clang  8.0.0svn
Expr.cpp
Go to the documentation of this file.
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Lexer.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 #include <cstring>
36 using namespace clang;
37 
39  const Expr *E = this;
40  while (true) {
41  E = E->ignoreParenBaseCasts();
42 
43  // Follow the RHS of a comma operator.
44  if (auto *BO = dyn_cast<BinaryOperator>(E)) {
45  if (BO->getOpcode() == BO_Comma) {
46  E = BO->getRHS();
47  continue;
48  }
49  }
50 
51  // Step into initializer for materialized temporaries.
52  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
53  E = MTE->GetTemporaryExpr();
54  continue;
55  }
56 
57  break;
58  }
59 
60  return E;
61 }
62 
64  const Expr *E = getBestDynamicClassTypeExpr();
65  QualType DerivedType = E->getType();
66  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
67  DerivedType = PTy->getPointeeType();
68 
69  if (DerivedType->isDependentType())
70  return nullptr;
71 
72  const RecordType *Ty = DerivedType->castAs<RecordType>();
73  Decl *D = Ty->getDecl();
74  return cast<CXXRecordDecl>(D);
75 }
76 
79  SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
80  const Expr *E = this;
81  while (true) {
82  E = E->IgnoreParens();
83 
84  if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
85  if ((CE->getCastKind() == CK_DerivedToBase ||
86  CE->getCastKind() == CK_UncheckedDerivedToBase) &&
87  E->getType()->isRecordType()) {
88  E = CE->getSubExpr();
89  CXXRecordDecl *Derived
90  = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
91  Adjustments.push_back(SubobjectAdjustment(CE, Derived));
92  continue;
93  }
94 
95  if (CE->getCastKind() == CK_NoOp) {
96  E = CE->getSubExpr();
97  continue;
98  }
99  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
100  if (!ME->isArrow()) {
101  assert(ME->getBase()->getType()->isRecordType());
102  if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
103  if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
104  E = ME->getBase();
105  Adjustments.push_back(SubobjectAdjustment(Field));
106  continue;
107  }
108  }
109  }
110  } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
111  if (BO->getOpcode() == BO_PtrMemD) {
112  assert(BO->getRHS()->isRValue());
113  E = BO->getLHS();
114  const MemberPointerType *MPT =
115  BO->getRHS()->getType()->getAs<MemberPointerType>();
116  Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
117  continue;
118  } else if (BO->getOpcode() == BO_Comma) {
119  CommaLHSs.push_back(BO->getLHS());
120  E = BO->getRHS();
121  continue;
122  }
123  }
124 
125  // Nothing changed.
126  break;
127  }
128  return E;
129 }
130 
131 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
132 /// that is known to return 0 or 1. This happens for _Bool/bool expressions
133 /// but also int expressions which are produced by things like comparisons in
134 /// C.
136  const Expr *E = IgnoreParens();
137 
138  // If this value has _Bool type, it is obvious 0/1.
139  if (E->getType()->isBooleanType()) return true;
140  // If this is a non-scalar-integer type, we don't care enough to try.
141  if (!E->getType()->isIntegralOrEnumerationType()) return false;
142 
143  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
144  switch (UO->getOpcode()) {
145  case UO_Plus:
146  return UO->getSubExpr()->isKnownToHaveBooleanValue();
147  case UO_LNot:
148  return true;
149  default:
150  return false;
151  }
152  }
153 
154  // Only look through implicit casts. If the user writes
155  // '(int) (a && b)' treat it as an arbitrary int.
156  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
157  return CE->getSubExpr()->isKnownToHaveBooleanValue();
158 
159  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
160  switch (BO->getOpcode()) {
161  default: return false;
162  case BO_LT: // Relational operators.
163  case BO_GT:
164  case BO_LE:
165  case BO_GE:
166  case BO_EQ: // Equality operators.
167  case BO_NE:
168  case BO_LAnd: // AND operator.
169  case BO_LOr: // Logical OR operator.
170  return true;
171 
172  case BO_And: // Bitwise AND operator.
173  case BO_Xor: // Bitwise XOR operator.
174  case BO_Or: // Bitwise OR operator.
175  // Handle things like (x==2)|(y==12).
176  return BO->getLHS()->isKnownToHaveBooleanValue() &&
177  BO->getRHS()->isKnownToHaveBooleanValue();
178 
179  case BO_Comma:
180  case BO_Assign:
181  return BO->getRHS()->isKnownToHaveBooleanValue();
182  }
183  }
184 
185  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
186  return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
187  CO->getFalseExpr()->isKnownToHaveBooleanValue();
188 
189  return false;
190 }
191 
192 // Amusing macro metaprogramming hack: check whether a class provides
193 // a more specific implementation of getExprLoc().
194 //
195 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
196 namespace {
197  /// This implementation is used when a class provides a custom
198  /// implementation of getExprLoc.
199  template <class E, class T>
200  SourceLocation getExprLocImpl(const Expr *expr,
201  SourceLocation (T::*v)() const) {
202  return static_cast<const E*>(expr)->getExprLoc();
203  }
204 
205  /// This implementation is used when a class doesn't provide
206  /// a custom implementation of getExprLoc. Overload resolution
207  /// should pick it over the implementation above because it's
208  /// more specialized according to function template partial ordering.
209  template <class E>
210  SourceLocation getExprLocImpl(const Expr *expr,
211  SourceLocation (Expr::*v)() const) {
212  return static_cast<const E *>(expr)->getBeginLoc();
213  }
214 }
215 
217  switch (getStmtClass()) {
218  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
219 #define ABSTRACT_STMT(type)
220 #define STMT(type, base) \
221  case Stmt::type##Class: break;
222 #define EXPR(type, base) \
223  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
224 #include "clang/AST/StmtNodes.inc"
225  }
226  llvm_unreachable("unknown expression kind");
227 }
228 
229 //===----------------------------------------------------------------------===//
230 // Primary Expressions.
231 //===----------------------------------------------------------------------===//
232 
233 /// Compute the type-, value-, and instantiation-dependence of a
234 /// declaration reference
235 /// based on the declaration being referenced.
236 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
237  QualType T, bool &TypeDependent,
238  bool &ValueDependent,
239  bool &InstantiationDependent) {
240  TypeDependent = false;
241  ValueDependent = false;
242  InstantiationDependent = false;
243 
244  // (TD) C++ [temp.dep.expr]p3:
245  // An id-expression is type-dependent if it contains:
246  //
247  // and
248  //
249  // (VD) C++ [temp.dep.constexpr]p2:
250  // An identifier is value-dependent if it is:
251 
252  // (TD) - an identifier that was declared with dependent type
253  // (VD) - a name declared with a dependent type,
254  if (T->isDependentType()) {
255  TypeDependent = true;
256  ValueDependent = true;
257  InstantiationDependent = true;
258  return;
259  } else if (T->isInstantiationDependentType()) {
260  InstantiationDependent = true;
261  }
262 
263  // (TD) - a conversion-function-id that specifies a dependent type
264  if (D->getDeclName().getNameKind()
267  if (T->isDependentType()) {
268  TypeDependent = true;
269  ValueDependent = true;
270  InstantiationDependent = true;
271  return;
272  }
273 
275  InstantiationDependent = true;
276  }
277 
278  // (VD) - the name of a non-type template parameter,
279  if (isa<NonTypeTemplateParmDecl>(D)) {
280  ValueDependent = true;
281  InstantiationDependent = true;
282  return;
283  }
284 
285  // (VD) - a constant with integral or enumeration type and is
286  // initialized with an expression that is value-dependent.
287  // (VD) - a constant with literal type and is initialized with an
288  // expression that is value-dependent [C++11].
289  // (VD) - FIXME: Missing from the standard:
290  // - an entity with reference type and is initialized with an
291  // expression that is value-dependent [C++11]
292  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
293  if ((Ctx.getLangOpts().CPlusPlus11 ?
294  Var->getType()->isLiteralType(Ctx) :
295  Var->getType()->isIntegralOrEnumerationType()) &&
296  (Var->getType().isConstQualified() ||
297  Var->getType()->isReferenceType())) {
298  if (const Expr *Init = Var->getAnyInitializer())
299  if (Init->isValueDependent()) {
300  ValueDependent = true;
301  InstantiationDependent = true;
302  }
303  }
304 
305  // (VD) - FIXME: Missing from the standard:
306  // - a member function or a static data member of the current
307  // instantiation
308  if (Var->isStaticDataMember() &&
309  Var->getDeclContext()->isDependentContext()) {
310  ValueDependent = true;
311  InstantiationDependent = true;
312  TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
313  if (TInfo->getType()->isIncompleteArrayType())
314  TypeDependent = true;
315  }
316 
317  return;
318  }
319 
320  // (VD) - FIXME: Missing from the standard:
321  // - a member function or a static data member of the current
322  // instantiation
323  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
324  ValueDependent = true;
325  InstantiationDependent = true;
326  }
327 }
328 
329 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
330  bool TypeDependent = false;
331  bool ValueDependent = false;
332  bool InstantiationDependent = false;
333  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
334  ValueDependent, InstantiationDependent);
335 
336  ExprBits.TypeDependent |= TypeDependent;
337  ExprBits.ValueDependent |= ValueDependent;
338  ExprBits.InstantiationDependent |= InstantiationDependent;
339 
340  // Is the declaration a parameter pack?
341  if (getDecl()->isParameterPack())
342  ExprBits.ContainsUnexpandedParameterPack = true;
343 }
344 
345 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
346  NestedNameSpecifierLoc QualifierLoc,
347  SourceLocation TemplateKWLoc,
348  ValueDecl *D, bool RefersToEnclosingVariableOrCapture,
349  const DeclarationNameInfo &NameInfo,
350  NamedDecl *FoundD,
351  const TemplateArgumentListInfo *TemplateArgs,
352  QualType T, ExprValueKind VK)
353  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
354  D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
355  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
356  if (QualifierLoc) {
357  new (getTrailingObjects<NestedNameSpecifierLoc>())
358  NestedNameSpecifierLoc(QualifierLoc);
359  auto *NNS = QualifierLoc.getNestedNameSpecifier();
360  if (NNS->isInstantiationDependent())
361  ExprBits.InstantiationDependent = true;
362  if (NNS->containsUnexpandedParameterPack())
363  ExprBits.ContainsUnexpandedParameterPack = true;
364  }
365  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
366  if (FoundD)
367  *getTrailingObjects<NamedDecl *>() = FoundD;
368  DeclRefExprBits.HasTemplateKWAndArgsInfo
369  = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
370  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
371  RefersToEnclosingVariableOrCapture;
372  if (TemplateArgs) {
373  bool Dependent = false;
374  bool InstantiationDependent = false;
375  bool ContainsUnexpandedParameterPack = false;
376  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
377  TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
378  Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
379  assert(!Dependent && "built a DeclRefExpr with dependent template args");
380  ExprBits.InstantiationDependent |= InstantiationDependent;
381  ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
382  } else if (TemplateKWLoc.isValid()) {
383  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
384  TemplateKWLoc);
385  }
386  DeclRefExprBits.HadMultipleCandidates = 0;
387 
388  computeDependence(Ctx);
389 }
390 
392  NestedNameSpecifierLoc QualifierLoc,
393  SourceLocation TemplateKWLoc,
394  ValueDecl *D,
395  bool RefersToEnclosingVariableOrCapture,
396  SourceLocation NameLoc,
397  QualType T,
398  ExprValueKind VK,
399  NamedDecl *FoundD,
400  const TemplateArgumentListInfo *TemplateArgs) {
401  return Create(Context, QualifierLoc, TemplateKWLoc, D,
402  RefersToEnclosingVariableOrCapture,
403  DeclarationNameInfo(D->getDeclName(), NameLoc),
404  T, VK, FoundD, TemplateArgs);
405 }
406 
408  NestedNameSpecifierLoc QualifierLoc,
409  SourceLocation TemplateKWLoc,
410  ValueDecl *D,
411  bool RefersToEnclosingVariableOrCapture,
412  const DeclarationNameInfo &NameInfo,
413  QualType T,
414  ExprValueKind VK,
415  NamedDecl *FoundD,
416  const TemplateArgumentListInfo *TemplateArgs) {
417  // Filter out cases where the found Decl is the same as the value refenenced.
418  if (D == FoundD)
419  FoundD = nullptr;
420 
421  bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
422  std::size_t Size =
423  totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
425  QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
426  HasTemplateKWAndArgsInfo ? 1 : 0,
427  TemplateArgs ? TemplateArgs->size() : 0);
428 
429  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
430  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
431  RefersToEnclosingVariableOrCapture,
432  NameInfo, FoundD, TemplateArgs, T, VK);
433 }
434 
436  bool HasQualifier,
437  bool HasFoundDecl,
438  bool HasTemplateKWAndArgsInfo,
439  unsigned NumTemplateArgs) {
440  assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
441  std::size_t Size =
442  totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
444  HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
445  NumTemplateArgs);
446  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
447  return new (Mem) DeclRefExpr(EmptyShell());
448 }
449 
451  if (hasQualifier())
452  return getQualifierLoc().getBeginLoc();
453  return getNameInfo().getBeginLoc();
454 }
456  if (hasExplicitTemplateArgs())
457  return getRAngleLoc();
458  return getNameInfo().getEndLoc();
459 }
460 
462  StringLiteral *SL)
463  : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
464  FNTy->isDependentType(), FNTy->isDependentType(),
465  FNTy->isInstantiationDependentType(),
466  /*ContainsUnexpandedParameterPack=*/false),
467  Loc(L), Type(IT), FnName(SL) {}
468 
470  return cast_or_null<StringLiteral>(FnName);
471 }
472 
474  switch (IT) {
475  case Func:
476  return "__func__";
477  case Function:
478  return "__FUNCTION__";
479  case FuncDName:
480  return "__FUNCDNAME__";
481  case LFunction:
482  return "L__FUNCTION__";
483  case PrettyFunction:
484  return "__PRETTY_FUNCTION__";
485  case FuncSig:
486  return "__FUNCSIG__";
487  case LFuncSig:
488  return "L__FUNCSIG__";
490  break;
491  }
492  llvm_unreachable("Unknown ident type for PredefinedExpr");
493 }
494 
495 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
496 // expr" policy instead.
497 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
498  ASTContext &Context = CurrentDecl->getASTContext();
499 
500  if (IT == PredefinedExpr::FuncDName) {
501  if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
502  std::unique_ptr<MangleContext> MC;
503  MC.reset(Context.createMangleContext());
504 
505  if (MC->shouldMangleDeclName(ND)) {
506  SmallString<256> Buffer;
507  llvm::raw_svector_ostream Out(Buffer);
508  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
509  MC->mangleCXXCtor(CD, Ctor_Base, Out);
510  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
511  MC->mangleCXXDtor(DD, Dtor_Base, Out);
512  else
513  MC->mangleName(ND, Out);
514 
515  if (!Buffer.empty() && Buffer.front() == '\01')
516  return Buffer.substr(1);
517  return Buffer.str();
518  } else
519  return ND->getIdentifier()->getName();
520  }
521  return "";
522  }
523  if (isa<BlockDecl>(CurrentDecl)) {
524  // For blocks we only emit something if it is enclosed in a function
525  // For top-level block we'd like to include the name of variable, but we
526  // don't have it at this point.
527  auto DC = CurrentDecl->getDeclContext();
528  if (DC->isFileContext())
529  return "";
530 
531  SmallString<256> Buffer;
532  llvm::raw_svector_ostream Out(Buffer);
533  if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
534  // For nested blocks, propagate up to the parent.
535  Out << ComputeName(IT, DCBlock);
536  else if (auto *DCDecl = dyn_cast<Decl>(DC))
537  Out << ComputeName(IT, DCDecl) << "_block_invoke";
538  return Out.str();
539  }
540  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
541  if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual &&
542  IT != FuncSig && IT != LFuncSig)
543  return FD->getNameAsString();
544 
545  SmallString<256> Name;
546  llvm::raw_svector_ostream Out(Name);
547 
548  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
549  if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
550  Out << "virtual ";
551  if (MD->isStatic())
552  Out << "static ";
553  }
554 
555  PrintingPolicy Policy(Context.getLangOpts());
556  std::string Proto;
557  llvm::raw_string_ostream POut(Proto);
558 
559  const FunctionDecl *Decl = FD;
560  if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
561  Decl = Pattern;
562  const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
563  const FunctionProtoType *FT = nullptr;
564  if (FD->hasWrittenPrototype())
565  FT = dyn_cast<FunctionProtoType>(AFT);
566 
567  if (IT == FuncSig || IT == LFuncSig) {
568  switch (AFT->getCallConv()) {
569  case CC_C: POut << "__cdecl "; break;
570  case CC_X86StdCall: POut << "__stdcall "; break;
571  case CC_X86FastCall: POut << "__fastcall "; break;
572  case CC_X86ThisCall: POut << "__thiscall "; break;
573  case CC_X86VectorCall: POut << "__vectorcall "; break;
574  case CC_X86RegCall: POut << "__regcall "; break;
575  // Only bother printing the conventions that MSVC knows about.
576  default: break;
577  }
578  }
579 
580  FD->printQualifiedName(POut, Policy);
581 
582  POut << "(";
583  if (FT) {
584  for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
585  if (i) POut << ", ";
586  POut << Decl->getParamDecl(i)->getType().stream(Policy);
587  }
588 
589  if (FT->isVariadic()) {
590  if (FD->getNumParams()) POut << ", ";
591  POut << "...";
592  } else if ((IT == FuncSig || IT == LFuncSig ||
593  !Context.getLangOpts().CPlusPlus) &&
594  !Decl->getNumParams()) {
595  POut << "void";
596  }
597  }
598  POut << ")";
599 
600  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
601  assert(FT && "We must have a written prototype in this case.");
602  if (FT->isConst())
603  POut << " const";
604  if (FT->isVolatile())
605  POut << " volatile";
606  RefQualifierKind Ref = MD->getRefQualifier();
607  if (Ref == RQ_LValue)
608  POut << " &";
609  else if (Ref == RQ_RValue)
610  POut << " &&";
611  }
612 
614  SpecsTy Specs;
615  const DeclContext *Ctx = FD->getDeclContext();
616  while (Ctx && isa<NamedDecl>(Ctx)) {
618  = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
619  if (Spec && !Spec->isExplicitSpecialization())
620  Specs.push_back(Spec);
621  Ctx = Ctx->getParent();
622  }
623 
624  std::string TemplateParams;
625  llvm::raw_string_ostream TOut(TemplateParams);
626  for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
627  I != E; ++I) {
628  const TemplateParameterList *Params
629  = (*I)->getSpecializedTemplate()->getTemplateParameters();
630  const TemplateArgumentList &Args = (*I)->getTemplateArgs();
631  assert(Params->size() == Args.size());
632  for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
633  StringRef Param = Params->getParam(i)->getName();
634  if (Param.empty()) continue;
635  TOut << Param << " = ";
636  Args.get(i).print(Policy, TOut);
637  TOut << ", ";
638  }
639  }
640 
642  = FD->getTemplateSpecializationInfo();
643  if (FSI && !FSI->isExplicitSpecialization()) {
644  const TemplateParameterList* Params
646  const TemplateArgumentList* Args = FSI->TemplateArguments;
647  assert(Params->size() == Args->size());
648  for (unsigned i = 0, e = Params->size(); i != e; ++i) {
649  StringRef Param = Params->getParam(i)->getName();
650  if (Param.empty()) continue;
651  TOut << Param << " = ";
652  Args->get(i).print(Policy, TOut);
653  TOut << ", ";
654  }
655  }
656 
657  TOut.flush();
658  if (!TemplateParams.empty()) {
659  // remove the trailing comma and space
660  TemplateParams.resize(TemplateParams.size() - 2);
661  POut << " [" << TemplateParams << "]";
662  }
663 
664  POut.flush();
665 
666  // Print "auto" for all deduced return types. This includes C++1y return
667  // type deduction and lambdas. For trailing return types resolve the
668  // decltype expression. Otherwise print the real type when this is
669  // not a constructor or destructor.
670  if (isa<CXXMethodDecl>(FD) &&
671  cast<CXXMethodDecl>(FD)->getParent()->isLambda())
672  Proto = "auto " + Proto;
673  else if (FT && FT->getReturnType()->getAs<DecltypeType>())
674  FT->getReturnType()
675  ->getAs<DecltypeType>()
677  .getAsStringInternal(Proto, Policy);
678  else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
679  AFT->getReturnType().getAsStringInternal(Proto, Policy);
680 
681  Out << Proto;
682 
683  return Name.str().str();
684  }
685  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
686  for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
687  // Skip to its enclosing function or method, but not its enclosing
688  // CapturedDecl.
689  if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
690  const Decl *D = Decl::castFromDeclContext(DC);
691  return ComputeName(IT, D);
692  }
693  llvm_unreachable("CapturedDecl not inside a function or method");
694  }
695  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
696  SmallString<256> Name;
697  llvm::raw_svector_ostream Out(Name);
698  Out << (MD->isInstanceMethod() ? '-' : '+');
699  Out << '[';
700 
701  // For incorrect code, there might not be an ObjCInterfaceDecl. Do
702  // a null check to avoid a crash.
