clang  7.0.0svn
Expr.h
Go to the documentation of this file.
1 //===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the Expr interface and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_AST_EXPR_H
15 #define LLVM_CLANG_AST_EXPR_H
16 
17 #include "clang/AST/APValue.h"
18 #include "clang/AST/ASTVector.h"
19 #include "clang/AST/Decl.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/TemplateBase.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/CharInfo.h"
27 #include "clang/Basic/SyncScope.h"
28 #include "clang/Basic/TypeTraits.h"
29 #include "llvm/ADT/APFloat.h"
30 #include "llvm/ADT/APSInt.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/AtomicOrdering.h"
34 #include "llvm/Support/Compiler.h"
35 
36 namespace clang {
37  class APValue;
38  class ASTContext;
39  class BlockDecl;
40  class CXXBaseSpecifier;
41  class CXXMemberCallExpr;
42  class CXXOperatorCallExpr;
43  class CastExpr;
44  class Decl;
45  class IdentifierInfo;
46  class MaterializeTemporaryExpr;
47  class NamedDecl;
48  class ObjCPropertyRefExpr;
49  class OpaqueValueExpr;
50  class ParmVarDecl;
51  class StringLiteral;
52  class TargetInfo;
53  class ValueDecl;
54 
55 /// \brief A simple array of base specifiers.
57 
58 /// \brief An adjustment to be made to the temporary created when emitting a
59 /// reference binding, which accesses a particular subobject of that temporary.
61  enum {
65  } Kind;
66 
67  struct DTB {
70  };
71 
72  struct P {
75  };
76 
77  union {
80  struct P Ptr;
81  };
82 
85  : Kind(DerivedToBaseAdjustment) {
88  }
89 
91  : Kind(FieldAdjustment) {
92  this->Field = Field;
93  }
94 
96  : Kind(MemberPointerAdjustment) {
97  this->Ptr.MPT = MPT;
98  this->Ptr.RHS = RHS;
99  }
100 };
101 
102 /// Expr - This represents one expression. Note that Expr's are subclasses of
103 /// Stmt. This allows an expression to be transparently used any place a Stmt
104 /// is required.
105 ///
106 class Expr : public Stmt {
107  QualType TR;
108 
109 protected:
111  bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
112  : Stmt(SC)
113  {
114  ExprBits.TypeDependent = TD;
115  ExprBits.ValueDependent = VD;
116  ExprBits.InstantiationDependent = ID;
117  ExprBits.ValueKind = VK;
118  ExprBits.ObjectKind = OK;
119  assert(ExprBits.ObjectKind == OK && "truncated kind");
120  ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
121  setType(T);
122  }
123 
124  /// \brief Construct an empty expression.
125  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
126 
127 public:
128  QualType getType() const { return TR; }
129  void setType(QualType t) {
130  // In C++, the type of an expression is always adjusted so that it
131  // will not have reference type (C++ [expr]p6). Use
132  // QualType::getNonReferenceType() to retrieve the non-reference
133  // type. Additionally, inspect Expr::isLvalue to determine whether
134  // an expression that is adjusted in this manner should be
135  // considered an lvalue.
136  assert((t.isNull() || !t->isReferenceType()) &&
137  "Expressions can't have reference type");
138 
139  TR = t;
140  }
141 
142  /// isValueDependent - Determines whether this expression is
143  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
144  /// array bound of "Chars" in the following example is
145  /// value-dependent.
146  /// @code
147  /// template<int Size, char (&Chars)[Size]> struct meta_string;
148  /// @endcode
149  bool isValueDependent() const { return ExprBits.ValueDependent; }
150 
151  /// \brief Set whether this expression is value-dependent or not.
152  void setValueDependent(bool VD) {
153  ExprBits.ValueDependent = VD;
154  }
155 
156  /// isTypeDependent - Determines whether this expression is
157  /// type-dependent (C++ [temp.dep.expr]), which means that its type
158  /// could change from one template instantiation to the next. For
159  /// example, the expressions "x" and "x + y" are type-dependent in
160  /// the following code, but "y" is not type-dependent:
161  /// @code
162  /// template<typename T>
163  /// void add(T x, int y) {
164  /// x + y;
165  /// }
166  /// @endcode
167  bool isTypeDependent() const { return ExprBits.TypeDependent; }
168 
169  /// \brief Set whether this expression is type-dependent or not.
170  void setTypeDependent(bool TD) {
171  ExprBits.TypeDependent = TD;
172  }
173 
174  /// \brief Whether this expression is instantiation-dependent, meaning that
175  /// it depends in some way on a template parameter, even if neither its type
176  /// nor (constant) value can change due to the template instantiation.
177  ///
178  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
179  /// instantiation-dependent (since it involves a template parameter \c T), but
180  /// is neither type- nor value-dependent, since the type of the inner
181  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
182  /// \c sizeof is known.
183  ///
184  /// \code
185  /// template<typename T>
186  /// void f(T x, T y) {
187  /// sizeof(sizeof(T() + T());
188  /// }
189  /// \endcode
190  ///
192  return ExprBits.InstantiationDependent;
193  }
194 
195  /// \brief Set whether this expression is instantiation-dependent or not.
197  ExprBits.InstantiationDependent = ID;
198  }
199 
200  /// \brief Whether this expression contains an unexpanded parameter
201  /// pack (for C++11 variadic templates).
202  ///
203  /// Given the following function template:
204  ///
205  /// \code
206  /// template<typename F, typename ...Types>
207  /// void forward(const F &f, Types &&...args) {
208  /// f(static_cast<Types&&>(args)...);
209  /// }
210  /// \endcode
211  ///
212  /// The expressions \c args and \c static_cast<Types&&>(args) both
213  /// contain parameter packs.
215  return ExprBits.ContainsUnexpandedParameterPack;
216  }
217 
218  /// \brief Set the bit that describes whether this expression
219  /// contains an unexpanded parameter pack.
220  void setContainsUnexpandedParameterPack(bool PP = true) {
221  ExprBits.ContainsUnexpandedParameterPack = PP;
222  }
223 
224  /// getExprLoc - Return the preferred location for the arrow when diagnosing
225  /// a problem with a generic expression.
226  SourceLocation getExprLoc() const LLVM_READONLY;
227 
228  /// isUnusedResultAWarning - Return true if this immediate expression should
229  /// be warned about if the result is unused. If so, fill in expr, location,
230  /// and ranges with expr to warn on and source locations/ranges appropriate
231  /// for a warning.
232  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
233  SourceRange &R1, SourceRange &R2,
234  ASTContext &Ctx) const;
235 
236  /// isLValue - True if this expression is an "l-value" according to
237  /// the rules of the current language. C and C++ give somewhat
238  /// different rules for this concept, but in general, the result of
239  /// an l-value expression identifies a specific object whereas the
240  /// result of an r-value expression is a value detached from any
241  /// specific storage.
242  ///
243  /// C++11 divides the concept of "r-value" into pure r-values
244  /// ("pr-values") and so-called expiring values ("x-values"), which
245  /// identify specific objects that can be safely cannibalized for
246  /// their resources. This is an unfortunate abuse of terminology on
247  /// the part of the C++ committee. In Clang, when we say "r-value",
248  /// we generally mean a pr-value.
249  bool isLValue() const { return getValueKind() == VK_LValue; }
250  bool isRValue() const { return getValueKind() == VK_RValue; }
251  bool isXValue() const { return getValueKind() == VK_XValue; }
252  bool isGLValue() const { return getValueKind() != VK_RValue; }
253 
264  LV_ArrayTemporary
265  };
266  /// Reasons why an expression might not be an l-value.
267  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
268 
275  MLV_LValueCast, // Specialized form of MLV_InvalidExpression.
286  MLV_ArrayTemporary
287  };
288  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
289  /// does not have an incomplete type, does not have a const-qualified type,
290  /// and if it is a structure or union, does not have any member (including,
291  /// recursively, any member or element of all contained aggregates or unions)
292  /// with a const-qualified type.
293  ///
294  /// \param Loc [in,out] - A source location which *may* be filled
295  /// in with the location of the expression making this a
296  /// non-modifiable lvalue, if specified.
298  isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;
299 
300  /// \brief The return type of classify(). Represents the C++11 expression
301  /// taxonomy.
303  public:
304  /// \brief The various classification results. Most of these mean prvalue.
305  enum Kinds {
308  CL_Function, // Functions cannot be lvalues in C.
309  CL_Void, // Void cannot be an lvalue in C.
310  CL_AddressableVoid, // Void expression whose address can be taken in C.
311  CL_DuplicateVectorComponents, // A vector shuffle with dupes.
312  CL_MemberFunction, // An expression referring to a member function
314  CL_ClassTemporary, // A temporary of class type, or subobject thereof.
315  CL_ArrayTemporary, // A temporary of array type.
316  CL_ObjCMessageRValue, // ObjC message is an rvalue
317  CL_PRValue // A prvalue for any other reason, of any other type
318  };
319  /// \brief The results of modification testing.
321  CM_Untested, // testModifiable was false.
323  CM_RValue, // Not modifiable because it's an rvalue
324  CM_Function, // Not modifiable because it's a function; C++ only
325  CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
326  CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
331  CM_IncompleteType
332  };
333 
334  private:
335  friend class Expr;
336 
337  unsigned short Kind;
338  unsigned short Modifiable;
339 
340  explicit Classification(Kinds k, ModifiableType m)
341  : Kind(k), Modifiable(m)
342  {}
343 
344  public:
346 
347  Kinds getKind() const { return static_cast<Kinds>(Kind); }
349  assert(Modifiable != CM_Untested && "Did not test for modifiability.");
350  return static_cast<ModifiableType>(Modifiable);
351  }
352  bool isLValue() const { return Kind == CL_LValue; }
353  bool isXValue() const { return Kind == CL_XValue; }
354  bool isGLValue() const { return Kind <= CL_XValue; }
355  bool isPRValue() const { return Kind >= CL_Function; }
356  bool isRValue() const { return Kind >= CL_XValue; }
357  bool isModifiable() const { return getModifiable() == CM_Modifiable; }
358 
359  /// \brief Create a simple, modifiably lvalue
361  return Classification(CL_LValue, CM_Modifiable);
362  }
363 
364  };
365  /// \brief Classify - Classify this expression according to the C++11
366  /// expression taxonomy.
367  ///
368  /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
369  /// old lvalue vs rvalue. This function determines the type of expression this
370  /// is. There are three expression types:
371  /// - lvalues are classical lvalues as in C++03.
372  /// - prvalues are equivalent to rvalues in C++03.
373  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
374  /// function returning an rvalue reference.
375  /// lvalues and xvalues are collectively referred to as glvalues, while
376  /// prvalues and xvalues together form rvalues.
378  return ClassifyImpl(Ctx, nullptr);
379  }
380 
381  /// \brief ClassifyModifiable - Classify this expression according to the
382  /// C++11 expression taxonomy, and see if it is valid on the left side
383  /// of an assignment.
384  ///
385  /// This function extends classify in that it also tests whether the
386  /// expression is modifiable (C99 6.3.2.1p1).
387  /// \param Loc A source location that might be filled with a relevant location
388  /// if the expression is not modifiable.
390  return ClassifyImpl(Ctx, &Loc);
391  }
392 
393  /// getValueKindForType - Given a formal return or parameter type,
394  /// give its value kind.
396  if (const ReferenceType *RT = T->getAs<ReferenceType>())
397  return (isa<LValueReferenceType>(RT)
398  ? VK_LValue
399  : (RT->getPointeeType()->isFunctionType()
400  ? VK_LValue : VK_XValue));
401  return VK_RValue;
402  }
403 
404  /// getValueKind - The value kind that this expression produces.
406  return static_cast<ExprValueKind>(ExprBits.ValueKind);
407  }
408 
409  /// getObjectKind - The object kind that this expression produces.
410  /// Object kinds are meaningful only for expressions that yield an
411  /// l-value or x-value.
413  return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
414  }
415 
417  ExprObjectKind OK = getObjectKind();
418  return (OK == OK_Ordinary || OK == OK_BitField);
419  }
420 
421  /// setValueKind - Set the value kind produced by this expression.
422  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
423 
424  /// setObjectKind - Set the object kind produced by this expression.
425  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
426 
427 private:
428  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
429 
430 public:
431 
432  /// \brief Returns true if this expression is a gl-value that
433  /// potentially refers to a bit-field.
434  ///
435  /// In C++, whether a gl-value refers to a bitfield is essentially
436  /// an aspect of the value-kind type system.
437  bool refersToBitField() const { return getObjectKind() == OK_BitField; }
438 
439  /// \brief If this expression refers to a bit-field, retrieve the
440  /// declaration of that bit-field.
441  ///
442  /// Note that this returns a non-null pointer in subtly different
443  /// places than refersToBitField returns true. In particular, this can
444  /// return a non-null pointer even for r-values loaded from
445  /// bit-fields, but it will return null for a conditional bit-field.
446  FieldDecl *getSourceBitField();
447 
448  const FieldDecl *getSourceBitField() const {
449  return const_cast<Expr*>(this)->getSourceBitField();
450  }
451 
452  Decl *getReferencedDeclOfCallee();
454  return const_cast<Expr*>(this)->getReferencedDeclOfCallee();
455  }
456 
457  /// \brief If this expression is an l-value for an Objective C
458  /// property, find the underlying property reference expression.
459  const ObjCPropertyRefExpr *getObjCProperty() const;
460 
461  /// \brief Check if this expression is the ObjC 'self' implicit parameter.
462  bool isObjCSelfExpr() const;
463 
464  /// \brief Returns whether this expression refers to a vector element.
465  bool refersToVectorElement() const;
466 
467  /// \brief Returns whether this expression refers to a global register
468  /// variable.
469  bool refersToGlobalRegisterVar() const;
470 
471  /// \brief Returns whether this expression has a placeholder type.
472  bool hasPlaceholderType() const {
473  return getType()->isPlaceholderType();
474  }
475 
476  /// \brief Returns whether this expression has a specific placeholder type.
479  if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
480  return BT->getKind() == K;
481  return false;
482  }
483 
484  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
485  /// that is known to return 0 or 1. This happens for _Bool/bool expressions
486  /// but also int expressions which are produced by things like comparisons in
487  /// C.
488  bool isKnownToHaveBooleanValue() const;
489 
490  /// isIntegerConstantExpr - Return true if this expression is a valid integer
491  /// constant expression, and, if so, return its value in Result. If not a
492  /// valid i-c-e, return false and fill in Loc (if specified) with the location
493  /// of the invalid expression.
494  ///
495  /// Note: This does not perform the implicit conversions required by C++11
496  /// [expr.const]p5.
497  bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
498  SourceLocation *Loc = nullptr,
499  bool isEvaluated = true) const;
500  bool isIntegerConstantExpr(const ASTContext &Ctx,
501  SourceLocation *Loc = nullptr) const;
502 
503  /// isCXX98IntegralConstantExpr - Return true if this expression is an
504  /// integral constant expression in C++98. Can only be used in C++.
505  bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
506 
507  /// isCXX11ConstantExpr - Return true if this expression is a constant
508  /// expression in C++11. Can only be used in C++.
509  ///
510  /// Note: This does not perform the implicit conversions required by C++11
511  /// [expr.const]p5.
512  bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
513  SourceLocation *Loc = nullptr) const;
514 
515  /// isPotentialConstantExpr - Return true if this function's definition
516  /// might be usable in a constant expression in C++11, if it were marked
517  /// constexpr. Return false if the function can never produce a constant
518  /// expression, along with diagnostics describing why not.
519  static bool isPotentialConstantExpr(const FunctionDecl *FD,
521  PartialDiagnosticAt> &Diags);
522 
523  /// isPotentialConstantExprUnevaluted - Return true if this expression might
524  /// be usable in a constant expression in C++11 in an unevaluated context, if
525  /// it were in function FD marked constexpr. Return false if the function can
526  /// never produce a constant expression, along with diagnostics describing
527  /// why not.
528  static bool isPotentialConstantExprUnevaluated(Expr *E,
529  const FunctionDecl *FD,
531  PartialDiagnosticAt> &Diags);
532 
533  /// isConstantInitializer - Returns true if this expression can be emitted to
534  /// IR as a constant, and thus can be used as a constant initializer in C.
535  /// If this expression is not constant and Culprit is non-null,
536  /// it is used to store the address of first non constant expr.
537  bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
538  const Expr **Culprit = nullptr) const;
539 
540  /// EvalStatus is a struct with detailed info about an evaluation in progress.
541  struct EvalStatus {
542  /// \brief Whether the evaluated expression has side effects.
543  /// For example, (f() && 0) can be folded, but it still has side effects.
545 
546  /// \brief Whether the evaluation hit undefined behavior.
547  /// For example, 1.0 / 0.0 can be folded to Inf, but has undefined behavior.
548  /// Likewise, INT_MAX + 1 can be folded to INT_MIN, but has UB.
550 
551  /// Diag - If this is non-null, it will be filled in with a stack of notes
552  /// indicating why evaluation failed (or why it failed to produce a constant
553  /// expression).
554  /// If the expression is unfoldable, the notes will indicate why it's not
555  /// foldable. If the expression is foldable, but not a constant expression,
556  /// the notes will describes why it isn't a constant expression. If the
557  /// expression *is* a constant expression, no notes will be produced.
559 
561  : HasSideEffects(false), HasUndefinedBehavior(false), Diag(nullptr) {}
562 
563  // hasSideEffects - Return true if the evaluated expression has
564  // side effects.
565  bool hasSideEffects() const {
566  return HasSideEffects;
567  }
568  };
569 
570  /// EvalResult is a struct with detailed info about an evaluated expression.
572  /// Val - This is the value the expression can be folded to.
574 
575  // isGlobalLValue - Return true if the evaluated lvalue expression
576  // is global.
577  bool isGlobalLValue() const;
578  };
579 
580  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
581  /// an rvalue using any crazy technique (that has nothing to do with language
582  /// standards) that we want to, even if the expression has side-effects. If
583  /// this function returns true, it returns the folded constant in Result. If
584  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
585  /// applied.
586  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
587 
588  /// EvaluateAsBooleanCondition - Return true if this is a constant
589  /// which we we can fold and convert to a boolean condition using
590  /// any crazy technique that we want to, even if the expression has
591  /// side-effects.
592  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
593 
595  SE_NoSideEffects, ///< Strictly evaluate the expression.
596  SE_AllowUndefinedBehavior, ///< Allow UB that we can give a value, but not
597  ///< arbitrary unmodeled side effects.
598  SE_AllowSideEffects ///< Allow any unmodeled side effect.
599  };
600 
601  /// EvaluateAsInt - Return true if this is a constant which we can fold and
602  /// convert to an integer, using any crazy technique that we want to.
603  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
604  SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
605 
606  /// EvaluateAsFloat - Return true if this is a constant which we can fold and
607  /// convert to a floating point value, using any crazy technique that we
608  /// want to.
609  bool
610  EvaluateAsFloat(llvm::APFloat &Result, const ASTContext &Ctx,
611  SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
612 
613  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
614  /// constant folded without side-effects, but discard the result.
615  bool isEvaluatable(const ASTContext &Ctx,
616  SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
617 
618  /// HasSideEffects - This routine returns true for all those expressions
619  /// which have any effect other than producing a value. Example is a function
620  /// call, volatile variable read, or throwing an exception. If
621  /// IncludePossibleEffects is false, this call treats certain expressions with
622  /// potential side effects (such as function call-like expressions,
623  /// instantiation-dependent expressions, or invocations from a macro) as not
624  /// having side effects.
625  bool HasSideEffects(const ASTContext &Ctx,
626  bool IncludePossibleEffects = true) const;
627 
628  /// \brief Determine whether this expression involves a call to any function
629  /// that is not trivial.
630  bool hasNonTrivialCall(const ASTContext &Ctx) const;
631 
632  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
633  /// integer. This must be called on an expression that constant folds to an
634  /// integer.
635  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx,
636  SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
637 
638  void EvaluateForOverflow(const ASTContext &Ctx) const;
639 
640  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
641  /// lvalue with link time known address, with no side-effects.
