clang 22.0.0git
CIRGenExprComplex.cpp
Go to the documentation of this file.
1#include "CIRGenBuilder.h"
2#include "CIRGenFunction.h"
3
5
6using namespace clang;
7using namespace clang::CIRGen;
8
9#ifndef NDEBUG
10/// Return the complex type that we are meant to emit.
12 type = type.getCanonicalType();
13 if (const ComplexType *comp = dyn_cast<ComplexType>(type))
14 return comp;
15 return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
16}
17#endif // NDEBUG
18
19namespace {
20class ComplexExprEmitter : public StmtVisitor<ComplexExprEmitter, mlir::Value> {
21 CIRGenFunction &cgf;
22 CIRGenBuilderTy &builder;
23
24public:
25 explicit ComplexExprEmitter(CIRGenFunction &cgf)
26 : cgf(cgf), builder(cgf.getBuilder()) {}
27
28 //===--------------------------------------------------------------------===//
29 // Utilities
30 //===--------------------------------------------------------------------===//
31
32 /// Given an expression with complex type that represents a value l-value,
33 /// this method emits the address of the l-value, then loads and returns the
34 /// result.
35 mlir::Value emitLoadOfLValue(const Expr *e) {
36 return emitLoadOfLValue(cgf.emitLValue(e), e->getExprLoc());
37 }
38
39 mlir::Value emitLoadOfLValue(LValue lv, SourceLocation loc);
40
41 /// Store the specified real/imag parts into the
42 /// specified value pointer.
43 void emitStoreOfComplex(mlir::Location loc, mlir::Value val, LValue lv,
44 bool isInit);
45
46 /// Emit a cast from complex value Val to DestType.
47 mlir::Value emitComplexToComplexCast(mlir::Value value, QualType srcType,
48 QualType destType, SourceLocation loc);
49
50 /// Emit a cast from scalar value Val to DestType.
51 mlir::Value emitScalarToComplexCast(mlir::Value value, QualType srcType,
52 QualType destType, SourceLocation loc);
53
54 //===--------------------------------------------------------------------===//
55 // Visitor Methods
56 //===--------------------------------------------------------------------===//
57
58 mlir::Value Visit(Expr *e) {
59 return StmtVisitor<ComplexExprEmitter, mlir::Value>::Visit(e);
60 }
61
62 mlir::Value VisitStmt(Stmt *s) {
63 cgf.cgm.errorNYI(s->getBeginLoc(), "ComplexExprEmitter VisitStmt");
64 return {};
65 }
66
67 mlir::Value VisitExpr(Expr *e);
68 mlir::Value VisitConstantExpr(ConstantExpr *e) {
69 cgf.cgm.errorNYI(e->getExprLoc(), "ComplexExprEmitter VisitConstantExpr");
70 return {};
71 }
72
73 mlir::Value VisitParenExpr(ParenExpr *pe) { return Visit(pe->getSubExpr()); }
74 mlir::Value VisitGenericSelectionExpr(GenericSelectionExpr *ge) {
75 return Visit(ge->getResultExpr());
76 }
77 mlir::Value VisitImaginaryLiteral(const ImaginaryLiteral *il);
78 mlir::Value
79 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *pe) {
80 return Visit(pe->getReplacement());
81 }
82 mlir::Value VisitCoawaitExpr(CoawaitExpr *s) {
83 cgf.cgm.errorNYI(s->getExprLoc(), "ComplexExprEmitter VisitCoawaitExpr");
84 return {};
85 }
86 mlir::Value VisitCoyieldExpr(CoyieldExpr *s) {
87 cgf.cgm.errorNYI(s->getExprLoc(), "ComplexExprEmitter VisitCoyieldExpr");
88 return {};
89 }
90 mlir::Value VisitUnaryCoawait(const UnaryOperator *e) {
91 cgf.cgm.errorNYI(e->getExprLoc(), "ComplexExprEmitter VisitUnaryCoawait");
92 return {};
93 }
94
95 mlir::Value emitConstant(const CIRGenFunction::ConstantEmission &constant,
96 Expr *e) {
97 assert(constant && "not a constant");
98 if (constant.isReference())
99 return emitLoadOfLValue(constant.getReferenceLValue(cgf, e),
100 e->getExprLoc());
101
102 mlir::TypedAttr valueAttr = constant.getValue();
103 return builder.getConstant(cgf.getLoc(e->getSourceRange()), valueAttr);
104 }
105
106 // l-values.
107 mlir::Value VisitDeclRefExpr(DeclRefExpr *e) {
108 if (CIRGenFunction::ConstantEmission constant = cgf.tryEmitAsConstant(e))
109 return emitConstant(constant, e);
110 return emitLoadOfLValue(e);
111 }
112 mlir::Value VisitObjCIvarRefExpr(ObjCIvarRefExpr *e) {
113 cgf.cgm.errorNYI(e->getExprLoc(),
114 "ComplexExprEmitter VisitObjCIvarRefExpr");
115 return {};
116 }
117 mlir::Value VisitObjCMessageExpr(ObjCMessageExpr *e) {
118 cgf.cgm.errorNYI(e->getExprLoc(),
119 "ComplexExprEmitter VisitObjCMessageExpr");
120 return {};
121 }
122 mlir::Value VisitArraySubscriptExpr(Expr *e) { return emitLoadOfLValue(e); }
123 mlir::Value VisitMemberExpr(MemberExpr *me) {
124 if (CIRGenFunction::ConstantEmission constant = cgf.tryEmitAsConstant(me)) {
125 cgf.emitIgnoredExpr(me->getBase());
126 return emitConstant(constant, me);
127 }
128 return emitLoadOfLValue(me);
129 }
130 mlir::Value VisitOpaqueValueExpr(OpaqueValueExpr *e) {
131 if (e->isGLValue())
132 return emitLoadOfLValue(cgf.getOrCreateOpaqueLValueMapping(e),
133 e->getExprLoc());
134 return cgf.getOrCreateOpaqueRValueMapping(e).getComplexValue();
135 }
136
137 mlir::Value VisitPseudoObjectExpr(PseudoObjectExpr *e) {
138 cgf.cgm.errorNYI(e->getExprLoc(),
139 "ComplexExprEmitter VisitPseudoObjectExpr");
140 return {};
141 }
142
143 mlir::Value emitCast(CastKind ck, Expr *op, QualType destTy);
144 mlir::Value VisitImplicitCastExpr(ImplicitCastExpr *e) {
145 // Unlike for scalars, we don't have to worry about function->ptr demotion
146 // here.
148 return emitLoadOfLValue(e);
149 return emitCast(e->getCastKind(), e->getSubExpr(), e->getType());
150 }
151 mlir::Value VisitCastExpr(CastExpr *e) {
152 if (const auto *ece = dyn_cast<ExplicitCastExpr>(e)) {
153 // Bind VLAs in the cast type.
154 if (ece->getType()->isVariablyModifiedType()) {
155 cgf.cgm.errorNYI(e->getExprLoc(),
156 "VisitCastExpr Bind VLAs in the cast type");
157 return {};
158 }
159 }
160
162 return emitLoadOfLValue(e);
163
164 return emitCast(e->getCastKind(), e->getSubExpr(), e->getType());
165 }
166 mlir::Value VisitCallExpr(const CallExpr *e);
167 mlir::Value VisitStmtExpr(const StmtExpr *e);
168
169 // Operators.
