clang 22.0.0git
CIRGenExprComplex.cpp
Go to the documentation of this file.
1#include "CIRGenBuilder.h"
2#include "CIRGenFunction.h"
3
5
6using namespace clang;
7using namespace clang::CIRGen;
8
9#ifndef NDEBUG
10/// Return the complex type that we are meant to emit.
12 type = type.getCanonicalType();
13 if (const ComplexType *comp = dyn_cast<ComplexType>(type))
14 return comp;
15 return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
16}
17#endif // NDEBUG
18
19namespace {
20class ComplexExprEmitter : public StmtVisitor<ComplexExprEmitter, mlir::Value> {
21 CIRGenFunction &cgf;
22 CIRGenBuilderTy &builder;
23
24public:
25 explicit ComplexExprEmitter(CIRGenFunction &cgf)
26 : cgf(cgf), builder(cgf.getBuilder()) {}
27
28 //===--------------------------------------------------------------------===//
29 // Utilities
30 //===--------------------------------------------------------------------===//
31
32 /// Given an expression with complex type that represents a value l-value,
33 /// this method emits the address of the l-value, then loads and returns the
34 /// result.
35 mlir::Value emitLoadOfLValue(const Expr *e) {
36 return emitLoadOfLValue(cgf.emitLValue(e), e->getExprLoc());
37 }
38
39 mlir::Value emitLoadOfLValue(LValue lv, SourceLocation loc);
40
41 /// Store the specified real/imag parts into the
42 /// specified value pointer.
43 void emitStoreOfComplex(mlir::Location loc, mlir::Value val, LValue lv,
44 bool isInit);
45
46 /// Emit a cast from complex value Val to DestType.
47 mlir::Value emitComplexToComplexCast(mlir::Value value, QualType srcType,
48 QualType destType, SourceLocation loc);
49
50 /// Emit a cast from scalar value Val to DestType.
51 mlir::Value emitScalarToComplexCast(mlir::Value value, QualType srcType,
52 QualType destType, SourceLocation loc);
53
54 //===--------------------------------------------------------------------===//
55 // Visitor Methods
56 //===--------------------------------------------------------------------===//
57
58 mlir::Value Visit(Expr *e) {
59 return StmtVisitor<ComplexExprEmitter, mlir::Value>::Visit(e);
60 }
61
62 mlir::Value VisitStmt(Stmt *s) {
63 cgf.cgm.errorNYI(s->getBeginLoc(), "ComplexExprEmitter VisitStmt");
64 return {};
65 }
66
67 mlir::Value VisitExpr(Expr *e);
68 mlir::Value VisitConstantExpr(ConstantExpr *e) {
69 cgf.cgm.errorNYI(e->getExprLoc(), "ComplexExprEmitter VisitConstantExpr");
70 return {};
71 }
72
73 mlir::Value VisitParenExpr(ParenExpr *pe) { return Visit(pe->getSubExpr()); }
74 mlir::Value VisitGenericSelectionExpr(GenericSelectionExpr *ge) {
75 return Visit(ge->getResultExpr());
76 }
77 mlir::Value VisitImaginaryLiteral(const ImaginaryLiteral *il);
78 mlir::Value
79 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *pe) {
80 return Visit(pe->getReplacement());
81 }
82 mlir::Value VisitCoawaitExpr(CoawaitExpr *s) {
83 cgf.cgm.errorNYI(s->getExprLoc(), "ComplexExprEmitter VisitCoawaitExpr");
84 return {};
85 }
86 mlir::Value VisitCoyieldExpr(CoyieldExpr *s) {
87 cgf.cgm.errorNYI(s->getExprLoc(), "ComplexExprEmitter VisitCoyieldExpr");
88 return {};
89 }
90 mlir::Value VisitUnaryCoawait(const UnaryOperator *e) {
91 cgf.cgm.errorNYI(e->getExprLoc(), "ComplexExprEmitter VisitUnaryCoawait");
92 return {};
93 }
94
95 mlir::Value emitConstant(const CIRGenFunction::ConstantEmission &constant,
96 Expr *e) {
97 assert(constant && "not a constant");
98 if (constant.isReference())
99 return emitLoadOfLValue(constant.getReferenceLValue(cgf, e),
100 e->getExprLoc());
101
102 mlir::TypedAttr valueAttr = constant.getValue();
103 return builder.getConstant(cgf.getLoc(e->getSourceRange()), valueAttr);
104 }
105
106 // l-values.
107 mlir::Value VisitDeclRefExpr(DeclRefExpr *e) {
108 if (CIRGenFunction::ConstantEmission constant = cgf.tryEmitAsConstant(e))
109 return emitConstant(constant, e);
110 return emitLoadOfLValue(e);
111 }
112 mlir::Value VisitObjCIvarRefExpr(ObjCIvarRefExpr *e) {
113 cgf.cgm.errorNYI(e->getExprLoc(),
114 "ComplexExprEmitter VisitObjCIvarRefExpr");
115 return {};
116 }
117 mlir::Value VisitObjCMessageExpr(ObjCMessageExpr *e) {
118 cgf.cgm.errorNYI(e->getExprLoc(),
119 "ComplexExprEmitter VisitObjCMessageExpr");
120 return {};
121 }
122 mlir::Value VisitArraySubscriptExpr(Expr *e) { return emitLoadOfLValue(e); }
123 mlir::Value VisitMemberExpr(MemberExpr *me) {
124 if (CIRGenFunction::ConstantEmission constant = cgf.tryEmitAsConstant(me)) {
125 cgf.emitIgnoredExpr(me->getBase());
126 return emitConstant(constant, me);
127 }
128 return emitLoadOfLValue(me);
129 }
130 mlir::Value VisitOpaqueValueExpr(OpaqueValueExpr *e) {
131 if (e->isGLValue())
132 return emitLoadOfLValue(cgf.getOrCreateOpaqueLValueMapping(e),
133 e->getExprLoc());
134 return cgf.getOrCreateOpaqueRValueMapping(e).getComplexValue();
135 }
136
137 mlir::Value VisitPseudoObjectExpr(PseudoObjectExpr *e) {
138 cgf.cgm.errorNYI(e->getExprLoc(),
139 "ComplexExprEmitter VisitPseudoObjectExpr");
140 return {};
141 }
142
143 mlir::Value emitCast(CastKind ck, Expr *op, QualType destTy);
144 mlir::Value VisitImplicitCastExpr(ImplicitCastExpr *e) {
145 // Unlike for scalars, we don't have to worry about function->ptr demotion
146 // here.
148 return emitLoadOfLValue(e);
149 return emitCast(e->getCastKind(), e->getSubExpr(), e->getType());
150 }
151 mlir::Value VisitCastExpr(CastExpr *e) {
152 if (const auto *ece = dyn_cast<ExplicitCastExpr>(e)) {
153 // Bind VLAs in the cast type.
154 if (ece->getType()->isVariablyModifiedType()) {
155 cgf.cgm.errorNYI(e->getExprLoc(),
156 "VisitCastExpr Bind VLAs in the cast type");
157 return {};
158 }
159 }
160
162 return emitLoadOfLValue(e);
163
164 return emitCast(e->getCastKind(), e->getSubExpr(), e->getType());
165 }
166 mlir::Value VisitCallExpr(const CallExpr *e);
167 mlir::Value VisitStmtExpr(const StmtExpr *e);
168
169 // Operators.
