clang  7.0.0svn
ParseDecl.cpp
Go to the documentation of this file.
1 //===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Declaration portions of the Parser interfaces.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Parse/Parser.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
20 #include "clang/Basic/Attributes.h"
21 #include "clang/Basic/CharInfo.h"
22 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Sema/Lookup.h"
26 #include "clang/Sema/Scope.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallString.h"
31 #include "llvm/ADT/StringSwitch.h"
32 
33 using namespace clang;
34 
35 //===----------------------------------------------------------------------===//
36 // C99 6.7: Declarations.
37 //===----------------------------------------------------------------------===//
38 
39 /// ParseTypeName
40 /// type-name: [C99 6.7.6]
41 /// specifier-qualifier-list abstract-declarator[opt]
42 ///
43 /// Called type-id in C++.
45  DeclaratorContext Context,
46  AccessSpecifier AS,
47  Decl **OwnedType,
48  ParsedAttributes *Attrs) {
49  DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
50  if (DSC == DeclSpecContext::DSC_normal)
51  DSC = DeclSpecContext::DSC_type_specifier;
52 
53  // Parse the common declaration-specifiers piece.
54  DeclSpec DS(AttrFactory);
55  if (Attrs)
56  DS.addAttributes(Attrs->getList());
57  ParseSpecifierQualifierList(DS, AS, DSC);
58  if (OwnedType)
59  *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
60 
61  // Parse the abstract-declarator, if present.
62  Declarator DeclaratorInfo(DS, Context);
63  ParseDeclarator(DeclaratorInfo);
64  if (Range)
65  *Range = DeclaratorInfo.getSourceRange();
66 
67  if (DeclaratorInfo.isInvalidType())
68  return true;
69 
70  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
71 }
72 
73 /// Normalizes an attribute name by dropping prefixed and suffixed __.
74 static StringRef normalizeAttrName(StringRef Name) {
75  if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
76  return Name.drop_front(2).drop_back(2);
77  return Name;
78 }
79 
80 /// isAttributeLateParsed - Return true if the attribute has arguments that
81 /// require late parsing.
82 static bool isAttributeLateParsed(const IdentifierInfo &II) {
83 #define CLANG_ATTR_LATE_PARSED_LIST
84  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
85 #include "clang/Parse/AttrParserStringSwitches.inc"
86  .Default(false);
87 #undef CLANG_ATTR_LATE_PARSED_LIST
88 }
89 
90 /// ParseGNUAttributes - Parse a non-empty attributes list.
91 ///
92 /// [GNU] attributes:
93 /// attribute
94 /// attributes attribute
95 ///
96 /// [GNU] attribute:
97 /// '__attribute__' '(' '(' attribute-list ')' ')'
98 ///
99 /// [GNU] attribute-list:
100 /// attrib
101 /// attribute_list ',' attrib
102 ///
103 /// [GNU] attrib:
104 /// empty
105 /// attrib-name
106 /// attrib-name '(' identifier ')'
107 /// attrib-name '(' identifier ',' nonempty-expr-list ')'
108 /// attrib-name '(' argument-expression-list [C99 6.5.2] ')'
109 ///
110 /// [GNU] attrib-name:
111 /// identifier
112 /// typespec
113 /// typequal
114 /// storageclass
115 ///
116 /// Whether an attribute takes an 'identifier' is determined by the
117 /// attrib-name. GCC's behavior here is not worth imitating:
118 ///
119 /// * In C mode, if the attribute argument list starts with an identifier
120 /// followed by a ',' or an ')', and the identifier doesn't resolve to
121 /// a type, it is parsed as an identifier. If the attribute actually
122 /// wanted an expression, it's out of luck (but it turns out that no
123 /// attributes work that way, because C constant expressions are very
124 /// limited).
125 /// * In C++ mode, if the attribute argument list starts with an identifier,
126 /// and the attribute *wants* an identifier, it is parsed as an identifier.
127 /// At block scope, any additional tokens between the identifier and the
128 /// ',' or ')' are ignored, otherwise they produce a parse error.
129 ///
130 /// We follow the C++ model, but don't allow junk after the identifier.
131 void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
132  SourceLocation *endLoc,
133  LateParsedAttrList *LateAttrs,
134  Declarator *D) {
135  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
136 
137  while (Tok.is(tok::kw___attribute)) {
138  ConsumeToken();
139  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
140  "attribute")) {
141  SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
142  return;
143  }
144  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
145  SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
146  return;
147  }
148  // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
149  while (true) {
150  // Allow empty/non-empty attributes. ((__vector_size__(16),,,,))
151  if (TryConsumeToken(tok::comma))
152  continue;
153 
154  // Expect an identifier or declaration specifier (const, int, etc.)
155  if (Tok.isAnnotation())
156  break;
157  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
158  if (!AttrName)
159  break;
160 
161  SourceLocation AttrNameLoc = ConsumeToken();
162 
163  if (Tok.isNot(tok::l_paren)) {
164  attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
166  continue;
167  }
168 
169  // Handle "parameterized" attributes
170  if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
171  ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
173  continue;
174  }
175 
176  // Handle attributes with arguments that require late parsing.
177  LateParsedAttribute *LA =
178  new LateParsedAttribute(this, *AttrName, AttrNameLoc);
179  LateAttrs->push_back(LA);
180 
181  // Attributes in a class are parsed at the end of the class, along
182  // with other late-parsed declarations.
183  if (!ClassStack.empty() && !LateAttrs->parseSoon())
184  getCurrentClass().LateParsedDeclarations.push_back(LA);
185 
186  // Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it
187  // recursively consumes balanced parens.
188  LA->Toks.push_back(Tok);
189  ConsumeParen();
190  // Consume everything up to and including the matching right parens.
191  ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true);
192 
193  Token Eof;
194  Eof.startToken();
195  Eof.setLocation(Tok.getLocation());
196  LA->Toks.push_back(Eof);
197  }
198 
199  if (ExpectAndConsume(tok::r_paren))
200  SkipUntil(tok::r_paren, StopAtSemi);
201  SourceLocation Loc = Tok.getLocation();
202  if (ExpectAndConsume(tok::r_paren))
203  SkipUntil(tok::r_paren, StopAtSemi);
204  if (endLoc)
205  *endLoc = Loc;
206  }
207 }
208 
209 /// Determine whether the given attribute has an identifier argument.
211 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
212  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
213 #include "clang/Parse/AttrParserStringSwitches.inc"
214  .Default(false);
215 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
216 }
217 
218 /// Determine whether the given attribute parses a type argument.
219 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
220 #define CLANG_ATTR_TYPE_ARG_LIST
221  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
222 #include "clang/Parse/AttrParserStringSwitches.inc"
223  .Default(false);
224 #undef CLANG_ATTR_TYPE_ARG_LIST
225 }
226 
227 /// Determine whether the given attribute requires parsing its arguments
228 /// in an unevaluated context or not.
230 #define CLANG_ATTR_ARG_CONTEXT_LIST
231  return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
232 #include "clang/Parse/AttrParserStringSwitches.inc"
233  .Default(false);
234 #undef CLANG_ATTR_ARG_CONTEXT_LIST
235 }
236 
237 IdentifierLoc *Parser::ParseIdentifierLoc() {
238  assert(Tok.is(tok::identifier) && "expected an identifier");
240  Tok.getLocation(),
241  Tok.getIdentifierInfo());
242  ConsumeToken();
243  return IL;
244 }
245 
246 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
247  SourceLocation AttrNameLoc,
248  ParsedAttributes &Attrs,
249  SourceLocation *EndLoc,
250  IdentifierInfo *ScopeName,
251  SourceLocation ScopeLoc,
252  AttributeList::Syntax Syntax) {
253  BalancedDelimiterTracker Parens(*this, tok::l_paren);
254  Parens.consumeOpen();
255 
256  TypeResult T;
257  if (Tok.isNot(tok::r_paren))
258  T = ParseTypeName();
259 
260  if (Parens.consumeClose())
261  return;
262 
263  if (T.isInvalid())
264  return;
265 
266  if (T.isUsable())
267  Attrs.addNewTypeAttr(&AttrName,
268  SourceRange(AttrNameLoc, Parens.getCloseLocation()),
269  ScopeName, ScopeLoc, T.get(), Syntax);
270  else
271  Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
272  ScopeName, ScopeLoc, nullptr, 0, Syntax);
273 }
274 
275 unsigned Parser::ParseAttributeArgsCommon(
276  IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
277  ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
278  SourceLocation ScopeLoc, AttributeList::Syntax Syntax) {
279  // Ignore the left paren location for now.
280  ConsumeParen();
281 
282  ArgsVector ArgExprs;
283  if (Tok.is(tok::identifier)) {
284  // If this attribute wants an 'identifier' argument, make it so.
285  bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName);
286  AttributeList::Kind AttrKind =
287  AttributeList::getKind(AttrName, ScopeName, Syntax);
288 
289  // If we don't know how to parse this attribute, but this is the only
290  // token in this argument, assume it's meant to be an identifier.
291  if (AttrKind == AttributeList::UnknownAttribute ||
292  AttrKind == AttributeList::IgnoredAttribute) {
293  const Token &Next = NextToken();
294  IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
295  }
296 
297  if (IsIdentifierArg)
298  ArgExprs.push_back(ParseIdentifierLoc());
299  }
300 
301  if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
302  // Eat the comma.
303  if (!ArgExprs.empty())
304  ConsumeToken();
305 
306  // Parse the non-empty comma-separated list of expressions.
307  do {
308  bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
310  Actions,
313  /*LambdaContextDecl=*/nullptr,
314  /*IsDecltype=*/false);
315 
316  ExprResult ArgExpr(
318  if (ArgExpr.isInvalid()) {
319  SkipUntil(tok::r_paren, StopAtSemi);
320  return 0;
321  }
322  ArgExprs.push_back(ArgExpr.get());
323  // Eat the comma, move to the next argument
324  } while (TryConsumeToken(tok::comma));
325  }
326 
327  SourceLocation RParen = Tok.getLocation();
328  if (!ExpectAndConsume(tok::r_paren)) {
329  SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
330  Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
331  ArgExprs.data(), ArgExprs.size(), Syntax);
332  }
333 
334  if (EndLoc)
335  *EndLoc = RParen;
336 
337  return static_cast<unsigned>(ArgExprs.size());
338 }
339 
340 /// Parse the arguments to a parameterized GNU attribute or
341 /// a C++11 attribute in "gnu" namespace.
342 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
343  SourceLocation AttrNameLoc,
344  ParsedAttributes &Attrs,
345  SourceLocation *EndLoc,
346  IdentifierInfo *ScopeName,
347  SourceLocation ScopeLoc,
348  AttributeList::Syntax Syntax,
349  Declarator *D) {
350 
351  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
352 
353  AttributeList::Kind AttrKind =
354  AttributeList::getKind(AttrName, ScopeName, Syntax);
355 
356  if (AttrKind == AttributeList::AT_Availability) {
357  ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
358  ScopeLoc, Syntax);
359  return;
360  } else if (AttrKind == AttributeList::AT_ExternalSourceSymbol) {
361  ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
362  ScopeName, ScopeLoc, Syntax);
363  return;
364  } else if (AttrKind == AttributeList::AT_ObjCBridgeRelated) {
365  ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
366  ScopeName, ScopeLoc, Syntax);
367  return;
368  } else if (AttrKind == AttributeList::AT_TypeTagForDatatype) {
369  ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
370  ScopeName, ScopeLoc, Syntax);
371  return;
372  } else if (attributeIsTypeArgAttr(*AttrName)) {
373  ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
374  ScopeLoc, Syntax);
375  return;
376  }
377 
378  // These may refer to the function arguments, but need to be parsed early to
379  // participate in determining whether it's a redeclaration.
380  llvm::Optional<ParseScope> PrototypeScope;
381  if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
382  D && D->isFunctionDeclarator()) {
384  PrototypeScope.emplace(this, Scope::FunctionPrototypeScope |
387  for (unsigned i = 0; i != FTI.NumParams; ++i) {
388  ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
390  }
391  }
392 
393  ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
394  ScopeLoc, Syntax);
395 }
396 
397 unsigned Parser::ParseClangAttributeArgs(
398  IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
399  ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
400  SourceLocation ScopeLoc, AttributeList::Syntax Syntax) {
401  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
402 
403  AttributeList::Kind AttrKind =
404  AttributeList::getKind(AttrName, ScopeName, Syntax);
405 
406  switch (AttrKind) {
407  default:
408  return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc,
409  ScopeName, ScopeLoc, Syntax);
410  case AttributeList::AT_ExternalSourceSymbol:
411  ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
412  ScopeName, ScopeLoc, Syntax);
413  break;
414  case AttributeList::AT_Availability:
415  ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
416  ScopeLoc, Syntax);
417  break;
418  case AttributeList::AT_ObjCBridgeRelated:
419  ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
420  ScopeName, ScopeLoc, Syntax);
421  break;
422  case AttributeList::AT_TypeTagForDatatype:
423  ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
424  ScopeName, ScopeLoc, Syntax);
425  break;
426  }
427  return Attrs.getList() ? Attrs.getList()->getNumArgs() : 0;
428 }
429 
430 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
431  SourceLocation AttrNameLoc,
432  ParsedAttributes &Attrs) {
433  // If the attribute isn't known, we will not attempt to parse any
434  // arguments.
435  if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
436  getTargetInfo(), getLangOpts())) {
437  // Eat the left paren, then skip to the ending right paren.
438  ConsumeParen();
439  SkipUntil(tok::r_paren);
440  return false;
441  }
442 
443  SourceLocation OpenParenLoc = Tok.getLocation();
444 
445  if (AttrName->getName() == "property") {
446  // The property declspec is more complex in that it can take one or two
447  // assignment expressions as a parameter, but the lhs of the assignment
448  // must be named get or put.
449 
450  BalancedDelimiterTracker T(*this, tok::l_paren);
451  T.expectAndConsume(diag::err_expected_lparen_after,
452  AttrName->getNameStart(), tok::r_paren);
453 
454  enum AccessorKind {
455  AK_Invalid = -1,
456  AK_Put = 0,
457  AK_Get = 1 // indices into AccessorNames
458  };
459  IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
460  bool HasInvalidAccessor = false;
461 
462  // Parse the accessor specifications.
463  while (true) {
464  // Stop if this doesn't look like an accessor spec.
465  if (!Tok.is(tok::identifier)) {
466  // If the user wrote a completely empty list, use a special diagnostic.
467  if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
468  AccessorNames[AK_Put] == nullptr &&
469  AccessorNames[AK_Get] == nullptr) {
470  Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
471  break;
472  }
473 
474  Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
475  break;
476  }
477 
478  AccessorKind Kind;
479  SourceLocation KindLoc = Tok.getLocation();
480  StringRef KindStr = Tok.getIdentifierInfo()->getName();
481  if (KindStr == "get") {
482  Kind = AK_Get;
483  } else if (KindStr == "put") {
484  Kind = AK_Put;
485 
486  // Recover from the common mistake of using 'set' instead of 'put'.
487  } else if (KindStr == "set") {
488  Diag(KindLoc, diag::err_ms_property_has_set_accessor)
489  << FixItHint::CreateReplacement(KindLoc, "put");
490  Kind = AK_Put;
491 
492  // Handle the mistake of forgetting the accessor kind by skipping
493  // this accessor.
494  } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
495  Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
496  ConsumeToken();
497  HasInvalidAccessor = true;
498  goto next_property_accessor;
499 
500  // Otherwise, complain about the unknown accessor kind.
501  } else {
502  Diag(KindLoc, diag::err_ms_property_unknown_accessor);
503  HasInvalidAccessor = true;
504  Kind = AK_Invalid;
505 
506  // Try to keep parsing unless it doesn't look like an accessor spec.
507  if (!NextToken().is(tok::equal))
508  break;
509  }
510 
511  // Consume the identifier.
512  ConsumeToken();
513 
514  // Consume the '='.
515  if (!TryConsumeToken(tok::equal)) {
516  Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
517  << KindStr;
518  break;
519  }
520 
521  // Expect the method name.
522  if (!Tok.is(tok::identifier)) {
523  Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
524  break;
525  }
526 
527  if (Kind == AK_Invalid) {
528  // Just drop invalid accessors.
529  } else if (AccessorNames[Kind] != nullptr) {
530  // Complain about the repeated accessor, ignore it, and keep parsing.
531  Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
532  } else {
533  AccessorNames[Kind] = Tok.getIdentifierInfo();
534  }
535  ConsumeToken();
536 
537  next_property_accessor:
538  // Keep processing accessors until we run out.
539  if (TryConsumeToken(tok::comma))
540  continue;
541 
542  // If we run into the ')', stop without consuming it.
543  if (Tok.is(tok::r_paren))
544  break;
545 
546  Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
547  break;
548  }
549 
550  // Only add the property attribute if it was well-formed.
551  if (!HasInvalidAccessor)
552  Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
553  AccessorNames[AK_Get], AccessorNames[AK_Put],
555  T.skipToEnd();
556  return !HasInvalidAccessor;
557  }
558 
559  unsigned NumArgs =
560  ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
562 
563  // If this attribute's args were parsed, and it was expected to have
564  // arguments but none were provided, emit a diagnostic.
565  const AttributeList *Attr = Attrs.getList();
566  if (Attr && Attr->getMaxArgs() && !NumArgs) {
567  Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
568  return false;
569  }
570  return true;
571 }
572 
573 /// [MS] decl-specifier:
574 /// __declspec ( extended-decl-modifier-seq )
575 ///
576 /// [MS] extended-decl-modifier-seq:
577 /// extended-decl-modifier[opt]
578 /// extended-decl-modifier extended-decl-modifier-seq
579 void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs,
580  SourceLocation *End) {
581  assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
582  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
583 
584  while (Tok.is(tok::kw___declspec)) {
585  ConsumeToken();
586  BalancedDelimiterTracker T(*this, tok::l_paren);
587  if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
588  tok::r_paren))
589  return;
590 
591  // An empty declspec is perfectly legal and should not warn. Additionally,
592  // you can specify multiple attributes per declspec.
593  while (Tok.isNot(tok::r_paren)) {
594  // Attribute not present.
595  if (TryConsumeToken(tok::comma))
596  continue;
597 
598  // We expect either a well-known identifier or a generic string. Anything
599  // else is a malformed declspec.
600  bool IsString = Tok.getKind() == tok::string_literal;
601  if (!IsString && Tok.getKind() != tok::identifier &&
602  Tok.getKind() != tok::kw_restrict) {
603  Diag(Tok, diag::err_ms_declspec_type);
604  T.skipToEnd();
605  return;
606  }
607 
608  IdentifierInfo *AttrName;
609  SourceLocation AttrNameLoc;
610  if (IsString) {
611  SmallString<8> StrBuffer;
612  bool Invalid = false;
613  StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
614  if (Invalid) {
615  T.skipToEnd();
616  return;
617  }
618  AttrName = PP.getIdentifierInfo(Str);
619  AttrNameLoc = ConsumeStringToken();
620  } else {
621  AttrName = Tok.getIdentifierInfo();
622  AttrNameLoc = ConsumeToken();
623  }
624 
625  bool AttrHandled = false;
626 
627  // Parse attribute arguments.
628  if (Tok.is(tok::l_paren))
629  AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
630  else if (AttrName->getName() == "property")
631  // The property attribute must have an argument list.
632  Diag(Tok.getLocation(), diag::err_expected_lparen_after)
633  << AttrName->getName();
634 
635  if (!AttrHandled)
636  Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
638  }
639  T.consumeClose();
640  if (End)
641  *End = T.getCloseLocation();
642  }
643 }
644 
645 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
646  // Treat these like attributes
647  while (true) {
648  switch (Tok.getKind()) {
649  case tok::kw___fastcall:
650  case tok::kw___stdcall:
651  case tok::kw___thiscall:
652  case tok::kw___regcall:
653  case tok::kw___cdecl:
654  case tok::kw___vectorcall:
655  case tok::kw___ptr64:
656  case tok::kw___w64:
657  case tok::kw___ptr32:
658  case tok::kw___sptr:
659  case tok::kw___uptr: {
660  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
661  SourceLocation AttrNameLoc = ConsumeToken();
662  attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
664  break;
665  }
666  default:
667  return;
668  }
669  }
670 }
671 
672 void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
673  SourceLocation StartLoc = Tok.getLocation();
674  SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
675 
676  if (EndLoc.isValid()) {
677  SourceRange Range(StartLoc, EndLoc);
678  Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
679  }
680 }
681 
682 SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
683  SourceLocation EndLoc;
684 
685  while (true) {
686  switch (Tok.getKind()) {
687  case tok::kw_const:
688  case tok::kw_volatile:
689  case tok::kw___fastcall:
690  case tok::kw___stdcall:
691  case tok::kw___thiscall:
692  case tok::kw___cdecl:
693  case tok::kw___vectorcall:
694  case tok::kw___ptr32:
695  case tok::kw___ptr64:
696  case tok::kw___w64:
697  case tok::kw___unaligned:
698  case tok::kw___sptr:
699  case tok::kw___uptr:
700  EndLoc = ConsumeToken();
701  break;
702  default:
703  return EndLoc;
704  }
705  }
706 }
707 
708 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
709  // Treat these like attributes
710  while (Tok.is(tok::kw___pascal)) {
711  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
712  SourceLocation AttrNameLoc = ConsumeToken();
713  attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
715  }
716 }
717 
718 void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) {
719  // Treat these like attributes
720  while (Tok.is(tok::kw___kernel)) {
721  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
722  SourceLocation AttrNameLoc = ConsumeToken();
723  attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
725  }
726 }
727 
728 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
729  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
730  SourceLocation AttrNameLoc = Tok.getLocation();
731  Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
733 }
734 
735 void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
736  // Treat these like attributes, even though they're type specifiers.
737  while (true) {
738  switch (Tok.getKind()) {
739  case tok::kw__Nonnull:
740  case tok::kw__Nullable:
741  case tok::kw__Null_unspecified: {
742  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
743  SourceLocation AttrNameLoc = ConsumeToken();
744  if (!getLangOpts().ObjC1)
745  Diag(AttrNameLoc, diag::ext_nullability)
746  << AttrName;
747  attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
749  break;
750  }
751  default:
752  return;
753  }
754  }
755 }
756 
757 static bool VersionNumberSeparator(const char Separator) {
758  return (Separator == '.' || Separator == '_');
759 }
760 
761 /// Parse a version number.
762 ///
763 /// version:
764 /// simple-integer
765 /// simple-integer '.' simple-integer
766 /// simple-integer '_' simple-integer
767 /// simple-integer '.' simple-integer '.' simple-integer
768 /// simple-integer '_' simple-integer '_' simple-integer
769 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
770  Range = SourceRange(Tok.getLocation(), Tok.getEndLoc());
771 
772  if (!Tok.is(tok::numeric_constant)) {
773  Diag(Tok, diag::err_expected_version);
774  SkipUntil(tok::comma, tok::r_paren,
776  return VersionTuple();
777  }
778 
779  // Parse the major (and possibly minor and subminor) versions, which
780  // are stored in the numeric constant. We utilize a quirk of the
781  // lexer, which is that it handles something like 1.2.3 as a single
782  // numeric constant, rather than two separate tokens.
783  SmallString<512> Buffer;
784  Buffer.resize(Tok.getLength()+1);
785  const char *ThisTokBegin = &Buffer[0];
786 
787  // Get the spelling of the token, which eliminates trigraphs, etc.
788  bool Invalid = false;
789  unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
790  if (Invalid)
791  return VersionTuple();
792 
793  // Parse the major version.
794  unsigned AfterMajor = 0;
795  unsigned Major = 0;
796  while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
797  Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
798  ++AfterMajor;
799  }
800 
801  if (AfterMajor == 0) {
802  Diag(Tok, diag::err_expected_version);
803  SkipUntil(tok::comma, tok::r_paren,
805  return VersionTuple();
806  }
807 
808  if (AfterMajor == ActualLength) {
809  ConsumeToken();
810 
811  // We only had a single version component.
812  if (Major == 0) {
813  Diag(Tok, diag::err_zero_version);
814  return VersionTuple();
815  }
816 
817  return VersionTuple(Major);
818  }
819 
820  const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
821  if (!VersionNumberSeparator(AfterMajorSeparator)
822  || (AfterMajor + 1 == ActualLength)) {
823  Diag(Tok, diag::err_expected_version);
824  SkipUntil(tok::comma, tok::r_paren,
826  return VersionTuple();
827  }
828 
829  // Parse the minor version.
830  unsigned AfterMinor = AfterMajor + 1;
831  unsigned Minor = 0;
832  while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
833  Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
834  ++AfterMinor;
835  }
836 
837  if (AfterMinor == ActualLength) {
838  ConsumeToken();
839 
840  // We had major.minor.
841  if (Major == 0 && Minor == 0) {
842  Diag(Tok, diag::err_zero_version);
843  return VersionTuple();
844  }
845 
846  return VersionTuple(Major, Minor);
847  }
848 
849  const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
850  // If what follows is not a '.' or '_', we have a problem.
851  if (!VersionNumberSeparator(AfterMinorSeparator)) {
852  Diag(Tok, diag::err_expected_version);
853  SkipUntil(tok::comma, tok::r_paren,
855  return VersionTuple();
856  }
857 
858  // Warn if separators, be it '.' or '_', do not match.
859  if (AfterMajorSeparator != AfterMinorSeparator)
860  Diag(Tok, diag::warn_expected_consistent_version_separator);
861 
862  // Parse the subminor version.
863  unsigned AfterSubminor = AfterMinor + 1;
864  unsigned Subminor = 0;
865  while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
866  Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
867  ++AfterSubminor;
868  }
869 
870  if (AfterSubminor != ActualLength) {
871  Diag(Tok, diag::err_expected_version);
872  SkipUntil(tok::comma, tok::r_paren,
874  return VersionTuple();
875  }
876  ConsumeToken();
877  return VersionTuple(Major, Minor, Subminor);
878 }
879 
880 /// Parse the contents of the "availability" attribute.