170 mlir::Value VisitPrePostIncDec(const UnaryOperator *e, cir::UnaryOpKind op,
171 bool isPre) {
172 LValue lv = cgf.emitLValue(e->getSubExpr());
173 return cgf.emitComplexPrePostIncDec(e, lv, op, isPre);
174 }
175 mlir::Value VisitUnaryPostDec(const UnaryOperator *e) {
176 return VisitPrePostIncDec(e, cir::UnaryOpKind::Dec, false);
177 }
178 mlir::Value VisitUnaryPostInc(const UnaryOperator *e) {
179 return VisitPrePostIncDec(e, cir::UnaryOpKind::Inc, false);
180 }
181 mlir::Value VisitUnaryPreDec(const UnaryOperator *e) {
182 return VisitPrePostIncDec(e, cir::UnaryOpKind::Dec, true);
183 }
184 mlir::Value VisitUnaryPreInc(const UnaryOperator *e) {
185 return VisitPrePostIncDec(e, cir::UnaryOpKind::Inc, true);
186 }
187 mlir::Value VisitUnaryDeref(const Expr *e) { return emitLoadOfLValue(e); }
188
189 mlir::Value VisitUnaryPlus(const UnaryOperator *e);
190 mlir::Value VisitUnaryMinus(const UnaryOperator *e);
191 mlir::Value VisitPlusMinus(const UnaryOperator *e, cir::UnaryOpKind kind,
192 QualType promotionType);
193 mlir::Value VisitUnaryNot(const UnaryOperator *e);
194 // LNot,Real,Imag never return complex.
195 mlir::Value VisitUnaryExtension(const UnaryOperator *e) {
196 return Visit(e->getSubExpr());
197 }
198 mlir::Value VisitCXXDefaultArgExpr(CXXDefaultArgExpr *dae) {
199 CIRGenFunction::CXXDefaultArgExprScope scope(cgf, dae);
200 return Visit(dae->getExpr());
201 }
202 mlir::Value VisitCXXDefaultInitExpr(CXXDefaultInitExpr *die) {
203 CIRGenFunction::CXXDefaultInitExprScope scope(cgf, die);
204 return Visit(die->getExpr());
205 }
206 mlir::Value VisitExprWithCleanups(ExprWithCleanups *e) {
207 cgf.cgm.errorNYI(e->getExprLoc(),
208 "ComplexExprEmitter VisitExprWithCleanups");
209 return {};
210 }
211 mlir::Value VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *e) {
212 mlir::Location loc = cgf.getLoc(e->getExprLoc());
213 mlir::Type complexTy = cgf.convertType(e->getType());
214 return builder.getNullValue(complexTy, loc);
215 }
216 mlir::Value VisitImplicitValueInitExpr(ImplicitValueInitExpr *e) {
217 cgf.cgm.errorNYI(e->getExprLoc(),
218 "ComplexExprEmitter VisitImplicitValueInitExpr");
219 return {};
220 }
221
222 struct BinOpInfo {
223 mlir::Location loc;
224 mlir::Value lhs{};
225 mlir::Value rhs{};
226 QualType ty{}; // Computation Type.
227 FPOptions fpFeatures{};
228 };
229
230 BinOpInfo emitBinOps(const BinaryOperator *e,
231 QualType promotionTy = QualType());
232
233 mlir::Value emitPromoted(const Expr *e, QualType promotionTy);
234 mlir::Value emitPromotedComplexOperand(const Expr *e, QualType promotionTy);
235 LValue emitCompoundAssignLValue(
236 const CompoundAssignOperator *e,
237 mlir::Value (ComplexExprEmitter::*func)(const BinOpInfo &),
238 RValue &value);
239 mlir::Value emitCompoundAssign(
240 const CompoundAssignOperator *e,
241 mlir::Value (ComplexExprEmitter::*func)(const BinOpInfo &));
242
243 mlir::Value emitBinAdd(const BinOpInfo &op);
244 mlir::Value emitBinSub(const BinOpInfo &op);
245 mlir::Value emitBinMul(const BinOpInfo &op);
246 mlir::Value emitBinDiv(const BinOpInfo &op);
247
248 QualType getPromotionType(QualType ty, bool isDivOpCode = false) {
249 if (auto *complexTy = ty->getAs<ComplexType>()) {
250 QualType elementTy = complexTy->getElementType();
251 if (elementTy.UseExcessPrecision(cgf.getContext()))
252 return cgf.getContext().getComplexType(cgf.getContext().FloatTy);
253 }
254
255 if (ty.UseExcessPrecision(cgf.getContext()))
256 return cgf.getContext().FloatTy;
257 return QualType();
258 }
259
260#define HANDLEBINOP(OP) \
261 mlir::Value VisitBin##OP(const BinaryOperator *e) { \
262 QualType promotionTy = getPromotionType( \
263 e->getType(), e->getOpcode() == BinaryOperatorKind::BO_Div); \
264 mlir::Value result = emitBin##OP(emitBinOps(e, promotionTy)); \
265 if (!promotionTy.isNull()) \
266 result = cgf.emitUnPromotedValue(result, e->getType()); \
267 return result; \
268 }
269
270 HANDLEBINOP(Add)
271 HANDLEBINOP(Sub)
272 HANDLEBINOP(Mul)
273 HANDLEBINOP(Div)
274#undef HANDLEBINOP
275
276 mlir::Value VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *e) {
277 cgf.cgm.errorNYI(e->getExprLoc(),
278 "ComplexExprEmitter VisitCXXRewrittenBinaryOperator");
279 return {};
280 }
281
282 // Compound assignments.
283 mlir::Value VisitBinAddAssign(const CompoundAssignOperator *e) {
284 return emitCompoundAssign(e, &ComplexExprEmitter::emitBinAdd);
285 }
286 mlir::Value VisitBinSubAssign(const CompoundAssignOperator *e) {
287 return emitCompoundAssign(e, &ComplexExprEmitter::emitBinSub);
288 }
289 mlir::Value VisitBinMulAssign(const CompoundAssignOperator *e) {
290 return emitCompoundAssign(e, &ComplexExprEmitter::emitBinMul);
291 }
292 mlir::Value VisitBinDivAssign(const CompoundAssignOperator *e) {
293 return emitCompoundAssign(e, &ComplexExprEmitter::emitBinDiv);
294 }
295
296 // GCC rejects rem/and/or/xor for integer complex.
297 // Logical and/or always return int, never complex.
298
299 // No comparisons produce a complex result.
300
301 LValue emitBinAssignLValue(const BinaryOperator *e, mlir::Value &val);
302 mlir::Value VisitBinAssign(const BinaryOperator *e);
303 mlir::Value VisitBinComma(const BinaryOperator *e);
304
305 mlir::Value
306 VisitAbstractConditionalOperator(const AbstractConditionalOperator *e);
307 mlir::Value VisitChooseExpr(ChooseExpr *e);
308
309 mlir::Value VisitInitListExpr(InitListExpr *e);
310
311 mlir::Value VisitCompoundLiteralExpr(CompoundLiteralExpr *e) {
312 return emitLoadOfLValue(e);
313 }
314
315 mlir::Value VisitVAArgExpr(VAArgExpr *e);
316
317 mlir::Value VisitAtomicExpr(AtomicExpr *e) {
318 return cgf.emitAtomicExpr(e).getComplexValue();
319 }
320
321 mlir::Value VisitPackIndexingExpr(PackIndexingExpr *e) {
322 cgf.cgm.errorNYI(e->getExprLoc(),
323 "ComplexExprEmitter VisitPackIndexingExpr");
324 return {};
325 }
326};
327} // namespace
328
329//===----------------------------------------------------------------------===//
330// Utilities
331//===----------------------------------------------------------------------===//
332
333/// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
334/// load the real and imaginary pieces, returning them as Real/Imag.
