clang  10.0.0svn
Store.cpp
Go to the documentation of this file.
1 //===- Store.cpp - Interface for maps from Locations to Values ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defined the types Store and StoreManager.
10 //
11 //===----------------------------------------------------------------------===//
12 
14 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Basic/LLVM.h"
31 #include "llvm/ADT/APSInt.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include <cassert>
37 #include <cstdint>
38 
39 using namespace clang;
40 using namespace ento;
41 
43  : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
44  MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
45 
47  const CallEvent &Call,
48  const StackFrameContext *LCtx) {
49  StoreRef Store = StoreRef(OldStore, *this);
50 
52  Call.getInitialStackFrameContents(LCtx, InitialBindings);
53 
54  for (const auto &I : InitialBindings)
55  Store = Bind(Store.getStore(), I.first, I.second);
56 
57  return Store;
58 }
59 
61  QualType EleTy,
62  uint64_t index) {
63  NonLoc idx = svalBuilder.makeArrayIndex(index);
64  return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
65 }
66 
68  QualType T) {
70  assert(!T.isNull());
71  return MRMgr.getElementRegion(T, idx, R, Ctx);
72 }
73 
76 
77  // Handle casts to Objective-C objects.
78  if (CastToTy->isObjCObjectPointerType())
79  return R->StripCasts();
80 
81  if (CastToTy->isBlockPointerType()) {
82  // FIXME: We may need different solutions, depending on the symbol
83  // involved. Blocks can be casted to/from 'id', as they can be treated
84  // as Objective-C objects. This could possibly be handled by enhancing
85  // our reasoning of downcasts of symbolic objects.
86  if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
87  return R;
88 
89  // We don't know what to make of it. Return a NULL region, which
90  // will be interpreted as UnknownVal.
91  return nullptr;
92  }
93 
94  // Now assume we are casting from pointer to pointer. Other cases should
95  // already be handled.
96  QualType PointeeTy = CastToTy->getPointeeType();
97  QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
98 
99  // Handle casts to void*. We just pass the region through.
100  if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
101  return R;
102 
103  // Handle casts from compatible types.
104  if (R->isBoundable())
105  if (const auto *TR = dyn_cast<TypedValueRegion>(R)) {
106  QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
107  if (CanonPointeeTy == ObjTy)
108  return R;
109  }
110 
111  // Process region cast according to the kind of the region being cast.
112  switch (R->getKind()) {
113  case MemRegion::CXXThisRegionKind:
114  case MemRegion::CodeSpaceRegionKind:
115  case MemRegion::StackLocalsSpaceRegionKind:
116  case MemRegion::StackArgumentsSpaceRegionKind:
117  case MemRegion::HeapSpaceRegionKind:
118  case MemRegion::UnknownSpaceRegionKind:
119  case MemRegion::StaticGlobalSpaceRegionKind:
120  case MemRegion::GlobalInternalSpaceRegionKind:
121  case MemRegion::GlobalSystemSpaceRegionKind:
122  case MemRegion::GlobalImmutableSpaceRegionKind: {
123  llvm_unreachable("Invalid region cast");
124  }
125 
126  case MemRegion::FunctionCodeRegionKind:
127  case MemRegion::BlockCodeRegionKind:
128  case MemRegion::BlockDataRegionKind:
129  case MemRegion::StringRegionKind:
130  // FIXME: Need to handle arbitrary downcasts.
131  case MemRegion::SymbolicRegionKind:
132  case MemRegion::AllocaRegionKind:
133  case MemRegion::CompoundLiteralRegionKind:
134  case MemRegion::FieldRegionKind:
135  case MemRegion::ObjCIvarRegionKind:
136  case MemRegion::ObjCStringRegionKind:
137  case MemRegion::VarRegionKind:
138  case MemRegion::CXXTempObjectRegionKind:
139  case MemRegion::CXXBaseObjectRegionKind:
140  case MemRegion::CXXDerivedObjectRegionKind:
141  return MakeElementRegion(cast<SubRegion>(R), PointeeTy);
142 
143  case MemRegion::ElementRegionKind: {
144  // If we are casting from an ElementRegion to another type, the
145  // algorithm is as follows:
146  //
147  // (1) Compute the "raw offset" of the ElementRegion from the
148  // base region. This is done by calling 'getAsRawOffset()'.
