clang 20.0.0git
InitPreprocessor.cpp
Go to the documentation of this file.
1//===--- InitPreprocessor.cpp - PP initialization code. ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the clang::InitializePreprocessor function.
10//
11//===----------------------------------------------------------------------===//
12
19#include "clang/Basic/Version.h"
27#include "llvm/ADT/APFloat.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/DerivedTypes.h"
30using namespace clang;
31
32static bool MacroBodyEndsInBackslash(StringRef MacroBody) {
33 while (!MacroBody.empty() && isWhitespace(MacroBody.back()))
34 MacroBody = MacroBody.drop_back();
35 return !MacroBody.empty() && MacroBody.back() == '\\';
36}
37
38// Append a #define line to Buf for Macro. Macro should be of the form XXX,
39// in which case we emit "#define XXX 1" or "XXX=Y z W" in which case we emit
40// "#define XXX Y z W". To get a #define with no value, use "XXX=".
41static void DefineBuiltinMacro(MacroBuilder &Builder, StringRef Macro,
42 DiagnosticsEngine &Diags) {
43 std::pair<StringRef, StringRef> MacroPair = Macro.split('=');
44 StringRef MacroName = MacroPair.first;
45 StringRef MacroBody = MacroPair.second;
46 if (MacroName.size() != Macro.size()) {
47 // Per GCC -D semantics, the macro ends at \n if it exists.
48 StringRef::size_type End = MacroBody.find_first_of("\n\r");
49 if (End != StringRef::npos)
50 Diags.Report(diag::warn_fe_macro_contains_embedded_newline)
51 << MacroName;
52 MacroBody = MacroBody.substr(0, End);
53 // We handle macro bodies which end in a backslash by appending an extra
54 // backslash+newline. This makes sure we don't accidentally treat the
55 // backslash as a line continuation marker.
56 if (MacroBodyEndsInBackslash(MacroBody))
57 Builder.defineMacro(MacroName, Twine(MacroBody) + "\\\n");
58 else
59 Builder.defineMacro(MacroName, MacroBody);
60 } else {
61 // Push "macroname 1".
62 Builder.defineMacro(Macro);
63 }
64}
65
66/// AddImplicitInclude - Add an implicit \#include of the specified file to the
67/// predefines buffer.
68/// As these includes are generated by -include arguments the header search
69/// logic is going to search relatively to the current working directory.
70static void AddImplicitInclude(MacroBuilder &Builder, StringRef File) {
71 Builder.append(Twine("#include \"") + File + "\"");
72}
73
74static void AddImplicitIncludeMacros(MacroBuilder &Builder, StringRef File) {
75 Builder.append(Twine("#__include_macros \"") + File + "\"");
76 // Marker token to stop the __include_macros fetch loop.
77 Builder.append("##"); // ##?
78}
79
80/// Add an implicit \#include using the original file used to generate
81/// a PCH file.
83 const PCHContainerReader &PCHContainerRdr,
84 StringRef ImplicitIncludePCH) {
85 std::string OriginalFile = ASTReader::getOriginalSourceFile(
86 std::string(ImplicitIncludePCH), PP.getFileManager(), PCHContainerRdr,
87 PP.getDiagnostics());
88 if (OriginalFile.empty())
89 return;
90
91 AddImplicitInclude(Builder, OriginalFile);
92}
93
94/// PickFP - This is used to pick a value based on the FP semantics of the
95/// specified FP model.
96template <typename T>
97static T PickFP(const llvm::fltSemantics *Sem, T IEEEHalfVal, T IEEESingleVal,
98 T IEEEDoubleVal, T X87DoubleExtendedVal, T PPCDoubleDoubleVal,
99 T IEEEQuadVal) {
100 if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEhalf())
101 return IEEEHalfVal;
102 if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEsingle())
103 return IEEESingleVal;
104 if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEdouble())
105 return IEEEDoubleVal;
106 if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::x87DoubleExtended())
107 return X87DoubleExtendedVal;
108 if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::PPCDoubleDouble())
109 return PPCDoubleDoubleVal;
110 assert(Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEquad());
111 return IEEEQuadVal;
112}
113
114static void DefineFloatMacros(MacroBuilder &Builder, StringRef Prefix,
115 const llvm::fltSemantics *Sem, StringRef Ext) {
116 const char *DenormMin, *NormMax, *Epsilon, *Max, *Min;
117 NormMax = PickFP(Sem, "6.5504e+4", "3.40282347e+38",
118 "1.7976931348623157e+308", "1.18973149535723176502e+4932",
119 "8.98846567431157953864652595394501e+307",
120 "1.18973149535723176508575932662800702e+4932");
121 DenormMin = PickFP(Sem, "5.9604644775390625e-8", "1.40129846e-45",
122 "4.9406564584124654e-324", "3.64519953188247460253e-4951",
123 "4.94065645841246544176568792868221e-324",
124 "6.47517511943802511092443895822764655e-4966");
125 int Digits = PickFP(Sem, 3, 6, 15, 18, 31, 33);
126 int DecimalDigits = PickFP(Sem, 5, 9, 17, 21, 33, 36);
127 Epsilon = PickFP(Sem, "9.765625e-4", "1.19209290e-7",
128 "2.2204460492503131e-16", "1.08420217248550443401e-19",
129 "4.94065645841246544176568792868221e-324",
130 "1.92592994438723585305597794258492732e-34");
131 int MantissaDigits = PickFP(Sem, 11, 24, 53, 64, 106, 113);
132 int Min10Exp = PickFP(Sem, -4, -37, -307, -4931, -291, -4931);
133 int Max10Exp = PickFP(Sem, 4, 38, 308, 4932, 308, 4932);
134 int MinExp = PickFP(Sem, -13, -125, -1021, -16381, -968, -16381);
135 int MaxExp = PickFP(Sem, 16, 128, 1024, 16384, 1024, 16384);
136 Min = PickFP(Sem, "6.103515625e-5", "1.17549435e-38", "2.2250738585072014e-308",
137 "3.36210314311209350626e-4932",
138 "2.00416836000897277799610805135016e-292",
139 "3.36210314311209350626267781732175260e-4932");
140 Max = PickFP(Sem, "6.5504e+4", "3.40282347e+38", "1.7976931348623157e+308",
141 "1.18973149535723176502e+4932",
142 "1.79769313486231580793728971405301e+308",
143 "1.18973149535723176508575932662800702e+4932");
144
145 SmallString<32> DefPrefix;
146 DefPrefix = "__";
147 DefPrefix += Prefix;
148 DefPrefix += "_";
149
150 Builder.defineMacro(DefPrefix + "DENORM_MIN__", Twine(DenormMin)+Ext);
151 Builder.defineMacro(DefPrefix + "NORM_MAX__", Twine(NormMax)+Ext);
152 Builder.defineMacro(DefPrefix + "HAS_DENORM__");
153 Builder.defineMacro(DefPrefix + "DIG__", Twine(Digits));
154 Builder.defineMacro(DefPrefix + "DECIMAL_DIG__", Twine(DecimalDigits));
155 Builder.defineMacro(DefPrefix + "EPSILON__", Twine(Epsilon)+Ext);
156 Builder.defineMacro(DefPrefix + "HAS_INFINITY__");
157 Builder.defineMacro(DefPrefix + "HAS_QUIET_NAN__");
158 Builder.defineMacro(DefPrefix + "MANT_DIG__", Twine(MantissaDigits));
159
160 Builder.defineMacro(DefPrefix + "MAX_10_EXP__", Twine(Max10Exp));
161 Builder.defineMacro(DefPrefix + "MAX_EXP__", Twine(MaxExp));
162 Builder.defineMacro(DefPrefix + "MAX__", Twine(Max)+Ext);
163
164 Builder.defineMacro(DefPrefix + "MIN_10_EXP__","("+Twine(Min10Exp)+")");
165 Builder.defineMacro(DefPrefix + "MIN_EXP__", "("+Twine(MinExp)+")");
166 Builder.defineMacro(DefPrefix + "MIN__", Twine(Min)+Ext);
167}
168
169
170/// DefineTypeSize - Emit a macro to the predefines buffer that declares a macro
171/// named MacroName with the max value for a type with width 'TypeWidth' a
172/// signedness of 'isSigned' and with a value suffix of 'ValSuffix' (e.g. LL).
173static void DefineTypeSize(const Twine &MacroName, unsigned TypeWidth,
174 StringRef ValSuffix, bool isSigned,
175 MacroBuilder &Builder) {
176 llvm::APInt MaxVal = isSigned ? llvm::APInt::getSignedMaxValue(TypeWidth)
177 : llvm::APInt::getMaxValue(TypeWidth);
178 Builder.defineMacro(MacroName, toString(MaxVal, 10, isSigned) + ValSuffix);
179}
180
181/// DefineTypeSize - An overloaded helper that uses TargetInfo to determine
182/// the width, suffix, and signedness of the given type
183static void DefineTypeSize(const Twine &MacroName, TargetInfo::IntType Ty,
184 const TargetInfo &TI, MacroBuilder &Builder) {
185 DefineTypeSize(MacroName, TI.getTypeWidth(Ty), TI.getTypeConstantSuffix(Ty),
186 TI.isTypeSigned(Ty), Builder);
187}
188
189static void DefineFmt(const LangOptions &LangOpts, const Twine &Prefix,
190 TargetInfo::IntType Ty, const TargetInfo &TI,
191 MacroBuilder &Builder) {
192 StringRef FmtModifier = TI.getTypeFormatModifier(Ty);
193 auto Emitter = [&](char Fmt) {
194 Builder.defineMacro(Prefix + "_FMT" + Twine(Fmt) + "__",
195 Twine("\"") + FmtModifier + Twine(Fmt) + "\"");
196 };
197 bool IsSigned = TI.isTypeSigned(Ty);
198 llvm::for_each(StringRef(IsSigned ? "di" : "ouxX"), Emitter);
199
200 // C23 added the b and B modifiers for printing binary output of unsigned
201 // integers. Conditionally define those if compiling in C23 mode.
202 if (LangOpts.C23 && !IsSigned)
203 llvm::for_each(StringRef("bB"), Emitter);
204}
205
206static void DefineType(const Twine &MacroName, TargetInfo::IntType Ty,
207 MacroBuilder &Builder) {
208 Builder.defineMacro(MacroName, TargetInfo::getTypeName(Ty));
209}
210
211static void DefineTypeWidth(const Twine &MacroName, TargetInfo::IntType Ty,
212 const TargetInfo &TI, MacroBuilder &Builder) {
213 Builder.defineMacro(MacroName, Twine(TI.getTypeWidth(Ty)));
214}
215
216static void DefineTypeSizeof(StringRef MacroName, unsigned BitWidth,
217 const TargetInfo &TI, MacroBuilder &Builder) {
218 Builder.defineMacro(MacroName,
219 Twine(BitWidth / TI.getCharWidth()));
220}
221
222// This will generate a macro based on the prefix with `_MAX__` as the suffix
223// for the max value representable for the type, and a macro with a `_WIDTH__`
224// suffix for the width of the type.
225static void DefineTypeSizeAndWidth(const Twine &Prefix, TargetInfo::IntType Ty,
226 const TargetInfo &TI,
227 MacroBuilder &Builder) {
228 DefineTypeSize(Prefix + "_MAX__", Ty, TI, Builder);
229 DefineTypeWidth(Prefix + "_WIDTH__", Ty, TI, Builder);
230}
231
232static void DefineExactWidthIntType(const LangOptions &LangOpts,
234 const TargetInfo &TI,
235 MacroBuilder &Builder) {
236 int TypeWidth = TI.getTypeWidth(Ty);
237 bool IsSigned = TI.isTypeSigned(Ty);
238
239 // Use the target specified int64 type, when appropriate, so that [u]int64_t
240 // ends up being defined in terms of the correct type.
241 if (TypeWidth == 64)
242 Ty = IsSigned ? TI.getInt64Type() : TI.getUInt64Type();
243
244 // Use the target specified int16 type when appropriate. Some MCU targets
245 // (such as AVR) have definition of [u]int16_t to [un]signed int.
246 if (TypeWidth == 16)
247 Ty = IsSigned ? TI.getInt16Type() : TI.getUInt16Type();
248
249 const char *Prefix = IsSigned ? "__INT" : "__UINT";
250
251 DefineType(Prefix + Twine(TypeWidth) + "_TYPE__", Ty, Builder);
252 DefineFmt(LangOpts, Prefix + Twine(TypeWidth), Ty, TI, Builder);
253
254 StringRef ConstSuffix(TI.getTypeConstantSuffix(Ty));
255 Builder.defineMacro(Prefix + Twine(TypeWidth) + "_C_SUFFIX__", ConstSuffix);
256}
257
259 const TargetInfo &TI,
260 MacroBuilder &Builder) {
261 int TypeWidth = TI.getTypeWidth(Ty);
262 bool IsSigned = TI.isTypeSigned(Ty);
263
264 // Use the target specified int64 type, when appropriate, so that [u]int64_t
265 // ends up being defined in terms of the correct type.
266 if (TypeWidth == 64)
267 Ty = IsSigned ? TI.getInt64Type() : TI.getUInt64Type();
268
269 // We don't need to define a _WIDTH macro for the exact-width types because
270 // we already know the width.