335mlir::Value ComplexExprEmitter::emitLoadOfLValue(LValue lv,
336 SourceLocation loc) {
337 assert(lv.isSimple() && "non-simple complex l-value?");
338 if (lv.getType()->isAtomicType())
339 cgf.cgm.errorNYI(loc, "emitLoadOfLValue with Atomic LV");
340
341 const Address srcAddr = lv.getAddress();
342 return builder.createLoad(cgf.getLoc(loc), srcAddr, lv.isVolatileQualified());
343}
344
345/// EmitStoreOfComplex - Store the specified real/imag parts into the
346/// specified value pointer.
347void ComplexExprEmitter::emitStoreOfComplex(mlir::Location loc, mlir::Value val,
348 LValue lv, bool isInit) {
349 if (lv.getType()->isAtomicType() ||
350 (!isInit && cgf.isLValueSuitableForInlineAtomic(lv))) {
351 cgf.cgm.errorNYI(loc, "StoreOfComplex with Atomic LV");
352 return;
353 }
354
355 const Address destAddr = lv.getAddress();
356 builder.createStore(loc, val, destAddr, lv.isVolatileQualified());
357}
358
359//===----------------------------------------------------------------------===//
360// Visitor Methods
361//===----------------------------------------------------------------------===//
362
363mlir::Value ComplexExprEmitter::VisitExpr(Expr *e) {
364 cgf.cgm.errorNYI(e->getExprLoc(), "ComplexExprEmitter VisitExpr");
365 return {};
366}
367
368mlir::Value
369ComplexExprEmitter::VisitImaginaryLiteral(const ImaginaryLiteral *il) {
370 auto ty = mlir::cast<cir::ComplexType>(cgf.convertType(il->getType()));
371 mlir::Type elementTy = ty.getElementType();
372 mlir::Location loc = cgf.getLoc(il->getExprLoc());
373
374 mlir::TypedAttr realValueAttr;
375 mlir::TypedAttr imagValueAttr;
376
377 if (mlir::isa<cir::IntType>(elementTy)) {
378 llvm::APInt imagValue = cast<IntegerLiteral>(il->getSubExpr())->getValue();
379 realValueAttr = cir::IntAttr::get(elementTy, 0);
380 imagValueAttr = cir::IntAttr::get(elementTy, imagValue);
381 } else {
382 assert(mlir::isa<cir::FPTypeInterface>(elementTy) &&
383 "Expected complex element type to be floating-point");
384
385 llvm::APFloat imagValue =
386 cast<FloatingLiteral>(il->getSubExpr())->getValue();
387 realValueAttr = cir::FPAttr::get(
388 elementTy, llvm::APFloat::getZero(imagValue.getSemantics()));
389 imagValueAttr = cir::FPAttr::get(elementTy, imagValue);
390 }
391
392 auto complexAttr = cir::ConstComplexAttr::get(realValueAttr, imagValueAttr);
393 return cir::ConstantOp::create(builder, loc, complexAttr);
394}
395
396mlir::Value ComplexExprEmitter::VisitCallExpr(const CallExpr *e) {
398 return emitLoadOfLValue(e);
399 return cgf.emitCallExpr(e).getComplexValue();
400}
401
402mlir::Value ComplexExprEmitter::VisitStmtExpr(const StmtExpr *e) {
403 CIRGenFunction::StmtExprEvaluation eval(cgf);
404 Address retAlloca =
405 cgf.createMemTemp(e->getType(), cgf.getLoc(e->getSourceRange()));
406 (void)cgf.emitCompoundStmt(*e->getSubStmt(), &retAlloca);
407 assert(retAlloca.isValid() && "Expected complex return value");
408 return emitLoadOfLValue(cgf.makeAddrLValue(retAlloca, e->getType()),
409 e->getExprLoc());
410}
411
412mlir::Value ComplexExprEmitter::emitComplexToComplexCast(mlir::Value val,
413 QualType srcType,
414 QualType destType,
415 SourceLocation loc) {
416 if (srcType == destType)
417 return val;
418
419 // Get the src/dest element type.
420 QualType srcElemTy = srcType->castAs<ComplexType>()->getElementType();
421 QualType destElemTy = destType->castAs<ComplexType>()->getElementType();
422
423 cir::CastKind castOpKind;
424 if (srcElemTy->isFloatingType() && destElemTy->isFloatingType())
425 castOpKind = cir::CastKind::float_complex;
426 else if (srcElemTy->isFloatingType() && destElemTy->isIntegerType())
427 castOpKind = cir::CastKind::float_complex_to_int_complex;
428 else if (srcElemTy->isIntegerType() && destElemTy->isFloatingType())
429 castOpKind = cir::CastKind::int_complex_to_float_complex;
430 else if (srcElemTy->isIntegerType() && destElemTy->isIntegerType())
431 castOpKind = cir::CastKind::int_complex;
432 else
433 llvm_unreachable("unexpected src type or dest type");
434
435 return builder.createCast(cgf.getLoc(loc), castOpKind, val,
436 cgf.convertType(destType));
437}
438
439mlir::Value ComplexExprEmitter::emitScalarToComplexCast(mlir::Value val,
440 QualType srcType,
441 QualType destType,
442 SourceLocation loc) {
443 cir::CastKind castOpKind;
444 if (srcType->isFloatingType())
445 castOpKind = cir::CastKind::float_to_complex;
446 else if (srcType->isIntegerType())
447 castOpKind = cir::CastKind::int_to_complex;
448 else
449 llvm_unreachable("unexpected src type");
450
451 return builder.createCast(cgf.getLoc(loc), castOpKind, val,
452 cgf.convertType(destType));
453}
454
455mlir::Value ComplexExprEmitter::emitCast(CastKind ck, Expr *op,
456 QualType destTy) {
457 switch (ck) {
458 case CK_Dependent:
459 llvm_unreachable("dependent type must be resolved before the CIR codegen");
460
461 case CK_NoOp:
462 case CK_LValueToRValue:
463 return Visit(op);
464
465 case CK_AtomicToNonAtomic:
466 case CK_NonAtomicToAtomic:
467 case CK_UserDefinedConversion: {
468 cgf.cgm.errorNYI(
469 "ComplexExprEmitter::emitCast Atmoic & UserDefinedConversion");
470 return {};
471 }
472
473 case CK_LValueBitCast: {
474 LValue origLV = cgf.emitLValue(op);
475 Address addr =
476 origLV.getAddress().withElementType(builder, cgf.convertType(destTy));
477 LValue destLV = cgf.makeAddrLValue(addr, destTy);
478 return emitLoadOfLValue(destLV, op->getExprLoc());
479 }
480
481 case CK_LValueToRValueBitCast: {
482 LValue sourceLVal = cgf.emitLValue(op);
483 Address addr = sourceLVal.getAddress().withElementType(
484 builder, cgf.convertTypeForMem(destTy));
485 LValue destLV = cgf.makeAddrLValue(addr, destTy);
487 return emitLoadOfLValue(destLV, op->getExprLoc());
488 }
489
490 case CK_BitCast:
491 case CK_BaseToDerived:
492 case CK_DerivedToBase:
493 case CK_UncheckedDerivedToBase:
494 case CK_Dynamic:
495 case CK_ToUnion:
496 case CK_ArrayToPointerDecay:
497 case CK_FunctionToPointerDecay:
498 case CK_NullToPointer:
499 case CK_NullToMemberPointer:
500 case CK_BaseToDerivedMemberPointer:
501 case CK_DerivedToBaseMemberPointer:
502 case CK_MemberPointerToBoolean:
503 case CK_ReinterpretMemberPointer:
504 case CK_ConstructorConversion:
505 case CK_IntegralToPointer:
506 case CK_PointerToIntegral:
507 case CK_PointerToBoolean:
508 case CK_ToVoid:
509 case CK_VectorSplat:
510 case CK_IntegralCast:
511 case CK_BooleanToSignedIntegral:
512 case CK_IntegralToBoolean:
513 case CK_IntegralToFloating:
514 case CK_FloatingToIntegral:
515 case CK_FloatingToBoolean:
516 case CK_FloatingCast:
517 case CK_CPointerToObjCPointerCast:
518 case CK_BlockPointerToObjCPointerCast:
