pointee type. If so, create a new ElementRegion with
155  // the pointee-cast type as the new ElementType and the index
156  // being the offset divded by the chunk size. If not, create
157  // a new ElementRegion at offset 0 off the raw offset region.
158  //
159  // (2b) If we don't a get a 'RegionRawOffset' after calling
160  // 'getAsRawOffset()', it means that we are at offset 0.
161  //
162  // FIXME: Handle symbolic raw offsets.
163 
164  const ElementRegion *elementR = cast<ElementRegion>(R);
165  const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
166  const MemRegion *baseR = rawOff.getRegion();
167 
168  // If we cannot compute a raw offset, throw up our hands and return
169  // a NULL MemRegion*.
170  if (!baseR)
171  return nullptr;
172 
173  CharUnits off = rawOff.getOffset();
174 
175  if (off.isZero()) {
176  // Edge case: we are at 0 bytes off the beginning of baseR. We
177  // check to see if type we are casting to is the same as the base
178  // region. If so, just return the base region.
179  if (const auto *TR = dyn_cast<TypedValueRegion>(baseR)) {
180  QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
181  QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
182  if (CanonPointeeTy == ObjTy)
183  return baseR;
184  }
185 
186  // Otherwise, create a new ElementRegion at offset 0.
187  return MakeElementRegion(cast<SubRegion>(baseR), PointeeTy);
188  }
189 
190  // We have a non-zero offset from the base region. We want to determine
191  // if the offset can be evenly divided by sizeof(PointeeTy). If so,
192  // we create an ElementRegion whose index is that value. Otherwise, we
193  // create two ElementRegions, one that reflects a raw offset and the other
194  // that reflects the cast.
195 
196  // Compute the index for the new ElementRegion.
197  int64_t newIndex = 0;
198  const MemRegion *newSuperR = nullptr;
199 
200  // We can only compute sizeof(PointeeTy) if it is a complete type.
201  if (!PointeeTy->isIncompleteType()) {
202  // Compute the size in **bytes**.
203  CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
204  if (!pointeeTySize.isZero()) {
205  // Is the offset a multiple of the size? If so, we can layer the
206  // ElementRegion (with elementType == PointeeTy) directly on top of
207  // the base region.
208  if (off % pointeeTySize == 0) {
209  newIndex = off / pointeeTySize;
210  newSuperR = baseR;
211  }
212  }
213  }
214 
215  if (!newSuperR) {
216  // Create an intermediate ElementRegion to represent the raw byte.
217  // This will be the super region of the final ElementRegion.
218  newSuperR = MakeElementRegion(cast<SubRegion>(baseR), Ctx.CharTy,
219  off.getQuantity());
220  }
221 
222  return MakeElementRegion(cast<SubRegion>(newSuperR), PointeeTy, newIndex);
223  }
224  }
225 
226  llvm_unreachable("unreachable");
227 }
228 
229 static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
230  const MemRegion *MR = V.getAsRegion();
231  if (!MR)
232  return true;
233 
234  const auto *TVR = dyn_cast<TypedValueRegion>(MR);
235  if (!TVR)
236  return true;
237 
238  const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
239  if (!RD)
240  return true;
241 
243  if (!Expected)
244  Expected = Ty->getAsCXXRecordDecl();
245 
246  return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
247 }
248 
250  // Sanity check to avoid doing the wrong thing in the face of
251  // reinterpret_cast.
252  if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
253  return UnknownVal();
254 
255  // Walk through the cast path to create nested CXXBaseRegions.
256  SVal Result = Derived;
257  for (CastExpr::path_const_iterator I = Cast->path_begin(),
258  E = Cast->path_end();
259  I != E; ++I) {
260  Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
261  }
262  return Result;
263 }
264 
266  // Walk through the path to create nested CXXBaseRegions.