642  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
643 
644  /// EvaluateAsInitializer - Evaluate an expression as if it were the
645  /// initializer of the given declaration. Returns true if the initializer
646  /// can be folded to a constant, and produces any relevant notes. In C++11,
647  /// notes will be produced if the expression is not a constant expression.
648  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
649  const VarDecl *VD,
651 
652  /// EvaluateWithSubstitution - Evaluate an expression as if from the context
653  /// of a call to the given function with the given arguments, inside an
654  /// unevaluated context. Returns true if the expression could be folded to a
655  /// constant.
656  bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
657  const FunctionDecl *Callee,
659  const Expr *This = nullptr) const;
660 
661  /// \brief If the current Expr is a pointer, this will try to statically
662  /// determine the number of bytes available where the pointer is pointing.
663  /// Returns true if all of the above holds and we were able to figure out the
664  /// size, false otherwise.
665  ///
666  /// \param Type - How to evaluate the size of the Expr, as defined by the
667  /// "type" parameter of __builtin_object_size
668  bool tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
669  unsigned Type) const;
670 
671  /// \brief Enumeration used to describe the kind of Null pointer constant
672  /// returned from \c isNullPointerConstant().
674  /// \brief Expression is not a Null pointer constant.
675  NPCK_NotNull = 0,
676 
677  /// \brief Expression is a Null pointer constant built from a zero integer
678  /// expression that is not a simple, possibly parenthesized, zero literal.
679  /// C++ Core Issue 903 will classify these expressions as "not pointers"
680  /// once it is adopted.
681  /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
683 
684  /// \brief Expression is a Null pointer constant built from a literal zero.
686 
687  /// \brief Expression is a C++11 nullptr.
689 
690  /// \brief Expression is a GNU-style __null constant.
691  NPCK_GNUNull
692  };
693 
694  /// \brief Enumeration used to describe how \c isNullPointerConstant()
695  /// should cope with value-dependent expressions.
697  /// \brief Specifies that the expression should never be value-dependent.
698  NPC_NeverValueDependent = 0,
699 
700  /// \brief Specifies that a value-dependent expression of integral or
701  /// dependent type should be considered a null pointer constant.
703 
704  /// \brief Specifies that a value-dependent expression should be considered
705  /// to never be a null pointer constant.
706  NPC_ValueDependentIsNotNull
707  };
708 
709  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
710  /// a Null pointer constant. The return value can further distinguish the
711  /// kind of NULL pointer constant that was detected.
712  NullPointerConstantKind isNullPointerConstant(
713  ASTContext &Ctx,
715 
716  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
717  /// write barrier.
718  bool isOBJCGCCandidate(ASTContext &Ctx) const;
719 
720  /// \brief Returns true if this expression is a bound member function.
721  bool isBoundMemberFunction(ASTContext &Ctx) const;
722 
723  /// \brief Given an expression of bound-member type, find the type
724  /// of the member. Returns null if this is an *overloaded* bound
725  /// member expression.
726  static QualType findBoundMemberType(const Expr *expr);
727 
728  /// IgnoreImpCasts - Skip past any implicit casts which might
729  /// surround this expression. Only skips ImplicitCastExprs.
730  Expr *IgnoreImpCasts() LLVM_READONLY;
731 
732  /// IgnoreImplicit - Skip past any implicit AST nodes which might
733  /// surround this expression.
734  Expr *IgnoreImplicit() LLVM_READONLY {
735  return cast<Expr>(Stmt::IgnoreImplicit());
736  }
737 
738  const Expr *IgnoreImplicit() const LLVM_READONLY {
739  return const_cast<Expr*>(this)->IgnoreImplicit();
740  }
741 
742  /// IgnoreParens - Ignore parentheses. If this Expr is a ParenExpr, return
743  /// its subexpression. If that subexpression is also a ParenExpr,
744  /// then this method recursively returns its subexpression, and so forth.
745  /// Otherwise, the method returns the current Expr.
746  Expr *IgnoreParens() LLVM_READONLY;
747 
748  /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
749  /// or CastExprs, returning their operand.
750  Expr *IgnoreParenCasts() LLVM_READONLY;
751 
752  /// Ignore casts. Strip off any CastExprs, returning their operand.
753  Expr *IgnoreCasts() LLVM_READONLY;
754 
755  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts. Strip off
756  /// any ParenExpr or ImplicitCastExprs, returning their operand.
757  Expr *IgnoreParenImpCasts() LLVM_READONLY;
758 
759  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
760  /// call to a conversion operator, return the argument.
761  Expr *IgnoreConversionOperator() LLVM_READONLY;
762 
763  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
764  return const_cast<Expr*>(this)->IgnoreConversionOperator();
765  }
766 
767  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
768  return const_cast<Expr*>(this)->IgnoreParenImpCasts();
769  }
770 
771  /// Ignore parentheses and lvalue casts. Strip off any ParenExpr and
772  /// CastExprs that represent lvalue casts, returning their operand.
773  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
774 
775  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
776  return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
777  }
778 
779  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
780  /// value (including ptr->int casts of the same size). Strip off any
781  /// ParenExpr or CastExprs, returning their operand.
782  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
783 
784  /// Ignore parentheses and derived-to-base casts.
785  Expr *ignoreParenBaseCasts() LLVM_READONLY;
786 
787  const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
788  return const_cast<Expr*>(this)->ignoreParenBaseCasts();
789  }
790 
791  /// \brief Determine whether this expression is a default function argument.
792  ///
793  /// Default arguments are implicitly generated in the abstract syntax tree
794  /// by semantic analysis for function calls, object constructions, etc. in
795  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
796  /// this routine also looks through any implicit casts to determine whether
797  /// the expression is a default argument.
798  bool isDefaultArgument() const;
799 
800  /// \brief Determine whether the result of this expression is a
801  /// temporary object of the given class type.
802  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
803 
804  /// \brief Whether this expression is an implicit reference to 'this' in C++.
805  bool isImplicitCXXThis() const;
806 
807  const Expr *IgnoreImpCasts() const LLVM_READONLY {
808  return const_cast<Expr*>(this)->IgnoreImpCasts();
809  }
810  const Expr *IgnoreParens() const LLVM_READONLY {
811  return const_cast<Expr*>(this)->IgnoreParens();
812  }
813  const Expr *IgnoreParenCasts() const LLVM_READONLY {
814  return const_cast<Expr*>(this)->IgnoreParenCasts();
815  }
816  /// Strip off casts, but keep parentheses.
817  const Expr *IgnoreCasts() const LLVM_READONLY {
818  return const_cast<Expr*>(this)->IgnoreCasts();
819  }
820 
821  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
822  return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
823  }
824 
825  static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
826 
827  /// \brief For an expression of class type or pointer to class type,
828  /// return the most derived class decl the expression is known to refer to.
829  ///
830  /// If this expression is a cast, this method looks through it to find the
831  /// most derived decl that can be inferred from the expression.
832  /// This is valid because derived-to-base conversions have undefined
833  /// behavior if the object isn't dynamically of the derived type.
834  const CXXRecordDecl *getBestDynamicClassType() const;
835 
836  /// \brief Get the inner expression that determines the best dynamic class.
837  /// If this is a prvalue, we guarantee that it is of the most-derived type
838  /// for the object itself.
839  const Expr *getBestDynamicClassTypeExpr() const;
840 
841  /// Walk outwards from an expression we want to bind a reference to and
842  /// find the expression whose lifetime needs to be extended. Record
843  /// the LHSs of comma expressions and adjustments needed along the path.
844  const Expr *skipRValueSubobjectAdjustments(
846  SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
850  return skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
851  }
852 
853  static bool classof(const Stmt *T) {
854  return T->getStmtClass() >= firstExprConstant &&
855  T->getStmtClass() <= lastExprConstant;
856  }
857 };
858 
859 //===----------------------------------------------------------------------===//
860 // Primary Expressions.
861 //===----------------------------------------------------------------------===//
862 
863 /// OpaqueValueExpr - An expression referring to an opaque object of a
864 /// fixed type and value class. These don't correspond to concrete
865 /// syntax; instead they're used to express operations (usually copy
866 /// operations) on values whose source is generally obvious from
867 /// context.
868 class OpaqueValueExpr : public Expr {
869  friend class ASTStmtReader;
870  Expr *SourceExpr;
871  SourceLocation Loc;
872 
873 public:
876  Expr *SourceExpr = nullptr)
877  : Expr(OpaqueValueExprClass, T, VK, OK,
878  T->isDependentType() ||
879  (SourceExpr && SourceExpr->isTypeDependent()),
880  T->isDependentType() ||
881  (SourceExpr && SourceExpr->isValueDependent()),
882  T->isInstantiationDependentType() ||
883  (SourceExpr && SourceExpr->isInstantiationDependent()),
884  false),
885  SourceExpr(SourceExpr), Loc(Loc) {
886  }
887 
888  /// Given an expression which invokes a copy constructor --- i.e. a
889  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
890  /// find the OpaqueValueExpr that's the source of the construction.
891  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
892 
893  explicit OpaqueValueExpr(EmptyShell Empty)
894  : Expr(OpaqueValueExprClass, Empty) { }
895 
896  /// \brief Retrieve the location of this expression.
897  SourceLocation getLocation() const { return Loc; }
898 
899  SourceLocation getLocStart() const LLVM_READONLY {
900  return SourceExpr ? SourceExpr->getLocStart() : Loc;
901  }
902  SourceLocation getLocEnd() const LLVM_READONLY {
903  return SourceExpr ? SourceExpr->getLocEnd() : Loc;
904  }
905  SourceLocation getExprLoc() const LLVM_READONLY {
906  if (SourceExpr) return SourceExpr->getExprLoc();
907  return Loc;
908  }
909 
912  }
913 
916  }
917 
918  /// The source expression of an opaque value expression is the
919  /// expression which originally generated the value. This is
920  /// provided as a convenience for analyses that don't wish to
921  /// precisely model the execution behavior of the program.
922  ///
923  /// The source expression is typically set when building the
924  /// expression which binds the opaque value expression in the first
925  /// place.
926  Expr *getSourceExpr() const { return SourceExpr; }
927 
928  static bool classof(const Stmt *T) {
929  return T->getStmtClass() == OpaqueValueExprClass;
930  }
931 };
932 
933 /// \brief A reference to a declared variable, function, enum, etc.
934 /// [C99 6.5.1p2]
935 ///
936 /// This encodes all the information about how a declaration is referenced
937 /// within an expression.
938 ///
939 /// There are several optional constructs attached to DeclRefExprs only when
940 /// they apply in order to conserve memory. These are laid out past the end of
941 /// the object, and flags in the DeclRefExprBitfield track whether they exist:
942 ///
943 /// DeclRefExprBits.HasQualifier:
944 /// Specifies when this declaration reference expression has a C++
945 /// nested-name-specifier.
946 /// DeclRefExprBits.HasFoundDecl:
947 /// Specifies when this declaration reference expression has a record of
948 /// a NamedDecl (different from the referenced ValueDecl) which was found
949 /// during name lookup and/or overload resolution.
950 /// DeclRefExprBits.HasTemplateKWAndArgsInfo:
951 /// Specifies when this declaration reference expression has an explicit
952 /// C++ template keyword and/or template argument list.
953 /// DeclRefExprBits.RefersToEnclosingVariableOrCapture
954 /// Specifies when this declaration reference expression (validly)
955 /// refers to an enclosed local or a captured variable.
956 class DeclRefExpr final
957  : public Expr,
958  private llvm::TrailingObjects<DeclRefExpr, NestedNameSpecifierLoc,
959  NamedDecl *, ASTTemplateKWAndArgsInfo,
960  TemplateArgumentLoc> {
961  /// \brief The declaration that we are referencing.
962  ValueDecl *D;
963 
964  /// \brief The location of the declaration name itself.
965  SourceLocation Loc;
966 
967  /// \brief Provides source/type location info for the declaration name
968  /// embedded in D.
969  DeclarationNameLoc DNLoc;
970 
971  size_t numTrailingObjects(OverloadToken<NestedNameSpecifierLoc>) const {
972  return hasQualifier() ? 1 : 0;
973  }
974 
975  size_t numTrailingObjects(OverloadToken<NamedDecl *>) const {
976  return hasFoundDecl() ? 1 : 0;
977  }
978 
979  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
980  return hasTemplateKWAndArgsInfo() ? 1 : 0;
981  }
982 
983  /// \brief Test whether there is a distinct FoundDecl attached to the end of
984  /// this DRE.
985  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
986 
987  DeclRefExpr(const ASTContext &Ctx,
988  NestedNameSpecifierLoc QualifierLoc,
989  SourceLocation TemplateKWLoc,
990  ValueDecl *D, bool RefersToEnlosingVariableOrCapture,
991  const DeclarationNameInfo &NameInfo,
992  NamedDecl *FoundD,
993  const TemplateArgumentListInfo *TemplateArgs,
994  QualType T, ExprValueKind VK);
995 
996  /// \brief Construct an empty declaration reference expression.
997  explicit DeclRefExpr(EmptyShell Empty)
998  : Expr(DeclRefExprClass, Empty) { }
999 
1000  /// \brief Computes the type- and value-dependence flags for this
1001  /// declaration reference expression.
1002  void computeDependence(const ASTContext &C);
1003 
1004 public:
1005  DeclRefExpr(ValueDecl *D, bool RefersToEnclosingVariableOrCapture, QualType T,
1007  const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
1008  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
1009  D(D), Loc(L), DNLoc(LocInfo) {
1010  DeclRefExprBits.HasQualifier = 0;
1011  DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
1012  DeclRefExprBits.HasFoundDecl = 0;
1013  DeclRefExprBits.HadMultipleCandidates = 0;
1014  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
1015  RefersToEnclosingVariableOrCapture;
1016  computeDependence(D->getASTContext());
1017  }
1018 
1019  static DeclRefExpr *
1020  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
1021  SourceLocation TemplateKWLoc, ValueDecl *D,
1022  bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
1023  QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
1024  const TemplateArgumentListInfo *TemplateArgs = nullptr);
1025 
1026  static DeclRefExpr *
1027  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
1028  SourceLocation TemplateKWLoc, ValueDecl *D,
1029  bool RefersToEnclosingVariableOrCapture,
1030  const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
1031  NamedDecl *FoundD = nullptr,
1032  const TemplateArgumentListInfo *TemplateArgs = nullptr);
1033 
1034  /// \brief Construct an empty declaration reference expression.
1035  static DeclRefExpr *CreateEmpty(const ASTContext &Context,
1036  bool HasQualifier,
1037  bool HasFoundDecl,
1038  bool HasTemplateKWAndArgsInfo,
1039  unsigned NumTemplateArgs);
1040 
1041  ValueDecl *getDecl() { return D; }
1042  const ValueDecl *getDecl() const { return D; }
1043  void setDecl(ValueDecl *NewD) { D = NewD; }
1044 
1046  return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
1047  }
1048 
1049  SourceLocation getLocation() const { return Loc; }
1050  void setLocation(SourceLocation L) { Loc = L; }
1051  SourceLocation getLocStart() const LLVM_READONLY;
1052  SourceLocation getLocEnd() const LLVM_READONLY;
1053 
1054  /// \brief Determine whether this declaration reference was preceded by a
1055  /// C++ nested-name-specifier, e.g., \c N::foo.
1056  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
1057 
1058  /// \brief If the name was qualified, retrieves the nested-name-specifier
1059  /// that precedes the name, with source-location information.
1061  if (!hasQualifier())
1062  return NestedNameSpecifierLoc();
1063  return *getTrailingObjects<NestedNameSpecifierLoc>();
1064  }
1065 
1066  /// \brief If the name was qualified, retrieves the nested-name-specifier
1067  /// that precedes the name. Otherwise, returns NULL.
1069  return getQualifierLoc().getNestedNameSpecifier();
1070  }
1071 
1072  /// \brief Get the NamedDecl through which this reference occurred.
1073  ///
1074  /// This Decl may be different from the ValueDecl actually referred to in the
1075  /// presence of using declarations, etc. It always returns non-NULL, and may
1076  /// simple return the ValueDecl when appropriate.
1077 
1079  return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
1080  }
1081 
1082  /// \brief Get the NamedDecl through which this reference occurred.
1083  /// See non-const variant.
1084  const NamedDecl *getFoundDecl() const {
1085  return hasFoundDecl() ? *getTrailingObjects<NamedDecl *>() : D;
1086  }
1087 
1089  return DeclRefExprBits.HasTemplateKWAndArgsInfo;
1090  }
1091 
1092  /// \brief Retrieve the location of the template keyword preceding
1093  /// this name, if any.
1095  if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1096  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
1097  }
1098 
1099  /// \brief Retrieve the location of the left angle bracket starting the
1100  /// explicit template argument list following the name, if any.
1102  if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1103  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
1104  }
1105 
1106  /// \brief Retrieve the location of the right angle bracket ending the
1107  /// explicit template argument list following the name, if any.
1109  if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1110  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
1111  }
1112 
1113  /// \brief Determines whether the name in this declaration reference
1114  /// was preceded by the template keyword.
1115  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
1116 
1117  /// \brief Determines whether this declaration reference was followed by an
1118  /// explicit template argument list.
1119  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
1120 
1121  /// \brief Copies the template arguments (if present) into the given
1122  /// structure.
1124  if (hasExplicitTemplateArgs())
1125  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
1126  getTrailingObjects<TemplateArgumentLoc>(), List);
1127  }
1128 
1129  /// \brief Retrieve the template arguments provided as part of this
1130  /// template-id.
1132  if (!hasExplicitTemplateArgs())
1133  return nullptr;
1134 
1135  return getTrailingObjects<TemplateArgumentLoc>();
1136  }
1137 
1138  /// \brief Retrieve the number of template arguments provided as part of this
1139  /// template-id.
1140  unsigned getNumTemplateArgs() const {
1141  if (!hasExplicitTemplateArgs())
1142  return 0;
1143 
1144  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
1145  }
1146 
1148  return {getTemplateArgs(), getNumTemplateArgs()};
1149  }
1150 
1151  /// \brief Returns true if this expression refers to a function that
1152  /// was resolved from an overloaded set having size greater than 1.
1153  bool hadMultipleCandidates() const {
1154  return DeclRefExprBits.HadMultipleCandidates;
1155  }
1156  /// \brief Sets the flag telling whether this expression refers to
1157  /// a function that was resolved from an overloaded set having size
1158  /// greater than 1.
1159  void setHadMultipleCandidates(bool V = true) {
1160  DeclRefExprBits.HadMultipleCandidates = V;
1161  }
1162 
1163  /// \brief Does this DeclRefExpr refer to an enclosing local or a captured
1164  /// variable?
1166  return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
1167  }
1168 
1169  static bool classof(const Stmt *T) {
1170  return T->getStmtClass() == DeclRefExprClass;
1171  }
1172 
1173  // Iterators
1176  }
1177 
1180  }
1181 
1183  friend class ASTStmtReader;
1184  friend class ASTStmtWriter;
1185 };
1186 
1187 /// \brief [C99 6.4.2.2] - A predefined identifier such as __func__.
1188 class PredefinedExpr : public Expr {
1189 public:
1190  enum IdentType {
1193  LFunction, // Same as Function, but as wide string.
1197  /// \brief The same as PrettyFunction, except that the
1198  /// 'virtual' keyword is omitted for virtual member functions.
1199  PrettyFunctionNoVirtual
1200  };
1201 
1202 private:
1203  SourceLocation Loc;
1204  IdentType Type;
1205  Stmt *FnName;
1206 
1207 public:
1209  StringLiteral *SL);
1210 
1211  /// \brief Construct an empty predefined expression.
1212  explicit PredefinedExpr(EmptyShell Empty)
1213  : Expr(PredefinedExprClass, Empty), Loc(), Type(Func), FnName(nullptr) {}
1214 
1215  IdentType getIdentType() const { return Type; }
1216 
1217  SourceLocation getLocation() const { return Loc; }
1218  void setLocation(SourceLocation L) { Loc = L; }
1219 
1220  StringLiteral *getFunctionName();
1222  return const_cast<PredefinedExpr *>(this)->getFunctionName();
1223  }
1224 
1225  static StringRef getIdentTypeName(IdentType IT);
1226  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1227 
1228  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1229  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1230 
1231  static bool classof(const Stmt *T) {
1232  return T->getStmtClass() == PredefinedExprClass;
1233  }
1234 
1235  // Iterators
1236  child_range children() { return child_range(&FnName, &FnName + 1); }
1238  return const_child_range(&FnName, &FnName + 1);
1239  }
1240 
1241  friend class ASTStmtReader;
1242 };
1243 
1244 /// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1245 /// leaking memory.