703  if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
704  Out << *ID;
705 
706  if (const ObjCCategoryImplDecl *CID =
707  dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
708  Out << '(' << *CID << ')';
709 
710  Out << ' ';
711  MD->getSelector().print(Out);
712  Out << ']';
713 
714  return Name.str().str();
715  }
716  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
717  // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
718  return "top level";
719  }
720  return "";
721 }
722 
724  const llvm::APInt &Val) {
725  if (hasAllocation())
726  C.Deallocate(pVal);
727 
728  BitWidth = Val.getBitWidth();
729  unsigned NumWords = Val.getNumWords();
730  const uint64_t* Words = Val.getRawData();
731  if (NumWords > 1) {
732  pVal = new (C) uint64_t[NumWords];
733  std::copy(Words, Words + NumWords, pVal);
734  } else if (NumWords == 1)
735  VAL = Words[0];
736  else
737  VAL = 0;
738 }
739 
740 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
742  : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
743  false, false),
744  Loc(l) {
745  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
746  assert(V.getBitWidth() == C.getIntWidth(type) &&
747  "Integer type is not the correct size for constant.");
748  setValue(C, V);
749 }
750 
752 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
754  return new (C) IntegerLiteral(C, V, type, l);
755 }
756 
759  return new (C) IntegerLiteral(Empty);
760 }
761 
762 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
764  unsigned Scale)
765  : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
766  false, false),
767  Loc(l), Scale(Scale) {
768  assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
769  assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
770  "Fixed point type is not the correct size for constant.");
771  setValue(C, V);
772 }
773 
775  const llvm::APInt &V,
776  QualType type,
777  SourceLocation l,
778  unsigned Scale) {
779  return new (C) FixedPointLiteral(C, V, type, l, Scale);
780 }
781 
782 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
783  // Currently the longest decimal number that can be printed is the max for an
784  // unsigned long _Accum: 4294967295.99999999976716935634613037109375
785  // which is 43 characters.
786  SmallString<64> S;
788  S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
789  return S.str();
790 }
791 
792 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
793  bool isexact, QualType Type, SourceLocation L)
794  : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
795  false, false), Loc(L) {
796  setSemantics(V.getSemantics());
797  FloatingLiteralBits.IsExact = isexact;
798  setValue(C, V);
799 }
800 
801 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
802  : Expr(FloatingLiteralClass, Empty) {
803  setRawSemantics(IEEEhalf);
804  FloatingLiteralBits.IsExact = false;
805 }
806 
808 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
809  bool isexact, QualType Type, SourceLocation L) {
810  return new (C) FloatingLiteral(C, V, isexact, Type, L);
811 }
812 
815  return new (C) FloatingLiteral(C, Empty);
816 }
817 
818 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
819  switch(FloatingLiteralBits.Semantics) {
820  case IEEEhalf:
821  return llvm::APFloat::IEEEhalf();
822  case IEEEsingle:
823  return llvm::APFloat::IEEEsingle();
824  case IEEEdouble:
825  return llvm::APFloat::IEEEdouble();
826  case x87DoubleExtended:
827  return llvm::APFloat::x87DoubleExtended();
828  case IEEEquad:
829  return llvm::APFloat::IEEEquad();
830  case PPCDoubleDouble:
831  return llvm::APFloat::PPCDoubleDouble();
832  }
833  llvm_unreachable("Unrecognised floating semantics");
834 }
835 
836 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
837  if (&Sem == &llvm::APFloat::IEEEhalf())
838  FloatingLiteralBits.Semantics = IEEEhalf;
839  else if (&Sem == &llvm::APFloat::IEEEsingle())
840  FloatingLiteralBits.Semantics = IEEEsingle;
841  else if (&Sem == &llvm::APFloat::IEEEdouble())
842  FloatingLiteralBits.Semantics = IEEEdouble;
843  else if (&Sem == &llvm::APFloat::x87DoubleExtended())
845  else if (&Sem == &llvm::APFloat::IEEEquad())
846  FloatingLiteralBits.Semantics = IEEEquad;
847  else if (&Sem == &llvm::APFloat::PPCDoubleDouble())
849  else
850  llvm_unreachable("Unknown floating semantics");
851 }
852 
853 /// getValueAsApproximateDouble - This returns the value as an inaccurate
854 /// double. Note that this may cause loss of precision, but is useful for
855 /// debugging dumps, etc.
857  llvm::APFloat V = getValue();
858  bool ignored;
859  V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
860  &ignored);
861  return V.convertToDouble();
862 }
863 
864 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
865  int CharByteWidth = 0;
866  switch(k) {
867  case Ascii:
868  case UTF8:
869  CharByteWidth = target.getCharWidth();
870  break;
871  case Wide:
872  CharByteWidth = target.getWCharWidth();
873  break;
874  case UTF16:
875  CharByteWidth = target.getChar16Width();
876  break;
877  case UTF32:
878  CharByteWidth = target.getChar32Width();
879  break;
880  }
881  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
882  CharByteWidth /= 8;
883  assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
884  && "character byte widths supported are 1, 2, and 4 only");
885  return CharByteWidth;
886 }
887 
889  StringKind Kind, bool Pascal, QualType Ty,
890  const SourceLocation *Loc,
891  unsigned NumStrs) {
892  assert(C.getAsConstantArrayType(Ty) &&
893  "StringLiteral must be of constant array type!");
894 
895  // Allocate enough space for the StringLiteral plus an array of locations for
896  // any concatenated string tokens.
897  void *Mem =
898  C.Allocate(sizeof(StringLiteral) + sizeof(SourceLocation) * (NumStrs - 1),
899  alignof(StringLiteral));
900  StringLiteral *SL = new (Mem) StringLiteral(Ty);
901 
902  // OPTIMIZE: could allocate this appended to the StringLiteral.
903  SL->setString(C,Str,Kind,Pascal);
904 
905  SL->TokLocs[0] = Loc[0];
906  SL->NumConcatenated = NumStrs;
907 
908  if (NumStrs != 1)
909  memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
910  return SL;
911 }
912 
914  unsigned NumStrs) {
915  void *Mem =
916  C.Allocate(sizeof(StringLiteral) + sizeof(SourceLocation) * (NumStrs - 1),
917  alignof(StringLiteral));
918  StringLiteral *SL =
920  SL->CharByteWidth = 0;
921  SL->Length = 0;
922  SL->NumConcatenated = NumStrs;
923  return SL;
924 }
925 
926 void StringLiteral::outputString(raw_ostream &OS) const {
927  switch (getKind()) {
928  case Ascii: break; // no prefix.
929  case Wide: OS << 'L'; break;
930  case UTF8: OS << "u8"; break;
931  case UTF16: OS << 'u'; break;
932  case UTF32: OS << 'U'; break;
933  }
934  OS << '"';
935  static const char Hex[] = "0123456789ABCDEF";
936 
937  unsigned LastSlashX = getLength();
938  for (unsigned I = 0, N = getLength(); I != N; ++I) {
939  switch (uint32_t Char = getCodeUnit(I)) {
940  default:
941  // FIXME: Convert UTF-8 back to codepoints before rendering.
942 
943  // Convert UTF-16 surrogate pairs back to codepoints before rendering.
944  // Leave invalid surrogates alone; we'll use \x for those.
945  if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
946  Char <= 0xdbff) {
947  uint32_t Trail = getCodeUnit(I + 1);
948  if (Trail >= 0xdc00 && Trail <= 0xdfff) {
949  Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
950  ++I;
951  }
952  }
953 
954  if (Char > 0xff) {
955  // If this is a wide string, output characters over 0xff using \x
956  // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
957  // codepoint: use \x escapes for invalid codepoints.
958  if (getKind() == Wide ||
959  (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
960  // FIXME: Is this the best way to print wchar_t?
961  OS << "\\x";
962  int Shift = 28;
963  while ((Char >> Shift) == 0)
964  Shift -= 4;
965  for (/**/; Shift >= 0; Shift -= 4)
966  OS << Hex[(Char >> Shift) & 15];
967  LastSlashX = I;
968  break;
969  }
970 
971  if (Char > 0xffff)
972  OS << "\\U00"
973  << Hex[(Char >> 20) & 15]
974  << Hex[(Char >> 16) & 15];
975  else
976  OS << "\\u";
977  OS << Hex[(Char >> 12) & 15]
978  << Hex[(Char >> 8) & 15]
979  << Hex[(Char >> 4) & 15]
980  << Hex[(Char >> 0) & 15];
981  break;
982  }
983 
984  // If we used \x... for the previous character, and this character is a
985  // hexadecimal digit, prevent it being slurped as part of the \x.
986  if (LastSlashX + 1 == I) {
987  switch (Char) {
988  case '0': case '1': case '2': case '3': case '4':
989  case '5': case '6': case '7': case '8': case '9':
990  case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
991  case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
992  OS << "\"\"";
993  }
994  }
995 
996  assert(Char <= 0xff &&
997  "Characters above 0xff should already have been handled.");
998 
999  if (isPrintable(Char))
1000  OS << (char)Char;
1001  else // Output anything hard as an octal escape.
1002  OS << '\\'
1003  << (char)('0' + ((Char >> 6) & 7))
1004  << (char)('0' + ((Char >> 3) & 7))
1005  << (char)('0' + ((Char >> 0) & 7));
1006  break;
1007  // Handle some common non-printable cases to make dumps prettier.
1008  case '\\': OS << "\\\\"; break;
1009  case '"': OS << "\\\""; break;
1010  case '\a': OS << "\\a"; break;
1011  case '\b': OS << "\\b"; break;
1012  case '\f': OS << "\\f"; break;
1013  case '\n': OS << "\\n"; break;
1014  case '\r': OS << "\\r"; break;
1015  case '\t': OS << "\\t"; break;
1016  case '\v': OS << "\\v"; break;
1017  }
1018  }
1019  OS << '"';
1020 }
1021 
1022 void StringLiteral::setString(const ASTContext &C, StringRef Str,
1023  StringKind Kind, bool IsPascal) {
1024  //FIXME: we assume that the string data comes from a target that uses the same
1025  // code unit size and endianness for the type of string.
1026  this->Kind = Kind;
1027  this->IsPascal = IsPascal;
1028 
1029  CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
1030  assert((Str.size()%CharByteWidth == 0)
1031  && "size of data must be multiple of CharByteWidth");
1032  Length = Str.size()/CharByteWidth;
1033 
1034  switch(CharByteWidth) {
1035  case 1: {
1036  char *AStrData = new (C) char[Length];
1037  std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
1038  StrData.asChar = AStrData;
1039  break;
1040  }
1041  case 2: {
1042  uint16_t *AStrData = new (C) uint16_t[Length];
1043  std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
1044  StrData.asUInt16 = AStrData;
1045  break;
1046  }
1047  case 4: {
1048  uint32_t *AStrData = new (C) uint32_t[Length];
1049  std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
1050  StrData.asUInt32 = AStrData;
1051  break;
1052  }
1053  default:
1054  llvm_unreachable("unsupported CharByteWidth");
1055  }
1056 }
1057 
1058 /// getLocationOfByte - Return a source location that points to the specified
1059 /// byte of this string literal.
1060 ///
1061 /// Strings are amazingly complex. They can be formed from multiple tokens and
1062 /// can have escape sequences in them in addition to the usual trigraph and
1063 /// escaped newline business. This routine handles this complexity.
1064 ///
1065 /// The *StartToken sets the first token to be searched in this function and
1066 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1067 /// returning, it updates the *StartToken to the TokNo of the token being found
1068 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1069 /// string.
1070 /// Using these two parameters can reduce the time complexity from O(n^2) to
1071 /// O(n) if one wants to get the location of byte for all the tokens in a
1072 /// string.
1073 ///
1076  const LangOptions &Features,
1077  const TargetInfo &Target, unsigned *StartToken,
1078  unsigned *StartTokenByteOffset) const {
1079  assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
1080  "Only narrow string literals are currently supported");
1081 
1082  // Loop over all of the tokens in this string until we find the one that
1083  // contains the byte we're looking for.
1084  unsigned TokNo = 0;
1085  unsigned StringOffset = 0;
1086  if (StartToken)
1087  TokNo = *StartToken;
1088  if (StartTokenByteOffset) {
1089  StringOffset = *StartTokenByteOffset;
1090  ByteNo -= StringOffset;
1091  }
1092  while (1) {
1093  assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1094  SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1095 
1096  // Get the spelling of the string so that we can get the data that makes up
1097  // the string literal, not the identifier for the macro it is potentially
1098  // expanded through.
1099  SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1100 
1101  // Re-lex the token to get its length and original spelling.
1102  std::pair<FileID, unsigned> LocInfo =
1103  SM.getDecomposedLoc(StrTokSpellingLoc);
1104  bool Invalid = false;
1105  StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1106  if (Invalid) {
1107  if (StartTokenByteOffset != nullptr)
1108  *StartTokenByteOffset = StringOffset;
1109  if (StartToken != nullptr)
1110  *StartToken = TokNo;
1111  return StrTokSpellingLoc;
1112  }
1113 
1114  const char *StrData = Buffer.data()+LocInfo.second;
1115 
1116  // Create a lexer starting at the beginning of this token.
1117  Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1118  Buffer.begin(), StrData, Buffer.end());
1119  Token TheTok;
1120  TheLexer.LexFromRawLexer(TheTok);
1121 
1122  // Use the StringLiteralParser to compute the length of the string in bytes.
1123  StringLiteralParser SLP(TheTok, SM, Features, Target);
1124  unsigned TokNumBytes = SLP.GetStringLength();
1125 
1126  // If the byte is in this token, return the location of the byte.
1127  if (ByteNo < TokNumBytes ||
1128  (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1129  unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1130 
1131  // Now that we know the offset of the token in the spelling, use the
1132  // preprocessor to get the offset in the original source.
1133  if (StartTokenByteOffset != nullptr)
1134  *StartTokenByteOffset = StringOffset;
1135  if (StartToken != nullptr)
1136  *StartToken = TokNo;
1137  return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1138  }
1139 
1140  // Move to the next string token.
1141  StringOffset += TokNumBytes;
1142  ++TokNo;
1143  ByteNo -= TokNumBytes;
1144  }
1145 }
1146 
1147 
1148 
1149 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1150 /// corresponds to, e.g. "sizeof" or "[pre]++".
1152  switch (Op) {
1153 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1154 #include "clang/AST/OperationKinds.def"
1155  }
1156  llvm_unreachable("Unknown unary operator");
1157 }
1158 
1161  switch (OO) {
1162  default: llvm_unreachable("No unary operator for overloaded function");
1163  case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1164  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1165  case OO_Amp: return UO_AddrOf;
1166  case OO_Star: return UO_Deref;
1167  case OO_Plus: return UO_Plus;
1168  case OO_Minus: return UO_Minus;
1169  case OO_Tilde: return UO_Not;
1170  case OO_Exclaim: return UO_LNot;
1171  case OO_Coawait: return UO_Coawait;
1172  }
1173 }
1174 
1176  switch (Opc) {
1177  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1178  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1179  case UO_AddrOf: return OO_Amp;
1180  case UO_Deref: return OO_Star;
1181  case UO_Plus: return OO_Plus;
1182  case UO_Minus: return OO_Minus;
1183  case UO_Not: return OO_Tilde;
1184  case UO_LNot: return OO_Exclaim;
1185  case UO_Coawait: return OO_Coawait;
1186  default: return OO_None;
1187  }
1188 }
1189 
1190 
1191 //===----------------------------------------------------------------------===//
1192 // Postfix Operators.
1193 //===----------------------------------------------------------------------===//
1194 
1196  ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t,
1197  ExprValueKind VK, SourceLocation rparenloc)
1198  : Expr(SC, t, VK, OK_Ordinary, fn->isTypeDependent(),
1201  NumArgs(args.size()) {
1202 
1203  unsigned NumPreArgs = preargs.size();
1204  SubExprs = new (C) Stmt *[args.size()+PREARGS_START+NumPreArgs];
1205  SubExprs[FN] = fn;
1206  for (unsigned i = 0; i != NumPreArgs; ++i) {
1207  updateDependenciesFromArg(preargs[i]);
1208  SubExprs[i+PREARGS_START] = preargs[i];
1209  }
1210  for (unsigned i = 0; i != args.size(); ++i) {
1211  updateDependenciesFromArg(args[i]);
1212  SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1213  }
1214 
1215  CallExprBits.NumPreArgs = NumPreArgs;
1216  RParenLoc = rparenloc;
1217 }
1218 
1221  SourceLocation rparenloc)
1222  : CallExpr(C, SC, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {}
1223 
1225  QualType t, ExprValueKind VK, SourceLocation rparenloc)
1226  : CallExpr(C, CallExprClass, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {
1227 }
1228 
1230  : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {}
1231 
1232 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1233  EmptyShell Empty)
1234  : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
1235  // FIXME: Why do we allocate this?
1236  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]();
1237  CallExprBits.NumPreArgs = NumPreArgs;
1238 }
1239 
1240 void CallExpr::updateDependenciesFromArg(Expr *Arg) {
1241  if (Arg->isTypeDependent())
1242  ExprBits.TypeDependent = true;
1243  if (Arg->isValueDependent())
1244  ExprBits.ValueDependent = true;
1245  if (Arg->isInstantiationDependent())
1246  ExprBits.InstantiationDependent = true;
1248  ExprBits.ContainsUnexpandedParameterPack = true;
1249 }
1250 
1252  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1253 }
1254 
1257 }
1258 
1260  Expr *CEE = IgnoreParenImpCasts();
1261 
1262  while (SubstNonTypeTemplateParmExpr *NTTP
1263  = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1264  CEE = NTTP->getReplacement()->IgnoreParenCasts();
1265  }
1266 
1267  // If we're calling a dereference, look at the pointer instead.
1268  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1269  if (BO->isPtrMemOp())
1270  CEE = BO->getRHS()->IgnoreParenCasts();
1271  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1272  if (UO->getOpcode() == UO_Deref)
1273  CEE = UO->getSubExpr()->IgnoreParenCasts();
1274  }
1275  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1276  return DRE->getDecl();
1277  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1278  return ME->getMemberDecl();
1279 
1280  return nullptr;
1281 }
1282 
1283 /// setNumArgs - This changes the number of arguments present in this call.
1284 /// Any orphaned expressions are deleted by this, and any new operands are set
1285 /// to null.
1286 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
1287  // No change, just return.
1288  if (NumArgs == getNumArgs()) return;
1289 
1290  // If shrinking # arguments, just delete the extras and forgot them.
1291  if (NumArgs < getNumArgs()) {
1292  this->NumArgs = NumArgs;
1293  return;
1294  }
1295 
1296  // Otherwise, we are growing the # arguments. New an bigger argument array.
1297  unsigned NumPreArgs = getNumPreArgs();
1298  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1299  // Copy over args.
1300  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1301  NewSubExprs[i] = SubExprs[i];
1302  // Null out new args.
1303  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1304  i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1305  NewSubExprs[i] = nullptr;
1306 
1307  if (SubExprs) C.Deallocate(SubExprs);
1308  SubExprs = NewSubExprs;
1309  this->NumArgs = NumArgs;
1310 }
1311 
1312 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
1313 /// not, return 0.
1314 unsigned CallExpr::getBuiltinCallee() const {
1315  // All simple function calls (e.g. func()) are implicitly cast to pointer to
1316  // function. As a result, we try and obtain the DeclRefExpr from the
1317  // ImplicitCastExpr.
1318  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1319  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1320  return 0;
1321 
1322  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1323  if (!DRE)
1324  return 0;
1325 
1326  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1327  if (!FDecl)
1328  return 0;
1329 
1330  if (!FDecl->getIdentifier())
1331  return 0;
1332 
1333  return FDecl->getBuiltinID();
1334 }
1335 
1337  if (unsigned BI = getBuiltinCallee())
1338  return Ctx.BuiltinInfo.isUnevaluated(BI);
1339  return false;
1340 }
1341 
1343  const Expr *Callee = getCallee();
1344  QualType CalleeType = Callee->getType();
1345  if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1346  CalleeType = FnTypePtr->getPointeeType();
1347  } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1348  CalleeType = BPT->getPointeeType();
1349  } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1350  if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1351  return Ctx.VoidTy;
1352 
1353  // This should never be overloaded and so should never return null.
1354  CalleeType = Expr::findBoundMemberType(Callee);
1355  }
1356 
1357  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1358  return FnType->getReturnType();
1359 }
1360 
1362  if (isa<CXXOperatorCallExpr>(this))
1363  return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
1364 
1365  SourceLocation begin = getCallee()->getBeginLoc();
1366  if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1367  begin = getArg(0)->getBeginLoc();
1368  return begin;
1369 }
1371  if (isa<CXXOperatorCallExpr>(this))
1372  return cast<CXXOperatorCallExpr>(this)->getEndLoc();
1373 
1374  SourceLocation end = getRParenLoc();
1375  if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1376  end = getArg(getNumArgs() - 1)->getEndLoc();
1377  return end;
1378 }
1379 
1381  SourceLocation OperatorLoc,
1382  TypeSourceInfo *tsi,
1383  ArrayRef<OffsetOfNode> comps,
1384  ArrayRef<Expr*> exprs,
1385  SourceLocation RParenLoc) {
1386  void *Mem = C.Allocate(
1387  totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1388 
1389  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1390  RParenLoc);
1391 }
1392 
1394  unsigned numComps, unsigned numExprs) {
1395  void *Mem =
1396  C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1397  return new (Mem) OffsetOfExpr(numComps, numExprs);
1398 }
1399 
1400 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1401  SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1403  SourceLocation RParenLoc)
1404  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1405  /*TypeDependent=*/false,
1406  /*ValueDependent=*/tsi->getType()->isDependentType(),
1409  OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1410  NumComps(comps.size()), NumExprs(exprs.size())
1411 {
1412  for (unsigned i = 0; i != comps.size(); ++i) {
1413  setComponent(i, comps[i]);
1414  }
1415 
1416  for (unsigned i = 0; i != exprs.size(); ++i) {
1417  if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1418  ExprBits.ValueDependent = true;
1419  if (exprs[i]->containsUnexpandedParameterPack())
1420  ExprBits.ContainsUnexpandedParameterPack = true;
1421 
1422  setIndexExpr(i, exprs[i]);
1423  }
1424 }
1425 
1427  assert(getKind() == Field || getKind() == Identifier);
1428  if (getKind() == Field)
1429  return getField()->getIdentifier();
1430 
1431  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1432 }
1433 
1435  UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1437  : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1438  false, // Never type-dependent (C++ [temp.dep.expr]p3).