267  SVal Result = Derived;
268  for (const auto &I : Path)
269  Result = evalDerivedToBase(Result, I.Base->getType(),
270  I.Base->isVirtual());
271  return Result;
272 }
273 
275  bool IsVirtual) {
276  const MemRegion *DerivedReg = Derived.getAsRegion();
277  if (!DerivedReg)
278  return Derived;
279 
280  const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
281  if (!BaseDecl)
282  BaseDecl = BaseType->getAsCXXRecordDecl();
283  assert(BaseDecl && "not a C++ object?");
284 
285  if (const auto *AlreadyDerivedReg =
286  dyn_cast<CXXDerivedObjectRegion>(DerivedReg)) {
287  if (const auto *SR =
288  dyn_cast<SymbolicRegion>(AlreadyDerivedReg->getSuperRegion()))
289  if (SR->getSymbol()->getType()->getPointeeCXXRecordDecl() == BaseDecl)
290  return loc::MemRegionVal(SR);
291 
292  DerivedReg = AlreadyDerivedReg->getSuperRegion();
293  }
294 
295  const MemRegion *BaseReg = MRMgr.getCXXBaseObjectRegion(
296  BaseDecl, cast<SubRegion>(DerivedReg), IsVirtual);
297 
298  return loc::MemRegionVal(BaseReg);
299 }
300 
301 /// Returns the static type of the given region, if it represents a C++ class
302 /// object.
303 ///
304 /// This handles both fully-typed regions, where the dynamic type is known, and
305 /// symbolic regions, where the dynamic type is merely bounded (and even then,
306 /// only ostensibly!), but does not take advantage of any dynamic type info.
307 static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) {
308  if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
309  return TVR->getValueType()->getAsCXXRecordDecl();
310  if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
311  return SR->getSymbol()->getType()->getPointeeCXXRecordDecl();
312  return nullptr;
313 }
314 
316  bool &Failed) {
317  Failed = false;
318 
319  const MemRegion *MR = Base.getAsRegion();
320  if (!MR)
321  return UnknownVal();
322 
323  // Assume the derived class is a pointer or a reference to a CXX record.
324  TargetType = TargetType->getPointeeType();
325  assert(!TargetType.isNull());
326  const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
327  if (!TargetClass && !TargetType->isVoidType())
328  return UnknownVal();
329 
330  // Drill down the CXXBaseObject chains, which represent upcasts (casts from
331  // derived to base).
332  while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
333  // If found the derived class, the cast succeeds.
334  if (MRClass == TargetClass)
335  return loc::MemRegionVal(MR);
336 
337  // We skip over incomplete types. They must be the result of an earlier
338  // reinterpret_cast, as one can only dynamic_cast between types in the same
339  // class hierarchy.
340  if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
341  // Static upcasts are marked as DerivedToBase casts by Sema, so this will
342  // only happen when multiple or virtual inheritance is involved.
343  CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
344  /*DetectVirtual=*/false);
345  if (MRClass->isDerivedFrom(TargetClass, Paths))
346  return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
347  }
348 
349  if (const auto *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
350  // Drill down the chain to get the derived classes.
351  MR = BaseR->getSuperRegion();
352  continue;
353  }
354 
355  // If this is a cast to void*, return the region.
356  if (TargetType->isVoidType())
357  return loc::MemRegionVal(MR);
358 
359  // Strange use of reinterpret_cast can give us paths we don't reason
360  // about well, by putting in ElementRegions where we'd expect
361  // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
362  // derived class has a zero offset from the base class), then it's safe
363  // to strip the cast; if it's invalid, -Wreinterpret-base-class should
364  // catch it. In the interest of performance, the analyzer will silently
365  // do the wrong thing in the invalid case (because offsets for subregions
366  // will be wrong).
367  const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
368  if (Uncasted == MR) {
369  // We reached the bottom of the hierarchy and did not find the derived
370  // class. We must be casting the base to derived, so the cast should
371  // fail.
