clang  8.0.0svn
ParseDecl.cpp
Go to the documentation of this file.
1 //===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Declaration portions of the Parser interfaces.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Parse/Parser.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
20 #include "clang/Basic/Attributes.h"
21 #include "clang/Basic/CharInfo.h"
22 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Sema/Lookup.h"
26 #include "clang/Sema/Scope.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallString.h"
31 #include "llvm/ADT/StringSwitch.h"
32 
33 using namespace clang;
34 
35 //===----------------------------------------------------------------------===//
36 // C99 6.7: Declarations.
37 //===----------------------------------------------------------------------===//
38 
39 /// ParseTypeName
40 /// type-name: [C99 6.7.6]
41 /// specifier-qualifier-list abstract-declarator[opt]
42 ///
43 /// Called type-id in C++.
45  DeclaratorContext Context,
46  AccessSpecifier AS,
47  Decl **OwnedType,
48  ParsedAttributes *Attrs) {
49  DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
50  if (DSC == DeclSpecContext::DSC_normal)
51  DSC = DeclSpecContext::DSC_type_specifier;
52 
53  // Parse the common declaration-specifiers piece.
54  DeclSpec DS(AttrFactory);
55  if (Attrs)
56  DS.addAttributes(*Attrs);
57  ParseSpecifierQualifierList(DS, AS, DSC);
58  if (OwnedType)
59  *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
60 
61  // Parse the abstract-declarator, if present.
62  Declarator DeclaratorInfo(DS, Context);
63  ParseDeclarator(DeclaratorInfo);
64  if (Range)
65  *Range = DeclaratorInfo.getSourceRange();
66 
67  if (DeclaratorInfo.isInvalidType())
68  return true;
69 
70  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
71 }
72 
73 /// Normalizes an attribute name by dropping prefixed and suffixed __.
74 static StringRef normalizeAttrName(StringRef Name) {
75  if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
76  return Name.drop_front(2).drop_back(2);
77  return Name;
78 }
79 
80 /// isAttributeLateParsed - Return true if the attribute has arguments that
81 /// require late parsing.
82 static bool isAttributeLateParsed(const IdentifierInfo &II) {
83 #define CLANG_ATTR_LATE_PARSED_LIST
84  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
85 #include "clang/Parse/AttrParserStringSwitches.inc"
86  .Default(false);
87 #undef CLANG_ATTR_LATE_PARSED_LIST
88 }
89 
90 /// ParseGNUAttributes - Parse a non-empty attributes list.
91 ///
92 /// [GNU] attributes:
93 /// attribute
94 /// attributes attribute
95 ///
96 /// [GNU] attribute:
97 /// '__attribute__' '(' '(' attribute-list ')' ')'
98 ///
99 /// [GNU] attribute-list:
100 /// attrib
101 /// attribute_list ',' attrib
102 ///
103 /// [GNU] attrib:
104 /// empty
105 /// attrib-name
106 /// attrib-name '(' identifier ')'
107 /// attrib-name '(' identifier ',' nonempty-expr-list ')'
108 /// attrib-name '(' argument-expression-list [C99 6.5.2] ')'
109 ///
110 /// [GNU] attrib-name:
111 /// identifier
112 /// typespec
113 /// typequal
114 /// storageclass
115 ///
116 /// Whether an attribute takes an 'identifier' is determined by the
117 /// attrib-name. GCC's behavior here is not worth imitating:
118 ///
119 /// * In C mode, if the attribute argument list starts with an identifier
120 /// followed by a ',' or an ')', and the identifier doesn't resolve to
121 /// a type, it is parsed as an identifier. If the attribute actually
122 /// wanted an expression, it's out of luck (but it turns out that no
123 /// attributes work that way, because C constant expressions are very
124 /// limited).
125 /// * In C++ mode, if the attribute argument list starts with an identifier,
126 /// and the attribute *wants* an identifier, it is parsed as an identifier.
127 /// At block scope, any additional tokens between the identifier and the
128 /// ',' or ')' are ignored, otherwise they produce a parse error.
129 ///
130 /// We follow the C++ model, but don't allow junk after the identifier.
131 void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
132  SourceLocation *endLoc,
133  LateParsedAttrList *LateAttrs,
134  Declarator *D) {
135  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
136 
137  while (Tok.is(tok::kw___attribute)) {
138  ConsumeToken();
139  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
140  "attribute")) {
141  SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
142  return;
143  }
144  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
145  SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
146  return;
147  }
148  // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
149  while (true) {
150  // Allow empty/non-empty attributes. ((__vector_size__(16),,,,))
151  if (TryConsumeToken(tok::comma))
152  continue;
153 
154  // Expect an identifier or declaration specifier (const, int, etc.)
155  if (Tok.isAnnotation())
156  break;
157  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
158  if (!AttrName)
159  break;
160 
161  SourceLocation AttrNameLoc = ConsumeToken();
162 
163  if (Tok.isNot(tok::l_paren)) {
164  attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
166  continue;
167  }
168 
169  // Handle "parameterized" attributes
170  if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
171  ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
173  continue;
174  }
175 
176  // Handle attributes with arguments that require late parsing.
177  LateParsedAttribute *LA =
178  new LateParsedAttribute(this, *AttrName, AttrNameLoc);
179  LateAttrs->push_back(LA);
180 
181  // Attributes in a class are parsed at the end of the class, along
182  // with other late-parsed declarations.
183  if (!ClassStack.empty() && !LateAttrs->parseSoon())
184  getCurrentClass().LateParsedDeclarations.push_back(LA);
185 
186  // Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it
187  // recursively consumes balanced parens.
188  LA->Toks.push_back(Tok);
189  ConsumeParen();
190  // Consume everything up to and including the matching right parens.
191  ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true);
192 
193  Token Eof;
194  Eof.startToken();
195  Eof.setLocation(Tok.getLocation());
196  LA->Toks.push_back(Eof);
197  }
198 
199  if (ExpectAndConsume(tok::r_paren))
200  SkipUntil(tok::r_paren, StopAtSemi);
201  SourceLocation Loc = Tok.getLocation();
202  if (ExpectAndConsume(tok::r_paren))
203  SkipUntil(tok::r_paren, StopAtSemi);
204  if (endLoc)
205  *endLoc = Loc;
206  }
207 }
208 
209 /// Determine whether the given attribute has an identifier argument.
211 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
212  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
213 #include "clang/Parse/AttrParserStringSwitches.inc"
214  .Default(false);
215 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
216 }
217 
218 /// Determine whether the given attribute has a variadic identifier argument.
220 #define CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
221  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
222 #include "clang/Parse/AttrParserStringSwitches.inc"
223  .Default(false);
224 #undef CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
225 }
226 
227 /// Determine whether the given attribute parses a type argument.
228 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
229 #define CLANG_ATTR_TYPE_ARG_LIST
230  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
231 #include "clang/Parse/AttrParserStringSwitches.inc"
232  .Default(false);
233 #undef CLANG_ATTR_TYPE_ARG_LIST
234 }
235 
236 /// Determine whether the given attribute requires parsing its arguments
237 /// in an unevaluated context or not.
239 #define CLANG_ATTR_ARG_CONTEXT_LIST
240  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
241 #include "clang/Parse/AttrParserStringSwitches.inc"
242  .Default(false);
243 #undef CLANG_ATTR_ARG_CONTEXT_LIST
244 }
245 
246 IdentifierLoc *Parser::ParseIdentifierLoc() {
247  assert(Tok.is(tok::identifier) && "expected an identifier");
249  Tok.getLocation(),
250  Tok.getIdentifierInfo());
251  ConsumeToken();
252  return IL;
253 }
254 
255 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
256  SourceLocation AttrNameLoc,
257  ParsedAttributes &Attrs,
258  SourceLocation *EndLoc,
259  IdentifierInfo *ScopeName,
260  SourceLocation ScopeLoc,
261  ParsedAttr::Syntax Syntax) {
262  BalancedDelimiterTracker Parens(*this, tok::l_paren);
263  Parens.consumeOpen();
264 
265  TypeResult T;
266  if (Tok.isNot(tok::r_paren))
267  T = ParseTypeName();
268 
269  if (Parens.consumeClose())
270  return;
271 
272  if (T.isInvalid())
273  return;
274 
275  if (T.isUsable())
276  Attrs.addNewTypeAttr(&AttrName,
277  SourceRange(AttrNameLoc, Parens.getCloseLocation()),
278  ScopeName, ScopeLoc, T.get(), Syntax);
279  else
280  Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
281  ScopeName, ScopeLoc, nullptr, 0, Syntax);
282 }
283 
284 unsigned Parser::ParseAttributeArgsCommon(
285  IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
286  ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
287  SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
288  // Ignore the left paren location for now.
289  ConsumeParen();
290 
291  ArgsVector ArgExprs;
292  if (Tok.is(tok::identifier)) {
293  // If this attribute wants an 'identifier' argument, make it so.
294  bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName) ||
296  ParsedAttr::Kind AttrKind =
297  ParsedAttr::getKind(AttrName, ScopeName, Syntax);
298 
299  // If we don't know how to parse this attribute, but this is the only
300  // token in this argument, assume it's meant to be an identifier.
301  if (AttrKind == ParsedAttr::UnknownAttribute ||
302  AttrKind == ParsedAttr::IgnoredAttribute) {
303  const Token &Next = NextToken();
304  IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
305  }
306 
307  if (IsIdentifierArg)
308  ArgExprs.push_back(ParseIdentifierLoc());
309  }
310 
311  if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
312  // Eat the comma.
313  if (!ArgExprs.empty())
314  ConsumeToken();
315 
316  // Parse the non-empty comma-separated list of expressions.
317  do {
318  ExprResult ArgExpr;
319  if (Tok.is(tok::identifier) &&
321  ArgExprs.push_back(ParseIdentifierLoc());
322  } else {
323  bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
325  Actions,
328 
329  ExprResult ArgExpr(
331  if (ArgExpr.isInvalid()) {
332  SkipUntil(tok::r_paren, StopAtSemi);
333  return 0;
334  }
335  ArgExprs.push_back(ArgExpr.get());
336  }
337  // Eat the comma, move to the next argument
338  } while (TryConsumeToken(tok::comma));
339  }
340 
341  SourceLocation RParen = Tok.getLocation();
342  if (!ExpectAndConsume(tok::r_paren)) {
343  SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
344  Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
345  ArgExprs.data(), ArgExprs.size(), Syntax);
346  }
347 
348  if (EndLoc)
349  *EndLoc = RParen;
350 
351  return static_cast<unsigned>(ArgExprs.size());
352 }
353 
354 /// Parse the arguments to a parameterized GNU attribute or
355 /// a C++11 attribute in "gnu" namespace.
356 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
357  SourceLocation AttrNameLoc,
358  ParsedAttributes &Attrs,
359  SourceLocation *EndLoc,
360  IdentifierInfo *ScopeName,
361  SourceLocation ScopeLoc,
362  ParsedAttr::Syntax Syntax,
363  Declarator *D) {
364 
365  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
366 
367  ParsedAttr::Kind AttrKind =
368  ParsedAttr::getKind(AttrName, ScopeName, Syntax);
369 
370  if (AttrKind == ParsedAttr::AT_Availability) {
371  ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
372  ScopeLoc, Syntax);
373  return;
374  } else if (AttrKind == ParsedAttr::AT_ExternalSourceSymbol) {
375  ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
376  ScopeName, ScopeLoc, Syntax);
377  return;
378  } else if (AttrKind == ParsedAttr::AT_ObjCBridgeRelated) {
379  ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
380  ScopeName, ScopeLoc, Syntax);
381  return;
382  } else if (AttrKind == ParsedAttr::AT_TypeTagForDatatype) {
383  ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
384  ScopeName, ScopeLoc, Syntax);
385  return;
386  } else if (attributeIsTypeArgAttr(*AttrName)) {
387  ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
388  ScopeLoc, Syntax);
389  return;
390  }
391 
392  // These may refer to the function arguments, but need to be parsed early to
393  // participate in determining whether it's a redeclaration.
394  llvm::Optional<ParseScope> PrototypeScope;
395  if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
396  D && D->isFunctionDeclarator()) {
398  PrototypeScope.emplace(this, Scope::FunctionPrototypeScope |
401  for (unsigned i = 0; i != FTI.NumParams; ++i) {
402  ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
404  }
405  }
406 
407  ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
408  ScopeLoc, Syntax);
409 }
410 
411 unsigned Parser::ParseClangAttributeArgs(
412  IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
413  ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
414  SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
415  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
416 
417  ParsedAttr::Kind AttrKind =
418  ParsedAttr::getKind(AttrName, ScopeName, Syntax);
419 
420  switch (AttrKind) {
421  default:
422  return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc,
423  ScopeName, ScopeLoc, Syntax);
424  case ParsedAttr::AT_ExternalSourceSymbol:
425  ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
426  ScopeName, ScopeLoc, Syntax);
427  break;
428  case ParsedAttr::AT_Availability:
429  ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
430  ScopeLoc, Syntax);
431  break;
432  case ParsedAttr::AT_ObjCBridgeRelated:
433  ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
434  ScopeName, ScopeLoc, Syntax);
435  break;
436  case ParsedAttr::AT_TypeTagForDatatype:
437  ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
438  ScopeName, ScopeLoc, Syntax);
439  break;
440  }
441  return !Attrs.empty() ? Attrs.begin()->getNumArgs() : 0;
442 }
443 
444 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
445  SourceLocation AttrNameLoc,
446  ParsedAttributes &Attrs) {
447  // If the attribute isn't known, we will not attempt to parse any
448  // arguments.
449  if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
450  getTargetInfo(), getLangOpts())) {
451  // Eat the left paren, then skip to the ending right paren.
452  ConsumeParen();
453  SkipUntil(tok::r_paren);
454  return false;
455  }
456 
457  SourceLocation OpenParenLoc = Tok.getLocation();
458 
459  if (AttrName->getName() == "property") {
460  // The property declspec is more complex in that it can take one or two
461  // assignment expressions as a parameter, but the lhs of the assignment
462  // must be named get or put.
463 
464  BalancedDelimiterTracker T(*this, tok::l_paren);
465  T.expectAndConsume(diag::err_expected_lparen_after,
466  AttrName->getNameStart(), tok::r_paren);
467 
468  enum AccessorKind {
469  AK_Invalid = -1,
470  AK_Put = 0,
471  AK_Get = 1 // indices into AccessorNames
472  };
473  IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
474  bool HasInvalidAccessor = false;
475 
476  // Parse the accessor specifications.
477  while (true) {
478  // Stop if this doesn't look like an accessor spec.
479  if (!Tok.is(tok::identifier)) {
480  // If the user wrote a completely empty list, use a special diagnostic.
481  if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
482  AccessorNames[AK_Put] == nullptr &&
483  AccessorNames[AK_Get] == nullptr) {
484  Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
485  break;
486  }
487 
488  Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
489  break;
490  }
491 
492  AccessorKind Kind;
493  SourceLocation KindLoc = Tok.getLocation();
494  StringRef KindStr = Tok.getIdentifierInfo()->getName();
495  if (KindStr == "get") {
496  Kind = AK_Get;
497  } else if (KindStr == "put") {
498  Kind = AK_Put;
499 
500  // Recover from the common mistake of using 'set' instead of 'put'.
501  } else if (KindStr == "set") {
502  Diag(KindLoc, diag::err_ms_property_has_set_accessor)
503  << FixItHint::CreateReplacement(KindLoc, "put");
504  Kind = AK_Put;
505 
506  // Handle the mistake of forgetting the accessor kind by skipping
507  // this accessor.
508  } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
509  Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
510  ConsumeToken();
511  HasInvalidAccessor = true;
512  goto next_property_accessor;
513 
514  // Otherwise, complain about the unknown accessor kind.
515  } else {
516  Diag(KindLoc, diag::err_ms_property_unknown_accessor);
517  HasInvalidAccessor = true;
518  Kind = AK_Invalid;
519 
520  // Try to keep parsing unless it doesn't look like an accessor spec.
521  if (!NextToken().is(tok::equal))
522  break;
523  }
524 
525  // Consume the identifier.
526  ConsumeToken();
527 
528  // Consume the '='.
529  if (!TryConsumeToken(tok::equal)) {
530  Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
531  << KindStr;
532  break;
533  }
534 
535  // Expect the method name.
536  if (!Tok.is(tok::identifier)) {
537  Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
538  break;
539  }
540 
541  if (Kind == AK_Invalid) {
542  // Just drop invalid accessors.
543  } else if (AccessorNames[Kind] != nullptr) {
544  // Complain about the repeated accessor, ignore it, and keep parsing.
545  Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
546  } else {
547  AccessorNames[Kind] = Tok.getIdentifierInfo();
548  }
549  ConsumeToken();
550 
551  next_property_accessor:
552  // Keep processing accessors until we run out.
553  if (TryConsumeToken(tok::comma))
554  continue;
555 
556  // If we run into the ')', stop without consuming it.
557  if (Tok.is(tok::r_paren))
558  break;
559 
560  Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
561  break;
562  }
563 
564  // Only add the property attribute if it was well-formed.
565  if (!HasInvalidAccessor)
566  Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
567  AccessorNames[AK_Get], AccessorNames[AK_Put],
569  T.skipToEnd();
570  return !HasInvalidAccessor;
571  }
572 
573  unsigned NumArgs =
574  ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
576 
577  // If this attribute's args were parsed, and it was expected to have
578  // arguments but none were provided, emit a diagnostic.
579  if (!Attrs.empty() && Attrs.begin()->getMaxArgs() && !NumArgs) {
580  Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
581  return false;
582  }
583  return true;
584 }
585 
586 /// [MS] decl-specifier:
587 /// __declspec ( extended-decl-modifier-seq )
588 ///
589 /// [MS] extended-decl-modifier-seq:
590 /// extended-decl-modifier[opt]
591 /// extended-decl-modifier extended-decl-modifier-seq
592 void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs,
593  SourceLocation *End) {
594  assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
595  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
596 
597  while (Tok.is(tok::kw___declspec)) {
598  ConsumeToken();
599  BalancedDelimiterTracker T(*this, tok::l_paren);
600  if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
601  tok::r_paren))
602  return;
603 
604  // An empty declspec is perfectly legal and should not warn. Additionally,
605  // you can specify multiple attributes per declspec.
606  while (Tok.isNot(tok::r_paren)) {
607  // Attribute not present.
608  if (TryConsumeToken(tok::comma))
609  continue;
610 
611  // We expect either a well-known identifier or a generic string. Anything
612  // else is a malformed declspec.
613  bool IsString = Tok.getKind() == tok::string_literal;
614  if (!IsString && Tok.getKind() != tok::identifier &&
615  Tok.getKind() != tok::kw_restrict) {
616  Diag(Tok, diag::err_ms_declspec_type);
617  T.skipToEnd();
618  return;
619  }
620 
621  IdentifierInfo *AttrName;
622  SourceLocation AttrNameLoc;
623  if (IsString) {
624  SmallString<8> StrBuffer;
625  bool Invalid = false;
626  StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
627  if (Invalid) {
628  T.skipToEnd();
629  return;
630  }
631  AttrName = PP.getIdentifierInfo(Str);
632  AttrNameLoc = ConsumeStringToken();
633  } else {
634  AttrName = Tok.getIdentifierInfo();
635  AttrNameLoc = ConsumeToken();
636  }
637 
638  bool AttrHandled = false;
639 
640  // Parse attribute arguments.
641  if (Tok.is(tok::l_paren))
642  AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
643  else if (AttrName->getName() == "property")
644  // The property attribute must have an argument list.
645  Diag(Tok.getLocation(), diag::err_expected_lparen_after)
646  << AttrName->getName();
647 
648  if (!AttrHandled)
649  Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
651  }
652  T.consumeClose();
653  if (End)
654  *End = T.getCloseLocation();
655  }
656 }
657 
658 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
659  // Treat these like attributes
660  while (true) {
661  switch (Tok.getKind()) {
662  case tok::kw___fastcall:
663  case tok::kw___stdcall:
664  case tok::kw___thiscall:
665  case tok::kw___regcall:
666  case tok::kw___cdecl:
667  case tok::kw___vectorcall:
668  case tok::kw___ptr64:
669  case tok::kw___w64:
670  case tok::kw___ptr32:
671  case tok::kw___sptr:
672  case tok::kw___uptr: {
673  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
674  SourceLocation AttrNameLoc = ConsumeToken();
675  attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
677  break;
678  }
679  default:
680  return;
681  }
682  }
683 }
684 
685 void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
686  SourceLocation StartLoc = Tok.getLocation();
687  SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
688 
689  if (EndLoc.isValid()) {
690  SourceRange Range(StartLoc, EndLoc);
691  Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
692  }
693 }
694 
695 SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
696  SourceLocation EndLoc;
697 
698  while (true) {
699  switch (Tok.getKind()) {
700  case tok::kw_const:
701  case tok::kw_volatile:
702  case tok::kw___fastcall:
703  case tok::kw___stdcall:
704  case tok::kw___thiscall:
705  case tok::kw___cdecl:
706  case tok::kw___vectorcall:
707  case tok::kw___ptr32:
708  case tok::kw___ptr64:
709  case tok::kw___w64:
710  case tok::kw___unaligned:
711  case tok::kw___sptr:
712  case tok::kw___uptr:
713  EndLoc = ConsumeToken();
714  break;
715  default:
716  return EndLoc;
717  }
718  }
719 }
720 
721 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
722  // Treat these like attributes
723  while (Tok.is(tok::kw___pascal)) {
724  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
725  SourceLocation AttrNameLoc = ConsumeToken();
726  attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
728  }
729 }
730 
731 void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) {
732  // Treat these like attributes
733  while (Tok.is(tok::kw___kernel)) {
734  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
735  SourceLocation AttrNameLoc = ConsumeToken();
736  attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
738  }
739 }
740 
741 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
742  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
743  SourceLocation AttrNameLoc = Tok.getLocation();
744  Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
746 }
747 
748 void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
749  // Treat these like attributes, even though they're type specifiers.
750  while (true) {
751  switch (Tok.getKind()) {
752  case tok::kw__Nonnull:
753  case tok::kw__Nullable:
754  case tok::kw__Null_unspecified: {
755  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
756  SourceLocation AttrNameLoc = ConsumeToken();
757  if (!getLangOpts().ObjC1)
758  Diag(AttrNameLoc, diag::ext_nullability)
759  << AttrName;
760  attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
762  break;
763  }
764  default:
765  return;
766  }
767  }
768 }
769 
770 static bool VersionNumberSeparator(const char Separator) {
771  return (Separator == '.' || Separator == '_');
772 }
773 
774 /// Parse a version number.
775 ///
776 /// version:
777 /// simple-integer
778 /// simple-integer '.' simple-integer
779 /// simple-integer '_' simple-integer
780 /// simple-integer '.' simple-integer '.' simple-integer
781 /// simple-integer '_' simple-integer '_' simple-integer
782 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
783  Range = SourceRange(Tok.getLocation(), Tok.getEndLoc());
784 
785  if (!Tok.is(tok::numeric_constant)) {
786  Diag(Tok, diag::err_expected_version);
787  SkipUntil(tok::comma, tok::r_paren,
789  return VersionTuple();
790  }
791 
792  // Parse the major (and possibly minor and subminor) versions, which
793  // are stored in the numeric constant. We utilize a quirk of the
794  // lexer, which is that it handles something like 1.2.3 as a single
795  // numeric constant, rather than two separate tokens.
796  SmallString<512> Buffer;
797  Buffer.resize(Tok.getLength()+1);
798  const char *ThisTokBegin = &Buffer[0];
799 
800  // Get the spelling of the token, which eliminates trigraphs, etc.
801  bool Invalid = false;
802  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
803  if (Invalid)
804  return VersionTuple();
805 
806  // Parse the major version.
807  unsigned AfterMajor = 0;
808  unsigned Major = 0;
809  while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
810  Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
811  ++AfterMajor;
812  }
813 
814  if (AfterMajor == 0) {
815  Diag(Tok, diag::err_expected_version);
816  SkipUntil(tok::comma, tok::r_paren,
818  return VersionTuple();
819  }
820 
821  if (AfterMajor == ActualLength) {
822  ConsumeToken();
823 
824  // We only had a single version component.
825  if (Major == 0) {
826  Diag(Tok, diag::err_zero_version);
827  return VersionTuple();
828  }
829 
830  return VersionTuple(Major);
831  }
832 
833  const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
834  if (!VersionNumberSeparator(AfterMajorSeparator)
835  || (AfterMajor + 1 == ActualLength)) {
836  Diag(Tok, diag::err_expected_version);
837  SkipUntil(tok::comma, tok::r_paren,
839  return VersionTuple();
840  }
841 
842  // Parse the minor version.
843  unsigned AfterMinor = AfterMajor + 1;
844  unsigned Minor = 0;
845  while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
846  Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
847  ++AfterMinor;
848  }
849 
850  if (AfterMinor == ActualLength) {
851  ConsumeToken();
852 
853  // We had major.minor.
854  if (Major == 0 && Minor == 0) {
855  Diag(Tok, diag::err_zero_version);
856  return VersionTuple();
857  }
858 
859  return VersionTuple(Major, Minor);
860  }
861 
862  const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
863  // If what follows is not a '.' or '_', we have a problem.
864  if (!VersionNumberSeparator(AfterMinorSeparator)) {
865  Diag(Tok, diag::err_expected_version);
866  SkipUntil(tok::comma, tok::r_paren,
868  return VersionTuple();
869  }
870 
871  // Warn if separators, be it '.' or '_', do not match.
872  if (AfterMajorSeparator != AfterMinorSeparator)
873  Diag(Tok, diag::warn_expected_consistent_version_separator);
874 
875  // Parse the subminor version.
