clang  6.0.0svn
Expr.h
Go to the documentation of this file.
1 //===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the Expr interface and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_AST_EXPR_H
15 #define LLVM_CLANG_AST_EXPR_H
16 
17 #include "clang/AST/APValue.h"
18 #include "clang/AST/ASTVector.h"
19 #include "clang/AST/Decl.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/TemplateBase.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/CharInfo.h"
27 #include "clang/Basic/SyncScope.h"
28 #include "clang/Basic/TypeTraits.h"
29 #include "llvm/ADT/APFloat.h"
30 #include "llvm/ADT/APSInt.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/AtomicOrdering.h"
34 #include "llvm/Support/Compiler.h"
35 
36 namespace clang {
37  class APValue;
38  class ASTContext;
39  class BlockDecl;
40  class CXXBaseSpecifier;
41  class CXXMemberCallExpr;
42  class CXXOperatorCallExpr;
43  class CastExpr;
44  class Decl;
45  class IdentifierInfo;
46  class MaterializeTemporaryExpr;
47  class NamedDecl;
48  class ObjCPropertyRefExpr;
49  class OpaqueValueExpr;
50  class ParmVarDecl;
51  class StringLiteral;
52  class TargetInfo;
53  class ValueDecl;
54 
55 /// \brief A simple array of base specifiers.
57 
58 /// \brief An adjustment to be made to the temporary created when emitting a
59 /// reference binding, which accesses a particular subobject of that temporary.
61  enum {
65  } Kind;
66 
67  struct DTB {
70  };
71 
72  struct P {
75  };
76 
77  union {
80  struct P Ptr;
81  };
82 
85  : Kind(DerivedToBaseAdjustment) {
88  }
89 
91  : Kind(FieldAdjustment) {
92  this->Field = Field;
93  }
94 
96  : Kind(MemberPointerAdjustment) {
97  this->Ptr.MPT = MPT;
98  this->Ptr.RHS = RHS;
99  }
100 };
101 
102 /// Expr - This represents one expression. Note that Expr's are subclasses of
103 /// Stmt. This allows an expression to be transparently used any place a Stmt
104 /// is required.
105 ///
106 class Expr : public Stmt {
107  QualType TR;
108 
109 protected:
111  bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
112  : Stmt(SC)
113  {
114  ExprBits.TypeDependent = TD;
115  ExprBits.ValueDependent = VD;
116  ExprBits.InstantiationDependent = ID;
117  ExprBits.ValueKind = VK;
118  ExprBits.ObjectKind = OK;
119  assert(ExprBits.ObjectKind == OK && "truncated kind");
120  ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
121  setType(T);
122  }
123 
124  /// \brief Construct an empty expression.
125  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
126 
127 public:
128  QualType getType() const { return TR; }
129  void setType(QualType t) {
130  // In C++, the type of an expression is always adjusted so that it
131  // will not have reference type (C++ [expr]p6). Use
132  // QualType::getNonReferenceType() to retrieve the non-reference
133  // type. Additionally, inspect Expr::isLvalue to determine whether
134  // an expression that is adjusted in this manner should be
135  // considered an lvalue.
136  assert((t.isNull() || !t->isReferenceType()) &&
137  "Expressions can't have reference type");
138 
139  TR = t;
140  }
141 
142  /// isValueDependent - Determines whether this expression is
143  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
144  /// array bound of "Chars" in the following example is
145  /// value-dependent.
146  /// @code
147  /// template<int Size, char (&Chars)[Size]> struct meta_string;
148  /// @endcode
149  bool isValueDependent() const { return ExprBits.ValueDependent; }
150 
151  /// \brief Set whether this expression is value-dependent or not.
152  void setValueDependent(bool VD) {
153  ExprBits.ValueDependent = VD;
154  }
155 
156  /// isTypeDependent - Determines whether this expression is
157  /// type-dependent (C++ [temp.dep.expr]), which means that its type
158  /// could change from one template instantiation to the next. For
159  /// example, the expressions "x" and "x + y" are type-dependent in
160  /// the following code, but "y" is not type-dependent:
161  /// @code
162  /// template<typename T>
163  /// void add(T x, int y) {
164  /// x + y;
165  /// }
166  /// @endcode
167  bool isTypeDependent() const { return ExprBits.TypeDependent; }
168 
169  /// \brief Set whether this expression is type-dependent or not.
170  void setTypeDependent(bool TD) {
171  ExprBits.TypeDependent = TD;
172  }
173 
174  /// \brief Whether this expression is instantiation-dependent, meaning that
175  /// it depends in some way on a template parameter, even if neither its type
176  /// nor (constant) value can change due to the template instantiation.
177  ///
178  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
179  /// instantiation-dependent (since it involves a template parameter \c T), but
180  /// is neither type- nor value-dependent, since the type of the inner
181  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
182  /// \c sizeof is known.
183  ///
184  /// \code
185  /// template<typename T>
186  /// void f(T x, T y) {
187  /// sizeof(sizeof(T() + T());
188  /// }
189  /// \endcode
190  ///
192  return ExprBits.InstantiationDependent;
193  }
194 
195  /// \brief Set whether this expression is instantiation-dependent or not.
197  ExprBits.InstantiationDependent = ID;
198  }
199 
200  /// \brief Whether this expression contains an unexpanded parameter
201  /// pack (for C++11 variadic templates).
202  ///
203  /// Given the following function template:
204  ///
205  /// \code
206  /// template<typename F, typename ...Types>
207  /// void forward(const F &f, Types &&...args) {
208  /// f(static_cast<Types&&>(args)...);
209  /// }
210  /// \endcode
211  ///
212  /// The expressions \c args and \c static_cast<Types&&>(args) both
213  /// contain parameter packs.
215  return ExprBits.ContainsUnexpandedParameterPack;
216  }
217 
218  /// \brief Set the bit that describes whether this expression
219  /// contains an unexpanded parameter pack.
220  void setContainsUnexpandedParameterPack(bool PP = true) {
221  ExprBits.ContainsUnexpandedParameterPack = PP;
222  }
223 
224  /// getExprLoc - Return the preferred location for the arrow when diagnosing
225  /// a problem with a generic expression.
226  SourceLocation getExprLoc() const LLVM_READONLY;
227 
228  /// isUnusedResultAWarning - Return true if this immediate expression should
229  /// be warned about if the result is unused. If so, fill in expr, location,
230  /// and ranges with expr to warn on and source locations/ranges appropriate
231  /// for a warning.
232  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
233  SourceRange &R1, SourceRange &R2,
234  ASTContext &Ctx) const;
235 
236  /// isLValue - True if this expression is an "l-value" according to
237  /// the rules of the current language. C and C++ give somewhat
238  /// different rules for this concept, but in general, the result of
239  /// an l-value expression identifies a specific object whereas the
240  /// result of an r-value expression is a value detached from any
241  /// specific storage.
242  ///
243  /// C++11 divides the concept of "r-value" into pure r-values
244  /// ("pr-values") and so-called expiring values ("x-values"), which
245  /// identify specific objects that can be safely cannibalized for
246  /// their resources. This is an unfortunate abuse of terminology on
247  /// the part of the C++ committee. In Clang, when we say "r-value",
248  /// we generally mean a pr-value.
249  bool isLValue() const { return getValueKind() == VK_LValue; }
250  bool isRValue() const { return getValueKind() == VK_RValue; }
251  bool isXValue() const { return getValueKind() == VK_XValue; }
252  bool isGLValue() const { return getValueKind() != VK_RValue; }
253 
264  LV_ArrayTemporary
265  };
266  /// Reasons why an expression might not be an l-value.
267  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
268 
275  MLV_LValueCast, // Specialized form of MLV_InvalidExpression.
286  MLV_ArrayTemporary
287  };
288  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
289  /// does not have an incomplete type, does not have a const-qualified type,
290  /// and if it is a structure or union, does not have any member (including,
291  /// recursively, any member or element of all contained aggregates or unions)
292  /// with a const-qualified type.
293  ///
294  /// \param Loc [in,out] - A source location which *may* be filled
295  /// in with the location of the expression making this a
296  /// non-modifiable lvalue, if specified.
298  isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;
299 
300  /// \brief The return type of classify(). Represents the C++11 expression
301  /// taxonomy.
303  public:
304  /// \brief The various classification results. Most of these mean prvalue.
305  enum Kinds {
308  CL_Function, // Functions cannot be lvalues in C.
309  CL_Void, // Void cannot be an lvalue in C.
310  CL_AddressableVoid, // Void expression whose address can be taken in C.
311  CL_DuplicateVectorComponents, // A vector shuffle with dupes.
312  CL_MemberFunction, // An expression referring to a member function
314  CL_ClassTemporary, // A temporary of class type, or subobject thereof.
315  CL_ArrayTemporary, // A temporary of array type.
316  CL_ObjCMessageRValue, // ObjC message is an rvalue
317  CL_PRValue // A prvalue for any other reason, of any other type
318  };
319  /// \brief The results of modification testing.
321  CM_Untested, // testModifiable was false.
323  CM_RValue, // Not modifiable because it's an rvalue
324  CM_Function, // Not modifiable because it's a function; C++ only
325  CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
326  CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
331  CM_IncompleteType
332  };
333 
334  private:
335  friend class Expr;
336 
337  unsigned short Kind;
338  unsigned short Modifiable;
339 
340  explicit Classification(Kinds k, ModifiableType m)
341  : Kind(k), Modifiable(m)
342  {}
343 
344  public:
346 
347  Kinds getKind() const { return static_cast<Kinds>(Kind); }
349  assert(Modifiable != CM_Untested && "Did not test for modifiability.");
350  return static_cast<ModifiableType>(Modifiable);
351  }
352  bool isLValue() const { return Kind == CL_LValue; }
353  bool isXValue() const { return Kind == CL_XValue; }
354  bool isGLValue() const { return Kind <= CL_XValue; }
355  bool isPRValue() const { return Kind >= CL_Function; }
356  bool isRValue() const { return Kind >= CL_XValue; }
357  bool isModifiable() const { return getModifiable() == CM_Modifiable; }
358 
359  /// \brief Create a simple, modifiably lvalue
361  return Classification(CL_LValue, CM_Modifiable);
362  }
363 
364  };
365  /// \brief Classify - Classify this expression according to the C++11
366  /// expression taxonomy.
367  ///
368  /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
369  /// old lvalue vs rvalue. This function determines the type of expression this
370  /// is. There are three expression types:
371  /// - lvalues are classical lvalues as in C++03.
372  /// - prvalues are equivalent to rvalues in C++03.
373  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
374  /// function returning an rvalue reference.
375  /// lvalues and xvalues are collectively referred to as glvalues, while
376  /// prvalues and xvalues together form rvalues.
378  return ClassifyImpl(Ctx, nullptr);
379  }
380 
381  /// \brief ClassifyModifiable - Classify this expression according to the
382  /// C++11 expression taxonomy, and see if it is valid on the left side
383  /// of an assignment.
384  ///
385  /// This function extends classify in that it also tests whether the
386  /// expression is modifiable (C99 6.3.2.1p1).
387  /// \param Loc A source location that might be filled with a relevant location
388  /// if the expression is not modifiable.
390  return ClassifyImpl(Ctx, &Loc);
391  }
392 
393  /// getValueKindForType - Given a formal return or parameter type,
394  /// give its value kind.
396  if (const ReferenceType *RT = T->getAs<ReferenceType>())
397  return (isa<LValueReferenceType>(RT)
398  ? VK_LValue
399  : (RT->getPointeeType()->isFunctionType()
400  ? VK_LValue : VK_XValue));
401  return VK_RValue;
402  }
403 
404  /// getValueKind - The value kind that this expression produces.
406  return static_cast<ExprValueKind>(ExprBits.ValueKind);
407  }
408 
409  /// getObjectKind - The object kind that this expression produces.
410  /// Object kinds are meaningful only for expressions that yield an
411  /// l-value or x-value.
413  return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
414  }
415 
417  ExprObjectKind OK = getObjectKind();
418  return (OK == OK_Ordinary || OK == OK_BitField);
419  }
420 
421  /// setValueKind - Set the value kind produced by this expression.
422  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
423 
424  /// setObjectKind - Set the object kind produced by this expression.
425  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
426 
427 private:
428  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
429 
430 public:
431 
432  /// \brief Returns true if this expression is a gl-value that
433  /// potentially refers to a bit-field.
434  ///
435  /// In C++, whether a gl-value refers to a bitfield is essentially
436  /// an aspect of the value-kind type system.
437  bool refersToBitField() const { return getObjectKind() == OK_BitField; }
438 
439  /// \brief If this expression refers to a bit-field, retrieve the
440  /// declaration of that bit-field.
441  ///
442  /// Note that this returns a non-null pointer in subtly different
443  /// places than refersToBitField returns true. In particular, this can
444  /// return a non-null pointer even for r-values loaded from
445  /// bit-fields, but it will return null for a conditional bit-field.
446  FieldDecl *getSourceBitField();
447 
448  const FieldDecl *getSourceBitField() const {
449  return const_cast<Expr*>(this)->getSourceBitField();
450  }
451 
452  Decl *getReferencedDeclOfCallee();
454  return const_cast<Expr*>(this)->getReferencedDeclOfCallee();
455  }
456 
457  /// \brief If this expression is an l-value for an Objective C
458  /// property, find the underlying property reference expression.
459  const ObjCPropertyRefExpr *getObjCProperty() const;
460 
461  /// \brief Check if this expression is the ObjC 'self' implicit parameter.
462  bool isObjCSelfExpr() const;
463 
464  /// \brief Returns whether this expression refers to a vector element.
465  bool refersToVectorElement() const;
466 
467  /// \brief Returns whether this expression refers to a global register
468  /// variable.
469  bool refersToGlobalRegisterVar() const;
470 
471  /// \brief Returns whether this expression has a placeholder type.
472  bool hasPlaceholderType() const {
473  return getType()->isPlaceholderType();
474  }
475 
476  /// \brief Returns whether this expression has a specific placeholder type.
479  if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
480  return BT->getKind() == K;
481  return false;
482  }
483 
484  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
485  /// that is known to return 0 or 1. This happens for _Bool/bool expressions
486  /// but also int expressions which are produced by things like comparisons in
487  /// C.
488  bool isKnownToHaveBooleanValue() const;
489 
490  /// isIntegerConstantExpr - Return true if this expression is a valid integer
491  /// constant expression, and, if so, return its value in Result. If not a
492  /// valid i-c-e, return false and fill in Loc (if specified) with the location
493  /// of the invalid expression.
494  ///
495  /// Note: This does not perform the implicit conversions required by C++11
496  /// [expr.const]p5.
497  bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
498  SourceLocation *Loc = nullptr,
499  bool isEvaluated = true) const;
500  bool isIntegerConstantExpr(const ASTContext &Ctx,
501  SourceLocation *Loc = nullptr) const;
502 
503  /// isCXX98IntegralConstantExpr - Return true if this expression is an
504  /// integral constant expression in C++98. Can only be used in C++.
505  bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
506 
507  /// isCXX11ConstantExpr - Return true if this expression is a constant
508  /// expression in C++11. Can only be used in C++.
509  ///
510  /// Note: This does not perform the implicit conversions required by C++11
511  /// [expr.const]p5.
512  bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
513  SourceLocation *Loc = nullptr) const;
514 
515  /// isPotentialConstantExpr - Return true if this function's definition
516  /// might be usable in a constant expression in C++11, if it were marked
517  /// constexpr. Return false if the function can never produce a constant
518  /// expression, along with diagnostics describing why not.
519  static bool isPotentialConstantExpr(const FunctionDecl *FD,
521  PartialDiagnosticAt> &Diags);
522 
523  /// isPotentialConstantExprUnevaluted - Return true if this expression might
524  /// be usable in a constant expression in C++11 in an unevaluated context, if
525  /// it were in function FD marked constexpr. Return false if the function can
526  /// never produce a constant expression, along with diagnostics describing
527  /// why not.
528  static bool isPotentialConstantExprUnevaluated(Expr *E,
529  const FunctionDecl *FD,
531  PartialDiagnosticAt> &Diags);
532 
533  /// isConstantInitializer - Returns true if this expression can be emitted to
534  /// IR as a constant, and thus can be used as a constant initializer in C.
535  /// If this expression is not constant and Culprit is non-null,
536  /// it is used to store the address of first non constant expr.
537  bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
538  const Expr **Culprit = nullptr) const;
539 
540  /// EvalStatus is a struct with detailed info about an evaluation in progress.
541  struct EvalStatus {
542  /// \brief Whether the evaluated expression has side effects.
543  /// For example, (f() && 0) can be folded, but it still has side effects.
545 
546  /// \brief Whether the evaluation hit undefined behavior.
547  /// For example, 1.0 / 0.0 can be folded to Inf, but has undefined behavior.
548  /// Likewise, INT_MAX + 1 can be folded to INT_MIN, but has UB.
550 
551  /// Diag - If this is non-null, it will be filled in with a stack of notes
552  /// indicating why evaluation failed (or why it failed to produce a constant
553  /// expression).
554  /// If the expression is unfoldable, the notes will indicate why it's not
555  /// foldable. If the expression is foldable, but not a constant expression,
556  /// the notes will describes why it isn't a constant expression. If the
557  /// expression *is* a constant expression, no notes will be produced.
559 
561  : HasSideEffects(false), HasUndefinedBehavior(false), Diag(nullptr) {}
562 
563  // hasSideEffects - Return true if the evaluated expression has
564  // side effects.
565  bool hasSideEffects() const {
566  return HasSideEffects;
567  }
568  };
569 
570  /// EvalResult is a struct with detailed info about an evaluated expression.
572  /// Val - This is the value the expression can be folded to.
574 
575  // isGlobalLValue - Return true if the evaluated lvalue expression
576  // is global.
577  bool isGlobalLValue() const;
578  };
579 
580  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
581  /// an rvalue using any crazy technique (that has nothing to do with language
582  /// standards) that we want to, even if the expression has side-effects. If
583  /// this function returns true, it returns the folded constant in Result. If
584  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
585  /// applied.
586  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
587 
588  /// EvaluateAsBooleanCondition - Return true if this is a constant
589  /// which we we can fold and convert to a boolean condition using
590  /// any crazy technique that we want to, even if the expression has
591  /// side-effects.
592  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
593 
595  SE_NoSideEffects, ///< Strictly evaluate the expression.
596  SE_AllowUndefinedBehavior, ///< Allow UB that we can give a value, but not
597  ///< arbitrary unmodeled side effects.
598  SE_AllowSideEffects ///< Allow any unmodeled side effect.
599  };
600 
601  /// EvaluateAsInt - Return true if this is a constant which we can fold and
602  /// convert to an integer, using any crazy technique that we want to.
603  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
604  SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
605 
606  /// EvaluateAsFloat - Return true if this is a constant which we can fold and
607  /// convert to a floating point value, using any crazy technique that we
608  /// want to.
609  bool
610  EvaluateAsFloat(llvm::APFloat &Result, const ASTContext &Ctx,
611  SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
612 
613  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
614  /// constant folded without side-effects, but discard the result.
615  bool isEvaluatable(const ASTContext &Ctx,
616  SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
617 
618  /// HasSideEffects - This routine returns true for all those expressions
619  /// which have any effect other than producing a value. Example is a function
620  /// call, volatile variable read, or throwing an exception. If
621  /// IncludePossibleEffects is false, this call treats certain expressions with
622  /// potential side effects (such as function call-like expressions,
623  /// instantiation-dependent expressions, or invocations from a macro) as not
624  /// having side effects.
625  bool HasSideEffects(const ASTContext &Ctx,
626  bool IncludePossibleEffects = true) const;
627 
628  /// \brief Determine whether this expression involves a call to any function
629  /// that is not trivial.
630  bool hasNonTrivialCall(const ASTContext &Ctx) const;
631 
632  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
633  /// integer. This must be called on an expression that constant folds to an
634  /// integer.
635  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx,
636  SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
637 
638  void EvaluateForOverflow(const ASTContext &Ctx) const;
639 
640  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
641  /// lvalue with link time known address, with no side-effects.