372  break;
373  }
374 
375  MR = Uncasted;
376  }
377 
378  // If we're casting a symbolic base pointer to a derived class, use
379  // CXXDerivedObjectRegion to represent the cast. If it's a pointer to an
380  // unrelated type, it must be a weird reinterpret_cast and we have to
381  // be fine with ElementRegion. TODO: Should we instead make
382  // Derived{TargetClass, Element{SourceClass, SR}}?
383  if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) {
384  QualType T = SR->getSymbol()->getType();
385  const CXXRecordDecl *SourceClass = T->getPointeeCXXRecordDecl();
386  if (TargetClass && SourceClass && TargetClass->isDerivedFrom(SourceClass))
387  return loc::MemRegionVal(
388  MRMgr.getCXXDerivedObjectRegion(TargetClass, SR));
389  return loc::MemRegionVal(GetElementZeroRegion(SR, TargetType));
390  }
391 
392  // We failed if the region we ended up with has perfect type info.
393  Failed = isa<TypedValueRegion>(MR);
394  return UnknownVal();
395 }
396 
398  return ty1->getPointeeType().getCanonicalType().getTypePtr() ==
400 }
401 
402 /// CastRetrievedVal - Used by subclasses of StoreManager to implement
403 /// implicit casts that arise from loads from regions that are reinterpreted
404 /// as another region.
406  QualType castTy) {
407  if (castTy.isNull() || V.isUnknownOrUndef())
408  return V;
409 
410  // The dispatchCast() call below would convert the int into a float.
411  // What we want, however, is a bit-by-bit reinterpretation of the int
412  // as a float, which usually yields nothing garbage. For now skip casts
413  // from ints to floats.
414  // TODO: What other combinations of types are affected?
415  if (castTy->isFloatingType()) {
416  SymbolRef Sym = V.getAsSymbol();
417  if (Sym && !Sym->getType()->isFloatingType())
418  return UnknownVal();
419  }
420 
421  // When retrieving symbolic pointer and expecting a non-void pointer,
422  // wrap them into element regions of the expected type if necessary.
423  // SValBuilder::dispatchCast() doesn't do that, but it is necessary to
424  // make sure that the retrieved value makes sense, because there's no other
425  // cast in the AST that would tell us to cast it to the correct pointer type.
426  // We might need to do that for non-void pointers as well.
427  // FIXME: We really need a single good function to perform casts for us
428  // correctly every time we need it.
429  if (castTy->isPointerType() && !castTy->isVoidPointerType())
430  if (const auto *SR = dyn_cast_or_null<SymbolicRegion>(V.getAsRegion())) {
431  QualType sr = SR->getSymbol()->getType();
432  if (!hasSameUnqualifiedPointeeType(sr, castTy))
433  return loc::MemRegionVal(castRegion(SR, castTy));
434  }
435 
436  return svalBuilder.dispatchCast(V, castTy);
437 }
438 
439 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
440  if (Base.isUnknownOrUndef())
441  return Base;
442 
443  Loc BaseL = Base.castAs<Loc>();
444  const SubRegion* BaseR = nullptr;
445 
446  switch (BaseL.getSubKind()) {
447  case loc::MemRegionValKind:
448  BaseR = cast<SubRegion>(BaseL.castAs<loc::MemRegionVal>().getRegion());
449  break;
450 
451  case loc::GotoLabelKind:
452  // These are anormal cases. Flag an undefined value.
453  return UndefinedVal();
454 
455  case loc::ConcreteIntKind:
456  // While these seem funny, this can happen through casts.
457  // FIXME: What we should return is the field offset, not base. For example,
458  // add the field offset to the integer value. That way things
459  // like this work properly: &(((struct foo *) 0xa)->f)
460  // However, that's not easy to fix without reducing our abilities
461  // to catch null pointer dereference. Eg., ((struct foo *)0x0)->f = 7
462  // is a null dereference even though we're dereferencing offset of f
463  // rather than null. Coming up with an approach that computes offsets
464  // over null pointers properly while still being able to catch null
465  // dereferences might be worth it.