881 ///
882 /// availability-attribute:
883 /// 'availability' '(' platform ',' opt-strict version-arg-list,
884 /// opt-replacement, opt-message')'
885 ///
886 /// platform:
887 /// identifier
888 ///
889 /// opt-strict:
890 /// 'strict' ','
891 ///
892 /// version-arg-list:
893 /// version-arg
894 /// version-arg ',' version-arg-list
895 ///
896 /// version-arg:
897 /// 'introduced' '=' version
898 /// 'deprecated' '=' version
899 /// 'obsoleted' = version
900 /// 'unavailable'
901 /// opt-replacement:
902 /// 'replacement' '=' <string>
903 /// opt-message:
904 /// 'message' '=' <string>
905 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
906  SourceLocation AvailabilityLoc,
907  ParsedAttributes &attrs,
908  SourceLocation *endLoc,
909  IdentifierInfo *ScopeName,
910  SourceLocation ScopeLoc,
911  AttributeList::Syntax Syntax) {
912  enum { Introduced, Deprecated, Obsoleted, Unknown };
913  AvailabilityChange Changes[Unknown];
914  ExprResult MessageExpr, ReplacementExpr;
915 
916  // Opening '('.
917  BalancedDelimiterTracker T(*this, tok::l_paren);
918  if (T.consumeOpen()) {
919  Diag(Tok, diag::err_expected) << tok::l_paren;
920  return;
921  }
922 
923  // Parse the platform name.
924  if (Tok.isNot(tok::identifier)) {
925  Diag(Tok, diag::err_availability_expected_platform);
926  SkipUntil(tok::r_paren, StopAtSemi);
927  return;
928  }
929  IdentifierLoc *Platform = ParseIdentifierLoc();
930  if (const IdentifierInfo *const Ident = Platform->Ident) {
931  // Canonicalize platform name from "macosx" to "macos".
932  if (Ident->getName() == "macosx")
933  Platform->Ident = PP.getIdentifierInfo("macos");
934  // Canonicalize platform name from "macosx_app_extension" to
935  // "macos_app_extension".
936  else if (Ident->getName() == "macosx_app_extension")
937  Platform->Ident = PP.getIdentifierInfo("macos_app_extension");
938  else
939  Platform->Ident = PP.getIdentifierInfo(
940  AvailabilityAttr::canonicalizePlatformName(Ident->getName()));
941  }
942 
943  // Parse the ',' following the platform name.
944  if (ExpectAndConsume(tok::comma)) {
945  SkipUntil(tok::r_paren, StopAtSemi);
946  return;
947  }
948 
949  // If we haven't grabbed the pointers for the identifiers
950  // "introduced", "deprecated", and "obsoleted", do so now.
951  if (!Ident_introduced) {
952  Ident_introduced = PP.getIdentifierInfo("introduced");
953  Ident_deprecated = PP.getIdentifierInfo("deprecated");
954  Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
955  Ident_unavailable = PP.getIdentifierInfo("unavailable");
956  Ident_message = PP.getIdentifierInfo("message");
957  Ident_strict = PP.getIdentifierInfo("strict");
958  Ident_replacement = PP.getIdentifierInfo("replacement");
959  }
960 
961  // Parse the optional "strict", the optional "replacement" and the set of
962  // introductions/deprecations/removals.
963  SourceLocation UnavailableLoc, StrictLoc;
964  do {
965  if (Tok.isNot(tok::identifier)) {
966  Diag(Tok, diag::err_availability_expected_change);
967  SkipUntil(tok::r_paren, StopAtSemi);
968  return;
969  }
970  IdentifierInfo *Keyword = Tok.getIdentifierInfo();
971  SourceLocation KeywordLoc = ConsumeToken();
972 
973  if (Keyword == Ident_strict) {
974  if (StrictLoc.isValid()) {
975  Diag(KeywordLoc, diag::err_availability_redundant)
976  << Keyword << SourceRange(StrictLoc);
977  }
978  StrictLoc = KeywordLoc;
979  continue;
980  }
981 
982  if (Keyword == Ident_unavailable) {
983  if (UnavailableLoc.isValid()) {
984  Diag(KeywordLoc, diag::err_availability_redundant)
985  << Keyword << SourceRange(UnavailableLoc);
986  }
987  UnavailableLoc = KeywordLoc;
988  continue;
989  }
990 
991  if (Tok.isNot(tok::equal)) {
992  Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
993  SkipUntil(tok::r_paren, StopAtSemi);
994  return;
995  }
996  ConsumeToken();
997  if (Keyword == Ident_message || Keyword == Ident_replacement) {
998  if (Tok.isNot(tok::string_literal)) {
999  Diag(Tok, diag::err_expected_string_literal)
1000  << /*Source='availability attribute'*/2;
1001  SkipUntil(tok::r_paren, StopAtSemi);
1002  return;
1003  }
1004  if (Keyword == Ident_message)
1005  MessageExpr = ParseStringLiteralExpression();
1006  else
1007  ReplacementExpr = ParseStringLiteralExpression();
1008  // Also reject wide string literals.
1009  if (StringLiteral *MessageStringLiteral =
1010  cast_or_null<StringLiteral>(MessageExpr.get())) {
1011  if (MessageStringLiteral->getCharByteWidth() != 1) {
1012  Diag(MessageStringLiteral->getSourceRange().getBegin(),
1013  diag::err_expected_string_literal)
1014  << /*Source='availability attribute'*/ 2;
1015  SkipUntil(tok::r_paren, StopAtSemi);
1016  return;
1017  }
1018  }
1019  if (Keyword == Ident_message)
1020  break;
1021  else
1022  continue;
1023  }
1024 
1025  // Special handling of 'NA' only when applied to introduced or
1026  // deprecated.
1027  if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
1028  Tok.is(tok::identifier)) {
1029  IdentifierInfo *NA = Tok.getIdentifierInfo();
1030  if (NA->getName() == "NA") {
1031  ConsumeToken();
1032  if (Keyword == Ident_introduced)
1033  UnavailableLoc = KeywordLoc;
1034  continue;
1035  }
1036  }
1037 
1038  SourceRange VersionRange;
1039  VersionTuple Version = ParseVersionTuple(VersionRange);
1040 
1041  if (Version.empty()) {
1042  SkipUntil(tok::r_paren, StopAtSemi);
1043  return;
1044  }
1045 
1046  unsigned Index;
1047  if (Keyword == Ident_introduced)
1048  Index = Introduced;
1049  else if (Keyword == Ident_deprecated)
1050  Index = Deprecated;
1051  else if (Keyword == Ident_obsoleted)
1052  Index = Obsoleted;
1053  else
1054  Index = Unknown;
1055 
1056  if (Index < Unknown) {
1057  if (!Changes[Index].KeywordLoc.isInvalid()) {
1058  Diag(KeywordLoc, diag::err_availability_redundant)
1059  << Keyword
1060  << SourceRange(Changes[Index].KeywordLoc,
1061  Changes[Index].VersionRange.getEnd());
1062  }
1063 
1064  Changes[Index].KeywordLoc = KeywordLoc;
1065  Changes[Index].Version = Version;
1066  Changes[Index].VersionRange = VersionRange;
1067  } else {
1068  Diag(KeywordLoc, diag::err_availability_unknown_change)
1069  << Keyword << VersionRange;
1070  }
1071 
1072  } while (TryConsumeToken(tok::comma));
1073 
1074  // Closing ')'.
1075  if (T.consumeClose())
1076  return;
1077 
1078  if (endLoc)
1079  *endLoc = T.getCloseLocation();
1080 
1081  // The 'unavailable' availability cannot be combined with any other
1082  // availability changes. Make sure that hasn't happened.
1083  if (UnavailableLoc.isValid()) {
1084  bool Complained = false;
1085  for (unsigned Index = Introduced; Index != Unknown; ++Index) {
1086  if (Changes[Index].KeywordLoc.isValid()) {
1087  if (!Complained) {
1088  Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
1089  << SourceRange(Changes[Index].KeywordLoc,
1090  Changes[Index].VersionRange.getEnd());
1091  Complained = true;
1092  }
1093 
1094  // Clear out the availability.
1095  Changes[Index] = AvailabilityChange();
1096  }
1097  }
1098  }
1099 
1100  // Record this attribute
1101  attrs.addNew(&Availability,
1102  SourceRange(AvailabilityLoc, T.getCloseLocation()),
1103  ScopeName, ScopeLoc,
1104  Platform,
1105  Changes[Introduced],
1106  Changes[Deprecated],
1107  Changes[Obsoleted],
1108  UnavailableLoc, MessageExpr.get(),
1109  Syntax, StrictLoc, ReplacementExpr.get());
1110 }
1111 
1112 /// Parse the contents of the "external_source_symbol" attribute.
1113 ///
1114 /// external-source-symbol-attribute:
1115 /// 'external_source_symbol' '(' keyword-arg-list ')'
1116 ///
1117 /// keyword-arg-list:
1118 /// keyword-arg
1119 /// keyword-arg ',' keyword-arg-list
1120 ///
1121 /// keyword-arg:
1122 /// 'language' '=' <string>
1123 /// 'defined_in' '=' <string>
1124 /// 'generated_declaration'
1125 void Parser::ParseExternalSourceSymbolAttribute(
1126  IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc,
1127  ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1128  SourceLocation ScopeLoc, AttributeList::Syntax Syntax) {
1129  // Opening '('.
1130  BalancedDelimiterTracker T(*this, tok::l_paren);
1131  if (T.expectAndConsume())
1132  return;
1133 
1134  // Initialize the pointers for the keyword identifiers when required.
1135  if (!Ident_language) {
1136  Ident_language = PP.getIdentifierInfo("language");
1137  Ident_defined_in = PP.getIdentifierInfo("defined_in");
1138  Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration");
1139  }
1140 
1141  ExprResult Language;
1142  bool HasLanguage = false;
1143  ExprResult DefinedInExpr;
1144  bool HasDefinedIn = false;
1145  IdentifierLoc *GeneratedDeclaration = nullptr;
1146 
1147  // Parse the language/defined_in/generated_declaration keywords
1148  do {
1149  if (Tok.isNot(tok::identifier)) {
1150  Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1151  SkipUntil(tok::r_paren, StopAtSemi);
1152  return;
1153  }
1154 
1155  SourceLocation KeywordLoc = Tok.getLocation();
1156  IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1157  if (Keyword == Ident_generated_declaration) {
1158  if (GeneratedDeclaration) {
1159  Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword;
1160  SkipUntil(tok::r_paren, StopAtSemi);
1161  return;
1162  }
1163  GeneratedDeclaration = ParseIdentifierLoc();
1164  continue;
1165  }
1166 
1167  if (Keyword != Ident_language && Keyword != Ident_defined_in) {
1168  Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1169  SkipUntil(tok::r_paren, StopAtSemi);
1170  return;
1171  }
1172 
1173  ConsumeToken();
1174  if (ExpectAndConsume(tok::equal, diag::err_expected_after,
1175  Keyword->getName())) {
1176  SkipUntil(tok::r_paren, StopAtSemi);
1177  return;
1178  }
1179 
1180  bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn;
1181  if (Keyword == Ident_language)
1182  HasLanguage = true;
1183  else
1184  HasDefinedIn = true;
1185 
1186  if (Tok.isNot(tok::string_literal)) {
1187  Diag(Tok, diag::err_expected_string_literal)
1188  << /*Source='external_source_symbol attribute'*/ 3
1189  << /*language | source container*/ (Keyword != Ident_language);
1190  SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
1191  continue;
1192  }
1193  if (Keyword == Ident_language) {
1194  if (HadLanguage) {
1195  Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1196  << Keyword;
1197  ParseStringLiteralExpression();
1198  continue;
1199  }
1200  Language = ParseStringLiteralExpression();
1201  } else {
1202  assert(Keyword == Ident_defined_in && "Invalid clause keyword!");
1203  if (HadDefinedIn) {
1204  Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1205  << Keyword;
1206  ParseStringLiteralExpression();
1207  continue;
1208  }
1209  DefinedInExpr = ParseStringLiteralExpression();
1210  }
1211  } while (TryConsumeToken(tok::comma));
1212 
1213  // Closing ')'.
1214  if (T.consumeClose())
1215  return;
1216  if (EndLoc)
1217  *EndLoc = T.getCloseLocation();
1218 
1219  ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(),
1220  GeneratedDeclaration};
1221  Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()),
1222  ScopeName, ScopeLoc, Args, llvm::array_lengthof(Args), Syntax);
1223 }
1224 
1225 /// Parse the contents of the "objc_bridge_related" attribute.
1226 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1227 /// related_class:
1228 /// Identifier
1229 ///
1230 /// opt-class_method:
1231 /// Identifier: | <empty>
1232 ///
1233 /// opt-instance_method:
1234 /// Identifier | <empty>
1235 ///
1236 void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
1237  SourceLocation ObjCBridgeRelatedLoc,
1238  ParsedAttributes &attrs,
1239  SourceLocation *endLoc,
1240  IdentifierInfo *ScopeName,
1241  SourceLocation ScopeLoc,
1242  AttributeList::Syntax Syntax) {
1243  // Opening '('.
1244  BalancedDelimiterTracker T(*this, tok::l_paren);
1245  if (T.consumeOpen()) {
1246  Diag(Tok, diag::err_expected) << tok::l_paren;
1247  return;
1248  }
1249 
1250  // Parse the related class name.
1251  if (Tok.isNot(tok::identifier)) {
1252  Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1253  SkipUntil(tok::r_paren, StopAtSemi);
1254  return;
1255  }
1256  IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1257  if (ExpectAndConsume(tok::comma)) {
1258  SkipUntil(tok::r_paren, StopAtSemi);
1259  return;
1260  }
1261 
1262  // Parse class method name. It's non-optional in the sense that a trailing
1263  // comma is required, but it can be the empty string, and then we record a
1264  // nullptr.
1265  IdentifierLoc *ClassMethod = nullptr;
1266  if (Tok.is(tok::identifier)) {
1267  ClassMethod = ParseIdentifierLoc();
1268  if (!TryConsumeToken(tok::colon)) {
1269  Diag(Tok, diag::err_objcbridge_related_selector_name);
1270  SkipUntil(tok::r_paren, StopAtSemi);
1271  return;
1272  }
1273  }
1274  if (!TryConsumeToken(tok::comma)) {
1275  if (Tok.is(tok::colon))
1276  Diag(Tok, diag::err_objcbridge_related_selector_name);
1277  else
1278  Diag(Tok, diag::err_expected) << tok::comma;
1279  SkipUntil(tok::r_paren, StopAtSemi);
1280  return;
1281  }
1282 
1283  // Parse instance method name. Also non-optional but empty string is
1284  // permitted.
1285  IdentifierLoc *InstanceMethod = nullptr;
1286  if (Tok.is(tok::identifier))
1287  InstanceMethod = ParseIdentifierLoc();
1288  else if (Tok.isNot(tok::r_paren)) {
1289  Diag(Tok, diag::err_expected) << tok::r_paren;
1290  SkipUntil(tok::r_paren, StopAtSemi);
1291  return;
1292  }
1293 
1294  // Closing ')'.
1295  if (T.consumeClose())
1296  return;
1297 
1298  if (endLoc)
1299  *endLoc = T.getCloseLocation();
1300 
1301  // Record this attribute
1302  attrs.addNew(&ObjCBridgeRelated,
1303  SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1304  ScopeName, ScopeLoc,
1305  RelatedClass,
1306  ClassMethod,
1307  InstanceMethod,
1308  Syntax);
1309 }
1310 
1311 // Late Parsed Attributes:
1312 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
1313 
1314 void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
1315 
1316 void Parser::LateParsedClass::ParseLexedAttributes() {
1317  Self->ParseLexedAttributes(*Class);
1318 }
1319 
1320 void Parser::LateParsedAttribute::ParseLexedAttributes() {
1321  Self->ParseLexedAttribute(*this, true, false);
1322 }
1323 
1324 /// Wrapper class which calls ParseLexedAttribute, after setting up the
1325 /// scope appropriately.
1326 void Parser::ParseLexedAttributes(ParsingClass &Class) {
1327  // Deal with templates
1328  // FIXME: Test cases to make sure this does the right thing for templates.
1329  bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
1330  ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
1331  HasTemplateScope);
1332  if (HasTemplateScope)
1333  Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
1334 
1335  // Set or update the scope flags.
1336  bool AlreadyHasClassScope = Class.TopLevelClass;
1337  unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
1338  ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
1339  ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
1340 
1341  // Enter the scope of nested classes
1342  if (!AlreadyHasClassScope)
1344  Class.TagOrTemplate);
1345  if (!Class.LateParsedDeclarations.empty()) {
1346  for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
1347  Class.LateParsedDeclarations[i]->ParseLexedAttributes();
1348  }
1349  }
1350 
1351  if (!AlreadyHasClassScope)
1353  Class.TagOrTemplate);
1354 }
1355 
1356 /// Parse all attributes in LAs, and attach them to Decl D.
1357 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
1358  bool EnterScope, bool OnDefinition) {
1359  assert(LAs.parseSoon() &&
1360  "Attribute list should be marked for immediate parsing.");
1361  for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
1362  if (D)
1363  LAs[i]->addDecl(D);
1364  ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
1365  delete LAs[i];
1366  }
1367  LAs.clear();
1368 }
1369 
1370 /// Finish parsing an attribute for which parsing was delayed.
1371 /// This will be called at the end of parsing a class declaration
1372 /// for each LateParsedAttribute. We consume the saved tokens and
1373 /// create an attribute with the arguments filled in. We add this
1374 /// to the Attribute list for the decl.
1375 void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
1376  bool EnterScope, bool OnDefinition) {
1377  // Create a fake EOF so that attribute parsing won't go off the end of the
1378  // attribute.
1379  Token AttrEnd;
1380  AttrEnd.startToken();
1381  AttrEnd.setKind(tok::eof);
1382  AttrEnd.setLocation(Tok.getLocation());
1383  AttrEnd.setEofData(LA.Toks.data());
1384  LA.Toks.push_back(AttrEnd);
1385 
1386  // Append the current token at the end of the new token stream so that it
1387  // doesn't get lost.
1388  LA.Toks.push_back(Tok);
1389  PP.EnterTokenStream(LA.Toks, true);
1390  // Consume the previously pushed token.
1391  ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
1392 
1393  ParsedAttributes Attrs(AttrFactory);
1394  SourceLocation endLoc;
1395 
1396  if (LA.Decls.size() > 0) {
1397  Decl *D = LA.Decls[0];
1398  NamedDecl *ND = dyn_cast<NamedDecl>(D);
1399  RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
1400 
1401  // Allow 'this' within late-parsed attributes.
1402  Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0,
1403  ND && ND->isCXXInstanceMember());
1404 
1405  if (LA.Decls.size() == 1) {
1406  // If the Decl is templatized, add template parameters to scope.
1407  bool HasTemplateScope = EnterScope && D->isTemplateDecl();
1408  ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
1409  if (HasTemplateScope)
1410  Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
1411 
1412  // If the Decl is on a function, add function parameters to the scope.
1413  bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
1414  ParseScope FnScope(
1416  HasFunScope);
1417  if (HasFunScope)
1418  Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
1419 
1420  ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1422  nullptr);
1423 
1424  if (HasFunScope) {
1425  Actions.ActOnExitFunctionContext();
1426  FnScope.Exit(); // Pop scope, and remove Decls from IdResolver
1427  }
1428  if (HasTemplateScope) {
1429  TempScope.Exit();
1430  }
1431  } else {
1432  // If there are multiple decls, then the decl cannot be within the
1433  // function scope.
1434  ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1436  nullptr);
1437  }
1438  } else {
1439  Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
1440  }
1441 
1442  const AttributeList *AL = Attrs.getList();
1443  if (OnDefinition && AL && !AL->isCXX11Attribute() &&
1444  AL->isKnownToGCC())
1445  Diag(Tok, diag::warn_attribute_on_function_definition)
1446  << &LA.AttrName;
1447 
1448  for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
1449  Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
1450 
1451  // Due to a parsing error, we either went over the cached tokens or
1452  // there are still cached tokens left, so we skip the leftover tokens.
1453  while (Tok.isNot(tok::eof))
1454  ConsumeAnyToken();
1455 
1456  if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
1457  ConsumeAnyToken();
1458 }
1459 
1460 void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
1461  SourceLocation AttrNameLoc,
1462  ParsedAttributes &Attrs,
1463  SourceLocation *EndLoc,
1464  IdentifierInfo *ScopeName,
1465  SourceLocation ScopeLoc,
1466  AttributeList::Syntax Syntax) {
1467  assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1468 
1469  BalancedDelimiterTracker T(*this, tok::l_paren);
1470  T.consumeOpen();
1471 
1472  if (Tok.isNot(tok::identifier)) {
1473  Diag(Tok, diag::err_expected) << tok::identifier;
1474  T.skipToEnd();
1475  return;
1476  }
1477  IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1478 
1479  if (ExpectAndConsume(tok::comma)) {
1480  T.skipToEnd();
1481  return;
1482  }
1483 
1484  SourceRange MatchingCTypeRange;
1485  TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1486  if (MatchingCType.isInvalid()) {
1487  T.skipToEnd();
1488  return;
1489  }
1490 
1491  bool LayoutCompatible = false;
1492  bool MustBeNull = false;
1493  while (TryConsumeToken(tok::comma)) {
1494  if (Tok.isNot(tok::identifier)) {
1495  Diag(Tok, diag::err_expected) << tok::identifier;
1496  T.skipToEnd();
1497  return;
1498  }
1499  IdentifierInfo *Flag = Tok.getIdentifierInfo();
1500  if (Flag->isStr("layout_compatible"))
1501  LayoutCompatible = true;
1502  else if (Flag->isStr("must_be_null"))
1503  MustBeNull = true;
1504  else {
1505  Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1506  T.skipToEnd();
1507  return;
1508  }
1509  ConsumeToken(); // consume flag
1510  }
1511 
1512  if (!T.consumeClose()) {
1513  Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1514  ArgumentKind, MatchingCType.get(),
1515  LayoutCompatible, MustBeNull, Syntax);
1516  }
1517 
1518  if (EndLoc)
1519  *EndLoc = T.getCloseLocation();
1520 }
1521 
1522 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1523 /// of a C++11 attribute-specifier in a location where an attribute is not
1524 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1525 /// situation.
1526 ///
1527 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1528 /// this doesn't appear to actually be an attribute-specifier, and the caller
1529 /// should try to parse it.
1530 bool Parser::DiagnoseProhibitedCXX11Attribute() {
1531  assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1532 
1533  switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1534  case CAK_NotAttributeSpecifier:
1535  // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1536  return false;
1537 
1538  case CAK_InvalidAttributeSpecifier:
1539  Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1540  return false;
1541 
1542  case CAK_AttributeSpecifier:
1543  // Parse and discard the attributes.
1544  SourceLocation BeginLoc = ConsumeBracket();
1545  ConsumeBracket();
1546  SkipUntil(tok::r_square);
1547  assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1548  SourceLocation EndLoc = ConsumeBracket();
1549  Diag(BeginLoc, diag::err_attributes_not_allowed)
1550  << SourceRange(BeginLoc, EndLoc);
1551  return true;
1552  }
1553  llvm_unreachable("All cases handled above.");
1554 }
1555 
1556 /// We have found the opening square brackets of a C++11
1557 /// attribute-specifier in a location where an attribute is not permitted, but
1558 /// we know where the attributes ought to be written. Parse them anyway, and
1559 /// provide a fixit moving them to the right place.
1560 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
1561  SourceLocation CorrectLocation) {
1562  assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1563  Tok.is(tok::kw_alignas));
1564 
1565  // Consume the attributes.
1566  SourceLocation Loc = Tok.getLocation();
1567  ParseCXX11Attributes(Attrs);
1568  CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1569  // FIXME: use err_attributes_misplaced
1570  Diag(Loc, diag::err_attributes_not_allowed)
1571  << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1572  << FixItHint::CreateRemoval(AttrRange);
1573 }
1574 
1575 void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs,
1576  const SourceLocation CorrectLocation) {
1577  if (CorrectLocation.isValid()) {
1578  CharSourceRange AttrRange(attrs.Range, true);
1579  Diag(CorrectLocation, diag::err_attributes_misplaced)
1580  << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1581  << FixItHint::CreateRemoval(AttrRange);
1582  } else
1583  Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed) << attrs.Range;
1584 }
1585 
1586 void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &Attrs,
1587  unsigned DiagID) {
1588  for (AttributeList *Attr = Attrs.getList(); Attr; Attr = Attr->getNext()) {
1589  if (!Attr->isCXX11Attribute() && !Attr->isC2xAttribute())
1590  continue;
1592  Diag(Attr->getLoc(), diag::warn_unknown_attribute_ignored)
1593  << Attr->getName();
1594  else {
1595  Diag(Attr->getLoc(), DiagID)
1596  << Attr->getName();
1597  Attr->setInvalid();
1598  }
1599  }
1600 }
1601 
1602 // Usually, `__attribute__((attrib)) class Foo {} var` means that attribute
1603 // applies to var, not the type Foo.
1604 // As an exception to the rule, __declspec(align(...)) before the
1605 // class-key affects the type instead of the variable.
1606 // Also, Microsoft-style [attributes] seem to affect the type instead of the
1607 // variable.
1608 // This function moves attributes that should apply to the type off DS to Attrs.