271 const char *Prefix = IsSigned ? "__INT" : "__UINT";
272 DefineTypeSize(Prefix + Twine(TypeWidth) + "_MAX__", Ty, TI, Builder);
273}
274
275static void DefineLeastWidthIntType(const LangOptions &LangOpts,
276 unsigned TypeWidth, bool IsSigned,
277 const TargetInfo &TI,
278 MacroBuilder &Builder) {
279 TargetInfo::IntType Ty = TI.getLeastIntTypeByWidth(TypeWidth, IsSigned);
280 if (Ty == TargetInfo::NoInt)
281 return;
282
283 const char *Prefix = IsSigned ? "__INT_LEAST" : "__UINT_LEAST";
284 DefineType(Prefix + Twine(TypeWidth) + "_TYPE__", Ty, Builder);
285 // We only want the *_WIDTH macro for the signed types to avoid too many
286 // predefined macros (the unsigned width and the signed width are identical.)
287 if (IsSigned)
288 DefineTypeSizeAndWidth(Prefix + Twine(TypeWidth), Ty, TI, Builder);
289 else
290 DefineTypeSize(Prefix + Twine(TypeWidth) + "_MAX__", Ty, TI, Builder);
291 DefineFmt(LangOpts, Prefix + Twine(TypeWidth), Ty, TI, Builder);
292}
293
294static void DefineFastIntType(const LangOptions &LangOpts, unsigned TypeWidth,
295 bool IsSigned, const TargetInfo &TI,
296 MacroBuilder &Builder) {
297 // stdint.h currently defines the fast int types as equivalent to the least
298 // types.
299 TargetInfo::IntType Ty = TI.getLeastIntTypeByWidth(TypeWidth, IsSigned);
300 if (Ty == TargetInfo::NoInt)
301 return;
302
303 const char *Prefix = IsSigned ? "__INT_FAST" : "__UINT_FAST";
304 DefineType(Prefix + Twine(TypeWidth) + "_TYPE__", Ty, Builder);
305 // We only want the *_WIDTH macro for the signed types to avoid too many
306 // predefined macros (the unsigned width and the signed width are identical.)
307 if (IsSigned)
308 DefineTypeSizeAndWidth(Prefix + Twine(TypeWidth), Ty, TI, Builder);
309 else
310 DefineTypeSize(Prefix + Twine(TypeWidth) + "_MAX__", Ty, TI, Builder);
311 DefineFmt(LangOpts, Prefix + Twine(TypeWidth), Ty, TI, Builder);
312}
313
314
315/// Get the value the ATOMIC_*_LOCK_FREE macro should have for a type with
316/// the specified properties.
317static const char *getLockFreeValue(unsigned TypeWidth, const TargetInfo &TI) {
318 // Fully-aligned, power-of-2 sizes no larger than the inline
319 // width will be inlined as lock-free operations.
320 // Note: we do not need to check alignment since _Atomic(T) is always
321 // appropriately-aligned in clang.
322 if (TI.hasBuiltinAtomic(TypeWidth, TypeWidth))
323 return "2"; // "always lock free"
324 // We cannot be certain what operations the lib calls might be
325 // able to implement as lock-free on future processors.
326 return "1"; // "sometimes lock free"
327}
328
329/// Add definitions required for a smooth interaction between
330/// Objective-C++ automated reference counting and libstdc++ (4.2).
331static void AddObjCXXARCLibstdcxxDefines(const LangOptions &LangOpts,
332 MacroBuilder &Builder) {
333 Builder.defineMacro("_GLIBCXX_PREDEFINED_OBJC_ARC_IS_SCALAR");
334
335 std::string Result;
336 {
337 // Provide specializations for the __is_scalar type trait so that
338 // lifetime-qualified objects are not considered "scalar" types, which
339 // libstdc++ uses as an indicator of the presence of trivial copy, assign,
340 // default-construct, and destruct semantics (none of which hold for
341 // lifetime-qualified objects in ARC).
342 llvm::raw_string_ostream Out(Result);
343
344 Out << "namespace std {\n"
345 << "\n"
346 << "struct __true_type;\n"
347 << "struct __false_type;\n"
348 << "\n";
349
350 Out << "template<typename _Tp> struct __is_scalar;\n"
351 << "\n";
352
353 if (LangOpts.ObjCAutoRefCount) {
354 Out << "template<typename _Tp>\n"
355 << "struct __is_scalar<__attribute__((objc_ownership(strong))) _Tp> {\n"
356 << " enum { __value = 0 };\n"
357 << " typedef __false_type __type;\n"
358 << "};\n"
359 << "\n";
360 }
361
362 if (LangOpts.ObjCWeak) {
363 Out << "template<typename _Tp>\n"
364 << "struct __is_scalar<__attribute__((objc_ownership(weak))) _Tp> {\n"
365 << " enum { __value = 0 };\n"
366 << " typedef __false_type __type;\n"
367 << "};\n"
368 << "\n";
369 }
370
371 if (LangOpts.ObjCAutoRefCount) {
372 Out << "template<typename _Tp>\n"
373 << "struct __is_scalar<__attribute__((objc_ownership(autoreleasing)))"
374 << " _Tp> {\n"
375 << " enum { __value = 0 };\n"
376 << " typedef __false_type __type;\n"
377 << "};\n"
378 << "\n";
379 }
380
381 Out << "}\n";
382 }
383 Builder.append(Result);
384}
385
387 const LangOptions &LangOpts,
388 const FrontendOptions &FEOpts,
389 MacroBuilder &Builder) {
390 if (LangOpts.HLSL) {
391 Builder.defineMacro("__hlsl_clang");
392 // HLSL Version
393 Builder.defineMacro("__HLSL_VERSION",
394 Twine((unsigned)LangOpts.getHLSLVersion()));
395
396 if (LangOpts.NativeHalfType)
397 Builder.defineMacro("__HLSL_ENABLE_16_BIT", "1");
398
399 // Shader target information
400 // "enums" for shader stages
401 Builder.defineMacro("__SHADER_STAGE_VERTEX",
402 Twine((uint32_t)ShaderStage::Vertex));
403 Builder.defineMacro("__SHADER_STAGE_PIXEL",
404 Twine((uint32_t)ShaderStage::Pixel));
405 Builder.defineMacro("__SHADER_STAGE_GEOMETRY",
406 Twine((uint32_t)ShaderStage::Geometry));
407 Builder.defineMacro("__SHADER_STAGE_HULL",
408 Twine((uint32_t)ShaderStage::Hull));
409 Builder.defineMacro("__SHADER_STAGE_DOMAIN",
410 Twine((uint32_t)ShaderStage::Domain));
411 Builder.defineMacro("__SHADER_STAGE_COMPUTE",
412 Twine((uint32_t)ShaderStage::Compute));
413 Builder.defineMacro("__SHADER_STAGE_AMPLIFICATION",
414 Twine((uint32_t)ShaderStage::Amplification));
415 Builder.defineMacro("__SHADER_STAGE_MESH",
416 Twine((uint32_t)ShaderStage::Mesh));
417 Builder.defineMacro("__SHADER_STAGE_LIBRARY",
418 Twine((uint32_t)ShaderStage::Library));
419 // The current shader stage itself
420 uint32_t StageInteger = static_cast<uint32_t>(
421 hlsl::getStageFromEnvironment(TI.getTriple().getEnvironment()));
422
423 Builder.defineMacro("__SHADER_TARGET_STAGE", Twine(StageInteger));
424 // Add target versions
425 if (TI.getTriple().getOS() == llvm::Triple::ShaderModel) {
426 VersionTuple Version = TI.getTriple().getOSVersion();
427 Builder.defineMacro("__SHADER_TARGET_MAJOR", Twine(Version.getMajor()));
428 unsigned Minor = Version.getMinor().value_or(0);
429 Builder.defineMacro("__SHADER_TARGET_MINOR", Twine(Minor));
430 }
431 return;
432 }
433 // C++ [cpp.predefined]p1:
434 // The following macro names shall be defined by the implementation:
435
436 // -- __STDC__
437 // [C++] Whether __STDC__ is predefined and if so, what its value is,
438 // are implementation-defined.
439 // (Removed in C++20.)
440 if ((!LangOpts.MSVCCompat || LangOpts.MSVCEnableStdcMacro) &&
441 !LangOpts.TraditionalCPP)
442 Builder.defineMacro("__STDC__");
443 // -- __STDC_HOSTED__
444 // The integer literal 1 if the implementation is a hosted
445 // implementation or the integer literal 0 if it is not.
446 if (LangOpts.Freestanding)
447 Builder.defineMacro("__STDC_HOSTED__", "0");
448 else
449 Builder.defineMacro("__STDC_HOSTED__");
450
451 // -- __STDC_VERSION__
452 // [C++] Whether __STDC_VERSION__ is predefined and if so, what its
453 // value is, are implementation-defined.
454 // (Removed in C++20.)
455 if (!LangOpts.CPlusPlus) {
456 if (LangOpts.C2y)
457 Builder.defineMacro("__STDC_VERSION__", "202400L");
458 else if (LangOpts.C23)
459 Builder.defineMacro("__STDC_VERSION__", "202311L");
460 else if (LangOpts.C17)
461 Builder.defineMacro("__STDC_VERSION__", "201710L");
462 else if (LangOpts.C11)
463 Builder.defineMacro("__STDC_VERSION__", "201112L");
464 else if (LangOpts.C99)
465 Builder.defineMacro("__STDC_VERSION__", "199901L");
466 else if (!LangOpts.GNUMode && LangOpts.Digraphs)
467 Builder.defineMacro("__STDC_VERSION__", "199409L");
468 } else {
469 // -- __cplusplus
470 if (LangOpts.CPlusPlus26)
471 // FIXME: Use correct value for C++26.
472 Builder.defineMacro("__cplusplus", "202400L");
473 else if (LangOpts.CPlusPlus23)
474 Builder.defineMacro("__cplusplus", "202302L");
475 // [C++20] The integer literal 202002L.
476 else if (LangOpts.CPlusPlus20)
477 Builder.defineMacro("__cplusplus", "202002L");
478 // [C++17] The integer literal 201703L.
479 else if (LangOpts.CPlusPlus17)
480 Builder.defineMacro("__cplusplus", "201703L");
481 // [C++14] The name __cplusplus is defined to the value 201402L when
482 // compiling a C++ translation unit.
483 else if (LangOpts.CPlusPlus14)
484 Builder.defineMacro("__cplusplus", "201402L");
485 // [C++11] The name __cplusplus is defined to the value 201103L when
486 // compiling a C++ translation unit.
487 else if (LangOpts.CPlusPlus11)
488 Builder.defineMacro("__cplusplus", "201103L");
489 // [C++03] The name __cplusplus is defined to the value 199711L when
490 // compiling a C++ translation unit.
491 else
492 Builder.defineMacro("__cplusplus", "199711L");
493
494 // -- __STDCPP_DEFAULT_NEW_ALIGNMENT__
495 // [C++17] An integer literal of type std::size_t whose value is the
496 // alignment guaranteed by a call to operator new(std::size_t)
497 //
498 // We provide this in all language modes, since it seems generally useful.
499 Builder.defineMacro("__STDCPP_DEFAULT_NEW_ALIGNMENT__",
500 Twine(TI.getNewAlign() / TI.getCharWidth()) +
502
503 // -- __STDCPP_­THREADS__
504 // Defined, and has the value integer literal 1, if and only if a
505 // program can have more than one thread of execution.
506 if (LangOpts.getThreadModel() == LangOptions::ThreadModelKind::POSIX)
507 Builder.defineMacro("__STDCPP_THREADS__", "1");
508 }
509
510 // In C11 these are environment macros. In C++11 they are only defined
511 // as part of <cuchar>. To prevent breakage when mixing C and C++
512 // code, define these macros unconditionally. We can define them
513 // unconditionally, as Clang always uses UTF-16 and UTF-32 for 16-bit
514 // and 32-bit character literals.
515 Builder.defineMacro("__STDC_UTF_16__", "1");
516 Builder.defineMacro("__STDC_UTF_32__", "1");
517
518 // __has_embed definitions
519 Builder.defineMacro("__STDC_EMBED_NOT_FOUND__",
520 llvm::itostr(static_cast<int>(EmbedResult::NotFound)));
521 Builder.defineMacro("__STDC_EMBED_FOUND__",
522 llvm::itostr(static_cast<int>(EmbedResult::Found)));
523 Builder.defineMacro("__STDC_EMBED_EMPTY__",
524 llvm::itostr(static_cast<int>(EmbedResult::Empty)));
525
526 if (LangOpts.ObjC)
527 Builder.defineMacro("__OBJC__");
528
529 // OpenCL v1.0/1.1 s6.9, v1.2/2.0 s6.10: Preprocessor Directives and Macros.
530 if (LangOpts.OpenCL) {
531 if (LangOpts.CPlusPlus) {
532 switch (LangOpts.OpenCLCPlusPlusVersion) {
533 case 100:
534 Builder.defineMacro("__OPENCL_CPP_VERSION__", "100");
535 break;
536 case 202100:
537 Builder.defineMacro("__OPENCL_CPP_VERSION__", "202100");
538 break;
539 default:
540 llvm_unreachable("Unsupported C++ version for OpenCL");
541 }
542 Builder.defineMacro("__CL_CPP_VERSION_1_0__", "100");
543 Builder.defineMacro("__CL_CPP_VERSION_2021__", "202100");
544 } else {
545 // OpenCL v1.0 and v1.1 do not have a predefined macro to indicate the
546 // language standard with which the program is compiled. __OPENCL_VERSION__
547 // is for the OpenCL version supported by the OpenCL device, which is not
548 // necessarily the language standard with which the program is compiled.