876  unsigned AfterSubminor = AfterMinor + 1;
877  unsigned Subminor = 0;
878  while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
879  Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
880  ++AfterSubminor;
881  }
882 
883  if (AfterSubminor != ActualLength) {
884  Diag(Tok, diag::err_expected_version);
885  SkipUntil(tok::comma, tok::r_paren,
887  return VersionTuple();
888  }
889  ConsumeToken();
890  return VersionTuple(Major, Minor, Subminor);
891 }
892 
893 /// Parse the contents of the "availability" attribute.
894 ///
895 /// availability-attribute:
896 /// 'availability' '(' platform ',' opt-strict version-arg-list,
897 /// opt-replacement, opt-message')'
898 ///
899 /// platform:
900 /// identifier
901 ///
902 /// opt-strict:
903 /// 'strict' ','
904 ///
905 /// version-arg-list:
906 /// version-arg
907 /// version-arg ',' version-arg-list
908 ///
909 /// version-arg:
910 /// 'introduced' '=' version
911 /// 'deprecated' '=' version
912 /// 'obsoleted' = version
913 /// 'unavailable'
914 /// opt-replacement:
915 /// 'replacement' '=' <string>
916 /// opt-message:
917 /// 'message' '=' <string>
918 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
919  SourceLocation AvailabilityLoc,
920  ParsedAttributes &attrs,
921  SourceLocation *endLoc,
922  IdentifierInfo *ScopeName,
923  SourceLocation ScopeLoc,
924  ParsedAttr::Syntax Syntax) {
925  enum { Introduced, Deprecated, Obsoleted, Unknown };
926  AvailabilityChange Changes[Unknown];
927  ExprResult MessageExpr, ReplacementExpr;
928 
929  // Opening '('.
930  BalancedDelimiterTracker T(*this, tok::l_paren);
931  if (T.consumeOpen()) {
932  Diag(Tok, diag::err_expected) << tok::l_paren;
933  return;
934  }
935 
936  // Parse the platform name.
937  if (Tok.isNot(tok::identifier)) {
938  Diag(Tok, diag::err_availability_expected_platform);
939  SkipUntil(tok::r_paren, StopAtSemi);
940  return;
941  }
942  IdentifierLoc *Platform = ParseIdentifierLoc();
943  if (const IdentifierInfo *const Ident = Platform->Ident) {
944  // Canonicalize platform name from "macosx" to "macos".
945  if (Ident->getName() == "macosx")
946  Platform->Ident = PP.getIdentifierInfo("macos");
947  // Canonicalize platform name from "macosx_app_extension" to
948  // "macos_app_extension".
949  else if (Ident->getName() == "macosx_app_extension")
950  Platform->Ident = PP.getIdentifierInfo("macos_app_extension");
951  else
952  Platform->Ident = PP.getIdentifierInfo(
953  AvailabilityAttr::canonicalizePlatformName(Ident->getName()));
954  }
955 
956  // Parse the ',' following the platform name.
957  if (ExpectAndConsume(tok::comma)) {
958  SkipUntil(tok::r_paren, StopAtSemi);
959  return;
960  }
961 
962  // If we haven't grabbed the pointers for the identifiers
963  // "introduced", "deprecated", and "obsoleted", do so now.
964  if (!Ident_introduced) {
965  Ident_introduced = PP.getIdentifierInfo("introduced");
966  Ident_deprecated = PP.getIdentifierInfo("deprecated");
967  Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
968  Ident_unavailable = PP.getIdentifierInfo("unavailable");
969  Ident_message = PP.getIdentifierInfo("message");
970  Ident_strict = PP.getIdentifierInfo("strict");
971  Ident_replacement = PP.getIdentifierInfo("replacement");
972  }
973 
974  // Parse the optional "strict", the optional "replacement" and the set of
975  // introductions/deprecations/removals.
976  SourceLocation UnavailableLoc, StrictLoc;
977  do {
978  if (Tok.isNot(tok::identifier)) {
979  Diag(Tok, diag::err_availability_expected_change);
980  SkipUntil(tok::r_paren, StopAtSemi);
981  return;
982  }
983  IdentifierInfo *Keyword = Tok.getIdentifierInfo();
984  SourceLocation KeywordLoc = ConsumeToken();
985 
986  if (Keyword == Ident_strict) {
987  if (StrictLoc.isValid()) {
988  Diag(KeywordLoc, diag::err_availability_redundant)
989  << Keyword << SourceRange(StrictLoc);
990  }
991  StrictLoc = KeywordLoc;
992  continue;
993  }
994 
995  if (Keyword == Ident_unavailable) {
996  if (UnavailableLoc.isValid()) {
997  Diag(KeywordLoc, diag::err_availability_redundant)
998  << Keyword << SourceRange(UnavailableLoc);
999  }
1000  UnavailableLoc = KeywordLoc;
1001  continue;
1002  }
1003 
1004  if (Tok.isNot(tok::equal)) {
1005  Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
1006  SkipUntil(tok::r_paren, StopAtSemi);
1007  return;
1008  }
1009  ConsumeToken();
1010  if (Keyword == Ident_message || Keyword == Ident_replacement) {
1011  if (Tok.isNot(tok::string_literal)) {
1012  Diag(Tok, diag::err_expected_string_literal)
1013  << /*Source='availability attribute'*/2;
1014  SkipUntil(tok::r_paren, StopAtSemi);
1015  return;
1016  }
1017  if (Keyword == Ident_message)
1018  MessageExpr = ParseStringLiteralExpression();
1019  else
1020  ReplacementExpr = ParseStringLiteralExpression();
1021  // Also reject wide string literals.
1022  if (StringLiteral *MessageStringLiteral =
1023  cast_or_null<StringLiteral>(MessageExpr.get())) {
1024  if (MessageStringLiteral->getCharByteWidth() != 1) {
1025  Diag(MessageStringLiteral->getSourceRange().getBegin(),
1026  diag::err_expected_string_literal)
1027  << /*Source='availability attribute'*/ 2;
1028  SkipUntil(tok::r_paren, StopAtSemi);
1029  return;
1030  }
1031  }
1032  if (Keyword == Ident_message)
1033  break;
1034  else
1035  continue;
1036  }
1037 
1038  // Special handling of 'NA' only when applied to introduced or
1039  // deprecated.
1040  if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
1041  Tok.is(tok::identifier)) {
1042  IdentifierInfo *NA = Tok.getIdentifierInfo();
1043  if (NA->getName() == "NA") {
1044  ConsumeToken();
1045  if (Keyword == Ident_introduced)
1046  UnavailableLoc = KeywordLoc;
1047  continue;
1048  }
1049  }
1050 
1051  SourceRange VersionRange;
1052  VersionTuple Version = ParseVersionTuple(VersionRange);
1053 
1054  if (Version.empty()) {
1055  SkipUntil(tok::r_paren, StopAtSemi);
1056  return;
1057  }
1058 
1059  unsigned Index;
1060  if (Keyword == Ident_introduced)
1061  Index = Introduced;
1062  else if (Keyword == Ident_deprecated)
1063  Index = Deprecated;
1064  else if (Keyword == Ident_obsoleted)
1065  Index = Obsoleted;
1066  else
1067  Index = Unknown;
1068 
1069  if (Index < Unknown) {
1070  if (!Changes[Index].KeywordLoc.isInvalid()) {
1071  Diag(KeywordLoc, diag::err_availability_redundant)
1072  << Keyword
1073  << SourceRange(Changes[Index].KeywordLoc,
1074  Changes[Index].VersionRange.getEnd());
1075  }
1076 
1077  Changes[Index].KeywordLoc = KeywordLoc;
1078  Changes[Index].Version = Version;
1079  Changes[Index].VersionRange = VersionRange;
1080  } else {
1081  Diag(KeywordLoc, diag::err_availability_unknown_change)
1082  << Keyword << VersionRange;
1083  }
1084 
1085  } while (TryConsumeToken(tok::comma));
1086 
1087  // Closing ')'.
1088  if (T.consumeClose())
1089  return;
1090 
1091  if (endLoc)
1092  *endLoc = T.getCloseLocation();
1093 
1094  // The 'unavailable' availability cannot be combined with any other
1095  // availability changes. Make sure that hasn't happened.
1096  if (UnavailableLoc.isValid()) {
1097  bool Complained = false;
1098  for (unsigned Index = Introduced; Index != Unknown; ++Index) {
1099  if (Changes[Index].KeywordLoc.isValid()) {
1100  if (!Complained) {
1101  Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
1102  << SourceRange(Changes[Index].KeywordLoc,
1103  Changes[Index].VersionRange.getEnd());
1104  Complained = true;
1105  }
1106 
1107  // Clear out the availability.
1108  Changes[Index] = AvailabilityChange();
1109  }
1110  }
1111  }
1112 
1113  // Record this attribute
1114  attrs.addNew(&Availability,
1115  SourceRange(AvailabilityLoc, T.getCloseLocation()),
1116  ScopeName, ScopeLoc,
1117  Platform,
1118  Changes[Introduced],
1119  Changes[Deprecated],
1120  Changes[Obsoleted],
1121  UnavailableLoc, MessageExpr.get(),
1122  Syntax, StrictLoc, ReplacementExpr.get());
1123 }
1124 
1125 /// Parse the contents of the "external_source_symbol" attribute.
1126 ///
1127 /// external-source-symbol-attribute:
1128 /// 'external_source_symbol' '(' keyword-arg-list ')'
1129 ///
1130 /// keyword-arg-list:
1131 /// keyword-arg
1132 /// keyword-arg ',' keyword-arg-list
1133 ///
1134 /// keyword-arg:
1135 /// 'language' '=' <string>
1136 /// 'defined_in' '=' <string>
1137 /// 'generated_declaration'
1138 void Parser::ParseExternalSourceSymbolAttribute(
1139  IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc,
1140  ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1141  SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
1142  // Opening '('.
1143  BalancedDelimiterTracker T(*this, tok::l_paren);
1144  if (T.expectAndConsume())
1145  return;
1146 
1147  // Initialize the pointers for the keyword identifiers when required.
1148  if (!Ident_language) {
1149  Ident_language = PP.getIdentifierInfo("language");
1150  Ident_defined_in = PP.getIdentifierInfo("defined_in");
1151  Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration");
1152  }
1153 
1154  ExprResult Language;
1155  bool HasLanguage = false;
1156  ExprResult DefinedInExpr;
1157  bool HasDefinedIn = false;
1158  IdentifierLoc *GeneratedDeclaration = nullptr;
1159 
1160  // Parse the language/defined_in/generated_declaration keywords
1161  do {
1162  if (Tok.isNot(tok::identifier)) {
1163  Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1164  SkipUntil(tok::r_paren, StopAtSemi);
1165  return;
1166  }
1167 
1168  SourceLocation KeywordLoc = Tok.getLocation();
1169  IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1170  if (Keyword == Ident_generated_declaration) {
1171  if (GeneratedDeclaration) {
1172  Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword;
1173  SkipUntil(tok::r_paren, StopAtSemi);
1174  return;
1175  }
1176  GeneratedDeclaration = ParseIdentifierLoc();
1177  continue;
1178  }
1179 
1180  if (Keyword != Ident_language && Keyword != Ident_defined_in) {
1181  Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1182  SkipUntil(tok::r_paren, StopAtSemi);
1183  return;
1184  }
1185 
1186  ConsumeToken();
1187  if (ExpectAndConsume(tok::equal, diag::err_expected_after,
1188  Keyword->getName())) {
1189  SkipUntil(tok::r_paren, StopAtSemi);
1190  return;
1191  }
1192 
1193  bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn;
1194  if (Keyword == Ident_language)
1195  HasLanguage = true;
1196  else
1197  HasDefinedIn = true;
1198 
1199  if (Tok.isNot(tok::string_literal)) {
1200  Diag(Tok, diag::err_expected_string_literal)
1201  << /*Source='external_source_symbol attribute'*/ 3
1202  << /*language | source container*/ (Keyword != Ident_language);
1203  SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
1204  continue;
1205  }
1206  if (Keyword == Ident_language) {
1207  if (HadLanguage) {
1208  Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1209  << Keyword;
1210  ParseStringLiteralExpression();
1211  continue;
1212  }
1213  Language = ParseStringLiteralExpression();
1214  } else {
1215  assert(Keyword == Ident_defined_in && "Invalid clause keyword!");
1216  if (HadDefinedIn) {
1217  Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1218  << Keyword;
1219  ParseStringLiteralExpression();
1220  continue;
1221  }
1222  DefinedInExpr = ParseStringLiteralExpression();
1223  }
1224  } while (TryConsumeToken(tok::comma));
1225 
1226  // Closing ')'.
1227  if (T.consumeClose())
1228  return;
1229  if (EndLoc)
1230  *EndLoc = T.getCloseLocation();
1231 
1232  ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(),
1233  GeneratedDeclaration};
1234  Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()),
1235  ScopeName, ScopeLoc, Args, llvm::array_lengthof(Args), Syntax);
1236 }
1237 
1238 /// Parse the contents of the "objc_bridge_related" attribute.
1239 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1240 /// related_class:
1241 /// Identifier
1242 ///
1243 /// opt-class_method:
1244 /// Identifier: | <empty>
1245 ///
1246 /// opt-instance_method:
1247 /// Identifier | <empty>
1248 ///
1249 void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
1250  SourceLocation ObjCBridgeRelatedLoc,
1251  ParsedAttributes &attrs,
1252  SourceLocation *endLoc,
1253  IdentifierInfo *ScopeName,
1254  SourceLocation ScopeLoc,
1255  ParsedAttr::Syntax Syntax) {
1256  // Opening '('.
1257  BalancedDelimiterTracker T(*this, tok::l_paren);
1258  if (T.consumeOpen()) {
1259  Diag(Tok, diag::err_expected) << tok::l_paren;
1260  return;
1261  }
1262 
1263  // Parse the related class name.
1264  if (Tok.isNot(tok::identifier)) {
1265  Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1266  SkipUntil(tok::r_paren, StopAtSemi);
1267  return;
1268  }
1269  IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1270  if (ExpectAndConsume(tok::comma)) {
1271  SkipUntil(tok::r_paren, StopAtSemi);
1272  return;
1273  }
1274 
1275  // Parse class method name. It's non-optional in the sense that a trailing
1276  // comma is required, but it can be the empty string, and then we record a
1277  // nullptr.
1278  IdentifierLoc *ClassMethod = nullptr;
1279  if (Tok.is(tok::identifier)) {
1280  ClassMethod = ParseIdentifierLoc();
1281  if (!TryConsumeToken(tok::colon)) {
1282  Diag(Tok, diag::err_objcbridge_related_selector_name);
1283  SkipUntil(tok::r_paren, StopAtSemi);
1284  return;
1285  }
1286  }
1287  if (!TryConsumeToken(tok::comma)) {
1288  if (Tok.is(tok::colon))
1289  Diag(Tok, diag::err_objcbridge_related_selector_name);
1290  else
1291  Diag(Tok, diag::err_expected) << tok::comma;
1292  SkipUntil(tok::r_paren, StopAtSemi);
1293  return;
1294  }
1295 
1296  // Parse instance method name. Also non-optional but empty string is
1297  // permitted.
1298  IdentifierLoc *InstanceMethod = nullptr;
1299  if (Tok.is(tok::identifier))
1300  InstanceMethod = ParseIdentifierLoc();
1301  else if (Tok.isNot(tok::r_paren)) {
1302  Diag(Tok, diag::err_expected) << tok::r_paren;
1303  SkipUntil(tok::r_paren, StopAtSemi);
1304  return;
1305  }
1306 
1307  // Closing ')'.
1308  if (T.consumeClose())
1309  return;
1310 
1311  if (endLoc)
1312  *endLoc = T.getCloseLocation();
1313 
1314  // Record this attribute
1315  attrs.addNew(&ObjCBridgeRelated,
1316  SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1317  ScopeName, ScopeLoc,
1318  RelatedClass,
1319  ClassMethod,
1320  InstanceMethod,
1321  Syntax);
1322 }
1323 
1324 // Late Parsed Attributes:
1325 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
1326 
1327 void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
1328 
1329 void Parser::LateParsedClass::ParseLexedAttributes() {
1330  Self->ParseLexedAttributes(*Class);
1331 }
1332 
1333 void Parser::LateParsedAttribute::ParseLexedAttributes() {
1334  Self->ParseLexedAttribute(*this, true, false);
1335 }
1336 
1337 /// Wrapper class which calls ParseLexedAttribute, after setting up the
1338 /// scope appropriately.
1339 void Parser::ParseLexedAttributes(ParsingClass &Class) {
1340  // Deal with templates
1341  // FIXME: Test cases to make sure this does the right thing for templates.
1342  bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
1343  ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
1344  HasTemplateScope);
1345  if (HasTemplateScope)
1346  Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
1347 
1348  // Set or update the scope flags.
1349  bool AlreadyHasClassScope = Class.TopLevelClass;
1350  unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
1351  ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
1352  ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
1353 
1354  // Enter the scope of nested classes
1355  if (!AlreadyHasClassScope)
1357  Class.TagOrTemplate);
1358  if (!Class.LateParsedDeclarations.empty()) {
1359  for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
1360  Class.LateParsedDeclarations[i]->ParseLexedAttributes();
1361  }
1362  }
1363 
1364  if (!AlreadyHasClassScope)
1366  Class.TagOrTemplate);
1367 }
1368 
1369 /// Parse all attributes in LAs, and attach them to Decl D.
1370 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
1371  bool EnterScope, bool OnDefinition) {
1372  assert(LAs.parseSoon() &&
1373  "Attribute list should be marked for immediate parsing.");
1374  for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
1375  if (D)
1376  LAs[i]->addDecl(D);
1377  ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
1378  delete LAs[i];
1379  }
1380  LAs.clear();
1381 }
1382 
1383 /// Finish parsing an attribute for which parsing was delayed.
1384 /// This will be called at the end of parsing a class declaration
1385 /// for each LateParsedAttribute. We consume the saved tokens and
1386 /// create an attribute with the arguments filled in. We add this
1387 /// to the Attribute list for the decl.
1388 void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
1389  bool EnterScope, bool OnDefinition) {
1390  // Create a fake EOF so that attribute parsing won't go off the end of the
1391  // attribute.
1392  Token AttrEnd;
1393  AttrEnd.startToken();
1394  AttrEnd.setKind(tok::eof);
1395  AttrEnd.setLocation(Tok.getLocation());
1396  AttrEnd.setEofData(LA.Toks.data());
1397  LA.Toks.push_back(AttrEnd);
1398 
1399  // Append the current token at the end of the new token stream so that it
1400  // doesn't get lost.
1401  LA.Toks.push_back(Tok);
1402  PP.EnterTokenStream(LA.Toks, true);
1403  // Consume the previously pushed token.
1404  ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
1405 
1406  ParsedAttributes Attrs(AttrFactory);
1407  SourceLocation endLoc;
1408 
1409  if (LA.Decls.size() > 0) {
1410  Decl *D = LA.Decls[0];
1411  NamedDecl *ND = dyn_cast<NamedDecl>(D);
1412  RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
1413 
1414  // Allow 'this' within late-parsed attributes.
1415  Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0,
1416  ND && ND->isCXXInstanceMember());
1417 
1418  if (LA.Decls.size() == 1) {
1419  // If the Decl is templatized, add template parameters to scope.
1420  bool HasTemplateScope = EnterScope && D->isTemplateDecl();
1421  ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
1422  if (HasTemplateScope)
1423  Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
1424 
1425  // If the Decl is on a function, add function parameters to the scope.
1426  bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
1427  ParseScope FnScope(
1429  HasFunScope);
1430  if (HasFunScope)
1431  Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
1432 
1433  ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1434  nullptr, SourceLocation(), ParsedAttr::AS_GNU,
1435  nullptr);
1436 
1437  if (HasFunScope) {
1438  Actions.ActOnExitFunctionContext();
1439  FnScope.Exit(); // Pop scope, and remove Decls from IdResolver
1440  }
1441  if (HasTemplateScope) {
1442  TempScope.Exit();
1443  }
1444  } else {
1445  // If there are multiple decls, then the decl cannot be within the
1446  // function scope.
1447  ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1448  nullptr, SourceLocation(), ParsedAttr::AS_GNU,
1449  nullptr);
1450  }
1451  } else {
1452  Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
1453  }
1454 
1455  if (OnDefinition && !Attrs.empty() && !Attrs.begin()->isCXX11Attribute() &&
1456  Attrs.begin()->isKnownToGCC())
1457  Diag(Tok, diag::warn_attribute_on_function_definition)
1458  << &LA.AttrName;
1459 
1460  for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
1461  Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
1462 
1463  // Due to a parsing error, we either went over the cached tokens or
1464  // there are still cached tokens left, so we skip the leftover tokens.
1465  while (Tok.isNot(tok::eof))
1466  ConsumeAnyToken();
1467 
1468  if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
1469  ConsumeAnyToken();
1470 }
1471 
1472 void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
1473  SourceLocation AttrNameLoc,
1474  ParsedAttributes &Attrs,
1475  SourceLocation *EndLoc,
1476  IdentifierInfo *ScopeName,
1477  SourceLocation ScopeLoc,
1478  ParsedAttr::Syntax Syntax) {
1479  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1480 
1481  BalancedDelimiterTracker T(*this, tok::l_paren);
1482  T.consumeOpen();
1483 
1484  if (Tok.isNot(tok::identifier)) {
1485  Diag(Tok, diag::err_expected) << tok::identifier;
1486  T.skipToEnd();
1487  return;
1488  }
1489  IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1490 
1491  if (ExpectAndConsume(tok::comma)) {
1492  T.skipToEnd();
1493  return;
1494  }
1495 
1496  SourceRange MatchingCTypeRange;
1497  TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1498  if (MatchingCType.isInvalid()) {
1499  T.skipToEnd();
1500  return;
1501  }
1502 
1503  bool LayoutCompatible = false;
1504  bool MustBeNull = false;
1505  while (TryConsumeToken(tok::comma)) {
1506  if (Tok.isNot(tok::identifier)) {
1507  Diag(Tok, diag::err_expected) << tok::identifier;
1508  T.skipToEnd();
1509  return;
1510  }
1511  IdentifierInfo *Flag = Tok.getIdentifierInfo();
1512  if (Flag->isStr("layout_compatible"))
1513  LayoutCompatible = true;
1514  else if (Flag->isStr("must_be_null"))
1515  MustBeNull = true;
1516  else {
1517  Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1518  T.skipToEnd();
1519  return;
1520  }
1521  ConsumeToken(); // consume flag
1522  }
1523 
1524  if (!T.consumeClose()) {
1525  Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1526  ArgumentKind, MatchingCType.get(),
1527  LayoutCompatible, MustBeNull, Syntax);
1528  }
1529 
1530  if (EndLoc)
1531  *EndLoc = T.getCloseLocation();
1532 }
1533 
1534 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1535 /// of a C++11 attribute-specifier in a location where an attribute is not
1536 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1537 /// situation.
1538 ///
1539 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1540 /// this doesn't appear to actually be an attribute-specifier, and the caller
1541 /// should try to parse it.
1542 bool Parser::DiagnoseProhibitedCXX11Attribute() {
1543  assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1544 
1545  switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1546  case CAK_NotAttributeSpecifier:
1547  // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1548  return false;
1549 
1550  case CAK_InvalidAttributeSpecifier:
1551  Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1552  return false;
1553 
1554  case CAK_AttributeSpecifier:
1555  // Parse and discard the attributes.
1556  SourceLocation BeginLoc = ConsumeBracket();
1557  ConsumeBracket();
1558  SkipUntil(tok::r_square);
1559  assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1560  SourceLocation EndLoc = ConsumeBracket();
1561  Diag(BeginLoc, diag::err_attributes_not_allowed)
1562  << SourceRange(BeginLoc, EndLoc);
1563  return true;
1564  }
1565  llvm_unreachable("All cases handled above.");
1566 }
1567 
1568 /// We have found the opening square brackets of a C++11
1569 /// attribute-specifier in a location where an attribute is not permitted, but
1570 /// we know where the attributes ought to be written. Parse them anyway, and
1571 /// provide a fixit moving them to the right place.
1572 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
1573  SourceLocation CorrectLocation) {
1574  assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1575  Tok.is(tok::kw_alignas));
1576 
1577  // Consume the attributes.
1578  SourceLocation Loc = Tok.getLocation();
1579  ParseCXX11Attributes(Attrs);
1580  CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1581  // FIXME: use err_attributes_misplaced
1582  Diag(Loc, diag::err_attributes_not_allowed)
1583  << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1584  << FixItHint::CreateRemoval(AttrRange);
1585 }
1586 
1587 void Parser::DiagnoseProhibitedAttributes(
1588  const SourceRange &Range, const SourceLocation CorrectLocation) {
1589  if (CorrectLocation.isValid()) {
1590  CharSourceRange AttrRange(Range, true);
1591  Diag(CorrectLocation, diag::err_attributes_misplaced)
1592  << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1593  << FixItHint::CreateRemoval(AttrRange);
1594  } else
1595  Diag(Range.getBegin(), diag::err_attributes_not_allowed) << Range;
1596 }
1597 
1598 void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &Attrs,
1599  unsigned DiagID) {
1600  for (const ParsedAttr &AL : Attrs) {
1601  if (!AL.isCXX11Attribute() && !AL.isC2xAttribute())
1602  continue;
1603  if (AL.getKind() == ParsedAttr::UnknownAttribute)
1604  Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL.getName();
1605  else {
1606  Diag(AL.getLoc(), DiagID) << AL.getName();
1607  AL.setInvalid();
1608  }
1609  }
1610 }
1611 
1612 // Usually, `__attribute__((attrib)) class Foo {} var` means that attribute
1613 // applies to var, not the type Foo.
1614 // As an exception to the rule, __declspec(align(...)) before the
1615 // class-key affects the type instead of the variable.
1616 // Also, Microsoft-style [attributes] seem to affect the type instead of the
1617 // variable.
1618 // This function moves attributes that should apply to the type off DS to Attrs.