1439  // Value-dependent if the argument is type-dependent.
1442  OpLoc(op), RParenLoc(rp) {
1443  UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1444  UnaryExprOrTypeTraitExprBits.IsType = false;
1445  Argument.Ex = E;
1446 
1447  // Check to see if we are in the situation where alignof(decl) should be
1448  // dependent because decl's alignment is dependent.
1449  if (ExprKind == UETT_AlignOf) {
1451  E = E->IgnoreParens();
1452 
1453  const ValueDecl *D = nullptr;
1454  if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
1455  D = DRE->getDecl();
1456  else if (const auto *ME = dyn_cast<MemberExpr>(E))
1457  D = ME->getMemberDecl();
1458 
1459  if (D) {
1460  for (const auto *I : D->specific_attrs<AlignedAttr>()) {
1461  if (I->isAlignmentDependent()) {
1462  setValueDependent(true);
1464  break;
1465  }
1466  }
1467  }
1468  }
1469  }
1470 }
1471 
1473  const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
1474  NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1475  ValueDecl *memberdecl, DeclAccessPair founddecl,
1476  DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
1477  QualType ty, ExprValueKind vk, ExprObjectKind ok) {
1478 
1479  bool hasQualOrFound = (QualifierLoc ||
1480  founddecl.getDecl() != memberdecl ||
1481  founddecl.getAccess() != memberdecl->getAccess());
1482 
1483  bool HasTemplateKWAndArgsInfo = targs || TemplateKWLoc.isValid();
1484  std::size_t Size =
1486  TemplateArgumentLoc>(hasQualOrFound ? 1 : 0,
1487  HasTemplateKWAndArgsInfo ? 1 : 0,
1488  targs ? targs->size() : 0);
1489 
1490  void *Mem = C.Allocate(Size, alignof(MemberExpr));
1491  MemberExpr *E = new (Mem)
1492  MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);
1493 
1494  if (hasQualOrFound) {
1495  // FIXME: Wrong. We should be looking at the member declaration we found.
1496  if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1497  E->setValueDependent(true);
1498  E->setTypeDependent(true);
1499  E->setInstantiationDependent(true);
1500  }
1501  else if (QualifierLoc &&
1503  E->setInstantiationDependent(true);
1504 
1505  E->HasQualifierOrFoundDecl = true;
1506 
1507  MemberExprNameQualifier *NQ =
1508  E->getTrailingObjects<MemberExprNameQualifier>();
1509  NQ->QualifierLoc = QualifierLoc;
1510  NQ->FoundDecl = founddecl;
1511  }
1512 
1513  E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1514 
1515  if (targs) {
1516  bool Dependent = false;
1517  bool InstantiationDependent = false;
1518  bool ContainsUnexpandedParameterPack = false;
1519  E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1520  TemplateKWLoc, *targs, E->getTrailingObjects<TemplateArgumentLoc>(),
1521  Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
1522  if (InstantiationDependent)
1523  E->setInstantiationDependent(true);
1524  } else if (TemplateKWLoc.isValid()) {
1525  E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1526  TemplateKWLoc);
1527  }
1528 
1529  return E;
1530 }
1531 
1533  if (isImplicitAccess()) {
1534  if (hasQualifier())
1535  return getQualifierLoc().getBeginLoc();
1536  return MemberLoc;
1537  }
1538 
1539  // FIXME: We don't want this to happen. Rather, we should be able to
1540  // detect all kinds of implicit accesses more cleanly.
1541  SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1542  if (BaseStartLoc.isValid())
1543  return BaseStartLoc;
1544  return MemberLoc;
1545 }
1547  SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1548  if (hasExplicitTemplateArgs())
1549  EndLoc = getRAngleLoc();
1550  else if (EndLoc.isInvalid())
1551  EndLoc = getBase()->getEndLoc();
1552  return EndLoc;
1553 }
1554 
1555 bool CastExpr::CastConsistency() const {
1556  switch (getCastKind()) {
1557  case CK_DerivedToBase:
1558  case CK_UncheckedDerivedToBase:
1559  case CK_DerivedToBaseMemberPointer:
1560  case CK_BaseToDerived:
1561  case CK_BaseToDerivedMemberPointer:
1562  assert(!path_empty() && "Cast kind should have a base path!");
1563  break;
1564 
1565  case CK_CPointerToObjCPointerCast:
1566  assert(getType()->isObjCObjectPointerType());
1567  assert(getSubExpr()->getType()->isPointerType());
1568  goto CheckNoBasePath;
1569 
1570  case CK_BlockPointerToObjCPointerCast:
1571  assert(getType()->isObjCObjectPointerType());
1572  assert(getSubExpr()->getType()->isBlockPointerType());
1573  goto CheckNoBasePath;
1574 
1575  case CK_ReinterpretMemberPointer:
1576  assert(getType()->isMemberPointerType());
1577  assert(getSubExpr()->getType()->isMemberPointerType());
1578  goto CheckNoBasePath;
1579 
1580  case CK_BitCast:
1581  // Arbitrary casts to C pointer types count as bitcasts.
1582  // Otherwise, we should only have block and ObjC pointer casts
1583  // here if they stay within the type kind.
1584  if (!getType()->isPointerType()) {
1585  assert(getType()->isObjCObjectPointerType() ==
1586  getSubExpr()->getType()->isObjCObjectPointerType());
1587  assert(getType()->isBlockPointerType() ==
1588  getSubExpr()->getType()->isBlockPointerType());
1589  }
1590  goto CheckNoBasePath;
1591 
1592  case CK_AnyPointerToBlockPointerCast:
1593  assert(getType()->isBlockPointerType());
1594  assert(getSubExpr()->getType()->isAnyPointerType() &&
1595  !getSubExpr()->getType()->isBlockPointerType());
1596  goto CheckNoBasePath;
1597 
1598  case CK_CopyAndAutoreleaseBlockObject:
1599  assert(getType()->isBlockPointerType());
1600  assert(getSubExpr()->getType()->isBlockPointerType());
1601  goto CheckNoBasePath;
1602 
1603  case CK_FunctionToPointerDecay:
1604  assert(getType()->isPointerType());
1605  assert(getSubExpr()->getType()->isFunctionType());
1606  goto CheckNoBasePath;
1607 
1608  case CK_AddressSpaceConversion:
1609  assert(getType()->isPointerType() || getType()->isBlockPointerType());
1610  assert(getSubExpr()->getType()->isPointerType() ||
1611  getSubExpr()->getType()->isBlockPointerType());
1612  assert(getType()->getPointeeType().getAddressSpace() !=
1613  getSubExpr()->getType()->getPointeeType().getAddressSpace());
1614  LLVM_FALLTHROUGH;
1615  // These should not have an inheritance path.
1616  case CK_Dynamic:
1617  case CK_ToUnion:
1618  case CK_ArrayToPointerDecay:
1619  case CK_NullToMemberPointer:
1620  case CK_NullToPointer:
1621  case CK_ConstructorConversion:
1622  case CK_IntegralToPointer:
1623  case CK_PointerToIntegral:
1624  case CK_ToVoid:
1625  case CK_VectorSplat:
1626  case CK_IntegralCast:
1627  case CK_BooleanToSignedIntegral:
1628  case CK_IntegralToFloating:
1629  case CK_FloatingToIntegral:
1630  case CK_FloatingCast:
1631  case CK_ObjCObjectLValueCast:
1632  case CK_FloatingRealToComplex:
1633  case CK_FloatingComplexToReal:
1634  case CK_FloatingComplexCast:
1635  case CK_FloatingComplexToIntegralComplex:
1636  case CK_IntegralRealToComplex:
1637  case CK_IntegralComplexToReal:
1638  case CK_IntegralComplexCast:
1639  case CK_IntegralComplexToFloatingComplex:
1640  case CK_ARCProduceObject:
1641  case CK_ARCConsumeObject:
1642  case CK_ARCReclaimReturnedObject:
1643  case CK_ARCExtendBlockObject:
1644  case CK_ZeroToOCLEvent:
1645  case CK_ZeroToOCLQueue:
1646  case CK_IntToOCLSampler:
1647  assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1648  goto CheckNoBasePath;
1649 
1650  case CK_Dependent:
1651  case CK_LValueToRValue:
1652  case CK_NoOp:
1653  case CK_AtomicToNonAtomic:
1654  case CK_NonAtomicToAtomic:
1655  case CK_PointerToBoolean:
1656  case CK_IntegralToBoolean:
1657  case CK_FloatingToBoolean:
1658  case CK_MemberPointerToBoolean:
1659  case CK_FloatingComplexToBoolean:
1660  case CK_IntegralComplexToBoolean:
1661  case CK_LValueBitCast: // -> bool&
1662  case CK_UserDefinedConversion: // operator bool()
1663  case CK_BuiltinFnToFnPtr:
1664  CheckNoBasePath:
1665  assert(path_empty() && "Cast kind should not have a base path!");
1666  break;
1667  }
1668  return true;
1669 }
1670 
1672  switch (CK) {
1673 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1674 #include "clang/AST/OperationKinds.def"
1675  }
1676  llvm_unreachable("Unhandled cast kind!");
1677 }
1678 
1679 namespace {
1680  const Expr *skipImplicitTemporary(const Expr *E) {
1681  // Skip through reference binding to temporary.
1682  if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1683  E = Materialize->GetTemporaryExpr();
1684 
1685  // Skip any temporary bindings; they're implicit.
1686  if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1687  E = Binder->getSubExpr();
1688 
1689  return E;
1690  }
1691 }
1692 
1694  const Expr *SubExpr = nullptr;
1695  const CastExpr *E = this;
1696  do {
1697  SubExpr = skipImplicitTemporary(E->getSubExpr());
1698 
1699  // Conversions by constructor and conversion functions have a
1700  // subexpression describing the call; strip it off.
1701  if (E->getCastKind() == CK_ConstructorConversion)
1702  SubExpr =
1703  skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0));
1704  else if (E->getCastKind() == CK_UserDefinedConversion) {
1705  assert((isa<CXXMemberCallExpr>(SubExpr) ||
1706  isa<BlockExpr>(SubExpr)) &&
1707  "Unexpected SubExpr for CK_UserDefinedConversion.");
1708  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1709  SubExpr = MCE->getImplicitObjectArgument();
1710  }
1711 
1712  // If the subexpression we're left with is an implicit cast, look
1713  // through that, too.
1714  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1715 
1716  return const_cast<Expr*>(SubExpr);
1717 }
1718 
1720  const Expr *SubExpr = nullptr;
1721 
1722  for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1723  SubExpr = skipImplicitTemporary(E->getSubExpr());
1724 
1725  if (E->getCastKind() == CK_ConstructorConversion)
1726  return cast<CXXConstructExpr>(SubExpr)->getConstructor();
1727 
1728  if (E->getCastKind() == CK_UserDefinedConversion) {
1729  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1730  return MCE->getMethodDecl();
1731  }
1732  }
1733 
1734  return nullptr;
1735 }
1736 
1737 CastExpr::BasePathSizeTy *CastExpr::BasePathSize() {
1738  assert(!path_empty());
1739  switch (getStmtClass()) {
1740 #define ABSTRACT_STMT(x)
1741 #define CASTEXPR(Type, Base) \
1742  case Stmt::Type##Class: \
1743  return static_cast<Type *>(this) \
1744  ->getTrailingObjects<CastExpr::BasePathSizeTy>();
1745 #define STMT(Type, Base)
1746 #include "clang/AST/StmtNodes.inc"
1747  default:
1748  llvm_unreachable("non-cast expressions not possible here");
1749  }
1750 }
1751 
1752 CXXBaseSpecifier **CastExpr::path_buffer() {
1753  switch (getStmtClass()) {
1754 #define ABSTRACT_STMT(x)
1755 #define CASTEXPR(Type, Base) \
1756  case Stmt::Type##Class: \
1757  return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1758 #define STMT(Type, Base)
1759 #include "clang/AST/StmtNodes.inc"
1760  default:
1761  llvm_unreachable("non-cast expressions not possible here");
1762  }
1763 }
1764 
1766  QualType opType) {
1767  auto RD = unionType->castAs<RecordType>()->getDecl();
1768  return getTargetFieldForToUnionCast(RD, opType);
1769 }
1770 
1772  QualType OpType) {
1773  auto &Ctx = RD->getASTContext();
1774  RecordDecl::field_iterator Field, FieldEnd;
1775  for (Field = RD->field_begin(), FieldEnd = RD->field_end();
1776  Field != FieldEnd; ++Field) {
1777  if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
1778  !Field->isUnnamedBitfield()) {
1779  return *Field;
1780  }
1781  }
1782  return nullptr;
1783 }
1784 
1786  CastKind Kind, Expr *Operand,
1787  const CXXCastPath *BasePath,
1788  ExprValueKind VK) {
1789  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1790  void *Buffer =
1791  C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>(
1792  PathSize ? 1 : 0, PathSize));
1793  ImplicitCastExpr *E =
1794  new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1795  if (PathSize)
1796  std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1797  E->getTrailingObjects<CXXBaseSpecifier *>());
1798  return E;
1799 }
1800 
1802  unsigned PathSize) {
1803  void *Buffer =
1804  C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>(
1805  PathSize ? 1 : 0, PathSize));
1806  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1807 }
1808 
1809 
1811  ExprValueKind VK, CastKind K, Expr *Op,
1812  const CXXCastPath *BasePath,
1813  TypeSourceInfo *WrittenTy,
1815  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1816  void *Buffer =
1817  C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>(
1818  PathSize ? 1 : 0, PathSize));
1819  CStyleCastExpr *E =
1820  new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1821  if (PathSize)
1822  std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1823  E->getTrailingObjects<CXXBaseSpecifier *>());
1824  return E;
1825 }
1826 
1828  unsigned PathSize) {
1829  void *Buffer =
1830  C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>(
1831  PathSize ? 1 : 0, PathSize));
1832  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1833 }
1834 
1835 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1836 /// corresponds to, e.g. "<<=".
1838  switch (Op) {
1839 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
1840 #include "clang/AST/OperationKinds.def"
1841  }
1842  llvm_unreachable("Invalid OpCode!");
1843 }
1844 
1847  switch (OO) {
1848  default: llvm_unreachable("Not an overloadable binary operator");
1849  case OO_Plus: return BO_Add;
1850  case OO_Minus: return BO_Sub;
1851  case OO_Star: return BO_Mul;
1852  case OO_Slash: return BO_Div;
1853  case OO_Percent: return BO_Rem;
1854  case OO_Caret: return BO_Xor;
1855  case OO_Amp: return BO_And;
1856  case OO_Pipe: return BO_Or;
1857  case OO_Equal: return BO_Assign;
1858  case OO_Spaceship: return BO_Cmp;
1859  case OO_Less: return BO_LT;
1860  case OO_Greater: return BO_GT;
1861  case OO_PlusEqual: return BO_AddAssign;
1862  case OO_MinusEqual: return BO_SubAssign;
1863  case OO_StarEqual: return BO_MulAssign;
1864  case OO_SlashEqual: return BO_DivAssign;
1865  case OO_PercentEqual: return BO_RemAssign;
1866  case OO_CaretEqual: return BO_XorAssign;
1867  case OO_AmpEqual: return BO_AndAssign;
1868  case OO_PipeEqual: return BO_OrAssign;
1869  case OO_LessLess: return BO_Shl;
1870  case OO_GreaterGreater: return BO_Shr;
1871  case OO_LessLessEqual: return BO_ShlAssign;
1872  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1873  case OO_EqualEqual: return BO_EQ;
1874  case OO_ExclaimEqual: return BO_NE;
1875  case OO_LessEqual: return BO_LE;
1876  case OO_GreaterEqual: return BO_GE;
1877  case OO_AmpAmp: return BO_LAnd;
1878  case OO_PipePipe: return BO_LOr;
1879  case OO_Comma: return BO_Comma;
1880  case OO_ArrowStar: return BO_PtrMemI;
1881  }
1882 }
1883 
1885  static const OverloadedOperatorKind OverOps[] = {
1886  /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1887  OO_Star, OO_Slash, OO_Percent,
1888  OO_Plus, OO_Minus,
1889  OO_LessLess, OO_GreaterGreater,
1890  OO_Spaceship,
1891  OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1892  OO_EqualEqual, OO_ExclaimEqual,
1893  OO_Amp,
1894  OO_Caret,
1895  OO_Pipe,
1896  OO_AmpAmp,
1897  OO_PipePipe,
1898  OO_Equal, OO_StarEqual,
1899  OO_SlashEqual, OO_PercentEqual,
1900  OO_PlusEqual, OO_MinusEqual,
1901  OO_LessLessEqual, OO_GreaterGreaterEqual,
1902  OO_AmpEqual, OO_CaretEqual,
1903  OO_PipeEqual,
1904  OO_Comma
1905  };
1906  return OverOps[Opc];
1907 }
1908 
1910  Opcode Opc,
1911  Expr *LHS, Expr *RHS) {
1912  if (Opc != BO_Add)
1913  return false;
1914 
1915  // Check that we have one pointer and one integer operand.
1916  Expr *PExp;
1917  if (LHS->getType()->isPointerType()) {
1918  if (!RHS->getType()->isIntegerType())
1919  return false;
1920  PExp = LHS;
1921  } else if (RHS->getType()->isPointerType()) {
1922  if (!LHS->getType()->isIntegerType())
1923  return false;
1924  PExp = RHS;
1925  } else {
1926  return false;
1927  }
1928 
1929  // Check that the pointer is a nullptr.
1930  if (!PExp->IgnoreParenCasts()
1932  return false;
1933 
1934  // Check that the pointee type is char-sized.
1935  const PointerType *PTy = PExp->getType()->getAs<PointerType>();
1936  if (!PTy || !PTy->getPointeeType()->isCharType())
1937  return false;
1938 
1939  return true;
1940 }
1942  ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1943  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1944  false, false),
1945  InitExprs(C, initExprs.size()),
1946  LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
1947 {
1948  sawArrayRangeDesignator(false);
1949  for (unsigned I = 0; I != initExprs.size(); ++I) {
1950  if (initExprs[I]->isTypeDependent())
1951  ExprBits.TypeDependent = true;
1952  if (initExprs[I]->isValueDependent())
1953  ExprBits.ValueDependent = true;
1954  if (initExprs[I]->isInstantiationDependent())
1955  ExprBits.InstantiationDependent = true;
1956  if (initExprs[I]->containsUnexpandedParameterPack())
1957  ExprBits.ContainsUnexpandedParameterPack = true;
1958  }
1959 
1960  InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1961 }
1962 
1963 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
1964  if (NumInits > InitExprs.size())
1965  InitExprs.reserve(C, NumInits);
1966 }
1967 
1968 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
1969  InitExprs.resize(C, NumInits, nullptr);
1970 }
1971 
1972 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
1973  if (Init >= InitExprs.size()) {
1974  InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
1975  setInit(Init, expr);
1976  return nullptr;
1977  }
1978 
1979  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1980  setInit(Init, expr);
1981  return Result;
1982 }
1983 
1985  assert(!hasArrayFiller() && "Filler already set!");
1986  ArrayFillerOrUnionFieldInit = filler;
1987  // Fill out any "holes" in the array due to designated initializers.
1988  Expr **inits = getInits();
1989  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1990  if (inits[i] == nullptr)
1991  inits[i] = filler;
1992 }
1993 
1995  if (getNumInits() != 1)
1996  return false;
1997  const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1998  if (!AT || !AT->getElementType()->isIntegerType())
1999  return false;
2000  // It is possible for getInit() to return null.
2001  const Expr *Init = getInit(0);
2002  if (!Init)
2003  return false;
2004  Init = Init->IgnoreParens();
2005  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2006 }
2007 
2009  assert(isSemanticForm() && "syntactic form never semantically transparent");
2010 
2011  // A glvalue InitListExpr is always just sugar.
2012  if (isGLValue()) {
2013  assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2014  return true;
2015  }
2016 
2017  // Otherwise, we're sugar if and only if we have exactly one initializer that
2018  // is of the same type.
2019  if (getNumInits() != 1 || !getInit(0))
2020  return false;
2021 
2022  // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2023  // transparent struct copy.
2024  if (!getInit(0)->isRValue() && getType()->isRecordType())
2025  return false;
2026 
2027  return getType().getCanonicalType() ==
2029 }
2030 
2032  assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2033 
2034  if (LangOpts.CPlusPlus || getNumInits() != 1) {
2035  return false;
2036  }
2037 
2038  const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0));
2039  return Lit && Lit->getValue() == 0;
2040 }
2041 
2043  if (InitListExpr *SyntacticForm = getSyntacticForm())
2044  return SyntacticForm->getBeginLoc();
2045  SourceLocation Beg = LBraceLoc;
2046  if (Beg.isInvalid()) {
2047  // Find the first non-null initializer.