1609 void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributesWithRange &Attrs,
1610  DeclSpec &DS,
1611  Sema::TagUseKind TUK) {
1612  if (TUK == Sema::TUK_Reference)
1613  return;
1614 
1615  ParsedAttributes &PA = DS.getAttributes();
1616  AttributeList *AL = PA.getList();
1617  AttributeList *Prev = nullptr;
1618  AttributeList *TypeAttrHead = nullptr;
1619  AttributeList *TypeAttrTail = nullptr;
1620  while (AL) {
1621  AttributeList *Next = AL->getNext();
1622 
1623  if ((AL->getKind() == AttributeList::AT_Aligned &&
1624  AL->isDeclspecAttribute()) ||
1625  AL->isMicrosoftAttribute()) {
1626  // Stitch the attribute into the tag's attribute list.
1627  if (TypeAttrTail)
1628  TypeAttrTail->setNext(AL);
1629  else
1630  TypeAttrHead = AL;
1631  TypeAttrTail = AL;
1632  TypeAttrTail->setNext(nullptr);
1633 
1634  // Remove the attribute from the variable's attribute list.
1635  if (Prev) {
1636  // Set the last variable attribute's next attribute to be the attribute
1637  // after the current one.
1638  Prev->setNext(Next);
1639  } else {
1640  // Removing the head of the list requires us to reset the head to the
1641  // next attribute.
1642  PA.set(Next);
1643  }
1644  } else {
1645  Prev = AL;
1646  }
1647 
1648  AL = Next;
1649  }
1650 
1651  // Find end of type attributes Attrs and add NewTypeAttributes in the same
1652  // order they were in originally.
1653  Attrs.addAllAtEnd(TypeAttrHead);
1654 }
1655 
1656 /// ParseDeclaration - Parse a full 'declaration', which consists of
1657 /// declaration-specifiers, some number of declarators, and a semicolon.
1658 /// 'Context' should be a DeclaratorContext value. This returns the
1659 /// location of the semicolon in DeclEnd.
1660 ///
1661 /// declaration: [C99 6.7]
1662 /// block-declaration ->
1663 /// simple-declaration
1664 /// others [FIXME]
1665 /// [C++] template-declaration
1666 /// [C++] namespace-definition
1667 /// [C++] using-directive
1668 /// [C++] using-declaration
1669 /// [C++11/C11] static_assert-declaration
1670 /// others... [FIXME]
1671 ///
1672 Parser::DeclGroupPtrTy Parser::ParseDeclaration(DeclaratorContext Context,
1673  SourceLocation &DeclEnd,
1674  ParsedAttributesWithRange &attrs) {
1675  ParenBraceBracketBalancer BalancerRAIIObj(*this);
1676  // Must temporarily exit the objective-c container scope for
1677  // parsing c none objective-c decls.
1678  ObjCDeclContextSwitch ObjCDC(*this);
1679 
1680  Decl *SingleDecl = nullptr;
1681  switch (Tok.getKind()) {
1682  case tok::kw_template:
1683  case tok::kw_export:
1684  ProhibitAttributes(attrs);
1685  SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
1686  break;
1687  case tok::kw_inline:
1688  // Could be the start of an inline namespace. Allowed as an ext in C++03.
1689  if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1690  ProhibitAttributes(attrs);
1691  SourceLocation InlineLoc = ConsumeToken();
1692  return ParseNamespace(Context, DeclEnd, InlineLoc);
1693  }
1694  return ParseSimpleDeclaration(Context, DeclEnd, attrs,
1695  true);
1696  case tok::kw_namespace:
1697  ProhibitAttributes(attrs);
1698  return ParseNamespace(Context, DeclEnd);
1699  case tok::kw_using:
1700  return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1701  DeclEnd, attrs);
1702  case tok::kw_static_assert:
1703  case tok::kw__Static_assert:
1704  ProhibitAttributes(attrs);
1705  SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1706  break;
1707  default:
1708  return ParseSimpleDeclaration(Context, DeclEnd, attrs, true);
1709  }
1710 
1711  // This routine returns a DeclGroup, if the thing we parsed only contains a
1712  // single decl, convert it now.
1713  return Actions.ConvertDeclToDeclGroup(SingleDecl);
1714 }
1715 
1716 /// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1717 /// declaration-specifiers init-declarator-list[opt] ';'
1718 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1719 /// init-declarator-list ';'
1720 ///[C90/C++]init-declarator-list ';' [TODO]
1721 /// [OMP] threadprivate-directive [TODO]
1722 ///
1723 /// for-range-declaration: [C++11 6.5p1: stmt.ranged]
1724 /// attribute-specifier-seq[opt] type-specifier-seq declarator
1725 ///
1726 /// If RequireSemi is false, this does not check for a ';' at the end of the
1727 /// declaration. If it is true, it checks for and eats it.
1728 ///
1729 /// If FRI is non-null, we might be parsing a for-range-declaration instead
1730 /// of a simple-declaration. If we find that we are, we also parse the
1731 /// for-range-initializer, and place it here.
1733 Parser::ParseSimpleDeclaration(DeclaratorContext Context,
1734  SourceLocation &DeclEnd,
1735  ParsedAttributesWithRange &Attrs,
1736  bool RequireSemi, ForRangeInit *FRI) {
1737  // Parse the common declaration-specifiers piece.
1738  ParsingDeclSpec DS(*this);
1739 
1740  DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1741  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1742 
1743  // If we had a free-standing type definition with a missing semicolon, we
1744  // may get this far before the problem becomes obvious.
1745  if (DS.hasTagDefinition() &&
1746  DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
1747  return nullptr;
1748 
1749  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1750  // declaration-specifiers init-declarator-list[opt] ';'
1751  if (Tok.is(tok::semi)) {
1752  ProhibitAttributes(Attrs);
1753  DeclEnd = Tok.getLocation();
1754  if (RequireSemi) ConsumeToken();
1755  RecordDecl *AnonRecord = nullptr;
1756  Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1757  DS, AnonRecord);
1758  DS.complete(TheDecl);
1759  if (AnonRecord) {
1760  Decl* decls[] = {AnonRecord, TheDecl};
1761  return Actions.BuildDeclaratorGroup(decls);
1762  }
1763  return Actions.ConvertDeclToDeclGroup(TheDecl);
1764  }
1765 
1766  DS.takeAttributesFrom(Attrs);
1767  return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
1768 }
1769 
1770 /// Returns true if this might be the start of a declarator, or a common typo
1771 /// for a declarator.
1772 bool Parser::MightBeDeclarator(DeclaratorContext Context) {
1773  switch (Tok.getKind()) {
1774  case tok::annot_cxxscope:
1775  case tok::annot_template_id:
1776  case tok::caret:
1777  case tok::code_completion:
1778  case tok::coloncolon:
1779  case tok::ellipsis:
1780  case tok::kw___attribute:
1781  case tok::kw_operator:
1782  case tok::l_paren:
1783  case tok::star:
1784  return true;
1785 
1786  case tok::amp:
1787  case tok::ampamp:
1788  return getLangOpts().CPlusPlus;
1789 
1790  case tok::l_square: // Might be an attribute on an unnamed bit-field.
1791  return Context == DeclaratorContext::MemberContext &&
1792  getLangOpts().CPlusPlus11 && NextToken().is(tok::l_square);
1793 
1794  case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1795  return Context == DeclaratorContext::MemberContext ||
1796  getLangOpts().CPlusPlus;
1797 
1798  case tok::identifier:
1799  switch (NextToken().getKind()) {
1800  case tok::code_completion:
1801  case tok::coloncolon:
1802  case tok::comma:
1803  case tok::equal:
1804  case tok::equalequal: // Might be a typo for '='.
1805  case tok::kw_alignas:
1806  case tok::kw_asm:
1807  case tok::kw___attribute:
1808  case tok::l_brace:
1809  case tok::l_paren:
1810  case tok::l_square:
1811  case tok::less:
1812  case tok::r_brace:
1813  case tok::r_paren:
1814  case tok::r_square:
1815  case tok::semi:
1816  return true;
1817 
1818  case tok::colon:
1819  // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1820  // and in block scope it's probably a label. Inside a class definition,
1821  // this is a bit-field.
1822  return Context == DeclaratorContext::MemberContext ||
1823  (getLangOpts().CPlusPlus &&
1824  Context == DeclaratorContext::FileContext);
1825 
1826  case tok::identifier: // Possible virt-specifier.
1827  return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
1828 
1829  default:
1830  return false;
1831  }
1832 
1833  default:
1834  return false;
1835  }
1836 }
1837 
1838 /// Skip until we reach something which seems like a sensible place to pick
1839 /// up parsing after a malformed declaration. This will sometimes stop sooner
1840 /// than SkipUntil(tok::r_brace) would, but will never stop later.
1842  while (true) {
1843  switch (Tok.getKind()) {
1844  case tok::l_brace:
1845  // Skip until matching }, then stop. We've probably skipped over
1846  // a malformed class or function definition or similar.
1847  ConsumeBrace();
1848  SkipUntil(tok::r_brace);
1849  if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
1850  // This declaration isn't over yet. Keep skipping.
1851  continue;
1852  }
1853  TryConsumeToken(tok::semi);
1854  return;
1855 
1856  case tok::l_square:
1857  ConsumeBracket();
1858  SkipUntil(tok::r_square);
1859  continue;
1860 
1861  case tok::l_paren:
1862  ConsumeParen();
1863  SkipUntil(tok::r_paren);
1864  continue;
1865 
1866  case tok::r_brace:
1867  return;
1868 
1869  case tok::semi:
1870  ConsumeToken();
1871  return;
1872 
1873  case tok::kw_inline:
1874  // 'inline namespace' at the start of a line is almost certainly
1875  // a good place to pick back up parsing, except in an Objective-C
1876  // @interface context.
1877  if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
1878  (!ParsingInObjCContainer || CurParsedObjCImpl))
1879  return;
1880  break;
1881 
1882  case tok::kw_namespace:
1883  // 'namespace' at the start of a line is almost certainly a good
1884  // place to pick back up parsing, except in an Objective-C
1885  // @interface context.
1886  if (Tok.isAtStartOfLine() &&
1887  (!ParsingInObjCContainer || CurParsedObjCImpl))
1888  return;
1889  break;
1890 
1891  case tok::at:
1892  // @end is very much like } in Objective-C contexts.
1893  if (NextToken().isObjCAtKeyword(tok::objc_end) &&
1894  ParsingInObjCContainer)
1895  return;
1896  break;
1897 
1898  case tok::minus:
1899  case tok::plus:
1900  // - and + probably start new method declarations in Objective-C contexts.
1901  if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
1902  return;
1903  break;
1904 
1905  case tok::eof:
1906  case tok::annot_module_begin:
1907  case tok::annot_module_end:
1908  case tok::annot_module_include:
1909  return;
1910 
1911  default:
1912  break;
1913  }
1914 
1915  ConsumeAnyToken();
1916  }
1917 }
1918 
1919 /// ParseDeclGroup - Having concluded that this is either a function
1920 /// definition or a group of object declarations, actually parse the
1921 /// result.
1922 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1923  DeclaratorContext Context,
1924  SourceLocation *DeclEnd,
1925  ForRangeInit *FRI) {
1926  // Parse the first declarator.
1927  ParsingDeclarator D(*this, DS, Context);
1928  ParseDeclarator(D);
1929 
1930  // Bail out if the first declarator didn't seem well-formed.
1931  if (!D.hasName() && !D.mayOmitIdentifier()) {
1933  return nullptr;
1934  }
1935 
1936  // Save late-parsed attributes for now; they need to be parsed in the
1937  // appropriate function scope after the function Decl has been constructed.
1938  // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
1939  LateParsedAttrList LateParsedAttrs(true);
1940  if (D.isFunctionDeclarator()) {
1941  MaybeParseGNUAttributes(D, &LateParsedAttrs);
1942 
1943  // The _Noreturn keyword can't appear here, unlike the GNU noreturn
1944  // attribute. If we find the keyword here, tell the user to put it
1945  // at the start instead.
1946  if (Tok.is(tok::kw__Noreturn)) {
1947  SourceLocation Loc = ConsumeToken();
1948  const char *PrevSpec;
1949  unsigned DiagID;
1950 
1951  // We can offer a fixit if it's valid to mark this function as _Noreturn
1952  // and we don't have any other declarators in this declaration.
1953  bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
1954  MaybeParseGNUAttributes(D, &LateParsedAttrs);
1955  Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
1956 
1957  Diag(Loc, diag::err_c11_noreturn_misplaced)
1958  << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
1959  << (Fixit ? FixItHint::CreateInsertion(D.getLocStart(), "_Noreturn ")
1960  : FixItHint());
1961  }
1962  }
1963 
1964  // Check to see if we have a function *definition* which must have a body.
1965  if (D.isFunctionDeclarator() &&
1966  // Look at the next token to make sure that this isn't a function
1967  // declaration. We have to check this because __attribute__ might be the
1968  // start of a function definition in GCC-extended K&R C.
1969  !isDeclarationAfterDeclarator()) {
1970 
1971  // Function definitions are only allowed at file scope and in C++ classes.
1972  // The C++ inline method definition case is handled elsewhere, so we only
1973  // need to handle the file scope definition case.
1974  if (Context == DeclaratorContext::FileContext) {
1975  if (isStartOfFunctionDefinition(D)) {
1977  Diag(Tok, diag::err_function_declared_typedef);
1978 
1979  // Recover by treating the 'typedef' as spurious.
1981  }
1982 
1983  Decl *TheDecl =
1984  ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
1985  return Actions.ConvertDeclToDeclGroup(TheDecl);
1986  }
1987 
1988  if (isDeclarationSpecifier()) {
1989  // If there is an invalid declaration specifier right after the
1990  // function prototype, then we must be in a missing semicolon case
1991  // where this isn't actually a body. Just fall through into the code
1992  // that handles it as a prototype, and let the top-level code handle
1993  // the erroneous declspec where it would otherwise expect a comma or
1994  // semicolon.
1995  } else {
1996  Diag(Tok, diag::err_expected_fn_body);
1997  SkipUntil(tok::semi);
1998  return nullptr;
1999  }
2000  } else {
2001  if (Tok.is(tok::l_brace)) {
2002  Diag(Tok, diag::err_function_definition_not_allowed);
2004  return nullptr;
2005  }
2006  }
2007  }
2008 
2009  if (ParseAsmAttributesAfterDeclarator(D))
2010  return nullptr;
2011 
2012  // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
2013  // must parse and analyze the for-range-initializer before the declaration is
2014  // analyzed.
2015  //
2016  // Handle the Objective-C for-in loop variable similarly, although we
2017  // don't need to parse the container in advance.
2018  if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
2019  bool IsForRangeLoop = false;
2020  if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
2021  IsForRangeLoop = true;
2022  if (Tok.is(tok::l_brace))
2023  FRI->RangeExpr = ParseBraceInitializer();
2024  else
2025  FRI->RangeExpr = ParseExpression();
2026  }
2027 
2028  Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2029  if (IsForRangeLoop) {
2030  Actions.ActOnCXXForRangeDecl(ThisDecl);
2031  } else {
2032  // Obj-C for loop
2033  if (auto *VD = dyn_cast_or_null<VarDecl>(ThisDecl))
2034  VD->setObjCForDecl(true);
2035  }
2036  Actions.FinalizeDeclaration(ThisDecl);
2037  D.complete(ThisDecl);
2038  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
2039  }
2040 
2041  SmallVector<Decl *, 8> DeclsInGroup;
2042  Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
2043  D, ParsedTemplateInfo(), FRI);
2044  if (LateParsedAttrs.size() > 0)
2045  ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
2046  D.complete(FirstDecl);
2047  if (FirstDecl)
2048  DeclsInGroup.push_back(FirstDecl);
2049 
2050  bool ExpectSemi = Context != DeclaratorContext::ForContext;
2051 
2052  // If we don't have a comma, it is either the end of the list (a ';') or an
2053  // error, bail out.
2054  SourceLocation CommaLoc;
2055  while (TryConsumeToken(tok::comma, CommaLoc)) {
2056  if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
2057  // This comma was followed by a line-break and something which can't be
2058  // the start of a declarator. The comma was probably a typo for a
2059  // semicolon.
2060  Diag(CommaLoc, diag::err_expected_semi_declaration)
2061  << FixItHint::CreateReplacement(CommaLoc, ";");
2062  ExpectSemi = false;
2063  break;
2064  }
2065 
2066  // Parse the next declarator.
2067  D.clear();
2068  D.setCommaLoc(CommaLoc);
2069 
2070  // Accept attributes in an init-declarator. In the first declarator in a
2071  // declaration, these would be part of the declspec. In subsequent
2072  // declarators, they become part of the declarator itself, so that they
2073  // don't apply to declarators after *this* one. Examples:
2074  // short __attribute__((common)) var; -> declspec
2075  // short var __attribute__((common)); -> declarator
2076  // short x, __attribute__((common)) var; -> declarator
2077  MaybeParseGNUAttributes(D);
2078 
2079  // MSVC parses but ignores qualifiers after the comma as an extension.
2080  if (getLangOpts().MicrosoftExt)
2081  DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
2082 
2083  ParseDeclarator(D);
2084  if (!D.isInvalidType()) {
2085  Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
2086  D.complete(ThisDecl);
2087  if (ThisDecl)
2088  DeclsInGroup.push_back(ThisDecl);
2089  }
2090  }
2091 
2092  if (DeclEnd)
2093  *DeclEnd = Tok.getLocation();
2094 
2095  if (ExpectSemi &&
2096  ExpectAndConsumeSemi(Context == DeclaratorContext::FileContext
2097  ? diag::err_invalid_token_after_toplevel_declarator
2098  : diag::err_expected_semi_declaration)) {
2099  // Okay, there was no semicolon and one was expected. If we see a
2100  // declaration specifier, just assume it was missing and continue parsing.
2101  // Otherwise things are very confused and we skip to recover.
2102  if (!isDeclarationSpecifier()) {
2103  SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
2104  TryConsumeToken(tok::semi);
2105  }
2106  }
2107 
2108  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
2109 }
2110 
2111 /// Parse an optional simple-asm-expr and attributes, and attach them to a
2112 /// declarator. Returns true on an error.
2113 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
2114  // If a simple-asm-expr is present, parse it.
2115  if (Tok.is(tok::kw_asm)) {
2116  SourceLocation Loc;
2117  ExprResult AsmLabel(ParseSimpleAsm(&Loc));
2118  if (AsmLabel.isInvalid()) {
2119  SkipUntil(tok::semi, StopBeforeMatch);
2120  return true;
2121  }
2122 
2123  D.setAsmLabel(AsmLabel.get());
2124  D.SetRangeEnd(Loc);
2125  }
2126 
2127  MaybeParseGNUAttributes(D);
2128  return false;
2129 }
2130 
2131 /// Parse 'declaration' after parsing 'declaration-specifiers
2132 /// declarator'. This method parses the remainder of the declaration
2133 /// (including any attributes or initializer, among other things) and
2134 /// finalizes the declaration.
2135 ///
2136 /// init-declarator: [C99 6.7]
2137 /// declarator
2138 /// declarator '=' initializer
2139 /// [GNU] declarator simple-asm-expr[opt] attributes[opt]
2140 /// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer
2141 /// [C++] declarator initializer[opt]
2142 ///
2143 /// [C++] initializer:
2144 /// [C++] '=' initializer-clause
2145 /// [C++] '(' expression-list ')'
2146 /// [C++0x] '=' 'default' [TODO]
2147 /// [C++0x] '=' 'delete'
2148 /// [C++0x] braced-init-list
2149 ///
2150 /// According to the standard grammar, =default and =delete are function
2151 /// definitions, but that definitely doesn't fit with the parser here.
2152 ///
2153 Decl *Parser::ParseDeclarationAfterDeclarator(
2154  Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
2155  if (ParseAsmAttributesAfterDeclarator(D))
2156  return nullptr;
2157 
2158  return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
2159 }
2160 
2161 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
2162  Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
2163  // RAII type used to track whether we're inside an initializer.
2164  struct InitializerScopeRAII {
2165  Parser &P;
2166  Declarator &D;
2167  Decl *ThisDecl;
2168 
2169  InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl)
2170  : P(P), D(D), ThisDecl(ThisDecl) {
2171  if (ThisDecl && P.getLangOpts().CPlusPlus) {
2172  Scope *S = nullptr;
2173  if (D.getCXXScopeSpec().isSet()) {
2174  P.EnterScope(0);
2175  S = P.getCurScope();
2176  }
2177  P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl);
2178  }
2179  }
2180  ~InitializerScopeRAII() { pop(); }
2181  void pop() {
2182  if (ThisDecl && P.getLangOpts().CPlusPlus) {
2183  Scope *S = nullptr;
2184  if (D.getCXXScopeSpec().isSet())
2185  S = P.getCurScope();
2186  P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl);
2187  if (S)
2188  P.ExitScope();
2189  }
2190  ThisDecl = nullptr;
2191  }
2192  };
2193 
2194  // Inform the current actions module that we just parsed this declarator.
2195  Decl *ThisDecl = nullptr;
2196  switch (TemplateInfo.Kind) {
2197  case ParsedTemplateInfo::NonTemplate:
2198  ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2199  break;
2200 
2201  case ParsedTemplateInfo::Template:
2202  case ParsedTemplateInfo::ExplicitSpecialization: {
2203  ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
2204  *TemplateInfo.TemplateParams,
2205  D);
2206  if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
2207  // Re-direct this decl to refer to the templated decl so that we can
2208  // initialize it.
2209  ThisDecl = VT->getTemplatedDecl();
2210  break;
2211  }
2212  case ParsedTemplateInfo::ExplicitInstantiation: {
2213  if (Tok.is(tok::semi)) {
2214  DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
2215  getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
2216  if (ThisRes.isInvalid()) {
2217  SkipUntil(tok::semi, StopBeforeMatch);
2218  return nullptr;
2219  }
2220  ThisDecl = ThisRes.get();
2221  } else {
2222  // FIXME: This check should be for a variable template instantiation only.
2223 
2224  // Check that this is a valid instantiation
2226  // If the declarator-id is not a template-id, issue a diagnostic and
2227  // recover by ignoring the 'template' keyword.
2228  Diag(Tok, diag::err_template_defn_explicit_instantiation)
2229  << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
2230  ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2231  } else {
2232  SourceLocation LAngleLoc =
2233  PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
2234  Diag(D.getIdentifierLoc(),
2235  diag::err_explicit_instantiation_with_definition)
2236  << SourceRange(TemplateInfo.TemplateLoc)
2237  << FixItHint::CreateInsertion(LAngleLoc, "<>");
2238 
2239  // Recover as if it were an explicit specialization.
2240  TemplateParameterLists FakedParamLists;
2241  FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
2242  0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, None,
2243  LAngleLoc, nullptr));
2244 
2245  ThisDecl =
2246  Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
2247  }
2248  }
2249  break;
2250  }
2251  }
2252 
2253  // Parse declarator '=' initializer.
2254  // If a '==' or '+=' is found, suggest a fixit to '='.
2255  if (isTokenEqualOrEqualTypo()) {
2256  SourceLocation EqualLoc = ConsumeToken();
2257 
2258  if (Tok.is(tok::kw_delete)) {
2259  if (D.isFunctionDeclarator())
2260  Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2261  << 1 /* delete */;
2262  else
2263  Diag(ConsumeToken(), diag::err_deleted_non_function);
2264  } else if (Tok.is(tok::kw_default)) {
2265  if (D.isFunctionDeclarator())
2266  Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2267  << 0 /* default */;
2268  else
2269  Diag(ConsumeToken(), diag::err_default_special_members);
2270  } else {
2271  InitializerScopeRAII InitScope(*this, D, ThisDecl);
2272 
2273  if (Tok.is(tok::code_completion)) {
2274  Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
2275  Actions.FinalizeDeclaration(ThisDecl);
2276  cutOffParsing();
2277  return nullptr;
2278  }
2279 
2280  ExprResult Init(ParseInitializer());
2281 
2282  // If this is the only decl in (possibly) range based for statement,
2283  // our best guess is that the user meant ':' instead of '='.
2284  if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
2285  Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
2286  << FixItHint::CreateReplacement(EqualLoc, ":");
2287  // We are trying to stop parser from looking for ';' in this for
2288  // statement, therefore preventing spurious errors to be issued.
2289  FRI->ColonLoc = EqualLoc;
2290  Init = ExprError();
2291  FRI->RangeExpr = Init;
2292  }
2293 
2294  InitScope.pop();
2295 
2296  if (Init.isInvalid()) {
2297  SmallVector<tok::TokenKind, 2> StopTokens;
2298  StopTokens.push_back(tok::comma);
2301  StopTokens.push_back(tok::r_paren);
2302  SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
2303  Actions.ActOnInitializerError(ThisDecl);
2304  } else
2305  Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2306  /*DirectInit=*/false);
2307  }
2308  } else if (Tok.is(tok::l_paren)) {
2309  // Parse C++ direct initializer: '(' expression-list ')'
2310  BalancedDelimiterTracker T(*this, tok::l_paren);
2311  T.consumeOpen();
2312 
2313  ExprVector Exprs;
2314  CommaLocsTy CommaLocs;
2315 
2316  InitializerScopeRAII InitScope(*this, D, ThisDecl);
2317 
2318  llvm::function_ref<void()> ExprListCompleter;
2319  auto ThisVarDecl = dyn_cast_or_null<VarDecl>(ThisDecl);
2320  auto ConstructorCompleter = [&, ThisVarDecl] {
2321  Actions.CodeCompleteConstructor(
2322  getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(),
2323  ThisDecl->getLocation(), Exprs);
2324  };
2325  if (ThisVarDecl) {
2326  // ParseExpressionList can sometimes succeed even when ThisDecl is not
2327  // VarDecl. This is an error and it is reported in a call to
2328  // Actions.ActOnInitializerError(). However, we call
2329  // CodeCompleteConstructor only on VarDecls, falling back to default
2330  // completer in other cases.
