clang 22.0.0git
CIRGenExprComplex.cpp
Go to the documentation of this file.
1#include "CIRGenBuilder.h"
3#include "CIRGenFunction.h"
4
6
7using namespace clang;
8using namespace clang::CIRGen;
9
10#ifndef NDEBUG
11/// Return the complex type that we are meant to emit.
13 type = type.getCanonicalType();
14 if (const ComplexType *comp = dyn_cast<ComplexType>(type))
15 return comp;
16 return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
17}
18#endif // NDEBUG
19
20namespace {
21class ComplexExprEmitter : public StmtVisitor<ComplexExprEmitter, mlir::Value> {
22 CIRGenFunction &cgf;
23 CIRGenBuilderTy &builder;
24
25public:
26 explicit ComplexExprEmitter(CIRGenFunction &cgf)
27 : cgf(cgf), builder(cgf.getBuilder()) {}
28
29 //===--------------------------------------------------------------------===//
30 // Utilities
31 //===--------------------------------------------------------------------===//
32
33 /// Given an expression with complex type that represents a value l-value,
34 /// this method emits the address of the l-value, then loads and returns the
35 /// result.
36 mlir::Value emitLoadOfLValue(const Expr *e) {
37 return emitLoadOfLValue(cgf.emitLValue(e), e->getExprLoc());
38 }
39
40 mlir::Value emitLoadOfLValue(LValue lv, SourceLocation loc);
41
42 /// Store the specified real/imag parts into the
43 /// specified value pointer.
44 void emitStoreOfComplex(mlir::Location loc, mlir::Value val, LValue lv,
45 bool isInit);
46
47 /// Emit a cast from complex value Val to DestType.
48 mlir::Value emitComplexToComplexCast(mlir::Value value, QualType srcType,
49 QualType destType, SourceLocation loc);
50
51 /// Emit a cast from scalar value Val to DestType.
52 mlir::Value emitScalarToComplexCast(mlir::Value value, QualType srcType,
53 QualType destType, SourceLocation loc);
54
55 //===--------------------------------------------------------------------===//
56 // Visitor Methods
57 //===--------------------------------------------------------------------===//
58
59 mlir::Value Visit(Expr *e) {
60 return StmtVisitor<ComplexExprEmitter, mlir::Value>::Visit(e);
61 }
62
63 mlir::Value VisitStmt(Stmt *s) {
64 cgf.cgm.errorNYI(s->getBeginLoc(), "ComplexExprEmitter VisitStmt");
65 return {};
66 }
67
68 mlir::Value VisitExpr(Expr *e);
69 mlir::Value VisitConstantExpr(ConstantExpr *e) {
70 if (mlir::Attribute result = ConstantEmitter(cgf).tryEmitConstantExpr(e))
71 return builder.getConstant(cgf.getLoc(e->getSourceRange()),
72 mlir::cast<mlir::TypedAttr>(result));
73
74 cgf.cgm.errorNYI(e->getExprLoc(),
75 "ComplexExprEmitter VisitConstantExpr non constantexpr");
76 return {};
77 }
78
79 mlir::Value VisitParenExpr(ParenExpr *pe) { return Visit(pe->getSubExpr()); }
80 mlir::Value VisitGenericSelectionExpr(GenericSelectionExpr *ge) {
81 return Visit(ge->getResultExpr());
82 }
83 mlir::Value VisitImaginaryLiteral(const ImaginaryLiteral *il);
84 mlir::Value
85 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *pe) {
86 return Visit(pe->getReplacement());
87 }
88 mlir::Value VisitCoawaitExpr(CoawaitExpr *s) {
89 cgf.cgm.errorNYI(s->getExprLoc(), "ComplexExprEmitter VisitCoawaitExpr");
90 return {};
91 }
92 mlir::Value VisitCoyieldExpr(CoyieldExpr *s) {
93 cgf.cgm.errorNYI(s->getExprLoc(), "ComplexExprEmitter VisitCoyieldExpr");
94 return {};
95 }
96 mlir::Value VisitUnaryCoawait(const UnaryOperator *e) {
97 cgf.cgm.errorNYI(e->getExprLoc(), "ComplexExprEmitter VisitUnaryCoawait");
98 return {};
99 }
100
101 mlir::Value emitConstant(const CIRGenFunction::ConstantEmission &constant,
102 Expr *e) {
103 assert(constant && "not a constant");
104 if (constant.isReference())
105 return emitLoadOfLValue(constant.getReferenceLValue(cgf, e),
106 e->getExprLoc());
107
108 mlir::TypedAttr valueAttr = constant.getValue();
109 return builder.getConstant(cgf.getLoc(e->getSourceRange()), valueAttr);
110 }
111
112 // l-values.
113 mlir::Value VisitDeclRefExpr(DeclRefExpr *e) {
114 if (CIRGenFunction::ConstantEmission constant = cgf.tryEmitAsConstant(e))
115 return emitConstant(constant, e);
116 return emitLoadOfLValue(e);
117 }
118 mlir::Value VisitObjCIvarRefExpr(ObjCIvarRefExpr *e) {
119 cgf.cgm.errorNYI(e->getExprLoc(),
120 "ComplexExprEmitter VisitObjCIvarRefExpr");
121 return {};
122 }
123 mlir::Value VisitObjCMessageExpr(ObjCMessageExpr *e) {
124 cgf.cgm.errorNYI(e->getExprLoc(),
125 "ComplexExprEmitter VisitObjCMessageExpr");
126 return {};
127 }
128 mlir::Value VisitArraySubscriptExpr(Expr *e) { return emitLoadOfLValue(e); }
129 mlir::Value VisitMemberExpr(MemberExpr *me) {
130 if (CIRGenFunction::ConstantEmission constant = cgf.tryEmitAsConstant(me)) {
131 cgf.emitIgnoredExpr(me->getBase());
132 return emitConstant(constant, me);
133 }
134 return emitLoadOfLValue(me);
135 }
136 mlir::Value VisitOpaqueValueExpr(OpaqueValueExpr *e) {
137 if (e->isGLValue())
138 return emitLoadOfLValue(cgf.getOrCreateOpaqueLValueMapping(e),
139 e->getExprLoc());
140 return cgf.getOrCreateOpaqueRValueMapping(e).getComplexValue();
141 }
142
143 mlir::Value VisitPseudoObjectExpr(PseudoObjectExpr *e) {
144 cgf.cgm.errorNYI(e->getExprLoc(),
145 "ComplexExprEmitter VisitPseudoObjectExpr");
146 return {};
147 }
148
149 mlir::Value emitCast(CastKind ck, Expr *op, QualType destTy);
150 mlir::Value VisitImplicitCastExpr(ImplicitCastExpr *e) {
151 // Unlike for scalars, we don't have to worry about function->ptr demotion
152 // here.
154 return emitLoadOfLValue(e);
155 return emitCast(e->getCastKind(), e->getSubExpr(), e->getType());
156 }
157 mlir::Value VisitCastExpr(CastExpr *e) {
158 if (const auto *ece = dyn_cast<ExplicitCastExpr>(e)) {
159 // Bind VLAs in the cast type.
160 if (ece->getType()->isVariablyModifiedType()) {
161 cgf.cgm.errorNYI(e->getExprLoc(),
162 "VisitCastExpr Bind VLAs in the cast type");
163 return {};
164 }
165 }
166
168 return emitLoadOfLValue(e);
169
170 return emitCast(e->getCastKind(), e->getSubExpr(), e->getType());
171 }
172 mlir::Value VisitCallExpr(const CallExpr *e);
173 mlir::Value VisitStmtExpr(const StmtExpr *e);
174
175 // Operators.