2048  for (InitExprsTy::const_iterator I = InitExprs.begin(),
2049  E = InitExprs.end();
2050  I != E; ++I) {
2051  if (Stmt *S = *I) {
2052  Beg = S->getBeginLoc();
2053  break;
2054  }
2055  }
2056  }
2057  return Beg;
2058 }
2059 
2061  if (InitListExpr *SyntacticForm = getSyntacticForm())
2062  return SyntacticForm->getEndLoc();
2063  SourceLocation End = RBraceLoc;
2064  if (End.isInvalid()) {
2065  // Find the first non-null initializer from the end.
2066  for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
2067  E = InitExprs.rend();
2068  I != E; ++I) {
2069  if (Stmt *S = *I) {
2070  End = S->getEndLoc();
2071  break;
2072  }
2073  }
2074  }
2075  return End;
2076 }
2077 
2078 /// getFunctionType - Return the underlying function type for this block.
2079 ///
2081  // The block pointer is never sugared, but the function type might be.
2082  return cast<BlockPointerType>(getType())
2083  ->getPointeeType()->castAs<FunctionProtoType>();
2084 }
2085 
2087  return TheBlock->getCaretLocation();
2088 }
2089 const Stmt *BlockExpr::getBody() const {
2090  return TheBlock->getBody();
2091 }
2093  return TheBlock->getBody();
2094 }
2095 
2096 
2097 //===----------------------------------------------------------------------===//
2098 // Generic Expression Routines
2099 //===----------------------------------------------------------------------===//
2100 
2101 /// isUnusedResultAWarning - Return true if this immediate expression should
2102 /// be warned about if the result is unused. If so, fill in Loc and Ranges
2103 /// with location to warn on and the source range[s] to report with the
2104 /// warning.
2106  SourceRange &R1, SourceRange &R2,
2107  ASTContext &Ctx) const {
2108  // Don't warn if the expr is type dependent. The type could end up
2109  // instantiating to void.
2110  if (isTypeDependent())
2111  return false;
2112 
2113  switch (getStmtClass()) {
2114  default:
2115  if (getType()->isVoidType())
2116  return false;
2117  WarnE = this;
2118  Loc = getExprLoc();
2119  R1 = getSourceRange();
2120  return true;
2121  case ParenExprClass:
2122  return cast<ParenExpr>(this)->getSubExpr()->
2123  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2124  case GenericSelectionExprClass:
2125  return cast<GenericSelectionExpr>(this)->getResultExpr()->
2126  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2127  case CoawaitExprClass:
2128  case CoyieldExprClass:
2129  return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2130  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2131  case ChooseExprClass:
2132  return cast<ChooseExpr>(this)->getChosenSubExpr()->
2133  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2134  case UnaryOperatorClass: {
2135  const UnaryOperator *UO = cast<UnaryOperator>(this);
2136 
2137  switch (UO->getOpcode()) {
2138  case UO_Plus:
2139  case UO_Minus:
2140  case UO_AddrOf:
2141  case UO_Not:
2142  case UO_LNot:
2143  case UO_Deref:
2144  break;
2145  case UO_Coawait:
2146  // This is just the 'operator co_await' call inside the guts of a
2147  // dependent co_await call.
2148  case UO_PostInc:
2149  case UO_PostDec:
2150  case UO_PreInc:
2151  case UO_PreDec: // ++/--
2152  return false; // Not a warning.
2153  case UO_Real:
2154  case UO_Imag:
2155  // accessing a piece of a volatile complex is a side-effect.
2156  if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2157  .isVolatileQualified())
2158  return false;
2159  break;
2160  case UO_Extension:
2161  return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2162  }
2163  WarnE = this;
2164  Loc = UO->getOperatorLoc();
2165  R1 = UO->getSubExpr()->getSourceRange();
2166  return true;
2167  }
2168  case BinaryOperatorClass: {
2169  const BinaryOperator *BO = cast<BinaryOperator>(this);
2170  switch (BO->getOpcode()) {
2171  default:
2172  break;
2173  // Consider the RHS of comma for side effects. LHS was checked by
2174  // Sema::CheckCommaOperands.
2175  case BO_Comma:
2176  // ((foo = <blah>), 0) is an idiom for hiding the result (and
2177  // lvalue-ness) of an assignment written in a macro.
2178  if (IntegerLiteral *IE =
2179  dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2180  if (IE->getValue() == 0)
2181  return false;
2182  return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2183  // Consider '||', '&&' to have side effects if the LHS or RHS does.
2184  case BO_LAnd:
2185  case BO_LOr:
2186  if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2187  !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2188  return false;
2189  break;
2190  }
2191  if (BO->isAssignmentOp())
2192  return false;
2193  WarnE = this;
2194  Loc = BO->getOperatorLoc();
2195  R1 = BO->getLHS()->getSourceRange();
2196  R2 = BO->getRHS()->getSourceRange();
2197  return true;
2198  }
2199  case CompoundAssignOperatorClass:
2200  case VAArgExprClass:
2201  case AtomicExprClass:
2202  return false;
2203 
2204  case ConditionalOperatorClass: {
2205  // If only one of the LHS or RHS is a warning, the operator might
2206  // be being used for control flow. Only warn if both the LHS and
2207  // RHS are warnings.
2208  const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
2209  if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2210  return false;
2211  if (!Exp->getLHS())
2212  return true;
2213  return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2214  }
2215 
2216  case MemberExprClass:
2217  WarnE = this;
2218  Loc = cast<MemberExpr>(this)->getMemberLoc();
2219  R1 = SourceRange(Loc, Loc);
2220  R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2221  return true;
2222 
2223  case ArraySubscriptExprClass:
2224  WarnE = this;
2225  Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2226  R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2227  R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2228  return true;
2229 
2230  case CXXOperatorCallExprClass: {
2231  // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2232  // overloads as there is no reasonable way to define these such that they
2233  // have non-trivial, desirable side-effects. See the -Wunused-comparison
2234  // warning: operators == and != are commonly typo'ed, and so warning on them
2235  // provides additional value as well. If this list is updated,
2236  // DiagnoseUnusedComparison should be as well.
2237  const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2238  switch (Op->getOperator()) {
2239  default:
2240  break;
2241  case OO_EqualEqual:
2242  case OO_ExclaimEqual:
2243  case OO_Less:
2244  case OO_Greater:
2245  case OO_GreaterEqual:
2246  case OO_LessEqual:
2247  if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2248  Op->getCallReturnType(Ctx)->isVoidType())
2249  break;
2250  WarnE = this;
2251  Loc = Op->getOperatorLoc();
2252  R1 = Op->getSourceRange();
2253  return true;
2254  }
2255 
2256  // Fallthrough for generic call handling.
2257  LLVM_FALLTHROUGH;
2258  }
2259  case CallExprClass:
2260  case CXXMemberCallExprClass:
2261  case UserDefinedLiteralClass: {
2262  // If this is a direct call, get the callee.
2263  const CallExpr *CE = cast<CallExpr>(this);
2264  if (const Decl *FD = CE->getCalleeDecl()) {
2265  const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
2266  bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr()
2267  : FD->hasAttr<WarnUnusedResultAttr>();
2268 
2269  // If the callee has attribute pure, const, or warn_unused_result, warn
2270  // about it. void foo() { strlen("bar"); } should warn.
2271  //
2272  // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2273  // updated to match for QoI.
2274  if (HasWarnUnusedResultAttr ||
2275  FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2276  WarnE = this;
2277  Loc = CE->getCallee()->getBeginLoc();
2278  R1 = CE->getCallee()->getSourceRange();
2279 
2280  if (unsigned NumArgs = CE->getNumArgs())
2281  R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2282  CE->getArg(NumArgs - 1)->getEndLoc());
2283  return true;
2284  }
2285  }
2286  return false;
2287  }
2288 
2289  // If we don't know precisely what we're looking at, let's not warn.
2290  case UnresolvedLookupExprClass:
2291  case CXXUnresolvedConstructExprClass:
2292  return false;
2293 
2294  case CXXTemporaryObjectExprClass:
2295  case CXXConstructExprClass: {
2296  if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2297  if (Type->hasAttr<WarnUnusedAttr>()) {
2298  WarnE = this;
2299  Loc = getBeginLoc();
2300  R1 = getSourceRange();
2301  return true;
2302  }
2303  }
2304  return false;
2305  }
2306 
2307  case ObjCMessageExprClass: {
2308  const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2309  if (Ctx.getLangOpts().ObjCAutoRefCount &&
2310  ME->isInstanceMessage() &&
2311  !ME->getType()->isVoidType() &&
2312  ME->getMethodFamily() == OMF_init) {
2313  WarnE = this;
2314  Loc = getExprLoc();
2315  R1 = ME->getSourceRange();
2316  return true;
2317  }
2318 
2319  if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2320  if (MD->hasAttr<WarnUnusedResultAttr>()) {
2321  WarnE = this;
2322  Loc = getExprLoc();
2323  return true;
2324  }
2325 
2326  return false;
2327  }
2328 
2329  case ObjCPropertyRefExprClass:
2330  WarnE = this;
2331  Loc = getExprLoc();
2332  R1 = getSourceRange();
2333  return true;
2334 
2335  case PseudoObjectExprClass: {
2336  const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2337 
2338  // Only complain about things that have the form of a getter.
2339  if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2340  isa<BinaryOperator>(PO->getSyntacticForm()))
2341  return false;
2342 
2343  WarnE = this;
2344  Loc = getExprLoc();
2345  R1 = getSourceRange();
2346  return true;
2347  }
2348 
2349  case StmtExprClass: {
2350  // Statement exprs don't logically have side effects themselves, but are
2351  // sometimes used in macros in ways that give them a type that is unused.
2352  // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2353  // however, if the result of the stmt expr is dead, we don't want to emit a
2354  // warning.
2355  const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2356  if (!CS->body_empty()) {
2357  if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2358  return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2359  if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2360  if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2361  return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2362  }
2363 
2364  if (getType()->isVoidType())
2365  return false;
2366  WarnE = this;
2367  Loc = cast<StmtExpr>(this)->getLParenLoc();
2368  R1 = getSourceRange();
2369  return true;
2370  }
2371  case CXXFunctionalCastExprClass:
2372  case CStyleCastExprClass: {
2373  // Ignore an explicit cast to void unless the operand is a non-trivial
2374  // volatile lvalue.
2375  const CastExpr *CE = cast<CastExpr>(this);
2376  if (CE->getCastKind() == CK_ToVoid) {
2377  if (CE->getSubExpr()->isGLValue() &&
2378  CE->getSubExpr()->getType().isVolatileQualified()) {
2379  const DeclRefExpr *DRE =
2380  dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2381  if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2382  cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) &&
2383  !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) {
2384  return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2385  R1, R2, Ctx);
2386  }
2387  }
2388  return false;
2389  }
2390 
2391  // If this is a cast to a constructor conversion, check the operand.
2392  // Otherwise, the result of the cast is unused.
2393  if (CE->getCastKind() == CK_ConstructorConversion)
2394  return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2395 
2396  WarnE = this;
2397  if (const CXXFunctionalCastExpr *CXXCE =
2398  dyn_cast<CXXFunctionalCastExpr>(this)) {
2399  Loc = CXXCE->getBeginLoc();
2400  R1 = CXXCE->getSubExpr()->getSourceRange();
2401  } else {
2402  const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2403  Loc = CStyleCE->getLParenLoc();
2404  R1 = CStyleCE->getSubExpr()->getSourceRange();
2405  }
2406  return true;
2407  }
2408  case ImplicitCastExprClass: {
2409  const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2410 
2411  // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2412  if (ICE->getCastKind() == CK_LValueToRValue &&
2414  return false;
2415 
2416  return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2417  }
2418  case CXXDefaultArgExprClass:
2419  return (cast<CXXDefaultArgExpr>(this)
2420  ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2421  case CXXDefaultInitExprClass:
2422  return (cast<CXXDefaultInitExpr>(this)
2423  ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2424 
2425  case CXXNewExprClass:
2426  // FIXME: In theory, there might be new expressions that don't have side
2427  // effects (e.g. a placement new with an uninitialized POD).
2428  case CXXDeleteExprClass:
2429  return false;
2430  case MaterializeTemporaryExprClass:
2431  return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2432  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2433  case CXXBindTemporaryExprClass:
2434  return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2435  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2436  case ExprWithCleanupsClass:
2437  return cast<ExprWithCleanups>(this)->getSubExpr()
2438  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2439  }
2440 }
2441 
2442 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2443 /// returns true, if it is; false otherwise.
2445  const Expr *E = IgnoreParens();
2446  switch (E->getStmtClass()) {
2447  default:
2448  return false;
2449  case ObjCIvarRefExprClass:
2450  return true;
2451  case Expr::UnaryOperatorClass:
2452  return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2453  case ImplicitCastExprClass:
2454  return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2455  case MaterializeTemporaryExprClass:
2456  return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2457  ->isOBJCGCCandidate(Ctx);
2458  case CStyleCastExprClass:
2459  return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2460  case DeclRefExprClass: {
2461  const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2462 
2463  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2464  if (VD->hasGlobalStorage())
2465  return true;
2466  QualType T = VD->getType();
2467  // dereferencing to a pointer is always a gc'able candidate,
2468  // unless it is __weak.
2469  return T->isPointerType() &&
2470  (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2471  }
2472  return false;
2473  }
2474  case MemberExprClass: {
2475  const MemberExpr *M = cast<MemberExpr>(E);
2476  return M->getBase()->isOBJCGCCandidate(Ctx);
2477  }
2478  case ArraySubscriptExprClass:
2479  return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2480  }
2481 }
2482 
2484  if (isTypeDependent())
2485  return false;
2486  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2487 }
2488 
2490  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2491 
2492  // Bound member expressions are always one of these possibilities:
2493  // x->m x.m x->*y x.*y
2494  // (possibly parenthesized)
2495 
2496  expr = expr->IgnoreParens();
2497  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2498  assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2499  return mem->getMemberDecl()->getType();
2500  }
2501 
2502  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2503  QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2504  ->getPointeeType();
2505  assert(type->isFunctionType());
2506  return type;
2507  }
2508 
2509  assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2510  return QualType();
2511 }
2512 
2514  Expr* E = this;
2515  while (true) {
2516  if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2517  E = P->getSubExpr();
2518  continue;
2519  }
2520  if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2521  if (P->getOpcode() == UO_Extension) {
2522  E = P->getSubExpr();
2523  continue;
2524  }
2525  }
2526  if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2527  if (!P->isResultDependent()) {
2528  E = P->getResultExpr();
2529  continue;
2530  }
2531  }
2532  if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
2533  if (!P->isConditionDependent()) {
2534  E = P->getChosenSubExpr();
2535  continue;
2536  }
2537  }
2538  return E;
2539  }
2540 }
2541 
2542 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
2543 /// or CastExprs or ImplicitCastExprs, returning their operand.
2545  Expr *E = this;
2546  while (true) {
2547  E = E->IgnoreParens();
2548  if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2549  E = P->getSubExpr();
2550  continue;
2551  }
2552  if (MaterializeTemporaryExpr *Materialize
2553  = dyn_cast<MaterializeTemporaryExpr>(E)) {
2554  E = Materialize->GetTemporaryExpr();
2555  continue;
2556  }
2558  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2559  E = NTTP->getReplacement();
2560  continue;
2561  }
2562  return E;
2563  }
2564 }
2565 
2567  Expr *E = this;
2568  while (true) {
2569  if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2570  E = P->getSubExpr();
2571  continue;
2572  }
2573  if (MaterializeTemporaryExpr *Materialize
2574  = dyn_cast<MaterializeTemporaryExpr>(E)) {
2575  E = Materialize->GetTemporaryExpr();
2576  continue;
2577  }
2579  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2580  E = NTTP->getReplacement();
2581  continue;
2582  }
2583  return E;
2584  }
2585 }
2586 
2587 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2588 /// casts. This is intended purely as a temporary workaround for code
2589 /// that hasn't yet been rewritten to do the right thing about those
2590 /// casts, and may disappear along with the last internal use.
2592  Expr *E = this;
2593  while (true) {
2594  E = E->IgnoreParens();
2595  if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2596  if (P->getCastKind() == CK_LValueToRValue) {
2597  E = P->getSubExpr();
2598  continue;
2599  }
2600  } else if (MaterializeTemporaryExpr *Materialize
2601  = dyn_cast<MaterializeTemporaryExpr>(E)) {
2602  E = Materialize->GetTemporaryExpr();
2603  continue;
2604  } else if (SubstNonTypeTemplateParmExpr *NTTP
2605  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2606  E = NTTP->getReplacement();
2607  continue;
2608  }
2609  break;
2610  }
2611  return E;
2612 }
2613 
2615  Expr *E = this;
2616  while (true) {
2617  E = E->IgnoreParens();
2618  if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2619  if (CE->getCastKind() == CK_DerivedToBase ||
2620  CE->getCastKind() == CK_UncheckedDerivedToBase ||
2621  CE->getCastKind() == CK_NoOp) {
2622  E = CE->getSubExpr();
2623  continue;
2624  }
2625  }
2626 
2627  return E;
2628  }
2629 }
2630 
2632  Expr *E = this;
2633  while (true) {
2634  E = E->IgnoreParens();
2635  if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2636  E = P->getSubExpr();
2637  continue;
2638  }
2639  if (MaterializeTemporaryExpr *Materialize
2640  = dyn_cast<MaterializeTemporaryExpr>(E)) {
2641  E = Materialize->GetTemporaryExpr();
2642  continue;
2643  }
2645  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2646  E = NTTP->getReplacement();
2647  continue;
2648  }
2649  return E;
2650  }
2651 }
2652 
2654  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2655  if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2656  return MCE->getImplicitObjectArgument();
2657  }
2658  return this;
2659 }
2660 
2661 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2662 /// value (including ptr->int casts of the same size). Strip off any
2663 /// ParenExpr or CastExprs, returning their operand.
2665  Expr *E = this;
2666  while (true) {
2667  E = E->IgnoreParens();
2668 
2669  if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2670  // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2671  // ptr<->int casts of the same width. We also ignore all identity casts.
2672  Expr *SE = P->getSubExpr();
2673 
2674  if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2675  E = SE;
2676  continue;
2677  }
2678 
2679  if ((E->getType()->isPointerType() ||
2680  E->getType()->isIntegralType(Ctx)) &&
2681  (SE->getType()->isPointerType() ||
2682  SE->getType()->isIntegralType(Ctx)) &&
2683  Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2684  E = SE;
2685  continue;
2686  }
2687  }
2688 
2690  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2691  E = NTTP->getReplacement();
2692  continue;
2693  }
2694 
2695  return E;
2696  }
2697 }
2698 
2700  const Expr *E = this;
2701  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2702  E = M->GetTemporaryExpr();
2703 
2704  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2705  E = ICE->getSubExprAsWritten();
2706 
2707  return isa<CXXDefaultArgExpr>(E);
2708 }
2709 
2710 /// Skip over any no-op casts and any temporary-binding
2711 /// expressions.
2713  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2714  E = M->GetTemporaryExpr();
2715 
2716  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2717  if (ICE->getCastKind() == CK_NoOp)
2718  E = ICE->getSubExpr();
2719  else
2720  break;
2721  }
2722 
2723  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2724  E = BE->getSubExpr();
2725 
2726  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2727  if (ICE->getCastKind() == CK_NoOp)
2728  E = ICE->getSubExpr();
2729  else
2730  break;
2731  }
2732 
2733  return E->IgnoreParens();
2734 }
2735 
2736 /// isTemporaryObject - Determines if this expression produces a
2737 /// temporary of the given class type.
2738 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2739  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2740  return false;
2741 
2743 
2744  // Temporaries are by definition pr-values of class type.
2745  if (!E->Classify(C).isPRValue()) {
2746  // In this context, property reference is a message call and is pr-value.
2747  if (!isa<ObjCPropertyRefExpr>(E))
2748  return false;
2749  }
2750 
2751  // Black-list a few cases which yield pr-values of class type that don't
2752  // refer to temporaries of that type:
2753 
2754  // - implicit derived-to-base conversions
2755  if (isa<ImplicitCastExpr>(E)) {
2756  switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2757  case CK_DerivedToBase:
2758  case CK_UncheckedDerivedToBase:
2759  return false;
2760  default:
2761  break;
2762  }
2763  }
2764 
2765  // - member expressions (all)
2766  if (isa<MemberExpr>(E))
2767  return false;
2768 
2769  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2770  if (BO->isPtrMemOp())
2771  return false;
2772 
2773  // - opaque values (all)
2774  if (isa<OpaqueValueExpr>(E))
2775  return false;
2776 
2777  return true;
2778 }
2779 
2781  const Expr *E = this;
2782 
2783  // Strip away parentheses and casts we don't care about.
2784  while (true) {
2785  if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2786  E = Paren->getSubExpr();
2787  continue;
2788  }
2789 
2790  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2791  if (ICE->getCastKind() == CK_NoOp ||
2792  ICE->getCastKind() == CK_LValueToRValue ||
2793  ICE->getCastKind() == CK_DerivedToBase ||
2794  ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2795  E = ICE->getSubExpr();
2796  continue;
2797  }
2798  }
2799 
2800  if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2801  if (UnOp->getOpcode() == UO_Extension) {
2802  E = UnOp->getSubExpr();
2803  continue;
2804  }
2805  }
2806 
2807  if (const MaterializeTemporaryExpr *M
2808  = dyn_cast<MaterializeTemporaryExpr>(E)) {
2809  E = M->GetTemporaryExpr();
2810  continue;
2811  }
2812 
2813  break;
2814  }
2815 
2816  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2817  return This->isImplicit();
2818 
2819  return false;
2820 }
2821 
2822 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2823 /// in Exprs is type-dependent.