519 case CK_AnyPointerToBlockPointerCast:
520 case CK_ObjCObjectLValueCast:
521 case CK_FloatingComplexToReal:
522 case CK_FloatingComplexToBoolean:
523 case CK_IntegralComplexToReal:
524 case CK_IntegralComplexToBoolean:
525 case CK_ARCProduceObject:
526 case CK_ARCConsumeObject:
527 case CK_ARCReclaimReturnedObject:
528 case CK_ARCExtendBlockObject:
529 case CK_CopyAndAutoreleaseBlockObject:
530 case CK_BuiltinFnToFnPtr:
531 case CK_ZeroToOCLOpaqueType:
532 case CK_AddressSpaceConversion:
533 case CK_IntToOCLSampler:
534 case CK_FloatingToFixedPoint:
535 case CK_FixedPointToFloating:
536 case CK_FixedPointCast:
537 case CK_FixedPointToBoolean:
538 case CK_FixedPointToIntegral:
539 case CK_IntegralToFixedPoint:
540 case CK_MatrixCast:
541 case CK_HLSLVectorTruncation:
542 case CK_HLSLMatrixTruncation:
543 case CK_HLSLArrayRValue:
544 case CK_HLSLElementwiseCast:
545 case CK_HLSLAggregateSplatCast:
546 llvm_unreachable("invalid cast kind for complex value");
547
548 case CK_FloatingRealToComplex:
549 case CK_IntegralRealToComplex: {
551 return emitScalarToComplexCast(cgf.emitScalarExpr(op), op->getType(),
552 destTy, op->getExprLoc());
553 }
554
555 case CK_FloatingComplexCast:
556 case CK_FloatingComplexToIntegralComplex:
557 case CK_IntegralComplexCast:
558 case CK_IntegralComplexToFloatingComplex: {
560 return emitComplexToComplexCast(Visit(op), op->getType(), destTy,
561 op->getExprLoc());
562 }
563 }
564
565 llvm_unreachable("unknown cast resulting in complex value");
566}
567
568mlir::Value ComplexExprEmitter::VisitUnaryPlus(const UnaryOperator *e) {
569 QualType promotionTy = getPromotionType(e->getSubExpr()->getType());
570 mlir::Value result = VisitPlusMinus(e, cir::UnaryOpKind::Plus, promotionTy);
571 if (!promotionTy.isNull())
572 return cgf.emitUnPromotedValue(result, e->getSubExpr()->getType());
573 return result;
574}
575
576mlir::Value ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *e) {
577 QualType promotionTy = getPromotionType(e->getSubExpr()->getType());
578 mlir::Value result = VisitPlusMinus(e, cir::UnaryOpKind::Minus, promotionTy);
579 if (!promotionTy.isNull())
580 return cgf.emitUnPromotedValue(result, e->getSubExpr()->getType());
581 return result;
582}
583
584mlir::Value ComplexExprEmitter::VisitPlusMinus(const UnaryOperator *e,
585 cir::UnaryOpKind kind,
586 QualType promotionType) {
587 assert(kind == cir::UnaryOpKind::Plus ||
588 kind == cir::UnaryOpKind::Minus &&
589 "Invalid UnaryOp kind for ComplexType Plus or Minus");
590
591 mlir::Value op;
592 if (!promotionType.isNull())
593 op = cgf.emitPromotedComplexExpr(e->getSubExpr(), promotionType);
594 else
595 op = Visit(e->getSubExpr());
596 return builder.createUnaryOp(cgf.getLoc(e->getExprLoc()), kind, op);
597}
598
599mlir::Value ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *e) {
600 mlir::Value op = Visit(e->getSubExpr());
601 return builder.createNot(op);
602}
603
604mlir::Value ComplexExprEmitter::emitBinAdd(const BinOpInfo &op) {
607
608 if (mlir::isa<cir::ComplexType>(op.lhs.getType()) &&
609 mlir::isa<cir::ComplexType>(op.rhs.getType()))
610 return cir::ComplexAddOp::create(builder, op.loc, op.lhs, op.rhs);
611
612 if (mlir::isa<cir::ComplexType>(op.lhs.getType())) {
613 mlir::Value real = builder.createComplexReal(op.loc, op.lhs);
614 mlir::Value imag = builder.createComplexImag(op.loc, op.lhs);
615 mlir::Value newReal = builder.createAdd(op.loc, real, op.rhs);
616 return builder.createComplexCreate(op.loc, newReal, imag);
617 }
618
619 assert(mlir::isa<cir::ComplexType>(op.rhs.getType()));
620 mlir::Value real = builder.createComplexReal(op.loc, op.rhs);
621 mlir::Value imag = builder.createComplexImag(op.loc, op.rhs);
622 mlir::Value newReal = builder.createAdd(op.loc, op.lhs, real);
623 return builder.createComplexCreate(op.loc, newReal, imag);
624}
625
626mlir::Value ComplexExprEmitter::emitBinSub(const BinOpInfo &op) {
629
630 if (mlir::isa<cir::ComplexType>(op.lhs.getType()) &&
631 mlir::isa<cir::ComplexType>(op.rhs.getType()))
632 return cir::ComplexSubOp::create(builder, op.loc, op.lhs, op.rhs);
633
634 if (mlir::isa<cir::ComplexType>(op.lhs.getType())) {
635 mlir::Value real = builder.createComplexReal(op.loc, op.lhs);
636 mlir::Value imag = builder.createComplexImag(op.loc, op.lhs);
637 mlir::Value newReal = builder.createSub(op.loc, real, op.rhs);
638 return builder.createComplexCreate(op.loc, newReal, imag);
639 }
640
641 assert(mlir::isa<cir::ComplexType>(op.rhs.getType()));
642 mlir::Value real = builder.createComplexReal(op.loc, op.rhs);
643 mlir::Value imag = builder.createComplexImag(op.loc, op.rhs);
644 mlir::Value newReal = builder.createSub(op.loc, op.lhs, real);
645 return builder.createComplexCreate(op.loc, newReal, imag);
646}
647
648static cir::ComplexRangeKind
650 switch (range) {
652 return cir::ComplexRangeKind::Full;
654 return cir::ComplexRangeKind::Improved;
656 return cir::ComplexRangeKind::Promoted;
658 return cir::ComplexRangeKind::Basic;
660 // The default value for ComplexRangeKind is Full if no option is selected
661 return cir::ComplexRangeKind::Full;
662 }
663}
664
665mlir::Value ComplexExprEmitter::emitBinMul(const BinOpInfo &op) {
668
669 if (mlir::isa<cir::ComplexType>(op.lhs.getType()) &&
670 mlir::isa<cir::ComplexType>(op.rhs.getType())) {
671 cir::ComplexRangeKind rangeKind =
672 getComplexRangeAttr(op.fpFeatures.getComplexRange());
673 return cir::ComplexMulOp::create(builder, op.loc, op.lhs, op.rhs,
674 rangeKind);
675 }
676
677 if (mlir::isa<cir::ComplexType>(op.lhs.getType())) {
678 mlir::Value real = builder.createComplexReal(op.loc, op.lhs);
679 mlir::Value imag = builder.createComplexImag(op.loc, op.lhs);
680 mlir::Value newReal = builder.createMul(op.loc, real, op.rhs);
681 mlir::Value newImag = builder.createMul(op.loc, imag, op.rhs);
682 return builder.createComplexCreate(op.loc, newReal, newImag);
683 }
684
685 assert(mlir::isa<cir::ComplexType>(op.rhs.getType()));
686 mlir::Value real = builder.createComplexReal(op.loc, op.rhs);
687 mlir::Value imag = builder.createComplexImag(op.loc, op.rhs);
688 mlir::Value newReal = builder.createMul(op.loc, op.lhs, real);
689 mlir::Value newImag = builder.createMul(op.loc, op.lhs, imag);
690 return builder.createComplexCreate(op.loc, newReal, newImag);
691}
692
693mlir::Value ComplexExprEmitter::emitBinDiv(const BinOpInfo &op) {
696
697 // Handle division between two complex values. In the case of complex integer
698 // types mixed with scalar integers, the scalar integer type will always be
699 // promoted to a complex integer value with a zero imaginary component when
700 // the AST is formed.