642  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
643 
644  /// EvaluateAsInitializer - Evaluate an expression as if it were the
645  /// initializer of the given declaration. Returns true if the initializer
646  /// can be folded to a constant, and produces any relevant notes. In C++11,
647  /// notes will be produced if the expression is not a constant expression.
648  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
649  const VarDecl *VD,
651 
652  /// EvaluateWithSubstitution - Evaluate an expression as if from the context
653  /// of a call to the given function with the given arguments, inside an
654  /// unevaluated context. Returns true if the expression could be folded to a
655  /// constant.
656  bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
657  const FunctionDecl *Callee,
659  const Expr *This = nullptr) const;
660 
661  /// \brief If the current Expr is a pointer, this will try to statically
662  /// determine the number of bytes available where the pointer is pointing.
663  /// Returns true if all of the above holds and we were able to figure out the
664  /// size, false otherwise.
665  ///
666  /// \param Type - How to evaluate the size of the Expr, as defined by the
667  /// "type" parameter of __builtin_object_size
668  bool tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
669  unsigned Type) const;
670 
671  /// \brief Enumeration used to describe the kind of Null pointer constant
672  /// returned from \c isNullPointerConstant().
674  /// \brief Expression is not a Null pointer constant.
675  NPCK_NotNull = 0,
676 
677  /// \brief Expression is a Null pointer constant built from a zero integer
678  /// expression that is not a simple, possibly parenthesized, zero literal.
679  /// C++ Core Issue 903 will classify these expressions as "not pointers"
680  /// once it is adopted.
681  /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
683 
684  /// \brief Expression is a Null pointer constant built from a literal zero.
686 
687  /// \brief Expression is a C++11 nullptr.
689 
690  /// \brief Expression is a GNU-style __null constant.
691  NPCK_GNUNull
692  };
693 
694  /// \brief Enumeration used to describe how \c isNullPointerConstant()
695  /// should cope with value-dependent expressions.
697  /// \brief Specifies that the expression should never be value-dependent.
698  NPC_NeverValueDependent = 0,
699 
700  /// \brief Specifies that a value-dependent expression of integral or
701  /// dependent type should be considered a null pointer constant.
703 
704  /// \brief Specifies that a value-dependent expression should be considered
705  /// to never be a null pointer constant.
706  NPC_ValueDependentIsNotNull
707  };
708 
709  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
710  /// a Null pointer constant. The return value can further distinguish the
711  /// kind of NULL pointer constant that was detected.
712  NullPointerConstantKind isNullPointerConstant(
713  ASTContext &Ctx,
715 
716  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
717  /// write barrier.
718  bool isOBJCGCCandidate(ASTContext &Ctx) const;
719 
720  /// \brief Returns true if this expression is a bound member function.
721  bool isBoundMemberFunction(ASTContext &Ctx) const;
722 
723  /// \brief Given an expression of bound-member type, find the type
724  /// of the member. Returns null if this is an *overloaded* bound
725  /// member expression.
726  static QualType findBoundMemberType(const Expr *expr);
727 
728  /// IgnoreImpCasts - Skip past any implicit casts which might
729  /// surround this expression. Only skips ImplicitCastExprs.
730  Expr *IgnoreImpCasts() LLVM_READONLY;
731 
732  /// IgnoreImplicit - Skip past any implicit AST nodes which might
733  /// surround this expression.
734  Expr *IgnoreImplicit() LLVM_READONLY {
735  return cast<Expr>(Stmt::IgnoreImplicit());
736  }
737 
738  const Expr *IgnoreImplicit() const LLVM_READONLY {
739  return const_cast<Expr*>(this)->IgnoreImplicit();
740  }
741 
742  /// IgnoreParens - Ignore parentheses. If this Expr is a ParenExpr, return
743  /// its subexpression. If that subexpression is also a ParenExpr,
744  /// then this method recursively returns its subexpression, and so forth.
745  /// Otherwise, the method returns the current Expr.
746  Expr *IgnoreParens() LLVM_READONLY;
747 
748  /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
749  /// or CastExprs, returning their operand.
750  Expr *IgnoreParenCasts() LLVM_READONLY;
751 
752  /// Ignore casts. Strip off any CastExprs, returning their operand.
753  Expr *IgnoreCasts() LLVM_READONLY;
754 
755  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts. Strip off
756  /// any ParenExpr or ImplicitCastExprs, returning their operand.
757  Expr *IgnoreParenImpCasts() LLVM_READONLY;
758 
759  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
760  /// call to a conversion operator, return the argument.
761  Expr *IgnoreConversionOperator() LLVM_READONLY;
762 
763  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
764  return const_cast<Expr*>(this)->IgnoreConversionOperator();
765  }
766 
767  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
768  return const_cast<Expr*>(this)->IgnoreParenImpCasts();
769  }
770 
771  /// Ignore parentheses and lvalue casts. Strip off any ParenExpr and
772  /// CastExprs that represent lvalue casts, returning their operand.
773  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
774 
775  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
776  return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
777  }
778 
779  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
780  /// value (including ptr->int casts of the same size). Strip off any
781  /// ParenExpr or CastExprs, returning their operand.
782  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
783 
784  /// Ignore parentheses and derived-to-base casts.
785  Expr *ignoreParenBaseCasts() LLVM_READONLY;
786 
787  const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
788  return const_cast<Expr*>(this)->ignoreParenBaseCasts();
789  }
790 
791  /// \brief Determine whether this expression is a default function argument.
792  ///
793  /// Default arguments are implicitly generated in the abstract syntax tree
794  /// by semantic analysis for function calls, object constructions, etc. in
795  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
796  /// this routine also looks through any implicit casts to determine whether
797  /// the expression is a default argument.
798  bool isDefaultArgument() const;
799 
800  /// \brief Determine whether the result of this expression is a
801  /// temporary object of the given class type.
802  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
803 
804  /// \brief Whether this expression is an implicit reference to 'this' in C++.
805  bool isImplicitCXXThis() const;
806 
807  const Expr *IgnoreImpCasts() const LLVM_READONLY {
808  return const_cast<Expr*>(this)->IgnoreImpCasts();
809  }
810  const Expr *IgnoreParens() const LLVM_READONLY {
811  return const_cast<Expr*>(this)->IgnoreParens();
812  }
813  const Expr *IgnoreParenCasts() const LLVM_READONLY {
814  return const_cast<Expr*>(this)->IgnoreParenCasts();
815  }
816  /// Strip off casts, but keep parentheses.
817  const Expr *IgnoreCasts() const LLVM_READONLY {
818  return const_cast<Expr*>(this)->IgnoreCasts();
819  }
820 
821  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
822  return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
823  }
824 
825  static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
826 
827  /// \brief For an expression of class type or pointer to class type,
828  /// return the most derived class decl the expression is known to refer to.
829  ///
830  /// If this expression is a cast, this method looks through it to find the
831  /// most derived decl that can be inferred from the expression.
832  /// This is valid because derived-to-base conversions have undefined
833  /// behavior if the object isn't dynamically of the derived type.
834  const CXXRecordDecl *getBestDynamicClassType() const;
835 
836  /// \brief Get the inner expression that determines the best dynamic class.
837  /// If this is a prvalue, we guarantee that it is of the most-derived type
838  /// for the object itself.
839  const Expr *getBestDynamicClassTypeExpr() const;
840 
841  /// Walk outwards from an expression we want to bind a reference to and
842  /// find the expression whose lifetime needs to be extended. Record
843  /// the LHSs of comma expressions and adjustments needed along the path.
844  const Expr *skipRValueSubobjectAdjustments(
846  SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
850  return skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
851  }
852 
853  static bool classof(const Stmt *T) {
854  return T->getStmtClass() >= firstExprConstant &&
855  T->getStmtClass() <= lastExprConstant;
856  }
857 };
858 
859 //===----------------------------------------------------------------------===//
860 // Primary Expressions.
861 //===----------------------------------------------------------------------===//
862 
863 /// OpaqueValueExpr - An expression referring to an opaque object of a
864 /// fixed type and value class. These don't correspond to concrete
865 /// syntax; instead they're used to express operations (usually copy
866 /// operations) on values whose source is generally obvious from
867 /// context.
868 class OpaqueValueExpr : public Expr {
869  friend class ASTStmtReader;
870  Expr *SourceExpr;
871  SourceLocation Loc;
872 
873 public:
876  Expr *SourceExpr = nullptr)
877  : Expr(OpaqueValueExprClass, T, VK, OK,
878  T->isDependentType() ||
879  (SourceExpr && SourceExpr->isTypeDependent()),
880  T->isDependentType() ||
881  (SourceExpr && SourceExpr->isValueDependent()),
882  T->isInstantiationDependentType() ||
883  (SourceExpr && SourceExpr->isInstantiationDependent()),
884  false),
885  SourceExpr(SourceExpr), Loc(Loc) {
886  }
887 
888  /// Given an expression which invokes a copy constructor --- i.e. a
889  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
890  /// find the OpaqueValueExpr that's the source of the construction.
891  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
892 
893  explicit OpaqueValueExpr(EmptyShell Empty)
894  : Expr(OpaqueValueExprClass, Empty) { }
895 
896  /// \brief Retrieve the location of this expression.
897  SourceLocation getLocation() const { return Loc; }
898 
899  SourceLocation getLocStart() const LLVM_READONLY {
900  return SourceExpr ? SourceExpr->getLocStart() : Loc;
901  }
902  SourceLocation getLocEnd() const LLVM_READONLY {
903  return SourceExpr ? SourceExpr->getLocEnd() : Loc;
904  }
905  SourceLocation getExprLoc() const LLVM_READONLY {
906  if (SourceExpr) return SourceExpr->getExprLoc();
907  return Loc;
908  }
909 
912  }
913 
916  }
917 
918  /// The source expression of an opaque value expression is the
919  /// expression which originally generated the value. This is
920  /// provided as a convenience for analyses that don't wish to
921  /// precisely model the execution behavior of the program.
922  ///
923  /// The source expression is typically set when building the
924  /// expression which binds the opaque value expression in the first
925  /// place.
926  Expr *getSourceExpr() const { return SourceExpr; }
927 
928  static bool classof(const Stmt *T) {
929  return T->getStmtClass() == OpaqueValueExprClass;
930  }
931 };
932 
933 /// \brief A reference to a declared variable, function, enum, etc.
934 /// [C99 6.5.1p2]
935 ///
936 /// This encodes all the information about how a declaration is referenced
937 /// within an expression.
938 ///
939 /// There are several optional constructs attached to DeclRefExprs only when
940 /// they apply in order to conserve memory. These are laid out past the end of
941 /// the object, and flags in the DeclRefExprBitfield track whether they exist:
942 ///
943 /// DeclRefExprBits.HasQualifier:
944 /// Specifies when this declaration reference expression has a C++
945 /// nested-name-specifier.
946 /// DeclRefExprBits.HasFoundDecl:
947 /// Specifies when this declaration reference expression has a record of
948 /// a NamedDecl (different from the referenced ValueDecl) which was found
949 /// during name lookup and/or overload resolution.
950 /// DeclRefExprBits.HasTemplateKWAndArgsInfo:
951 /// Specifies when this declaration reference expression has an explicit
952 /// C++ template keyword and/or template argument list.
953 /// DeclRefExprBits.RefersToEnclosingVariableOrCapture
954 /// Specifies when this declaration reference expression (validly)
955 /// refers to an enclosed local or a captured variable.
956 class DeclRefExpr final
957  : public Expr,
958  private llvm::TrailingObjects<DeclRefExpr, NestedNameSpecifierLoc,
959  NamedDecl *, ASTTemplateKWAndArgsInfo,
960  TemplateArgumentLoc> {
961  /// \brief The declaration that we are referencing.
962  ValueDecl *D;
963 
964  /// \brief The location of the declaration name itself.
965  SourceLocation Loc;
966 
967  /// \brief Provides source/type location info for the declaration name
968  /// embedded in D.
969  DeclarationNameLoc DNLoc;
970 
971  size_t numTrailingObjects(OverloadToken<NestedNameSpecifierLoc>) const {
972  return hasQualifier() ? 1 : 0;
973  }
974 
975  size_t numTrailingObjects(OverloadToken<NamedDecl *>) const {
976  return hasFoundDecl() ? 1 : 0;
977  }
978 
979  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
980  return hasTemplateKWAndArgsInfo() ? 1 : 0;
981  }
982 
983  /// \brief Test whether there is a distinct FoundDecl attached to the end of
984  /// this DRE.
985  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
986 
987  DeclRefExpr(const ASTContext &Ctx,
988  NestedNameSpecifierLoc QualifierLoc,
989  SourceLocation TemplateKWLoc,
990  ValueDecl *D, bool RefersToEnlosingVariableOrCapture,
991  const DeclarationNameInfo &NameInfo,
992  NamedDecl *FoundD,
993  const TemplateArgumentListInfo *TemplateArgs,
994  QualType T, ExprValueKind VK);
995 
996  /// \brief Construct an empty declaration reference expression.
997  explicit DeclRefExpr(EmptyShell Empty)
998  : Expr(DeclRefExprClass, Empty) { }
999 
1000  /// \brief Computes the type- and value-dependence flags for this
1001  /// declaration reference expression.
1002  void computeDependence(const ASTContext &C);
1003 
1004 public:
1005  DeclRefExpr(ValueDecl *D, bool RefersToEnclosingVariableOrCapture, QualType T,
1007  const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
1008  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
1009  D(D), Loc(L), DNLoc(LocInfo) {
1010  DeclRefExprBits.HasQualifier = 0;
1011  DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
1012  DeclRefExprBits.HasFoundDecl = 0;
1013  DeclRefExprBits.HadMultipleCandidates = 0;
1014  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
1015  RefersToEnclosingVariableOrCapture;
1016  computeDependence(D->getASTContext());
1017  }
1018 
1019  static DeclRefExpr *
1020  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
1021  SourceLocation TemplateKWLoc, ValueDecl *D,
1022  bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
1023  QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
1024  const TemplateArgumentListInfo *TemplateArgs = nullptr);
1025 
1026  static DeclRefExpr *
1027  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
1028  SourceLocation TemplateKWLoc, ValueDecl *D,
1029  bool RefersToEnclosingVariableOrCapture,
1030  const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
1031  NamedDecl *FoundD = nullptr,
1032  const TemplateArgumentListInfo *TemplateArgs = nullptr);
1033 
1034  /// \brief Construct an empty declaration reference expression.
1035  static DeclRefExpr *CreateEmpty(const ASTContext &Context,
1036  bool HasQualifier,
1037  bool HasFoundDecl,
1038  bool HasTemplateKWAndArgsInfo,
1039  unsigned NumTemplateArgs);
1040 
1041  ValueDecl *getDecl() { return D; }
1042  const ValueDecl *getDecl() const { return D; }
1043  void setDecl(ValueDecl *NewD) { D = NewD; }
1044 
1046  return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
1047  }
1048 
1049  SourceLocation getLocation() const { return Loc; }
1050  void setLocation(SourceLocation L) { Loc = L; }
1051  SourceLocation getLocStart() const LLVM_READONLY;
1052  SourceLocation getLocEnd() const LLVM_READONLY;
1053 
1054  /// \brief Determine whether this declaration reference was preceded by a
1055  /// C++ nested-name-specifier, e.g., \c N::foo.
1056  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
1057 
1058  /// \brief If the name was qualified, retrieves the nested-name-specifier
1059  /// that precedes the name, with source-location information.
1061  if (!hasQualifier())
1062  return NestedNameSpecifierLoc();
1063  return *getTrailingObjects<NestedNameSpecifierLoc>();
1064  }
1065 
1066  /// \brief If the name was qualified, retrieves the nested-name-specifier
1067  /// that precedes the name. Otherwise, returns NULL.
1069  return getQualifierLoc().getNestedNameSpecifier();
1070  }
1071 
1072  /// \brief Get the NamedDecl through which this reference occurred.
1073  ///
1074  /// This Decl may be different from the ValueDecl actually referred to in the
1075  /// presence of using declarations, etc. It always returns non-NULL, and may
1076  /// simple return the ValueDecl when appropriate.
1077 
1079  return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
1080  }
1081 
1082  /// \brief Get the NamedDecl through which this reference occurred.
1083  /// See non-const variant.
1084  const NamedDecl *getFoundDecl() const {
1085  return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
1086  }
1087 
1089  return DeclRefExprBits.HasTemplateKWAndArgsInfo;
1090  }
1091 
1092  /// \brief Retrieve the location of the template keyword preceding
1093  /// this name, if any.
1095  if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1096  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
1097  }
1098 
1099  /// \brief Retrieve the location of the left angle bracket starting the
1100  /// explicit template argument list following the name, if any.
1102  if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1103  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
1104  }
1105 
1106  /// \brief Retrieve the location of the right angle bracket ending the
1107  /// explicit template argument list following the name, if any.
1109  if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1110  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
1111  }
1112 
1113  /// \brief Determines whether the name in this declaration reference
1114  /// was preceded by the template keyword.
1115  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
1116 
1117  /// \brief Determines whether this declaration reference was followed by an
1118  /// explicit template argument list.
1119  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
1120 
1121  /// \brief Copies the template arguments (if present) into the given
1122  /// structure.
1124  if (hasExplicitTemplateArgs())
1125  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
1126  getTrailingObjects<TemplateArgumentLoc>(), List);
1127  }
1128 
1129  /// \brief Retrieve the template arguments provided as part of this
1130  /// template-id.
1132  if (!hasExplicitTemplateArgs())
1133  return nullptr;
1134 
1135  return getTrailingObjects<TemplateArgumentLoc>();
1136  }
1137 
1138  /// \brief Retrieve the number of template arguments provided as part of this
1139  /// template-id.
1140  unsigned getNumTemplateArgs() const {
1141  if (!hasExplicitTemplateArgs())
1142  return 0;
1143 
1144  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
1145  }
1146 
1148  return {getTemplateArgs(), getNumTemplateArgs()};
1149  }
1150 
1151  /// \brief Returns true if this expression refers to a function that
1152  /// was resolved from an overloaded set having size greater than 1.
1153  bool hadMultipleCandidates() const {
1154  return DeclRefExprBits.HadMultipleCandidates;
1155  }
1156  /// \brief Sets the flag telling whether this expression refers to
1157  /// a function that was resolved from an overloaded set having size
1158  /// greater than 1.
1159  void setHadMultipleCandidates(bool V = true) {
1160  DeclRefExprBits.HadMultipleCandidates = V;
1161  }
1162 
1163  /// \brief Does this DeclRefExpr refer to an enclosing local or a captured
1164  /// variable?
1166  return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
1167  }
1168 
1169  static bool classof(const Stmt *T) {
1170  return T->getStmtClass() == DeclRefExprClass;
1171  }
1172 
1173  // Iterators
1176  }
1177 
1180  }
1181 
1183  friend class ASTStmtReader;
1184  friend class ASTStmtWriter;
1185 };
1186 
1187 /// \brief [C99 6.4.2.2] - A predefined identifier such as __func__.
1188 class PredefinedExpr : public Expr {
1189 public:
1190  enum IdentType {
1193  LFunction, // Same as Function, but as wide string.
1197  /// \brief The same as PrettyFunction, except that the
1198  /// 'virtual' keyword is omitted for virtual member functions.
1199  PrettyFunctionNoVirtual
1200  };
1201 
1202 private:
1203  SourceLocation Loc;
1204  IdentType Type;
1205  Stmt *FnName;
1206 
1207 public:
1209  StringLiteral *SL);
1210 
1211  /// \brief Construct an empty predefined expression.