176 mlir::Value VisitPrePostIncDec(const UnaryOperator *e, cir::UnaryOpKind op,
177 bool isPre) {
178 LValue lv = cgf.emitLValue(e->getSubExpr());
179 return cgf.emitComplexPrePostIncDec(e, lv, op, isPre);
180 }
181 mlir::Value VisitUnaryPostDec(const UnaryOperator *e) {
182 return VisitPrePostIncDec(e, cir::UnaryOpKind::Dec, false);
183 }
184 mlir::Value VisitUnaryPostInc(const UnaryOperator *e) {
185 return VisitPrePostIncDec(e, cir::UnaryOpKind::Inc, false);
186 }
187 mlir::Value VisitUnaryPreDec(const UnaryOperator *e) {
188 return VisitPrePostIncDec(e, cir::UnaryOpKind::Dec, true);
189 }
190 mlir::Value VisitUnaryPreInc(const UnaryOperator *e) {
191 return VisitPrePostIncDec(e, cir::UnaryOpKind::Inc, true);
192 }
193 mlir::Value VisitUnaryDeref(const Expr *e) { return emitLoadOfLValue(e); }
194
195 mlir::Value VisitUnaryPlus(const UnaryOperator *e);
196 mlir::Value VisitUnaryMinus(const UnaryOperator *e);
197 mlir::Value VisitPlusMinus(const UnaryOperator *e, cir::UnaryOpKind kind,
198 QualType promotionType);
199 mlir::Value VisitUnaryNot(const UnaryOperator *e);
200 // LNot,Real,Imag never return complex.
201 mlir::Value VisitUnaryExtension(const UnaryOperator *e) {
202 return Visit(e->getSubExpr());
203 }
204 mlir::Value VisitCXXDefaultArgExpr(CXXDefaultArgExpr *dae) {
205 CIRGenFunction::CXXDefaultArgExprScope scope(cgf, dae);
206 return Visit(dae->getExpr());
207 }
208 mlir::Value VisitCXXDefaultInitExpr(CXXDefaultInitExpr *die) {
209 CIRGenFunction::CXXDefaultInitExprScope scope(cgf, die);
210 return Visit(die->getExpr());
211 }
212 mlir::Value VisitExprWithCleanups(ExprWithCleanups *e) {
213 cgf.cgm.errorNYI(e->getExprLoc(),
214 "ComplexExprEmitter VisitExprWithCleanups");
215 return {};
216 }
217 mlir::Value VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *e) {
218 mlir::Location loc = cgf.getLoc(e->getExprLoc());
219 mlir::Type complexTy = cgf.convertType(e->getType());
220 return builder.getNullValue(complexTy, loc);
221 }
222 mlir::Value VisitImplicitValueInitExpr(ImplicitValueInitExpr *e) {
223 cgf.cgm.errorNYI(e->getExprLoc(),
224 "ComplexExprEmitter VisitImplicitValueInitExpr");
225 return {};
226 }
227
228 struct BinOpInfo {
229 mlir::Location loc;
230 mlir::Value lhs{};
231 mlir::Value rhs{};
232 QualType ty{}; // Computation Type.
233 FPOptions fpFeatures{};
234 };
235
236 BinOpInfo emitBinOps(const BinaryOperator *e,
237 QualType promotionTy = QualType());
238
239 mlir::Value emitPromoted(const Expr *e, QualType promotionTy);
240 mlir::Value emitPromotedComplexOperand(const Expr *e, QualType promotionTy);
241 LValue emitCompoundAssignLValue(
242 const CompoundAssignOperator *e,
243 mlir::Value (ComplexExprEmitter::*func)(const BinOpInfo &),
244 RValue &value);
245 mlir::Value emitCompoundAssign(
246 const CompoundAssignOperator *e,
247 mlir::Value (ComplexExprEmitter::*func)(const BinOpInfo &));
248
249 mlir::Value emitBinAdd(const BinOpInfo &op);
250 mlir::Value emitBinSub(const BinOpInfo &op);
251 mlir::Value emitBinMul(const BinOpInfo &op);
252 mlir::Value emitBinDiv(const BinOpInfo &op);
253
254 QualType getPromotionType(QualType ty, bool isDivOpCode = false) {
255 if (auto *complexTy = ty->getAs<ComplexType>()) {
256 QualType elementTy = complexTy->getElementType();
257 if (elementTy.UseExcessPrecision(cgf.getContext()))
258 return cgf.getContext().getComplexType(cgf.getContext().FloatTy);
259 }
260
261 if (ty.UseExcessPrecision(cgf.getContext()))
262 return cgf.getContext().FloatTy;
263 return QualType();
264 }
265
266#define HANDLEBINOP(OP) \
267 mlir::Value VisitBin##OP(const BinaryOperator *e) { \
268 QualType promotionTy = getPromotionType( \
269 e->getType(), e->getOpcode() == BinaryOperatorKind::BO_Div); \
270 mlir::Value result = emitBin##OP(emitBinOps(e, promotionTy)); \
271 if (!promotionTy.isNull()) \
272 result = cgf.emitUnPromotedValue(result, e->getType()); \
273 return result; \
274 }
275
276 HANDLEBINOP(Add)
277 HANDLEBINOP(Sub)
278 HANDLEBINOP(Mul)
279 HANDLEBINOP(Div)
280#undef HANDLEBINOP
281
282 mlir::Value VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *e) {
283 cgf.cgm.errorNYI(e->getExprLoc(),
284 "ComplexExprEmitter VisitCXXRewrittenBinaryOperator");
285 return {};
286 }
287
288 // Compound assignments.
289 mlir::Value VisitBinAddAssign(const CompoundAssignOperator *e) {
290 return emitCompoundAssign(e, &ComplexExprEmitter::emitBinAdd);
291 }
292 mlir::Value VisitBinSubAssign(const CompoundAssignOperator *e) {
293 return emitCompoundAssign(e, &ComplexExprEmitter::emitBinSub);
294 }
295 mlir::Value VisitBinMulAssign(const CompoundAssignOperator *e) {
296 return emitCompoundAssign(e, &ComplexExprEmitter::emitBinMul);
297 }
298 mlir::Value VisitBinDivAssign(const CompoundAssignOperator *e) {
299 return emitCompoundAssign(e, &ComplexExprEmitter::emitBinDiv);
300 }
301
302 // GCC rejects rem/and/or/xor for integer complex.
303 // Logical and/or always return int, never complex.
304
305 // No comparisons produce a complex result.
306
307 LValue emitBinAssignLValue(const BinaryOperator *e, mlir::Value &val);
308 mlir::Value VisitBinAssign(const BinaryOperator *e);
309 mlir::Value VisitBinComma(const BinaryOperator *e);
310
311 mlir::Value
312 VisitAbstractConditionalOperator(const AbstractConditionalOperator *e);
313 mlir::Value VisitChooseExpr(ChooseExpr *e);
314
315 mlir::Value VisitInitListExpr(InitListExpr *e);
316
317 mlir::Value VisitCompoundLiteralExpr(CompoundLiteralExpr *e) {
318 return emitLoadOfLValue(e);
319 }
320
321 mlir::Value VisitVAArgExpr(VAArgExpr *e);
322
323 mlir::Value VisitAtomicExpr(AtomicExpr *e) {
324 return cgf.emitAtomicExpr(e).getComplexValue();
325 }
326
327 mlir::Value VisitPackIndexingExpr(PackIndexingExpr *e) {
328 cgf.cgm.errorNYI(e->getExprLoc(),
329 "ComplexExprEmitter VisitPackIndexingExpr");
330 return {};
331 }
332};
333} // namespace
334
335//===----------------------------------------------------------------------===//
336// Utilities
337//===----------------------------------------------------------------------===//
338
339/// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
340/// load the real and imaginary pieces, returning them as Real/Imag.