2825  for (unsigned I = 0; I < Exprs.size(); ++I)
2826  if (Exprs[I]->isTypeDependent())
2827  return true;
2828 
2829  return false;
2830 }
2831 
2832 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
2833  const Expr **Culprit) const {
2834  // This function is attempting whether an expression is an initializer
2835  // which can be evaluated at compile-time. It very closely parallels
2836  // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2837  // will lead to unexpected results. Like ConstExprEmitter, it falls back
2838  // to isEvaluatable most of the time.
2839  //
2840  // If we ever capture reference-binding directly in the AST, we can
2841  // kill the second parameter.
2842 
2843  if (IsForRef) {
2845  if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
2846  return true;
2847  if (Culprit)
2848  *Culprit = this;
2849  return false;
2850  }
2851 
2852  switch (getStmtClass()) {
2853  default: break;
2854  case StringLiteralClass:
2855  case ObjCEncodeExprClass:
2856  return true;
2857  case CXXTemporaryObjectExprClass:
2858  case CXXConstructExprClass: {
2859  const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2860 
2861  if (CE->getConstructor()->isTrivial() &&
2863  // Trivial default constructor
2864  if (!CE->getNumArgs()) return true;
2865 
2866  // Trivial copy constructor
2867  assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2868  return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
2869  }
2870 
2871  break;
2872  }
2873  case CompoundLiteralExprClass: {
2874  // This handles gcc's extension that allows global initializers like
2875  // "struct x {int x;} x = (struct x) {};".
2876  // FIXME: This accepts other cases it shouldn't!
2877  const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2878  return Exp->isConstantInitializer(Ctx, false, Culprit);
2879  }
2880  case DesignatedInitUpdateExprClass: {
2881  const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
2882  return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
2883  DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
2884  }
2885  case InitListExprClass: {
2886  const InitListExpr *ILE = cast<InitListExpr>(this);
2887  if (ILE->getType()->isArrayType()) {
2888  unsigned numInits = ILE->getNumInits();
2889  for (unsigned i = 0; i < numInits; i++) {
2890  if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
2891  return false;
2892  }
2893  return true;
2894  }
2895 
2896  if (ILE->getType()->isRecordType()) {
2897  unsigned ElementNo = 0;
2898  RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
2899  for (const auto *Field : RD->fields()) {
2900  // If this is a union, skip all the fields that aren't being initialized.
2901  if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
2902  continue;
2903 
2904  // Don't emit anonymous bitfields, they just affect layout.
2905  if (Field->isUnnamedBitfield())
2906  continue;
2907 
2908  if (ElementNo < ILE->getNumInits()) {
2909  const Expr *Elt = ILE->getInit(ElementNo++);
2910  if (Field->isBitField()) {
2911  // Bitfields have to evaluate to an integer.
2912  llvm::APSInt ResultTmp;
2913  if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
2914  if (Culprit)
2915  *Culprit = Elt;
2916  return false;
2917  }
2918  } else {
2919  bool RefType = Field->getType()->isReferenceType();
2920  if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
2921  return false;
2922  }
2923  }
2924  }
2925  return true;
2926  }
2927 
2928  break;
2929  }
2930  case ImplicitValueInitExprClass:
2931  case NoInitExprClass:
2932  return true;
2933  case ParenExprClass:
2934  return cast<ParenExpr>(this)->getSubExpr()
2935  ->isConstantInitializer(Ctx, IsForRef, Culprit);
2936  case GenericSelectionExprClass:
2937  return cast<GenericSelectionExpr>(this)->getResultExpr()
2938  ->isConstantInitializer(Ctx, IsForRef, Culprit);
2939  case ChooseExprClass:
2940  if (cast<ChooseExpr>(this)->isConditionDependent()) {
2941  if (Culprit)
2942  *Culprit = this;
2943  return false;
2944  }
2945  return cast<ChooseExpr>(this)->getChosenSubExpr()
2946  ->isConstantInitializer(Ctx, IsForRef, Culprit);
2947  case UnaryOperatorClass: {
2948  const UnaryOperator* Exp = cast<UnaryOperator>(this);
2949  if (Exp->getOpcode() == UO_Extension)
2950  return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2951  break;
2952  }
2953  case CXXFunctionalCastExprClass:
2954  case CXXStaticCastExprClass:
2955  case ImplicitCastExprClass:
2956  case CStyleCastExprClass:
2957  case ObjCBridgedCastExprClass:
2958  case CXXDynamicCastExprClass:
2959  case CXXReinterpretCastExprClass:
2960  case CXXConstCastExprClass: {
2961  const CastExpr *CE = cast<CastExpr>(this);
2962 
2963  // Handle misc casts we want to ignore.
2964  if (CE->getCastKind() == CK_NoOp ||
2965  CE->getCastKind() == CK_LValueToRValue ||
2966  CE->getCastKind() == CK_ToUnion ||
2967  CE->getCastKind() == CK_ConstructorConversion ||
2968  CE->getCastKind() == CK_NonAtomicToAtomic ||
2969  CE->getCastKind() == CK_AtomicToNonAtomic ||
2970  CE->getCastKind() == CK_IntToOCLSampler)
2971  return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2972 
2973  break;
2974  }
2975  case MaterializeTemporaryExprClass:
2976  return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2977  ->isConstantInitializer(Ctx, false, Culprit);
2978 
2979  case SubstNonTypeTemplateParmExprClass:
2980  return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
2981  ->isConstantInitializer(Ctx, false, Culprit);
2982  case CXXDefaultArgExprClass:
2983  return cast<CXXDefaultArgExpr>(this)->getExpr()
2984  ->isConstantInitializer(Ctx, false, Culprit);
2985  case CXXDefaultInitExprClass:
2986  return cast<CXXDefaultInitExpr>(this)->getExpr()
2987  ->isConstantInitializer(Ctx, false, Culprit);
2988  }
2989  // Allow certain forms of UB in constant initializers: signed integer
2990  // overflow and floating-point division by zero. We'll give a warning on
2991  // these, but they're common enough that we have to accept them.
2993  return true;
2994  if (Culprit)
2995  *Culprit = this;
2996  return false;
2997 }
2998 
3000  const FunctionDecl* FD = getDirectCallee();
3001  if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
3002  FD->getBuiltinID() != Builtin::BI__builtin_assume))
3003  return false;
3004 
3005  const Expr* Arg = getArg(0);
3006  bool ArgVal;
3007  return !Arg->isValueDependent() &&
3008  Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3009 }
3010 
3011 namespace {
3012  /// Look for any side effects within a Stmt.
3013  class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3015  const bool IncludePossibleEffects;
3016  bool HasSideEffects;
3017 
3018  public:
3019  explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3020  : Inherited(Context),
3021  IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3022 
3023  bool hasSideEffects() const { return HasSideEffects; }
3024 
3025  void VisitExpr(const Expr *E) {
3026  if (!HasSideEffects &&
3027  E->HasSideEffects(Context, IncludePossibleEffects))
3028  HasSideEffects = true;
3029  }
3030  };
3031 }
3032 
3034  bool IncludePossibleEffects) const {
3035  // In circumstances where we care about definite side effects instead of
3036  // potential side effects, we want to ignore expressions that are part of a
3037  // macro expansion as a potential side effect.
3038  if (!IncludePossibleEffects && getExprLoc().isMacroID())
3039  return false;
3040 
3042  return IncludePossibleEffects;
3043 
3044  switch (getStmtClass()) {
3045  case NoStmtClass:
3046  #define ABSTRACT_STMT(Type)
3047  #define STMT(Type, Base) case Type##Class:
3048  #define EXPR(Type, Base)
3049  #include "clang/AST/StmtNodes.inc"
3050  llvm_unreachable("unexpected Expr kind");
3051 
3052  case DependentScopeDeclRefExprClass:
3053  case CXXUnresolvedConstructExprClass:
3054  case CXXDependentScopeMemberExprClass:
3055  case UnresolvedLookupExprClass:
3056  case UnresolvedMemberExprClass:
3057  case PackExpansionExprClass:
3058  case SubstNonTypeTemplateParmPackExprClass:
3059  case FunctionParmPackExprClass:
3060  case TypoExprClass:
3061  case CXXFoldExprClass:
3062  llvm_unreachable("shouldn't see dependent / unresolved nodes here");
3063 
3064  case DeclRefExprClass:
3065  case ObjCIvarRefExprClass:
3066  case PredefinedExprClass:
3067  case IntegerLiteralClass:
3068  case FixedPointLiteralClass:
3069  case FloatingLiteralClass:
3070  case ImaginaryLiteralClass:
3071  case StringLiteralClass:
3072  case CharacterLiteralClass:
3073  case OffsetOfExprClass:
3074  case ImplicitValueInitExprClass:
3075  case UnaryExprOrTypeTraitExprClass:
3076  case AddrLabelExprClass:
3077  case GNUNullExprClass:
3078  case ArrayInitIndexExprClass:
3079  case NoInitExprClass:
3080  case CXXBoolLiteralExprClass:
3081  case CXXNullPtrLiteralExprClass:
3082  case CXXThisExprClass:
3083  case CXXScalarValueInitExprClass:
3084  case TypeTraitExprClass:
3085  case ArrayTypeTraitExprClass:
3086  case ExpressionTraitExprClass:
3087  case CXXNoexceptExprClass:
3088  case SizeOfPackExprClass:
3089  case ObjCStringLiteralClass:
3090  case ObjCEncodeExprClass:
3091  case ObjCBoolLiteralExprClass:
3092  case ObjCAvailabilityCheckExprClass:
3093  case CXXUuidofExprClass:
3094  case OpaqueValueExprClass:
3095  // These never have a side-effect.
3096  return false;
3097 
3098  case CallExprClass:
3099  case CXXOperatorCallExprClass:
3100  case CXXMemberCallExprClass:
3101  case CUDAKernelCallExprClass:
3102  case UserDefinedLiteralClass: {
3103  // We don't know a call definitely has side effects, except for calls
3104  // to pure/const functions that definitely don't.
3105  // If the call itself is considered side-effect free, check the operands.
3106  const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3107  bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3108  if (IsPure || !IncludePossibleEffects)
3109  break;
3110  return true;
3111  }
3112 
3113  case BlockExprClass:
3114  case CXXBindTemporaryExprClass:
3115  if (!IncludePossibleEffects)
3116  break;
3117  return true;
3118 
3119  case MSPropertyRefExprClass:
3120  case MSPropertySubscriptExprClass:
3121  case CompoundAssignOperatorClass:
3122  case VAArgExprClass:
3123  case AtomicExprClass:
3124  case CXXThrowExprClass:
3125  case CXXNewExprClass:
3126  case CXXDeleteExprClass:
3127  case CoawaitExprClass:
3128  case DependentCoawaitExprClass:
3129  case CoyieldExprClass:
3130  // These always have a side-effect.
3131  return true;
3132 
3133  case StmtExprClass: {
3134  // StmtExprs have a side-effect if any substatement does.
3135  SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3136  Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3137  return Finder.hasSideEffects();
3138  }
3139 
3140  case ExprWithCleanupsClass:
3141  if (IncludePossibleEffects)
3142  if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3143  return true;
3144  break;
3145 
3146  case ParenExprClass:
3147  case ArraySubscriptExprClass:
3148  case OMPArraySectionExprClass:
3149  case MemberExprClass:
3150  case ConditionalOperatorClass:
3151  case BinaryConditionalOperatorClass:
3152  case CompoundLiteralExprClass:
3153  case ExtVectorElementExprClass:
3154  case DesignatedInitExprClass:
3155  case DesignatedInitUpdateExprClass:
3156  case ArrayInitLoopExprClass:
3157  case ParenListExprClass:
3158  case CXXPseudoDestructorExprClass:
3159  case CXXStdInitializerListExprClass:
3160  case SubstNonTypeTemplateParmExprClass:
3161  case MaterializeTemporaryExprClass:
3162  case ShuffleVectorExprClass:
3163  case ConvertVectorExprClass:
3164  case AsTypeExprClass:
3165  // These have a side-effect if any subexpression does.
3166  break;
3167 
3168  case UnaryOperatorClass:
3169  if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3170  return true;
3171  break;
3172 
3173  case BinaryOperatorClass:
3174  if (cast<BinaryOperator>(this)->isAssignmentOp())
3175  return true;
3176  break;
3177 
3178  case InitListExprClass:
3179  // FIXME: The children for an InitListExpr doesn't include the array filler.
3180  if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3181  if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3182  return true;
3183  break;
3184 
3185  case GenericSelectionExprClass:
3186  return cast<GenericSelectionExpr>(this)->getResultExpr()->
3187  HasSideEffects(Ctx, IncludePossibleEffects);
3188 
3189  case ChooseExprClass:
3190  return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3191  Ctx, IncludePossibleEffects);
3192 
3193  case CXXDefaultArgExprClass:
3194  return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3195  Ctx, IncludePossibleEffects);
3196 
3197  case CXXDefaultInitExprClass: {
3198  const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3199  if (const Expr *E = FD->getInClassInitializer())
3200  return E->HasSideEffects(Ctx, IncludePossibleEffects);
3201  // If we've not yet parsed the initializer, assume it has side-effects.
3202  return true;
3203  }
3204 
3205  case CXXDynamicCastExprClass: {
3206  // A dynamic_cast expression has side-effects if it can throw.
3207  const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3208  if (DCE->getTypeAsWritten()->isReferenceType() &&
3209  DCE->getCastKind() == CK_Dynamic)
3210  return true;
3211  }
3212  LLVM_FALLTHROUGH;
3213  case ImplicitCastExprClass:
3214  case CStyleCastExprClass:
3215  case CXXStaticCastExprClass:
3216  case CXXReinterpretCastExprClass:
3217  case CXXConstCastExprClass:
3218  case CXXFunctionalCastExprClass: {
3219  // While volatile reads are side-effecting in both C and C++, we treat them
3220  // as having possible (not definite) side-effects. This allows idiomatic
3221  // code to behave without warning, such as sizeof(*v) for a volatile-
3222  // qualified pointer.
3223  if (!IncludePossibleEffects)
3224  break;
3225 
3226  const CastExpr *CE = cast<CastExpr>(this);
3227  if (CE->getCastKind() == CK_LValueToRValue &&
3229  return true;
3230  break;
3231  }
3232 
3233  case CXXTypeidExprClass:
3234  // typeid might throw if its subexpression is potentially-evaluated, so has
3235  // side-effects in that case whether or not its subexpression does.
3236  return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3237 
3238  case CXXConstructExprClass:
3239  case CXXTemporaryObjectExprClass: {
3240  const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3241  if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3242  return true;
3243  // A trivial constructor does not add any side-effects of its own. Just look
3244  // at its arguments.
3245  break;
3246  }
3247 
3248  case CXXInheritedCtorInitExprClass: {
3249  const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3250  if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3251  return true;
3252  break;
3253  }
3254 
3255  case LambdaExprClass: {
3256  const LambdaExpr *LE = cast<LambdaExpr>(this);
3258  E = LE->capture_end(); I != E; ++I)
3259  if (I->getCaptureKind() == LCK_ByCopy)
3260  // FIXME: Only has a side-effect if the variable is volatile or if
3261  // the copy would invoke a non-trivial copy constructor.
3262  return true;
3263  return false;
3264  }
3265 
3266  case PseudoObjectExprClass: {
3267  // Only look for side-effects in the semantic form, and look past
3268  // OpaqueValueExpr bindings in that form.
3269  const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3271  E = PO->semantics_end();
3272  I != E; ++I) {
3273  const Expr *Subexpr = *I;
3274  if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3275  Subexpr = OVE->getSourceExpr();
3276  if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3277  return true;
3278  }
3279  return false;
3280  }
3281 
3282  case ObjCBoxedExprClass:
3283  case ObjCArrayLiteralClass:
3284  case ObjCDictionaryLiteralClass:
3285  case ObjCSelectorExprClass:
3286  case ObjCProtocolExprClass:
3287  case ObjCIsaExprClass:
3288  case ObjCIndirectCopyRestoreExprClass:
3289  case ObjCSubscriptRefExprClass:
3290  case ObjCBridgedCastExprClass:
3291  case ObjCMessageExprClass:
3292  case ObjCPropertyRefExprClass:
3293  // FIXME: Classify these cases better.
3294  if (IncludePossibleEffects)
3295  return true;
3296  break;
3297  }
3298 
3299  // Recurse to children.
3300  for (const Stmt *SubStmt : children())
3301  if (SubStmt &&
3302  cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3303  return true;
3304 
3305  return false;
3306 }
3307 
3308 namespace {
3309  /// Look for a call to a non-trivial function within an expression.
3310  class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3311  {
3313 
3314  bool NonTrivial;
3315 
3316  public:
3317  explicit NonTrivialCallFinder(const ASTContext &Context)
3318  : Inherited(Context), NonTrivial(false) { }
3319 
3320  bool hasNonTrivialCall() const { return NonTrivial; }
3321 
3322  void VisitCallExpr(const CallExpr *E) {
3323  if (const CXXMethodDecl *Method
3324  = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3325  if (Method->isTrivial()) {
3326  // Recurse to children of the call.
3327  Inherited::VisitStmt(E);
3328  return;
3329  }
3330  }
3331 
3332  NonTrivial = true;
3333  }
3334 
3335  void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3336  if (E->getConstructor()->isTrivial()) {
3337  // Recurse to children of the call.
3338  Inherited::VisitStmt(E);
3339  return;
3340  }
3341 
3342  NonTrivial = true;
3343  }
3344 
3345  void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3346  if (E->getTemporary()->getDestructor()->isTrivial()) {
3347  Inherited::VisitStmt(E);
3348  return;
3349  }
3350 
3351  NonTrivial = true;
3352  }
3353  };
3354 }
3355 
3356 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3357  NonTrivialCallFinder Finder(Ctx);
3358  Finder.Visit(this);
3359  return Finder.hasNonTrivialCall();
3360 }
3361 
3362 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3363 /// pointer constant or not, as well as the specific kind of constant detected.
3364 /// Null pointer constants can be integer constant expressions with the
3365 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3366 /// (a GNU extension).
3370  if (isValueDependent() &&
3371  (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3372  switch (NPC) {
3374  llvm_unreachable("Unexpected value dependent expression!");
3376  if (isTypeDependent() || getType()->isIntegralType(Ctx))
3377  return NPCK_ZeroExpression;
3378  else
3379  return NPCK_NotNull;
3380 
3382  return NPCK_NotNull;
3383  }
3384  }
3385 
3386  // Strip off a cast to void*, if it exists. Except in C++.
3387  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3388  if (!Ctx.getLangOpts().CPlusPlus) {
3389  // Check that it is a cast to void*.
3390  if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3391  QualType Pointee = PT->getPointeeType();
3392  // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3393  // has non-default address space it is not treated as nullptr.
3394  // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3395  // since it cannot be assigned to a pointer to constant address space.
3396  bool PointeeHasDefaultAS =
3397  Pointee.getAddressSpace() == LangAS::Default ||
3398  (Ctx.getLangOpts().OpenCLVersion >= 200 &&
3399  Pointee.getAddressSpace() == LangAS::opencl_generic) ||
3400  (Ctx.getLangOpts().OpenCL &&
3401  Ctx.getLangOpts().OpenCLVersion < 200 &&
3403 
3404  if (PointeeHasDefaultAS && Pointee->isVoidType() && // to void*
3405  CE->getSubExpr()->getType()->isIntegerType()) // from int.
3406  return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3407  }
3408  }
3409  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3410  // Ignore the ImplicitCastExpr type entirely.
3411  return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3412  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3413  // Accept ((void*)0) as a null pointer constant, as many other
3414  // implementations do.
3415  return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3416  } else if (const GenericSelectionExpr *GE =
3417  dyn_cast<GenericSelectionExpr>(this)) {
3418  if (GE->isResultDependent())
3419  return NPCK_NotNull;
3420  return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3421  } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3422  if (CE->isConditionDependent())
3423  return NPCK_NotNull;
3424  return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3425  } else if (const CXXDefaultArgExpr *DefaultArg
3426  = dyn_cast<CXXDefaultArgExpr>(this)) {
3427  // See through default argument expressions.
3428  return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3429  } else if (const CXXDefaultInitExpr *DefaultInit
3430  = dyn_cast<CXXDefaultInitExpr>(this)) {
3431  // See through default initializer expressions.
3432  return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3433  } else if (isa<GNUNullExpr>(this)) {
3434  // The GNU __null extension is always a null pointer constant.
3435  return NPCK_GNUNull;
3436  } else if (const MaterializeTemporaryExpr *M
3437  = dyn_cast<MaterializeTemporaryExpr>(this)) {
3438  return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3439  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3440  if (const Expr *Source = OVE->getSourceExpr())
3441  return Source->isNullPointerConstant(Ctx, NPC);
3442  }
3443 
3444  // C++11 nullptr_t is always a null pointer constant.
3445  if (getType()->isNullPtrType())
3446  return NPCK_CXX11_nullptr;
3447 
3448  if (const RecordType *UT = getType()->getAsUnionType())
3449  if (!Ctx.getLangOpts().CPlusPlus11 &&
3450  UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3451  if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3452  const Expr *InitExpr = CLE->getInitializer();
3453  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3454  return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3455  }
3456  // This expression must be an integer type.
3457  if (!getType()->isIntegerType() ||
3458  (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3459  return NPCK_NotNull;
3460 
3461  if (Ctx.getLangOpts().CPlusPlus11) {
3462  // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3463  // value zero or a prvalue of type std::nullptr_t.