170 mlir::Value VisitPrePostIncDec(const UnaryOperator *e, cir::UnaryOpKind op,
171 bool isPre) {
172 LValue lv = cgf.emitLValue(e->getSubExpr());
173 return cgf.emitComplexPrePostIncDec(e, lv, op, isPre);
174 }
175 mlir::Value VisitUnaryPostDec(const UnaryOperator *e) {
176 return VisitPrePostIncDec(e, cir::UnaryOpKind::Dec, false);
177 }
178 mlir::Value VisitUnaryPostInc(const UnaryOperator *e) {
179 return VisitPrePostIncDec(e, cir::UnaryOpKind::Inc, false);
180 }
181 mlir::Value VisitUnaryPreDec(const UnaryOperator *e) {
182 return VisitPrePostIncDec(e, cir::UnaryOpKind::Dec, true);
183 }
184 mlir::Value VisitUnaryPreInc(const UnaryOperator *e) {
185 return VisitPrePostIncDec(e, cir::UnaryOpKind::Inc, true);
186 }
187 mlir::Value VisitUnaryDeref(const Expr *e) { return emitLoadOfLValue(e); }
188
189 mlir::Value VisitUnaryPlus(const UnaryOperator *e);
190 mlir::Value VisitUnaryMinus(const UnaryOperator *e);
191 mlir::Value VisitPlusMinus(const UnaryOperator *e, cir::UnaryOpKind kind,
192 QualType promotionType);
193 mlir::Value VisitUnaryNot(const UnaryOperator *e);
194 // LNot,Real,Imag never return complex.
195 mlir::Value VisitUnaryExtension(const UnaryOperator *e) {
196 return Visit(e->getSubExpr());
197 }
198 mlir::Value VisitCXXDefaultArgExpr(CXXDefaultArgExpr *dae) {
199 CIRGenFunction::CXXDefaultArgExprScope scope(cgf, dae);
200 return Visit(dae->getExpr());
201 }
202 mlir::Value VisitCXXDefaultInitExpr(CXXDefaultInitExpr *die) {
203 CIRGenFunction::CXXDefaultInitExprScope scope(cgf, die);
204 return Visit(die->getExpr());
205 }
206 mlir::Value VisitExprWithCleanups(ExprWithCleanups *e) {
207 cgf.cgm.errorNYI(e->getExprLoc(),
208 "ComplexExprEmitter VisitExprWithCleanups");
209 return {};
210 }
211 mlir::Value VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *e) {
212 mlir::Location loc = cgf.getLoc(e->getExprLoc());
213 mlir::Type complexTy = cgf.convertType(e->getType());
214 return builder.getNullValue(complexTy, loc);
215 }
216 mlir::Value VisitImplicitValueInitExpr(ImplicitValueInitExpr *e) {
217 cgf.cgm.errorNYI(e->getExprLoc(),
218 "ComplexExprEmitter VisitImplicitValueInitExpr");
219 return {};
220 }
221
222 struct BinOpInfo {
223 mlir::Location loc;
224 mlir::Value lhs{};
225 mlir::Value rhs{};
226 QualType ty{}; // Computation Type.
227 FPOptions fpFeatures{};
228 };
229
230 BinOpInfo emitBinOps(const BinaryOperator *e,
231 QualType promotionTy = QualType());
232
233 mlir::Value emitPromoted(const Expr *e, QualType promotionTy);
234 mlir::Value emitPromotedComplexOperand(const Expr *e, QualType promotionTy);
235 LValue emitCompoundAssignLValue(
236 const CompoundAssignOperator *e,
237 mlir::Value (ComplexExprEmitter::*func)(const BinOpInfo &),
238 RValue &value);
239 mlir::Value emitCompoundAssign(
240 const CompoundAssignOperator *e,
241 mlir::Value (ComplexExprEmitter::*func)(const BinOpInfo &));
242
243 mlir::Value emitBinAdd(const BinOpInfo &op);
244 mlir::Value emitBinSub(const BinOpInfo &op);
245 mlir::Value emitBinMul(const BinOpInfo &op);
246 mlir::Value emitBinDiv(const BinOpInfo &op);
247
248 QualType getPromotionType(QualType ty, bool isDivOpCode = false) {
249 if (auto *complexTy = ty->getAs<ComplexType>()) {
250 QualType elementTy = complexTy->getElementType();
251 if (elementTy.UseExcessPrecision(cgf.getContext()))
252 return cgf.getContext().getComplexType(cgf.getContext().FloatTy);
253 }
254
255 if (ty.UseExcessPrecision(cgf.getContext()))
256 return cgf.getContext().FloatTy;
257 return QualType();
258 }
259
260#define HANDLEBINOP(OP) \
261 mlir::Value VisitBin##OP(const BinaryOperator *e) { \
262 QualType promotionTy = getPromotionType( \
263 e->getType(), e->getOpcode() == BinaryOperatorKind::BO_Div); \
264 mlir::Value result = emitBin##OP(emitBinOps(e, promotionTy)); \
265 if (!promotionTy.isNull()) \
266 result = cgf.emitUnPromotedValue(result, e->getType()); \
267 return result; \
268 }
269
270 HANDLEBINOP(Add)
271 HANDLEBINOP(Sub)
272 HANDLEBINOP(Mul)
273 HANDLEBINOP(Div)
274#undef HANDLEBINOP
275
276 mlir::Value VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *e) {
277 cgf.cgm.errorNYI(e->getExprLoc(),
278 "ComplexExprEmitter VisitCXXRewrittenBinaryOperator");
279 return {};
280 }
281
282 // Compound assignments.
283 mlir::Value VisitBinAddAssign(const CompoundAssignOperator *e) {
284 return emitCompoundAssign(e, &ComplexExprEmitter::emitBinAdd);
285 }
286 mlir::Value VisitBinSubAssign(const CompoundAssignOperator *e) {
287 return emitCompoundAssign(e, &ComplexExprEmitter::emitBinSub);
288 }
289 mlir::Value VisitBinMulAssign(const CompoundAssignOperator *e) {
290 return emitCompoundAssign(e, &ComplexExprEmitter::emitBinMul);
291 }
292 mlir::Value VisitBinDivAssign(const CompoundAssignOperator *e) {
293 return emitCompoundAssign(e, &ComplexExprEmitter::emitBinDiv);
294 }
295
296 // GCC rejects rem/and/or/xor for integer complex.
297 // Logical and/or always return int, never complex.
298
299 // No comparisons produce a complex result.
300
301 LValue emitBinAssignLValue(const BinaryOperator *e, mlir::Value &val);
302 mlir::Value VisitBinAssign(const BinaryOperator *e);
303 mlir::Value VisitBinComma(const BinaryOperator *e);
304
305 mlir::Value
306 VisitAbstractConditionalOperator(const AbstractConditionalOperator *e);
307 mlir::Value VisitChooseExpr(ChooseExpr *e);
308
309 mlir::Value VisitInitListExpr(InitListExpr *e);
310
311 mlir::Value VisitCompoundLiteralExpr(CompoundLiteralExpr *e) {
312 return emitLoadOfLValue(e);
313 }
314
315 mlir::Value VisitVAArgExpr(VAArgExpr *e);
316
317 mlir::Value VisitAtomicExpr(AtomicExpr *e) {
318 return cgf.emitAtomicExpr(e).getComplexValue();
319 }
320
321 mlir::Value VisitPackIndexingExpr(PackIndexingExpr *e) {
322 cgf.cgm.errorNYI(e->getExprLoc(),
323 "ComplexExprEmitter VisitPackIndexingExpr");
324 return {};
325 }
326};
327} // namespace
328
329//===----------------------------------------------------------------------===//
330// Utilities
331//===----------------------------------------------------------------------===//
332
333/// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
334/// load the real and imaginary pieces, returning them as Real/Imag.