466  return Base;
467 
468  default:
469  llvm_unreachable("Unhandled Base.");
470  }
471 
472  // NOTE: We must have this check first because ObjCIvarDecl is a subclass
473  // of FieldDecl.
474  if (const auto *ID = dyn_cast<ObjCIvarDecl>(D))
476 
477  return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
478 }
479 
481  return getLValueFieldOrIvar(decl, base);
482 }
483 
485  SVal Base) {
486  // If the base is an unknown or undefined value, just return it back.
487  // FIXME: For absolute pointer addresses, we just return that value back as
488  // well, although in reality we should return the offset added to that
489  // value. See also the similar FIXME in getLValueFieldOrIvar().
490  if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>())
491  return Base;
492 
493  if (Base.getAs<loc::GotoLabel>())
494  return UnknownVal();
495 
496  const SubRegion *BaseRegion =
497  Base.castAs<loc::MemRegionVal>().getRegionAs<SubRegion>();
498 
499  // Pointer of any type can be cast and used as array base.
500  const auto *ElemR = dyn_cast<ElementRegion>(BaseRegion);
501 
502  // Convert the offset to the appropriate size and signedness.
503  Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
504 
505  if (!ElemR) {
506  // If the base region is not an ElementRegion, create one.
507  // This can happen in the following example:
508  //
509  // char *p = __builtin_alloc(10);
510  // p[1] = 8;
511  //
512  // Observe that 'p' binds to an AllocaRegion.
513  return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
514  BaseRegion, Ctx));
515  }
516 
517  SVal BaseIdx = ElemR->getIndex();
518 
519  if (!BaseIdx.getAs<nonloc::ConcreteInt>())
520  return UnknownVal();
521 
522  const llvm::APSInt &BaseIdxI =
523  BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
524 
525  // Only allow non-integer offsets if the base region has no offset itself.
526  // FIXME: This is a somewhat arbitrary restriction. We should be using
527  // SValBuilder here to add the two offsets without checking their types.
528  if (!Offset.getAs<nonloc::ConcreteInt>()) {
529  if (isa<ElementRegion>(BaseRegion->StripCasts()))
530  return UnknownVal();
531 
533  elementType, Offset, cast<SubRegion>(ElemR->getSuperRegion()), Ctx));
534  }
535 
536  const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
537  assert(BaseIdxI.isSigned());
538 
539  // Compute the new index.
540  nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
541  OffI));
542 
543  // Construct the new ElementRegion.
544  const SubRegion *ArrayR = cast<SubRegion>(ElemR->getSuperRegion());
545  return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
546  Ctx));
547 }
548 
550 
552  Store store,
553  const MemRegion* R,
554  SVal val) {
555  SymbolRef SymV = val.getAsLocSymbol();
556  if (!SymV || SymV != Sym)
557  return true;
558 
559  if (Binding) {
560  First = false;
561  return false;
562  }
563  else
564  Binding = R;
565 
566  return true;
567 }
Defines the clang::ASTContext interface.
SVal attemptDownCast(SVal Base, QualType DerivedPtrType, bool &Failed)
Attempts to do a down cast.
Definition: Store.cpp:315
TypedValueRegion - An abstract class representing regions having a typed value.
Definition: MemRegion.h:522
bool Cast(InterpState &S, CodePtr OpPC)
Definition: Interp.h:800
SVal evalDerivedToBase(SVal Derived, const CastExpr *Cast)
Evaluates a chain of derived-to-base casts through the path specified in Cast.
Definition: Store.cpp:249
A (possibly-)qualified type.
Definition: Type.h:655
MemRegion - The root abstract class for all memory regions.
Definition: MemRegion.h:94
bool isBlockPointerType() const
Definition: Type.h:6658
Store getStore() const
Definition: StoreRef.h:46
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:627
C Language Family Type Representation.
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:89
bool isDerivedFrom(const CXXRecordDecl *Base) const
Determine whether this class is derived from the class Base.