149  //
150  // (2a) If we get a 'RegionRawOffset' after calling
151  // 'getAsRawOffset()', determine if the absolute offset
152  // can be exactly divided into chunks of the size of the
153  // casted-pointee type. If so, create a new ElementRegion with
154  // the pointee-cast type as the new ElementType and the index
155  // being the offset divded by the chunk size. If not, create
156  // a new ElementRegion at offset 0 off the raw offset region.
157  //
158  // (2b) If we don't a get a 'RegionRawOffset' after calling
159  // 'getAsRawOffset()', it means that we are at offset 0.
160  //
161  // FIXME: Handle symbolic raw offsets.
162 
163  const ElementRegion *elementR = cast<ElementRegion>(R);
164  const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
165  const MemRegion *baseR = rawOff.getRegion();
166 
167  // If we cannot compute a raw offset, throw up our hands and return
168  // a NULL MemRegion*.
169  if (!baseR)
170  return nullptr;
171 
172  CharUnits off = rawOff.getOffset();
173 
174  if (off.isZero()) {
175  // Edge case: we are at 0 bytes off the beginning of baseR. We
176  // check to see if type we are casting to is the same as the base
177  // region. If so, just return the base region.
178  if (const auto *TR = dyn_cast<TypedValueRegion>(baseR)) {
179  QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
180  QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
181  if (CanonPointeeTy == ObjTy)
182  return baseR;
183  }
184 
185  // Otherwise, create a new ElementRegion at offset 0.
186  return MakeElementRegion(cast<SubRegion>(baseR), PointeeTy);
187  }
188 
189  // We have a non-zero offset from the base region. We want to determine
190  // if the offset can be evenly divided by sizeof(PointeeTy). If so,
191  // we create an ElementRegion whose index is that value. Otherwise, we
192  // create two ElementRegions, one that reflects a raw offset and the other
193  // that reflects the cast.
194 
195  // Compute the index for the new ElementRegion.
196  int64_t newIndex = 0;
197  const MemRegion *newSuperR = nullptr;
198 
199  // We can only compute sizeof(PointeeTy) if it is a complete type.
200  if (!PointeeTy->isIncompleteType()) {
201  // Compute the size in **bytes**.
202  CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
203  if (!pointeeTySize.isZero()) {
204  // Is the offset a multiple of the size? If so, we can layer the
205  // ElementRegion (with elementType == PointeeTy) directly on top of
206  // the base region.
207  if (off % pointeeTySize == 0) {
208  newIndex = off / pointeeTySize;
209  newSuperR = baseR;
210  }
211  }
212  }
213 
214  if (!newSuperR) {
215  // Create an intermediate ElementRegion to represent the raw byte.
216  // This will be the super region of the final ElementRegion.
217  newSuperR = MakeElementRegion(cast<SubRegion>(baseR), Ctx.CharTy,
218  off.getQuantity());
219  }
220 
221  return MakeElementRegion(cast<SubRegion>(newSuperR), PointeeTy, newIndex);
222  }
223  }
224 
225  llvm_unreachable("unreachable");
226 }
227 
228 static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
229  const MemRegion *MR = V.getAsRegion();
230  if (!MR)
231  return true;
232 
233  const auto *TVR = dyn_cast<TypedValueRegion>(MR);
234  if (!TVR)
235  return true;
236 
237  const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
238  if (!RD)
239  return true;
240 
242  if (!Expected)
243  Expected = Ty->getAsCXXRecordDecl();
244 
245  return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
246 }
247 
249  // Sanity check to avoid doing the wrong thing in the face of
250  // reinterpret_cast.