341mlir::Value ComplexExprEmitter::emitLoadOfLValue(LValue lv,
342 SourceLocation loc) {
343 assert(lv.isSimple() && "non-simple complex l-value?");
344 if (lv.getType()->isAtomicType())
345 cgf.cgm.errorNYI(loc, "emitLoadOfLValue with Atomic LV");
346
347 const Address srcAddr = lv.getAddress();
348 return builder.createLoad(cgf.getLoc(loc), srcAddr, lv.isVolatileQualified());
349}
350
351/// EmitStoreOfComplex - Store the specified real/imag parts into the
352/// specified value pointer.
353void ComplexExprEmitter::emitStoreOfComplex(mlir::Location loc, mlir::Value val,
354 LValue lv, bool isInit) {
355 if (lv.getType()->isAtomicType() ||
356 (!isInit && cgf.isLValueSuitableForInlineAtomic(lv))) {
357 cgf.cgm.errorNYI(loc, "StoreOfComplex with Atomic LV");
358 return;
359 }
360
361 const Address destAddr = lv.getAddress();
362 builder.createStore(loc, val, destAddr, lv.isVolatileQualified());
363}
364
365//===----------------------------------------------------------------------===//
366// Visitor Methods
367//===----------------------------------------------------------------------===//
368
369mlir::Value ComplexExprEmitter::VisitExpr(Expr *e) {
370 cgf.cgm.errorNYI(e->getExprLoc(), "ComplexExprEmitter VisitExpr");
371 return {};
372}
373
374mlir::Value
375ComplexExprEmitter::VisitImaginaryLiteral(const ImaginaryLiteral *il) {
376 auto ty = mlir::cast<cir::ComplexType>(cgf.convertType(il->getType()));
377 mlir::Type elementTy = ty.getElementType();
378 mlir::Location loc = cgf.getLoc(il->getExprLoc());
379
380 mlir::TypedAttr realValueAttr;
381 mlir::TypedAttr imagValueAttr;
382
383 if (mlir::isa<cir::IntType>(elementTy)) {
384 llvm::APInt imagValue = cast<IntegerLiteral>(il->getSubExpr())->getValue();
385 realValueAttr = cir::IntAttr::get(elementTy, 0);
386 imagValueAttr = cir::IntAttr::get(elementTy, imagValue);
387 } else {
388 assert(mlir::isa<cir::FPTypeInterface>(elementTy) &&
389 "Expected complex element type to be floating-point");
390
391 llvm::APFloat imagValue =
392 cast<FloatingLiteral>(il->getSubExpr())->getValue();
393 realValueAttr = cir::FPAttr::get(
394 elementTy, llvm::APFloat::getZero(imagValue.getSemantics()));
395 imagValueAttr = cir::FPAttr::get(elementTy, imagValue);
396 }
397
398 auto complexAttr = cir::ConstComplexAttr::get(realValueAttr, imagValueAttr);
399 return cir::ConstantOp::create(builder, loc, complexAttr);
400}
401
402mlir::Value ComplexExprEmitter::VisitCallExpr(const CallExpr *e) {
404 return emitLoadOfLValue(e);
405 return cgf.emitCallExpr(e).getComplexValue();
406}
407
408mlir::Value ComplexExprEmitter::VisitStmtExpr(const StmtExpr *e) {
409 CIRGenFunction::StmtExprEvaluation eval(cgf);
410 Address retAlloca =
411 cgf.createMemTemp(e->getType(), cgf.getLoc(e->getSourceRange()));
412 (void)cgf.emitCompoundStmt(*e->getSubStmt(), &retAlloca);
413 assert(retAlloca.isValid() && "Expected complex return value");
414 return emitLoadOfLValue(cgf.makeAddrLValue(retAlloca, e->getType()),
415 e->getExprLoc());
416}
417
418mlir::Value ComplexExprEmitter::emitComplexToComplexCast(mlir::Value val,
419 QualType srcType,
420 QualType destType,
421 SourceLocation loc) {
422 if (srcType == destType)
423 return val;
424
425 // Get the src/dest element type.
426 QualType srcElemTy = srcType->castAs<ComplexType>()->getElementType();
427 QualType destElemTy = destType->castAs<ComplexType>()->getElementType();
428
429 cir::CastKind castOpKind;
430 if (srcElemTy->isFloatingType() && destElemTy->isFloatingType())
431 castOpKind = cir::CastKind::float_complex;
432 else if (srcElemTy->isFloatingType() && destElemTy->isIntegerType())
433 castOpKind = cir::CastKind::float_complex_to_int_complex;
434 else if (srcElemTy->isIntegerType() && destElemTy->isFloatingType())
435 castOpKind = cir::CastKind::int_complex_to_float_complex;
436 else if (srcElemTy->isIntegerType() && destElemTy->isIntegerType())
437 castOpKind = cir::CastKind::int_complex;
438 else
439 llvm_unreachable("unexpected src type or dest type");
440
441 return builder.createCast(cgf.getLoc(loc), castOpKind, val,
442 cgf.convertType(destType));
443}
444
445mlir::Value ComplexExprEmitter::emitScalarToComplexCast(mlir::Value val,
446 QualType srcType,
447 QualType destType,
448 SourceLocation loc) {
449 cir::CastKind castOpKind;
450 if (srcType->isFloatingType())
451 castOpKind = cir::CastKind::float_to_complex;
452 else if (srcType->isIntegerType())
453 castOpKind = cir::CastKind::int_to_complex;
454 else
455 llvm_unreachable("unexpected src type");
456
457 return builder.createCast(cgf.getLoc(loc), castOpKind, val,
458 cgf.convertType(destType));
459}
460
461mlir::Value ComplexExprEmitter::emitCast(CastKind ck, Expr *op,
462 QualType destTy) {
463 switch (ck) {
464 case CK_Dependent:
465 llvm_unreachable("dependent type must be resolved before the CIR codegen");
466
467 case CK_NoOp:
468 case CK_LValueToRValue:
469 return Visit(op);
470
471 case CK_AtomicToNonAtomic:
472 case CK_NonAtomicToAtomic:
473 case CK_UserDefinedConversion: {
474 cgf.cgm.errorNYI(
475 "ComplexExprEmitter::emitCast Atmoic & UserDefinedConversion");
476 return {};
477 }
478
479 case CK_LValueBitCast: {
480 LValue origLV = cgf.emitLValue(op);
481 Address addr =
482 origLV.getAddress().withElementType(builder, cgf.convertType(destTy));
483 LValue destLV = cgf.makeAddrLValue(addr, destTy);
484 return emitLoadOfLValue(destLV, op->getExprLoc());
485 }
486
487 case CK_LValueToRValueBitCast: {
488 LValue sourceLVal = cgf.emitLValue(op);
489 Address addr = sourceLVal.getAddress().withElementType(
490 builder, cgf.convertTypeForMem(destTy));
491 LValue destLV = cgf.makeAddrLValue(addr, destTy);
493 return emitLoadOfLValue(destLV, op->getExprLoc());
494 }
495
496 case CK_BitCast:
497 case CK_BaseToDerived:
498 case CK_DerivedToBase:
499 case CK_UncheckedDerivedToBase:
500 case CK_Dynamic:
501 case CK_ToUnion:
502 case CK_ArrayToPointerDecay:
503 case CK_FunctionToPointerDecay:
504 case CK_NullToPointer:
505 case CK_NullToMemberPointer:
506 case CK_BaseToDerivedMemberPointer:
507 case CK_DerivedToBaseMemberPointer:
508 case CK_MemberPointerToBoolean:
509 case CK_ReinterpretMemberPointer:
510 case CK_ConstructorConversion:
511 case CK_IntegralToPointer:
512 case CK_PointerToIntegral:
513 case CK_PointerToBoolean:
514 case CK_ToVoid:
515 case CK_VectorSplat:
516 case CK_IntegralCast:
517 case CK_BooleanToSignedIntegral:
518 case CK_IntegralToBoolean:
519 case CK_IntegralToFloating:
520 case CK_FloatingToIntegral:
521 case CK_FloatingToBoolean:
522 case CK_FloatingCast:
523 case CK_CPointerToObjCPointerCast:
524 case CK_BlockPointerToObjCPointerCast:
525 case CK_AnyPointerToBlockPointerCast:
526 case CK_ObjCObjectLValueCast:
527 case CK_FloatingComplexToReal:
528 case CK_FloatingComplexToBoolean:
529 case CK_IntegralComplexToReal:
530 case CK_IntegralComplexToBoolean:
531 case CK_ARCProduceObject:
532 case CK_ARCConsumeObject:
533 case CK_ARCReclaimReturnedObject:
534 case CK_ARCExtendBlockObject:
535 case CK_CopyAndAutoreleaseBlockObject:
536 case CK_BuiltinFnToFnPtr:
537 case CK_ZeroToOCLOpaqueType:
538 case CK_AddressSpaceConversion:
539 case CK_IntToOCLSampler:
540 case CK_FloatingToFixedPoint:
541 case CK_FixedPointToFloating:
542 case CK_FixedPointCast:
543 case CK_FixedPointToBoolean:
544 case CK_FixedPointToIntegral:
545 case CK_IntegralToFixedPoint:
546 case CK_MatrixCast:
547 case CK_HLSLVectorTruncation:
548 case CK_HLSLMatrixTruncation:
549 case CK_HLSLArrayRValue:
550 case CK_HLSLElementwiseCast:
551 case CK_HLSLAggregateSplatCast:
552 llvm_unreachable("invalid cast kind for complex value");
553
554 case CK_FloatingRealToComplex:
555 case CK_IntegralRealToComplex: {
557 return emitScalarToComplexCast(cgf.emitScalarExpr(op), op->getType(),
558 destTy, op->getExprLoc());
559 }
560
561 case CK_FloatingComplexCast:
562 case CK_FloatingComplexToIntegralComplex:
563 case CK_IntegralComplexCast:
564 case CK_IntegralComplexToFloatingComplex: {
566 return emitComplexToComplexCast(Visit(op), op->getType(), destTy,
567 op->getExprLoc());
568 }
569 }
570
571 llvm_unreachable("unknown cast resulting in complex value");
572}
573
574mlir::Value ComplexExprEmitter::VisitUnaryPlus(const UnaryOperator *e) {
575 QualType promotionTy = getPromotionType(e->getSubExpr()->getType());
576 mlir::Value result = VisitPlusMinus(e, cir::UnaryOpKind::Plus, promotionTy);
577 if (!promotionTy.isNull())
578 return cgf.emitUnPromotedValue(result, e->getSubExpr()->getType());
579 return result;
580}
581
582mlir::Value ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *e) {
583 QualType promotionTy = getPromotionType(e->getSubExpr()->getType());
584 mlir::Value result = VisitPlusMinus(e, cir::UnaryOpKind::Minus, promotionTy);
585 if (!promotionTy.isNull())
586 return cgf.emitUnPromotedValue(result, e->getSubExpr()->getType());
587 return result;
588}
589
590mlir::Value ComplexExprEmitter::VisitPlusMinus(const UnaryOperator *e,
591 cir::UnaryOpKind kind,
592 QualType promotionType) {
593 assert(kind == cir::UnaryOpKind::Plus ||
594 kind == cir::UnaryOpKind::Minus &&
595 "Invalid UnaryOp kind for ComplexType Plus or Minus");
596
597 mlir::Value op;
598 if (!promotionType.isNull())
599 op = cgf.emitPromotedComplexExpr(e->getSubExpr(), promotionType);
600 else
601 op = Visit(e->getSubExpr());
602 return builder.createUnaryOp(cgf.getLoc(e->getExprLoc()), kind, op);
603}
604
605mlir::Value ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *e) {
606 mlir::Value op = Visit(e->getSubExpr());
607 return builder.createNot(op);
608}
609
610mlir::Value ComplexExprEmitter::emitBinAdd(const BinOpInfo &op) {
613
614 if (mlir::isa<cir::ComplexType>(op.lhs.getType()) &&
615 mlir::isa<cir::ComplexType>(op.rhs.getType()))
616 return cir::ComplexAddOp::create(builder, op.loc, op.lhs, op.rhs);
617
618 if (mlir::isa<cir::ComplexType>(op.lhs.getType())) {
619 mlir::Value real = builder.createComplexReal(op.loc, op.lhs);
620 mlir::Value imag = builder.createComplexImag(op.loc, op.lhs);
621 mlir::Value newReal = builder.createAdd(op.loc, real, op.rhs);
622 return builder.createComplexCreate(op.loc, newReal, imag);
623 }
624
625 assert(mlir::isa<cir::ComplexType>(op.rhs.getType()));
626 mlir::Value real = builder.createComplexReal(op.loc, op.rhs);
627 mlir::Value imag = builder.createComplexImag(op.loc, op.rhs);
628 mlir::Value newReal = builder.createAdd(op.loc, op.lhs, real);
629 return builder.createComplexCreate(op.loc, newReal, imag);
630}
631
632mlir::Value ComplexExprEmitter::emitBinSub(const BinOpInfo &op) {
635
636 if (mlir::isa<cir::ComplexType>(op.lhs.getType()) &&
637 mlir::isa<cir::ComplexType>(op.rhs.getType()))
638 return cir::ComplexSubOp::create(builder, op.loc, op.lhs, op.rhs);
639
640 if (mlir::isa<cir::ComplexType>(op.lhs.getType())) {
641 mlir::Value real = builder.createComplexReal(op.loc, op.lhs);
642 mlir::Value imag = builder.createComplexImag(op.loc, op.lhs);
643 mlir::Value newReal = builder.createSub(op.loc, real, op.rhs);
644 return builder.createComplexCreate(op.loc, newReal, imag);
645 }
646
647 assert(mlir::isa<cir::ComplexType>(op.rhs.getType()));
648 mlir::Value real = builder.createComplexReal(op.loc, op.rhs);
649 mlir::Value imag = builder.createComplexImag(op.loc, op.rhs);
650 mlir::Value newReal = builder.createSub(op.loc, op.lhs, real);
651 return builder.createComplexCreate(op.loc, newReal, imag);
652}
653
654static cir::ComplexRangeKind
656 switch (range) {
658 return cir::ComplexRangeKind::Full;
660 return cir::ComplexRangeKind::Improved;
662 return cir::ComplexRangeKind::Promoted;
664 return cir::ComplexRangeKind::Basic;
666 // The default value for ComplexRangeKind is Full if no option is selected
667 return cir::ComplexRangeKind::Full;
668 }
669}
670
671mlir::Value ComplexExprEmitter::emitBinMul(const BinOpInfo &op) {
674
675 if (mlir::isa<cir::ComplexType>(op.lhs.getType()) &&
676 mlir::isa<cir::ComplexType>(op.rhs.getType())) {
677 cir::ComplexRangeKind rangeKind =
678 getComplexRangeAttr(op.fpFeatures.getComplexRange());
679 return cir::ComplexMulOp::create(builder, op.loc, op.lhs, op.rhs,
680 rangeKind);
681 }
682
683 if (mlir::isa<cir::ComplexType>(op.lhs.getType())) {
684 mlir::Value real = builder.createComplexReal(op.loc, op.lhs);
685 mlir::Value imag = builder.createComplexImag(op.loc, op.lhs);
686 mlir::Value newReal = builder.createMul(op.loc, real, op.rhs);
687 mlir::Value newImag = builder.createMul(op.loc, imag, op.rhs);
688 return builder.createComplexCreate(op.loc, newReal, newImag);
689 }
690
691 assert(mlir::isa<cir::ComplexType>(op.rhs.getType()));
692 mlir::Value real = builder.createComplexReal(op.loc, op.rhs);
693 mlir::Value imag = builder.createComplexImag(op.loc, op.rhs);
694 mlir::Value newReal = builder.createMul(op.loc, op.lhs, real);
695 mlir::Value newImag = builder.createMul(op.loc, op.lhs, imag);
696 return builder.createComplexCreate(op.loc, newReal, newImag);
697}
698
699mlir::Value ComplexExprEmitter::emitBinDiv(const BinOpInfo &op) {
702
703 // Handle division between two complex values. In the case of complex integer
704 // types mixed with scalar integers, the scalar integer type will always be
705 // promoted to a complex integer value with a zero imaginary component when
706 // the AST is formed.