1212  explicit PredefinedExpr(EmptyShell Empty)
1213  : Expr(PredefinedExprClass, Empty), Loc(), Type(Func), FnName(nullptr) {}
1214 
1215  IdentType getIdentType() const { return Type; }
1216 
1217  SourceLocation getLocation() const { return Loc; }
1218  void setLocation(SourceLocation L) { Loc = L; }
1219 
1220  StringLiteral *getFunctionName();
1222  return const_cast<PredefinedExpr *>(this)->getFunctionName();
1223  }
1224 
1225  static StringRef getIdentTypeName(IdentType IT);
1226  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1227 
1228  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1229  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1230 
1231  static bool classof(const Stmt *T) {
1232  return T->getStmtClass() == PredefinedExprClass;
1233  }
1234 
1235  // Iterators
1236  child_range children() { return child_range(&FnName, &FnName + 1); }
1238  return const_child_range(&FnName, &FnName + 1);
1239  }
1240 
1241  friend class ASTStmtReader;
1242 };
1243 
1244 /// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1245 /// leaking memory.
1246 ///
1247 /// For large floats/integers, APFloat/APInt will allocate memory from the heap
1248 /// to represent these numbers. Unfortunately, when we use a BumpPtrAllocator
1249 /// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1250 /// the APFloat/APInt values will never get freed. APNumericStorage uses
1251 /// ASTContext's allocator for memory allocation.
1253  union {
1254  uint64_t VAL; ///< Used to store the <= 64 bits integer value.
1255  uint64_t *pVal; ///< Used to store the >64 bits integer value.
1256  };
1257  unsigned BitWidth;
1258 
1259  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1260 
1261  APNumericStorage(const APNumericStorage &) = delete;
1262  void operator=(const APNumericStorage &) = delete;
1263 
1264 protected:
1265  APNumericStorage() : VAL(0), BitWidth(0) { }
1266 
1267  llvm::APInt getIntValue() const {
1268  unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1269  if (NumWords > 1)
1270  return llvm::APInt(BitWidth, NumWords, pVal);
1271  else
1272  return llvm::APInt(BitWidth, VAL);
1273  }
1274  void setIntValue(const ASTContext &C, const llvm::APInt &Val);
1275 };
1276 
1278 public:
1279  llvm::APInt getValue() const { return getIntValue(); }
1280  void setValue(const ASTContext &C, const llvm::APInt &Val) {
1281  setIntValue(C, Val);
1282  }
1283 };
1284 
1286 public:
1287  llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
1288  return llvm::APFloat(Semantics, getIntValue());
1289  }
1290  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1291  setIntValue(C, Val.bitcastToAPInt());
1292  }
1293 };
1294 
1295 class IntegerLiteral : public Expr, public APIntStorage {
1296  SourceLocation Loc;
1297 
1298  /// \brief Construct an empty integer literal.
1299  explicit IntegerLiteral(EmptyShell Empty)
1300  : Expr(IntegerLiteralClass, Empty) { }
1301 
1302 public:
1303  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1304  // or UnsignedLongLongTy
1305  IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
1306  SourceLocation l);
1307 
1308  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1309  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1310  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1311  /// \param V - the value that the returned integer literal contains.
1312  static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
1313  QualType type, SourceLocation l);
1314  /// \brief Returns a new empty integer literal.
1315  static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
1316 
1317  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1318  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1319 
1320  /// \brief Retrieve the location of the literal.
1321  SourceLocation getLocation() const { return Loc; }
1322 
1323  void setLocation(SourceLocation Location) { Loc = Location; }
1324 
1325  static bool classof(const Stmt *T) {
1326  return T->getStmtClass() == IntegerLiteralClass;
1327  }
1328 
1329  // Iterators
1332  }
1335  }
1336 };
1337 
1338 class CharacterLiteral : public Expr {
1339 public:
1345  UTF32
1346  };
1347 
1348 private:
1349  unsigned Value;
1350  SourceLocation Loc;
1351 public:
1352  // type should be IntTy
1354  SourceLocation l)
1355  : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1356  false, false),
1357  Value(value), Loc(l) {
1358  CharacterLiteralBits.Kind = kind;
1359  }
1360 
1361  /// \brief Construct an empty character literal.
1362  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1363 
1364  SourceLocation getLocation() const { return Loc; }
1366  return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1367  }
1368 
1369  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1370  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1371 
1372  unsigned getValue() const { return Value; }
1373 
1374  void setLocation(SourceLocation Location) { Loc = Location; }
1375  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1376  void setValue(unsigned Val) { Value = Val; }
1377 
1378  static bool classof(const Stmt *T) {
1379  return T->getStmtClass() == CharacterLiteralClass;
1380  }
1381 
1382  // Iterators
1385  }
1388  }
1389 };
1390 
1391 class FloatingLiteral : public Expr, private APFloatStorage {
1392  SourceLocation Loc;
1393 
1394  FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
1396 
1397  /// \brief Construct an empty floating-point literal.
1398  explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
1399 
1400 public:
1401  static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
1402  bool isexact, QualType Type, SourceLocation L);
1403  static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
1404 
1405  llvm::APFloat getValue() const {
1406  return APFloatStorage::getValue(getSemantics());
1407  }
1408  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1409  assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
1410  APFloatStorage::setValue(C, Val);
1411  }
1412 
1413  /// Get a raw enumeration value representing the floating-point semantics of
1414  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1416  return static_cast<APFloatSemantics>(FloatingLiteralBits.Semantics);
1417  }
1418 
1419  /// Set the raw enumeration value representing the floating-point semantics of
1420  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1422  FloatingLiteralBits.Semantics = Sem;
1423  }
1424 
1425  /// Return the APFloat semantics this literal uses.
1426  const llvm::fltSemantics &getSemantics() const;
1427 
1428  /// Set the APFloat semantics this literal uses.
1429  void setSemantics(const llvm::fltSemantics &Sem);
1430 
1431  bool isExact() const { return FloatingLiteralBits.IsExact; }
1432  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1433 
1434  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1435  /// double. Note that this may cause loss of precision, but is useful for
1436  /// debugging dumps, etc.
1437  double getValueAsApproximateDouble() const;
1438 
1439  SourceLocation getLocation() const { return Loc; }
1440  void setLocation(SourceLocation L) { Loc = L; }
1441 
1442  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1443  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1444 
1445  static bool classof(const Stmt *T) {
1446  return T->getStmtClass() == FloatingLiteralClass;
1447  }
1448 
1449  // Iterators
1452  }
1455  }
1456 };
1457 
1458 /// ImaginaryLiteral - We support imaginary integer and floating point literals,
1459 /// like "1.0i". We represent these as a wrapper around FloatingLiteral and
1460 /// IntegerLiteral classes. Instances of this class always have a Complex type
1461 /// whose element type matches the subexpression.
1462 ///
1463 class ImaginaryLiteral : public Expr {
1464  Stmt *Val;
1465 public:
1467  : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1468  false, false),
1469  Val(val) {}
1470 
1471  /// \brief Build an empty imaginary literal.
1473  : Expr(ImaginaryLiteralClass, Empty) { }
1474 
1475  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1476  Expr *getSubExpr() { return cast<Expr>(Val); }
1477  void setSubExpr(Expr *E) { Val = E; }
1478 
1479  SourceLocation getLocStart() const LLVM_READONLY { return Val->getLocStart(); }
1480  SourceLocation getLocEnd() const LLVM_READONLY { return Val->getLocEnd(); }
1481 
1482  static bool classof(const Stmt *T) {
1483  return T->getStmtClass() == ImaginaryLiteralClass;
1484  }
1485 
1486  // Iterators
1487  child_range children() { return child_range(&Val, &Val+1); }
1489  return const_child_range(&Val, &Val + 1);
1490  }
1491 };
1492 
1493 /// StringLiteral - This represents a string literal expression, e.g. "foo"
1494 /// or L"bar" (wide strings). The actual string is returned by getBytes()
1495 /// is NOT null-terminated, and the length of the string is determined by
1496 /// calling getByteLength(). The C type for a string is always a
1497 /// ConstantArrayType. In C++, the char type is const qualified, in C it is
1498 /// not.
1499 ///
1500 /// Note that strings in C can be formed by concatenation of multiple string
1501 /// literal pptokens in translation phase #6. This keeps track of the locations
1502 /// of each of these pieces.
1503 ///
1504 /// Strings in C can also be truncated and extended by assigning into arrays,
1505 /// e.g. with constructs like:
1506 /// char X[2] = "foobar";
1507 /// In this case, getByteLength() will return 6, but the string literal will
1508 /// have type "char[2]".
1509 class StringLiteral : public Expr {
1510 public:
1511  enum StringKind {
1516  UTF32
1517  };
1518 
1519 private:
1520  friend class ASTStmtReader;
1521 
1522  union {
1523  const char *asChar;
1524  const uint16_t *asUInt16;
1525  const uint32_t *asUInt32;
1526  } StrData;
1527  unsigned Length;
1528  unsigned CharByteWidth : 4;
1529  unsigned Kind : 3;
1530  unsigned IsPascal : 1;
1531  unsigned NumConcatenated;
1532  SourceLocation TokLocs[1];
1533 
1534  StringLiteral(QualType Ty) :
1535  Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1536  false) {}
1537 
1538  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1539 
1540 public:
1541  /// This is the "fully general" constructor that allows representation of
1542  /// strings formed from multiple concatenated tokens.
1543  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1544  StringKind Kind, bool Pascal, QualType Ty,
1545  const SourceLocation *Loc, unsigned NumStrs);
1546 
1547  /// Simple constructor for string literals made from one token.
1548  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1549  StringKind Kind, bool Pascal, QualType Ty,
1550  SourceLocation Loc) {
1551  return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1552  }
1553 
1554  /// \brief Construct an empty string literal.
1555  static StringLiteral *CreateEmpty(const ASTContext &C, unsigned NumStrs);
1556 
1557  StringRef getString() const {
1558  assert(CharByteWidth==1
1559  && "This function is used in places that assume strings use char");
1560  return StringRef(StrData.asChar, getByteLength());
1561  }
1562 
1563  /// Allow access to clients that need the byte representation, such as
1564  /// ASTWriterStmt::VisitStringLiteral().
1565  StringRef getBytes() const {
1566  // FIXME: StringRef may not be the right type to use as a result for this.
1567  if (CharByteWidth == 1)
1568  return StringRef(StrData.asChar, getByteLength());
1569  if (CharByteWidth == 4)
1570  return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1571  getByteLength());
1572  assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1573  return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1574  getByteLength());
1575  }
1576 
1577  void outputString(raw_ostream &OS) const;
1578 
1579  uint32_t getCodeUnit(size_t i) const {
1580  assert(i < Length && "out of bounds access");
1581  if (CharByteWidth == 1)
1582  return static_cast<unsigned char>(StrData.asChar[i]);
1583  if (CharByteWidth == 4)
1584  return StrData.asUInt32[i];
1585  assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1586  return StrData.asUInt16[i];
1587  }
1588 
1589  unsigned getByteLength() const { return CharByteWidth*Length; }
1590  unsigned getLength() const { return Length; }
1591  unsigned getCharByteWidth() const { return CharByteWidth; }
1592 
1593  /// \brief Sets the string data to the given string data.
1594  void setString(const ASTContext &C, StringRef Str,
1595  StringKind Kind, bool IsPascal);
1596 
1597  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1598 
1599 
1600  bool isAscii() const { return Kind == Ascii; }
1601  bool isWide() const { return Kind == Wide; }
1602  bool isUTF8() const { return Kind == UTF8; }
1603  bool isUTF16() const { return Kind == UTF16; }
1604  bool isUTF32() const { return Kind == UTF32; }
1605  bool isPascal() const { return IsPascal; }
1606 
1607  bool containsNonAsciiOrNull() const {
1608  StringRef Str = getString();
1609  for (unsigned i = 0, e = Str.size(); i != e; ++i)
1610  if (!isASCII(Str[i]) || !Str[i])
1611  return true;
1612  return false;
1613  }
1614 
1615  /// getNumConcatenated - Get the number of string literal tokens that were
1616  /// concatenated in translation phase #6 to form this string literal.
1617  unsigned getNumConcatenated() const { return NumConcatenated; }
1618 
1619  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1620  assert(TokNum < NumConcatenated && "Invalid tok number");
1621  return TokLocs[TokNum];
1622  }
1623  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1624  assert(TokNum < NumConcatenated && "Invalid tok number");
1625  TokLocs[TokNum] = L;
1626  }
1627 
1628  /// getLocationOfByte - Return a source location that points to the specified
1629  /// byte of this string literal.
1630  ///
1631  /// Strings are amazingly complex. They can be formed from multiple tokens
1632  /// and can have escape sequences in them in addition to the usual trigraph
1633  /// and escaped newline business. This routine handles this complexity.
1634  ///
1636  getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1637  const LangOptions &Features, const TargetInfo &Target,
1638  unsigned *StartToken = nullptr,
1639  unsigned *StartTokenByteOffset = nullptr) const;
1640 
1642  tokloc_iterator tokloc_begin() const { return TokLocs; }
1643  tokloc_iterator tokloc_end() const { return TokLocs + NumConcatenated; }
1644 
1645  SourceLocation getLocStart() const LLVM_READONLY { return TokLocs[0]; }
1646  SourceLocation getLocEnd() const LLVM_READONLY {
1647  return TokLocs[NumConcatenated - 1];
1648  }
1649 
1650  static bool classof(const Stmt *T) {
1651  return T->getStmtClass() == StringLiteralClass;
1652  }
1653 
1654  // Iterators
1657  }
1660  }
1661 };
1662 
1663 /// ParenExpr - This represents a parethesized expression, e.g. "(1)". This
1664 /// AST node is only formed if full location information is requested.
1665 class ParenExpr : public Expr {
1666  SourceLocation L, R;
1667  Stmt *Val;
1668 public:
1670  : Expr(ParenExprClass, val->getType(),
1671  val->getValueKind(), val->getObjectKind(),
1672  val->isTypeDependent(), val->isValueDependent(),
1673  val->isInstantiationDependent(),
1674  val->containsUnexpandedParameterPack()),
1675  L(l), R(r), Val(val) {}
1676 
1677  /// \brief Construct an empty parenthesized expression.
1678  explicit ParenExpr(EmptyShell Empty)
1679  : Expr(ParenExprClass, Empty) { }
1680 
1681  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1682  Expr *getSubExpr() { return cast<Expr>(Val); }
1683  void setSubExpr(Expr *E) { Val = E; }
1684 
1685  SourceLocation getLocStart() const LLVM_READONLY { return L; }
1686  SourceLocation getLocEnd() const LLVM_READONLY { return R; }
1687 
1688  /// \brief Get the location of the left parentheses '('.
1689  SourceLocation getLParen() const { return L; }
1690  void setLParen(SourceLocation Loc) { L = Loc; }
1691 
1692  /// \brief Get the location of the right parentheses ')'.
1693  SourceLocation getRParen() const { return R; }
1694  void setRParen(SourceLocation Loc) { R = Loc; }
1695 
1696  static bool classof(const Stmt *T) {
1697  return T->getStmtClass() == ParenExprClass;
1698  }
1699 
1700  // Iterators
1701  child_range children() { return child_range(&Val, &Val+1); }
1703  return const_child_range(&Val, &Val + 1);
1704  }
1705 };
1706 
1707 /// UnaryOperator - This represents the unary-expression's (except sizeof and
1708 /// alignof), the postinc/postdec operators from postfix-expression, and various
1709 /// extensions.
1710 ///
1711 /// Notes on various nodes:
1712 ///
1713 /// Real/Imag - These return the real/imag part of a complex operand. If
1714 /// applied to a non-complex value, the former returns its operand and the
1715 /// later returns zero in the type of the operand.
1716 ///
1717 class UnaryOperator : public Expr {
1718 public:
1720 
1721 private:
1722  unsigned Opc : 5;
1723  SourceLocation Loc;
1724  Stmt *Val;
1725 public:
1726 
1727  UnaryOperator(Expr *input, Opcode opc, QualType type,
1729  : Expr(UnaryOperatorClass, type, VK, OK,
1730  input->isTypeDependent() || type->isDependentType(),
1731  input->isValueDependent(),
1732  (input->isInstantiationDependent() ||
1733  type->isInstantiationDependentType()),
1734  input->containsUnexpandedParameterPack()),
1735  Opc(opc), Loc(l), Val(input) {}
1736 
1737  /// \brief Build an empty unary operator.
1738  explicit UnaryOperator(EmptyShell Empty)
1739  : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1740 
1741  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1742  void setOpcode(Opcode O) { Opc = O; }
1743 
1744  Expr *getSubExpr() const { return cast<Expr>(Val); }
1745  void setSubExpr(Expr *E) { Val = E; }
1746 
1747  /// getOperatorLoc - Return the location of the operator.
1748  SourceLocation getOperatorLoc() const { return Loc; }
1749  void setOperatorLoc(SourceLocation L) { Loc = L; }
1750 
1751  /// isPostfix - Return true if this is a postfix operation, like x++.
1752  static bool isPostfix(Opcode Op) {
1753  return Op == UO_PostInc || Op == UO_PostDec;
1754  }
1755 
1756  /// isPrefix - Return true if this is a prefix operation, like --x.
1757  static bool isPrefix(Opcode Op) {
1758  return Op == UO_PreInc || Op == UO_PreDec;
1759  }
1760 
1761  bool isPrefix() const { return isPrefix(getOpcode()); }
1762  bool isPostfix() const { return isPostfix(getOpcode()); }
1763 
1764  static bool isIncrementOp(Opcode Op) {
1765  return Op == UO_PreInc || Op == UO_PostInc;
1766  }
1767  bool isIncrementOp() const {
1768  return isIncrementOp(getOpcode());
1769  }
1770 
1771  static bool isDecrementOp(Opcode Op) {
1772  return Op == UO_PreDec || Op == UO_PostDec;
1773  }
1774  bool isDecrementOp() const {
1775  return isDecrementOp(getOpcode());
1776  }
1777 
1778  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1779  bool isIncrementDecrementOp() const {
1780  return isIncrementDecrementOp(getOpcode());
1781  }
1782 
1783  static bool isArithmeticOp(Opcode Op) {
1784  return Op >= UO_Plus && Op <= UO_LNot;
1785  }
1786  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1787 
1788  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1789  /// corresponds to, e.g. "sizeof" or "[pre]++"
1790  static StringRef getOpcodeStr(Opcode Op);
1791 
1792  /// \brief Retrieve the unary opcode that corresponds to the given
1793  /// overloaded operator.
1794  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1795 
1796  /// \brief Retrieve the overloaded operator kind that corresponds to
1797  /// the given unary opcode.
1798  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1799 
1800  SourceLocation getLocStart() const LLVM_READONLY {
1801  return isPostfix() ? Val->getLocStart() : Loc;
1802  }
1803  SourceLocation getLocEnd() const LLVM_READONLY {
1804  return isPostfix() ? Loc : Val->getLocEnd();
1805  }
1806  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1807 
1808  static bool classof(const Stmt *T) {
1809  return T->getStmtClass() == UnaryOperatorClass;
1810  }
1811 
1812  // Iterators
1813  child_range children() { return child_range(&Val, &Val+1); }
1815  return const_child_range(&Val, &Val + 1);
1816  }
1817 };
1818 
1819 /// Helper class for OffsetOfExpr.
1820 
1821 // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1823 public:
1824  /// \brief The kind of offsetof node we have.
1825  enum Kind {
1826  /// \brief An index into an array.
1827  Array = 0x00,
1828  /// \brief A field.
1829  Field = 0x01,
1830  /// \brief A field in a dependent type, known only by its name.
1831  Identifier = 0x02,
1832  /// \brief An implicit indirection through a C++ base class, when the
1833  /// field found is in a base class.
1834  Base = 0x03
1835  };
1836 
1837 private:
1838  enum { MaskBits = 2, Mask = 0x03 };
1839 
1840  /// \brief The source range that covers this part of the designator.
1841  SourceRange Range;
1842 
1843  /// \brief The data describing the designator, which comes in three
1844  /// different forms, depending on the lower two bits.
1845  /// - An unsigned index into the array of Expr*'s stored after this node
1846  /// in memory, for [constant-expression] designators.
1847  /// - A FieldDecl*, for references to a known field.
1848  /// - An IdentifierInfo*, for references to a field with a given name
1849  /// when the class type is dependent.
1850  /// - A CXXBaseSpecifier*, for references that look at a field in a
1851  /// base class.