1246 ///
1247 /// For large floats/integers, APFloat/APInt will allocate memory from the heap
1248 /// to represent these numbers. Unfortunately, when we use a BumpPtrAllocator
1249 /// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1250 /// the APFloat/APInt values will never get freed. APNumericStorage uses
1251 /// ASTContext's allocator for memory allocation.
1253  union {
1254  uint64_t VAL; ///< Used to store the <= 64 bits integer value.
1255  uint64_t *pVal; ///< Used to store the >64 bits integer value.
1256  };
1257  unsigned BitWidth;
1258 
1259  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1260 
1261  APNumericStorage(const APNumericStorage &) = delete;
1262  void operator=(const APNumericStorage &) = delete;
1263 
1264 protected:
1265  APNumericStorage() : VAL(0), BitWidth(0) { }
1266 
1267  llvm::APInt getIntValue() const {
1268  unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1269  if (NumWords > 1)
1270  return llvm::APInt(BitWidth, NumWords, pVal);
1271  else
1272  return llvm::APInt(BitWidth, VAL);
1273  }
1274  void setIntValue(const ASTContext &C, const llvm::APInt &Val);
1275 };
1276 
1278 public:
1279  llvm::APInt getValue() const { return getIntValue(); }
1280  void setValue(const ASTContext &C, const llvm::APInt &Val) {
1281  setIntValue(C, Val);
1282  }
1283 };
1284 
1286 public:
1287  llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
1288  return llvm::APFloat(Semantics, getIntValue());
1289  }
1290  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1291  setIntValue(C, Val.bitcastToAPInt());
1292  }
1293 };
1294 
1295 class IntegerLiteral : public Expr, public APIntStorage {
1296  SourceLocation Loc;
1297 
1298  /// \brief Construct an empty integer literal.
1299  explicit IntegerLiteral(EmptyShell Empty)
1300  : Expr(IntegerLiteralClass, Empty) { }
1301 
1302 public:
1303  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1304  // or UnsignedLongLongTy
1305  IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
1306  SourceLocation l);
1307 
1308  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1309  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1310  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1311  /// \param V - the value that the returned integer literal contains.
1312  static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
1313  QualType type, SourceLocation l);
1314  /// \brief Returns a new empty integer literal.
1315  static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
1316 
1317  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1318  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1319 
1320  /// \brief Retrieve the location of the literal.
1321  SourceLocation getLocation() const { return Loc; }
1322 
1323  void setLocation(SourceLocation Location) { Loc = Location; }
1324 
1325  static bool classof(const Stmt *T) {
1326  return T->getStmtClass() == IntegerLiteralClass;
1327  }
1328 
1329  // Iterators
1332  }
1335  }
1336 };
1337 
1338 class CharacterLiteral : public Expr {
1339 public:
1345  UTF32
1346  };
1347 
1348 private:
1349  unsigned Value;
1350  SourceLocation Loc;
1351 public:
1352  // type should be IntTy
1354  SourceLocation l)
1355  : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1356  false, false),
1357  Value(value), Loc(l) {
1358  CharacterLiteralBits.Kind = kind;
1359  }
1360 
1361  /// \brief Construct an empty character literal.
1362  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1363 
1364  SourceLocation getLocation() const { return Loc; }
1366  return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1367  }
1368 
1369  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1370  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1371 
1372  unsigned getValue() const { return Value; }
1373 
1374  void setLocation(SourceLocation Location) { Loc = Location; }
1375  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1376  void setValue(unsigned Val) { Value = Val; }
1377 
1378  static bool classof(const Stmt *T) {
1379  return T->getStmtClass() == CharacterLiteralClass;
1380  }
1381 
1382  // Iterators
1385  }
1388  }
1389 };
1390 
1391 class FloatingLiteral : public Expr, private APFloatStorage {
1392  SourceLocation Loc;
1393 
1394  FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
1396 
1397  /// \brief Construct an empty floating-point literal.
1398  explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
1399 
1400 public:
1401  static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
1402  bool isexact, QualType Type, SourceLocation L);
1403  static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
1404 
1405  llvm::APFloat getValue() const {
1406  return APFloatStorage::getValue(getSemantics());
1407  }
1408  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1409  assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
1410  APFloatStorage::setValue(C, Val);
1411  }
1412 
1413  /// Get a raw enumeration value representing the floating-point semantics of
1414  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1416  return static_cast<APFloatSemantics>(FloatingLiteralBits.Semantics);
1417  }
1418 
1419  /// Set the raw enumeration value representing the floating-point semantics of
1420  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1422  FloatingLiteralBits.Semantics = Sem;
1423  }
1424 
1425  /// Return the APFloat semantics this literal uses.
1426  const llvm::fltSemantics &getSemantics() const;
1427 
1428  /// Set the APFloat semantics this literal uses.
1429  void setSemantics(const llvm::fltSemantics &Sem);
1430 
1431  bool isExact() const { return FloatingLiteralBits.IsExact; }
1432  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1433 
1434  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1435  /// double. Note that this may cause loss of precision, but is useful for
1436  /// debugging dumps, etc.
1437  double getValueAsApproximateDouble() const;
1438 
1439  SourceLocation getLocation() const { return Loc; }
1440  void setLocation(SourceLocation L) { Loc = L; }
1441 
1442  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1443  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1444 
1445  static bool classof(const Stmt *T) {
1446  return T->getStmtClass() == FloatingLiteralClass;
1447  }
1448 
1449  // Iterators
1452  }
1455  }
1456 };
1457 
1458 /// ImaginaryLiteral - We support imaginary integer and floating point literals,
1459 /// like "1.0i". We represent these as a wrapper around FloatingLiteral and
1460 /// IntegerLiteral classes. Instances of this class always have a Complex type
1461 /// whose element type matches the subexpression.
1462 ///
1463 class ImaginaryLiteral : public Expr {
1464  Stmt *Val;
1465 public:
1467  : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1468  false, false),
1469  Val(val) {}
1470 
1471  /// \brief Build an empty imaginary literal.
1473  : Expr(ImaginaryLiteralClass, Empty) { }
1474 
1475  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1476  Expr *getSubExpr() { return cast<Expr>(Val); }
1477  void setSubExpr(Expr *E) { Val = E; }
1478 
1479  SourceLocation getLocStart() const LLVM_READONLY { return Val->getLocStart(); }
1480  SourceLocation getLocEnd() const LLVM_READONLY { return Val->getLocEnd(); }
1481 
1482  static bool classof(const Stmt *T) {
1483  return T->getStmtClass() == ImaginaryLiteralClass;
1484  }
1485 
1486  // Iterators
1487  child_range children() { return child_range(&Val, &Val+1); }
1489  return const_child_range(&Val, &Val + 1);
1490  }
1491 };
1492 
1493 /// StringLiteral - This represents a string literal expression, e.g. "foo"
1494 /// or L"bar" (wide strings). The actual string is returned by getBytes()
1495 /// is NOT null-terminated, and the length of the string is determined by
1496 /// calling getByteLength(). The C type for a string is always a
1497 /// ConstantArrayType. In C++, the char type is const qualified, in C it is
1498 /// not.
1499 ///
1500 /// Note that strings in C can be formed by concatenation of multiple string
1501 /// literal pptokens in translation phase #6. This keeps track of the locations
1502 /// of each of these pieces.
1503 ///
1504 /// Strings in C can also be truncated and extended by assigning into arrays,
1505 /// e.g. with constructs like:
1506 /// char X[2] = "foobar";
1507 /// In this case, getByteLength() will return 6, but the string literal will
1508 /// have type "char[2]".
1509 class StringLiteral : public Expr {
1510 public:
1511  enum StringKind {
1516  UTF32
1517  };
1518 
1519 private:
1520  friend class ASTStmtReader;
1521 
1522  union {
1523  const char *asChar;
1524  const uint16_t *asUInt16;
1525  const uint32_t *asUInt32;
1526  } StrData;
1527  unsigned Length;
1528  unsigned CharByteWidth : 4;
1529  unsigned Kind : 3;
1530  unsigned IsPascal : 1;
1531  unsigned NumConcatenated;
1532  SourceLocation TokLocs[1];
1533 
1534  StringLiteral(QualType Ty) :
1535  Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1536  false) {}
1537 
1538  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1539 
1540 public:
1541  /// This is the "fully general" constructor that allows representation of
1542  /// strings formed from multiple concatenated tokens.
1543  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1544  StringKind Kind, bool Pascal, QualType Ty,
1545  const SourceLocation *Loc, unsigned NumStrs);
1546 
1547  /// Simple constructor for string literals made from one token.
1548  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1549  StringKind Kind, bool Pascal, QualType Ty,
1550  SourceLocation Loc) {
1551  return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1552  }
1553 
1554  /// \brief Construct an empty string literal.
1555  static StringLiteral *CreateEmpty(const ASTContext &C, unsigned NumStrs);
1556 
1557  StringRef getString() const {
1558  assert(CharByteWidth==1
1559  && "This function is used in places that assume strings use char");
1560  return StringRef(StrData.asChar, getByteLength());
1561  }
1562 
1563  /// Allow access to clients that need the byte representation, such as
1564  /// ASTWriterStmt::VisitStringLiteral().
1565  StringRef getBytes() const {
1566  // FIXME: StringRef may not be the right type to use as a result for this.
1567  if (CharByteWidth == 1)
1568  return StringRef(StrData.asChar, getByteLength());
1569  if (CharByteWidth == 4)
1570  return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1571  getByteLength());
1572  assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1573  return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1574  getByteLength());
1575  }
1576 
1577  void outputString(raw_ostream &OS) const;
1578 
1579  uint32_t getCodeUnit(size_t i) const {
1580  assert(i < Length && "out of bounds access");
1581  if (CharByteWidth == 1)
1582  return static_cast<unsigned char>(StrData.asChar[i]);
1583  if (CharByteWidth == 4)
1584  return StrData.asUInt32[i];
1585  assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1586  return StrData.asUInt16[i];
1587  }
1588 
1589  unsigned getByteLength() const { return CharByteWidth*Length; }
1590  unsigned getLength() const { return Length; }
1591  unsigned getCharByteWidth() const { return CharByteWidth; }
1592 
1593  /// \brief Sets the string data to the given string data.
1594  void setString(const ASTContext &C, StringRef Str,
1595  StringKind Kind, bool IsPascal);
1596 
1597  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1598 
1599 
1600  bool isAscii() const { return Kind == Ascii; }
1601  bool isWide() const { return Kind == Wide; }
1602  bool isUTF8() const { return Kind == UTF8; }
1603  bool isUTF16() const { return Kind == UTF16; }
1604  bool isUTF32() const { return Kind == UTF32; }
1605  bool isPascal() const { return IsPascal; }
1606 
1607  bool containsNonAsciiOrNull() const {
1608  StringRef Str = getString();
1609  for (unsigned i = 0, e = Str.size(); i != e; ++i)
1610  if (!isASCII(Str[i]) || !Str[i])
1611  return true;
1612  return false;
1613  }
1614 
1615  /// getNumConcatenated - Get the number of string literal tokens that were
1616  /// concatenated in translation phase #6 to form this string literal.
1617  unsigned getNumConcatenated() const { return NumConcatenated; }
1618 
1619  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1620  assert(TokNum < NumConcatenated && "Invalid tok number");
1621  return TokLocs[TokNum];
1622  }
1623  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1624  assert(TokNum < NumConcatenated && "Invalid tok number");
1625  TokLocs[TokNum] = L;
1626  }
1627 
1628  /// getLocationOfByte - Return a source location that points to the specified
1629  /// byte of this string literal.
1630  ///
1631  /// Strings are amazingly complex. They can be formed from multiple tokens
1632  /// and can have escape sequences in them in addition to the usual trigraph
1633  /// and escaped newline business. This routine handles this complexity.
1634  ///
1636  getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1637  const LangOptions &Features, const TargetInfo &Target,
1638  unsigned *StartToken = nullptr,
1639  unsigned *StartTokenByteOffset = nullptr) const;
1640 
1642  tokloc_iterator tokloc_begin() const { return TokLocs; }
1643  tokloc_iterator tokloc_end() const { return TokLocs + NumConcatenated; }
1644 
1645  SourceLocation getLocStart() const LLVM_READONLY { return TokLocs[0]; }
1646  SourceLocation getLocEnd() const LLVM_READONLY {
1647  return TokLocs[NumConcatenated - 1];
1648  }
1649 
1650  static bool classof(const Stmt *T) {
1651  return T->getStmtClass() == StringLiteralClass;
1652  }
1653 
1654  // Iterators
1657  }
1660  }
1661 };
1662 
1663 /// ParenExpr - This represents a parethesized expression, e.g. "(1)". This
1664 /// AST node is only formed if full location information is requested.
1665 class ParenExpr : public Expr {
1666  SourceLocation L, R;
1667  Stmt *Val;
1668 public:
1670  : Expr(ParenExprClass, val->getType(),
1671  val->getValueKind(), val->getObjectKind(),
1672  val->isTypeDependent(), val->isValueDependent(),
1673  val->isInstantiationDependent(),
1674  val->containsUnexpandedParameterPack()),
1675  L(l), R(r), Val(val) {}
1676 
1677  /// \brief Construct an empty parenthesized expression.
1678  explicit ParenExpr(EmptyShell Empty)
1679  : Expr(ParenExprClass, Empty) { }
1680 
1681  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1682  Expr *getSubExpr() { return cast<Expr>(Val); }
1683  void setSubExpr(Expr *E) { Val = E; }
1684 
1685  SourceLocation getLocStart() const LLVM_READONLY { return L; }
1686  SourceLocation getLocEnd() const LLVM_READONLY { return R; }
1687 
1688  /// \brief Get the location of the left parentheses '('.
1689  SourceLocation getLParen() const { return L; }
1690  void setLParen(SourceLocation Loc) { L = Loc; }
1691 
1692  /// \brief Get the location of the right parentheses ')'.
1693  SourceLocation getRParen() const { return R; }
1694  void setRParen(SourceLocation Loc) { R = Loc; }
1695 
1696  static bool classof(const Stmt *T) {
1697  return T->getStmtClass() == ParenExprClass;
1698  }
1699 
1700  // Iterators
1701  child_range children() { return child_range(&Val, &Val+1); }
1703  return const_child_range(&Val, &Val + 1);
1704  }
1705 };
1706 
1707 /// UnaryOperator - This represents the unary-expression's (except sizeof and
1708 /// alignof), the postinc/postdec operators from postfix-expression, and various
1709 /// extensions.
1710 ///
1711 /// Notes on various nodes:
1712 ///
1713 /// Real/Imag - These return the real/imag part of a complex operand. If
1714 /// applied to a non-complex value, the former returns its operand and the
1715 /// later returns zero in the type of the operand.
1716 ///
1717 class UnaryOperator : public Expr {
1718 public:
1720 
1721 private:
1722  unsigned Opc : 5;
1723  unsigned CanOverflow : 1;
1724  SourceLocation Loc;
1725  Stmt *Val;
1726 public:
1727  UnaryOperator(Expr *input, Opcode opc, QualType type, ExprValueKind VK,
1728  ExprObjectKind OK, SourceLocation l, bool CanOverflow)
1729  : Expr(UnaryOperatorClass, type, VK, OK,
1730  input->isTypeDependent() || type->isDependentType(),
1731  input->isValueDependent(),
1732  (input->isInstantiationDependent() ||
1733  type->isInstantiationDependentType()),
1734  input->containsUnexpandedParameterPack()),
1735  Opc(opc), CanOverflow(CanOverflow), Loc(l), Val(input) {}
1736 
1737  /// \brief Build an empty unary operator.
1738  explicit UnaryOperator(EmptyShell Empty)
1739  : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1740 
1741  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1742  void setOpcode(Opcode O) { Opc = O; }
1743 
1744  Expr *getSubExpr() const { return cast<Expr>(Val); }
1745  void setSubExpr(Expr *E) { Val = E; }
1746 
1747  /// getOperatorLoc - Return the location of the operator.
1748  SourceLocation getOperatorLoc() const { return Loc; }
1749  void setOperatorLoc(SourceLocation L) { Loc = L; }
1750 
1751  /// Returns true if the unary operator can cause an overflow. For instance,
1752  /// signed int i = INT_MAX; i++;
1753  /// signed char c = CHAR_MAX; c++;
1754  /// Due to integer promotions, c++ is promoted to an int before the postfix
1755  /// increment, and the result is an int that cannot overflow. However, i++
1756  /// can overflow.
1757  bool canOverflow() const { return CanOverflow; }
1758  void setCanOverflow(bool C) { CanOverflow = C; }
1759 
1760  /// isPostfix - Return true if this is a postfix operation, like x++.
1761  static bool isPostfix(Opcode Op) {
1762  return Op == UO_PostInc || Op == UO_PostDec;
1763  }
1764 
1765  /// isPrefix - Return true if this is a prefix operation, like --x.
1766  static bool isPrefix(Opcode Op) {
1767  return Op == UO_PreInc || Op == UO_PreDec;
1768  }
1769 
1770  bool isPrefix() const { return isPrefix(getOpcode()); }
1771  bool isPostfix() const { return isPostfix(getOpcode()); }
1772 
1773  static bool isIncrementOp(Opcode Op) {
1774  return Op == UO_PreInc || Op == UO_PostInc;
1775  }
1776  bool isIncrementOp() const {
1777  return isIncrementOp(getOpcode());
1778  }
1779 
1780  static bool isDecrementOp(Opcode Op) {
1781  return Op == UO_PreDec || Op == UO_PostDec;
1782  }
1783  bool isDecrementOp() const {
1784  return isDecrementOp(getOpcode());
1785  }
1786 
1787  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1788  bool isIncrementDecrementOp() const {
1789  return isIncrementDecrementOp(getOpcode());
1790  }
1791 
1792  static bool isArithmeticOp(Opcode Op) {
1793  return Op >= UO_Plus && Op <= UO_LNot;
1794  }
1795  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1796 
1797  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1798  /// corresponds to, e.g. "sizeof" or "[pre]++"
1799  static StringRef getOpcodeStr(Opcode Op);
1800 
1801  /// \brief Retrieve the unary opcode that corresponds to the given
1802  /// overloaded operator.
1803  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1804 
1805  /// \brief Retrieve the overloaded operator kind that corresponds to
1806  /// the given unary opcode.
1807  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1808 
1809  SourceLocation getLocStart() const LLVM_READONLY {
1810  return isPostfix() ? Val->getLocStart() : Loc;
1811  }
1812  SourceLocation getLocEnd() const LLVM_READONLY {
1813  return isPostfix() ? Loc : Val->getLocEnd();
1814  }
1815  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1816 
1817  static bool classof(const Stmt *T) {
1818  return T->getStmtClass() == UnaryOperatorClass;
1819  }
1820 
1821  // Iterators
1822  child_range children() { return child_range(&Val, &Val+1); }
1824  return const_child_range(&Val, &Val + 1);
1825  }
1826 };
1827 
1828 /// Helper class for OffsetOfExpr.
1829 
1830 // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1832 public:
1833  /// \brief The kind of offsetof node we have.
1834  enum Kind {
1835  /// \brief An index into an array.
1836  Array = 0x00,
1837  /// \brief A field.
1838  Field = 0x01,
1839  /// \brief A field in a dependent type, known only by its name.
1840  Identifier = 0x02,
1841  /// \brief An implicit indirection through a C++ base class, when the
1842  /// field found is in a base class.
1843  Base = 0x03
1844  };
1845 
1846 private:
1847  enum { MaskBits = 2, Mask = 0x03 };
1848 
1849  /// \brief The source range that covers this part of the designator.