707 if (mlir::isa<cir::ComplexType>(op.lhs.getType()) &&
708 mlir::isa<cir::ComplexType>(op.rhs.getType())) {
709 cir::ComplexRangeKind rangeKind =
710 getComplexRangeAttr(op.fpFeatures.getComplexRange());
711 return cir::ComplexDivOp::create(builder, op.loc, op.lhs, op.rhs,
712 rangeKind);
713 }
714
715 // The C99 standard (G.5.1) defines division of a complex value by a real
716 // value in the following simplified form.
717 if (mlir::isa<cir::ComplexType>(op.lhs.getType())) {
718 assert(mlir::cast<cir::ComplexType>(op.lhs.getType()).getElementType() ==
719 op.rhs.getType());
720 mlir::Value real = builder.createComplexReal(op.loc, op.lhs);
721 mlir::Value imag = builder.createComplexImag(op.loc, op.lhs);
722 mlir::Value newReal = builder.createFDiv(op.loc, real, op.rhs);
723 mlir::Value newImag = builder.createFDiv(op.loc, imag, op.rhs);
724 return builder.createComplexCreate(op.loc, newReal, newImag);
725 }
726
727 assert(mlir::isa<cir::ComplexType>(op.rhs.getType()));
728 cir::ConstantOp nullValue = builder.getNullValue(op.lhs.getType(), op.loc);
729 mlir::Value lhs = builder.createComplexCreate(op.loc, op.lhs, nullValue);
730 cir::ComplexRangeKind rangeKind =
731 getComplexRangeAttr(op.fpFeatures.getComplexRange());
732 return cir::ComplexDivOp::create(builder, op.loc, lhs, op.rhs, rangeKind);
733}
734
735mlir::Value CIRGenFunction::emitUnPromotedValue(mlir::Value result,
736 QualType unPromotionType) {
737 assert(!mlir::cast<cir::ComplexType>(result.getType()).isIntegerComplex() &&
738 "integral complex will never be promoted");
739 return builder.createCast(cir::CastKind::float_complex, result,
740 convertType(unPromotionType));
741}
742
743mlir::Value CIRGenFunction::emitPromotedValue(mlir::Value result,
744 QualType promotionType) {
745 assert(!mlir::cast<cir::ComplexType>(result.getType()).isIntegerComplex() &&
746 "integral complex will never be promoted");
747 return builder.createCast(cir::CastKind::float_complex, result,
748 convertType(promotionType));
749}
750
751mlir::Value ComplexExprEmitter::emitPromoted(const Expr *e,
752 QualType promotionTy) {
753 e = e->IgnoreParens();
754 if (const auto *bo = dyn_cast<BinaryOperator>(e)) {
755 switch (bo->getOpcode()) {
756#define HANDLE_BINOP(OP) \
757 case BO_##OP: \
758 return emitBin##OP(emitBinOps(bo, promotionTy));
759 HANDLE_BINOP(Add)
760 HANDLE_BINOP(Sub)
761 HANDLE_BINOP(Mul)
762 HANDLE_BINOP(Div)
763#undef HANDLE_BINOP
764 default:
765 break;
766 }
767 } else if (const auto *unaryOp = dyn_cast<UnaryOperator>(e)) {
768 switch (unaryOp->getOpcode()) {
769 case UO_Minus:
770 case UO_Plus: {
771 auto kind = unaryOp->getOpcode() == UO_Plus ? cir::UnaryOpKind::Plus
772 : cir::UnaryOpKind::Minus;
773 return VisitPlusMinus(unaryOp, kind, promotionTy);
774 }
775 default:
776 break;
777 }
778 }
779
780 mlir::Value result = Visit(const_cast<Expr *>(e));
781 if (!promotionTy.isNull())
782 return cgf.emitPromotedValue(result, promotionTy);
783
784 return result;
785}
786
788 QualType promotionType) {
789 return ComplexExprEmitter(*this).emitPromoted(e, promotionType);
790}
791
792mlir::Value
793ComplexExprEmitter::emitPromotedComplexOperand(const Expr *e,
794 QualType promotionTy) {
795 if (e->getType()->isAnyComplexType()) {
796 if (!promotionTy.isNull())
797 return cgf.emitPromotedComplexExpr(e, promotionTy);
798 return Visit(const_cast<Expr *>(e));
799 }
800
801 if (!promotionTy.isNull()) {
802 QualType complexElementTy =
803 promotionTy->castAs<ComplexType>()->getElementType();
804 return cgf.emitPromotedScalarExpr(e, complexElementTy);
805 }
806 return cgf.emitScalarExpr(e);
807}
808
809ComplexExprEmitter::BinOpInfo
810ComplexExprEmitter::emitBinOps(const BinaryOperator *e, QualType promotionTy) {
811 BinOpInfo binOpInfo{cgf.getLoc(e->getExprLoc())};
812 binOpInfo.lhs = emitPromotedComplexOperand(e->getLHS(), promotionTy);
813 binOpInfo.rhs = emitPromotedComplexOperand(e->getRHS(), promotionTy);
814 binOpInfo.ty = promotionTy.isNull() ? e->getType() : promotionTy;
815 binOpInfo.fpFeatures = e->getFPFeaturesInEffect(cgf.getLangOpts());
816 return binOpInfo;
817}
818
819LValue ComplexExprEmitter::emitCompoundAssignLValue(
820 const CompoundAssignOperator *e,
821 mlir::Value (ComplexExprEmitter::*func)(const BinOpInfo &), RValue &value) {
822 QualType lhsTy = e->getLHS()->getType();
823 QualType rhsTy = e->getRHS()->getType();
824 SourceLocation exprLoc = e->getExprLoc();
825 mlir::Location loc = cgf.getLoc(exprLoc);
826
827 if (lhsTy->getAs<AtomicType>()) {
828 cgf.cgm.errorNYI("emitCompoundAssignLValue AtmoicType");
829 return {};
830 }
831
832 BinOpInfo opInfo{loc};
833 opInfo.fpFeatures = e->getFPFeaturesInEffect(cgf.getLangOpts());
834
836
837 // Load the RHS and LHS operands.
838 // __block variables need to have the rhs evaluated first, plus this should
839 // improve codegen a little.