549 // A shared OpenCL header file requires a macro to indicate the language
550 // standard. As a workaround, __OPENCL_C_VERSION__ is defined for
551 // OpenCL v1.0 and v1.1.
552 switch (LangOpts.OpenCLVersion) {
553 case 100:
554 Builder.defineMacro("__OPENCL_C_VERSION__", "100");
555 break;
556 case 110:
557 Builder.defineMacro("__OPENCL_C_VERSION__", "110");
558 break;
559 case 120:
560 Builder.defineMacro("__OPENCL_C_VERSION__", "120");
561 break;
562 case 200:
563 Builder.defineMacro("__OPENCL_C_VERSION__", "200");
564 break;
565 case 300:
566 Builder.defineMacro("__OPENCL_C_VERSION__", "300");
567 break;
568 default:
569 llvm_unreachable("Unsupported OpenCL version");
570 }
571 }
572 Builder.defineMacro("CL_VERSION_1_0", "100");
573 Builder.defineMacro("CL_VERSION_1_1", "110");
574 Builder.defineMacro("CL_VERSION_1_2", "120");
575 Builder.defineMacro("CL_VERSION_2_0", "200");
576 Builder.defineMacro("CL_VERSION_3_0", "300");
577
578 if (TI.isLittleEndian())
579 Builder.defineMacro("__ENDIAN_LITTLE__");
580
581 if (LangOpts.FastRelaxedMath)
582 Builder.defineMacro("__FAST_RELAXED_MATH__");
583 }
584
585 if (LangOpts.SYCLIsDevice || LangOpts.SYCLIsHost) {
586 // SYCL Version is set to a value when building SYCL applications
587 if (LangOpts.getSYCLVersion() == LangOptions::SYCL_2017)
588 Builder.defineMacro("CL_SYCL_LANGUAGE_VERSION", "121");
589 else if (LangOpts.getSYCLVersion() == LangOptions::SYCL_2020)
590 Builder.defineMacro("SYCL_LANGUAGE_VERSION", "202001");
591 }
592
593 // Not "standard" per se, but available even with the -undef flag.
594 if (LangOpts.AsmPreprocessor)
595 Builder.defineMacro("__ASSEMBLER__");
596 if (LangOpts.CUDA) {
597 if (LangOpts.GPURelocatableDeviceCode)
598 Builder.defineMacro("__CLANG_RDC__");
599 if (!LangOpts.HIP)
600 Builder.defineMacro("__CUDA__");
601 if (LangOpts.GPUDefaultStream ==
602 LangOptions::GPUDefaultStreamKind::PerThread)
603 Builder.defineMacro("CUDA_API_PER_THREAD_DEFAULT_STREAM");
604 }
605 if (LangOpts.HIP) {
606 Builder.defineMacro("__HIP__");
607 Builder.defineMacro("__HIPCC__");
608 Builder.defineMacro("__HIP_MEMORY_SCOPE_SINGLETHREAD", "1");
609 Builder.defineMacro("__HIP_MEMORY_SCOPE_WAVEFRONT", "2");
610 Builder.defineMacro("__HIP_MEMORY_SCOPE_WORKGROUP", "3");
611 Builder.defineMacro("__HIP_MEMORY_SCOPE_AGENT", "4");
612 Builder.defineMacro("__HIP_MEMORY_SCOPE_SYSTEM", "5");
613 if (LangOpts.HIPStdPar) {
614 Builder.defineMacro("__HIPSTDPAR__");
615 if (LangOpts.HIPStdParInterposeAlloc)
616 Builder.defineMacro("__HIPSTDPAR_INTERPOSE_ALLOC__");
617 }
618 if (LangOpts.CUDAIsDevice) {
619 Builder.defineMacro("__HIP_DEVICE_COMPILE__");
620 if (!TI.hasHIPImageSupport()) {
621 Builder.defineMacro("__HIP_NO_IMAGE_SUPPORT__", "1");
622 // Deprecated.
623 Builder.defineMacro("__HIP_NO_IMAGE_SUPPORT", "1");
624 }
625 }
626 if (LangOpts.GPUDefaultStream ==
627 LangOptions::GPUDefaultStreamKind::PerThread) {
628 Builder.defineMacro("__HIP_API_PER_THREAD_DEFAULT_STREAM__");
629 // Deprecated.
630 Builder.defineMacro("HIP_API_PER_THREAD_DEFAULT_STREAM");
631 }
632 }
633
634 if (LangOpts.OpenACC) {
635 // FIXME: When we have full support for OpenACC, we should set this to the
636 // version we support. Until then, set as '1' by default, but provide a
637 // temporary mechanism for users to override this so real-world examples can
638 // be tested against.
639 if (!LangOpts.OpenACCMacroOverride.empty())
640 Builder.defineMacro("_OPENACC", LangOpts.OpenACCMacroOverride);
641 else
642 Builder.defineMacro("_OPENACC", "1");
643 }
644}
645
646/// Initialize the predefined C++ language feature test macros defined in
647/// ISO/IEC JTC1/SC22/WG21 (C++) SD-6: "SG10 Feature Test Recommendations".
649 MacroBuilder &Builder) {
650 // C++98 features.
651 if (LangOpts.RTTI)
652 Builder.defineMacro("__cpp_rtti", "199711L");
653 if (LangOpts.CXXExceptions)
654 Builder.defineMacro("__cpp_exceptions", "199711L");
655
656 // C++11 features.
657 if (LangOpts.CPlusPlus11) {
658 Builder.defineMacro("__cpp_unicode_characters", "200704L");
659 Builder.defineMacro("__cpp_raw_strings", "200710L");
660 Builder.defineMacro("__cpp_unicode_literals", "200710L");
661 Builder.defineMacro("__cpp_user_defined_literals", "200809L");
662 Builder.defineMacro("__cpp_lambdas", "200907L");
663 Builder.defineMacro("__cpp_constexpr", LangOpts.CPlusPlus26 ? "202306L"
664 : LangOpts.CPlusPlus23 ? "202211L"
665 : LangOpts.CPlusPlus20 ? "201907L"
666 : LangOpts.CPlusPlus17 ? "201603L"
667 : LangOpts.CPlusPlus14 ? "201304L"
668 : "200704");
669 Builder.defineMacro("__cpp_constexpr_in_decltype", "201711L");
670 Builder.defineMacro("__cpp_range_based_for",
671 LangOpts.CPlusPlus23 ? "202211L"
672 : LangOpts.CPlusPlus17 ? "201603L"
673 : "200907");
674 Builder.defineMacro("__cpp_static_assert", LangOpts.CPlusPlus26 ? "202306L"
675 : LangOpts.CPlusPlus17
676 ? "201411L"
677 : "200410");
678 Builder.defineMacro("__cpp_decltype", "200707L");
679 Builder.defineMacro("__cpp_attributes", "200809L");
680 Builder.defineMacro("__cpp_rvalue_references", "200610L");
681 Builder.defineMacro("__cpp_variadic_templates", "200704L");
682 Builder.defineMacro("__cpp_initializer_lists", "200806L");
683 Builder.defineMacro("__cpp_delegating_constructors", "200604L");
684 Builder.defineMacro("__cpp_nsdmi", "200809L");
685 Builder.defineMacro("__cpp_inheriting_constructors", "201511L");
686 Builder.defineMacro("__cpp_ref_qualifiers", "200710L");
687 Builder.defineMacro("__cpp_alias_templates", "200704L");
688 }
689 if (LangOpts.ThreadsafeStatics)
690 Builder.defineMacro("__cpp_threadsafe_static_init", "200806L");
691
692 // C++14 features.
693 if (LangOpts.CPlusPlus14) {
694 Builder.defineMacro("__cpp_binary_literals", "201304L");
695 Builder.defineMacro("__cpp_digit_separators", "201309L");
696 Builder.defineMacro("__cpp_init_captures",
697 LangOpts.CPlusPlus20 ? "201803L" : "201304L");
698 Builder.defineMacro("__cpp_generic_lambdas",
699 LangOpts.CPlusPlus20 ? "201707L" : "201304L");
700 Builder.defineMacro("__cpp_decltype_auto", "201304L");
701 Builder.defineMacro("__cpp_return_type_deduction", "201304L");
702 Builder.defineMacro("__cpp_aggregate_nsdmi", "201304L");
703 Builder.defineMacro("__cpp_variable_templates", "201304L");
704 }
705 if (LangOpts.SizedDeallocation)
706 Builder.defineMacro("__cpp_sized_deallocation", "201309L");
707
708 // C++17 features.
709 if (LangOpts.CPlusPlus17) {
710 Builder.defineMacro("__cpp_hex_float", "201603L");
711 Builder.defineMacro("__cpp_inline_variables", "201606L");
712 Builder.defineMacro("__cpp_noexcept_function_type", "201510L");
713 Builder.defineMacro("__cpp_capture_star_this", "201603L");
714 Builder.defineMacro("__cpp_if_constexpr", "201606L");
715 Builder.defineMacro("__cpp_deduction_guides", "201703L"); // (not latest)
716 Builder.defineMacro("__cpp_template_auto", "201606L"); // (old name)
717 Builder.defineMacro("__cpp_namespace_attributes", "201411L");
718 Builder.defineMacro("__cpp_enumerator_attributes", "201411L");
719 Builder.defineMacro("__cpp_nested_namespace_definitions", "201411L");
720 Builder.defineMacro("__cpp_variadic_using", "201611L");
721 Builder.defineMacro("__cpp_aggregate_bases", "201603L");
722 Builder.defineMacro("__cpp_structured_bindings", "202403L");
723 Builder.defineMacro("__cpp_nontype_template_args",
724 "201411L"); // (not latest)
725 Builder.defineMacro("__cpp_fold_expressions", "201603L");
726 Builder.defineMacro("__cpp_guaranteed_copy_elision", "201606L");
727 Builder.defineMacro("__cpp_nontype_template_parameter_auto", "201606L");
728 }
729 if (LangOpts.AlignedAllocation && !LangOpts.AlignedAllocationUnavailable)
730 Builder.defineMacro("__cpp_aligned_new", "201606L");
731 if (LangOpts.RelaxedTemplateTemplateArgs)
732 Builder.defineMacro("__cpp_template_template_args", "201611L");
733
734 // C++20 features.
735 if (LangOpts.CPlusPlus20) {
736 Builder.defineMacro("__cpp_aggregate_paren_init", "201902L");
737
738 Builder.defineMacro("__cpp_concepts", "202002");
739 Builder.defineMacro("__cpp_conditional_explicit", "201806L");
740 Builder.defineMacro("__cpp_consteval", "202211L");
741 Builder.defineMacro("__cpp_constexpr_dynamic_alloc", "201907L");
742 Builder.defineMacro("__cpp_constinit", "201907L");
743 Builder.defineMacro("__cpp_impl_coroutine", "201902L");
744 Builder.defineMacro("__cpp_designated_initializers", "201707L");
745 Builder.defineMacro("__cpp_impl_three_way_comparison", "201907L");
746 //Builder.defineMacro("__cpp_modules", "201907L");
747 Builder.defineMacro("__cpp_using_enum", "201907L");
748 }
749 // C++23 features.
750 if (LangOpts.CPlusPlus23) {
751 Builder.defineMacro("__cpp_implicit_move", "202207L");
752 Builder.defineMacro("__cpp_size_t_suffix", "202011L");
753 Builder.defineMacro("__cpp_if_consteval", "202106L");
754 Builder.defineMacro("__cpp_multidimensional_subscript", "202211L");
755 Builder.defineMacro("__cpp_auto_cast", "202110L");
756 }
757
758 // We provide those C++23 features as extensions in earlier language modes, so
759 // we also define their feature test macros.
760 if (LangOpts.CPlusPlus11)
761 Builder.defineMacro("__cpp_static_call_operator", "202207L");
762 Builder.defineMacro("__cpp_named_character_escapes", "202207L");
763 Builder.defineMacro("__cpp_placeholder_variables", "202306L");
764
765 // C++26 features supported in earlier language modes.
766 Builder.defineMacro("__cpp_deleted_function", "202403L");
767
768 if (LangOpts.Char8)
769 Builder.defineMacro("__cpp_char8_t", "202207L");
770 Builder.defineMacro("__cpp_impl_destroying_delete", "201806L");
771}
772
773/// InitializeOpenCLFeatureTestMacros - Define OpenCL macros based on target
774/// settings and language version
776 const LangOptions &Opts,
777 MacroBuilder &Builder) {
778 const llvm::StringMap<bool> &OpenCLFeaturesMap = TI.getSupportedOpenCLOpts();
779 // FIXME: OpenCL options which affect language semantics/syntax
780 // should be moved into LangOptions.