701 if (mlir::isa<cir::ComplexType>(op.lhs.getType()) &&
702 mlir::isa<cir::ComplexType>(op.rhs.getType())) {
703 cir::ComplexRangeKind rangeKind =
704 getComplexRangeAttr(op.fpFeatures.getComplexRange());
705 return cir::ComplexDivOp::create(builder, op.loc, op.lhs, op.rhs,
706 rangeKind);
707 }
708
709 // The C99 standard (G.5.1) defines division of a complex value by a real
710 // value in the following simplified form.
711 if (mlir::isa<cir::ComplexType>(op.lhs.getType())) {
712 assert(mlir::cast<cir::ComplexType>(op.lhs.getType()).getElementType() ==
713 op.rhs.getType());
714 mlir::Value real = builder.createComplexReal(op.loc, op.lhs);
715 mlir::Value imag = builder.createComplexImag(op.loc, op.lhs);
716 mlir::Value newReal = builder.createFDiv(op.loc, real, op.rhs);
717 mlir::Value newImag = builder.createFDiv(op.loc, imag, op.rhs);
718 return builder.createComplexCreate(op.loc, newReal, newImag);
719 }
720
721 assert(mlir::isa<cir::ComplexType>(op.rhs.getType()));
722 cir::ConstantOp nullValue = builder.getNullValue(op.lhs.getType(), op.loc);
723 mlir::Value lhs = builder.createComplexCreate(op.loc, op.lhs, nullValue);
724 cir::ComplexRangeKind rangeKind =
725 getComplexRangeAttr(op.fpFeatures.getComplexRange());
726 return cir::ComplexDivOp::create(builder, op.loc, lhs, op.rhs, rangeKind);
727}
728
729mlir::Value CIRGenFunction::emitUnPromotedValue(mlir::Value result,
730 QualType unPromotionType) {
731 assert(!mlir::cast<cir::ComplexType>(result.getType()).isIntegerComplex() &&
732 "integral complex will never be promoted");
733 return builder.createCast(cir::CastKind::float_complex, result,
734 convertType(unPromotionType));
735}
736
737mlir::Value CIRGenFunction::emitPromotedValue(mlir::Value result,
738 QualType promotionType) {
739 assert(!mlir::cast<cir::ComplexType>(result.getType()).isIntegerComplex() &&
740 "integral complex will never be promoted");
741 return builder.createCast(cir::CastKind::float_complex, result,
742 convertType(promotionType));
743}
744
745mlir::Value ComplexExprEmitter::emitPromoted(const Expr *e,
746 QualType promotionTy) {
747 e = e->IgnoreParens();
748 if (const auto *bo = dyn_cast<BinaryOperator>(e)) {
749 switch (bo->getOpcode()) {
750#define HANDLE_BINOP(OP) \
751 case BO_##OP: \
752 return emitBin##OP(emitBinOps(bo, promotionTy));
753 HANDLE_BINOP(Add)
754 HANDLE_BINOP(Sub)
755 HANDLE_BINOP(Mul)
756 HANDLE_BINOP(Div)
757#undef HANDLE_BINOP
758 default:
759 break;
760 }
761 } else if (const auto *unaryOp = dyn_cast<UnaryOperator>(e)) {
762 switch (unaryOp->getOpcode()) {
763 case UO_Minus:
764 case UO_Plus: {
765 auto kind = unaryOp->getOpcode() == UO_Plus ? cir::UnaryOpKind::Plus
766 : cir::UnaryOpKind::Minus;
767 return VisitPlusMinus(unaryOp, kind, promotionTy);
768 }
769 default:
770 break;
771 }
772 }
773
774 mlir::Value result = Visit(const_cast<Expr *>(e));
775 if (!promotionTy.isNull())
776 return cgf.emitPromotedValue(result, promotionTy);
777
778 return result;
779}
780
782 QualType promotionType) {
783 return ComplexExprEmitter(*this).emitPromoted(e, promotionType);
784}
785
786mlir::Value
787ComplexExprEmitter::emitPromotedComplexOperand(const Expr *e,
788 QualType promotionTy) {
789 if (e->getType()->isAnyComplexType()) {
790 if (!promotionTy.isNull())
791 return cgf.emitPromotedComplexExpr(e, promotionTy);
792 return Visit(const_cast<Expr *>(e));
793 }
794
795 if (!promotionTy.isNull()) {
796 QualType complexElementTy =
797 promotionTy->castAs<ComplexType>()->getElementType();
798 return cgf.emitPromotedScalarExpr(e, complexElementTy);
799 }
800 return cgf.emitScalarExpr(e);
801}
802
803ComplexExprEmitter::BinOpInfo
804ComplexExprEmitter::emitBinOps(const BinaryOperator *e, QualType promotionTy) {
805 BinOpInfo binOpInfo{cgf.getLoc(e->getExprLoc())};
806 binOpInfo.lhs = emitPromotedComplexOperand(e->getLHS(), promotionTy);
807 binOpInfo.rhs = emitPromotedComplexOperand(e->getRHS(), promotionTy);
808 binOpInfo.ty = promotionTy.isNull() ? e->getType() : promotionTy;
809 binOpInfo.fpFeatures = e->getFPFeaturesInEffect(cgf.getLangOpts());
810 return binOpInfo;
811}
812
813LValue ComplexExprEmitter::emitCompoundAssignLValue(
814 const CompoundAssignOperator *e,
815 mlir::Value (ComplexExprEmitter::*func)(const BinOpInfo &), RValue &value) {
816 QualType lhsTy = e->getLHS()->getType();
817 QualType rhsTy = e->getRHS()->getType();
818 SourceLocation exprLoc = e->getExprLoc();
819 mlir::Location loc = cgf.getLoc(exprLoc);
820
821 if (lhsTy->getAs<AtomicType>()) {
822 cgf.cgm.errorNYI("emitCompoundAssignLValue AtmoicType");
823 return {};
824 }
825
826 BinOpInfo opInfo{loc};
827 opInfo.fpFeatures = e->getFPFeaturesInEffect(cgf.getLangOpts());
828
830
831 // Load the RHS and LHS operands.
832 // __block variables need to have the rhs evaluated first, plus this should
833 // improve codegen a little.