335mlir::Value ComplexExprEmitter::emitLoadOfLValue(LValue lv,
336 SourceLocation loc) {
337 assert(lv.isSimple() && "non-simple complex l-value?");
338 if (lv.getType()->isAtomicType())
339 cgf.cgm.errorNYI(loc, "emitLoadOfLValue with Atomic LV");
340
341 const Address srcAddr = lv.getAddress();
342 return builder.createLoad(cgf.getLoc(loc), srcAddr);
343}
344
345/// EmitStoreOfComplex - Store the specified real/imag parts into the
346/// specified value pointer.
347void ComplexExprEmitter::emitStoreOfComplex(mlir::Location loc, mlir::Value val,
348 LValue lv, bool isInit) {
349 if (lv.getType()->isAtomicType() ||
350 (!isInit && cgf.isLValueSuitableForInlineAtomic(lv))) {
351 cgf.cgm.errorNYI(loc, "StoreOfComplex with Atomic LV");
352 return;
353 }
354
355 const Address destAddr = lv.getAddress();
356 builder.createStore(loc, val, destAddr);
357}
358
359//===----------------------------------------------------------------------===//
360// Visitor Methods
361//===----------------------------------------------------------------------===//
362
363mlir::Value ComplexExprEmitter::VisitExpr(Expr *e) {
364 cgf.cgm.errorNYI(e->getExprLoc(), "ComplexExprEmitter VisitExpr");
365 return {};
366}
367
368mlir::Value
369ComplexExprEmitter::VisitImaginaryLiteral(const ImaginaryLiteral *il) {
370 auto ty = mlir::cast<cir::ComplexType>(cgf.convertType(il->getType()));
371 mlir::Type elementTy = ty.getElementType();
372 mlir::Location loc = cgf.getLoc(il->getExprLoc());
373
374 mlir::TypedAttr realValueAttr;
375 mlir::TypedAttr imagValueAttr;
376
377 if (mlir::isa<cir::IntType>(elementTy)) {
378 llvm::APInt imagValue = cast<IntegerLiteral>(il->getSubExpr())->getValue();
379 realValueAttr = cir::IntAttr::get(elementTy, 0);
380 imagValueAttr = cir::IntAttr::get(elementTy, imagValue);
381 } else {
382 assert(mlir::isa<cir::FPTypeInterface>(elementTy) &&
383 "Expected complex element type to be floating-point");
384
385 llvm::APFloat imagValue =
386 cast<FloatingLiteral>(il->getSubExpr())->getValue();
387 realValueAttr = cir::FPAttr::get(
388 elementTy, llvm::APFloat::getZero(imagValue.getSemantics()));
389 imagValueAttr = cir::FPAttr::get(elementTy, imagValue);
390 }
391
392 auto complexAttr = cir::ConstComplexAttr::get(realValueAttr, imagValueAttr);
393 return cir::ConstantOp::create(builder, loc, complexAttr);
394}
395
396mlir::Value ComplexExprEmitter::VisitCallExpr(const CallExpr *e) {
398 return emitLoadOfLValue(e);
399 return cgf.emitCallExpr(e).getComplexValue();
400}
401
402mlir::Value ComplexExprEmitter::VisitStmtExpr(const StmtExpr *e) {
403 cgf.cgm.errorNYI(e->getExprLoc(), "ComplexExprEmitter VisitExpr");
404 return {};
405}
406
407mlir::Value ComplexExprEmitter::emitComplexToComplexCast(mlir::Value val,
408 QualType srcType,
409 QualType destType,
410 SourceLocation loc) {
411 if (srcType == destType)
412 return val;
413
414 // Get the src/dest element type.
415 QualType srcElemTy = srcType->castAs<ComplexType>()->getElementType();
416 QualType destElemTy = destType->castAs<ComplexType>()->getElementType();
417
418 cir::CastKind castOpKind;
419 if (srcElemTy->isFloatingType() && destElemTy->isFloatingType())
420 castOpKind = cir::CastKind::float_complex;
421 else if (srcElemTy->isFloatingType() && destElemTy->isIntegerType())
422 castOpKind = cir::CastKind::float_complex_to_int_complex;
423 else if (srcElemTy->isIntegerType() && destElemTy->isFloatingType())
424 castOpKind = cir::CastKind::int_complex_to_float_complex;
425 else if (srcElemTy->isIntegerType() && destElemTy->isIntegerType())
426 castOpKind = cir::CastKind::int_complex;
427 else
428 llvm_unreachable("unexpected src type or dest type");
429
430 return builder.createCast(cgf.getLoc(loc), castOpKind, val,
431 cgf.convertType(destType));
432}
433
434mlir::Value ComplexExprEmitter::emitScalarToComplexCast(mlir::Value val,
435 QualType srcType,
436 QualType destType,
437 SourceLocation loc) {
438 cir::CastKind castOpKind;
439 if (srcType->isFloatingType())
440 castOpKind = cir::CastKind::float_to_complex;
441 else if (srcType->isIntegerType())
442 castOpKind = cir::CastKind::int_to_complex;
443 else
444 llvm_unreachable("unexpected src type");
445
446 return builder.createCast(cgf.getLoc(loc), castOpKind, val,
447 cgf.convertType(destType));
448}
449
450mlir::Value ComplexExprEmitter::emitCast(CastKind ck, Expr *op,
451 QualType destTy) {
452 switch (ck) {
453 case CK_Dependent:
454 llvm_unreachable("dependent type must be resolved before the CIR codegen");
455
456 case CK_NoOp:
457 case CK_LValueToRValue:
458 return Visit(op);
459
460 case CK_AtomicToNonAtomic:
461 case CK_NonAtomicToAtomic:
462 case CK_UserDefinedConversion: {
463 cgf.cgm.errorNYI(
464 "ComplexExprEmitter::emitCast Atmoic & UserDefinedConversion");
465 return {};
466 }
467
468 case CK_LValueBitCast: {
469 LValue origLV = cgf.emitLValue(op);
470 Address addr =
471 origLV.getAddress().withElementType(builder, cgf.convertType(destTy));
472 LValue destLV = cgf.makeAddrLValue(addr, destTy);
473 return emitLoadOfLValue(destLV, op->getExprLoc());
474 }
475
476 case CK_LValueToRValueBitCast: {
477 LValue sourceLVal = cgf.emitLValue(op);
478 Address addr = sourceLVal.getAddress().withElementType(
479 builder, cgf.convertTypeForMem(destTy));
480 LValue destLV = cgf.makeAddrLValue(addr, destTy);
482 return emitLoadOfLValue(destLV, op->getExprLoc());
483 }
484
485 case CK_BitCast:
486 case CK_BaseToDerived:
487 case CK_DerivedToBase:
488 case CK_UncheckedDerivedToBase:
489 case CK_Dynamic:
490 case CK_ToUnion:
491 case CK_ArrayToPointerDecay:
492 case CK_FunctionToPointerDecay:
493 case CK_NullToPointer:
494 case CK_NullToMemberPointer:
495 case CK_BaseToDerivedMemberPointer:
496 case CK_DerivedToBaseMemberPointer:
497 case CK_MemberPointerToBoolean:
498 case CK_ReinterpretMemberPointer:
499 case CK_ConstructorConversion:
500 case CK_IntegralToPointer:
501 case CK_PointerToIntegral:
502 case CK_PointerToBoolean:
503 case CK_ToVoid:
504 case CK_VectorSplat:
505 case CK_IntegralCast:
506 case CK_BooleanToSignedIntegral:
507 case CK_IntegralToBoolean:
508 case CK_IntegralToFloating:
509 case CK_FloatingToIntegral:
510 case CK_FloatingToBoolean:
511 case CK_FloatingCast:
512 case CK_CPointerToObjCPointerCast:
513 case CK_BlockPointerToObjCPointerCast:
514 case CK_AnyPointerToBlockPointerCast:
515 case CK_ObjCObjectLValueCast:
516 case CK_FloatingComplexToReal:
517 case CK_FloatingComplexToBoolean:
518 case CK_IntegralComplexToReal:
519 case CK_IntegralComplexToBoolean:
520 case CK_ARCProduceObject:
521 case CK_ARCConsumeObject:
522 case CK_ARCReclaimReturnedObject:
523 case CK_ARCExtendBlockObject:
524 case CK_CopyAndAutoreleaseBlockObject:
525 case CK_BuiltinFnToFnPtr:
526 case CK_ZeroToOCLOpaqueType:
527 case CK_AddressSpaceConversion:
528 case CK_IntToOCLSampler:
529 case CK_FloatingToFixedPoint:
530 case CK_FixedPointToFloating:
531 case CK_FixedPointCast:
532 case CK_FixedPointToBoolean:
533 case CK_FixedPointToIntegral:
534 case CK_IntegralToFixedPoint:
535 case CK_MatrixCast:
536 case CK_HLSLVectorTruncation:
537 case CK_HLSLArrayRValue:
538 case CK_HLSLElementwiseCast:
539 case CK_HLSLAggregateSplatCast:
540 llvm_unreachable("invalid cast kind for complex value");
541
542 case CK_FloatingRealToComplex:
543 case CK_IntegralRealToComplex: {
545 return emitScalarToComplexCast(cgf.emitScalarExpr(op), op->getType(),
546 destTy, op->getExprLoc());
547 }
548
549 case CK_FloatingComplexCast:
550 case CK_FloatingComplexToIntegralComplex:
551 case CK_IntegralComplexCast:
552 case CK_IntegralComplexToFloatingComplex: {
554 return emitComplexToComplexCast(Visit(op), op->getType(), destTy,
555 op->getExprLoc());
556 }
557 }
558
559 llvm_unreachable("unknown cast resulting in complex value");
560}
561
562mlir::Value ComplexExprEmitter::VisitUnaryPlus(const UnaryOperator *e) {
563 QualType promotionTy = getPromotionType(e->getSubExpr()->getType());
564 mlir::Value result = VisitPlusMinus(e, cir::UnaryOpKind::Plus, promotionTy);
565 if (!promotionTy.isNull())
566 return cgf.emitUnPromotedValue(result, e->getSubExpr()->getType());
567 return result;
568}
569
570mlir::Value ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *e) {
571 QualType promotionTy = getPromotionType(e->getSubExpr()->getType());
572 mlir::Value result = VisitPlusMinus(e, cir::UnaryOpKind::Minus, promotionTy);
573 if (!promotionTy.isNull())
574 return cgf.emitUnPromotedValue(result, e->getSubExpr()->getType());
575 return result;
576}
577
578mlir::Value ComplexExprEmitter::VisitPlusMinus(const UnaryOperator *e,
579 cir::UnaryOpKind kind,
580 QualType promotionType) {
581 assert(kind == cir::UnaryOpKind::Plus ||
582 kind == cir::UnaryOpKind::Minus &&
583 "Invalid UnaryOp kind for ComplexType Plus or Minus");
584
585 mlir::Value op;
586 if (!promotionType.isNull())
587 op = cgf.emitPromotedComplexExpr(e->getSubExpr(), promotionType);
588 else
589 op = Visit(e->getSubExpr());
590 return builder.createUnaryOp(cgf.getLoc(e->getExprLoc()), kind, op);
591}
592
593mlir::Value ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *e) {
594 mlir::Value op = Visit(e->getSubExpr());
595 return builder.createNot(op);
596}
597
598mlir::Value ComplexExprEmitter::emitBinAdd(const BinOpInfo &op) {
601
602 if (mlir::isa<cir::ComplexType>(op.lhs.getType()) &&
603 mlir::isa<cir::ComplexType>(op.rhs.getType()))
604 return cir::ComplexAddOp::create(builder, op.loc, op.lhs, op.rhs);
605
606 if (mlir::isa<cir::ComplexType>(op.lhs.getType())) {
607 mlir::Value real = builder.createComplexReal(op.loc, op.lhs);
608 mlir::Value imag = builder.createComplexImag(op.loc, op.lhs);
609 mlir::Value newReal = builder.createAdd(op.loc, real, op.rhs);
610 return builder.createComplexCreate(op.loc, newReal, imag);
611 }
612
613 assert(mlir::isa<cir::ComplexType>(op.rhs.getType()));
614 mlir::Value real = builder.createComplexReal(op.loc, op.rhs);
615 mlir::Value imag = builder.createComplexImag(op.loc, op.rhs);
616 mlir::Value newReal = builder.createAdd(op.loc, op.lhs, real);
617 return builder.createComplexCreate(op.loc, newReal, imag);
618}
619
620mlir::Value ComplexExprEmitter::emitBinSub(const BinOpInfo &op) {
623
624 if (mlir::isa<cir::ComplexType>(op.lhs.getType()) &&
625 mlir::isa<cir::ComplexType>(op.rhs.getType()))
626 return cir::ComplexSubOp::create(builder, op.loc, op.lhs, op.rhs);
627
628 if (mlir::isa<cir::ComplexType>(op.lhs.getType())) {
629 mlir::Value real = builder.createComplexReal(op.loc, op.lhs);
630 mlir::Value imag = builder.createComplexImag(op.loc, op.lhs);
631 mlir::Value newReal = builder.createSub(op.loc, real, op.rhs);
632 return builder.createComplexCreate(op.loc, newReal, imag);
633 }
634
635 assert(mlir::isa<cir::ComplexType>(op.rhs.getType()));
636 mlir::Value real = builder.createComplexReal(op.loc, op.rhs);
637 mlir::Value imag = builder.createComplexImag(op.loc, op.rhs);
638 mlir::Value newReal = builder.createSub(op.loc, op.lhs, real);
639 return builder.createComplexCreate(op.loc, newReal, imag);
640}
641
642static cir::ComplexRangeKind
644 switch (range) {
646 return cir::ComplexRangeKind::Full;
648 return cir::ComplexRangeKind::Improved;
650 return cir::ComplexRangeKind::Promoted;
652 return cir::ComplexRangeKind::Basic;
654 // The default value for ComplexRangeKind is Full if no option is selected
655 return cir::ComplexRangeKind::Full;
656 }
657}
658
659mlir::Value ComplexExprEmitter::emitBinMul(const BinOpInfo &op) {
662
663 if (mlir::isa<cir::ComplexType>(op.lhs.getType()) &&
664 mlir::isa<cir::ComplexType>(op.rhs.getType())) {
665 cir::ComplexRangeKind rangeKind =
666 getComplexRangeAttr(op.fpFeatures.getComplexRange());
667 return cir::ComplexMulOp::create(builder, op.loc, op.lhs, op.rhs,
668 rangeKind);
669 }
670
671 if (mlir::isa<cir::ComplexType>(op.lhs.getType())) {
672 mlir::Value real = builder.createComplexReal(op.loc, op.lhs);
673 mlir::Value imag = builder.createComplexImag(op.loc, op.lhs);
674 mlir::Value newReal = builder.createMul(op.loc, real, op.rhs);
675 mlir::Value newImag = builder.createMul(op.loc, imag, op.rhs);
676 return builder.createComplexCreate(op.loc, newReal, newImag);
677 }
678
679 assert(mlir::isa<cir::ComplexType>(op.rhs.getType()));
680 mlir::Value real = builder.createComplexReal(op.loc, op.rhs);
681 mlir::Value imag = builder.createComplexImag(op.loc, op.rhs);
682 mlir::Value newReal = builder.createMul(op.loc, op.lhs, real);
683 mlir::Value newImag = builder.createMul(op.loc, op.lhs, imag);
684 return builder.createComplexCreate(op.loc, newReal, newImag);
685}
686
687mlir::Value ComplexExprEmitter::emitBinDiv(const BinOpInfo &op) {
690
691 // Handle division between two complex values. In the case of complex integer
692 // types mixed with scalar integers, the scalar integer type will always be
693 // promoted to a complex integer value with a zero imaginary component when
694 // the AST is formed.