1850  SourceRange Range;
1851 
1852  /// \brief The data describing the designator, which comes in three
1853  /// different forms, depending on the lower two bits.
1854  /// - An unsigned index into the array of Expr*'s stored after this node
1855  /// in memory, for [constant-expression] designators.
1856  /// - A FieldDecl*, for references to a known field.
1857  /// - An IdentifierInfo*, for references to a field with a given name
1858  /// when the class type is dependent.
1859  /// - A CXXBaseSpecifier*, for references that look at a field in a
1860  /// base class.
1861  uintptr_t Data;
1862 
1863 public:
1864  /// \brief Create an offsetof node that refers to an array element.
1865  OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1866  SourceLocation RBracketLoc)
1867  : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) {}
1868 
1869  /// \brief Create an offsetof node that refers to a field.
1871  : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
1872  Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) {}
1873 
1874  /// \brief Create an offsetof node that refers to an identifier.
1876  SourceLocation NameLoc)
1877  : Range(DotLoc.isValid() ? DotLoc : NameLoc, NameLoc),
1878  Data(reinterpret_cast<uintptr_t>(Name) | Identifier) {}
1879 
1880  /// \brief Create an offsetof node that refers into a C++ base class.
1882  : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1883 
1884  /// \brief Determine what kind of offsetof node this is.
1885  Kind getKind() const { return static_cast<Kind>(Data & Mask); }
1886 
1887  /// \brief For an array element node, returns the index into the array
1888  /// of expressions.
1889  unsigned getArrayExprIndex() const {
1890  assert(getKind() == Array);
1891  return Data >> 2;
1892  }
1893 
1894  /// \brief For a field offsetof node, returns the field.
1895  FieldDecl *getField() const {
1896  assert(getKind() == Field);
1897  return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1898  }
1899 
1900  /// \brief For a field or identifier offsetof node, returns the name of
1901  /// the field.
1902  IdentifierInfo *getFieldName() const;
1903 
1904  /// \brief For a base class node, returns the base specifier.
1906  assert(getKind() == Base);
1907  return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1908  }
1909 
1910  /// \brief Retrieve the source range that covers this offsetof node.
1911  ///
1912  /// For an array element node, the source range contains the locations of
1913  /// the square brackets. For a field or identifier node, the source range
1914  /// contains the location of the period (if there is one) and the
1915  /// identifier.
1916  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1917  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
1918  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
1919 };
1920 
1921 /// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1922 /// offsetof(record-type, member-designator). For example, given:
1923 /// @code
1924 /// struct S {
1925 /// float f;
1926 /// double d;
1927 /// };
1928 /// struct T {
1929 /// int i;
1930 /// struct S s[10];
1931 /// };
1932 /// @endcode
1933 /// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1934 
1935 class OffsetOfExpr final
1936  : public Expr,
1937  private llvm::TrailingObjects<OffsetOfExpr, OffsetOfNode, Expr *> {
1938  SourceLocation OperatorLoc, RParenLoc;
1939  // Base type;
1940  TypeSourceInfo *TSInfo;
1941  // Number of sub-components (i.e. instances of OffsetOfNode).
1942  unsigned NumComps;
1943  // Number of sub-expressions (i.e. array subscript expressions).
1944  unsigned NumExprs;
1945 
1946  size_t numTrailingObjects(OverloadToken<OffsetOfNode>) const {
1947  return NumComps;
1948  }
1949 
1951  SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1953  SourceLocation RParenLoc);
1954 
1955  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1956  : Expr(OffsetOfExprClass, EmptyShell()),
1957  TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}
1958 
1959 public:
1960 
1961  static OffsetOfExpr *Create(const ASTContext &C, QualType type,
1962  SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1963  ArrayRef<OffsetOfNode> comps,
1964  ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
1965 
1966  static OffsetOfExpr *CreateEmpty(const ASTContext &C,
1967  unsigned NumComps, unsigned NumExprs);
1968 
1969  /// getOperatorLoc - Return the location of the operator.
1970  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1971  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1972 
1973  /// \brief Return the location of the right parentheses.
1974  SourceLocation getRParenLoc() const { return RParenLoc; }
1975  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1976 
1978  return TSInfo;
1979  }
1981  TSInfo = tsi;
1982  }
1983 
1984  const OffsetOfNode &getComponent(unsigned Idx) const {
1985  assert(Idx < NumComps && "Subscript out of range");
1986  return getTrailingObjects<OffsetOfNode>()[Idx];
1987  }
1988 
1989  void setComponent(unsigned Idx, OffsetOfNode ON) {
1990  assert(Idx < NumComps && "Subscript out of range");
1991  getTrailingObjects<OffsetOfNode>()[Idx] = ON;
1992  }
1993 
1994  unsigned getNumComponents() const {
1995  return NumComps;
1996  }
1997 
1998  Expr* getIndexExpr(unsigned Idx) {
1999  assert(Idx < NumExprs && "Subscript out of range");
2000  return getTrailingObjects<Expr *>()[Idx];
2001  }
2002 
2003  const Expr *getIndexExpr(unsigned Idx) const {
2004  assert(Idx < NumExprs && "Subscript out of range");
2005  return getTrailingObjects<Expr *>()[Idx];
2006  }
2007 
2008  void setIndexExpr(unsigned Idx, Expr* E) {
2009  assert(Idx < NumComps && "Subscript out of range");
2010  getTrailingObjects<Expr *>()[Idx] = E;
2011  }
2012 
2013  unsigned getNumExpressions() const {
2014  return NumExprs;
2015  }
2016 
2017  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
2018  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2019 
2020  static bool classof(const Stmt *T) {
2021  return T->getStmtClass() == OffsetOfExprClass;
2022  }
2023 
2024  // Iterators
2026  Stmt **begin = reinterpret_cast<Stmt **>(getTrailingObjects<Expr *>());
2027  return child_range(begin, begin + NumExprs);
2028  }
2030  Stmt *const *begin =
2031  reinterpret_cast<Stmt *const *>(getTrailingObjects<Expr *>());
2032  return const_child_range(begin, begin + NumExprs);
2033  }
2035 };
2036 
2037 /// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
2038 /// expression operand. Used for sizeof/alignof (C99 6.5.3.4) and
2039 /// vec_step (OpenCL 1.1 6.11.12).
2041  union {
2044  } Argument;
2045  SourceLocation OpLoc, RParenLoc;
2046 
2047 public:
2049  QualType resultType, SourceLocation op,
2050  SourceLocation rp) :
2051  Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2052  false, // Never type-dependent (C++ [temp.dep.expr]p3).
2053  // Value-dependent if the argument is type-dependent.
2054  TInfo->getType()->isDependentType(),
2055  TInfo->getType()->isInstantiationDependentType(),
2056  TInfo->getType()->containsUnexpandedParameterPack()),
2057  OpLoc(op), RParenLoc(rp) {
2058  UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
2059  UnaryExprOrTypeTraitExprBits.IsType = true;
2060  Argument.Ty = TInfo;
2061  }
2062 
2064  QualType resultType, SourceLocation op,
2065  SourceLocation rp);
2066 
2067  /// \brief Construct an empty sizeof/alignof expression.
2069  : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
2070 
2072  return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
2073  }
2074  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
2075 
2076  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
2078  return getArgumentTypeInfo()->getType();
2079  }
2081  assert(isArgumentType() && "calling getArgumentType() when arg is expr");
2082  return Argument.Ty;
2083  }
2085  assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
2086  return static_cast<Expr*>(Argument.Ex);
2087  }
2088  const Expr *getArgumentExpr() const {
2089  return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
2090  }
2091 
2092  void setArgument(Expr *E) {
2093  Argument.Ex = E;
2094  UnaryExprOrTypeTraitExprBits.IsType = false;
2095  }
2097  Argument.Ty = TInfo;
2098  UnaryExprOrTypeTraitExprBits.IsType = true;
2099  }
2100 
2101  /// Gets the argument type, or the type of the argument expression, whichever
2102  /// is appropriate.
2104  return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
2105  }
2106 
2107  SourceLocation getOperatorLoc() const { return OpLoc; }
2108  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2109 
2110  SourceLocation getRParenLoc() const { return RParenLoc; }
2111  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2112 
2113  SourceLocation getLocStart() const LLVM_READONLY { return OpLoc; }
2114  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2115 
2116  static bool classof(const Stmt *T) {
2117  return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
2118  }
2119 
2120  // Iterators
2122  const_child_range children() const;
2123 };
2124 
2125 //===----------------------------------------------------------------------===//
2126 // Postfix Operators.
2127 //===----------------------------------------------------------------------===//
2128 
2129 /// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
2130 class ArraySubscriptExpr : public Expr {
2131  enum { LHS, RHS, END_EXPR=2 };
2132  Stmt* SubExprs[END_EXPR];
2133  SourceLocation RBracketLoc;
2134 public:
2137  SourceLocation rbracketloc)
2138  : Expr(ArraySubscriptExprClass, t, VK, OK,
2139  lhs->isTypeDependent() || rhs->isTypeDependent(),
2140  lhs->isValueDependent() || rhs->isValueDependent(),
2141  (lhs->isInstantiationDependent() ||
2142  rhs->isInstantiationDependent()),
2143  (lhs->containsUnexpandedParameterPack() ||
2144  rhs->containsUnexpandedParameterPack())),
2145  RBracketLoc(rbracketloc) {
2146  SubExprs[LHS] = lhs;
2147  SubExprs[RHS] = rhs;
2148  }
2149 
2150  /// \brief Create an empty array subscript expression.
2152  : Expr(ArraySubscriptExprClass, Shell) { }
2153 
2154  /// An array access can be written A[4] or 4[A] (both are equivalent).
2155  /// - getBase() and getIdx() always present the normalized view: A[4].
2156  /// In this case getBase() returns "A" and getIdx() returns "4".
2157  /// - getLHS() and getRHS() present the syntactic view. e.g. for
2158  /// 4[A] getLHS() returns "4".
2159  /// Note: Because vector element access is also written A[4] we must
2160  /// predicate the format conversion in getBase and getIdx only on the
2161  /// the type of the RHS, as it is possible for the LHS to be a vector of
2162  /// integer type
2163  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
2164  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2165  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2166 
2167  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
2168  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2169  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2170 
2172  return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2173  }
2174 
2175  const Expr *getBase() const {
2176  return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2177  }
2178 
2180  return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2181  }
2182 
2183  const Expr *getIdx() const {
2184  return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2185  }
2186 
2187  SourceLocation getLocStart() const LLVM_READONLY {
2188  return getLHS()->getLocStart();
2189  }
2190  SourceLocation getLocEnd() const LLVM_READONLY { return RBracketLoc; }
2191 
2192  SourceLocation getRBracketLoc() const { return RBracketLoc; }
2193  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2194 
2195  SourceLocation getExprLoc() const LLVM_READONLY {
2196  return getBase()->getExprLoc();
2197  }
2198 
2199  static bool classof(const Stmt *T) {
2200  return T->getStmtClass() == ArraySubscriptExprClass;
2201  }
2202 
2203  // Iterators
2205  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2206  }
2208  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
2209  }
2210 };
2211 
2212 /// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2213 /// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2214 /// while its subclasses may represent alternative syntax that (semantically)
2215 /// results in a function call. For example, CXXOperatorCallExpr is
2216 /// a subclass for overloaded operator calls that use operator syntax, e.g.,
2217 /// "str1 + str2" to resolve to a function call.
2218 class CallExpr : public Expr {
2219  enum { FN=0, PREARGS_START=1 };
2220  Stmt **SubExprs;
2221  unsigned NumArgs;
2222  SourceLocation RParenLoc;
2223 
2224  void updateDependenciesFromArg(Expr *Arg);
2225 
2226 protected:
2227  // These versions of the constructor are for derived classes.
2228  CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
2229  ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t,
2230  ExprValueKind VK, SourceLocation rparenloc);
2231  CallExpr(const ASTContext &C, StmtClass SC, Expr *fn, ArrayRef<Expr *> args,
2232  QualType t, ExprValueKind VK, SourceLocation rparenloc);
2233  CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
2234  EmptyShell Empty);
2235 
2236  Stmt *getPreArg(unsigned i) {
2237  assert(i < getNumPreArgs() && "Prearg access out of range!");
2238  return SubExprs[PREARGS_START+i];
2239  }
2240  const Stmt *getPreArg(unsigned i) const {
2241  assert(i < getNumPreArgs() && "Prearg access out of range!");
2242  return SubExprs[PREARGS_START+i];
2243  }
2244  void setPreArg(unsigned i, Stmt *PreArg) {
2245  assert(i < getNumPreArgs() && "Prearg access out of range!");
2246  SubExprs[PREARGS_START+i] = PreArg;
2247  }
2248 
2249  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2250 
2251 public:
2252  CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
2253  ExprValueKind VK, SourceLocation rparenloc);
2254 
2255  /// \brief Build an empty call expression.
2256  CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty);
2257 
2258  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2259  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2260  void setCallee(Expr *F) { SubExprs[FN] = F; }
2261 
2262  Decl *getCalleeDecl();
2263  const Decl *getCalleeDecl() const {
2264  return const_cast<CallExpr*>(this)->getCalleeDecl();
2265  }
2266 
2267  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2268  FunctionDecl *getDirectCallee();
2270  return const_cast<CallExpr*>(this)->getDirectCallee();
2271  }
2272 
2273  /// getNumArgs - Return the number of actual arguments to this call.
2274  ///
2275  unsigned getNumArgs() const { return NumArgs; }
2276 
2277  /// \brief Retrieve the call arguments.
2279  return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2280  }
2281  const Expr *const *getArgs() const {
2282  return reinterpret_cast<Expr **>(SubExprs + getNumPreArgs() +
2283  PREARGS_START);
2284  }
2285 
2286  /// getArg - Return the specified argument.
2287  Expr *getArg(unsigned Arg) {
2288  assert(Arg < NumArgs && "Arg access out of range!");
2289  return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
2290  }
2291  const Expr *getArg(unsigned Arg) const {
2292  assert(Arg < NumArgs && "Arg access out of range!");
2293  return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
2294  }
2295 
2296  /// setArg - Set the specified argument.
2297  void setArg(unsigned Arg, Expr *ArgExpr) {
2298  assert(Arg < NumArgs && "Arg access out of range!");
2299  SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2300  }
2301 
2302  /// setNumArgs - This changes the number of arguments present in this call.
2303  /// Any orphaned expressions are deleted by this, and any new operands are set
2304  /// to null.
2305  void setNumArgs(const ASTContext& C, unsigned NumArgs);
2306 
2309  typedef llvm::iterator_range<arg_iterator> arg_range;
2310  typedef llvm::iterator_range<const_arg_iterator> arg_const_range;
2311 
2312  arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
2313  arg_const_range arguments() const {
2314  return arg_const_range(arg_begin(), arg_end());
2315  }
2316 
2317  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2318  arg_iterator arg_end() {
2319  return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2320  }
2321  const_arg_iterator arg_begin() const {
2322  return SubExprs+PREARGS_START+getNumPreArgs();
2323  }
2324  const_arg_iterator arg_end() const {
2325  return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2326  }
2327 
2328  /// This method provides fast access to all the subexpressions of
2329  /// a CallExpr without going through the slower virtual child_iterator
2330  /// interface. This provides efficient reverse iteration of the
2331  /// subexpressions. This is currently used for CFG construction.
2333  return llvm::makeArrayRef(SubExprs,
2334  getNumPreArgs() + PREARGS_START + getNumArgs());
2335  }
2336 
2337  /// getNumCommas - Return the number of commas that must have been present in
2338  /// this function call.
2339  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2340 
2341  /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
2342  /// of the callee. If not, return 0.
2343  unsigned getBuiltinCallee() const;
2344 
2345  /// \brief Returns \c true if this is a call to a builtin which does not
2346  /// evaluate side-effects within its arguments.
2347  bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const;
2348 
2349  /// getCallReturnType - Get the return type of the call expr. This is not
2350  /// always the type of the expr itself, if the return type is a reference
2351  /// type.
2352  QualType getCallReturnType(const ASTContext &Ctx) const;
2353 
2354  SourceLocation getRParenLoc() const { return RParenLoc; }
2355  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2356 
2357  SourceLocation getLocStart() const LLVM_READONLY;
2358  SourceLocation getLocEnd() const LLVM_READONLY;
2359 
2360  /// Return true if this is a call to __assume() or __builtin_assume() with
2361  /// a non-value-dependent constant parameter evaluating as false.
2362  bool isBuiltinAssumeFalse(const ASTContext &Ctx) const;
2363 
2364  bool isCallToStdMove() const {
2365  const FunctionDecl* FD = getDirectCallee();
2366  return getNumArgs() == 1 && FD && FD->isInStdNamespace() &&
2367  FD->getIdentifier() && FD->getIdentifier()->isStr("move");
2368  }
2369 
2370  static bool classof(const Stmt *T) {
2371  return T->getStmtClass() >= firstCallExprConstant &&
2372  T->getStmtClass() <= lastCallExprConstant;
2373  }
2374 
2375  // Iterators
2377  return child_range(&SubExprs[0],
2378  &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2379  }
2380 
2382  return const_child_range(&SubExprs[0], &SubExprs[0] + NumArgs +
2383  getNumPreArgs() + PREARGS_START);
2384  }
2385 };
2386 
2387 /// Extra data stored in some MemberExpr objects.
2389  /// \brief The nested-name-specifier that qualifies the name, including
2390  /// source-location information.
2392 
2393  /// \brief The DeclAccessPair through which the MemberDecl was found due to
2394  /// name qualifiers.
2396 };
2397 
2398 /// MemberExpr - [C99 6.5.2.3] Structure and Union Members. X->F and X.F.
2399 ///
2400 class MemberExpr final
2401  : public Expr,
2402  private llvm::TrailingObjects<MemberExpr, MemberExprNameQualifier,
2403  ASTTemplateKWAndArgsInfo,
2404  TemplateArgumentLoc> {
2405  /// Base - the expression for the base pointer or structure references. In
2406  /// X.F, this is "X".
2407  Stmt *Base;
2408 
2409  /// MemberDecl - This is the decl being referenced by the field/member name.
2410  /// In X.F, this is the decl referenced by F.
2411  ValueDecl *MemberDecl;
2412 
2413  /// MemberDNLoc - Provides source/type location info for the
2414  /// declaration name embedded in MemberDecl.
2415  DeclarationNameLoc MemberDNLoc;
2416 
2417  /// MemberLoc - This is the location of the member name.
2418  SourceLocation MemberLoc;
2419 
2420  /// This is the location of the -> or . in the expression.
2421  SourceLocation OperatorLoc;
2422 
2423  /// IsArrow - True if this is "X->F", false if this is "X.F".
2424  bool IsArrow : 1;
2425 
2426  /// \brief True if this member expression used a nested-name-specifier to
2427  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2428  /// declaration. When true, a MemberExprNameQualifier
2429  /// structure is allocated immediately after the MemberExpr.
2430  bool HasQualifierOrFoundDecl : 1;
2431 
2432  /// \brief True if this member expression specified a template keyword
2433  /// and/or a template argument list explicitly, e.g., x->f<int>,
2434  /// x->template f, x->template f<int>.
2435  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2436  /// TemplateArguments (if any) are present.
2437  bool HasTemplateKWAndArgsInfo : 1;
2438 
2439  /// \brief True if this member expression refers to a method that
2440  /// was resolved from an overloaded set having size greater than 1.
2441  bool HadMultipleCandidates : 1;
2442 
2443  size_t numTrailingObjects(OverloadToken<MemberExprNameQualifier>) const {
2444  return HasQualifierOrFoundDecl ? 1 : 0;
2445  }
2446 
2447  size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
2448  return HasTemplateKWAndArgsInfo ? 1 : 0;
2449  }
2450 
2451 public:
2452  MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2453  ValueDecl *memberdecl, const DeclarationNameInfo &NameInfo,
2455  : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2456  base->isValueDependent(), base->isInstantiationDependent(),
2457  base->containsUnexpandedParameterPack()),
2458  Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2459  MemberLoc(NameInfo.getLoc()), OperatorLoc(operatorloc),
2460  IsArrow(isarrow), HasQualifierOrFoundDecl(false),
2461  HasTemplateKWAndArgsInfo(false), HadMultipleCandidates(false) {
2462  assert(memberdecl->getDeclName() == NameInfo.getName());
2463  }
2464 
2465  // NOTE: this constructor should be used only when it is known that
2466  // the member name can not provide additional syntactic info
2467  // (i.e., source locations for C++ operator names or type source info
2468  // for constructors, destructors and conversion operators).
