clang  8.0.0svn
Expr.cpp
Go to the documentation of this file.
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Lexer.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 #include <cstring>
36 using namespace clang;
37 
39  const Expr *E = this;
40  while (true) {
41  E = E->ignoreParenBaseCasts();
42 
43  // Follow the RHS of a comma operator.
44  if (auto *BO = dyn_cast<BinaryOperator>(E)) {
45  if (BO->getOpcode() == BO_Comma) {
46  E = BO->getRHS();
47  continue;
48  }
49  }
50 
51  // Step into initializer for materialized temporaries.
52  if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
53  E = MTE->GetTemporaryExpr();
54  continue;
55  }
56 
57  break;
58  }
59 
60  return E;
61 }
62 
64  const Expr *E = getBestDynamicClassTypeExpr();
65  QualType DerivedType = E->getType();
66  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
67  DerivedType = PTy->getPointeeType();
68 
69  if (DerivedType->isDependentType())
70  return nullptr;
71 
72  const RecordType *Ty = DerivedType->castAs<RecordType>();
73  Decl *D = Ty->getDecl();
74  return cast<CXXRecordDecl>(D);
75 }
76 
79  SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
80  const Expr *E = this;
81  while (true) {
82  E = E->IgnoreParens();
83 
84  if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
85  if ((CE->getCastKind() == CK_DerivedToBase ||
86  CE->getCastKind() == CK_UncheckedDerivedToBase) &&
87  E->getType()->isRecordType()) {
88  E = CE->getSubExpr();
89  CXXRecordDecl *Derived
90  = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
91  Adjustments.push_back(SubobjectAdjustment(CE, Derived));
92  continue;
93  }
94 
95  if (CE->getCastKind() == CK_NoOp) {
96  E = CE->getSubExpr();
97  continue;
98  }
99  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
100  if (!ME->isArrow()) {
101  assert(ME->getBase()->getType()->isRecordType());
102  if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
103  if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
104  E = ME->getBase();
105  Adjustments.push_back(SubobjectAdjustment(Field));
106  continue;
107  }
108  }
109  }
110  } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
111  if (BO->getOpcode() == BO_PtrMemD) {
112  assert(BO->getRHS()->isRValue());
113  E = BO->getLHS();
114  const MemberPointerType *MPT =
115  BO->getRHS()->getType()->getAs<MemberPointerType>();
116  Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
117  continue;
118  } else if (BO->getOpcode() == BO_Comma) {
119  CommaLHSs.push_back(BO->getLHS());
120  E = BO->getRHS();
121  continue;
122  }
123  }
124 
125  // Nothing changed.
126  break;
127  }
128  return E;
129 }
130 
131 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
132 /// that is known to return 0 or 1. This happens for _Bool/bool expressions
133 /// but also int expressions which are produced by things like comparisons in
134 /// C.
136  const Expr *E = IgnoreParens();
137 
138  // If this value has _Bool type, it is obvious 0/1.
139  if (E->getType()->isBooleanType()) return true;
140  // If this is a non-scalar-integer type, we don't care enough to try.
141  if (!E->getType()->isIntegralOrEnumerationType()) return false;
142 
143  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
144  switch (UO->getOpcode()) {
145  case UO_Plus:
146  return UO->getSubExpr()->isKnownToHaveBooleanValue();
147  case UO_LNot:
148  return true;
149  default:
150  return false;
151  }
152  }
153 
154  // Only look through implicit casts. If the user writes
155  // '(int) (a && b)' treat it as an arbitrary int.
156  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
157  return CE->getSubExpr()->isKnownToHaveBooleanValue();
158 
159  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
160  switch (BO->getOpcode()) {
161  default: return false;
162  case BO_LT: // Relational operators.
163  case BO_GT:
164  case BO_LE:
165  case BO_GE:
166  case BO_EQ: // Equality operators.
167  case BO_NE:
168  case BO_LAnd: // AND operator.
169  case BO_LOr: // Logical OR operator.
170  return true;
171 
172  case BO_And: // Bitwise AND operator.
173  case BO_Xor: // Bitwise XOR operator.
174  case BO_Or: // Bitwise OR operator.
175  // Handle things like (x==2)|(y==12).
176  return BO->getLHS()->isKnownToHaveBooleanValue() &&
177  BO->getRHS()->isKnownToHaveBooleanValue();
178 
179  case BO_Comma:
180  case BO_Assign:
181  return BO->getRHS()->isKnownToHaveBooleanValue();
182  }
183  }
184 
185  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
186  return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
187  CO->getFalseExpr()->isKnownToHaveBooleanValue();
188 
189  return false;
190 }
191 
192 // Amusing macro metaprogramming hack: check whether a class provides
193 // a more specific implementation of getExprLoc().
194 //
195 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
196 namespace {
197  /// This implementation is used when a class provides a custom
198  /// implementation of getExprLoc.
199  template <class E, class T>
200  SourceLocation getExprLocImpl(const Expr *expr,
201  SourceLocation (T::*v)() const) {
202  return static_cast<const E*>(expr)->getExprLoc();
203  }
204 
205  /// This implementation is used when a class doesn't provide
206  /// a custom implementation of getExprLoc. Overload resolution
207  /// should pick it over the implementation above because it's
208  /// more specialized according to function template partial ordering.
209  template <class E>
210  SourceLocation getExprLocImpl(const Expr *expr,
211  SourceLocation (Expr::*v)() const) {
212  return static_cast<const E *>(expr)->getBeginLoc();
213  }
214 }
215 
217  switch (getStmtClass()) {
218  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
219 #define ABSTRACT_STMT(type)
220 #define STMT(type, base) \
221  case Stmt::type##Class: break;
222 #define EXPR(type, base) \
223  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
224 #include "clang/AST/StmtNodes.inc"
225  }
226  llvm_unreachable("unknown expression kind");
227 }
228 
229 //===----------------------------------------------------------------------===//
230 // Primary Expressions.
231 //===----------------------------------------------------------------------===//
232 
233 /// Compute the type-, value-, and instantiation-dependence of a
234 /// declaration reference
235 /// based on the declaration being referenced.
236 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
237  QualType T, bool &TypeDependent,
238  bool &ValueDependent,
239  bool &InstantiationDependent) {
240  TypeDependent = false;
241  ValueDependent = false;
242  InstantiationDependent = false;
243 
244  // (TD) C++ [temp.dep.expr]p3:
245  // An id-expression is type-dependent if it contains:
246  //
247  // and
248  //
249  // (VD) C++ [temp.dep.constexpr]p2:
250  // An identifier is value-dependent if it is:
251 
252  // (TD) - an identifier that was declared with dependent type
253  // (VD) - a name declared with a dependent type,
254  if (T->isDependentType()) {
255  TypeDependent = true;
256  ValueDependent = true;
257  InstantiationDependent = true;
258  return;
259  } else if (T->isInstantiationDependentType()) {
260  InstantiationDependent = true;
261  }
262 
263  // (TD) - a conversion-function-id that specifies a dependent type
264  if (D->getDeclName().getNameKind()
267  if (T->isDependentType()) {
268  TypeDependent = true;
269  ValueDependent = true;
270  InstantiationDependent = true;
271  return;
272  }
273 
275  InstantiationDependent = true;
276  }
277 
278  // (VD) - the name of a non-type template parameter,
279  if (isa<NonTypeTemplateParmDecl>(D)) {
280  ValueDependent = true;
281  InstantiationDependent = true;
282  return;
283  }
284 
285  // (VD) - a constant with integral or enumeration type and is
286  // initialized with an expression that is value-dependent.
287  // (VD) - a constant with literal type and is initialized with an
288  // expression that is value-dependent [C++11].
289  // (VD) - FIXME: Missing from the standard:
290  // - an entity with reference type and is initialized with an
291  // expression that is value-dependent [C++11]
292  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
293  if ((Ctx.getLangOpts().CPlusPlus11 ?
294  Var->getType()->isLiteralType(Ctx) :
295  Var->getType()->isIntegralOrEnumerationType()) &&
296  (Var->getType().isConstQualified() ||
297  Var->getType()->isReferenceType())) {
298  if (const Expr *Init = Var->getAnyInitializer())
299  if (Init->isValueDependent()) {
300  ValueDependent = true;
301  InstantiationDependent = true;
302  }
303  }
304 
305  // (VD) - FIXME: Missing from the standard:
306  // - a member function or a static data member of the current
307  // instantiation
308  if (Var->isStaticDataMember() &&
309  Var->getDeclContext()->isDependentContext()) {
310  ValueDependent = true;
311  InstantiationDependent = true;
312  TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
313  if (TInfo->getType()->isIncompleteArrayType())
314  TypeDependent = true;
315  }
316 
317  return;
318  }
319 
320  // (VD) - FIXME: Missing from the standard:
321  // - a member function or a static data member of the current
322  // instantiation
323  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
324  ValueDependent = true;
325  InstantiationDependent = true;
326  }
327 }
328 
329 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
330  bool TypeDependent = false;
331  bool ValueDependent = false;
332  bool InstantiationDependent = false;
333  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
334  ValueDependent, InstantiationDependent);
335 
336  ExprBits.TypeDependent |= TypeDependent;
337  ExprBits.ValueDependent |= ValueDependent;
338  ExprBits.InstantiationDependent |= InstantiationDependent;
339 
340  // Is the declaration a parameter pack?
341  if (getDecl()->isParameterPack())
342  ExprBits.ContainsUnexpandedParameterPack = true;
343 }
344 
345 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
346  NestedNameSpecifierLoc QualifierLoc,
347  SourceLocation TemplateKWLoc,
348  ValueDecl *D, bool RefersToEnclosingVariableOrCapture,
349  const DeclarationNameInfo &NameInfo,
350  NamedDecl *FoundD,
351  const TemplateArgumentListInfo *TemplateArgs,
352  QualType T, ExprValueKind VK)
353  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
354  D(D), DNLoc(NameInfo.getInfo()) {
355  DeclRefExprBits.Loc = NameInfo.getLoc();
356  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
357  if (QualifierLoc) {
358  new (getTrailingObjects<NestedNameSpecifierLoc>())
359  NestedNameSpecifierLoc(QualifierLoc);
360  auto *NNS = QualifierLoc.getNestedNameSpecifier();
361  if (NNS->isInstantiationDependent())
362  ExprBits.InstantiationDependent = true;
363  if (NNS->containsUnexpandedParameterPack())
364  ExprBits.ContainsUnexpandedParameterPack = true;
365  }
366  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
367  if (FoundD)
368  *getTrailingObjects<NamedDecl *>() = FoundD;
369  DeclRefExprBits.HasTemplateKWAndArgsInfo
370  = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
371  DeclRefExprBits.RefersToEnclosingVariableOrCapture =
372  RefersToEnclosingVariableOrCapture;
373  if (TemplateArgs) {
374  bool Dependent = false;
375  bool InstantiationDependent = false;
376  bool ContainsUnexpandedParameterPack = false;
377  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
378  TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
379  Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
380  assert(!Dependent && "built a DeclRefExpr with dependent template args");
381  ExprBits.InstantiationDependent |= InstantiationDependent;
382  ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
383  } else if (TemplateKWLoc.isValid()) {
384  getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
385  TemplateKWLoc);
386  }
387  DeclRefExprBits.HadMultipleCandidates = 0;
388 
389  computeDependence(Ctx);
390 }
391 
393  NestedNameSpecifierLoc QualifierLoc,
394  SourceLocation TemplateKWLoc,
395  ValueDecl *D,
396  bool RefersToEnclosingVariableOrCapture,
397  SourceLocation NameLoc,
398  QualType T,
399  ExprValueKind VK,
400  NamedDecl *FoundD,
401  const TemplateArgumentListInfo *TemplateArgs) {
402  return Create(Context, QualifierLoc, TemplateKWLoc, D,
403  RefersToEnclosingVariableOrCapture,
404  DeclarationNameInfo(D->getDeclName(), NameLoc),
405  T, VK, FoundD, TemplateArgs);
406 }
407 
409  NestedNameSpecifierLoc QualifierLoc,
410  SourceLocation TemplateKWLoc,
411  ValueDecl *D,
412  bool RefersToEnclosingVariableOrCapture,
413  const DeclarationNameInfo &NameInfo,
414  QualType T,
415  ExprValueKind VK,
416  NamedDecl *FoundD,
417  const TemplateArgumentListInfo *TemplateArgs) {
418  // Filter out cases where the found Decl is the same as the value refenenced.
419  if (D == FoundD)
420  FoundD = nullptr;
421 
422  bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
423  std::size_t Size =
424  totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
426  QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
427  HasTemplateKWAndArgsInfo ? 1 : 0,
428  TemplateArgs ? TemplateArgs->size() : 0);
429 
430  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
431  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
432  RefersToEnclosingVariableOrCapture,
433  NameInfo, FoundD, TemplateArgs, T, VK);
434 }
435 
437  bool HasQualifier,
438  bool HasFoundDecl,
439  bool HasTemplateKWAndArgsInfo,
440  unsigned NumTemplateArgs) {
441  assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
442  std::size_t Size =
443  totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
445  HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
446  NumTemplateArgs);
447  void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
448  return new (Mem) DeclRefExpr(EmptyShell());
449 }
450 
452  if (hasQualifier())
453  return getQualifierLoc().getBeginLoc();
454  return getNameInfo().getBeginLoc();
455 }
457  if (hasExplicitTemplateArgs())
458  return getRAngleLoc();
459  return getNameInfo().getEndLoc();
460 }
461 
462 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
463  StringLiteral *SL)
464  : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
465  FNTy->isDependentType(), FNTy->isDependentType(),
467  /*ContainsUnexpandedParameterPack=*/false) {
468  PredefinedExprBits.Kind = IK;
469  assert((getIdentKind() == IK) &&
470  "IdentKind do not fit in PredefinedExprBitfields!");
471  bool HasFunctionName = SL != nullptr;
472  PredefinedExprBits.HasFunctionName = HasFunctionName;
473  PredefinedExprBits.Loc = L;
474  if (HasFunctionName)
475  setFunctionName(SL);
476 }
477 
478 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
479  : Expr(PredefinedExprClass, Empty) {
480  PredefinedExprBits.HasFunctionName = HasFunctionName;
481 }
482 
484  QualType FNTy, IdentKind IK,
485  StringLiteral *SL) {
486  bool HasFunctionName = SL != nullptr;
487  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
488  alignof(PredefinedExpr));
489  return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
490 }
491 
493  bool HasFunctionName) {
494  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
495  alignof(PredefinedExpr));
496  return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
497 }
498 
500  switch (IK) {
501  case Func:
502  return "__func__";
503  case Function:
504  return "__FUNCTION__";
505  case FuncDName:
506  return "__FUNCDNAME__";
507  case LFunction:
508  return "L__FUNCTION__";
509  case PrettyFunction:
510  return "__PRETTY_FUNCTION__";
511  case FuncSig:
512  return "__FUNCSIG__";
513  case LFuncSig:
514  return "L__FUNCSIG__";
515  case PrettyFunctionNoVirtual:
516  break;
517  }
518  llvm_unreachable("Unknown ident kind for PredefinedExpr");
519 }
520 
521 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
522 // expr" policy instead.
523 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
524  ASTContext &Context = CurrentDecl->getASTContext();
525 
526  if (IK == PredefinedExpr::FuncDName) {
527  if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
528  std::unique_ptr<MangleContext> MC;
529  MC.reset(Context.createMangleContext());
530 
531  if (MC->shouldMangleDeclName(ND)) {
532  SmallString<256> Buffer;
533  llvm::raw_svector_ostream Out(Buffer);
534  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
535  MC->mangleCXXCtor(CD, Ctor_Base, Out);
536  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
537  MC->mangleCXXDtor(DD, Dtor_Base, Out);
538  else
539  MC->mangleName(ND, Out);
540 
541  if (!Buffer.empty() && Buffer.front() == '\01')
542  return Buffer.substr(1);
543  return Buffer.str();
544  } else
545  return ND->getIdentifier()->getName();
546  }
547  return "";
548  }
549  if (isa<BlockDecl>(CurrentDecl)) {
550  // For blocks we only emit something if it is enclosed in a function
551  // For top-level block we'd like to include the name of variable, but we
552  // don't have it at this point.
553  auto DC = CurrentDecl->getDeclContext();
554  if (DC->isFileContext())
555  return "";
556 
557  SmallString<256> Buffer;
558  llvm::raw_svector_ostream Out(Buffer);
559  if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
560  // For nested blocks, propagate up to the parent.
561  Out << ComputeName(IK, DCBlock);
562  else if (auto *DCDecl = dyn_cast<Decl>(DC))
563  Out << ComputeName(IK, DCDecl) << "_block_invoke";
564  return Out.str();
565  }
566  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
567  if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
568  IK != FuncSig && IK != LFuncSig)
569  return FD->getNameAsString();
570 
571  SmallString<256> Name;
572  llvm::raw_svector_ostream Out(Name);
573 
574  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
575  if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
576  Out << "virtual ";
577  if (MD->isStatic())
578  Out << "static ";
579  }
580 
581  PrintingPolicy Policy(Context.getLangOpts());
582  std::string Proto;
583  llvm::raw_string_ostream POut(Proto);
584 
585  const FunctionDecl *Decl = FD;
586  if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
587  Decl = Pattern;
588  const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
589  const FunctionProtoType *FT = nullptr;
590  if (FD->hasWrittenPrototype())
591  FT = dyn_cast<FunctionProtoType>(AFT);
592 
593  if (IK == FuncSig || IK == LFuncSig) {
594  switch (AFT->getCallConv()) {
595  case CC_C: POut << "__cdecl "; break;
596  case CC_X86StdCall: POut << "__stdcall "; break;
597  case CC_X86FastCall: POut << "__fastcall "; break;
598  case CC_X86ThisCall: POut << "__thiscall "; break;
599  case CC_X86VectorCall: POut << "__vectorcall "; break;
600  case CC_X86RegCall: POut << "__regcall "; break;
601  // Only bother printing the conventions that MSVC knows about.
602  default: break;
603  }
604  }
605 
606  FD->printQualifiedName(POut, Policy);
607 
608  POut << "(";
609  if (FT) {
610  for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
611  if (i) POut << ", ";
612  POut << Decl->getParamDecl(i)->getType().stream(Policy);
613  }
614 
615  if (FT->isVariadic()) {
616  if (FD->getNumParams()) POut << ", ";
617  POut << "...";
618  } else if ((IK == FuncSig || IK == LFuncSig ||
619  !Context.getLangOpts().CPlusPlus) &&
620  !Decl->getNumParams()) {
621  POut << "void";
622  }
623  }
624  POut << ")";
625 
626  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
627  assert(FT && "We must have a written prototype in this case.");
628  if (FT->isConst())
629  POut << " const";
630  if (FT->isVolatile())
631  POut << " volatile";
632  RefQualifierKind Ref = MD->getRefQualifier();
633  if (Ref == RQ_LValue)
634  POut << " &";
635  else if (Ref == RQ_RValue)
636  POut << " &&";
637  }
638 
640  SpecsTy Specs;
641  const DeclContext *Ctx = FD->getDeclContext();
642  while (Ctx && isa<NamedDecl>(Ctx)) {
644  = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
645  if (Spec && !Spec->isExplicitSpecialization())
646  Specs.push_back(Spec);
647  Ctx = Ctx->getParent();
648  }
649 
650  std::string TemplateParams;
651  llvm::raw_string_ostream TOut(TemplateParams);
652  for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
653  I != E; ++I) {
654  const TemplateParameterList *Params
655  = (*I)->getSpecializedTemplate()->getTemplateParameters();
656  const TemplateArgumentList &Args = (*I)->getTemplateArgs();
657  assert(Params->size() == Args.size());
658  for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
659  StringRef Param = Params->getParam(i)->getName();
660  if (Param.empty()) continue;
661  TOut << Param << " = ";
662  Args.get(i).print(Policy, TOut);
663  TOut << ", ";
664  }
665  }
666 
668  = FD->getTemplateSpecializationInfo();
669  if (FSI && !FSI->isExplicitSpecialization()) {
670  const TemplateParameterList* Params
672  const TemplateArgumentList* Args = FSI->TemplateArguments;
673  assert(Params->size() == Args->size());
674  for (unsigned i = 0, e = Params->size(); i != e; ++i) {
675  StringRef Param = Params->getParam(i)->getName();
676  if (Param.empty()) continue;
677  TOut << Param << " = ";
678  Args->get(i).print(Policy, TOut);
679  TOut << ", ";
680  }
681  }
682 
683  TOut.flush();
684  if (!TemplateParams.empty()) {
685  // remove the trailing comma and space
686  TemplateParams.resize(TemplateParams.size() - 2);
687  POut << " [" << TemplateParams << "]";
688  }
689 
690  POut.flush();
691 
692  // Print "auto" for all deduced return types. This includes C++1y return
693  // type deduction and lambdas. For trailing return types resolve the
694  // decltype expression. Otherwise print the real type when this is
695  // not a constructor or destructor.
696  if (isa<CXXMethodDecl>(FD) &&
697  cast<CXXMethodDecl>(FD)->getParent()->isLambda())
698  Proto = "auto " + Proto;
699  else if (FT && FT->getReturnType()->getAs<DecltypeType>())
700  FT->getReturnType()
701  ->getAs<DecltypeType>()
703  .getAsStringInternal(Proto, Policy);
704  else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
705  AFT->getReturnType().getAsStringInternal(Proto, Policy);
706 
707  Out << Proto;
708 
709  return Name.str().str();
710  }
711  if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
712  for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
713  // Skip to its enclosing function or method, but not its enclosing
714  // CapturedDecl.
715  if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
716  const Decl *D = Decl::castFromDeclContext(DC);
717  return ComputeName(IK, D);
718  }
719  llvm_unreachable("CapturedDecl not inside a function or method");
720  }
721  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
722  SmallString<256> Name;
723  llvm::raw_svector_ostream Out(Name);
724  Out << (MD->isInstanceMethod() ? '-' : '+');
725  Out << '[';
726 
727  // For incorrect code, there might not be an ObjCInterfaceDecl. Do
728  // a null check to avoid a crash.