695 if (mlir::isa<cir::ComplexType>(op.lhs.getType()) &&
696 mlir::isa<cir::ComplexType>(op.rhs.getType())) {
697 cir::ComplexRangeKind rangeKind =
698 getComplexRangeAttr(op.fpFeatures.getComplexRange());
699 return cir::ComplexDivOp::create(builder, op.loc, op.lhs, op.rhs,
700 rangeKind);
701 }
702
703 // The C99 standard (G.5.1) defines division of a complex value by a real
704 // value in the following simplified form.
705 if (mlir::isa<cir::ComplexType>(op.lhs.getType())) {
706 assert(mlir::cast<cir::ComplexType>(op.lhs.getType()).getElementType() ==
707 op.rhs.getType());
708 mlir::Value real = builder.createComplexReal(op.loc, op.lhs);
709 mlir::Value imag = builder.createComplexImag(op.loc, op.lhs);
710 mlir::Value newReal = builder.createFDiv(op.loc, real, op.rhs);
711 mlir::Value newImag = builder.createFDiv(op.loc, imag, op.rhs);
712 return builder.createComplexCreate(op.loc, newReal, newImag);
713 }
714
715 assert(mlir::isa<cir::ComplexType>(op.rhs.getType()));
716 cir::ConstantOp nullValue = builder.getNullValue(op.lhs.getType(), op.loc);
717 mlir::Value lhs = builder.createComplexCreate(op.loc, op.lhs, nullValue);
718 cir::ComplexRangeKind rangeKind =
719 getComplexRangeAttr(op.fpFeatures.getComplexRange());
720 return cir::ComplexDivOp::create(builder, op.loc, lhs, op.rhs, rangeKind);
721}
722
723mlir::Value CIRGenFunction::emitUnPromotedValue(mlir::Value result,
724 QualType unPromotionType) {
725 assert(!mlir::cast<cir::ComplexType>(result.getType()).isIntegerComplex() &&
726 "integral complex will never be promoted");
727 return builder.createCast(cir::CastKind::float_complex, result,
728 convertType(unPromotionType));
729}
730
731mlir::Value CIRGenFunction::emitPromotedValue(mlir::Value result,
732 QualType promotionType) {
733 assert(!mlir::cast<cir::ComplexType>(result.getType()).isIntegerComplex() &&
734 "integral complex will never be promoted");
735 return builder.createCast(cir::CastKind::float_complex, result,
736 convertType(promotionType));
737}
738
739mlir::Value ComplexExprEmitter::emitPromoted(const Expr *e,
740 QualType promotionTy) {
741 e = e->IgnoreParens();
742 if (const auto *bo = dyn_cast<BinaryOperator>(e)) {
743 switch (bo->getOpcode()) {
744#define HANDLE_BINOP(OP) \
745 case BO_##OP: \
746 return emitBin##OP(emitBinOps(bo, promotionTy));
747 HANDLE_BINOP(Add)
748 HANDLE_BINOP(Sub)
749 HANDLE_BINOP(Mul)
750 HANDLE_BINOP(Div)
751#undef HANDLE_BINOP
752 default:
753 break;
754 }
755 } else if (const auto *unaryOp = dyn_cast<UnaryOperator>(e)) {
756 switch (unaryOp->getOpcode()) {
757 case UO_Minus:
758 case UO_Plus: {
759 auto kind = unaryOp->getOpcode() == UO_Plus ? cir::UnaryOpKind::Plus
760 : cir::UnaryOpKind::Minus;
761 return VisitPlusMinus(unaryOp, kind, promotionTy);
762 }
763 default:
764 break;
765 }
766 }
767
768 mlir::Value result = Visit(const_cast<Expr *>(e));
769 if (!promotionTy.isNull())
770 return cgf.emitPromotedValue(result, promotionTy);
771
772 return result;
773}
774
776 QualType promotionType) {
777 return ComplexExprEmitter(*this).emitPromoted(e, promotionType);
778}
779
780mlir::Value
781ComplexExprEmitter::emitPromotedComplexOperand(const Expr *e,
782 QualType promotionTy) {
783 if (e->getType()->isAnyComplexType()) {
784 if (!promotionTy.isNull())
785 return cgf.emitPromotedComplexExpr(e, promotionTy);
786 return Visit(const_cast<Expr *>(e));
787 }
788
789 if (!promotionTy.isNull()) {
790 QualType complexElementTy =
791 promotionTy->castAs<ComplexType>()->getElementType();
792 return cgf.emitPromotedScalarExpr(e, complexElementTy);
793 }
794 return cgf.emitScalarExpr(e);
795}
796
797ComplexExprEmitter::BinOpInfo
798ComplexExprEmitter::emitBinOps(const BinaryOperator *e, QualType promotionTy) {
799 BinOpInfo binOpInfo{cgf.getLoc(e->getExprLoc())};
800 binOpInfo.lhs = emitPromotedComplexOperand(e->getLHS(), promotionTy);
801 binOpInfo.rhs = emitPromotedComplexOperand(e->getRHS(), promotionTy);
802 binOpInfo.ty = promotionTy.isNull() ? e->getType() : promotionTy;
803 binOpInfo.fpFeatures = e->getFPFeaturesInEffect(cgf.getLangOpts());
804 return binOpInfo;
805}
806
807LValue ComplexExprEmitter::emitCompoundAssignLValue(
808 const CompoundAssignOperator *e,
809 mlir::Value (ComplexExprEmitter::*func)(const BinOpInfo &), RValue &value) {
810 QualType lhsTy = e->getLHS()->getType();
811 QualType rhsTy = e->getRHS()->getType();
812 SourceLocation exprLoc = e->getExprLoc();
813 mlir::Location loc = cgf.getLoc(exprLoc);
814
815 if (lhsTy->getAs<AtomicType>()) {
816 cgf.cgm.errorNYI("emitCompoundAssignLValue AtmoicType");
817 return {};
818 }
819
820 BinOpInfo opInfo{loc};
821 opInfo.fpFeatures = e->getFPFeaturesInEffect(cgf.getLangOpts());
822
824
825 // Load the RHS and LHS operands.