2469  MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2470  ValueDecl *memberdecl, SourceLocation l, QualType ty,
2472  : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2473  base->isValueDependent(), base->isInstantiationDependent(),
2474  base->containsUnexpandedParameterPack()),
2475  Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2476  OperatorLoc(operatorloc), IsArrow(isarrow),
2477  HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2478  HadMultipleCandidates(false) {}
2479 
2480  static MemberExpr *Create(const ASTContext &C, Expr *base, bool isarrow,
2481  SourceLocation OperatorLoc,
2482  NestedNameSpecifierLoc QualifierLoc,
2483  SourceLocation TemplateKWLoc, ValueDecl *memberdecl,
2484  DeclAccessPair founddecl,
2485  DeclarationNameInfo MemberNameInfo,
2486  const TemplateArgumentListInfo *targs, QualType ty,
2487  ExprValueKind VK, ExprObjectKind OK);
2488 
2489  void setBase(Expr *E) { Base = E; }
2490  Expr *getBase() const { return cast<Expr>(Base); }
2491 
2492  /// \brief Retrieve the member declaration to which this expression refers.
2493  ///
2494  /// The returned declaration will be a FieldDecl or (in C++) a VarDecl (for
2495  /// static data members), a CXXMethodDecl, or an EnumConstantDecl.
2496  ValueDecl *getMemberDecl() const { return MemberDecl; }
2497  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2498 
2499  /// \brief Retrieves the declaration found by lookup.
2501  if (!HasQualifierOrFoundDecl)
2502  return DeclAccessPair::make(getMemberDecl(),
2503  getMemberDecl()->getAccess());
2504  return getTrailingObjects<MemberExprNameQualifier>()->FoundDecl;
2505  }
2506 
2507  /// \brief Determines whether this member expression actually had
2508  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2509  /// x->Base::foo.
2510  bool hasQualifier() const { return getQualifier() != nullptr; }
2511 
2512  /// \brief If the member name was qualified, retrieves the
2513  /// nested-name-specifier that precedes the member name, with source-location
2514  /// information.
2516  if (!HasQualifierOrFoundDecl)
2517  return NestedNameSpecifierLoc();
2518 
2519  return getTrailingObjects<MemberExprNameQualifier>()->QualifierLoc;
2520  }
2521 
2522  /// \brief If the member name was qualified, retrieves the
2523  /// nested-name-specifier that precedes the member name. Otherwise, returns
2524  /// NULL.
2526  return getQualifierLoc().getNestedNameSpecifier();
2527  }
2528 
2529  /// \brief Retrieve the location of the template keyword preceding
2530  /// the member name, if any.
2532  if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2533  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
2534  }
2535 
2536  /// \brief Retrieve the location of the left angle bracket starting the
2537  /// explicit template argument list following the member name, if any.
2539  if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2540  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
2541  }
2542 
2543  /// \brief Retrieve the location of the right angle bracket ending the
2544  /// explicit template argument list following the member name, if any.
2546  if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2547  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
2548  }
2549 
2550  /// Determines whether the member name was preceded by the template keyword.
2551  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2552 
2553  /// \brief Determines whether the member name was followed by an
2554  /// explicit template argument list.
2555  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2556 
2557  /// \brief Copies the template arguments (if present) into the given
2558  /// structure.
2560  if (hasExplicitTemplateArgs())
2561  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
2562  getTrailingObjects<TemplateArgumentLoc>(), List);
2563  }
2564 
2565  /// \brief Retrieve the template arguments provided as part of this
2566  /// template-id.
2568  if (!hasExplicitTemplateArgs())
2569  return nullptr;
2570 
2571  return getTrailingObjects<TemplateArgumentLoc>();
2572  }
2573 
2574  /// \brief Retrieve the number of template arguments provided as part of this
2575  /// template-id.
2576  unsigned getNumTemplateArgs() const {
2577  if (!hasExplicitTemplateArgs())
2578  return 0;
2579 
2580  return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
2581  }
2582 
2584  return {getTemplateArgs(), getNumTemplateArgs()};
2585  }
2586 
2587  /// \brief Retrieve the member declaration name info.
2589  return DeclarationNameInfo(MemberDecl->getDeclName(),
2590  MemberLoc, MemberDNLoc);
2591  }
2592 
2593  SourceLocation getOperatorLoc() const LLVM_READONLY { return OperatorLoc; }
2594 
2595  bool isArrow() const { return IsArrow; }
2596  void setArrow(bool A) { IsArrow = A; }
2597 
2598  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2599  /// location of 'F'.
2600  SourceLocation getMemberLoc() const { return MemberLoc; }
2601  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2602 
2603  SourceLocation getLocStart() const LLVM_READONLY;
2604  SourceLocation getLocEnd() const LLVM_READONLY;
2605 
2606  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2607 
2608  /// \brief Determine whether the base of this explicit is implicit.
2609  bool isImplicitAccess() const {
2610  return getBase() && getBase()->isImplicitCXXThis();
2611  }
2612 
2613  /// \brief Returns true if this member expression refers to a method that
2614  /// was resolved from an overloaded set having size greater than 1.
2615  bool hadMultipleCandidates() const {
2616  return HadMultipleCandidates;
2617  }
2618  /// \brief Sets the flag telling whether this expression refers to
2619  /// a method that was resolved from an overloaded set having size
2620  /// greater than 1.
2621  void setHadMultipleCandidates(bool V = true) {
2622  HadMultipleCandidates = V;
2623  }
2624 
2625  /// \brief Returns true if virtual dispatch is performed.
2626  /// If the member access is fully qualified, (i.e. X::f()), virtual
2627  /// dispatching is not performed. In -fapple-kext mode qualified
2628  /// calls to virtual method will still go through the vtable.
2629  bool performsVirtualDispatch(const LangOptions &LO) const {
2630  return LO.AppleKext || !hasQualifier();
2631  }
2632 
2633  static bool classof(const Stmt *T) {
2634  return T->getStmtClass() == MemberExprClass;
2635  }
2636 
2637  // Iterators
2638  child_range children() { return child_range(&Base, &Base+1); }
2640  return const_child_range(&Base, &Base + 1);
2641  }
2642 
2644  friend class ASTReader;
2645  friend class ASTStmtWriter;
2646 };
2647 
2648 /// CompoundLiteralExpr - [C99 6.5.2.5]
2649 ///
2650 class CompoundLiteralExpr : public Expr {
2651  /// LParenLoc - If non-null, this is the location of the left paren in a
2652  /// compound literal like "(int){4}". This can be null if this is a
2653  /// synthesized compound expression.
2654  SourceLocation LParenLoc;
2655 
2656  /// The type as written. This can be an incomplete array type, in
2657  /// which case the actual expression type will be different.
2658  /// The int part of the pair stores whether this expr is file scope.
2659  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2660  Stmt *Init;
2661 public:
2663  QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2664  : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2665  tinfo->getType()->isDependentType(),
2666  init->isValueDependent(),
2667  (init->isInstantiationDependent() ||
2668  tinfo->getType()->isInstantiationDependentType()),
2669  init->containsUnexpandedParameterPack()),
2670  LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2671 
2672  /// \brief Construct an empty compound literal.
2674  : Expr(CompoundLiteralExprClass, Empty) { }
2675 
2676  const Expr *getInitializer() const { return cast<Expr>(Init); }
2677  Expr *getInitializer() { return cast<Expr>(Init); }
2678  void setInitializer(Expr *E) { Init = E; }
2679 
2680  bool isFileScope() const { return TInfoAndScope.getInt(); }
2681  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2682 
2683  SourceLocation getLParenLoc() const { return LParenLoc; }
2684  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2685 
2687  return TInfoAndScope.getPointer();
2688  }
2690  TInfoAndScope.setPointer(tinfo);
2691  }
2692 
2693  SourceLocation getLocStart() const LLVM_READONLY {
2694  // FIXME: Init should never be null.
2695  if (!Init)
2696  return SourceLocation();
2697  if (LParenLoc.isInvalid())
2698  return Init->getLocStart();
2699  return LParenLoc;
2700  }
2701  SourceLocation getLocEnd() const LLVM_READONLY {
2702  // FIXME: Init should never be null.
2703  if (!Init)
2704  return SourceLocation();
2705  return Init->getLocEnd();
2706  }
2707 
2708  static bool classof(const Stmt *T) {
2709  return T->getStmtClass() == CompoundLiteralExprClass;
2710  }
2711 
2712  // Iterators
2713  child_range children() { return child_range(&Init, &Init+1); }
2715  return const_child_range(&Init, &Init + 1);
2716  }
2717 };
2718 
2719 /// CastExpr - Base class for type casts, including both implicit
2720 /// casts (ImplicitCastExpr) and explicit casts that have some
2721 /// representation in the source code (ExplicitCastExpr's derived
2722 /// classes).
2723 class CastExpr : public Expr {
2724 private:
2725  Stmt *Op;
2726 
2727  bool CastConsistency() const;
2728 
2729  const CXXBaseSpecifier * const *path_buffer() const {
2730  return const_cast<CastExpr*>(this)->path_buffer();
2731  }
2732  CXXBaseSpecifier **path_buffer();
2733 
2734  void setBasePathSize(unsigned basePathSize) {
2735  CastExprBits.BasePathSize = basePathSize;
2736  assert(CastExprBits.BasePathSize == basePathSize &&
2737  "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2738  }
2739 
2740 protected:
2742  Expr *op, unsigned BasePathSize)
2743  : Expr(SC, ty, VK, OK_Ordinary,
2744  // Cast expressions are type-dependent if the type is
2745  // dependent (C++ [temp.dep.expr]p3).
2746  ty->isDependentType(),
2747  // Cast expressions are value-dependent if the type is
2748  // dependent or if the subexpression is value-dependent.
2749  ty->isDependentType() || (op && op->isValueDependent()),
2750  (ty->isInstantiationDependentType() ||
2751  (op && op->isInstantiationDependent())),
2752  // An implicit cast expression doesn't (lexically) contain an
2753  // unexpanded pack, even if its target type does.
2754  ((SC != ImplicitCastExprClass &&
2755  ty->containsUnexpandedParameterPack()) ||
2756  (op && op->containsUnexpandedParameterPack()))),
2757  Op(op) {
2758  CastExprBits.Kind = kind;
2759  setBasePathSize(BasePathSize);
2760  assert(CastConsistency());
2761  }
2762 
2763  /// \brief Construct an empty cast.
2764  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2765  : Expr(SC, Empty) {
2766  setBasePathSize(BasePathSize);
2767  }
2768 
2769 public:
2770  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2771  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2772  const char *getCastKindName() const;
2773 
2774  Expr *getSubExpr() { return cast<Expr>(Op); }
2775  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2776  void setSubExpr(Expr *E) { Op = E; }
2777 
2778  /// \brief Retrieve the cast subexpression as it was written in the source
2779  /// code, looking through any implicit casts or other intermediate nodes
2780  /// introduced by semantic analysis.
2781  Expr *getSubExprAsWritten();
2782  const Expr *getSubExprAsWritten() const {
2783  return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2784  }
2785 
2787  typedef const CXXBaseSpecifier * const *path_const_iterator;
2788  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2789  unsigned path_size() const { return CastExprBits.BasePathSize; }
2790  path_iterator path_begin() { return path_buffer(); }
2791  path_iterator path_end() { return path_buffer() + path_size(); }
2792  path_const_iterator path_begin() const { return path_buffer(); }
2793  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2794 
2796  assert(getCastKind() == CK_ToUnion);
2797  return getTargetFieldForToUnionCast(getType(), getSubExpr()->getType());
2798  }
2799 
2800  static const FieldDecl *getTargetFieldForToUnionCast(QualType unionType,
2801  QualType opType);
2802  static const FieldDecl *getTargetFieldForToUnionCast(const RecordDecl *RD,
2803  QualType opType);
2804 
2805  static bool classof(const Stmt *T) {
2806  return T->getStmtClass() >= firstCastExprConstant &&
2807  T->getStmtClass() <= lastCastExprConstant;
2808  }
2809 
2810  // Iterators
2811  child_range children() { return child_range(&Op, &Op+1); }
2812  const_child_range children() const { return const_child_range(&Op, &Op + 1); }
2813 };
2814 
2815 /// ImplicitCastExpr - Allows us to explicitly represent implicit type
2816 /// conversions, which have no direct representation in the original
2817 /// source code. For example: converting T[]->T*, void f()->void
2818 /// (*f)(), float->double, short->int, etc.
2819 ///
2820 /// In C, implicit casts always produce rvalues. However, in C++, an
2821 /// implicit cast whose result is being bound to a reference will be
2822 /// an lvalue or xvalue. For example:
2823 ///
2824 /// @code
2825 /// class Base { };
2826 /// class Derived : public Base { };
2827 /// Derived &&ref();
2828 /// void f(Derived d) {
2829 /// Base& b = d; // initializer is an ImplicitCastExpr
2830 /// // to an lvalue of type Base
2831 /// Base&& r = ref(); // initializer is an ImplicitCastExpr
2832 /// // to an xvalue of type Base
2833 /// }
2834 /// @endcode
2835 class ImplicitCastExpr final
2836  : public CastExpr,
2837  private llvm::TrailingObjects<ImplicitCastExpr, CXXBaseSpecifier *> {
2838 private:
2840  unsigned BasePathLength, ExprValueKind VK)
2841  : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2842  }
2843 
2844  /// \brief Construct an empty implicit cast.
2845  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2846  : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2847 
2848 public:
2849  enum OnStack_t { OnStack };
2851  ExprValueKind VK)
2852  : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2853  }
2854 
2855  static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
2856  CastKind Kind, Expr *Operand,
2857  const CXXCastPath *BasePath,
2858  ExprValueKind Cat);
2859 
2860  static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
2861  unsigned PathSize);
2862 
2863  SourceLocation getLocStart() const LLVM_READONLY {
2864  return getSubExpr()->getLocStart();
2865  }
2866  SourceLocation getLocEnd() const LLVM_READONLY {
2867  return getSubExpr()->getLocEnd();
2868  }
2869 
2870  static bool classof(const Stmt *T) {
2871  return T->getStmtClass() == ImplicitCastExprClass;
2872  }
2873 
2875  friend class CastExpr;
2876 };
2877 
2879  Expr *e = this;
2880  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2881  e = ice->getSubExpr();
2882  return e;
2883 }
2884 
2885 /// ExplicitCastExpr - An explicit cast written in the source
2886 /// code.
2887 ///
2888 /// This class is effectively an abstract class, because it provides
2889 /// the basic representation of an explicitly-written cast without
2890 /// specifying which kind of cast (C cast, functional cast, static
2891 /// cast, etc.) was written; specific derived classes represent the
2892 /// particular style of cast and its location information.
2893 ///
2894 /// Unlike implicit casts, explicit cast nodes have two different
2895 /// types: the type that was written into the source code, and the
2896 /// actual type of the expression as determined by semantic
2897 /// analysis. These types may differ slightly. For example, in C++ one
2898 /// can cast to a reference type, which indicates that the resulting
2899 /// expression will be an lvalue or xvalue. The reference type, however,
2900 /// will not be used as the type of the expression.
2901 class ExplicitCastExpr : public CastExpr {
2902  /// TInfo - Source type info for the (written) type
2903  /// this expression is casting to.
2904  TypeSourceInfo *TInfo;
2905 
2906 protected:
2908  CastKind kind, Expr *op, unsigned PathSize,
2909  TypeSourceInfo *writtenTy)
2910  : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2911 
2912  /// \brief Construct an empty explicit cast.
2913  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2914  : CastExpr(SC, Shell, PathSize) { }
2915 
2916 public:
2917  /// getTypeInfoAsWritten - Returns the type source info for the type
2918  /// that this expression is casting to.
2919  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2920  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2921 
2922  /// getTypeAsWritten - Returns the type that this expression is
2923  /// casting to, as written in the source code.
2924  QualType getTypeAsWritten() const { return TInfo->getType(); }
2925 
2926  static bool classof(const Stmt *T) {
2927  return T->getStmtClass() >= firstExplicitCastExprConstant &&
2928  T->getStmtClass() <= lastExplicitCastExprConstant;
2929  }
2930 };
2931 
2932 /// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2933 /// cast in C++ (C++ [expr.cast]), which uses the syntax
2934 /// (Type)expr. For example: @c (int)f.
2935 class CStyleCastExpr final
2936  : public ExplicitCastExpr,
2937  private llvm::TrailingObjects<CStyleCastExpr, CXXBaseSpecifier *> {
2938  SourceLocation LPLoc; // the location of the left paren
2939  SourceLocation RPLoc; // the location of the right paren
2940 
2942  unsigned PathSize, TypeSourceInfo *writtenTy,
2944  : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2945  writtenTy), LPLoc(l), RPLoc(r) {}
2946 
2947  /// \brief Construct an empty C-style explicit cast.
2948  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2949  : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2950 
2951 public:
2952  static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
2953  ExprValueKind VK, CastKind K,
2954  Expr *Op, const CXXCastPath *BasePath,
2955  TypeSourceInfo *WrittenTy, SourceLocation L,
2956  SourceLocation R);
2957 
2958  static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
2959  unsigned PathSize);
2960 
2961  SourceLocation getLParenLoc() const { return LPLoc; }
2962  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2963 
2964  SourceLocation getRParenLoc() const { return RPLoc; }
2965  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2966 
2967  SourceLocation getLocStart() const LLVM_READONLY { return LPLoc; }
2968  SourceLocation getLocEnd() const LLVM_READONLY {
2969  return getSubExpr()->getLocEnd();
2970  }
2971 
2972  static bool classof(const Stmt *T) {
2973  return T->getStmtClass() == CStyleCastExprClass;
2974  }
2975 
2977  friend class CastExpr;
2978 };
2979 
2980 /// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2981 ///
2982 /// This expression node kind describes a builtin binary operation,
2983 /// such as "x + y" for integer values "x" and "y". The operands will
2984 /// already have been converted to appropriate types (e.g., by
2985 /// performing promotions or conversions).
2986 ///
2987 /// In C++, where operators may be overloaded, a different kind of
2988 /// expression node (CXXOperatorCallExpr) is used to express the
2989 /// invocation of an overloaded operator with operator syntax. Within
2990 /// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2991 /// used to store an expression "x + y" depends on the subexpressions
2992 /// for x and y. If neither x or y is type-dependent, and the "+"
2993 /// operator resolves to a built-in operation, BinaryOperator will be
2994 /// used to express the computation (x and y may still be
2995 /// value-dependent). If either x or y is type-dependent, or if the
2996 /// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2997 /// be used to express the computation.
2998 class BinaryOperator : public Expr {
2999 public:
3001 
3002 private:
3003  unsigned Opc : 6;
3004 
3005  // This is only meaningful for operations on floating point types and 0
3006  // otherwise.
3007  unsigned FPFeatures : 2;
3008  SourceLocation OpLoc;
3009 
3010  enum { LHS, RHS, END_EXPR };
3011  Stmt* SubExprs[END_EXPR];
3012 public:
3013 
3014  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3016  SourceLocation opLoc, FPOptions FPFeatures)
3017  : Expr(BinaryOperatorClass, ResTy, VK, OK,
3018  lhs->isTypeDependent() || rhs->isTypeDependent(),
3019  lhs->isValueDependent() || rhs->isValueDependent(),
3020  (lhs->isInstantiationDependent() ||
3021  rhs->isInstantiationDependent()),
3022  (lhs->containsUnexpandedParameterPack() ||
3023  rhs->containsUnexpandedParameterPack())),
3024  Opc(opc), FPFeatures(FPFeatures.getInt()), OpLoc(opLoc) {
3025  SubExprs[LHS] = lhs;
3026  SubExprs[RHS] = rhs;
3027  assert(!isCompoundAssignmentOp() &&
3028  "Use CompoundAssignOperator for compound assignments");
3029  }
3030 
3031  /// \brief Construct an empty binary operator.