729  if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
730  Out << *ID;
731 
732  if (const ObjCCategoryImplDecl *CID =
733  dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
734  Out << '(' << *CID << ')';
735 
736  Out << ' ';
737  MD->getSelector().print(Out);
738  Out << ']';
739 
740  return Name.str().str();
741  }
742  if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
743  // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
744  return "top level";
745  }
746  return "";
747 }
748 
750  const llvm::APInt &Val) {
751  if (hasAllocation())
752  C.Deallocate(pVal);
753 
754  BitWidth = Val.getBitWidth();
755  unsigned NumWords = Val.getNumWords();
756  const uint64_t* Words = Val.getRawData();
757  if (NumWords > 1) {
758  pVal = new (C) uint64_t[NumWords];
759  std::copy(Words, Words + NumWords, pVal);
760  } else if (NumWords == 1)
761  VAL = Words[0];
762  else
763  VAL = 0;
764 }
765 
766 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
768  : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
769  false, false),
770  Loc(l) {
771  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
772  assert(V.getBitWidth() == C.getIntWidth(type) &&
773  "Integer type is not the correct size for constant.");
774  setValue(C, V);
775 }
776 
778 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
780  return new (C) IntegerLiteral(C, V, type, l);
781 }
782 
785  return new (C) IntegerLiteral(Empty);
786 }
787 
788 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
790  unsigned Scale)
791  : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
792  false, false),
793  Loc(l), Scale(Scale) {
794  assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
795  assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
796  "Fixed point type is not the correct size for constant.");
797  setValue(C, V);
798 }
799 
801  const llvm::APInt &V,
802  QualType type,
803  SourceLocation l,
804  unsigned Scale) {
805  return new (C) FixedPointLiteral(C, V, type, l, Scale);
806 }
807 
808 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
809  // Currently the longest decimal number that can be printed is the max for an
810  // unsigned long _Accum: 4294967295.99999999976716935634613037109375
811  // which is 43 characters.
812  SmallString<64> S;
814  S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
815  return S.str();
816 }
817 
818 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
819  bool isexact, QualType Type, SourceLocation L)
820  : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
821  false, false), Loc(L) {
822  setSemantics(V.getSemantics());
823  FloatingLiteralBits.IsExact = isexact;
824  setValue(C, V);
825 }
826 
827 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
828  : Expr(FloatingLiteralClass, Empty) {
829  setRawSemantics(IEEEhalf);
830  FloatingLiteralBits.IsExact = false;
831 }
832 
834 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
835  bool isexact, QualType Type, SourceLocation L) {
836  return new (C) FloatingLiteral(C, V, isexact, Type, L);
837 }
838 
841  return new (C) FloatingLiteral(C, Empty);
842 }
843 
844 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
845  switch(FloatingLiteralBits.Semantics) {
846  case IEEEhalf:
847  return llvm::APFloat::IEEEhalf();
848  case IEEEsingle:
849  return llvm::APFloat::IEEEsingle();
850  case IEEEdouble:
851  return llvm::APFloat::IEEEdouble();
852  case x87DoubleExtended:
853  return llvm::APFloat::x87DoubleExtended();
854  case IEEEquad:
855  return llvm::APFloat::IEEEquad();
856  case PPCDoubleDouble:
857  return llvm::APFloat::PPCDoubleDouble();
858  }
859  llvm_unreachable("Unrecognised floating semantics");
860 }
861 
862 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
863  if (&Sem == &llvm::APFloat::IEEEhalf())
864  FloatingLiteralBits.Semantics = IEEEhalf;
865  else if (&Sem == &llvm::APFloat::IEEEsingle())
866  FloatingLiteralBits.Semantics = IEEEsingle;
867  else if (&Sem == &llvm::APFloat::IEEEdouble())
868  FloatingLiteralBits.Semantics = IEEEdouble;
869  else if (&Sem == &llvm::APFloat::x87DoubleExtended())
871  else if (&Sem == &llvm::APFloat::IEEEquad())
872  FloatingLiteralBits.Semantics = IEEEquad;
873  else if (&Sem == &llvm::APFloat::PPCDoubleDouble())
875  else
876  llvm_unreachable("Unknown floating semantics");
877 }
878 
879 /// getValueAsApproximateDouble - This returns the value as an inaccurate
880 /// double. Note that this may cause loss of precision, but is useful for
881 /// debugging dumps, etc.
883  llvm::APFloat V = getValue();
884  bool ignored;
885  V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
886  &ignored);
887  return V.convertToDouble();
888 }
889 
890 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
891  StringKind SK) {
892  unsigned CharByteWidth = 0;
893  switch (SK) {
894  case Ascii:
895  case UTF8:
896  CharByteWidth = Target.getCharWidth();
897  break;
898  case Wide:
899  CharByteWidth = Target.getWCharWidth();
900  break;
901  case UTF16:
902  CharByteWidth = Target.getChar16Width();
903  break;
904  case UTF32:
905  CharByteWidth = Target.getChar32Width();
906  break;
907  }
908  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
909  CharByteWidth /= 8;
910  assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
911  "The only supported character byte widths are 1,2 and 4!");
912  return CharByteWidth;
913 }
914 
915 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
916  StringKind Kind, bool Pascal, QualType Ty,
917  const SourceLocation *Loc,
918  unsigned NumConcatenated)
919  : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
920  false) {
921  assert(Ctx.getAsConstantArrayType(Ty) &&
922  "StringLiteral must be of constant array type!");
923  unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
924  unsigned ByteLength = Str.size();
925  assert((ByteLength % CharByteWidth == 0) &&
926  "The size of the data must be a multiple of CharByteWidth!");
927 
928  // Avoid the expensive division. The compiler should be able to figure it
929  // out by itself. However as of clang 7, even with the appropriate
930  // llvm_unreachable added just here, it is not able to do so.
931  unsigned Length;
932  switch (CharByteWidth) {
933  case 1:
934  Length = ByteLength;
935  break;
936  case 2:
937  Length = ByteLength / 2;
938  break;
939  case 4:
940  Length = ByteLength / 4;
941  break;
942  default:
943  llvm_unreachable("Unsupported character width!");
944  }
945 
946  StringLiteralBits.Kind = Kind;
947  StringLiteralBits.CharByteWidth = CharByteWidth;
948  StringLiteralBits.IsPascal = Pascal;
949  StringLiteralBits.NumConcatenated = NumConcatenated;
950  *getTrailingObjects<unsigned>() = Length;
951 
952  // Initialize the trailing array of SourceLocation.
953  // This is safe since SourceLocation is POD-like.
954  std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
955  NumConcatenated * sizeof(SourceLocation));
956 
957  // Initialize the trailing array of char holding the string data.
958  std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
959 }
960 
961 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
962  unsigned Length, unsigned CharByteWidth)
963  : Expr(StringLiteralClass, Empty) {
964  StringLiteralBits.CharByteWidth = CharByteWidth;
965  StringLiteralBits.NumConcatenated = NumConcatenated;
966  *getTrailingObjects<unsigned>() = Length;
967 }
968 
969 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
970  StringKind Kind, bool Pascal, QualType Ty,
971  const SourceLocation *Loc,
972  unsigned NumConcatenated) {
973  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
974  1, NumConcatenated, Str.size()),
975  alignof(StringLiteral));
976  return new (Mem)
977  StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
978 }
979 
981  unsigned NumConcatenated,
982  unsigned Length,
983  unsigned CharByteWidth) {
984  void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
985  1, NumConcatenated, Length * CharByteWidth),
986  alignof(StringLiteral));
987  return new (Mem)
988  StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
989 }
990 
991 void StringLiteral::outputString(raw_ostream &OS) const {
992  switch (getKind()) {
993  case Ascii: break; // no prefix.
994  case Wide: OS << 'L'; break;
995  case UTF8: OS << "u8"; break;
996  case UTF16: OS << 'u'; break;
997  case UTF32: OS << 'U'; break;
998  }
999  OS << '"';
1000  static const char Hex[] = "0123456789ABCDEF";
1001 
1002  unsigned LastSlashX = getLength();
1003  for (unsigned I = 0, N = getLength(); I != N; ++I) {
1004  switch (uint32_t Char = getCodeUnit(I)) {
1005  default:
1006  // FIXME: Convert UTF-8 back to codepoints before rendering.
1007 
1008  // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1009  // Leave invalid surrogates alone; we'll use \x for those.
1010  if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1011  Char <= 0xdbff) {
1012  uint32_t Trail = getCodeUnit(I + 1);
1013  if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1014  Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1015  ++I;
1016  }
1017  }
1018 
1019  if (Char > 0xff) {
1020  // If this is a wide string, output characters over 0xff using \x
1021  // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1022  // codepoint: use \x escapes for invalid codepoints.
1023  if (getKind() == Wide ||
1024  (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1025  // FIXME: Is this the best way to print wchar_t?
1026  OS << "\\x";
1027  int Shift = 28;
1028  while ((Char >> Shift) == 0)
1029  Shift -= 4;
1030  for (/**/; Shift >= 0; Shift -= 4)
1031  OS << Hex[(Char >> Shift) & 15];
1032  LastSlashX = I;
1033  break;
1034  }
1035 
1036  if (Char > 0xffff)
1037  OS << "\\U00"
1038  << Hex[(Char >> 20) & 15]
1039  << Hex[(Char >> 16) & 15];
1040  else
1041  OS << "\\u";
1042  OS << Hex[(Char >> 12) & 15]
1043  << Hex[(Char >> 8) & 15]
1044  << Hex[(Char >> 4) & 15]
1045  << Hex[(Char >> 0) & 15];
1046  break;
1047  }
1048 
1049  // If we used \x... for the previous character, and this character is a
1050  // hexadecimal digit, prevent it being slurped as part of the \x.
1051  if (LastSlashX + 1 == I) {
1052  switch (Char) {
1053  case '0': case '1': case '2': case '3': case '4':
1054  case '5': case '6': case '7': case '8': case '9':
1055  case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1056  case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1057  OS << "\"\"";
1058  }
1059  }
1060 
1061  assert(Char <= 0xff &&
1062  "Characters above 0xff should already have been handled.");
1063 
1064  if (isPrintable(Char))
1065  OS << (char)Char;
1066  else // Output anything hard as an octal escape.
1067  OS << '\\'
1068  << (char)('0' + ((Char >> 6) & 7))
1069  << (char)('0' + ((Char >> 3) & 7))
1070  << (char)('0' + ((Char >> 0) & 7));
1071  break;
1072  // Handle some common non-printable cases to make dumps prettier.
1073  case '\\': OS << "\\\\"; break;
1074  case '"': OS << "\\\""; break;
1075  case '\a': OS << "\\a"; break;
1076  case '\b': OS << "\\b"; break;
1077  case '\f': OS << "\\f"; break;
1078  case '\n': OS << "\\n"; break;
1079  case '\r': OS << "\\r"; break;
1080  case '\t': OS << "\\t"; break;
1081  case '\v': OS << "\\v"; break;
1082  }
1083  }
1084  OS << '"';
1085 }
1086 
1087 /// getLocationOfByte - Return a source location that points to the specified
1088 /// byte of this string literal.
1089 ///
1090 /// Strings are amazingly complex. They can be formed from multiple tokens and
1091 /// can have escape sequences in them in addition to the usual trigraph and
1092 /// escaped newline business. This routine handles this complexity.
1093 ///
1094 /// The *StartToken sets the first token to be searched in this function and
1095 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1096 /// returning, it updates the *StartToken to the TokNo of the token being found
1097 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1098 /// string.
1099 /// Using these two parameters can reduce the time complexity from O(n^2) to
1100 /// O(n) if one wants to get the location of byte for all the tokens in a
1101 /// string.
1102 ///
1105  const LangOptions &Features,
1106  const TargetInfo &Target, unsigned *StartToken,
1107  unsigned *StartTokenByteOffset) const {
1108  assert((getKind() == StringLiteral::Ascii ||
1109  getKind() == StringLiteral::UTF8) &&
1110  "Only narrow string literals are currently supported");
1111 
1112  // Loop over all of the tokens in this string until we find the one that
1113  // contains the byte we're looking for.
1114  unsigned TokNo = 0;
1115  unsigned StringOffset = 0;
1116  if (StartToken)
1117  TokNo = *StartToken;
1118  if (StartTokenByteOffset) {
1119  StringOffset = *StartTokenByteOffset;
1120  ByteNo -= StringOffset;
1121  }
1122  while (1) {
1123  assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1124  SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1125 
1126  // Get the spelling of the string so that we can get the data that makes up
1127  // the string literal, not the identifier for the macro it is potentially
1128  // expanded through.
1129  SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1130 
1131  // Re-lex the token to get its length and original spelling.
1132  std::pair<FileID, unsigned> LocInfo =
1133  SM.getDecomposedLoc(StrTokSpellingLoc);
1134  bool Invalid = false;
1135  StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1136  if (Invalid) {
1137  if (StartTokenByteOffset != nullptr)
1138  *StartTokenByteOffset = StringOffset;
1139  if (StartToken != nullptr)
1140  *StartToken = TokNo;
1141  return StrTokSpellingLoc;
1142  }
1143 
1144  const char *StrData = Buffer.data()+LocInfo.second;
1145 
1146  // Create a lexer starting at the beginning of this token.
1147  Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1148  Buffer.begin(), StrData, Buffer.end());
1149  Token TheTok;
1150  TheLexer.LexFromRawLexer(TheTok);
1151 
1152  // Use the StringLiteralParser to compute the length of the string in bytes.
1153  StringLiteralParser SLP(TheTok, SM, Features, Target);
1154  unsigned TokNumBytes = SLP.GetStringLength();
1155 
1156  // If the byte is in this token, return the location of the byte.
1157  if (ByteNo < TokNumBytes ||
1158  (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1159  unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1160 
1161  // Now that we know the offset of the token in the spelling, use the
1162  // preprocessor to get the offset in the original source.
1163  if (StartTokenByteOffset != nullptr)
1164  *StartTokenByteOffset = StringOffset;
1165  if (StartToken != nullptr)
1166  *StartToken = TokNo;
1167  return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1168  }
1169 
1170  // Move to the next string token.
1171  StringOffset += TokNumBytes;
1172  ++TokNo;
1173  ByteNo -= TokNumBytes;
1174  }
1175 }
1176 
1177 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1178 /// corresponds to, e.g. "sizeof" or "[pre]++".
1180  switch (Op) {
1181 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1182 #include "clang/AST/OperationKinds.def"
1183  }
1184  llvm_unreachable("Unknown unary operator");
1185 }
1186 
1189  switch (OO) {
1190  default: llvm_unreachable("No unary operator for overloaded function");
1191  case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1192  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1193  case OO_Amp: return UO_AddrOf;
1194  case OO_Star: return UO_Deref;
1195  case OO_Plus: return UO_Plus;
1196  case OO_Minus: return UO_Minus;
1197  case OO_Tilde: return UO_Not;
1198  case OO_Exclaim: return UO_LNot;
1199  case OO_Coawait: return UO_Coawait;
1200  }
1201 }
1202 
1204  switch (Opc) {
1205  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1206  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1207  case UO_AddrOf: return OO_Amp;
1208  case UO_Deref: return OO_Star;
1209  case UO_Plus: return OO_Plus;
1210  case UO_Minus: return OO_Minus;
1211  case UO_Not: return OO_Tilde;
1212  case UO_LNot: return OO_Exclaim;
1213  case UO_Coawait: return OO_Coawait;
1214  default: return OO_None;
1215  }
1216 }
1217 
1218 
1219 //===----------------------------------------------------------------------===//
1220 // Postfix Operators.
1221 //===----------------------------------------------------------------------===//
1222 
1224  ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t,
1225  ExprValueKind VK, SourceLocation rparenloc,
1226  unsigned MinNumArgs)
1227  : Expr(SC, t, VK, OK_Ordinary, fn->isTypeDependent(),
1230  RParenLoc(rparenloc) {
1231  NumArgs = std::max<unsigned>(args.size(), MinNumArgs);
1232  unsigned NumPreArgs = preargs.size();
1233  CallExprBits.NumPreArgs = NumPreArgs;
1234 
1235  SubExprs = new (C) Stmt *[NumArgs + PREARGS_START + NumPreArgs];
1236  SubExprs[FN] = fn;
1237  for (unsigned i = 0; i != NumPreArgs; ++i) {
1238  updateDependenciesFromArg(preargs[i]);
1239  SubExprs[i+PREARGS_START] = preargs[i];
1240  }
1241  for (unsigned i = 0; i != args.size(); ++i) {
1242  updateDependenciesFromArg(args[i]);
1243  SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1244  }
1245  for (unsigned i = args.size(); i != NumArgs; ++i) {
1246  SubExprs[i + PREARGS_START + NumPreArgs] = nullptr;
1247  }
1248 }
1249 
1252  SourceLocation rparenloc, unsigned MinNumArgs)
1253  : CallExpr(C, SC, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc,
1254  MinNumArgs) {}
1255 
1257  QualType t, ExprValueKind VK, SourceLocation rparenloc,
1258  unsigned MinNumArgs)
1259  : CallExpr(C, CallExprClass, fn, ArrayRef<Expr *>(), args, t, VK,
1260  rparenloc, MinNumArgs) {}
1261 
1262 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1263  unsigned NumArgs, EmptyShell Empty)
1264  : Expr(SC, Empty), NumArgs(NumArgs) {
1265  CallExprBits.NumPreArgs = NumPreArgs;
1266  SubExprs = new (C) Stmt *[NumArgs + PREARGS_START + NumPreArgs];
1267 }
1268 
1269 CallExpr::CallExpr(const ASTContext &C, unsigned NumArgs, EmptyShell Empty)
1270  : CallExpr(C, CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty) {}
1271 
1272 void CallExpr::updateDependenciesFromArg(Expr *Arg) {
1273  if (Arg->isTypeDependent())
1274  ExprBits.TypeDependent = true;
1275  if (Arg->isValueDependent())
1276  ExprBits.ValueDependent = true;
1277  if (Arg->isInstantiationDependent())
1278  ExprBits.InstantiationDependent = true;
1280  ExprBits.ContainsUnexpandedParameterPack = true;
1281 }
1282 
1284  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1285 }
1286 
1289 }
1290 
1292  Expr *CEE = IgnoreParenImpCasts();
1293 
1294  while (SubstNonTypeTemplateParmExpr *NTTP
1295  = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1296  CEE = NTTP->getReplacement()->IgnoreParenCasts();
1297  }
1298 
1299  // If we're calling a dereference, look at the pointer instead.
1300  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1301  if (BO->isPtrMemOp())
1302  CEE = BO->getRHS()->IgnoreParenCasts();
1303  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1304  if (UO->getOpcode() == UO_Deref)
1305  CEE = UO->getSubExpr()->IgnoreParenCasts();
1306  }
1307  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1308  return DRE->getDecl();
1309  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1310  return ME->getMemberDecl();
1311 
1312  return nullptr;
1313 }
1314 
1315 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
1316 /// not, return 0.
1317 unsigned CallExpr::getBuiltinCallee() const {
1318  // All simple function calls (e.g. func()) are implicitly cast to pointer to
1319  // function. As a result, we try and obtain the DeclRefExpr from the
1320  // ImplicitCastExpr.
1321  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1322  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1323  return 0;
1324 
1325  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1326  if (!DRE)
1327  return 0;
1328 
1329  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1330  if (!FDecl)
1331  return 0;
1332 
1333  if (!FDecl->getIdentifier())
1334  return 0;
1335 
1336  return FDecl->getBuiltinID();
1337 }
1338 
1340  if (unsigned BI = getBuiltinCallee())
1341  return Ctx.BuiltinInfo.isUnevaluated(BI);
1342  return false;
1343 }
1344 
1346  const Expr *Callee = getCallee();
1347  QualType CalleeType = Callee->getType();
1348  if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1349  CalleeType = FnTypePtr->getPointeeType();
1350  } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1351  CalleeType = BPT->getPointeeType();
1352  } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1353  if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1354  return Ctx.VoidTy;
1355 
1356  // This should never be overloaded and so should never return null.
1357  CalleeType = Expr::findBoundMemberType(Callee);
1358  }
1359 
1360  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1361  return FnType->getReturnType();
1362 }
1363 
1365  if (isa<CXXOperatorCallExpr>(this))
1366  return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
1367 
1368  SourceLocation begin = getCallee()->getBeginLoc();
1369  if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1370  begin = getArg(0)->getBeginLoc();
1371  return begin;
1372 }
1374  if (isa<CXXOperatorCallExpr>(this))
1375  return cast<CXXOperatorCallExpr>(this)->getEndLoc();
1376 
1377  SourceLocation end = getRParenLoc();
1378  if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1379  end = getArg(getNumArgs() - 1)->getEndLoc();
1380  return end;
1381 }
1382 
1384  SourceLocation OperatorLoc,
1385  TypeSourceInfo *tsi,
1386  ArrayRef<OffsetOfNode> comps,
1387  ArrayRef<Expr*> exprs,
1388  SourceLocation RParenLoc) {
1389  void *Mem = C.Allocate(
1390  totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1391 
1392  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1393  RParenLoc);
1394 }
1395 
1397  unsigned numComps, unsigned numExprs) {
1398  void *Mem =
1399  C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1400  return new (Mem) OffsetOfExpr(numComps, numExprs);
1401 }
1402 
1403 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1404  SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1406  SourceLocation RParenLoc)
1407  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1408  /*TypeDependent=*/false,
1409  /*ValueDependent=*/tsi->getType()->isDependentType(),
1412  OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1413  NumComps(comps.size()), NumExprs(exprs.size())
1414 {
1415  for (unsigned i = 0; i != comps.size(); ++i) {
1416  setComponent(i, comps[i]);
1417  }
1418 
1419  for (unsigned i = 0; i != exprs.size(); ++i) {
1420  if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1421  ExprBits.ValueDependent = true;
1422  if (exprs[i]->containsUnexpandedParameterPack())
1423  ExprBits.ContainsUnexpandedParameterPack = true;
1424 
1425  setIndexExpr(i, exprs[i]);
1426  }
1427 }
1428 
1430  assert(getKind() == Field || getKind() == Identifier);
1431  if (getKind() == Field)
1432  return getField()->getIdentifier();
1433 
1434  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1435 }
1436 
1438  UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1440  : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1441  false, // Never type-dependent (C++ [temp.dep.expr]p3).
