clang  8.0.0svn
Decl.cpp
Go to the documentation of this file.
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/Decl.h"
15 #include "Linkage.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ODRHash.h"
32 #include "clang/AST/Redeclarable.h"
33 #include "clang/AST/Stmt.h"
34 #include "clang/AST/TemplateBase.h"
35 #include "clang/AST/Type.h"
36 #include "clang/AST/TypeLoc.h"
37 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/Linkage.h"
42 #include "clang/Basic/Module.h"
45 #include "clang/Basic/Sanitizers.h"
48 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetInfo.h"
51 #include "clang/Basic/Visibility.h"
53 #include "llvm/ADT/APSInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/None.h"
56 #include "llvm/ADT/Optional.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringSwitch.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <type_traits>
73 
74 using namespace clang;
75 
77  return D->getASTContext().getPrimaryMergedDecl(D);
78 }
79 
80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81  SourceLocation Loc = this->Loc;
82  if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83  if (Loc.isValid()) {
84  Loc.print(OS, Context.getSourceManager());
85  OS << ": ";
86  }
87  OS << Message;
88 
89  if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90  OS << " '";
91  ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92  OS << "'";
93  }
94 
95  OS << '\n';
96 }
97 
98 // Defined here so that it can be inlined into its direct callers.
99 bool Decl::isOutOfLine() const {
100  return !getLexicalDeclContext()->Equals(getDeclContext());
101 }
102 
103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104  : Decl(TranslationUnit, nullptr, SourceLocation()),
105  DeclContext(TranslationUnit), Ctx(ctx) {}
106 
107 //===----------------------------------------------------------------------===//
108 // NamedDecl Implementation
109 //===----------------------------------------------------------------------===//
110 
111 // Visibility rules aren't rigorously externally specified, but here
112 // are the basic principles behind what we implement:
113 //
114 // 1. An explicit visibility attribute is generally a direct expression
115 // of the user's intent and should be honored. Only the innermost
116 // visibility attribute applies. If no visibility attribute applies,
117 // global visibility settings are considered.
118 //
119 // 2. There is one caveat to the above: on or in a template pattern,
120 // an explicit visibility attribute is just a default rule, and
121 // visibility can be decreased by the visibility of template
122 // arguments. But this, too, has an exception: an attribute on an
123 // explicit specialization or instantiation causes all the visibility
124 // restrictions of the template arguments to be ignored.
125 //
126 // 3. A variable that does not otherwise have explicit visibility can
127 // be restricted by the visibility of its type.
128 //
129 // 4. A visibility restriction is explicit if it comes from an
130 // attribute (or something like it), not a global visibility setting.
131 // When emitting a reference to an external symbol, visibility
132 // restrictions are ignored unless they are explicit.
133 //
134 // 5. When computing the visibility of a non-type, including a
135 // non-type member of a class, only non-type visibility restrictions
136 // are considered: the 'visibility' attribute, global value-visibility
137 // settings, and a few special cases like __private_extern.
138 //
139 // 6. When computing the visibility of a type, including a type member
140 // of a class, only type visibility restrictions are considered:
141 // the 'type_visibility' attribute and global type-visibility settings.
142 // However, a 'visibility' attribute counts as a 'type_visibility'
143 // attribute on any declaration that only has the former.
144 //
145 // The visibility of a "secondary" entity, like a template argument,
146 // is computed using the kind of that entity, not the kind of the
147 // primary entity for which we are computing visibility. For example,
148 // the visibility of a specialization of either of these templates:
149 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150 // template <class T, bool (&compare)(T, X)> class matcher;
151 // is restricted according to the type visibility of the argument 'T',
152 // the type visibility of 'bool(&)(T,X)', and the value visibility of
153 // the argument function 'compare'. That 'has_match' is a value
154 // and 'matcher' is a type only matters when looking for attributes
155 // and settings from the immediate context.
156 
157 /// Does this computation kind permit us to consider additional
158 /// visibility settings from attributes and the like?
160  return computation.IgnoreExplicitVisibility;
161 }
162 
163 /// Given an LVComputationKind, return one of the same type/value sort
164 /// that records that it already has explicit visibility.
165 static LVComputationKind
167  Kind.IgnoreExplicitVisibility = true;
168  return Kind;
169 }
170 
173  assert(!kind.IgnoreExplicitVisibility &&
174  "asking for explicit visibility when we shouldn't be");
176 }
177 
178 /// Is the given declaration a "type" or a "value" for the purposes of
179 /// visibility computation?
180 static bool usesTypeVisibility(const NamedDecl *D) {
181  return isa<TypeDecl>(D) ||
182  isa<ClassTemplateDecl>(D) ||
183  isa<ObjCInterfaceDecl>(D);
184 }
185 
186 /// Does the given declaration have member specialization information,
187 /// and if so, is it an explicit specialization?
188 template <class T> static typename
189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
191  if (const MemberSpecializationInfo *member =
192  D->getMemberSpecializationInfo()) {
193  return member->isExplicitSpecialization();
194  }
195  return false;
196 }
197 
198 /// For templates, this question is easier: a member template can't be
199 /// explicitly instantiated, so there's a single bit indicating whether
200 /// or not this is an explicit member specialization.
202  return D->isMemberSpecialization();
203 }
204 
205 /// Given a visibility attribute, return the explicit visibility
206 /// associated with it.
207 template <class T>
208 static Visibility getVisibilityFromAttr(const T *attr) {
209  switch (attr->getVisibility()) {
210  case T::Default:
211  return DefaultVisibility;
212  case T::Hidden:
213  return HiddenVisibility;
214  case T::Protected:
215  return ProtectedVisibility;
216  }
217  llvm_unreachable("bad visibility kind");
218 }
219 
220 /// Return the explicit visibility of the given declaration.
223  // If we're ultimately computing the visibility of a type, look for
224  // a 'type_visibility' attribute before looking for 'visibility'.
225  if (kind == NamedDecl::VisibilityForType) {
226  if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227  return getVisibilityFromAttr(A);
228  }
229  }
230 
231  // If this declaration has an explicit visibility attribute, use it.
232  if (const auto *A = D->getAttr<VisibilityAttr>()) {
233  return getVisibilityFromAttr(A);
234  }
235 
236  return None;
237 }
238 
239 LinkageInfo LinkageComputer::getLVForType(const Type &T,
240  LVComputationKind computation) {
241  if (computation.IgnoreAllVisibility)
242  return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243  return getTypeLinkageAndVisibility(&T);
244 }
245 
246 /// Get the most restrictive linkage for the types in the given
247 /// template parameter list. For visibility purposes, template
248 /// parameters are part of the signature of a template.