2331  ExprListCompleter = ConstructorCompleter;
2332  }
2333 
2334  if (ParseExpressionList(Exprs, CommaLocs, ExprListCompleter)) {
2335  Actions.ActOnInitializerError(ThisDecl);
2336  SkipUntil(tok::r_paren, StopAtSemi);
2337  } else {
2338  // Match the ')'.
2339  T.consumeClose();
2340 
2341  assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
2342  "Unexpected number of commas!");
2343 
2344  InitScope.pop();
2345 
2346  ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2347  T.getCloseLocation(),
2348  Exprs);
2349  Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2350  /*DirectInit=*/true);
2351  }
2352  } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2353  (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
2354  // Parse C++0x braced-init-list.
2355  Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2356 
2357  InitializerScopeRAII InitScope(*this, D, ThisDecl);
2358 
2359  ExprResult Init(ParseBraceInitializer());
2360 
2361  InitScope.pop();
2362 
2363  if (Init.isInvalid()) {
2364  Actions.ActOnInitializerError(ThisDecl);
2365  } else
2366  Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true);
2367 
2368  } else {
2369  Actions.ActOnUninitializedDecl(ThisDecl);
2370  }
2371 
2372  Actions.FinalizeDeclaration(ThisDecl);
2373 
2374  return ThisDecl;
2375 }
2376 
2377 /// ParseSpecifierQualifierList
2378 /// specifier-qualifier-list:
2379 /// type-specifier specifier-qualifier-list[opt]
2380 /// type-qualifier specifier-qualifier-list[opt]
2381 /// [GNU] attributes specifier-qualifier-list[opt]
2382 ///
2383 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
2384  DeclSpecContext DSC) {
2385  /// specifier-qualifier-list is a subset of declaration-specifiers. Just
2386  /// parse declaration-specifiers and complain about extra stuff.
2387  /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2388  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
2389 
2390  // Validate declspec for type-name.
2391  unsigned Specs = DS.getParsedSpecifiers();
2392  if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2393  Diag(Tok, diag::err_expected_type);
2394  DS.SetTypeSpecError();
2395  } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
2396  Diag(Tok, diag::err_typename_requires_specqual);
2397  if (!DS.hasTypeSpecifier())
2398  DS.SetTypeSpecError();
2399  }
2400 
2401  // Issue diagnostic and remove storage class if present.
2402  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
2403  if (DS.getStorageClassSpecLoc().isValid())
2404  Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2405  else
2407  diag::err_typename_invalid_storageclass);
2409  }
2410 
2411  // Issue diagnostic and remove function specifier if present.
2412  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2413  if (DS.isInlineSpecified())
2414  Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2415  if (DS.isVirtualSpecified())
2416  Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2417  if (DS.isExplicitSpecified())
2418  Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2419  DS.ClearFunctionSpecs();
2420  }
2421 
2422  // Issue diagnostic and remove constexpr specfier if present.
2423  if (DS.isConstexprSpecified() && DSC != DeclSpecContext::DSC_condition) {
2424  Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
2425  DS.ClearConstexprSpec();
2426  }
2427 }
2428 
2429 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2430 /// specified token is valid after the identifier in a declarator which
2431 /// immediately follows the declspec. For example, these things are valid:
2432 ///
2433 /// int x [ 4]; // direct-declarator
2434 /// int x ( int y); // direct-declarator
2435 /// int(int x ) // direct-declarator
2436 /// int x ; // simple-declaration
2437 /// int x = 17; // init-declarator-list
2438 /// int x , y; // init-declarator-list
2439 /// int x __asm__ ("foo"); // init-declarator-list
2440 /// int x : 4; // struct-declarator
2441 /// int x { 5}; // C++'0x unified initializers
2442 ///
2443 /// This is not, because 'x' does not immediately follow the declspec (though
2444 /// ')' happens to be valid anyway).
2445 /// int (x)
2446 ///
2448  return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
2449  tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
2450  tok::colon);
2451 }
2452 
2453 /// ParseImplicitInt - This method is called when we have an non-typename
2454 /// identifier in a declspec (which normally terminates the decl spec) when
2455 /// the declspec has no type specifier. In this case, the declspec is either
2456 /// malformed or is "implicit int" (in K&R and C89).
2457 ///
2458 /// This method handles diagnosing this prettily and returns false if the
2459 /// declspec is done being processed. If it recovers and thinks there may be
2460 /// other pieces of declspec after it, it returns true.
2461 ///
2462 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2463  const ParsedTemplateInfo &TemplateInfo,
2464  AccessSpecifier AS, DeclSpecContext DSC,
2465  ParsedAttributesWithRange &Attrs) {
2466  assert(Tok.is(tok::identifier) && "should have identifier");
2467 
2468  SourceLocation Loc = Tok.getLocation();
2469  // If we see an identifier that is not a type name, we normally would
2470  // parse it as the identifier being declared. However, when a typename
2471  // is typo'd or the definition is not included, this will incorrectly
2472  // parse the typename as the identifier name and fall over misparsing
2473  // later parts of the diagnostic.
2474  //
2475  // As such, we try to do some look-ahead in cases where this would
2476  // otherwise be an "implicit-int" case to see if this is invalid. For
2477  // example: "static foo_t x = 4;" In this case, if we parsed foo_t as
2478  // an identifier with implicit int, we'd get a parse error because the
2479  // next token is obviously invalid for a type. Parse these as a case
2480  // with an invalid type specifier.
2481  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2482 
2483  // Since we know that this either implicit int (which is rare) or an
2484  // error, do lookahead to try to do better recovery. This never applies
2485  // within a type specifier. Outside of C++, we allow this even if the
2486  // language doesn't "officially" support implicit int -- we support
2487  // implicit int as an extension in C99 and C11.
2488  if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
2490  // If this token is valid for implicit int, e.g. "static x = 4", then
2491  // we just avoid eating the identifier, so it will be parsed as the
2492  // identifier in the declarator.
2493  return false;
2494  }
2495 
2496  if (getLangOpts().CPlusPlus &&
2498  // Don't require a type specifier if we have the 'auto' storage class
2499  // specifier in C++98 -- we'll promote it to a type specifier.
2500  if (SS)
2501  AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2502  return false;
2503  }
2504 
2505  if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) &&
2506  getLangOpts().MSVCCompat) {
2507  // Lookup of an unqualified type name has failed in MSVC compatibility mode.
2508  // Give Sema a chance to recover if we are in a template with dependent base
2509  // classes.
2510  if (ParsedType T = Actions.ActOnMSVCUnknownTypeName(
2511  *Tok.getIdentifierInfo(), Tok.getLocation(),
2512  DSC == DeclSpecContext::DSC_template_type_arg)) {
2513  const char *PrevSpec;
2514  unsigned DiagID;
2515  DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2516  Actions.getASTContext().getPrintingPolicy());
2517  DS.SetRangeEnd(Tok.getLocation());
2518  ConsumeToken();
2519  return false;
2520  }
2521  }
2522 
2523  // Otherwise, if we don't consume this token, we are going to emit an
2524  // error anyway. Try to recover from various common problems. Check
2525  // to see if this was a reference to a tag name without a tag specified.
2526  // This is a common problem in C (saying 'foo' instead of 'struct foo').
2527  //
2528  // C++ doesn't need this, and isTagName doesn't take SS.
2529  if (SS == nullptr) {
2530  const char *TagName = nullptr, *FixitTagName = nullptr;
2531  tok::TokenKind TagKind = tok::unknown;
2532 
2533  switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2534  default: break;
2535  case DeclSpec::TST_enum:
2536  TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break;
2537  case DeclSpec::TST_union:
2538  TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2539  case DeclSpec::TST_struct:
2540  TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2542  TagName="__interface"; FixitTagName = "__interface ";
2543  TagKind=tok::kw___interface;break;
2544  case DeclSpec::TST_class:
2545  TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2546  }
2547 
2548  if (TagName) {
2549  IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2550  LookupResult R(Actions, TokenName, SourceLocation(),
2552 
2553  Diag(Loc, diag::err_use_of_tag_name_without_tag)
2554  << TokenName << TagName << getLangOpts().CPlusPlus
2555  << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2556 
2557  if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2558  for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2559  I != IEnd; ++I)
2560  Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2561  << TokenName << TagName;
2562  }
2563 
2564  // Parse this as a tag as if the missing tag were present.
2565  if (TagKind == tok::kw_enum)
2566  ParseEnumSpecifier(Loc, DS, TemplateInfo, AS,
2567  DeclSpecContext::DSC_normal);
2568  else
2569  ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2570  /*EnteringContext*/ false,
2571  DeclSpecContext::DSC_normal, Attrs);
2572  return true;
2573  }
2574  }
2575 
2576  // Determine whether this identifier could plausibly be the name of something
2577  // being declared (with a missing type).
2578  if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level ||
2579  DSC == DeclSpecContext::DSC_class)) {
2580  // Look ahead to the next token to try to figure out what this declaration
2581  // was supposed to be.
2582  switch (NextToken().getKind()) {
2583  case tok::l_paren: {
2584  // static x(4); // 'x' is not a type
2585  // x(int n); // 'x' is not a type
2586  // x (*p)[]; // 'x' is a type
2587  //
2588  // Since we're in an error case, we can afford to perform a tentative
2589  // parse to determine which case we're in.
2590  TentativeParsingAction PA(*this);
2591  ConsumeToken();
2592  TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2593  PA.Revert();
2594 
2595  if (TPR != TPResult::False) {
2596  // The identifier is followed by a parenthesized declarator.
2597  // It's supposed to be a type.
2598  break;
2599  }
2600 
2601  // If we're in a context where we could be declaring a constructor,
2602  // check whether this is a constructor declaration with a bogus name.
2603  if (DSC == DeclSpecContext::DSC_class ||
2604  (DSC == DeclSpecContext::DSC_top_level && SS)) {
2605  IdentifierInfo *II = Tok.getIdentifierInfo();
2606  if (Actions.isCurrentClassNameTypo(II, SS)) {
2607  Diag(Loc, diag::err_constructor_bad_name)
2608  << Tok.getIdentifierInfo() << II
2609  << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2610  Tok.setIdentifierInfo(II);
2611  }
2612  }
2613  // Fall through.
2614  LLVM_FALLTHROUGH;
2615  }
2616  case tok::comma:
2617  case tok::equal:
2618  case tok::kw_asm:
2619  case tok::l_brace:
2620  case tok::l_square:
2621  case tok::semi:
2622  // This looks like a variable or function declaration. The type is
2623  // probably missing. We're done parsing decl-specifiers.
2624  if (SS)
2625  AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2626  return false;
2627 
2628  default:
2629  // This is probably supposed to be a type. This includes cases like:
2630  // int f(itn);
2631  // struct S { unsinged : 4; };
2632  break;
2633  }
2634  }
2635 
2636  // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2637  // and attempt to recover.
2638  ParsedType T;
2639  IdentifierInfo *II = Tok.getIdentifierInfo();
2640  bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less);
2641  Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2642  IsTemplateName);
2643  if (T) {
2644  // The action has suggested that the type T could be used. Set that as
2645  // the type in the declaration specifiers, consume the would-be type
2646  // name token, and we're done.
2647  const char *PrevSpec;
2648  unsigned DiagID;
2649  DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2650  Actions.getASTContext().getPrintingPolicy());
2651  DS.SetRangeEnd(Tok.getLocation());
2652  ConsumeToken();
2653  // There may be other declaration specifiers after this.
2654  return true;
2655  } else if (II != Tok.getIdentifierInfo()) {
2656  // If no type was suggested, the correction is to a keyword
2657  Tok.setKind(II->getTokenID());
2658  // There may be other declaration specifiers after this.
2659  return true;
2660  }
2661 
2662  // Otherwise, the action had no suggestion for us. Mark this as an error.
2663  DS.SetTypeSpecError();
2664  DS.SetRangeEnd(Tok.getLocation());
2665  ConsumeToken();
2666 
2667  // Eat any following template arguments.
2668  if (IsTemplateName) {
2669  SourceLocation LAngle, RAngle;
2670  TemplateArgList Args;
2671  ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle);
2672  }
2673 
2674  // TODO: Could inject an invalid typedef decl in an enclosing scope to
2675  // avoid rippling error messages on subsequent uses of the same type,
2676  // could be useful if #include was forgotten.
2677  return false;
2678 }
2679 
2680 /// Determine the declaration specifier context from the declarator
2681 /// context.
2682 ///
2683 /// \param Context the declarator context, which is one of the
2684 /// DeclaratorContext enumerator values.
2685 Parser::DeclSpecContext
2686 Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) {
2687  if (Context == DeclaratorContext::MemberContext)
2688  return DeclSpecContext::DSC_class;
2689  if (Context == DeclaratorContext::FileContext)
2690  return DeclSpecContext::DSC_top_level;
2692  return DeclSpecContext::DSC_template_param;
2693  if (Context == DeclaratorContext::TemplateArgContext ||
2695  return DeclSpecContext::DSC_template_type_arg;
2698  return DeclSpecContext::DSC_trailing;
2699  if (Context == DeclaratorContext::AliasDeclContext ||
2701  return DeclSpecContext::DSC_alias_declaration;
2702  return DeclSpecContext::DSC_normal;
2703 }
2704 
2705 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
2706 ///
2707 /// FIXME: Simply returns an alignof() expression if the argument is a
2708 /// type. Ideally, the type should be propagated directly into Sema.
2709 ///
2710 /// [C11] type-id
2711 /// [C11] constant-expression
2712 /// [C++0x] type-id ...[opt]
2713 /// [C++0x] assignment-expression ...[opt]
2714 ExprResult Parser::ParseAlignArgument(SourceLocation Start,
2715  SourceLocation &EllipsisLoc) {
2716  ExprResult ER;
2717  if (isTypeIdInParens()) {
2718  SourceLocation TypeLoc = Tok.getLocation();
2719  ParsedType Ty = ParseTypeName().get();
2720  SourceRange TypeRange(Start, Tok.getLocation());
2721  ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
2722  Ty.getAsOpaquePtr(), TypeRange);
2723  } else
2724  ER = ParseConstantExpression();
2725 
2726  if (getLangOpts().CPlusPlus11)
2727  TryConsumeToken(tok::ellipsis, EllipsisLoc);
2728 
2729  return ER;
2730 }
2731 
2732 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
2733 /// attribute to Attrs.
2734 ///
2735 /// alignment-specifier:
2736 /// [C11] '_Alignas' '(' type-id ')'
2737 /// [C11] '_Alignas' '(' constant-expression ')'
2738 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
2739 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
2740 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
2741  SourceLocation *EndLoc) {
2742  assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) &&
2743  "Not an alignment-specifier!");
2744 
2745  IdentifierInfo *KWName = Tok.getIdentifierInfo();
2746  SourceLocation KWLoc = ConsumeToken();
2747 
2748  BalancedDelimiterTracker T(*this, tok::l_paren);
2749  if (T.expectAndConsume())
2750  return;
2751 
2752  SourceLocation EllipsisLoc;
2753  ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
2754  if (ArgExpr.isInvalid()) {
2755  T.skipToEnd();
2756  return;
2757  }
2758 
2759  T.consumeClose();
2760  if (EndLoc)
2761  *EndLoc = T.getCloseLocation();
2762 
2763  ArgsVector ArgExprs;
2764  ArgExprs.push_back(ArgExpr.get());
2765  Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
2766  AttributeList::AS_Keyword, EllipsisLoc);
2767 }
2768 
2769 /// Determine whether we're looking at something that might be a declarator
2770 /// in a simple-declaration. If it can't possibly be a declarator, maybe
2771 /// diagnose a missing semicolon after a prior tag definition in the decl
2772 /// specifier.
2773 ///
2774 /// \return \c true if an error occurred and this can't be any kind of
2775 /// declaration.
2776 bool
2777 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
2778  DeclSpecContext DSContext,
2779  LateParsedAttrList *LateAttrs) {
2780  assert(DS.hasTagDefinition() && "shouldn't call this");
2781 
2782  bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
2783  DSContext == DeclSpecContext::DSC_top_level);
2784 
2785  if (getLangOpts().CPlusPlus &&
2786  Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype,
2787  tok::annot_template_id) &&
2788  TryAnnotateCXXScopeToken(EnteringContext)) {
2790  return true;
2791  }
2792 
2793  bool HasScope = Tok.is(tok::annot_cxxscope);
2794  // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
2795  Token AfterScope = HasScope ? NextToken() : Tok;
2796 
2797  // Determine whether the following tokens could possibly be a
2798  // declarator.
2799  bool MightBeDeclarator = true;
2800  if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) {
2801  // A declarator-id can't start with 'typename'.
2802  MightBeDeclarator = false;
2803  } else if (AfterScope.is(tok::annot_template_id)) {
2804  // If we have a type expressed as a template-id, this cannot be a
2805  // declarator-id (such a type cannot be redeclared in a simple-declaration).
2806  TemplateIdAnnotation *Annot =
2807  static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
2808  if (Annot->Kind == TNK_Type_template)
2809  MightBeDeclarator = false;
2810  } else if (AfterScope.is(tok::identifier)) {
2811  const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
2812 
2813  // These tokens cannot come after the declarator-id in a
2814  // simple-declaration, and are likely to come after a type-specifier.
2815  if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier,
2816  tok::annot_cxxscope, tok::coloncolon)) {
2817  // Missing a semicolon.
2818  MightBeDeclarator = false;
2819  } else if (HasScope) {
2820  // If the declarator-id has a scope specifier, it must redeclare a
2821  // previously-declared entity. If that's a type (and this is not a
2822  // typedef), that's an error.
2823  CXXScopeSpec SS;
2824  Actions.RestoreNestedNameSpecifierAnnotation(
2825  Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
2826  IdentifierInfo *Name = AfterScope.getIdentifierInfo();
2827  Sema::NameClassification Classification = Actions.ClassifyName(
2828  getCurScope(), SS, Name, AfterScope.getLocation(), Next,
2829  /*IsAddressOfOperand*/false);
2830  switch (Classification.getKind()) {
2831  case Sema::NC_Error:
2833  return true;
2834 
2835  case Sema::NC_Keyword:
2837  llvm_unreachable("typo correction and nested name specifiers not "
2838  "possible here");
2839 
2840  case Sema::NC_Type:
2841  case Sema::NC_TypeTemplate:
2842  // Not a previously-declared non-type entity.
2843  MightBeDeclarator = false;
2844  break;
2845 
2846  case Sema::NC_Unknown:
2847  case Sema::NC_Expression:
2848  case Sema::NC_VarTemplate:
2850  // Might be a redeclaration of a prior entity.
2851  break;
2852  }
2853  }
2854  }
2855 
2856  if (MightBeDeclarator)
2857  return false;
2858 
2859  const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
2860  Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getLocEnd()),
2861  diag::err_expected_after)
2862  << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
2863 
2864  // Try to recover from the typo, by dropping the tag definition and parsing
2865  // the problematic tokens as a type.
2866  //
2867  // FIXME: Split the DeclSpec into pieces for the standalone
2868  // declaration and pieces for the following declaration, instead
2869  // of assuming that all the other pieces attach to new declaration,
2870  // and call ParsedFreeStandingDeclSpec as appropriate.
2871  DS.ClearTypeSpecType();
2872  ParsedTemplateInfo NotATemplate;
2873  ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
2874  return false;
2875 }
2876 
2877 // Choose the apprpriate diagnostic error for why fixed point types are
2878 // disabled, set the previous specifier, and mark as invalid.
2879 static void SetupFixedPointError(const LangOptions &LangOpts,
2880  const char *&PrevSpec, unsigned &DiagID,
2881  bool &isInvalid) {
2882  assert(!LangOpts.FixedPoint);
2883  DiagID = diag::err_fixed_point_not_enabled;
2884  PrevSpec = ""; // Not used by diagnostic
2885  isInvalid = true;
2886 }
2887 
2888 /// ParseDeclarationSpecifiers
2889 /// declaration-specifiers: [C99 6.7]
2890 /// storage-class-specifier declaration-specifiers[opt]
2891 /// type-specifier declaration-specifiers[opt]
2892 /// [C99] function-specifier declaration-specifiers[opt]
2893 /// [C11] alignment-specifier declaration-specifiers[opt]
2894 /// [GNU] attributes declaration-specifiers[opt]
2895 /// [Clang] '__module_private__' declaration-specifiers[opt]
2896 /// [ObjC1] '__kindof' declaration-specifiers[opt]
2897 ///
2898 /// storage-class-specifier: [C99 6.7.1]
2899 /// 'typedef'
2900 /// 'extern'
2901 /// 'static'
2902 /// 'auto'
2903 /// 'register'
2904 /// [C++] 'mutable'
2905 /// [C++11] 'thread_local'
2906 /// [C11] '_Thread_local'
2907 /// [GNU] '__thread'
2908 /// function-specifier: [C99 6.7.4]
2909 /// [C99] 'inline'
2910 /// [C++] 'virtual'
2911 /// [C++] 'explicit'
2912 /// [OpenCL] '__kernel'
2913 /// 'friend': [C++ dcl.friend]
2914 /// 'constexpr': [C++0x dcl.constexpr]
2915 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
2916  const ParsedTemplateInfo &TemplateInfo,
2917  AccessSpecifier AS,
2918  DeclSpecContext DSContext,
2919  LateParsedAttrList *LateAttrs) {
2920  if (DS.getSourceRange().isInvalid()) {
2921  // Start the range at the current token but make the end of the range
2922  // invalid. This will make the entire range invalid unless we successfully
2923  // consume a token.
2924  DS.SetRangeStart(Tok.getLocation());
2926  }
2927 
2928  bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
2929  DSContext == DeclSpecContext::DSC_top_level);
2930  bool AttrsLastTime = false;
2931  ParsedAttributesWithRange attrs(AttrFactory);
2932  // We use Sema's policy to get bool macros right.
2933  PrintingPolicy Policy = Actions.getPrintingPolicy();
2934  while (1) {
2935  bool isInvalid = false;
2936  bool isStorageClass = false;
2937  const char *PrevSpec = nullptr;
2938  unsigned DiagID = 0;
2939 
2940  // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
2941  // implementation for VS2013 uses _Atomic as an identifier for one of the
2942  // classes in <atomic>.
2943  //
2944  // A typedef declaration containing _Atomic<...> is among the places where
2945  // the class is used. If we are currently parsing such a declaration, treat
2946  // the token as an identifier.
2947  if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
2949  !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less))
2950  Tok.setKind(tok::identifier);
2951 
2952  SourceLocation Loc = Tok.getLocation();
2953 
2954  switch (Tok.getKind()) {
2955  default:
2956  DoneWithDeclSpec:
2957  if (!AttrsLastTime)
2958  ProhibitAttributes(attrs);
2959  else {
2960  // Reject C++11 attributes that appertain to decl specifiers as
2961  // we don't support any C++11 attributes that appertain to decl
2962  // specifiers. This also conforms to what g++ 4.8 is doing.
2963  ProhibitCXX11Attributes(attrs, diag::err_attribute_not_type_attr);
2964 
2965  DS.takeAttributesFrom(attrs);
2966  }
2967 
2968  // If this is not a declaration specifier token, we're done reading decl
2969  // specifiers. First verify that DeclSpec's are consistent.
2970  DS.Finish(Actions, Policy);
2971  return;
2972 
2973  case tok::l_square:
2974  case tok::kw_alignas:
2975  if (!standardAttributesAllowed() || !isCXX11AttributeSpecifier())
2976  goto DoneWithDeclSpec;
2977 
2978  ProhibitAttributes(attrs);
2979  // FIXME: It would be good to recover by accepting the attributes,
2980  // but attempting to do that now would cause serious
2981  // madness in terms of diagnostics.
2982  attrs.clear();
2983  attrs.Range = SourceRange();
2984 
2985  ParseCXX11Attributes(attrs);
2986  AttrsLastTime = true;
2987  continue;
2988 
2989  case tok::code_completion: {
2991  if (DS.hasTypeSpecifier()) {
2992  bool AllowNonIdentifiers
2997  Scope::AtCatchScope)) == 0;
2998  bool AllowNestedNameSpecifiers
2999  = DSContext == DeclSpecContext::DSC_top_level ||
3000  (DSContext == DeclSpecContext::DSC_class && DS.isFriendSpecified());
3001 
3002  Actions.CodeCompleteDeclSpec(getCurScope(), DS,
3003  AllowNonIdentifiers,
3004  AllowNestedNameSpecifiers);
3005  return cutOffParsing();
3006  }
3007 
3008  if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
3010  else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
3011  CCC = DSContext == DeclSpecContext::DSC_class ? Sema::PCC_MemberTemplate
3013  else if (DSContext == DeclSpecContext::DSC_class)
3014  CCC = Sema::PCC_Class;
3015  else if (CurParsedObjCImpl)
3017 
3018  Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
3019  return cutOffParsing();
3020  }
3021 
3022  case tok::coloncolon: // ::foo::bar
3023  // C++ scope specifier. Annotate and loop, or bail out on error.
3024  if (TryAnnotateCXXScopeToken(EnteringContext)) {
3025  if (!DS.hasTypeSpecifier())
3026  DS.SetTypeSpecError();
3027  goto DoneWithDeclSpec;
3028  }
3029  if (Tok.is(tok::coloncolon)) // ::new or ::delete
3030  goto DoneWithDeclSpec;
3031  continue;
3032 
3033  case tok::annot_cxxscope: {
3034  if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
3035  goto DoneWithDeclSpec;
3036 
3037  CXXScopeSpec SS;
3038  Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3039  Tok.getAnnotationRange(),
3040  SS);
3041 
3042  // We are looking for a qualified typename.