1442  // Value-dependent if the argument is type-dependent.
1445  OpLoc(op), RParenLoc(rp) {
1446  UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1447  UnaryExprOrTypeTraitExprBits.IsType = false;
1448  Argument.Ex = E;
1449 
1450  // Check to see if we are in the situation where alignof(decl) should be
1451  // dependent because decl's alignment is dependent.
1452  if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
1454  E = E->IgnoreParens();
1455 
1456  const ValueDecl *D = nullptr;
1457  if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
1458  D = DRE->getDecl();
1459  else if (const auto *ME = dyn_cast<MemberExpr>(E))
1460  D = ME->getMemberDecl();
1461 
1462  if (D) {
1463  for (const auto *I : D->specific_attrs<AlignedAttr>()) {
1464  if (I->isAlignmentDependent()) {
1465  setValueDependent(true);
1467  break;
1468  }
1469  }
1470  }
1471  }
1472  }
1473 }
1474 
1476  const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
1477  NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1478  ValueDecl *memberdecl, DeclAccessPair founddecl,
1479  DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
1480  QualType ty, ExprValueKind vk, ExprObjectKind ok) {
1481 
1482  bool hasQualOrFound = (QualifierLoc ||
1483  founddecl.getDecl() != memberdecl ||
1484  founddecl.getAccess() != memberdecl->getAccess());
1485 
1486  bool HasTemplateKWAndArgsInfo = targs || TemplateKWLoc.isValid();
1487  std::size_t Size =
1489  TemplateArgumentLoc>(hasQualOrFound ? 1 : 0,
1490  HasTemplateKWAndArgsInfo ? 1 : 0,
1491  targs ? targs->size() : 0);
1492 
1493  void *Mem = C.Allocate(Size, alignof(MemberExpr));
1494  MemberExpr *E = new (Mem)
1495  MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);
1496 
1497  if (hasQualOrFound) {
1498  // FIXME: Wrong. We should be looking at the member declaration we found.
1499  if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1500  E->setValueDependent(true);
1501  E->setTypeDependent(true);
1502  E->setInstantiationDependent(true);
1503  }
1504  else if (QualifierLoc &&
1506  E->setInstantiationDependent(true);
1507 
1508  E->MemberExprBits.HasQualifierOrFoundDecl = true;
1509 
1510  MemberExprNameQualifier *NQ =
1511  E->getTrailingObjects<MemberExprNameQualifier>();
1512  NQ->QualifierLoc = QualifierLoc;
1513  NQ->FoundDecl = founddecl;
1514  }
1515 
1516  E->MemberExprBits.HasTemplateKWAndArgsInfo =
1517  (targs || TemplateKWLoc.isValid());
1518 
1519  if (targs) {
1520  bool Dependent = false;
1521  bool InstantiationDependent = false;
1522  bool ContainsUnexpandedParameterPack = false;
1523  E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1524  TemplateKWLoc, *targs, E->getTrailingObjects<TemplateArgumentLoc>(),
1525  Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
1526  if (InstantiationDependent)
1527  E->setInstantiationDependent(true);
1528  } else if (TemplateKWLoc.isValid()) {
1529  E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1530  TemplateKWLoc);
1531  }
1532 
1533  return E;
1534 }
1535 
1537  if (isImplicitAccess()) {
1538  if (hasQualifier())
1539  return getQualifierLoc().getBeginLoc();
1540  return MemberLoc;
1541  }
1542 
1543  // FIXME: We don't want this to happen. Rather, we should be able to
1544  // detect all kinds of implicit accesses more cleanly.
1545  SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1546  if (BaseStartLoc.isValid())
1547  return BaseStartLoc;
1548  return MemberLoc;
1549 }
1551  SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1552  if (hasExplicitTemplateArgs())
1553  EndLoc = getRAngleLoc();
1554  else if (EndLoc.isInvalid())
1555  EndLoc = getBase()->getEndLoc();
1556  return EndLoc;
1557 }
1558 
1559 bool CastExpr::CastConsistency() const {
1560  switch (getCastKind()) {
1561  case CK_DerivedToBase:
1562  case CK_UncheckedDerivedToBase:
1563  case CK_DerivedToBaseMemberPointer:
1564  case CK_BaseToDerived:
1565  case CK_BaseToDerivedMemberPointer:
1566  assert(!path_empty() && "Cast kind should have a base path!");
1567  break;
1568 
1569  case CK_CPointerToObjCPointerCast:
1570  assert(getType()->isObjCObjectPointerType());
1571  assert(getSubExpr()->getType()->isPointerType());
1572  goto CheckNoBasePath;
1573 
1574  case CK_BlockPointerToObjCPointerCast:
1575  assert(getType()->isObjCObjectPointerType());
1576  assert(getSubExpr()->getType()->isBlockPointerType());
1577  goto CheckNoBasePath;
1578 
1579  case CK_ReinterpretMemberPointer:
1580  assert(getType()->isMemberPointerType());
1581  assert(getSubExpr()->getType()->isMemberPointerType());
1582  goto CheckNoBasePath;
1583 
1584  case CK_BitCast:
1585  // Arbitrary casts to C pointer types count as bitcasts.
1586  // Otherwise, we should only have block and ObjC pointer casts
1587  // here if they stay within the type kind.
1588  if (!getType()->isPointerType()) {
1589  assert(getType()->isObjCObjectPointerType() ==
1590  getSubExpr()->getType()->isObjCObjectPointerType());
1591  assert(getType()->isBlockPointerType() ==
1592  getSubExpr()->getType()->isBlockPointerType());
1593  }
1594  goto CheckNoBasePath;
1595 
1596  case CK_AnyPointerToBlockPointerCast:
1597  assert(getType()->isBlockPointerType());
1598  assert(getSubExpr()->getType()->isAnyPointerType() &&
1599  !getSubExpr()->getType()->isBlockPointerType());
1600  goto CheckNoBasePath;
1601 
1602  case CK_CopyAndAutoreleaseBlockObject:
1603  assert(getType()->isBlockPointerType());
1604  assert(getSubExpr()->getType()->isBlockPointerType());
1605  goto CheckNoBasePath;
1606 
1607  case CK_FunctionToPointerDecay:
1608  assert(getType()->isPointerType());
1609  assert(getSubExpr()->getType()->isFunctionType());
1610  goto CheckNoBasePath;
1611 
1612  case CK_AddressSpaceConversion: {
1613  auto Ty = getType();
1614  auto SETy = getSubExpr()->getType();
1615  assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1616  if (!isGLValue())
1617  Ty = Ty->getPointeeType();
1618  if (!isGLValue())
1619  SETy = SETy->getPointeeType();
1620  assert(!Ty.isNull() && !SETy.isNull() &&
1621  Ty.getAddressSpace() != SETy.getAddressSpace());
1622  goto CheckNoBasePath;
1623  }
1624  // These should not have an inheritance path.
1625  case CK_Dynamic:
1626  case CK_ToUnion:
1627  case CK_ArrayToPointerDecay:
1628  case CK_NullToMemberPointer:
1629  case CK_NullToPointer:
1630  case CK_ConstructorConversion:
1631  case CK_IntegralToPointer:
1632  case CK_PointerToIntegral:
1633  case CK_ToVoid:
1634  case CK_VectorSplat:
1635  case CK_IntegralCast:
1636  case CK_BooleanToSignedIntegral:
1637  case CK_IntegralToFloating:
1638  case CK_FloatingToIntegral:
1639  case CK_FloatingCast:
1640  case CK_ObjCObjectLValueCast:
1641  case CK_FloatingRealToComplex:
1642  case CK_FloatingComplexToReal:
1643  case CK_FloatingComplexCast:
1644  case CK_FloatingComplexToIntegralComplex:
1645  case CK_IntegralRealToComplex:
1646  case CK_IntegralComplexToReal:
1647  case CK_IntegralComplexCast:
1648  case CK_IntegralComplexToFloatingComplex:
1649  case CK_ARCProduceObject:
1650  case CK_ARCConsumeObject:
1651  case CK_ARCReclaimReturnedObject:
1652  case CK_ARCExtendBlockObject:
1653  case CK_ZeroToOCLOpaqueType:
1654  case CK_IntToOCLSampler:
1655  case CK_FixedPointCast:
1656  assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1657  goto CheckNoBasePath;
1658 
1659  case CK_Dependent:
1660  case CK_LValueToRValue:
1661  case CK_NoOp:
1662  case CK_AtomicToNonAtomic:
1663  case CK_NonAtomicToAtomic:
1664  case CK_PointerToBoolean:
1665  case CK_IntegralToBoolean:
1666  case CK_FloatingToBoolean:
1667  case CK_MemberPointerToBoolean:
1668  case CK_FloatingComplexToBoolean:
1669  case CK_IntegralComplexToBoolean:
1670  case CK_LValueBitCast: // -> bool&
1671  case CK_UserDefinedConversion: // operator bool()
1672  case CK_BuiltinFnToFnPtr:
1673  case CK_FixedPointToBoolean:
1674  CheckNoBasePath:
1675  assert(path_empty() && "Cast kind should not have a base path!");
1676  break;
1677  }
1678  return true;
1679 }
1680 
1682  switch (CK) {
1683 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1684 #include "clang/AST/OperationKinds.def"
1685  }
1686  llvm_unreachable("Unhandled cast kind!");
1687 }
1688 
1689 namespace {
1690  const Expr *skipImplicitTemporary(const Expr *E) {
1691  // Skip through reference binding to temporary.
1692  if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1693  E = Materialize->GetTemporaryExpr();
1694 
1695  // Skip any temporary bindings; they're implicit.
1696  if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1697  E = Binder->getSubExpr();
1698 
1699  return E;
1700  }
1701 }
1702 
1704  const Expr *SubExpr = nullptr;
1705  const CastExpr *E = this;
1706  do {
1707  SubExpr = skipImplicitTemporary(E->getSubExpr());
1708 
1709  // Conversions by constructor and conversion functions have a
1710  // subexpression describing the call; strip it off.
1711  if (E->getCastKind() == CK_ConstructorConversion)
1712  SubExpr =
1713  skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0));
1714  else if (E->getCastKind() == CK_UserDefinedConversion) {
1715  assert((isa<CXXMemberCallExpr>(SubExpr) ||
1716  isa<BlockExpr>(SubExpr)) &&
1717  "Unexpected SubExpr for CK_UserDefinedConversion.");
1718  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1719  SubExpr = MCE->getImplicitObjectArgument();
1720  }
1721 
1722  // If the subexpression we're left with is an implicit cast, look
1723  // through that, too.
1724  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1725 
1726  return const_cast<Expr*>(SubExpr);
1727 }
1728 
1730  const Expr *SubExpr = nullptr;
1731 
1732  for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1733  SubExpr = skipImplicitTemporary(E->getSubExpr());
1734 
1735  if (E->getCastKind() == CK_ConstructorConversion)
1736  return cast<CXXConstructExpr>(SubExpr)->getConstructor();
1737 
1738  if (E->getCastKind() == CK_UserDefinedConversion) {
1739  if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1740  return MCE->getMethodDecl();
1741  }
1742  }
1743 
1744  return nullptr;
1745 }
1746 
1747 CastExpr::BasePathSizeTy *CastExpr::BasePathSize() {
1748  assert(!path_empty());
1749  switch (getStmtClass()) {
1750 #define ABSTRACT_STMT(x)
1751 #define CASTEXPR(Type, Base) \
1752  case Stmt::Type##Class: \
1753  return static_cast<Type *>(this) \
1754  ->getTrailingObjects<CastExpr::BasePathSizeTy>();
1755 #define STMT(Type, Base)
1756 #include "clang/AST/StmtNodes.inc"
1757  default:
1758  llvm_unreachable("non-cast expressions not possible here");
1759  }
1760 }
1761 
1762 CXXBaseSpecifier **CastExpr::path_buffer() {
1763  switch (getStmtClass()) {
1764 #define ABSTRACT_STMT(x)
1765 #define CASTEXPR(Type, Base) \
1766  case Stmt::Type##Class: \
1767  return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1768 #define STMT(Type, Base)
1769 #include "clang/AST/StmtNodes.inc"
1770  default:
1771  llvm_unreachable("non-cast expressions not possible here");
1772  }
1773 }
1774 
1776  QualType opType) {
1777  auto RD = unionType->castAs<RecordType>()->getDecl();
1778  return getTargetFieldForToUnionCast(RD, opType);
1779 }
1780 
1782  QualType OpType) {
1783  auto &Ctx = RD->getASTContext();
1784  RecordDecl::field_iterator Field, FieldEnd;
1785  for (Field = RD->field_begin(), FieldEnd = RD->field_end();
1786  Field != FieldEnd; ++Field) {
1787  if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
1788  !Field->isUnnamedBitfield()) {
1789  return *Field;
1790  }
1791  }
1792  return nullptr;
1793 }
1794 
1796  CastKind Kind, Expr *Operand,
1797  const CXXCastPath *BasePath,
1798  ExprValueKind VK) {
1799  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1800  void *Buffer =
1801  C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>(
1802  PathSize ? 1 : 0, PathSize));
1803  ImplicitCastExpr *E =
1804  new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1805  if (PathSize)
1806  std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1807  E->getTrailingObjects<CXXBaseSpecifier *>());
1808  return E;
1809 }
1810 
1812  unsigned PathSize) {
1813  void *Buffer =
1814  C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>(
1815  PathSize ? 1 : 0, PathSize));
1816  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1817 }
1818 
1819 
1821  ExprValueKind VK, CastKind K, Expr *Op,
1822  const CXXCastPath *BasePath,
1823  TypeSourceInfo *WrittenTy,
1825  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1826  void *Buffer =
1827  C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>(
1828  PathSize ? 1 : 0, PathSize));
1829  CStyleCastExpr *E =
1830  new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1831  if (PathSize)
1832  std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1833  E->getTrailingObjects<CXXBaseSpecifier *>());
1834  return E;
1835 }
1836 
1838  unsigned PathSize) {
1839  void *Buffer =
1840  C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>(
1841  PathSize ? 1 : 0, PathSize));
1842  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1843 }
1844 
1845 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1846 /// corresponds to, e.g. "<<=".
1848  switch (Op) {
1849 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
1850 #include "clang/AST/OperationKinds.def"
1851  }
1852  llvm_unreachable("Invalid OpCode!");
1853 }
1854 
1857  switch (OO) {
1858  default: llvm_unreachable("Not an overloadable binary operator");
1859  case OO_Plus: return BO_Add;
1860  case OO_Minus: return BO_Sub;
1861  case OO_Star: return BO_Mul;
1862  case OO_Slash: return BO_Div;
1863  case OO_Percent: return BO_Rem;
1864  case OO_Caret: return BO_Xor;
1865  case OO_Amp: return BO_And;
1866  case OO_Pipe: return BO_Or;
1867  case OO_Equal: return BO_Assign;
1868  case OO_Spaceship: return BO_Cmp;
1869  case OO_Less: return BO_LT;
1870  case OO_Greater: return BO_GT;
1871  case OO_PlusEqual: return BO_AddAssign;
1872  case OO_MinusEqual: return BO_SubAssign;
1873  case OO_StarEqual: return BO_MulAssign;
1874  case OO_SlashEqual: return BO_DivAssign;
1875  case OO_PercentEqual: return BO_RemAssign;
1876  case OO_CaretEqual: return BO_XorAssign;
1877  case OO_AmpEqual: return BO_AndAssign;
1878  case OO_PipeEqual: return BO_OrAssign;
1879  case OO_LessLess: return BO_Shl;
1880  case OO_GreaterGreater: return BO_Shr;
1881  case OO_LessLessEqual: return BO_ShlAssign;
1882  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1883  case OO_EqualEqual: return BO_EQ;
1884  case OO_ExclaimEqual: return BO_NE;
1885  case OO_LessEqual: return BO_LE;
1886  case OO_GreaterEqual: return BO_GE;
1887  case OO_AmpAmp: return BO_LAnd;
1888  case OO_PipePipe: return BO_LOr;
1889  case OO_Comma: return BO_Comma;
1890  case OO_ArrowStar: return BO_PtrMemI;
1891  }
1892 }
1893 
1895  static const OverloadedOperatorKind OverOps[] = {
1896  /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1897  OO_Star, OO_Slash, OO_Percent,
1898  OO_Plus, OO_Minus,
1899  OO_LessLess, OO_GreaterGreater,
1900  OO_Spaceship,
1901  OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1902  OO_EqualEqual, OO_ExclaimEqual,
1903  OO_Amp,
1904  OO_Caret,
1905  OO_Pipe,
1906  OO_AmpAmp,
1907  OO_PipePipe,
1908  OO_Equal, OO_StarEqual,
1909  OO_SlashEqual, OO_PercentEqual,
1910  OO_PlusEqual, OO_MinusEqual,
1911  OO_LessLessEqual, OO_GreaterGreaterEqual,
1912  OO_AmpEqual, OO_CaretEqual,
1913  OO_PipeEqual,
1914  OO_Comma
1915  };
1916  return OverOps[Opc];
1917 }
1918 
1920  Opcode Opc,
1921  Expr *LHS, Expr *RHS) {
1922  if (Opc != BO_Add)
1923  return false;
1924 
1925  // Check that we have one pointer and one integer operand.
1926  Expr *PExp;
1927  if (LHS->getType()->isPointerType()) {
1928  if (!RHS->getType()->isIntegerType())
1929  return false;
1930  PExp = LHS;
1931  } else if (RHS->getType()->isPointerType()) {
1932  if (!LHS->getType()->isIntegerType())
1933  return false;
1934  PExp = RHS;
1935  } else {
1936  return false;
1937  }
1938 
1939  // Check that the pointer is a nullptr.
1940  if (!PExp->IgnoreParenCasts()
1942  return false;
1943 
1944  // Check that the pointee type is char-sized.
1945  const PointerType *PTy = PExp->getType()->getAs<PointerType>();
1946  if (!PTy || !PTy->getPointeeType()->isCharType())
1947  return false;
1948 
1949  return true;
1950 }
1952  ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1953  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1954  false, false),
1955  InitExprs(C, initExprs.size()),
1956  LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
1957 {
1958  sawArrayRangeDesignator(false);
1959  for (unsigned I = 0; I != initExprs.size(); ++I) {
1960  if (initExprs[I]->isTypeDependent())
1961  ExprBits.TypeDependent = true;
1962  if (initExprs[I]->isValueDependent())
1963  ExprBits.ValueDependent = true;
1964  if (initExprs[I]->isInstantiationDependent())
1965  ExprBits.InstantiationDependent = true;
1966  if (initExprs[I]->containsUnexpandedParameterPack())
1967  ExprBits.ContainsUnexpandedParameterPack = true;
1968  }
1969 
1970  InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1971 }
1972 
1973 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
1974  if (NumInits > InitExprs.size())
1975  InitExprs.reserve(C, NumInits);
1976 }
1977 
1978 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
1979  InitExprs.resize(C, NumInits, nullptr);
1980 }
1981 
1982 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
1983  if (Init >= InitExprs.size()) {
1984  InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
1985  setInit(Init, expr);
1986  return nullptr;
1987  }
1988 
1989  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1990  setInit(Init, expr);
1991  return Result;
1992 }
1993 
1995  assert(!hasArrayFiller() && "Filler already set!");
1996  ArrayFillerOrUnionFieldInit = filler;
1997  // Fill out any "holes" in the array due to designated initializers.
1998  Expr **inits = getInits();
1999  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2000  if (inits[i] == nullptr)
2001  inits[i] = filler;
2002 }
2003 
2005  if (getNumInits() != 1)
2006  return false;
2007  const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2008  if (!AT || !AT->getElementType()->isIntegerType())
2009  return false;
2010  // It is possible for getInit() to return null.
2011  const Expr *Init = getInit(0);
2012  if (!Init)
2013  return false;
2014  Init = Init->IgnoreParens();
2015  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2016 }
2017 
2019  assert(isSemanticForm() && "syntactic form never semantically transparent");
2020 
2021  // A glvalue InitListExpr is always just sugar.
2022  if (isGLValue()) {
2023  assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2024  return true;
2025  }
2026 
2027  // Otherwise, we're sugar if and only if we have exactly one initializer that
2028  // is of the same type.
2029  if (getNumInits() != 1 || !getInit(0))
2030  return false;
2031 
2032  // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2033  // transparent struct copy.
2034  if (!getInit(0)->isRValue() && getType()->isRecordType())
2035  return false;
2036 
2037  return getType().getCanonicalType() ==
2039 }
2040 
2042  assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2043 
2044  if (LangOpts.CPlusPlus || getNumInits() != 1) {
2045  return false;
2046  }
2047 
2048  const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0));
2049  return Lit && Lit->getValue() == 0;
2050 }
2051 
2053  if (InitListExpr *SyntacticForm = getSyntacticForm())
2054  return SyntacticForm->getBeginLoc();
2055  SourceLocation Beg = LBraceLoc;
2056  if (Beg.isInvalid()) {
2057  // Find the first non-null initializer.
2058  for (InitExprsTy::const_iterator I = InitExprs.begin(),
2059  E = InitExprs.end();
2060  I != E; ++I) {
2061  if (Stmt *S = *I) {
2062  Beg = S->getBeginLoc();
2063  break;
2064  }
2065  }
2066  }
2067  return Beg;
2068 }
2069 
2071  if (InitListExpr *SyntacticForm = getSyntacticForm())
2072  return SyntacticForm->getEndLoc();
2073  SourceLocation End = RBraceLoc;
2074  if (End.isInvalid()) {
2075  // Find the first non-null initializer from the end.