3464  // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3465  const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3466  if (Lit && !Lit->getValue())
3467  return NPCK_ZeroLiteral;
3468  else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3469  return NPCK_NotNull;
3470  } else {
3471  // If we have an integer constant expression, we need to *evaluate* it and
3472  // test for the value 0.
3473  if (!isIntegerConstantExpr(Ctx))
3474  return NPCK_NotNull;
3475  }
3476 
3477  if (EvaluateKnownConstInt(Ctx) != 0)
3478  return NPCK_NotNull;
3479 
3480  if (isa<IntegerLiteral>(this))
3481  return NPCK_ZeroLiteral;
3482  return NPCK_ZeroExpression;
3483 }
3484 
3485 /// If this expression is an l-value for an Objective C
3486 /// property, find the underlying property reference expression.
3488  const Expr *E = this;
3489  while (true) {
3490  assert((E->getValueKind() == VK_LValue &&
3491  E->getObjectKind() == OK_ObjCProperty) &&
3492  "expression is not a property reference");
3493  E = E->IgnoreParenCasts();
3494  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3495  if (BO->getOpcode() == BO_Comma) {
3496  E = BO->getRHS();
3497  continue;
3498  }
3499  }
3500 
3501  break;
3502  }
3503 
3504  return cast<ObjCPropertyRefExpr>(E);
3505 }
3506 
3507 bool Expr::isObjCSelfExpr() const {
3508  const Expr *E = IgnoreParenImpCasts();
3509 
3510  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3511  if (!DRE)
3512  return false;
3513 
3514  const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3515  if (!Param)
3516  return false;
3517 
3518  const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3519  if (!M)
3520  return false;
3521 
3522  return M->getSelfDecl() == Param;
3523 }
3524 
3526  Expr *E = this->IgnoreParens();
3527 
3528  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3529  if (ICE->getCastKind() == CK_LValueToRValue ||
3530  (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3531  E = ICE->getSubExpr()->IgnoreParens();
3532  else
3533  break;
3534  }
3535 
3536  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3537  if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3538  if (Field->isBitField())
3539  return Field;
3540 
3541  if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
3542  FieldDecl *Ivar = IvarRef->getDecl();
3543  if (Ivar->isBitField())
3544  return Ivar;
3545  }
3546 
3547  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
3548  if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3549  if (Field->isBitField())
3550  return Field;
3551 
3552  if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
3553  if (Expr *E = BD->getBinding())
3554  return E->getSourceBitField();
3555  }
3556 
3557  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3558  if (BinOp->isAssignmentOp() && BinOp->getLHS())
3559  return BinOp->getLHS()->getSourceBitField();
3560 
3561  if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3562  return BinOp->getRHS()->getSourceBitField();
3563  }
3564 
3565  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3566  if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3567  return UnOp->getSubExpr()->getSourceBitField();
3568 
3569  return nullptr;
3570 }
3571 
3573  // FIXME: Why do we not just look at the ObjectKind here?
3574  const Expr *E = this->IgnoreParens();
3575 
3576  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3577  if (ICE->getValueKind() != VK_RValue &&
3578  ICE->getCastKind() == CK_NoOp)
3579  E = ICE->getSubExpr()->IgnoreParens();
3580  else
3581  break;
3582  }
3583 
3584  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3585  return ASE->getBase()->getType()->isVectorType();
3586 
3587  if (isa<ExtVectorElementExpr>(E))
3588  return true;
3589 
3590  if (auto *DRE = dyn_cast<DeclRefExpr>(E))
3591  if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
3592  if (auto *E = BD->getBinding())
3593  return E->refersToVectorElement();
3594 
3595  return false;
3596 }
3597 
3599  const Expr *E = this->IgnoreParenImpCasts();
3600 
3601  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3602  if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
3603  if (VD->getStorageClass() == SC_Register &&
3604  VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
3605  return true;
3606 
3607  return false;
3608 }
3609 
3610 /// isArrow - Return true if the base expression is a pointer to vector,
3611 /// return false if the base expression is a vector.
3613  return getBase()->getType()->isPointerType();
3614 }
3615 
3617  if (const VectorType *VT = getType()->getAs<VectorType>())
3618  return VT->getNumElements();
3619  return 1;
3620 }
3621 
3622 /// containsDuplicateElements - Return true if any element access is repeated.
3624  // FIXME: Refactor this code to an accessor on the AST node which returns the
3625  // "type" of component access, and share with code below and in Sema.
3626  StringRef Comp = Accessor->getName();
3627 
3628  // Halving swizzles do not contain duplicate elements.
3629  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3630  return false;
3631 
3632  // Advance past s-char prefix on hex swizzles.
3633  if (Comp[0] == 's' || Comp[0] == 'S')
3634  Comp = Comp.substr(1);
3635 
3636  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3637  if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3638  return true;
3639 
3640  return false;
3641 }
3642 
3643 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3645  SmallVectorImpl<uint32_t> &Elts) const {
3646  StringRef Comp = Accessor->getName();
3647  bool isNumericAccessor = false;
3648  if (Comp[0] == 's' || Comp[0] == 'S') {
3649  Comp = Comp.substr(1);
3650  isNumericAccessor = true;
3651  }
3652 
3653  bool isHi = Comp == "hi";
3654  bool isLo = Comp == "lo";
3655  bool isEven = Comp == "even";
3656  bool isOdd = Comp == "odd";
3657 
3658  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3659  uint64_t Index;
3660 
3661  if (isHi)
3662  Index = e + i;
3663  else if (isLo)
3664  Index = i;
3665  else if (isEven)
3666  Index = 2 * i;
3667  else if (isOdd)
3668  Index = 2 * i + 1;
3669  else
3670  Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
3671 
3672  Elts.push_back(Index);
3673  }
3674 }
3675 
3677  QualType Type, SourceLocation BLoc,
3678  SourceLocation RP)
3679  : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3680  Type->isDependentType(), Type->isDependentType(),
3681  Type->isInstantiationDependentType(),
3683  BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3684 {
3685  SubExprs = new (C) Stmt*[args.size()];
3686  for (unsigned i = 0; i != args.size(); i++) {
3687  if (args[i]->isTypeDependent())
3688  ExprBits.TypeDependent = true;
3689  if (args[i]->isValueDependent())
3690  ExprBits.ValueDependent = true;
3691  if (args[i]->isInstantiationDependent())
3692  ExprBits.InstantiationDependent = true;
3693  if (args[i]->containsUnexpandedParameterPack())
3694  ExprBits.ContainsUnexpandedParameterPack = true;
3695 
3696  SubExprs[i] = args[i];
3697  }
3698 }
3699 
3701  if (SubExprs) C.Deallocate(SubExprs);
3702 
3703  this->NumExprs = Exprs.size();
3704  SubExprs = new (C) Stmt*[NumExprs];
3705  memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3706 }
3707 
3709  SourceLocation GenericLoc, Expr *ControllingExpr,
3710  ArrayRef<TypeSourceInfo*> AssocTypes,
3711  ArrayRef<Expr*> AssocExprs,
3712  SourceLocation DefaultLoc,
3713  SourceLocation RParenLoc,
3714  bool ContainsUnexpandedParameterPack,
3715  unsigned ResultIndex)
3716  : Expr(GenericSelectionExprClass,
3717  AssocExprs[ResultIndex]->getType(),
3718  AssocExprs[ResultIndex]->getValueKind(),
3719  AssocExprs[ResultIndex]->getObjectKind(),
3720  AssocExprs[ResultIndex]->isTypeDependent(),
3721  AssocExprs[ResultIndex]->isValueDependent(),
3722  AssocExprs[ResultIndex]->isInstantiationDependent(),
3723  ContainsUnexpandedParameterPack),
3724  AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3725  SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3726  NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3727  GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3728  SubExprs[CONTROLLING] = ControllingExpr;
3729  assert(AssocTypes.size() == AssocExprs.size());
3730  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3731  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3732 }
3733 
3735  SourceLocation GenericLoc, Expr *ControllingExpr,
3736  ArrayRef<TypeSourceInfo*> AssocTypes,
3737  ArrayRef<Expr*> AssocExprs,
3738  SourceLocation DefaultLoc,
3739  SourceLocation RParenLoc,
3740  bool ContainsUnexpandedParameterPack)
3741  : Expr(GenericSelectionExprClass,
3742  Context.DependentTy,
3743  VK_RValue,
3744  OK_Ordinary,
3745  /*isTypeDependent=*/true,
3746  /*isValueDependent=*/true,
3747  /*isInstantiationDependent=*/true,
3748  ContainsUnexpandedParameterPack),
3749  AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3750  SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3751  NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3752  DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3753  SubExprs[CONTROLLING] = ControllingExpr;
3754  assert(AssocTypes.size() == AssocExprs.size());
3755  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3756  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3757 }
3758 
3759 //===----------------------------------------------------------------------===//
3760 // DesignatedInitExpr
3761 //===----------------------------------------------------------------------===//
3762 
3764  assert(Kind == FieldDesignator && "Only valid on a field designator");
3765  if (Field.NameOrField & 0x01)
3766  return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3767  else
3768  return getField()->getIdentifier();
3769 }
3770 
3771 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
3772  llvm::ArrayRef<Designator> Designators,
3773  SourceLocation EqualOrColonLoc,
3774  bool GNUSyntax,
3775  ArrayRef<Expr*> IndexExprs,
3776  Expr *Init)
3777  : Expr(DesignatedInitExprClass, Ty,
3778  Init->getValueKind(), Init->getObjectKind(),
3779  Init->isTypeDependent(), Init->isValueDependent(),
3780  Init->isInstantiationDependent(),
3782  EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3783  NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
3784  this->Designators = new (C) Designator[NumDesignators];
3785 
3786  // Record the initializer itself.
3787  child_iterator Child = child_begin();
3788  *Child++ = Init;
3789 
3790  // Copy the designators and their subexpressions, computing
3791  // value-dependence along the way.
3792  unsigned IndexIdx = 0;
3793  for (unsigned I = 0; I != NumDesignators; ++I) {
3794  this->Designators[I] = Designators[I];
3795 
3796  if (this->Designators[I].isArrayDesignator()) {
3797  // Compute type- and value-dependence.
3798  Expr *Index = IndexExprs[IndexIdx];
3799  if (Index->isTypeDependent() || Index->isValueDependent())
3800  ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3801  if (Index->isInstantiationDependent())
3802  ExprBits.InstantiationDependent = true;
3803  // Propagate unexpanded parameter packs.
3805  ExprBits.ContainsUnexpandedParameterPack = true;
3806 
3807  // Copy the index expressions into permanent storage.
3808  *Child++ = IndexExprs[IndexIdx++];
3809  } else if (this->Designators[I].isArrayRangeDesignator()) {
3810  // Compute type- and value-dependence.
3811  Expr *Start = IndexExprs[IndexIdx];
3812  Expr *End = IndexExprs[IndexIdx + 1];
3813  if (Start->isTypeDependent() || Start->isValueDependent() ||
3814  End->isTypeDependent() || End->isValueDependent()) {
3815  ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3816  ExprBits.InstantiationDependent = true;
3817  } else if (Start->isInstantiationDependent() ||
3818  End->isInstantiationDependent()) {
3819  ExprBits.InstantiationDependent = true;
3820  }
3821 
3822  // Propagate unexpanded parameter packs.
3823  if (Start->containsUnexpandedParameterPack() ||
3825  ExprBits.ContainsUnexpandedParameterPack = true;
3826 
3827  // Copy the start/end expressions into permanent storage.
3828  *Child++ = IndexExprs[IndexIdx++];
3829  *Child++ = IndexExprs[IndexIdx++];
3830  }
3831  }
3832 
3833  assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3834 }
3835 
3838  llvm::ArrayRef<Designator> Designators,
3839  ArrayRef<Expr*> IndexExprs,
3840  SourceLocation ColonOrEqualLoc,
3841  bool UsesColonSyntax, Expr *Init) {
3842  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
3843  alignof(DesignatedInitExpr));
3844  return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
3845  ColonOrEqualLoc, UsesColonSyntax,
3846  IndexExprs, Init);
3847 }
3848 
3850  unsigned NumIndexExprs) {
3851  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
3852  alignof(DesignatedInitExpr));
3853  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3854 }
3855 
3857  const Designator *Desigs,
3858  unsigned NumDesigs) {
3859  Designators = new (C) Designator[NumDesigs];
3860  NumDesignators = NumDesigs;
3861  for (unsigned I = 0; I != NumDesigs; ++I)
3862  Designators[I] = Desigs[I];
3863 }
3864 
3866  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3867  if (size() == 1)
3868  return DIE->getDesignator(0)->getSourceRange();
3869  return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
3870  DIE->getDesignator(size() - 1)->getEndLoc());
3871 }
3872 
3874  SourceLocation StartLoc;
3875  auto *DIE = const_cast<DesignatedInitExpr *>(this);
3876  Designator &First = *DIE->getDesignator(0);
3877  if (First.isFieldDesignator()) {
3878  if (GNUSyntax)
3880  else
3882  } else
3883  StartLoc =
3885  return StartLoc;
3886 }
3887 
3889  return getInit()->getEndLoc();
3890 }
3891 
3893  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3894  return getSubExpr(D.ArrayOrRange.Index + 1);
3895 }
3896 
3898  assert(D.Kind == Designator::ArrayRangeDesignator &&
3899  "Requires array range designator");
3900  return getSubExpr(D.ArrayOrRange.Index + 1);
3901 }
3902 
3904  assert(D.Kind == Designator::ArrayRangeDesignator &&
3905  "Requires array range designator");
3906  return getSubExpr(D.ArrayOrRange.Index + 2);
3907 }
3908 
3909 /// Replaces the designator at index @p Idx with the series
3910 /// of designators in [First, Last).
3912  const Designator *First,
3913  const Designator *Last) {
3914  unsigned NumNewDesignators = Last - First;
3915  if (NumNewDesignators == 0) {
3916  std::copy_backward(Designators + Idx + 1,
3917  Designators + NumDesignators,
3918  Designators + Idx);
3919  --NumNewDesignators;
3920  return;
3921  } else if (NumNewDesignators == 1) {
3922  Designators[Idx] = *First;
3923  return;
3924  }
3925 
3926  Designator *NewDesignators
3927  = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3928  std::copy(Designators, Designators + Idx, NewDesignators);
3929  std::copy(First, Last, NewDesignators + Idx);
3930  std::copy(Designators + Idx + 1, Designators + NumDesignators,
3931  NewDesignators + Idx + NumNewDesignators);
3932  Designators = NewDesignators;
3933  NumDesignators = NumDesignators - 1 + NumNewDesignators;
3934 }
3935 
3937  SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
3938  : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
3940  BaseAndUpdaterExprs[0] = baseExpr;
3941 
3942  InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
3943  ILE->setType(baseExpr->getType());
3944  BaseAndUpdaterExprs[1] = ILE;
3945 }
3946 
3948  return getBase()->getBeginLoc();
3949 }
3950 
3952  return getBase()->getEndLoc();
3953 }
3954 
3956  ArrayRef<Expr*> exprs,
3957  SourceLocation rparenloc)
3958  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3959  false, false, false, false),
3960  NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3961  Exprs = new (C) Stmt*[exprs.size()];
3962  for (unsigned i = 0; i != exprs.size(); ++i) {
3963  if (exprs[i]->isTypeDependent())
3964  ExprBits.TypeDependent = true;
3965  if (exprs[i]->isValueDependent())
3966  ExprBits.ValueDependent = true;
3967  if (exprs[i]->isInstantiationDependent())
3968  ExprBits.InstantiationDependent = true;
3969  if (exprs[i]->containsUnexpandedParameterPack())
3970  ExprBits.ContainsUnexpandedParameterPack = true;
3971 
3972  Exprs[i] = exprs[i];
3973  }
3974 }
3975 
3977  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3978  e = ewc->getSubExpr();
3979  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3980  e = m->GetTemporaryExpr();
3981  e = cast<CXXConstructExpr>(e)->getArg(0);
3982  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3983  e = ice->getSubExpr();
3984  return cast<OpaqueValueExpr>(e);
3985 }
3986 
3988  EmptyShell sh,
3989  unsigned numSemanticExprs) {
3990  void *buffer =
3991  Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
3992  alignof(PseudoObjectExpr));
3993  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3994 }
3995 
3996 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3997  : Expr(PseudoObjectExprClass, shell) {
3998  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3999 }
4000 
4002  ArrayRef<Expr*> semantics,
4003  unsigned resultIndex) {
4004  assert(syntax && "no syntactic expression!");
4005  assert(semantics.size() && "no semantic expressions!");
4006 
4007  QualType type;
4008  ExprValueKind VK;
4009  if (resultIndex == NoResult) {
4010  type = C.VoidTy;
4011  VK = VK_RValue;
4012  } else {
4013  assert(resultIndex < semantics.size());
4014  type = semantics[resultIndex]->getType();
4015  VK = semantics[resultIndex]->getValueKind();
4016  assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4017  }
4018 
4019  void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4020  alignof(PseudoObjectExpr));
4021  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4022  resultIndex);
4023 }
4024 
4025 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4026  Expr *syntax, ArrayRef<Expr*> semantics,
4027  unsigned resultIndex)
4028  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
4029  /*filled in at end of ctor*/ false, false, false, false) {
4030  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4031  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4032 
4033  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4034  Expr *E = (i == 0 ? syntax : semantics[i-1]);
4035  getSubExprsBuffer()[i] = E;
4036 
4037  if (E->isTypeDependent())
4038  ExprBits.TypeDependent = true;
4039  if (E->isValueDependent())
4040  ExprBits.ValueDependent = true;
4042  ExprBits.InstantiationDependent = true;
4044  ExprBits.ContainsUnexpandedParameterPack = true;
4045 
4046  if (isa<OpaqueValueExpr>(E))
4047  assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4048  "opaque-value semantic expressions for pseudo-object "
4049  "operations must have sources");
4050  }
4051 }
4052 
4053 //===----------------------------------------------------------------------===//
4054 // Child Iterators for iterating over subexpressions/substatements
4055 //===----------------------------------------------------------------------===//
4056 
4057 // UnaryExprOrTypeTraitExpr
4059  const_child_range CCR =
4060  const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4061  return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4062 }
4063 
4065  // If this is of a type and the type is a VLA type (and not a typedef), the
4066  // size expression of the VLA needs to be treated as an executable expression.
4067  // Why isn't this weirdness documented better in StmtIterator?
4068  if (isArgumentType()) {
4069  if (const VariableArrayType *T =
4070  dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4073  }
4074  return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4075 }
4076 
4078  QualType t, AtomicOp op, SourceLocation RP)
4079  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4080  false, false, false, false),
4081  NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4082 {
4083  assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4084  for (unsigned i = 0; i != args.size(); i++) {
4085  if (args[i]->isTypeDependent())
4086  ExprBits.TypeDependent = true;
4087  if (args[i]->isValueDependent())
4088  ExprBits.ValueDependent = true;
4089  if (args[i]->isInstantiationDependent())
4090  ExprBits.InstantiationDependent = true;
4091  if (args[i]->containsUnexpandedParameterPack())
4092  ExprBits.ContainsUnexpandedParameterPack = true;
4093 
4094  SubExprs[i] = args[i];
4095  }
4096 }
4097 
4099  switch (Op) {
4100  case AO__c11_atomic_init:
4101  case AO__opencl_atomic_init:
4102  case AO__c11_atomic_load:
4103  case AO__atomic_load_n:
4104  return 2;
4105 
4106  case AO__opencl_atomic_load:
4107  case AO__c11_atomic_store:
4108  case AO__c11_atomic_exchange:
4109  case AO__atomic_load:
4110  case AO__atomic_store:
4111  case AO__atomic_store_n:
4112  case AO__atomic_exchange_n:
4113  case AO__c11_atomic_fetch_add:
4114  case AO__c11_atomic_fetch_sub:
4115  case AO__c11_atomic_fetch_and:
4116  case AO__c11_atomic_fetch_or:
4117  case AO__c11_atomic_fetch_xor:
4118  case AO__atomic_fetch_add:
4119  case AO__atomic_fetch_sub:
4120  case AO__atomic_fetch_and:
4121  case AO__atomic_fetch_or:
4122  case AO__atomic_fetch_xor:
4123  case AO__atomic_fetch_nand:
4124  case AO__atomic_add_fetch:
4125  case AO__atomic_sub_fetch:
4126  case AO__atomic_and_fetch:
4127  case AO__atomic_or_fetch:
4128  case AO__atomic_xor_fetch:
4129  case AO__atomic_nand_fetch:
4130  case AO__atomic_fetch_min:
4131  case AO__atomic_fetch_max:
4132  return 3;
4133 
4134  case AO__opencl_atomic_store:
4135  case AO__opencl_atomic_exchange:
4136  case AO__opencl_atomic_fetch_add:
4137  case AO__opencl_atomic_fetch_sub:
4138  case AO__opencl_atomic_fetch_and:
4139  case AO__opencl_atomic_fetch_or:
4140  case AO__opencl_atomic_fetch_xor:
4141  case AO__opencl_atomic_fetch_min:
4142  case AO__opencl_atomic_fetch_max:
4143  case AO__atomic_exchange:
4144  return 4;
4145 
4146  case AO__c11_atomic_compare_exchange_strong:
4147  case AO__c11_atomic_compare_exchange_weak:
4148  return 5;
4149 
4150  case AO__opencl_atomic_compare_exchange_strong:
4151  case AO__opencl_atomic_compare_exchange_weak:
4152  case AO__atomic_compare_exchange:
4153  case AO__atomic_compare_exchange_n:
4154  return 6;
4155  }
4156  llvm_unreachable("unknown atomic op");
4157 }
4158 
4160  auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4161  if (auto AT = T->getAs<AtomicType>())
4162  return AT->getValueType();
4163  return T;
4164 }
4165 
4167  unsigned ArraySectionCount = 0;
4168  while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4169  Base = OASE->getBase();
4170  ++ArraySectionCount;
4171  }
4172  while (auto *ASE =
4173  dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4174  Base = ASE->getBase();
4175  ++ArraySectionCount;
4176  }
4177  Base = Base->IgnoreParenImpCasts();
4178  auto OriginalTy = Base->getType();
4179  if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4180  if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4181  OriginalTy = PVD->getOriginalType().getNonReferenceType();
4182 
4183  for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4184  if (OriginalTy->isAnyPointerType())
4185  OriginalTy = OriginalTy->getPointeeType();
4186  else {
4187  assert (OriginalTy->isArrayType());
4188  OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4189  }
4190  }
4191  return OriginalTy;
4192 }
child_iterator child_begin()
Definition: Stmt.h:474
ObjCPropertyRefExpr - A dot-syntax expression to access an ObjC property.