1852  uintptr_t Data;
1853 
1854 public:
1855  /// \brief Create an offsetof node that refers to an array element.
1856  OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1857  SourceLocation RBracketLoc)
1858  : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) {}
1859 
1860  /// \brief Create an offsetof node that refers to a field.
1862  : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
1863  Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) {}
1864 
1865  /// \brief Create an offsetof node that refers to an identifier.
1867  SourceLocation NameLoc)
1868  : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
1869  Data(reinterpret_cast<uintptr_t>(Name) | Identifier) {}
1870 
1871  /// \brief Create an offsetof node that refers into a C++ base class.
1873  : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1874 
1875  /// \brief Determine what kind of offsetof node this is.
1876  Kind getKind() const { return static_cast<Kind>(Data & Mask); }
1877 
1878  /// \brief For an array element node, returns the index into the array
1879  /// of expressions.
1880  unsigned getArrayExprIndex() const {
1881  assert(getKind() == Array);
1882  return Data >> 2;
1883  }
1884 
1885  /// \brief For a field offsetof node, returns the field.
1886  FieldDecl *getField() const {
1887  assert(getKind() == Field);
1888  return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1889  }
1890 
1891  /// \brief For a field or identifier offsetof node, returns the name of
1892  /// the field.
1893  IdentifierInfo *getFieldName() const;
1894 
1895  /// \brief For a base class node, returns the base specifier.
1897  assert(getKind() == Base);
1898  return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1899  }
1900 
1901  /// \brief Retrieve the source range that covers this offsetof node.
1902  ///
1903  /// For an array element node, the source range contains the locations of
1904  /// the square brackets. For a field or identifier node, the source range
1905  /// contains the location of the period (if there is one) and the
1906  /// identifier.
1907  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1908  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
1909  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
1910 };
1911 
1912 /// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1913 /// offsetof(record-type, member-designator). For example, given:
1914 /// @code
1915 /// struct S {
1916 /// float f;
1917 /// double d;
1918 /// };
1919 /// struct T {
1920 /// int i;
1921 /// struct S s[10];
1922 /// };
1923 /// @endcode
1924 /// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1925 
1926 class OffsetOfExpr final
1927  : public Expr,
1928  private llvm::TrailingObjects<OffsetOfExpr, OffsetOfNode, Expr *> {
1929  SourceLocation OperatorLoc, RParenLoc;
1930  // Base type;
1931  TypeSourceInfo *TSInfo;
1932  // Number of sub-components (i.e. instances of OffsetOfNode).
1933  unsigned NumComps;
1934  // Number of sub-expressions (i.e. array subscript expressions).
1935  unsigned NumExprs;
1936 
1937  size_t numTrailingObjects(OverloadToken<OffsetOfNode>) const {
1938  return NumComps;
1939  }
1940 
1942  SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1944  SourceLocation RParenLoc);
1945 
1946  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1947  : Expr(OffsetOfExprClass, EmptyShell()),
1948  TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}
1949 
1950 public:
1951 
1952  static OffsetOfExpr *Create(const ASTContext &C, QualType type,
1953  SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1954  ArrayRef<OffsetOfNode> comps,
1955  ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
1956 
1957  static OffsetOfExpr *CreateEmpty(const ASTContext &C,
1958  unsigned NumComps, unsigned NumExprs);
1959 
1960  /// getOperatorLoc - Return the location of the operator.
1961  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1962  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1963 
1964  /// \brief Return the location of the right parentheses.
1965  SourceLocation getRParenLoc() const { return RParenLoc; }
1966  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1967 
1969  return TSInfo;
1970  }
1972  TSInfo = tsi;
1973  }
1974 
1975  const OffsetOfNode &getComponent(unsigned Idx) const {
1976  assert(Idx < NumComps && "Subscript out of range");
1977  return getTrailingObjects<OffsetOfNode>()[Idx];
1978  }
1979 
1980  void setComponent(unsigned Idx, OffsetOfNode ON) {
1981  assert(Idx < NumComps && "Subscript out of range");
1982  getTrailingObjects<OffsetOfNode>()[Idx] = ON;
1983  }
1984 
1985  unsigned getNumComponents() const {
1986  return NumComps;
1987  }
1988 
1989  Expr* getIndexExpr(unsigned Idx) {
1990  assert(Idx < NumExprs && "Subscript out of range");
1991  return getTrailingObjects<Expr *>()[Idx];
1992  }
1993 
1994  const Expr *getIndexExpr(unsigned Idx) const {
1995  assert(Idx < NumExprs && "Subscript out of range");
1996  return getTrailingObjects<Expr *>()[Idx];
1997  }
1998 
1999  void setIndexExpr(unsigned Idx, Expr* E) {
2000  assert(Idx < NumComps && "Subscript out of range");
2001  getTrailingObjects<Expr *>()[Idx] = E;
2002  }
2003 
2004  unsigned getNumExpressions() const {
2005  return NumExprs;
2006  }
2007 
2008  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
2009  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2010 
2011  static bool classof(const Stmt *T) {
2012  return T->getStmtClass() == OffsetOfExprClass;
2013  }
2014 
2015  // Iterators
2017  Stmt **begin = reinterpret_cast<Stmt **>(getTrailingObjects<Expr *>());
2018  return child_range(begin, begin + NumExprs);
2019  }
2021  Stmt *const *begin =
2022  reinterpret_cast<Stmt *const *>(getTrailingObjects<Expr *>());
2023  return const_child_range(begin, begin + NumExprs);
2024  }
2026 };
2027 
2028 /// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
2029 /// expression operand. Used for sizeof/alignof (C99 6.5.3.4) and
2030 /// vec_step (OpenCL 1.1 6.11.12).
2032  union {
2035  } Argument;
2036  SourceLocation OpLoc, RParenLoc;
2037 
2038 public:
2040  QualType resultType, SourceLocation op,
2041  SourceLocation rp) :
2042  Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2043  false, // Never type-dependent (C++ [temp.dep.expr]p3).
2044  // Value-dependent if the argument is type-dependent.
2045  TInfo->getType()->isDependentType(),
2046  TInfo->getType()->isInstantiationDependentType(),
2047  TInfo->getType()->containsUnexpandedParameterPack()),
2048  OpLoc(op), RParenLoc(rp) {
2049  UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
2050  UnaryExprOrTypeTraitExprBits.IsType = true;
2051  Argument.Ty = TInfo;
2052  }
2053 
2055  QualType resultType, SourceLocation op,
2056  SourceLocation rp);
2057 
2058  /// \brief Construct an empty sizeof/alignof expression.
2060  : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
2061 
2063  return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
2064  }
2065  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
2066 
2067  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
2069  return getArgumentTypeInfo()->getType();
2070  }
2072  assert(isArgumentType() && "calling getArgumentType() when arg is expr");
2073  return Argument.Ty;
2074  }
2076  assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
2077  return static_cast<Expr*>(Argument.Ex);
2078  }
2079  const Expr *getArgumentExpr() const {
2080  return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
2081  }
2082 
2083  void setArgument(Expr *E) {
2084  Argument.Ex = E;
2085  UnaryExprOrTypeTraitExprBits.IsType = false;
2086  }
2088  Argument.Ty = TInfo;
2089  UnaryExprOrTypeTraitExprBits.IsType = true;
2090  }
2091 
2092  /// Gets the argument type, or the type of the argument expression, whichever
2093  /// is appropriate.
2095  return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
2096  }
2097 
2098  SourceLocation getOperatorLoc() const { return OpLoc; }
2099  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2100 
2101  SourceLocation getRParenLoc() const { return RParenLoc; }
2102  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2103 
2104  SourceLocation getLocStart() const LLVM_READONLY { return OpLoc; }
2105  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2106 
2107  static bool classof(const Stmt *T) {
2108  return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
2109  }
2110 
2111  // Iterators
2113  const_child_range children() const;
2114 };
2115 
2116 //===----------------------------------------------------------------------===//
2117 // Postfix Operators.
2118 //===----------------------------------------------------------------------===//
2119 
2120 /// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
2121 class ArraySubscriptExpr : public Expr {
2122  enum { LHS, RHS, END_EXPR=2 };
2123  Stmt* SubExprs[END_EXPR];
2124  SourceLocation RBracketLoc;
2125 public:
2128  SourceLocation rbracketloc)
2129  : Expr(ArraySubscriptExprClass, t, VK, OK,
2130  lhs->isTypeDependent() || rhs->isTypeDependent(),
2131  lhs->isValueDependent() || rhs->isValueDependent(),
2132  (lhs->isInstantiationDependent() ||
2133  rhs->isInstantiationDependent()),
2134  (lhs->containsUnexpandedParameterPack() ||
2135  rhs->containsUnexpandedParameterPack())),
2136  RBracketLoc(rbracketloc) {
2137  SubExprs[LHS] = lhs;
2138  SubExprs[RHS] = rhs;
2139  }
2140 
2141  /// \brief Create an empty array subscript expression.
2143  : Expr(ArraySubscriptExprClass, Shell) { }
2144 
2145  /// An array access can be written A[4] or 4[A] (both are equivalent).
2146  /// - getBase() and getIdx() always present the normalized view: A[4].
2147  /// In this case getBase() returns "A" and getIdx() returns "4".
2148  /// - getLHS() and getRHS() present the syntactic view. e.g. for
2149  /// 4[A] getLHS() returns "4".
2150  /// Note: Because vector element access is also written A[4] we must
2151  /// predicate the format conversion in getBase and getIdx only on the
2152  /// the type of the RHS, as it is possible for the LHS to be a vector of
2153  /// integer type
2154  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
2155  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2156  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2157 
2158  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
2159  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2160  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2161 
2163  return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2164  }
2165 
2166  const Expr *getBase() const {
2167  return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2168  }
2169 
2171  return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2172  }
2173 
2174  const Expr *getIdx() const {
2175  return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2176  }
2177 
2178  SourceLocation getLocStart() const LLVM_READONLY {
2179  return getLHS()->getLocStart();
2180  }
2181  SourceLocation getLocEnd() const LLVM_READONLY { return RBracketLoc; }
2182 
2183  SourceLocation getRBracketLoc() const { return RBracketLoc; }
2184  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2185 
2186  SourceLocation getExprLoc() const LLVM_READONLY {
2187  return getBase()->getExprLoc();
2188  }
2189 
2190  static bool classof(const Stmt *T) {
2191  return T->getStmtClass() == ArraySubscriptExprClass;
2192  }
2193 
2194  // Iterators
2196  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2197  }
2199  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
2200  }
2201 };
2202 
2203 /// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2204 /// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2205 /// while its subclasses may represent alternative syntax that (semantically)
2206 /// results in a function call. For example, CXXOperatorCallExpr is
2207 /// a subclass for overloaded operator calls that use operator syntax, e.g.,
2208 /// "str1 + str2" to resolve to a function call.
2209 class CallExpr : public Expr {
2210  enum { FN=0, PREARGS_START=1 };
2211  Stmt **SubExprs;
2212  unsigned NumArgs;
2213  SourceLocation RParenLoc;
2214 
2215  void updateDependenciesFromArg(Expr *Arg);
2216 
2217 protected:
2218  // These versions of the constructor are for derived classes.
2219  CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
2220  ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t,
2221  ExprValueKind VK, SourceLocation rparenloc);
2222  CallExpr(const ASTContext &C, StmtClass SC, Expr *fn, ArrayRef<Expr *> args,
2223  QualType t, ExprValueKind VK, SourceLocation rparenloc);
2224  CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
2225  EmptyShell Empty);
2226 
2227  Stmt *getPreArg(unsigned i) {
2228  assert(i < getNumPreArgs() && "Prearg access out of range!");
2229  return SubExprs[PREARGS_START+i];
2230  }
2231  const Stmt *getPreArg(unsigned i) const {
2232  assert(i < getNumPreArgs() && "Prearg access out of range!");
2233  return SubExprs[PREARGS_START+i];
2234  }
2235  void setPreArg(unsigned i, Stmt *PreArg) {
2236  assert(i < getNumPreArgs() && "Prearg access out of range!");
2237  SubExprs[PREARGS_START+i] = PreArg;
2238  }
2239 
2240  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2241 
2242 public:
2243  CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
2244  ExprValueKind VK, SourceLocation rparenloc);
2245 
2246  /// \brief Build an empty call expression.
2247  CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty);
2248 
2249  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2250  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2251  void setCallee(Expr *F) { SubExprs[FN] = F; }
2252 
2253  Decl *getCalleeDecl();
2254  const Decl *getCalleeDecl() const {
2255  return const_cast<CallExpr*>(this)->getCalleeDecl();
2256  }
2257 
2258  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2259  FunctionDecl *getDirectCallee();
2261  return const_cast<CallExpr*>(this)->getDirectCallee();
2262  }
2263 
2264  /// getNumArgs - Return the number of actual arguments to this call.
2265  ///
2266  unsigned getNumArgs() const { return NumArgs; }
2267 
2268  /// \brief Retrieve the call arguments.
2270  return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2271  }
2272  const Expr *const *getArgs() const {
2273  return reinterpret_cast<Expr **>(SubExprs + getNumPreArgs() +
2274  PREARGS_START);
2275  }
2276 
2277  /// getArg - Return the specified argument.
2278  Expr *getArg(unsigned Arg) {
2279  assert(Arg < NumArgs && "Arg access out of range!");
2280  return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
2281  }
2282  const Expr *getArg(unsigned Arg) const {
2283  assert(Arg < NumArgs && "Arg access out of range!");
2284  return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
2285  }
2286 
2287  /// setArg - Set the specified argument.
2288  void setArg(unsigned Arg, Expr *ArgExpr) {
2289  assert(Arg < NumArgs && "Arg access out of range!");
2290  SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2291  }
2292 
2293  /// setNumArgs - This changes the number of arguments present in this call.
2294  /// Any orphaned expressions are deleted by this, and any new operands are set
2295  /// to null.
2296  void setNumArgs(const ASTContext& C, unsigned NumArgs);
2297 
2300  typedef llvm::iterator_range<arg_iterator> arg_range;
2301  typedef llvm::iterator_range<const_arg_iterator> arg_const_range;
2302 
2303  arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
2304  arg_const_range arguments() const {
2305  return arg_const_range(arg_begin(), arg_end());
2306  }
2307 
2308  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2309  arg_iterator arg_end() {
2310  return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2311  }
2312  const_arg_iterator arg_begin() const {
2313  return SubExprs+PREARGS_START+getNumPreArgs();
2314  }
2315  const_arg_iterator arg_end() const {
2316  return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2317  }
2318 
2319  /// This method provides fast access to all the subexpressions of
2320  /// a CallExpr without going through the slower virtual child_iterator
2321  /// interface. This provides efficient reverse iteration of the
2322  /// subexpressions. This is currently used for CFG construction.
2324  return llvm::makeArrayRef(SubExprs,
2325  getNumPreArgs() + PREARGS_START + getNumArgs());
2326  }
2327 
2328  /// getNumCommas - Return the number of commas that must have been present in
2329  /// this function call.
2330  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2331 
2332  /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
2333  /// of the callee. If not, return 0.
2334  unsigned getBuiltinCallee() const;
2335 
2336  /// \brief Returns \c true if this is a call to a builtin which does not
2337  /// evaluate side-effects within its arguments.
2338  bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const;
2339 
2340  /// getCallReturnType - Get the return type of the call expr. This is not
2341  /// always the type of the expr itself, if the return type is a reference
2342  /// type.
2343  QualType getCallReturnType(const ASTContext &Ctx) const;
2344 
2345  SourceLocation getRParenLoc() const { return RParenLoc; }
2346  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2347 
2348  SourceLocation getLocStart() const LLVM_READONLY;
2349  SourceLocation getLocEnd() const LLVM_READONLY;
2350 
2351  bool isCallToStdMove() const {
2352  const FunctionDecl* FD = getDirectCallee();
2353  return getNumArgs() == 1 && FD && FD->isInStdNamespace() &&
2354  FD->getIdentifier() && FD->getIdentifier()->isStr("move");
2355  }
2356 
2357  static bool classof(const Stmt *T) {
2358  return T->getStmtClass() >= firstCallExprConstant &&
2359  T->getStmtClass() <= lastCallExprConstant;
2360  }
2361 
2362  // Iterators
2364  return child_range(&SubExprs[0],
2365  &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2366  }
2367 
2369  return const_child_range(&SubExprs[0], &SubExprs[0] + NumArgs +
2370  getNumPreArgs() + PREARGS_START);
2371  }
2372 };
2373 
2374 /// Extra data stored in some MemberExpr objects.
2376  /// \brief The nested-name-specifier that qualifies the name, including
2377  /// source-location information.
2379 
2380  /// \brief The DeclAccessPair through which the MemberDecl was found due to
2381  /// name qualifiers.
2383 };
2384 
2385 /// MemberExpr - [C99 6.5.2.3] Structure and Union Members. X->F and X.F.
2386 ///
2387 class MemberExpr final
2388  : public Expr,
2389  private llvm::TrailingObjects<MemberExpr, MemberExprNameQualifier,
2390  ASTTemplateKWAndArgsInfo,
2391  TemplateArgumentLoc> {
2392  /// Base - the expression for the base pointer or structure references. In
2393  /// X.F, this is "X".
2394  Stmt *Base;
2395 
2396  /// MemberDecl - This is the decl being referenced by the field/member name.
2397  /// In X.F, this is the decl referenced by F.
2398  ValueDecl *MemberDecl;
2399 
2400  /// MemberDNLoc - Provides source/type location info for the
2401  /// declaration name embedded in MemberDecl.
2402  DeclarationNameLoc MemberDNLoc;
2403 
2404  /// MemberLoc - This is the location of the member name.
2405  SourceLocation MemberLoc;
2406 
2407  /// This is the location of the -> or . in the expression.
2408  SourceLocation OperatorLoc;
2409 
2410  /// IsArrow - True if this is "X->F", false if this is "X.F".
2411  bool IsArrow : 1;
2412 
2413  /// \brief True if this member expression used a nested-name-specifier to
2414  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2415  /// declaration. When true, a MemberExprNameQualifier
2416  /// structure is allocated immediately after the MemberExpr.
2417  bool HasQualifierOrFoundDecl : 1;
2418 
2419  /// \brief True if this member expression specified a template keyword
2420  /// and/or a template argument list explicitly, e.g., x->f<int>,
2421  /// x->template f, x->template f<int>.
2422  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2423  /// TemplateArguments (if any) are present.
2424  bool HasTemplateKWAndArgsInfo : 1;
2425 
2426  /// \brief True if this member expression refers to a method that
2427  /// was resolved from an overloaded set having size greater than 1.
2428  bool HadMultipleCandidates : 1;
2429 
2430  size_t numTrailingObjects(OverloadToken<MemberExprNameQualifier>) const {
2431  return HasQualifierOrFoundDecl ? 1 : 0;
2432  }
2433 
2434  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
2435  return HasTemplateKWAndArgsInfo ? 1 : 0;
2436  }
2437 
2438 public:
2439  MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2440  ValueDecl *memberdecl, const DeclarationNameInfo &NameInfo,
2442  : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2443  base->isValueDependent(), base->isInstantiationDependent(),
2444  base->containsUnexpandedParameterPack()),
2445  Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2446  MemberLoc(NameInfo.getLoc()), OperatorLoc(operatorloc),
2447  IsArrow(isarrow), HasQualifierOrFoundDecl(false),
2448  HasTemplateKWAndArgsInfo(false), HadMultipleCandidates(false) {
2449  assert(memberdecl->getDeclName() == NameInfo.getName());
2450  }
2451 
2452  // NOTE: this constructor should be used only when it is known that
2453  // the member name can not provide additional syntactic info
2454  // (i.e., source locations for C++ operator names or type source info
2455  // for constructors, destructors and conversion operators).