781 auto defineOpenCLExtMacro = [&](llvm::StringRef Name, auto... OptArgs) {
782 // Check if extension is supported by target and is available in this
783 // OpenCL version
784 if (TI.hasFeatureEnabled(OpenCLFeaturesMap, Name) &&
786 Builder.defineMacro(Name);
787 };
788#define OPENCL_GENERIC_EXTENSION(Ext, ...) \
789 defineOpenCLExtMacro(#Ext, __VA_ARGS__);
790#include "clang/Basic/OpenCLExtensions.def"
791
792 // Assume compiling for FULL profile
793 Builder.defineMacro("__opencl_c_int64");
794}
795
797 llvm::StringRef Suffix) {
798 if (Val.isSigned() && Val == llvm::APFixedPoint::getMin(Val.getSemantics())) {
799 // When representing the min value of a signed fixed point type in source
800 // code, we cannot simply write `-<lowest value>`. For example, the min
801 // value of a `short _Fract` cannot be written as `-1.0hr`. This is because
802 // the parser will read this (and really any negative numerical literal) as
803 // a UnaryOperator that owns a FixedPointLiteral with a positive value
804 // rather than just a FixedPointLiteral with a negative value. Compiling
805 // `-1.0hr` results in an overflow to the maximal value of that fixed point
806 // type. The correct way to represent a signed min value is to instead split
807 // it into two halves, like `(-0.5hr-0.5hr)` which is what the standard
808 // defines SFRACT_MIN as.
809 llvm::SmallString<32> Literal;
810 Literal.push_back('(');
811 llvm::SmallString<32> HalfStr =
812 ConstructFixedPointLiteral(Val.shr(1), Suffix);
813 Literal += HalfStr;
814 Literal += HalfStr;
815 Literal.push_back(')');
816 return Literal;
817 }
818
819 llvm::SmallString<32> Str(Val.toString());
820 Str += Suffix;
821 return Str;
822}
823
825 llvm::StringRef TypeName, llvm::StringRef Suffix,
826 unsigned Width, unsigned Scale, bool Signed) {
827 // Saturation doesn't affect the size or scale of a fixed point type, so we
828 // don't need it here.
829 llvm::FixedPointSemantics FXSema(
830 Width, Scale, Signed, /*IsSaturated=*/false,
832 llvm::SmallString<32> MacroPrefix("__");
833 MacroPrefix += TypeName;
834 Builder.defineMacro(MacroPrefix + "_EPSILON__",
836 llvm::APFixedPoint::getEpsilon(FXSema), Suffix));
837 Builder.defineMacro(MacroPrefix + "_FBIT__", Twine(Scale));
838 Builder.defineMacro(
839 MacroPrefix + "_MAX__",
840 ConstructFixedPointLiteral(llvm::APFixedPoint::getMax(FXSema), Suffix));
841
842 // ISO/IEC TR 18037:2008 doesn't specify MIN macros for unsigned types since
843 // they're all just zero.
844 if (Signed)
845 Builder.defineMacro(
846 MacroPrefix + "_MIN__",
847 ConstructFixedPointLiteral(llvm::APFixedPoint::getMin(FXSema), Suffix));
848}
849
851 const LangOptions &LangOpts,
852 const FrontendOptions &FEOpts,
853 const PreprocessorOptions &PPOpts,
854 MacroBuilder &Builder) {
855 // Compiler version introspection macros.
856 Builder.defineMacro("__llvm__"); // LLVM Backend
857 Builder.defineMacro("__clang__"); // Clang Frontend
858#define TOSTR2(X) #X
859#define TOSTR(X) TOSTR2(X)
860 Builder.defineMacro("__clang_major__", TOSTR(CLANG_VERSION_MAJOR));
861 Builder.defineMacro("__clang_minor__", TOSTR(CLANG_VERSION_MINOR));
862 Builder.defineMacro("__clang_patchlevel__", TOSTR(CLANG_VERSION_PATCHLEVEL));
863#undef TOSTR
864#undef TOSTR2
865 Builder.defineMacro("__clang_version__",
866 "\"" CLANG_VERSION_STRING " "
868
869 if (LangOpts.GNUCVersion != 0) {
870 // Major, minor, patch, are given two decimal places each, so 4.2.1 becomes
871 // 40201.
872 unsigned GNUCMajor = LangOpts.GNUCVersion / 100 / 100;
873 unsigned GNUCMinor = LangOpts.GNUCVersion / 100 % 100;
874 unsigned GNUCPatch = LangOpts.GNUCVersion % 100;
875 Builder.defineMacro("__GNUC__", Twine(GNUCMajor));
876 Builder.defineMacro("__GNUC_MINOR__", Twine(GNUCMinor));
877 Builder.defineMacro("__GNUC_PATCHLEVEL__", Twine(GNUCPatch));
878 Builder.defineMacro("__GXX_ABI_VERSION", "1002");
879
880 if (LangOpts.CPlusPlus) {
881 Builder.defineMacro("__GNUG__", Twine(GNUCMajor));
882 Builder.defineMacro("__GXX_WEAK__");
883 }
884 }
885
886 // Define macros for the C11 / C++11 memory orderings
887 Builder.defineMacro("__ATOMIC_RELAXED", "0");
888 Builder.defineMacro("__ATOMIC_CONSUME", "1");
889 Builder.defineMacro("__ATOMIC_ACQUIRE", "2");
890 Builder.defineMacro("__ATOMIC_RELEASE", "3");
891 Builder.defineMacro("__ATOMIC_ACQ_REL", "4");
892 Builder.defineMacro("__ATOMIC_SEQ_CST", "5");
893
894 // Define macros for the clang atomic scopes.
895 Builder.defineMacro("__MEMORY_SCOPE_SYSTEM", "0");
896 Builder.defineMacro("__MEMORY_SCOPE_DEVICE", "1");
897 Builder.defineMacro("__MEMORY_SCOPE_WRKGRP", "2");
898 Builder.defineMacro("__MEMORY_SCOPE_WVFRNT", "3");
899 Builder.defineMacro("__MEMORY_SCOPE_SINGLE", "4");
900
901 // Define macros for the OpenCL memory scope.
902 // The values should match AtomicScopeOpenCLModel::ID enum.
903 static_assert(
904 static_cast<unsigned>(AtomicScopeOpenCLModel::WorkGroup) == 1 &&
905 static_cast<unsigned>(AtomicScopeOpenCLModel::Device) == 2 &&
906 static_cast<unsigned>(AtomicScopeOpenCLModel::AllSVMDevices) == 3 &&
907 static_cast<unsigned>(AtomicScopeOpenCLModel::SubGroup) == 4,
908 "Invalid OpenCL memory scope enum definition");
909 Builder.defineMacro("__OPENCL_MEMORY_SCOPE_WORK_ITEM", "0");
910 Builder.defineMacro("__OPENCL_MEMORY_SCOPE_WORK_GROUP", "1");
911 Builder.defineMacro("__OPENCL_MEMORY_SCOPE_DEVICE", "2");
912 Builder.defineMacro("__OPENCL_MEMORY_SCOPE_ALL_SVM_DEVICES", "3");
913 Builder.defineMacro("__OPENCL_MEMORY_SCOPE_SUB_GROUP", "4");
914
915 // Define macros for floating-point data classes, used in __builtin_isfpclass.
916 Builder.defineMacro("__FPCLASS_SNAN", "0x0001");
917 Builder.defineMacro("__FPCLASS_QNAN", "0x0002");
918 Builder.defineMacro("__FPCLASS_NEGINF", "0x0004");
919 Builder.defineMacro("__FPCLASS_NEGNORMAL", "0x0008");
920 Builder.defineMacro("__FPCLASS_NEGSUBNORMAL", "0x0010");
921 Builder.defineMacro("__FPCLASS_NEGZERO", "0x0020");
922 Builder.defineMacro("__FPCLASS_POSZERO", "0x0040");
923 Builder.defineMacro("__FPCLASS_POSSUBNORMAL", "0x0080");
924 Builder.defineMacro("__FPCLASS_POSNORMAL", "0x0100");
925 Builder.defineMacro("__FPCLASS_POSINF", "0x0200");
926
927 // Support for #pragma redefine_extname (Sun compatibility)
928 Builder.defineMacro("__PRAGMA_REDEFINE_EXTNAME", "1");
929
930 // Previously this macro was set to a string aiming to achieve compatibility
931 // with GCC 4.2.1. Now, just return the full Clang version
932 Builder.defineMacro("__VERSION__", "\"" +
933 Twine(getClangFullCPPVersion()) + "\"");
934
935 // Initialize language-specific preprocessor defines.
936
937 // Standard conforming mode?
938 if (!LangOpts.GNUMode && !LangOpts.MSVCCompat)
939 Builder.defineMacro("__STRICT_ANSI__");
940
941 if (LangOpts.GNUCVersion && LangOpts.CPlusPlus11)
942 Builder.defineMacro("__GXX_EXPERIMENTAL_CXX0X__");
943
944 if (TI.getTriple().isWindowsGNUEnvironment()) {
945 // Set ABI defining macros for libstdc++ for MinGW, where the
946 // default in libstdc++ differs from the defaults for this target.
947 Builder.defineMacro("__GXX_TYPEINFO_EQUALITY_INLINE", "0");
948 }
949
950 if (LangOpts.ObjC) {
951 if (LangOpts.ObjCRuntime.isNonFragile()) {
952 Builder.defineMacro("__OBJC2__");
953
954 if (LangOpts.ObjCExceptions)
955 Builder.defineMacro("OBJC_ZEROCOST_EXCEPTIONS");
956 }
957
958 if (LangOpts.getGC() != LangOptions::NonGC)
959 Builder.defineMacro("__OBJC_GC__");
960
961 if (LangOpts.ObjCRuntime.isNeXTFamily())
962 Builder.defineMacro("__NEXT_RUNTIME__");
963
964 if (LangOpts.ObjCRuntime.getKind() == ObjCRuntime::GNUstep) {
965 auto version = LangOpts.ObjCRuntime.getVersion();
966 std::string versionString = "1";
967 // Don't rely on the tuple argument, because we can be asked to target
968 // later ABIs than we actually support, so clamp these values to those
969 // currently supported
970 if (version >= VersionTuple(2, 0))
971 Builder.defineMacro("__OBJC_GNUSTEP_RUNTIME_ABI__", "20");
972 else
973 Builder.defineMacro(
974 "__OBJC_GNUSTEP_RUNTIME_ABI__",
975 "1" + Twine(std::min(8U, version.getMinor().value_or(0))));
976 }
977
978 if (LangOpts.ObjCRuntime.getKind() == ObjCRuntime::ObjFW) {
979 VersionTuple tuple = LangOpts.ObjCRuntime.getVersion();
980 unsigned minor = tuple.getMinor().value_or(0);
981 unsigned subminor = tuple.getSubminor().value_or(0);
982 Builder.defineMacro("__OBJFW_RUNTIME_ABI__",
983 Twine(tuple.getMajor() * 10000 + minor * 100 +
984 subminor));
985 }
986
987 Builder.defineMacro("IBOutlet", "__attribute__((iboutlet))");
988 Builder.defineMacro("IBOutletCollection(ClassName)",
989 "__attribute__((iboutletcollection(ClassName)))");
990 Builder.defineMacro("IBAction", "void)__attribute__((ibaction)");
991 Builder.defineMacro("IBInspectable", "");
992 Builder.defineMacro("IB_DESIGNABLE", "");
993 }
994
995 // Define a macro that describes the Objective-C boolean type even for C
996 // and C++ since BOOL can be used from non Objective-C code.
997 Builder.defineMacro("__OBJC_BOOL_IS_BOOL",
998 Twine(TI.useSignedCharForObjCBool() ? "0" : "1"));
999
1000 if (LangOpts.CPlusPlus)
1001 InitializeCPlusPlusFeatureTestMacros(LangOpts, Builder);
1002
1003 // darwin_constant_cfstrings controls this. This is also dependent
1004 // on other things like the runtime I believe. This is set even for C code.
1005 if (!LangOpts.NoConstantCFStrings)
1006 Builder.defineMacro("__CONSTANT_CFSTRINGS__");
1007
1008 if (LangOpts.ObjC)
1009 Builder.defineMacro("OBJC_NEW_PROPERTIES");
1010
1011 if (LangOpts.PascalStrings)
1012 Builder.defineMacro("__PASCAL_STRINGS__");
1013
1014 if (LangOpts.Blocks) {
1015 Builder.defineMacro("__block", "__attribute__((__blocks__(byref)))");
1016 Builder.defineMacro("__BLOCKS__");
1017 }
1018
1019 if (!LangOpts.MSVCCompat && LangOpts.Exceptions)
1020 Builder.defineMacro("__EXCEPTIONS");
1021 if (LangOpts.GNUCVersion && LangOpts.RTTI)
1022 Builder.defineMacro("__GXX_RTTI");
1023
1024 if (LangOpts.hasSjLjExceptions())
1025 Builder.defineMacro("__USING_SJLJ_EXCEPTIONS__");
1026 else if (LangOpts.hasSEHExceptions())
1027 Builder.defineMacro("__SEH__");
1028 else if (LangOpts.hasDWARFExceptions() &&
1029 (TI.getTriple().isThumb() || TI.getTriple().isARM()))
1030 Builder.defineMacro("__ARM_DWARF_EH__");
1031 else if (LangOpts.hasWasmExceptions() && TI.getTriple().isWasm())
1032 Builder.defineMacro("__WASM_EXCEPTIONS__");
1033
1034 if (LangOpts.Deprecated)
1035 Builder.defineMacro("__DEPRECATED");
1036
1037 if (!LangOpts.MSVCCompat && LangOpts.CPlusPlus)
1038 Builder.defineMacro("__private_extern__", "extern");
1039
1040 if (LangOpts.MicrosoftExt) {
1041 if (LangOpts.WChar) {
1042 // wchar_t supported as a keyword.