Definition: ExprObjC.h:649
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
bool hasArrayFiller() const
Return true if this is an array initializer and its array "filler" has been set.
Definition: Expr.h:4340
SourceLocation getLocForStartOfFile(FileID FID) const
Return the source location corresponding to the first byte of the specified file. ...
Represents a single C99 designator.
Definition: Expr.h:4553
SourceLocation getLoc() const
getLoc - Returns the main location of the declaration name.
void setValueDependent(bool VD)
Set whether this expression is value-dependent or not.
Definition: Expr.h:152
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Defines the clang::ASTContext interface.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:450
static std::string ComputeName(IdentType IT, const Decl *CurrentDecl)
Definition: Expr.cpp:497
const CXXDestructorDecl * getDestructor() const
Definition: ExprCXX.h:1308
Represents a function declaration or definition.
Definition: Decl.h:1722
Expr * getArrayIndex(const Designator &D) const
Definition: Expr.cpp:3892
Stmt * body_back()
Definition: Stmt.h:673
FunctionTemplateDecl * getTemplate() const
Retrieve the template from which this function was specialized.
Definition: DeclTemplate.h:550
static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D, QualType T, bool &TypeDependent, bool &ValueDependent, bool &InstantiationDependent)
Compute the type-, value-, and instantiation-dependence of a declaration reference based on the decla...
Definition: Expr.cpp:236
bool isFixedPointType() const
Return true if this is a fixed point type according to ISO/IEC JTC1 SC22 WG14 N1169.
Definition: Type.h:6391
Expr * getLHS() const
Definition: Expr.h:3606
Expr * getSyntacticForm()
Return the syntactic form of this expression, i.e.
Definition: Expr.h:5485
Lexer - This provides a simple interface that turns a text buffer into a stream of tokens...
Definition: Lexer.h:77
SourceLocation getRParenLoc() const
Definition: Expr.h:2542
void setArrayFiller(Expr *filler)
Definition: Expr.cpp:1984
const FunctionProtoType * getFunctionType() const
getFunctionType - Return the underlying function type for this block.
Definition: Expr.cpp:2080
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2397
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:3873
QualType getPointeeType() const
Definition: Type.h:2410
A (possibly-)qualified type.
Definition: Type.h:640
unsigned getOffsetOfStringByte(const Token &TheTok, unsigned ByteNo) const
getOffsetOfStringByte - This function returns the offset of the specified byte of the string data rep...
bool isArrayType() const
Definition: Type.h:6166
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2475
static StringLiteral * CreateEmpty(const ASTContext &C, unsigned NumStrs)
Construct an empty string literal.
Definition: Expr.cpp:913
const DeclarationNameLoc & getInfo() const
capture_iterator capture_end() const
Retrieve an iterator pointing past the end of the sequence of lambda captures.
Definition: ExprCXX.cpp:980
Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK, bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
Definition: Expr.h:110
__SIZE_TYPE__ size_t
The unsigned integer type of the result of the sizeof operator.
Definition: opencl-c.h:60
static Decl * castFromDeclContext(const DeclContext *)
Definition: DeclBase.cpp:844
unsigned FieldLoc
The location of the field name in the designated initializer.
Definition: Expr.h:4530
const Expr * getInit(unsigned Init) const
Definition: Expr.h:4284
Stmt - This represents one statement.
Definition: Stmt.h:66
DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc, Expr *baseExprs, SourceLocation rBraceLoc)
Definition: Expr.cpp:3936
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2463
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3215
SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, const TargetInfo &Target, unsigned *StartToken=nullptr, unsigned *StartTokenByteOffset=nullptr) const
getLocationOfByte - Return a source location that points to the specified byte of this string literal...
Definition: Expr.cpp:1075
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:497
bool hasPlaceholderType() const
Returns whether this expression has a placeholder type.
Definition: Expr.h:472
Defines the SourceManager interface.
bool hasNonTrivialCall(const ASTContext &Ctx) const
Determine whether this expression involves a call to any function that is not trivial.
Definition: Expr.cpp:3356
bool isRecordType() const
Definition: Type.h:6190
reverse_iterator rbegin()
Definition: ASTVector.h:103
Expr * getBase() const
Definition: Expr.h:2686
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:270
bool isSpecificPlaceholderType(unsigned K) const
Test for a specific placeholder type.
Definition: Type.h:6331
void setSemantics(const llvm::fltSemantics &Sem)
Set the APFloat semantics this literal uses.
Definition: Expr.cpp:836
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
bool hasUnusedResultAttr() const
Returns true if this function or its return type has the warn_unused_result attribute.
Definition: Decl.h:2302
FloatingLiteralBitfields FloatingLiteralBits
Definition: Stmt.h:302
void getEncodedElementAccess(SmallVectorImpl< uint32_t > &Elts) const
getEncodedElementAccess - Encode the elements accessed into an llvm aggregate Constant of ConstantInt...
Definition: Expr.cpp:3644
void setType(QualType t)
Definition: Expr.h:129
bool isTransparent() const
Is this a transparent initializer list (that is, an InitListExpr that is purely syntactic, and whose semantics are that of the sole contained initializer)?
Definition: Expr.cpp:2008
Defines the C++ template declaration subclasses.
Opcode getOpcode() const
Definition: Expr.h:3304
StringRef P
Classification Classify(ASTContext &Ctx) const
Classify - Classify this expression according to the C++11 expression taxonomy.
Definition: Expr.h:377
iterator insert(const ASTContext &C, iterator I, const T &Elt)
Definition: ASTVector.h:219
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1805
NamedDecl * getDecl() const
The base class of the type hierarchy.
Definition: Type.h:1413
bool isSemanticForm() const
Definition: Expr.h:4386
llvm::iterator_range< child_iterator > child_range
Definition: Stmt.h:464
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2672
DeclRefExprBitfields DeclRefExprBits
Definition: Stmt.h:304
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1382
NamedDecl * getParam(unsigned Idx)
Definition: DeclTemplate.h:133
SourceLocation getLParenLoc() const
Definition: Expr.h:3218
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:698
QualType adjustStringLiteralBaseType(QualType StrLTy) const
A container of type source information.
Definition: Decl.h:86
bool containsDuplicateElements() const
containsDuplicateElements - Return true if any element access is repeated.
Definition: Expr.cpp:3623
static StringLiteral * Create(const ASTContext &C, StringRef Str, StringKind Kind, bool Pascal, QualType Ty, const SourceLocation *Loc, unsigned NumStrs)
This is the "fully general" constructor that allows representation of strings formed from multiple co...
Definition: Expr.cpp:888
CallExpr(const ASTContext &C, StmtClass SC, Expr *fn, ArrayRef< Expr *> preargs, ArrayRef< Expr *> args, QualType t, ExprValueKind VK, SourceLocation rparenloc)
Definition: Expr.cpp:1195
Describes the capture of a variable or of this, or of a C++1y init-capture.
Definition: LambdaCapture.h:26
unsigned getCharWidth() const
Definition: TargetInfo.h:370
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2483
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4393
Expr * ignoreParenBaseCasts() LLVM_READONLY
Ignore parentheses and derived-to-base casts.
Definition: Expr.cpp:2614
QualType getElementType() const
Definition: Type.h:2707
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:455
StringRef getBufferData(FileID FID, bool *Invalid=nullptr) const
Return a StringRef to the source buffer data for the specified FileID.
bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
static OffsetOfExpr * CreateEmpty(const ASTContext &C, unsigned NumComps, unsigned NumExprs)
Definition: Expr.cpp:1393
static const OpaqueValueExpr * findInCopyConstruct(const Expr *expr)
Given an expression which invokes a copy constructor — i.e.
Definition: Expr.cpp:3976
Represents a variable declaration or definition.
Definition: Decl.h:820
const ObjCPropertyRefExpr * getObjCProperty() const
If this expression is an l-value for an Objective C property, find the underlying property reference ...
Definition: Expr.cpp:3487
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2854
bool isEnumeralType() const
Definition: Type.h:6194
QualType getCXXNameType() const
getCXXNameType - If this name is one of the C++ names (of a constructor, destructor, or conversion function), return the type associated with that name.
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6530
MangleContext * createMangleContext()
const ArrayType * castAsArrayTypeUnsafe() const
A variant of castAs<> for array type which silently discards qualifiers from the outermost type...
Definition: Type.h:6602
void resizeInits(const ASTContext &Context, unsigned NumInits)
Specify the number of initializers.
Definition: Expr.cpp:1968
void setInit(unsigned Init, Expr *expr)
Definition: Expr.h:4294
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT, StringLiteral *SL)
Definition: Expr.cpp:461
size_type size() const
Definition: ASTVector.h:109
bool isIdiomaticZeroInitializer(const LangOptions &LangOpts) const
Is this the zero initializer {0} in a language which considers it idiomatic?
Definition: Expr.cpp:2031
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:68
static DeclRefExpr * CreateEmpty(const ASTContext &Context, bool HasQualifier, bool HasFoundDecl, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs)
Construct an empty declaration reference expression.
Definition: Expr.cpp:435
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:38
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3269
static bool isAssignmentOp(Opcode Opc)
Definition: Expr.h:3394
Defines the clang::Expr interface and subclasses for C++ expressions.
FieldDecl * getSourceBitField()
If this expression refers to a bit-field, retrieve the declaration of that bit-field.
Definition: Expr.cpp:3525
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:920
Represents a struct/union/class.
Definition: Decl.h:3572
Represents a C99 designated initializer expression.
Definition: Expr.h:4478
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
One of these records is kept for each identifier that is lexed.
Represents a class template specialization, which refers to a class template with a given set of temp...
unsigned GetStringLength() const
const Expr * getBestDynamicClassTypeExpr() const
Get the inner expression that determines the best dynamic class.
Definition: Expr.cpp:38
const TemplateArgument & get(unsigned Idx) const
Retrieve the template argument at a given index.
Definition: DeclTemplate.h:255
StmtIterator cast_away_const(const ConstStmtIterator &RHS)
Definition: StmtIterator.h:152
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:153
A C++ nested-name-specifier augmented with source location information.
LValueClassification ClassifyLValue(ASTContext &Ctx) const
Reasons why an expression might not be an l-value.
unsigned getChar32Width() const
getChar32Width/Align - Return the size of &#39;char32_t&#39; for this target, in bits.
Definition: TargetInfo.h:553
bool isCharType() const
Definition: Type.cpp:1791
field_range fields() const
Definition: Decl.h:3763
static SourceLocation getFromRawEncoding(unsigned Encoding)
Turn a raw encoding of a SourceLocation object into a real SourceLocation.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:280
Represents a member of a struct/union/class.
Definition: Decl.h:2554
void setNumArgs(const ASTContext &C, unsigned NumArgs)
setNumArgs - This changes the number of arguments present in this call.
Definition: Expr.cpp:1286
static DesignatedInitExpr * Create(const ASTContext &C, llvm::ArrayRef< Designator > Designators, ArrayRef< Expr *> IndexExprs, SourceLocation EqualOrColonLoc, bool GNUSyntax, Expr *Init)
Definition: Expr.cpp:3837
UnaryExprOrTypeTrait
Names for the "expression or type" traits.
Definition: TypeTraits.h:97
bool isReferenceType() const
Definition: Type.h:6129
Token - This structure provides full information about a lexed token.
Definition: Token.h:35
static DeclRefExpr * Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc, QualType T, ExprValueKind VK, NamedDecl *FoundD=nullptr, const TemplateArgumentListInfo *TemplateArgs=nullptr)
Definition: Expr.cpp:391
Expr * getSubExpr()
Definition: Expr.h:3000
bool isArrow() const
isArrow - Return true if the base expression is a pointer to vector, return false if the base express...
Definition: Expr.cpp:3612
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:6444
NestedNameSpecifierLoc QualifierLoc
The nested-name-specifier that qualifies the name, including source-location information.
Definition: Expr.h:2587
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:110
struct FieldDesignator Field
A field designator, e.g., ".x".
Definition: Expr.h:4563
const Expr *const * const_semantics_iterator
Definition: Expr.h:5508
ShuffleVectorExpr(const ASTContext &C, ArrayRef< Expr *> args, QualType Type, SourceLocation BLoc, SourceLocation RP)
Definition: Expr.cpp:3676
Provides information about a function template specialization, which is a FunctionDecl that has been ...
Definition: DeclTemplate.h:508
StringRef getOpcodeStr() const
Definition: Expr.h:3331
bool isGLValue() const
Definition: Expr.h:252
Describes an C or C++ initializer list.
Definition: Expr.h:4236
const TemplateArgumentList * TemplateArguments
The template arguments used to produce the function template specialization from the function templat...
Definition: DeclTemplate.h:540
bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const
EvaluateAsBooleanCondition - Return true if this is a constant which we can fold and convert to a boo...
void setValue(const ASTContext &C, const llvm::APInt &Val)
Definition: Expr.h:1321
BinaryOperatorKind
static FixedPointLiteral * CreateFromRawInt(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l, unsigned Scale)
Definition: Expr.cpp:774
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:2632
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:3888
An lvalue ref-qualifier was provided (&).
Definition: Type.h:1369
Base object ctor.
Definition: ABI.h:27
< Capturing the *this object by copy
Definition: Lambda.h:37
A convenient class for passing around template argument information.
Definition: TemplateBase.h:552
uint32_t Offset
Definition: CacheTokens.cpp:43
Qualifiers::GC getObjCGCAttrKind(QualType Ty) const
Return one of the GCNone, Weak or Strong Objective-C garbage collection attributes.
Expr * getPtr() const
Definition: Expr.h:5615
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6579
ExprValueKind getValueKind() const
getValueKind - The value kind that this expression produces.
Definition: Expr.h:405
NullPointerConstantValueDependence
Enumeration used to describe how isNullPointerConstant() should cope with value-dependent expressions...
Definition: Expr.h:703
unsigned getNumPreArgs() const
Definition: Expr.h:2437
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition: Type.h:1715
static bool isRecordType(QualType T)
semantics_iterator semantics_end()
Definition: Expr.h:5515
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3263
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:5963
child_range children()
Definition: Expr.h:4427
bool isBoundMemberFunction(ASTContext &Ctx) const
Returns true if this expression is a bound member function.
Definition: Expr.cpp:2483
Expr * IgnoreParenCasts() LLVM_READONLY
IgnoreParenCasts - Ignore parentheses and casts.
Definition: Expr.cpp:2544
void getAsStringInternal(std::string &Str, const PrintingPolicy &Policy) const
Definition: Type.h:1000
field_iterator field_begin() const
Definition: Decl.cpp:4107
SourceLocation getCaretLocation() const
Definition: Expr.cpp:2086
static SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart, unsigned Characters, const SourceManager &SM, const LangOptions &LangOpts)
AdvanceToTokenCharacter - If the current SourceLocation specifies a location at the start of a token...
Definition: Lexer.h:349
static bool isBooleanType(QualType Ty)
An adjustment to be made to the temporary created when emitting a reference binding, which accesses a particular subobject of that temporary.
Definition: Expr.h:60
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2935
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1329
SourceLocation getSpellingLoc(SourceLocation Loc) const
Given a SourceLocation object, return the spelling location referenced by the ID. ...
CXXTemporary * getTemporary()
Definition: ExprCXX.h:1348
bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const
isCXX98IntegralConstantExpr - Return true if this expression is an integral constant expression in C+...
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1763
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1488
static IntegerLiteral * Create(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l)
Returns a new integer literal with value &#39;V&#39; and type &#39;type&#39;.
Definition: Expr.cpp:752
bool isTypeDependent() const
isTypeDependent - Determines whether this expression is type-dependent (C++ [temp.dep.expr]), which means that its type could change from one template instantiation to the next.
Definition: Expr.h:167
An ordinary object is located at an address in memory.
Definition: Specifiers.h:126
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4015
Represents an ObjC class declaration.
Definition: DeclObjC.h:1169
SourceLocation getOperatorLoc() const
getOperatorLoc - Return the location of the operator.
Definition: Expr.h:1896
Expression is a GNU-style __null constant.
Definition: Expr.h:698
StmtClass
Definition: Stmt.h:68
const Stmt * getBody() const
Definition: Expr.cpp:2089
A binding in a decomposition declaration.
Definition: DeclCXX.h:3798
NameKind getNameKind() const
getNameKind - Determine what kind of name this is.
bool isUnevaluated(unsigned ID) const
Returns true if this builtin does not perform the side-effects of its arguments.
Definition: Builtins.h:128
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:1159
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix)
Retrieve the unary opcode that corresponds to the given overloaded operator.
Definition: Expr.cpp:1160
void setIntValue(const ASTContext &C, const llvm::APInt &Val)
Definition: Expr.cpp:723
bool isObjCSelfExpr() const
Check if this expression is the ObjC &#39;self&#39; implicit parameter.
Definition: Expr.cpp:3507
ParenListExpr(const ASTContext &C, SourceLocation lparenloc, ArrayRef< Expr *> exprs, SourceLocation rparenloc)
Definition: Expr.cpp:3955
Represents the this expression in C++.
Definition: ExprCXX.h:1046
static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc, Expr *LHS, Expr *RHS)
Definition: Expr.cpp:1909
Represents an explicit template argument list in C++, e.g., the "<int>" in "sort<int>".
Definition: TemplateBase.h:644
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition: Expr.h:3176
bool isInstantiationDependent() const
Whether this nested name specifier involves a template parameter.
void print(const PrintingPolicy &Policy, raw_ostream &Out) const
Print this template argument to the given output stream.
bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const
Returns true if this is a call to a builtin which does not evaluate side-effects within its arguments...
Definition: Expr.cpp:1336
bool hasAttr() const
Definition: DeclBase.h:544
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3561
llvm::iterator_range< const_child_iterator > const_child_range
Definition: Stmt.h:465
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:637
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1627
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3436
bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const
EvaluateAsLValue - Evaluate an expression to see if we can fold it to an lvalue with link time known ...
Expr * IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY
IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the value (including ptr->int ...
Definition: Expr.cpp:2664
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1445
CastKind
CastKind - The kind of operation required for a conversion.
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat)
Definition: Expr.cpp:1785
Specifies that the expression should never be value-dependent.
Definition: Expr.h:705
UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) expression operand...
Definition: Expr.h:2212
iterator end()
Definition: ASTVector.h:99
InitListExpr * getUpdater() const
Definition: Expr.h:4862
void outputString(raw_ostream &OS) const
Definition: Expr.cpp:926
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
ConstStmtIterator const_child_iterator
Definition: Stmt.h:462
bool HasSideEffects(const ASTContext &Ctx, bool IncludePossibleEffects=true) const
HasSideEffects - This routine returns true for all those expressions which have any effect other than...
Definition: Expr.cpp:3033
Exposes information about the current target.
Definition: TargetInfo.h:54
An Objective-C property is a logical field of an Objective-C object which is read and written via Obj...
Definition: Specifiers.h:136
void setString(const ASTContext &C, StringRef Str, StringKind Kind, bool IsPascal)
Sets the string data to the given string data.
Definition: Expr.cpp:1022
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:432
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:640
Expr - This represents one expression.
Definition: Expr.h:106
void setDesignators(const ASTContext &C, const Designator *Desigs, unsigned NumDesigs)
Definition: Expr.cpp:3856
SourceLocation End
ExprValueKind
The categorization of expression values, currently following the C++11 scheme.
Definition: Specifiers.h:107
std::string Label
IdentifierInfo * getFieldName() const
For a field or identifier offsetof node, returns the name of the field.
Definition: Expr.cpp:1426
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:1546
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6593
void setTypeDependent(bool TD)
Set whether this expression is type-dependent or not.
Definition: Expr.h:170
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2705
unsigned getNumInits() const
Definition: Expr.h:4266
const Expr * getCallee() const
Definition: Expr.h:2446
const Expr * skipRValueSubobjectAdjustments() const
Definition: Expr.h:854
field_iterator field_end() const
Definition: Decl.h:3766
child_range children()
Definition: Expr.h:5083
DeclContext * getDeclContext()
Definition: DeclBase.h:434
ExprBitfields ExprBits
Definition: Stmt.h:300
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)
Retrieve the overloaded operator kind that corresponds to the given unary opcode. ...