834 QualType promotionTypeCR = getPromotionType(e->getComputationResultType());
835 opInfo.ty = promotionTypeCR.isNull() ? e->getComputationResultType()
836 : promotionTypeCR;
837
838 QualType complexElementTy =
839 opInfo.ty->castAs<ComplexType>()->getElementType();
840 QualType promotionTypeRHS = getPromotionType(rhsTy);
841
842 // The RHS should have been converted to the computation type.
843 if (e->getRHS()->getType()->isRealFloatingType()) {
844 if (!promotionTypeRHS.isNull()) {
845 opInfo.rhs = cgf.emitPromotedScalarExpr(e->getRHS(), promotionTypeRHS);
846 } else {
847 assert(cgf.getContext().hasSameUnqualifiedType(complexElementTy, rhsTy));
848 opInfo.rhs = cgf.emitScalarExpr(e->getRHS());
849 }
850 } else {
851 if (!promotionTypeRHS.isNull()) {
852 opInfo.rhs = cgf.emitPromotedComplexExpr(e->getRHS(), promotionTypeRHS);
853 } else {
854 assert(cgf.getContext().hasSameUnqualifiedType(opInfo.ty, rhsTy));
855 opInfo.rhs = Visit(e->getRHS());
856 }
857 }
858
859 LValue lhs = cgf.emitLValue(e->getLHS());
860
861 // Load from the l-value and convert it.
862 QualType promotionTypeLHS = getPromotionType(e->getComputationLHSType());
863 if (lhsTy->isAnyComplexType()) {
864 mlir::Value lhsValue = emitLoadOfLValue(lhs, exprLoc);
865 QualType destTy = promotionTypeLHS.isNull() ? opInfo.ty : promotionTypeLHS;
866 opInfo.lhs = emitComplexToComplexCast(lhsValue, lhsTy, destTy, exprLoc);
867 } else {
868 mlir::Value lhsVal = cgf.emitLoadOfScalar(lhs, exprLoc);
869 // For floating point real operands we can directly pass the scalar form
870 // to the binary operator emission and potentially get more efficient code.
871 if (lhsTy->isRealFloatingType()) {
872 QualType promotedComplexElementTy;
873 if (!promotionTypeLHS.isNull()) {
874 promotedComplexElementTy =
875 cast<ComplexType>(promotionTypeLHS)->getElementType();
876 if (!cgf.getContext().hasSameUnqualifiedType(promotedComplexElementTy,
877 promotionTypeLHS))
878 lhsVal = cgf.emitScalarConversion(lhsVal, lhsTy,
879 promotedComplexElementTy, exprLoc);
880 } else {
881 if (!cgf.getContext().hasSameUnqualifiedType(complexElementTy, lhsTy))
882 lhsVal = cgf.emitScalarConversion(lhsVal, lhsTy, complexElementTy,
883 exprLoc);
884 }
885 opInfo.lhs = lhsVal;
886 } else {
887 opInfo.lhs = emitScalarToComplexCast(lhsVal, lhsTy, opInfo.ty, exprLoc);
888 }
889 }
890
891 // Expand the binary operator.
892 mlir::Value result = (this->*func)(opInfo);
893
894 // Truncate the result and store it into the LHS lvalue.
895 if (lhsTy->isAnyComplexType()) {
896 mlir::Value resultValue =
897 emitComplexToComplexCast(result, opInfo.ty, lhsTy, exprLoc);
898 emitStoreOfComplex(loc, resultValue, lhs, /*isInit*/ false);
899 value = RValue::getComplex(resultValue);
900 } else {
901 mlir::Value resultValue =
902 cgf.emitComplexToScalarConversion(result, opInfo.ty, lhsTy, exprLoc);
903 cgf.emitStoreOfScalar(resultValue, lhs, /*isInit*/ false);
904 value = RValue::get(resultValue);
905 }
906
907 return lhs;
908}
909
910mlir::Value ComplexExprEmitter::emitCompoundAssign(
911 const CompoundAssignOperator *e,
912 mlir::Value (ComplexExprEmitter::*func)(const BinOpInfo &)) {
913 RValue val;
914 LValue lv = emitCompoundAssignLValue(e, func, val);
915
916 // The result of an assignment in C is the assigned r-value.
917 if (!cgf.getLangOpts().CPlusPlus)
918 return val.getComplexValue();
919
920 // If the lvalue is non-volatile, return the computed value of the assignment.
921 if (!lv.isVolatileQualified())
922 return val.getComplexValue();
923
924 return emitLoadOfLValue(lv, e->getExprLoc());
925}
926
927LValue ComplexExprEmitter::emitBinAssignLValue(const BinaryOperator *e,
928 mlir::Value &value) {
929 assert(cgf.getContext().hasSameUnqualifiedType(e->getLHS()->getType(),
930 e->getRHS()->getType()) &&
931 "Invalid assignment");
932
933 // Emit the RHS. __block variables need the RHS evaluated first.
934 value = Visit(e->getRHS());
935
936 // Compute the address to store into.
937 LValue lhs = cgf.emitLValue(e->getLHS());
938
939 // Store the result value into the LHS lvalue.
940 emitStoreOfComplex(cgf.getLoc(e->getExprLoc()), value, lhs,
941 /*isInit*/ false);
942 return lhs;
943}
944
945mlir::Value ComplexExprEmitter::VisitBinAssign(const BinaryOperator *e) {
946 mlir::Value value;
947 LValue lv = emitBinAssignLValue(e, value);
948
949 // The result of an assignment in C is the assigned r-value.
950 if (!cgf.getLangOpts().CPlusPlus)
951 return value;
952
953 // If the lvalue is non-volatile, return the computed value of the
954 // assignment.
955 if (!lv.isVolatile())
956 return value;
957
958 return emitLoadOfLValue(lv, e->getExprLoc());
959}
960
961mlir::Value ComplexExprEmitter::VisitBinComma(const BinaryOperator *e) {
962 cgf.emitIgnoredExpr(e->getLHS());
963 return Visit(e->getRHS());
964}
965
966mlir::Value ComplexExprEmitter::VisitAbstractConditionalOperator(
967 const AbstractConditionalOperator *e) {
968 mlir::Location loc = cgf.getLoc(e->getSourceRange());
969
970 // Bind the common expression if necessary.
971 CIRGenFunction::OpaqueValueMapping binding(cgf, e);
972
973 CIRGenFunction::ConditionalEvaluation eval(cgf);
974
975 Expr *cond = e->getCond()->IgnoreParens();
976 mlir::Value condValue = cgf.evaluateExprAsBool(cond);
977
978 return cir::TernaryOp::create(
979 builder, loc, condValue,
980 /*thenBuilder=*/
981 [&](mlir::OpBuilder &b, mlir::Location loc) {
982 eval.beginEvaluation();
983 mlir::Value trueValue = Visit(e->getTrueExpr());
984 cir::YieldOp::create(b, loc, trueValue);
985 eval.endEvaluation();
986 },
987 /*elseBuilder=*/
988 [&](mlir::OpBuilder &b, mlir::Location loc) {
989 eval.beginEvaluation();
990 mlir::Value falseValue = Visit(e->getFalseExpr());
991 cir::YieldOp::create(b, loc, falseValue);
992 eval.endEvaluation();
993 })
994 .getResult();
995}
996
997mlir::Value ComplexExprEmitter::VisitChooseExpr(ChooseExpr *e) {
998 return Visit(e->getChosenSubExpr());
999}
1000
1001mlir::Value ComplexExprEmitter::VisitInitListExpr(InitListExpr *e) {
1002 mlir::Location loc = cgf.getLoc(e->getExprLoc());
1003 if (e->getNumInits() == 2) {
1004 mlir::Value real = cgf.emitScalarExpr(e->getInit(0));
1005 mlir::Value imag = cgf.emitScalarExpr(e->getInit(1));
1006 return builder.createComplexCreate(loc, real, imag);
1007 }
1008
1009 if (e->getNumInits() == 1)
1010 return Visit(e->getInit(0));
1011
1012 assert(e->getNumInits() == 0 && "Unexpected number of inits");
1013 mlir::Type complexTy = cgf.convertType(e->getType());
1014 return builder.getNullValue(complexTy, loc);
1015}
1016
1017mlir::Value ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *e) {
1018 return cgf.emitVAArg(e);
1019}
1020
1021//===----------------------------------------------------------------------===//
1022// Entry Point into this File
1023//===----------------------------------------------------------------------===//
1024
1025/// EmitComplexExpr - Emit the computation of the specified expression of
1026/// complex type, ignoring the result.