1043 Builder.defineMacro("_WCHAR_T_DEFINED");
1044 Builder.defineMacro("_NATIVE_WCHAR_T_DEFINED");
1045 }
1046 }
1047
1048 // Macros to help identify the narrow and wide character sets
1049 // FIXME: clang currently ignores -fexec-charset=. If this changes,
1050 // then this may need to be updated.
1051 Builder.defineMacro("__clang_literal_encoding__", "\"UTF-8\"");
1052 if (TI.getTypeWidth(TI.getWCharType()) >= 32) {
1053 // FIXME: 32-bit wchar_t signals UTF-32. This may change
1054 // if -fwide-exec-charset= is ever supported.
1055 Builder.defineMacro("__clang_wide_literal_encoding__", "\"UTF-32\"");
1056 } else {
1057 // FIXME: Less-than 32-bit wchar_t generally means UTF-16
1058 // (e.g., Windows, 32-bit IBM). This may need to be
1059 // updated if -fwide-exec-charset= is ever supported.
1060 Builder.defineMacro("__clang_wide_literal_encoding__", "\"UTF-16\"");
1061 }
1062
1063 if (LangOpts.Optimize)
1064 Builder.defineMacro("__OPTIMIZE__");
1065 if (LangOpts.OptimizeSize)
1066 Builder.defineMacro("__OPTIMIZE_SIZE__");
1067
1068 if (LangOpts.FastMath)
1069 Builder.defineMacro("__FAST_MATH__");
1070
1071 // Initialize target-specific preprocessor defines.
1072
1073 // __BYTE_ORDER__ was added in GCC 4.6. It's analogous
1074 // to the macro __BYTE_ORDER (no trailing underscores)
1075 // from glibc's <endian.h> header.
1076 // We don't support the PDP-11 as a target, but include
1077 // the define so it can still be compared against.
1078 Builder.defineMacro("__ORDER_LITTLE_ENDIAN__", "1234");
1079 Builder.defineMacro("__ORDER_BIG_ENDIAN__", "4321");
1080 Builder.defineMacro("__ORDER_PDP_ENDIAN__", "3412");
1081 if (TI.isBigEndian()) {
1082 Builder.defineMacro("__BYTE_ORDER__", "__ORDER_BIG_ENDIAN__");
1083 Builder.defineMacro("__BIG_ENDIAN__");
1084 } else {
1085 Builder.defineMacro("__BYTE_ORDER__", "__ORDER_LITTLE_ENDIAN__");
1086 Builder.defineMacro("__LITTLE_ENDIAN__");
1087 }
1088
1089 if (TI.getPointerWidth(LangAS::Default) == 64 && TI.getLongWidth() == 64 &&
1090 TI.getIntWidth() == 32) {
1091 Builder.defineMacro("_LP64");
1092 Builder.defineMacro("__LP64__");
1093 }
1094
1095 if (TI.getPointerWidth(LangAS::Default) == 32 && TI.getLongWidth() == 32 &&
1096 TI.getIntWidth() == 32) {
1097 Builder.defineMacro("_ILP32");
1098 Builder.defineMacro("__ILP32__");
1099 }
1100
1101 // Define type sizing macros based on the target properties.
1102 assert(TI.getCharWidth() == 8 && "Only support 8-bit char so far");
1103 Builder.defineMacro("__CHAR_BIT__", Twine(TI.getCharWidth()));
1104
1105 Builder.defineMacro("__BOOL_WIDTH__", Twine(TI.getBoolWidth()));
1106 Builder.defineMacro("__SHRT_WIDTH__", Twine(TI.getShortWidth()));
1107 Builder.defineMacro("__INT_WIDTH__", Twine(TI.getIntWidth()));
1108 Builder.defineMacro("__LONG_WIDTH__", Twine(TI.getLongWidth()));
1109 Builder.defineMacro("__LLONG_WIDTH__", Twine(TI.getLongLongWidth()));
1110
1111 size_t BitIntMaxWidth = TI.getMaxBitIntWidth();
1112 assert(BitIntMaxWidth <= llvm::IntegerType::MAX_INT_BITS &&
1113 "Target defined a max bit width larger than LLVM can support!");
1114 assert(BitIntMaxWidth >= TI.getLongLongWidth() &&
1115 "Target defined a max bit width smaller than the C standard allows!");
1116 Builder.defineMacro("__BITINT_MAXWIDTH__", Twine(BitIntMaxWidth));
1117
1118 DefineTypeSize("__SCHAR_MAX__", TargetInfo::SignedChar, TI, Builder);
1119 DefineTypeSize("__SHRT_MAX__", TargetInfo::SignedShort, TI, Builder);
1120 DefineTypeSize("__INT_MAX__", TargetInfo::SignedInt, TI, Builder);
1121 DefineTypeSize("__LONG_MAX__", TargetInfo::SignedLong, TI, Builder);
1122 DefineTypeSize("__LONG_LONG_MAX__", TargetInfo::SignedLongLong, TI, Builder);
1123 DefineTypeSizeAndWidth("__WCHAR", TI.getWCharType(), TI, Builder);
1124 DefineTypeSizeAndWidth("__WINT", TI.getWIntType(), TI, Builder);
1125 DefineTypeSizeAndWidth("__INTMAX", TI.getIntMaxType(), TI, Builder);
1126 DefineTypeSizeAndWidth("__SIZE", TI.getSizeType(), TI, Builder);
1127
1128 DefineTypeSizeAndWidth("__UINTMAX", TI.getUIntMaxType(), TI, Builder);
1129 DefineTypeSizeAndWidth("__PTRDIFF", TI.getPtrDiffType(LangAS::Default), TI,
1130 Builder);
1131 DefineTypeSizeAndWidth("__INTPTR", TI.getIntPtrType(), TI, Builder);
1132 DefineTypeSizeAndWidth("__UINTPTR", TI.getUIntPtrType(), TI, Builder);
1133
1134 DefineTypeSizeof("__SIZEOF_DOUBLE__", TI.getDoubleWidth(), TI, Builder);
1135 DefineTypeSizeof("__SIZEOF_FLOAT__", TI.getFloatWidth(), TI, Builder);
1136 DefineTypeSizeof("__SIZEOF_INT__", TI.getIntWidth(), TI, Builder);
1137 DefineTypeSizeof("__SIZEOF_LONG__", TI.getLongWidth(), TI, Builder);
1138 DefineTypeSizeof("__SIZEOF_LONG_DOUBLE__",TI.getLongDoubleWidth(),TI,Builder);
1139 DefineTypeSizeof("__SIZEOF_LONG_LONG__", TI.getLongLongWidth(), TI, Builder);
1140 DefineTypeSizeof("__SIZEOF_POINTER__", TI.getPointerWidth(LangAS::Default),
1141 TI, Builder);
1142 DefineTypeSizeof("__SIZEOF_SHORT__", TI.getShortWidth(), TI, Builder);
1143 DefineTypeSizeof("__SIZEOF_PTRDIFF_T__",
1144 TI.getTypeWidth(TI.getPtrDiffType(LangAS::Default)), TI,
1145 Builder);
1146 DefineTypeSizeof("__SIZEOF_SIZE_T__",
1147 TI.getTypeWidth(TI.getSizeType()), TI, Builder);
1148 DefineTypeSizeof("__SIZEOF_WCHAR_T__",
1149 TI.getTypeWidth(TI.getWCharType()), TI, Builder);
1150 DefineTypeSizeof("__SIZEOF_WINT_T__",
1151 TI.getTypeWidth(TI.getWIntType()), TI, Builder);
1152 if (TI.hasInt128Type())
1153 DefineTypeSizeof("__SIZEOF_INT128__", 128, TI, Builder);
1154
1155 DefineType("__INTMAX_TYPE__", TI.getIntMaxType(), Builder);
1156 DefineFmt(LangOpts, "__INTMAX", TI.getIntMaxType(), TI, Builder);
1157 Builder.defineMacro("__INTMAX_C_SUFFIX__",
1159 DefineType("__UINTMAX_TYPE__", TI.getUIntMaxType(), Builder);
1160 DefineFmt(LangOpts, "__UINTMAX", TI.getUIntMaxType(), TI, Builder);
1161 Builder.defineMacro("__UINTMAX_C_SUFFIX__",
1163 DefineType("__PTRDIFF_TYPE__", TI.getPtrDiffType(LangAS::Default), Builder);
1164 DefineFmt(LangOpts, "__PTRDIFF", TI.getPtrDiffType(LangAS::Default), TI,
1165 Builder);
1166 DefineType("__INTPTR_TYPE__", TI.getIntPtrType(), Builder);
1167 DefineFmt(LangOpts, "__INTPTR", TI.getIntPtrType(), TI, Builder);
1168 DefineType("__SIZE_TYPE__", TI.getSizeType(), Builder);
1169 DefineFmt(LangOpts, "__SIZE", TI.getSizeType(), TI, Builder);
1170 DefineType("__WCHAR_TYPE__", TI.getWCharType(), Builder);
1171 DefineType("__WINT_TYPE__", TI.getWIntType(), Builder);
1172 DefineTypeSizeAndWidth("__SIG_ATOMIC", TI.getSigAtomicType(), TI, Builder);
1173 if (LangOpts.C23)
1174 DefineType("__CHAR8_TYPE__", TI.UnsignedChar, Builder);
1175 DefineType("__CHAR16_TYPE__", TI.getChar16Type(), Builder);
1176 DefineType("__CHAR32_TYPE__", TI.getChar32Type(), Builder);
1177
1178 DefineType("__UINTPTR_TYPE__", TI.getUIntPtrType(), Builder);
1179 DefineFmt(LangOpts, "__UINTPTR", TI.getUIntPtrType(), TI, Builder);
1180
1181 // The C standard requires the width of uintptr_t and intptr_t to be the same,
1182 // per 7.20.2.4p1. Same for intmax_t and uintmax_t, per 7.20.2.5p1.
1183 assert(TI.getTypeWidth(TI.getUIntPtrType()) ==
1184 TI.getTypeWidth(TI.getIntPtrType()) &&
1185 "uintptr_t and intptr_t have different widths?");
1186 assert(TI.getTypeWidth(TI.getUIntMaxType()) ==
1187 TI.getTypeWidth(TI.getIntMaxType()) &&
1188 "uintmax_t and intmax_t have different widths?");
1189
1190 if (LangOpts.FixedPoint) {
1191 // Each unsigned type has the same width as their signed type.
1192 DefineFixedPointMacros(TI, Builder, "SFRACT", "HR", TI.getShortFractWidth(),
1193 TI.getShortFractScale(), /*Signed=*/true);
1194 DefineFixedPointMacros(TI, Builder, "USFRACT", "UHR",
1195 TI.getShortFractWidth(),
1196 TI.getUnsignedShortFractScale(), /*Signed=*/false);
1197 DefineFixedPointMacros(TI, Builder, "FRACT", "R", TI.getFractWidth(),
1198 TI.getFractScale(), /*Signed=*/true);
1199 DefineFixedPointMacros(TI, Builder, "UFRACT", "UR", TI.getFractWidth(),
1200 TI.getUnsignedFractScale(), /*Signed=*/false);
1201 DefineFixedPointMacros(TI, Builder, "LFRACT", "LR", TI.getLongFractWidth(),
1202 TI.getLongFractScale(), /*Signed=*/true);
1203 DefineFixedPointMacros(TI, Builder, "ULFRACT", "ULR",
1204 TI.getLongFractWidth(),
1205 TI.getUnsignedLongFractScale(), /*Signed=*/false);
1206 DefineFixedPointMacros(TI, Builder, "SACCUM", "HK", TI.getShortAccumWidth(),
1207 TI.getShortAccumScale(), /*Signed=*/true);
1208 DefineFixedPointMacros(TI, Builder, "USACCUM", "UHK",
1209 TI.getShortAccumWidth(),
1210 TI.getUnsignedShortAccumScale(), /*Signed=*/false);
1211 DefineFixedPointMacros(TI, Builder, "ACCUM", "K", TI.getAccumWidth(),
1212 TI.getAccumScale(), /*Signed=*/true);
1213 DefineFixedPointMacros(TI, Builder, "UACCUM", "UK", TI.getAccumWidth(),
1214 TI.getUnsignedAccumScale(), /*Signed=*/false);
1215 DefineFixedPointMacros(TI, Builder, "LACCUM", "LK", TI.getLongAccumWidth(),
1216 TI.getLongAccumScale(), /*Signed=*/true);
1217 DefineFixedPointMacros(TI, Builder, "ULACCUM", "ULK",
1218 TI.getLongAccumWidth(),
1219 TI.getUnsignedLongAccumScale(), /*Signed=*/false);
1220
1221 Builder.defineMacro("__SACCUM_IBIT__", Twine(TI.getShortAccumIBits()));
1222 Builder.defineMacro("__USACCUM_IBIT__",
1223 Twine(TI.getUnsignedShortAccumIBits()));
1224 Builder.defineMacro("__ACCUM_IBIT__", Twine(TI.getAccumIBits()));
1225 Builder.defineMacro("__UACCUM_IBIT__", Twine(TI.getUnsignedAccumIBits()));
1226 Builder.defineMacro("__LACCUM_IBIT__", Twine(TI.getLongAccumIBits()));
1227 Builder.defineMacro("__ULACCUM_IBIT__",
1228 Twine(TI.getUnsignedLongAccumIBits()));
1229 }
1230
1231 if (TI.hasFloat16Type())
1232 DefineFloatMacros(Builder, "FLT16", &TI.getHalfFormat(), "F16");
1233 DefineFloatMacros(Builder, "FLT", &TI.getFloatFormat(), "F");
1234 DefineFloatMacros(Builder, "DBL", &TI.getDoubleFormat(), "");
1235 DefineFloatMacros(Builder, "LDBL", &TI.getLongDoubleFormat(), "L");
1236
1237 // Define a __POINTER_WIDTH__ macro for stdint.h.