249 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250  const TemplateParameterList *Params, LVComputationKind computation) {
251  LinkageInfo LV;
252  for (const NamedDecl *P : *Params) {
253  // Template type parameters are the most common and never
254  // contribute to visibility, pack or not.
255  if (isa<TemplateTypeParmDecl>(P))
256  continue;
257 
258  // Non-type template parameters can be restricted by the value type, e.g.
259  // template <enum X> class A { ... };
260  // We have to be careful here, though, because we can be dealing with
261  // dependent types.
262  if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263  // Handle the non-pack case first.
264  if (!NTTP->isExpandedParameterPack()) {
265  if (!NTTP->getType()->isDependentType()) {
266  LV.merge(getLVForType(*NTTP->getType(), computation));
267  }
268  continue;
269  }
270 
271  // Look at all the types in an expanded pack.
272  for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273  QualType type = NTTP->getExpansionType(i);
274  if (!type->isDependentType())
275  LV.merge(getTypeLinkageAndVisibility(type));
276  }
277  continue;
278  }
279 
280  // Template template parameters can be restricted by their
281  // template parameters, recursively.
282  const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283 
284  // Handle the non-pack case first.
285  if (!TTP->isExpandedParameterPack()) {
286  LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287  computation));
288  continue;
289  }
290 
291  // Look at all expansions in an expanded pack.
292  for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293  i != n; ++i) {
294  LV.merge(getLVForTemplateParameterList(
295  TTP->getExpansionTemplateParameters(i), computation));
296  }
297  }
298 
299  return LV;
300 }
301 
302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303  const Decl *Ret = nullptr;
304  const DeclContext *DC = D->getDeclContext();
305  while (DC->getDeclKind() != Decl::TranslationUnit) {
306  if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307  Ret = cast<Decl>(DC);
308  DC = DC->getParent();
309  }
310  return Ret;
311 }
312 
313 /// Get the most restrictive linkage for the types and
314 /// declarations in the given template argument list.
315 ///
316 /// Note that we don't take an LVComputationKind because we always
317 /// want to honor the visibility of template arguments in the same way.
319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320  LVComputationKind computation) {
321  LinkageInfo LV;
322 
323  for (const TemplateArgument &Arg : Args) {
324  switch (Arg.getKind()) {
328  continue;
329 
331  LV.merge(getLVForType(*Arg.getAsType(), computation));
332  continue;
333 
335  const NamedDecl *ND = Arg.getAsDecl();
336  assert(!usesTypeVisibility(ND));
337  LV.merge(getLVForDecl(ND, computation));
338  continue;
339  }
340 
342  LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343  continue;
344 
347  if (TemplateDecl *Template =
348  Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349  LV.merge(getLVForDecl(Template, computation));
350  continue;
351 
353  LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354  continue;
355  }
356  llvm_unreachable("bad template argument kind");
357  }
358 
359  return LV;
360 }
361 
363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364  LVComputationKind computation) {
365  return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366 }
367 
369  const FunctionTemplateSpecializationInfo *specInfo) {
370  // Include visibility from the template parameters and arguments
371  // only if this is not an explicit instantiation or specialization
372  // with direct explicit visibility. (Implicit instantiations won't
373  // have a direct attribute.)
375  return true;
376 
377  return !fn->hasAttr<VisibilityAttr>();
378 }
379 
380 /// Merge in template-related linkage and visibility for the given
381 /// function template specialization.
382 ///
383 /// We don't need a computation kind here because we can assume
384 /// LVForValue.
385 ///
386 /// \param[out] LV the computation to use for the parent
387 void LinkageComputer::mergeTemplateLV(
388  LinkageInfo &LV, const FunctionDecl *fn,
389  const FunctionTemplateSpecializationInfo *specInfo,
390  LVComputationKind computation) {
391  bool considerVisibility =
392  shouldConsiderTemplateVisibility(fn, specInfo);
393 
394  // Merge information from the template parameters.
395  FunctionTemplateDecl *temp = specInfo->getTemplate();
396  LinkageInfo tempLV =
397  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399 
400  // Merge information from the template arguments.
401  const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403  LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404 }
405 
406 /// Does the given declaration have a direct visibility attribute
407 /// that would match the given rules?
409  LVComputationKind computation) {
410  if (computation.IgnoreAllVisibility)
411  return false;
412 
413  return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414  D->hasAttr<VisibilityAttr>();
415 }
416 
417 /// Should we consider visibility associated with the template
418 /// arguments and parameters of the given class template specialization?
421  LVComputationKind computation) {
422  // Include visibility from the template parameters and arguments
423  // only if this is not an explicit instantiation or specialization
424  // with direct explicit visibility (and note that implicit
425  // instantiations won't have a direct attribute).
426  //
427  // Furthermore, we want to ignore template parameters and arguments
428  // for an explicit specialization when computing the visibility of a
429  // member thereof with explicit visibility.
430  //
431  // This is a bit complex; let's unpack it.
432  //
433  // An explicit class specialization is an independent, top-level
434  // declaration. As such, if it or any of its members has an
435  // explicit visibility attribute, that must directly express the
436  // user's intent, and we should honor it. The same logic applies to
437  // an explicit instantiation of a member of such a thing.
438 
439  // Fast path: if this is not an explicit instantiation or
440  // specialization, we always want to consider template-related
441  // visibility restrictions.
443  return true;
444 
445  // This is the 'member thereof' check.
446  if (spec->isExplicitSpecialization() &&
447  hasExplicitVisibilityAlready(computation))
448  return false;
449 
450  return !hasDirectVisibilityAttribute(spec, computation);
451 }
452 
453 /// Merge in template-related linkage and visibility for the given
454 /// class template specialization.
455 void LinkageComputer::mergeTemplateLV(
457  LVComputationKind computation) {
458  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459 
460  // Merge information from the template parameters, but ignore
461  // visibility if we're only considering template arguments.
462 
464  LinkageInfo tempLV =
465  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466  LV.mergeMaybeWithVisibility(tempLV,
467  considerVisibility && !hasExplicitVisibilityAlready(computation));
468 
469  // Merge information from the template arguments. We ignore
470  // template-argument visibility if we've got an explicit
471  // instantiation with a visibility attribute.
472  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474  if (considerVisibility)
475  LV.mergeVisibility(argsLV);
476  LV.mergeExternalVisibility(argsLV);
477 }
478 
479 /// Should we consider visibility associated with the template
480 /// arguments and parameters of the given variable template
481 /// specialization? As usual, follow class template specialization
482 /// logic up to initialization.
484  const VarTemplateSpecializationDecl *spec,
485  LVComputationKind computation) {
486  // Include visibility from the template parameters and arguments
487  // only if this is not an explicit instantiation or specialization
488  // with direct explicit visibility (and note that implicit
489  // instantiations won't have a direct attribute).