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:116
Represents a path from a specific derived class (which is not represented as part of the path) to a p...
Value representing integer constant.
Definition: SVals.h:379
const ObjCIvarRegion * getObjCIvarRegion(const ObjCIvarDecl *ivd, const SubRegion *superRegion)
getObjCIvarRegion - Retrieve or create the memory region associated with a specified Objective-c inst...
Definition: MemRegion.cpp:1151
const CXXBaseSpecifier *const * path_const_iterator
Definition: Expr.h:3417
SymbolRef getAsLocSymbol(bool IncludeBaseRegions=false) const
If this SVal is a location and wraps a symbol, return that SymbolRef.
Definition: SVals.cpp:85
virtual SVal dispatchCast(SVal val, QualType castTy)=0
const void * Store
Store - This opaque type encapsulates an immutable mapping from locations to values.
Definition: StoreRef.h:27
NonLoc makeArrayIndex(uint64_t idx)
Definition: SValBuilder.h:272
const ElementRegion * GetElementZeroRegion(const SubRegion *R, QualType T)
Definition: Store.cpp:67
QualType getLocalUnqualifiedType() const
Return this type with all of the instance-specific qualifiers removed, but without removing any quali...
Definition: Type.h:894
const MemRegion * castRegion(const MemRegion *region, QualType CastToTy)
castRegion - Used by ExprEngine::VisitCast to handle casts from a MemRegion* to a specific location t...
Definition: Store.cpp:74
ASTContext & Ctx
Definition: Store.h:60
Symbolic value.
Definition: SymExpr.h:29
bool HandleBinding(StoreManager &SMgr, Store store, const MemRegion *R, SVal val) override
Definition: Store.cpp:551
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:174
static bool regionMatchesCXXRecordType(SVal V, QualType Ty)
Definition: Store.cpp:229
Expr * getSubExpr()
Definition: Expr.h:3400
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified...
path_iterator path_begin()
Definition: Expr.h:3420
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:6402
CXXRecordDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclCXX.h:493
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3361
StoreRef enterStackFrame(Store store, const CallEvent &Call, const StackFrameContext *CalleeCtx)
enterStackFrame - Let the StoreManager to do something when execution engine is about to execute into...
Definition: Store.cpp:46
virtual QualType getType() const =0
virtual SVal getLValueIvar(const ObjCIvarDecl *decl, SVal base)
Definition: Store.cpp:480
SymbolRef getAsSymbol(bool IncludeBaseRegions=false) const
If this SVal wraps a symbol return that SymbolRef.
Definition: SVals.cpp:127
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1758
unsigned getSubKind() const
Definition: SVals.h:119
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
unsigned Offset
Definition: Format.cpp:2020
SValBuilder & svalBuilder
Definition: Store.h:55
const CXXRecordDecl * getPointeeCXXRecordDecl() const
If this is a pointer or reference to a RecordType, return the CXXRecordDecl that the type refers to...
Definition: Type.cpp:1743
#define V(N, I)
Definition: ASTContext.h:2899
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
static SVal getValue(SVal val, SValBuilder &svalBuilder)
QualType getType() const
Definition: Expr.h:142
ProgramStateManager & StateMgr
Definition: Store.h:56
virtual StoreRef Bind(Store store, Loc loc, SVal val)=0
Return a store with the specified value bound to the given location.
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:720
Optional< T > getAs() const
Convert to the specified SVal type, returning None if this SVal is not of the desired type...
Definition: SVals.h:111
virtual bool isBoundable() const
Definition: MemRegion.h:174
bool isVoidPointerType() const
Definition: Type.cpp:591
Kind getKind() const
Definition: MemRegion.h:169
QualType getCanonicalType() const
Definition: Type.h:6441
static bool hasSameUnqualifiedPointeeType(QualType ty1, QualType ty2)
Definition: Store.cpp:397
llvm::APSInt APSInt
virtual void getInitialStackFrameContents(const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const =0
Populates the given SmallVector with the bindings in the callee&#39;s stack frame at the start of this ca...
const MemRegion * getAsRegion() const
Definition: SVals.cpp:151
ASTContext & getContext()
Definition: SValBuilder.h:155
SVal - This represents a symbolic expression, which can be either an L-value or an R-value...