2076  for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
2077  E = InitExprs.rend();
2078  I != E; ++I) {
2079  if (Stmt *S = *I) {
2080  End = S->getEndLoc();
2081  break;
2082  }
2083  }
2084  }
2085  return End;
2086 }
2087 
2088 /// getFunctionType - Return the underlying function type for this block.
2089 ///
2091  // The block pointer is never sugared, but the function type might be.
2092  return cast<BlockPointerType>(getType())
2093  ->getPointeeType()->castAs<FunctionProtoType>();
2094 }
2095 
2097  return TheBlock->getCaretLocation();
2098 }
2099 const Stmt *BlockExpr::getBody() const {
2100  return TheBlock->getBody();
2101 }
2103  return TheBlock->getBody();
2104 }
2105 
2106 
2107 //===----------------------------------------------------------------------===//
2108 // Generic Expression Routines
2109 //===----------------------------------------------------------------------===//
2110 
2111 /// isUnusedResultAWarning - Return true if this immediate expression should
2112 /// be warned about if the result is unused. If so, fill in Loc and Ranges
2113 /// with location to warn on and the source range[s] to report with the
2114 /// warning.
2116  SourceRange &R1, SourceRange &R2,
2117  ASTContext &Ctx) const {
2118  // Don't warn if the expr is type dependent. The type could end up
2119  // instantiating to void.
2120  if (isTypeDependent())
2121  return false;
2122 
2123  switch (getStmtClass()) {
2124  default:
2125  if (getType()->isVoidType())
2126  return false;
2127  WarnE = this;
2128  Loc = getExprLoc();
2129  R1 = getSourceRange();
2130  return true;
2131  case ParenExprClass:
2132  return cast<ParenExpr>(this)->getSubExpr()->
2133  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2134  case GenericSelectionExprClass:
2135  return cast<GenericSelectionExpr>(this)->getResultExpr()->
2136  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2137  case CoawaitExprClass:
2138  case CoyieldExprClass:
2139  return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2140  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2141  case ChooseExprClass:
2142  return cast<ChooseExpr>(this)->getChosenSubExpr()->
2143  isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2144  case UnaryOperatorClass: {
2145  const UnaryOperator *UO = cast<UnaryOperator>(this);
2146 
2147  switch (UO->getOpcode()) {
2148  case UO_Plus:
2149  case UO_Minus:
2150  case UO_AddrOf:
2151  case UO_Not:
2152  case UO_LNot:
2153  case UO_Deref:
2154  break;
2155  case UO_Coawait:
2156  // This is just the 'operator co_await' call inside the guts of a
2157  // dependent co_await call.
2158  case UO_PostInc:
2159  case UO_PostDec:
2160  case UO_PreInc:
2161  case UO_PreDec: // ++/--
2162  return false; // Not a warning.
2163  case UO_Real:
2164  case UO_Imag:
2165  // accessing a piece of a volatile complex is a side-effect.
2166  if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2167  .isVolatileQualified())
2168  return false;
2169  break;
2170  case UO_Extension:
2171  return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2172  }
2173  WarnE = this;
2174  Loc = UO->getOperatorLoc();
2175  R1 = UO->getSubExpr()->getSourceRange();
2176  return true;
2177  }
2178  case BinaryOperatorClass: {
2179  const BinaryOperator *BO = cast<BinaryOperator>(this);
2180  switch (BO->getOpcode()) {
2181  default:
2182  break;
2183  // Consider the RHS of comma for side effects. LHS was checked by
2184  // Sema::CheckCommaOperands.
2185  case BO_Comma:
2186  // ((foo = <blah>), 0) is an idiom for hiding the result (and
2187  // lvalue-ness) of an assignment written in a macro.
2188  if (IntegerLiteral *IE =
2189  dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2190  if (IE->getValue() == 0)
2191  return false;
2192  return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2193  // Consider '||', '&&' to have side effects if the LHS or RHS does.
2194  case BO_LAnd:
2195  case BO_LOr:
2196  if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2197  !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2198  return false;
2199  break;
2200  }
2201  if (BO->isAssignmentOp())
2202  return false;
2203  WarnE = this;
2204  Loc = BO->getOperatorLoc();
2205  R1 = BO->getLHS()->getSourceRange();
2206  R2 = BO->getRHS()->getSourceRange();
2207  return true;
2208  }
2209  case CompoundAssignOperatorClass:
2210  case VAArgExprClass:
2211  case AtomicExprClass:
2212  return false;
2213 
2214  case ConditionalOperatorClass: {
2215  // If only one of the LHS or RHS is a warning, the operator might
2216  // be being used for control flow. Only warn if both the LHS and
2217  // RHS are warnings.
2218  const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
2219  if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2220  return false;
2221  if (!Exp->getLHS())
2222  return true;
2223  return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2224  }
2225 
2226  case MemberExprClass:
2227  WarnE = this;
2228  Loc = cast<MemberExpr>(this)->getMemberLoc();
2229  R1 = SourceRange(Loc, Loc);
2230  R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2231  return true;
2232 
2233  case ArraySubscriptExprClass:
2234  WarnE = this;
2235  Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2236  R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2237  R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2238  return true;
2239 
2240  case CXXOperatorCallExprClass: {
2241  // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2242  // overloads as there is no reasonable way to define these such that they
2243  // have non-trivial, desirable side-effects. See the -Wunused-comparison
2244  // warning: operators == and != are commonly typo'ed, and so warning on them
2245  // provides additional value as well. If this list is updated,
2246  // DiagnoseUnusedComparison should be as well.
2247  const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2248  switch (Op->getOperator()) {
2249  default:
2250  break;
2251  case OO_EqualEqual:
2252  case OO_ExclaimEqual:
2253  case OO_Less:
2254  case OO_Greater:
2255  case OO_GreaterEqual:
2256  case OO_LessEqual:
2257  if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2258  Op->getCallReturnType(Ctx)->isVoidType())
2259  break;
2260  WarnE = this;
2261  Loc = Op->getOperatorLoc();
2262  R1 = Op->getSourceRange();
2263  return true;
2264  }
2265 
2266  // Fallthrough for generic call handling.
2267  LLVM_FALLTHROUGH;
2268  }
2269  case CallExprClass:
2270  case CXXMemberCallExprClass:
2271  case UserDefinedLiteralClass: {
2272  // If this is a direct call, get the callee.
2273  const CallExpr *CE = cast<CallExpr>(this);
2274  if (const Decl *FD = CE->getCalleeDecl()) {
2275  const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
2276  bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr()
2277  : FD->hasAttr<WarnUnusedResultAttr>();
2278 
2279  // If the callee has attribute pure, const, or warn_unused_result, warn
2280  // about it. void foo() { strlen("bar"); } should warn.
2281  //
2282  // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2283  // updated to match for QoI.
2284  if (HasWarnUnusedResultAttr ||
2285  FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2286  WarnE = this;
2287  Loc = CE->getCallee()->getBeginLoc();
2288  R1 = CE->getCallee()->getSourceRange();
2289 
2290  if (unsigned NumArgs = CE->getNumArgs())
2291  R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2292  CE->getArg(NumArgs - 1)->getEndLoc());
2293  return true;
2294  }
2295  }
2296  return false;
2297  }
2298 
2299  // If we don't know precisely what we're looking at, let's not warn.
2300  case UnresolvedLookupExprClass:
2301  case CXXUnresolvedConstructExprClass:
2302  return false;
2303 
2304  case CXXTemporaryObjectExprClass:
2305  case CXXConstructExprClass: {
2306  if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2307  if (Type->hasAttr<WarnUnusedAttr>()) {
2308  WarnE = this;
2309  Loc = getBeginLoc();
2310  R1 = getSourceRange();
2311  return true;
2312  }
2313  }
2314  return false;
2315  }
2316 
2317  case ObjCMessageExprClass: {
2318  const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2319  if (Ctx.getLangOpts().ObjCAutoRefCount &&
2320  ME->isInstanceMessage() &&
2321  !ME->getType()->isVoidType() &&
2322  ME->getMethodFamily() == OMF_init) {
2323  WarnE = this;
2324  Loc = getExprLoc();
2325  R1 = ME->getSourceRange();
2326  return true;
2327  }
2328 
2329  if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2330  if (MD->hasAttr<WarnUnusedResultAttr>()) {
2331  WarnE = this;
2332  Loc = getExprLoc();
2333  return true;
2334  }
2335 
2336  return false;
2337  }
2338 
2339  case ObjCPropertyRefExprClass:
2340  WarnE = this;
2341  Loc = getExprLoc();
2342  R1 = getSourceRange();
2343  return true;
2344 
2345  case PseudoObjectExprClass: {
2346  const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2347 
2348  // Only complain about things that have the form of a getter.
2349  if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2350  isa<BinaryOperator>(PO->getSyntacticForm()))
2351  return false;
2352 
2353  WarnE = this;
2354  Loc = getExprLoc();
2355  R1 = getSourceRange();
2356  return true;
2357  }
2358 
2359  case StmtExprClass: {
2360  // Statement exprs don't logically have side effects themselves, but are
2361  // sometimes used in macros in ways that give them a type that is unused.
2362  // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2363  // however, if the result of the stmt expr is dead, we don't want to emit a
2364  // warning.
2365  const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2366  if (!CS->body_empty()) {
2367  if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2368  return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2369  if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2370  if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2371  return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2372  }
2373 
2374  if (getType()->isVoidType())
2375  return false;
2376  WarnE = this;
2377  Loc = cast<StmtExpr>(this)->getLParenLoc();
2378  R1 = getSourceRange();
2379  return true;
2380  }
2381  case CXXFunctionalCastExprClass:
2382  case CStyleCastExprClass: {
2383  // Ignore an explicit cast to void unless the operand is a non-trivial
2384  // volatile lvalue.
2385  const CastExpr *CE = cast<CastExpr>(this);
2386  if (CE->getCastKind() == CK_ToVoid) {
2387  if (CE->getSubExpr()->isGLValue() &&
2388  CE->getSubExpr()->getType().isVolatileQualified()) {
2389  const DeclRefExpr *DRE =
2390  dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2391  if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2392  cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) &&
2393  !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) {
2394  return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2395  R1, R2, Ctx);
2396  }
2397  }
2398  return false;
2399  }
2400 
2401  // If this is a cast to a constructor conversion, check the operand.
2402  // Otherwise, the result of the cast is unused.
2403  if (CE->getCastKind() == CK_ConstructorConversion)
2404  return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2405 
2406  WarnE = this;
2407  if (const CXXFunctionalCastExpr *CXXCE =
2408  dyn_cast<CXXFunctionalCastExpr>(this)) {
2409  Loc = CXXCE->getBeginLoc();
2410  R1 = CXXCE->getSubExpr()->getSourceRange();
2411  } else {
2412  const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2413  Loc = CStyleCE->getLParenLoc();
2414  R1 = CStyleCE->getSubExpr()->getSourceRange();
2415  }
2416  return true;
2417  }
2418  case ImplicitCastExprClass: {
2419  const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2420 
2421  // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2422  if (ICE->getCastKind() == CK_LValueToRValue &&
2424  return false;
2425 
2426  return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2427  }
2428  case CXXDefaultArgExprClass:
2429  return (cast<CXXDefaultArgExpr>(this)
2430  ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2431  case CXXDefaultInitExprClass:
2432  return (cast<CXXDefaultInitExpr>(this)
2433  ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2434 
2435  case CXXNewExprClass:
2436  // FIXME: In theory, there might be new expressions that don't have side
2437  // effects (e.g. a placement new with an uninitialized POD).
2438  case CXXDeleteExprClass:
2439  return false;
2440  case MaterializeTemporaryExprClass:
2441  return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2442  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2443  case CXXBindTemporaryExprClass:
2444  return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2445  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2446  case ExprWithCleanupsClass:
2447  return cast<ExprWithCleanups>(this)->getSubExpr()
2448  ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2449  }
2450 }
2451 
2452 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2453 /// returns true, if it is; false otherwise.
2455  const Expr *E = IgnoreParens();
2456  switch (E->getStmtClass()) {
2457  default:
2458  return false;
2459  case ObjCIvarRefExprClass:
2460  return true;
2461  case Expr::UnaryOperatorClass:
2462  return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2463  case ImplicitCastExprClass:
2464  return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2465  case MaterializeTemporaryExprClass:
2466  return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2467  ->isOBJCGCCandidate(Ctx);
2468  case CStyleCastExprClass:
2469  return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2470  case DeclRefExprClass: {
2471  const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2472 
2473  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2474  if (VD->hasGlobalStorage())
2475  return true;
2476  QualType T = VD->getType();
2477  // dereferencing to a pointer is always a gc'able candidate,
2478  // unless it is __weak.
2479  return T->isPointerType() &&
2480  (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2481  }
2482  return false;
2483  }
2484  case MemberExprClass: {
2485  const MemberExpr *M = cast<MemberExpr>(E);
2486  return M->getBase()->isOBJCGCCandidate(Ctx);
2487  }
2488  case ArraySubscriptExprClass:
2489  return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2490  }
2491 }
2492 
2494  if (isTypeDependent())
2495  return false;
2496  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2497 }
2498 
2500  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2501 
2502  // Bound member expressions are always one of these possibilities:
2503  // x->m x.m x->*y x.*y
2504  // (possibly parenthesized)
2505 
2506  expr = expr->IgnoreParens();
2507  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2508  assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2509  return mem->getMemberDecl()->getType();
2510  }
2511 
2512  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2513  QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2514  ->getPointeeType();
2515  assert(type->isFunctionType());
2516  return type;
2517  }
2518 
2519  assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2520  return QualType();
2521 }
2522 
2524  Expr* E = this;
2525  while (true) {
2526  if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2527  E = P->getSubExpr();
2528  continue;
2529  }
2530  if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2531  if (P->getOpcode() == UO_Extension) {
2532  E = P->getSubExpr();
2533  continue;
2534  }
2535  }
2536  if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2537  if (!P->isResultDependent()) {
2538  E = P->getResultExpr();
2539  continue;
2540  }
2541  }
2542  if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
2543  if (!P->isConditionDependent()) {
2544  E = P->getChosenSubExpr();
2545  continue;
2546  }
2547  }
2548  return E;
2549  }
2550 }
2551 
2552 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
2553 /// or CastExprs or ImplicitCastExprs, returning their operand.
2555  Expr *E = this;
2556  while (true) {
2557  E = E->IgnoreParens();
2558  if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2559  E = P->getSubExpr();
2560  continue;
2561  }
2562  if (MaterializeTemporaryExpr *Materialize
2563  = dyn_cast<MaterializeTemporaryExpr>(E)) {
2564  E = Materialize->GetTemporaryExpr();
2565  continue;
2566  }
2568  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2569  E = NTTP->getReplacement();
2570  continue;
2571  }
2572  if (FullExpr *FE = dyn_cast<FullExpr>(E)) {
2573  E = FE->getSubExpr();
2574  continue;
2575  }
2576  return E;
2577  }
2578 }
2579 
2581  Expr *E = this;
2582  while (true) {
2583  if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2584  E = P->getSubExpr();
2585  continue;
2586  }
2587  if (MaterializeTemporaryExpr *Materialize
2588  = dyn_cast<MaterializeTemporaryExpr>(E)) {
2589  E = Materialize->GetTemporaryExpr();
2590  continue;
2591  }
2593  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2594  E = NTTP->getReplacement();
2595  continue;
2596  }
2597  if (FullExpr *FE = dyn_cast<FullExpr>(E)) {
2598  E = FE->getSubExpr();
2599  continue;
2600  }
2601  return E;
2602  }
2603 }
2604 
2605 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2606 /// casts. This is intended purely as a temporary workaround for code
2607 /// that hasn't yet been rewritten to do the right thing about those
2608 /// casts, and may disappear along with the last internal use.
2610  Expr *E = this;
2611  while (true) {
2612  E = E->IgnoreParens();
2613  if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2614  if (P->getCastKind() == CK_LValueToRValue) {
2615  E = P->getSubExpr();
2616  continue;
2617  }
2618  } else if (MaterializeTemporaryExpr *Materialize
2619  = dyn_cast<MaterializeTemporaryExpr>(E)) {
2620  E = Materialize->GetTemporaryExpr();
2621  continue;
2622  } else if (SubstNonTypeTemplateParmExpr *NTTP
2623  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2624  E = NTTP->getReplacement();
2625  continue;
2626  } else if (FullExpr *FE = dyn_cast<FullExpr>(E)) {
2627  E = FE->getSubExpr();
2628  continue;
2629  }
2630  break;
2631  }
2632  return E;
2633 }
2634 
2636  Expr *E = this;
2637  while (true) {
2638  E = E->IgnoreParens();
2639  if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2640  if (CE->getCastKind() == CK_DerivedToBase ||
2641  CE->getCastKind() == CK_UncheckedDerivedToBase ||
2642  CE->getCastKind() == CK_NoOp) {
2643  E = CE->getSubExpr();
2644  continue;
2645  }
2646  }
2647 
2648  return E;
2649  }
2650 }
2651 
2653  Expr *E = this;
2654  while (true) {
2655  E = E->IgnoreParens();
2656  if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2657  E = P->getSubExpr();
2658  continue;
2659  }
2660  if (MaterializeTemporaryExpr *Materialize
2661  = dyn_cast<MaterializeTemporaryExpr>(E)) {
2662  E = Materialize->GetTemporaryExpr();
2663  continue;
2664  }
2666  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2667  E = NTTP->getReplacement();
2668  continue;
2669  }
2670  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(E)) {
2671  E = CE->getSubExpr();
2672  continue;
2673  }
2674  return E;
2675  }
2676 }
2677 
2679  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2680  if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2681  return MCE->getImplicitObjectArgument();
2682  }
2683  return this;
2684 }
2685 
2686 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2687 /// value (including ptr->int casts of the same size). Strip off any
2688 /// ParenExpr or CastExprs, returning their operand.
2690  Expr *E = this;
2691  while (true) {
2692  E = E->IgnoreParens();
2693 
2694  if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2695  // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2696  // ptr<->int casts of the same width. We also ignore all identity casts.
2697  Expr *SE = P->getSubExpr();
2698 
2699  if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2700  E = SE;
2701  continue;
2702  }
2703 
2704  if ((E->getType()->isPointerType() ||
2705  E->getType()->isIntegralType(Ctx)) &&
2706  (SE->getType()->isPointerType() ||
2707  SE->getType()->isIntegralType(Ctx)) &&
2708  Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2709  E = SE;
2710  continue;
2711  }
2712  }
2713 
2715  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2716  E = NTTP->getReplacement();
2717  continue;
2718  }
2719 
2720  return E;
2721  }
2722 }
2723 
2725  const Expr *E = this;
2726  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2727  E = M->GetTemporaryExpr();
2728 
2729  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2730  E = ICE->getSubExprAsWritten();
2731 
2732  return isa<CXXDefaultArgExpr>(E);
2733 }
2734 
2735 /// Skip over any no-op casts and any temporary-binding
2736 /// expressions.
2738  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2739  E = M->GetTemporaryExpr();
2740 
2741  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2742  if (ICE->getCastKind() == CK_NoOp)
2743  E = ICE->getSubExpr();
2744  else
2745  break;
2746  }
2747 
2748  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2749  E = BE->getSubExpr();
2750 
2751  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2752  if (ICE->getCastKind() == CK_NoOp)
2753  E = ICE->getSubExpr();
2754  else
2755  break;
2756  }
2757 
2758  return E->IgnoreParens();
2759 }
2760 
2761 /// isTemporaryObject - Determines if this expression produces a
2762 /// temporary of the given class type.
2763 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2764  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2765  return false;
2766 
2768 
2769  // Temporaries are by definition pr-values of class type.
2770  if (!E->Classify(C).isPRValue()) {
2771  // In this context, property reference is a message call and is pr-value.
2772  if (!isa<ObjCPropertyRefExpr>(E))
2773  return false;
2774  }
2775 
2776  // Black-list a few cases which yield pr-values of class type that don't
2777  // refer to temporaries of that type:
2778 
2779  // - implicit derived-to-base conversions
2780  if (isa<ImplicitCastExpr>(E)) {
2781  switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2782  case CK_DerivedToBase:
2783  case CK_UncheckedDerivedToBase:
2784  return false;
2785  default:
2786  break;
2787  }
2788  }
2789 
2790  // - member expressions (all)
2791  if (isa<MemberExpr>(E))
2792  return false;
2793 
2794  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2795  if (BO->isPtrMemOp())
2796  return false;
2797 
2798  // - opaque values (all)
2799  if (isa<OpaqueValueExpr>(E))
2800  return false;
2801 
2802  return true;
2803 }
2804 
2806  const Expr *E = this;
2807 
2808  // Strip away parentheses and casts we don't care about.
2809  while (true) {
2810  if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2811  E = Paren->getSubExpr();
2812  continue;
2813  }
2814 
2815  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2816  if (ICE->getCastKind() == CK_NoOp ||
2817  ICE->getCastKind() == CK_LValueToRValue ||
2818  ICE->getCastKind() == CK_DerivedToBase ||
2819  ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2820  E = ICE->getSubExpr();
2821  continue;
2822  }
2823  }
2824 
2825  if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2826  if (UnOp->getOpcode() == UO_Extension) {
2827  E = UnOp->getSubExpr();
2828  continue;
2829  }
2830  }
2831 
2832  if (const MaterializeTemporaryExpr *M
2833  = dyn_cast<MaterializeTemporaryExpr>(E)) {
2834  E = M->GetTemporaryExpr();
2835  continue;
2836  }
2837 
2838  break;
2839  }
2840 
2841  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2842  return This->isImplicit();
2843 
2844  return false;
2845 }
2846 
2847 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2848 /// in Exprs is type-dependent.
2850  for (unsigned I = 0; I < Exprs.size(); ++I)
2851  if (Exprs[I]->isTypeDependent())
2852  return true;
2853 
2854  return false;
2855 }
2856 
2857 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
2858  const Expr **Culprit) const {
2859  // This function is attempting whether an expression is an initializer
2860  // which can be evaluated at compile-time. It very closely parallels
2861  // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2862  // will lead to unexpected results. Like ConstExprEmitter, it falls back
2863  // to isEvaluatable most of the time.