491  return true;
492 
493  // An explicit variable specialization is an independent, top-level
494  // declaration. As such, if it has an explicit visibility attribute,
495  // that must directly express the user's intent, and we should honor
496  // it.
497  if (spec->isExplicitSpecialization() &&
498  hasExplicitVisibilityAlready(computation))
499  return false;
500 
501  return !hasDirectVisibilityAttribute(spec, computation);
502 }
503 
504 /// Merge in template-related linkage and visibility for the given
505 /// variable template specialization. As usual, follow class template
506 /// specialization logic up to initialization.
507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508  const VarTemplateSpecializationDecl *spec,
509  LVComputationKind computation) {
510  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511 
512  // Merge information from the template parameters, but ignore
513  // visibility if we're only considering template arguments.
514 
515  VarTemplateDecl *temp = spec->getSpecializedTemplate();
516  LinkageInfo tempLV =
517  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518  LV.mergeMaybeWithVisibility(tempLV,
519  considerVisibility && !hasExplicitVisibilityAlready(computation));
520 
521  // Merge information from the template arguments. We ignore
522  // template-argument visibility if we've got an explicit
523  // instantiation with a visibility attribute.
524  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526  if (considerVisibility)
527  LV.mergeVisibility(argsLV);
528  LV.mergeExternalVisibility(argsLV);
529 }
530 
531 static bool useInlineVisibilityHidden(const NamedDecl *D) {
532  // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533  const LangOptions &Opts = D->getASTContext().getLangOpts();
534  if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535  return false;
536 
537  const auto *FD = dyn_cast<FunctionDecl>(D);
538  if (!FD)
539  return false;
540 
543  = FD->getTemplateSpecializationInfo()) {
544  TSK = spec->getTemplateSpecializationKind();
545  } else if (MemberSpecializationInfo *MSI =
546  FD->getMemberSpecializationInfo()) {
547  TSK = MSI->getTemplateSpecializationKind();
548  }
549 
550  const FunctionDecl *Def = nullptr;
551  // InlineVisibilityHidden only applies to definitions, and
552  // isInlined() only gives meaningful answers on definitions
553  // anyway.
554  return TSK != TSK_ExplicitInstantiationDeclaration &&
556  FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557 }
558 
559 template <typename T> static bool isFirstInExternCContext(T *D) {
560  const T *First = D->getFirstDecl();
561  return First->isInExternCContext();
562 }
563 
564 static bool isSingleLineLanguageLinkage(const Decl &D) {
565  if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566  if (!SD->hasBraces())
567  return true;
568  return false;
569 }
570 
572  // FIXME: Handle isModulePrivate.
573  switch (D->getModuleOwnershipKind()) {
576  return false;
579  if (auto *M = D->getOwningModule())
580  return M->Kind == Module::ModuleInterfaceUnit;
581  }
582  llvm_unreachable("unexpected module ownership kind");
583 }
584 
586  // Internal linkage declarations within a module interface unit are modeled
587  // as "module-internal linkage", which means that they have internal linkage
588  // formally but can be indirectly accessed from outside the module via inline
589  // functions and templates defined within the module.
590  if (auto *M = D->getOwningModule())
591  if (M->Kind == Module::ModuleInterfaceUnit)
593 
594  return LinkageInfo::internal();
595 }
596 
598  // C++ Modules TS [basic.link]/6.8:
599  // - A name declared at namespace scope that does not have internal linkage
600  // by the previous rules and that is introduced by a non-exported
601  // declaration has module linkage.
602  if (auto *M = D->getOwningModule())
603  if (M->Kind == Module::ModuleInterfaceUnit)
605  cast<NamedDecl>(D->getCanonicalDecl())))
607 
608  return LinkageInfo::external();
609 }
610 
612 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
613  LVComputationKind computation,
614  bool IgnoreVarTypeLinkage) {
615  assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
616  "Not a name having namespace scope");
617  ASTContext &Context = D->getASTContext();
618 
619  // C++ [basic.link]p3:
620  // A name having namespace scope (3.3.6) has internal linkage if it
621  // is the name of
622  // - an object, reference, function or function template that is
623  // explicitly declared static; or,
624  // (This bullet corresponds to C99 6.2.2p3.)
625  if (const auto *Var = dyn_cast<VarDecl>(D)) {
626  // Explicitly declared static.
627  if (Var->getStorageClass() == SC_Static)
628  return getInternalLinkageFor(Var);
629 
630  // - a non-inline, non-volatile object or reference that is explicitly
631  // declared const or constexpr and neither explicitly declared extern
632  // nor previously declared to have external linkage; or (there is no
633  // equivalent in C99)
634  // The C++ modules TS adds "non-exported" to this list.
635  if (Context.getLangOpts().CPlusPlus &&
636  Var->getType().isConstQualified() &&
637  !Var->getType().isVolatileQualified() &&
638  !Var->isInline() &&
640  const VarDecl *PrevVar = Var->getPreviousDecl();
641  if (PrevVar)
642  return getLVForDecl(PrevVar, computation);
643 
644  if (Var->getStorageClass() != SC_Extern &&
645  Var->getStorageClass() != SC_PrivateExtern &&
647  return getInternalLinkageFor(Var);
648  }
649 
650  for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
651  PrevVar = PrevVar->getPreviousDecl()) {
652  if (PrevVar->getStorageClass() == SC_PrivateExtern &&
653  Var->getStorageClass() == SC_None)
654  return getDeclLinkageAndVisibility(PrevVar);
655  // Explicitly declared static.
656  if (PrevVar->getStorageClass() == SC_Static)
657  return getInternalLinkageFor(Var);
658  }
659  } else if (const FunctionDecl *Function = D->getAsFunction()) {
660  // C++ [temp]p4:
661  // A non-member function template can have internal linkage; any
662  // other template name shall have external linkage.
663 
664  // Explicitly declared static.
665  if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
666  return getInternalLinkageFor(Function);
667  } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
668  // - a data member of an anonymous union.
669  const VarDecl *VD = IFD->getVarDecl();
670  assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
671  return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
672  }
673  assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
674 
675  if (D->isInAnonymousNamespace()) {
676  const auto *Var = dyn_cast<VarDecl>(D);
677  const auto *Func = dyn_cast<FunctionDecl>(D);
678  // FIXME: The check for extern "C" here is not justified by the standard
679  // wording, but we retain it from the pre-DR1113 model to avoid breaking
680  // code.
681  //
682  // C++11 [basic.link]p4:
683  // An unnamed namespace or a namespace declared directly or indirectly
684  // within an unnamed namespace has internal linkage.