251  if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
252  return UnknownVal();
253 
254  // Walk through the cast path to create nested CXXBaseRegions.
255  SVal Result = Derived;
256  for (CastExpr::path_const_iterator I = Cast->path_begin(),
257  E = Cast->path_end();
258  I != E; ++I) {
259  Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
260  }
261  return Result;
262 }
263 
265  // Walk through the path to create nested CXXBaseRegions.
266  SVal Result = Derived;
267  for (const auto &I : Path)
268  Result = evalDerivedToBase(Result, I.Base->getType(),
269  I.Base->isVirtual());
270  return Result;
271 }
272 
274  bool IsVirtual) {
275  const MemRegion *DerivedReg = Derived.getAsRegion();
276  if (!DerivedReg)
277  return Derived;
278 
279  const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
280  if (!BaseDecl)
281  BaseDecl = BaseType->getAsCXXRecordDecl();
282  assert(BaseDecl && "not a C++ object?");
283 
284  if (const auto *AlreadyDerivedReg =
285  dyn_cast<CXXDerivedObjectRegion>(DerivedReg)) {
286  if (const auto *SR =
287  dyn_cast<SymbolicRegion>(AlreadyDerivedReg->getSuperRegion()))
288  if (SR->getSymbol()->getType()->getPointeeCXXRecordDecl() == BaseDecl)
289  return loc::MemRegionVal(SR);
290 
291  DerivedReg = AlreadyDerivedReg->getSuperRegion();
292  }
293 
294  const MemRegion *BaseReg = MRMgr.getCXXBaseObjectRegion(
295  BaseDecl, cast<SubRegion>(DerivedReg), IsVirtual);
296 
297  return loc::MemRegionVal(BaseReg);
298 }
299 
300 /// Returns the static type of the given region, if it represents a C++ class
301 /// object.
302 ///
303 /// This handles both fully-typed regions, where the dynamic type is known, and
304 /// symbolic regions, where the dynamic type is merely bounded (and even then,
305 /// only ostensibly!), but does not take advantage of any dynamic type info.
306 static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) {
307  if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
308  return TVR->getValueType()->getAsCXXRecordDecl();
309  if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
310  return SR->getSymbol()->getType()->getPointeeCXXRecordDecl();
311  return nullptr;
312 }
313 
315  bool &Failed) {
316  Failed = false;
317 
318  const MemRegion *MR = Base.getAsRegion();
319  if (!MR)
320  return UnknownVal();
321 
322  // Assume the derived class is a pointer or a reference to a CXX record.
323  TargetType = TargetType->getPointeeType();
324  assert(!TargetType.isNull());
325  const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
326  if (!TargetClass && !TargetType->isVoidType())
327  return UnknownVal();
328 
329  // Drill down the CXXBaseObject chains, which represent upcasts (casts from
330  // derived to base).
331  while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
332  // If found the derived class, the cast succeeds.
333  if (MRClass == TargetClass)
334  return loc::MemRegionVal(MR);
335 
336  // We skip over incomplete types. They must be the result of an earlier
337  // reinterpret_cast, as one can only dynamic_cast between types in the same
338  // class hierarchy.
339  if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
340  // Static upcasts are marked as DerivedToBase casts by Sema, so this will
341  // only happen when multiple or virtual inheritance is involved.
342  CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
343  /*DetectVirtual=*/false);
344  if (MRClass->isDerivedFrom(TargetClass, Paths))
345  return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
346  }
347 
348  if (const auto *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
349  // Drill down the chain to get the derived classes.
350  MR = BaseR->getSuperRegion();
351  continue;
352  }
353 
354  // If this is a cast to void*, return the region.
355  if (TargetType->isVoidType())
356  return loc::MemRegionVal(MR);
357 
358  // Strange use of reinterpret_cast can give us paths we don't reason
359  // about well, by putting in ElementRegions where we'd expect
360  // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
361  // derived class has a zero offset from the base class), then it's safe
362  // to strip the cast; if it's invalid, -Wreinterpret-base-class should
363  // catch it. In the interest of performance, the analyzer will silently
364  // do the wrong thing in the invalid case (because offsets for subregions
365  // will be wrong).