826 // __block variables need to have the rhs evaluated first, plus this should
827 // improve codegen a little.
828 QualType promotionTypeCR = getPromotionType(e->getComputationResultType());
829 opInfo.ty = promotionTypeCR.isNull() ? e->getComputationResultType()
830 : promotionTypeCR;
831
832 QualType complexElementTy =
833 opInfo.ty->castAs<ComplexType>()->getElementType();
834 QualType promotionTypeRHS = getPromotionType(rhsTy);
835
836 // The RHS should have been converted to the computation type.
837 if (e->getRHS()->getType()->isRealFloatingType()) {
838 if (!promotionTypeRHS.isNull()) {
839 opInfo.rhs = cgf.emitPromotedScalarExpr(e->getRHS(), promotionTypeRHS);
840 } else {
841 assert(cgf.getContext().hasSameUnqualifiedType(complexElementTy, rhsTy));
842 opInfo.rhs = cgf.emitScalarExpr(e->getRHS());
843 }
844 } else {
845 if (!promotionTypeRHS.isNull()) {
846 opInfo.rhs = cgf.emitPromotedComplexExpr(e->getRHS(), promotionTypeRHS);
847 } else {
848 assert(cgf.getContext().hasSameUnqualifiedType(opInfo.ty, rhsTy));
849 opInfo.rhs = Visit(e->getRHS());
850 }
851 }
852
853 LValue lhs = cgf.emitLValue(e->getLHS());
854
855 // Load from the l-value and convert it.
856 QualType promotionTypeLHS = getPromotionType(e->getComputationLHSType());
857 if (lhsTy->isAnyComplexType()) {
858 mlir::Value lhsValue = emitLoadOfLValue(lhs, exprLoc);
859 QualType destTy = promotionTypeLHS.isNull() ? opInfo.ty : promotionTypeLHS;
860 opInfo.lhs = emitComplexToComplexCast(lhsValue, lhsTy, destTy, exprLoc);
861 } else {
862 mlir::Value lhsVal = cgf.emitLoadOfScalar(lhs, exprLoc);
863 // For floating point real operands we can directly pass the scalar form
864 // to the binary operator emission and potentially get more efficient code.
865 if (lhsTy->isRealFloatingType()) {
866 QualType promotedComplexElementTy;
867 if (!promotionTypeLHS.isNull()) {
868 promotedComplexElementTy =
869 cast<ComplexType>(promotionTypeLHS)->getElementType();
870 if (!cgf.getContext().hasSameUnqualifiedType(promotedComplexElementTy,
871 promotionTypeLHS))
872 lhsVal = cgf.emitScalarConversion(lhsVal, lhsTy,
873 promotedComplexElementTy, exprLoc);
874 } else {
875 if (!cgf.getContext().hasSameUnqualifiedType(complexElementTy, lhsTy))
876 lhsVal = cgf.emitScalarConversion(lhsVal, lhsTy, complexElementTy,
877 exprLoc);
878 }
879 opInfo.lhs = lhsVal;
880 } else {
881 opInfo.lhs = emitScalarToComplexCast(lhsVal, lhsTy, opInfo.ty, exprLoc);
882 }
883 }
884
885 // Expand the binary operator.
886 mlir::Value result = (this->*func)(opInfo);
887
888 // Truncate the result and store it into the LHS lvalue.
889 if (lhsTy->isAnyComplexType()) {
890 mlir::Value resultValue =
891 emitComplexToComplexCast(result, opInfo.ty, lhsTy, exprLoc);
892 emitStoreOfComplex(loc, resultValue, lhs, /*isInit*/ false);
893 value = RValue::getComplex(resultValue);
894 } else {
895 mlir::Value resultValue =
896 cgf.emitComplexToScalarConversion(result, opInfo.ty, lhsTy, exprLoc);
897 cgf.emitStoreOfScalar(resultValue, lhs, /*isInit*/ false);
898 value = RValue::get(resultValue);
899 }
900
901 return lhs;
902}
903
904mlir::Value ComplexExprEmitter::emitCompoundAssign(
905 const CompoundAssignOperator *e,
906 mlir::Value (ComplexExprEmitter::*func)(const BinOpInfo &)) {
907 RValue val;
908 LValue lv = emitCompoundAssignLValue(e, func, val);
909
910 // The result of an assignment in C is the assigned r-value.
911 if (!cgf.getLangOpts().CPlusPlus)
912 return val.getComplexValue();
913
914 // If the lvalue is non-volatile, return the computed value of the assignment.
915 if (!lv.isVolatileQualified())
916 return val.getComplexValue();
917
918 return emitLoadOfLValue(lv, e->getExprLoc());
919}
920
921LValue ComplexExprEmitter::emitBinAssignLValue(const BinaryOperator *e,
922 mlir::Value &value) {
923 assert(cgf.getContext().hasSameUnqualifiedType(e->getLHS()->getType(),
924 e->getRHS()->getType()) &&
925 "Invalid assignment");
926
927 // Emit the RHS. __block variables need the RHS evaluated first.
928 value = Visit(e->getRHS());
929
930 // Compute the address to store into.
931 LValue lhs = cgf.emitLValue(e->getLHS());
932
933 // Store the result value into the LHS lvalue.
934 emitStoreOfComplex(cgf.getLoc(e->getExprLoc()), value, lhs,
935 /*isInit*/ false);
936 return lhs;
937}
938
939mlir::Value ComplexExprEmitter::VisitBinAssign(const BinaryOperator *e) {
940 mlir::Value value;
941 LValue lv = emitBinAssignLValue(e, value);
942
943 // The result of an assignment in C is the assigned r-value.
944 if (!cgf.getLangOpts().CPlusPlus)
945 return value;
946
947 // If the lvalue is non-volatile, return the computed value of the
948 // assignment.
949 if (!lv.isVolatile())
950 return value;
951
952 return emitLoadOfLValue(lv, e->getExprLoc());
953}
954
955mlir::Value ComplexExprEmitter::VisitBinComma(const BinaryOperator *e) {
956 cgf.emitIgnoredExpr(e->getLHS());
957 return Visit(e->getRHS());
958}
959
960mlir::Value ComplexExprEmitter::VisitAbstractConditionalOperator(
961 const AbstractConditionalOperator *e) {
962 mlir::Location loc = cgf.getLoc(e->getSourceRange());
963
964 // Bind the common expression if necessary.