2456  MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2457  ValueDecl *memberdecl, SourceLocation l, QualType ty,
2459  : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2460  base->isValueDependent(), base->isInstantiationDependent(),
2461  base->containsUnexpandedParameterPack()),
2462  Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2463  OperatorLoc(operatorloc), IsArrow(isarrow),
2464  HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2465  HadMultipleCandidates(false) {}
2466 
2467  static MemberExpr *Create(const ASTContext &C, Expr *base, bool isarrow,
2468  SourceLocation OperatorLoc,
2469  NestedNameSpecifierLoc QualifierLoc,
2470  SourceLocation TemplateKWLoc, ValueDecl *memberdecl,
2471  DeclAccessPair founddecl,
2472  DeclarationNameInfo MemberNameInfo,
2473  const TemplateArgumentListInfo *targs, QualType ty,
2474  ExprValueKind VK, ExprObjectKind OK);
2475 
2476  void setBase(Expr *E) { Base = E; }
2477  Expr *getBase() const { return cast<Expr>(Base); }
2478 
2479  /// \brief Retrieve the member declaration to which this expression refers.
2480  ///
2481  /// The returned declaration will be a FieldDecl or (in C++) a VarDecl (for
2482  /// static data members), a CXXMethodDecl, or an EnumConstantDecl.
2483  ValueDecl *getMemberDecl() const { return MemberDecl; }
2484  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2485 
2486  /// \brief Retrieves the declaration found by lookup.
2488  if (!HasQualifierOrFoundDecl)
2489  return DeclAccessPair::make(getMemberDecl(),
2490  getMemberDecl()->getAccess());
2491  return getTrailingObjects<MemberExprNameQualifier>()->FoundDecl;
2492  }
2493 
2494  /// \brief Determines whether this member expression actually had
2495  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2496  /// x->Base::foo.
2497  bool hasQualifier() const { return getQualifier() != nullptr; }
2498 
2499  /// \brief If the member name was qualified, retrieves the
2500  /// nested-name-specifier that precedes the member name, with source-location
2501  /// information.
2503  if (!HasQualifierOrFoundDecl)
2504  return NestedNameSpecifierLoc();
2505 
2506  return getTrailingObjects<MemberExprNameQualifier>()->QualifierLoc;
2507  }
2508 
2509  /// \brief If the member name was qualified, retrieves the
2510  /// nested-name-specifier that precedes the member name. Otherwise, returns
2511  /// NULL.
2513  return getQualifierLoc().getNestedNameSpecifier();
2514  }
2515 
2516  /// \brief Retrieve the location of the template keyword preceding
2517  /// the member name, if any.
2519  if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2520  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
2521  }
2522 
2523  /// \brief Retrieve the location of the left angle bracket starting the
2524  /// explicit template argument list following the member name, if any.
2526  if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2527  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
2528  }
2529 
2530  /// \brief Retrieve the location of the right angle bracket ending the
2531  /// explicit template argument list following the member name, if any.
2533  if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2534  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
2535  }
2536 
2537  /// Determines whether the member name was preceded by the template keyword.
2538  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2539 
2540  /// \brief Determines whether the member name was followed by an
2541  /// explicit template argument list.
2542  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2543 
2544  /// \brief Copies the template arguments (if present) into the given
2545  /// structure.
2547  if (hasExplicitTemplateArgs())
2548  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
2549  getTrailingObjects<TemplateArgumentLoc>(), List);
2550  }
2551 
2552  /// \brief Retrieve the template arguments provided as part of this
2553  /// template-id.
2555  if (!hasExplicitTemplateArgs())
2556  return nullptr;
2557 
2558  return getTrailingObjects<TemplateArgumentLoc>();
2559  }
2560 
2561  /// \brief Retrieve the number of template arguments provided as part of this
2562  /// template-id.
2563  unsigned getNumTemplateArgs() const {
2564  if (!hasExplicitTemplateArgs())
2565  return 0;
2566 
2567  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
2568  }
2569 
2571  return {getTemplateArgs(), getNumTemplateArgs()};
2572  }
2573 
2574  /// \brief Retrieve the member declaration name info.
2576  return DeclarationNameInfo(MemberDecl->getDeclName(),
2577  MemberLoc, MemberDNLoc);
2578  }
2579 
2580  SourceLocation getOperatorLoc() const LLVM_READONLY { return OperatorLoc; }
2581 
2582  bool isArrow() const { return IsArrow; }
2583  void setArrow(bool A) { IsArrow = A; }
2584 
2585  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2586  /// location of 'F'.
2587  SourceLocation getMemberLoc() const { return MemberLoc; }
2588  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2589 
2590  SourceLocation getLocStart() const LLVM_READONLY;
2591  SourceLocation getLocEnd() const LLVM_READONLY;
2592 
2593  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2594 
2595  /// \brief Determine whether the base of this explicit is implicit.
2596  bool isImplicitAccess() const {
2597  return getBase() && getBase()->isImplicitCXXThis();
2598  }
2599 
2600  /// \brief Returns true if this member expression refers to a method that
2601  /// was resolved from an overloaded set having size greater than 1.
2602  bool hadMultipleCandidates() const {
2603  return HadMultipleCandidates;
2604  }
2605  /// \brief Sets the flag telling whether this expression refers to
2606  /// a method that was resolved from an overloaded set having size
2607  /// greater than 1.
2608  void setHadMultipleCandidates(bool V = true) {
2609  HadMultipleCandidates = V;
2610  }
2611 
2612  /// \brief Returns true if virtual dispatch is performed.
2613  /// If the member access is fully qualified, (i.e. X::f()), virtual
2614  /// dispatching is not performed. In -fapple-kext mode qualified
2615  /// calls to virtual method will still go through the vtable.
2616  bool performsVirtualDispatch(const LangOptions &LO) const {
2617  return LO.AppleKext || !hasQualifier();
2618  }
2619 
2620  static bool classof(const Stmt *T) {
2621  return T->getStmtClass() == MemberExprClass;
2622  }
2623 
2624  // Iterators
2625  child_range children() { return child_range(&Base, &Base+1); }
2627  return const_child_range(&Base, &Base + 1);
2628  }
2629 
2631  friend class ASTReader;
2632  friend class ASTStmtWriter;
2633 };
2634 
2635 /// CompoundLiteralExpr - [C99 6.5.2.5]
2636 ///
2637 class CompoundLiteralExpr : public Expr {
2638  /// LParenLoc - If non-null, this is the location of the left paren in a
2639  /// compound literal like "(int){4}". This can be null if this is a
2640  /// synthesized compound expression.
2641  SourceLocation LParenLoc;
2642 
2643  /// The type as written. This can be an incomplete array type, in
2644  /// which case the actual expression type will be different.
2645  /// The int part of the pair stores whether this expr is file scope.
2646  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2647  Stmt *Init;
2648 public:
2650  QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2651  : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2652  tinfo->getType()->isDependentType(),
2653  init->isValueDependent(),
2654  (init->isInstantiationDependent() ||
2655  tinfo->getType()->isInstantiationDependentType()),
2656  init->containsUnexpandedParameterPack()),
2657  LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2658 
2659  /// \brief Construct an empty compound literal.
2661  : Expr(CompoundLiteralExprClass, Empty) { }
2662 
2663  const Expr *getInitializer() const { return cast<Expr>(Init); }
2664  Expr *getInitializer() { return cast<Expr>(Init); }
2665  void setInitializer(Expr *E) { Init = E; }
2666 
2667  bool isFileScope() const { return TInfoAndScope.getInt(); }
2668  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2669 
2670  SourceLocation getLParenLoc() const { return LParenLoc; }
2671  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2672 
2674  return TInfoAndScope.getPointer();
2675  }
2677  TInfoAndScope.setPointer(tinfo);
2678  }
2679 
2680  SourceLocation getLocStart() const LLVM_READONLY {
2681  // FIXME: Init should never be null.
2682  if (!Init)
2683  return SourceLocation();
2684  if (LParenLoc.isInvalid())
2685  return Init->getLocStart();
2686  return LParenLoc;
2687  }
2688  SourceLocation getLocEnd() const LLVM_READONLY {
2689  // FIXME: Init should never be null.
2690  if (!Init)
2691  return SourceLocation();
2692  return Init->getLocEnd();
2693  }
2694 
2695  static bool classof(const Stmt *T) {
2696  return T->getStmtClass() == CompoundLiteralExprClass;
2697  }
2698 
2699  // Iterators
2700  child_range children() { return child_range(&Init, &Init+1); }
2702  return const_child_range(&Init, &Init + 1);
2703  }
2704 };
2705 
2706 /// CastExpr - Base class for type casts, including both implicit
2707 /// casts (ImplicitCastExpr) and explicit casts that have some
2708 /// representation in the source code (ExplicitCastExpr's derived
2709 /// classes).
2710 class CastExpr : public Expr {
2711 private:
2712  Stmt *Op;
2713 
2714  bool CastConsistency() const;
2715 
2716  const CXXBaseSpecifier * const *path_buffer() const {
2717  return const_cast<CastExpr*>(this)->path_buffer();
2718  }
2719  CXXBaseSpecifier **path_buffer();
2720 
2721  void setBasePathSize(unsigned basePathSize) {
2722  CastExprBits.BasePathSize = basePathSize;
2723  assert(CastExprBits.BasePathSize == basePathSize &&
2724  "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2725  }
2726 
2727 protected:
2729  Expr *op, unsigned BasePathSize)
2730  : Expr(SC, ty, VK, OK_Ordinary,
2731  // Cast expressions are type-dependent if the type is
2732  // dependent (C++ [temp.dep.expr]p3).
2733  ty->isDependentType(),
2734  // Cast expressions are value-dependent if the type is
2735  // dependent or if the subexpression is value-dependent.
2736  ty->isDependentType() || (op && op->isValueDependent()),
2737  (ty->isInstantiationDependentType() ||
2738  (op && op->isInstantiationDependent())),
2739  // An implicit cast expression doesn't (lexically) contain an
2740  // unexpanded pack, even if its target type does.
2741  ((SC != ImplicitCastExprClass &&
2742  ty->containsUnexpandedParameterPack()) ||
2743  (op && op->containsUnexpandedParameterPack()))),
2744  Op(op) {
2745  assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2746  CastExprBits.Kind = kind;
2747  setBasePathSize(BasePathSize);
2748  assert(CastConsistency());
2749  }
2750 
2751  /// \brief Construct an empty cast.
2752  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2753  : Expr(SC, Empty) {
2754  setBasePathSize(BasePathSize);
2755  }
2756 
2757 public:
2758  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2759  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2760  const char *getCastKindName() const;
2761 
2762  Expr *getSubExpr() { return cast<Expr>(Op); }
2763  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2764  void setSubExpr(Expr *E) { Op = E; }
2765 
2766  /// \brief Retrieve the cast subexpression as it was written in the source
2767  /// code, looking through any implicit casts or other intermediate nodes
2768  /// introduced by semantic analysis.
2769  Expr *getSubExprAsWritten();
2770  const Expr *getSubExprAsWritten() const {
2771  return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2772  }
2773 
2775  typedef const CXXBaseSpecifier * const *path_const_iterator;
2776  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2777  unsigned path_size() const { return CastExprBits.BasePathSize; }
2778  path_iterator path_begin() { return path_buffer(); }
2779  path_iterator path_end() { return path_buffer() + path_size(); }
2780  path_const_iterator path_begin() const { return path_buffer(); }
2781  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2782 
2784  assert(getCastKind() == CK_ToUnion);
2785  return getTargetFieldForToUnionCast(getType(), getSubExpr()->getType());
2786  }
2787 
2788  static const FieldDecl *getTargetFieldForToUnionCast(QualType unionType,
2789  QualType opType);
2790  static const FieldDecl *getTargetFieldForToUnionCast(const RecordDecl *RD,
2791  QualType opType);
2792 
2793  static bool classof(const Stmt *T) {
2794  return T->getStmtClass() >= firstCastExprConstant &&
2795  T->getStmtClass() <= lastCastExprConstant;
2796  }
2797 
2798  // Iterators
2799  child_range children() { return child_range(&Op, &Op+1); }
2800  const_child_range children() const { return const_child_range(&Op, &Op + 1); }
2801 };
2802 
2803 /// ImplicitCastExpr - Allows us to explicitly represent implicit type
2804 /// conversions, which have no direct representation in the original
2805 /// source code. For example: converting T[]->T*, void f()->void
2806 /// (*f)(), float->double, short->int, etc.
2807 ///
2808 /// In C, implicit casts always produce rvalues. However, in C++, an
2809 /// implicit cast whose result is being bound to a reference will be
2810 /// an lvalue or xvalue. For example:
2811 ///
2812 /// @code
2813 /// class Base { };
2814 /// class Derived : public Base { };
2815 /// Derived &&ref();
2816 /// void f(Derived d) {
2817 /// Base& b = d; // initializer is an ImplicitCastExpr
2818 /// // to an lvalue of type Base
2819 /// Base&& r = ref(); // initializer is an ImplicitCastExpr
2820 /// // to an xvalue of type Base
2821 /// }
2822 /// @endcode
2823 class ImplicitCastExpr final
2824  : public CastExpr,
2825  private llvm::TrailingObjects<ImplicitCastExpr, CXXBaseSpecifier *> {
2826 private:
2828  unsigned BasePathLength, ExprValueKind VK)
2829  : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2830  }
2831 
2832  /// \brief Construct an empty implicit cast.
2833  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2834  : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2835 
2836 public:
2837  enum OnStack_t { OnStack };
2839  ExprValueKind VK)
2840  : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2841  }
2842 
2843  static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
2844  CastKind Kind, Expr *Operand,
2845  const CXXCastPath *BasePath,
2846  ExprValueKind Cat);
2847 
2848  static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
2849  unsigned PathSize);
2850 
2851  SourceLocation getLocStart() const LLVM_READONLY {
2852  return getSubExpr()->getLocStart();
2853  }
2854  SourceLocation getLocEnd() const LLVM_READONLY {
2855  return getSubExpr()->getLocEnd();
2856  }
2857 
2858  static bool classof(const Stmt *T) {
2859  return T->getStmtClass() == ImplicitCastExprClass;
2860  }
2861 
2863  friend class CastExpr;
2864 };
2865 
2867  Expr *e = this;
2868  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2869  e = ice->getSubExpr();
2870  return e;
2871 }
2872 
2873 /// ExplicitCastExpr - An explicit cast written in the source
2874 /// code.
2875 ///
2876 /// This class is effectively an abstract class, because it provides
2877 /// the basic representation of an explicitly-written cast without
2878 /// specifying which kind of cast (C cast, functional cast, static
2879 /// cast, etc.) was written; specific derived classes represent the
2880 /// particular style of cast and its location information.
2881 ///
2882 /// Unlike implicit casts, explicit cast nodes have two different
2883 /// types: the type that was written into the source code, and the
2884 /// actual type of the expression as determined by semantic
2885 /// analysis. These types may differ slightly. For example, in C++ one
2886 /// can cast to a reference type, which indicates that the resulting
2887 /// expression will be an lvalue or xvalue. The reference type, however,
2888 /// will not be used as the type of the expression.
2889 class ExplicitCastExpr : public CastExpr {
2890  /// TInfo - Source type info for the (written) type
2891  /// this expression is casting to.
2892  TypeSourceInfo *TInfo;
2893 
2894 protected:
2896  CastKind kind, Expr *op, unsigned PathSize,
2897  TypeSourceInfo *writtenTy)
2898  : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2899 
2900  /// \brief Construct an empty explicit cast.
2901  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2902  : CastExpr(SC, Shell, PathSize) { }
2903 
2904 public:
2905  /// getTypeInfoAsWritten - Returns the type source info for the type
2906  /// that this expression is casting to.
2907  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2908  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2909 
2910  /// getTypeAsWritten - Returns the type that this expression is
2911  /// casting to, as written in the source code.
2912  QualType getTypeAsWritten() const { return TInfo->getType(); }
2913 
2914  static bool classof(const Stmt *T) {
2915  return T->getStmtClass() >= firstExplicitCastExprConstant &&
2916  T->getStmtClass() <= lastExplicitCastExprConstant;
2917  }
2918 };
2919 
2920 /// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2921 /// cast in C++ (C++ [expr.cast]), which uses the syntax
2922 /// (Type)expr. For example: @c (int)f.
2923 class CStyleCastExpr final
2924  : public ExplicitCastExpr,
2925  private llvm::TrailingObjects<CStyleCastExpr, CXXBaseSpecifier *> {
2926  SourceLocation LPLoc; // the location of the left paren
2927  SourceLocation RPLoc; // the location of the right paren
2928 
2930  unsigned PathSize, TypeSourceInfo *writtenTy,
2932  : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2933  writtenTy), LPLoc(l), RPLoc(r) {}
2934 
2935  /// \brief Construct an empty C-style explicit cast.
2936  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2937  : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2938 
2939 public:
2940  static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
2941  ExprValueKind VK, CastKind K,
2942  Expr *Op, const CXXCastPath *BasePath,
2943  TypeSourceInfo *WrittenTy, SourceLocation L,
2944  SourceLocation R);
2945 
2946  static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
2947  unsigned PathSize);
2948 
2949  SourceLocation getLParenLoc() const { return LPLoc; }
2950  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2951 
2952  SourceLocation getRParenLoc() const { return RPLoc; }
2953  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2954 
2955  SourceLocation getLocStart() const LLVM_READONLY { return LPLoc; }
2956  SourceLocation getLocEnd() const LLVM_READONLY {
2957  return getSubExpr()->getLocEnd();
2958  }
2959 
2960  static bool classof(const Stmt *T) {
2961  return T->getStmtClass() == CStyleCastExprClass;
2962  }
2963 
2965  friend class CastExpr;
2966 };
2967 
2968 /// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2969 ///
2970 /// This expression node kind describes a builtin binary operation,
2971 /// such as "x + y" for integer values "x" and "y". The operands will
2972 /// already have been converted to appropriate types (e.g., by
2973 /// performing promotions or conversions).
2974 ///
2975 /// In C++, where operators may be overloaded, a different kind of
2976 /// expression node (CXXOperatorCallExpr) is used to express the
2977 /// invocation of an overloaded operator with operator syntax. Within
2978 /// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2979 /// used to store an expression "x + y" depends on the subexpressions
2980 /// for x and y. If neither x or y is type-dependent, and the "+"
2981 /// operator resolves to a built-in operation, BinaryOperator will be
2982 /// used to express the computation (x and y may still be
2983 /// value-dependent). If either x or y is type-dependent, or if the
2984 /// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2985 /// be used to express the computation.
2986 class BinaryOperator : public Expr {
2987 public:
2989 
2990 private:
2991  unsigned Opc : 6;
2992 
2993  // This is only meaningful for operations on floating point types and 0
2994  // otherwise.
2995  unsigned FPFeatures : 2;
2996  SourceLocation OpLoc;
2997 
2998  enum { LHS, RHS, END_EXPR };
2999  Stmt* SubExprs[END_EXPR];
3000 public:
3001 
3002  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3004  SourceLocation opLoc, FPOptions FPFeatures)
3005  : Expr(BinaryOperatorClass, ResTy, VK, OK,
3006  lhs->isTypeDependent() || rhs->isTypeDependent(),
3007  lhs->isValueDependent() || rhs->isValueDependent(),
3008  (lhs->isInstantiationDependent() ||
3009  rhs->isInstantiationDependent()),
3010  (lhs->containsUnexpandedParameterPack() ||
3011  rhs->containsUnexpandedParameterPack())),
3012  Opc(opc), FPFeatures(FPFeatures.getInt()), OpLoc(opLoc) {
3013  SubExprs[LHS] = lhs;
3014  SubExprs[RHS] = rhs;
3015  assert(!isCompoundAssignmentOp() &&
3016  "Use CompoundAssignOperator for compound assignments");
3017  }
3018 
3019  /// \brief Construct an empty binary operator.
3020  explicit BinaryOperator(EmptyShell Empty)
3021  : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
3022 
3023  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
3024  SourceLocation getOperatorLoc() const { return OpLoc; }
3025  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
3026 
3027  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
3028  void setOpcode(Opcode O) { Opc = O; }
3029 
3030  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3031  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3032  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3033  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3034 
3035  SourceLocation getLocStart() const LLVM_READONLY {
3036  return getLHS()->getLocStart();
3037  }
3038  SourceLocation getLocEnd() const LLVM_READONLY {
3039  return getRHS()->getLocEnd();
3040  }
3041 
3042  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
3043  /// corresponds to, e.g. "<<=".