366  const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
367  if (Uncasted == MR) {
368  // We reached the bottom of the hierarchy and did not find the derived
369  // class. We must be casting the base to derived, so the cast should
370  // fail.
371  break;
372  }
373 
374  MR = Uncasted;
375  }
376 
377  // If we're casting a symbolic base pointer to a derived class, use
378  // CXXDerivedObjectRegion to represent the cast. If it's a pointer to an
379  // unrelated type, it must be a weird reinterpret_cast and we have to
380  // be fine with ElementRegion. TODO: Should we instead make
381  // Derived{TargetClass, Element{SourceClass, SR}}?
382  if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) {
383  QualType T = SR->getSymbol()->getType();
384  const CXXRecordDecl *SourceClass = T->getPointeeCXXRecordDecl();
385  if (TargetClass && SourceClass && TargetClass->isDerivedFrom(SourceClass))
386  return loc::MemRegionVal(
387  MRMgr.getCXXDerivedObjectRegion(TargetClass, SR));
388  return loc::MemRegionVal(GetElementZeroRegion(SR, TargetType));
389  }
390 
391  // We failed if the region we ended up with has perfect type info.
392  Failed = isa<TypedValueRegion>(MR);
393  return UnknownVal();
394 }
395 
396 /// CastRetrievedVal - Used by subclasses of StoreManager to implement
397 /// implicit casts that arise from loads from regions that are reinterpreted
398 /// as another region.
400  QualType castTy) {
401  if (castTy.isNull() || V.isUnknownOrUndef())
402  return V;
403 
404  // The dispatchCast() call below would convert the int into a float.
405  // What we want, however, is a bit-by-bit reinterpretation of the int
406  // as a float, which usually yields nothing garbage. For now skip casts
407  // from ints to floats.
408  // TODO: What other combinations of types are affected?
409  if (castTy->isFloatingType()) {
410  SymbolRef Sym = V.getAsSymbol();
411  if (Sym && !Sym->getType()->isFloatingType())
412  return UnknownVal();
413  }
414 
415  // When retrieving symbolic pointer and expecting a non-void pointer,
416  // wrap them into element regions of the expected type if necessary.
417  // SValBuilder::dispatchCast() doesn't do that, but it is necessary to
418  // make sure that the retrieved value makes sense, because there's no other
419  // cast in the AST that would tell us to cast it to the correct pointer type.
420  // We might need to do that for non-void pointers as well.
421  // FIXME: We really need a single good function to perform casts for us
422  // correctly every time we need it.
423  if (castTy->isPointerType() && !castTy->isVoidPointerType())
424  if (const auto *SR = dyn_cast_or_null<SymbolicRegion>(V.getAsRegion()))
425  if (SR->getSymbol()->getType().getCanonicalType() !=
426  castTy.getCanonicalType())
427  return loc::MemRegionVal(castRegion(SR, castTy));
428 
429  return svalBuilder.dispatchCast(V, castTy);
430 }
431 
432 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
433  if (Base.isUnknownOrUndef())
434  return Base;
435 
436  Loc BaseL = Base.castAs<Loc>();
437  const SubRegion* BaseR = nullptr;
438 
439  switch (BaseL.getSubKind()) {
440  case loc::MemRegionValKind:
441  BaseR = cast<SubRegion>(BaseL.castAs<loc::MemRegionVal>().getRegion());
442  break;
443 
444  case loc::GotoLabelKind:
445  // These are anormal cases. Flag an undefined value.
446  return UndefinedVal();
447 
448  case loc::ConcreteIntKind:
449  // While these seem funny, this can happen through casts.