965 CIRGenFunction::OpaqueValueMapping binding(cgf, e);
966
967 CIRGenFunction::ConditionalEvaluation eval(cgf);
968
969 Expr *cond = e->getCond()->IgnoreParens();
970 mlir::Value condValue = cgf.evaluateExprAsBool(cond);
971
972 return cir::TernaryOp::create(
973 builder, loc, condValue,
974 /*thenBuilder=*/
975 [&](mlir::OpBuilder &b, mlir::Location loc) {
976 eval.beginEvaluation();
977 mlir::Value trueValue = Visit(e->getTrueExpr());
978 cir::YieldOp::create(b, loc, trueValue);
979 eval.endEvaluation();
980 },
981 /*elseBuilder=*/
982 [&](mlir::OpBuilder &b, mlir::Location loc) {
983 eval.beginEvaluation();
984 mlir::Value falseValue = Visit(e->getFalseExpr());
985 cir::YieldOp::create(b, loc, falseValue);
986 eval.endEvaluation();
987 })
988 .getResult();
989}
990
991mlir::Value ComplexExprEmitter::VisitChooseExpr(ChooseExpr *e) {
992 return Visit(e->getChosenSubExpr());
993}
994
995mlir::Value ComplexExprEmitter::VisitInitListExpr(InitListExpr *e) {
996 mlir::Location loc = cgf.getLoc(e->getExprLoc());
997 if (e->getNumInits() == 2) {
998 mlir::Value real = cgf.emitScalarExpr(e->getInit(0));
999 mlir::Value imag = cgf.emitScalarExpr(e->getInit(1));
1000 return builder.createComplexCreate(loc, real, imag);
1001 }
1002
1003 if (e->getNumInits() == 1)
1004 return Visit(e->getInit(0));
1005
1006 assert(e->getNumInits() == 0 && "Unexpected number of inits");
1007 mlir::Type complexTy = cgf.convertType(e->getType());
1008 return builder.getNullValue(complexTy, loc);
1009}
1010
1011mlir::Value ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *e) {
1012 return cgf.emitVAArg(e);
1013}
1014
1015//===----------------------------------------------------------------------===//
1016// Entry Point into this File
1017//===----------------------------------------------------------------------===//
1018
1019/// EmitComplexExpr - Emit the computation of the specified expression of
1020/// complex type, ignoring the result.
1022 assert(e && getComplexType(e->getType()) &&
1023 "Invalid complex expression to emit");
1024
1025 return ComplexExprEmitter(*this).Visit(const_cast<Expr *>(e));
1026}
1027
1029 bool isInit) {
1030 assert(e && getComplexType(e->getType()) &&
1031 "Invalid complex expression to emit");
1032 ComplexExprEmitter emitter(*this);
1033 mlir::Value value = emitter.Visit(const_cast<Expr *>(e));
1034 emitter.emitStoreOfComplex(getLoc(e->getExprLoc()), value, dest, isInit);
1035}
1036
1037/// EmitStoreOfComplex - Store a complex number into the specified l-value.
1038void CIRGenFunction::emitStoreOfComplex(mlir::Location loc, mlir::Value v,
1039 LValue dest, bool isInit) {
1040 ComplexExprEmitter(*this).emitStoreOfComplex(loc, v, dest, isInit);
1041}
1042
1044 return ComplexExprEmitter(*this).emitLoadOfLValue(src, loc);
1045}
1046
1048 assert(e->getOpcode() == BO_Assign && "Expected assign op");
1049
1050 mlir::Value value; // ignored
1051 LValue lvalue = ComplexExprEmitter(*this).emitBinAssignLValue(e, value);
1052 if (getLangOpts().OpenMP)
1053 cgm.errorNYI("emitComplexAssignmentLValue OpenMP");
1054
1055 return lvalue;
1056}
1057
1059 mlir::Value (ComplexExprEmitter::*)(const ComplexExprEmitter::BinOpInfo &);
1060
1062 switch (op) {
1063 case BO_MulAssign:
1064 return &ComplexExprEmitter::emitBinMul;
1065 case BO_DivAssign:
1066 return &ComplexExprEmitter::emitBinDiv;
1067 case BO_SubAssign:
1068 return &ComplexExprEmitter::emitBinSub;
1069 case BO_AddAssign:
1070 return &ComplexExprEmitter::emitBinAdd;
1071 default:
1072 llvm_unreachable("unexpected complex compound assignment");
1073 }
1074}
1075
1077 const CompoundAssignOperator *e) {
1079 RValue val;
1080 return ComplexExprEmitter(*this).emitCompoundAssignLValue(e, op, val);
1081}
1082
1084 LValue lv,
1085 cir::UnaryOpKind op,
1086 bool isPre) {
1087 assert(op == cir::UnaryOpKind::Inc ||
1088 op == cir::UnaryOpKind::Dec && "Invalid UnaryOp kind for ComplexType");
1089
1090 mlir::Value inVal = emitLoadOfComplex(lv, e->getExprLoc());
1091 mlir::Location loc = getLoc(e->getExprLoc());
1092 mlir::Value incVal = builder.createUnaryOp(loc, op, inVal);
1093
1094 // Store the updated result through the lvalue.
1095 emitStoreOfComplex(loc, incVal, lv, /*isInit=*/false);
1096
1097 if (getLangOpts().OpenMP)
1098 cgm.errorNYI(loc, "emitComplexPrePostIncDec OpenMP");
1099
1100 // If this is a postinc, return the value read from memory, otherwise use the
1101 // updated value.
1102 return isPre ? incVal : inVal;
1103}
1104
1106 const CompoundAssignOperator *e, mlir::Value &result) {
1107 // Key Instructions: Don't need to create an atom group here; one will already
1108 // be active through scalar handling code.
1110 RValue value;
1111 LValue ret = ComplexExprEmitter(*this).emitCompoundAssignLValue(e, op, value);
1112 result = value.getValue();
1113 return ret;
1114}
#define HANDLEBINOP(OP)
static CompoundFunc getComplexOp(BinaryOperatorKind op)
static const ComplexType * getComplexType(QualType type)
Return the complex type that we are meant to emit.
mlir::Value(ComplexExprEmitter::*)(const ComplexExprEmitter::BinOpInfo &) CompoundFunc
static cir::ComplexRangeKind getComplexRangeAttr(LangOptions::ComplexRangeKind range)
#define HANDLE_BINOP(OP)
__device__ __2f16 b
__device__ __2f16 float __ockl_bool s
cir::ConstantOp getNullValue(mlir::Type ty, mlir::Location loc)
mlir::Value createCast(mlir::Location loc, cir::CastKind kind, mlir::Value src, mlir::Type newTy)
mlir::Value createAdd(mlir::Location loc, mlir::Value lhs, mlir::Value rhs, OverflowBehavior ob=OverflowBehavior::None)
mlir::Value createNot(mlir::Value value)
mlir::Value createComplexImag(mlir::Location loc, mlir::Value operand)
mlir::Value createSub(mlir::Location loc, mlir::Value lhs, mlir::Value rhs, OverflowBehavior ob=OverflowBehavior::Saturated)
mlir::Value createMul(mlir::Location loc, mlir::Value lhs, mlir::Value rhs, OverflowBehavior ob=OverflowBehavior::None)
mlir::Value createComplexCreate(mlir::Location loc, mlir::Value real, mlir::Value imag)
mlir::Value createUnaryOp(mlir::Location loc, cir::UnaryOpKind kind, mlir::Value operand)
mlir::Value createComplexReal(mlir::Location loc, mlir::Value operand)
static bool hasSameUnqualifiedType(QualType T1, QualType T2)
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Expr * getCond() const
getCond - Return the expression representing the condition for the ?
Definition Expr.h:4465
Expr * getTrueExpr() const
getTrueExpr - Return the subexpression representing the value of the expression if the condition eval...
Definition Expr.h:4471
Expr * getFalseExpr() const
getFalseExpr - Return the subexpression representing the value of the expression if the condition eva...
Definition Expr.h:4477
A builtin binary operation expression such as "x + y" or "x <= y".
Definition Expr.h:3972
Expr * getLHS() const
Definition Expr.h:4022
SourceLocation getExprLoc() const
Definition Expr.h:4013
Expr * getRHS() const
Definition Expr.h:4024
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const
Get the FP features status of this operator.