3043  Token Next = NextToken();
3044  if (Next.is(tok::annot_template_id) &&
3045  static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
3046  ->Kind == TNK_Type_template) {
3047  // We have a qualified template-id, e.g., N::A<int>
3048 
3049  // If this would be a valid constructor declaration with template
3050  // arguments, we will reject the attempt to form an invalid type-id
3051  // referring to the injected-class-name when we annotate the token,
3052  // per C++ [class.qual]p2.
3053  //
3054  // To improve diagnostics for this case, parse the declaration as a
3055  // constructor (and reject the extra template arguments later).
3056  TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
3057  if ((DSContext == DeclSpecContext::DSC_top_level ||
3058  DSContext == DeclSpecContext::DSC_class) &&
3059  TemplateId->Name &&
3060  Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS) &&
3061  isConstructorDeclarator(/*Unqualified*/ false)) {
3062  // The user meant this to be an out-of-line constructor
3063  // definition, but template arguments are not allowed
3064  // there. Just allow this as a constructor; we'll
3065  // complain about it later.
3066  goto DoneWithDeclSpec;
3067  }
3068 
3069  DS.getTypeSpecScope() = SS;
3070  ConsumeAnnotationToken(); // The C++ scope.
3071  assert(Tok.is(tok::annot_template_id) &&
3072  "ParseOptionalCXXScopeSpecifier not working");
3073  AnnotateTemplateIdTokenAsType();
3074  continue;
3075  }
3076 
3077  if (Next.is(tok::annot_typename)) {
3078  DS.getTypeSpecScope() = SS;
3079  ConsumeAnnotationToken(); // The C++ scope.
3080  if (Tok.getAnnotationValue()) {
3082  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
3083  Tok.getAnnotationEndLoc(),
3084  PrevSpec, DiagID, T, Policy);
3085  if (isInvalid)
3086  break;
3087  }
3088  else
3089  DS.SetTypeSpecError();
3090  DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3091  ConsumeAnnotationToken(); // The typename
3092  }
3093 
3094  if (Next.isNot(tok::identifier))
3095  goto DoneWithDeclSpec;
3096 
3097  // Check whether this is a constructor declaration. If we're in a
3098  // context where the identifier could be a class name, and it has the
3099  // shape of a constructor declaration, process it as one.
3100  if ((DSContext == DeclSpecContext::DSC_top_level ||
3101  DSContext == DeclSpecContext::DSC_class) &&
3102  Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
3103  &SS) &&
3104  isConstructorDeclarator(/*Unqualified*/ false))
3105  goto DoneWithDeclSpec;
3106 
3107  ParsedType TypeRep =
3108  Actions.getTypeName(*Next.getIdentifierInfo(), Next.getLocation(),
3109  getCurScope(), &SS, false, false, nullptr,
3110  /*IsCtorOrDtorName=*/false,
3111  /*WantNonTrivialSourceInfo=*/true,
3112  isClassTemplateDeductionContext(DSContext));
3113 
3114  // If the referenced identifier is not a type, then this declspec is
3115  // erroneous: We already checked about that it has no type specifier, and
3116  // C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the
3117  // typename.
3118  if (!TypeRep) {
3119  // Eat the scope spec so the identifier is current.
3120  ConsumeAnnotationToken();
3121  ParsedAttributesWithRange Attrs(AttrFactory);
3122  if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
3123  if (!Attrs.empty()) {
3124  AttrsLastTime = true;
3125  attrs.takeAllFrom(Attrs);
3126  }
3127  continue;
3128  }
3129  goto DoneWithDeclSpec;
3130  }
3131 
3132  DS.getTypeSpecScope() = SS;
3133  ConsumeAnnotationToken(); // The C++ scope.
3134 
3135  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3136  DiagID, TypeRep, Policy);
3137  if (isInvalid)
3138  break;
3139 
3140  DS.SetRangeEnd(Tok.getLocation());
3141  ConsumeToken(); // The typename.
3142 
3143  continue;
3144  }
3145 
3146  case tok::annot_typename: {
3147  // If we've previously seen a tag definition, we were almost surely
3148  // missing a semicolon after it.
3149  if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
3150  goto DoneWithDeclSpec;
3151 
3152  if (Tok.getAnnotationValue()) {
3154  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3155  DiagID, T, Policy);
3156  } else
3157  DS.SetTypeSpecError();
3158 
3159  if (isInvalid)
3160  break;
3161 
3162  DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3163  ConsumeAnnotationToken(); // The typename
3164 
3165  continue;
3166  }
3167 
3168  case tok::kw___is_signed:
3169  // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
3170  // typically treats it as a trait. If we see __is_signed as it appears
3171  // in libstdc++, e.g.,
3172  //
3173  // static const bool __is_signed;
3174  //
3175  // then treat __is_signed as an identifier rather than as a keyword.
3176  if (DS.getTypeSpecType() == TST_bool &&
3179  TryKeywordIdentFallback(true);
3180 
3181  // We're done with the declaration-specifiers.
3182  goto DoneWithDeclSpec;
3183 
3184  // typedef-name
3185  case tok::kw___super:
3186  case tok::kw_decltype:
3187  case tok::identifier: {
3188  // This identifier can only be a typedef name if we haven't already seen
3189  // a type-specifier. Without this check we misparse:
3190  // typedef int X; struct Y { short X; }; as 'short int'.
3191  if (DS.hasTypeSpecifier())
3192  goto DoneWithDeclSpec;
3193 
3194  // If the token is an identifier named "__declspec" and Microsoft
3195  // extensions are not enabled, it is likely that there will be cascading
3196  // parse errors if this really is a __declspec attribute. Attempt to
3197  // recognize that scenario and recover gracefully.
3198  if (!getLangOpts().DeclSpecKeyword && Tok.is(tok::identifier) &&
3199  Tok.getIdentifierInfo()->getName().equals("__declspec")) {
3200  Diag(Loc, diag::err_ms_attributes_not_enabled);
3201 
3202  // The next token should be an open paren. If it is, eat the entire
3203  // attribute declaration and continue.
3204  if (NextToken().is(tok::l_paren)) {
3205  // Consume the __declspec identifier.
3206  ConsumeToken();
3207 
3208  // Eat the parens and everything between them.
3209  BalancedDelimiterTracker T(*this, tok::l_paren);
3210  if (T.consumeOpen()) {
3211  assert(false && "Not a left paren?");
3212  return;
3213  }
3214  T.skipToEnd();
3215  continue;
3216  }
3217  }
3218 
3219  // In C++, check to see if this is a scope specifier like foo::bar::, if
3220  // so handle it as such. This is important for ctor parsing.
3221  if (getLangOpts().CPlusPlus) {
3222  if (TryAnnotateCXXScopeToken(EnteringContext)) {
3223  DS.SetTypeSpecError();
3224  goto DoneWithDeclSpec;
3225  }
3226  if (!Tok.is(tok::identifier))
3227  continue;
3228  }
3229 
3230  // Check for need to substitute AltiVec keyword tokens.
3231  if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
3232  break;
3233 
3234  // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
3235  // allow the use of a typedef name as a type specifier.
3236  if (DS.isTypeAltiVecVector())
3237  goto DoneWithDeclSpec;
3238 
3239  if (DSContext == DeclSpecContext::DSC_objc_method_result &&
3240  isObjCInstancetype()) {
3241  ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc);
3242  assert(TypeRep);
3243  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3244  DiagID, TypeRep, Policy);
3245  if (isInvalid)
3246  break;
3247 
3248  DS.SetRangeEnd(Loc);
3249  ConsumeToken();
3250  continue;
3251  }
3252 
3253  // If we're in a context where the identifier could be a class name,
3254  // check whether this is a constructor declaration.
3255  if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3256  Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
3257  isConstructorDeclarator(/*Unqualified*/true))
3258  goto DoneWithDeclSpec;
3259 
3260  ParsedType TypeRep = Actions.getTypeName(
3261  *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), nullptr,
3262  false, false, nullptr, false, false,
3263  isClassTemplateDeductionContext(DSContext));
3264 
3265  // If this is not a typedef name, don't parse it as part of the declspec,
3266  // it must be an implicit int or an error.
3267  if (!TypeRep) {
3268  ParsedAttributesWithRange Attrs(AttrFactory);
3269  if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
3270  if (!Attrs.empty()) {
3271  AttrsLastTime = true;
3272  attrs.takeAllFrom(Attrs);
3273  }
3274  continue;
3275  }
3276  goto DoneWithDeclSpec;
3277  }
3278 
3279  // Likewise, if this is a context where the identifier could be a template
3280  // name, check whether this is a deduction guide declaration.
3281  if (getLangOpts().CPlusPlus17 &&
3282  (DSContext == DeclSpecContext::DSC_class ||
3283  DSContext == DeclSpecContext::DSC_top_level) &&
3284  Actions.isDeductionGuideName(getCurScope(), *Tok.getIdentifierInfo(),
3285  Tok.getLocation()) &&
3286  isConstructorDeclarator(/*Unqualified*/ true,
3287  /*DeductionGuide*/ true))
3288  goto DoneWithDeclSpec;
3289 
3290  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3291  DiagID, TypeRep, Policy);
3292  if (isInvalid)
3293  break;
3294 
3295  DS.SetRangeEnd(Tok.getLocation());
3296  ConsumeToken(); // The identifier
3297 
3298  // Objective-C supports type arguments and protocol references
3299  // following an Objective-C object or object pointer
3300  // type. Handle either one of them.
3301  if (Tok.is(tok::less) && getLangOpts().ObjC1) {
3302  SourceLocation NewEndLoc;
3303  TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers(
3304  Loc, TypeRep, /*consumeLastToken=*/true,
3305  NewEndLoc);
3306  if (NewTypeRep.isUsable()) {
3307  DS.UpdateTypeRep(NewTypeRep.get());
3308  DS.SetRangeEnd(NewEndLoc);
3309  }
3310  }
3311 
3312  // Need to support trailing type qualifiers (e.g. "id<p> const").
3313  // If a type specifier follows, it will be diagnosed elsewhere.
3314  continue;
3315  }
3316 
3317  // type-name
3318  case tok::annot_template_id: {
3319  TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
3320  if (TemplateId->Kind != TNK_Type_template) {
3321  // This template-id does not refer to a type name, so we're
3322  // done with the type-specifiers.
3323  goto DoneWithDeclSpec;
3324  }
3325 
3326  // If we're in a context where the template-id could be a
3327  // constructor name or specialization, check whether this is a
3328  // constructor declaration.
3329  if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3330  Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
3331  isConstructorDeclarator(TemplateId->SS.isEmpty()))
3332  goto DoneWithDeclSpec;
3333 
3334  // Turn the template-id annotation token into a type annotation
3335  // token, then try again to parse it as a type-specifier.
3336  AnnotateTemplateIdTokenAsType();
3337  continue;
3338  }
3339 
3340  // GNU attributes support.
3341  case tok::kw___attribute:
3342  ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
3343  continue;
3344 
3345  // Microsoft declspec support.
3346  case tok::kw___declspec:
3347  ParseMicrosoftDeclSpecs(DS.getAttributes());
3348  continue;
3349 
3350  // Microsoft single token adornments.
3351  case tok::kw___forceinline: {
3352  isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
3353  IdentifierInfo *AttrName = Tok.getIdentifierInfo();
3354  SourceLocation AttrNameLoc = Tok.getLocation();
3355  DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
3356  nullptr, 0, AttributeList::AS_Keyword);
3357  break;
3358  }
3359 
3360  case tok::kw___unaligned:
3361  isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
3362  getLangOpts());
3363  break;
3364 
3365  case tok::kw___sptr:
3366  case tok::kw___uptr:
3367  case tok::kw___ptr64:
3368  case tok::kw___ptr32:
3369  case tok::kw___w64:
3370  case tok::kw___cdecl:
3371  case tok::kw___stdcall:
3372  case tok::kw___fastcall:
3373  case tok::kw___thiscall:
3374  case tok::kw___regcall:
3375  case tok::kw___vectorcall:
3376  ParseMicrosoftTypeAttributes(DS.getAttributes());
3377  continue;
3378 
3379  // Borland single token adornments.
3380  case tok::kw___pascal:
3381  ParseBorlandTypeAttributes(DS.getAttributes());
3382  continue;
3383 
3384  // OpenCL single token adornments.
3385  case tok::kw___kernel:
3386  ParseOpenCLKernelAttributes(DS.getAttributes());
3387  continue;
3388 
3389  // Nullability type specifiers.
3390  case tok::kw__Nonnull:
3391  case tok::kw__Nullable:
3392  case tok::kw__Null_unspecified:
3393  ParseNullabilityTypeSpecifiers(DS.getAttributes());
3394  continue;
3395 
3396  // Objective-C 'kindof' types.
3397  case tok::kw___kindof:
3398  DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
3399  nullptr, 0, AttributeList::AS_Keyword);
3400  (void)ConsumeToken();
3401  continue;
3402 
3403  // storage-class-specifier
3404  case tok::kw_typedef:
3405  isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
3406  PrevSpec, DiagID, Policy);
3407  isStorageClass = true;
3408  break;
3409  case tok::kw_extern:
3411  Diag(Tok, diag::ext_thread_before) << "extern";
3412  isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
3413  PrevSpec, DiagID, Policy);
3414  isStorageClass = true;
3415  break;
3416  case tok::kw___private_extern__:
3417  isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
3418  Loc, PrevSpec, DiagID, Policy);
3419  isStorageClass = true;
3420  break;
3421  case tok::kw_static:
3423  Diag(Tok, diag::ext_thread_before) << "static";
3424  isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
3425  PrevSpec, DiagID, Policy);
3426  isStorageClass = true;
3427  break;
3428  case tok::kw_auto:
3429  if (getLangOpts().CPlusPlus11) {
3430  if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
3431  isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3432  PrevSpec, DiagID, Policy);
3433  if (!isInvalid)
3434  Diag(Tok, diag::ext_auto_storage_class)
3436  } else
3437  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
3438  DiagID, Policy);
3439  } else
3440  isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3441  PrevSpec, DiagID, Policy);
3442  isStorageClass = true;
3443  break;
3444  case tok::kw___auto_type:
3445  Diag(Tok, diag::ext_auto_type);
3446  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec,
3447  DiagID, Policy);
3448  break;
3449  case tok::kw_register:
3450  isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
3451  PrevSpec, DiagID, Policy);
3452  isStorageClass = true;
3453  break;
3454  case tok::kw_mutable:
3455  isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
3456  PrevSpec, DiagID, Policy);
3457  isStorageClass = true;
3458  break;
3459  case tok::kw___thread:
3461  PrevSpec, DiagID);
3462  isStorageClass = true;
3463  break;
3464  case tok::kw_thread_local:
3466  PrevSpec, DiagID);
3467  isStorageClass = true;
3468  break;
3469  case tok::kw__Thread_local:
3471  Loc, PrevSpec, DiagID);
3472  isStorageClass = true;
3473  break;
3474 
3475  // function-specifier
3476  case tok::kw_inline:
3477  isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
3478  break;
3479  case tok::kw_virtual:
3480  // OpenCL C++ v1.0 s2.9: the virtual function qualifier is not supported.
3481  if (getLangOpts().OpenCLCPlusPlus) {
3482  DiagID = diag::err_openclcxx_virtual_function;
3483  PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3484  isInvalid = true;
3485  }
3486  else {
3487  isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
3488  }
3489  break;
3490  case tok::kw_explicit:
3491  isInvalid = DS.setFunctionSpecExplicit(Loc, PrevSpec, DiagID);
3492  break;
3493  case tok::kw__Noreturn:
3494  if (!getLangOpts().C11)
3495  Diag(Loc, diag::ext_c11_noreturn);
3496  isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
3497  break;
3498 
3499  // alignment-specifier
3500  case tok::kw__Alignas:
3501  if (!getLangOpts().C11)
3502  Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
3503  ParseAlignmentSpecifier(DS.getAttributes());
3504  continue;
3505 
3506  // friend
3507  case tok::kw_friend:
3508  if (DSContext == DeclSpecContext::DSC_class)
3509  isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
3510  else {
3511  PrevSpec = ""; // not actually used by the diagnostic
3512  DiagID = diag::err_friend_invalid_in_context;
3513  isInvalid = true;
3514  }
3515  break;
3516 
3517  // Modules
3518  case tok::kw___module_private__:
3519  isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
3520  break;
3521 
3522  // constexpr
3523  case tok::kw_constexpr:
3524  isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
3525  break;
3526 
3527  // type-specifier
3528  case tok::kw_short:
3529  isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
3530  DiagID, Policy);
3531  break;
3532  case tok::kw_long:
3534  isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
3535  DiagID, Policy);
3536  else
3537  isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3538  DiagID, Policy);
3539  break;
3540  case tok::kw___int64:
3541  isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3542  DiagID, Policy);
3543  break;
3544  case tok::kw_signed:
3545  isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
3546  DiagID);
3547  break;
3548  case tok::kw_unsigned:
3549  isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
3550  DiagID);
3551  break;
3552  case tok::kw__Complex:
3553  isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
3554  DiagID);
3555  break;
3556  case tok::kw__Imaginary:
3557  isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
3558  DiagID);
3559  break;
3560  case tok::kw_void:
3561  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
3562  DiagID, Policy);
3563  break;
3564  case tok::kw_char:
3565  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
3566  DiagID, Policy);
3567  break;
3568  case tok::kw_int:
3569  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
3570  DiagID, Policy);
3571  break;
3572  case tok::kw___int128:
3573  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
3574  DiagID, Policy);
3575  break;
3576  case tok::kw_half:
3577  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
3578  DiagID, Policy);
3579  break;
3580  case tok::kw_float:
3581  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
3582  DiagID, Policy);
3583  break;
3584  case tok::kw_double:
3585  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
3586  DiagID, Policy);
3587  break;
3588  case tok::kw__Float16:
3589  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec,
3590  DiagID, Policy);
3591  break;
3592  case tok::kw__Accum:
3593  if (!getLangOpts().FixedPoint) {
3594  SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3595  } else {
3596  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec,
3597  DiagID, Policy);
3598  }
3599  break;
3600  case tok::kw__Fract:
3601  if (!getLangOpts().FixedPoint) {
3602  SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3603  } else {
3604  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec,
3605  DiagID, Policy);
3606  }
3607  break;
3608  case tok::kw__Sat:
3609  if (!getLangOpts().FixedPoint) {
3610  SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid);
3611  } else {
3612  isInvalid = DS.SetTypeSpecSat(Loc, PrevSpec, DiagID);
3613  }
3614  break;
3615  case tok::kw___float128:
3616  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec,
3617  DiagID, Policy);
3618  break;
3619  case tok::kw_wchar_t:
3620  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
3621  DiagID, Policy);
3622  break;
3623  case tok::kw_char8_t:
3624  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec,
3625  DiagID, Policy);
3626  break;
3627  case tok::kw_char16_t:
3628  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
3629  DiagID, Policy);
3630  break;
3631  case tok::kw_char32_t:
3632  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
3633  DiagID, Policy);
3634  break;
3635  case tok::kw_bool:
3636  case tok::kw__Bool:
3637  if (Tok.is(tok::kw_bool) &&
3640  PrevSpec = ""; // Not used by the diagnostic.
3641  DiagID = diag::err_bool_redeclaration;
3642  // For better error recovery.
3643  Tok.setKind(tok::identifier);
3644  isInvalid = true;
3645  } else {
3646  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
3647  DiagID, Policy);
3648  }
3649  break;
3650  case tok::kw__Decimal32:
3651  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
3652  DiagID, Policy);
3653  break;
3654  case tok::kw__Decimal64:
3655  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
3656  DiagID, Policy);
3657  break;
3658  case tok::kw__Decimal128:
3659  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
3660  DiagID, Policy);
3661  break;
3662  case tok::kw___vector:
3663  isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
3664  break;
3665  case tok::kw___pixel:
3666  isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
3667  break;
3668  case tok::kw___bool:
3669  isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
3670  break;
3671  case tok::kw_pipe:
3672  if (!getLangOpts().OpenCL || (getLangOpts().OpenCLVersion < 200)) {
3673  // OpenCL 2.0 defined this keyword. OpenCL 1.2 and earlier should
3674  // support the "pipe" word as identifier.
3675  Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
3676  goto DoneWithDeclSpec;
3677  }
3678  isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy);
3679  break;
3680 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
3681  case tok::kw_##ImgType##_t: \
3682  isInvalid = DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, \
3683  DiagID, Policy); \
3684  break;
3685 #include "clang/Basic/OpenCLImageTypes.def"
3686  case tok::kw___unknown_anytype:
3687  isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
3688  PrevSpec, DiagID, Policy);
3689  break;
3690 
3691  // class-specifier:
3692  case tok::kw_class:
3693  case tok::kw_struct:
3694  case tok::kw___interface:
3695  case tok::kw_union: {
3696  tok::TokenKind Kind = Tok.getKind();
3697  ConsumeToken();
3698 
3699  // These are attributes following class specifiers.
3700  // To produce better diagnostic, we parse them when
3701  // parsing class specifier.
3702  ParsedAttributesWithRange Attributes(AttrFactory);
3703  ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
3704  EnteringContext, DSContext, Attributes);
3705 
3706  // If there are attributes following class specifier,
3707  // take them over and handle them here.
3708  if (!Attributes.empty()) {
3709  AttrsLastTime = true;
3710  attrs.takeAllFrom(Attributes);
3711  }
3712  continue;
3713  }
3714 
3715  // enum-specifier:
3716  case tok::kw_enum:
3717  ConsumeToken();
3718  ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
3719  continue;
3720 
3721  // cv-qualifier:
3722  case tok::kw_const:
3723  isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
3724  getLangOpts());
3725  break;
3726  case tok::kw_volatile:
3727  isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3728  getLangOpts());
3729  break;
3730  case tok::kw_restrict:
3731  isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3732  getLangOpts());
3733  break;
3734 
3735  // C++ typename-specifier:
3736  case tok::kw_typename:
3738  DS.SetTypeSpecError();
3739  goto DoneWithDeclSpec;
3740  }
3741  if (!Tok.is(tok::kw_typename))
3742  continue;
3743  break;
3744 
3745  // GNU typeof support.
3746  case tok::kw_typeof:
3747  ParseTypeofSpecifier(DS);
3748  continue;
3749 
3750  case tok::annot_decltype:
3751  ParseDecltypeSpecifier(DS);
3752  continue;
3753 
3754  case tok::annot_pragma_pack:
3755  HandlePragmaPack();
3756  continue;
3757 
3758  case tok::annot_pragma_ms_pragma:
3759  HandlePragmaMSPragma();
3760  continue;
3761 
3762  case tok::annot_pragma_ms_vtordisp:
3763  HandlePragmaMSVtorDisp();
3764  continue;
3765 
3766  case tok::annot_pragma_ms_pointers_to_members:
3767  HandlePragmaMSPointersToMembers();
3768  continue;
3769 
3770  case tok::kw___underlying_type:
3771  ParseUnderlyingTypeSpecifier(DS);
3772  continue;
3773 
3774  case tok::kw__Atomic:
3775  // C11 6.7.2.4/4:
3776  // If the _Atomic keyword is immediately followed by a left parenthesis,
3777  // it is interpreted as a type specifier (with a type name), not as a
3778  // type qualifier.
3779  if (NextToken().is(tok::l_paren)) {
3780  ParseAtomicSpecifier(DS);
3781  continue;
3782  }
3783  isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
3784  getLangOpts());
3785  break;
3786 
3787  // OpenCL access qualifiers:
3788  case tok::kw___read_only:
3789  case tok::kw___write_only:
3790  case tok::kw___read_write:
3791  // OpenCL C++ 1.0 s2.2: access qualifiers are reserved keywords.
3792  if (Actions.getLangOpts().OpenCLCPlusPlus) {
3793  DiagID = diag::err_openclcxx_reserved;
3794  PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3795  isInvalid = true;
3796  }
3797  ParseOpenCLQualifiers(DS.getAttributes());
3798  break;
3799 
3800  // OpenCL address space qualifiers:
3801  case tok::kw___generic:
3802  // generic address space is introduced only in OpenCL v2.0
3803  // see OpenCL C Spec v2.0 s6.5.5
3804  if (Actions.getLangOpts().OpenCLVersion < 200 &&
3805  !Actions.getLangOpts().OpenCLCPlusPlus) {
3806  DiagID = diag::err_opencl_unknown_type_specifier;
3807  PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3808  isInvalid = true;
3809  break;
3810  };
3811  LLVM_FALLTHROUGH;
3812  case tok::kw___private:
3813  case tok::kw___global:
3814  case tok::kw___local:
3815  case tok::kw___constant:
3816  ParseOpenCLQualifiers(DS.getAttributes());
3817  break;
3818 
3819  case tok::less:
3820  // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
3821  // "id<SomeProtocol>". This is hopelessly old fashioned and dangerous,
3822  // but we support it.
3823  if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
3824  goto DoneWithDeclSpec;
3825 
3826  SourceLocation StartLoc = Tok.getLocation();
3827  SourceLocation EndLoc;
3828  TypeResult Type = parseObjCProtocolQualifierType(EndLoc);
3829  if (Type.isUsable()) {
3830  if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc,
3831  PrevSpec, DiagID, Type.get(),
3832  Actions.getASTContext().getPrintingPolicy()))
3833  Diag(StartLoc, DiagID) << PrevSpec;
3834 
3835  DS.SetRangeEnd(EndLoc);
3836  } else {
3837  DS.SetTypeSpecError();
3838  }
3839 
3840  // Need to support trailing type qualifiers (e.g. "id<p> const").
3841  // If a type specifier follows, it will be diagnosed elsewhere.
3842  continue;
3843  }
3844  // If the specifier wasn't legal, issue a diagnostic.