685  if ((!Var || !isFirstInExternCContext(Var)) &&
686  (!Func || !isFirstInExternCContext(Func)))
687  return getInternalLinkageFor(D);
688  }
689 
690  // Set up the defaults.
691 
692  // C99 6.2.2p5:
693  // If the declaration of an identifier for an object has file
694  // scope and no storage-class specifier, its linkage is
695  // external.
697 
698  if (!hasExplicitVisibilityAlready(computation)) {
699  if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
700  LV.mergeVisibility(*Vis, true);
701  } else {
702  // If we're declared in a namespace with a visibility attribute,
703  // use that namespace's visibility, and it still counts as explicit.
704  for (const DeclContext *DC = D->getDeclContext();
705  !isa<TranslationUnitDecl>(DC);
706  DC = DC->getParent()) {
707  const auto *ND = dyn_cast<NamespaceDecl>(DC);
708  if (!ND) continue;
709  if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
710  LV.mergeVisibility(*Vis, true);
711  break;
712  }
713  }
714  }
715 
716  // Add in global settings if the above didn't give us direct visibility.
717  if (!LV.isVisibilityExplicit()) {
718  // Use global type/value visibility as appropriate.
719  Visibility globalVisibility =
720  computation.isValueVisibility()
721  ? Context.getLangOpts().getValueVisibilityMode()
722  : Context.getLangOpts().getTypeVisibilityMode();
723  LV.mergeVisibility(globalVisibility, /*explicit*/ false);
724 
725  // If we're paying attention to global visibility, apply
726  // -finline-visibility-hidden if this is an inline method.
729  }
730  }
731 
732  // C++ [basic.link]p4:
733 
734  // A name having namespace scope has external linkage if it is the
735  // name of
736  //
737  // - an object or reference, unless it has internal linkage; or
738  if (const auto *Var = dyn_cast<VarDecl>(D)) {
739  // GCC applies the following optimization to variables and static
740  // data members, but not to functions:
741  //
742  // Modify the variable's LV by the LV of its type unless this is
743  // C or extern "C". This follows from [basic.link]p9:
744  // A type without linkage shall not be used as the type of a
745  // variable or function with external linkage unless
746  // - the entity has C language linkage, or
747  // - the entity is declared within an unnamed namespace, or
748  // - the entity is not used or is defined in the same
749  // translation unit.
750  // and [basic.link]p10:
751  // ...the types specified by all declarations referring to a
752  // given variable or function shall be identical...
753  // C does not have an equivalent rule.
754  //
755  // Ignore this if we've got an explicit attribute; the user
756  // probably knows what they're doing.
757  //
758  // Note that we don't want to make the variable non-external
759  // because of this, but unique-external linkage suits us.
760  if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
761  !IgnoreVarTypeLinkage) {
762  LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
763  if (!isExternallyVisible(TypeLV.getLinkage()))
765  if (!LV.isVisibilityExplicit())
766  LV.mergeVisibility(TypeLV);
767  }
768 
769  if (Var->getStorageClass() == SC_PrivateExtern)
771 
772  // Note that Sema::MergeVarDecl already takes care of implementing
773  // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
774  // to do it here.
775 
776  // As per function and class template specializations (below),
777  // consider LV for the template and template arguments. We're at file
778  // scope, so we do not need to worry about nested specializations.
779  if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
780  mergeTemplateLV(LV, spec, computation);
781  }
782 
783  // - a function, unless it has internal linkage; or
784  } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
785  // In theory, we can modify the function's LV by the LV of its
786  // type unless it has C linkage (see comment above about variables
787  // for justification). In practice, GCC doesn't do this, so it's
788  // just too painful to make work.
789 
790  if (Function->getStorageClass() == SC_PrivateExtern)
792 
793  // Note that Sema::MergeCompatibleFunctionDecls already takes care of
794  // merging storage classes and visibility attributes, so we don't have to
795  // look at previous decls in here.
796 
797  // In C++, then if the type of the function uses a type with
798  // unique-external linkage, it's not legally usable from outside
799  // this translation unit. However, we should use the C linkage
800  // rules instead for extern "C" declarations.
801  if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
802  // Only look at the type-as-written. Otherwise, deducing the return type
803  // of a function could change its linkage.
804  QualType TypeAsWritten = Function->getType();
805  if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
806  TypeAsWritten = TSI->getType();
807  if (!isExternallyVisible(TypeAsWritten->getLinkage()))
809  }
810 
811  // Consider LV from the template and the template arguments.
812  // We're at file scope, so we do not need to worry about nested
813  // specializations.
815  = Function->getTemplateSpecializationInfo()) {
816  mergeTemplateLV(LV, Function, specInfo, computation);
817  }
818 
819  // - a named class (Clause 9), or an unnamed class defined in a
820  // typedef declaration in which the class has the typedef name
821  // for linkage purposes (7.1.3); or
822  // - a named enumeration (7.2), or an unnamed enumeration
823  // defined in a typedef declaration in which the enumeration
824  // has the typedef name for linkage purposes (7.1.3); or
825  } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
826  // Unnamed tags have no linkage.
827  if (!Tag->hasNameForLinkage())
828  return LinkageInfo::none();
829 
830  // If this is a class template specialization, consider the
831  // linkage of the template and template arguments. We're at file
832  // scope, so we do not need to worry about nested specializations.
833  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
834  mergeTemplateLV(LV, spec, computation);
835  }
836 
837  // - an enumerator belonging to an enumeration with external linkage;
838  } else if (isa<EnumConstantDecl>(D)) {
839  LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
840  computation);
841  if (!isExternalFormalLinkage(EnumLV.getLinkage()))
842  return LinkageInfo::none();
843  LV.merge(EnumLV);
844 
845  // - a template, unless it is a function template that has
846  // internal linkage (Clause 14);
847  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
848  bool considerVisibility = !hasExplicitVisibilityAlready(computation);
849  LinkageInfo tempLV =
850  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
851  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
852 
853  // - a namespace (7.3), unless it is declared within an unnamed
854  // namespace.
855  //
856  // We handled names in anonymous namespaces above.
857  } else if (isa<NamespaceDecl>(D)) {
858  return LV;
859 
860  // By extension, we assign external linkage to Objective-C
861  // interfaces.
862  } else if (isa<ObjCInterfaceDecl>(D)) {
863  // fallout
864 
865  } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
866  // A typedef declaration has linkage if it gives a type a name for
867  // linkage purposes.
868  if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
869  return LinkageInfo::none();
870 
871  // Everything not covered here has no linkage.
872  } else {
873  return LinkageInfo::none();
874  }
875 
876  // If we ended up with non-externally-visible linkage, visibility should
877  // always be default.