1238 Builder.defineMacro("__POINTER_WIDTH__",
1239 Twine((int)TI.getPointerWidth(LangAS::Default)));
1240
1241 // Define __BIGGEST_ALIGNMENT__ to be compatible with gcc.
1242 Builder.defineMacro("__BIGGEST_ALIGNMENT__",
1243 Twine(TI.getSuitableAlign() / TI.getCharWidth()) );
1244
1245 if (!LangOpts.CharIsSigned)
1246 Builder.defineMacro("__CHAR_UNSIGNED__");
1247
1249 Builder.defineMacro("__WCHAR_UNSIGNED__");
1250
1252 Builder.defineMacro("__WINT_UNSIGNED__");
1253
1254 // Define exact-width integer types for stdint.h
1255 DefineExactWidthIntType(LangOpts, TargetInfo::SignedChar, TI, Builder);
1256
1257 if (TI.getShortWidth() > TI.getCharWidth())
1258 DefineExactWidthIntType(LangOpts, TargetInfo::SignedShort, TI, Builder);
1259
1260 if (TI.getIntWidth() > TI.getShortWidth())
1261 DefineExactWidthIntType(LangOpts, TargetInfo::SignedInt, TI, Builder);
1262
1263 if (TI.getLongWidth() > TI.getIntWidth())
1264 DefineExactWidthIntType(LangOpts, TargetInfo::SignedLong, TI, Builder);
1265
1266 if (TI.getLongLongWidth() > TI.getLongWidth())
1267 DefineExactWidthIntType(LangOpts, TargetInfo::SignedLongLong, TI, Builder);
1268
1269 DefineExactWidthIntType(LangOpts, TargetInfo::UnsignedChar, TI, Builder);
1270 DefineExactWidthIntTypeSize(TargetInfo::UnsignedChar, TI, Builder);
1271 DefineExactWidthIntTypeSize(TargetInfo::SignedChar, TI, Builder);
1272
1273 if (TI.getShortWidth() > TI.getCharWidth()) {
1274 DefineExactWidthIntType(LangOpts, TargetInfo::UnsignedShort, TI, Builder);
1275 DefineExactWidthIntTypeSize(TargetInfo::UnsignedShort, TI, Builder);
1276 DefineExactWidthIntTypeSize(TargetInfo::SignedShort, TI, Builder);
1277 }
1278
1279 if (TI.getIntWidth() > TI.getShortWidth()) {
1280 DefineExactWidthIntType(LangOpts, TargetInfo::UnsignedInt, TI, Builder);
1281 DefineExactWidthIntTypeSize(TargetInfo::UnsignedInt, TI, Builder);
1282 DefineExactWidthIntTypeSize(TargetInfo::SignedInt, TI, Builder);
1283 }
1284
1285 if (TI.getLongWidth() > TI.getIntWidth()) {
1286 DefineExactWidthIntType(LangOpts, TargetInfo::UnsignedLong, TI, Builder);
1287 DefineExactWidthIntTypeSize(TargetInfo::UnsignedLong, TI, Builder);
1288 DefineExactWidthIntTypeSize(TargetInfo::SignedLong, TI, Builder);
1289 }
1290
1291 if (TI.getLongLongWidth() > TI.getLongWidth()) {
1292 DefineExactWidthIntType(LangOpts, TargetInfo::UnsignedLongLong, TI,
1293 Builder);
1294 DefineExactWidthIntTypeSize(TargetInfo::UnsignedLongLong, TI, Builder);
1295 DefineExactWidthIntTypeSize(TargetInfo::SignedLongLong, TI, Builder);
1296 }
1297
1298 DefineLeastWidthIntType(LangOpts, 8, true, TI, Builder);
1299 DefineLeastWidthIntType(LangOpts, 8, false, TI, Builder);
1300 DefineLeastWidthIntType(LangOpts, 16, true, TI, Builder);
1301 DefineLeastWidthIntType(LangOpts, 16, false, TI, Builder);
1302 DefineLeastWidthIntType(LangOpts, 32, true, TI, Builder);
1303 DefineLeastWidthIntType(LangOpts, 32, false, TI, Builder);
1304 DefineLeastWidthIntType(LangOpts, 64, true, TI, Builder);
1305 DefineLeastWidthIntType(LangOpts, 64, false, TI, Builder);
1306
1307 DefineFastIntType(LangOpts, 8, true, TI, Builder);
1308 DefineFastIntType(LangOpts, 8, false, TI, Builder);
1309 DefineFastIntType(LangOpts, 16, true, TI, Builder);
1310 DefineFastIntType(LangOpts, 16, false, TI, Builder);
1311 DefineFastIntType(LangOpts, 32, true, TI, Builder);
1312 DefineFastIntType(LangOpts, 32, false, TI, Builder);
1313 DefineFastIntType(LangOpts, 64, true, TI, Builder);
1314 DefineFastIntType(LangOpts, 64, false, TI, Builder);
1315
1316 Builder.defineMacro("__USER_LABEL_PREFIX__", TI.getUserLabelPrefix());
1317
1318 if (!LangOpts.MathErrno)
1319 Builder.defineMacro("__NO_MATH_ERRNO__");
1320
1321 if (LangOpts.FastMath || LangOpts.FiniteMathOnly)
1322 Builder.defineMacro("__FINITE_MATH_ONLY__", "1");
1323 else
1324 Builder.defineMacro("__FINITE_MATH_ONLY__", "0");
1325
1326 if (LangOpts.GNUCVersion) {
1327 if (LangOpts.GNUInline || LangOpts.CPlusPlus)
1328 Builder.defineMacro("__GNUC_GNU_INLINE__");
1329 else
1330 Builder.defineMacro("__GNUC_STDC_INLINE__");
1331
1332 // The value written by __atomic_test_and_set.
1333 // FIXME: This is target-dependent.
1334 Builder.defineMacro("__GCC_ATOMIC_TEST_AND_SET_TRUEVAL", "1");
1335 }
1336
1337 // GCC defines these macros in both C and C++ modes despite them being needed
1338 // mostly for STL implementations in C++.
1339 auto [Destructive, Constructive] = TI.hardwareInterferenceSizes();
1340 Builder.defineMacro("__GCC_DESTRUCTIVE_SIZE", Twine(Destructive));
1341 Builder.defineMacro("__GCC_CONSTRUCTIVE_SIZE", Twine(Constructive));
1342 // We need to use push_macro to allow users to redefine these macros from the
1343 // command line with -D and not issue a -Wmacro-redefined warning.
1344 Builder.append("#pragma push_macro(\"__GCC_DESTRUCTIVE_SIZE\")");
1345 Builder.append("#pragma push_macro(\"__GCC_CONSTRUCTIVE_SIZE\")");
1346
1347 auto addLockFreeMacros = [&](const llvm::Twine &Prefix) {
1348 // Used by libc++ and libstdc++ to implement ATOMIC_<foo>_LOCK_FREE.
1349#define DEFINE_LOCK_FREE_MACRO(TYPE, Type) \
1350 Builder.defineMacro(Prefix + #TYPE "_LOCK_FREE", \
1351 getLockFreeValue(TI.get##Type##Width(), TI));
1353 DEFINE_LOCK_FREE_MACRO(CHAR, Char);
1354 // char8_t has the same representation / width as unsigned
1355 // char in C++ and is a typedef for unsigned char in C23
1356 if (LangOpts.Char8 || LangOpts.C23)
1357 DEFINE_LOCK_FREE_MACRO(CHAR8_T, Char);
1358 DEFINE_LOCK_FREE_MACRO(CHAR16_T, Char16);
1359 DEFINE_LOCK_FREE_MACRO(CHAR32_T, Char32);
1360 DEFINE_LOCK_FREE_MACRO(WCHAR_T, WChar);
1362 DEFINE_LOCK_FREE_MACRO(INT, Int);
1365 Builder.defineMacro(
1366 Prefix + "POINTER_LOCK_FREE",
1367 getLockFreeValue(TI.getPointerWidth(LangAS::Default), TI));
1368#undef DEFINE_LOCK_FREE_MACRO
1369 };
1370 addLockFreeMacros("__CLANG_ATOMIC_");
1371 if (LangOpts.GNUCVersion)
1372 addLockFreeMacros("__GCC_ATOMIC_");
1373
1374 if (LangOpts.NoInlineDefine)
1375 Builder.defineMacro("__NO_INLINE__");
1376
1377 if (unsigned PICLevel = LangOpts.PICLevel) {
1378 Builder.defineMacro("__PIC__", Twine(PICLevel));
1379 Builder.defineMacro("__pic__", Twine(PICLevel));
1380 if (LangOpts.PIE) {
1381 Builder.defineMacro("__PIE__", Twine(PICLevel));
1382 Builder.defineMacro("__pie__", Twine(PICLevel));
1383 }
1384 }
1385
1386 // Macros to control C99 numerics and <float.h>
1387 Builder.defineMacro("__FLT_RADIX__", "2");
1388 Builder.defineMacro("__DECIMAL_DIG__", "__LDBL_DECIMAL_DIG__");
1389
1390 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1391 Builder.defineMacro("__SSP__");
1392 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1393 Builder.defineMacro("__SSP_STRONG__", "2");
1394 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1395 Builder.defineMacro("__SSP_ALL__", "3");
1396
1397 if (PPOpts.SetUpStaticAnalyzer)
1398 Builder.defineMacro("__clang_analyzer__");
1399
1400 if (LangOpts.FastRelaxedMath)
1401 Builder.defineMacro("__FAST_RELAXED_MATH__");
1402
1403 if (FEOpts.ProgramAction == frontend::RewriteObjC ||
1404 LangOpts.getGC() != LangOptions::NonGC) {
1405 Builder.defineMacro("__weak", "__attribute__((objc_gc(weak)))");
1406 Builder.defineMacro("__strong", "__attribute__((objc_gc(strong)))");
1407 Builder.defineMacro("__autoreleasing", "");
1408 Builder.defineMacro("__unsafe_unretained", "");
1409 } else if (LangOpts.ObjC) {
1410 Builder.defineMacro("__weak", "__attribute__((objc_ownership(weak)))");
1411 Builder.defineMacro("__strong", "__attribute__((objc_ownership(strong)))");
1412 Builder.defineMacro("__autoreleasing",
1413 "__attribute__((objc_ownership(autoreleasing)))");
1414 Builder.defineMacro("__unsafe_unretained",
1415 "__attribute__((objc_ownership(none)))");
1416 }
1417
1418 // On Darwin, there are __double_underscored variants of the type
1419 // nullability qualifiers.
1420 if (TI.getTriple().isOSDarwin()) {
1421 Builder.defineMacro("__nonnull", "_Nonnull");
1422 Builder.defineMacro("__null_unspecified", "_Null_unspecified");
1423 Builder.defineMacro("__nullable", "_Nullable");
1424 }
1425
1426 // Add a macro to differentiate between regular iOS/tvOS/watchOS targets and
1427 // the corresponding simulator targets.
1428 if (TI.getTriple().isOSDarwin() && TI.getTriple().isSimulatorEnvironment())
1429 Builder.defineMacro("__APPLE_EMBEDDED_SIMULATOR__", "1");
1430
1431 // OpenMP definition
1432 // OpenMP 2.2:
1433 // In implementations that support a preprocessor, the _OPENMP
1434 // macro name is defined to have the decimal value yyyymm where
1435 // yyyy and mm are the year and the month designations of the
1436 // version of the OpenMP API that the implementation support.
1437 if (!LangOpts.OpenMPSimd) {
1438 switch (LangOpts.OpenMP) {
1439 case 0:
1440 break;
1441 case 31:
1442 Builder.defineMacro("_OPENMP", "201107");
1443 break;
1444 case 40:
1445 Builder.defineMacro("_OPENMP", "201307");
1446 break;
1447 case 45:
1448 Builder.defineMacro("_OPENMP", "201511");
1449 break;
1450 case 50:
1451 Builder.defineMacro("_OPENMP", "201811");
1452 break;
1453 case 52:
1454 Builder.defineMacro("_OPENMP", "202111");
1455 break;
1456 default: // case 51:
1457 // Default version is OpenMP 5.1
1458 Builder.defineMacro("_OPENMP", "202011");
1459 break;
1460 }
1461 }
1462
1463 // CUDA device path compilaton
1464 if (LangOpts.CUDAIsDevice && !LangOpts.HIP) {
1465 // The CUDA_ARCH value is set for the GPU target specified in the NVPTX
1466 // backend's target defines.