3032  explicit BinaryOperator(EmptyShell Empty)
3033  : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
3034 
3035  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
3036  SourceLocation getOperatorLoc() const { return OpLoc; }
3037  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
3038 
3039  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
3040  void setOpcode(Opcode O) { Opc = O; }
3041 
3042  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3043  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3044  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3045  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3046 
3047  SourceLocation getLocStart() const LLVM_READONLY {
3048  return getLHS()->getLocStart();
3049  }
3050  SourceLocation getLocEnd() const LLVM_READONLY {
3051  return getRHS()->getLocEnd();
3052  }
3053 
3054  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
3055  /// corresponds to, e.g. "<<=".
3056  static StringRef getOpcodeStr(Opcode Op);
3057 
3058  StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
3059 
3060  /// \brief Retrieve the binary opcode that corresponds to the given
3061  /// overloaded operator.
3062  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
3063 
3064  /// \brief Retrieve the overloaded operator kind that corresponds to
3065  /// the given binary opcode.
3066  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
3067 
3068  /// predicates to categorize the respective opcodes.
3069  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
3070  static bool isMultiplicativeOp(Opcode Opc) {
3071  return Opc >= BO_Mul && Opc <= BO_Rem;
3072  }
3074  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
3075  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
3076  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
3077  bool isShiftOp() const { return isShiftOp(getOpcode()); }
3078 
3079  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
3080  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
3081 
3082  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
3083  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
3084 
3085  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
3086  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
3087 
3088  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_Cmp && Opc<=BO_NE; }
3089  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
3090 
3091  static Opcode negateComparisonOp(Opcode Opc) {
3092  switch (Opc) {
3093  default:
3094  llvm_unreachable("Not a comparsion operator.");
3095  case BO_LT: return BO_GE;
3096  case BO_GT: return BO_LE;
3097  case BO_LE: return BO_GT;
3098  case BO_GE: return BO_LT;
3099  case BO_EQ: return BO_NE;
3100  case BO_NE: return BO_EQ;
3101  }
3102  }
3103 
3104  static Opcode reverseComparisonOp(Opcode Opc) {
3105  switch (Opc) {
3106  default:
3107  llvm_unreachable("Not a comparsion operator.");
3108  case BO_LT: return BO_GT;
3109  case BO_GT: return BO_LT;
3110  case BO_LE: return BO_GE;
3111  case BO_GE: return BO_LE;
3112  case BO_EQ:
3113  case BO_NE:
3114  return Opc;
3115  }
3116  }
3117 
3118  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
3119  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
3120 
3121  static bool isAssignmentOp(Opcode Opc) {
3122  return Opc >= BO_Assign && Opc <= BO_OrAssign;
3123  }
3124  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
3125 
3126  static bool isCompoundAssignmentOp(Opcode Opc) {
3127  return Opc > BO_Assign && Opc <= BO_OrAssign;
3128  }
3129  bool isCompoundAssignmentOp() const {
3130  return isCompoundAssignmentOp(getOpcode());
3131  }
3132  static Opcode getOpForCompoundAssignment(Opcode Opc) {
3133  assert(isCompoundAssignmentOp(Opc));
3134  if (Opc >= BO_AndAssign)
3135  return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
3136  else
3137  return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
3138  }
3139 
3140  static bool isShiftAssignOp(Opcode Opc) {
3141  return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
3142  }
3143  bool isShiftAssignOp() const {
3144  return isShiftAssignOp(getOpcode());
3145  }
3146 
3147  // Return true if a binary operator using the specified opcode and operands
3148  // would match the 'p = (i8*)nullptr + n' idiom for casting a pointer-sized
3149  // integer to a pointer.
3150  static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc,
3151  Expr *LHS, Expr *RHS);
3152 
3153  static bool classof(const Stmt *S) {
3154  return S->getStmtClass() >= firstBinaryOperatorConstant &&
3155  S->getStmtClass() <= lastBinaryOperatorConstant;
3156  }
3157 
3158  // Iterators
3160  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3161  }
3163  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
3164  }
3165 
3166  // Set the FP contractability status of this operator. Only meaningful for
3167  // operations on floating point types.
3168  void setFPFeatures(FPOptions F) { FPFeatures = F.getInt(); }
3169 
3170  FPOptions getFPFeatures() const { return FPOptions(FPFeatures); }
3171 
3172  // Get the FP contractability status of this operator. Only meaningful for
3173  // operations on floating point types.
3175  return FPOptions(FPFeatures).allowFPContractWithinStatement();
3176  }
3177 
3178 protected:
3179  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3181  SourceLocation opLoc, FPOptions FPFeatures, bool dead2)
3182  : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
3183  lhs->isTypeDependent() || rhs->isTypeDependent(),
3184  lhs->isValueDependent() || rhs->isValueDependent(),
3185  (lhs->isInstantiationDependent() ||
3186  rhs->isInstantiationDependent()),
3187  (lhs->containsUnexpandedParameterPack() ||
3188  rhs->containsUnexpandedParameterPack())),
3189  Opc(opc), FPFeatures(FPFeatures.getInt()), OpLoc(opLoc) {
3190  SubExprs[LHS] = lhs;
3191  SubExprs[RHS] = rhs;
3192  }
3193 
3195  : Expr(SC, Empty), Opc(BO_MulAssign) { }
3196 };
3197 
3198 /// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
3199 /// track of the type the operation is performed in. Due to the semantics of
3200 /// these operators, the operands are promoted, the arithmetic performed, an
3201 /// implicit conversion back to the result type done, then the assignment takes
3202 /// place. This captures the intermediate type which the computation is done
3203 /// in.
3205  QualType ComputationLHSType;
3206  QualType ComputationResultType;
3207 public:
3208  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
3210  QualType CompLHSType, QualType CompResultType,
3211  SourceLocation OpLoc, FPOptions FPFeatures)
3212  : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, FPFeatures,
3213  true),
3214  ComputationLHSType(CompLHSType),
3215  ComputationResultType(CompResultType) {
3216  assert(isCompoundAssignmentOp() &&
3217  "Only should be used for compound assignments");
3218  }
3219 
3220  /// \brief Build an empty compound assignment operator expression.
3222  : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
3223 
3224  // The two computation types are the type the LHS is converted
3225  // to for the computation and the type of the result; the two are
3226  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
3227  QualType getComputationLHSType() const { return ComputationLHSType; }
3228  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
3229 
3230  QualType getComputationResultType() const { return ComputationResultType; }
3231  void setComputationResultType(QualType T) { ComputationResultType = T; }
3232 
3233  static bool classof(const Stmt *S) {
3234  return S->getStmtClass() == CompoundAssignOperatorClass;
3235  }
3236 };
3237 
3238 /// AbstractConditionalOperator - An abstract base class for
3239 /// ConditionalOperator and BinaryConditionalOperator.
3241  SourceLocation QuestionLoc, ColonLoc;
3242  friend class ASTStmtReader;
3243 
3244 protected:
3247  bool TD, bool VD, bool ID,
3248  bool ContainsUnexpandedParameterPack,
3249  SourceLocation qloc,
3250  SourceLocation cloc)
3251  : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
3252  QuestionLoc(qloc), ColonLoc(cloc) {}
3253 
3255  : Expr(SC, Empty) { }
3256 
3257 public:
3258  // getCond - Return the expression representing the condition for
3259  // the ?: operator.
3260  Expr *getCond() const;
3261 
3262  // getTrueExpr - Return the subexpression representing the value of
3263  // the expression if the condition evaluates to true.
3264  Expr *getTrueExpr() const;
3265 
3266  // getFalseExpr - Return the subexpression representing the value of
3267  // the expression if the condition evaluates to false. This is
3268  // the same as getRHS.
3269  Expr *getFalseExpr() const;
3270 
3271  SourceLocation getQuestionLoc() const { return QuestionLoc; }
3273 
3274  static bool classof(const Stmt *T) {
3275  return T->getStmtClass() == ConditionalOperatorClass ||
3276  T->getStmtClass() == BinaryConditionalOperatorClass;
3277  }
3278 };
3279 
3280 /// ConditionalOperator - The ?: ternary operator. The GNU "missing
3281 /// middle" extension is a BinaryConditionalOperator.
3283  enum { COND, LHS, RHS, END_EXPR };
3284  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3285 
3286  friend class ASTStmtReader;
3287 public:
3289  SourceLocation CLoc, Expr *rhs,
3291  : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3292  // FIXME: the type of the conditional operator doesn't
3293  // depend on the type of the conditional, but the standard
3294  // seems to imply that it could. File a bug!
3295  (lhs->isTypeDependent() || rhs->isTypeDependent()),
3296  (cond->isValueDependent() || lhs->isValueDependent() ||
3297  rhs->isValueDependent()),
3298  (cond->isInstantiationDependent() ||
3299  lhs->isInstantiationDependent() ||
3300  rhs->isInstantiationDependent()),
3301  (cond->containsUnexpandedParameterPack() ||
3302  lhs->containsUnexpandedParameterPack() ||
3303  rhs->containsUnexpandedParameterPack()),
3304  QLoc, CLoc) {
3305  SubExprs[COND] = cond;
3306  SubExprs[LHS] = lhs;
3307  SubExprs[RHS] = rhs;
3308  }
3309 
3310  /// \brief Build an empty conditional operator.
3312  : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3313 
3314  // getCond - Return the expression representing the condition for
3315  // the ?: operator.
3316  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3317 
3318  // getTrueExpr - Return the subexpression representing the value of
3319  // the expression if the condition evaluates to true.
3320  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3321 
3322  // getFalseExpr - Return the subexpression representing the value of
3323  // the expression if the condition evaluates to false. This is
3324  // the same as getRHS.
3325  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3326 
3327  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3328  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3329 
3330  SourceLocation getLocStart() const LLVM_READONLY {
3331  return getCond()->getLocStart();
3332  }
3333  SourceLocation getLocEnd() const LLVM_READONLY {
3334  return getRHS()->getLocEnd();
3335  }
3336 
3337  static bool classof(const Stmt *T) {
3338  return T->getStmtClass() == ConditionalOperatorClass;
3339  }
3340 
3341  // Iterators
3343  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3344  }
3346  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
3347  }
3348 };
3349 
3350 /// BinaryConditionalOperator - The GNU extension to the conditional
3351 /// operator which allows the middle operand to be omitted.
3352 ///
3353 /// This is a different expression kind on the assumption that almost
3354 /// every client ends up needing to know that these are different.
3356  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3357 
3358  /// - the common condition/left-hand-side expression, which will be
3359  /// evaluated as the opaque value
3360  /// - the condition, expressed in terms of the opaque value
3361  /// - the left-hand-side, expressed in terms of the opaque value
3362  /// - the right-hand-side
3363  Stmt *SubExprs[NUM_SUBEXPRS];
3364  OpaqueValueExpr *OpaqueValue;
3365 
3366  friend class ASTStmtReader;
3367 public:
3369  Expr *cond, Expr *lhs, Expr *rhs,
3370  SourceLocation qloc, SourceLocation cloc,
3372  : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3373  (common->isTypeDependent() || rhs->isTypeDependent()),
3374  (common->isValueDependent() || rhs->isValueDependent()),
3375  (common->isInstantiationDependent() ||
3376  rhs->isInstantiationDependent()),
3377  (common->containsUnexpandedParameterPack() ||
3378  rhs->containsUnexpandedParameterPack()),
3379  qloc, cloc),
3380  OpaqueValue(opaqueValue) {
3381  SubExprs[COMMON] = common;
3382  SubExprs[COND] = cond;
3383  SubExprs[LHS] = lhs;
3384  SubExprs[RHS] = rhs;
3385  assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3386  }
3387 
3388  /// \brief Build an empty conditional operator.
3390  : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3391 
3392  /// \brief getCommon - Return the common expression, written to the
3393  /// left of the condition. The opaque value will be bound to the
3394  /// result of this expression.
3395  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3396 
3397  /// \brief getOpaqueValue - Return the opaque value placeholder.
3398  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3399 
3400  /// \brief getCond - Return the condition expression; this is defined
3401  /// in terms of the opaque value.
3402  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3403 
3404  /// \brief getTrueExpr - Return the subexpression which will be
3405  /// evaluated if the condition evaluates to true; this is defined
3406  /// in terms of the opaque value.
3407  Expr *getTrueExpr() const {
3408  return cast<Expr>(SubExprs[LHS]);
3409  }
3410 
3411  /// \brief getFalseExpr - Return the subexpression which will be
3412  /// evaluated if the condnition evaluates to false; this is
3413  /// defined in terms of the opaque value.
3414  Expr *getFalseExpr() const {
3415  return cast<Expr>(SubExprs[RHS]);
3416  }
3417 
3418  SourceLocation getLocStart() const LLVM_READONLY {
3419  return getCommon()->getLocStart();
3420  }
3421  SourceLocation getLocEnd() const LLVM_READONLY {
3422  return getFalseExpr()->getLocEnd();
3423  }
3424 
3425  static bool classof(const Stmt *T) {
3426  return T->getStmtClass() == BinaryConditionalOperatorClass;
3427  }
3428 
3429  // Iterators
3431  return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3432  }
3434  return const_child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3435  }
3436 };
3437 
3439  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3440  return co->getCond();
3441  return cast<BinaryConditionalOperator>(this)->getCond();
3442 }
3443 
3445  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3446  return co->getTrueExpr();
3447  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3448 }
3449 
3451  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3452  return co->getFalseExpr();
3453  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3454 }
3455 
3456 /// AddrLabelExpr - The GNU address of label extension, representing &&label.
3457 class AddrLabelExpr : public Expr {
3458  SourceLocation AmpAmpLoc, LabelLoc;
3459  LabelDecl *Label;
3460 public:
3462  QualType t)
3463  : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3464  false),
3465  AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3466 
3467  /// \brief Build an empty address of a label expression.
3468  explicit AddrLabelExpr(EmptyShell Empty)
3469  : Expr(AddrLabelExprClass, Empty) { }
3470 
3471  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3472  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3473  SourceLocation getLabelLoc() const { return LabelLoc; }
3474  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3475 
3476  SourceLocation getLocStart() const LLVM_READONLY { return AmpAmpLoc; }
3477  SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
3478 
3479  LabelDecl *getLabel() const { return Label; }
3480  void setLabel(LabelDecl *L) { Label = L; }
3481 
3482  static bool classof(const Stmt *T) {
3483  return T->getStmtClass() == AddrLabelExprClass;
3484  }
3485 
3486  // Iterators
3489  }
3492  }
3493 };
3494 
3495 /// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3496 /// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3497 /// takes the value of the last subexpression.
3498 ///
3499 /// A StmtExpr is always an r-value; values "returned" out of a
3500 /// StmtExpr will be copied.
3501 class StmtExpr : public Expr {
3502  Stmt *SubStmt;
3503  SourceLocation LParenLoc, RParenLoc;
3504 public:
3505  // FIXME: Does type-dependence need to be computed differently?
3506  // FIXME: Do we need to compute instantiation instantiation-dependence for
3507  // statements? (ugh!)
3509  SourceLocation lp, SourceLocation rp) :
3510  Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3511  T->isDependentType(), false, false, false),
3512  SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3513 
3514  /// \brief Build an empty statement expression.
3515  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3516 
3517  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3518  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3519  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3520 
3521  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
3522  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3523 
3524  SourceLocation getLParenLoc() const { return LParenLoc; }
3525  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3526  SourceLocation getRParenLoc() const { return RParenLoc; }
3527  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3528 
3529  static bool classof(const Stmt *T) {
3530  return T->getStmtClass() == StmtExprClass;
3531  }
3532 
3533  // Iterators
3534  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3536  return const_child_range(&SubStmt, &SubStmt + 1);
3537  }
3538 };
3539 
3540 /// ShuffleVectorExpr - clang-specific builtin-in function
3541 /// __builtin_shufflevector.
3542 /// This AST node represents a operator that does a constant
3543 /// shuffle, similar to LLVM's shufflevector instruction. It takes
3544 /// two vectors and a variable number of constant indices,
3545 /// and returns the appropriately shuffled vector.
3546 class ShuffleVectorExpr : public Expr {
3547  SourceLocation BuiltinLoc, RParenLoc;
3548 
3549  // SubExprs - the list of values passed to the __builtin_shufflevector
3550  // function. The first two are vectors, and the rest are constant
3551  // indices. The number of values in this list is always
3552  // 2+the number of indices in the vector type.
3553  Stmt **SubExprs;
3554  unsigned NumExprs;
3555 
3556 public:
3558  SourceLocation BLoc, SourceLocation RP);
3559 
3560  /// \brief Build an empty vector-shuffle expression.
3562  : Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }
3563 
3564  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3565  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3566 
3567  SourceLocation getRParenLoc() const { return RParenLoc; }
3568  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3569 
3570  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3571  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3572 
3573  static bool classof(const Stmt *T) {
3574  return T->getStmtClass() == ShuffleVectorExprClass;
3575  }
3576 
3577  /// getNumSubExprs - Return the size of the SubExprs array. This includes the
3578  /// constant expression, the actual arguments passed in, and the function
3579  /// pointers.
3580  unsigned getNumSubExprs() const { return NumExprs; }
3581 
3582  /// \brief Retrieve the array of expressions.
3583  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3584 
3585  /// getExpr - Return the Expr at the specified index.
3586  Expr *getExpr(unsigned Index) {
3587  assert((Index < NumExprs) && "Arg access out of range!");
3588  return cast<Expr>(SubExprs[Index]);
3589  }
3590  const Expr *getExpr(unsigned Index) const {
3591  assert((Index < NumExprs) && "Arg access out of range!");
3592  return cast<Expr>(SubExprs[Index]);
3593  }
3594 
3595  void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
3596 
3597  llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
3598  assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3599  return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
3600  }
3601 
3602  // Iterators
3604  return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3605  }
3607  return const_child_range(&SubExprs[0], &SubExprs[0] + NumExprs);
3608  }
3609 };
3610 
3611 /// ConvertVectorExpr - Clang builtin function __builtin_convertvector
3612 /// This AST node provides support for converting a vector type to another
3613 /// vector type of the same arity.
3614 class ConvertVectorExpr : public Expr {
3615 private:
3616  Stmt *SrcExpr;
3617  TypeSourceInfo *TInfo;
3618  SourceLocation BuiltinLoc, RParenLoc;
3619 
3620  friend class ASTReader;
3621  friend class ASTStmtReader;
3622  explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
3623 
3624 public:
3627  SourceLocation BuiltinLoc, SourceLocation RParenLoc)
3628  : Expr(ConvertVectorExprClass, DstType, VK, OK,
3629  DstType->isDependentType(),
3630  DstType->isDependentType() || SrcExpr->isValueDependent(),
3631  (DstType->isInstantiationDependentType() ||
3632  SrcExpr->isInstantiationDependent()),
3633  (DstType->containsUnexpandedParameterPack() ||
3634  SrcExpr->containsUnexpandedParameterPack())),
3635  SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
3636 
3637  /// getSrcExpr - Return the Expr to be converted.
3638  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
3639 
3640  /// getTypeSourceInfo - Return the destination type.
3642  return TInfo;
3643  }
3645  TInfo = ti;
3646  }
3647 
3648  /// getBuiltinLoc - Return the location of the __builtin_convertvector token.
3649  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3650 
3651  /// getRParenLoc - Return the location of final right parenthesis.
3652  SourceLocation getRParenLoc() const { return RParenLoc; }
3653 
3654  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3655  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3656 
3657  static bool classof(const Stmt *T) {
3658  return T->getStmtClass() == ConvertVectorExprClass;
3659  }
3660 
3661  // Iterators
3662  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
3664  return const_child_range(&SrcExpr, &SrcExpr + 1);
3665  }
3666 };
3667 
3668 /// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3669 /// This AST node is similar to the conditional operator (?:) in C, with
3670 /// the following exceptions:
3671 /// - the test expression must be a integer constant expression.