878  if (!isExternallyVisible(LV.getLinkage()))
879  return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
880 
881  return LV;
882 }
883 
885 LinkageComputer::getLVForClassMember(const NamedDecl *D,
886  LVComputationKind computation,
887  bool IgnoreVarTypeLinkage) {
888  // Only certain class members have linkage. Note that fields don't
889  // really have linkage, but it's convenient to say they do for the
890  // purposes of calculating linkage of pointer-to-data-member
891  // template arguments.
892  //
893  // Templates also don't officially have linkage, but since we ignore
894  // the C++ standard and look at template arguments when determining
895  // linkage and visibility of a template specialization, we might hit
896  // a template template argument that way. If we do, we need to
897  // consider its linkage.
898  if (!(isa<CXXMethodDecl>(D) ||
899  isa<VarDecl>(D) ||
900  isa<FieldDecl>(D) ||
901  isa<IndirectFieldDecl>(D) ||
902  isa<TagDecl>(D) ||
903  isa<TemplateDecl>(D)))
904  return LinkageInfo::none();
905 
906  LinkageInfo LV;
907 
908  // If we have an explicit visibility attribute, merge that in.
909  if (!hasExplicitVisibilityAlready(computation)) {
910  if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
911  LV.mergeVisibility(*Vis, true);
912  // If we're paying attention to global visibility, apply
913  // -finline-visibility-hidden if this is an inline method.
914  //
915  // Note that we do this before merging information about
916  // the class visibility.
919  }
920 
921  // If this class member has an explicit visibility attribute, the only
922  // thing that can change its visibility is the template arguments, so
923  // only look for them when processing the class.
924  LVComputationKind classComputation = computation;
925  if (LV.isVisibilityExplicit())
926  classComputation = withExplicitVisibilityAlready(computation);
927 
928  LinkageInfo classLV =
929  getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
930  // The member has the same linkage as the class. If that's not externally
931  // visible, we don't need to compute anything about the linkage.
932  // FIXME: If we're only computing linkage, can we bail out here?
933  if (!isExternallyVisible(classLV.getLinkage()))
934  return classLV;
935 
936 
937  // Otherwise, don't merge in classLV yet, because in certain cases
938  // we need to completely ignore the visibility from it.
939 
940  // Specifically, if this decl exists and has an explicit attribute.
941  const NamedDecl *explicitSpecSuppressor = nullptr;
942 
943  if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
944  // Only look at the type-as-written. Otherwise, deducing the return type
945  // of a function could change its linkage.
946  QualType TypeAsWritten = MD->getType();
947  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
948  TypeAsWritten = TSI->getType();
949  if (!isExternallyVisible(TypeAsWritten->getLinkage()))
951 
952  // If this is a method template specialization, use the linkage for
953  // the template parameters and arguments.
955  = MD->getTemplateSpecializationInfo()) {
956  mergeTemplateLV(LV, MD, spec, computation);
957  if (spec->isExplicitSpecialization()) {
958  explicitSpecSuppressor = MD;
959  } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
960  explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
961  }
962  } else if (isExplicitMemberSpecialization(MD)) {
963  explicitSpecSuppressor = MD;
964  }
965 
966  } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
967  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
968  mergeTemplateLV(LV, spec, computation);
969  if (spec->isExplicitSpecialization()) {
970  explicitSpecSuppressor = spec;
971  } else {
972  const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
973  if (isExplicitMemberSpecialization(temp)) {
974  explicitSpecSuppressor = temp->getTemplatedDecl();
975  }
976  }
977  } else if (isExplicitMemberSpecialization(RD)) {
978  explicitSpecSuppressor = RD;
979  }
980 
981  // Static data members.
982  } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
983  if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
984  mergeTemplateLV(LV, spec, computation);
985 
986  // Modify the variable's linkage by its type, but ignore the
987  // type's visibility unless it's a definition.
988  if (!IgnoreVarTypeLinkage) {
989  LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
990  // FIXME: If the type's linkage is not externally visible, we can
991  // give this static data member UniqueExternalLinkage.
992  if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
993  LV.mergeVisibility(typeLV);
994  LV.mergeExternalVisibility(typeLV);
995  }
996 
998  explicitSpecSuppressor = VD;
999  }
1000 
1001  // Template members.
1002  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1003  bool considerVisibility =
1004  (!LV.isVisibilityExplicit() &&
1005  !classLV.isVisibilityExplicit() &&
1006  !hasExplicitVisibilityAlready(computation));
1007  LinkageInfo tempLV =
1008  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1009  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1010 
1011  if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1012  if (isExplicitMemberSpecialization(redeclTemp)) {
1013  explicitSpecSuppressor = temp->getTemplatedDecl();
1014  }
1015  }
1016  }
1017 
1018  // We should never be looking for an attribute directly on a template.
1019  assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1020 
1021  // If this member is an explicit member specialization, and it has
1022  // an explicit attribute, ignore visibility from the parent.
1023  bool considerClassVisibility = true;
1024  if (explicitSpecSuppressor &&
1025  // optimization: hasDVA() is true only with explicit visibility.
1026  LV.isVisibilityExplicit() &&
1027  classLV.getVisibility() != DefaultVisibility &&
1028  hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1029  considerClassVisibility = false;
1030  }
1031 
1032  // Finally, merge in information from the class.
1033  LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1034  return LV;
1035 }
1036 
1037 void NamedDecl::anchor() {}
1038 
1040  if (!hasCachedLinkage())
1041  return true;
1042 
1043  Linkage L = LinkageComputer{}
1045  .getLinkage();
1046  return L == getCachedLinkage();
1047 }
1048 
1050  StringRef name = getName();
1051  if (name.empty()) return SFF_None;
1052 
1053  if (name.front() == 'C')
1054  if (name == "CFStringCreateWithFormat" ||
1055  name == "CFStringCreateWithFormatAndArguments" ||
1056  name == "CFStringAppendFormat" ||
1057  name == "CFStringAppendFormatAndArguments")
1058  return SFF_CFString;
1059  return SFF_None;
1060 }
1061 
1063  // We don't care about visibility here, so ask for the cheapest
1064  // possible visibility analysis.
1065  return LinkageComputer{}
1067  .getLinkage();
1068 }
1069 
1072 }
1073 
1074 static Optional<Visibility>
1077  bool IsMostRecent) {
1078  assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1079 
1080  // Check the declaration itself first.
1081  if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1082  return V;
1083 
1084  // If this is a member class of a specialization of a class template
1085  // and the corresponding decl has explicit visibility, use that.
1086  if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1087  CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1088  if (InstantiatedFrom)
1089  return getVisibilityOf(InstantiatedFrom, kind);
1090  }
1091 
1092  // If there wasn't explicit visibility there, and this is a
1093  // specialization of a class template, check for visibility
1094  // on the pattern.