1028 assert(e && getComplexType(e->getType()) &&
1029 "Invalid complex expression to emit");
1030
1031 return ComplexExprEmitter(*this).Visit(const_cast<Expr *>(e));
1032}
1033
1035 bool isInit) {
1036 assert(e && getComplexType(e->getType()) &&
1037 "Invalid complex expression to emit");
1038 ComplexExprEmitter emitter(*this);
1039 mlir::Value value = emitter.Visit(const_cast<Expr *>(e));
1040 emitter.emitStoreOfComplex(getLoc(e->getExprLoc()), value, dest, isInit);
1041}
1042
1043/// EmitStoreOfComplex - Store a complex number into the specified l-value.
1044void CIRGenFunction::emitStoreOfComplex(mlir::Location loc, mlir::Value v,
1045 LValue dest, bool isInit) {
1046 ComplexExprEmitter(*this).emitStoreOfComplex(loc, v, dest, isInit);
1047}
1048
1050 return ComplexExprEmitter(*this).emitLoadOfLValue(src, loc);
1051}
1052
1054 assert(e->getOpcode() == BO_Assign && "Expected assign op");
1055
1056 mlir::Value value; // ignored
1057 LValue lvalue = ComplexExprEmitter(*this).emitBinAssignLValue(e, value);
1058 if (getLangOpts().OpenMP)
1059 cgm.errorNYI("emitComplexAssignmentLValue OpenMP");
1060
1061 return lvalue;
1062}
1063
1065 mlir::Value (ComplexExprEmitter::*)(const ComplexExprEmitter::BinOpInfo &);
1066
1068 switch (op) {
1069 case BO_MulAssign:
1070 return &ComplexExprEmitter::emitBinMul;
1071 case BO_DivAssign:
1072 return &ComplexExprEmitter::emitBinDiv;
1073 case BO_SubAssign:
1074 return &ComplexExprEmitter::emitBinSub;
1075 case BO_AddAssign:
1076 return &ComplexExprEmitter::emitBinAdd;
1077 default:
1078 llvm_unreachable("unexpected complex compound assignment");
1079 }
1080}
1081
1083 const CompoundAssignOperator *e) {
1085 RValue val;
1086 return ComplexExprEmitter(*this).emitCompoundAssignLValue(e, op, val);
1087}
1088
1090 LValue lv,
1091 cir::UnaryOpKind op,
1092 bool isPre) {
1093 assert(op == cir::UnaryOpKind::Inc ||
1094 op == cir::UnaryOpKind::Dec && "Invalid UnaryOp kind for ComplexType");
1095
1096 mlir::Value inVal = emitLoadOfComplex(lv, e->getExprLoc());
1097 mlir::Location loc = getLoc(e->getExprLoc());
1098 mlir::Value incVal = builder.createUnaryOp(loc, op, inVal);
1099
1100 // Store the updated result through the lvalue.
1101 emitStoreOfComplex(loc, incVal, lv, /*isInit=*/false);
1102
1103 if (getLangOpts().OpenMP)
1104 cgm.errorNYI(loc, "emitComplexPrePostIncDec OpenMP");
1105
1106 // If this is a postinc, return the value read from memory, otherwise use the
1107 // updated value.
1108 return isPre ? incVal : inVal;
1109}
1110
1112 const CompoundAssignOperator *e, mlir::Value &result) {
1113 // Key Instructions: Don't need to create an atom group here; one will already
1114 // be active through scalar handling code.
1116 RValue value;
1117 LValue ret = ComplexExprEmitter(*this).emitCompoundAssignLValue(e, op, value);
1118 result = value.getValue();
1119 return ret;
1120}
#define HANDLEBINOP(OP)
static CompoundFunc getComplexOp(BinaryOperatorKind op)
static const ComplexType * getComplexType(QualType type)
Return the complex type that we are meant to emit.
mlir::Value(ComplexExprEmitter::*)(const ComplexExprEmitter::BinOpInfo &) CompoundFunc
static cir::ComplexRangeKind getComplexRangeAttr(LangOptions::ComplexRangeKind range)
#define HANDLE_BINOP(OP)
__device__ __2f16 b
__device__ __2f16 float __ockl_bool s
cir::ConstantOp getNullValue(mlir::Type ty, mlir::Location loc)
mlir::Value createCast(mlir::Location loc, cir::CastKind kind, mlir::Value src, mlir::Type newTy)
mlir::Value createAdd(mlir::Location loc, mlir::Value lhs, mlir::Value rhs, OverflowBehavior ob=OverflowBehavior::None)
mlir::Value createNot(mlir::Value value)
mlir::Value createComplexImag(mlir::Location loc, mlir::Value operand)
mlir::Value createSub(mlir::Location loc, mlir::Value lhs, mlir::Value rhs, OverflowBehavior ob=OverflowBehavior::Saturated)
mlir::Value createMul(mlir::Location loc, mlir::Value lhs, mlir::Value rhs, OverflowBehavior ob=OverflowBehavior::None)
mlir::Value createComplexCreate(mlir::Location loc, mlir::Value real, mlir::Value imag)
mlir::Value createUnaryOp(mlir::Location loc, cir::UnaryOpKind kind, mlir::Value operand)
mlir::Value createComplexReal(mlir::Location loc, mlir::Value operand)
static bool hasSameUnqualifiedType(QualType T1, QualType T2)
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Expr * getCond() const
getCond - Return the expression representing the condition for the ?
Definition Expr.h:4465
Expr * getTrueExpr() const
getTrueExpr - Return the subexpression representing the value of the expression if the condition eval...
Definition Expr.h:4471
Expr * getFalseExpr() const
getFalseExpr - Return the subexpression representing the value of the expression if the condition eva...
Definition Expr.h:4477
A builtin binary operation expression such as "x + y" or "x <= y".
Definition Expr.h:3972
Expr * getLHS() const
Definition Expr.h:4022
SourceLocation getExprLoc() const
Definition Expr.h:4013
Expr * getRHS() const
Definition Expr.h:4024
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const
Get the FP features status of this operator.