Definition: Expr.cpp:1175
static FloatingLiteral * Create(const ASTContext &C, const llvm::APFloat &V, bool isexact, QualType Type, SourceLocation L)
Definition: Expr.cpp:808
Represents the type decltype(expr) (C++11).
Definition: Type.h:4015
ArrayRef< Expr * > inits()
Definition: Expr.h:4276
Specifies that a value-dependent expression of integral or dependent type should be considered a null...
Definition: Expr.h:709
Extra data stored in some MemberExpr objects.
Definition: Expr.h:2584
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const
Determine whether the result of this expression is a temporary object of the given class type...
Definition: Expr.cpp:2738
Base object dtor.
Definition: ABI.h:37
QualType getType() const
Definition: Expr.h:128
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1769
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:992
InitListExpr(const ASTContext &C, SourceLocation lbraceloc, ArrayRef< Expr *> initExprs, SourceLocation rbraceloc)
Definition: Expr.cpp:1941
Expr * getSubExprAsWritten()
Retrieve the cast subexpression as it was written in the source code, looking through any implicit ca...
Definition: Expr.cpp:1693
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1865
unsigned Index
Location of the first index expression within the designated initializer expression&#39;s list of subexpr...
Definition: Expr.h:4537
Represents a GCC generic vector type.
Definition: Type.h:3028
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:4658
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:4171
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:1050
Allow UB that we can give a value, but not arbitrary unmodeled side effects.
Definition: Expr.h:596
ValueDecl * getDecl()
Definition: Expr.h:1065
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1400
The result type of a method or function.
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2010
CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style cast in C++ (C++ [expr.cast]), which uses the syntax (Type)expr.
Definition: Expr.h:3187
ImplicitParamDecl * getSelfDecl() const
Definition: DeclObjC.h:414
reverse_iterator rend()
Definition: ASTVector.h:105
do v
Definition: arm_acle.h:78
const SourceManager & SM
Definition: Format.cpp:1475
__UINTPTR_TYPE__ uintptr_t
An unsigned integer type with the property that any valid pointer to void can be converted to this ty...
Definition: opencl-c.h:82
SourceRange getSourceRange() const
Definition: ExprCXX.h:145
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:293
ExprObjectKind getObjectKind() const
getObjectKind - The object kind that this expression produces.
Definition: Expr.h:412
unsigned getBuiltinCallee() const
getBuiltinCallee - If this is a call to a builtin, return the builtin ID of the callee.
Definition: Expr.cpp:1314
unsigned getWCharWidth() const
getWCharWidth/Align - Return the size of &#39;wchar_t&#39; for this target, in bits.
Definition: TargetInfo.h:543
RecordDecl * getDecl() const
Definition: Type.h:4149
SourceLocation getOperatorLoc() const
Returns the location of the operator symbol in the expression.
Definition: ExprCXX.h:126
Expr * IgnoreCasts() LLVM_READONLY
Ignore casts. Strip off any CastExprs, returning their operand.
Definition: Expr.cpp:2566
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO)
Retrieve the binary opcode that corresponds to the given overloaded operator.
Definition: Expr.cpp:1846
const llvm::fltSemantics & getSemantics() const
Return the APFloat semantics this literal uses.
Definition: Expr.cpp:818
Expr * IgnoreConversionOperator() LLVM_READONLY
IgnoreConversionOperator - Ignore conversion operator.
Definition: Expr.cpp:2653
AtomicExpr(SourceLocation BLoc, ArrayRef< Expr *> args, QualType t, AtomicOp op, SourceLocation RP)
Definition: Expr.cpp:4077
unsigned DotLoc
The location of the &#39;.&#39; in the designated initializer.
Definition: Expr.h:4527
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo, QualType resultType, SourceLocation op, SourceLocation rp)
Definition: Expr.h:2220
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:359
void ExpandDesignator(const ASTContext &C, unsigned Idx, const Designator *First, const Designator *Last)
Replaces the designator at index Idx with the series of designators in [First, Last).
Definition: Expr.cpp:3911
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:875
Expr * getBase() const
Definition: Expr.h:4859
#define false
Definition: stdbool.h:33
Kind
QualType getCanonicalType() const
Definition: Type.h:5932
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5441
bool isInstantiationDependent() const
Whether this expression is instantiation-dependent, meaning that it depends in some way on a template...
Definition: Expr.h:191
NullPointerConstantKind isNullPointerConstant(ASTContext &Ctx, NullPointerConstantValueDependence NPC) const
isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to a Null pointer constant...
Definition: Expr.cpp:3368
Encodes a location in the source.
QualType getReturnType() const
Definition: Type.h:3369
SourceLocation getOperatorLoc() const
Definition: Expr.h:3301
PseudoObjectExprBitfields PseudoObjectExprBits
Definition: Stmt.h:308
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:6009
Expression is not a Null pointer constant.
Definition: Expr.h:682
Expr * getSubExpr() const
Definition: Expr.h:1892
CastKind getCastKind() const
Definition: Expr.h:2994
static const FieldDecl * getTargetFieldForToUnionCast(QualType unionType, QualType opType)
Definition: Expr.cpp:1765
ObjCMethodFamily getMethodFamily() const
Definition: ExprObjC.h:1410
unsigned getChar16Width() const
getChar16Width/Align - Return the size of &#39;char16_t&#39; for this target, in bits.
Definition: TargetInfo.h:548
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:172
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:376
static QualType getUnderlyingType(const SubRegion *R)
unsigned int BasePathSizeTy
Definition: Expr.h:2937
Expr * getInClassInitializer() const
Get the C++11 default member initializer for this member, or null if one has not been set...
Definition: Decl.h:2696
void FixedPointValueToString(SmallVectorImpl< char > &Str, llvm::APSInt Val, unsigned Scale)
Definition: Type.cpp:4034
ExprObjectKind
A further classification of the kind of object referenced by an l-value or x-value.
Definition: Specifiers.h:124
static OffsetOfExpr * Create(const ASTContext &C, QualType type, SourceLocation OperatorLoc, TypeSourceInfo *tsi, ArrayRef< OffsetOfNode > comps, ArrayRef< Expr *> exprs, SourceLocation RParenLoc)
Definition: Expr.cpp:1380
bool isIntegralType(const ASTContext &Ctx) const
Determine whether this type is an integral type.
Definition: Type.cpp:1763
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2051
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2417
std::string getValueAsString(unsigned Radix) const
Definition: Expr.cpp:782
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2259
Specifies that a value-dependent expression should be considered to never be a null pointer constant...
Definition: Expr.h:713
CanQualType VoidTy
Definition: ASTContext.h:1023
Expr * updateInit(const ASTContext &C, unsigned Init, Expr *expr)
Updates the initializer at index Init with the new expression expr, and returns the old expression at...
Definition: Expr.cpp:1972
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:1370
bool isValueDependent() const
isValueDependent - Determines whether this expression is value-dependent (C++ [temp.dep.constexpr]).
Definition: Expr.h:149
AccessSpecifier getAccess() const
bool isKnownToHaveBooleanValue() const
isKnownToHaveBooleanValue - Return true if this is an integer expression that is known to return 0 or...
Definition: Expr.cpp:135
StringLiteral * getFunctionName()
Definition: Expr.cpp:469
RefQualifierKind
The kind of C++11 ref-qualifier associated with a function type.
Definition: Type.h:1364
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3069
static QualType findBoundMemberType(const Expr *expr)
Given an expression of bound-member type, find the type of the member.
Definition: Expr.cpp:2489
Expr ** getInits()
Retrieve the set of initializers.
Definition: Expr.h:4269
bool refersToVectorElement() const
Returns whether this expression refers to a vector element.
Definition: Expr.cpp:3572
static DesignatedInitExpr * CreateEmpty(const ASTContext &C, unsigned NumIndexExprs)
Definition: Expr.cpp:3849
const CXXRecordDecl * getBestDynamicClassType() const
For an expression of class type or pointer to class type, return the most derived class decl the expr...
Definition: Expr.cpp:63
Expr * getArrayRangeStart(const Designator &D) const
Definition: Expr.cpp:3897
const ObjCMethodDecl * getMethodDecl() const
Definition: ExprObjC.h:1391
bool isVectorType() const
Definition: Type.h:6202
__DEVICE__ void * memcpy(void *__a, const void *__b, size_t __c)
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1372
unsigned LBracketLoc
The location of the &#39;[&#39; starting the array range designator.
Definition: Expr.h:4539
Expr * getArrayFiller()
If this initializer list initializes an array with more elements than there are initializers in the l...
Definition: Expr.h:4330
LLVM_READONLY bool isPrintable(unsigned char c)
Return true if this character is an ASCII printable character; that is, a character that should take ...
Definition: CharInfo.h:140
void sawArrayRangeDesignator(bool ARD=true)
Definition: Expr.h:4407
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2297
bool isInstantiationDependentType() const
Determine whether this type is an instantiation-dependent type, meaning that the type involves a temp...
Definition: Type.h:1952
static MemberExpr * Create(const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *memberdecl, DeclAccessPair founddecl, DeclarationNameInfo MemberNameInfo, const TemplateArgumentListInfo *targs, QualType ty, ExprValueKind VK, ExprObjectKind OK)
Definition: Expr.cpp:1472
A placeholder type used to construct an empty shell of a type, that will be filled in later (e...
Definition: Stmt.h:338
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
Expr * getLHS() const
Definition: Expr.h:3307
A POD class for pairing a NamedDecl* with an access specifier.
void * Allocate(size_t Size, unsigned Align=8) const
Definition: ASTContext.h:677
Represents a C11 generic selection.
Definition: Expr.h:5120
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:2060
SourceRange getDesignatorsSourceRange() const
Definition: Expr.cpp:3865
StreamedQualTypeHelper stream(const PrintingPolicy &Policy, const Twine &PlaceHolder=Twine(), unsigned Indentation=0) const
Definition: Type.h:1033
Dataflow Directional Tag Classes.
NestedNameSpecifier * getNestedNameSpecifier() const
Retrieve the nested-name-specifier to which this instance refers.
bool isValid() const
Return true if this is a valid SourceLocation object.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:2042
UnaryOperatorKind
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1272
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:571
bool hasSideEffects(Expr *E, ASTContext &Ctx)
Definition: Transforms.cpp:168
OverloadedOperatorKind getOperator() const
Returns the kind of overloaded operator that this expression refers to.
Definition: ExprCXX.h:106
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:22
Decl * getReferencedDeclOfCallee()
Definition: Expr.cpp:1259
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return 0.
Definition: Expr.cpp:1251
A field designator, e.g., ".x".
Definition: Expr.h:4517
The same as PrettyFunction, except that the &#39;virtual&#39; keyword is omitted for virtual member functions...
Definition: Expr.h:1232
void setExprs(const ASTContext &C, ArrayRef< Expr *> Exprs)
Definition: Expr.cpp:3700
bool isDependent() const
Whether this nested name specifier refers to a dependent type or not.
AccessSpecifier getAccess() const
Definition: DeclBase.h:469
FunctionDecl * getTemplateInstantiationPattern() const
Retrieve the function declaration from which this function could be instantiated, if it is an instant...
Definition: Decl.cpp:3376
StmtClass getStmtClass() const
Definition: Stmt.h:391
const char * getCastKindName() const
Definition: Expr.h:2998
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2171
bool isBooleanType() const
Definition: Type.h:6457
Expression is a Null pointer constant built from a zero integer expression that is not a simple...
Definition: Expr.h:689
void resize(const ASTContext &C, unsigned N, const T &NV)
Definition: ASTVector.h:341
static PseudoObjectExpr * Create(const ASTContext &Context, Expr *syntactic, ArrayRef< Expr *> semantic, unsigned resultIndex)
Definition: Expr.cpp:4001
void setInstantiationDependent(bool ID)
Set whether this expression is instantiation-dependent or not.
Definition: Expr.h:196
const T * const_iterator
Definition: ASTVector.h:86
Expression is a C++11 nullptr.
Definition: Expr.h:695
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2616
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
unsigned getNumElements() const
getNumElements - Get the number of components being selected.
Definition: Expr.cpp:3616
semantics_iterator semantics_begin()
Definition: Expr.h:5509
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition: Expr.cpp:1342
ConstEvaluatedExprVisitor - This class visits &#39;const Expr *&#39;s.
ExplicitCastExpr - An explicit cast written in the source code.
Definition: Expr.h:3153
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:2034
Expr * IgnoreParenImpCasts() LLVM_READONLY
IgnoreParenImpCasts - Ignore parentheses and implicit casts.
Definition: Expr.cpp:2631
Expr * getArrayRangeEnd(const Designator &D) const
Definition: Expr.cpp:3903
llvm::APInt getValue() const
Definition: Expr.h:1320
unsigned getNumSubExprs() const
Definition: Expr.h:5648
Decl * getCalleeDecl()
Definition: Expr.cpp:1255
Pointer to a block type.
Definition: Type.h:2499
GenericSelectionExpr(const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, ArrayRef< TypeSourceInfo *> AssocTypes, ArrayRef< Expr *> AssocExprs, SourceLocation DefaultLoc, SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
Definition: Expr.cpp:3708
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:3947
bool isStringLiteralInit() const
Definition: Expr.cpp:1994
struct ArrayOrRangeDesignator ArrayOrRange
An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
Definition: Expr.h:4565
unsigned getIntWidth(QualType T) const
Not an overloaded operator.
Definition: OperatorKinds.h:23
bool isIncompleteArrayType() const
Definition: Type.h:6174
bool HasSideEffects
Whether the evaluated expression has side effects.
Definition: Expr.h:544
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4139
Location wrapper for a TemplateArgument.
Definition: TemplateBase.h:450
bool body_empty() const
Definition: Stmt.h:662
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2310
static StringRef getIdentTypeName(IdentType IT)
Definition: Expr.cpp:473
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6378
bool isConstantInitializer(ASTContext &Ctx, bool ForRef, const Expr **Culprit=nullptr) const
isConstantInitializer - Returns true if this expression can be emitted to IR as a constant...
Definition: Expr.cpp:2832
static CStyleCastExpr * Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind K, Expr *Op, const CXXCastPath *BasePath, TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation R)
Definition: Expr.cpp:1810
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:3951
bool isFunctionType() const
Definition: Type.h:6113
static ImplicitCastExpr * CreateEmpty(const ASTContext &Context, unsigned PathSize)
Definition: Expr.cpp:1801
Expr * IgnoreParenLValueCasts() LLVM_READONLY
Ignore parentheses and lvalue casts.
Definition: Expr.cpp:2591
Opcode getOpcode() const
Definition: Expr.h:1889
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition: ExprCXX.h:1508
NamedDecl * getConversionFunction() const
If this cast applies a user-defined conversion, retrieve the conversion function that it invokes...
Definition: Expr.cpp:1719
UnaryExprOrTypeTraitExprBitfields UnaryExprOrTypeTraitExprBits
Definition: Stmt.h:303
Represents a base class of a C++ class.
Definition: DeclCXX.h:192
iterator begin()
Definition: ASTVector.h:97
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2074
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:577
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2257
llvm::iterator_range< specific_attr_iterator< T > > specific_attrs() const
Definition: DeclBase.h:526
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1238
A template argument list.
Definition: DeclTemplate.h:210
static CStyleCastExpr * CreateEmpty(const ASTContext &Context, unsigned PathSize)
Definition: Expr.cpp:1827
static const Expr * skipTemporaryBindingsNoOpCastsAndParens(const Expr *E)
Skip over any no-op casts and any temporary-binding expressions.
Definition: Expr.cpp:2712
bool refersToGlobalRegisterVar() const
Returns whether this expression refers to a global register variable.
Definition: Expr.cpp:3598
bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc, SourceRange &R1, SourceRange &R2, ASTContext &Ctx) const
isUnusedResultAWarning - Return true if this immediate expression should be warned about if the resul...
Definition: Expr.cpp:2105
void reserve(const ASTContext &C, unsigned N)
Definition: ASTVector.h:173
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
Expression is a Null pointer constant built from a literal zero.
Definition: Expr.h:692
void Deallocate(void *Ptr) const
Definition: ASTContext.h:683
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2596
CallingConv getCallConv() const
Definition: Type.h:3379
Represents a C++ struct/union/class.
Definition: DeclCXX.h:308
bool isVoidType() const
Definition: Type.h:6344
bool isSyntacticForm() const
Definition: Expr.h:4390
TypeInfo getTypeInfo(const Type *T) const
Get the size and alignment of the specified complete type in bits.
unsigned getBuiltinID() const
Returns a value indicating whether this function corresponds to a builtin function.
Definition: Decl.cpp:2942
static QualType getBaseOriginalType(const Expr *Base)
Return original type of the base expression for array section.
Definition: Expr.cpp:4166
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:4004
static bool hasAnyTypeDependentArguments(ArrayRef< Expr *> Exprs)
hasAnyTypeDependentArguments - Determines if any of the expressions in Exprs is type-dependent.
Definition: Expr.cpp:2824
Represents an explicit C++ type conversion that uses "functional" notation (C++ [expr.type.conv]).
Definition: ExprCXX.h:1630
Expr * getRHS() const
Definition: Expr.h:3607
bool isPRValue() const
Definition: Expr.h:355
Builtin::Context & BuiltinInfo
Definition: ASTContext.h:566
bool containsUnexpandedParameterPack() const
Whether this expression contains an unexpanded parameter pack (for C++11 variadic templates)...
Definition: Expr.h:214
bool isRValue() const
Definition: Expr.h:250
StringLiteralParser - This decodes string escape characters and performs wide string analysis and Tra...
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:268
bool isImplicitCXXThis() const
Whether this expression is an implicit reference to &#39;this&#39; in C++.
Definition: Expr.cpp:2780
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1633
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2406
bool isBuiltinAssumeFalse(const ASTContext &Ctx) const
Return true if this is a call to __assume() or __builtin_assume() with a non-value-dependent constant...
Definition: Expr.cpp:2999
Designator * getDesignator(unsigned Idx)
Definition: Expr.h:4697
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:275
void reserveInits(const ASTContext &C, unsigned NumInits)
Reserve space for some number of initializers.
Definition: Expr.cpp:1963
uint64_t Width
Definition: ASTContext.h:142
capture_iterator capture_begin() const
Retrieve an iterator pointing to the first lambda capture.
Definition: ExprCXX.cpp:976
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:930
DeclAccessPair FoundDecl
The DeclAccessPair through which the MemberDecl was found due to name qualifiers. ...
Definition: Expr.h:2591
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:1946
bool isEvaluatable(const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
isEvaluatable - Call EvaluateAsRValue to see if this expression can be constant folded without side-e...
std::reverse_iterator< const_iterator > const_reverse_iterator
Definition: ASTVector.h:88
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1532
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:980
bool isUnion() const
Definition: Decl.h:3231
Expr * getRHS() const
Definition: Expr.h:3309
bool isPointerType() const
Definition: Type.h:6117
CallExprBitfields CallExprBits
Definition: Stmt.h:306
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)
Retrieve the overloaded operator kind that corresponds to the given binary opcode.
Definition: Expr.cpp:1884
FieldDecl * getInitializedFieldInUnion()
If this initializes a union, specifies which field in the union to initialize.
Definition: Expr.h:4348
bool isDefaultArgument() const
Determine whether this expression is a default function argument.
Definition: Expr.cpp:2699
bool isOBJCGCCandidate(ASTContext &Ctx) const
isOBJCGCCandidate - Return true if this expression may be used in a read/ write barrier.
Definition: Expr.cpp:2444
QualType getType() const
Definition: Decl.h:651
#define true
Definition: stdbool.h:32
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:114
unsigned getNumArgs() const
Definition: ExprCXX.h:1505
A trivial tuple used to represent a source range.
static StringRef getOpcodeStr(Opcode Op)
getOpcodeStr - Turn an Opcode enum value into the punctuation char it corresponds to...
Definition: Expr.cpp:1151
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1361
This represents a decl that may have a name.
Definition: Decl.h:248
OffsetOfExpr - [C99 7.17] - This represents an expression of the form offsetof(record-type, member-designator).
Definition: Expr.h:2099
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2831
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:4668
static int getAccessorIdx(char c, bool isNumericAccessor)
Definition: Type.h:3192
QualType getValueType() const
Definition: Expr.cpp:4159
double getValueAsApproximateDouble() const
getValueAsApproximateDouble - This returns the value as an inaccurate double.
Definition: Expr.cpp:856
bool isInstanceMessage() const
Determine whether this is an instance message to either a computed object or to super.
Definition: ExprObjC.h:1283
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition: Decl.cpp:3003
const LangOptions & getLangOpts() const
Definition: ASTContext.h:715
ObjCCategoryImplDecl - An object of this class encapsulates a category @implementation declaration...
Definition: DeclObjC.h:2496
IdentifierInfo * getFieldName() const
Definition: Expr.cpp:3763
This class handles loading and caching of source files into memory.
InitListExpr * getSyntacticForm() const
Definition: Expr.h:4393
Defines enum values for all the target-independent builtin functions.
NullPointerConstantKind
Enumeration used to describe the kind of Null pointer constant returned from isNullPointerConstant()...
Definition: Expr.h:680
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:97
std::pair< FileID, unsigned > getDecomposedLoc(SourceLocation Loc) const
Decompose the specified location into a raw FileID + Offset pair.
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2513
static OMPLinearClause * Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef< Expr *> VL, ArrayRef< Expr *> PL, ArrayRef< Expr *> IL, Expr *Step, Expr *CalcStep, Stmt *PreInit, Expr *PostUpdate)
Creates clause with a list of variables VL and a linear step Step.
SourceRange getSourceRange() const LLVM_READONLY
Definition: Expr.h:4671