1095  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1096  // Walk all the template decl till this point to see if there are
1097  // explicit visibility attributes.
1098  const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1099  while (TD != nullptr) {
1100  auto Vis = getVisibilityOf(TD, kind);
1101  if (Vis != None)
1102  return Vis;
1103  TD = TD->getPreviousDecl();
1104  }
1105  return None;
1106  }
1107 
1108  // Use the most recent declaration.
1109  if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1110  const NamedDecl *MostRecent = ND->getMostRecentDecl();
1111  if (MostRecent != ND)
1112  return getExplicitVisibilityAux(MostRecent, kind, true);
1113  }
1114 
1115  if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1116  if (Var->isStaticDataMember()) {
1117  VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1118  if (InstantiatedFrom)
1119  return getVisibilityOf(InstantiatedFrom, kind);
1120  }
1121 
1122  if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1123  return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1124  kind);
1125 
1126  return None;
1127  }
1128  // Also handle function template specializations.
1129  if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1130  // If the function is a specialization of a template with an
1131  // explicit visibility attribute, use that.
1132  if (FunctionTemplateSpecializationInfo *templateInfo
1134  return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1135  kind);
1136 
1137  // If the function is a member of a specialization of a class template
1138  // and the corresponding decl has explicit visibility, use that.
1139  FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1140  if (InstantiatedFrom)
1141  return getVisibilityOf(InstantiatedFrom, kind);
1142 
1143  return None;
1144  }
1145 
1146  // The visibility of a template is stored in the templated decl.
1147  if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1148  return getVisibilityOf(TD->getTemplatedDecl(), kind);
1149 
1150  return None;
1151 }
1152 
1155  return getExplicitVisibilityAux(this, kind, false);
1156 }
1157 
1158 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1159  Decl *ContextDecl,
1160  LVComputationKind computation) {
1161  // This lambda has its linkage/visibility determined by its owner.
1162  const NamedDecl *Owner;
1163  if (!ContextDecl)
1164  Owner = dyn_cast<NamedDecl>(DC);
1165  else if (isa<ParmVarDecl>(ContextDecl))
1166  Owner =
1167  dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1168  else
1169  Owner = cast<NamedDecl>(ContextDecl);
1170 
1171  if (!Owner)
1172  return LinkageInfo::none();
1173 
1174  // If the owner has a deduced type, we need to skip querying the linkage and
1175  // visibility of that type, because it might involve this closure type. The
1176  // only effect of this is that we might give a lambda VisibleNoLinkage rather
1177  // than NoLinkage when we don't strictly need to, which is benign.
1178  auto *VD = dyn_cast<VarDecl>(Owner);
1179  LinkageInfo OwnerLV =
1180  VD && VD->getType()->getContainedDeducedType()
1181  ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1182  : getLVForDecl(Owner, computation);
1183 
1184  // A lambda never formally has linkage. But if the owner is externally
1185  // visible, then the lambda is too. We apply the same rules to blocks.
1186  if (!isExternallyVisible(OwnerLV.getLinkage()))
1187  return LinkageInfo::none();
1188  return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1189  OwnerLV.isVisibilityExplicit());
1190 }
1191 
1192 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1193  LVComputationKind computation) {
1194  if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1195  if (Function->isInAnonymousNamespace() &&
1196  !isFirstInExternCContext(Function))
1197  return getInternalLinkageFor(Function);
1198 
1199  // This is a "void f();" which got merged with a file static.
1200  if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1201  return getInternalLinkageFor(Function);
1202 
1203  LinkageInfo LV;
1204  if (!hasExplicitVisibilityAlready(computation)) {
1205  if (Optional<Visibility> Vis =
1206  getExplicitVisibility(Function, computation))
1207  LV.mergeVisibility(*Vis, true);
1208  }
1209 
1210  // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1211  // merging storage classes and visibility attributes, so we don't have to
1212  // look at previous decls in here.
1213 
1214  return LV;
1215  }
1216 
1217  if (const auto *Var = dyn_cast<VarDecl>(D)) {
1218  if (Var->hasExternalStorage()) {
1219  if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1220  return getInternalLinkageFor(Var);
1221 
1222  LinkageInfo LV;
1223  if (Var->getStorageClass() == SC_PrivateExtern)
1225  else if (!hasExplicitVisibilityAlready(computation)) {
1226  if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1227  LV.mergeVisibility(*Vis, true);
1228  }
1229 
1230  if (const VarDecl *Prev = Var->getPreviousDecl()) {
1231  LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1232  if (PrevLV.getLinkage())
1233  LV.setLinkage(PrevLV.getLinkage());
1234  LV.mergeVisibility(PrevLV);
1235  }
1236 
1237  return LV;
1238  }
1239 
1240  if (!Var->isStaticLocal())
1241  return LinkageInfo::none();
1242  }
1243 
1244  ASTContext &Context = D->getASTContext();
1245  if (!Context.getLangOpts().CPlusPlus)
1246  return LinkageInfo::none();
1247 
1248  const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1249  if (!OuterD || OuterD->isInvalidDecl())
1250  return LinkageInfo::none();
1251 
1252  LinkageInfo LV;
1253  if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1254  if (!BD->getBlockManglingNumber())
1255  return LinkageInfo::none();
1256 
1257  LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1258  BD->getBlockManglingContextDecl(), computation);
1259  } else {
1260  const auto *FD = cast<FunctionDecl>(OuterD);
1261  if (!FD->isInlined() &&
1262  !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1263  return LinkageInfo::none();
1264 
1265  LV = getLVForDecl(FD, computation);
1266  }
1267  if (!isExternallyVisible(LV.getLinkage()))
1268  return LinkageInfo::none();
1270  LV.isVisibilityExplicit());
1271 }
1272 
1273 static inline const CXXRecordDecl*
1275  const CXXRecordDecl *Ret = Record;
1276  while (Record && Record->isLambda()) {
1277  Ret = Record;
1278  if (!Record->getParent()) break;
1279  // Get the Containing Class of this Lambda Class
1280  Record = dyn_cast_or_null<CXXRecordDecl>(
1281  Record->getParent()->getParent());
1282  }
1283  return Ret;
1284 }
1285 
1287  LVComputationKind computation,
1288  bool IgnoreVarTypeLinkage) {
1289  // Internal_linkage attribute overrides other considerations.
1290  if (D->hasAttr<InternalLinkageAttr>())
1291  return getInternalLinkageFor(D);
1292 
1293  // Objective-C: treat all Objective-C declarations as having external
1294  // linkage.
1295  switch (D->getKind()) {
1296  default:
1297  break;
1298 
1299  // Per C++ [basic.link]p2, only the names of objects, references,
1300  // functions, types, templates, namespaces, and values ever have linkage.