3845  if (isInvalid) {
3846  assert(PrevSpec && "Method did not return previous specifier!");
3847  assert(DiagID);
3848 
3849  if (DiagID == diag::ext_duplicate_declspec)
3850  Diag(Tok, DiagID)
3851  << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
3852  else if (DiagID == diag::err_opencl_unknown_type_specifier) {
3853  Diag(Tok, DiagID) << getLangOpts().OpenCLCPlusPlus
3854  << getLangOpts().getOpenCLVersionTuple().getAsString()
3855  << PrevSpec << isStorageClass;
3856  } else
3857  Diag(Tok, DiagID) << PrevSpec;
3858  }
3859 
3860  DS.SetRangeEnd(Tok.getLocation());
3861  if (DiagID != diag::err_bool_redeclaration)
3862  // After an error the next token can be an annotation token.
3863  ConsumeAnyToken();
3864 
3865  AttrsLastTime = false;
3866  }
3867 }
3868 
3869 /// ParseStructDeclaration - Parse a struct declaration without the terminating
3870 /// semicolon.
3871 ///
3872 /// struct-declaration:
3873 /// [C2x] attributes-specifier-seq[opt]
3874 /// specifier-qualifier-list struct-declarator-list
3875 /// [GNU] __extension__ struct-declaration
3876 /// [GNU] specifier-qualifier-list
3877 /// struct-declarator-list:
3878 /// struct-declarator
3879 /// struct-declarator-list ',' struct-declarator
3880 /// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator
3881 /// struct-declarator:
3882 /// declarator
3883 /// [GNU] declarator attributes[opt]
3884 /// declarator[opt] ':' constant-expression
3885 /// [GNU] declarator[opt] ':' constant-expression attributes[opt]
3886 ///
3887 void Parser::ParseStructDeclaration(
3888  ParsingDeclSpec &DS,
3889  llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
3890 
3891  if (Tok.is(tok::kw___extension__)) {
3892  // __extension__ silences extension warnings in the subexpression.
3893  ExtensionRAIIObject O(Diags); // Use RAII to do this.
3894  ConsumeToken();
3895  return ParseStructDeclaration(DS, FieldsCallback);
3896  }
3897 
3898  // Parse leading attributes.
3899  ParsedAttributesWithRange Attrs(AttrFactory);
3900  MaybeParseCXX11Attributes(Attrs);
3901  DS.takeAttributesFrom(Attrs);
3902 
3903  // Parse the common specifier-qualifiers-list piece.
3904  ParseSpecifierQualifierList(DS);
3905 
3906  // If there are no declarators, this is a free-standing declaration
3907  // specifier. Let the actions module cope with it.
3908  if (Tok.is(tok::semi)) {
3909  RecordDecl *AnonRecord = nullptr;
3910  Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
3911  DS, AnonRecord);
3912  assert(!AnonRecord && "Did not expect anonymous struct or union here");
3913  DS.complete(TheDecl);
3914  return;
3915  }
3916 
3917  // Read struct-declarators until we find the semicolon.
3918  bool FirstDeclarator = true;
3919  SourceLocation CommaLoc;
3920  while (1) {
3921  ParsingFieldDeclarator DeclaratorInfo(*this, DS);
3922  DeclaratorInfo.D.setCommaLoc(CommaLoc);
3923 
3924  // Attributes are only allowed here on successive declarators.
3925  if (!FirstDeclarator)
3926  MaybeParseGNUAttributes(DeclaratorInfo.D);
3927 
3928  /// struct-declarator: declarator
3929  /// struct-declarator: declarator[opt] ':' constant-expression
3930  if (Tok.isNot(tok::colon)) {
3931  // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
3933  ParseDeclarator(DeclaratorInfo.D);
3934  } else
3935  DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
3936 
3937  if (TryConsumeToken(tok::colon)) {
3939  if (Res.isInvalid())
3940  SkipUntil(tok::semi, StopBeforeMatch);
3941  else
3942  DeclaratorInfo.BitfieldSize = Res.get();
3943  }
3944 
3945  // If attributes exist after the declarator, parse them.
3946  MaybeParseGNUAttributes(DeclaratorInfo.D);
3947 
3948  // We're done with this declarator; invoke the callback.
3949  FieldsCallback(DeclaratorInfo);
3950 
3951  // If we don't have a comma, it is either the end of the list (a ';')
3952  // or an error, bail out.
3953  if (!TryConsumeToken(tok::comma, CommaLoc))
3954  return;
3955 
3956  FirstDeclarator = false;
3957  }
3958 }
3959 
3960 /// ParseStructUnionBody
3961 /// struct-contents:
3962 /// struct-declaration-list
3963 /// [EXT] empty
3964 /// [GNU] "struct-declaration-list" without terminatoring ';'
3965 /// struct-declaration-list:
3966 /// struct-declaration
3967 /// struct-declaration-list struct-declaration
3968 /// [OBC] '@' 'defs' '(' class-name ')'
3969 ///
3970 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
3971  unsigned TagType, Decl *TagDecl) {
3972  PrettyDeclStackTraceEntry CrashInfo(Actions.Context, TagDecl, RecordLoc,
3973  "parsing struct/union body");
3974  assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
3975 
3976  BalancedDelimiterTracker T(*this, tok::l_brace);
3977  if (T.consumeOpen())
3978  return;
3979 
3980  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
3981  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
3982 
3983  SmallVector<Decl *, 32> FieldDecls;
3984 
3985  // While we still have something to read, read the declarations in the struct.
3986  while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
3987  Tok.isNot(tok::eof)) {
3988  // Each iteration of this loop reads one struct-declaration.
3989 
3990  // Check for extraneous top-level semicolon.
3991  if (Tok.is(tok::semi)) {
3992  ConsumeExtraSemi(InsideStruct, TagType);
3993  continue;
3994  }
3995 
3996  // Parse _Static_assert declaration.
3997  if (Tok.is(tok::kw__Static_assert)) {
3998  SourceLocation DeclEnd;
3999  ParseStaticAssertDeclaration(DeclEnd);
4000  continue;
4001  }
4002 
4003  if (Tok.is(tok::annot_pragma_pack)) {
4004  HandlePragmaPack();
4005  continue;
4006  }
4007 
4008  if (Tok.is(tok::annot_pragma_align)) {
4009  HandlePragmaAlign();
4010  continue;
4011  }
4012 
4013  if (Tok.is(tok::annot_pragma_openmp)) {
4014  // Result can be ignored, because it must be always empty.
4015  AccessSpecifier AS = AS_none;
4016  ParsedAttributesWithRange Attrs(AttrFactory);
4017  (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs);
4018  continue;
4019  }
4020 
4021  if (!Tok.is(tok::at)) {
4022  auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
4023  // Install the declarator into the current TagDecl.
4024  Decl *Field =
4025  Actions.ActOnField(getCurScope(), TagDecl,
4026  FD.D.getDeclSpec().getSourceRange().getBegin(),
4027  FD.D, FD.BitfieldSize);
4028  FieldDecls.push_back(Field);
4029  FD.complete(Field);
4030  };
4031 
4032  // Parse all the comma separated declarators.
4033  ParsingDeclSpec DS(*this);
4034  ParseStructDeclaration(DS, CFieldCallback);
4035  } else { // Handle @defs
4036  ConsumeToken();
4037  if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
4038  Diag(Tok, diag::err_unexpected_at);
4039  SkipUntil(tok::semi);
4040  continue;
4041  }
4042  ConsumeToken();
4043  ExpectAndConsume(tok::l_paren);
4044  if (!Tok.is(tok::identifier)) {
4045  Diag(Tok, diag::err_expected) << tok::identifier;
4046  SkipUntil(tok::semi);
4047  continue;
4048  }
4049  SmallVector<Decl *, 16> Fields;
4050  Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
4051  Tok.getIdentifierInfo(), Fields);
4052  FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
4053  ConsumeToken();
4054  ExpectAndConsume(tok::r_paren);
4055  }
4056 
4057  if (TryConsumeToken(tok::semi))
4058  continue;
4059 
4060  if (Tok.is(tok::r_brace)) {
4061  ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
4062  break;
4063  }
4064 
4065  ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
4066  // Skip to end of block or statement to avoid ext-warning on extra ';'.
4067  SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
4068  // If we stopped at a ';', eat it.
4069  TryConsumeToken(tok::semi);
4070  }
4071 
4072  T.consumeClose();
4073 
4074  ParsedAttributes attrs(AttrFactory);
4075  // If attributes exist after struct contents, parse them.
4076  MaybeParseGNUAttributes(attrs);
4077 
4078  Actions.ActOnFields(getCurScope(),
4079  RecordLoc, TagDecl, FieldDecls,
4081  attrs.getList());
4082  StructScope.Exit();
4083  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getRange());
4084 }
4085 
4086 /// ParseEnumSpecifier
4087 /// enum-specifier: [C99 6.7.2.2]
4088 /// 'enum' identifier[opt] '{' enumerator-list '}'
4089 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
4090 /// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
4091 /// '}' attributes[opt]
4092 /// [MS] 'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
4093 /// '}'
4094 /// 'enum' identifier
4095 /// [GNU] 'enum' attributes[opt] identifier
4096 ///
4097 /// [C++11] enum-head '{' enumerator-list[opt] '}'
4098 /// [C++11] enum-head '{' enumerator-list ',' '}'
4099 ///
4100 /// enum-head: [C++11]
4101 /// enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
4102 /// enum-key attribute-specifier-seq[opt] nested-name-specifier
4103 /// identifier enum-base[opt]
4104 ///
4105 /// enum-key: [C++11]
4106 /// 'enum'
4107 /// 'enum' 'class'
4108 /// 'enum' 'struct'
4109 ///
4110 /// enum-base: [C++11]
4111 /// ':' type-specifier-seq
4112 ///
4113 /// [C++] elaborated-type-specifier:
4114 /// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier
4115 ///
4116 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
4117  const ParsedTemplateInfo &TemplateInfo,
4118  AccessSpecifier AS, DeclSpecContext DSC) {
4119  // Parse the tag portion of this.
4120  if (Tok.is(tok::code_completion)) {
4121  // Code completion for an enum name.
4122  Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
4123  return cutOffParsing();
4124  }
4125 
4126  // If attributes exist after tag, parse them.
4127  ParsedAttributesWithRange attrs(AttrFactory);
4128  MaybeParseGNUAttributes(attrs);
4129  MaybeParseCXX11Attributes(attrs);
4130  MaybeParseMicrosoftDeclSpecs(attrs);
4131 
4132  SourceLocation ScopedEnumKWLoc;
4133  bool IsScopedUsingClassTag = false;
4134 
4135  // In C++11, recognize 'enum class' and 'enum struct'.
4136  if (Tok.isOneOf(tok::kw_class, tok::kw_struct)) {
4137  Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
4138  : diag::ext_scoped_enum);
4139  IsScopedUsingClassTag = Tok.is(tok::kw_class);
4140  ScopedEnumKWLoc = ConsumeToken();
4141 
4142  // Attributes are not allowed between these keywords. Diagnose,
4143  // but then just treat them like they appeared in the right place.
4144  ProhibitAttributes(attrs);
4145 
4146  // They are allowed afterwards, though.
4147  MaybeParseGNUAttributes(attrs);
4148  MaybeParseCXX11Attributes(attrs);
4149  MaybeParseMicrosoftDeclSpecs(attrs);
4150  }
4151 
4152  // C++11 [temp.explicit]p12:
4153  // The usual access controls do not apply to names used to specify
4154  // explicit instantiations.
4155  // We extend this to also cover explicit specializations. Note that
4156  // we don't suppress if this turns out to be an elaborated type
4157  // specifier.
4158  bool shouldDelayDiagsInTag =
4159  (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
4160  TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
4161  SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
4162 
4163  // Enum definitions should not be parsed in a trailing-return-type.
4164  bool AllowDeclaration = DSC != DeclSpecContext::DSC_trailing;
4165 
4166  bool AllowFixedUnderlyingType = AllowDeclaration &&
4167  (getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt ||
4168  getLangOpts().ObjC2);
4169 
4170  CXXScopeSpec &SS = DS.getTypeSpecScope();
4171  if (getLangOpts().CPlusPlus) {
4172  // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
4173  // if a fixed underlying type is allowed.
4174  ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
4175 
4176  CXXScopeSpec Spec;
4177  if (ParseOptionalCXXScopeSpecifier(Spec, nullptr,
4178  /*EnteringContext=*/true))
4179  return;
4180 
4181  if (Spec.isSet() && Tok.isNot(tok::identifier)) {
4182  Diag(Tok, diag::err_expected) << tok::identifier;
4183  if (Tok.isNot(tok::l_brace)) {
4184  // Has no name and is not a definition.
4185  // Skip the rest of this declarator, up until the comma or semicolon.
4186  SkipUntil(tok::comma, StopAtSemi);
4187  return;
4188  }
4189  }
4190 
4191  SS = Spec;
4192  }
4193 
4194  // Must have either 'enum name' or 'enum {...}'.
4195  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
4196  !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
4197  Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
4198 
4199  // Skip the rest of this declarator, up until the comma or semicolon.
4200  SkipUntil(tok::comma, StopAtSemi);
4201  return;
4202  }
4203 
4204  // If an identifier is present, consume and remember it.
4205  IdentifierInfo *Name = nullptr;
4206  SourceLocation NameLoc;
4207  if (Tok.is(tok::identifier)) {
4208  Name = Tok.getIdentifierInfo();
4209  NameLoc = ConsumeToken();
4210  }
4211 
4212  if (!Name && ScopedEnumKWLoc.isValid()) {
4213  // C++0x 7.2p2: The optional identifier shall not be omitted in the
4214  // declaration of a scoped enumeration.
4215  Diag(Tok, diag::err_scoped_enum_missing_identifier);
4216  ScopedEnumKWLoc = SourceLocation();
4217  IsScopedUsingClassTag = false;
4218  }
4219 
4220  // Okay, end the suppression area. We'll decide whether to emit the
4221  // diagnostics in a second.
4222  if (shouldDelayDiagsInTag)
4223  diagsFromTag.done();
4224 
4225  TypeResult BaseType;
4226 
4227  // Parse the fixed underlying type.
4228  bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4229  if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
4230  bool PossibleBitfield = false;
4231  if (CanBeBitfield) {
4232  // If we're in class scope, this can either be an enum declaration with
4233  // an underlying type, or a declaration of a bitfield member. We try to
4234  // use a simple disambiguation scheme first to catch the common cases
4235  // (integer literal, sizeof); if it's still ambiguous, we then consider
4236  // anything that's a simple-type-specifier followed by '(' as an
4237  // expression. This suffices because function types are not valid
4238  // underlying types anyway.
4241  TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
4242  // If the next token starts an expression, we know we're parsing a
4243  // bit-field. This is the common case.
4244  if (TPR == TPResult::True)
4245  PossibleBitfield = true;
4246  // If the next token starts a type-specifier-seq, it may be either a
4247  // a fixed underlying type or the start of a function-style cast in C++;
4248  // lookahead one more token to see if it's obvious that we have a
4249  // fixed underlying type.
4250  else if (TPR == TPResult::False &&
4251  GetLookAheadToken(2).getKind() == tok::semi) {
4252  // Consume the ':'.
4253  ConsumeToken();
4254  } else {
4255  // We have the start of a type-specifier-seq, so we have to perform
4256  // tentative parsing to determine whether we have an expression or a
4257  // type.
4258  TentativeParsingAction TPA(*this);
4259 
4260  // Consume the ':'.
4261  ConsumeToken();
4262 
4263  // If we see a type specifier followed by an open-brace, we have an
4264  // ambiguity between an underlying type and a C++11 braced
4265  // function-style cast. Resolve this by always treating it as an
4266  // underlying type.
4267  // FIXME: The standard is not entirely clear on how to disambiguate in
4268  // this case.
4269  if ((getLangOpts().CPlusPlus &&
4270  isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
4271  (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
4272  // We'll parse this as a bitfield later.
4273  PossibleBitfield = true;
4274  TPA.Revert();
4275  } else {
4276  // We have a type-specifier-seq.
4277  TPA.Commit();
4278  }
4279  }
4280  } else {
4281  // Consume the ':'.
4282  ConsumeToken();
4283  }
4284 
4285  if (!PossibleBitfield) {
4286  SourceRange Range;
4287  BaseType = ParseTypeName(&Range);
4288 
4289  if (getLangOpts().CPlusPlus11) {
4290  Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
4291  } else if (!getLangOpts().ObjC2) {
4292  if (getLangOpts().CPlusPlus)
4293  Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range;
4294  else
4295  Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range;
4296  }
4297  }
4298  }
4299 
4300  // There are four options here. If we have 'friend enum foo;' then this is a
4301  // friend declaration, and cannot have an accompanying definition. If we have
4302  // 'enum foo;', then this is a forward declaration. If we have
4303  // 'enum foo {...' then this is a definition. Otherwise we have something
4304  // like 'enum foo xyz', a reference.
4305  //
4306  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
4307  // enum foo {..}; void bar() { enum foo; } <- new foo in bar.
4308  // enum foo {..}; void bar() { enum foo x; } <- use of old foo.
4309  //
4310  Sema::TagUseKind TUK;
4311  if (!AllowDeclaration) {
4312  TUK = Sema::TUK_Reference;
4313  } else if (Tok.is(tok::l_brace)) {
4314  if (DS.isFriendSpecified()) {
4315  Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
4316  << SourceRange(DS.getFriendSpecLoc());
4317  ConsumeBrace();
4318  SkipUntil(tok::r_brace, StopAtSemi);
4319  TUK = Sema::TUK_Friend;
4320  } else {
4321  TUK = Sema::TUK_Definition;
4322  }
4323  } else if (!isTypeSpecifier(DSC) &&
4324  (Tok.is(tok::semi) ||
4325  (Tok.isAtStartOfLine() &&
4326  !isValidAfterTypeSpecifier(CanBeBitfield)))) {
4328  if (Tok.isNot(tok::semi)) {
4329  // A semicolon was missing after this declaration. Diagnose and recover.
4330  ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4331  PP.EnterToken(Tok);
4332  Tok.setKind(tok::semi);
4333  }
4334  } else {
4335  TUK = Sema::TUK_Reference;
4336  }
4337 
4338  // If this is an elaborated type specifier, and we delayed
4339  // diagnostics before, just merge them into the current pool.
4340  if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
4341  diagsFromTag.redelay();
4342  }
4343 
4344  MultiTemplateParamsArg TParams;
4345  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
4346  TUK != Sema::TUK_Reference) {
4347  if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
4348  // Skip the rest of this declarator, up until the comma or semicolon.
4349  Diag(Tok, diag::err_enum_template);
4350  SkipUntil(tok::comma, StopAtSemi);
4351  return;
4352  }
4353 
4354  if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
4355  // Enumerations can't be explicitly instantiated.
4356  DS.SetTypeSpecError();
4357  Diag(StartLoc, diag::err_explicit_instantiation_enum);
4358  return;
4359  }
4360 
4361  assert(TemplateInfo.TemplateParams && "no template parameters");
4362  TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
4363  TemplateInfo.TemplateParams->size());
4364  }
4365 
4366  if (TUK == Sema::TUK_Reference)
4367  ProhibitAttributes(attrs);
4368 
4369  if (!Name && TUK != Sema::TUK_Definition) {
4370  Diag(Tok, diag::err_enumerator_unnamed_no_def);
4371 
4372  // Skip the rest of this declarator, up until the comma or semicolon.
4373  SkipUntil(tok::comma, StopAtSemi);
4374  return;
4375  }
4376 
4377  stripTypeAttributesOffDeclSpec(attrs, DS, TUK);
4378 
4379  Sema::SkipBodyInfo SkipBody;
4380  if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) &&
4381  NextToken().is(tok::identifier))
4382  SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
4383  NextToken().getIdentifierInfo(),
4384  NextToken().getLocation());
4385 
4386  bool Owned = false;
4387  bool IsDependent = false;
4388  const char *PrevSpec = nullptr;
4389  unsigned DiagID;
4390  Decl *TagDecl = Actions.ActOnTag(
4391  getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS, Name, NameLoc,
4392  attrs.getList(), AS, DS.getModulePrivateSpecLoc(), TParams, Owned,
4393  IsDependent, ScopedEnumKWLoc, IsScopedUsingClassTag, BaseType,
4394  DSC == DeclSpecContext::DSC_type_specifier,
4395  DSC == DeclSpecContext::DSC_template_param ||
4396  DSC == DeclSpecContext::DSC_template_type_arg,
4397  &SkipBody);
4398 
4399  if (SkipBody.ShouldSkip) {
4400  assert(TUK == Sema::TUK_Definition && "can only skip a definition");
4401 
4402  BalancedDelimiterTracker T(*this, tok::l_brace);
4403  T.consumeOpen();
4404  T.skipToEnd();
4405 
4406  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4407  NameLoc.isValid() ? NameLoc : StartLoc,
4408  PrevSpec, DiagID, TagDecl, Owned,
4409  Actions.getASTContext().getPrintingPolicy()))
4410  Diag(StartLoc, DiagID) << PrevSpec;
4411  return;
4412  }
4413 
4414  if (IsDependent) {
4415  // This enum has a dependent nested-name-specifier. Handle it as a
4416  // dependent tag.
4417  if (!Name) {
4418  DS.SetTypeSpecError();
4419  Diag(Tok, diag::err_expected_type_name_after_typename);
4420  return;
4421  }
4422 
4423  TypeResult Type = Actions.ActOnDependentTag(
4424  getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
4425  if (Type.isInvalid()) {
4426  DS.SetTypeSpecError();
4427  return;
4428  }
4429 
4430  if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
4431  NameLoc.isValid() ? NameLoc : StartLoc,
4432  PrevSpec, DiagID, Type.get(),
4433  Actions.getASTContext().getPrintingPolicy()))
4434  Diag(StartLoc, DiagID) << PrevSpec;
4435 
4436  return;
4437  }
4438 
4439  if (!TagDecl) {
4440  // The action failed to produce an enumeration tag. If this is a
4441  // definition, consume the entire definition.
4442  if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
4443  ConsumeBrace();
4444  SkipUntil(tok::r_brace, StopAtSemi);
4445  }
4446 
4447  DS.SetTypeSpecError();
4448  return;
4449  }
4450 
4451  if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
4452  Decl *D = SkipBody.CheckSameAsPrevious ? SkipBody.New : TagDecl;
4453  ParseEnumBody(StartLoc, D);
4454  if (SkipBody.CheckSameAsPrevious &&
4455  !Actions.ActOnDuplicateDefinition(DS, TagDecl, SkipBody)) {
4456  DS.SetTypeSpecError();
4457  return;
4458  }
4459  }
4460 
4461  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4462  NameLoc.isValid() ? NameLoc : StartLoc,
4463  PrevSpec, DiagID, TagDecl, Owned,
4464  Actions.getASTContext().getPrintingPolicy()))
4465  Diag(StartLoc, DiagID) << PrevSpec;
4466 }
4467 
4468 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
4469 /// enumerator-list:
4470 /// enumerator
4471 /// enumerator-list ',' enumerator
4472 /// enumerator:
4473 /// enumeration-constant attributes[opt]
4474 /// enumeration-constant attributes[opt] '=' constant-expression
4475 /// enumeration-constant:
4476 /// identifier
4477 ///
4478 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
4479  // Enter the scope of the enum body and start the definition.
4480  ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
4481  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
4482 
4483  BalancedDelimiterTracker T(*this, tok::l_brace);
4484  T.consumeOpen();
4485 
4486  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
4487  if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
4488  Diag(Tok, diag::err_empty_enum);
4489 
4490  SmallVector<Decl *, 32> EnumConstantDecls;
4491  SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
4492 
4493  Decl *LastEnumConstDecl = nullptr;
4494 
4495  // Parse the enumerator-list.
4496  while (Tok.isNot(tok::r_brace)) {
4497  // Parse enumerator. If failed, try skipping till the start of the next
4498  // enumerator definition.
4499  if (Tok.isNot(tok::identifier)) {
4500  Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
4501  if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
4502  TryConsumeToken(tok::comma))
4503  continue;
4504  break;
4505  }
4506  IdentifierInfo *Ident = Tok.getIdentifierInfo();
4507  SourceLocation IdentLoc = ConsumeToken();
4508 
4509  // If attributes exist after the enumerator, parse them.
4510  ParsedAttributesWithRange attrs(AttrFactory);
4511  MaybeParseGNUAttributes(attrs);
4512  ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
4513  if (standardAttributesAllowed() && isCXX11AttributeSpecifier()) {
4514  if (getLangOpts().CPlusPlus)
4515  Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
4516  ? diag::warn_cxx14_compat_ns_enum_attribute
4517  : diag::ext_ns_enum_attribute)
4518  << 1 /*enumerator*/;
4519  ParseCXX11Attributes(attrs);
4520  }
4521 
4522  SourceLocation EqualLoc;
4523  ExprResult AssignedVal;
4524  EnumAvailabilityDiags.emplace_back(*this);
4525 
4526  if (TryConsumeToken(tok::equal, EqualLoc)) {
4527  AssignedVal = ParseConstantExpression();
4528  if (AssignedVal.isInvalid())
4529  SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
4530  }
4531 
4532  // Install the enumerator constant into EnumDecl.
4533  Decl *EnumConstDecl = Actions.ActOnEnumConstant(
4534  getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident,
4535  attrs.getList(), EqualLoc, AssignedVal.get());
4536  EnumAvailabilityDiags.back().done();
4537 
4538  EnumConstantDecls.push_back(EnumConstDecl);
4539  LastEnumConstDecl = EnumConstDecl;
4540 
4541  if (Tok.is(tok::identifier)) {
4542  // We're missing a comma between enumerators.