840 QualType promotionTypeCR = getPromotionType(e->getComputationResultType());
841 opInfo.ty = promotionTypeCR.isNull() ? e->getComputationResultType()
842 : promotionTypeCR;
843
844 QualType complexElementTy =
845 opInfo.ty->castAs<ComplexType>()->getElementType();
846 QualType promotionTypeRHS = getPromotionType(rhsTy);
847
848 // The RHS should have been converted to the computation type.
849 if (e->getRHS()->getType()->isRealFloatingType()) {
850 if (!promotionTypeRHS.isNull()) {
851 opInfo.rhs = cgf.emitPromotedScalarExpr(e->getRHS(), promotionTypeRHS);
852 } else {
853 assert(cgf.getContext().hasSameUnqualifiedType(complexElementTy, rhsTy));
854 opInfo.rhs = cgf.emitScalarExpr(e->getRHS());
855 }
856 } else {
857 if (!promotionTypeRHS.isNull()) {
858 opInfo.rhs = cgf.emitPromotedComplexExpr(e->getRHS(), promotionTypeRHS);
859 } else {
860 assert(cgf.getContext().hasSameUnqualifiedType(opInfo.ty, rhsTy));
861 opInfo.rhs = Visit(e->getRHS());
862 }
863 }
864
865 LValue lhs = cgf.emitLValue(e->getLHS());
866
867 // Load from the l-value and convert it.
868 QualType promotionTypeLHS = getPromotionType(e->getComputationLHSType());
869 if (lhsTy->isAnyComplexType()) {
870 mlir::Value lhsValue = emitLoadOfLValue(lhs, exprLoc);
871 QualType destTy = promotionTypeLHS.isNull() ? opInfo.ty : promotionTypeLHS;
872 opInfo.lhs = emitComplexToComplexCast(lhsValue, lhsTy, destTy, exprLoc);
873 } else {
874 mlir::Value lhsVal = cgf.emitLoadOfScalar(lhs, exprLoc);
875 // For floating point real operands we can directly pass the scalar form
876 // to the binary operator emission and potentially get more efficient code.
877 if (lhsTy->isRealFloatingType()) {
878 QualType promotedComplexElementTy;
879 if (!promotionTypeLHS.isNull()) {
880 promotedComplexElementTy =
881 cast<ComplexType>(promotionTypeLHS)->getElementType();
882 if (!cgf.getContext().hasSameUnqualifiedType(promotedComplexElementTy,
883 promotionTypeLHS))
884 lhsVal = cgf.emitScalarConversion(lhsVal, lhsTy,
885 promotedComplexElementTy, exprLoc);
886 } else {
887 if (!cgf.getContext().hasSameUnqualifiedType(complexElementTy, lhsTy))
888 lhsVal = cgf.emitScalarConversion(lhsVal, lhsTy, complexElementTy,
889 exprLoc);
890 }
891 opInfo.lhs = lhsVal;
892 } else {
893 opInfo.lhs = emitScalarToComplexCast(lhsVal, lhsTy, opInfo.ty, exprLoc);
894 }
895 }
896
897 // Expand the binary operator.
898 mlir::Value result = (this->*func)(opInfo);
899
900 // Truncate the result and store it into the LHS lvalue.
901 if (lhsTy->isAnyComplexType()) {
902 mlir::Value resultValue =
903 emitComplexToComplexCast(result, opInfo.ty, lhsTy, exprLoc);
904 emitStoreOfComplex(loc, resultValue, lhs, /*isInit*/ false);
905 value = RValue::getComplex(resultValue);
906 } else {
907 mlir::Value resultValue =
908 cgf.emitComplexToScalarConversion(result, opInfo.ty, lhsTy, exprLoc);
909 cgf.emitStoreOfScalar(resultValue, lhs, /*isInit*/ false);
910 value = RValue::get(resultValue);
911 }
912
913 return lhs;
914}
915
916mlir::Value ComplexExprEmitter::emitCompoundAssign(
917 const CompoundAssignOperator *e,
918 mlir::Value (ComplexExprEmitter::*func)(const BinOpInfo &)) {
919 RValue val;
920 LValue lv = emitCompoundAssignLValue(e, func, val);
921
922 // The result of an assignment in C is the assigned r-value.
923 if (!cgf.getLangOpts().CPlusPlus)
924 return val.getComplexValue();
925
926 // If the lvalue is non-volatile, return the computed value of the assignment.
927 if (!lv.isVolatileQualified())
928 return val.getComplexValue();
929
930 return emitLoadOfLValue(lv, e->getExprLoc());
931}
932
933LValue ComplexExprEmitter::emitBinAssignLValue(const BinaryOperator *e,
934 mlir::Value &value) {
935 assert(cgf.getContext().hasSameUnqualifiedType(e->getLHS()->getType(),
936 e->getRHS()->getType()) &&
937 "Invalid assignment");
938
939 // Emit the RHS. __block variables need the RHS evaluated first.
940 value = Visit(e->getRHS());
941
942 // Compute the address to store into.
943 LValue lhs = cgf.emitLValue(e->getLHS());
944
945 // Store the result value into the LHS lvalue.
946 emitStoreOfComplex(cgf.getLoc(e->getExprLoc()), value, lhs,
947 /*isInit*/ false);
948 return lhs;
949}
950
951mlir::Value ComplexExprEmitter::VisitBinAssign(const BinaryOperator *e) {
952 mlir::Value value;
953 LValue lv = emitBinAssignLValue(e, value);
954
955 // The result of an assignment in C is the assigned r-value.
956 if (!cgf.getLangOpts().CPlusPlus)
957 return value;
958
959 // If the lvalue is non-volatile, return the computed value of the
960 // assignment.
961 if (!lv.isVolatile())
962 return value;
963
964 return emitLoadOfLValue(lv, e->getExprLoc());
965}
966
967mlir::Value ComplexExprEmitter::VisitBinComma(const BinaryOperator *e) {
968 cgf.emitIgnoredExpr(e->getLHS());
969 return Visit(e->getRHS());
970}
971
972mlir::Value ComplexExprEmitter::VisitAbstractConditionalOperator(
973 const AbstractConditionalOperator *e) {
974 mlir::Location loc = cgf.getLoc(e->getSourceRange());
975
976 // Bind the common expression if necessary.
977 CIRGenFunction::OpaqueValueMapping binding(cgf, e);
978
979 CIRGenFunction::ConditionalEvaluation eval(cgf);
980
981 Expr *cond = e->getCond()->IgnoreParens();
982 mlir::Value condValue = cgf.evaluateExprAsBool(cond);
983
984 return cir::TernaryOp::create(
985 builder, loc, condValue,
986 /*thenBuilder=*/
987 [&](mlir::OpBuilder &b, mlir::Location loc) {
988 eval.beginEvaluation();
989 mlir::Value trueValue = Visit(e->getTrueExpr());
990 cir::YieldOp::create(b, loc, trueValue);
991 eval.endEvaluation();
992 },
993 /*elseBuilder=*/
994 [&](mlir::OpBuilder &b, mlir::Location loc) {
995 eval.beginEvaluation();
996 mlir::Value falseValue = Visit(e->getFalseExpr());
997 cir::YieldOp::create(b, loc, falseValue);
998 eval.endEvaluation();
999 })
1000 .getResult();
1001}
1002
1003mlir::Value ComplexExprEmitter::VisitChooseExpr(ChooseExpr *e) {
1004 return Visit(e->getChosenSubExpr());
1005}
1006
1007mlir::Value ComplexExprEmitter::VisitInitListExpr(InitListExpr *e) {
1008 mlir::Location loc = cgf.getLoc(e->getExprLoc());
1009 if (e->getNumInits() == 2) {
1010 mlir::Value real = cgf.emitScalarExpr(e->getInit(0));
1011 mlir::Value imag = cgf.emitScalarExpr(e->getInit(1));
1012 return builder.createComplexCreate(loc, real, imag);
1013 }
1014
1015 if (e->getNumInits() == 1)
1016 return Visit(e->getInit(0));
1017
1018 assert(e->getNumInits() == 0 && "Unexpected number of inits");
1019 mlir::Type complexTy = cgf.convertType(e->getType());
1020 return builder.getNullValue(complexTy, loc);
1021}
1022
1023mlir::Value ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *e) {
1024 return cgf.emitVAArg(e);
1025}
1026
1027//===----------------------------------------------------------------------===//
1028// Entry Point into this File
1029//===----------------------------------------------------------------------===//
1030
1031/// EmitComplexExpr - Emit the computation of the specified expression of
1032/// complex type, ignoring the result.