2864  //
2865  // If we ever capture reference-binding directly in the AST, we can
2866  // kill the second parameter.
2867 
2868  if (IsForRef) {
2870  if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
2871  return true;
2872  if (Culprit)
2873  *Culprit = this;
2874  return false;
2875  }
2876 
2877  switch (getStmtClass()) {
2878  default: break;
2879  case StringLiteralClass:
2880  case ObjCEncodeExprClass:
2881  return true;
2882  case CXXTemporaryObjectExprClass:
2883  case CXXConstructExprClass: {
2884  const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2885 
2886  if (CE->getConstructor()->isTrivial() &&
2888  // Trivial default constructor
2889  if (!CE->getNumArgs()) return true;
2890 
2891  // Trivial copy constructor
2892  assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2893  return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
2894  }
2895 
2896  break;
2897  }
2898  case ConstantExprClass: {
2899  // FIXME: We should be able to return "true" here, but it can lead to extra
2900  // error messages. E.g. in Sema/array-init.c.
2901  const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
2902  return Exp->isConstantInitializer(Ctx, false, Culprit);
2903  }
2904  case CompoundLiteralExprClass: {
2905  // This handles gcc's extension that allows global initializers like
2906  // "struct x {int x;} x = (struct x) {};".
2907  // FIXME: This accepts other cases it shouldn't!
2908  const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2909  return Exp->isConstantInitializer(Ctx, false, Culprit);
2910  }
2911  case DesignatedInitUpdateExprClass: {
2912  const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
2913  return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
2914  DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
2915  }
2916  case InitListExprClass: {
2917  const InitListExpr *ILE = cast<InitListExpr>(this);
2918  if (ILE->getType()->isArrayType()) {
2919  unsigned numInits = ILE->getNumInits();
2920  for (unsigned i = 0; i < numInits; i++) {
2921  if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
2922  return false;
2923  }
2924  return true;
2925  }
2926 
2927  if (ILE->getType()->isRecordType()) {
2928  unsigned ElementNo = 0;
2929  RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
2930  for (const auto *Field : RD->fields()) {
2931  // If this is a union, skip all the fields that aren't being initialized.
2932  if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
2933  continue;
2934 
2935  // Don't emit anonymous bitfields, they just affect layout.
2936  if (Field->isUnnamedBitfield())
2937  continue;
2938 
2939  if (ElementNo < ILE->getNumInits()) {
2940  const Expr *Elt = ILE->getInit(ElementNo++);
2941  if (Field->isBitField()) {
2942  // Bitfields have to evaluate to an integer.
2944  if (!Elt->EvaluateAsInt(Result, Ctx)) {
2945  if (Culprit)
2946  *Culprit = Elt;
2947  return false;
2948  }
2949  } else {
2950  bool RefType = Field->getType()->isReferenceType();
2951  if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
2952  return false;
2953  }
2954  }
2955  }
2956  return true;
2957  }
2958 
2959  break;
2960  }
2961  case ImplicitValueInitExprClass:
2962  case NoInitExprClass:
2963  return true;
2964  case ParenExprClass:
2965  return cast<ParenExpr>(this)->getSubExpr()
2966  ->isConstantInitializer(Ctx, IsForRef, Culprit);
2967  case GenericSelectionExprClass:
2968  return cast<GenericSelectionExpr>(this)->getResultExpr()
2969  ->isConstantInitializer(Ctx, IsForRef, Culprit);
2970  case ChooseExprClass:
2971  if (cast<ChooseExpr>(this)->isConditionDependent()) {
2972  if (Culprit)
2973  *Culprit = this;
2974  return false;
2975  }
2976  return cast<ChooseExpr>(this)->getChosenSubExpr()
2977  ->isConstantInitializer(Ctx, IsForRef, Culprit);
2978  case UnaryOperatorClass: {
2979  const UnaryOperator* Exp = cast<UnaryOperator>(this);
2980  if (Exp->getOpcode() == UO_Extension)
2981  return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2982  break;
2983  }
2984  case CXXFunctionalCastExprClass:
2985  case CXXStaticCastExprClass:
2986  case ImplicitCastExprClass:
2987  case CStyleCastExprClass:
2988  case ObjCBridgedCastExprClass:
2989  case CXXDynamicCastExprClass:
2990  case CXXReinterpretCastExprClass:
2991  case CXXConstCastExprClass: {
2992  const CastExpr *CE = cast<CastExpr>(this);
2993 
2994  // Handle misc casts we want to ignore.
2995  if (CE->getCastKind() == CK_NoOp ||
2996  CE->getCastKind() == CK_LValueToRValue ||
2997  CE->getCastKind() == CK_ToUnion ||
2998  CE->getCastKind() == CK_ConstructorConversion ||
2999  CE->getCastKind() == CK_NonAtomicToAtomic ||
3000  CE->getCastKind() == CK_AtomicToNonAtomic ||
3001  CE->getCastKind() == CK_IntToOCLSampler)
3002  return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3003 
3004  break;
3005  }
3006  case MaterializeTemporaryExprClass:
3007  return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
3008  ->isConstantInitializer(Ctx, false, Culprit);
3009 
3010  case SubstNonTypeTemplateParmExprClass:
3011  return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3012  ->isConstantInitializer(Ctx, false, Culprit);
3013  case CXXDefaultArgExprClass:
3014  return cast<CXXDefaultArgExpr>(this)->getExpr()
3015  ->isConstantInitializer(Ctx, false, Culprit);
3016  case CXXDefaultInitExprClass:
3017  return cast<CXXDefaultInitExpr>(this)->getExpr()
3018  ->isConstantInitializer(Ctx, false, Culprit);
3019  }
3020  // Allow certain forms of UB in constant initializers: signed integer
3021  // overflow and floating-point division by zero. We'll give a warning on
3022  // these, but they're common enough that we have to accept them.
3024  return true;
3025  if (Culprit)
3026  *Culprit = this;
3027  return false;
3028 }
3029 
3031  const FunctionDecl* FD = getDirectCallee();
3032  if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
3033  FD->getBuiltinID() != Builtin::BI__builtin_assume))
3034  return false;
3035 
3036  const Expr* Arg = getArg(0);
3037  bool ArgVal;
3038  return !Arg->isValueDependent() &&
3039  Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3040 }
3041 
3042 namespace {
3043  /// Look for any side effects within a Stmt.
3044  class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3046  const bool IncludePossibleEffects;
3047  bool HasSideEffects;
3048 
3049  public:
3050  explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3051  : Inherited(Context),
3052  IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3053 
3054  bool hasSideEffects() const { return HasSideEffects; }
3055 
3056  void VisitExpr(const Expr *E) {
3057  if (!HasSideEffects &&
3058  E->HasSideEffects(Context, IncludePossibleEffects))
3059  HasSideEffects = true;
3060  }
3061  };
3062 }
3063 
3065  bool IncludePossibleEffects) const {
3066  // In circumstances where we care about definite side effects instead of
3067  // potential side effects, we want to ignore expressions that are part of a
3068  // macro expansion as a potential side effect.
3069  if (!IncludePossibleEffects && getExprLoc().isMacroID())
3070  return false;
3071 
3073  return IncludePossibleEffects;
3074 
3075  switch (getStmtClass()) {
3076  case NoStmtClass:
3077  #define ABSTRACT_STMT(Type)
3078  #define STMT(Type, Base) case Type##Class:
3079  #define EXPR(Type, Base)
3080  #include "clang/AST/StmtNodes.inc"
3081  llvm_unreachable("unexpected Expr kind");
3082 
3083  case DependentScopeDeclRefExprClass:
3084  case CXXUnresolvedConstructExprClass:
3085  case CXXDependentScopeMemberExprClass:
3086  case UnresolvedLookupExprClass:
3087  case UnresolvedMemberExprClass:
3088  case PackExpansionExprClass:
3089  case SubstNonTypeTemplateParmPackExprClass:
3090  case FunctionParmPackExprClass:
3091  case TypoExprClass:
3092  case CXXFoldExprClass:
3093  llvm_unreachable("shouldn't see dependent / unresolved nodes here");
3094 
3095  case DeclRefExprClass:
3096  case ObjCIvarRefExprClass:
3097  case PredefinedExprClass:
3098  case IntegerLiteralClass:
3099  case FixedPointLiteralClass:
3100  case FloatingLiteralClass:
3101  case ImaginaryLiteralClass:
3102  case StringLiteralClass:
3103  case CharacterLiteralClass:
3104  case OffsetOfExprClass:
3105  case ImplicitValueInitExprClass:
3106  case UnaryExprOrTypeTraitExprClass:
3107  case AddrLabelExprClass:
3108  case GNUNullExprClass:
3109  case ArrayInitIndexExprClass:
3110  case NoInitExprClass:
3111  case CXXBoolLiteralExprClass:
3112  case CXXNullPtrLiteralExprClass:
3113  case CXXThisExprClass:
3114  case CXXScalarValueInitExprClass:
3115  case TypeTraitExprClass:
3116  case ArrayTypeTraitExprClass:
3117  case ExpressionTraitExprClass:
3118  case CXXNoexceptExprClass:
3119  case SizeOfPackExprClass:
3120  case ObjCStringLiteralClass:
3121  case ObjCEncodeExprClass:
3122  case ObjCBoolLiteralExprClass:
3123  case ObjCAvailabilityCheckExprClass:
3124  case CXXUuidofExprClass:
3125  case OpaqueValueExprClass:
3126  // These never have a side-effect.
3127  return false;
3128 
3129  case ConstantExprClass:
3130  // FIXME: Move this into the "return false;" block above.
3131  return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3132  Ctx, IncludePossibleEffects);
3133 
3134  case CallExprClass:
3135  case CXXOperatorCallExprClass:
3136  case CXXMemberCallExprClass:
3137  case CUDAKernelCallExprClass:
3138  case UserDefinedLiteralClass: {
3139  // We don't know a call definitely has side effects, except for calls
3140  // to pure/const functions that definitely don't.
3141  // If the call itself is considered side-effect free, check the operands.
3142  const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3143  bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3144  if (IsPure || !IncludePossibleEffects)
3145  break;
3146  return true;
3147  }
3148 
3149  case BlockExprClass:
3150  case CXXBindTemporaryExprClass:
3151  if (!IncludePossibleEffects)
3152  break;
3153  return true;
3154 
3155  case MSPropertyRefExprClass:
3156  case MSPropertySubscriptExprClass:
3157  case CompoundAssignOperatorClass:
3158  case VAArgExprClass:
3159  case AtomicExprClass:
3160  case CXXThrowExprClass:
3161  case CXXNewExprClass:
3162  case CXXDeleteExprClass:
3163  case CoawaitExprClass:
3164  case DependentCoawaitExprClass:
3165  case CoyieldExprClass:
3166  // These always have a side-effect.
3167  return true;
3168 
3169  case StmtExprClass: {
3170  // StmtExprs have a side-effect if any substatement does.
3171  SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3172  Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3173  return Finder.hasSideEffects();
3174  }
3175 
3176  case ExprWithCleanupsClass:
3177  if (IncludePossibleEffects)
3178  if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3179  return true;
3180  break;
3181 
3182  case ParenExprClass:
3183  case ArraySubscriptExprClass:
3184  case OMPArraySectionExprClass:
3185  case MemberExprClass:
3186  case ConditionalOperatorClass:
3187  case BinaryConditionalOperatorClass:
3188  case CompoundLiteralExprClass:
3189  case ExtVectorElementExprClass:
3190  case DesignatedInitExprClass:
3191  case DesignatedInitUpdateExprClass:
3192  case ArrayInitLoopExprClass:
3193  case ParenListExprClass:
3194  case CXXPseudoDestructorExprClass:
3195  case CXXStdInitializerListExprClass:
3196  case SubstNonTypeTemplateParmExprClass:
3197  case MaterializeTemporaryExprClass:
3198  case ShuffleVectorExprClass:
3199  case ConvertVectorExprClass:
3200  case AsTypeExprClass:
3201  // These have a side-effect if any subexpression does.
3202  break;
3203 
3204  case UnaryOperatorClass:
3205  if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3206  return true;
3207  break;
3208 
3209  case BinaryOperatorClass:
3210  if (cast<BinaryOperator>(this)->isAssignmentOp())
3211  return true;
3212  break;
3213 
3214  case InitListExprClass:
3215  // FIXME: The children for an InitListExpr doesn't include the array filler.
3216  if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3217  if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3218  return true;
3219  break;
3220 
3221  case GenericSelectionExprClass:
3222  return cast<GenericSelectionExpr>(this)->getResultExpr()->
3223  HasSideEffects(Ctx, IncludePossibleEffects);
3224 
3225  case ChooseExprClass:
3226  return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3227  Ctx, IncludePossibleEffects);
3228 
3229  case CXXDefaultArgExprClass:
3230  return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3231  Ctx, IncludePossibleEffects);
3232 
3233  case CXXDefaultInitExprClass: {
3234  const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3235  if (const Expr *E = FD->getInClassInitializer())
3236  return E->HasSideEffects(Ctx, IncludePossibleEffects);
3237  // If we've not yet parsed the initializer, assume it has side-effects.
3238  return true;
3239  }
3240 
3241  case CXXDynamicCastExprClass: {
3242  // A dynamic_cast expression has side-effects if it can throw.
3243  const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3244  if (DCE->getTypeAsWritten()->isReferenceType() &&
3245  DCE->getCastKind() == CK_Dynamic)
3246  return true;
3247  }
3248  LLVM_FALLTHROUGH;
3249  case ImplicitCastExprClass:
3250  case CStyleCastExprClass:
3251  case CXXStaticCastExprClass:
3252  case CXXReinterpretCastExprClass:
3253  case CXXConstCastExprClass:
3254  case CXXFunctionalCastExprClass: {
3255  // While volatile reads are side-effecting in both C and C++, we treat them
3256  // as having possible (not definite) side-effects. This allows idiomatic
3257  // code to behave without warning, such as sizeof(*v) for a volatile-
3258  // qualified pointer.
3259  if (!IncludePossibleEffects)
3260  break;
3261 
3262  const CastExpr *CE = cast<CastExpr>(this);
3263  if (CE->getCastKind() == CK_LValueToRValue &&
3265  return true;
3266  break;
3267  }
3268 
3269  case CXXTypeidExprClass:
3270  // typeid might throw if its subexpression is potentially-evaluated, so has
3271  // side-effects in that case whether or not its subexpression does.
3272  return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3273 
3274  case CXXConstructExprClass:
3275  case CXXTemporaryObjectExprClass: {
3276  const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3277  if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3278  return true;
3279  // A trivial constructor does not add any side-effects of its own. Just look
3280  // at its arguments.
3281  break;
3282  }
3283 
3284  case CXXInheritedCtorInitExprClass: {
3285  const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3286  if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3287  return true;
3288  break;
3289  }
3290 
3291  case LambdaExprClass: {
3292  const LambdaExpr *LE = cast<LambdaExpr>(this);
3293  for (Expr *E : LE->capture_inits())
3294  if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3295  return true;
3296  return false;
3297  }
3298 
3299  case PseudoObjectExprClass: {
3300  // Only look for side-effects in the semantic form, and look past
3301  // OpaqueValueExpr bindings in that form.
3302  const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3304  E = PO->semantics_end();
3305  I != E; ++I) {
3306  const Expr *Subexpr = *I;
3307  if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3308  Subexpr = OVE->getSourceExpr();
3309  if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3310  return true;
3311  }
3312  return false;
3313  }
3314 
3315  case ObjCBoxedExprClass:
3316  case ObjCArrayLiteralClass:
3317  case ObjCDictionaryLiteralClass:
3318  case ObjCSelectorExprClass:
3319  case ObjCProtocolExprClass:
3320  case ObjCIsaExprClass:
3321  case ObjCIndirectCopyRestoreExprClass:
3322  case ObjCSubscriptRefExprClass:
3323  case ObjCBridgedCastExprClass:
3324  case ObjCMessageExprClass:
3325  case ObjCPropertyRefExprClass:
3326  // FIXME: Classify these cases better.
3327  if (IncludePossibleEffects)
3328  return true;
3329  break;
3330  }
3331 
3332  // Recurse to children.
3333  for (const Stmt *SubStmt : children())
3334  if (SubStmt &&
3335  cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3336  return true;
3337 
3338  return false;
3339 }
3340 
3341 namespace {
3342  /// Look for a call to a non-trivial function within an expression.
3343  class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3344  {
3346 
3347  bool NonTrivial;
3348 
3349  public:
3350  explicit NonTrivialCallFinder(const ASTContext &Context)
3351  : Inherited(Context), NonTrivial(false) { }
3352 
3353  bool hasNonTrivialCall() const { return NonTrivial; }
3354 
3355  void VisitCallExpr(const CallExpr *E) {
3356  if (const CXXMethodDecl *Method
3357  = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3358  if (Method->isTrivial()) {
3359  // Recurse to children of the call.
3360  Inherited::VisitStmt(E);
3361  return;
3362  }
3363  }
3364 
3365  NonTrivial = true;
3366  }
3367 
3368  void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3369  if (E->getConstructor()->isTrivial()) {
3370  // Recurse to children of the call.
3371  Inherited::VisitStmt(E);
3372  return;
3373  }
3374 
3375  NonTrivial = true;
3376  }
3377 
3378  void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3379  if (E->getTemporary()->getDestructor()->isTrivial()) {
3380  Inherited::VisitStmt(E);
3381  return;
3382  }
3383 
3384  NonTrivial = true;
3385  }
3386  };
3387 }
3388 
3389 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3390  NonTrivialCallFinder Finder(Ctx);
3391  Finder.Visit(this);
3392  return Finder.hasNonTrivialCall();
3393 }
3394 
3395 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3396 /// pointer constant or not, as well as the specific kind of constant detected.
3397 /// Null pointer constants can be integer constant expressions with the
3398 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3399 /// (a GNU extension).
3403  if (isValueDependent() &&
3404  (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3405  switch (NPC) {
3407  llvm_unreachable("Unexpected value dependent expression!");
3409  if (isTypeDependent() || getType()->isIntegralType(Ctx))
3410  return NPCK_ZeroExpression;
3411  else
3412  return NPCK_NotNull;
3413 
3415  return NPCK_NotNull;
3416  }
3417  }
3418 
3419  // Strip off a cast to void*, if it exists. Except in C++.
3420  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3421  if (!Ctx.getLangOpts().CPlusPlus) {
3422  // Check that it is a cast to void*.
3423  if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3424  QualType Pointee = PT->getPointeeType();
3425  Qualifiers Qs = Pointee.getQualifiers();
3426  // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3427  // has non-default address space it is not treated as nullptr.
3428  // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3429  // since it cannot be assigned to a pointer to constant address space.
3430  if ((Ctx.getLangOpts().OpenCLVersion >= 200 &&
3431  Pointee.getAddressSpace() == LangAS::opencl_generic) ||
3432  (Ctx.getLangOpts().OpenCL &&
3433  Ctx.getLangOpts().OpenCLVersion < 200 &&
3435  Qs.removeAddressSpace();
3436 
3437  if (Pointee->isVoidType() && Qs.empty() && // to void*
3438  CE->getSubExpr()->getType()->isIntegerType()) // from int
3439  return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3440  }
3441  }
3442  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3443  // Ignore the ImplicitCastExpr type entirely.
3444  return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3445  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3446  // Accept ((void*)0) as a null pointer constant, as many other
3447  // implementations do.
3448  return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3449  } else if (const GenericSelectionExpr *GE =
3450  dyn_cast<GenericSelectionExpr>(this)) {
3451  if (GE->isResultDependent())
3452  return NPCK_NotNull;
3453  return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3454  } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3455  if (CE->isConditionDependent())
3456  return NPCK_NotNull;
3457  return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3458  } else if (const CXXDefaultArgExpr *DefaultArg
3459  = dyn_cast<CXXDefaultArgExpr>(this)) {
3460  // See through default argument expressions.
3461  return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3462  } else if (const CXXDefaultInitExpr *DefaultInit
3463  = dyn_cast<CXXDefaultInitExpr>(this)) {
3464  // See through default initializer expressions.
3465  return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3466  } else if (isa<GNUNullExpr>(this)) {
3467  // The GNU __null extension is always a null pointer constant.
3468  return NPCK_GNUNull;
3469  } else if (const MaterializeTemporaryExpr *M
3470  = dyn_cast<MaterializeTemporaryExpr>(this)) {
3471  return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3472  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3473  if (const Expr *Source = OVE->getSourceExpr())
3474  return Source->isNullPointerConstant(Ctx, NPC);
3475  }
3476 
3477  // C++11 nullptr_t is always a null pointer constant.
3478  if (getType()->isNullPtrType())
3479  return NPCK_CXX11_nullptr;
3480 
3481  if (const RecordType *UT = getType()->getAsUnionType())
3482  if (!Ctx.getLangOpts().CPlusPlus11 &&
3483  UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3484  if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3485  const Expr *InitExpr = CLE->getInitializer();
3486  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3487  return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3488  }
3489  // This expression must be an integer type.
3490  if (!getType()->isIntegerType() ||
3491  (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3492  return NPCK_NotNull;
3493 
3494  if (Ctx.getLangOpts().CPlusPlus11) {
3495  // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3496  // value zero or a prvalue of type std::nullptr_t.
3497  // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3498  const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3499  if (Lit && !Lit->getValue())
3500  return NPCK_ZeroLiteral;
3501  else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3502  return NPCK_NotNull;
3503  } else {
3504  // If we have an integer constant expression, we need to *evaluate* it and
3505  // test for the value 0.
3506  if (!isIntegerConstantExpr(Ctx))
3507  return NPCK_NotNull;
3508  }
3509 
3510  if (EvaluateKnownConstInt(Ctx) != 0)
3511  return NPCK_NotNull;
3512 
3513  if (isa<IntegerLiteral>(this))
3514  return NPCK_ZeroLiteral;
3515  return NPCK_ZeroExpression;
3516 }
3517 
3518 /// If this expression is an l-value for an Objective C
3519 /// property, find the underlying property reference expression.