4544  Diag(Loc, diag::err_enumerator_list_missing_comma)
4545  << FixItHint::CreateInsertion(Loc, ", ");
4546  continue;
4547  }
4548 
4549  // Emumerator definition must be finished, only comma or r_brace are
4550  // allowed here.
4551  SourceLocation CommaLoc;
4552  if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
4553  if (EqualLoc.isValid())
4554  Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
4555  << tok::comma;
4556  else
4557  Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
4558  if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
4559  if (TryConsumeToken(tok::comma, CommaLoc))
4560  continue;
4561  } else {
4562  break;
4563  }
4564  }
4565 
4566  // If comma is followed by r_brace, emit appropriate warning.
4567  if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
4568  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
4569  Diag(CommaLoc, getLangOpts().CPlusPlus ?
4570  diag::ext_enumerator_list_comma_cxx :
4571  diag::ext_enumerator_list_comma_c)
4572  << FixItHint::CreateRemoval(CommaLoc);
4573  else if (getLangOpts().CPlusPlus11)
4574  Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
4575  << FixItHint::CreateRemoval(CommaLoc);
4576  break;
4577  }
4578  }
4579 
4580  // Eat the }.
4581  T.consumeClose();
4582 
4583  // If attributes exist after the identifier list, parse them.
4584  ParsedAttributes attrs(AttrFactory);
4585  MaybeParseGNUAttributes(attrs);
4586 
4587  Actions.ActOnEnumBody(StartLoc, T.getRange(),
4588  EnumDecl, EnumConstantDecls,
4589  getCurScope(),
4590  attrs.getList());
4591 
4592  // Now handle enum constant availability diagnostics.
4593  assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
4594  for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
4596  EnumAvailabilityDiags[i].redelay();
4597  PD.complete(EnumConstantDecls[i]);
4598  }
4599 
4600  EnumScope.Exit();
4601  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getRange());
4602 
4603  // The next token must be valid after an enum definition. If not, a ';'
4604  // was probably forgotten.
4605  bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4606  if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
4607  ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4608  // Push this token back into the preprocessor and change our current token
4609  // to ';' so that the rest of the code recovers as though there were an
4610  // ';' after the definition.
4611  PP.EnterToken(Tok);
4612  Tok.setKind(tok::semi);
4613  }
4614 }
4615 
4616 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
4617 /// is definitely a type-specifier. Return false if it isn't part of a type
4618 /// specifier or if we're not sure.
4619 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
4620  switch (Tok.getKind()) {
4621  default: return false;
4622  // type-specifiers
4623  case tok::kw_short:
4624  case tok::kw_long:
4625  case tok::kw___int64:
4626  case tok::kw___int128:
4627  case tok::kw_signed:
4628  case tok::kw_unsigned:
4629  case tok::kw__Complex:
4630  case tok::kw__Imaginary:
4631  case tok::kw_void:
4632  case tok::kw_char:
4633  case tok::kw_wchar_t:
4634  case tok::kw_char8_t:
4635  case tok::kw_char16_t:
4636  case tok::kw_char32_t:
4637  case tok::kw_int:
4638  case tok::kw_half:
4639  case tok::kw_float:
4640  case tok::kw_double:
4641  case tok::kw__Accum:
4642  case tok::kw__Fract:
4643  case tok::kw__Float16:
4644  case tok::kw___float128:
4645  case tok::kw_bool:
4646  case tok::kw__Bool:
4647  case tok::kw__Decimal32:
4648  case tok::kw__Decimal64:
4649  case tok::kw__Decimal128:
4650  case tok::kw___vector:
4651 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4652 #include "clang/Basic/OpenCLImageTypes.def"
4653 
4654  // struct-or-union-specifier (C99) or class-specifier (C++)
4655  case tok::kw_class:
4656  case tok::kw_struct:
4657  case tok::kw___interface:
4658  case tok::kw_union:
4659  // enum-specifier
4660  case tok::kw_enum:
4661 
4662  // typedef-name
4663  case tok::annot_typename:
4664  return true;
4665  }
4666 }
4667 
4668 /// isTypeSpecifierQualifier - Return true if the current token could be the
4669 /// start of a specifier-qualifier-list.
4670 bool Parser::isTypeSpecifierQualifier() {
4671  switch (Tok.getKind()) {
4672  default: return false;
4673 
4674  case tok::identifier: // foo::bar
4675  if (TryAltiVecVectorToken())
4676  return true;
4677  // Fall through.
4678  case tok::kw_typename: // typename T::type
4679  // Annotate typenames and C++ scope specifiers. If we get one, just
4680  // recurse to handle whatever we get.
4682  return true;
4683  if (Tok.is(tok::identifier))
4684  return false;
4685  return isTypeSpecifierQualifier();
4686 
4687  case tok::coloncolon: // ::foo::bar
4688  if (NextToken().is(tok::kw_new) || // ::new
4689  NextToken().is(tok::kw_delete)) // ::delete
4690  return false;
4691 
4693  return true;
4694  return isTypeSpecifierQualifier();
4695 
4696  // GNU attributes support.
4697  case tok::kw___attribute:
4698  // GNU typeof support.
4699  case tok::kw_typeof:
4700 
4701  // type-specifiers
4702  case tok::kw_short:
4703  case tok::kw_long:
4704  case tok::kw___int64:
4705  case tok::kw___int128:
4706  case tok::kw_signed:
4707  case tok::kw_unsigned:
4708  case tok::kw__Complex:
4709  case tok::kw__Imaginary:
4710  case tok::kw_void:
4711  case tok::kw_char:
4712  case tok::kw_wchar_t:
4713  case tok::kw_char8_t:
4714  case tok::kw_char16_t:
4715  case tok::kw_char32_t:
4716  case tok::kw_int:
4717  case tok::kw_half:
4718  case tok::kw_float:
4719  case tok::kw_double:
4720  case tok::kw__Accum:
4721  case tok::kw__Fract:
4722  case tok::kw__Float16:
4723  case tok::kw___float128:
4724  case tok::kw_bool:
4725  case tok::kw__Bool:
4726  case tok::kw__Decimal32:
4727  case tok::kw__Decimal64:
4728  case tok::kw__Decimal128:
4729  case tok::kw___vector:
4730 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4731 #include "clang/Basic/OpenCLImageTypes.def"
4732 
4733  // struct-or-union-specifier (C99) or class-specifier (C++)
4734  case tok::kw_class:
4735  case tok::kw_struct:
4736  case tok::kw___interface:
4737  case tok::kw_union:
4738  // enum-specifier
4739  case tok::kw_enum:
4740 
4741  // type-qualifier
4742  case tok::kw_const:
4743  case tok::kw_volatile:
4744  case tok::kw_restrict:
4745  case tok::kw__Sat:
4746 
4747  // Debugger support.
4748  case tok::kw___unknown_anytype:
4749 
4750  // typedef-name
4751  case tok::annot_typename:
4752  return true;
4753 
4754  // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4755  case tok::less:
4756  return getLangOpts().ObjC1;
4757 
4758  case tok::kw___cdecl:
4759  case tok::kw___stdcall:
4760  case tok::kw___fastcall:
4761  case tok::kw___thiscall:
4762  case tok::kw___regcall:
4763  case tok::kw___vectorcall:
4764  case tok::kw___w64:
4765  case tok::kw___ptr64:
4766  case tok::kw___ptr32:
4767  case tok::kw___pascal:
4768  case tok::kw___unaligned:
4769 
4770  case tok::kw__Nonnull:
4771  case tok::kw__Nullable:
4772  case tok::kw__Null_unspecified:
4773 
4774  case tok::kw___kindof:
4775 
4776  case tok::kw___private:
4777  case tok::kw___local:
4778  case tok::kw___global:
4779  case tok::kw___constant:
4780  case tok::kw___generic:
4781  case tok::kw___read_only:
4782  case tok::kw___read_write:
4783  case tok::kw___write_only:
4784 
4785  return true;
4786 
4787  // C11 _Atomic
4788  case tok::kw__Atomic:
4789  return true;
4790  }
4791 }
4792 
4793 /// isDeclarationSpecifier() - Return true if the current token is part of a
4794 /// declaration specifier.
4795 ///
4796 /// \param DisambiguatingWithExpression True to indicate that the purpose of
4797 /// this check is to disambiguate between an expression and a declaration.
4798 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
4799  switch (Tok.getKind()) {
4800  default: return false;
4801 
4802  case tok::kw_pipe:
4803  return getLangOpts().OpenCL && (getLangOpts().OpenCLVersion >= 200);
4804 
4805  case tok::identifier: // foo::bar
4806  // Unfortunate hack to support "Class.factoryMethod" notation.
4807  if (getLangOpts().ObjC1 && NextToken().is(tok::period))
4808  return false;
4809  if (TryAltiVecVectorToken())
4810  return true;
4811  // Fall through.
4812  case tok::kw_decltype: // decltype(T())::type
4813  case tok::kw_typename: // typename T::type
4814  // Annotate typenames and C++ scope specifiers. If we get one, just
4815  // recurse to handle whatever we get.
4817  return true;
4818  if (Tok.is(tok::identifier))
4819  return false;
4820 
4821  // If we're in Objective-C and we have an Objective-C class type followed
4822  // by an identifier and then either ':' or ']', in a place where an
4823  // expression is permitted, then this is probably a class message send
4824  // missing the initial '['. In this case, we won't consider this to be
4825  // the start of a declaration.
4826  if (DisambiguatingWithExpression &&
4827  isStartOfObjCClassMessageMissingOpenBracket())
4828  return false;
4829 
4830  return isDeclarationSpecifier();
4831 
4832  case tok::coloncolon: // ::foo::bar
4833  if (NextToken().is(tok::kw_new) || // ::new
4834  NextToken().is(tok::kw_delete)) // ::delete
4835  return false;
4836 
4837  // Annotate typenames and C++ scope specifiers. If we get one, just
4838  // recurse to handle whatever we get.
4840  return true;
4841  return isDeclarationSpecifier();
4842 
4843  // storage-class-specifier
4844  case tok::kw_typedef:
4845  case tok::kw_extern:
4846  case tok::kw___private_extern__:
4847  case tok::kw_static:
4848  case tok::kw_auto:
4849  case tok::kw___auto_type:
4850  case tok::kw_register:
4851  case tok::kw___thread:
4852  case tok::kw_thread_local:
4853  case tok::kw__Thread_local:
4854 
4855  // Modules
4856  case tok::kw___module_private__:
4857 
4858  // Debugger support
4859  case tok::kw___unknown_anytype:
4860 
4861  // type-specifiers
4862  case tok::kw_short:
4863  case tok::kw_long:
4864  case tok::kw___int64:
4865  case tok::kw___int128:
4866  case tok::kw_signed:
4867  case tok::kw_unsigned:
4868  case tok::kw__Complex:
4869  case tok::kw__Imaginary:
4870  case tok::kw_void:
4871  case tok::kw_char:
4872  case tok::kw_wchar_t:
4873  case tok::kw_char8_t:
4874  case tok::kw_char16_t:
4875  case tok::kw_char32_t:
4876 
4877  case tok::kw_int:
4878  case tok::kw_half:
4879  case tok::kw_float:
4880  case tok::kw_double:
4881  case tok::kw__Accum:
4882  case tok::kw__Fract:
4883  case tok::kw__Float16:
4884  case tok::kw___float128:
4885  case tok::kw_bool:
4886  case tok::kw__Bool:
4887  case tok::kw__Decimal32:
4888  case tok::kw__Decimal64:
4889  case tok::kw__Decimal128:
4890  case tok::kw___vector:
4891 
4892  // struct-or-union-specifier (C99) or class-specifier (C++)
4893  case tok::kw_class:
4894  case tok::kw_struct:
4895  case tok::kw_union:
4896  case tok::kw___interface:
4897  // enum-specifier
4898  case tok::kw_enum:
4899 
4900  // type-qualifier
4901  case tok::kw_const:
4902  case tok::kw_volatile:
4903  case tok::kw_restrict:
4904  case tok::kw__Sat:
4905 
4906  // function-specifier
4907  case tok::kw_inline:
4908  case tok::kw_virtual:
4909  case tok::kw_explicit:
4910  case tok::kw__Noreturn:
4911 
4912  // alignment-specifier
4913  case tok::kw__Alignas:
4914 
4915  // friend keyword.
4916  case tok::kw_friend:
4917 
4918  // static_assert-declaration
4919  case tok::kw__Static_assert:
4920 
4921  // GNU typeof support.
4922  case tok::kw_typeof:
4923 
4924  // GNU attributes.
4925  case tok::kw___attribute:
4926 
4927  // C++11 decltype and constexpr.
4928  case tok::annot_decltype:
4929  case tok::kw_constexpr:
4930 
4931  // C11 _Atomic
4932  case tok::kw__Atomic:
4933  return true;
4934 
4935  // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4936  case tok::less:
4937  return getLangOpts().ObjC1;
4938 
4939  // typedef-name
4940  case tok::annot_typename:
4941  return !DisambiguatingWithExpression ||
4942  !isStartOfObjCClassMessageMissingOpenBracket();
4943 
4944  case tok::kw___declspec:
4945  case tok::kw___cdecl:
4946  case tok::kw___stdcall:
4947  case tok::kw___fastcall:
4948  case tok::kw___thiscall:
4949  case tok::kw___regcall:
4950  case tok::kw___vectorcall:
4951  case tok::kw___w64:
4952  case tok::kw___sptr:
4953  case tok::kw___uptr:
4954  case tok::kw___ptr64:
4955  case tok::kw___ptr32:
4956  case tok::kw___forceinline:
4957  case tok::kw___pascal:
4958  case tok::kw___unaligned:
4959 
4960  case tok::kw__Nonnull:
4961  case tok::kw__Nullable:
4962  case tok::kw__Null_unspecified:
4963 
4964  case tok::kw___kindof:
4965 
4966  case tok::kw___private:
4967  case tok::kw___local:
4968  case tok::kw___global:
4969  case tok::kw___constant:
4970  case tok::kw___generic:
4971  case tok::kw___read_only:
4972  case tok::kw___read_write:
4973  case tok::kw___write_only:
4974 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4975 #include "clang/Basic/OpenCLImageTypes.def"
4976 
4977  return true;
4978  }
4979 }
4980 
4981 bool Parser::isConstructorDeclarator(bool IsUnqualified, bool DeductionGuide) {
4982  TentativeParsingAction TPA(*this);
4983 
4984  // Parse the C++ scope specifier.
4985  CXXScopeSpec SS;
4986  if (ParseOptionalCXXScopeSpecifier(SS, nullptr,
4987  /*EnteringContext=*/true)) {
4988  TPA.Revert();
4989  return false;
4990  }
4991 
4992  // Parse the constructor name.
4993  if (Tok.is(tok::identifier)) {
4994  // We already know that we have a constructor name; just consume
4995  // the token.
4996  ConsumeToken();
4997  } else if (Tok.is(tok::annot_template_id)) {
4998  ConsumeAnnotationToken();
4999  } else {
5000  TPA.Revert();
5001  return false;
5002  }
5003 
5004  // There may be attributes here, appertaining to the constructor name or type
5005  // we just stepped past.
5006  SkipCXX11Attributes();
5007 
5008  // Current class name must be followed by a left parenthesis.
5009  if (Tok.isNot(tok::l_paren)) {
5010  TPA.Revert();
5011  return false;
5012  }
5013  ConsumeParen();
5014 
5015  // A right parenthesis, or ellipsis followed by a right parenthesis signals
5016  // that we have a constructor.
5017  if (Tok.is(tok::r_paren) ||
5018  (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
5019  TPA.Revert();
5020  return true;
5021  }
5022 
5023  // A C++11 attribute here signals that we have a constructor, and is an
5024  // attribute on the first constructor parameter.
5025  if (getLangOpts().CPlusPlus11 &&
5026  isCXX11AttributeSpecifier(/*Disambiguate*/ false,
5027  /*OuterMightBeMessageSend*/ true)) {
5028  TPA.Revert();
5029  return true;
5030  }
5031 
5032  // If we need to, enter the specified scope.
5033  DeclaratorScopeObj DeclScopeObj(*this, SS);
5034  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
5035  DeclScopeObj.EnterDeclaratorScope();
5036 
5037  // Optionally skip Microsoft attributes.
5038  ParsedAttributes Attrs(AttrFactory);
5039  MaybeParseMicrosoftAttributes(Attrs);
5040 
5041  // Check whether the next token(s) are part of a declaration
5042  // specifier, in which case we have the start of a parameter and,
5043  // therefore, we know that this is a constructor.
5044  bool IsConstructor = false;
5045  if (isDeclarationSpecifier())
5046  IsConstructor = true;
5047  else if (Tok.is(tok::identifier) ||
5048  (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
5049  // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
5050  // This might be a parenthesized member name, but is more likely to
5051  // be a constructor declaration with an invalid argument type. Keep
5052  // looking.
5053  if (Tok.is(tok::annot_cxxscope))
5054  ConsumeAnnotationToken();
5055  ConsumeToken();
5056 
5057  // If this is not a constructor, we must be parsing a declarator,
5058  // which must have one of the following syntactic forms (see the
5059  // grammar extract at the start of ParseDirectDeclarator):
5060  switch (Tok.getKind()) {
5061  case tok::l_paren:
5062  // C(X ( int));
5063  case tok::l_square:
5064  // C(X [ 5]);
5065  // C(X [ [attribute]]);
5066  case tok::coloncolon:
5067  // C(X :: Y);
5068  // C(X :: *p);
5069  // Assume this isn't a constructor, rather than assuming it's a
5070  // constructor with an unnamed parameter of an ill-formed type.
5071  break;
5072 
5073  case tok::r_paren:
5074  // C(X )
5075 
5076  // Skip past the right-paren and any following attributes to get to
5077  // the function body or trailing-return-type.
5078  ConsumeParen();
5079  SkipCXX11Attributes();
5080 
5081  if (DeductionGuide) {
5082  // C(X) -> ... is a deduction guide.
5083  IsConstructor = Tok.is(tok::arrow);
5084  break;
5085  }
5086  if (Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
5087  // Assume these were meant to be constructors:
5088  // C(X) : (the name of a bit-field cannot be parenthesized).
5089  // C(X) try (this is otherwise ill-formed).
5090  IsConstructor = true;
5091  }
5092  if (Tok.is(tok::semi) || Tok.is(tok::l_brace)) {
5093  // If we have a constructor name within the class definition,
5094  // assume these were meant to be constructors:
5095  // C(X) {
5096  // C(X) ;
5097  // ... because otherwise we would be declaring a non-static data
5098  // member that is ill-formed because it's of the same type as its
5099  // surrounding class.
5100  //
5101  // FIXME: We can actually do this whether or not the name is qualified,
5102  // because if it is qualified in this context it must be being used as
5103  // a constructor name.
5104  // currently, so we're somewhat conservative here.
5105  IsConstructor = IsUnqualified;
5106  }
5107  break;
5108 
5109  default:
5110  IsConstructor = true;
5111  break;
5112  }
5113  }
5114 
5115  TPA.Revert();
5116  return IsConstructor;
5117 }
5118 
5119 /// ParseTypeQualifierListOpt
5120 /// type-qualifier-list: [C99 6.7.5]
5121 /// type-qualifier
5122 /// [vendor] attributes
5123 /// [ only if AttrReqs & AR_VendorAttributesParsed ]
5124 /// type-qualifier-list type-qualifier
5125 /// [vendor] type-qualifier-list attributes
5126 /// [ only if AttrReqs & AR_VendorAttributesParsed ]
5127 /// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq
5128 /// [ only if AttReqs & AR_CXX11AttributesParsed ]
5129 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
5130 /// AttrRequirements bitmask values.
5131 void Parser::ParseTypeQualifierListOpt(
5132  DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed,
5133  bool IdentifierRequired,
5134  Optional<llvm::function_ref<void()>> CodeCompletionHandler) {
5135  if (standardAttributesAllowed() && (AttrReqs & AR_CXX11AttributesParsed) &&
5136  isCXX11AttributeSpecifier()) {
5137  ParsedAttributesWithRange attrs(AttrFactory);
5138  ParseCXX11Attributes(attrs);
5139  DS.takeAttributesFrom(attrs);
5140  }
5141 
5142  SourceLocation EndLoc;
5143 
5144  while (1) {
5145  bool isInvalid = false;
5146  const char *PrevSpec = nullptr;
5147  unsigned DiagID = 0;
5148  SourceLocation Loc = Tok.getLocation();
5149 
5150  switch (Tok.getKind()) {
5151  case tok::code_completion:
5153  (*CodeCompletionHandler)();
5154  else
5155  Actions.CodeCompleteTypeQualifiers(DS);
5156  return cutOffParsing();
5157 
5158  case tok::kw_const:
5159  isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID,
5160  getLangOpts());
5161  break;
5162  case tok::kw_volatile:
5163  isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
5164  getLangOpts());
5165  break;
5166  case tok::kw_restrict:
5167  isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
5168  getLangOpts());
5169  break;
5170  case tok::kw__Atomic:
5171  if (!AtomicAllowed)
5172  goto DoneWithTypeQuals;
5173  isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
5174  getLangOpts());
5175  break;
5176 
5177  // OpenCL qualifiers:
5178  case tok::kw___private:
5179  case tok::kw___global:
5180  case tok::kw___local:
5181  case tok::kw___constant:
5182  case tok::kw___generic:
5183  case tok::kw___read_only:
5184  case tok::kw___write_only:
5185  case tok::kw___read_write:
5186  ParseOpenCLQualifiers(DS.getAttributes());
5187  break;
5188 
5189  case tok::kw___unaligned:
5190  isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
5191  getLangOpts());
5192  break;
5193  case tok::kw___uptr:
5194  // GNU libc headers in C mode use '__uptr' as an identifier which conflicts
5195  // with the MS modifier keyword.
5196  if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
5197  IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
5198  if (TryKeywordIdentFallback(false))
5199  continue;
5200  }
5201  LLVM_FALLTHROUGH;
5202  case tok::kw___sptr:
5203  case tok::kw___w64:
5204  case tok::kw___ptr64:
5205  case tok::kw___ptr32:
5206  case tok::kw___cdecl:
5207  case tok::kw___stdcall:
5208  case tok::kw___fastcall:
5209  case tok::kw___thiscall:
5210  case tok::kw___regcall:
5211  case tok::kw___vectorcall:
5212  if (AttrReqs & AR_DeclspecAttributesParsed) {
5213  ParseMicrosoftTypeAttributes(DS.getAttributes());
5214  continue;
5215  }
5216  goto DoneWithTypeQuals;
5217  case tok::kw___pascal:
5218  if (AttrReqs & AR_VendorAttributesParsed) {
5219  ParseBorlandTypeAttributes(DS.getAttributes());
5220  continue;
5221  }
5222  goto DoneWithTypeQuals;
5223 
5224  // Nullability type specifiers.
5225  case tok::kw__Nonnull:
5226  case tok::kw__Nullable:
5227  case tok::kw__Null_unspecified:
5228  ParseNullabilityTypeSpecifiers(DS.getAttributes());
5229  continue;
5230 
5231  // Objective-C 'kindof' types.
5232  case tok::kw___kindof:
5233  DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
5234  nullptr, 0, AttributeList::AS_Keyword);
5235  (void)ConsumeToken();
5236  continue;
5237 
5238  case tok::kw___attribute:
5239  if (AttrReqs & AR_GNUAttributesParsedAndRejected)
5240  // When GNU attributes are expressly forbidden, diagnose their usage.
5241  Diag(Tok, diag::err_attributes_not_allowed);
5242 
5243  // Parse the attributes even if they are rejected to ensure that error
5244  // recovery is graceful.
5245  if (AttrReqs & AR_GNUAttributesParsed ||
5246  AttrReqs & AR_GNUAttributesParsedAndRejected) {
5247  ParseGNUAttributes(DS.getAttributes());
5248  continue; // do *not* consume the next token!
5249  }
5250  // otherwise, FALL THROUGH!
5251  LLVM_FALLTHROUGH;
5252  default:
5253  DoneWithTypeQuals:
5254  // If this is not a type-qualifier token, we're done reading type
5255  // qualifiers. First verify that DeclSpec's are consistent.
5256  DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
5257  if (EndLoc.isValid())
5258  DS.SetRangeEnd(EndLoc);
5259  return;
5260  }
5261 
5262  // If the specifier combination wasn't legal, issue a diagnostic.
5263  if (isInvalid) {
5264  assert(PrevSpec && "Method did not return previous specifier!");
5265  Diag(Tok, DiagID) << PrevSpec;
5266  }
5267  EndLoc = ConsumeToken();
5268  }
5269 }
5270 
5271 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
5272 ///
5273 void Parser::ParseDeclarator(Declarator &D) {
5274  /// This implements the 'declarator' production in the C grammar, then checks
5275  /// for well-formedness and issues diagnostics.
5276  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5277 }
5278 
5280  DeclaratorContext TheContext) {
5281  if (Kind == tok::star || Kind == tok::caret)
5282  return true;
5283 
5284  if ((Kind == tok::kw_pipe) && Lang.OpenCL && (Lang.OpenCLVersion >= 200))
5285  return true;
5286 
5287  if (!Lang.CPlusPlus)
5288  return false;
5289 
5290  if (Kind == tok::amp)
5291  return true;
5292 
5293  // We parse rvalue refs in C++03, because otherwise the errors are scary.
5294  // But we must not parse them in conversion-type-ids and new-type-ids, since
5295  // those can be legitimately followed by a && operator.
5296  // (The same thing can in theory happen after a trailing-return-type, but
5297  // since those are a C++11 feature, there is no rejects-valid issue there.)
5298  if (Kind == tok::ampamp)
5299  return Lang.CPlusPlus11 ||
5300  (TheContext != DeclaratorContext::ConversionIdContext &&
5301  TheContext != DeclaratorContext::CXXNewContext);
5302 
5303  return false;
5304 }
5305 
5306 // Indicates whether the given declarator is a pipe declarator.