1034 assert(e && getComplexType(e->getType()) &&
1035 "Invalid complex expression to emit");
1036
1037 return ComplexExprEmitter(*this).Visit(const_cast<Expr *>(e));
1038}
1039
1041 bool isInit) {
1042 assert(e && getComplexType(e->getType()) &&
1043 "Invalid complex expression to emit");
1044 ComplexExprEmitter emitter(*this);
1045 mlir::Value value = emitter.Visit(const_cast<Expr *>(e));
1046 emitter.emitStoreOfComplex(getLoc(e->getExprLoc()), value, dest, isInit);
1047}
1048
1049/// EmitStoreOfComplex - Store a complex number into the specified l-value.
1050void CIRGenFunction::emitStoreOfComplex(mlir::Location loc, mlir::Value v,
1051 LValue dest, bool isInit) {
1052 ComplexExprEmitter(*this).emitStoreOfComplex(loc, v, dest, isInit);
1053}
1054
1056 return ComplexExprEmitter(*this).emitLoadOfLValue(src, loc);
1057}
1058
1060 assert(e->getOpcode() == BO_Assign && "Expected assign op");
1061
1062 mlir::Value value; // ignored
1063 LValue lvalue = ComplexExprEmitter(*this).emitBinAssignLValue(e, value);
1064 if (getLangOpts().OpenMP)
1065 cgm.errorNYI("emitComplexAssignmentLValue OpenMP");
1066
1067 return lvalue;
1068}
1069
1071 mlir::Value (ComplexExprEmitter::*)(const ComplexExprEmitter::BinOpInfo &);
1072
1074 switch (op) {
1075 case BO_MulAssign:
1076 return &ComplexExprEmitter::emitBinMul;
1077 case BO_DivAssign:
1078 return &ComplexExprEmitter::emitBinDiv;
1079 case BO_SubAssign:
1080 return &ComplexExprEmitter::emitBinSub;
1081 case BO_AddAssign:
1082 return &ComplexExprEmitter::emitBinAdd;
1083 default:
1084 llvm_unreachable("unexpected complex compound assignment");
1085 }
1086}
1087
1089 const CompoundAssignOperator *e) {
1091 RValue val;
1092 return ComplexExprEmitter(*this).emitCompoundAssignLValue(e, op, val);
1093}
1094
1096 LValue lv,
1097 cir::UnaryOpKind op,
1098 bool isPre) {
1099 assert(op == cir::UnaryOpKind::Inc ||
1100 op == cir::UnaryOpKind::Dec && "Invalid UnaryOp kind for ComplexType");
1101
1102 mlir::Value inVal = emitLoadOfComplex(lv, e->getExprLoc());
1103 mlir::Location loc = getLoc(e->getExprLoc());
1104 mlir::Value incVal = builder.createUnaryOp(loc, op, inVal);
1105
1106 // Store the updated result through the lvalue.
1107 emitStoreOfComplex(loc, incVal, lv, /*isInit=*/false);
1108
1109 if (getLangOpts().OpenMP)
1110 cgm.errorNYI(loc, "emitComplexPrePostIncDec OpenMP");
1111
1112 // If this is a postinc, return the value read from memory, otherwise use the
1113 // updated value.
1114 return isPre ? incVal : inVal;
1115}
1116
1118 const CompoundAssignOperator *e, mlir::Value &result) {
1119 // Key Instructions: Don't need to create an atom group here; one will already
1120 // be active through scalar handling code.
1122 RValue value;
1123 LValue ret = ComplexExprEmitter(*this).emitCompoundAssignLValue(e, op, value);
1124 result = value.getValue();
1125 return ret;
1126}
#define HANDLEBINOP(OP)
static CompoundFunc getComplexOp(BinaryOperatorKind op)
static const ComplexType * getComplexType(QualType type)
Return the complex type that we are meant to emit.
mlir::Value(ComplexExprEmitter::*)(const ComplexExprEmitter::BinOpInfo &) CompoundFunc
static cir::ComplexRangeKind getComplexRangeAttr(LangOptions::ComplexRangeKind range)
#define HANDLE_BINOP(OP)
__device__ __2f16 b
__device__ __2f16 float __ockl_bool s
cir::ConstantOp getNullValue(mlir::Type ty, mlir::Location loc)
mlir::Value createCast(mlir::Location loc, cir::CastKind kind, mlir::Value src, mlir::Type newTy)
mlir::Value createAdd(mlir::Location loc, mlir::Value lhs, mlir::Value rhs, OverflowBehavior ob=OverflowBehavior::None)
mlir::Value createNot(mlir::Value value)
mlir::Value createComplexImag(mlir::Location loc, mlir::Value operand)
mlir::Value createSub(mlir::Location loc, mlir::Value lhs, mlir::Value rhs, OverflowBehavior ob=OverflowBehavior::Saturated)
mlir::Value createMul(mlir::Location loc, mlir::Value lhs, mlir::Value rhs, OverflowBehavior ob=OverflowBehavior::None)
mlir::Value createComplexCreate(mlir::Location loc, mlir::Value real, mlir::Value imag)
mlir::Value createUnaryOp(mlir::Location loc, cir::UnaryOpKind kind, mlir::Value operand)
mlir::Value createComplexReal(mlir::Location loc, mlir::Value operand)
static bool hasSameUnqualifiedType(QualType T1, QualType T2)
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Expr * getCond() const
getCond - Return the expression representing the condition for the ?
Definition Expr.h:4531
Expr * getTrueExpr() const
getTrueExpr - Return the subexpression representing the value of the expression if the condition eval...
Definition Expr.h:4537
Expr * getFalseExpr() const
getFalseExpr - Return the subexpression representing the value of the expression if the condition eva...
Definition Expr.h:4543
A builtin binary operation expression such as "x + y" or "x <= y".
Definition Expr.h:4038
Expr * getLHS() const
Definition Expr.h:4088
SourceLocation getExprLoc() const
Definition Expr.h:4079
Expr * getRHS() const
Definition Expr.h:4090
FPOptions getFPFeaturesInEffect(const LangOptions &LO) const
Get the FP features status of this operator.