1301  //
1302  // Note that the name of a typedef, namespace alias, using declaration,
1303  // and so on are not the name of the corresponding type, namespace, or
1304  // declaration, so they do *not* have linkage.
1305  case Decl::ImplicitParam:
1306  case Decl::Label:
1307  case Decl::NamespaceAlias:
1308  case Decl::ParmVar:
1309  case Decl::Using:
1310  case Decl::UsingShadow:
1311  case Decl::UsingDirective:
1312  return LinkageInfo::none();
1313 
1314  case Decl::EnumConstant:
1315  // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1316  if (D->getASTContext().getLangOpts().CPlusPlus)
1317  return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1318  return LinkageInfo::visible_none();
1319 
1320  case Decl::Typedef:
1321  case Decl::TypeAlias:
1322  // A typedef declaration has linkage if it gives a type a name for
1323  // linkage purposes.
1324  if (!cast<TypedefNameDecl>(D)
1325  ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1326  return LinkageInfo::none();
1327  break;
1328 
1329  case Decl::TemplateTemplateParm: // count these as external
1330  case Decl::NonTypeTemplateParm:
1331  case Decl::ObjCAtDefsField:
1332  case Decl::ObjCCategory:
1333  case Decl::ObjCCategoryImpl:
1334  case Decl::ObjCCompatibleAlias:
1335  case Decl::ObjCImplementation:
1336  case Decl::ObjCMethod:
1337  case Decl::ObjCProperty:
1338  case Decl::ObjCPropertyImpl:
1339  case Decl::ObjCProtocol:
1340  return getExternalLinkageFor(D);
1341 
1342  case Decl::CXXRecord: {
1343  const auto *Record = cast<CXXRecordDecl>(D);
1344  if (Record->isLambda()) {
1345  if (!Record->getLambdaManglingNumber()) {
1346  // This lambda has no mangling number, so it's internal.
1347  return getInternalLinkageFor(D);
1348  }
1349 
1350  // This lambda has its linkage/visibility determined:
1351  // - either by the outermost lambda if that lambda has no mangling
1352  // number.
1353  // - or by the parent of the outer most lambda
1354  // This prevents infinite recursion in settings such as nested lambdas
1355  // used in NSDMI's, for e.g.
1356  // struct L {
1357  // int t{};
1358  // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1359  // };
1360  const CXXRecordDecl *OuterMostLambda =
1362  if (!OuterMostLambda->getLambdaManglingNumber())
1363  return getInternalLinkageFor(D);
1364 
1365  return getLVForClosure(
1366  OuterMostLambda->getDeclContext()->getRedeclContext(),
1367  OuterMostLambda->getLambdaContextDecl(), computation);
1368  }
1369 
1370  break;
1371  }
1372  }
1373 
1374  // Handle linkage for namespace-scope names.
1376  return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1377 
1378  // C++ [basic.link]p5:
1379  // In addition, a member function, static data member, a named
1380  // class or enumeration of class scope, or an unnamed class or
1381  // enumeration defined in a class-scope typedef declaration such
1382  // that the class or enumeration has the typedef name for linkage
1383  // purposes (7.1.3), has external linkage if the name of the class
1384  // has external linkage.
1385  if (D->getDeclContext()->isRecord())
1386  return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1387 
1388  // C++ [basic.link]p6:
1389  // The name of a function declared in block scope and the name of
1390  // an object declared by a block scope extern declaration have
1391  // linkage. If there is a visible declaration of an entity with
1392  // linkage having the same name and type, ignoring entities
1393  // declared outside the innermost enclosing namespace scope, the
1394  // block scope declaration declares that same entity and receives
1395  // the linkage of the previous declaration. If there is more than
1396  // one such matching entity, the program is ill-formed. Otherwise,
1397  // if no matching entity is found, the block scope entity receives
1398  // external linkage.
1399  if (D->getDeclContext()->isFunctionOrMethod())
1400  return getLVForLocalDecl(D, computation);
1401 
1402  // C++ [basic.link]p6:
1403  // Names not covered by these rules have no linkage.
1404  return LinkageInfo::none();
1405 }
1406 
1407 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1409  LVComputationKind computation) {
1410  // Internal_linkage attribute overrides other considerations.
1411  if (D->hasAttr<InternalLinkageAttr>())
1412  return getInternalLinkageFor(D);
1413 
1414  if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1415  return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1416 
1417  if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1418  return *LI;
1419 
1420  LinkageInfo LV = computeLVForDecl(D, computation);
1421  if (D->hasCachedLinkage())
1422  assert(D->getCachedLinkage() == LV.getLinkage());
1423 
1424  D->setCachedLinkage(LV.getLinkage());
1425  cache(D, computation, LV);
1426 
1427 #ifndef NDEBUG
1428  // In C (because of gnu inline) and in c++ with microsoft extensions an
1429  // static can follow an extern, so we can have two decls with different
1430  // linkages.
1431  const LangOptions &Opts = D->getASTContext().getLangOpts();
1432  if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1433  return LV;
1434 
1435  // We have just computed the linkage for this decl. By induction we know
1436  // that all other computed linkages match, check that the one we just
1437  // computed also does.
1438  NamedDecl *Old = nullptr;
1439  for (auto I : D->redecls()) {
1440  auto *T = cast<NamedDecl>(I);
1441  if (T == D)
1442  continue;
1443  if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1444  Old = T;
1445  break;
1446  }
1447  }
1448  assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1449 #endif
1450 
1451  return LV;
1452 }
1453 
1455  return getLVForDecl(D,
1459 }
1460 
1461 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1462  Module *M = getOwningModule();
1463  if (!M)
1464  return nullptr;
1465 
1466  switch (M->Kind) {
1468  // Module map modules have no special linkage semantics.
1469  return nullptr;
1470 
1472  return M;
1473 
1475  // External linkage declarations in the global module have no owning module
1476  // for linkage purposes. But internal linkage declarations in the global
1477  // module fragment of a particular module are owned by that module for
1478  // linkage purposes.
1479  if (IgnoreLinkage)
1480  return nullptr;
1481  bool InternalLinkage;
1482  if (auto *ND = dyn_cast<NamedDecl>(this))
1483  InternalLinkage = !ND->hasExternalFormalLinkage();
1484  else {
1485  auto *NSD = dyn_cast<NamespaceDecl>(this);
1486  InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1487  isInAnonymousNamespace();
1488  }
1489  return InternalLinkage ? M->Parent : nullptr;
1490  }
1491  }
1492 
1493  llvm_unreachable("unknown module kind");
1494 }
1495 
1496 void NamedDecl::printName(raw_ostream &os) const {
1497  os << Name;
1498 }
1499 
1501  std::string QualName;
1502  llvm::raw_string_ostream OS(QualName);
1503  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1504  return OS.str();
1505 }
1506 
1507 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1508  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1509 }
1510 
1511 void NamedDecl::printQualifiedName(raw_ostream &OS,
1512  const PrintingPolicy &P) const {
1513  const DeclContext *Ctx = getDeclContext();
1514 
1515  // For ObjC methods, look through categories and use the interface as context.