450  // FIXME: What we should return is the field offset, not base. For example,
451  // add the field offset to the integer value. That way things
452  // like this work properly: &(((struct foo *) 0xa)->f)
453  // However, that's not easy to fix without reducing our abilities
454  // to catch null pointer dereference. Eg., ((struct foo *)0x0)->f = 7
455  // is a null dereference even though we're dereferencing offset of f
456  // rather than null. Coming up with an approach that computes offsets
457  // over null pointers properly while still being able to catch null
458  // dereferences might be worth it.
459  return Base;
460 
461  default:
462  llvm_unreachable("Unhandled Base.");
463  }
464 
465  // NOTE: We must have this check first because ObjCIvarDecl is a subclass
466  // of FieldDecl.
467  if (const auto *ID = dyn_cast<ObjCIvarDecl>(D))
469 
470  return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
471 }
472 
474  return getLValueFieldOrIvar(decl, base);
475 }
476 
478  SVal Base) {
479  // If the base is an unknown or undefined value, just return it back.
480  // FIXME: For absolute pointer addresses, we just return that value back as
481  // well, although in reality we should return the offset added to that
482  // value. See also the similar FIXME in getLValueFieldOrIvar().
483  if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>())
484  return Base;
485 
486  if (Base.getAs<loc::GotoLabel>())
487  return UnknownVal();
488 
489  const SubRegion *BaseRegion =
490  Base.castAs<loc::MemRegionVal>().getRegionAs<SubRegion>();
491 
492  // Pointer of any type can be cast and used as array base.
493  const auto *ElemR = dyn_cast<ElementRegion>(BaseRegion);
494 
495  // Convert the offset to the appropriate size and signedness.
496  Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
497 
498  if (!ElemR) {
499  // If the base region is not an ElementRegion, create one.
500  // This can happen in the following example:
501  //
502  // char *p = __builtin_alloc(10);
503  // p[1] = 8;
504  //
505  // Observe that 'p' binds to an AllocaRegion.
506  return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
507  BaseRegion, Ctx));
508  }
509 
510  SVal BaseIdx = ElemR->getIndex();
511 
512  if (!BaseIdx.getAs<nonloc::ConcreteInt>())
513  return UnknownVal();
514 
515  const llvm::APSInt &BaseIdxI =
516  BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
517 
518  // Only allow non-integer offsets if the base region has no offset itself.
519  // FIXME: This is a somewhat arbitrary restriction. We should be using
520  // SValBuilder here to add the two offsets without checking their types.
521  if (!Offset.getAs<nonloc::ConcreteInt>()) {
522  if (isa<ElementRegion>(BaseRegion->StripCasts()))
523  return UnknownVal();
524 
526  elementType, Offset, cast<SubRegion>(ElemR->getSuperRegion()), Ctx));
527  }
528 
529  const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
530  assert(BaseIdxI.isSigned());
531 
532  // Compute the new index.
533  nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
534  OffI));
535 
536  // Construct the new ElementRegion.
537  const SubRegion *ArrayR = cast<SubRegion>(ElemR->getSuperRegion());
538  return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
539  Ctx));
540 }
541 
543 
545  Store store,
546  const MemRegion* R,
547  SVal val) {
548  SymbolRef SymV = val.getAsLocSymbol();
549  if (!SymV || SymV != Sym)
550  return true;
551 
552  if (Binding) {
553  First = false;
554  return false;
555  }
556  else
557  Binding = R;
558 
559  return true;
560 }
Defines the clang::ASTContext interface.
SVal attemptDownCast(SVal Base, QualType DerivedPtrType, bool &Failed)
Attempts to do a down cast.
Definition: Store.cpp:314
TypedValueRegion - An abstract class representing regions having a typed value.
Definition: MemRegion.h:529
SVal evalDerivedToBase(SVal Derived, const CastExpr *Cast)
Evaluates a chain of derived-to-base casts through the path specified in Cast.
Definition: Store.cpp:248
A (possibly-)qualified type.
Definition: Type.h:643
MemRegion - The root abstract class for all memory regions.