1619 void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributesWithRange &Attrs,
1620  DeclSpec &DS,
1621  Sema::TagUseKind TUK) {
1622  if (TUK == Sema::TUK_Reference)
1623  return;
1624 
1626 
1627  for (ParsedAttr &AL : DS.getAttributes()) {
1628  if ((AL.getKind() == ParsedAttr::AT_Aligned &&
1629  AL.isDeclspecAttribute()) ||
1630  AL.isMicrosoftAttribute())
1631  ToBeMoved.push_back(&AL);
1632  }
1633 
1634  for (ParsedAttr *AL : ToBeMoved) {
1635  DS.getAttributes().remove(AL);
1636  Attrs.addAtEnd(AL);
1637  }
1638 }
1639 
1640 /// ParseDeclaration - Parse a full 'declaration', which consists of
1641 /// declaration-specifiers, some number of declarators, and a semicolon.
1642 /// 'Context' should be a DeclaratorContext value. This returns the
1643 /// location of the semicolon in DeclEnd.
1644 ///
1645 /// declaration: [C99 6.7]
1646 /// block-declaration ->
1647 /// simple-declaration
1648 /// others [FIXME]
1649 /// [C++] template-declaration
1650 /// [C++] namespace-definition
1651 /// [C++] using-directive
1652 /// [C++] using-declaration
1653 /// [C++11/C11] static_assert-declaration
1654 /// others... [FIXME]
1655 ///
1656 Parser::DeclGroupPtrTy Parser::ParseDeclaration(DeclaratorContext Context,
1657  SourceLocation &DeclEnd,
1658  ParsedAttributesWithRange &attrs) {
1659  ParenBraceBracketBalancer BalancerRAIIObj(*this);
1660  // Must temporarily exit the objective-c container scope for
1661  // parsing c none objective-c decls.
1662  ObjCDeclContextSwitch ObjCDC(*this);
1663 
1664  Decl *SingleDecl = nullptr;
1665  switch (Tok.getKind()) {
1666  case tok::kw_template:
1667  case tok::kw_export:
1668  ProhibitAttributes(attrs);
1669  SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd, attrs);
1670  break;
1671  case tok::kw_inline:
1672  // Could be the start of an inline namespace. Allowed as an ext in C++03.
1673  if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1674  ProhibitAttributes(attrs);
1675  SourceLocation InlineLoc = ConsumeToken();
1676  return ParseNamespace(Context, DeclEnd, InlineLoc);
1677  }
1678  return ParseSimpleDeclaration(Context, DeclEnd, attrs,
1679  true);
1680  case tok::kw_namespace:
1681  ProhibitAttributes(attrs);
1682  return ParseNamespace(Context, DeclEnd);
1683  case tok::kw_using:
1684  return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1685  DeclEnd, attrs);
1686  case tok::kw_static_assert:
1687  case tok::kw__Static_assert:
1688  ProhibitAttributes(attrs);
1689  SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1690  break;
1691  default:
1692  return ParseSimpleDeclaration(Context, DeclEnd, attrs, true);
1693  }
1694 
1695  // This routine returns a DeclGroup, if the thing we parsed only contains a
1696  // single decl, convert it now.
1697  return Actions.ConvertDeclToDeclGroup(SingleDecl);
1698 }
1699 
1700 /// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1701 /// declaration-specifiers init-declarator-list[opt] ';'
1702 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1703 /// init-declarator-list ';'
1704 ///[C90/C++]init-declarator-list ';' [TODO]
1705 /// [OMP] threadprivate-directive [TODO]
1706 ///
1707 /// for-range-declaration: [C++11 6.5p1: stmt.ranged]
1708 /// attribute-specifier-seq[opt] type-specifier-seq declarator
1709 ///
1710 /// If RequireSemi is false, this does not check for a ';' at the end of the
1711 /// declaration. If it is true, it checks for and eats it.
1712 ///
1713 /// If FRI is non-null, we might be parsing a for-range-declaration instead
1714 /// of a simple-declaration. If we find that we are, we also parse the
1715 /// for-range-initializer, and place it here.
1717 Parser::ParseSimpleDeclaration(DeclaratorContext Context,
1718  SourceLocation &DeclEnd,
1719  ParsedAttributesWithRange &Attrs,
1720  bool RequireSemi, ForRangeInit *FRI) {
1721  // Parse the common declaration-specifiers piece.
1722  ParsingDeclSpec DS(*this);
1723 
1724  DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1725  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1726 
1727  // If we had a free-standing type definition with a missing semicolon, we
1728  // may get this far before the problem becomes obvious.
1729  if (DS.hasTagDefinition() &&
1730  DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
1731  return nullptr;
1732 
1733  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1734  // declaration-specifiers init-declarator-list[opt] ';'
1735  if (Tok.is(tok::semi)) {
1736  ProhibitAttributes(Attrs);
1737  DeclEnd = Tok.getLocation();
1738  if (RequireSemi) ConsumeToken();
1739  RecordDecl *AnonRecord = nullptr;
1740  Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1741  DS, AnonRecord);
1742  DS.complete(TheDecl);
1743  if (AnonRecord) {
1744  Decl* decls[] = {AnonRecord, TheDecl};
1745  return Actions.BuildDeclaratorGroup(decls);
1746  }
1747  return Actions.ConvertDeclToDeclGroup(TheDecl);
1748  }
1749 
1750  DS.takeAttributesFrom(Attrs);
1751  return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
1752 }
1753 
1754 /// Returns true if this might be the start of a declarator, or a common typo
1755 /// for a declarator.
1756 bool Parser::MightBeDeclarator(DeclaratorContext Context) {
1757  switch (Tok.getKind()) {
1758  case tok::annot_cxxscope:
1759  case tok::annot_template_id:
1760  case tok::caret:
1761  case tok::code_completion:
1762  case tok::coloncolon:
1763  case tok::ellipsis:
1764  case tok::kw___attribute:
1765  case tok::kw_operator:
1766  case tok::l_paren:
1767  case tok::star:
1768  return true;
1769 
1770  case tok::amp:
1771  case tok::ampamp:
1772  return getLangOpts().CPlusPlus;
1773 
1774  case tok::l_square: // Might be an attribute on an unnamed bit-field.
1775  return Context == DeclaratorContext::MemberContext &&
1776  getLangOpts().CPlusPlus11 && NextToken().is(tok::l_square);
1777 
1778  case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1779  return Context == DeclaratorContext::MemberContext ||
1780  getLangOpts().CPlusPlus;
1781 
1782  case tok::identifier:
1783  switch (NextToken().getKind()) {
1784  case tok::code_completion:
1785  case tok::coloncolon:
1786  case tok::comma:
1787  case tok::equal:
1788  case tok::equalequal: // Might be a typo for '='.
1789  case tok::kw_alignas:
1790  case tok::kw_asm:
1791  case tok::kw___attribute:
1792  case tok::l_brace:
1793  case tok::l_paren:
1794  case tok::l_square:
1795  case tok::less:
1796  case tok::r_brace:
1797  case tok::r_paren:
1798  case tok::r_square:
1799  case tok::semi:
1800  return true;
1801 
1802  case tok::colon:
1803  // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1804  // and in block scope it's probably a label. Inside a class definition,
1805  // this is a bit-field.
1806  return Context == DeclaratorContext::MemberContext ||
1807  (getLangOpts().CPlusPlus &&
1808  Context == DeclaratorContext::FileContext);
1809 
1810  case tok::identifier: // Possible virt-specifier.
1811  return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
1812 
1813  default:
1814  return false;
1815  }
1816 
1817  default:
1818  return false;
1819  }
1820 }
1821 
1822 /// Skip until we reach something which seems like a sensible place to pick
1823 /// up parsing after a malformed declaration. This will sometimes stop sooner
1824 /// than SkipUntil(tok::r_brace) would, but will never stop later.
1826  while (true) {
1827  switch (Tok.getKind()) {
1828  case tok::l_brace:
1829  // Skip until matching }, then stop. We've probably skipped over
1830  // a malformed class or function definition or similar.
1831  ConsumeBrace();
1832  SkipUntil(tok::r_brace);
1833  if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
1834  // This declaration isn't over yet. Keep skipping.
1835  continue;
1836  }
1837  TryConsumeToken(tok::semi);
1838  return;
1839 
1840  case tok::l_square:
1841  ConsumeBracket();
1842  SkipUntil(tok::r_square);
1843  continue;
1844 
1845  case tok::l_paren:
1846  ConsumeParen();
1847  SkipUntil(tok::r_paren);
1848  continue;
1849 
1850  case tok::r_brace:
1851  return;
1852 
1853  case tok::semi:
1854  ConsumeToken();
1855  return;
1856 
1857  case tok::kw_inline:
1858  // 'inline namespace' at the start of a line is almost certainly
1859  // a good place to pick back up parsing, except in an Objective-C
1860  // @interface context.
1861  if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
1862  (!ParsingInObjCContainer || CurParsedObjCImpl))
1863  return;
1864  break;
1865 
1866  case tok::kw_namespace:
1867  // 'namespace' at the start of a line is almost certainly a good
1868  // place to pick back up parsing, except in an Objective-C
1869  // @interface context.
1870  if (Tok.isAtStartOfLine() &&
1871  (!ParsingInObjCContainer || CurParsedObjCImpl))
1872  return;
1873  break;
1874 
1875  case tok::at:
1876  // @end is very much like } in Objective-C contexts.
1877  if (NextToken().isObjCAtKeyword(tok::objc_end) &&
1878  ParsingInObjCContainer)
1879  return;
1880  break;
1881 
1882  case tok::minus:
1883  case tok::plus:
1884  // - and + probably start new method declarations in Objective-C contexts.
1885  if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
1886  return;
1887  break;
1888 
1889  case tok::eof:
1890  case tok::annot_module_begin:
1891  case tok::annot_module_end:
1892  case tok::annot_module_include:
1893  return;
1894 
1895  default:
1896  break;
1897  }
1898 
1899  ConsumeAnyToken();
1900  }
1901 }
1902 
1903 /// ParseDeclGroup - Having concluded that this is either a function
1904 /// definition or a group of object declarations, actually parse the
1905 /// result.
1906 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1907  DeclaratorContext Context,
1908  SourceLocation *DeclEnd,
1909  ForRangeInit *FRI) {
1910  // Parse the first declarator.
1911  ParsingDeclarator D(*this, DS, Context);
1912  ParseDeclarator(D);
1913 
1914  // Bail out if the first declarator didn't seem well-formed.
1915  if (!D.hasName() && !D.mayOmitIdentifier()) {
1917  return nullptr;
1918  }
1919 
1920  // Save late-parsed attributes for now; they need to be parsed in the
1921  // appropriate function scope after the function Decl has been constructed.
1922  // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
1923  LateParsedAttrList LateParsedAttrs(true);
1924  if (D.isFunctionDeclarator()) {
1925  MaybeParseGNUAttributes(D, &LateParsedAttrs);
1926 
1927  // The _Noreturn keyword can't appear here, unlike the GNU noreturn
1928  // attribute. If we find the keyword here, tell the user to put it
1929  // at the start instead.
1930  if (Tok.is(tok::kw__Noreturn)) {
1931  SourceLocation Loc = ConsumeToken();
1932  const char *PrevSpec;
1933  unsigned DiagID;
1934 
1935  // We can offer a fixit if it's valid to mark this function as _Noreturn
1936  // and we don't have any other declarators in this declaration.
1937  bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
1938  MaybeParseGNUAttributes(D, &LateParsedAttrs);
1939  Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
1940 
1941  Diag(Loc, diag::err_c11_noreturn_misplaced)
1942  << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
1943  << (Fixit ? FixItHint::CreateInsertion(D.getBeginLoc(), "_Noreturn ")
1944  : FixItHint());
1945  }
1946  }
1947 
1948  // Check to see if we have a function *definition* which must have a body.
1949  if (D.isFunctionDeclarator() &&
1950  // Look at the next token to make sure that this isn't a function
1951  // declaration. We have to check this because __attribute__ might be the
1952  // start of a function definition in GCC-extended K&R C.
1953  !isDeclarationAfterDeclarator()) {
1954 
1955  // Function definitions are only allowed at file scope and in C++ classes.
1956  // The C++ inline method definition case is handled elsewhere, so we only
1957  // need to handle the file scope definition case.
1958  if (Context == DeclaratorContext::FileContext) {
1959  if (isStartOfFunctionDefinition(D)) {
1961  Diag(Tok, diag::err_function_declared_typedef);
1962 
1963  // Recover by treating the 'typedef' as spurious.
1965  }
1966 
1967  Decl *TheDecl =
1968  ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
1969  return Actions.ConvertDeclToDeclGroup(TheDecl);
1970  }
1971 
1972  if (isDeclarationSpecifier()) {
1973  // If there is an invalid declaration specifier right after the
1974  // function prototype, then we must be in a missing semicolon case
1975  // where this isn't actually a body. Just fall through into the code
1976  // that handles it as a prototype, and let the top-level code handle
1977  // the erroneous declspec where it would otherwise expect a comma or
1978  // semicolon.
1979  } else {
1980  Diag(Tok, diag::err_expected_fn_body);
1981  SkipUntil(tok::semi);
1982  return nullptr;
1983  }
1984  } else {
1985  if (Tok.is(tok::l_brace)) {
1986  Diag(Tok, diag::err_function_definition_not_allowed);
1988  return nullptr;
1989  }
1990  }
1991  }
1992 
1993  if (ParseAsmAttributesAfterDeclarator(D))
1994  return nullptr;
1995 
1996  // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1997  // must parse and analyze the for-range-initializer before the declaration is
1998  // analyzed.
1999  //
2000  // Handle the Objective-C for-in loop variable similarly, although we
2001  // don't need to parse the container in advance.
2002  if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
2003  bool IsForRangeLoop = false;
2004  if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
2005  IsForRangeLoop = true;
2006  if (Tok.is(tok::l_brace))
2007  FRI->RangeExpr = ParseBraceInitializer();
2008  else
2009  FRI->RangeExpr = ParseExpression();
2010  }
2011 
2012  Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2013  if (IsForRangeLoop) {
2014  Actions.ActOnCXXForRangeDecl(ThisDecl);
2015  } else {
2016  // Obj-C for loop
2017  if (auto *VD = dyn_cast_or_null<VarDecl>(ThisDecl))
2018  VD->setObjCForDecl(true);
2019  }
2020  Actions.FinalizeDeclaration(ThisDecl);
2021  D.complete(ThisDecl);
2022  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
2023  }
2024 
2025  SmallVector<Decl *, 8> DeclsInGroup;
2026  Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
2027  D, ParsedTemplateInfo(), FRI);
2028  if (LateParsedAttrs.size() > 0)
2029  ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
2030  D.complete(FirstDecl);
2031  if (FirstDecl)
2032  DeclsInGroup.push_back(FirstDecl);
2033 
2034  bool ExpectSemi = Context != DeclaratorContext::ForContext;
2035 
2036  // If we don't have a comma, it is either the end of the list (a ';') or an
2037  // error, bail out.
2038  SourceLocation CommaLoc;
2039  while (TryConsumeToken(tok::comma, CommaLoc)) {
2040  if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
2041  // This comma was followed by a line-break and something which can't be
2042  // the start of a declarator. The comma was probably a typo for a
2043  // semicolon.
2044  Diag(CommaLoc, diag::err_expected_semi_declaration)
2045  << FixItHint::CreateReplacement(CommaLoc, ";");
2046  ExpectSemi = false;
2047  break;
2048  }
2049 
2050  // Parse the next declarator.
2051  D.clear();
2052  D.setCommaLoc(CommaLoc);
2053 
2054  // Accept attributes in an init-declarator. In the first declarator in a
2055  // declaration, these would be part of the declspec. In subsequent
2056  // declarators, they become part of the declarator itself, so that they
2057  // don't apply to declarators after *this* one. Examples:
2058  // short __attribute__((common)) var; -> declspec
2059  // short var __attribute__((common)); -> declarator
2060  // short x, __attribute__((common)) var; -> declarator
2061  MaybeParseGNUAttributes(D);
2062 
2063  // MSVC parses but ignores qualifiers after the comma as an extension.
2064  if (getLangOpts().MicrosoftExt)
2065  DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
2066 
2067  ParseDeclarator(D);
2068  if (!D.isInvalidType()) {
2069  Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
2070  D.complete(ThisDecl);
2071  if (ThisDecl)
2072  DeclsInGroup.push_back(ThisDecl);
2073  }
2074  }
2075 
2076  if (DeclEnd)
2077  *DeclEnd = Tok.getLocation();
2078 
2079  if (ExpectSemi &&
2080  ExpectAndConsumeSemi(Context == DeclaratorContext::FileContext
2081  ? diag::err_invalid_token_after_toplevel_declarator
2082  : diag::err_expected_semi_declaration)) {
2083  // Okay, there was no semicolon and one was expected. If we see a
2084  // declaration specifier, just assume it was missing and continue parsing.
2085  // Otherwise things are very confused and we skip to recover.
2086  if (!isDeclarationSpecifier()) {
2087  SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
2088  TryConsumeToken(tok::semi);
2089  }
2090  }
2091 
2092  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
2093 }
2094 
2095 /// Parse an optional simple-asm-expr and attributes, and attach them to a
2096 /// declarator. Returns true on an error.
2097 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
2098  // If a simple-asm-expr is present, parse it.
2099  if (Tok.is(tok::kw_asm)) {
2100  SourceLocation Loc;
2101  ExprResult AsmLabel(ParseSimpleAsm(&Loc));
2102  if (AsmLabel.isInvalid()) {
2103  SkipUntil(tok::semi, StopBeforeMatch);
2104  return true;
2105  }
2106 
2107  D.setAsmLabel(AsmLabel.get());
2108  D.SetRangeEnd(Loc);
2109  }
2110 
2111  MaybeParseGNUAttributes(D);
2112  return false;
2113 }
2114 
2115 /// Parse 'declaration' after parsing 'declaration-specifiers
2116 /// declarator'. This method parses the remainder of the declaration
2117 /// (including any attributes or initializer, among other things) and
2118 /// finalizes the declaration.
2119 ///
2120 /// init-declarator: [C99 6.7]
2121 /// declarator
2122 /// declarator '=' initializer
2123 /// [GNU] declarator simple-asm-expr[opt] attributes[opt]
2124 /// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer
2125 /// [C++] declarator initializer[opt]
2126 ///
2127 /// [C++] initializer:
2128 /// [C++] '=' initializer-clause
2129 /// [C++] '(' expression-list ')'
2130 /// [C++0x] '=' 'default' [TODO]
2131 /// [C++0x] '=' 'delete'
2132 /// [C++0x] braced-init-list
2133 ///
2134 /// According to the standard grammar, =default and =delete are function
2135 /// definitions, but that definitely doesn't fit with the parser here.
2136 ///
2137 Decl *Parser::ParseDeclarationAfterDeclarator(
2138  Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
2139  if (ParseAsmAttributesAfterDeclarator(D))
2140  return nullptr;
2141 
2142  return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
2143 }
2144 
2145 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
2146  Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
2147  // RAII type used to track whether we're inside an initializer.
2148  struct InitializerScopeRAII {
2149  Parser &P;
2150  Declarator &D;
2151  Decl *ThisDecl;
2152 
2153  InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl)
2154  : P(P), D(D), ThisDecl(ThisDecl) {
2155  if (ThisDecl && P.getLangOpts().CPlusPlus) {
2156  Scope *S = nullptr;
2157  if (D.getCXXScopeSpec().isSet()) {
2158  P.EnterScope(0);
2159  S = P.getCurScope();
2160  }
2161  P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl);
2162  }
2163  }
2164  ~InitializerScopeRAII() { pop(); }
2165  void pop() {
2166  if (ThisDecl && P.getLangOpts().CPlusPlus) {
2167  Scope *S = nullptr;
2168  if (D.getCXXScopeSpec().isSet())
2169  S = P.getCurScope();
2170  P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl);
2171  if (S)
2172  P.ExitScope();
2173  }
2174  ThisDecl = nullptr;
2175  }
2176  };
2177 
2178  // Inform the current actions module that we just parsed this declarator.
2179  Decl *ThisDecl = nullptr;
2180  switch (TemplateInfo.Kind) {
2181  case ParsedTemplateInfo::NonTemplate:
2182  ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2183  break;
2184 
2185  case ParsedTemplateInfo::Template:
2186  case ParsedTemplateInfo::ExplicitSpecialization: {
2187  ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
2188  *TemplateInfo.TemplateParams,
2189  D);
2190  if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
2191  // Re-direct this decl to refer to the templated decl so that we can
2192  // initialize it.
2193  ThisDecl = VT->getTemplatedDecl();
2194  break;
2195  }
2196  case ParsedTemplateInfo::ExplicitInstantiation: {
2197  if (Tok.is(tok::semi)) {
2198  DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
2199  getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
2200  if (ThisRes.isInvalid()) {
2201  SkipUntil(tok::semi, StopBeforeMatch);
2202  return nullptr;
2203  }
2204  ThisDecl = ThisRes.get();
2205  } else {
2206  // FIXME: This check should be for a variable template instantiation only.
2207 
2208  // Check that this is a valid instantiation
2210  // If the declarator-id is not a template-id, issue a diagnostic and
2211  // recover by ignoring the 'template' keyword.
2212  Diag(Tok, diag::err_template_defn_explicit_instantiation)
2213  << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
2214  ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2215  } else {
2216  SourceLocation LAngleLoc =
2217  PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
2218  Diag(D.getIdentifierLoc(),
2219  diag::err_explicit_instantiation_with_definition)
2220  << SourceRange(TemplateInfo.TemplateLoc)
2221  << FixItHint::CreateInsertion(LAngleLoc, "<>");
2222 
2223  // Recover as if it were an explicit specialization.
2224  TemplateParameterLists FakedParamLists;
2225  FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
2226  0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, None,
2227  LAngleLoc, nullptr));
2228 
2229  ThisDecl =
2230  Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
2231  }
2232  }
2233  break;
2234  }
2235  }
2236 
2237  // Parse declarator '=' initializer.
2238  // If a '==' or '+=' is found, suggest a fixit to '='.
2239  if (isTokenEqualOrEqualTypo()) {
2240  SourceLocation EqualLoc = ConsumeToken();
2241 
2242  if (Tok.is(tok::kw_delete)) {
2243  if (D.isFunctionDeclarator())
2244  Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2245  << 1 /* delete */;
2246  else
2247  Diag(ConsumeToken(), diag::err_deleted_non_function);
2248  } else if (Tok.is(tok::kw_default)) {
2249  if (D.isFunctionDeclarator())
2250  Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2251  << 0 /* default */;
2252  else
2253  Diag(ConsumeToken(), diag::err_default_special_members);
2254  } else {
2255  InitializerScopeRAII InitScope(*this, D, ThisDecl);
2256 
2257  if (Tok.is(tok::code_completion)) {
2258  Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
2259  Actions.FinalizeDeclaration(ThisDecl);
2260  cutOffParsing();
2261  return nullptr;
2262  }
2263 
2264  ExprResult Init(ParseInitializer());
2265 
2266  // If this is the only decl in (possibly) range based for statement,
2267  // our best guess is that the user meant ':' instead of '='.
2268  if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
2269  Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
2270  << FixItHint::CreateReplacement(EqualLoc, ":");
2271  // We are trying to stop parser from looking for ';' in this for
2272  // statement, therefore preventing spurious errors to be issued.
2273  FRI->ColonLoc = EqualLoc;
2274  Init = ExprError();
2275  FRI->RangeExpr = Init;
2276  }
2277 
2278  InitScope.pop();
2279 
2280  if (Init.isInvalid()) {
2281  SmallVector<tok::TokenKind, 2> StopTokens;
2282  StopTokens.push_back(tok::comma);
2285  StopTokens.push_back(tok::r_paren);
2286  SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
2287  Actions.ActOnInitializerError(ThisDecl);
2288  } else
2289  Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2290  /*DirectInit=*/false);
2291  }
2292  } else if (Tok.is(tok::l_paren)) {
2293  // Parse C++ direct initializer: '(' expression-list ')'
2294  BalancedDelimiterTracker T(*this, tok::l_paren);
2295  T.consumeOpen();
2296 
2297  ExprVector Exprs;
2298  CommaLocsTy CommaLocs;
2299 
2300  InitializerScopeRAII InitScope(*this, D, ThisDecl);
2301 
2302  llvm::function_ref<void()> ExprListCompleter;
2303  auto ThisVarDecl = dyn_cast_or_null<VarDecl>(ThisDecl);
2304  auto ConstructorCompleter = [&, ThisVarDecl] {
2305  QualType PreferredType = Actions.ProduceConstructorSignatureHelp(
2306  getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(),
2307  ThisDecl->getLocation(), Exprs, T.getOpenLocation());
2308  CalledSignatureHelp = true;
2309  Actions.CodeCompleteExpression(getCurScope(), PreferredType);
2310  };
2311  if (ThisVarDecl) {
2312  // ParseExpressionList can sometimes succeed even when ThisDecl is not
2313  // VarDecl. This is an error and it is reported in a call to
2314  // Actions.ActOnInitializerError(). However, we call
2315  // ProduceConstructorSignatureHelp only on VarDecls, falling back to
2316  // default completer in other cases.
2317  ExprListCompleter = ConstructorCompleter;
2318  }
2319 
2320  if (ParseExpressionList(Exprs, CommaLocs, ExprListCompleter)) {
2321  if (ThisVarDecl && PP.isCodeCompletionReached() && !CalledSignatureHelp) {
2322  Actions.ProduceConstructorSignatureHelp(
2323  getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(),
2324  ThisDecl->getLocation(), Exprs, T.getOpenLocation());
2325  CalledSignatureHelp = true;
2326  }
2327  Actions.ActOnInitializerError(ThisDecl);
2328  SkipUntil(tok::r_paren, StopAtSemi);
2329  } else {
2330  // Match the ')'.