3044  static StringRef getOpcodeStr(Opcode Op);
3045 
3046  StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
3047 
3048  /// \brief Retrieve the binary opcode that corresponds to the given
3049  /// overloaded operator.
3050  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
3051 
3052  /// \brief Retrieve the overloaded operator kind that corresponds to
3053  /// the given binary opcode.
3054  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
3055 
3056  /// predicates to categorize the respective opcodes.
3057  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
3058  static bool isMultiplicativeOp(Opcode Opc) {
3059  return Opc >= BO_Mul && Opc <= BO_Rem;
3060  }
3062  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
3063  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
3064  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
3065  bool isShiftOp() const { return isShiftOp(getOpcode()); }
3066 
3067  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
3068  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
3069 
3070  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
3071  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
3072 
3073  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
3074  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
3075 
3076  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
3077  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
3078 
3079  static Opcode negateComparisonOp(Opcode Opc) {
3080  switch (Opc) {
3081  default:
3082  llvm_unreachable("Not a comparsion operator.");
3083  case BO_LT: return BO_GE;
3084  case BO_GT: return BO_LE;
3085  case BO_LE: return BO_GT;
3086  case BO_GE: return BO_LT;
3087  case BO_EQ: return BO_NE;
3088  case BO_NE: return BO_EQ;
3089  }
3090  }
3091 
3092  static Opcode reverseComparisonOp(Opcode Opc) {
3093  switch (Opc) {
3094  default:
3095  llvm_unreachable("Not a comparsion operator.");
3096  case BO_LT: return BO_GT;
3097  case BO_GT: return BO_LT;
3098  case BO_LE: return BO_GE;
3099  case BO_GE: return BO_LE;
3100  case BO_EQ:
3101  case BO_NE:
3102  return Opc;
3103  }
3104  }
3105 
3106  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
3107  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
3108 
3109  static bool isAssignmentOp(Opcode Opc) {
3110  return Opc >= BO_Assign && Opc <= BO_OrAssign;
3111  }
3112  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
3113 
3114  static bool isCompoundAssignmentOp(Opcode Opc) {
3115  return Opc > BO_Assign && Opc <= BO_OrAssign;
3116  }
3117  bool isCompoundAssignmentOp() const {
3118  return isCompoundAssignmentOp(getOpcode());
3119  }
3120  static Opcode getOpForCompoundAssignment(Opcode Opc) {
3121  assert(isCompoundAssignmentOp(Opc));
3122  if (Opc >= BO_AndAssign)
3123  return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
3124  else
3125  return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
3126  }
3127 
3128  static bool isShiftAssignOp(Opcode Opc) {
3129  return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
3130  }
3131  bool isShiftAssignOp() const {
3132  return isShiftAssignOp(getOpcode());
3133  }
3134 
3135  // Return true if a binary operator using the specified opcode and operands
3136  // would match the 'p = (i8*)nullptr + n' idiom for casting a pointer-sized
3137  // integer to a pointer.
3138  static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc,
3139  Expr *LHS, Expr *RHS);
3140 
3141  static bool classof(const Stmt *S) {
3142  return S->getStmtClass() >= firstBinaryOperatorConstant &&
3143  S->getStmtClass() <= lastBinaryOperatorConstant;
3144  }
3145 
3146  // Iterators
3148  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3149  }
3151  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
3152  }
3153 
3154  // Set the FP contractability status of this operator. Only meaningful for
3155  // operations on floating point types.
3156  void setFPFeatures(FPOptions F) { FPFeatures = F.getInt(); }
3157 
3158  FPOptions getFPFeatures() const { return FPOptions(FPFeatures); }
3159 
3160  // Get the FP contractability status of this operator. Only meaningful for
3161  // operations on floating point types.
3163  return FPOptions(FPFeatures).allowFPContractWithinStatement();
3164  }
3165 
3166 protected:
3167  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3169  SourceLocation opLoc, FPOptions FPFeatures, bool dead2)
3170  : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
3171  lhs->isTypeDependent() || rhs->isTypeDependent(),
3172  lhs->isValueDependent() || rhs->isValueDependent(),
3173  (lhs->isInstantiationDependent() ||
3174  rhs->isInstantiationDependent()),
3175  (lhs->containsUnexpandedParameterPack() ||
3176  rhs->containsUnexpandedParameterPack())),
3177  Opc(opc), FPFeatures(FPFeatures.getInt()), OpLoc(opLoc) {
3178  SubExprs[LHS] = lhs;
3179  SubExprs[RHS] = rhs;
3180  }
3181 
3183  : Expr(SC, Empty), Opc(BO_MulAssign) { }
3184 };
3185 
3186 /// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
3187 /// track of the type the operation is performed in. Due to the semantics of
3188 /// these operators, the operands are promoted, the arithmetic performed, an
3189 /// implicit conversion back to the result type done, then the assignment takes
3190 /// place. This captures the intermediate type which the computation is done
3191 /// in.
3193  QualType ComputationLHSType;
3194  QualType ComputationResultType;
3195 public:
3196  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
3198  QualType CompLHSType, QualType CompResultType,
3199  SourceLocation OpLoc, FPOptions FPFeatures)
3200  : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, FPFeatures,
3201  true),
3202  ComputationLHSType(CompLHSType),
3203  ComputationResultType(CompResultType) {
3204  assert(isCompoundAssignmentOp() &&
3205  "Only should be used for compound assignments");
3206  }
3207 
3208  /// \brief Build an empty compound assignment operator expression.
3210  : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
3211 
3212  // The two computation types are the type the LHS is converted
3213  // to for the computation and the type of the result; the two are
3214  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
3215  QualType getComputationLHSType() const { return ComputationLHSType; }
3216  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
3217 
3218  QualType getComputationResultType() const { return ComputationResultType; }
3219  void setComputationResultType(QualType T) { ComputationResultType = T; }
3220 
3221  static bool classof(const Stmt *S) {
3222  return S->getStmtClass() == CompoundAssignOperatorClass;
3223  }
3224 };
3225 
3226 /// AbstractConditionalOperator - An abstract base class for
3227 /// ConditionalOperator and BinaryConditionalOperator.
3229  SourceLocation QuestionLoc, ColonLoc;
3230  friend class ASTStmtReader;
3231 
3232 protected:
3235  bool TD, bool VD, bool ID,
3236  bool ContainsUnexpandedParameterPack,
3237  SourceLocation qloc,
3238  SourceLocation cloc)
3239  : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
3240  QuestionLoc(qloc), ColonLoc(cloc) {}
3241 
3243  : Expr(SC, Empty) { }
3244 
3245 public:
3246  // getCond - Return the expression representing the condition for
3247  // the ?: operator.
3248  Expr *getCond() const;
3249 
3250  // getTrueExpr - Return the subexpression representing the value of
3251  // the expression if the condition evaluates to true.
3252  Expr *getTrueExpr() const;
3253 
3254  // getFalseExpr - Return the subexpression representing the value of
3255  // the expression if the condition evaluates to false. This is
3256  // the same as getRHS.
3257  Expr *getFalseExpr() const;
3258 
3259  SourceLocation getQuestionLoc() const { return QuestionLoc; }
3261 
3262  static bool classof(const Stmt *T) {
3263  return T->getStmtClass() == ConditionalOperatorClass ||
3264  T->getStmtClass() == BinaryConditionalOperatorClass;
3265  }
3266 };
3267 
3268 /// ConditionalOperator - The ?: ternary operator. The GNU "missing
3269 /// middle" extension is a BinaryConditionalOperator.
3271  enum { COND, LHS, RHS, END_EXPR };
3272  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3273 
3274  friend class ASTStmtReader;
3275 public:
3277  SourceLocation CLoc, Expr *rhs,
3279  : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3280  // FIXME: the type of the conditional operator doesn't
3281  // depend on the type of the conditional, but the standard
3282  // seems to imply that it could. File a bug!
3283  (lhs->isTypeDependent() || rhs->isTypeDependent()),
3284  (cond->isValueDependent() || lhs->isValueDependent() ||
3285  rhs->isValueDependent()),
3286  (cond->isInstantiationDependent() ||
3287  lhs->isInstantiationDependent() ||
3288  rhs->isInstantiationDependent()),
3289  (cond->containsUnexpandedParameterPack() ||
3290  lhs->containsUnexpandedParameterPack() ||
3291  rhs->containsUnexpandedParameterPack()),
3292  QLoc, CLoc) {
3293  SubExprs[COND] = cond;
3294  SubExprs[LHS] = lhs;
3295  SubExprs[RHS] = rhs;
3296  }
3297 
3298  /// \brief Build an empty conditional operator.
3300  : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3301 
3302  // getCond - Return the expression representing the condition for
3303  // the ?: operator.
3304  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3305 
3306  // getTrueExpr - Return the subexpression representing the value of
3307  // the expression if the condition evaluates to true.
3308  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3309 
3310  // getFalseExpr - Return the subexpression representing the value of
3311  // the expression if the condition evaluates to false. This is
3312  // the same as getRHS.
3313  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3314 
3315  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3316  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3317 
3318  SourceLocation getLocStart() const LLVM_READONLY {
3319  return getCond()->getLocStart();
3320  }
3321  SourceLocation getLocEnd() const LLVM_READONLY {
3322  return getRHS()->getLocEnd();
3323  }
3324 
3325  static bool classof(const Stmt *T) {
3326  return T->getStmtClass() == ConditionalOperatorClass;
3327  }
3328 
3329  // Iterators
3331  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3332  }
3334  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
3335  }
3336 };
3337 
3338 /// BinaryConditionalOperator - The GNU extension to the conditional
3339 /// operator which allows the middle operand to be omitted.
3340 ///
3341 /// This is a different expression kind on the assumption that almost
3342 /// every client ends up needing to know that these are different.
3344  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3345 
3346  /// - the common condition/left-hand-side expression, which will be
3347  /// evaluated as the opaque value
3348  /// - the condition, expressed in terms of the opaque value
3349  /// - the left-hand-side, expressed in terms of the opaque value
3350  /// - the right-hand-side
3351  Stmt *SubExprs[NUM_SUBEXPRS];
3352  OpaqueValueExpr *OpaqueValue;
3353 
3354  friend class ASTStmtReader;
3355 public:
3357  Expr *cond, Expr *lhs, Expr *rhs,
3358  SourceLocation qloc, SourceLocation cloc,
3360  : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3361  (common->isTypeDependent() || rhs->isTypeDependent()),
3362  (common->isValueDependent() || rhs->isValueDependent()),
3363  (common->isInstantiationDependent() ||
3364  rhs->isInstantiationDependent()),
3365  (common->containsUnexpandedParameterPack() ||
3366  rhs->containsUnexpandedParameterPack()),
3367  qloc, cloc),
3368  OpaqueValue(opaqueValue) {
3369  SubExprs[COMMON] = common;
3370  SubExprs[COND] = cond;
3371  SubExprs[LHS] = lhs;
3372  SubExprs[RHS] = rhs;
3373  assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3374  }
3375 
3376  /// \brief Build an empty conditional operator.
3378  : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3379 
3380  /// \brief getCommon - Return the common expression, written to the
3381  /// left of the condition. The opaque value will be bound to the
3382  /// result of this expression.
3383  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3384 
3385  /// \brief getOpaqueValue - Return the opaque value placeholder.
3386  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3387 
3388  /// \brief getCond - Return the condition expression; this is defined
3389  /// in terms of the opaque value.
3390  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3391 
3392  /// \brief getTrueExpr - Return the subexpression which will be
3393  /// evaluated if the condition evaluates to true; this is defined
3394  /// in terms of the opaque value.
3395  Expr *getTrueExpr() const {
3396  return cast<Expr>(SubExprs[LHS]);
3397  }
3398 
3399  /// \brief getFalseExpr - Return the subexpression which will be
3400  /// evaluated if the condnition evaluates to false; this is
3401  /// defined in terms of the opaque value.
3402  Expr *getFalseExpr() const {
3403  return cast<Expr>(SubExprs[RHS]);
3404  }
3405 
3406  SourceLocation getLocStart() const LLVM_READONLY {
3407  return getCommon()->getLocStart();
3408  }
3409  SourceLocation getLocEnd() const LLVM_READONLY {
3410  return getFalseExpr()->getLocEnd();
3411  }
3412 
3413  static bool classof(const Stmt *T) {
3414  return T->getStmtClass() == BinaryConditionalOperatorClass;
3415  }
3416 
3417  // Iterators
3419  return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3420  }
3422  return const_child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3423  }
3424 };
3425 
3427  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3428  return co->getCond();
3429  return cast<BinaryConditionalOperator>(this)->getCond();
3430 }
3431 
3433  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3434  return co->getTrueExpr();
3435  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3436 }
3437 
3439  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3440  return co->getFalseExpr();
3441  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3442 }
3443 
3444 /// AddrLabelExpr - The GNU address of label extension, representing &&label.
3445 class AddrLabelExpr : public Expr {
3446  SourceLocation AmpAmpLoc, LabelLoc;
3447  LabelDecl *Label;
3448 public:
3450  QualType t)
3451  : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3452  false),
3453  AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3454 
3455  /// \brief Build an empty address of a label expression.
3456  explicit AddrLabelExpr(EmptyShell Empty)
3457  : Expr(AddrLabelExprClass, Empty) { }
3458 
3459  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3460  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3461  SourceLocation getLabelLoc() const { return LabelLoc; }
3462  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3463 
3464  SourceLocation getLocStart() const LLVM_READONLY { return AmpAmpLoc; }
3465  SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
3466 
3467  LabelDecl *getLabel() const { return Label; }
3468  void setLabel(LabelDecl *L) { Label = L; }
3469 
3470  static bool classof(const Stmt *T) {
3471  return T->getStmtClass() == AddrLabelExprClass;
3472  }
3473 
3474  // Iterators
3477  }
3480  }
3481 };
3482 
3483 /// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3484 /// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3485 /// takes the value of the last subexpression.
3486 ///
3487 /// A StmtExpr is always an r-value; values "returned" out of a
3488 /// StmtExpr will be copied.
3489 class StmtExpr : public Expr {
3490  Stmt *SubStmt;
3491  SourceLocation LParenLoc, RParenLoc;
3492 public:
3493  // FIXME: Does type-dependence need to be computed differently?
3494  // FIXME: Do we need to compute instantiation instantiation-dependence for
3495  // statements? (ugh!)
3497  SourceLocation lp, SourceLocation rp) :
3498  Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3499  T->isDependentType(), false, false, false),
3500  SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3501 
3502  /// \brief Build an empty statement expression.
3503  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3504 
3505  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3506  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3507  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3508 
3509  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
3510  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3511 
3512  SourceLocation getLParenLoc() const { return LParenLoc; }
3513  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3514  SourceLocation getRParenLoc() const { return RParenLoc; }
3515  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3516 
3517  static bool classof(const Stmt *T) {
3518  return T->getStmtClass() == StmtExprClass;
3519  }
3520 
3521  // Iterators
3522  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3524  return const_child_range(&SubStmt, &SubStmt + 1);
3525  }
3526 };
3527 
3528 /// ShuffleVectorExpr - clang-specific builtin-in function
3529 /// __builtin_shufflevector.
3530 /// This AST node represents a operator that does a constant
3531 /// shuffle, similar to LLVM's shufflevector instruction. It takes
3532 /// two vectors and a variable number of constant indices,
3533 /// and returns the appropriately shuffled vector.
3534 class ShuffleVectorExpr : public Expr {
3535  SourceLocation BuiltinLoc, RParenLoc;
3536 
3537  // SubExprs - the list of values passed to the __builtin_shufflevector
3538  // function. The first two are vectors, and the rest are constant
3539  // indices. The number of values in this list is always
3540  // 2+the number of indices in the vector type.
3541  Stmt **SubExprs;
3542  unsigned NumExprs;
3543 
3544 public:
3546  SourceLocation BLoc, SourceLocation RP);
3547 
3548  /// \brief Build an empty vector-shuffle expression.
3550  : Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }
3551 
3552  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3553  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3554 
3555  SourceLocation getRParenLoc() const { return RParenLoc; }
3556  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3557 
3558  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3559  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3560 
3561  static bool classof(const Stmt *T) {
3562  return T->getStmtClass() == ShuffleVectorExprClass;
3563  }
3564 
3565  /// getNumSubExprs - Return the size of the SubExprs array. This includes the
3566  /// constant expression, the actual arguments passed in, and the function
3567  /// pointers.
3568  unsigned getNumSubExprs() const { return NumExprs; }
3569 
3570  /// \brief Retrieve the array of expressions.
3571  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3572 
3573  /// getExpr - Return the Expr at the specified index.
3574  Expr *getExpr(unsigned Index) {
3575  assert((Index < NumExprs) && "Arg access out of range!");
3576  return cast<Expr>(SubExprs[Index]);
3577  }
3578  const Expr *getExpr(unsigned Index) const {
3579  assert((Index < NumExprs) && "Arg access out of range!");
3580  return cast<Expr>(SubExprs[Index]);
3581  }
3582 
3583  void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
3584 
3585  llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
3586  assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3587  return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
3588  }
3589 
3590  // Iterators
3592  return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3593  }
3595  return const_child_range(&SubExprs[0], &SubExprs[0] + NumExprs);
3596  }
3597 };
3598 
3599 /// ConvertVectorExpr - Clang builtin function __builtin_convertvector
3600 /// This AST node provides support for converting a vector type to another
3601 /// vector type of the same arity.
3602 class ConvertVectorExpr : public Expr {
3603 private:
3604  Stmt *SrcExpr;
3605  TypeSourceInfo *TInfo;
3606  SourceLocation BuiltinLoc, RParenLoc;
3607 
3608  friend class ASTReader;
3609  friend class ASTStmtReader;
3610  explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
3611 
3612 public:
3615  SourceLocation BuiltinLoc, SourceLocation RParenLoc)
3616  : Expr(ConvertVectorExprClass, DstType, VK, OK,
3617  DstType->isDependentType(),
3618  DstType->isDependentType() || SrcExpr->isValueDependent(),
3619  (DstType->isInstantiationDependentType() ||
3620  SrcExpr->isInstantiationDependent()),
3621  (DstType->containsUnexpandedParameterPack() ||
3622  SrcExpr->containsUnexpandedParameterPack())),
3623  SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
3624 
3625  /// getSrcExpr - Return the Expr to be converted.
3626  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
3627 
3628  /// getTypeSourceInfo - Return the destination type.
3630  return TInfo;
3631  }
3633  TInfo = ti;
3634  }
3635 
3636  /// getBuiltinLoc - Return the location of the __builtin_convertvector token.
3637  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3638 
3639  /// getRParenLoc - Return the location of final right parenthesis.
3640  SourceLocation getRParenLoc() const { return RParenLoc; }
3641 
3642  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3643  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3644 
3645  static bool classof(const Stmt *T) {
3646  return T->getStmtClass() == ConvertVectorExprClass;
3647  }
3648 
3649  // Iterators
3650  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
3652  return const_child_range(&SrcExpr, &SrcExpr + 1);
3653  }
3654 };
3655 
3656 /// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3657 /// This AST node is similar to the conditional operator (?:) in C, with
3658 /// the following exceptions:
3659 /// - the test expression must be a integer constant expression.
3660 /// - the expression returned acts like the chosen subexpression in every
3661 /// visible way: the type is the same as that of the chosen subexpression,
3662 /// and all predicates (whether it's an l-value, whether it's an integer
3663 /// constant expression, etc.) return the same result as for the chosen
3664 /// sub-expression.