Definition: MemRegion.h:94
bool isBlockPointerType() const
Definition: Type.h:6362
Store getStore() const
Definition: StoreRef.h:46
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
C Language Family Type Representation.
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
bool isDerivedFrom(const CXXRecordDecl *Base) const
Determine whether this class is derived from the class Base.
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:115
Represents a path from a specific derived class (which is not represented as part of the path) to a p...
Value representing integer constant.
Definition: SVals.h:379
const ObjCIvarRegion * getObjCIvarRegion(const ObjCIvarDecl *ivd, const SubRegion *superRegion)
getObjCIvarRegion - Retrieve or create the memory region associated with a specified Objective-c inst...
Definition: MemRegion.cpp:1038
const CXXBaseSpecifier *const * path_const_iterator
Definition: Expr.h:3189
SymbolRef getAsLocSymbol(bool IncludeBaseRegions=false) const
If this SVal is a location and wraps a symbol, return that SymbolRef.
Definition: SVals.cpp:85
virtual SVal dispatchCast(SVal val, QualType castTy)=0
const void * Store
Store - This opaque type encapsulates an immutable mapping from locations to values.
Definition: StoreRef.h:27
NonLoc makeArrayIndex(uint64_t idx)
Definition: SValBuilder.h:272
const ElementRegion * GetElementZeroRegion(const SubRegion *R, QualType T)
Definition: Store.cpp:67
QualType getLocalUnqualifiedType() const
Return this type with all of the instance-specific qualifiers removed, but without removing any quali...
Definition: Type.h:882
const MemRegion * castRegion(const MemRegion *region, QualType CastToTy)
castRegion - Used by ExprEngine::VisitCast to handle casts from a MemRegion* to a specific location t...
Definition: Store.cpp:74
ASTContext & Ctx
Definition: Store.h:60
Symbolic value.
Definition: SymExpr.h:29
bool HandleBinding(StoreManager &SMgr, Store store, const MemRegion *R, SVal val) override
Definition: Store.cpp:544
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
static bool regionMatchesCXXRecordType(SVal V, QualType Ty)
Definition: Store.cpp:228
Expr * getSubExpr()
Definition: Expr.h:3172
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:37
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified...
path_iterator path_begin()
Definition: Expr.h:3192
CXXRecordDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclCXX.h:730
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3120
StoreRef enterStackFrame(Store store, const CallEvent &Call, const StackFrameContext *CalleeCtx)
enterStackFrame - Let the StoreManager to do something when execution engine is about to execute into...
Definition: Store.cpp:46
virtual QualType getType() const =0
virtual SVal getLValueIvar(const ObjCIvarDecl *decl, SVal base)
Definition: Store.cpp:473
SymbolRef getAsSymbol(bool IncludeBaseRegions=false) const
If this SVal wraps a symbol return that SymbolRef.
Definition: SVals.cpp:127
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1636
unsigned getSubKind() const
Definition: SVals.h:119
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:178
unsigned Offset
Definition: Format.cpp:1728
SValBuilder & svalBuilder
Definition: Store.h:55
const CXXRecordDecl * getPointeeCXXRecordDecl() const
If this is a pointer or reference to a RecordType, return the CXXRecordDecl that the type refers to...
Definition: Type.cpp:1621
#define V(N, I)
Definition: ASTContext.h:2898
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
static SVal getValue(SVal val, SValBuilder &svalBuilder)
QualType getType() const
Definition: Expr.h:137
ProgramStateManager & StateMgr
Definition: Store.h:56
virtual StoreRef Bind(Store store, Loc loc, SVal val)=0
Return a store with the specified value bound to the given location.
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:708
Optional< T > getAs() const
Convert to the specified SVal type, returning None if this SVal is not of the desired type...