2331  T.consumeClose();
2332 
2333  assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
2334  "Unexpected number of commas!");
2335 
2336  InitScope.pop();
2337 
2338  ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2339  T.getCloseLocation(),
2340  Exprs);
2341  Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2342  /*DirectInit=*/true);
2343  }
2344  } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2345  (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
2346  // Parse C++0x braced-init-list.
2347  Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2348 
2349  InitializerScopeRAII InitScope(*this, D, ThisDecl);
2350 
2351  ExprResult Init(ParseBraceInitializer());
2352 
2353  InitScope.pop();
2354 
2355  if (Init.isInvalid()) {
2356  Actions.ActOnInitializerError(ThisDecl);
2357  } else
2358  Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true);
2359 
2360  } else {
2361  Actions.ActOnUninitializedDecl(ThisDecl);
2362  }
2363 
2364  Actions.FinalizeDeclaration(ThisDecl);
2365 
2366  return ThisDecl;
2367 }
2368 
2369 /// ParseSpecifierQualifierList
2370 /// specifier-qualifier-list:
2371 /// type-specifier specifier-qualifier-list[opt]
2372 /// type-qualifier specifier-qualifier-list[opt]
2373 /// [GNU] attributes specifier-qualifier-list[opt]
2374 ///
2375 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
2376  DeclSpecContext DSC) {
2377  /// specifier-qualifier-list is a subset of declaration-specifiers. Just
2378  /// parse declaration-specifiers and complain about extra stuff.
2379  /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2380  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
2381 
2382  // Validate declspec for type-name.
2383  unsigned Specs = DS.getParsedSpecifiers();
2384  if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2385  Diag(Tok, diag::err_expected_type);
2386  DS.SetTypeSpecError();
2387  } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
2388  Diag(Tok, diag::err_typename_requires_specqual);
2389  if (!DS.hasTypeSpecifier())
2390  DS.SetTypeSpecError();
2391  }
2392 
2393  // Issue diagnostic and remove storage class if present.
2394  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
2395  if (DS.getStorageClassSpecLoc().isValid())
2396  Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2397  else
2399  diag::err_typename_invalid_storageclass);
2401  }
2402 
2403  // Issue diagnostic and remove function specifier if present.
2404  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2405  if (DS.isInlineSpecified())
2406  Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2407  if (DS.isVirtualSpecified())
2408  Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2409  if (DS.isExplicitSpecified())
2410  Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2411  DS.ClearFunctionSpecs();
2412  }
2413 
2414  // Issue diagnostic and remove constexpr specfier if present.
2415  if (DS.isConstexprSpecified() && DSC != DeclSpecContext::DSC_condition) {
2416  Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
2417  DS.ClearConstexprSpec();
2418  }
2419 }
2420 
2421 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2422 /// specified token is valid after the identifier in a declarator which
2423 /// immediately follows the declspec. For example, these things are valid:
2424 ///
2425 /// int x [ 4]; // direct-declarator
2426 /// int x ( int y); // direct-declarator
2427 /// int(int x ) // direct-declarator
2428 /// int x ; // simple-declaration
2429 /// int x = 17; // init-declarator-list
2430 /// int x , y; // init-declarator-list
2431 /// int x __asm__ ("foo"); // init-declarator-list
2432 /// int x : 4; // struct-declarator
2433 /// int x { 5}; // C++'0x unified initializers
2434 ///
2435 /// This is not, because 'x' does not immediately follow the declspec (though
2436 /// ')' happens to be valid anyway).
2437 /// int (x)
2438 ///
2440  return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
2441  tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
2442  tok::colon);
2443 }
2444 
2445 /// ParseImplicitInt - This method is called when we have an non-typename
2446 /// identifier in a declspec (which normally terminates the decl spec) when
2447 /// the declspec has no type specifier. In this case, the declspec is either
2448 /// malformed or is "implicit int" (in K&R and C89).
2449 ///
2450 /// This method handles diagnosing this prettily and returns false if the
2451 /// declspec is done being processed. If it recovers and thinks there may be
2452 /// other pieces of declspec after it, it returns true.
2453 ///
2454 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2455  const ParsedTemplateInfo &TemplateInfo,
2456  AccessSpecifier AS, DeclSpecContext DSC,
2457  ParsedAttributesWithRange &Attrs) {
2458  assert(Tok.is(tok::identifier) && "should have identifier");
2459 
2460  SourceLocation Loc = Tok.getLocation();
2461  // If we see an identifier that is not a type name, we normally would
2462  // parse it as the identifier being declared. However, when a typename
2463  // is typo'd or the definition is not included, this will incorrectly
2464  // parse the typename as the identifier name and fall over misparsing
2465  // later parts of the diagnostic.
2466  //
2467  // As such, we try to do some look-ahead in cases where this would
2468  // otherwise be an "implicit-int" case to see if this is invalid. For
2469  // example: "static foo_t x = 4;" In this case, if we parsed foo_t as
2470  // an identifier with implicit int, we'd get a parse error because the
2471  // next token is obviously invalid for a type. Parse these as a case
2472  // with an invalid type specifier.
2473  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2474 
2475  // Since we know that this either implicit int (which is rare) or an
2476  // error, do lookahead to try to do better recovery. This never applies
2477  // within a type specifier. Outside of C++, we allow this even if the
2478  // language doesn't "officially" support implicit int -- we support
2479  // implicit int as an extension in C99 and C11.
2480  if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
2482  // If this token is valid for implicit int, e.g. "static x = 4", then
2483  // we just avoid eating the identifier, so it will be parsed as the
2484  // identifier in the declarator.
2485  return false;
2486  }
2487 
2488  if (getLangOpts().CPlusPlus &&
2490  // Don't require a type specifier if we have the 'auto' storage class
2491  // specifier in C++98 -- we'll promote it to a type specifier.
2492  if (SS)
2493  AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2494  return false;
2495  }
2496 
2497  if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) &&
2498  getLangOpts().MSVCCompat) {
2499  // Lookup of an unqualified type name has failed in MSVC compatibility mode.
2500  // Give Sema a chance to recover if we are in a template with dependent base
2501  // classes.
2502  if (ParsedType T = Actions.ActOnMSVCUnknownTypeName(
2503  *Tok.getIdentifierInfo(), Tok.getLocation(),
2504  DSC == DeclSpecContext::DSC_template_type_arg)) {
2505  const char *PrevSpec;
2506  unsigned DiagID;
2507  DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2508  Actions.getASTContext().getPrintingPolicy());
2509  DS.SetRangeEnd(Tok.getLocation());
2510  ConsumeToken();
2511  return false;
2512  }
2513  }
2514 
2515  // Otherwise, if we don't consume this token, we are going to emit an
2516  // error anyway. Try to recover from various common problems. Check
2517  // to see if this was a reference to a tag name without a tag specified.
2518  // This is a common problem in C (saying 'foo' instead of 'struct foo').
2519  //
2520  // C++ doesn't need this, and isTagName doesn't take SS.
2521  if (SS == nullptr) {
2522  const char *TagName = nullptr, *FixitTagName = nullptr;
2523  tok::TokenKind TagKind = tok::unknown;
2524 
2525  switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2526  default: break;
2527  case DeclSpec::TST_enum:
2528  TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break;
2529  case DeclSpec::TST_union:
2530  TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2531  case DeclSpec::TST_struct:
2532  TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2534  TagName="__interface"; FixitTagName = "__interface ";
2535  TagKind=tok::kw___interface;break;
2536  case DeclSpec::TST_class:
2537  TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2538  }
2539 
2540  if (TagName) {
2541  IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2542  LookupResult R(Actions, TokenName, SourceLocation(),
2544 
2545  Diag(Loc, diag::err_use_of_tag_name_without_tag)
2546  << TokenName << TagName << getLangOpts().CPlusPlus
2547  << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2548 
2549  if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2550  for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2551  I != IEnd; ++I)
2552  Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2553  << TokenName << TagName;
2554  }
2555 
2556  // Parse this as a tag as if the missing tag were present.
2557  if (TagKind == tok::kw_enum)
2558  ParseEnumSpecifier(Loc, DS, TemplateInfo, AS,
2559  DeclSpecContext::DSC_normal);
2560  else
2561  ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2562  /*EnteringContext*/ false,
2563  DeclSpecContext::DSC_normal, Attrs);
2564  return true;
2565  }
2566  }
2567 
2568  // Determine whether this identifier could plausibly be the name of something
2569  // being declared (with a missing type).
2570  if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level ||
2571  DSC == DeclSpecContext::DSC_class)) {
2572  // Look ahead to the next token to try to figure out what this declaration
2573  // was supposed to be.
2574  switch (NextToken().getKind()) {
2575  case tok::l_paren: {
2576  // static x(4); // 'x' is not a type
2577  // x(int n); // 'x' is not a type
2578  // x (*p)[]; // 'x' is a type
2579  //
2580  // Since we're in an error case, we can afford to perform a tentative
2581  // parse to determine which case we're in.
2582  TentativeParsingAction PA(*this);
2583  ConsumeToken();
2584  TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2585  PA.Revert();
2586 
2587  if (TPR != TPResult::False) {
2588  // The identifier is followed by a parenthesized declarator.
2589  // It's supposed to be a type.
2590  break;
2591  }
2592 
2593  // If we're in a context where we could be declaring a constructor,
2594  // check whether this is a constructor declaration with a bogus name.
2595  if (DSC == DeclSpecContext::DSC_class ||
2596  (DSC == DeclSpecContext::DSC_top_level && SS)) {
2597  IdentifierInfo *II = Tok.getIdentifierInfo();
2598  if (Actions.isCurrentClassNameTypo(II, SS)) {
2599  Diag(Loc, diag::err_constructor_bad_name)
2600  << Tok.getIdentifierInfo() << II
2601  << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2602  Tok.setIdentifierInfo(II);
2603  }
2604  }
2605  // Fall through.
2606  LLVM_FALLTHROUGH;
2607  }
2608  case tok::comma:
2609  case tok::equal:
2610  case tok::kw_asm:
2611  case tok::l_brace:
2612  case tok::l_square:
2613  case tok::semi:
2614  // This looks like a variable or function declaration. The type is
2615  // probably missing. We're done parsing decl-specifiers.
2616  if (SS)
2617  AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2618  return false;
2619 
2620  default:
2621  // This is probably supposed to be a type. This includes cases like:
2622  // int f(itn);
2623  // struct S { unsinged : 4; };
2624  break;
2625  }
2626  }
2627 
2628  // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2629  // and attempt to recover.
2630  ParsedType T;
2631  IdentifierInfo *II = Tok.getIdentifierInfo();
2632  bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less);
2633  Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2634  IsTemplateName);
2635  if (T) {
2636  // The action has suggested that the type T could be used. Set that as
2637  // the type in the declaration specifiers, consume the would-be type
2638  // name token, and we're done.
2639  const char *PrevSpec;
2640  unsigned DiagID;
2641  DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2642  Actions.getASTContext().getPrintingPolicy());
2643  DS.SetRangeEnd(Tok.getLocation());
2644  ConsumeToken();
2645  // There may be other declaration specifiers after this.
2646  return true;
2647  } else if (II != Tok.getIdentifierInfo()) {
2648  // If no type was suggested, the correction is to a keyword
2649  Tok.setKind(II->getTokenID());
2650  // There may be other declaration specifiers after this.
2651  return true;
2652  }
2653 
2654  // Otherwise, the action had no suggestion for us. Mark this as an error.
2655  DS.SetTypeSpecError();
2656  DS.SetRangeEnd(Tok.getLocation());
2657  ConsumeToken();
2658 
2659  // Eat any following template arguments.
2660  if (IsTemplateName) {
2661  SourceLocation LAngle, RAngle;
2662  TemplateArgList Args;
2663  ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle);
2664  }
2665 
2666  // TODO: Could inject an invalid typedef decl in an enclosing scope to
2667  // avoid rippling error messages on subsequent uses of the same type,
2668  // could be useful if #include was forgotten.
2669  return false;
2670 }
2671 
2672 /// Determine the declaration specifier context from the declarator
2673 /// context.
2674 ///
2675 /// \param Context the declarator context, which is one of the
2676 /// DeclaratorContext enumerator values.
2677 Parser::DeclSpecContext
2678 Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) {
2679  if (Context == DeclaratorContext::MemberContext)
2680  return DeclSpecContext::DSC_class;
2681  if (Context == DeclaratorContext::FileContext)
2682  return DeclSpecContext::DSC_top_level;
2684  return DeclSpecContext::DSC_template_param;
2685  if (Context == DeclaratorContext::TemplateArgContext ||
2687  return DeclSpecContext::DSC_template_type_arg;
2690  return DeclSpecContext::DSC_trailing;
2691  if (Context == DeclaratorContext::AliasDeclContext ||
2693  return DeclSpecContext::DSC_alias_declaration;
2694  return DeclSpecContext::DSC_normal;
2695 }
2696 
2697 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
2698 ///
2699 /// FIXME: Simply returns an alignof() expression if the argument is a
2700 /// type. Ideally, the type should be propagated directly into Sema.
2701 ///
2702 /// [C11] type-id
2703 /// [C11] constant-expression
2704 /// [C++0x] type-id ...[opt]
2705 /// [C++0x] assignment-expression ...[opt]
2706 ExprResult Parser::ParseAlignArgument(SourceLocation Start,
2707  SourceLocation &EllipsisLoc) {
2708  ExprResult ER;
2709  if (isTypeIdInParens()) {
2710  SourceLocation TypeLoc = Tok.getLocation();
2711  ParsedType Ty = ParseTypeName().get();
2712  SourceRange TypeRange(Start, Tok.getLocation());
2713  ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
2714  Ty.getAsOpaquePtr(), TypeRange);
2715  } else
2716  ER = ParseConstantExpression();
2717 
2718  if (getLangOpts().CPlusPlus11)
2719  TryConsumeToken(tok::ellipsis, EllipsisLoc);
2720 
2721  return ER;
2722 }
2723 
2724 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
2725 /// attribute to Attrs.
2726 ///
2727 /// alignment-specifier:
2728 /// [C11] '_Alignas' '(' type-id ')'
2729 /// [C11] '_Alignas' '(' constant-expression ')'
2730 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
2731 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
2732 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
2733  SourceLocation *EndLoc) {
2734  assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) &&
2735  "Not an alignment-specifier!");
2736 
2737  IdentifierInfo *KWName = Tok.getIdentifierInfo();
2738  SourceLocation KWLoc = ConsumeToken();
2739 
2740  BalancedDelimiterTracker T(*this, tok::l_paren);
2741  if (T.expectAndConsume())
2742  return;
2743 
2744  SourceLocation EllipsisLoc;
2745  ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
2746  if (ArgExpr.isInvalid()) {
2747  T.skipToEnd();
2748  return;
2749  }
2750 
2751  T.consumeClose();
2752  if (EndLoc)
2753  *EndLoc = T.getCloseLocation();
2754 
2755  ArgsVector ArgExprs;
2756  ArgExprs.push_back(ArgExpr.get());
2757  Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
2758  ParsedAttr::AS_Keyword, EllipsisLoc);
2759 }
2760 
2761 /// Determine whether we're looking at something that might be a declarator
2762 /// in a simple-declaration. If it can't possibly be a declarator, maybe
2763 /// diagnose a missing semicolon after a prior tag definition in the decl
2764 /// specifier.
2765 ///
2766 /// \return \c true if an error occurred and this can't be any kind of
2767 /// declaration.
2768 bool
2769 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
2770  DeclSpecContext DSContext,
2771  LateParsedAttrList *LateAttrs) {
2772  assert(DS.hasTagDefinition() && "shouldn't call this");
2773 
2774  bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
2775  DSContext == DeclSpecContext::DSC_top_level);
2776 
2777  if (getLangOpts().CPlusPlus &&
2778  Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype,
2779  tok::annot_template_id) &&
2780  TryAnnotateCXXScopeToken(EnteringContext)) {
2782  return true;
2783  }
2784 
2785  bool HasScope = Tok.is(tok::annot_cxxscope);
2786  // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
2787  Token AfterScope = HasScope ? NextToken() : Tok;
2788 
2789  // Determine whether the following tokens could possibly be a
2790  // declarator.
2791  bool MightBeDeclarator = true;
2792  if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) {
2793  // A declarator-id can't start with 'typename'.
2794  MightBeDeclarator = false;
2795  } else if (AfterScope.is(tok::annot_template_id)) {
2796  // If we have a type expressed as a template-id, this cannot be a
2797  // declarator-id (such a type cannot be redeclared in a simple-declaration).
2798  TemplateIdAnnotation *Annot =
2799  static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
2800  if (Annot->Kind == TNK_Type_template)
2801  MightBeDeclarator = false;
2802  } else if (AfterScope.is(tok::identifier)) {
2803  const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
2804 
2805  // These tokens cannot come after the declarator-id in a
2806  // simple-declaration, and are likely to come after a type-specifier.
2807  if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier,
2808  tok::annot_cxxscope, tok::coloncolon)) {
2809  // Missing a semicolon.
2810  MightBeDeclarator = false;
2811  } else if (HasScope) {
2812  // If the declarator-id has a scope specifier, it must redeclare a
2813  // previously-declared entity. If that's a type (and this is not a
2814  // typedef), that's an error.
2815  CXXScopeSpec SS;
2816  Actions.RestoreNestedNameSpecifierAnnotation(
2817  Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
2818  IdentifierInfo *Name = AfterScope.getIdentifierInfo();
2819  Sema::NameClassification Classification = Actions.ClassifyName(
2820  getCurScope(), SS, Name, AfterScope.getLocation(), Next,
2821  /*IsAddressOfOperand*/false);
2822  switch (Classification.getKind()) {
2823  case Sema::NC_Error:
2825  return true;
2826 
2827  case Sema::NC_Keyword:
2829  llvm_unreachable("typo correction and nested name specifiers not "
2830  "possible here");
2831 
2832  case Sema::NC_Type:
2833  case Sema::NC_TypeTemplate:
2834  // Not a previously-declared non-type entity.
2835  MightBeDeclarator = false;
2836  break;
2837 
2838  case Sema::NC_Unknown:
2839  case Sema::NC_Expression:
2840  case Sema::NC_VarTemplate:
2842  // Might be a redeclaration of a prior entity.
2843  break;
2844  }
2845  }
2846  }
2847 
2848  if (MightBeDeclarator)
2849  return false;
2850 
2851  const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
2852  Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getEndLoc()),
2853  diag::err_expected_after)
2854  << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
2855 
2856  // Try to recover from the typo, by dropping the tag definition and parsing
2857  // the problematic tokens as a type.
2858  //
2859  // FIXME: Split the DeclSpec into pieces for the standalone
2860  // declaration and pieces for the following declaration, instead
2861  // of assuming that all the other pieces attach to new declaration,
2862  // and call ParsedFreeStandingDeclSpec as appropriate.
2863  DS.ClearTypeSpecType();
2864  ParsedTemplateInfo NotATemplate;
2865  ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
2866  return false;
2867 }
2868 
2869 // Choose the apprpriate diagnostic error for why fixed point types are
2870 // disabled, set the previous specifier, and mark as invalid.
2871 static void SetupFixedPointError(const LangOptions &LangOpts,
2872  const char *&PrevSpec, unsigned &DiagID,
2873  bool &isInvalid) {
2874  assert(!LangOpts.FixedPoint);
2875  DiagID = diag::err_fixed_point_not_enabled;
2876  PrevSpec = ""; // Not used by diagnostic
2877  isInvalid = true;
2878 }
2879 
2880 /// ParseDeclarationSpecifiers
2881 /// declaration-specifiers: [C99 6.7]
2882 /// storage-class-specifier declaration-specifiers[opt]
2883 /// type-specifier declaration-specifiers[opt]
2884 /// [C99] function-specifier declaration-specifiers[opt]
2885 /// [C11] alignment-specifier declaration-specifiers[opt]
2886 /// [GNU] attributes declaration-specifiers[opt]
2887 /// [Clang] '__module_private__' declaration-specifiers[opt]
2888 /// [ObjC1] '__kindof' declaration-specifiers[opt]
2889 ///
2890 /// storage-class-specifier: [C99 6.7.1]
2891 /// 'typedef'
2892 /// 'extern'
2893 /// 'static'
2894 /// 'auto'
2895 /// 'register'
2896 /// [C++] 'mutable'
2897 /// [C++11] 'thread_local'
2898 /// [C11] '_Thread_local'
2899 /// [GNU] '__thread'
2900 /// function-specifier: [C99 6.7.4]
2901 /// [C99] 'inline'
2902 /// [C++] 'virtual'
2903 /// [C++] 'explicit'
2904 /// [OpenCL] '__kernel'
2905 /// 'friend': [C++ dcl.friend]
2906 /// 'constexpr': [C++0x dcl.constexpr]
2907 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
2908  const ParsedTemplateInfo &TemplateInfo,
2909  AccessSpecifier AS,
2910  DeclSpecContext DSContext,
2911  LateParsedAttrList *LateAttrs) {
2912  if (DS.getSourceRange().isInvalid()) {
2913  // Start the range at the current token but make the end of the range
2914  // invalid. This will make the entire range invalid unless we successfully
2915  // consume a token.
2916  DS.SetRangeStart(Tok.getLocation());
2918  }
2919 
2920  bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
2921  DSContext == DeclSpecContext::DSC_top_level);
2922  bool AttrsLastTime = false;
2923  ParsedAttributesWithRange attrs(AttrFactory);
2924  // We use Sema's policy to get bool macros right.
2925  PrintingPolicy Policy = Actions.getPrintingPolicy();
2926  while (1) {
2927  bool isInvalid = false;
2928  bool isStorageClass = false;
2929  const char *PrevSpec = nullptr;
2930  unsigned DiagID = 0;
2931 
2932  // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
2933  // implementation for VS2013 uses _Atomic as an identifier for one of the
2934  // classes in <atomic>.
2935  //
2936  // A typedef declaration containing _Atomic<...> is among the places where
2937  // the class is used. If we are currently parsing such a declaration, treat
2938  // the token as an identifier.
2939  if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
2941  !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less))
2942  Tok.setKind(tok::identifier);
2943 
2944  SourceLocation Loc = Tok.getLocation();
2945 
2946  switch (Tok.getKind()) {
2947  default:
2948  DoneWithDeclSpec:
2949  if (!AttrsLastTime)
2950  ProhibitAttributes(attrs);
2951  else {
2952  // Reject C++11 attributes that appertain to decl specifiers as
2953  // we don't support any C++11 attributes that appertain to decl
2954  // specifiers. This also conforms to what g++ 4.8 is doing.
2955  ProhibitCXX11Attributes(attrs, diag::err_attribute_not_type_attr);
2956 
2957  DS.takeAttributesFrom(attrs);
2958  }
2959 
2960  // If this is not a declaration specifier token, we're done reading decl
2961  // specifiers. First verify that DeclSpec's are consistent.
2962  DS.Finish(Actions, Policy);
2963  return;
2964 
2965  case tok::l_square:
2966  case tok::kw_alignas:
2967  if (!standardAttributesAllowed() || !isCXX11AttributeSpecifier())
2968  goto DoneWithDeclSpec;
2969 
2970  ProhibitAttributes(attrs);
2971  // FIXME: It would be good to recover by accepting the attributes,
2972  // but attempting to do that now would cause serious
2973  // madness in terms of diagnostics.
2974  attrs.clear();
2975  attrs.Range = SourceRange();
2976 
2977  ParseCXX11Attributes(attrs);
2978  AttrsLastTime = true;
2979  continue;
2980 
2981  case tok::code_completion: {
2983  if (DS.hasTypeSpecifier()) {
2984  bool AllowNonIdentifiers
2989  Scope::AtCatchScope)) == 0;
2990  bool AllowNestedNameSpecifiers
2991  = DSContext == DeclSpecContext::DSC_top_level ||
2992  (DSContext == DeclSpecContext::DSC_class && DS.isFriendSpecified());
2993 
2994  Actions.CodeCompleteDeclSpec(getCurScope(), DS,
2995  AllowNonIdentifiers,
2996  AllowNestedNameSpecifiers);
2997  return cutOffParsing();
2998  }
2999 
3000  if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
3002  else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
3003  CCC = DSContext == DeclSpecContext::DSC_class ? Sema::PCC_MemberTemplate
3005  else if (DSContext == DeclSpecContext::DSC_class)
3006  CCC = Sema::PCC_Class;
3007  else if (CurParsedObjCImpl)
3009 
3010  Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
3011  return cutOffParsing();
3012  }
3013 
3014  case tok::coloncolon: // ::foo::bar
3015  // C++ scope specifier. Annotate and loop, or bail out on error.
3016  if (TryAnnotateCXXScopeToken(EnteringContext)) {
3017  if (!DS.hasTypeSpecifier())
3018  DS.SetTypeSpecError();
3019  goto DoneWithDeclSpec;
3020  }
3021  if (Tok.is(tok::coloncolon)) // ::new or ::delete
3022  goto DoneWithDeclSpec;
3023  continue;
3024 
3025  case tok::annot_cxxscope: {
3026  if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
3027  goto DoneWithDeclSpec;
3028 
3029  CXXScopeSpec SS;
3030  Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3031  Tok.getAnnotationRange(),
3032  SS);
3033 
3034  // We are looking for a qualified typename.
3035  Token Next = NextToken();
3036  if (Next.is(tok::annot_template_id) &&
3037  static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
3038  ->Kind == TNK_Type_template) {
3039  // We have a qualified template-id, e.g., N::A<int>
3040 
3041  // If this would be a valid constructor declaration with template
3042  // arguments, we will reject the attempt to form an invalid type-id
3043  // referring to the injected-class-name when we annotate the token,
3044  // per C++ [class.qual]p2.