3665 class ChooseExpr : public Expr {
3666  enum { COND, LHS, RHS, END_EXPR };
3667  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3668  SourceLocation BuiltinLoc, RParenLoc;
3669  bool CondIsTrue;
3670 public:
3671  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3673  SourceLocation RP, bool condIsTrue,
3674  bool TypeDependent, bool ValueDependent)
3675  : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3676  (cond->isInstantiationDependent() ||
3677  lhs->isInstantiationDependent() ||
3678  rhs->isInstantiationDependent()),
3679  (cond->containsUnexpandedParameterPack() ||
3680  lhs->containsUnexpandedParameterPack() ||
3681  rhs->containsUnexpandedParameterPack())),
3682  BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
3683  SubExprs[COND] = cond;
3684  SubExprs[LHS] = lhs;
3685  SubExprs[RHS] = rhs;
3686  }
3687 
3688  /// \brief Build an empty __builtin_choose_expr.
3689  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3690 
3691  /// isConditionTrue - Return whether the condition is true (i.e. not
3692  /// equal to zero).
3693  bool isConditionTrue() const {
3694  assert(!isConditionDependent() &&
3695  "Dependent condition isn't true or false");
3696  return CondIsTrue;
3697  }
3698  void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
3699 
3700  bool isConditionDependent() const {
3701  return getCond()->isTypeDependent() || getCond()->isValueDependent();
3702  }
3703 
3704  /// getChosenSubExpr - Return the subexpression chosen according to the
3705  /// condition.
3707  return isConditionTrue() ? getLHS() : getRHS();
3708  }
3709 
3710  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3711  void setCond(Expr *E) { SubExprs[COND] = E; }
3712  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3713  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3714  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3715  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3716 
3717  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3718  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3719 
3720  SourceLocation getRParenLoc() const { return RParenLoc; }
3721  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3722 
3723  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3724  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3725 
3726  static bool classof(const Stmt *T) {
3727  return T->getStmtClass() == ChooseExprClass;
3728  }
3729 
3730  // Iterators
3732  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3733  }
3735  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
3736  }
3737 };
3738 
3739 /// GNUNullExpr - Implements the GNU __null extension, which is a name
3740 /// for a null pointer constant that has integral type (e.g., int or
3741 /// long) and is the same size and alignment as a pointer. The __null
3742 /// extension is typically only used by system headers, which define
3743 /// NULL as __null in C++ rather than using 0 (which is an integer
3744 /// that may not match the size of a pointer).
3745 class GNUNullExpr : public Expr {
3746  /// TokenLoc - The location of the __null keyword.
3747  SourceLocation TokenLoc;
3748 
3749 public:
3751  : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3752  false),
3753  TokenLoc(Loc) { }
3754 
3755  /// \brief Build an empty GNU __null expression.
3756  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3757 
3758  /// getTokenLocation - The location of the __null token.
3759  SourceLocation getTokenLocation() const { return TokenLoc; }
3760  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3761 
3762  SourceLocation getLocStart() const LLVM_READONLY { return TokenLoc; }
3763  SourceLocation getLocEnd() const LLVM_READONLY { return TokenLoc; }
3764 
3765  static bool classof(const Stmt *T) {
3766  return T->getStmtClass() == GNUNullExprClass;
3767  }
3768 
3769  // Iterators
3772  }
3775  }
3776 };
3777 
3778 /// Represents a call to the builtin function \c __builtin_va_arg.
3779 class VAArgExpr : public Expr {
3780  Stmt *Val;
3781  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfo;
3782  SourceLocation BuiltinLoc, RParenLoc;
3783 public:
3785  SourceLocation RPLoc, QualType t, bool IsMS)
3786  : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary, t->isDependentType(),
3787  false, (TInfo->getType()->isInstantiationDependentType() ||
3788  e->isInstantiationDependent()),
3789  (TInfo->getType()->containsUnexpandedParameterPack() ||
3790  e->containsUnexpandedParameterPack())),
3791  Val(e), TInfo(TInfo, IsMS), BuiltinLoc(BLoc), RParenLoc(RPLoc) {}
3792 
3793  /// Create an empty __builtin_va_arg expression.
3794  explicit VAArgExpr(EmptyShell Empty)
3795  : Expr(VAArgExprClass, Empty), Val(nullptr), TInfo(nullptr, false) {}
3796 
3797  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3798  Expr *getSubExpr() { return cast<Expr>(Val); }
3799  void setSubExpr(Expr *E) { Val = E; }
3800 
3801  /// Returns whether this is really a Win64 ABI va_arg expression.
3802  bool isMicrosoftABI() const { return TInfo.getInt(); }
3803  void setIsMicrosoftABI(bool IsMS) { TInfo.setInt(IsMS); }
3804 
3805  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo.getPointer(); }
3806  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo.setPointer(TI); }
3807 
3808  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3809  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3810 
3811  SourceLocation getRParenLoc() const { return RParenLoc; }
3812  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3813 
3814  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3815  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3816 
3817  static bool classof(const Stmt *T) {
3818  return T->getStmtClass() == VAArgExprClass;
3819  }
3820 
3821  // Iterators
3822  child_range children() { return child_range(&Val, &Val+1); }
3824  return const_child_range(&Val, &Val + 1);
3825  }
3826 };
3827 
3828 /// @brief Describes an C or C++ initializer list.
3829 ///
3830 /// InitListExpr describes an initializer list, which can be used to
3831 /// initialize objects of different types, including
3832 /// struct/class/union types, arrays, and vectors. For example:
3833 ///
3834 /// @code
3835 /// struct foo x = { 1, { 2, 3 } };
3836 /// @endcode
3837 ///
3838 /// Prior to semantic analysis, an initializer list will represent the
3839 /// initializer list as written by the user, but will have the
3840 /// placeholder type "void". This initializer list is called the
3841 /// syntactic form of the initializer, and may contain C99 designated
3842 /// initializers (represented as DesignatedInitExprs), initializations
3843 /// of subobject members without explicit braces, and so on. Clients
3844 /// interested in the original syntax of the initializer list should
3845 /// use the syntactic form of the initializer list.
3846 ///
3847 /// After semantic analysis, the initializer list will represent the
3848 /// semantic form of the initializer, where the initializations of all
3849 /// subobjects are made explicit with nested InitListExpr nodes and
3850 /// C99 designators have been eliminated by placing the designated
3851 /// initializations into the subobject they initialize. Additionally,
3852 /// any "holes" in the initialization, where no initializer has been
3853 /// specified for a particular subobject, will be replaced with
3854 /// implicitly-generated ImplicitValueInitExpr expressions that
3855 /// value-initialize the subobjects. Note, however, that the
3856 /// initializer lists may still have fewer initializers than there are
3857 /// elements to initialize within the object.
3858 ///
3859 /// After semantic analysis has completed, given an initializer list,
3860 /// method isSemanticForm() returns true if and only if this is the
3861 /// semantic form of the initializer list (note: the same AST node
3862 /// may at the same time be the syntactic form).
3863 /// Given the semantic form of the initializer list, one can retrieve
3864 /// the syntactic form of that initializer list (when different)
3865 /// using method getSyntacticForm(); the method returns null if applied
3866 /// to a initializer list which is already in syntactic form.
3867 /// Similarly, given the syntactic form (i.e., an initializer list such
3868 /// that isSemanticForm() returns false), one can retrieve the semantic
3869 /// form using method getSemanticForm().
3870 /// Since many initializer lists have the same syntactic and semantic forms,
3871 /// getSyntacticForm() may return NULL, indicating that the current
3872 /// semantic initializer list also serves as its syntactic form.
3873 class InitListExpr : public Expr {
3874  // FIXME: Eliminate this vector in favor of ASTContext allocation
3876  InitExprsTy InitExprs;
3877  SourceLocation LBraceLoc, RBraceLoc;
3878 
3879  /// The alternative form of the initializer list (if it exists).
3880  /// The int part of the pair stores whether this initializer list is
3881  /// in semantic form. If not null, the pointer points to:
3882  /// - the syntactic form, if this is in semantic form;
3883  /// - the semantic form, if this is in syntactic form.
3884  llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
3885 
3886  /// \brief Either:
3887  /// If this initializer list initializes an array with more elements than
3888  /// there are initializers in the list, specifies an expression to be used
3889  /// for value initialization of the rest of the elements.
3890  /// Or
3891  /// If this initializer list initializes a union, specifies which
3892  /// field within the union will be initialized.
3893  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3894 
3895 public:
3896  InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
3897  ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
3898 
3899  /// \brief Build an empty initializer list.
3900  explicit InitListExpr(EmptyShell Empty)
3901  : Expr(InitListExprClass, Empty), AltForm(nullptr, true) { }
3902 
3903  unsigned getNumInits() const { return InitExprs.size(); }
3904 
3905  /// \brief Retrieve the set of initializers.
3906  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3907 
3908  /// \brief Retrieve the set of initializers.
3909  Expr * const *getInits() const {
3910  return reinterpret_cast<Expr * const *>(InitExprs.data());
3911  }
3912 
3914  return llvm::makeArrayRef(getInits(), getNumInits());
3915  }
3916 
3918  return llvm::makeArrayRef(getInits(), getNumInits());
3919  }
3920 
3921  const Expr *getInit(unsigned Init) const {
3922  assert(Init < getNumInits() && "Initializer access out of range!");
3923  return cast_or_null<Expr>(InitExprs[Init]);
3924  }
3925 
3926  Expr *getInit(unsigned Init) {
3927  assert(Init < getNumInits() && "Initializer access out of range!");
3928  return cast_or_null<Expr>(InitExprs[Init]);
3929  }
3930 
3931  void setInit(unsigned Init, Expr *expr) {
3932  assert(Init < getNumInits() && "Initializer access out of range!");
3933  InitExprs[Init] = expr;
3934 
3935  if (expr) {
3936  ExprBits.TypeDependent |= expr->isTypeDependent();
3937  ExprBits.ValueDependent |= expr->isValueDependent();
3938  ExprBits.InstantiationDependent |= expr->isInstantiationDependent();
3939  ExprBits.ContainsUnexpandedParameterPack |=
3941  }
3942  }
3943 
3944  /// \brief Reserve space for some number of initializers.
3945  void reserveInits(const ASTContext &C, unsigned NumInits);
3946 
3947  /// @brief Specify the number of initializers
3948  ///
3949  /// If there are more than @p NumInits initializers, the remaining
3950  /// initializers will be destroyed. If there are fewer than @p
3951  /// NumInits initializers, NULL expressions will be added for the
3952  /// unknown initializers.
3953  void resizeInits(const ASTContext &Context, unsigned NumInits);
3954 
3955  /// @brief Updates the initializer at index @p Init with the new
3956  /// expression @p expr, and returns the old expression at that
3957  /// location.
3958  ///
3959  /// When @p Init is out of range for this initializer list, the
3960  /// initializer list will be extended with NULL expressions to
3961  /// accommodate the new entry.
3962  Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
3963 
3964  /// \brief If this initializer list initializes an array with more elements
3965  /// than there are initializers in the list, specifies an expression to be
3966  /// used for value initialization of the rest of the elements.
3968  return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3969  }
3970  const Expr *getArrayFiller() const {
3971  return const_cast<InitListExpr *>(this)->getArrayFiller();
3972  }
3973  void setArrayFiller(Expr *filler);
3974 
3975  /// \brief Return true if this is an array initializer and its array "filler"
3976  /// has been set.
3977  bool hasArrayFiller() const { return getArrayFiller(); }
3978 
3979  /// \brief If this initializes a union, specifies which field in the
3980  /// union to initialize.
3981  ///
3982  /// Typically, this field is the first named field within the
3983  /// union. However, a designated initializer can specify the
3984  /// initialization of a different field within the union.
3986  return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3987  }
3989  return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3990  }
3992  assert((FD == nullptr
3993  || getInitializedFieldInUnion() == nullptr
3994  || getInitializedFieldInUnion() == FD)
3995  && "Only one field of a union may be initialized at a time!");
3996  ArrayFillerOrUnionFieldInit = FD;
3997  }
3998 
3999  // Explicit InitListExpr's originate from source code (and have valid source
4000  // locations). Implicit InitListExpr's are created by the semantic analyzer.
4001  bool isExplicit() const {
4002  return LBraceLoc.isValid() && RBraceLoc.isValid();
4003  }
4004 
4005  // Is this an initializer for an array of characters, initialized by a string
4006  // literal or an @encode?
4007  bool isStringLiteralInit() const;
4008 
4009  /// Is this a transparent initializer list (that is, an InitListExpr that is
4010  /// purely syntactic, and whose semantics are that of the sole contained
4011  /// initializer)?
4012  bool isTransparent() const;
4013 
4014  /// Is this the zero initializer {0} in a language which considers it
4015  /// idiomatic?
4016  bool isIdiomaticZeroInitializer(const LangOptions &LangOpts) const;
4017 
4018  SourceLocation getLBraceLoc() const { return LBraceLoc; }
4019  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
4020  SourceLocation getRBraceLoc() const { return RBraceLoc; }
4021  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
4022 
4023  bool isSemanticForm() const { return AltForm.getInt(); }
4025  return isSemanticForm() ? nullptr : AltForm.getPointer();
4026  }
4027  bool isSyntacticForm() const {
4028  return !AltForm.getInt() || !AltForm.getPointer();
4029  }
4031  return isSemanticForm() ? AltForm.getPointer() : nullptr;
4032  }
4033 
4035  AltForm.setPointer(Init);
4036  AltForm.setInt(true);
4037  Init->AltForm.setPointer(this);
4038  Init->AltForm.setInt(false);
4039  }
4040 
4042  return InitListExprBits.HadArrayRangeDesignator != 0;
4043  }
4044  void sawArrayRangeDesignator(bool ARD = true) {
4045  InitListExprBits.HadArrayRangeDesignator = ARD;
4046  }
4047 
4048  SourceLocation getLocStart() const LLVM_READONLY;
4049  SourceLocation getLocEnd() const LLVM_READONLY;
4050 
4051  static bool classof(const Stmt *T) {
4052  return T->getStmtClass() == InitListExprClass;
4053  }
4054 
4055  // Iterators
4057  const_child_range CCR = const_cast<const InitListExpr *>(this)->children();
4058  return child_range(cast_away_const(CCR.begin()),
4059  cast_away_const(CCR.end()));
4060  }
4061 
4063  // FIXME: This does not include the array filler expression.
4064  if (InitExprs.empty())
4066  return const_child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
4067  }
4068 
4073 
4074  iterator begin() { return InitExprs.begin(); }
4075  const_iterator begin() const { return InitExprs.begin(); }
4076  iterator end() { return InitExprs.end(); }
4077  const_iterator end() const { return InitExprs.end(); }
4078  reverse_iterator rbegin() { return InitExprs.rbegin(); }
4079  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
4080  reverse_iterator rend() { return InitExprs.rend(); }
4081  const_reverse_iterator rend() const { return InitExprs.rend(); }
4082 
4083  friend class ASTStmtReader;
4084  friend class ASTStmtWriter;
4085 };
4086 
4087 /// @brief Represents a C99 designated initializer expression.
4088 ///
4089 /// A designated initializer expression (C99 6.7.8) contains one or
4090 /// more designators (which can be field designators, array
4091 /// designators, or GNU array-range designators) followed by an
4092 /// expression that initializes the field or element(s) that the
4093 /// designators refer to. For example, given:
4094 ///
4095 /// @code
4096 /// struct point {
4097 /// double x;
4098 /// double y;
4099 /// };
4100 /// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
4101 /// @endcode
4102 ///
4103 /// The InitListExpr contains three DesignatedInitExprs, the first of
4104 /// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
4105 /// designators, one array designator for @c [2] followed by one field
4106 /// designator for @c .y. The initialization expression will be 1.0.
4108  : public Expr,
4109  private llvm::TrailingObjects<DesignatedInitExpr, Stmt *> {
4110 public:
4111  /// \brief Forward declaration of the Designator class.
4112  class Designator;
4113 
4114 private:
4115  /// The location of the '=' or ':' prior to the actual initializer
4116  /// expression.
4117  SourceLocation EqualOrColonLoc;
4118 
4119  /// Whether this designated initializer used the GNU deprecated
4120  /// syntax rather than the C99 '=' syntax.
4121  unsigned GNUSyntax : 1;
4122 
4123  /// The number of designators in this initializer expression.
4124  unsigned NumDesignators : 15;
4125 
4126  /// The number of subexpressions of this initializer expression,
4127  /// which contains both the initializer and any additional
4128  /// expressions used by array and array-range designators.
4129  unsigned NumSubExprs : 16;
4130 
4131  /// \brief The designators in this designated initialization
4132  /// expression.
4133  Designator *Designators;
4134 
4135  DesignatedInitExpr(const ASTContext &C, QualType Ty,
4136  llvm::ArrayRef<Designator> Designators,
4137  SourceLocation EqualOrColonLoc, bool GNUSyntax,
4138  ArrayRef<Expr *> IndexExprs, Expr *Init);
4139 
4140  explicit DesignatedInitExpr(unsigned NumSubExprs)
4141  : Expr(DesignatedInitExprClass, EmptyShell()),
4142  NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }
4143 
4144 public:
4145  /// A field designator, e.g., ".x".
4147  /// Refers to the field that is being initialized. The low bit
4148  /// of this field determines whether this is actually a pointer
4149  /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
4150  /// initially constructed, a field designator will store an
4151  /// IdentifierInfo*. After semantic analysis has resolved that
4152  /// name, the field designator will instead store a FieldDecl*.
4154 
4155  /// The location of the '.' in the designated initializer.
4156  unsigned DotLoc;
4157 
4158  /// The location of the field name in the designated initializer.
4159  unsigned FieldLoc;
4160  };
4161 
4162  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4164  /// Location of the first index expression within the designated
4165  /// initializer expression's list of subexpressions.
4166  unsigned Index;
4167  /// The location of the '[' starting the array range designator.
4168  unsigned LBracketLoc;
4169  /// The location of the ellipsis separating the start and end
4170  /// indices. Only valid for GNU array-range designators.
4171  unsigned EllipsisLoc;
4172  /// The location of the ']' terminating the array range designator.
4173  unsigned RBracketLoc;
4174  };
4175 
4176  /// @brief Represents a single C99 designator.
4177  ///
4178  /// @todo This class is infuriatingly similar to clang::Designator,
4179  /// but minor differences (storing indices vs. storing pointers)
4180  /// keep us from reusing it. Try harder, later, to rectify these
4181  /// differences.
4182  class Designator {
4183  /// @brief The kind of designator this describes.
4184  enum {
4186  ArrayDesignator,
4187  ArrayRangeDesignator
4188  } Kind;
4189 
4190  union {
4191  /// A field designator, e.g., ".x".
4193  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4194  struct ArrayOrRangeDesignator ArrayOrRange;
4195  };
4196  friend class DesignatedInitExpr;
4197 
4198  public:
4200 
4201  /// @brief Initializes a field designator.
4202  Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
4203  SourceLocation FieldLoc)
4204  : Kind(FieldDesignator) {
4205  Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
4206  Field.DotLoc = DotLoc.getRawEncoding();
4207  Field.FieldLoc = FieldLoc.getRawEncoding();
4208  }
4209 
4210  /// @brief Initializes an array designator.
4211  Designator(unsigned Index, SourceLocation LBracketLoc,
4212  SourceLocation RBracketLoc)
4213  : Kind(ArrayDesignator) {
4214  ArrayOrRange.Index = Index;
4215  ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4216  ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
4217  ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4218  }
4219 
4220  /// @brief Initializes a GNU array-range designator.