Definition: SVals.h:111
virtual bool isBoundable() const
Definition: MemRegion.h:173
bool isVoidPointerType() const
Definition: Type.cpp:469
Kind getKind() const
Definition: MemRegion.h:169
QualType getCanonicalType() const
Definition: Type.h:6169
virtual void getInitialStackFrameContents(const StackFrameContext *CalleeCtx, BindingsTy &Bindings) const =0
Populates the given SmallVector with the bindings in the callee&#39;s stack frame at the start of this ca...
const MemRegion * getAsRegion() const
Definition: SVals.cpp:151
ASTContext & getContext()
Definition: SValBuilder.h:155
SVal - This represents a symbolic expression, which can be either an L-value or an R-value...
Definition: SVals.h:75
CanQualType VoidTy
Definition: ASTContext.h:1002
const CXXDerivedObjectRegion * getCXXDerivedObjectRegion(const CXXRecordDecl *BaseClass, const SubRegion *Super)
Create a CXXDerivedObjectRegion with the given derived class for region Super.
Definition: MemRegion.cpp:1094
bool isObjCObjectPointerType() const
Definition: Type.h:6458
RegionRawOffset getAsArrayOffset() const
Compute the offset within the array. The array might also be a subobject.
Definition: MemRegion.cpp:1230
const CXXBaseObjectRegion * getCXXBaseObjectRegion(const CXXRecordDecl *BaseClass, const SubRegion *Super, bool IsVirtual)
Create a CXXBaseObjectRegion with the given base class for region Super.
Definition: MemRegion.cpp:1074
CanQualType CharTy
Definition: ASTContext.h:1004
Dataflow Directional Tag Classes.
const ElementRegion * getElementRegion(QualType elementType, NonLoc Idx, const SubRegion *superRegion, ASTContext &Ctx)
getElementRegion - Retrieve the memory region associated with the associated element type...
Definition: MemRegion.cpp:989
const MemRegion * StripCasts(bool StripBaseAndDerivedCasts=true) const
Definition: MemRegion.cpp:1196
Represents an abstract call to a function or method along a particular path.
Definition: CallEvent.h:138
SVal convertToArrayIndex(SVal val)
Definition: SValBuilder.cpp:99
path_iterator path_end()
Definition: Expr.h:3193
T castAs() const
Convert to the specified SVal type, asserting that this SVal is of the desired type.
Definition: SVals.h:103
BasicValueFactory & getBasicValueFactory()
Definition: SValBuilder.h:168
SubRegion - A region that subsets another larger region.
Definition: MemRegion.h:435
const ElementRegion * MakeElementRegion(const SubRegion *baseRegion, QualType pointeeTy, uint64_t index=0)
Definition: Store.cpp:60
SVal CastRetrievedVal(SVal val, const TypedValueRegion *region, QualType castTy)
CastRetrievedVal - Used by subclasses of StoreManager to implement implicit casts that arise from loa...
Definition: Store.cpp:399
CXXBasePath & front()
MemRegionManager & MRMgr
MRMgr - Manages region objects associated with this StoreManager.
Definition: Store.h:59
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types...
Definition: Type.cpp:2062
virtual SVal getLValueElement(QualType elementType, NonLoc offset, SVal Base)
Definition: Store.cpp:477
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2271
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
static const CXXRecordDecl * getCXXRecordType(const MemRegion *MR)
Returns the static type of the given region, if it represents a C++ class object. ...
Definition: Store.cpp:306
Represents a C++ struct/union/class.
Definition: DeclCXX.h:300
bool isVoidType() const
Definition: Type.h:6613
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1944
ElementRegion is used to represent both array elements and casts.
Definition: MemRegion.h:1082
bool isPointerType() const
Definition: Type.h:6354
BasePaths - Represents the set of paths from a derived class to one of its (direct or indirect) bases...
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
bool isFloatingType() const
Definition: Type.cpp:1952
StoreManager(ProgramStateManager &stateMgr)
Definition: Store.cpp:42
const FieldRegion * getFieldRegion(const FieldDecl *fd, const SubRegion *superRegion)
getFieldRegion - Retrieve or create the memory region associated with a specified FieldDecl...
Definition: MemRegion.cpp:1032
bool isUnknownOrUndef() const
Definition: SVals.h:144