3045  //
3046  // To improve diagnostics for this case, parse the declaration as a
3047  // constructor (and reject the extra template arguments later).
3048  TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
3049  if ((DSContext == DeclSpecContext::DSC_top_level ||
3050  DSContext == DeclSpecContext::DSC_class) &&
3051  TemplateId->Name &&
3052  Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS) &&
3053  isConstructorDeclarator(/*Unqualified*/ false)) {
3054  // The user meant this to be an out-of-line constructor
3055  // definition, but template arguments are not allowed
3056  // there. Just allow this as a constructor; we'll
3057  // complain about it later.
3058  goto DoneWithDeclSpec;
3059  }
3060 
3061  DS.getTypeSpecScope() = SS;
3062  ConsumeAnnotationToken(); // The C++ scope.
3063  assert(Tok.is(tok::annot_template_id) &&
3064  "ParseOptionalCXXScopeSpecifier not working");
3065  AnnotateTemplateIdTokenAsType();
3066  continue;
3067  }
3068 
3069  if (Next.is(tok::annot_typename)) {
3070  DS.getTypeSpecScope() = SS;
3071  ConsumeAnnotationToken(); // The C++ scope.
3072  if (Tok.getAnnotationValue()) {
3073  ParsedType T = getTypeAnnotation(Tok);
3074  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
3075  Tok.getAnnotationEndLoc(),
3076  PrevSpec, DiagID, T, Policy);
3077  if (isInvalid)
3078  break;
3079  }
3080  else
3081  DS.SetTypeSpecError();
3082  DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3083  ConsumeAnnotationToken(); // The typename
3084  }
3085 
3086  if (Next.isNot(tok::identifier))
3087  goto DoneWithDeclSpec;
3088 
3089  // Check whether this is a constructor declaration. If we're in a
3090  // context where the identifier could be a class name, and it has the
3091  // shape of a constructor declaration, process it as one.
3092  if ((DSContext == DeclSpecContext::DSC_top_level ||
3093  DSContext == DeclSpecContext::DSC_class) &&
3094  Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
3095  &SS) &&
3096  isConstructorDeclarator(/*Unqualified*/ false))
3097  goto DoneWithDeclSpec;
3098 
3099  ParsedType TypeRep =
3100  Actions.getTypeName(*Next.getIdentifierInfo(), Next.getLocation(),
3101  getCurScope(), &SS, false, false, nullptr,
3102  /*IsCtorOrDtorName=*/false,
3103  /*WantNonTrivialSourceInfo=*/true,
3104  isClassTemplateDeductionContext(DSContext));
3105 
3106  // If the referenced identifier is not a type, then this declspec is
3107  // erroneous: We already checked about that it has no type specifier, and
3108  // C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the
3109  // typename.
3110  if (!TypeRep) {
3111  // Eat the scope spec so the identifier is current.
3112  ConsumeAnnotationToken();
3113  ParsedAttributesWithRange Attrs(AttrFactory);
3114  if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
3115  if (!Attrs.empty()) {
3116  AttrsLastTime = true;
3117  attrs.takeAllFrom(Attrs);
3118  }
3119  continue;
3120  }
3121  goto DoneWithDeclSpec;
3122  }
3123 
3124  DS.getTypeSpecScope() = SS;
3125  ConsumeAnnotationToken(); // The C++ scope.
3126 
3127  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3128  DiagID, TypeRep, Policy);
3129  if (isInvalid)
3130  break;
3131 
3132  DS.SetRangeEnd(Tok.getLocation());
3133  ConsumeToken(); // The typename.
3134 
3135  continue;
3136  }
3137 
3138  case tok::annot_typename: {
3139  // If we've previously seen a tag definition, we were almost surely
3140  // missing a semicolon after it.
3141  if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
3142  goto DoneWithDeclSpec;
3143 
3144  if (Tok.getAnnotationValue()) {
3145  ParsedType T = getTypeAnnotation(Tok);
3146  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3147  DiagID, T, Policy);
3148  } else
3149  DS.SetTypeSpecError();
3150 
3151  if (isInvalid)
3152  break;
3153 
3154  DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3155  ConsumeAnnotationToken(); // The typename
3156 
3157  continue;
3158  }
3159 
3160  case tok::kw___is_signed:
3161  // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
3162  // typically treats it as a trait. If we see __is_signed as it appears
3163  // in libstdc++, e.g.,
3164  //
3165  // static const bool __is_signed;
3166  //
3167  // then treat __is_signed as an identifier rather than as a keyword.
3168  if (DS.getTypeSpecType() == TST_bool &&
3171  TryKeywordIdentFallback(true);
3172 
3173  // We're done with the declaration-specifiers.
3174  goto DoneWithDeclSpec;
3175 
3176  // typedef-name
3177  case tok::kw___super:
3178  case tok::kw_decltype:
3179  case tok::identifier: {
3180  // This identifier can only be a typedef name if we haven't already seen
3181  // a type-specifier. Without this check we misparse:
3182  // typedef int X; struct Y { short X; }; as 'short int'.
3183  if (DS.hasTypeSpecifier())
3184  goto DoneWithDeclSpec;
3185 
3186  // If the token is an identifier named "__declspec" and Microsoft
3187  // extensions are not enabled, it is likely that there will be cascading
3188  // parse errors if this really is a __declspec attribute. Attempt to
3189  // recognize that scenario and recover gracefully.
3190  if (!getLangOpts().DeclSpecKeyword && Tok.is(tok::identifier) &&
3191  Tok.getIdentifierInfo()->getName().equals("__declspec")) {
3192  Diag(Loc, diag::err_ms_attributes_not_enabled);
3193 
3194  // The next token should be an open paren. If it is, eat the entire
3195  // attribute declaration and continue.
3196  if (NextToken().is(tok::l_paren)) {
3197  // Consume the __declspec identifier.
3198  ConsumeToken();
3199 
3200  // Eat the parens and everything between them.
3201  BalancedDelimiterTracker T(*this, tok::l_paren);
3202  if (T.consumeOpen()) {
3203  assert(false && "Not a left paren?");
3204  return;
3205  }
3206  T.skipToEnd();
3207  continue;
3208  }
3209  }
3210 
3211  // In C++, check to see if this is a scope specifier like foo::bar::, if
3212  // so handle it as such. This is important for ctor parsing.
3213  if (getLangOpts().CPlusPlus) {
3214  if (TryAnnotateCXXScopeToken(EnteringContext)) {
3215  DS.SetTypeSpecError();
3216  goto DoneWithDeclSpec;
3217  }
3218  if (!Tok.is(tok::identifier))
3219  continue;
3220  }
3221 
3222  // Check for need to substitute AltiVec keyword tokens.
3223  if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
3224  break;
3225 
3226  // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
3227  // allow the use of a typedef name as a type specifier.
3228  if (DS.isTypeAltiVecVector())
3229  goto DoneWithDeclSpec;
3230 
3231  if (DSContext == DeclSpecContext::DSC_objc_method_result &&
3232  isObjCInstancetype()) {
3233  ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc);
3234  assert(TypeRep);
3235  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3236  DiagID, TypeRep, Policy);
3237  if (isInvalid)
3238  break;
3239 
3240  DS.SetRangeEnd(Loc);
3241  ConsumeToken();
3242  continue;
3243  }
3244 
3245  // If we're in a context where the identifier could be a class name,
3246  // check whether this is a constructor declaration.
3247  if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3248  Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
3249  isConstructorDeclarator(/*Unqualified*/true))
3250  goto DoneWithDeclSpec;
3251 
3252  ParsedType TypeRep = Actions.getTypeName(
3253  *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), nullptr,
3254  false, false, nullptr, false, false,
3255  isClassTemplateDeductionContext(DSContext));
3256 
3257  // If this is not a typedef name, don't parse it as part of the declspec,
3258  // it must be an implicit int or an error.
3259  if (!TypeRep) {
3260  ParsedAttributesWithRange Attrs(AttrFactory);
3261  if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
3262  if (!Attrs.empty()) {
3263  AttrsLastTime = true;
3264  attrs.takeAllFrom(Attrs);
3265  }
3266  continue;
3267  }
3268  goto DoneWithDeclSpec;
3269  }
3270 
3271  // Likewise, if this is a context where the identifier could be a template
3272  // name, check whether this is a deduction guide declaration.
3273  if (getLangOpts().CPlusPlus17 &&
3274  (DSContext == DeclSpecContext::DSC_class ||
3275  DSContext == DeclSpecContext::DSC_top_level) &&
3276  Actions.isDeductionGuideName(getCurScope(), *Tok.getIdentifierInfo(),
3277  Tok.getLocation()) &&
3278  isConstructorDeclarator(/*Unqualified*/ true,
3279  /*DeductionGuide*/ true))
3280  goto DoneWithDeclSpec;
3281 
3282  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3283  DiagID, TypeRep, Policy);
3284  if (isInvalid)
3285  break;
3286 
3287  DS.SetRangeEnd(Tok.getLocation());
3288  ConsumeToken(); // The identifier
3289 
3290  // Objective-C supports type arguments and protocol references
3291  // following an Objective-C object or object pointer
3292  // type. Handle either one of them.
3293  if (Tok.is(tok::less) && getLangOpts().ObjC1) {
3294  SourceLocation NewEndLoc;
3295  TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers(
3296  Loc, TypeRep, /*consumeLastToken=*/true,
3297  NewEndLoc);
3298  if (NewTypeRep.isUsable()) {
3299  DS.UpdateTypeRep(NewTypeRep.get());
3300  DS.SetRangeEnd(NewEndLoc);
3301  }
3302  }
3303 
3304  // Need to support trailing type qualifiers (e.g. "id<p> const").
3305  // If a type specifier follows, it will be diagnosed elsewhere.
3306  continue;
3307  }
3308 
3309  // type-name
3310  case tok::annot_template_id: {
3311  TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
3312  if (TemplateId->Kind != TNK_Type_template) {
3313  // This template-id does not refer to a type name, so we're
3314  // done with the type-specifiers.
3315  goto DoneWithDeclSpec;
3316  }
3317 
3318  // If we're in a context where the template-id could be a
3319  // constructor name or specialization, check whether this is a
3320  // constructor declaration.
3321  if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3322  Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
3323  isConstructorDeclarator(TemplateId->SS.isEmpty()))
3324  goto DoneWithDeclSpec;
3325 
3326  // Turn the template-id annotation token into a type annotation
3327  // token, then try again to parse it as a type-specifier.
3328  AnnotateTemplateIdTokenAsType();
3329  continue;
3330  }
3331 
3332  // GNU attributes support.
3333  case tok::kw___attribute:
3334  ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
3335  continue;
3336 
3337  // Microsoft declspec support.
3338  case tok::kw___declspec:
3339  ParseMicrosoftDeclSpecs(DS.getAttributes());
3340  continue;
3341 
3342  // Microsoft single token adornments.
3343  case tok::kw___forceinline: {
3344  isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
3345  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
3346  SourceLocation AttrNameLoc = Tok.getLocation();
3347  DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
3348  nullptr, 0, ParsedAttr::AS_Keyword);
3349  break;
3350  }
3351 
3352  case tok::kw___unaligned:
3353  isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
3354  getLangOpts());
3355  break;
3356 
3357  case tok::kw___sptr:
3358  case tok::kw___uptr:
3359  case tok::kw___ptr64:
3360  case tok::kw___ptr32:
3361  case tok::kw___w64:
3362  case tok::kw___cdecl:
3363  case tok::kw___stdcall:
3364  case tok::kw___fastcall:
3365  case tok::kw___thiscall:
3366  case tok::kw___regcall:
3367  case tok::kw___vectorcall:
3368  ParseMicrosoftTypeAttributes(DS.getAttributes());
3369  continue;
3370 
3371  // Borland single token adornments.
3372  case tok::kw___pascal:
3373  ParseBorlandTypeAttributes(DS.getAttributes());
3374  continue;
3375 
3376  // OpenCL single token adornments.
3377  case tok::kw___kernel:
3378  ParseOpenCLKernelAttributes(DS.getAttributes());
3379  continue;
3380 
3381  // Nullability type specifiers.
3382  case tok::kw__Nonnull:
3383  case tok::kw__Nullable:
3384  case tok::kw__Null_unspecified:
3385  ParseNullabilityTypeSpecifiers(DS.getAttributes());
3386  continue;
3387 
3388  // Objective-C 'kindof' types.
3389  case tok::kw___kindof:
3390  DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
3391  nullptr, 0, ParsedAttr::AS_Keyword);
3392  (void)ConsumeToken();
3393  continue;
3394 
3395  // storage-class-specifier
3396  case tok::kw_typedef:
3397  isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
3398  PrevSpec, DiagID, Policy);
3399  isStorageClass = true;
3400  break;
3401  case tok::kw_extern:
3403  Diag(Tok, diag::ext_thread_before) << "extern";
3404  isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
3405  PrevSpec, DiagID, Policy);
3406  isStorageClass = true;
3407  break;
3408  case tok::kw___private_extern__:
3409  isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
3410  Loc, PrevSpec, DiagID, Policy);
3411  isStorageClass = true;
3412  break;
3413  case tok::kw_static:
3415  Diag(Tok, diag::ext_thread_before) << "static";
3416  isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
3417  PrevSpec, DiagID, Policy);
3418  isStorageClass = true;
3419  break;
3420  case tok::kw_auto:
3421  if (getLangOpts().CPlusPlus11) {
3422  if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
3423  isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3424  PrevSpec, DiagID, Policy);
3425  if (!isInvalid)
3426  Diag(Tok, diag::ext_auto_storage_class)
3428  } else
3429  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
3430  DiagID, Policy);
3431  } else
3432  isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3433  PrevSpec, DiagID, Policy);
3434  isStorageClass = true;
3435  break;
3436  case tok::kw___auto_type:
3437  Diag(Tok, diag::ext_auto_type);
3438  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec,
3439  DiagID, Policy);
3440  break;
3441  case tok::kw_register:
3442  isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
3443  PrevSpec, DiagID, Policy);
3444  isStorageClass = true;
3445  break;
3446  case tok::kw_mutable:
3447  isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
3448  PrevSpec, DiagID, Policy);
3449  isStorageClass = true;
3450  break;
3451  case tok::kw___thread:
3453  PrevSpec, DiagID);
3454  isStorageClass = true;
3455  break;
3456  case tok::kw_thread_local:
3458  PrevSpec, DiagID);
3459  isStorageClass = true;
3460  break;
3461  case tok::kw__Thread_local:
3463  Loc, PrevSpec, DiagID);
3464  isStorageClass = true;
3465  break;
3466 
3467  // function-specifier
3468  case tok::kw_inline:
3469  isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
3470  break;
3471  case tok::kw_virtual:
3472  // OpenCL C++ v1.0 s2.9: the virtual function qualifier is not supported.
3473  if (getLangOpts().OpenCLCPlusPlus) {
3474  DiagID = diag::err_openclcxx_virtual_function;
3475  PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3476  isInvalid = true;
3477  }
3478  else {
3479  isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
3480  }
3481  break;
3482  case tok::kw_explicit:
3483  isInvalid = DS.setFunctionSpecExplicit(Loc, PrevSpec, DiagID);
3484  break;
3485  case tok::kw__Noreturn:
3486  if (!getLangOpts().C11)
3487  Diag(Loc, diag::ext_c11_noreturn);
3488  isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
3489  break;
3490 
3491  // alignment-specifier
3492  case tok::kw__Alignas:
3493  if (!getLangOpts().C11)
3494  Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
3495  ParseAlignmentSpecifier(DS.getAttributes());
3496  continue;
3497 
3498  // friend
3499  case tok::kw_friend:
3500  if (DSContext == DeclSpecContext::DSC_class)
3501  isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
3502  else {
3503  PrevSpec = ""; // not actually used by the diagnostic
3504  DiagID = diag::err_friend_invalid_in_context;
3505  isInvalid = true;
3506  }
3507  break;
3508 
3509  // Modules
3510  case tok::kw___module_private__:
3511  isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
3512  break;
3513 
3514  // constexpr
3515  case tok::kw_constexpr:
3516  isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
3517  break;
3518 
3519  // type-specifier
3520  case tok::kw_short:
3521  isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
3522  DiagID, Policy);
3523  break;
3524  case tok::kw_long:
3526  isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
3527  DiagID, Policy);
3528  else
3529  isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3530  DiagID, Policy);
3531  break;
3532  case tok::kw___int64:
3533  isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3534  DiagID, Policy);
3535  break;
3536  case tok::kw_signed:
3537  isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
3538  DiagID);
3539  break;
3540  case tok::kw_unsigned:
3541  isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
3542  DiagID);
3543  break;
3544  case tok::kw__Complex:
3545  isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
3546  DiagID);
3547  break;
3548  case tok::kw__Imaginary:
3549  isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
3550  DiagID);
3551  break;
3552  case tok::kw_void:
3553  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
3554  DiagID, Policy);
3555  break;
3556  case tok::kw_char:
3557  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
3558  DiagID, Policy);
3559  break;
3560  case tok::kw_int:
3561  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
3562  DiagID, Policy);
3563  break;
3564  case tok::kw___int128:
3565  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
3566  DiagID, Policy);
3567  break;
3568  case tok::kw_half:
3569  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
3570  DiagID, Policy);
3571  break;
3572  case tok::kw_float:
3573  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
3574  DiagID, Policy);
3575  break;
3576  case tok::kw_double:
3577  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
3578  DiagID, Policy);
3579  break;
3580  case tok::kw__Float16:
3581  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec,
3582  DiagID, Policy);
3583  break;
3584  case tok::kw__Accum:
3585  if (!getLangOpts().FixedPoint) {
3586  SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3587  } else {
3588  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec,
3589  DiagID, Policy);
3590  }
3591  break;
3592  case tok::kw__Fract:
3593  if (!getLangOpts().FixedPoint) {
3594  SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3595  } else {
3596  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec,
3597  DiagID, Policy);
3598  }
3599  break;
3600  case tok::kw__Sat:
3601  if (!getLangOpts().FixedPoint) {
3602  SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3603  } else {
3604  isInvalid = DS.SetTypeSpecSat(Loc, PrevSpec, DiagID);
3605  }
3606  break;
3607  case tok::kw___float128:
3608  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec,
3609  DiagID, Policy);
3610  break;
3611  case tok::kw_wchar_t:
3612  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
3613  DiagID, Policy);
3614  break;
3615  case tok::kw_char8_t:
3616  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec,
3617  DiagID, Policy);
3618  break;
3619  case tok::kw_char16_t:
3620  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
3621  DiagID, Policy);
3622  break;
3623  case tok::kw_char32_t:
3624  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
3625  DiagID, Policy);
3626  break;
3627  case tok::kw_bool:
3628  case tok::kw__Bool:
3629  if (Tok.is(tok::kw_bool) &&
3632  PrevSpec = ""; // Not used by the diagnostic.
3633  DiagID = diag::err_bool_redeclaration;
3634  // For better error recovery.
3635  Tok.setKind(tok::identifier);
3636  isInvalid = true;
3637  } else {
3638  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
3639  DiagID, Policy);
3640  }
3641  break;
3642  case tok::kw__Decimal32:
3643  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
3644  DiagID, Policy);
3645  break;
3646  case tok::kw__Decimal64:
3647  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
3648  DiagID, Policy);
3649  break;
3650  case tok::kw__Decimal128:
3651  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
3652  DiagID, Policy);
3653  break;
3654  case tok::kw___vector:
3655  isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
3656  break;
3657  case tok::kw___pixel:
3658  isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
3659  break;
3660  case tok::kw___bool:
3661  isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
3662  break;
3663  case tok::kw_pipe:
3664  if (!getLangOpts().OpenCL || (getLangOpts().OpenCLVersion < 200)) {
3665  // OpenCL 2.0 defined this keyword. OpenCL 1.2 and earlier should
3666  // support the "pipe" word as identifier.
3667  Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
3668  goto DoneWithDeclSpec;
3669  }
3670  isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy);
3671  break;
3672 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
3673  case tok::kw_##ImgType##_t: \
3674  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, \
3675  DiagID, Policy); \
3676  break;
3677 #include "clang/Basic/OpenCLImageTypes.def"
3678  case tok::kw___unknown_anytype:
3679  isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
3680  PrevSpec, DiagID, Policy);
3681  break;
3682 
3683  // class-specifier:
3684  case tok::kw_class:
3685  case tok::kw_struct:
3686  case tok::kw___interface:
3687  case tok::kw_union: {
3688  tok::TokenKind Kind = Tok.getKind();
3689  ConsumeToken();
3690 
3691  // These are attributes following class specifiers.
3692  // To produce better diagnostic, we parse them when
3693  // parsing class specifier.
3694  ParsedAttributesWithRange Attributes(AttrFactory);
3695  ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
3696  EnteringContext, DSContext, Attributes);
3697 
3698  // If there are attributes following class specifier,
3699  // take them over and handle them here.
3700  if (!Attributes.empty()) {
3701  AttrsLastTime = true;
3702  attrs.takeAllFrom(Attributes);
3703  }
3704  continue;
3705  }
3706 
3707  // enum-specifier:
3708  case tok::kw_enum:
3709  ConsumeToken();
3710  ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
3711  continue;
3712 
3713  // cv-qualifier:
3714  case tok::kw_const:
3715  isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
3716  getLangOpts());
3717  break;
3718  case tok::kw_volatile:
3719  isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3720  getLangOpts());
3721  break;
3722  case tok::kw_restrict:
3723  isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3724  getLangOpts());
3725  break;
3726 
3727  // C++ typename-specifier:
3728  case tok::kw_typename:
3730  DS.SetTypeSpecError();
3731  goto DoneWithDeclSpec;
3732  }
3733  if (!Tok.is(tok::kw_typename))
3734  continue;
3735  break;
3736 
3737  // GNU typeof support.
3738  case tok::kw_typeof:
3739  ParseTypeofSpecifier(DS);
3740  continue;
3741 
3742  case tok::annot_decltype:
3743  ParseDecltypeSpecifier(DS);
3744  continue;
3745 
3746  case tok::annot_pragma_pack:
3747  HandlePragmaPack();
3748  continue;
3749 
3750  case tok::annot_pragma_ms_pragma:
3751  HandlePragmaMSPragma();
3752  continue;
3753 
3754  case tok::annot_pragma_ms_vtordisp:
3755  HandlePragmaMSVtorDisp();
3756  continue;
3757 
3758  case tok::annot_pragma_ms_pointers_to_members:
3759  HandlePragmaMSPointersToMembers();
3760  continue;
3761 
3762  case tok::kw___underlying_type:
3763  ParseUnderlyingTypeSpecifier(DS);
3764  continue;
3765 
3766  case tok::kw__Atomic:
3767  // C11 6.7.2.4/4:
3768  // If the _Atomic keyword is immediately followed by a left parenthesis,
3769  // it is interpreted as a type specifier (with a type name), not as a
3770  // type qualifier.
3771  if (NextToken().is(tok::l_paren)) {
3772  ParseAtomicSpecifier(DS);
3773  continue;
3774  }
3775  isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
3776  getLangOpts());
3777  break;
3778 
3779  // OpenCL access qualifiers:
3780  case tok::kw___read_only:
3781  case tok::kw___write_only:
3782  case tok::kw___read_write:
3783  // OpenCL C++ 1.0 s2.2: access qualifiers are reserved keywords.
3784  if (Actions.getLangOpts().OpenCLCPlusPlus) {
3785  DiagID = diag::err_openclcxx_reserved;
3786  PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3787  isInvalid = true;
3788  }
3789  ParseOpenCLQualifiers(DS.getAttributes());
3790  break;
3791 
3792  // OpenCL address space qualifiers:
3793  case tok::kw___generic:
3794  // generic address space is introduced only in OpenCL v2.0
3795  // see OpenCL C Spec v2.0 s6.5.5
3796  if (Actions.getLangOpts().OpenCLVersion < 200 &&
3797  !Actions.getLangOpts().OpenCLCPlusPlus) {
3798  DiagID = diag::err_opencl_unknown_type_specifier;
3799  PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3800  isInvalid = true;
3801  break;
3802  };
3803  LLVM_FALLTHROUGH;
3804  case tok::kw___private:
3805  case tok::kw___global:
3806  case tok::kw___local:
3807  case tok::kw___constant:
3808  ParseOpenCLQualifiers(DS.getAttributes());
3809  break;
3810 
3811  case tok::less:
3812  // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
3813  // "id<SomeProtocol>". This is hopelessly old fashioned and dangerous,
3814  // but we support it.
3815  if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
3816  goto DoneWithDeclSpec;
3817 
3818  SourceLocation StartLoc = Tok.getLocation();
3819  SourceLocation EndLoc;
3820  TypeResult Type = parseObjCProtocolQualifierType(EndLoc);
3821  if (Type.isUsable()) {
3822  if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc,
3823  PrevSpec, DiagID, Type.get(),
3824  Actions.getASTContext().getPrintingPolicy()))
3825  Diag(StartLoc, DiagID) << PrevSpec;
3826 
3827  DS.SetRangeEnd(EndLoc);
3828  } else {
3829  DS.SetTypeSpecError();
3830  }
3831 
3832  // Need to support trailing type qualifiers (e.g. "id<p> const").
3833  // If a type specifier follows, it will be diagnosed elsewhere.
3834  continue;
3835  }
3836  // If the specifier wasn't legal, issue a diagnostic.
3837  if (isInvalid) {
3838  assert(PrevSpec && "Method did not return previous specifier!");
3839  assert(DiagID);
3840 
3841  if (DiagID == diag::ext_duplicate_declspec)
3842  Diag(Tok, DiagID)
3843  << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
3844  else if (DiagID == diag::err_opencl_unknown_type_specifier) {
3845  Diag(Tok, DiagID) << getLangOpts().OpenCLCPlusPlus
3846  << getLangOpts().getOpenCLVersionTuple().getAsString()
3847  << PrevSpec << isStorageClass;
3848  } else
3849  Diag(Tok, DiagID) << PrevSpec;
3850  }
3851 
3852  DS.SetRangeEnd(Tok.getLocation());
3853  if (DiagID != diag::err_bool_redeclaration)
3854  // After an error the next token can be an annotation token.