Definition: SVals.h:75
CanQualType VoidTy
Definition: ASTContext.h:942
const CXXDerivedObjectRegion * getCXXDerivedObjectRegion(const CXXRecordDecl *BaseClass, const SubRegion *Super)
Create a CXXDerivedObjectRegion with the given derived class for region Super.
Definition: MemRegion.cpp:1207
bool isObjCObjectPointerType() const
Definition: Type.h:6772
RegionRawOffset getAsArrayOffset() const
Compute the offset within the array. The array might also be a subobject.
Definition: MemRegion.cpp:1343
const CXXBaseObjectRegion * getCXXBaseObjectRegion(const CXXRecordDecl *BaseClass, const SubRegion *Super, bool IsVirtual)
Create a CXXBaseObjectRegion with the given base class for region Super.
Definition: MemRegion.cpp:1187
CanQualType CharTy
Definition: ASTContext.h:944
Dataflow Directional Tag Classes.
const ElementRegion * getElementRegion(QualType elementType, NonLoc Idx, const SubRegion *superRegion, ASTContext &Ctx)
getElementRegion - Retrieve the memory region associated with the associated element type...
Definition: MemRegion.cpp:1102
const MemRegion * StripCasts(bool StripBaseAndDerivedCasts=true) const
Definition: MemRegion.cpp:1309
Represents an abstract call to a function or method along a particular path.
Definition: CallEvent.h:143
SVal convertToArrayIndex(SVal val)
Definition: SValBuilder.cpp:99
path_iterator path_end()
Definition: Expr.h:3421
T castAs() const
Convert to the specified SVal type, asserting that this SVal is of the desired type.
Definition: SVals.h:103
BasicValueFactory & getBasicValueFactory()
Definition: SValBuilder.h:168
SubRegion - A region that subsets another larger region.
Definition: MemRegion.h:435
const ElementRegion * MakeElementRegion(const SubRegion *baseRegion, QualType pointeeTy, uint64_t index=0)
Definition: Store.cpp:60
SVal CastRetrievedVal(SVal val, const TypedValueRegion *region, QualType castTy)
CastRetrievedVal - Used by subclasses of StoreManager to implement implicit casts that arise from loa...
Definition: Store.cpp:405
CXXBasePath & front()
MemRegionManager & MRMgr
MRMgr - Manages region objects associated with this StoreManager.
Definition: Store.h:59
It represents a stack frame of the call stack (based on CallEvent).
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types...
Definition: Type.cpp:2211
virtual SVal getLValueElement(QualType elementType, NonLoc offset, SVal Base)
Definition: Store.cpp:484
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2259
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
static const CXXRecordDecl * getCXXRecordType(const MemRegion *MR)
Returns the static type of the given region, if it represents a C++ class object. ...
Definition: Store.cpp:307
Represents a C++ struct/union/class.
Definition: DeclCXX.h:254
bool isVoidType() const
Definition: Type.h:6933
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1936
ElementRegion is used to represent both array elements and casts.
Definition: MemRegion.h:1141
bool isPointerType() const
Definition: Type.h:6650
BasePaths - Represents the set of paths from a derived class to one of its (direct or indirect) bases...
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
bool isFloatingType() const
Definition: Type.cpp:2098
StoreManager(ProgramStateManager &stateMgr)
Definition: Store.cpp:42
const FieldRegion * getFieldRegion(const FieldDecl *fd, const SubRegion *superRegion)
getFieldRegion - Retrieve or create the memory region associated with a specified FieldDecl...
Definition: MemRegion.cpp:1145
bool isUnknownOrUndef() const
Definition: SVals.h:144