3521  const Expr *E = this;
3522  while (true) {
3523  assert((E->getValueKind() == VK_LValue &&
3524  E->getObjectKind() == OK_ObjCProperty) &&
3525  "expression is not a property reference");
3526  E = E->IgnoreParenCasts();
3527  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3528  if (BO->getOpcode() == BO_Comma) {
3529  E = BO->getRHS();
3530  continue;
3531  }
3532  }
3533 
3534  break;
3535  }
3536 
3537  return cast<ObjCPropertyRefExpr>(E);
3538 }
3539 
3540 bool Expr::isObjCSelfExpr() const {
3541  const Expr *E = IgnoreParenImpCasts();
3542 
3543  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3544  if (!DRE)
3545  return false;
3546 
3547  const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3548  if (!Param)
3549  return false;
3550 
3551  const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3552  if (!M)
3553  return false;
3554 
3555  return M->getSelfDecl() == Param;
3556 }
3557 
3559  Expr *E = this->IgnoreParens();
3560 
3561  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3562  if (ICE->getCastKind() == CK_LValueToRValue ||
3563  (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3564  E = ICE->getSubExpr()->IgnoreParens();
3565  else
3566  break;
3567  }
3568 
3569  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3570  if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3571  if (Field->isBitField())
3572  return Field;
3573 
3574  if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
3575  FieldDecl *Ivar = IvarRef->getDecl();
3576  if (Ivar->isBitField())
3577  return Ivar;
3578  }
3579 
3580  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
3581  if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3582  if (Field->isBitField())
3583  return Field;
3584 
3585  if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
3586  if (Expr *E = BD->getBinding())
3587  return E->getSourceBitField();
3588  }
3589 
3590  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3591  if (BinOp->isAssignmentOp() && BinOp->getLHS())
3592  return BinOp->getLHS()->getSourceBitField();
3593 
3594  if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3595  return BinOp->getRHS()->getSourceBitField();
3596  }
3597 
3598  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3599  if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3600  return UnOp->getSubExpr()->getSourceBitField();
3601 
3602  return nullptr;
3603 }
3604 
3606  // FIXME: Why do we not just look at the ObjectKind here?
3607  const Expr *E = this->IgnoreParens();
3608 
3609  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3610  if (ICE->getValueKind() != VK_RValue &&
3611  ICE->getCastKind() == CK_NoOp)
3612  E = ICE->getSubExpr()->IgnoreParens();
3613  else
3614  break;
3615  }
3616 
3617  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3618  return ASE->getBase()->getType()->isVectorType();
3619 
3620  if (isa<ExtVectorElementExpr>(E))
3621  return true;
3622 
3623  if (auto *DRE = dyn_cast<DeclRefExpr>(E))
3624  if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
3625  if (auto *E = BD->getBinding())
3626  return E->refersToVectorElement();
3627 
3628  return false;
3629 }
3630 
3632  const Expr *E = this->IgnoreParenImpCasts();
3633 
3634  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3635  if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
3636  if (VD->getStorageClass() == SC_Register &&
3637  VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
3638  return true;
3639 
3640  return false;
3641 }
3642 
3643 /// isArrow - Return true if the base expression is a pointer to vector,
3644 /// return false if the base expression is a vector.
3646  return getBase()->getType()->isPointerType();
3647 }
3648 
3650  if (const VectorType *VT = getType()->getAs<VectorType>())
3651  return VT->getNumElements();
3652  return 1;
3653 }
3654 
3655 /// containsDuplicateElements - Return true if any element access is repeated.
3657  // FIXME: Refactor this code to an accessor on the AST node which returns the
3658  // "type" of component access, and share with code below and in Sema.
3659  StringRef Comp = Accessor->getName();
3660 
3661  // Halving swizzles do not contain duplicate elements.
3662  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3663  return false;
3664 
3665  // Advance past s-char prefix on hex swizzles.
3666  if (Comp[0] == 's' || Comp[0] == 'S')
3667  Comp = Comp.substr(1);
3668 
3669  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3670  if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3671  return true;
3672 
3673  return false;
3674 }
3675 
3676 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3678  SmallVectorImpl<uint32_t> &Elts) const {
3679  StringRef Comp = Accessor->getName();
3680  bool isNumericAccessor = false;
3681  if (Comp[0] == 's' || Comp[0] == 'S') {
3682  Comp = Comp.substr(1);
3683  isNumericAccessor = true;
3684  }
3685 
3686  bool isHi = Comp == "hi";
3687  bool isLo = Comp == "lo";
3688  bool isEven = Comp == "even";
3689  bool isOdd = Comp == "odd";
3690 
3691  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3692  uint64_t Index;
3693 
3694  if (isHi)
3695  Index = e + i;
3696  else if (isLo)
3697  Index = i;
3698  else if (isEven)
3699  Index = 2 * i;
3700  else if (isOdd)
3701  Index = 2 * i + 1;
3702  else
3703  Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
3704 
3705  Elts.push_back(Index);
3706  }
3707 }
3708 
3710  QualType Type, SourceLocation BLoc,
3711  SourceLocation RP)
3712  : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3713  Type->isDependentType(), Type->isDependentType(),
3714  Type->isInstantiationDependentType(),
3716  BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3717 {
3718  SubExprs = new (C) Stmt*[args.size()];
3719  for (unsigned i = 0; i != args.size(); i++) {
3720  if (args[i]->isTypeDependent())
3721  ExprBits.TypeDependent = true;
3722  if (args[i]->isValueDependent())
3723  ExprBits.ValueDependent = true;
3724  if (args[i]->isInstantiationDependent())
3725  ExprBits.InstantiationDependent = true;
3726  if (args[i]->containsUnexpandedParameterPack())
3727  ExprBits.ContainsUnexpandedParameterPack = true;
3728 
3729  SubExprs[i] = args[i];
3730  }
3731 }
3732 
3734  if (SubExprs) C.Deallocate(SubExprs);
3735 
3736  this->NumExprs = Exprs.size();
3737  SubExprs = new (C) Stmt*[NumExprs];
3738  memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3739 }
3740 
3742  SourceLocation GenericLoc, Expr *ControllingExpr,
3743  ArrayRef<TypeSourceInfo*> AssocTypes,
3744  ArrayRef<Expr*> AssocExprs,
3745  SourceLocation DefaultLoc,
3746  SourceLocation RParenLoc,
3747  bool ContainsUnexpandedParameterPack,
3748  unsigned ResultIndex)
3749  : Expr(GenericSelectionExprClass,
3750  AssocExprs[ResultIndex]->getType(),
3751  AssocExprs[ResultIndex]->getValueKind(),
3752  AssocExprs[ResultIndex]->getObjectKind(),
3753  AssocExprs[ResultIndex]->isTypeDependent(),
3754  AssocExprs[ResultIndex]->isValueDependent(),
3755  AssocExprs[ResultIndex]->isInstantiationDependent(),
3756  ContainsUnexpandedParameterPack),
3757  AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3758  SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3759  NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3760  GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3761  SubExprs[CONTROLLING] = ControllingExpr;
3762  assert(AssocTypes.size() == AssocExprs.size());
3763  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3764  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3765 }
3766 
3768  SourceLocation GenericLoc, Expr *ControllingExpr,
3769  ArrayRef<TypeSourceInfo*> AssocTypes,
3770  ArrayRef<Expr*> AssocExprs,
3771  SourceLocation DefaultLoc,
3772  SourceLocation RParenLoc,
3773  bool ContainsUnexpandedParameterPack)
3774  : Expr(GenericSelectionExprClass,
3775  Context.DependentTy,
3776  VK_RValue,
3777  OK_Ordinary,
3778  /*isTypeDependent=*/true,
3779  /*isValueDependent=*/true,
3780  /*isInstantiationDependent=*/true,
3781  ContainsUnexpandedParameterPack),
3782  AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3783  SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3784  NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3785  DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3786  SubExprs[CONTROLLING] = ControllingExpr;
3787  assert(AssocTypes.size() == AssocExprs.size());
3788  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3789  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3790 }
3791 
3792 //===----------------------------------------------------------------------===//
3793 // DesignatedInitExpr
3794 //===----------------------------------------------------------------------===//
3795 
3797  assert(Kind == FieldDesignator && "Only valid on a field designator");
3798  if (Field.NameOrField & 0x01)
3799  return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3800  else
3801  return getField()->getIdentifier();
3802 }
3803 
3804 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
3805  llvm::ArrayRef<Designator> Designators,
3806  SourceLocation EqualOrColonLoc,
3807  bool GNUSyntax,
3808  ArrayRef<Expr*> IndexExprs,
3809  Expr *Init)
3810  : Expr(DesignatedInitExprClass, Ty,
3811  Init->getValueKind(), Init->getObjectKind(),
3812  Init->isTypeDependent(), Init->isValueDependent(),
3813  Init->isInstantiationDependent(),
3815  EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3816  NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
3817  this->Designators = new (C) Designator[NumDesignators];
3818 
3819  // Record the initializer itself.
3820  child_iterator Child = child_begin();
3821  *Child++ = Init;
3822 
3823  // Copy the designators and their subexpressions, computing
3824  // value-dependence along the way.
3825  unsigned IndexIdx = 0;
3826  for (unsigned I = 0; I != NumDesignators; ++I) {
3827  this->Designators[I] = Designators[I];
3828 
3829  if (this->Designators[I].isArrayDesignator()) {
3830  // Compute type- and value-dependence.
3831  Expr *Index = IndexExprs[IndexIdx];
3832  if (Index->isTypeDependent() || Index->isValueDependent())
3833  ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3834  if (Index->isInstantiationDependent())
3835  ExprBits.InstantiationDependent = true;
3836  // Propagate unexpanded parameter packs.
3838  ExprBits.ContainsUnexpandedParameterPack = true;
3839 
3840  // Copy the index expressions into permanent storage.
3841  *Child++ = IndexExprs[IndexIdx++];
3842  } else if (this->Designators[I].isArrayRangeDesignator()) {
3843  // Compute type- and value-dependence.
3844  Expr *Start = IndexExprs[IndexIdx];
3845  Expr *End = IndexExprs[IndexIdx + 1];
3846  if (Start->isTypeDependent() || Start->isValueDependent() ||
3847  End->isTypeDependent() || End->isValueDependent()) {
3848  ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3849  ExprBits.InstantiationDependent = true;
3850  } else if (Start->isInstantiationDependent() ||
3851  End->isInstantiationDependent()) {
3852  ExprBits.InstantiationDependent = true;
3853  }
3854 
3855  // Propagate unexpanded parameter packs.
3856  if (Start->containsUnexpandedParameterPack() ||
3858  ExprBits.ContainsUnexpandedParameterPack = true;
3859 
3860  // Copy the start/end expressions into permanent storage.
3861  *Child++ = IndexExprs[IndexIdx++];
3862  *Child++ = IndexExprs[IndexIdx++];
3863  }
3864  }
3865 
3866  assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3867 }
3868 
3871  llvm::ArrayRef<Designator> Designators,
3872  ArrayRef<Expr*> IndexExprs,
3873  SourceLocation ColonOrEqualLoc,
3874  bool UsesColonSyntax, Expr *Init) {
3875  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
3876  alignof(DesignatedInitExpr));
3877  return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
3878  ColonOrEqualLoc, UsesColonSyntax,
3879  IndexExprs, Init);
3880 }
3881 
3883  unsigned NumIndexExprs) {
3884  void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
3885  alignof(DesignatedInitExpr));
3886  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3887 }
3888 
3890  const Designator *Desigs,
3891  unsigned NumDesigs) {
3892  Designators = new (C) Designator[NumDesigs];
3893  NumDesignators = NumDesigs;
3894  for (unsigned I = 0; I != NumDesigs; ++I)
3895  Designators[I] = Desigs[I];
3896 }
3897 
3899  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3900  if (size() == 1)
3901  return DIE->getDesignator(0)->getSourceRange();
3902  return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
3903  DIE->getDesignator(size() - 1)->getEndLoc());
3904 }
3905 
3907  SourceLocation StartLoc;
3908  auto *DIE = const_cast<DesignatedInitExpr *>(this);
3909  Designator &First = *DIE->getDesignator(0);
3910  if (First.isFieldDesignator()) {
3911  if (GNUSyntax)
3913  else
3915  } else
3916  StartLoc =
3918  return StartLoc;
3919 }
3920 
3922  return getInit()->getEndLoc();
3923 }
3924 
3926  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3927  return getSubExpr(D.ArrayOrRange.Index + 1);
3928 }
3929 
3931  assert(D.Kind == Designator::ArrayRangeDesignator &&
3932  "Requires array range designator");
3933  return getSubExpr(D.ArrayOrRange.Index + 1);
3934 }
3935 
3937  assert(D.Kind == Designator::ArrayRangeDesignator &&
3938  "Requires array range designator");
3939  return getSubExpr(D.ArrayOrRange.Index + 2);
3940 }
3941 
3942 /// Replaces the designator at index @p Idx with the series
3943 /// of designators in [First, Last).
3945  const Designator *First,
3946  const Designator *Last) {
3947  unsigned NumNewDesignators = Last - First;
3948  if (NumNewDesignators == 0) {
3949  std::copy_backward(Designators + Idx + 1,
3950  Designators + NumDesignators,
3951  Designators + Idx);
3952  --NumNewDesignators;
3953  return;
3954  } else if (NumNewDesignators == 1) {
3955  Designators[Idx] = *First;
3956  return;
3957  }
3958 
3959  Designator *NewDesignators
3960  = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3961  std::copy(Designators, Designators + Idx, NewDesignators);
3962  std::copy(First, Last, NewDesignators + Idx);
3963  std::copy(Designators + Idx + 1, Designators + NumDesignators,
3964  NewDesignators + Idx + NumNewDesignators);
3965  Designators = NewDesignators;
3966  NumDesignators = NumDesignators - 1 + NumNewDesignators;
3967 }
3968 
3970  SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
3971  : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
3973  BaseAndUpdaterExprs[0] = baseExpr;
3974 
3975  InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
3976  ILE->setType(baseExpr->getType());
3977  BaseAndUpdaterExprs[1] = ILE;
3978 }
3979 
3981  return getBase()->getBeginLoc();
3982 }
3983 
3985  return getBase()->getEndLoc();
3986 }
3987 
3988 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
3989  SourceLocation RParenLoc)
3990  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
3991  false, false),
3992  LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
3993  ParenListExprBits.NumExprs = Exprs.size();
3994 
3995  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
3996  if (Exprs[I]->isTypeDependent())
3997  ExprBits.TypeDependent = true;
3998  if (Exprs[I]->isValueDependent())
3999  ExprBits.ValueDependent = true;
4000  if (Exprs[I]->isInstantiationDependent())
4001  ExprBits.InstantiationDependent = true;
4002  if (Exprs[I]->containsUnexpandedParameterPack())
4003  ExprBits.ContainsUnexpandedParameterPack = true;
4004 
4005  getTrailingObjects<Stmt *>()[I] = Exprs[I];
4006  }
4007 }
4008 
4009 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4010  : Expr(ParenListExprClass, Empty) {
4011  ParenListExprBits.NumExprs = NumExprs;
4012 }
4013 
4015  SourceLocation LParenLoc,
4016  ArrayRef<Expr *> Exprs,
4017  SourceLocation RParenLoc) {
4018  void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4019  alignof(ParenListExpr));
4020  return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4021 }
4022 
4024  unsigned NumExprs) {
4025  void *Mem =
4026  Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4027  return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4028 }
4029 
4031  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4032  e = ewc->getSubExpr();
4033  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4034  e = m->GetTemporaryExpr();
4035  e = cast<CXXConstructExpr>(e)->getArg(0);
4036  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4037  e = ice->getSubExpr();
4038  return cast<OpaqueValueExpr>(e);
4039 }
4040 
4042  EmptyShell sh,
4043  unsigned numSemanticExprs) {
4044  void *buffer =
4045  Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4046  alignof(PseudoObjectExpr));
4047  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4048 }
4049 
4050 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4051  : Expr(PseudoObjectExprClass, shell) {
4052  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4053 }
4054 
4056  ArrayRef<Expr*> semantics,
4057  unsigned resultIndex) {
4058  assert(syntax && "no syntactic expression!");
4059  assert(semantics.size() && "no semantic expressions!");
4060 
4061  QualType type;
4062  ExprValueKind VK;
4063  if (resultIndex == NoResult) {
4064  type = C.VoidTy;
4065  VK = VK_RValue;
4066  } else {
4067  assert(resultIndex < semantics.size());
4068  type = semantics[resultIndex]->getType();
4069  VK = semantics[resultIndex]->getValueKind();
4070  assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4071  }
4072 
4073  void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4074  alignof(PseudoObjectExpr));
4075  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4076  resultIndex);
4077 }
4078 
4079 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4080  Expr *syntax, ArrayRef<Expr*> semantics,
4081  unsigned resultIndex)
4082  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
4083  /*filled in at end of ctor*/ false, false, false, false) {
4084  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4085  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4086 
4087  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4088  Expr *E = (i == 0 ? syntax : semantics[i-1]);
4089  getSubExprsBuffer()[i] = E;
4090 
4091  if (E->isTypeDependent())
4092  ExprBits.TypeDependent = true;
4093  if (E->isValueDependent())
4094  ExprBits.ValueDependent = true;
4096  ExprBits.InstantiationDependent = true;
4098  ExprBits.ContainsUnexpandedParameterPack = true;
4099 
4100  if (isa<OpaqueValueExpr>(E))
4101  assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4102  "opaque-value semantic expressions for pseudo-object "
4103  "operations must have sources");
4104  }
4105 }
4106 
4107 //===----------------------------------------------------------------------===//
4108 // Child Iterators for iterating over subexpressions/substatements
4109 //===----------------------------------------------------------------------===//
4110 
4111 // UnaryExprOrTypeTraitExpr
4113  const_child_range CCR =
4114  const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4115  return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4116 }
4117 
4119  // If this is of a type and the type is a VLA type (and not a typedef), the
4120  // size expression of the VLA needs to be treated as an executable expression.
4121  // Why isn't this weirdness documented better in StmtIterator?
4122  if (isArgumentType()) {
4123  if (const VariableArrayType *T =
4124  dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4127  }
4128  return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4129 }
4130 
4132  QualType t, AtomicOp op, SourceLocation RP)
4133  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4134  false, false, false, false),
4135  NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4136 {
4137  assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4138  for (unsigned i = 0; i != args.size(); i++) {
4139  if (args[i]->isTypeDependent())
4140  ExprBits.TypeDependent = true;
4141  if (args[i]->isValueDependent())
4142  ExprBits.ValueDependent = true;
4143  if (args[i]->isInstantiationDependent())
4144  ExprBits.InstantiationDependent = true;
4145  if (args[i]->containsUnexpandedParameterPack())
4146  ExprBits.ContainsUnexpandedParameterPack = true;
4147 
4148  SubExprs[i] = args[i];
4149  }
4150 }
4151 
4153  switch (Op) {
4154  case AO__c11_atomic_init:
4155  case AO__opencl_atomic_init:
4156  case AO__c11_atomic_load:
4157  case AO__atomic_load_n:
4158  return 2;
4159 
4160  case AO__opencl_atomic_load:
4161  case AO__c11_atomic_store:
4162  case AO__c11_atomic_exchange:
4163  case AO__atomic_load:
4164  case AO__atomic_store:
4165  case AO__atomic_store_n:
4166  case AO__atomic_exchange_n:
4167  case AO__c11_atomic_fetch_add:
4168  case AO__c11_atomic_fetch_sub:
4169  case AO__c11_atomic_fetch_and:
4170  case AO__c11_atomic_fetch_or:
4171  case AO__c11_atomic_fetch_xor:
4172  case AO__atomic_fetch_add:
4173  case AO__atomic_fetch_sub:
4174  case AO__atomic_fetch_and:
4175  case AO__atomic_fetch_or:
4176  case AO__atomic_fetch_xor:
4177  case AO__atomic_fetch_nand:
4178  case AO__atomic_add_fetch:
4179  case AO__atomic_sub_fetch:
4180  case AO__atomic_and_fetch:
4181  case AO__atomic_or_fetch:
4182  case AO__atomic_xor_fetch:
4183  case AO__atomic_nand_fetch:
4184  case AO__atomic_fetch_min:
4185  case AO__atomic_fetch_max:
4186  return 3;
4187 
4188  case AO__opencl_atomic_store:
4189  case AO__opencl_atomic_exchange:
4190  case AO__opencl_atomic_fetch_add:
4191  case AO__opencl_atomic_fetch_sub:
4192  case AO__opencl_atomic_fetch_and:
4193  case AO__opencl_atomic_fetch_or:
4194  case AO__opencl_atomic_fetch_xor:
4195  case AO__opencl_atomic_fetch_min:
4196  case AO__opencl_atomic_fetch_max:
4197  case AO__atomic_exchange:
4198  return 4;
4199 
4200  case AO__c11_atomic_compare_exchange_strong:
4201  case AO__c11_atomic_compare_exchange_weak:
4202  return 5;
4203 
4204  case AO__opencl_atomic_compare_exchange_strong:
4205  case AO__opencl_atomic_compare_exchange_weak:
4206  case AO__atomic_compare_exchange:
4207  case AO__atomic_compare_exchange_n:
4208  return 6;
4209  }
4210  llvm_unreachable("unknown atomic op");
4211 }
4212 
4214  auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4215  if (auto AT = T->getAs<AtomicType>())
4216  return AT->getValueType();
4217  return T;
4218 }
4219 
4221  unsigned ArraySectionCount = 0;
4222  while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4223  Base = OASE->getBase();
4224  ++ArraySectionCount;
4225  }
4226  while (auto *ASE =
4227  dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4228  Base = ASE->getBase();
4229  ++ArraySectionCount;
4230  }
4231  Base = Base->IgnoreParenImpCasts();
4232  auto OriginalTy = Base->getType();
4233  if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4234  if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4235  OriginalTy = PVD->getOriginalType().getNonReferenceType();
4236 
4237  for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4238  if (OriginalTy->isAnyPointerType())
4239  OriginalTy = OriginalTy->getPointeeType();
4240  else {
4241  assert (OriginalTy->isArrayType());
4242  OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4243  }
4244  }
4245  return OriginalTy;
4246 }
child_iterator child_begin()
Definition: Stmt.h:888
ObjCPropertyRefExpr - A dot-syntax expression to access an ObjC property.