Definition Expr.h:4251
Opcode getOpcode() const
Definition Expr.h:4083
bool isValid() const
Definition Address.h:70
mlir::Value createFDiv(mlir::Location loc, mlir::Value lhs, mlir::Value rhs)
cir::StoreOp createStore(mlir::Location loc, mlir::Value val, Address dst, bool isVolatile=false, mlir::IntegerAttr align={}, cir::SyncScopeKindAttr scope={}, cir::MemOrderAttr order={})
cir::LoadOp createLoad(mlir::Location loc, Address addr, bool isVolatile=false)
LValue getReferenceLValue(CIRGenFunction &cgf, Expr *refExpr) const
mlir::Value emitComplexToScalarConversion(mlir::Value src, QualType srcTy, QualType dstTy, SourceLocation loc)
Emit a conversion from the specified complex type to the specified destination type,...
mlir::Type convertType(clang::QualType t)
mlir::Value emitPromotedValue(mlir::Value result, QualType promotionType)
const clang::LangOptions & getLangOpts() const
LValue emitScalarCompoundAssignWithComplex(const CompoundAssignOperator *e, mlir::Value &result)
mlir::Value emitComplexExpr(const Expr *e)
Emit the computation of the specified expression of complex type, returning the result.
RValue emitCallExpr(const clang::CallExpr *e, ReturnValueSlot returnValue=ReturnValueSlot())
LValue emitLValue(const clang::Expr *e)
Emit code to compute a designator that specifies the location of the expression.
mlir::Value evaluateExprAsBool(const clang::Expr *e)
Perform the usual unary conversions on the specified expression and compare the result against zero,...
LValue emitComplexCompoundAssignmentLValue(const CompoundAssignOperator *e)
mlir::Location getLoc(clang::SourceLocation srcLoc)
Helpers to convert Clang's SourceLocation to a MLIR Location.
mlir::Value emitScalarConversion(mlir::Value src, clang::QualType srcType, clang::QualType dstType, clang::SourceLocation loc)
Emit a conversion from the specified type to the specified destination type, both of which are CIR sc...
mlir::Value emitPromotedComplexExpr(const Expr *e, QualType promotionType)
mlir::Value emitUnPromotedValue(mlir::Value result, QualType unPromotionType)
mlir::Type convertTypeForMem(QualType t)
mlir::Value emitLoadOfComplex(LValue src, SourceLocation loc)
Load a complex number from the specified l-value.
void emitStoreOfScalar(mlir::Value value, Address addr, bool isVolatile, clang::QualType ty, LValueBaseInfo baseInfo, bool isInit=false, bool isNontemporal=false)
mlir::Value emitComplexPrePostIncDec(const UnaryOperator *e, LValue lv, cir::UnaryOpKind op, bool isPre)
void emitStoreOfComplex(mlir::Location loc, mlir::Value v, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
LValue emitComplexAssignmentLValue(const BinaryOperator *e)
mlir::Value emitScalarExpr(const clang::Expr *e, bool ignoreResultAssign=false)
Emit the computation of the specified expression of scalar type.
mlir::Value emitPromotedScalarExpr(const Expr *e, QualType promotionType)
mlir::Value emitLoadOfScalar(LValue lvalue, SourceLocation loc)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
void emitComplexExprIntoLValue(const Expr *e, LValue dest, bool isInit)
LValue makeAddrLValue(Address addr, QualType ty, AlignmentSource source=AlignmentSource::Type)
clang::ASTContext & getContext() const
mlir::LogicalResult emitCompoundStmt(const clang::CompoundStmt &s, Address *lastValue=nullptr, AggValueSlot slot=AggValueSlot::ignored())
bool isLValueSuitableForInlineAtomic(LValue lv)
An LValue is a candidate for having its loads and stores be made atomic if we are operating under /vo...
void emitIgnoredExpr(const clang::Expr *e)
Emit code to compute the specified expression, ignoring the result.
Address createMemTemp(QualType t, mlir::Location loc, const Twine &name="tmp", Address *alloca=nullptr, mlir::OpBuilder::InsertPoint ip={})
Create a temporary memory object of the given type, with appropriate alignmen and cast it to the defa...
mlir::Value emitVAArg(VAArgExpr *ve)
Generate code to get an argument from the passed in pointer and update it accordingly.
DiagnosticBuilder errorNYI(SourceLocation, llvm::StringRef)
Helpers to emit "not yet implemented" error diagnostics.
This trivial value class is used to represent the result of an expression that is evaluated.
Definition CIRGenValue.h:33
static RValue get(mlir::Value v)
Definition CIRGenValue.h:83
static RValue getComplex(mlir::Value v)
Definition CIRGenValue.h:91
mlir::Value getValue() const
Return the value of this scalar value.
Definition CIRGenValue.h:57
mlir::Value getComplexValue() const
Return the value of this complex value.
Definition CIRGenValue.h:63
Expr * getExpr()
Get the initialization expression that will be used.
Definition ExprCXX.cpp:1105
A rewritten comparison expression that was originally written using operator syntax.
Definition ExprCXX.h:286
SourceLocation getExprLoc() const LLVM_READONLY
Definition ExprCXX.h:341
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition Expr.cpp:1602
CastKind getCastKind() const
Definition Expr.h:3720
bool changesVolatileQualification() const
Return.
Definition Expr.h:3810
Expr * getSubExpr()
Definition Expr.h:3726
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Definition Expr.h:4884
Complex values, per C99 6.2.5p11.
Definition TypeBase.h:3276
CompoundAssignOperator - For compound assignments (e.g.
Definition Expr.h:4300
QualType getComputationLHSType() const
Definition Expr.h:4334
QualType getComputationResultType() const
Definition Expr.h:4337
This represents one expression.
Definition Expr.h:112
bool isGLValue() const
Definition Expr.h:287
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition Expr.cpp:3085
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition Expr.cpp:276
QualType getType() const
Definition Expr.h:144
Expr * getResultExpr()
Return the result expression of this controlling expression.
Definition Expr.h:6462
const Expr * getSubExpr() const
Definition Expr.h:1743
unsigned getNumInits() const
Definition Expr.h:5329
const Expr * getInit(unsigned Init) const
Definition Expr.h:5353
ComplexRangeKind
Controls the various implementations for complex multiplication and.
@ CX_Full
Implementation of complex division and multiplication using a call to runtime library functions(gener...
@ CX_Basic
Implementation of complex division and multiplication using algebraic formulas at source precision.
@ CX_Promoted
Implementation of complex division using algebraic formulas at higher precision.
@ CX_None
No range rule is enabled.
@ CX_Improved
Implementation of complex division offering an improved handling for overflow in intermediate calcula...
Expr * getBase() const
Definition Expr.h:3441
SourceLocation getExprLoc() const LLVM_READONLY
Definition Expr.h:1208
const Expr * getSubExpr() const
Definition Expr.h:2199
SourceLocation getExprLoc() const LLVM_READONLY
Definition Expr.h:6842
A (possibly-)qualified type.
Definition TypeBase.h:937
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition TypeBase.h:1004
bool UseExcessPrecision(const ASTContext &Ctx)
Definition Type.cpp:1613
Encodes a location in the source.
CompoundStmt * getSubStmt()
Definition Expr.h:4612
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition Stmt.cpp:338
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition TypeBase.h:8935
const T * castAs() const
Member-template castAs<specific type>.
Definition TypeBase.h:9178
bool isReferenceType() const
Definition TypeBase.h:8553
bool isAnyComplexType() const
Definition TypeBase.h:8664
bool isRealFloatingType() const
Floating point categories.
Definition Type.cpp:2321
bool isFloatingType() const
Definition Type.cpp:2305
const T * getAs() const
Member-template getAs<specific type>'.
Definition TypeBase.h:9111
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition Expr.h:2244
SourceLocation getExprLoc() const
Definition Expr.h:2368
Expr * getSubExpr() const
Definition Expr.h:2285
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
The JSON file list parser is used to communicate input to InstallAPI.
CastKind
CastKind - The kind of operation required for a conversion.
U cast(CodeGen::Address addr)
Definition Address.h:327
static bool cgFPOptionsRAII()
static bool fastMathFlags()