1467 Builder.defineMacro("__CUDA_ARCH__");
1468 }
1469
1470 // We need to communicate this to our CUDA/HIP header wrapper, which in turn
1471 // informs the proper CUDA/HIP headers of this choice.
1472 if (LangOpts.GPUDeviceApproxTranscendentals)
1473 Builder.defineMacro("__CLANG_GPU_APPROX_TRANSCENDENTALS__");
1474
1475 // Define a macro indicating that the source file is being compiled with a
1476 // SYCL device compiler which doesn't produce host binary.
1477 if (LangOpts.SYCLIsDevice) {
1478 Builder.defineMacro("__SYCL_DEVICE_ONLY__", "1");
1479 }
1480
1481 // OpenCL definitions.
1482 if (LangOpts.OpenCL) {
1483 InitializeOpenCLFeatureTestMacros(TI, LangOpts, Builder);
1484
1485 if (TI.getTriple().isSPIR() || TI.getTriple().isSPIRV())
1486 Builder.defineMacro("__IMAGE_SUPPORT__");
1487 }
1488
1489 if (TI.hasInt128Type() && LangOpts.CPlusPlus && LangOpts.GNUMode) {
1490 // For each extended integer type, g++ defines a macro mapping the
1491 // index of the type (0 in this case) in some list of extended types
1492 // to the type.
1493 Builder.defineMacro("__GLIBCXX_TYPE_INT_N_0", "__int128");
1494 Builder.defineMacro("__GLIBCXX_BITSIZE_INT_N_0", "128");
1495 }
1496
1497 // ELF targets define __ELF__
1498 if (TI.getTriple().isOSBinFormatELF())
1499 Builder.defineMacro("__ELF__");
1500
1501 // Target OS macro definitions.
1502 if (PPOpts.DefineTargetOSMacros) {
1503 const llvm::Triple &Triple = TI.getTriple();
1504#define TARGET_OS(Name, Predicate) \
1505 Builder.defineMacro(#Name, (Predicate) ? "1" : "0");
1506#include "clang/Basic/TargetOSMacros.def"
1507#undef TARGET_OS
1508 }
1509
1510 // Get other target #defines.
1511 TI.getTargetDefines(LangOpts, Builder);
1512}
1513
1514static void InitializePGOProfileMacros(const CodeGenOptions &CodeGenOpts,
1515 MacroBuilder &Builder) {
1516 if (CodeGenOpts.hasProfileInstr())
1517 Builder.defineMacro("__LLVM_INSTR_PROFILE_GENERATE");
1518
1519 if (CodeGenOpts.hasProfileIRUse() || CodeGenOpts.hasProfileClangUse())
1520 Builder.defineMacro("__LLVM_INSTR_PROFILE_USE");
1521}
1522
1523/// InitializePreprocessor - Initialize the preprocessor getting it and the
1524/// environment ready to process a single file.
1526 const PreprocessorOptions &InitOpts,
1527 const PCHContainerReader &PCHContainerRdr,
1528 const FrontendOptions &FEOpts,
1529 const CodeGenOptions &CodeGenOpts) {
1530 const LangOptions &LangOpts = PP.getLangOpts();
1531 std::string PredefineBuffer;
1532 PredefineBuffer.reserve(4080);
1533 llvm::raw_string_ostream Predefines(PredefineBuffer);
1534 MacroBuilder Builder(Predefines);
1535
1536 // Emit line markers for various builtin sections of the file. The 3 here
1537 // marks <built-in> as being a system header, which suppresses warnings when
1538 // the same macro is defined multiple times.
1539 Builder.append("# 1 \"<built-in>\" 3");
1540
1541 // Install things like __POWERPC__, __GNUC__, etc into the macro table.
1542 if (InitOpts.UsePredefines) {
1543 // FIXME: This will create multiple definitions for most of the predefined
1544 // macros. This is not the right way to handle this.
1545 if ((LangOpts.CUDA || LangOpts.OpenMPIsTargetDevice ||
1546 LangOpts.SYCLIsDevice) &&
1547 PP.getAuxTargetInfo())
1548 InitializePredefinedMacros(*PP.getAuxTargetInfo(), LangOpts, FEOpts,
1549 PP.getPreprocessorOpts(), Builder);
1550
1551 InitializePredefinedMacros(PP.getTargetInfo(), LangOpts, FEOpts,
1552 PP.getPreprocessorOpts(), Builder);
1553
1554 // Install definitions to make Objective-C++ ARC work well with various
1555 // C++ Standard Library implementations.
1556 if (LangOpts.ObjC && LangOpts.CPlusPlus &&
1557 (LangOpts.ObjCAutoRefCount || LangOpts.ObjCWeak)) {
1558 switch (InitOpts.ObjCXXARCStandardLibrary) {
1559 case ARCXX_nolib:
1560 case ARCXX_libcxx:
1561 break;
1562
1563 case ARCXX_libstdcxx:
1564 AddObjCXXARCLibstdcxxDefines(LangOpts, Builder);
1565 break;
1566 }
1567 }
1568 }
1569
1570 // Even with predefines off, some macros are still predefined.
1571 // These should all be defined in the preprocessor according to the
1572 // current language configuration.
1574 FEOpts, Builder);
1575
1576 // The PGO instrumentation profile macros are driven by options
1577 // -fprofile[-instr]-generate/-fcs-profile-generate/-fprofile[-instr]-use,
1578 // hence they are not guarded by InitOpts.UsePredefines.
1579 InitializePGOProfileMacros(CodeGenOpts, Builder);
1580
1581 // Add on the predefines from the driver. Wrap in a #line directive to report
1582 // that they come from the command line.
1583 Builder.append("# 1 \"<command line>\" 1");
1584
1585 // Process #define's and #undef's in the order they are given.
1586 for (unsigned i = 0, e = InitOpts.Macros.size(); i != e; ++i) {
1587 if (InitOpts.Macros[i].second) // isUndef
1588 Builder.undefineMacro(InitOpts.Macros[i].first);
1589 else
1590 DefineBuiltinMacro(Builder, InitOpts.Macros[i].first,
1591 PP.getDiagnostics());
1592 }
1593
1594 // Exit the command line and go back to <built-in> (2 is LC_LEAVE).
1595 Builder.append("# 1 \"<built-in>\" 2");
1596
1597 // If -imacros are specified, include them now. These are processed before
1598 // any -include directives.
1599 for (unsigned i = 0, e = InitOpts.MacroIncludes.size(); i != e; ++i)
1600 AddImplicitIncludeMacros(Builder, InitOpts.MacroIncludes[i]);
1601
1602 // Process -include-pch/-include-pth directives.
1603 if (!InitOpts.ImplicitPCHInclude.empty())
1604 AddImplicitIncludePCH(Builder, PP, PCHContainerRdr,
1605 InitOpts.ImplicitPCHInclude);
1606
1607 // Process -include directives.
1608 for (unsigned i = 0, e = InitOpts.Includes.size(); i != e; ++i) {
1609 const std::string &Path = InitOpts.Includes[i];
1610 AddImplicitInclude(Builder, Path);
1611 }
1612
1613 // Instruct the preprocessor to skip the preamble.
1615 InitOpts.PrecompiledPreambleBytes.second);
1616
1617 // Copy PredefinedBuffer into the Preprocessor.
1618 PP.setPredefines(std::move(PredefineBuffer));
1619}
IndirectLocalPath & Path
Defines the clang::FileManager interface and associated types.
Defines helper utilities for supporting the HLSL runtime environment.
static void AddImplicitIncludePCH(MacroBuilder &Builder, Preprocessor &PP, const PCHContainerReader &PCHContainerRdr, StringRef ImplicitIncludePCH)
Add an implicit #include using the original file used to generate a PCH file.
static void AddImplicitInclude(MacroBuilder &Builder, StringRef File)
AddImplicitInclude - Add an implicit #include of the specified file to the predefines buffer.
static void DefineTypeWidth(const Twine &MacroName, TargetInfo::IntType Ty, const TargetInfo &TI, MacroBuilder &Builder)
static bool MacroBodyEndsInBackslash(StringRef MacroBody)
static void DefineTypeSizeof(StringRef MacroName, unsigned BitWidth, const TargetInfo &TI, MacroBuilder &Builder)
static void DefineFmt(const LangOptions &LangOpts, const Twine &Prefix, TargetInfo::IntType Ty, const TargetInfo &TI, MacroBuilder &Builder)
static void InitializePredefinedMacros(const TargetInfo &TI, const LangOptions &LangOpts, const FrontendOptions &FEOpts, const PreprocessorOptions &PPOpts, MacroBuilder &Builder)
static void DefineFloatMacros(MacroBuilder &Builder, StringRef Prefix, const llvm::fltSemantics *Sem, StringRef Ext)
static void DefineTypeSize(const Twine &MacroName, unsigned TypeWidth, StringRef ValSuffix, bool isSigned, MacroBuilder &Builder)
DefineTypeSize - Emit a macro to the predefines buffer that declares a macro named MacroName with the...
static void DefineExactWidthIntTypeSize(TargetInfo::IntType Ty, const TargetInfo &TI, MacroBuilder &Builder)
void DefineFixedPointMacros(const TargetInfo &TI, MacroBuilder &Builder, llvm::StringRef TypeName, llvm::StringRef Suffix, unsigned Width, unsigned Scale, bool Signed)
static void InitializePGOProfileMacros(const CodeGenOptions &CodeGenOpts, MacroBuilder &Builder)
void InitializeOpenCLFeatureTestMacros(const TargetInfo &TI, const LangOptions &Opts, MacroBuilder &Builder)
InitializeOpenCLFeatureTestMacros - Define OpenCL macros based on target settings and language versio...
static void AddImplicitIncludeMacros(MacroBuilder &Builder, StringRef File)
static void AddObjCXXARCLibstdcxxDefines(const LangOptions &LangOpts, MacroBuilder &Builder)
Add definitions required for a smooth interaction between Objective-C++ automated reference counting ...
static void DefineExactWidthIntType(const LangOptions &LangOpts, TargetInfo::IntType Ty, const TargetInfo &TI, MacroBuilder &Builder)
llvm::SmallString< 32 > ConstructFixedPointLiteral(llvm::APFixedPoint Val, llvm::StringRef Suffix)
static void DefineLeastWidthIntType(const LangOptions &LangOpts, unsigned TypeWidth, bool IsSigned, const TargetInfo &TI, MacroBuilder &Builder)
#define TOSTR(X)
static void InitializeCPlusPlusFeatureTestMacros(const LangOptions &LangOpts, MacroBuilder &Builder)
Initialize the predefined C++ language feature test macros defined in ISO/IEC JTC1/SC22/WG21 (C++) SD...
static const char * getLockFreeValue(unsigned TypeWidth, const TargetInfo &TI)
Get the value the ATOMIC_*_LOCK_FREE macro should have for a type with the specified properties.
static void DefineTypeSizeAndWidth(const Twine &Prefix, TargetInfo::IntType Ty, const TargetInfo &TI, MacroBuilder &Builder)
static void DefineType(const Twine &MacroName, TargetInfo::IntType Ty, MacroBuilder &Builder)
static T PickFP(const llvm::fltSemantics *Sem, T IEEEHalfVal, T IEEESingleVal, T IEEEDoubleVal, T X87DoubleExtendedVal, T PPCDoubleDoubleVal, T IEEEQuadVal)
PickFP - This is used to pick a value based on the FP semantics of the specified FP model.
static void DefineBuiltinMacro(MacroBuilder &Builder, StringRef Macro, DiagnosticsEngine &Diags)
#define DEFINE_LOCK_FREE_MACRO(TYPE, Type)
static void InitializeStandardPredefinedMacros(const TargetInfo &TI, const LangOptions &LangOpts, const FrontendOptions &FEOpts, MacroBuilder &Builder)
static void DefineFastIntType(const LangOptions &LangOpts, unsigned TypeWidth, bool IsSigned, const TargetInfo &TI, MacroBuilder &Builder)
Defines the clang::MacroBuilder utility class.
Defines the clang::Preprocessor interface.
static std::string toString(const clang::SanitizerSet &Sanitizers)
Produce a string containing comma-separated names of sanitizers in Sanitizers set.
Defines the SourceManager interface.
Provides definitions for the atomic synchronization scopes.
Defines version macros and version-related utility functions for Clang.
StringRef getOriginalSourceFile()
Retrieve the name of the original source file name for the primary module file.
Definition: ASTReader.h:1775
CodeGenOptions - Track various options which control how the code is optimized and passed to the back...
bool hasProfileInstr() const
Check if any form of instrumentation is on.
bool hasProfileIRUse() const
Check if IR level profile use is on.
bool hasProfileClangUse() const
Check if Clang profile use is on.
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:192
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1547
FrontendOptions - Options for controlling the behavior of the frontend.
frontend::ActionKind ProgramAction
The frontend action to perform.
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:461
bool hasWasmExceptions() const
Definition: LangOptions.h:708
clang::ObjCRuntime ObjCRuntime
Definition: LangOptions.h:496
bool hasSjLjExceptions() const
Definition: LangOptions.h:696
bool hasDWARFExceptions() const
Definition: LangOptions.h:704
bool hasSEHExceptions() const
Definition: LangOptions.h:700
std::string OpenACCMacroOverride
Definition: LangOptions.h:576
GPUDefaultStreamKind GPUDefaultStream
The default stream kind used for HIP kernel launching.