3672 /// - the expression returned acts like the chosen subexpression in every
3673 /// visible way: the type is the same as that of the chosen subexpression,
3674 /// and all predicates (whether it's an l-value, whether it's an integer
3675 /// constant expression, etc.) return the same result as for the chosen
3676 /// sub-expression.
3677 class ChooseExpr : public Expr {
3678  enum { COND, LHS, RHS, END_EXPR };
3679  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3680  SourceLocation BuiltinLoc, RParenLoc;
3681  bool CondIsTrue;
3682 public:
3683  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3685  SourceLocation RP, bool condIsTrue,
3686  bool TypeDependent, bool ValueDependent)
3687  : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3688  (cond->isInstantiationDependent() ||
3689  lhs->isInstantiationDependent() ||
3690  rhs->isInstantiationDependent()),
3691  (cond->containsUnexpandedParameterPack() ||
3692  lhs->containsUnexpandedParameterPack() ||
3693  rhs->containsUnexpandedParameterPack())),
3694  BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
3695  SubExprs[COND] = cond;
3696  SubExprs[LHS] = lhs;
3697  SubExprs[RHS] = rhs;
3698  }
3699 
3700  /// \brief Build an empty __builtin_choose_expr.
3701  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3702 
3703  /// isConditionTrue - Return whether the condition is true (i.e. not
3704  /// equal to zero).
3705  bool isConditionTrue() const {
3706  assert(!isConditionDependent() &&
3707  "Dependent condition isn't true or false");
3708  return CondIsTrue;
3709  }
3710  void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
3711 
3712  bool isConditionDependent() const {
3713  return getCond()->isTypeDependent() || getCond()->isValueDependent();
3714  }
3715 
3716  /// getChosenSubExpr - Return the subexpression chosen according to the
3717  /// condition.
3719  return isConditionTrue() ? getLHS() : getRHS();
3720  }
3721 
3722  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3723  void setCond(Expr *E) { SubExprs[COND] = E; }
3724  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3725  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3726  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3727  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3728 
3729  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3730  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3731 
3732  SourceLocation getRParenLoc() const { return RParenLoc; }
3733  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3734 
3735  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3736  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3737 
3738  static bool classof(const Stmt *T) {
3739  return T->getStmtClass() == ChooseExprClass;
3740  }
3741 
3742  // Iterators
3744  return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3745  }
3747  return const_child_range(&SubExprs[0], &SubExprs[0] + END_EXPR);
3748  }
3749 };
3750 
3751 /// GNUNullExpr - Implements the GNU __null extension, which is a name
3752 /// for a null pointer constant that has integral type (e.g., int or
3753 /// long) and is the same size and alignment as a pointer. The __null
3754 /// extension is typically only used by system headers, which define
3755 /// NULL as __null in C++ rather than using 0 (which is an integer
3756 /// that may not match the size of a pointer).
3757 class GNUNullExpr : public Expr {
3758  /// TokenLoc - The location of the __null keyword.
3759  SourceLocation TokenLoc;
3760 
3761 public:
3763  : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3764  false),
3765  TokenLoc(Loc) { }
3766 
3767  /// \brief Build an empty GNU __null expression.
3768  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3769 
3770  /// getTokenLocation - The location of the __null token.
3771  SourceLocation getTokenLocation() const { return TokenLoc; }
3772  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3773 
3774  SourceLocation getLocStart() const LLVM_READONLY { return TokenLoc; }
3775  SourceLocation getLocEnd() const LLVM_READONLY { return TokenLoc; }
3776 
3777  static bool classof(const Stmt *T) {
3778  return T->getStmtClass() == GNUNullExprClass;
3779  }
3780 
3781  // Iterators
3784  }
3787  }
3788 };
3789 
3790 /// Represents a call to the builtin function \c __builtin_va_arg.
3791 class VAArgExpr : public Expr {
3792  Stmt *Val;
3793  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfo;
3794  SourceLocation BuiltinLoc, RParenLoc;
3795 public:
3797  SourceLocation RPLoc, QualType t, bool IsMS)
3798  : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary, t->isDependentType(),
3799  false, (TInfo->getType()->isInstantiationDependentType() ||
3800  e->isInstantiationDependent()),
3801  (TInfo->getType()->containsUnexpandedParameterPack() ||
3802  e->containsUnexpandedParameterPack())),
3803  Val(e), TInfo(TInfo, IsMS), BuiltinLoc(BLoc), RParenLoc(RPLoc) {}
3804 
3805  /// Create an empty __builtin_va_arg expression.
3806  explicit VAArgExpr(EmptyShell Empty)
3807  : Expr(VAArgExprClass, Empty), Val(nullptr), TInfo(nullptr, false) {}
3808 
3809  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3810  Expr *getSubExpr() { return cast<Expr>(Val); }
3811  void setSubExpr(Expr *E) { Val = E; }
3812 
3813  /// Returns whether this is really a Win64 ABI va_arg expression.
3814  bool isMicrosoftABI() const { return TInfo.getInt(); }
3815  void setIsMicrosoftABI(bool IsMS) { TInfo.setInt(IsMS); }
3816 
3817  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo.getPointer(); }
3818  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo.setPointer(TI); }
3819 
3820  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3821  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3822 
3823  SourceLocation getRParenLoc() const { return RParenLoc; }
3824  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3825 
3826  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3827  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3828 
3829  static bool classof(const Stmt *T) {
3830  return T->getStmtClass() == VAArgExprClass;
3831  }
3832 
3833  // Iterators
3834  child_range children() { return child_range(&Val, &Val+1); }
3836  return const_child_range(&Val, &Val + 1);
3837  }
3838 };
3839 
3840 /// @brief Describes an C or C++ initializer list.
3841 ///
3842 /// InitListExpr describes an initializer list, which can be used to
3843 /// initialize objects of different types, including
3844 /// struct/class/union types, arrays, and vectors. For example:
3845 ///
3846 /// @code
3847 /// struct foo x = { 1, { 2, 3 } };
3848 /// @endcode
3849 ///
3850 /// Prior to semantic analysis, an initializer list will represent the
3851 /// initializer list as written by the user, but will have the
3852 /// placeholder type "void". This initializer list is called the
3853 /// syntactic form of the initializer, and may contain C99 designated
3854 /// initializers (represented as DesignatedInitExprs), initializations
3855 /// of subobject members without explicit braces, and so on. Clients
3856 /// interested in the original syntax of the initializer list should
3857 /// use the syntactic form of the initializer list.
3858 ///
3859 /// After semantic analysis, the initializer list will represent the
3860 /// semantic form of the initializer, where the initializations of all
3861 /// subobjects are made explicit with nested InitListExpr nodes and
3862 /// C99 designators have been eliminated by placing the designated
3863 /// initializations into the subobject they initialize. Additionally,
3864 /// any "holes" in the initialization, where no initializer has been
3865 /// specified for a particular subobject, will be replaced with
3866 /// implicitly-generated ImplicitValueInitExpr expressions that
3867 /// value-initialize the subobjects. Note, however, that the
3868 /// initializer lists may still have fewer initializers than there are
3869 /// elements to initialize within the object.
3870 ///
3871 /// After semantic analysis has completed, given an initializer list,
3872 /// method isSemanticForm() returns true if and only if this is the
3873 /// semantic form of the initializer list (note: the same AST node
3874 /// may at the same time be the syntactic form).
3875 /// Given the semantic form of the initializer list, one can retrieve
3876 /// the syntactic form of that initializer list (when different)
3877 /// using method getSyntacticForm(); the method returns null if applied
3878 /// to a initializer list which is already in syntactic form.
3879 /// Similarly, given the syntactic form (i.e., an initializer list such
3880 /// that isSemanticForm() returns false), one can retrieve the semantic
3881 /// form using method getSemanticForm().
3882 /// Since many initializer lists have the same syntactic and semantic forms,
3883 /// getSyntacticForm() may return NULL, indicating that the current
3884 /// semantic initializer list also serves as its syntactic form.
3885 class InitListExpr : public Expr {
3886  // FIXME: Eliminate this vector in favor of ASTContext allocation
3888  InitExprsTy InitExprs;
3889  SourceLocation LBraceLoc, RBraceLoc;
3890 
3891  /// The alternative form of the initializer list (if it exists).
3892  /// The int part of the pair stores whether this initializer list is
3893  /// in semantic form. If not null, the pointer points to:
3894  /// - the syntactic form, if this is in semantic form;
3895  /// - the semantic form, if this is in syntactic form.
3896  llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
3897 
3898  /// \brief Either:
3899  /// If this initializer list initializes an array with more elements than
3900  /// there are initializers in the list, specifies an expression to be used
3901  /// for value initialization of the rest of the elements.
3902  /// Or
3903  /// If this initializer list initializes a union, specifies which
3904  /// field within the union will be initialized.
3905  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3906 
3907 public:
3908  InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
3909  ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
3910 
3911  /// \brief Build an empty initializer list.
3912  explicit InitListExpr(EmptyShell Empty)
3913  : Expr(InitListExprClass, Empty), AltForm(nullptr, true) { }
3914 
3915  unsigned getNumInits() const { return InitExprs.size(); }
3916 
3917  /// \brief Retrieve the set of initializers.
3918  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3919 
3920  /// \brief Retrieve the set of initializers.
3921  Expr * const *getInits() const {
3922  return reinterpret_cast<Expr * const *>(InitExprs.data());
3923  }
3924 
3926  return llvm::makeArrayRef(getInits(), getNumInits());
3927  }
3928 
3930  return llvm::makeArrayRef(getInits(), getNumInits());
3931  }
3932 
3933  const Expr *getInit(unsigned Init) const {
3934  assert(Init < getNumInits() && "Initializer access out of range!");
3935  return cast_or_null<Expr>(InitExprs[Init]);
3936  }
3937 
3938  Expr *getInit(unsigned Init) {
3939  assert(Init < getNumInits() && "Initializer access out of range!");
3940  return cast_or_null<Expr>(InitExprs[Init]);
3941  }
3942 
3943  void setInit(unsigned Init, Expr *expr) {
3944  assert(Init < getNumInits() && "Initializer access out of range!");
3945  InitExprs[Init] = expr;
3946 
3947  if (expr) {
3948  ExprBits.TypeDependent |= expr->isTypeDependent();
3949  ExprBits.ValueDependent |= expr->isValueDependent();
3950  ExprBits.InstantiationDependent |= expr->isInstantiationDependent();
3951  ExprBits.ContainsUnexpandedParameterPack |=
3953  }
3954  }
3955 
3956  /// \brief Reserve space for some number of initializers.
3957  void reserveInits(const ASTContext &C, unsigned NumInits);
3958 
3959  /// @brief Specify the number of initializers
3960  ///
3961  /// If there are more than @p NumInits initializers, the remaining
3962  /// initializers will be destroyed. If there are fewer than @p
3963  /// NumInits initializers, NULL expressions will be added for the
3964  /// unknown initializers.
3965  void resizeInits(const ASTContext &Context, unsigned NumInits);
3966 
3967  /// @brief Updates the initializer at index @p Init with the new
3968  /// expression @p expr, and returns the old expression at that
3969  /// location.
3970  ///
3971  /// When @p Init is out of range for this initializer list, the
3972  /// initializer list will be extended with NULL expressions to
3973  /// accommodate the new entry.
3974  Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
3975 
3976  /// \brief If this initializer list initializes an array with more elements
3977  /// than there are initializers in the list, specifies an expression to be
3978  /// used for value initialization of the rest of the elements.
3980  return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3981  }
3982  const Expr *getArrayFiller() const {
3983  return const_cast<InitListExpr *>(this)->getArrayFiller();
3984  }
3985  void setArrayFiller(Expr *filler);
3986 
3987  /// \brief Return true if this is an array initializer and its array "filler"
3988  /// has been set.
3989  bool hasArrayFiller() const { return getArrayFiller(); }
3990 
3991  /// \brief If this initializes a union, specifies which field in the
3992  /// union to initialize.
3993  ///
3994  /// Typically, this field is the first named field within the
3995  /// union. However, a designated initializer can specify the
3996  /// initialization of a different field within the union.
3998  return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3999  }
4001  return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
4002  }
4004  assert((FD == nullptr
4005  || getInitializedFieldInUnion() == nullptr
4006  || getInitializedFieldInUnion() == FD)
4007  && "Only one field of a union may be initialized at a time!");
4008  ArrayFillerOrUnionFieldInit = FD;
4009  }
4010 
4011  // Explicit InitListExpr's originate from source code (and have valid source
4012  // locations). Implicit InitListExpr's are created by the semantic analyzer.
4013  bool isExplicit() const {
4014  return LBraceLoc.isValid() && RBraceLoc.isValid();
4015  }
4016 
4017  // Is this an initializer for an array of characters, initialized by a string
4018  // literal or an @encode?
4019  bool isStringLiteralInit() const;
4020 
4021  /// Is this a transparent initializer list (that is, an InitListExpr that is
4022  /// purely syntactic, and whose semantics are that of the sole contained
4023  /// initializer)?
4024  bool isTransparent() const;
4025 
4026  /// Is this the zero initializer {0} in a language which considers it
4027  /// idiomatic?
4028  bool isIdiomaticZeroInitializer(const LangOptions &LangOpts) const;
4029 
4030  SourceLocation getLBraceLoc() const { return LBraceLoc; }
4031  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
4032  SourceLocation getRBraceLoc() const { return RBraceLoc; }
4033  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
4034 
4035  bool isSemanticForm() const { return AltForm.getInt(); }
4037  return isSemanticForm() ? nullptr : AltForm.getPointer();
4038  }
4039  bool isSyntacticForm() const {
4040  return !AltForm.getInt() || !AltForm.getPointer();
4041  }
4043  return isSemanticForm() ? AltForm.getPointer() : nullptr;
4044  }
4045 
4047  AltForm.setPointer(Init);
4048  AltForm.setInt(true);
4049  Init->AltForm.setPointer(this);
4050  Init->AltForm.setInt(false);
4051  }
4052 
4054  return InitListExprBits.HadArrayRangeDesignator != 0;
4055  }
4056  void sawArrayRangeDesignator(bool ARD = true) {
4057  InitListExprBits.HadArrayRangeDesignator = ARD;
4058  }
4059 
4060  SourceLocation getLocStart() const LLVM_READONLY;
4061  SourceLocation getLocEnd() const LLVM_READONLY;
4062 
4063  static bool classof(const Stmt *T) {
4064  return T->getStmtClass() == InitListExprClass;
4065  }
4066 
4067  // Iterators
4069  const_child_range CCR = const_cast<const InitListExpr *>(this)->children();
4070  return child_range(cast_away_const(CCR.begin()),
4071  cast_away_const(CCR.end()));
4072  }
4073 
4075  // FIXME: This does not include the array filler expression.
4076  if (InitExprs.empty())
4078  return const_child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
4079  }
4080 
4085 
4086  iterator begin() { return InitExprs.begin(); }
4087  const_iterator begin() const { return InitExprs.begin(); }
4088  iterator end() { return InitExprs.end(); }
4089  const_iterator end() const { return InitExprs.end(); }
4090  reverse_iterator rbegin() { return InitExprs.rbegin(); }
4091  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
4092  reverse_iterator rend() { return InitExprs.rend(); }
4093  const_reverse_iterator rend() const { return InitExprs.rend(); }
4094 
4095  friend class ASTStmtReader;
4096  friend class ASTStmtWriter;
4097 };
4098 
4099 /// @brief Represents a C99 designated initializer expression.
4100 ///
4101 /// A designated initializer expression (C99 6.7.8) contains one or
4102 /// more designators (which can be field designators, array
4103 /// designators, or GNU array-range designators) followed by an
4104 /// expression that initializes the field or element(s) that the
4105 /// designators refer to. For example, given:
4106 ///
4107 /// @code
4108 /// struct point {
4109 /// double x;
4110 /// double y;
4111 /// };
4112 /// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
4113 /// @endcode
4114 ///
4115 /// The InitListExpr contains three DesignatedInitExprs, the first of
4116 /// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
4117 /// designators, one array designator for @c [2] followed by one field
4118 /// designator for @c .y. The initialization expression will be 1.0.
4120  : public Expr,
4121  private llvm::TrailingObjects<DesignatedInitExpr, Stmt *> {
4122 public:
4123  /// \brief Forward declaration of the Designator class.
4124  class Designator;
4125 
4126 private:
4127  /// The location of the '=' or ':' prior to the actual initializer
4128  /// expression.
4129  SourceLocation EqualOrColonLoc;
4130 
4131  /// Whether this designated initializer used the GNU deprecated
4132  /// syntax rather than the C99 '=' syntax.
4133  unsigned GNUSyntax : 1;
4134 
4135  /// The number of designators in this initializer expression.
4136  unsigned NumDesignators : 15;
4137 
4138  /// The number of subexpressions of this initializer expression,
4139  /// which contains both the initializer and any additional
4140  /// expressions used by array and array-range designators.
4141  unsigned NumSubExprs : 16;
4142 
4143  /// \brief The designators in this designated initialization
4144  /// expression.
4145  Designator *Designators;
4146 
4147  DesignatedInitExpr(const ASTContext &C, QualType Ty,
4148  llvm::ArrayRef<Designator> Designators,
4149  SourceLocation EqualOrColonLoc, bool GNUSyntax,
4150  ArrayRef<Expr *> IndexExprs, Expr *Init);
4151 
4152  explicit DesignatedInitExpr(unsigned NumSubExprs)
4153  : Expr(DesignatedInitExprClass, EmptyShell()),
4154  NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }
4155 
4156 public:
4157  /// A field designator, e.g., ".x".
4159  /// Refers to the field that is being initialized. The low bit
4160  /// of this field determines whether this is actually a pointer
4161  /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
4162  /// initially constructed, a field designator will store an
4163  /// IdentifierInfo*. After semantic analysis has resolved that
4164  /// name, the field designator will instead store a FieldDecl*.
4166 
4167  /// The location of the '.' in the designated initializer.
4168  unsigned DotLoc;
4169 
4170  /// The location of the field name in the designated initializer.
4171  unsigned FieldLoc;
4172  };
4173 
4174  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4176  /// Location of the first index expression within the designated
4177  /// initializer expression's list of subexpressions.
4178  unsigned Index;
4179  /// The location of the '[' starting the array range designator.
4180  unsigned LBracketLoc;
4181  /// The location of the ellipsis separating the start and end
4182  /// indices. Only valid for GNU array-range designators.
4183  unsigned EllipsisLoc;
4184  /// The location of the ']' terminating the array range designator.
4185  unsigned RBracketLoc;
4186  };
4187 
4188  /// @brief Represents a single C99 designator.
4189  ///
4190  /// @todo This class is infuriatingly similar to clang::Designator,
4191  /// but minor differences (storing indices vs. storing pointers)
4192  /// keep us from reusing it. Try harder, later, to rectify these
4193  /// differences.
4194  class Designator {
4195  /// @brief The kind of designator this describes.
4196  enum {
4198  ArrayDesignator,
4199  ArrayRangeDesignator
4200  } Kind;
4201 
4202  union {
4203  /// A field designator, e.g., ".x".
4205  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4206  struct ArrayOrRangeDesignator ArrayOrRange;
4207  };
4208  friend class DesignatedInitExpr;
4209 
4210  public:
4212 
4213  /// @brief Initializes a field designator.
4214  Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
4215  SourceLocation FieldLoc)
4216  : Kind(FieldDesignator) {
4217  Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
4218  Field.DotLoc = DotLoc.getRawEncoding();
4219  Field.FieldLoc = FieldLoc.getRawEncoding();
4220  }
4221 
4222  /// @brief Initializes an array designator.
4223  Designator(unsigned Index, SourceLocation LBracketLoc,
4224  SourceLocation RBracketLoc)
4225  : Kind(ArrayDesignator) {
4226  ArrayOrRange.Index = Index;
4227  ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4228  ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
4229  ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4230  }
4231 
4232  /// @brief Initializes a GNU array-range designator.