Definition: ExprObjC.h:577
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
bool hasArrayFiller() const
Return true if this is an array initializer and its array "filler" has been set.
Definition: Expr.h:4235
SourceLocation getLocForStartOfFile(FileID FID) const
Return the source location corresponding to the first byte of the specified file. ...
Represents a single C99 designator.
Definition: Expr.h:4440
SourceLocation getLoc() const
getLoc - Returns the main location of the declaration name.
void setValueDependent(bool VD)
Set whether this expression is value-dependent or not.
Definition: Expr.h:152
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Defines the clang::ASTContext interface.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:451
const CXXDestructorDecl * getDestructor() const
Definition: ExprCXX.h:1191
Represents a function declaration or definition.
Definition: Decl.h:1739
Expr * getArrayIndex(const Designator &D) const
Definition: Expr.cpp:3925
Stmt * body_back()
Definition: Stmt.h:1059
FunctionTemplateDecl * getTemplate() const
Retrieve the template from which this function was specialized.
Definition: DeclTemplate.h:550
bool hasAttr(attr::Kind AK) const
Determine whether this type had the specified attribute applied to it (looking through top-level type...
Definition: Type.cpp:1630
static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D, QualType T, bool &TypeDependent, bool &ValueDependent, bool &InstantiationDependent)
Compute the type-, value-, and instantiation-dependence of a declaration reference based on the decla...
Definition: Expr.cpp:236
bool isFixedPointType() const
Return true if this is a fixed point type according to ISO/IEC JTC1 SC22 WG14 N1169.
Definition: Type.h:6577
Expr * getLHS() const
Definition: Expr.h:3573
StringRef Identifier
Definition: Format.cpp:1636
Expr * getSyntacticForm()
Return the syntactic form of this expression, i.e.
Definition: Expr.h:5289
Lexer - This provides a simple interface that turns a text buffer into a stream of tokens...
Definition: Lexer.h:77
SourceLocation getRParenLoc() const
Definition: Expr.h:2555
void setArrayFiller(Expr *filler)
Definition: Expr.cpp:1994
const FunctionProtoType * getFunctionType() const
getFunctionType - Return the underlying function type for this block.
Definition: Expr.cpp:2090
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2543
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:3906
QualType getPointeeType() const
Definition: Type.h:2556
A (possibly-)qualified type.
Definition: Type.h:642
unsigned getOffsetOfStringByte(const Token &TheTok, unsigned ByteNo) const
getOffsetOfStringByte - This function returns the offset of the specified byte of the string data rep...
bool isArrayType() const
Definition: Type.h:6331
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2480
const DeclarationNameLoc & getInfo() const
Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK, bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
Definition: Expr.h:110
__SIZE_TYPE__ size_t
The unsigned integer type of the result of the sizeof operator.
Definition: opencl-c.h:68
static Decl * castFromDeclContext(const DeclContext *)
Definition: DeclBase.cpp:868
unsigned FieldLoc
The location of the field name in the designated initializer.
Definition: Expr.h:4417
const Expr * getInit(unsigned Init) const
Definition: Expr.h:4179
bool EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
Stmt - This represents one statement.
Definition: Stmt.h:66
DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc, Expr *baseExprs, SourceLocation rBraceLoc)
Definition: Expr.cpp:3969
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2468
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3361
SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, const TargetInfo &Target, unsigned *StartToken=nullptr, unsigned *StartTokenByteOffset=nullptr) const
getLocationOfByte - Return a source location that points to the specified byte of this string literal...
Definition: Expr.cpp:1104
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
bool hasPlaceholderType() const
Returns whether this expression has a placeholder type.
Definition: Expr.h:472
Defines the SourceManager interface.
bool hasNonTrivialCall(const ASTContext &Ctx) const
Determine whether this expression involves a call to any function that is not trivial.
Definition: Expr.cpp:3389
bool isRecordType() const
Definition: Type.h:6355
reverse_iterator rbegin()
Definition: ASTVector.h:103
Expr * getBase() const
Definition: Expr.h:2686
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:270
bool isSpecificPlaceholderType(unsigned K) const
Test for a specific placeholder type.
Definition: Type.h:6517
void setSemantics(const llvm::fltSemantics &Sem)
Set the APFloat semantics this literal uses.
Definition: Expr.cpp:862
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:87
bool hasUnusedResultAttr() const
Returns true if this function or its return type has the warn_unused_result attribute.
Definition: Decl.h:2336
FloatingLiteralBitfields FloatingLiteralBits
Definition: Stmt.h:699
void getEncodedElementAccess(SmallVectorImpl< uint32_t > &Elts) const
getEncodedElementAccess - Encode the elements accessed into an llvm aggregate Constant of ConstantInt...
Definition: Expr.cpp:3677
void setType(QualType t)
Definition: Expr.h:129
bool isTransparent() const
Is this a transparent initializer list (that is, an InitListExpr that is purely syntactic, and whose semantics are that of the sole contained initializer)?
Definition: Expr.cpp:2018
Defines the C++ template declaration subclasses.
Opcode getOpcode() const
Definition: Expr.h:3268
StringRef P
Classification Classify(ASTContext &Ctx) const
Classify - Classify this expression according to the C++11 expression taxonomy.
Definition: Expr.h:377
iterator insert(const ASTContext &C, iterator I, const T &Elt)
Definition: ASTVector.h:219
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1855
NamedDecl * getDecl() const
The base class of the type hierarchy.
Definition: Type.h:1415
bool isSemanticForm() const
Definition: Expr.h:4281
llvm::iterator_range< child_iterator > child_range
Definition: Stmt.h:878
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2818
DeclRefExprBitfields DeclRefExprBits
Definition: Stmt.h:698
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1257
static ExprValueKind getValueKindForType(QualType T)
getValueKindForType - Given a formal return or parameter type, give its value kind.
Definition: Expr.h:395
NamedDecl * getParam(unsigned Idx)
Definition: DeclTemplate.h:133
SourceLocation getLParenLoc() const
Definition: Expr.h:3196
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:689
A container of type source information.
Definition: Decl.h:86
bool containsDuplicateElements() const
containsDuplicateElements - Return true if any element access is repeated.
Definition: Expr.cpp:3656
unsigned getCharWidth() const
Definition: TargetInfo.h:370
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2481
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4047
Expr * ignoreParenBaseCasts() LLVM_READONLY
Ignore parentheses and derived-to-base casts.
Definition: Expr.cpp:2635
QualType getElementType() const
Definition: Type.h:2853
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:456
StringRef getBufferData(FileID FID, bool *Invalid=nullptr) const
Return a StringRef to the source buffer data for the specified FileID.
static OffsetOfExpr * CreateEmpty(const ASTContext &C, unsigned NumComps, unsigned NumExprs)
Definition: Expr.cpp:1396
static const OpaqueValueExpr * findInCopyConstruct(const Expr *expr)
Given an expression which invokes a copy constructor — i.e.
Definition: Expr.cpp:4030
Represents a variable declaration or definition.
Definition: Decl.h:812
const ObjCPropertyRefExpr * getObjCProperty() const
If this expression is an l-value for an Objective C property, find the underlying property reference ...
Definition: Expr.cpp:3520
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2844
bool isEnumeralType() const
Definition: Type.h:6359
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6716
MangleContext * createMangleContext()
const ArrayType * castAsArrayTypeUnsafe() const
A variant of castAs<> for array type which silently discards qualifiers from the outermost type...
Definition: Type.h:6788
void resizeInits(const ASTContext &Context, unsigned NumInits)
Specify the number of initializers.
Definition: Expr.cpp:1978
void setInit(unsigned Init, Expr *expr)
Definition: Expr.h:4189
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
static PredefinedExpr * CreateEmpty(const ASTContext &Ctx, bool HasFunctionName)
Create an empty PredefinedExpr.
Definition: Expr.cpp:492
size_type size() const
Definition: ASTVector.h:109
bool isIdiomaticZeroInitializer(const LangOptions &LangOpts) const
Is this the zero initializer {0} in a language which considers it idiomatic?
Definition: Expr.cpp:2041
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:68
static DeclRefExpr * CreateEmpty(const ASTContext &Context, bool HasQualifier, bool HasFoundDecl, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs)
Construct an empty declaration reference expression.
Definition: Expr.cpp:436
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:38
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3012
static bool isAssignmentOp(Opcode Opc)
Definition: Expr.h:3356
Defines the clang::Expr interface and subclasses for C++ expressions.
The collection of all-type qualifiers we support.
Definition: Type.h:141
FieldDecl * getSourceBitField()
If this expression refers to a bit-field, retrieve the declaration of that bit-field.
Definition: Expr.cpp:3558
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:1373
Represents a struct/union/class.
Definition: Decl.h:3602
Represents a C99 designated initializer expression.
Definition: Expr.h:4365
CallExpr(const ASTContext &C, StmtClass SC, Expr *fn, ArrayRef< Expr *> preargs, ArrayRef< Expr *> args, QualType t, ExprValueKind VK, SourceLocation rparenloc, unsigned MinNumArgs=0)
Definition: Expr.cpp:1223
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
One of these records is kept for each identifier that is lexed.
Represents a class template specialization, which refers to a class template with a given set of temp...
unsigned GetStringLength() const
const Expr * getBestDynamicClassTypeExpr() const
Get the inner expression that determines the best dynamic class.
Definition: Expr.cpp:38
const TemplateArgument & get(unsigned Idx) const
Retrieve the template argument at a given index.
Definition: DeclTemplate.h:255
StmtIterator cast_away_const(const ConstStmtIterator &RHS)
Definition: StmtIterator.h:152
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
A C++ nested-name-specifier augmented with source location information.
LValueClassification ClassifyLValue(ASTContext &Ctx) const
Reasons why an expression might not be an l-value.
Used for GCC&#39;s __alignof.
Definition: TypeTraits.h:107
unsigned getChar32Width() const
getChar32Width/Align - Return the size of &#39;char32_t&#39; for this target, in bits.
Definition: TargetInfo.h:553
FullExpr - Represents a "full-expression" node.
Definition: Expr.h:877
bool isCharType() const
Definition: Type.cpp:1787
field_range fields() const
Definition: Decl.h:3793
static SourceLocation getFromRawEncoding(unsigned Encoding)
Turn a raw encoding of a SourceLocation object into a real SourceLocation.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:288
NameKind getNameKind() const
Determine what kind of name this is.
Represents a member of a struct/union/class.
Definition: Decl.h:2588
static DesignatedInitExpr * Create(const ASTContext &C, llvm::ArrayRef< Designator > Designators, ArrayRef< Expr *> IndexExprs, SourceLocation EqualOrColonLoc, bool GNUSyntax, Expr *Init)
Definition: Expr.cpp:3870
UnaryExprOrTypeTrait
Names for the "expression or type" traits.
Definition: TypeTraits.h:97
bool isReferenceType() const
Definition: Type.h:6294
Token - This structure provides full information about a lexed token.
Definition: Token.h:35
static DeclRefExpr * Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc, QualType T, ExprValueKind VK, NamedDecl *FoundD=nullptr, const TemplateArgumentListInfo *TemplateArgs=nullptr)
Definition: Expr.cpp:392
Expr * getSubExpr()
Definition: Expr.h:2982
bool isArrow() const
isArrow - Return true if the base expression is a pointer to vector, return false if the base express...
Definition: Expr.cpp:3645
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:6630
NestedNameSpecifierLoc QualifierLoc
The nested-name-specifier that qualifies the name, including source-location information.
Definition: Expr.h:2592
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:110
struct FieldDesignator Field
A field designator, e.g., ".x".
Definition: Expr.h:4450
const Expr *const * const_semantics_iterator
Definition: Expr.h:5312
ShuffleVectorExpr(const ASTContext &C, ArrayRef< Expr *> args, QualType Type, SourceLocation BLoc, SourceLocation RP)
Definition: Expr.cpp:3709
Provides information about a function template specialization, which is a FunctionDecl that has been ...
Definition: DeclTemplate.h:508
StringRef getOpcodeStr() const
Definition: Expr.h:3289
bool isGLValue() const
Definition: Expr.h:252
static ParenListExpr * Create(const ASTContext &Ctx, SourceLocation LParenLoc, ArrayRef< Expr *> Exprs, SourceLocation RParenLoc)
Create a paren list.
Definition: Expr.cpp:4014
Describes an C or C++ initializer list.
Definition: Expr.h:4131
const TemplateArgumentList * TemplateArguments
The template arguments used to produce the function template specialization from the function templat...
Definition: DeclTemplate.h:540
bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const
EvaluateAsBooleanCondition - Return true if this is a constant which we can fold and convert to a boo...
void setValue(const ASTContext &C, const llvm::APInt &Val)
Definition: Expr.h:1304
BinaryOperatorKind
static FixedPointLiteral * CreateFromRawInt(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l, unsigned Scale)
Definition: Expr.cpp:800
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:2666
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:3921
An lvalue ref-qualifier was provided (&).
Definition: Type.h:1371
Base object ctor.
Definition: ABI.h:27
A convenient class for passing around template argument information.
Definition: TemplateBase.h:552
Qualifiers::GC getObjCGCAttrKind(QualType Ty) const
Return one of the GCNone, Weak or Strong Objective-C garbage collection attributes.
Expr * getPtr() const
Definition: Expr.h:5411
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6765
ExprValueKind getValueKind() const
getValueKind - The value kind that this expression produces.
Definition: Expr.h:405
NullPointerConstantValueDependence
Enumeration used to describe how isNullPointerConstant() should cope with value-dependent expressions...
Definition: Expr.h:709
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition: Type.h:1837
static bool isRecordType(QualType T)
semantics_iterator semantics_end()
Definition: Expr.h:5319
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3233
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6128
child_range children()
Definition: Expr.h:4314
bool isBoundMemberFunction(ASTContext &Ctx) const
Returns true if this expression is a bound member function.
Definition: Expr.cpp:2493
Expr * IgnoreParenCasts() LLVM_READONLY
IgnoreParenCasts - Ignore parentheses and casts.
Definition: Expr.cpp:2554
void getAsStringInternal(std::string &Str, const PrintingPolicy &Policy) const
Definition: Type.h:1002
StringKind
StringLiteral is followed by several trailing objects.
Definition: Expr.h:1599
field_iterator field_begin() const
Definition: Decl.cpp:4159
SourceLocation getCaretLocation() const
Definition: Expr.cpp:2096
static SourceLocation AdvanceToTokenCharacter(SourceLocation TokStart, unsigned Characters, const SourceManager &SM, const LangOptions &LangOpts)
AdvanceToTokenCharacter - If the current SourceLocation specifies a location at the start of a token...
Definition: Lexer.h:349
static bool isBooleanType(QualType Ty)
An adjustment to be made to the temporary created when emitting a reference binding, which accesses a particular subobject of that temporary.
Definition: Expr.h:61
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2917
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1212
SourceLocation getSpellingLoc(SourceLocation Loc) const
Given a SourceLocation object, return the spelling location referenced by the ID. ...
CXXTemporary * getTemporary()
Definition: ExprCXX.h:1231
bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const
isCXX98IntegralConstantExpr - Return true if this expression is an integral constant expression in C+...
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1606
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1478
static IntegerLiteral * Create(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l)
Returns a new integer literal with value &#39;V&#39; and type &#39;type&#39;.
Definition: Expr.cpp:778
bool isTypeDependent() const
isTypeDependent - Determines whether this expression is type-dependent (C++ [temp.dep.expr]), which means that its type could change from one template instantiation to the next.
Definition: Expr.h:167
An ordinary object is located at an address in memory.
Definition: Specifiers.h:126
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4053
Represents an ObjC class declaration.
Definition: DeclObjC.h:1164
SourceLocation getOperatorLoc() const
getOperatorLoc - Return the location of the operator.
Definition: Expr.h:1941
Expression is a GNU-style __null constant.
Definition: Expr.h:704
StmtClass
Definition: Stmt.h:68
const Stmt * getBody() const
Definition: Expr.cpp:2099
A binding in a decomposition declaration.
Definition: DeclCXX.h:3792
bool isUnevaluated(unsigned ID) const
Returns true if this builtin does not perform the side-effects of its arguments.
Definition: Builtins.h:128
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:1068
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix)
Retrieve the unary opcode that corresponds to the given overloaded operator.
Definition: Expr.cpp:1188
void setIntValue(const ASTContext &C, const llvm::APInt &Val)
Definition: Expr.cpp:749
bool isObjCSelfExpr() const
Check if this expression is the ObjC &#39;self&#39; implicit parameter.
Definition: Expr.cpp:3540
Represents the this expression in C++.
Definition: ExprCXX.h:971
static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc, Expr *LHS, Expr *RHS)
Definition: Expr.cpp:1919
Represents an explicit template argument list in C++, e.g., the "<int>" in "sort<int>".
Definition: TemplateBase.h:644
PredefinedExprBitfields PredefinedExprBits
Definition: Stmt.h:697
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition: Expr.h:3154
bool isInstantiationDependent() const
Whether this nested name specifier involves a template parameter.
void print(const PrintingPolicy &Policy, raw_ostream &Out) const
Print this template argument to the given output stream.
bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const
Returns true if this is a call to a builtin which does not evaluate side-effects within its arguments...
Definition: Expr.cpp:1339
bool hasAttr() const
Definition: DeclBase.h:531
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3528
llvm::iterator_range< const_child_iterator > const_child_range
Definition: Stmt.h:879
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1021
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1613
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3686
bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const
EvaluateAsLValue - Evaluate an expression to see if we can fold it to an lvalue with link time known ...
Expr * IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY
IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the value (including ptr->int ...
Definition: Expr.cpp:2689
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1320
CastKind
CastKind - The kind of operation required for a conversion.
static ImplicitCastExpr * Create(const ASTContext &Context, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind Cat)
Definition: Expr.cpp:1795
Specifies that the expression should never be value-dependent.
Definition: Expr.h:711
UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) expression operand...
Definition: Expr.h:2233
iterator end()
Definition: ASTVector.h:99
InitListExpr * getUpdater() const
Definition: Expr.h:4717
ConstantExpr - An expression that occurs in a constant context.
Definition: Expr.h:904
void outputString(raw_ostream &OS) const
Definition: Expr.cpp:991
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
ConstStmtIterator const_child_iterator
Definition: Stmt.h:876
unsigned Offset
Definition: Format.cpp:1631
bool HasSideEffects(const ASTContext &Ctx, bool IncludePossibleEffects=true) const
HasSideEffects - This routine returns true for all those expressions which have any effect other than...
Definition: Expr.cpp:3064
Exposes information about the current target.
Definition: TargetInfo.h:54
An Objective-C property is a logical field of an Objective-C object which is read and written via Obj...
Definition: Specifiers.h:136
TemplateParameterList * getTemplateParameters() const
Get the list of template parameters.
Definition: DeclTemplate.h:432
static StringLiteral * Create(const ASTContext &Ctx, StringRef Str, StringKind Kind, bool Pascal, QualType Ty, const SourceLocation *Loc, unsigned NumConcatenated)
This is the "fully general" constructor that allows representation of strings formed from multiple co...
Definition: Expr.cpp:969
QualType getCXXNameType() const
If this name is one of the C++ names (of a constructor, destructor, or conversion function)...
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:636
This represents one expression.
Definition: Expr.h:106
void setDesignators(const ASTContext &C, const Designator *Desigs, unsigned NumDesigs)
Definition: Expr.cpp:3889
SourceLocation End
ExprValueKind
The categorization of expression values, currently following the C++11 scheme.
Definition: Specifiers.h:107
std::string Label
IdentifierInfo * getFieldName() const
For a field or identifier offsetof node, returns the name of the field.
Definition: Expr.cpp:1429
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:1550
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6779
void setTypeDependent(bool TD)
Set whether this expression is type-dependent or not.
Definition: Expr.h:170
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2703
unsigned getNumInits() const
Definition: Expr.h:4161
const Expr * getCallee() const
Definition: Expr.h:2451
const Expr * skipRValueSubobjectAdjustments() const
Definition: Expr.h:860
field_iterator field_end() const
Definition: Decl.h:3796
DeclContext * getDeclContext()
Definition: DeclBase.h:427
ExprBitfields ExprBits
Definition: Stmt.h:696
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)
Retrieve the overloaded operator kind that corresponds to the given unary opcode. ...
Definition: Expr.cpp:1203
static FloatingLiteral * Create(const ASTContext &C, const llvm::APFloat &V, bool isexact, QualType Type, SourceLocation L)
Definition: Expr.cpp:834
Represents the type decltype(expr) (C++11).
Definition: Type.h:4232
ArrayRef< Expr * > inits()
Definition: Expr.h:4171
Specifies that a value-dependent expression of integral or dependent type should be considered a null...
Definition: Expr.h:715
Extra data stored in some MemberExpr objects.
Definition: Expr.h:2589
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const
Determine whether the result of this expression is a temporary object of the given class type...
Definition: Expr.cpp:2763
Base object dtor.
Definition: ABI.h:37
QualType getType() const
Definition: Expr.h:128
StringLiteralBitfields StringLiteralBits
Definition: Stmt.h:700
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1752
static PredefinedExpr * Create(const ASTContext &Ctx, SourceLocation L, QualType FNTy, IdentKind IK, StringLiteral *SL)
Create a PredefinedExpr.
Definition: Expr.cpp:483
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:904
InitListExpr(const ASTContext &C, SourceLocation lbraceloc, ArrayRef< Expr *> initExprs, SourceLocation rbraceloc)
Definition: Expr.cpp:1951
Expr * getSubExprAsWritten()
Retrieve the cast subexpression as it was written in the source code, looking through any implicit ca...