5307 static bool isPipeDeclerator(const Declarator &D) {
5308  const unsigned NumTypes = D.getNumTypeObjects();
5309 
5310  for (unsigned Idx = 0; Idx != NumTypes; ++Idx)
5312  return true;
5313 
5314  return false;
5315 }
5316 
5317 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
5318 /// is parsed by the function passed to it. Pass null, and the direct-declarator
5319 /// isn't parsed at all, making this function effectively parse the C++
5320 /// ptr-operator production.
5321 ///
5322 /// If the grammar of this construct is extended, matching changes must also be
5323 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
5324 /// isConstructorDeclarator.
5325 ///
5326 /// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
5327 /// [C] pointer[opt] direct-declarator
5328 /// [C++] direct-declarator
5329 /// [C++] ptr-operator declarator
5330 ///
5331 /// pointer: [C99 6.7.5]
5332 /// '*' type-qualifier-list[opt]
5333 /// '*' type-qualifier-list[opt] pointer
5334 ///
5335 /// ptr-operator:
5336 /// '*' cv-qualifier-seq[opt]
5337 /// '&'
5338 /// [C++0x] '&&'
5339 /// [GNU] '&' restrict[opt] attributes[opt]
5340 /// [GNU?] '&&' restrict[opt] attributes[opt]
5341 /// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
5342 void Parser::ParseDeclaratorInternal(Declarator &D,
5343  DirectDeclParseFunction DirectDeclParser) {
5344  if (Diags.hasAllExtensionsSilenced())
5345  D.setExtension();
5346 
5347  // C++ member pointers start with a '::' or a nested-name.
5348  // Member pointers get special handling, since there's no place for the
5349  // scope spec in the generic path below.
5350  if (getLangOpts().CPlusPlus &&
5351  (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) ||
5352  (Tok.is(tok::identifier) &&
5353  (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
5354  Tok.is(tok::annot_cxxscope))) {
5355  bool EnteringContext =
5358  CXXScopeSpec SS;
5359  ParseOptionalCXXScopeSpecifier(SS, nullptr, EnteringContext);
5360 
5361  if (SS.isNotEmpty()) {
5362  if (Tok.isNot(tok::star)) {
5363  // The scope spec really belongs to the direct-declarator.
5364  if (D.mayHaveIdentifier())
5365  D.getCXXScopeSpec() = SS;
5366  else
5367  AnnotateScopeToken(SS, true);
5368 
5369  if (DirectDeclParser)
5370  (this->*DirectDeclParser)(D);
5371  return;
5372  }
5373 
5374  SourceLocation Loc = ConsumeToken();
5375  D.SetRangeEnd(Loc);
5376  DeclSpec DS(AttrFactory);
5377  ParseTypeQualifierListOpt(DS);
5378  D.ExtendWithDeclSpec(DS);
5379 
5380  // Recurse to parse whatever is left.
5381  ParseDeclaratorInternal(D, DirectDeclParser);
5382 
5383  // Sema will have to catch (syntactically invalid) pointers into global
5384  // scope. It has to catch pointers into namespace scope anyway.
5386  DS.getLocEnd()),
5387  DS.getAttributes(),
5388  /* Don't replace range end. */SourceLocation());
5389  return;
5390  }
5391  }
5392 
5393  tok::TokenKind Kind = Tok.getKind();
5394 
5395  if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclerator(D)) {
5396  DeclSpec DS(AttrFactory);
5397  ParseTypeQualifierListOpt(DS);
5398 
5399  D.AddTypeInfo(
5401  DS.getAttributes(), SourceLocation());
5402  }
5403 
5404  // Not a pointer, C++ reference, or block.
5405  if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
5406  if (DirectDeclParser)
5407  (this->*DirectDeclParser)(D);
5408  return;
5409  }
5410 
5411  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
5412  // '&&' -> rvalue reference
5413  SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&.
5414  D.SetRangeEnd(Loc);
5415 
5416  if (Kind == tok::star || Kind == tok::caret) {
5417  // Is a pointer.
5418  DeclSpec DS(AttrFactory);
5419 
5420  // GNU attributes are not allowed here in a new-type-id, but Declspec and
5421  // C++11 attributes are allowed.
5422  unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
5424  ? AR_GNUAttributesParsed
5425  : AR_GNUAttributesParsedAndRejected);
5426  ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
5427  D.ExtendWithDeclSpec(DS);
5428 
5429  // Recursively parse the declarator.
5430  ParseDeclaratorInternal(D, DirectDeclParser);
5431  if (Kind == tok::star)
5432  // Remember that we parsed a pointer type, and remember the type-quals.
5434  DS.getConstSpecLoc(),
5435  DS.getVolatileSpecLoc(),
5436  DS.getRestrictSpecLoc(),
5437  DS.getAtomicSpecLoc(),
5438  DS.getUnalignedSpecLoc()),
5439  DS.getAttributes(),
5440  SourceLocation());
5441  else
5442  // Remember that we parsed a Block type, and remember the type-quals.
5444  Loc),
5445  DS.getAttributes(),
5446  SourceLocation());
5447  } else {
5448  // Is a reference
5449  DeclSpec DS(AttrFactory);
5450 
5451  // Complain about rvalue references in C++03, but then go on and build
5452  // the declarator.
5453  if (Kind == tok::ampamp)
5454  Diag(Loc, getLangOpts().CPlusPlus11 ?
5455  diag::warn_cxx98_compat_rvalue_reference :
5456  diag::ext_rvalue_reference);
5457 
5458  // GNU-style and C++11 attributes are allowed here, as is restrict.
5459  ParseTypeQualifierListOpt(DS);
5460  D.ExtendWithDeclSpec(DS);
5461 
5462  // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
5463  // cv-qualifiers are introduced through the use of a typedef or of a
5464  // template type argument, in which case the cv-qualifiers are ignored.
5467  Diag(DS.getConstSpecLoc(),
5468  diag::err_invalid_reference_qualifier_application) << "const";
5470  Diag(DS.getVolatileSpecLoc(),
5471  diag::err_invalid_reference_qualifier_application) << "volatile";
5472  // 'restrict' is permitted as an extension.
5474  Diag(DS.getAtomicSpecLoc(),
5475  diag::err_invalid_reference_qualifier_application) << "_Atomic";
5476  }
5477 
5478  // Recursively parse the declarator.
5479  ParseDeclaratorInternal(D, DirectDeclParser);
5480 
5481  if (D.getNumTypeObjects() > 0) {
5482  // C++ [dcl.ref]p4: There shall be no references to references.
5483  DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
5484  if (InnerChunk.Kind == DeclaratorChunk::Reference) {
5485  if (const IdentifierInfo *II = D.getIdentifier())
5486  Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5487  << II;
5488  else
5489  Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5490  << "type name";
5491 
5492  // Once we've complained about the reference-to-reference, we
5493  // can go ahead and build the (technically ill-formed)
5494  // declarator: reference collapsing will take care of it.
5495  }
5496  }
5497 
5498  // Remember that we parsed a reference type.
5500  Kind == tok::amp),
5501  DS.getAttributes(),
5502  SourceLocation());
5503  }
5504 }
5505 
5506 // When correcting from misplaced brackets before the identifier, the location
5507 // is saved inside the declarator so that other diagnostic messages can use
5508 // them. This extracts and returns that location, or returns the provided
5509 // location if a stored location does not exist.
5511  SourceLocation Loc) {
5512  if (D.getName().StartLocation.isInvalid() &&
5513  D.getName().EndLocation.isValid())
5514  return D.getName().EndLocation;
5515 
5516  return Loc;
5517 }
5518 
5519 /// ParseDirectDeclarator
5520 /// direct-declarator: [C99 6.7.5]
5521 /// [C99] identifier
5522 /// '(' declarator ')'
5523 /// [GNU] '(' attributes declarator ')'
5524 /// [C90] direct-declarator '[' constant-expression[opt] ']'
5525 /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
5526 /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
5527 /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
5528 /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
5529 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
5530 /// attribute-specifier-seq[opt]
5531 /// direct-declarator '(' parameter-type-list ')'
5532 /// direct-declarator '(' identifier-list[opt] ')'
5533 /// [GNU] direct-declarator '(' parameter-forward-declarations
5534 /// parameter-type-list[opt] ')'
5535 /// [C++] direct-declarator '(' parameter-declaration-clause ')'
5536 /// cv-qualifier-seq[opt] exception-specification[opt]
5537 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
5538 /// attribute-specifier-seq[opt] cv-qualifier-seq[opt]
5539 /// ref-qualifier[opt] exception-specification[opt]
5540 /// [C++] declarator-id
5541 /// [C++11] declarator-id attribute-specifier-seq[opt]
5542 ///
5543 /// declarator-id: [C++ 8]
5544 /// '...'[opt] id-expression
5545 /// '::'[opt] nested-name-specifier[opt] type-name
5546 ///
5547 /// id-expression: [C++ 5.1]
5548 /// unqualified-id
5549 /// qualified-id
5550 ///
5551 /// unqualified-id: [C++ 5.1]
5552 /// identifier
5553 /// operator-function-id
5554 /// conversion-function-id
5555 /// '~' class-name
5556 /// template-id
5557 ///
5558 /// C++17 adds the following, which we also handle here:
5559 ///
5560 /// simple-declaration:
5561 /// <decl-spec> '[' identifier-list ']' brace-or-equal-initializer ';'
5562 ///
5563 /// Note, any additional constructs added here may need corresponding changes
5564 /// in isConstructorDeclarator.
5565 void Parser::ParseDirectDeclarator(Declarator &D) {
5566  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
5567 
5568  if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
5569  // This might be a C++17 structured binding.
5570  if (Tok.is(tok::l_square) && !D.mayOmitIdentifier() &&
5571  D.getCXXScopeSpec().isEmpty())
5572  return ParseDecompositionDeclarator(D);
5573 
5574  // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
5575  // this context it is a bitfield. Also in range-based for statement colon
5576  // may delimit for-range-declaration.
5580  getLangOpts().CPlusPlus11));
5581 
5582  // ParseDeclaratorInternal might already have parsed the scope.
5583  if (D.getCXXScopeSpec().isEmpty()) {
5584  bool EnteringContext =
5587  ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), nullptr,
5588  EnteringContext);
5589  }
5590 
5591  if (D.getCXXScopeSpec().isValid()) {
5592  if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
5593  D.getCXXScopeSpec()))
5594  // Change the declaration context for name lookup, until this function
5595  // is exited (and the declarator has been parsed).
5596  DeclScopeObj.EnterDeclaratorScope();
5597  else if (getObjCDeclContext()) {
5598  // Ensure that we don't interpret the next token as an identifier when
5599  // dealing with declarations in an Objective-C container.
5600  D.SetIdentifier(nullptr, Tok.getLocation());
5601  D.setInvalidType(true);
5602  ConsumeToken();
5603  goto PastIdentifier;
5604  }
5605  }
5606 
5607  // C++0x [dcl.fct]p14:
5608  // There is a syntactic ambiguity when an ellipsis occurs at the end of a
5609  // parameter-declaration-clause without a preceding comma. In this case,
5610  // the ellipsis is parsed as part of the abstract-declarator if the type
5611  // of the parameter either names a template parameter pack that has not
5612  // been expanded or contains auto; otherwise, it is parsed as part of the
5613  // parameter-declaration-clause.
5614  if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
5618  NextToken().is(tok::r_paren) &&
5619  !D.hasGroupingParens() &&
5620  !Actions.containsUnexpandedParameterPacks(D) &&
5621  D.getDeclSpec().getTypeSpecType() != TST_auto)) {
5622  SourceLocation EllipsisLoc = ConsumeToken();
5623  if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
5624  // The ellipsis was put in the wrong place. Recover, and explain to
5625  // the user what they should have done.
5626  ParseDeclarator(D);
5627  if (EllipsisLoc.isValid())
5628  DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5629  return;
5630  } else
5631  D.setEllipsisLoc(EllipsisLoc);
5632 
5633  // The ellipsis can't be followed by a parenthesized declarator. We
5634  // check for that in ParseParenDeclarator, after we have disambiguated
5635  // the l_paren token.
5636  }
5637 
5638  if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id,
5639  tok::tilde)) {
5640  // We found something that indicates the start of an unqualified-id.
5641  // Parse that unqualified-id.
5642  bool AllowConstructorName;
5643  bool AllowDeductionGuide;
5644  if (D.getDeclSpec().hasTypeSpecifier()) {
5645  AllowConstructorName = false;
5646  AllowDeductionGuide = false;
5647  } else if (D.getCXXScopeSpec().isSet()) {
5648  AllowConstructorName =
5651  AllowDeductionGuide = false;
5652  } else {
5653  AllowConstructorName =
5655  AllowDeductionGuide =
5658  }
5659 
5660  bool HadScope = D.getCXXScopeSpec().isValid();
5662  /*EnteringContext=*/true,
5663  /*AllowDestructorName=*/true, AllowConstructorName,
5664  AllowDeductionGuide, nullptr, nullptr,
5665  D.getName()) ||
5666  // Once we're past the identifier, if the scope was bad, mark the
5667  // whole declarator bad.
5668  D.getCXXScopeSpec().isInvalid()) {
5669  D.SetIdentifier(nullptr, Tok.getLocation());
5670  D.setInvalidType(true);
5671  } else {
5672  // ParseUnqualifiedId might have parsed a scope specifier during error
5673  // recovery. If it did so, enter that scope.
5674  if (!HadScope && D.getCXXScopeSpec().isValid() &&
5675  Actions.ShouldEnterDeclaratorScope(getCurScope(),
5676  D.getCXXScopeSpec()))
5677  DeclScopeObj.EnterDeclaratorScope();
5678 
5679  // Parsed the unqualified-id; update range information and move along.
5680  if (D.getSourceRange().getBegin().isInvalid())
5683  }
5684  goto PastIdentifier;
5685  }
5686 
5687  if (D.getCXXScopeSpec().isNotEmpty()) {
5688  // We have a scope specifier but no following unqualified-id.
5689  Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()),
5690  diag::err_expected_unqualified_id)
5691  << /*C++*/1;
5692  D.SetIdentifier(nullptr, Tok.getLocation());
5693  goto PastIdentifier;
5694  }
5695  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
5696  assert(!getLangOpts().CPlusPlus &&
5697  "There's a C++-specific check for tok::identifier above");
5698  assert(Tok.getIdentifierInfo() && "Not an identifier?");
5700  D.SetRangeEnd(Tok.getLocation());
5701  ConsumeToken();
5702  goto PastIdentifier;
5703  } else if (Tok.is(tok::identifier) && !D.mayHaveIdentifier()) {
5704  // We're not allowed an identifier here, but we got one. Try to figure out
5705  // if the user was trying to attach a name to the type, or whether the name
5706  // is some unrelated trailing syntax.
5707  bool DiagnoseIdentifier = false;
5708  if (D.hasGroupingParens())
5709  // An identifier within parens is unlikely to be intended to be anything
5710  // other than a name being "declared".
5711  DiagnoseIdentifier = true;
5713  // T<int N> is an accidental identifier; T<int N indicates a missing '>'.
5714  DiagnoseIdentifier =
5715  NextToken().isOneOf(tok::comma, tok::greater, tok::greatergreater);
5718  // The most likely error is that the ';' was forgotten.
5719  DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::semi);
5722  !isCXX11VirtSpecifier(Tok))
5723  DiagnoseIdentifier = NextToken().isOneOf(
5724  tok::comma, tok::semi, tok::equal, tok::l_brace, tok::kw_try);
5725  if (DiagnoseIdentifier) {
5726  Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
5728  D.SetIdentifier(nullptr, Tok.getLocation());
5729  ConsumeToken();
5730  goto PastIdentifier;
5731  }
5732  }
5733 
5734  if (Tok.is(tok::l_paren)) {
5735  // If this might be an abstract-declarator followed by a direct-initializer,
5736  // check whether this is a valid declarator chunk. If it can't be, assume
5737  // that it's an initializer instead.
5739  RevertingTentativeParsingAction PA(*this);
5740  if (TryParseDeclarator(true, D.mayHaveIdentifier(), true) ==
5741  TPResult::False) {
5742  D.SetIdentifier(nullptr, Tok.getLocation());
5743  goto PastIdentifier;
5744  }
5745  }
5746 
5747  // direct-declarator: '(' declarator ')'
5748  // direct-declarator: '(' attributes declarator ')'
5749  // Example: 'char (*X)' or 'int (*XX)(void)'
5750  ParseParenDeclarator(D);
5751 
5752  // If the declarator was parenthesized, we entered the declarator
5753  // scope when parsing the parenthesized declarator, then exited
5754  // the scope already. Re-enter the scope, if we need to.
5755  if (D.getCXXScopeSpec().isSet()) {
5756  // If there was an error parsing parenthesized declarator, declarator
5757  // scope may have been entered before. Don't do it again.
5758  if (!D.isInvalidType() &&
5759  Actions.ShouldEnterDeclaratorScope(getCurScope(),
5760  D.getCXXScopeSpec()))
5761  // Change the declaration context for name lookup, until this function
5762  // is exited (and the declarator has been parsed).
5763  DeclScopeObj.EnterDeclaratorScope();
5764  }
5765  } else if (D.mayOmitIdentifier()) {
5766  // This could be something simple like "int" (in which case the declarator
5767  // portion is empty), if an abstract-declarator is allowed.
5768  D.SetIdentifier(nullptr, Tok.getLocation());
5769 
5770  // The grammar for abstract-pack-declarator does not allow grouping parens.
5771  // FIXME: Revisit this once core issue 1488 is resolved.
5772  if (D.hasEllipsis() && D.hasGroupingParens())
5773  Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
5774  diag::ext_abstract_pack_declarator_parens);
5775  } else {
5776  if (Tok.getKind() == tok::annot_pragma_parser_crash)
5777  LLVM_BUILTIN_TRAP;
5778  if (Tok.is(tok::l_square))
5779  return ParseMisplacedBracketDeclarator(D);
5781  // Objective-C++: Detect C++ keywords and try to prevent further errors by
5782  // treating these keyword as valid member names.
5783  if (getLangOpts().ObjC1 && getLangOpts().CPlusPlus &&
5784  Tok.getIdentifierInfo() &&
5787  diag::err_expected_member_name_or_semi_objcxx_keyword)
5788  << Tok.getIdentifierInfo()
5789  << (D.getDeclSpec().isEmpty() ? SourceRange()
5790  : D.getDeclSpec().getSourceRange());
5792  D.SetRangeEnd(Tok.getLocation());
5793  ConsumeToken();
5794  goto PastIdentifier;
5795  }
5797  diag::err_expected_member_name_or_semi)
5798  << (D.getDeclSpec().isEmpty() ? SourceRange()
5799  : D.getDeclSpec().getSourceRange());
5800  } else if (getLangOpts().CPlusPlus) {
5801  if (Tok.isOneOf(tok::period, tok::arrow))
5802  Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
5803  else {
5805  if (Tok.isAtStartOfLine() && Loc.isValid())
5806  Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
5807  << getLangOpts().CPlusPlus;
5808  else
5810  diag::err_expected_unqualified_id)
5811  << getLangOpts().CPlusPlus;
5812  }
5813  } else {
5815  diag::err_expected_either)
5816  << tok::identifier << tok::l_paren;
5817  }
5818  D.SetIdentifier(nullptr, Tok.getLocation());
5819  D.setInvalidType(true);
5820  }
5821 
5822  PastIdentifier:
5823  assert(D.isPastIdentifier() &&
5824  "Haven't past the location of the identifier yet?");
5825 
5826  // Don't parse attributes unless we have parsed an unparenthesized name.
5827  if (D.hasName() && !D.getNumTypeObjects())
5828  MaybeParseCXX11Attributes(D);
5829 
5830  while (1) {
5831  if (Tok.is(tok::l_paren)) {
5832  // Enter function-declaration scope, limiting any declarators to the
5833  // function prototype scope, including parameter declarators.
5834  ParseScope PrototypeScope(this,
5838 
5839  // The paren may be part of a C++ direct initializer, eg. "int x(1);".
5840  // In such a case, check if we actually have a function declarator; if it
5841  // is not, the declarator has been fully parsed.
5842  bool IsAmbiguous = false;
5844  // The name of the declarator, if any, is tentatively declared within
5845  // a possible direct initializer.
5846  TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
5847  bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
5848  TentativelyDeclaredIdentifiers.pop_back();
5849  if (!IsFunctionDecl)
5850  break;
5851  }
5852  ParsedAttributes attrs(AttrFactory);
5853  BalancedDelimiterTracker T(*this, tok::l_paren);
5854  T.consumeOpen();
5855  ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
5856  PrototypeScope.Exit();
5857  } else if (Tok.is(tok::l_square)) {
5858  ParseBracketDeclarator(D);
5859  } else {
5860  break;
5861  }
5862  }
5863 }
5864 
5865 void Parser::ParseDecompositionDeclarator(Declarator &D) {
5866  assert(Tok.is(tok::l_square));
5867 
5868  // If this doesn't look like a structured binding, maybe it's a misplaced
5869  // array declarator.
5870  // FIXME: Consume the l_square first so we don't need extra lookahead for
5871  // this.
5872  if (!(NextToken().is(tok::identifier) &&
5873  GetLookAheadToken(2).isOneOf(tok::comma, tok::r_square)) &&
5874  !(NextToken().is(tok::r_square) &&
5875  GetLookAheadToken(2).isOneOf(tok::equal, tok::l_brace)))
5876  return ParseMisplacedBracketDeclarator(D);
5877 
5878  BalancedDelimiterTracker T(*this, tok::l_square);
5879  T.consumeOpen();
5880 
5882  while (Tok.isNot(tok::r_square)) {
5883  if (!Bindings.empty()) {
5884  if (Tok.is(tok::comma))
5885  ConsumeToken();
5886  else {
5887  if (Tok.is(tok::identifier)) {
5889  Diag(EndLoc, diag::err_expected)
5890  << tok::comma << FixItHint::CreateInsertion(EndLoc, ",");
5891  } else {
5892  Diag(Tok, diag::err_expected_comma_or_rsquare);
5893  }
5894 
5895  SkipUntil(tok::r_square, tok::comma, tok::identifier,
5897  if (Tok.is(tok::comma))
5898  ConsumeToken();
5899  else if (Tok.isNot(tok::identifier))
5900  break;
5901  }
5902  }
5903 
5904  if (Tok.isNot(tok::identifier)) {
5905  Diag(Tok, diag::err_expected) << tok::identifier;
5906  break;
5907  }
5908 
5909  Bindings.push_back({Tok.getIdentifierInfo(), Tok.getLocation()});
5910  ConsumeToken();
5911  }
5912 
5913  if (Tok.isNot(tok::r_square))
5914  // We've already diagnosed a problem here.
5915  T.skipToEnd();
5916  else {
5917  // C++17 does not allow the identifier-list in a structured binding
5918  // to be empty.
5919  if (Bindings.empty())
5920  Diag(Tok.getLocation(), diag::ext_decomp_decl_empty);
5921 
5922  T.consumeClose();
5923  }
5924 
5925  return D.setDecompositionBindings(T.getOpenLocation(), Bindings,
5926  T.getCloseLocation());
5927 }
5928 
5929 /// ParseParenDeclarator - We parsed the declarator D up to a paren. This is
5930 /// only called before the identifier, so these are most likely just grouping
5931 /// parens for precedence. If we find that these are actually function
5932 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
5933 ///
5934 /// direct-declarator:
5935 /// '(' declarator ')'
5936 /// [GNU] '(' attributes declarator ')'
5937 /// direct-declarator '(' parameter-type-list ')'
5938 /// direct-declarator '(' identifier-list[opt] ')'
5939 /// [GNU] direct-declarator '(' parameter-forward-declarations
5940 /// parameter-type-list[opt] ')'
5941 ///
5942 void Parser::ParseParenDeclarator(Declarator &D) {
5943  BalancedDelimiterTracker T(*this, tok::l_paren);
5944  T.consumeOpen();
5945 
5946  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
5947 
5948  // Eat any attributes before we look at whether this is a grouping or function
5949  // declarator paren. If this is a grouping paren, the attribute applies to
5950  // the type being built up, for example:
5951  // int (__attribute__(()) *x)(long y)
5952  // If this ends up not being a grouping paren, the attribute applies to the
5953  // first argument, for example:
5954  // int (__attribute__(()) int x)
5955  // In either case, we need to eat any attributes to be able to determine what
5956  // sort of paren this is.
5957  //
5958  ParsedAttributes attrs(AttrFactory);
5959  bool RequiresArg = false;
5960  if (Tok.is(tok::kw___attribute)) {
5961  ParseGNUAttributes(attrs);
5962 
5963  // We require that the argument list (if this is a non-grouping paren) be
5964  // present even if the attribute list was empty.
5965  RequiresArg = true;
5966  }
5967 
5968  // Eat any Microsoft extensions.
5969  ParseMicrosoftTypeAttributes(attrs);
5970 
5971  // Eat any Borland extensions.
5972  if (Tok.is(tok::kw___pascal))
5973  ParseBorlandTypeAttributes(attrs);
5974 
5975  // If we haven't past the identifier yet (or where the identifier would be
5976  // stored, if this is an abstract declarator), then this is probably just
5977  // grouping parens. However, if this could be an abstract-declarator, then
5978  // this could also be the start of function arguments (consider 'void()').
5979  bool isGrouping;
5980 
5981  if (!D.mayOmitIdentifier()) {
5982  // If this can't be an abstract-declarator, this *must* be a grouping
5983  // paren, because we haven't seen the identifier yet.
5984  isGrouping = true;
5985  } else if (Tok.is(tok::r_paren) ||