Definition Expr.h:4185
Opcode getOpcode() const
Definition Expr.h:4017
mlir::Value createFDiv(mlir::Location loc, mlir::Value lhs, mlir::Value rhs)
cir::LoadOp createLoad(mlir::Location loc, Address addr, bool isVolatile=false)
cir::StoreOp createStore(mlir::Location loc, mlir::Value val, Address dst, bool isVolatile=false, mlir::IntegerAttr align={}, cir::MemOrderAttr order={})
LValue getReferenceLValue(CIRGenFunction &cgf, Expr *refExpr) const
mlir::Value emitComplexToScalarConversion(mlir::Value src, QualType srcTy, QualType dstTy, SourceLocation loc)
Emit a conversion from the specified complex type to the specified destination type,...
mlir::Type convertType(clang::QualType t)
mlir::Value emitPromotedValue(mlir::Value result, QualType promotionType)
const clang::LangOptions & getLangOpts() const
LValue emitScalarCompoundAssignWithComplex(const CompoundAssignOperator *e, mlir::Value &result)
mlir::Value emitComplexExpr(const Expr *e)
Emit the computation of the specified expression of complex type, returning the result.
RValue emitCallExpr(const clang::CallExpr *e, ReturnValueSlot returnValue=ReturnValueSlot())
LValue emitLValue(const clang::Expr *e)
Emit code to compute a designator that specifies the location of the expression.
mlir::Value evaluateExprAsBool(const clang::Expr *e)
Perform the usual unary conversions on the specified expression and compare the result against zero,...
void emitStoreOfScalar(mlir::Value value, Address addr, bool isVolatile, clang::QualType ty, bool isInit=false, bool isNontemporal=false)
LValue emitComplexCompoundAssignmentLValue(const CompoundAssignOperator *e)
mlir::Location getLoc(clang::SourceLocation srcLoc)
Helpers to convert Clang's SourceLocation to a MLIR Location.
mlir::Value emitScalarConversion(mlir::Value src, clang::QualType srcType, clang::QualType dstType, clang::SourceLocation loc)
Emit a conversion from the specified type to the specified destination type, both of which are CIR sc...
mlir::Value emitPromotedComplexExpr(const Expr *e, QualType promotionType)
mlir::Value emitUnPromotedValue(mlir::Value result, QualType unPromotionType)
mlir::Type convertTypeForMem(QualType t)
mlir::Value emitLoadOfComplex(LValue src, SourceLocation loc)
Load a complex number from the specified l-value.
mlir::Value emitComplexPrePostIncDec(const UnaryOperator *e, LValue lv, cir::UnaryOpKind op, bool isPre)
void emitStoreOfComplex(mlir::Location loc, mlir::Value v, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
LValue emitComplexAssignmentLValue(const BinaryOperator *e)
mlir::Value emitScalarExpr(const clang::Expr *e)
Emit the computation of the specified expression of scalar type.
mlir::Value emitPromotedScalarExpr(const Expr *e, QualType promotionType)
mlir::Value emitLoadOfScalar(LValue lvalue, SourceLocation loc)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
void emitComplexExprIntoLValue(const Expr *e, LValue dest, bool isInit)
LValue makeAddrLValue(Address addr, QualType ty, AlignmentSource source=AlignmentSource::Type)
clang::ASTContext & getContext() const
bool isLValueSuitableForInlineAtomic(LValue lv)
An LValue is a candidate for having its loads and stores be made atomic if we are operating under /vo...
void emitIgnoredExpr(const clang::Expr *e)
Emit code to compute the specified expression, ignoring the result.
mlir::Value emitVAArg(VAArgExpr *ve)
Generate code to get an argument from the passed in pointer and update it accordingly.
DiagnosticBuilder errorNYI(SourceLocation, llvm::StringRef)
Helpers to emit "not yet implemented" error diagnostics.
This trivial value class is used to represent the result of an expression that is evaluated.
Definition CIRGenValue.h:33
static RValue get(mlir::Value v)
Definition CIRGenValue.h:82
static RValue getComplex(mlir::Value v)
Definition CIRGenValue.h:90
mlir::Value getValue() const
Return the value of this scalar value.
Definition CIRGenValue.h:56
mlir::Value getComplexValue() const
Return the value of this complex value.
Definition CIRGenValue.h:62
Expr * getExpr()
Get the initialization expression that will be used.
Definition ExprCXX.cpp:1105
A rewritten comparison expression that was originally written using operator syntax.
Definition ExprCXX.h:286
SourceLocation getExprLoc() const LLVM_READONLY
Definition ExprCXX.h:341
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition Expr.cpp:1599
CastKind getCastKind() const
Definition Expr.h:3654
bool changesVolatileQualification() const
Return.
Definition Expr.h:3744
Expr * getSubExpr()
Definition Expr.h:3660
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Definition Expr.h:4818
Complex values, per C99 6.2.5p11.
Definition TypeBase.h:3275
CompoundAssignOperator - For compound assignments (e.g.
Definition Expr.h:4234
QualType getComputationLHSType() const
Definition Expr.h:4268
QualType getComputationResultType() const
Definition Expr.h:4271
This represents one expression.
Definition Expr.h:112
bool isGLValue() const
Definition Expr.h:287
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition Expr.cpp:3081
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition Expr.cpp:273
QualType getType() const
Definition Expr.h:144
Expr * getResultExpr()
Return the result expression of this controlling expression.
Definition Expr.h:6396
const Expr * getSubExpr() const
Definition Expr.h:1743
unsigned getNumInits() const
Definition Expr.h:5263
const Expr * getInit(unsigned Init) const
Definition Expr.h:5287
ComplexRangeKind
Controls the various implementations for complex multiplication and.
@ CX_Full
Implementation of complex division and multiplication using a call to runtime library functions(gener...
@ CX_Basic
Implementation of complex division and multiplication using algebraic formulas at source precision.
@ CX_Promoted
Implementation of complex division using algebraic formulas at higher precision.
@ CX_None
No range rule is enabled.
@ CX_Improved
Implementation of complex division offering an improved handling for overflow in intermediate calcula...
Expr * getBase() const
Definition Expr.h:3375
SourceLocation getExprLoc() const LLVM_READONLY
Definition Expr.h:1208
const Expr * getSubExpr() const
Definition Expr.h:2199
SourceLocation getExprLoc() const LLVM_READONLY
Definition Expr.h:6776
A (possibly-)qualified type.
Definition TypeBase.h:937
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition TypeBase.h:1004
bool UseExcessPrecision(const ASTContext &Ctx)
Definition Type.cpp:1612
Encodes a location in the source.
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition Stmt.cpp:338
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition TypeBase.h:8915
const T * castAs() const
Member-template castAs<specific type>.
Definition TypeBase.h:9158
bool isReferenceType() const
Definition TypeBase.h:8539
bool isAnyComplexType() const
Definition TypeBase.h:8650
bool isRealFloatingType() const
Floating point categories.
Definition Type.cpp:2320
bool isFloatingType() const
Definition Type.cpp:2304
const T * getAs() const
Member-template getAs<specific type>'.
Definition TypeBase.h:9091
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition Expr.h:2244
SourceLocation getExprLoc() const
Definition Expr.h:2368
Expr * getSubExpr() const
Definition Expr.h:2285
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
The JSON file list parser is used to communicate input to InstallAPI.
CastKind
CastKind - The kind of operation required for a conversion.
U cast(CodeGen::Address addr)
Definition Address.h:327
static bool cgFPOptionsRAII()
static bool fastMathFlags()