3855  ConsumeAnyToken();
3856 
3857  AttrsLastTime = false;
3858  }
3859 }
3860 
3861 /// ParseStructDeclaration - Parse a struct declaration without the terminating
3862 /// semicolon.
3863 ///
3864 /// struct-declaration:
3865 /// [C2x] attributes-specifier-seq[opt]
3866 /// specifier-qualifier-list struct-declarator-list
3867 /// [GNU] __extension__ struct-declaration
3868 /// [GNU] specifier-qualifier-list
3869 /// struct-declarator-list:
3870 /// struct-declarator
3871 /// struct-declarator-list ',' struct-declarator
3872 /// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator
3873 /// struct-declarator:
3874 /// declarator
3875 /// [GNU] declarator attributes[opt]
3876 /// declarator[opt] ':' constant-expression
3877 /// [GNU] declarator[opt] ':' constant-expression attributes[opt]
3878 ///
3879 void Parser::ParseStructDeclaration(
3880  ParsingDeclSpec &DS,
3881  llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
3882 
3883  if (Tok.is(tok::kw___extension__)) {
3884  // __extension__ silences extension warnings in the subexpression.
3885  ExtensionRAIIObject O(Diags); // Use RAII to do this.
3886  ConsumeToken();
3887  return ParseStructDeclaration(DS, FieldsCallback);
3888  }
3889 
3890  // Parse leading attributes.
3891  ParsedAttributesWithRange Attrs(AttrFactory);
3892  MaybeParseCXX11Attributes(Attrs);
3893  DS.takeAttributesFrom(Attrs);
3894 
3895  // Parse the common specifier-qualifiers-list piece.
3896  ParseSpecifierQualifierList(DS);
3897 
3898  // If there are no declarators, this is a free-standing declaration
3899  // specifier. Let the actions module cope with it.
3900  if (Tok.is(tok::semi)) {
3901  RecordDecl *AnonRecord = nullptr;
3902  Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
3903  DS, AnonRecord);
3904  assert(!AnonRecord && "Did not expect anonymous struct or union here");
3905  DS.complete(TheDecl);
3906  return;
3907  }
3908 
3909  // Read struct-declarators until we find the semicolon.
3910  bool FirstDeclarator = true;
3911  SourceLocation CommaLoc;
3912  while (1) {
3913  ParsingFieldDeclarator DeclaratorInfo(*this, DS);
3914  DeclaratorInfo.D.setCommaLoc(CommaLoc);
3915 
3916  // Attributes are only allowed here on successive declarators.
3917  if (!FirstDeclarator)
3918  MaybeParseGNUAttributes(DeclaratorInfo.D);
3919 
3920  /// struct-declarator: declarator
3921  /// struct-declarator: declarator[opt] ':' constant-expression
3922  if (Tok.isNot(tok::colon)) {
3923  // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
3925  ParseDeclarator(DeclaratorInfo.D);
3926  } else
3927  DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
3928 
3929  if (TryConsumeToken(tok::colon)) {
3931  if (Res.isInvalid())
3932  SkipUntil(tok::semi, StopBeforeMatch);
3933  else
3934  DeclaratorInfo.BitfieldSize = Res.get();
3935  }
3936 
3937  // If attributes exist after the declarator, parse them.
3938  MaybeParseGNUAttributes(DeclaratorInfo.D);
3939 
3940  // We're done with this declarator; invoke the callback.
3941  FieldsCallback(DeclaratorInfo);
3942 
3943  // If we don't have a comma, it is either the end of the list (a ';')
3944  // or an error, bail out.
3945  if (!TryConsumeToken(tok::comma, CommaLoc))
3946  return;
3947 
3948  FirstDeclarator = false;
3949  }
3950 }
3951 
3952 /// ParseStructUnionBody
3953 /// struct-contents:
3954 /// struct-declaration-list
3955 /// [EXT] empty
3956 /// [GNU] "struct-declaration-list" without terminatoring ';'
3957 /// struct-declaration-list:
3958 /// struct-declaration
3959 /// struct-declaration-list struct-declaration
3960 /// [OBC] '@' 'defs' '(' class-name ')'
3961 ///
3962 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
3963  unsigned TagType, Decl *TagDecl) {
3964  PrettyDeclStackTraceEntry CrashInfo(Actions.Context, TagDecl, RecordLoc,
3965  "parsing struct/union body");
3966  assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
3967 
3968  BalancedDelimiterTracker T(*this, tok::l_brace);
3969  if (T.consumeOpen())
3970  return;
3971 
3972  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
3973  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
3974 
3975  SmallVector<Decl *, 32> FieldDecls;
3976 
3977  // While we still have something to read, read the declarations in the struct.
3978  while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
3979  Tok.isNot(tok::eof)) {
3980  // Each iteration of this loop reads one struct-declaration.
3981 
3982  // Check for extraneous top-level semicolon.
3983  if (Tok.is(tok::semi)) {
3984  ConsumeExtraSemi(InsideStruct, TagType);
3985  continue;
3986  }
3987 
3988  // Parse _Static_assert declaration.
3989  if (Tok.is(tok::kw__Static_assert)) {
3990  SourceLocation DeclEnd;
3991  ParseStaticAssertDeclaration(DeclEnd);
3992  continue;
3993  }
3994 
3995  if (Tok.is(tok::annot_pragma_pack)) {
3996  HandlePragmaPack();
3997  continue;
3998  }
3999 
4000  if (Tok.is(tok::annot_pragma_align)) {
4001  HandlePragmaAlign();
4002  continue;
4003  }
4004 
4005  if (Tok.is(tok::annot_pragma_openmp)) {
4006  // Result can be ignored, because it must be always empty.
4007  AccessSpecifier AS = AS_none;
4008  ParsedAttributesWithRange Attrs(AttrFactory);
4009  (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs);
4010  continue;
4011  }
4012 
4013  if (!Tok.is(tok::at)) {
4014  auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
4015  // Install the declarator into the current TagDecl.
4016  Decl *Field =
4017  Actions.ActOnField(getCurScope(), TagDecl,
4018  FD.D.getDeclSpec().getSourceRange().getBegin(),
4019  FD.D, FD.BitfieldSize);
4020  FieldDecls.push_back(Field);
4021  FD.complete(Field);
4022  };
4023 
4024  // Parse all the comma separated declarators.
4025  ParsingDeclSpec DS(*this);
4026  ParseStructDeclaration(DS, CFieldCallback);
4027  } else { // Handle @defs
4028  ConsumeToken();
4029  if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
4030  Diag(Tok, diag::err_unexpected_at);
4031  SkipUntil(tok::semi);
4032  continue;
4033  }
4034  ConsumeToken();
4035  ExpectAndConsume(tok::l_paren);
4036  if (!Tok.is(tok::identifier)) {
4037  Diag(Tok, diag::err_expected) << tok::identifier;
4038  SkipUntil(tok::semi);
4039  continue;
4040  }
4041  SmallVector<Decl *, 16> Fields;
4042  Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
4043  Tok.getIdentifierInfo(), Fields);
4044  FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
4045  ConsumeToken();
4046  ExpectAndConsume(tok::r_paren);
4047  }
4048 
4049  if (TryConsumeToken(tok::semi))
4050  continue;
4051 
4052  if (Tok.is(tok::r_brace)) {
4053  ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
4054  break;
4055  }
4056 
4057  ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
4058  // Skip to end of block or statement to avoid ext-warning on extra ';'.
4059  SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
4060  // If we stopped at a ';', eat it.
4061  TryConsumeToken(tok::semi);
4062  }
4063 
4064  T.consumeClose();
4065 
4066  ParsedAttributes attrs(AttrFactory);
4067  // If attributes exist after struct contents, parse them.
4068  MaybeParseGNUAttributes(attrs);
4069 
4070  Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls,
4071  T.getOpenLocation(), T.getCloseLocation(), attrs);
4072  StructScope.Exit();
4073  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getRange());
4074 }
4075 
4076 /// ParseEnumSpecifier
4077 /// enum-specifier: [C99 6.7.2.2]
4078 /// 'enum' identifier[opt] '{' enumerator-list '}'
4079 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
4080 /// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
4081 /// '}' attributes[opt]
4082 /// [MS] 'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
4083 /// '}'
4084 /// 'enum' identifier
4085 /// [GNU] 'enum' attributes[opt] identifier
4086 ///
4087 /// [C++11] enum-head '{' enumerator-list[opt] '}'
4088 /// [C++11] enum-head '{' enumerator-list ',' '}'
4089 ///
4090 /// enum-head: [C++11]
4091 /// enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
4092 /// enum-key attribute-specifier-seq[opt] nested-name-specifier
4093 /// identifier enum-base[opt]
4094 ///
4095 /// enum-key: [C++11]
4096 /// 'enum'
4097 /// 'enum' 'class'
4098 /// 'enum' 'struct'
4099 ///
4100 /// enum-base: [C++11]
4101 /// ':' type-specifier-seq
4102 ///
4103 /// [C++] elaborated-type-specifier:
4104 /// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier
4105 ///
4106 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
4107  const ParsedTemplateInfo &TemplateInfo,
4108  AccessSpecifier AS, DeclSpecContext DSC) {
4109  // Parse the tag portion of this.
4110  if (Tok.is(tok::code_completion)) {
4111  // Code completion for an enum name.
4112  Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
4113  return cutOffParsing();
4114  }
4115 
4116  // If attributes exist after tag, parse them.
4117  ParsedAttributesWithRange attrs(AttrFactory);
4118  MaybeParseGNUAttributes(attrs);
4119  MaybeParseCXX11Attributes(attrs);
4120  MaybeParseMicrosoftDeclSpecs(attrs);
4121 
4122  SourceLocation ScopedEnumKWLoc;
4123  bool IsScopedUsingClassTag = false;
4124 
4125  // In C++11, recognize 'enum class' and 'enum struct'.
4126  if (Tok.isOneOf(tok::kw_class, tok::kw_struct)) {
4127  Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
4128  : diag::ext_scoped_enum);
4129  IsScopedUsingClassTag = Tok.is(tok::kw_class);
4130  ScopedEnumKWLoc = ConsumeToken();
4131 
4132  // Attributes are not allowed between these keywords. Diagnose,
4133  // but then just treat them like they appeared in the right place.
4134  ProhibitAttributes(attrs);
4135 
4136  // They are allowed afterwards, though.
4137  MaybeParseGNUAttributes(attrs);
4138  MaybeParseCXX11Attributes(attrs);
4139  MaybeParseMicrosoftDeclSpecs(attrs);
4140  }
4141 
4142  // C++11 [temp.explicit]p12:
4143  // The usual access controls do not apply to names used to specify
4144  // explicit instantiations.
4145  // We extend this to also cover explicit specializations. Note that
4146  // we don't suppress if this turns out to be an elaborated type
4147  // specifier.
4148  bool shouldDelayDiagsInTag =
4149  (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
4150  TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
4151  SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
4152 
4153  // Enum definitions should not be parsed in a trailing-return-type.
4154  bool AllowDeclaration = DSC != DeclSpecContext::DSC_trailing;
4155 
4156  bool AllowFixedUnderlyingType = AllowDeclaration &&
4157  (getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt ||
4158  getLangOpts().ObjC2);
4159 
4160  CXXScopeSpec &SS = DS.getTypeSpecScope();
4161  if (getLangOpts().CPlusPlus) {
4162  // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
4163  // if a fixed underlying type is allowed.
4164  ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
4165 
4166  CXXScopeSpec Spec;
4167  if (ParseOptionalCXXScopeSpecifier(Spec, nullptr,
4168  /*EnteringContext=*/true))
4169  return;
4170 
4171  if (Spec.isSet() && Tok.isNot(tok::identifier)) {
4172  Diag(Tok, diag::err_expected) << tok::identifier;
4173  if (Tok.isNot(tok::l_brace)) {
4174  // Has no name and is not a definition.
4175  // Skip the rest of this declarator, up until the comma or semicolon.
4176  SkipUntil(tok::comma, StopAtSemi);
4177  return;
4178  }
4179  }
4180 
4181  SS = Spec;
4182  }
4183 
4184  // Must have either 'enum name' or 'enum {...}'.
4185  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
4186  !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
4187  Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
4188 
4189  // Skip the rest of this declarator, up until the comma or semicolon.
4190  SkipUntil(tok::comma, StopAtSemi);
4191  return;
4192  }
4193 
4194  // If an identifier is present, consume and remember it.
4195  IdentifierInfo *Name = nullptr;
4196  SourceLocation NameLoc;
4197  if (Tok.is(tok::identifier)) {
4198  Name = Tok.getIdentifierInfo();
4199  NameLoc = ConsumeToken();
4200  }
4201 
4202  if (!Name && ScopedEnumKWLoc.isValid()) {
4203  // C++0x 7.2p2: The optional identifier shall not be omitted in the
4204  // declaration of a scoped enumeration.
4205  Diag(Tok, diag::err_scoped_enum_missing_identifier);
4206  ScopedEnumKWLoc = SourceLocation();
4207  IsScopedUsingClassTag = false;
4208  }
4209 
4210  // Okay, end the suppression area. We'll decide whether to emit the
4211  // diagnostics in a second.
4212  if (shouldDelayDiagsInTag)
4213  diagsFromTag.done();
4214 
4215  TypeResult BaseType;
4216 
4217  // Parse the fixed underlying type.
4218  bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4219  if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
4220  bool PossibleBitfield = false;
4221  if (CanBeBitfield) {
4222  // If we're in class scope, this can either be an enum declaration with
4223  // an underlying type, or a declaration of a bitfield member. We try to
4224  // use a simple disambiguation scheme first to catch the common cases
4225  // (integer literal, sizeof); if it's still ambiguous, we then consider
4226  // anything that's a simple-type-specifier followed by '(' as an
4227  // expression. This suffices because function types are not valid
4228  // underlying types anyway.
4231  TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
4232  // If the next token starts an expression, we know we're parsing a
4233  // bit-field. This is the common case.
4234  if (TPR == TPResult::True)
4235  PossibleBitfield = true;
4236  // If the next token starts a type-specifier-seq, it may be either a
4237  // a fixed underlying type or the start of a function-style cast in C++;
4238  // lookahead one more token to see if it's obvious that we have a
4239  // fixed underlying type.
4240  else if (TPR == TPResult::False &&
4241  GetLookAheadToken(2).getKind() == tok::semi) {
4242  // Consume the ':'.
4243  ConsumeToken();
4244  } else {
4245  // We have the start of a type-specifier-seq, so we have to perform
4246  // tentative parsing to determine whether we have an expression or a
4247  // type.
4248  TentativeParsingAction TPA(*this);
4249 
4250  // Consume the ':'.
4251  ConsumeToken();
4252 
4253  // If we see a type specifier followed by an open-brace, we have an
4254  // ambiguity between an underlying type and a C++11 braced
4255  // function-style cast. Resolve this by always treating it as an
4256  // underlying type.
4257  // FIXME: The standard is not entirely clear on how to disambiguate in
4258  // this case.
4259  if ((getLangOpts().CPlusPlus &&
4260  isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
4261  (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
4262  // We'll parse this as a bitfield later.
4263  PossibleBitfield = true;
4264  TPA.Revert();
4265  } else {
4266  // We have a type-specifier-seq.
4267  TPA.Commit();
4268  }
4269  }
4270  } else {
4271  // Consume the ':'.
4272  ConsumeToken();
4273  }
4274 
4275  if (!PossibleBitfield) {
4276  SourceRange Range;
4277  BaseType = ParseTypeName(&Range);
4278 
4279  if (getLangOpts().CPlusPlus11) {
4280  Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
4281  } else if (!getLangOpts().ObjC2) {
4282  if (getLangOpts().CPlusPlus)
4283  Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range;
4284  else
4285  Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range;
4286  }
4287  }
4288  }
4289 
4290  // There are four options here. If we have 'friend enum foo;' then this is a
4291  // friend declaration, and cannot have an accompanying definition. If we have
4292  // 'enum foo;', then this is a forward declaration. If we have
4293  // 'enum foo {...' then this is a definition. Otherwise we have something
4294  // like 'enum foo xyz', a reference.
4295  //
4296  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
4297  // enum foo {..}; void bar() { enum foo; } <- new foo in bar.
4298  // enum foo {..}; void bar() { enum foo x; } <- use of old foo.
4299  //
4300  Sema::TagUseKind TUK;
4301  if (!AllowDeclaration) {
4302  TUK = Sema::TUK_Reference;
4303  } else if (Tok.is(tok::l_brace)) {
4304  if (DS.isFriendSpecified()) {
4305  Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
4306  << SourceRange(DS.getFriendSpecLoc());
4307  ConsumeBrace();
4308  SkipUntil(tok::r_brace, StopAtSemi);
4309  TUK = Sema::TUK_Friend;
4310  } else {
4311  TUK = Sema::TUK_Definition;
4312  }
4313  } else if (!isTypeSpecifier(DSC) &&
4314  (Tok.is(tok::semi) ||
4315  (Tok.isAtStartOfLine() &&
4316  !isValidAfterTypeSpecifier(CanBeBitfield)))) {
4318  if (Tok.isNot(tok::semi)) {
4319  // A semicolon was missing after this declaration. Diagnose and recover.
4320  ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4321  PP.EnterToken(Tok);
4322  Tok.setKind(tok::semi);
4323  }
4324  } else {
4325  TUK = Sema::TUK_Reference;
4326  }
4327 
4328  // If this is an elaborated type specifier, and we delayed
4329  // diagnostics before, just merge them into the current pool.
4330  if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
4331  diagsFromTag.redelay();
4332  }
4333 
4334  MultiTemplateParamsArg TParams;
4335  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
4336  TUK != Sema::TUK_Reference) {
4337  if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
4338  // Skip the rest of this declarator, up until the comma or semicolon.
4339  Diag(Tok, diag::err_enum_template);
4340  SkipUntil(tok::comma, StopAtSemi);
4341  return;
4342  }
4343 
4344  if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
4345  // Enumerations can't be explicitly instantiated.
4346  DS.SetTypeSpecError();
4347  Diag(StartLoc, diag::err_explicit_instantiation_enum);
4348  return;
4349  }
4350 
4351  assert(TemplateInfo.TemplateParams && "no template parameters");
4352  TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
4353  TemplateInfo.TemplateParams->size());
4354  }
4355 
4356  if (TUK == Sema::TUK_Reference)
4357  ProhibitAttributes(attrs);
4358 
4359  if (!Name && TUK != Sema::TUK_Definition) {
4360  Diag(Tok, diag::err_enumerator_unnamed_no_def);
4361 
4362  // Skip the rest of this declarator, up until the comma or semicolon.
4363  SkipUntil(tok::comma, StopAtSemi);
4364  return;
4365  }
4366 
4367  stripTypeAttributesOffDeclSpec(attrs, DS, TUK);
4368 
4369  Sema::SkipBodyInfo SkipBody;
4370  if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) &&
4371  NextToken().is(tok::identifier))
4372  SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
4373  NextToken().getIdentifierInfo(),
4374  NextToken().getLocation());
4375 
4376  bool Owned = false;
4377  bool IsDependent = false;
4378  const char *PrevSpec = nullptr;
4379  unsigned DiagID;
4380  Decl *TagDecl = Actions.ActOnTag(
4381  getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS, Name, NameLoc,
4382  attrs, AS, DS.getModulePrivateSpecLoc(), TParams, Owned, IsDependent,
4383  ScopedEnumKWLoc, IsScopedUsingClassTag, BaseType,
4384  DSC == DeclSpecContext::DSC_type_specifier,
4385  DSC == DeclSpecContext::DSC_template_param ||
4386  DSC == DeclSpecContext::DSC_template_type_arg,
4387  &SkipBody);
4388 
4389  if (SkipBody.ShouldSkip) {
4390  assert(TUK == Sema::TUK_Definition && "can only skip a definition");
4391 
4392  BalancedDelimiterTracker T(*this, tok::l_brace);
4393  T.consumeOpen();
4394  T.skipToEnd();
4395 
4396  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4397  NameLoc.isValid() ? NameLoc : StartLoc,
4398  PrevSpec, DiagID, TagDecl, Owned,
4399  Actions.getASTContext().getPrintingPolicy()))
4400  Diag(StartLoc, DiagID) << PrevSpec;
4401  return;
4402  }
4403 
4404  if (IsDependent) {
4405  // This enum has a dependent nested-name-specifier. Handle it as a
4406  // dependent tag.
4407  if (!Name) {
4408  DS.SetTypeSpecError();
4409  Diag(Tok, diag::err_expected_type_name_after_typename);
4410  return;
4411  }
4412 
4413  TypeResult Type = Actions.ActOnDependentTag(
4414  getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
4415  if (Type.isInvalid()) {
4416  DS.SetTypeSpecError();
4417  return;
4418  }
4419 
4420  if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
4421  NameLoc.isValid() ? NameLoc : StartLoc,
4422  PrevSpec, DiagID, Type.get(),
4423  Actions.getASTContext().getPrintingPolicy()))
4424  Diag(StartLoc, DiagID) << PrevSpec;
4425 
4426  return;
4427  }
4428 
4429  if (!TagDecl) {
4430  // The action failed to produce an enumeration tag. If this is a
4431  // definition, consume the entire definition.
4432  if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
4433  ConsumeBrace();
4434  SkipUntil(tok::r_brace, StopAtSemi);
4435  }
4436 
4437  DS.SetTypeSpecError();
4438  return;
4439  }
4440 
4441  if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
4442  Decl *D = SkipBody.CheckSameAsPrevious ? SkipBody.New : TagDecl;
4443  ParseEnumBody(StartLoc, D);
4444  if (SkipBody.CheckSameAsPrevious &&
4445  !Actions.ActOnDuplicateDefinition(DS, TagDecl, SkipBody)) {
4446  DS.SetTypeSpecError();
4447  return;
4448  }
4449  }
4450 
4451  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4452  NameLoc.isValid() ? NameLoc : StartLoc,
4453  PrevSpec, DiagID, TagDecl, Owned,
4454  Actions.getASTContext().getPrintingPolicy()))
4455  Diag(StartLoc, DiagID) << PrevSpec;
4456 }
4457 
4458 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
4459 /// enumerator-list:
4460 /// enumerator
4461 /// enumerator-list ',' enumerator
4462 /// enumerator:
4463 /// enumeration-constant attributes[opt]
4464 /// enumeration-constant attributes[opt] '=' constant-expression
4465 /// enumeration-constant:
4466 /// identifier
4467 ///
4468 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
4469  // Enter the scope of the enum body and start the definition.
4470  ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
4471  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
4472 
4473  BalancedDelimiterTracker T(*this, tok::l_brace);
4474  T.consumeOpen();
4475 
4476  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
4477  if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
4478  Diag(Tok, diag::err_empty_enum);
4479 
4480  SmallVector<Decl *, 32> EnumConstantDecls;
4481  SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
4482 
4483  Decl *LastEnumConstDecl = nullptr;
4484 
4485  // Parse the enumerator-list.
4486  while (Tok.isNot(tok::r_brace)) {
4487  // Parse enumerator. If failed, try skipping till the start of the next
4488  // enumerator definition.
4489  if (Tok.isNot(tok::identifier)) {
4490  Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
4491  if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
4492  TryConsumeToken(tok::comma))
4493  continue;
4494  break;
4495  }
4496  IdentifierInfo *Ident = Tok.getIdentifierInfo();
4497  SourceLocation IdentLoc = ConsumeToken();
4498 
4499  // If attributes exist after the enumerator, parse them.
4500  ParsedAttributesWithRange attrs(AttrFactory);
4501  MaybeParseGNUAttributes(attrs);
4502  ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
4503  if (standardAttributesAllowed() && isCXX11AttributeSpecifier()) {
4504  if (getLangOpts().CPlusPlus)
4505  Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
4506  ? diag::warn_cxx14_compat_ns_enum_attribute
4507  : diag::ext_ns_enum_attribute)
4508  << 1 /*enumerator*/;
4509  ParseCXX11Attributes(attrs);
4510  }
4511 
4512  SourceLocation EqualLoc;
4513  ExprResult AssignedVal;
4514  EnumAvailabilityDiags.emplace_back(*this);
4515 
4516  if (TryConsumeToken(tok::equal, EqualLoc)) {
4517  AssignedVal = ParseConstantExpression();
4518  if (AssignedVal.isInvalid())
4519  SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
4520  }
4521 
4522  // Install the enumerator constant into EnumDecl.
4523  Decl *EnumConstDecl = Actions.ActOnEnumConstant(
4524  getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs,
4525  EqualLoc, AssignedVal.get());
4526  EnumAvailabilityDiags.back().done();
4527 
4528  EnumConstantDecls.push_back(EnumConstDecl);
4529  LastEnumConstDecl = EnumConstDecl;
4530 
4531  if (Tok.is(tok::identifier)) {
4532  // We're missing a comma between enumerators.
4534  Diag(Loc, diag::err_enumerator_list_missing_comma)
4535  << FixItHint::CreateInsertion(Loc, ", ");
4536  continue;
4537  }
4538 
4539  // Emumerator definition must be finished, only comma or r_brace are
4540  // allowed here.
4541  SourceLocation CommaLoc;
4542  if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
4543  if (EqualLoc.isValid())
4544  Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
4545  << tok::comma;
4546  else
4547  Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
4548  if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
4549  if (TryConsumeToken(tok::comma, CommaLoc))
4550  continue;
4551  } else {
4552  break;
4553  }
4554  }
4555 
4556  // If comma is followed by r_brace, emit appropriate warning.