Definition: LangOptions.h:556
Kind getKind() const
Definition: ObjCRuntime.h:77
bool isNeXTFamily() const
Is this runtime basically of the NeXT family of runtimes?
Definition: ObjCRuntime.h:143
const VersionTuple & getVersion() const
Definition: ObjCRuntime.h:78
bool isNonFragile() const
Does this runtime follow the set of implied behaviors for a "non-fragile" ABI?
Definition: ObjCRuntime.h:82
@ GNUstep
'gnustep' is the modern non-fragile GNUstep runtime.
Definition: ObjCRuntime.h:56
@ ObjFW
'objfw' is the Objective-C runtime included in ObjFW
Definition: ObjCRuntime.h:59
static bool isOpenCLOptionAvailableIn(const LangOptions &LO, Args &&... args)
This abstract interface provides operations for unwrapping containers for serialized ASTs (precompile...
PreprocessorOptions - This class is used for passing the various options used in preprocessor initial...
std::vector< std::string > MacroIncludes
std::vector< std::string > Includes
std::pair< unsigned, bool > PrecompiledPreambleBytes
If non-zero, the implicit PCH include is actually a precompiled preamble that covers this number of b...
ObjCXXARCStandardLibraryKind ObjCXXARCStandardLibrary
The Objective-C++ ARC standard library that we should support, by providing appropriate definitions t...
bool DefineTargetOSMacros
Indicates whether to predefine target OS macros.
std::string ImplicitPCHInclude
The implicit PCH included at the start of the translation unit, or empty.
bool UsePredefines
Initialize the preprocessor with the compiler and target specific predefines.
bool SetUpStaticAnalyzer
Set up preprocessor for RunAnalysis action.
std::vector< std::pair< std::string, bool > > Macros
Engages in a tight little dance with the lexer to efficiently preprocess tokens.
Definition: Preprocessor.h:137
const TargetInfo * getAuxTargetInfo() const
const TargetInfo & getTargetInfo() const
FileManager & getFileManager() const
PreprocessorOptions & getPreprocessorOpts() const
Retrieve the preprocessor options used to initialize this preprocessor.
void setPredefines(std::string P)
Set the predefines for this Preprocessor.
void setSkipMainFilePreamble(unsigned Bytes, bool StartOfLine)
Instruct the preprocessor to skip part of the main source file.
const LangOptions & getLangOpts() const
DiagnosticsEngine & getDiagnostics() const
Exposes information about the current target.
Definition: TargetInfo.h:218
unsigned getNewAlign() const
Return the largest alignment for which a suitably-sized allocation with '::operator new(size_t)' is g...
Definition: TargetInfo.h:742
unsigned getUnsignedLongFractScale() const
getUnsignedLongFractScale - Return the number of fractional bits in a 'unsigned long _Fract' type.
Definition: TargetInfo.h:649
unsigned getShortWidth() const
Return the size of 'signed short' and 'unsigned short' for this target, in bits.
Definition: TargetInfo.h:501
unsigned getUnsignedAccumScale() const
getUnsignedAccumScale/IBits - Return the number of fractional/integral bits in a 'unsigned _Accum' ty...
Definition: TargetInfo.h:603
unsigned getUnsignedAccumIBits() const
Definition: TargetInfo.h:606
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:1256
unsigned getAccumWidth() const
getAccumWidth/Align - Return the size of 'signed _Accum' and 'unsigned _Accum' for this target,...
Definition: TargetInfo.h:548
IntType getUIntPtrType() const
Definition: TargetInfo.h:398
IntType getInt64Type() const
Definition: TargetInfo.h:405
unsigned getUnsignedFractScale() const
getUnsignedFractScale - Return the number of fractional bits in a 'unsigned _Fract' type.
Definition: TargetInfo.h:643
virtual IntType getLeastIntTypeByWidth(unsigned BitWidth, bool IsSigned) const
Return the smallest integer type with at least the specified width.
Definition: TargetInfo.cpp:301
virtual bool hasFeatureEnabled(const llvm::StringMap< bool > &Features, StringRef Name) const
Check if target has a given feature enabled.
Definition: TargetInfo.h:1379
virtual size_t getMaxBitIntWidth() const
Definition: TargetInfo.h:672
unsigned getTypeWidth(IntType T) const
Return the width (in bits) of the specified integer type enum.
Definition: TargetInfo.cpp:270
unsigned getLongAccumScale() const
getLongAccumScale/IBits - Return the number of fractional/integral bits in a 'signed long _Accum' typ...
Definition: TargetInfo.h:585
unsigned getLongFractScale() const
getLongFractScale - Return the number of fractional bits in a 'signed long _Fract' type.
Definition: TargetInfo.h:632
uint64_t getPointerWidth(LangAS AddrSpace) const
Return the width of pointers on this target, for the specified address space.
Definition: TargetInfo.h:472
static bool isTypeSigned(IntType T)
Returns true if the type is signed; false otherwise.
Definition: TargetInfo.cpp:370
virtual std::pair< unsigned, unsigned > hardwareInterferenceSizes() const
The first value in the pair is the minimum offset between two objects to avoid false sharing (destruc...
Definition: TargetInfo.h:1836
bool useSignedCharForObjCBool() const
Check if the Objective-C built-in boolean type should be signed char.
Definition: TargetInfo.h:914
virtual bool hasInt128Type() const
Determine whether the __int128 type is supported on this target.
Definition: TargetInfo.h:655
unsigned getAccumIBits() const
Definition: TargetInfo.h:581
IntType getSigAtomicType() const
Definition: TargetInfo.h:413
unsigned getAccumScale() const
getAccumScale/IBits - Return the number of fractional/integral bits in a 'signed _Accum' type.
Definition: TargetInfo.h:580
virtual bool hasFloat16Type() const
Determine whether the _Float16 type is supported on this target.
Definition: TargetInfo.h:696
unsigned getIntWidth() const
getIntWidth/Align - Return the size of 'signed int' and 'unsigned int' for this target,...
Definition: TargetInfo.h:509
IntType getPtrDiffType(LangAS AddrSpace) const
Definition: TargetInfo.h:390
bool isLittleEndian() const
Definition: TargetInfo.h:1666
unsigned getShortAccumIBits() const
Definition: TargetInfo.h:574
unsigned getFloatWidth() const
getFloatWidth/Align/Format - Return the size/align/format of 'float'.
Definition: TargetInfo.h:767
unsigned getLongAccumIBits() const
Definition: TargetInfo.h:586
IntType getSizeType() const
Definition: TargetInfo.h:371
IntType getWIntType() const
Definition: TargetInfo.h:402
virtual void getTargetDefines(const LangOptions &Opts, MacroBuilder &Builder) const =0
===-— Other target property query methods -----------------------—===//
unsigned getLongAccumWidth() const
getLongAccumWidth/Align - Return the size of 'signed long _Accum' and 'unsigned long _Accum' for this...
Definition: TargetInfo.h:553
unsigned getShortAccumScale() const
getShortAccumScale/IBits - Return the number of fractional/integral bits in a 'signed short _Accum' t...
Definition: TargetInfo.h:573
const llvm::fltSemantics & getDoubleFormat() const
Definition: TargetInfo.h:779
static const char * getTypeName(IntType T)
Return the user string for the specified integer type enum.
Definition: TargetInfo.cpp:209
unsigned getLongLongWidth() const
getLongLongWidth/Align - Return the size of 'signed long long' and 'unsigned long long' for this targ...
Definition: TargetInfo.h:519
virtual bool hasBuiltinAtomic(uint64_t AtomicSizeInBits, uint64_t AlignmentInBits) const
Returns true if the given target supports lock-free atomic operations at the specified width and alig...
Definition: TargetInfo.h:840
IntType getIntPtrType() const
Definition: TargetInfo.h:397
IntType getInt16Type() const
Definition: TargetInfo.h:409
const llvm::fltSemantics & getHalfFormat() const
Definition: TargetInfo.h:764
llvm::StringMap< bool > & getSupportedOpenCLOpts()
Get supported OpenCL extensions and optional core features.
Definition: TargetInfo.h:1765
IntType getWCharType() const
Definition: TargetInfo.h:401
IntType getUInt16Type() const
Definition: TargetInfo.h:410
bool isBigEndian() const
Definition: TargetInfo.h:1665
const char * getUserLabelPrefix() const
Returns the default value of the USER_LABEL_PREFIX macro, which is the prefix given to user symbols b...
Definition: TargetInfo.h:902
IntType getChar16Type() const
Definition: TargetInfo.h:403
unsigned getUnsignedShortAccumIBits() const
Definition: TargetInfo.h:595
IntType getChar32Type() const
Definition: TargetInfo.h:404
IntType getUInt64Type() const
Definition: TargetInfo.h:406
unsigned getUnsignedLongAccumScale() const
getUnsignedLongAccumScale/IBits - Return the number of fractional/integral bits in a 'unsigned long _...
Definition: TargetInfo.h:613
unsigned getUnsignedLongAccumIBits() const
Definition: TargetInfo.h:616
unsigned getUnsignedShortFractScale() const
getUnsignedShortFractScale - Return the number of fractional bits in a 'unsigned short _Fract' type.
Definition: TargetInfo.h:636
const llvm::fltSemantics & getLongDoubleFormat() const
Definition: TargetInfo.h:785
const llvm::fltSemantics & getFloatFormat() const
Definition: TargetInfo.h:769
const char * getTypeConstantSuffix(IntType T) const
Return the constant suffix for the specified integer type enum.
Definition: TargetInfo.cpp:227
unsigned getDoubleWidth() const
getDoubleWidth/Align/Format - Return the size/align/format of 'double'.
Definition: TargetInfo.h:777
unsigned getShortAccumWidth() const
getShortAccumWidth/Align - Return the size of 'signed short _Accum' and 'unsigned short _Accum' for t...
Definition: TargetInfo.h:543
unsigned getSuitableAlign() const
Return the alignment that is the largest alignment ever used for any scalar/SIMD data type on the tar...
Definition: TargetInfo.h:723
unsigned getBoolWidth() const
Return the size of '_Bool' and C++ 'bool' for this target, in bits.
Definition: TargetInfo.h:491
unsigned getCharWidth() const
Definition: TargetInfo.h:496
unsigned getLongWidth() const
getLongWidth/Align - Return the size of 'signed long' and 'unsigned long' for this target,...
Definition: TargetInfo.h:514
unsigned getLongFractWidth() const
getLongFractWidth/Align - Return the size of 'signed long _Fract' and 'unsigned long _Fract' for this...
Definition: TargetInfo.h:568
IntType getIntMaxType() const
Definition: TargetInfo.h:386
unsigned getFractScale() const
getFractScale - Return the number of fractional bits in a 'signed _Fract' type.
Definition: TargetInfo.h:628
unsigned getFractWidth() const
getFractWidth/Align - Return the size of 'signed _Fract' and 'unsigned _Fract' for this target,...
Definition: TargetInfo.h:563
unsigned getShortFractScale() const
getShortFractScale - Return the number of fractional bits in a 'signed short _Fract' type.
Definition: TargetInfo.h:624
unsigned getShortFractWidth() const
getShortFractWidth/Align - Return the size of 'signed short _Fract' and 'unsigned short _Fract' for t...
Definition: TargetInfo.h:558
virtual bool hasHIPImageSupport() const
Whether to support HIP image/texture API's.
Definition: TargetInfo.h:1829
static const char * getTypeFormatModifier(IntType T)
Return the printf format modifier for the specified integer type enum.
Definition: TargetInfo.cpp:252
unsigned getUnsignedShortAccumScale() const
getUnsignedShortAccumScale/IBits - Return the number of fractional/integral bits in a 'unsigned short...
Definition: TargetInfo.h:592
bool doUnsignedFixedPointTypesHavePadding() const
In the event this target uses the same number of fractional bits for its unsigned types as it does wi...
Definition: TargetInfo.h:437
IntType getUIntMaxType() const
Definition: TargetInfo.h:387
unsigned getLongDoubleWidth() const
getLongDoubleWidth/Align/Format - Return the size/align/format of 'long double'.
Definition: TargetInfo.h:783
Defines the clang::TargetInfo interface.
@ RewriteObjC
ObjC->C Rewriter.
The JSON file list parser is used to communicate input to InstallAPI.
void InitializePreprocessor(Preprocessor &PP, const PreprocessorOptions &PPOpts, const PCHContainerReader &PCHContainerRdr, const FrontendOptions &FEOpts, const CodeGenOptions &CodeGenOpts)
InitializePreprocessor - Initialize the preprocessor getting it and the environment ready to process ...
@ ARCXX_libcxx
libc++
@ ARCXX_libstdcxx
libstdc++
LLVM_READONLY bool isWhitespace(unsigned char c)
Return true if this character is horizontal or vertical ASCII whitespace: ' ', '\t',...
Definition: CharInfo.h:108
const FunctionProtoType * T
std::string getClangFullRepositoryVersion()
Retrieves the full repository version that is an amalgamation of the information in getClangRepositor...
Definition: Version.cpp:68
std::string getClangFullCPPVersion()
Retrieves a string representing the complete clang version suitable for use in the CPP VERSION macro,...
Definition: Version.cpp:113
IntType
===-— Target Data Type Query Methods ----------------------------—===//
Definition: TargetInfo.h:142