Definition: Expr.cpp:1703
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1907
unsigned Index
Location of the first index expression within the designated initializer expression&#39;s list of subexpr...
Definition: Expr.h:4424
Represents a GCC generic vector type.
Definition: Type.h:3174
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:4541
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:3849
bool isDependentContext() const
Determines whether this context is dependent on a template parameter.
Definition: DeclBase.cpp:1078
Allow UB that we can give a value, but not arbitrary unmodeled side effects.
Definition: Expr.h:597
ValueDecl * getDecl()
Definition: Expr.h:1125
QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl *PrevDecl=nullptr) const
Return the unique reference to the type for the specified type declaration.
Definition: ASTContext.h:1395
The result type of a method or function.
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2027
CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style cast in C++ (C++ [expr.cast]), which uses the syntax (Type)expr.
Definition: Expr.h:3165
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:707
ImplicitParamDecl * getSelfDecl() const
Definition: DeclObjC.h:406
reverse_iterator rend()
Definition: ASTVector.h:105
do v
Definition: arm_acle.h:78
const SourceManager & SM
Definition: Format.cpp:1490
__UINTPTR_TYPE__ uintptr_t
An unsigned integer type with the property that any valid pointer to void can be converted to this ty...
Definition: opencl-c.h:90
SourceRange getSourceRange() const
Definition: ExprCXX.h:139
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:301
ExprObjectKind getObjectKind() const
getObjectKind - The object kind that this expression produces.
Definition: Expr.h:412
unsigned getBuiltinCallee() const
getBuiltinCallee - If this is a call to a builtin, return the builtin ID of the callee.
Definition: Expr.cpp:1317
unsigned getWCharWidth() const
getWCharWidth/Align - Return the size of &#39;wchar_t&#39; for this target, in bits.
Definition: TargetInfo.h:543
RecordDecl * getDecl() const
Definition: Type.h:4366
SourceLocation getOperatorLoc() const
Returns the location of the operator symbol in the expression.
Definition: ExprCXX.h:128
Expr * IgnoreCasts() LLVM_READONLY
Ignore casts. Strip off any CastExprs, returning their operand.
Definition: Expr.cpp:2580
static Opcode getOverloadedOpcode(OverloadedOperatorKind OO)
Retrieve the binary opcode that corresponds to the given overloaded operator.
Definition: Expr.cpp:1856
const llvm::fltSemantics & getSemantics() const
Return the APFloat semantics this literal uses.
Definition: Expr.cpp:844
Expr * IgnoreConversionOperator() LLVM_READONLY
IgnoreConversionOperator - Ignore conversion operator.
Definition: Expr.cpp:2678
AtomicExpr(SourceLocation BLoc, ArrayRef< Expr *> args, QualType t, AtomicOp op, SourceLocation RP)
Definition: Expr.cpp:4131
unsigned DotLoc
The location of the &#39;.&#39; in the designated initializer.
Definition: Expr.h:4414
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo, QualType resultType, SourceLocation op, SourceLocation rp)
Definition: Expr.h:2241
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:348
void ExpandDesignator(const ASTContext &C, unsigned Idx, const Designator *First, const Designator *Last)
Replaces the designator at index Idx with the series of designators in [First, Last).
Definition: Expr.cpp:3944
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:945
Expr * getBase() const
Definition: Expr.h:4714
ParenListExprBitfields ParenListExprBits
Definition: Stmt.h:710
static StringRef getIdentKindName(IdentKind IK)
Definition: Expr.cpp:499
#define false
Definition: stdbool.h:33
Kind
QualType getCanonicalType() const
Definition: Type.h:6097
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5245
bool isInstantiationDependent() const
Whether this expression is instantiation-dependent, meaning that it depends in some way on a template...
Definition: Expr.h:191
NullPointerConstantKind isNullPointerConstant(ASTContext &Ctx, NullPointerConstantValueDependence NPC) const
isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to a Null pointer constant...
Definition: Expr.cpp:3401
Encodes a location in the source.
QualType getReturnType() const
Definition: Type.h:3617
SourceLocation getOperatorLoc() const
Definition: Expr.h:3265
PseudoObjectExprBitfields PseudoObjectExprBits
Definition: Stmt.h:711
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:6174
Expression is not a Null pointer constant.
Definition: Expr.h:688
Expr * getSubExpr() const
Definition: Expr.h:1937
CastKind getCastKind() const
Definition: Expr.h:2976
static const FieldDecl * getTargetFieldForToUnionCast(QualType unionType, QualType opType)
Definition: Expr.cpp:1775
ObjCMethodFamily getMethodFamily() const
Definition: ExprObjC.h:1322
unsigned getChar16Width() const
getChar16Width/Align - Return the size of &#39;char16_t&#39; for this target, in bits.
Definition: TargetInfo.h:548
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:166
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:376
llvm::iterator_range< capture_init_iterator > capture_inits()
Retrieve the initialization expressions for this lambda&#39;s captures.
Definition: ExprCXX.h:1740
static StringLiteral * CreateEmpty(const ASTContext &Ctx, unsigned NumConcatenated, unsigned Length, unsigned CharByteWidth)
Construct an empty string literal.
Definition: Expr.cpp:980
static QualType getUnderlyingType(const SubRegion *R)
unsigned int BasePathSizeTy
Definition: Expr.h:2919
Expr * getInClassInitializer() const
Get the C++11 default member initializer for this member, or null if one has not been set...
Definition: Decl.h:2730
void FixedPointValueToString(SmallVectorImpl< char > &Str, llvm::APSInt Val, unsigned Scale)
Definition: Type.cpp:4002
ExprObjectKind
A further classification of the kind of object referenced by an l-value or x-value.
Definition: Specifiers.h:124
static OffsetOfExpr * Create(const ASTContext &C, QualType type, SourceLocation OperatorLoc, TypeSourceInfo *tsi, ArrayRef< OffsetOfNode > comps, ArrayRef< Expr *> exprs, SourceLocation RParenLoc)
Definition: Expr.cpp:1383
bool isIntegralType(const ASTContext &Ctx) const
Determine whether this type is an integral type.
Definition: Type.cpp:1759
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2041
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2412
std::string getValueAsString(unsigned Radix) const
Definition: Expr.cpp:808
static std::string ComputeName(IdentKind IK, const Decl *CurrentDecl)
Definition: Expr.cpp:523
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2286
Specifies that a value-dependent expression should be considered to never be a null pointer constant...
Definition: Expr.h:719
CanQualType VoidTy
Definition: ASTContext.h:1015
Expr * updateInit(const ASTContext &C, unsigned Init, Expr *expr)
Updates the initializer at index Init with the new expression expr, and returns the old expression at...
Definition: Expr.cpp:1982
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:1373
bool isValueDependent() const
isValueDependent - Determines whether this expression is value-dependent (C++ [temp.dep.constexpr]).
Definition: Expr.h:149
AccessSpecifier getAccess() const
bool isKnownToHaveBooleanValue() const
isKnownToHaveBooleanValue - Return true if this is an integer expression that is known to return 0 or...
Definition: Expr.cpp:135
RefQualifierKind
The kind of C++11 ref-qualifier associated with a function type.
Definition: Type.h:1366
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3051
static QualType findBoundMemberType(const Expr *expr)
Given an expression of bound-member type, find the type of the member.
Definition: Expr.cpp:2499
Expr ** getInits()
Retrieve the set of initializers.
Definition: Expr.h:4164
bool refersToVectorElement() const
Returns whether this expression refers to a vector element.
Definition: Expr.cpp:3605
static DesignatedInitExpr * CreateEmpty(const ASTContext &C, unsigned NumIndexExprs)
Definition: Expr.cpp:3882
Used for C&#39;s _Alignof and C++&#39;s alignof.
Definition: TypeTraits.h:101
const CXXRecordDecl * getBestDynamicClassType() const
For an expression of class type or pointer to class type, return the most derived class decl the expr...
Definition: Expr.cpp:63
Expr * getArrayRangeStart(const Designator &D) const
Definition: Expr.cpp:3930
const ObjCMethodDecl * getMethodDecl() const
Definition: ExprObjC.h:1303
bool isVectorType() const
Definition: Type.h:6367
__DEVICE__ void * memcpy(void *__a, const void *__b, size_t __c)
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1374
unsigned LBracketLoc
The location of the &#39;[&#39; starting the array range designator.
Definition: Expr.h:4426
MemberExprBitfields MemberExprBits
Definition: Stmt.h:706
Expr * getArrayFiller()
If this initializer list initializes an array with more elements than there are initializers in the l...
Definition: Expr.h:4225
LLVM_READONLY bool isPrintable(unsigned char c)
Return true if this character is an ASCII printable character; that is, a character that should take ...
Definition: CharInfo.h:140
void sawArrayRangeDesignator(bool ARD=true)
Definition: Expr.h:4302
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2292
bool isInstantiationDependentType() const
Determine whether this type is an instantiation-dependent type, meaning that the type involves a temp...
Definition: Type.h:2091
static MemberExpr * Create(const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *memberdecl, DeclAccessPair founddecl, DeclarationNameInfo MemberNameInfo, const TemplateArgumentListInfo *targs, QualType ty, ExprValueKind VK, ExprObjectKind OK)
Definition: Expr.cpp:1475
A placeholder type used to construct an empty shell of a type, that will be filled in later (e...
Definition: Stmt.h:756
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
Expr * getLHS() const
Definition: Expr.h:3273
A POD class for pairing a NamedDecl* with an access specifier.
void * Allocate(size_t Size, unsigned Align=8) const
Definition: ASTContext.h:668
Represents a C11 generic selection.
Definition: Expr.h:4956
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:2070
SourceRange getDesignatorsSourceRange() const
Definition: Expr.cpp:3898
StreamedQualTypeHelper stream(const PrintingPolicy &Policy, const Twine &PlaceHolder=Twine(), unsigned Indentation=0) const
Definition: Type.h:1035
Dataflow Directional Tag Classes.
NestedNameSpecifier * getNestedNameSpecifier() const
Retrieve the nested-name-specifier to which this instance refers.
bool isValid() const
Return true if this is a valid SourceLocation object.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:2052
[C99 6.4.2.2] - A predefined identifier such as func.
Definition: Expr.h:1769
UnaryOperatorKind
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1262
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:571
bool hasSideEffects(Expr *E, ASTContext &Ctx)
Definition: Transforms.cpp:168
OverloadedOperatorKind getOperator() const
Returns the kind of overloaded operator that this expression refers to.
Definition: ExprCXX.h:108
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:22
Decl * getReferencedDeclOfCallee()
Definition: Expr.cpp:1291
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return 0.
Definition: Expr.cpp:1283
A field designator, e.g., ".x".
Definition: Expr.h:4404
void setExprs(const ASTContext &C, ArrayRef< Expr *> Exprs)
Definition: Expr.cpp:3733
bool isDependent() const
Whether this nested name specifier refers to a dependent type or not.
AccessSpecifier getAccess() const
Definition: DeclBase.h:462
FunctionDecl * getTemplateInstantiationPattern() const
Retrieve the function declaration from which this function could be instantiated, if it is an instant...
Definition: Decl.cpp:3428
StmtClass getStmtClass() const
Definition: Stmt.h:809
const char * getCastKindName() const
Definition: Expr.h:2980
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2166
bool isBooleanType() const
Definition: Type.h:6643
Expression is a Null pointer constant built from a zero integer expression that is not a simple...
Definition: Expr.h:695
void resize(const ASTContext &C, unsigned N, const T &NV)
Definition: ASTVector.h:341
static PseudoObjectExpr * Create(const ASTContext &Context, Expr *syntactic, ArrayRef< Expr *> semantic, unsigned resultIndex)
Definition: Expr.cpp:4055
void setInstantiationDependent(bool ID)
Set whether this expression is instantiation-dependent or not.
Definition: Expr.h:196
const T * const_iterator
Definition: ASTVector.h:86
Expression is a C++11 nullptr.
Definition: Expr.h:701
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2762
bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx, SourceLocation *Loc=nullptr, bool isEvaluated=true) const
isIntegerConstantExpr - Return true if this expression is a valid integer constant expression...
unsigned getNumElements() const
getNumElements - Get the number of components being selected.
Definition: Expr.cpp:3649
semantics_iterator semantics_begin()
Definition: Expr.h:5313
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition: Expr.cpp:1345
ConstEvaluatedExprVisitor - This class visits &#39;const Expr *&#39;s.
ExplicitCastExpr - An explicit cast written in the source code.
Definition: Expr.h:3131
DeclarationNameInfo - A collector data type for bundling together a DeclarationName and the correspnd...
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:2017
Expr * IgnoreParenImpCasts() LLVM_READONLY
IgnoreParenImpCasts - Ignore parentheses and implicit casts.
Definition: Expr.cpp:2652
Expr * getArrayRangeEnd(const Designator &D) const
Definition: Expr.cpp:3936
llvm::APInt getValue() const
Definition: Expr.h:1303
unsigned getNumSubExprs() const
Definition: Expr.h:5444
Decl * getCalleeDecl()
Definition: Expr.cpp:1287
Pointer to a block type.
Definition: Type.h:2645
GenericSelectionExpr(const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, ArrayRef< TypeSourceInfo *> AssocTypes, ArrayRef< Expr *> AssocExprs, SourceLocation DefaultLoc, SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
Definition: Expr.cpp:3741
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:3980
bool isStringLiteralInit() const
Definition: Expr.cpp:2004
struct ArrayOrRangeDesignator ArrayOrRange
An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
Definition: Expr.h:4452
unsigned getIntWidth(QualType T) const
Not an overloaded operator.
Definition: OperatorKinds.h:23
bool isIncompleteArrayType() const
Definition: Type.h:6339
bool HasSideEffects
Whether the evaluated expression has side effects.
Definition: Expr.h:544
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4356
Location wrapper for a TemplateArgument.
Definition: TemplateBase.h:450
bool empty() const
Definition: Type.h:418
bool body_empty() const
Definition: Stmt.h:1048
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2323
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6564
bool isConstantInitializer(ASTContext &Ctx, bool ForRef, const Expr **Culprit=nullptr) const
isConstantInitializer - Returns true if this expression can be emitted to IR as a constant...
Definition: Expr.cpp:2857
static CStyleCastExpr * Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind K, Expr *Op, const CXXCastPath *BasePath, TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation R)
Definition: Expr.cpp:1820
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.cpp:3984
bool isFunctionType() const
Definition: Type.h:6278
static ImplicitCastExpr * CreateEmpty(const ASTContext &Context, unsigned PathSize)
Definition: Expr.cpp:1811
Expr * IgnoreParenLValueCasts() LLVM_READONLY
Ignore parentheses and lvalue casts.
Definition: Expr.cpp:2609
Opcode getOpcode() const
Definition: Expr.h:1932
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition: ExprCXX.h:1383
NamedDecl * getConversionFunction() const
If this cast applies a user-defined conversion, retrieve the conversion function that it invokes...
Definition: Expr.cpp:1729
UnaryExprOrTypeTraitExprBitfields UnaryExprOrTypeTraitExprBits
Definition: Stmt.h:703
Represents a base class of a C++ class.
Definition: DeclCXX.h:192
iterator begin()
Definition: ASTVector.h:97
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2069
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:513
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2252
llvm::iterator_range< specific_attr_iterator< T > > specific_attrs() const
Definition: DeclBase.h:513
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1132
A template argument list.
Definition: DeclTemplate.h:210
static CStyleCastExpr * CreateEmpty(const ASTContext &Context, unsigned PathSize)
Definition: Expr.cpp:1837
static const Expr * skipTemporaryBindingsNoOpCastsAndParens(const Expr *E)
Skip over any no-op casts and any temporary-binding expressions.
Definition: Expr.cpp:2737
bool refersToGlobalRegisterVar() const
Returns whether this expression refers to a global register variable.
Definition: Expr.cpp:3631
bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc, SourceRange &R1, SourceRange &R2, ASTContext &Ctx) const
isUnusedResultAWarning - Return true if this immediate expression should be warned about if the resul...
Definition: Expr.cpp:2115
void reserve(const ASTContext &C, unsigned N)
Definition: ASTVector.h:173
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
Expression is a Null pointer constant built from a literal zero.
Definition: Expr.h:698
void Deallocate(void *Ptr) const
Definition: ASTContext.h:674
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2601
CallingConv getCallConv() const
Definition: Type.h:3627
Represents a C++ struct/union/class.
Definition: DeclCXX.h:300
bool isVoidType() const
Definition: Type.h:6530
bool isSyntacticForm() const
Definition: Expr.h:4285
TypeInfo getTypeInfo(const Type *T) const
Get the size and alignment of the specified complete type in bits.
unsigned getBuiltinID() const
Returns a value indicating whether this function corresponds to a builtin function.
Definition: Decl.cpp:2994
static QualType getBaseOriginalType(const Expr *Base)
Return original type of the base expression for array section.
Definition: Expr.cpp:4220
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:3923
static bool hasAnyTypeDependentArguments(ArrayRef< Expr *> Exprs)
hasAnyTypeDependentArguments - Determines if any of the expressions in Exprs is type-dependent.
Definition: Expr.cpp:2849
Represents an explicit C++ type conversion that uses "functional" notation (C++ [expr.type.conv]).
Definition: ExprCXX.h:1489
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:6085
Expr * getRHS() const
Definition: Expr.h:3574
bool isPRValue() const
Definition: Expr.h:355
Builtin::Context & BuiltinInfo
Definition: ASTContext.h:567
bool containsUnexpandedParameterPack() const
Whether this expression contains an unexpanded parameter pack (for C++11 variadic templates)...
Definition: Expr.h:214
bool isRValue() const
Definition: Expr.h:250
static ParenListExpr * CreateEmpty(const ASTContext &Ctx, unsigned NumExprs)
Create an empty paren list.
Definition: Expr.cpp:4023
StringLiteralParser - This decodes string escape characters and performs wide string analysis and Tra...
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:276
bool isImplicitCXXThis() const
Whether this expression is an implicit reference to &#39;this&#39; in C++.
Definition: Expr.cpp:2805
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1577
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2407
bool isBuiltinAssumeFalse(const ASTContext &Ctx) const
Return true if this is a call to __assume() or __builtin_assume() with a non-value-dependent constant...
Definition: Expr.cpp:3030
Designator * getDesignator(unsigned Idx)
Definition: Expr.h:4576
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:275
void reserveInits(const ASTContext &C, unsigned NumInits)
Reserve space for some number of initializers.
Definition: Expr.cpp:1973
uint64_t Width
Definition: ASTContext.h:143
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:954
DeclAccessPair FoundDecl
The DeclAccessPair through which the MemberDecl was found due to name qualifiers. ...
Definition: Expr.h:2596
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2085
bool isEvaluatable(const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
isEvaluatable - Call EvaluateAsRValue to see if this expression can be constant folded without side-e...
std::reverse_iterator< const_iterator > const_reverse_iterator
Definition: ASTVector.h:88
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1536
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1042
bool isUnion() const
Definition: Decl.h:3261
Expr * getRHS() const
Definition: Expr.h:3275
bool isPointerType() const
Definition: Type.h:6282
CallExprBitfields CallExprBits
Definition: Stmt.h:705
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)
Retrieve the overloaded operator kind that corresponds to the given binary opcode.
Definition: Expr.cpp:1894
FieldDecl * getInitializedFieldInUnion()
If this initializes a union, specifies which field in the union to initialize.
Definition: Expr.h:4243
bool isDefaultArgument() const
Determine whether this expression is a default function argument.
Definition: Expr.cpp:2724
bool isOBJCGCCandidate(ASTContext &Ctx) const
isOBJCGCCandidate - Return true if this expression may be used in a read/ write barrier.
Definition: Expr.cpp:2454
QualType getType() const
Definition: Decl.h:647
#define true
Definition: stdbool.h:32
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:114
unsigned getNumArgs() const
Definition: ExprCXX.h:1380
A trivial tuple used to represent a source range.
static StringRef getOpcodeStr(Opcode Op)
getOpcodeStr - Turn an Opcode enum value into the punctuation char it corresponds to...
Definition: Expr.cpp:1179
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1364
This represents a decl that may have a name.
Definition: Decl.h:248
OffsetOfExpr - [C99 7.17] - This represents an expression of the form offsetof(record-type, member-designator).
Definition: Expr.h:2128
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2977
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Expr.h:4547
static int getAccessorIdx(char c, bool isNumericAccessor)
Definition: Type.h:3338
QualType getValueType() const
Definition: Expr.cpp:4213
double getValueAsApproximateDouble() const
getValueAsApproximateDouble - This returns the value as an inaccurate double.
Definition: Expr.cpp:882
bool isInstanceMessage() const
Determine whether this is an instance message to either a computed object or to super.
Definition: ExprObjC.h:1195
unsigned getNumParams() const
Return the number of parameters this function must have based on its FunctionType.
Definition: Decl.cpp:3055
void removeAddressSpace()
Definition: Type.h:381
const LangOptions & getLangOpts() const
Definition: ASTContext.h:706
ObjCCategoryImplDecl - An object of this class encapsulates a category @implementation declaration...
Definition: DeclObjC.h:2491
IdentifierInfo * getFieldName() const
Definition: Expr.cpp:3796
This class handles loading and caching of source files into memory.
InitListExpr * getSyntacticForm() const
Definition: Expr.h:4288
Defines enum values for all the target-independent builtin functions.
NullPointerConstantKind
Enumeration used to describe the kind of Null pointer constant returned from isNullPointerConstant()...
Definition: Expr.h:686
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:97
std::pair< FileID, unsigned > getDecomposedLoc(SourceLocation Loc) const
Decompose the specified location into a raw FileID + Offset pair.
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2523
static OMPLinearClause * Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef< Expr *> VL, ArrayRef< Expr *> PL, ArrayRef< Expr *> IL, Expr *Step, Expr *CalcStep, Stmt *PreInit, Expr *PostUpdate)
Creates clause with a list of variables VL and a linear step Step.
SourceRange getSourceRange() const LLVM_READONLY
Definition: Expr.h:4550