4557  if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
4558  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
4559  Diag(CommaLoc, getLangOpts().CPlusPlus ?
4560  diag::ext_enumerator_list_comma_cxx :
4561  diag::ext_enumerator_list_comma_c)
4562  << FixItHint::CreateRemoval(CommaLoc);
4563  else if (getLangOpts().CPlusPlus11)
4564  Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
4565  << FixItHint::CreateRemoval(CommaLoc);
4566  break;
4567  }
4568  }
4569 
4570  // Eat the }.
4571  T.consumeClose();
4572 
4573  // If attributes exist after the identifier list, parse them.
4574  ParsedAttributes attrs(AttrFactory);
4575  MaybeParseGNUAttributes(attrs);
4576 
4577  Actions.ActOnEnumBody(StartLoc, T.getRange(), EnumDecl, EnumConstantDecls,
4578  getCurScope(), attrs);
4579 
4580  // Now handle enum constant availability diagnostics.
4581  assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
4582  for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
4584  EnumAvailabilityDiags[i].redelay();
4585  PD.complete(EnumConstantDecls[i]);
4586  }
4587 
4588  EnumScope.Exit();
4589  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getRange());
4590 
4591  // The next token must be valid after an enum definition. If not, a ';'
4592  // was probably forgotten.
4593  bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4594  if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
4595  ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4596  // Push this token back into the preprocessor and change our current token
4597  // to ';' so that the rest of the code recovers as though there were an
4598  // ';' after the definition.
4599  PP.EnterToken(Tok);
4600  Tok.setKind(tok::semi);
4601  }
4602 }
4603 
4604 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
4605 /// is definitely a type-specifier. Return false if it isn't part of a type
4606 /// specifier or if we're not sure.
4607 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
4608  switch (Tok.getKind()) {
4609  default: return false;
4610  // type-specifiers
4611  case tok::kw_short:
4612  case tok::kw_long:
4613  case tok::kw___int64:
4614  case tok::kw___int128:
4615  case tok::kw_signed:
4616  case tok::kw_unsigned:
4617  case tok::kw__Complex:
4618  case tok::kw__Imaginary:
4619  case tok::kw_void:
4620  case tok::kw_char:
4621  case tok::kw_wchar_t:
4622  case tok::kw_char8_t:
4623  case tok::kw_char16_t:
4624  case tok::kw_char32_t:
4625  case tok::kw_int:
4626  case tok::kw_half:
4627  case tok::kw_float:
4628  case tok::kw_double:
4629  case tok::kw__Accum:
4630  case tok::kw__Fract:
4631  case tok::kw__Float16:
4632  case tok::kw___float128:
4633  case tok::kw_bool:
4634  case tok::kw__Bool:
4635  case tok::kw__Decimal32:
4636  case tok::kw__Decimal64:
4637  case tok::kw__Decimal128:
4638  case tok::kw___vector:
4639 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4640 #include "clang/Basic/OpenCLImageTypes.def"
4641 
4642  // struct-or-union-specifier (C99) or class-specifier (C++)
4643  case tok::kw_class:
4644  case tok::kw_struct:
4645  case tok::kw___interface:
4646  case tok::kw_union:
4647  // enum-specifier
4648  case tok::kw_enum:
4649 
4650  // typedef-name
4651  case tok::annot_typename:
4652  return true;
4653  }
4654 }
4655 
4656 /// isTypeSpecifierQualifier - Return true if the current token could be the
4657 /// start of a specifier-qualifier-list.
4658 bool Parser::isTypeSpecifierQualifier() {
4659  switch (Tok.getKind()) {
4660  default: return false;
4661 
4662  case tok::identifier: // foo::bar
4663  if (TryAltiVecVectorToken())
4664  return true;
4665  // Fall through.
4666  case tok::kw_typename: // typename T::type
4667  // Annotate typenames and C++ scope specifiers. If we get one, just
4668  // recurse to handle whatever we get.
4670  return true;
4671  if (Tok.is(tok::identifier))
4672  return false;
4673  return isTypeSpecifierQualifier();
4674 
4675  case tok::coloncolon: // ::foo::bar
4676  if (NextToken().is(tok::kw_new) || // ::new
4677  NextToken().is(tok::kw_delete)) // ::delete
4678  return false;
4679 
4681  return true;
4682  return isTypeSpecifierQualifier();
4683 
4684  // GNU attributes support.
4685  case tok::kw___attribute:
4686  // GNU typeof support.
4687  case tok::kw_typeof:
4688 
4689  // type-specifiers
4690  case tok::kw_short:
4691  case tok::kw_long:
4692  case tok::kw___int64:
4693  case tok::kw___int128:
4694  case tok::kw_signed:
4695  case tok::kw_unsigned:
4696  case tok::kw__Complex:
4697  case tok::kw__Imaginary:
4698  case tok::kw_void:
4699  case tok::kw_char:
4700  case tok::kw_wchar_t:
4701  case tok::kw_char8_t:
4702  case tok::kw_char16_t:
4703  case tok::kw_char32_t:
4704  case tok::kw_int:
4705  case tok::kw_half:
4706  case tok::kw_float:
4707  case tok::kw_double:
4708  case tok::kw__Accum:
4709  case tok::kw__Fract:
4710  case tok::kw__Float16:
4711  case tok::kw___float128:
4712  case tok::kw_bool:
4713  case tok::kw__Bool:
4714  case tok::kw__Decimal32:
4715  case tok::kw__Decimal64:
4716  case tok::kw__Decimal128:
4717  case tok::kw___vector:
4718 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4719 #include "clang/Basic/OpenCLImageTypes.def"
4720 
4721  // struct-or-union-specifier (C99) or class-specifier (C++)
4722  case tok::kw_class:
4723  case tok::kw_struct:
4724  case tok::kw___interface:
4725  case tok::kw_union:
4726  // enum-specifier
4727  case tok::kw_enum:
4728 
4729  // type-qualifier
4730  case tok::kw_const:
4731  case tok::kw_volatile:
4732  case tok::kw_restrict:
4733  case tok::kw__Sat:
4734 
4735  // Debugger support.
4736  case tok::kw___unknown_anytype:
4737 
4738  // typedef-name
4739  case tok::annot_typename:
4740  return true;
4741 
4742  // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4743  case tok::less:
4744  return getLangOpts().ObjC1;
4745 
4746  case tok::kw___cdecl:
4747  case tok::kw___stdcall:
4748  case tok::kw___fastcall:
4749  case tok::kw___thiscall:
4750  case tok::kw___regcall:
4751  case tok::kw___vectorcall:
4752  case tok::kw___w64:
4753  case tok::kw___ptr64:
4754  case tok::kw___ptr32:
4755  case tok::kw___pascal:
4756  case tok::kw___unaligned:
4757 
4758  case tok::kw__Nonnull:
4759  case tok::kw__Nullable:
4760  case tok::kw__Null_unspecified:
4761 
4762  case tok::kw___kindof:
4763 
4764  case tok::kw___private:
4765  case tok::kw___local:
4766  case tok::kw___global:
4767  case tok::kw___constant:
4768  case tok::kw___generic:
4769  case tok::kw___read_only:
4770  case tok::kw___read_write:
4771  case tok::kw___write_only:
4772 
4773  return true;
4774 
4775  // C11 _Atomic
4776  case tok::kw__Atomic:
4777  return true;
4778  }
4779 }
4780 
4781 /// isDeclarationSpecifier() - Return true if the current token is part of a
4782 /// declaration specifier.
4783 ///
4784 /// \param DisambiguatingWithExpression True to indicate that the purpose of
4785 /// this check is to disambiguate between an expression and a declaration.
4786 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
4787  switch (Tok.getKind()) {
4788  default: return false;
4789 
4790  case tok::kw_pipe:
4791  return getLangOpts().OpenCL && (getLangOpts().OpenCLVersion >= 200);
4792 
4793  case tok::identifier: // foo::bar
4794  // Unfortunate hack to support "Class.factoryMethod" notation.
4795  if (getLangOpts().ObjC1 && NextToken().is(tok::period))
4796  return false;
4797  if (TryAltiVecVectorToken())
4798  return true;
4799  // Fall through.
4800  case tok::kw_decltype: // decltype(T())::type
4801  case tok::kw_typename: // typename T::type
4802  // Annotate typenames and C++ scope specifiers. If we get one, just
4803  // recurse to handle whatever we get.
4805  return true;
4806  if (Tok.is(tok::identifier))
4807  return false;
4808 
4809  // If we're in Objective-C and we have an Objective-C class type followed
4810  // by an identifier and then either ':' or ']', in a place where an
4811  // expression is permitted, then this is probably a class message send
4812  // missing the initial '['. In this case, we won't consider this to be
4813  // the start of a declaration.
4814  if (DisambiguatingWithExpression &&
4815  isStartOfObjCClassMessageMissingOpenBracket())
4816  return false;
4817 
4818  return isDeclarationSpecifier();
4819 
4820  case tok::coloncolon: // ::foo::bar
4821  if (NextToken().is(tok::kw_new) || // ::new
4822  NextToken().is(tok::kw_delete)) // ::delete
4823  return false;
4824 
4825  // Annotate typenames and C++ scope specifiers. If we get one, just
4826  // recurse to handle whatever we get.
4828  return true;
4829  return isDeclarationSpecifier();
4830 
4831  // storage-class-specifier
4832  case tok::kw_typedef:
4833  case tok::kw_extern:
4834  case tok::kw___private_extern__:
4835  case tok::kw_static:
4836  case tok::kw_auto:
4837  case tok::kw___auto_type:
4838  case tok::kw_register:
4839  case tok::kw___thread:
4840  case tok::kw_thread_local:
4841  case tok::kw__Thread_local:
4842 
4843  // Modules
4844  case tok::kw___module_private__:
4845 
4846  // Debugger support
4847  case tok::kw___unknown_anytype:
4848 
4849  // type-specifiers
4850  case tok::kw_short:
4851  case tok::kw_long:
4852  case tok::kw___int64:
4853  case tok::kw___int128:
4854  case tok::kw_signed:
4855  case tok::kw_unsigned:
4856  case tok::kw__Complex:
4857  case tok::kw__Imaginary:
4858  case tok::kw_void:
4859  case tok::kw_char:
4860  case tok::kw_wchar_t:
4861  case tok::kw_char8_t:
4862  case tok::kw_char16_t:
4863  case tok::kw_char32_t:
4864 
4865  case tok::kw_int:
4866  case tok::kw_half:
4867  case tok::kw_float:
4868  case tok::kw_double:
4869  case tok::kw__Accum:
4870  case tok::kw__Fract:
4871  case tok::kw__Float16:
4872  case tok::kw___float128:
4873  case tok::kw_bool:
4874  case tok::kw__Bool:
4875  case tok::kw__Decimal32:
4876  case tok::kw__Decimal64:
4877  case tok::kw__Decimal128:
4878  case tok::kw___vector:
4879 
4880  // struct-or-union-specifier (C99) or class-specifier (C++)
4881  case tok::kw_class:
4882  case tok::kw_struct:
4883  case tok::kw_union:
4884  case tok::kw___interface:
4885  // enum-specifier
4886  case tok::kw_enum:
4887 
4888  // type-qualifier
4889  case tok::kw_const:
4890  case tok::kw_volatile:
4891  case tok::kw_restrict:
4892  case tok::kw__Sat:
4893 
4894  // function-specifier
4895  case tok::kw_inline:
4896  case tok::kw_virtual:
4897  case tok::kw_explicit:
4898  case tok::kw__Noreturn:
4899 
4900  // alignment-specifier
4901  case tok::kw__Alignas:
4902 
4903  // friend keyword.
4904  case tok::kw_friend:
4905 
4906  // static_assert-declaration
4907  case tok::kw__Static_assert:
4908 
4909  // GNU typeof support.
4910  case tok::kw_typeof:
4911 
4912  // GNU attributes.
4913  case tok::kw___attribute:
4914 
4915  // C++11 decltype and constexpr.
4916  case tok::annot_decltype:
4917  case tok::kw_constexpr:
4918 
4919  // C11 _Atomic
4920  case tok::kw__Atomic:
4921  return true;
4922 
4923  // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4924  case tok::less:
4925  return getLangOpts().ObjC1;
4926 
4927  // typedef-name
4928  case tok::annot_typename:
4929  return !DisambiguatingWithExpression ||
4930  !isStartOfObjCClassMessageMissingOpenBracket();
4931 
4932  case tok::kw___declspec:
4933  case tok::kw___cdecl:
4934  case tok::kw___stdcall:
4935  case tok::kw___fastcall:
4936  case tok::kw___thiscall:
4937  case tok::kw___regcall:
4938  case tok::kw___vectorcall:
4939  case tok::kw___w64:
4940  case tok::kw___sptr:
4941  case tok::kw___uptr:
4942  case tok::kw___ptr64:
4943  case tok::kw___ptr32:
4944  case tok::kw___forceinline:
4945  case tok::kw___pascal:
4946  case tok::kw___unaligned:
4947 
4948  case tok::kw__Nonnull:
4949  case tok::kw__Nullable:
4950  case tok::kw__Null_unspecified:
4951 
4952  case tok::kw___kindof:
4953 
4954  case tok::kw___private:
4955  case tok::kw___local:
4956  case tok::kw___global:
4957  case tok::kw___constant:
4958  case tok::kw___generic:
4959  case tok::kw___read_only:
4960  case tok::kw___read_write:
4961  case tok::kw___write_only:
4962 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4963 #include "clang/Basic/OpenCLImageTypes.def"
4964 
4965  return true;
4966  }
4967 }
4968 
4969 bool Parser::isConstructorDeclarator(bool IsUnqualified, bool DeductionGuide) {
4970  TentativeParsingAction TPA(*this);
4971 
4972  // Parse the C++ scope specifier.
4973  CXXScopeSpec SS;
4974  if (ParseOptionalCXXScopeSpecifier(SS, nullptr,
4975  /*EnteringContext=*/true)) {
4976  TPA.Revert();
4977  return false;
4978  }
4979 
4980  // Parse the constructor name.
4981  if (Tok.is(tok::identifier)) {
4982  // We already know that we have a constructor name; just consume
4983  // the token.
4984  ConsumeToken();
4985  } else if (Tok.is(tok::annot_template_id)) {
4986  ConsumeAnnotationToken();
4987  } else {
4988  TPA.Revert();
4989  return false;
4990  }
4991 
4992  // There may be attributes here, appertaining to the constructor name or type
4993  // we just stepped past.
4994  SkipCXX11Attributes();
4995 
4996  // Current class name must be followed by a left parenthesis.
4997  if (Tok.isNot(tok::l_paren)) {
4998  TPA.Revert();
4999  return false;
5000  }
5001  ConsumeParen();
5002 
5003  // A right parenthesis, or ellipsis followed by a right parenthesis signals
5004  // that we have a constructor.
5005  if (Tok.is(tok::r_paren) ||
5006  (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
5007  TPA.Revert();
5008  return true;
5009  }
5010 
5011  // A C++11 attribute here signals that we have a constructor, and is an
5012  // attribute on the first constructor parameter.
5013  if (getLangOpts().CPlusPlus11 &&
5014  isCXX11AttributeSpecifier(/*Disambiguate*/ false,
5015  /*OuterMightBeMessageSend*/ true)) {
5016  TPA.Revert();
5017  return true;
5018  }
5019 
5020  // If we need to, enter the specified scope.
5021  DeclaratorScopeObj DeclScopeObj(*this, SS);
5022  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
5023  DeclScopeObj.EnterDeclaratorScope();
5024 
5025  // Optionally skip Microsoft attributes.
5026  ParsedAttributes Attrs(AttrFactory);
5027  MaybeParseMicrosoftAttributes(Attrs);
5028 
5029  // Check whether the next token(s) are part of a declaration
5030  // specifier, in which case we have the start of a parameter and,
5031  // therefore, we know that this is a constructor.
5032  bool IsConstructor = false;
5033  if (isDeclarationSpecifier())
5034  IsConstructor = true;
5035  else if (Tok.is(tok::identifier) ||
5036  (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
5037  // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
5038  // This might be a parenthesized member name, but is more likely to
5039  // be a constructor declaration with an invalid argument type. Keep
5040  // looking.
5041  if (Tok.is(tok::annot_cxxscope))
5042  ConsumeAnnotationToken();
5043  ConsumeToken();
5044 
5045  // If this is not a constructor, we must be parsing a declarator,
5046  // which must have one of the following syntactic forms (see the
5047  // grammar extract at the start of ParseDirectDeclarator):
5048  switch (Tok.getKind()) {
5049  case tok::l_paren:
5050  // C(X ( int));
5051  case tok::l_square:
5052  // C(X [ 5]);
5053  // C(X [ [attribute]]);
5054  case tok::coloncolon:
5055  // C(X :: Y);
5056  // C(X :: *p);
5057  // Assume this isn't a constructor, rather than assuming it's a
5058  // constructor with an unnamed parameter of an ill-formed type.
5059  break;
5060 
5061  case tok::r_paren:
5062  // C(X )
5063 
5064  // Skip past the right-paren and any following attributes to get to
5065  // the function body or trailing-return-type.
5066  ConsumeParen();
5067  SkipCXX11Attributes();
5068 
5069  if (DeductionGuide) {
5070  // C(X) -> ... is a deduction guide.
5071  IsConstructor = Tok.is(tok::arrow);
5072  break;
5073  }
5074  if (Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
5075  // Assume these were meant to be constructors:
5076  // C(X) : (the name of a bit-field cannot be parenthesized).
5077  // C(X) try (this is otherwise ill-formed).
5078  IsConstructor = true;
5079  }
5080  if (Tok.is(tok::semi) || Tok.is(tok::l_brace)) {
5081  // If we have a constructor name within the class definition,
5082  // assume these were meant to be constructors:
5083  // C(X) {
5084  // C(X) ;
5085  // ... because otherwise we would be declaring a non-static data
5086  // member that is ill-formed because it's of the same type as its
5087  // surrounding class.
5088  //
5089  // FIXME: We can actually do this whether or not the name is qualified,
5090  // because if it is qualified in this context it must be being used as
5091  // a constructor name.
5092  // currently, so we're somewhat conservative here.
5093  IsConstructor = IsUnqualified;
5094  }
5095  break;
5096 
5097  default:
5098  IsConstructor = true;
5099  break;
5100  }
5101  }
5102 
5103  TPA.Revert();
5104  return IsConstructor;
5105 }
5106 
5107 /// ParseTypeQualifierListOpt
5108 /// type-qualifier-list: [C99 6.7.5]
5109 /// type-qualifier
5110 /// [vendor] attributes
5111 /// [ only if AttrReqs & AR_VendorAttributesParsed ]
5112 /// type-qualifier-list type-qualifier
5113 /// [vendor] type-qualifier-list attributes
5114 /// [ only if AttrReqs & AR_VendorAttributesParsed ]
5115 /// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq
5116 /// [ only if AttReqs & AR_CXX11AttributesParsed ]
5117 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
5118 /// AttrRequirements bitmask values.
5119 void Parser::ParseTypeQualifierListOpt(
5120  DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed,
5121  bool IdentifierRequired,
5122  Optional<llvm::function_ref<void()>> CodeCompletionHandler) {
5123  if (standardAttributesAllowed() && (AttrReqs & AR_CXX11AttributesParsed) &&
5124  isCXX11AttributeSpecifier()) {
5125  ParsedAttributesWithRange attrs(AttrFactory);
5126  ParseCXX11Attributes(attrs);
5127  DS.takeAttributesFrom(attrs);
5128  }
5129 
5130  SourceLocation EndLoc;
5131 
5132  while (1) {
5133  bool isInvalid = false;
5134  const char *PrevSpec = nullptr;
5135  unsigned DiagID = 0;
5136  SourceLocation Loc = Tok.getLocation();
5137 
5138  switch (Tok.getKind()) {
5139  case tok::code_completion:
5141  (*CodeCompletionHandler)();
5142  else
5143  Actions.CodeCompleteTypeQualifiers(DS);
5144  return cutOffParsing();
5145 
5146  case tok::kw_const:
5147  isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID,
5148  getLangOpts());
5149  break;
5150  case tok::kw_volatile:
5151  isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
5152  getLangOpts());
5153  break;
5154  case tok::kw_restrict:
5155  isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
5156  getLangOpts());
5157  break;
5158  case tok::kw__Atomic:
5159  if (!AtomicAllowed)
5160  goto DoneWithTypeQuals;
5161  isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
5162  getLangOpts());
5163  break;
5164 
5165  // OpenCL qualifiers:
5166  case tok::kw___private:
5167  case tok::kw___global:
5168  case tok::kw___local:
5169  case tok::kw___constant:
5170  case tok::kw___generic:
5171  case tok::kw___read_only:
5172  case tok::kw___write_only:
5173  case tok::kw___read_write:
5174  ParseOpenCLQualifiers(DS.getAttributes());
5175  break;
5176 
5177  case tok::kw___unaligned:
5178  isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
5179  getLangOpts());
5180  break;
5181  case tok::kw___uptr:
5182  // GNU libc headers in C mode use '__uptr' as an identifier which conflicts
5183  // with the MS modifier keyword.
5184  if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
5185  IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
5186  if (TryKeywordIdentFallback(false))
5187  continue;
5188  }
5189  LLVM_FALLTHROUGH;
5190  case tok::kw___sptr:
5191  case tok::kw___w64:
5192  case tok::kw___ptr64:
5193  case tok::kw___ptr32:
5194  case tok::kw___cdecl:
5195  case tok::kw___stdcall:
5196  case tok::kw___fastcall:
5197  case tok::kw___thiscall:
5198  case tok::kw___regcall:
5199  case tok::kw___vectorcall:
5200  if (AttrReqs & AR_DeclspecAttributesParsed) {
5201  ParseMicrosoftTypeAttributes(DS.getAttributes());
5202  continue;
5203  }
5204  goto DoneWithTypeQuals;
5205  case tok::kw___pascal:
5206  if (AttrReqs & AR_VendorAttributesParsed) {
5207  ParseBorlandTypeAttributes(DS.getAttributes());
5208  continue;
5209  }
5210  goto DoneWithTypeQuals;
5211 
5212  // Nullability type specifiers.
5213  case tok::kw__Nonnull:
5214  case tok::kw__Nullable:
5215  case tok::kw__Null_unspecified:
5216  ParseNullabilityTypeSpecifiers(DS.getAttributes());
5217  continue;
5218 
5219  // Objective-C 'kindof' types.
5220  case tok::kw___kindof:
5221  DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
5222  nullptr, 0, ParsedAttr::AS_Keyword);
5223  (void)ConsumeToken();
5224  continue;
5225 
5226  case tok::kw___attribute:
5227  if (AttrReqs & AR_GNUAttributesParsedAndRejected)
5228  // When GNU attributes are expressly forbidden, diagnose their usage.
5229  Diag(Tok, diag::err_attributes_not_allowed);
5230 
5231  // Parse the attributes even if they are rejected to ensure that error
5232  // recovery is graceful.
5233  if (AttrReqs & AR_GNUAttributesParsed ||
5234  AttrReqs & AR_GNUAttributesParsedAndRejected) {
5235  ParseGNUAttributes(DS.getAttributes());
5236  continue; // do *not* consume the next token!
5237  }
5238  // otherwise, FALL THROUGH!
5239  LLVM_FALLTHROUGH;
5240  default:
5241  DoneWithTypeQuals:
5242  // If this is not a type-qualifier token, we're done reading type
5243  // qualifiers. First verify that DeclSpec's are consistent.
5244  DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
5245  if (EndLoc.isValid())
5246  DS.SetRangeEnd(EndLoc);
5247  return;
5248  }
5249 
5250  // If the specifier combination wasn't legal, issue a diagnostic.
5251  if (isInvalid) {
5252  assert(PrevSpec && "Method did not return previous specifier!");
5253  Diag(Tok, DiagID) << PrevSpec;
5254  }
5255  EndLoc = ConsumeToken();
5256  }
5257 }
5258 
5259 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
5260 ///
5261 void Parser::ParseDeclarator(Declarator &D) {
5262  /// This implements the 'declarator' production in the C grammar, then checks
5263  /// for well-formedness and issues diagnostics.
5264  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5265 }
5266 
5268  DeclaratorContext TheContext) {
5269  if (Kind == tok::star || Kind == tok::caret)
5270  return true;
5271 
5272  if ((Kind == tok::kw_pipe) && Lang.OpenCL && (Lang.OpenCLVersion >= 200))
5273  return true;
5274 
5275  if (!Lang.CPlusPlus)
5276  return false;
5277 
5278  if (Kind == tok::amp)
5279  return true;
5280 
5281  // We parse rvalue refs in C++03, because otherwise the errors are scary.
5282  // But we must not parse them in conversion-type-ids and new-type-ids, since
5283  // those can be legitimately followed by a && operator.
5284  // (The same thing can in theory happen after a trailing-return-type, but
5285  // since those are a C++11 feature, there is no rejects-valid issue there.)
5286  if (Kind == tok::ampamp)
5287  return Lang.CPlusPlus11 ||
5288  (TheContext != DeclaratorContext::ConversionIdContext &&
5289  TheContext != DeclaratorContext::CXXNewContext);
5290 
5291  return false;
5292 }
5293 
5294 // Indicates whether the given declarator is a pipe declarator.
5295 static bool isPipeDeclerator(const Declarator &D) {
5296  const unsigned NumTypes = D.getNumTypeObjects();
5297 
5298  for (unsigned Idx = 0; Idx != NumTypes; ++Idx)
5300  return true;
5301 
5302  return false;
5303 }
5304 
5305 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
5306 /// is parsed by the function passed to it. Pass null, and the direct-declarator
5307 /// isn't parsed at all, making this function effectively parse the C++
5308 /// ptr-operator production.
5309 ///
5310 /// If the grammar of this construct is extended, matching changes must also be
5311 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
5312 /// isConstructorDeclarator.