Definition Expr.h:4185
Opcode getOpcode() const
Definition Expr.h:4017
bool isValid() const
Definition Address.h:70
mlir::Value createFDiv(mlir::Location loc, mlir::Value lhs, mlir::Value rhs)
cir::StoreOp createStore(mlir::Location loc, mlir::Value val, Address dst, bool isVolatile=false, mlir::IntegerAttr align={}, cir::SyncScopeKindAttr scope={}, cir::MemOrderAttr order={})
cir::LoadOp createLoad(mlir::Location loc, Address addr, bool isVolatile=false)
LValue getReferenceLValue(CIRGenFunction &cgf, Expr *refExpr) const
mlir::Value emitComplexToScalarConversion(mlir::Value src, QualType srcTy, QualType dstTy, SourceLocation loc)
Emit a conversion from the specified complex type to the specified destination type,...
mlir::Type convertType(clang::QualType t)
mlir::Value emitPromotedValue(mlir::Value result, QualType promotionType)
const clang::LangOptions & getLangOpts() const
LValue emitScalarCompoundAssignWithComplex(const CompoundAssignOperator *e, mlir::Value &result)
mlir::Value emitComplexExpr(const Expr *e)
Emit the computation of the specified expression of complex type, returning the result.
RValue emitCallExpr(const clang::CallExpr *e, ReturnValueSlot returnValue=ReturnValueSlot())
LValue emitLValue(const clang::Expr *e)
Emit code to compute a designator that specifies the location of the expression.
mlir::Value evaluateExprAsBool(const clang::Expr *e)
Perform the usual unary conversions on the specified expression and compare the result against zero,...
LValue emitComplexCompoundAssignmentLValue(const CompoundAssignOperator *e)
mlir::Location getLoc(clang::SourceLocation srcLoc)
Helpers to convert Clang's SourceLocation to a MLIR Location.
mlir::Value emitScalarConversion(mlir::Value src, clang::QualType srcType, clang::QualType dstType, clang::SourceLocation loc)
Emit a conversion from the specified type to the specified destination type, both of which are CIR sc...
mlir::Value emitPromotedComplexExpr(const Expr *e, QualType promotionType)
mlir::Value emitUnPromotedValue(mlir::Value result, QualType unPromotionType)
mlir::Type convertTypeForMem(QualType t)
mlir::Value emitLoadOfComplex(LValue src, SourceLocation loc)
Load a complex number from the specified l-value.
void emitStoreOfScalar(mlir::Value value, Address addr, bool isVolatile, clang::QualType ty, LValueBaseInfo baseInfo, bool isInit=false, bool isNontemporal=false)
mlir::Value emitComplexPrePostIncDec(const UnaryOperator *e, LValue lv, cir::UnaryOpKind op, bool isPre)
void emitStoreOfComplex(mlir::Location loc, mlir::Value v, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
LValue emitComplexAssignmentLValue(const BinaryOperator *e)
mlir::Value emitScalarExpr(const clang::Expr *e, bool ignoreResultAssign=false)
Emit the computation of the specified expression of scalar type.
mlir::Value emitPromotedScalarExpr(const Expr *e, QualType promotionType)
mlir::Value emitLoadOfScalar(LValue lvalue, SourceLocation loc)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
void emitComplexExprIntoLValue(const Expr *e, LValue dest, bool isInit)
LValue makeAddrLValue(Address addr, QualType ty, AlignmentSource source=AlignmentSource::Type)
clang::ASTContext & getContext() const
mlir::LogicalResult emitCompoundStmt(const clang::CompoundStmt &s, Address *lastValue=nullptr, AggValueSlot slot=AggValueSlot::ignored())
bool isLValueSuitableForInlineAtomic(LValue lv)
An LValue is a candidate for having its loads and stores be made atomic if we are operating under /vo...
void emitIgnoredExpr(const clang::Expr *e)
Emit code to compute the specified expression, ignoring the result.
Address createMemTemp(QualType t, mlir::Location loc, const Twine &name="tmp", Address *alloca=nullptr, mlir::OpBuilder::InsertPoint ip={})
Create a temporary memory object of the given type, with appropriate alignmen and cast it to the defa...
mlir::Value emitVAArg(VAArgExpr *ve)
Generate code to get an argument from the passed in pointer and update it accordingly.
DiagnosticBuilder errorNYI(SourceLocation, llvm::StringRef)
Helpers to emit "not yet implemented" error diagnostics.
This trivial value class is used to represent the result of an expression that is evaluated.
Definition CIRGenValue.h:33
static RValue get(mlir::Value v)
Definition CIRGenValue.h:83
static RValue getComplex(mlir::Value v)
Definition CIRGenValue.h:91
mlir::Value getValue() const
Return the value of this scalar value.
Definition CIRGenValue.h:57
mlir::Value getComplexValue() const
Return the value of this complex value.
Definition CIRGenValue.h:63
Expr * getExpr()
Get the initialization expression that will be used.
Definition ExprCXX.cpp:1105
A rewritten comparison expression that was originally written using operator syntax.
Definition ExprCXX.h:286
SourceLocation getExprLoc() const LLVM_READONLY
Definition ExprCXX.h:341
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition Expr.cpp:1602
CastKind getCastKind() const
Definition Expr.h:3654
bool changesVolatileQualification() const
Return.
Definition Expr.h:3744
Expr * getSubExpr()
Definition Expr.h:3660
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Definition Expr.h:4818
Complex values, per C99 6.2.5p11.
Definition TypeBase.h:3275
CompoundAssignOperator - For compound assignments (e.g.
Definition Expr.h:4234
QualType getComputationLHSType() const
Definition Expr.h:4268
QualType getComputationResultType() const
Definition Expr.h:4271
This represents one expression.
Definition Expr.h:112
bool isGLValue() const
Definition Expr.h:287
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition Expr.cpp:3085
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition Expr.cpp:276
QualType getType() const
Definition Expr.h:144
Expr * getResultExpr()
Return the result expression of this controlling expression.
Definition Expr.h:6396
const Expr * getSubExpr() const
Definition Expr.h:1743
unsigned getNumInits() const
Definition Expr.h:5263
const Expr * getInit(unsigned Init) const
Definition Expr.h:5287
ComplexRangeKind
Controls the various implementations for complex multiplication and.
@ CX_Full
Implementation of complex division and multiplication using a call to runtime library functions(gener...
@ CX_Basic
Implementation of complex division and multiplication using algebraic formulas at source precision.
@ CX_Promoted
Implementation of complex division using algebraic formulas at higher precision.
@ CX_None
No range rule is enabled.
@ CX_Improved
Implementation of complex division offering an improved handling for overflow in intermediate calcula...
Expr * getBase() const
Definition Expr.h:3375
SourceLocation getExprLoc() const LLVM_READONLY
Definition Expr.h:1208
const Expr * getSubExpr() const
Definition Expr.h:2199
SourceLocation getExprLoc() const LLVM_READONLY
Definition Expr.h:6776
A (possibly-)qualified type.
Definition TypeBase.h:937
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition TypeBase.h:1004
bool UseExcessPrecision(const ASTContext &Ctx)
Definition Type.cpp:1612
Encodes a location in the source.
CompoundStmt * getSubStmt()
Definition Expr.h:4546
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition Stmt.cpp:338
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition TypeBase.h:8915
const T * castAs() const
Member-template castAs<specific type>.
Definition TypeBase.h:9158
bool isReferenceType() const
Definition TypeBase.h:8539
bool isAnyComplexType() const
Definition TypeBase.h:8650
bool isRealFloatingType() const
Floating point categories.
Definition Type.cpp:2320
bool isFloatingType() const
Definition Type.cpp:2304
const T * getAs() const
Member-template getAs<specific type>'.
Definition TypeBase.h:9091
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition Expr.h:2244
SourceLocation getExprLoc() const
Definition Expr.h:2368
Expr * getSubExpr() const
Definition Expr.h:2285
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
The JSON file list parser is used to communicate input to InstallAPI.
CastKind
CastKind - The kind of operation required for a conversion.
U cast(CodeGen::Address addr)
Definition Address.h:327
static bool cgFPOptionsRAII()
static bool fastMathFlags()