4221  Designator(unsigned Index, SourceLocation LBracketLoc,
4222  SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
4223  : Kind(ArrayRangeDesignator) {
4224  ArrayOrRange.Index = Index;
4225  ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4226  ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
4227  ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4228  }
4229 
4230  bool isFieldDesignator() const { return Kind == FieldDesignator; }
4231  bool isArrayDesignator() const { return Kind == ArrayDesignator; }
4232  bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
4233 
4234  IdentifierInfo *getFieldName() const;
4235 
4236  FieldDecl *getField() const {
4237  assert(Kind == FieldDesignator && "Only valid on a field designator");
4238  if (Field.NameOrField & 0x01)
4239  return nullptr;
4240  else
4241  return reinterpret_cast<FieldDecl *>(Field.NameOrField);
4242  }
4243 
4244  void setField(FieldDecl *FD) {
4245  assert(Kind == FieldDesignator && "Only valid on a field designator");
4246  Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
4247  }
4248 
4250  assert(Kind == FieldDesignator && "Only valid on a field designator");
4252  }
4253 
4255  assert(Kind == FieldDesignator && "Only valid on a field designator");
4256  return SourceLocation::getFromRawEncoding(Field.FieldLoc);
4257  }
4258 
4260  assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4261  "Only valid on an array or array-range designator");
4262  return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
4263  }
4264 
4266  assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4267  "Only valid on an array or array-range designator");
4268  return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
4269  }
4270 
4272  assert(Kind == ArrayRangeDesignator &&
4273  "Only valid on an array-range designator");
4274  return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
4275  }
4276 
4277  unsigned getFirstExprIndex() const {
4278  assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4279  "Only valid on an array or array-range designator");
4280  return ArrayOrRange.Index;
4281  }
4282 
4283  SourceLocation getLocStart() const LLVM_READONLY {
4284  if (Kind == FieldDesignator)
4285  return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
4286  else
4287  return getLBracketLoc();
4288  }
4289  SourceLocation getLocEnd() const LLVM_READONLY {
4290  return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
4291  }
4292  SourceRange getSourceRange() const LLVM_READONLY {
4293  return SourceRange(getLocStart(), getLocEnd());
4294  }
4295  };
4296 
4297  static DesignatedInitExpr *Create(const ASTContext &C,
4298  llvm::ArrayRef<Designator> Designators,
4299  ArrayRef<Expr*> IndexExprs,
4300  SourceLocation EqualOrColonLoc,
4301  bool GNUSyntax, Expr *Init);
4302 
4303  static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
4304  unsigned NumIndexExprs);
4305 
4306  /// @brief Returns the number of designators in this initializer.
4307  unsigned size() const { return NumDesignators; }
4308 
4309  // Iterator access to the designators.
4311  return {Designators, NumDesignators};
4312  }
4313 
4315  return {Designators, NumDesignators};
4316  }
4317 
4318  Designator *getDesignator(unsigned Idx) { return &designators()[Idx]; }
4319  const Designator *getDesignator(unsigned Idx) const {
4320  return &designators()[Idx];
4321  }
4322 
4323  void setDesignators(const ASTContext &C, const Designator *Desigs,
4324  unsigned NumDesigs);
4325 
4326  Expr *getArrayIndex(const Designator &D) const;
4327  Expr *getArrayRangeStart(const Designator &D) const;
4328  Expr *getArrayRangeEnd(const Designator &D) const;
4329 
4330  /// @brief Retrieve the location of the '=' that precedes the
4331  /// initializer value itself, if present.
4332  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
4333  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
4334 
4335  /// @brief Determines whether this designated initializer used the
4336  /// deprecated GNU syntax for designated initializers.
4337  bool usesGNUSyntax() const { return GNUSyntax; }
4338  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
4339 
4340  /// @brief Retrieve the initializer value.
4341  Expr *getInit() const {
4342  return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
4343  }
4344 
4345  void setInit(Expr *init) {
4346  *child_begin() = init;
4347  }
4348 
4349  /// \brief Retrieve the total number of subexpressions in this
4350  /// designated initializer expression, including the actual
4351  /// initialized value and any expressions that occur within array
4352  /// and array-range designators.
4353  unsigned getNumSubExprs() const { return NumSubExprs; }
4354 
4355  Expr *getSubExpr(unsigned Idx) const {
4356  assert(Idx < NumSubExprs && "Subscript out of range");
4357  return cast<Expr>(getTrailingObjects<Stmt *>()[Idx]);
4358  }
4359 
4360  void setSubExpr(unsigned Idx, Expr *E) {
4361  assert(Idx < NumSubExprs && "Subscript out of range");
4362  getTrailingObjects<Stmt *>()[Idx] = E;
4363  }
4364 
4365  /// \brief Replaces the designator at index @p Idx with the series
4366  /// of designators in [First, Last).
4367  void ExpandDesignator(const ASTContext &C, unsigned Idx,
4368  const Designator *First, const Designator *Last);
4369 
4370  SourceRange getDesignatorsSourceRange() const;
4371 
4372  SourceLocation getLocStart() const LLVM_READONLY;
4373  SourceLocation getLocEnd() const LLVM_READONLY;
4374 
4375  static bool classof(const Stmt *T) {
4376  return T->getStmtClass() == DesignatedInitExprClass;
4377  }
4378 
4379  // Iterators
4381  Stmt **begin = getTrailingObjects<Stmt *>();
4382  return child_range(begin, begin + NumSubExprs);
4383  }
4385  Stmt * const *begin = getTrailingObjects<Stmt *>();
4386  return const_child_range(begin, begin + NumSubExprs);
4387  }
4388 
4390 };
4391 
4392 /// \brief Represents a place-holder for an object not to be initialized by
4393 /// anything.
4394 ///
4395 /// This only makes sense when it appears as part of an updater of a
4396 /// DesignatedInitUpdateExpr (see below). The base expression of a DIUE
4397 /// initializes a big object, and the NoInitExpr's mark the spots within the
4398 /// big object not to be overwritten by the updater.
4399 ///
4400 /// \see DesignatedInitUpdateExpr
4401 class NoInitExpr : public Expr {
4402 public:
4403  explicit NoInitExpr(QualType ty)
4404  : Expr(NoInitExprClass, ty, VK_RValue, OK_Ordinary,
4405  false, false, ty->isInstantiationDependentType(), false) { }
4406 
4407  explicit NoInitExpr(EmptyShell Empty)
4408  : Expr(NoInitExprClass, Empty) { }
4409 
4410  static bool classof(const Stmt *T) {
4411  return T->getStmtClass() == NoInitExprClass;
4412  }
4413 
4414  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4415  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4416 
4417  // Iterators
4420  }
4423  }
4424 };
4425 
4426 // In cases like:
4427 // struct Q { int a, b, c; };
4428 // Q *getQ();
4429 // void foo() {
4430 // struct A { Q q; } a = { *getQ(), .q.b = 3 };
4431 // }
4432 //
4433 // We will have an InitListExpr for a, with type A, and then a
4434 // DesignatedInitUpdateExpr for "a.q" with type Q. The "base" for this DIUE
4435 // is the call expression *getQ(); the "updater" for the DIUE is ".q.b = 3"
4436 //
4438  // BaseAndUpdaterExprs[0] is the base expression;
4439  // BaseAndUpdaterExprs[1] is an InitListExpr overwriting part of the base.
4440  Stmt *BaseAndUpdaterExprs[2];
4441 
4442 public:
4444  Expr *baseExprs, SourceLocation rBraceLoc);
4445 
4447  : Expr(DesignatedInitUpdateExprClass, Empty) { }
4448 
4449  SourceLocation getLocStart() const LLVM_READONLY;
4450  SourceLocation getLocEnd() const LLVM_READONLY;
4451 
4452  static bool classof(const Stmt *T) {
4453  return T->getStmtClass() == DesignatedInitUpdateExprClass;
4454  }
4455 
4456  Expr *getBase() const { return cast<Expr>(BaseAndUpdaterExprs[0]); }
4457  void setBase(Expr *Base) { BaseAndUpdaterExprs[0] = Base; }
4458 
4460  return cast<InitListExpr>(BaseAndUpdaterExprs[1]);
4461  }
4462  void setUpdater(Expr *Updater) { BaseAndUpdaterExprs[1] = Updater; }
4463 
4464  // Iterators
4465  // children = the base and the updater
4467  return child_range(&BaseAndUpdaterExprs[0], &BaseAndUpdaterExprs[0] + 2);
4468  }
4470  return const_child_range(&BaseAndUpdaterExprs[0],
4471  &BaseAndUpdaterExprs[0] + 2);
4472  }
4473 };
4474 
4475 /// \brief Represents a loop initializing the elements of an array.
4476 ///
4477 /// The need to initialize the elements of an array occurs in a number of
4478 /// contexts:
4479 ///
4480 /// * in the implicit copy/move constructor for a class with an array member
4481 /// * when a lambda-expression captures an array by value
4482 /// * when a decomposition declaration decomposes an array
4483 ///
4484 /// There are two subexpressions: a common expression (the source array)
4485 /// that is evaluated once up-front, and a per-element initializer that
4486 /// runs once for each array element.
4487 ///
4488 /// Within the per-element initializer, the common expression may be referenced
4489 /// via an OpaqueValueExpr, and the current index may be obtained via an
4490 /// ArrayInitIndexExpr.
4491 class ArrayInitLoopExpr : public Expr {
4492  Stmt *SubExprs[2];
4493 
4494  explicit ArrayInitLoopExpr(EmptyShell Empty)
4495  : Expr(ArrayInitLoopExprClass, Empty), SubExprs{} {}
4496 
4497 public:
4498  explicit ArrayInitLoopExpr(QualType T, Expr *CommonInit, Expr *ElementInit)
4499  : Expr(ArrayInitLoopExprClass, T, VK_RValue, OK_Ordinary, false,
4500  CommonInit->isValueDependent() || ElementInit->isValueDependent(),
4501  T->isInstantiationDependentType(),
4502  CommonInit->containsUnexpandedParameterPack() ||
4503  ElementInit->containsUnexpandedParameterPack()),
4504  SubExprs{CommonInit, ElementInit} {}
4505 
4506  /// Get the common subexpression shared by all initializations (the source
4507  /// array).
4509  return cast<OpaqueValueExpr>(SubExprs[0]);
4510  }
4511 
4512  /// Get the initializer to use for each array element.
4513  Expr *getSubExpr() const { return cast<Expr>(SubExprs[1]); }
4514 
4515  llvm::APInt getArraySize() const {
4516  return cast<ConstantArrayType>(getType()->castAsArrayTypeUnsafe())
4517  ->getSize();
4518  }
4519 
4520  static bool classof(const Stmt *S) {
4521  return S->getStmtClass() == ArrayInitLoopExprClass;
4522  }
4523 
4524  SourceLocation getLocStart() const LLVM_READONLY {
4525  return getCommonExpr()->getLocStart();
4526  }
4527  SourceLocation getLocEnd() const LLVM_READONLY {
4528  return getCommonExpr()->getLocEnd();
4529  }
4530 
4532  return child_range(SubExprs, SubExprs + 2);
4533  }
4535  return const_child_range(SubExprs, SubExprs + 2);
4536  }
4537 
4538  friend class ASTReader;
4539  friend class ASTStmtReader;
4540  friend class ASTStmtWriter;
4541 };
4542 
4543 /// \brief Represents the index of the current element of an array being
4544 /// initialized by an ArrayInitLoopExpr. This can only appear within the
4545 /// subexpression of an ArrayInitLoopExpr.
4546 class ArrayInitIndexExpr : public Expr {
4547  explicit ArrayInitIndexExpr(EmptyShell Empty)
4548  : Expr(ArrayInitIndexExprClass, Empty) {}
4549 
4550 public:
4552  : Expr(ArrayInitIndexExprClass, T, VK_RValue, OK_Ordinary,
4553  false, false, false, false) {}
4554 
4555  static bool classof(const Stmt *S) {
4556  return S->getStmtClass() == ArrayInitIndexExprClass;
4557  }
4558 
4559  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4560  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4561 
4564  }
4567  }
4568 
4569  friend class ASTReader;
4570  friend class ASTStmtReader;
4571 };
4572 
4573 /// \brief Represents an implicitly-generated value initialization of
4574 /// an object of a given type.
4575 ///
4576 /// Implicit value initializations occur within semantic initializer
4577 /// list expressions (InitListExpr) as placeholders for subobject
4578 /// initializations not explicitly specified by the user.
4579 ///
4580 /// \see InitListExpr
4581 class ImplicitValueInitExpr : public Expr {
4582 public:
4584  : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4585  false, false, ty->isInstantiationDependentType(), false) { }
4586 
4587  /// \brief Construct an empty implicit value initialization.
4589  : Expr(ImplicitValueInitExprClass, Empty) { }
4590 
4591  static bool classof(const Stmt *T) {
4592  return T->getStmtClass() == ImplicitValueInitExprClass;
4593  }
4594 
4595  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4596  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4597 
4598  // Iterators
4601  }
4604  }
4605 };
4606 
4607 class ParenListExpr : public Expr {
4608  Stmt **Exprs;
4609  unsigned NumExprs;
4610  SourceLocation LParenLoc, RParenLoc;
4611 
4612 public:
4613  ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
4614  ArrayRef<Expr*> exprs, SourceLocation rparenloc);
4615 
4616  /// \brief Build an empty paren list.
4617  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4618 
4619  unsigned getNumExprs() const { return NumExprs; }
4620 
4621  const Expr* getExpr(unsigned Init) const {
4622  assert(Init < getNumExprs() && "Initializer access out of range!");
4623  return cast_or_null<Expr>(Exprs[Init]);
4624  }
4625 
4626  Expr* getExpr(unsigned Init) {
4627  assert(Init < getNumExprs() && "Initializer access out of range!");
4628  return cast_or_null<Expr>(Exprs[Init]);
4629  }
4630 
4631  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4632 
4634  return llvm::makeArrayRef(getExprs(), getNumExprs());
4635  }
4636 
4637  SourceLocation getLParenLoc() const { return LParenLoc; }
4638  SourceLocation getRParenLoc() const { return RParenLoc; }
4639 
4640  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
4641  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4642 
4643  static bool classof(const Stmt *T) {
4644  return T->getStmtClass() == ParenListExprClass;
4645  }
4646 
4647  // Iterators
4649  return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4650  }
4652  return const_child_range(&Exprs[0], &Exprs[0] + NumExprs);
4653  }
4654 
4655  friend class ASTStmtReader;
4656  friend class ASTStmtWriter;
4657 };
4658 
4659 /// \brief Represents a C11 generic selection.
4660 ///
4661 /// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4662 /// expression, followed by one or more generic associations. Each generic
4663 /// association specifies a type name and an expression, or "default" and an
4664 /// expression (in which case it is known as a default generic association).
4665 /// The type and value of the generic selection are identical to those of its
4666 /// result expression, which is defined as the expression in the generic
4667 /// association with a type name that is compatible with the type of the
4668 /// controlling expression, or the expression in the default generic association
4669 /// if no types are compatible. For example:
4670 ///
4671 /// @code
4672 /// _Generic(X, double: 1, float: 2, default: 3)
4673 /// @endcode
4674 ///
4675 /// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4676 /// or 3 if "hello".
4677 ///
4678 /// As an extension, generic selections are allowed in C++, where the following
4679 /// additional semantics apply:
4680 ///
4681 /// Any generic selection whose controlling expression is type-dependent or
4682 /// which names a dependent type in its association list is result-dependent,
4683 /// which means that the choice of result expression is dependent.
4684 /// Result-dependent generic associations are both type- and value-dependent.
4685 class GenericSelectionExpr : public Expr {
4686  enum { CONTROLLING, END_EXPR };
4687  TypeSourceInfo **AssocTypes;
4688  Stmt **SubExprs;
4689  unsigned NumAssocs, ResultIndex;
4690  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4691 
4692 public:
4693  GenericSelectionExpr(const ASTContext &Context,
4694  SourceLocation GenericLoc, Expr *ControllingExpr,
4695  ArrayRef<TypeSourceInfo*> AssocTypes,
4696  ArrayRef<Expr*> AssocExprs,
4697  SourceLocation DefaultLoc, SourceLocation RParenLoc,
4698  bool ContainsUnexpandedParameterPack,
4699  unsigned ResultIndex);
4700 
4701  /// This constructor is used in the result-dependent case.
4702  GenericSelectionExpr(const ASTContext &Context,
4703  SourceLocation GenericLoc, Expr *ControllingExpr,
4704  ArrayRef<TypeSourceInfo*> AssocTypes,
4705  ArrayRef<Expr*> AssocExprs,
4706  SourceLocation DefaultLoc, SourceLocation RParenLoc,
4707  bool ContainsUnexpandedParameterPack);
4708 
4710  : Expr(GenericSelectionExprClass, Empty) { }
4711 
4712  unsigned getNumAssocs() const { return NumAssocs; }
4713 
4714  SourceLocation getGenericLoc() const { return GenericLoc; }
4715  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4716  SourceLocation getRParenLoc() const { return RParenLoc; }
4717 
4718  const Expr *getAssocExpr(unsigned i) const {
4719  return cast<Expr>(SubExprs[END_EXPR+i]);
4720  }
4721  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4723  return NumAssocs
4724  ? llvm::makeArrayRef(
4725  &reinterpret_cast<Expr **>(SubExprs)[END_EXPR], NumAssocs)
4726  : None;
4727  }
4728  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4729  return AssocTypes[i];
4730  }
4731  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4733  return NumAssocs ? llvm::makeArrayRef(&AssocTypes[0], NumAssocs) : None;
4734  }
4735 
4736  QualType getAssocType(unsigned i) const {
4737  if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4738  return TS->getType();
4739  else
4740  return QualType();
4741  }
4742 
4743  const Expr *getControllingExpr() const {
4744  return cast<Expr>(SubExprs[CONTROLLING]);
4745  }
4746  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4747 
4748  /// Whether this generic selection is result-dependent.
4749  bool isResultDependent() const { return ResultIndex == -1U; }
4750 
4751  /// The zero-based index of the result expression's generic association in
4752  /// the generic selection's association list. Defined only if the
4753  /// generic selection is not result-dependent.
4754  unsigned getResultIndex() const {
4755  assert(!isResultDependent() && "Generic selection is result-dependent");
4756  return ResultIndex;
4757  }
4758 
4759  /// The generic selection's result expression. Defined only if the
4760  /// generic selection is not result-dependent.
4761  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4762  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4763 
4764  SourceLocation getLocStart() const LLVM_READONLY { return GenericLoc; }
4765  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4766 
4767  static bool classof(const Stmt *T) {
4768  return T->getStmtClass() == GenericSelectionExprClass;
4769  }
4770 
4772  return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4773  }
4775  return const_child_range(SubExprs, SubExprs + END_EXPR + NumAssocs);
4776  }
4777  friend class ASTStmtReader;
4778 };
4779 
4780 //===----------------------------------------------------------------------===//
4781 // Clang Extensions
4782 //===----------------------------------------------------------------------===//
4783 
4784 /// ExtVectorElementExpr - This represents access to specific elements of a
4785 /// vector, and may occur on the left hand side or right hand side. For example
4786 /// the following is legal: "V.xy = V.zw" if V is a 4 element extended vector.
4787 ///
4788 /// Note that the base may have either vector or pointer to vector type, just
4789 /// like a struct field reference.
4790 ///
4791 class ExtVectorElementExpr : public Expr {
4792  Stmt *Base;
4793  IdentifierInfo *Accessor;
4794  SourceLocation AccessorLoc;
4795 public:
4797  IdentifierInfo &accessor, SourceLocation loc)
4798  : Expr(ExtVectorElementExprClass, ty, VK,
4800  base->isTypeDependent(), base->isValueDependent(),
4801  base->isInstantiationDependent(),
4802  base->containsUnexpandedParameterPack()),
4803  Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4804 
4805  /// \brief Build an empty vector element expression.
4807  : Expr(ExtVectorElementExprClass, Empty) { }
4808 
4809  const Expr *getBase() const { return cast<Expr>(Base); }
4810  Expr *getBase() { return cast<Expr>(Base); }
4811  void setBase(Expr *E) { Base = E; }
4812 
4813  IdentifierInfo &getAccessor() const { return *Accessor; }
4814  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4815 
4816  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4817  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4818 
4819  /// getNumElements - Get the number of components being selected.
4820  unsigned getNumElements() const;
4821 
4822  /// containsDuplicateElements - Return true if any element access is
4823  /// repeated.
4824  bool containsDuplicateElements() const;
4825 
4826  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4827  /// aggregate Constant of ConstantInt(s).
4828  void getEncodedElementAccess(SmallVectorImpl<uint32_t> &Elts) const;
4829 
4830  SourceLocation getLocStart() const LLVM_READONLY {
4831  return getBase()->getLocStart();
4832  }