5313 ///
5314 /// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
5315 /// [C] pointer[opt] direct-declarator
5316 /// [C++] direct-declarator
5317 /// [C++] ptr-operator declarator
5318 ///
5319 /// pointer: [C99 6.7.5]
5320 /// '*' type-qualifier-list[opt]
5321 /// '*' type-qualifier-list[opt] pointer
5322 ///
5323 /// ptr-operator:
5324 /// '*' cv-qualifier-seq[opt]
5325 /// '&'
5326 /// [C++0x] '&&'
5327 /// [GNU] '&' restrict[opt] attributes[opt]
5328 /// [GNU?] '&&' restrict[opt] attributes[opt]
5329 /// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
5330 void Parser::ParseDeclaratorInternal(Declarator &D,
5331  DirectDeclParseFunction DirectDeclParser) {
5332  if (Diags.hasAllExtensionsSilenced())
5333  D.setExtension();
5334 
5335  // C++ member pointers start with a '::' or a nested-name.
5336  // Member pointers get special handling, since there's no place for the
5337  // scope spec in the generic path below.
5338  if (getLangOpts().CPlusPlus &&
5339  (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) ||
5340  (Tok.is(tok::identifier) &&
5341  (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
5342  Tok.is(tok::annot_cxxscope))) {
5343  bool EnteringContext =
5346  CXXScopeSpec SS;
5347  ParseOptionalCXXScopeSpecifier(SS, nullptr, EnteringContext);
5348 
5349  if (SS.isNotEmpty()) {
5350  if (Tok.isNot(tok::star)) {
5351  // The scope spec really belongs to the direct-declarator.
5352  if (D.mayHaveIdentifier())
5353  D.getCXXScopeSpec() = SS;
5354  else
5355  AnnotateScopeToken(SS, true);
5356 
5357  if (DirectDeclParser)
5358  (this->*DirectDeclParser)(D);
5359  return;
5360  }
5361 
5362  SourceLocation Loc = ConsumeToken();
5363  D.SetRangeEnd(Loc);
5364  DeclSpec DS(AttrFactory);
5365  ParseTypeQualifierListOpt(DS);
5366  D.ExtendWithDeclSpec(DS);
5367 
5368  // Recurse to parse whatever is left.
5369  ParseDeclaratorInternal(D, DirectDeclParser);
5370 
5371  // Sema will have to catch (syntactically invalid) pointers into global
5372  // scope. It has to catch pointers into namespace scope anyway.
5374  SS, DS.getTypeQualifiers(), DS.getEndLoc()),
5375  std::move(DS.getAttributes()),
5376  /* Don't replace range end. */ SourceLocation());
5377  return;
5378  }
5379  }
5380 
5381  tok::TokenKind Kind = Tok.getKind();
5382 
5383  if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclerator(D)) {
5384  DeclSpec DS(AttrFactory);
5385  ParseTypeQualifierListOpt(DS);
5386 
5387  D.AddTypeInfo(
5389  std::move(DS.getAttributes()), SourceLocation());
5390  }
5391 
5392  // Not a pointer, C++ reference, or block.
5393  if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
5394  if (DirectDeclParser)
5395  (this->*DirectDeclParser)(D);
5396  return;
5397  }
5398 
5399  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
5400  // '&&' -> rvalue reference
5401  SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&.
5402  D.SetRangeEnd(Loc);
5403 
5404  if (Kind == tok::star || Kind == tok::caret) {
5405  // Is a pointer.
5406  DeclSpec DS(AttrFactory);
5407 
5408  // GNU attributes are not allowed here in a new-type-id, but Declspec and
5409  // C++11 attributes are allowed.
5410  unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
5412  ? AR_GNUAttributesParsed
5413  : AR_GNUAttributesParsedAndRejected);
5414  ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
5415  D.ExtendWithDeclSpec(DS);
5416 
5417  // Recursively parse the declarator.
5418  ParseDeclaratorInternal(D, DirectDeclParser);
5419  if (Kind == tok::star)
5420  // Remember that we parsed a pointer type, and remember the type-quals.
5422  DS.getTypeQualifiers(), Loc, DS.getConstSpecLoc(),
5425  std::move(DS.getAttributes()), SourceLocation());
5426  else
5427  // Remember that we parsed a Block type, and remember the type-quals.
5428  D.AddTypeInfo(
5430  std::move(DS.getAttributes()), SourceLocation());
5431  } else {
5432  // Is a reference
5433  DeclSpec DS(AttrFactory);
5434 
5435  // Complain about rvalue references in C++03, but then go on and build
5436  // the declarator.
5437  if (Kind == tok::ampamp)
5438  Diag(Loc, getLangOpts().CPlusPlus11 ?
5439  diag::warn_cxx98_compat_rvalue_reference :
5440  diag::ext_rvalue_reference);
5441 
5442  // GNU-style and C++11 attributes are allowed here, as is restrict.
5443  ParseTypeQualifierListOpt(DS);
5444  D.ExtendWithDeclSpec(DS);
5445 
5446  // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
5447  // cv-qualifiers are introduced through the use of a typedef or of a
5448  // template type argument, in which case the cv-qualifiers are ignored.
5451  Diag(DS.getConstSpecLoc(),
5452  diag::err_invalid_reference_qualifier_application) << "const";
5454  Diag(DS.getVolatileSpecLoc(),
5455  diag::err_invalid_reference_qualifier_application) << "volatile";
5456  // 'restrict' is permitted as an extension.
5458  Diag(DS.getAtomicSpecLoc(),
5459  diag::err_invalid_reference_qualifier_application) << "_Atomic";
5460  }
5461 
5462  // Recursively parse the declarator.
5463  ParseDeclaratorInternal(D, DirectDeclParser);
5464 
5465  if (D.getNumTypeObjects() > 0) {
5466  // C++ [dcl.ref]p4: There shall be no references to references.
5467  DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
5468  if (InnerChunk.Kind == DeclaratorChunk::Reference) {
5469  if (const IdentifierInfo *II = D.getIdentifier())
5470  Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5471  << II;
5472  else
5473  Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5474  << "type name";
5475 
5476  // Once we've complained about the reference-to-reference, we
5477  // can go ahead and build the (technically ill-formed)
5478  // declarator: reference collapsing will take care of it.
5479  }
5480  }
5481 
5482  // Remember that we parsed a reference type.
5484  Kind == tok::amp),
5485  std::move(DS.getAttributes()), SourceLocation());
5486  }
5487 }
5488 
5489 // When correcting from misplaced brackets before the identifier, the location
5490 // is saved inside the declarator so that other diagnostic messages can use
5491 // them. This extracts and returns that location, or returns the provided
5492 // location if a stored location does not exist.
5494  SourceLocation Loc) {
5495  if (D.getName().StartLocation.isInvalid() &&
5496  D.getName().EndLocation.isValid())
5497  return D.getName().EndLocation;
5498 
5499  return Loc;
5500 }
5501 
5502 /// ParseDirectDeclarator
5503 /// direct-declarator: [C99 6.7.5]
5504 /// [C99] identifier
5505 /// '(' declarator ')'
5506 /// [GNU] '(' attributes declarator ')'
5507 /// [C90] direct-declarator '[' constant-expression[opt] ']'
5508 /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
5509 /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
5510 /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
5511 /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
5512 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
5513 /// attribute-specifier-seq[opt]
5514 /// direct-declarator '(' parameter-type-list ')'
5515 /// direct-declarator '(' identifier-list[opt] ')'
5516 /// [GNU] direct-declarator '(' parameter-forward-declarations
5517 /// parameter-type-list[opt] ')'
5518 /// [C++] direct-declarator '(' parameter-declaration-clause ')'
5519 /// cv-qualifier-seq[opt] exception-specification[opt]
5520 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
5521 /// attribute-specifier-seq[opt] cv-qualifier-seq[opt]
5522 /// ref-qualifier[opt] exception-specification[opt]
5523 /// [C++] declarator-id
5524 /// [C++11] declarator-id attribute-specifier-seq[opt]
5525 ///
5526 /// declarator-id: [C++ 8]
5527 /// '...'[opt] id-expression
5528 /// '::'[opt] nested-name-specifier[opt] type-name
5529 ///
5530 /// id-expression: [C++ 5.1]
5531 /// unqualified-id
5532 /// qualified-id
5533 ///
5534 /// unqualified-id: [C++ 5.1]
5535 /// identifier
5536 /// operator-function-id
5537 /// conversion-function-id
5538 /// '~' class-name
5539 /// template-id
5540 ///
5541 /// C++17 adds the following, which we also handle here:
5542 ///
5543 /// simple-declaration:
5544 /// <decl-spec> '[' identifier-list ']' brace-or-equal-initializer ';'
5545 ///
5546 /// Note, any additional constructs added here may need corresponding changes
5547 /// in isConstructorDeclarator.
5548 void Parser::ParseDirectDeclarator(Declarator &D) {
5549  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
5550 
5551  if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
5552  // This might be a C++17 structured binding.
5553  if (Tok.is(tok::l_square) && !D.mayOmitIdentifier() &&
5554  D.getCXXScopeSpec().isEmpty())
5555  return ParseDecompositionDeclarator(D);
5556 
5557  // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
5558  // this context it is a bitfield. Also in range-based for statement colon
5559  // may delimit for-range-declaration.
5563  getLangOpts().CPlusPlus11));
5564 
5565  // ParseDeclaratorInternal might already have parsed the scope.
5566  if (D.getCXXScopeSpec().isEmpty()) {
5567  bool EnteringContext =
5570  ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), nullptr,
5571  EnteringContext);
5572  }
5573 
5574  if (D.getCXXScopeSpec().isValid()) {
5575  if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
5576  D.getCXXScopeSpec()))
5577  // Change the declaration context for name lookup, until this function
5578  // is exited (and the declarator has been parsed).
5579  DeclScopeObj.EnterDeclaratorScope();
5580  else if (getObjCDeclContext()) {
5581  // Ensure that we don't interpret the next token as an identifier when
5582  // dealing with declarations in an Objective-C container.
5583  D.SetIdentifier(nullptr, Tok.getLocation());
5584  D.setInvalidType(true);
5585  ConsumeToken();
5586  goto PastIdentifier;
5587  }
5588  }
5589 
5590  // C++0x [dcl.fct]p14:
5591  // There is a syntactic ambiguity when an ellipsis occurs at the end of a
5592  // parameter-declaration-clause without a preceding comma. In this case,
5593  // the ellipsis is parsed as part of the abstract-declarator if the type
5594  // of the parameter either names a template parameter pack that has not
5595  // been expanded or contains auto; otherwise, it is parsed as part of the
5596  // parameter-declaration-clause.
5597  if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
5601  NextToken().is(tok::r_paren) &&
5602  !D.hasGroupingParens() &&
5603  !Actions.containsUnexpandedParameterPacks(D) &&
5604  D.getDeclSpec().getTypeSpecType() != TST_auto)) {
5605  SourceLocation EllipsisLoc = ConsumeToken();
5606  if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
5607  // The ellipsis was put in the wrong place. Recover, and explain to
5608  // the user what they should have done.
5609  ParseDeclarator(D);
5610  if (EllipsisLoc.isValid())
5611  DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5612  return;
5613  } else
5614  D.setEllipsisLoc(EllipsisLoc);
5615 
5616  // The ellipsis can't be followed by a parenthesized declarator. We
5617  // check for that in ParseParenDeclarator, after we have disambiguated
5618  // the l_paren token.
5619  }
5620 
5621  if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id,
5622  tok::tilde)) {
5623  // We found something that indicates the start of an unqualified-id.
5624  // Parse that unqualified-id.
5625  bool AllowConstructorName;
5626  bool AllowDeductionGuide;
5627  if (D.getDeclSpec().hasTypeSpecifier()) {
5628  AllowConstructorName = false;
5629  AllowDeductionGuide = false;
5630  } else if (D.getCXXScopeSpec().isSet()) {
5631  AllowConstructorName =
5634  AllowDeductionGuide = false;
5635  } else {
5636  AllowConstructorName =
5638  AllowDeductionGuide =
5641  }
5642 
5643  bool HadScope = D.getCXXScopeSpec().isValid();
5645  /*EnteringContext=*/true,
5646  /*AllowDestructorName=*/true, AllowConstructorName,
5647  AllowDeductionGuide, nullptr, nullptr,
5648  D.getName()) ||
5649  // Once we're past the identifier, if the scope was bad, mark the
5650  // whole declarator bad.
5651  D.getCXXScopeSpec().isInvalid()) {
5652  D.SetIdentifier(nullptr, Tok.getLocation());
5653  D.setInvalidType(true);
5654  } else {
5655  // ParseUnqualifiedId might have parsed a scope specifier during error
5656  // recovery. If it did so, enter that scope.
5657  if (!HadScope && D.getCXXScopeSpec().isValid() &&
5658  Actions.ShouldEnterDeclaratorScope(getCurScope(),
5659  D.getCXXScopeSpec()))
5660  DeclScopeObj.EnterDeclaratorScope();
5661 
5662  // Parsed the unqualified-id; update range information and move along.
5663  if (D.getSourceRange().getBegin().isInvalid())
5666  }
5667  goto PastIdentifier;
5668  }
5669 
5670  if (D.getCXXScopeSpec().isNotEmpty()) {
5671  // We have a scope specifier but no following unqualified-id.
5672  Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()),
5673  diag::err_expected_unqualified_id)
5674  << /*C++*/1;
5675  D.SetIdentifier(nullptr, Tok.getLocation());
5676  goto PastIdentifier;
5677  }
5678  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
5679  assert(!getLangOpts().CPlusPlus &&
5680  "There's a C++-specific check for tok::identifier above");
5681  assert(Tok.getIdentifierInfo() && "Not an identifier?");
5683  D.SetRangeEnd(Tok.getLocation());
5684  ConsumeToken();
5685  goto PastIdentifier;
5686  } else if (Tok.is(tok::identifier) && !D.mayHaveIdentifier()) {
5687  // We're not allowed an identifier here, but we got one. Try to figure out
5688  // if the user was trying to attach a name to the type, or whether the name
5689  // is some unrelated trailing syntax.
5690  bool DiagnoseIdentifier = false;
5691  if (D.hasGroupingParens())
5692  // An identifier within parens is unlikely to be intended to be anything
5693  // other than a name being "declared".
5694  DiagnoseIdentifier = true;
5696  // T<int N> is an accidental identifier; T<int N indicates a missing '>'.
5697  DiagnoseIdentifier =
5698  NextToken().isOneOf(tok::comma, tok::greater, tok::greatergreater);
5701  // The most likely error is that the ';' was forgotten.
5702  DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::semi);
5705  !isCXX11VirtSpecifier(Tok))
5706  DiagnoseIdentifier = NextToken().isOneOf(
5707  tok::comma, tok::semi, tok::equal, tok::l_brace, tok::kw_try);
5708  if (DiagnoseIdentifier) {
5709  Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
5711  D.SetIdentifier(nullptr, Tok.getLocation());
5712  ConsumeToken();
5713  goto PastIdentifier;
5714  }
5715  }
5716 
5717  if (Tok.is(tok::l_paren)) {
5718  // If this might be an abstract-declarator followed by a direct-initializer,
5719  // check whether this is a valid declarator chunk. If it can't be, assume
5720  // that it's an initializer instead.
5722  RevertingTentativeParsingAction PA(*this);
5723  if (TryParseDeclarator(true, D.mayHaveIdentifier(), true) ==
5724  TPResult::False) {
5725  D.SetIdentifier(nullptr, Tok.getLocation());
5726  goto PastIdentifier;
5727  }
5728  }
5729 
5730  // direct-declarator: '(' declarator ')'
5731  // direct-declarator: '(' attributes declarator ')'
5732  // Example: 'char (*X)' or 'int (*XX)(void)'
5733  ParseParenDeclarator(D);
5734 
5735  // If the declarator was parenthesized, we entered the declarator
5736  // scope when parsing the parenthesized declarator, then exited
5737  // the scope already. Re-enter the scope, if we need to.
5738  if (D.getCXXScopeSpec().isSet()) {
5739  // If there was an error parsing parenthesized declarator, declarator
5740  // scope may have been entered before. Don't do it again.
5741  if (!D.isInvalidType() &&
5742  Actions.ShouldEnterDeclaratorScope(getCurScope(),
5743  D.getCXXScopeSpec()))
5744  // Change the declaration context for name lookup, until this function
5745  // is exited (and the declarator has been parsed).
5746  DeclScopeObj.EnterDeclaratorScope();
5747  }
5748  } else if (D.mayOmitIdentifier()) {
5749  // This could be something simple like "int" (in which case the declarator
5750  // portion is empty), if an abstract-declarator is allowed.
5751  D.SetIdentifier(nullptr, Tok.getLocation());
5752 
5753  // The grammar for abstract-pack-declarator does not allow grouping parens.
5754  // FIXME: Revisit this once core issue 1488 is resolved.
5755  if (D.hasEllipsis() && D.hasGroupingParens())
5756  Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
5757  diag::ext_abstract_pack_declarator_parens);
5758  } else {
5759  if (Tok.getKind() == tok::annot_pragma_parser_crash)
5760  LLVM_BUILTIN_TRAP;
5761  if (Tok.is(tok::l_square))
5762  return ParseMisplacedBracketDeclarator(D);
5764  // Objective-C++: Detect C++ keywords and try to prevent further errors by
5765  // treating these keyword as valid member names.
5766  if (getLangOpts().ObjC1 && getLangOpts().CPlusPlus &&
5767  Tok.getIdentifierInfo() &&
5770  diag::err_expected_member_name_or_semi_objcxx_keyword)
5771  << Tok.getIdentifierInfo()
5772  << (D.getDeclSpec().isEmpty() ? SourceRange()
5773  : D.getDeclSpec().getSourceRange());
5775  D.SetRangeEnd(Tok.getLocation());
5776  ConsumeToken();
5777  goto PastIdentifier;
5778  }
5780  diag::err_expected_member_name_or_semi)
5781  << (D.getDeclSpec().isEmpty() ? SourceRange()
5782  : D.getDeclSpec().getSourceRange());
5783  } else if (getLangOpts().CPlusPlus) {
5784  if (Tok.isOneOf(tok::period, tok::arrow))
5785  Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
5786  else {
5788  if (Tok.isAtStartOfLine() && Loc.isValid())
5789  Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
5790  << getLangOpts().CPlusPlus;
5791  else
5793  diag::err_expected_unqualified_id)
5794  << getLangOpts().CPlusPlus;
5795  }
5796  } else {
5798  diag::err_expected_either)
5799  << tok::identifier << tok::l_paren;
5800  }
5801  D.SetIdentifier(nullptr, Tok.getLocation());
5802  D.setInvalidType(true);
5803  }
5804 
5805  PastIdentifier:
5806  assert(D.isPastIdentifier() &&
5807  "Haven't past the location of the identifier yet?");
5808 
5809  // Don't parse attributes unless we have parsed an unparenthesized name.
5810  if (D.hasName() && !D.getNumTypeObjects())
5811  MaybeParseCXX11Attributes(D);
5812 
5813  while (1) {
5814  if (Tok.is(tok::l_paren)) {
5815  // Enter function-declaration scope, limiting any declarators to the
5816  // function prototype scope, including parameter declarators.
5817  ParseScope PrototypeScope(this,
5821 
5822  // The paren may be part of a C++ direct initializer, eg. "int x(1);".
5823  // In such a case, check if we actually have a function declarator; if it
5824  // is not, the declarator has been fully parsed.
5825  bool IsAmbiguous = false;
5827  // The name of the declarator, if any, is tentatively declared within
5828  // a possible direct initializer.
5829  TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
5830  bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
5831  TentativelyDeclaredIdentifiers.pop_back();
5832  if (!IsFunctionDecl)
5833  break;
5834  }
5835  ParsedAttributes attrs(AttrFactory);
5836  BalancedDelimiterTracker T(*this, tok::l_paren);
5837  T.consumeOpen();
5838  ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
5839  PrototypeScope.Exit();
5840  } else if (Tok.is(tok::l_square)) {
5841  ParseBracketDeclarator(D);
5842  } else {
5843  break;
5844  }
5845  }
5846 }
5847 
5848 void Parser::ParseDecompositionDeclarator(Declarator &D) {
5849  assert(Tok.is(tok::l_square));
5850 
5851  // If this doesn't look like a structured binding, maybe it's a misplaced
5852  // array declarator.
5853  // FIXME: Consume the l_square first so we don't need extra lookahead for
5854  // this.
5855  if (!(NextToken().is(tok::identifier) &&
5856  GetLookAheadToken(2).isOneOf(tok::comma, tok::r_square)) &&
5857  !(NextToken().is(tok::r_square) &&
5858  GetLookAheadToken(2).isOneOf(tok::equal, tok::l_brace)))
5859  return ParseMisplacedBracketDeclarator(D);
5860 
5861  BalancedDelimiterTracker T(*this, tok::l_square);
5862  T.consumeOpen();
5863 
5865  while (Tok.isNot(tok::r_square)) {
5866  if (!Bindings.empty()) {
5867  if (Tok.is(tok::comma))
5868  ConsumeToken();
5869  else {
5870  if (Tok.is(tok::identifier)) {
5872  Diag(EndLoc, diag::err_expected)
5873  << tok::comma << FixItHint::CreateInsertion(EndLoc, ",");
5874  } else {
5875  Diag(Tok, diag::err_expected_comma_or_rsquare);
5876  }
5877 
5878  SkipUntil(tok::r_square, tok::comma, tok::identifier,
5880  if (Tok.is(tok::comma))
5881  ConsumeToken();
5882  else if (Tok.isNot(tok::identifier))
5883  break;
5884  }
5885  }
5886 
5887  if (Tok.isNot(tok::identifier)) {
5888  Diag(Tok, diag::err_expected) << tok::identifier;
5889  break;
5890  }
5891 
5892  Bindings.push_back({Tok.getIdentifierInfo(), Tok.getLocation()});
5893  ConsumeToken();
5894  }
5895 
5896  if (Tok.isNot(tok::r_square))
5897  // We've already diagnosed a problem here.
5898  T.skipToEnd();
5899  else {
5900  // C++17 does not allow the identifier-list in a structured binding
5901  // to be empty.
5902  if (Bindings.empty())
5903  Diag(Tok.getLocation(), diag::ext_decomp_decl_empty);
5904 
5905  T.consumeClose();
5906  }
5907 
5908  return D.setDecompositionBindings(T.getOpenLocation(), Bindings,
5909  T.getCloseLocation());
5910 }
5911 
5912 /// ParseParenDeclarator - We parsed the declarator D up to a paren. This is
5913 /// only called before the identifier, so these are most likely just grouping
5914 /// parens for precedence. If we find that these are actually function
5915 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
5916 ///
5917 /// direct-declarator:
5918 /// '(' declarator ')'
5919 /// [GNU] '(' attributes declarator ')'
5920 /// direct-declarator '(' parameter-type-list ')'
5921 /// direct-declarator '(' identifier-list[opt] ')'
5922 /// [GNU] direct-declarator '(' parameter-forward-declarations
5923 /// parameter-type-list[opt] ')'
5924 ///
5925 void Parser::ParseParenDeclarator(Declarator &D) {
5926  BalancedDelimiterTracker T(*this, tok::l_paren);
5927  T.consumeOpen();
5928 
5929  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
5930 
5931  // Eat any attributes before we look at whether this is a grouping or function
5932  // declarator paren. If this is a grouping paren, the attribute applies to
5933  // the type being built up, for example:
5934  // int (__attribute__(()) *x)(long y)
5935  // If this ends up not being a grouping paren, the attribute applies to the
5936  // first argument, for example:
5937  // int (__attribute__(()) int x)
5938  // In either case, we need to eat any attributes to be able to determine what
5939  // sort of paren this is.
5940  //
5941  ParsedAttributes attrs(AttrFactory);
5942  bool RequiresArg = false;
5943  if (Tok.is(tok::kw___attribute)) {
5944  ParseGNUAttributes(attrs);
5945 
5946  // We require that the argument list (if this is a non-grouping paren) be
5947  // present even if the attribute list was empty.
5948  RequiresArg = true;
5949  }
5950 
5951  // Eat any Microsoft extensions.
5952  ParseMicrosoftTypeAttributes(attrs);
5953 
5954  // Eat any Borland extensions.
5955  if (Tok.is(tok::kw___pascal))
5956  ParseBorlandTypeAttributes(attrs);
5957 
5958  // If we haven't past the identifier yet (or where the identifier would be
5959  // stored, if this is an abstract declarator), then this is probably just
5960  // grouping parens. However, if this could be an abstract-declarator, then
5961  // this could also be the start of function arguments (consider 'void()').
5962  bool isGrouping;
5963 
5964  if (!D.mayOmitIdentifier()) {
5965  // If this can't be an abstract-declarator, this *must* be a grouping
5966  // paren, because we haven't seen the identifier yet.
5967  isGrouping = true;
5968  } else if (Tok.is(tok::r_paren) || // 'int()' is a function.
5969  (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
5970  NextToken().is(tok::r_paren)) || // C++ int(...)
5971  isDeclarationSpecifier() || // 'int(int)' is a function.
5972  isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function.
5973  // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
5974  // considered to be a type, not a K&R identifier-list.
5975  isGrouping = false;
5976  } else {
5977  // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
5978  isGrouping = true;
5979  }
5980 
5981  // If this is a grouping paren, handle:
5982  // direct-declarator: '(' declarator ')'
5983  // direct-declarator: '(' attributes declarator ')'
5984  if (isGrouping) {
5985  SourceLocation EllipsisLoc = D.getEllipsisLoc();
5987 
5988  bool hadGroupingParens = D.hasGroupingParens();
5989  D.setGroupingParens(true);
5990  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5991  // Match the ')'.
5992  T.consumeClose();
5993  D.AddTypeInfo(
<