4233  Designator(unsigned Index, SourceLocation LBracketLoc,
4234  SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
4235  : Kind(ArrayRangeDesignator) {
4236  ArrayOrRange.Index = Index;
4237  ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4238  ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
4239  ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4240  }
4241 
4242  bool isFieldDesignator() const { return Kind == FieldDesignator; }
4243  bool isArrayDesignator() const { return Kind == ArrayDesignator; }
4244  bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
4245 
4246  IdentifierInfo *getFieldName() const;
4247 
4248  FieldDecl *getField() const {
4249  assert(Kind == FieldDesignator && "Only valid on a field designator");
4250  if (Field.NameOrField & 0x01)
4251  return nullptr;
4252  else
4253  return reinterpret_cast<FieldDecl *>(Field.NameOrField);
4254  }
4255 
4256  void setField(FieldDecl *FD) {
4257  assert(Kind == FieldDesignator && "Only valid on a field designator");
4258  Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
4259  }
4260 
4262  assert(Kind == FieldDesignator && "Only valid on a field designator");
4264  }
4265 
4267  assert(Kind == FieldDesignator && "Only valid on a field designator");
4268  return SourceLocation::getFromRawEncoding(Field.FieldLoc);
4269  }
4270 
4272  assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4273  "Only valid on an array or array-range designator");
4274  return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
4275  }
4276 
4278  assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4279  "Only valid on an array or array-range designator");
4280  return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
4281  }
4282 
4284  assert(Kind == ArrayRangeDesignator &&
4285  "Only valid on an array-range designator");
4286  return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
4287  }
4288 
4289  unsigned getFirstExprIndex() const {
4290  assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4291  "Only valid on an array or array-range designator");
4292  return ArrayOrRange.Index;
4293  }
4294 
4295  SourceLocation getLocStart() const LLVM_READONLY {
4296  if (Kind == FieldDesignator)
4297  return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
4298  else
4299  return getLBracketLoc();
4300  }
4301  SourceLocation getLocEnd() const LLVM_READONLY {
4302  return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
4303  }
4304  SourceRange getSourceRange() const LLVM_READONLY {
4305  return SourceRange(getLocStart(), getLocEnd());
4306  }
4307  };
4308 
4309  static DesignatedInitExpr *Create(const ASTContext &C,
4310  llvm::ArrayRef<Designator> Designators,
4311  ArrayRef<Expr*> IndexExprs,
4312  SourceLocation EqualOrColonLoc,
4313  bool GNUSyntax, Expr *Init);
4314 
4315  static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
4316  unsigned NumIndexExprs);
4317 
4318  /// @brief Returns the number of designators in this initializer.
4319  unsigned size() const { return NumDesignators; }
4320 
4321  // Iterator access to the designators.
4323  return {Designators, NumDesignators};
4324  }
4325 
4327  return {Designators, NumDesignators};
4328  }
4329 
4330  Designator *getDesignator(unsigned Idx) { return &designators()[Idx]; }
4331  const Designator *getDesignator(unsigned Idx) const {
4332  return &designators()[Idx];
4333  }
4334 
4335  void setDesignators(const ASTContext &C, const Designator *Desigs,
4336  unsigned NumDesigs);
4337 
4338  Expr *getArrayIndex(const Designator &D) const;
4339  Expr *getArrayRangeStart(const Designator &D) const;
4340  Expr *getArrayRangeEnd(const Designator &D) const;
4341 
4342  /// @brief Retrieve the location of the '=' that precedes the
4343  /// initializer value itself, if present.
4344  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
4345  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
4346 
4347  /// @brief Determines whether this designated initializer used the
4348  /// deprecated GNU syntax for designated initializers.
4349  bool usesGNUSyntax() const { return GNUSyntax; }
4350  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
4351 
4352  /// @brief Retrieve the initializer value.
4353  Expr *getInit() const {
4354  return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
4355  }
4356 
4357  void setInit(Expr *init) {
4358  *child_begin() = init;
4359  }
4360 
4361  /// \brief Retrieve the total number of subexpressions in this
4362  /// designated initializer expression, including the actual
4363  /// initialized value and any expressions that occur within array
4364  /// and array-range designators.
4365  unsigned getNumSubExprs() const { return NumSubExprs; }
4366 
4367  Expr *getSubExpr(unsigned Idx) const {
4368  assert(Idx < NumSubExprs && "Subscript out of range");
4369  return cast<Expr>(getTrailingObjects<Stmt *>()[Idx]);
4370  }
4371 
4372  void setSubExpr(unsigned Idx, Expr *E) {
4373  assert(Idx < NumSubExprs && "Subscript out of range");
4374  getTrailingObjects<Stmt *>()[Idx] = E;
4375  }
4376 
4377  /// \brief Replaces the designator at index @p Idx with the series
4378  /// of designators in [First, Last).
4379  void ExpandDesignator(const ASTContext &C, unsigned Idx,
4380  const Designator *First, const Designator *Last);
4381 
4382  SourceRange getDesignatorsSourceRange() const;
4383 
4384  SourceLocation getLocStart() const LLVM_READONLY;
4385  SourceLocation getLocEnd() const LLVM_READONLY;
4386 
4387  static bool classof(const Stmt *T) {
4388  return T->getStmtClass() == DesignatedInitExprClass;
4389  }
4390 
4391  // Iterators
4393  Stmt **begin = getTrailingObjects<Stmt *>();
4394  return child_range(begin, begin + NumSubExprs);
4395  }
4397  Stmt * const *begin = getTrailingObjects<Stmt *>();
4398  return const_child_range(begin, begin + NumSubExprs);
4399  }
4400 
4402 };
4403 
4404 /// \brief Represents a place-holder for an object not to be initialized by
4405 /// anything.
4406 ///
4407 /// This only makes sense when it appears as part of an updater of a
4408 /// DesignatedInitUpdateExpr (see below). The base expression of a DIUE
4409 /// initializes a big object, and the NoInitExpr's mark the spots within the
4410 /// big object not to be overwritten by the updater.
4411 ///
4412 /// \see DesignatedInitUpdateExpr
4413 class NoInitExpr : public Expr {
4414 public:
4415  explicit NoInitExpr(QualType ty)
4416  : Expr(NoInitExprClass, ty, VK_RValue, OK_Ordinary,
4417  false, false, ty->isInstantiationDependentType(), false) { }
4418 
4419  explicit NoInitExpr(EmptyShell Empty)
4420  : Expr(NoInitExprClass, Empty) { }
4421 
4422  static bool classof(const Stmt *T) {
4423  return T->getStmtClass() == NoInitExprClass;
4424  }
4425 
4426  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4427  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4428 
4429  // Iterators
4432  }
4435  }
4436 };
4437 
4438 // In cases like:
4439 // struct Q { int a, b, c; };
4440 // Q *getQ();
4441 // void foo() {
4442 // struct A { Q q; } a = { *getQ(), .q.b = 3 };
4443 // }
4444 //
4445 // We will have an InitListExpr for a, with type A, and then a
4446 // DesignatedInitUpdateExpr for "a.q" with type Q. The "base" for this DIUE
4447 // is the call expression *getQ(); the "updater" for the DIUE is ".q.b = 3"
4448 //
4450  // BaseAndUpdaterExprs[0] is the base expression;
4451  // BaseAndUpdaterExprs[1] is an InitListExpr overwriting part of the base.
4452  Stmt *BaseAndUpdaterExprs[2];
4453 
4454 public:
4456  Expr *baseExprs, SourceLocation rBraceLoc);
4457 
4459  : Expr(DesignatedInitUpdateExprClass, Empty) { }
4460 
4461  SourceLocation getLocStart() const LLVM_READONLY;
4462  SourceLocation getLocEnd() const LLVM_READONLY;
4463 
4464  static bool classof(const Stmt *T) {
4465  return T->getStmtClass() == DesignatedInitUpdateExprClass;
4466  }
4467 
4468  Expr *getBase() const { return cast<Expr>(BaseAndUpdaterExprs[0]); }
4469  void setBase(Expr *Base) { BaseAndUpdaterExprs[0] = Base; }
4470 
4472  return cast<InitListExpr>(BaseAndUpdaterExprs[1]);
4473  }
4474  void setUpdater(Expr *Updater) { BaseAndUpdaterExprs[1] = Updater; }
4475 
4476  // Iterators
4477  // children = the base and the updater
4479  return child_range(&BaseAndUpdaterExprs[0], &BaseAndUpdaterExprs[0] + 2);
4480  }
4482  return const_child_range(&BaseAndUpdaterExprs[0],
4483  &BaseAndUpdaterExprs[0] + 2);
4484  }
4485 };
4486 
4487 /// \brief Represents a loop initializing the elements of an array.
4488 ///
4489 /// The need to initialize the elements of an array occurs in a number of
4490 /// contexts:
4491 ///
4492 /// * in the implicit copy/move constructor for a class with an array member
4493 /// * when a lambda-expression captures an array by value
4494 /// * when a decomposition declaration decomposes an array
4495 ///
4496 /// There are two subexpressions: a common expression (the source array)
4497 /// that is evaluated once up-front, and a per-element initializer that
4498 /// runs once for each array element.
4499 ///
4500 /// Within the per-element initializer, the common expression may be referenced
4501 /// via an OpaqueValueExpr, and the current index may be obtained via an
4502 /// ArrayInitIndexExpr.
4503 class ArrayInitLoopExpr : public Expr {
4504  Stmt *SubExprs[2];
4505 
4506  explicit ArrayInitLoopExpr(EmptyShell Empty)
4507  : Expr(ArrayInitLoopExprClass, Empty), SubExprs{} {}
4508 
4509 public:
4510  explicit ArrayInitLoopExpr(QualType T, Expr *CommonInit, Expr *ElementInit)
4511  : Expr(ArrayInitLoopExprClass, T, VK_RValue, OK_Ordinary, false,
4512  CommonInit->isValueDependent() || ElementInit->isValueDependent(),
4513  T->isInstantiationDependentType(),
4514  CommonInit->containsUnexpandedParameterPack() ||
4515  ElementInit->containsUnexpandedParameterPack()),
4516  SubExprs{CommonInit, ElementInit} {}
4517 
4518  /// Get the common subexpression shared by all initializations (the source
4519  /// array).
4521  return cast<OpaqueValueExpr>(SubExprs[0]);
4522  }
4523 
4524  /// Get the initializer to use for each array element.
4525  Expr *getSubExpr() const { return cast<Expr>(SubExprs[1]); }
4526 
4527  llvm::APInt getArraySize() const {
4528  return cast<ConstantArrayType>(getType()->castAsArrayTypeUnsafe())
4529  ->getSize();
4530  }
4531 
4532  static bool classof(const Stmt *S) {
4533  return S->getStmtClass() == ArrayInitLoopExprClass;
4534  }
4535 
4536  SourceLocation getLocStart() const LLVM_READONLY {
4537  return getCommonExpr()->getLocStart();
4538  }
4539  SourceLocation getLocEnd() const LLVM_READONLY {
4540  return getCommonExpr()->getLocEnd();
4541  }
4542 
4544  return child_range(SubExprs, SubExprs + 2);
4545  }
4547  return const_child_range(SubExprs, SubExprs + 2);
4548  }
4549 
4550  friend class ASTReader;
4551  friend class ASTStmtReader;
4552  friend class ASTStmtWriter;
4553 };
4554 
4555 /// \brief Represents the index of the current element of an array being
4556 /// initialized by an ArrayInitLoopExpr. This can only appear within the
4557 /// subexpression of an ArrayInitLoopExpr.
4558 class ArrayInitIndexExpr : public Expr {
4559  explicit ArrayInitIndexExpr(EmptyShell Empty)
4560  : Expr(ArrayInitIndexExprClass, Empty) {}
4561 
4562 public:
4564  : Expr(ArrayInitIndexExprClass, T, VK_RValue, OK_Ordinary,
4565  false, false, false, false) {}
4566 
4567  static bool classof(const Stmt *S) {
4568  return S->getStmtClass() == ArrayInitIndexExprClass;
4569  }
4570 
4571  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4572  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4573 
4576  }
4579  }
4580 
4581  friend class ASTReader;
4582  friend class ASTStmtReader;
4583 };
4584 
4585 /// \brief Represents an implicitly-generated value initialization of
4586 /// an object of a given type.
4587 ///
4588 /// Implicit value initializations occur within semantic initializer
4589 /// list expressions (InitListExpr) as placeholders for subobject
4590 /// initializations not explicitly specified by the user.
4591 ///
4592 /// \see InitListExpr
4593 class ImplicitValueInitExpr : public Expr {
4594 public:
4596  : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4597  false, false, ty->isInstantiationDependentType(), false) { }
4598 
4599  /// \brief Construct an empty implicit value initialization.
4601  : Expr(ImplicitValueInitExprClass, Empty) { }
4602 
4603  static bool classof(const Stmt *T) {
4604  return T->getStmtClass() == ImplicitValueInitExprClass;
4605  }
4606 
4607  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4608  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4609 
4610  // Iterators
4613  }
4616  }
4617 };
4618 
4619 class ParenListExpr : public Expr {
4620  Stmt **Exprs;
4621  unsigned NumExprs;
4622  SourceLocation LParenLoc, RParenLoc;
4623 
4624 public:
4625  ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
4626  ArrayRef<Expr*> exprs, SourceLocation rparenloc);
4627 
4628  /// \brief Build an empty paren list.
4629  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4630 
4631  unsigned getNumExprs() const { return NumExprs; }
4632 
4633  const Expr* getExpr(unsigned Init) const {
4634  assert(Init < getNumExprs() && "Initializer access out of range!");
4635  return cast_or_null<Expr>(Exprs[Init]);
4636  }
4637 
4638  Expr* getExpr(unsigned Init) {
4639  assert(Init < getNumExprs() && "Initializer access out of range!");
4640  return cast_or_null<Expr>(Exprs[Init]);
4641  }
4642 
4643  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4644 
4646  return llvm::makeArrayRef(getExprs(), getNumExprs());
4647  }
4648 
4649  SourceLocation getLParenLoc() const { return LParenLoc; }
4650  SourceLocation getRParenLoc() const { return RParenLoc; }
4651 
4652  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
4653  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4654 
4655  static bool classof(const Stmt *T) {
4656  return T->getStmtClass() == ParenListExprClass;
4657  }
4658 
4659  // Iterators
4661  return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4662  }
4664  return const_child_range(&Exprs[0], &Exprs[0] + NumExprs);
4665  }
4666 
4667  friend class ASTStmtReader;
4668  friend class ASTStmtWriter;
4669 };
4670 
4671 /// \brief Represents a C11 generic selection.
4672 ///
4673 /// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4674 /// expression, followed by one or more generic associations. Each generic
4675 /// association specifies a type name and an expression, or "default" and an
4676 /// expression (in which case it is known as a default generic association).
4677 /// The type and value of the generic selection are identical to those of its
4678 /// result expression, which is defined as the expression in the generic
4679 /// association with a type name that is compatible with the type of the
4680 /// controlling expression, or the expression in the default generic association
4681 /// if no types are compatible. For example:
4682 ///
4683 /// @code
4684 /// _Generic(X, double: 1, float: 2, default: 3)
4685 /// @endcode
4686 ///
4687 /// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4688 /// or 3 if "hello".
4689 ///
4690 /// As an extension, generic selections are allowed in C++, where the following
4691 /// additional semantics apply:
4692 ///
4693 /// Any generic selection whose controlling expression is type-dependent or
4694 /// which names a dependent type in its association list is result-dependent,
4695 /// which means that the choice of result expression is dependent.
4696 /// Result-dependent generic associations are both type- and value-dependent.
4697 class GenericSelectionExpr : public Expr {
4698  enum { CONTROLLING, END_EXPR };
4699  TypeSourceInfo **AssocTypes;
4700  Stmt **SubExprs;
4701  unsigned NumAssocs, ResultIndex;
4702  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4703 
4704 public:
4705  GenericSelectionExpr(const ASTContext &Context,
4706  SourceLocation GenericLoc, Expr *ControllingExpr,
4707  ArrayRef<TypeSourceInfo*> AssocTypes,
4708  ArrayRef<Expr*> AssocExprs,
4709  SourceLocation DefaultLoc, SourceLocation RParenLoc,
4710  bool ContainsUnexpandedParameterPack,
4711  unsigned ResultIndex);
4712 
4713  /// This constructor is used in the result-dependent case.
4714  GenericSelectionExpr(const ASTContext &Context,
4715  SourceLocation GenericLoc, Expr *ControllingExpr,
4716  ArrayRef<TypeSourceInfo*> AssocTypes,
4717  ArrayRef<Expr*> AssocExprs,
4718  SourceLocation DefaultLoc, SourceLocation RParenLoc,
4719  bool ContainsUnexpandedParameterPack);
4720 
4722  : Expr(GenericSelectionExprClass, Empty) { }
4723 
4724  unsigned getNumAssocs() const { return NumAssocs; }
4725 
4726  SourceLocation getGenericLoc() const { return GenericLoc; }
4727  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4728  SourceLocation getRParenLoc() const { return RParenLoc; }
4729 
4730  const Expr *getAssocExpr(unsigned i) const {
4731  return cast<Expr>(SubExprs[END_EXPR+i]);
4732  }
4733  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4735  return NumAssocs
4736  ? llvm::makeArrayRef(
4737  &reinterpret_cast<Expr **>(SubExprs)[END_EXPR], NumAssocs)
4738  : None;
4739  }
4740  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4741  return AssocTypes[i];
4742  }
4743  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4745  return NumAssocs ? llvm::makeArrayRef(&AssocTypes[0], NumAssocs) : None;
4746  }
4747 
4748  QualType getAssocType(unsigned i) const {
4749  if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4750  return TS->getType();
4751  else
4752  return QualType();
4753  }
4754 
4755  const Expr *getControllingExpr() const {
4756  return cast<Expr>(SubExprs[CONTROLLING]);
4757  }
4758  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4759 
4760  /// Whether this generic selection is result-dependent.
4761  bool isResultDependent() const { return ResultIndex == -1U; }
4762 
4763  /// The zero-based index of the result expression's generic association in
4764  /// the generic selection's association list. Defined only if the
4765  /// generic selection is not result-dependent.
4766  unsigned getResultIndex() const {
4767  assert(!isResultDependent() && "Generic selection is result-dependent");
4768  return ResultIndex;
4769  }
4770 
4771  /// The generic selection's result expression. Defined only if the
4772  /// generic selection is not result-dependent.
4773  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4774  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4775 
4776  SourceLocation getLocStart() const LLVM_READONLY { return GenericLoc; }
4777  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4778 
4779  static bool classof(const Stmt *T) {
4780  return T->getStmtClass() == GenericSelectionExprClass;
4781  }
4782 
4784  return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4785  }
4787  return const_child_range(SubExprs, SubExprs + END_EXPR + NumAssocs);
4788  }
4789  friend class ASTStmtReader;
4790 };
4791 
4792 //===----------------------------------------------------------------------===//
4793 // Clang Extensions
4794 //===----------------------------------------------------------------------===//
4795 
4796 /// ExtVectorElementExpr - This represents access to specific elements of a
4797 /// vector, and may occur on the left hand side or right hand side. For example
4798 /// the following is legal: "V.xy = V.zw" if V is a 4 element extended vector.
4799 ///
4800 /// Note that the base may have either vector or pointer to vector type, just
4801 /// like a struct field reference.
4802 ///
4803 class ExtVectorElementExpr : public Expr {
4804  Stmt *Base;
4805  IdentifierInfo *Accessor;
4806  SourceLocation AccessorLoc;
4807 public:
4809  IdentifierInfo &accessor, SourceLocation loc)
4810  : Expr(ExtVectorElementExprClass, ty, VK,
4812  base->isTypeDependent(), base->isValueDependent(),
4813  base->isInstantiationDependent(),
4814  base->containsUnexpandedParameterPack()),
4815  Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4816 
4817  /// \brief Build an empty vector element expression.
4819  : Expr(ExtVectorElementExprClass, Empty) { }
4820 
4821  const Expr *getBase() const { return cast<Expr>(Base); }
4822  Expr *getBase() { return cast<Expr>(Base); }
4823  void setBase(Expr *E) { Base = E; }
4824 
4825  IdentifierInfo &getAccessor() const { return *Accessor; }
4826  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4827 
4828  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4829  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4830