1516  if (auto *MD = dyn_cast<ObjCMethodDecl>(this))
1517  if (auto *ID = MD->getClassInterface())
1518  Ctx = ID;
1519 
1520  if (Ctx->isFunctionOrMethod()) {
1521  printName(OS);
1522  return;
1523  }
1524 
1525  using ContextsTy = SmallVector<const DeclContext *, 8>;
1526  ContextsTy Contexts;
1527 
1528  // Collect named contexts.
1529  while (Ctx) {
1530  if (isa<NamedDecl>(Ctx))
1531  Contexts.push_back(Ctx);
1532  Ctx = Ctx->getParent();
1533  }
1534 
1535  for (const DeclContext *DC : llvm::reverse(Contexts)) {
1536  if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1537  OS << Spec->getName();
1538  const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1539  printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
1540  } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1541  if (P.SuppressUnwrittenScope &&
1542  (ND->isAnonymousNamespace() || ND->isInline()))
1543  continue;
1544  if (ND->isAnonymousNamespace()) {
1545  OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1546  : "(anonymous namespace)");
1547  }
1548  else
1549  OS << *ND;
1550  } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1551  if (!RD->getIdentifier())
1552  OS << "(anonymous " << RD->getKindName() << ')';
1553  else
1554  OS << *RD;
1555  } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1556  const FunctionProtoType *FT = nullptr;
1557  if (FD->hasWrittenPrototype())
1558  FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1559 
1560  OS << *FD << '(';
1561  if (FT) {
1562  unsigned NumParams = FD->getNumParams();
1563  for (unsigned i = 0; i < NumParams; ++i) {
1564  if (i)
1565  OS << ", ";
1566  OS << FD->getParamDecl(i)->getType().stream(P);
1567  }
1568 
1569  if (FT->isVariadic()) {
1570  if (NumParams > 0)
1571  OS << ", ";
1572  OS << "...";
1573  }
1574  }
1575  OS << ')';
1576  } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1577  // C++ [dcl.enum]p10: Each enum-name and each unscoped
1578  // enumerator is declared in the scope that immediately contains
1579  // the enum-specifier. Each scoped enumerator is declared in the
1580  // scope of the enumeration.
1581  // For the case of unscoped enumerator, do not include in the qualified
1582  // name any information about its enum enclosing scope, as its visibility
1583  // is global.
1584  if (ED->isScoped())
1585  OS << *ED;
1586  else
1587  continue;
1588  } else {
1589  OS << *cast<NamedDecl>(DC);
1590  }
1591  OS << "::";
1592  }
1593 
1594  if (getDeclName() || isa<DecompositionDecl>(this))
1595  OS << *this;
1596  else
1597  OS << "(anonymous)";
1598 }
1599 
1600 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1601  const PrintingPolicy &Policy,
1602  bool Qualified) const {
1603  if (Qualified)
1604  printQualifiedName(OS, Policy);
1605  else
1606  printName(OS);
1607 }
1608 
1609 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1610  return true;
1611 }
1612 static bool isRedeclarableImpl(...) { return false; }
1613 static bool isRedeclarable(Decl::Kind K) {
1614  switch (K) {
1615 #define DECL(Type, Base) \
1616  case Decl::Type: \
1617  return isRedeclarableImpl((Type##Decl *)nullptr);
1618 #define ABSTRACT_DECL(DECL)
1619 #include "clang/AST/DeclNodes.inc"
1620  }
1621  llvm_unreachable("unknown decl kind");
1622 }
1623 
1624 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1625  assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1626 
1627  // Never replace one imported declaration with another; we need both results
1628  // when re-exporting.
1629  if (OldD->isFromASTFile() && isFromASTFile())
1630  return false;
1631 
1632  // A kind mismatch implies that the declaration is not replaced.
1633  if (OldD->getKind() != getKind())
1634  return false;
1635 
1636  // For method declarations, we never replace. (Why?)
1637  if (isa<ObjCMethodDecl>(this))
1638  return false;
1639 
1640  // For parameters, pick the newer one. This is either an error or (in
1641  // Objective-C) permitted as an extension.
1642  if (isa<ParmVarDecl>(this))
1643  return true;
1644 
1645  // Inline namespaces can give us two declarations with the same
1646  // name and kind in the same scope but different contexts; we should
1647  // keep both declarations in this case.
1648  if (!this->getDeclContext()->getRedeclContext()->Equals(
1649  OldD->getDeclContext()->getRedeclContext()))
1650  return false;
1651 
1652  // Using declarations can be replaced if they import the same name from the
1653  // same context.
1654  if (auto *UD = dyn_cast<UsingDecl>(this)) {
1655  ASTContext &Context = getASTContext();
1656  return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1658  cast<UsingDecl>(OldD)->getQualifier());
1659  }
1660  if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1661  ASTContext &Context = getASTContext();
1662  return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1664  cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1665  }
1666 
1667  if (isRedeclarable(getKind())) {
1668  if (getCanonicalDecl() != OldD->getCanonicalDecl())
1669  return false;
1670 
1671  if (IsKnownNewer)
1672  return true;
1673 
1674  // Check whether this is actually newer than OldD. We want to keep the
1675  // newer declaration. This loop will usually only iterate once, because
1676  // OldD is usually the previous declaration.
1677  for (auto D : redecls()) {
1678  if (D == OldD)
1679  break;
1680 
1681  // If we reach the canonical declaration, then OldD is not actually older
1682  // than this one.
1683  //
1684  // FIXME: In this case, we should not add this decl to the lookup table.
1685  if (D->isCanonicalDecl())
1686  return false;
1687  }
1688 
1689  // It's a newer declaration of the same kind of declaration in the same
1690  // scope: we want this decl instead of the existing one.
1691  return true;
1692  }
1693 
1694  // In all other cases, we need to keep both declarations in case they have
1695  // different visibility. Any attempt to use the name will result in an
1696  // ambiguity if more than one is visible.
1697  return false;
1698 }
1699 
1701  return getFormalLinkage() != NoLinkage;
1702 }
1703 
1704 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1705  NamedDecl *ND = this;
1706  while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1707  ND = UD->getTargetDecl();
1708 
1709  if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1710  return AD->getClassInterface();
1711 
1712  if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1713  return AD->getNamespace();
1714 
1715  return ND;
1716 }
1717 
1719  if (!isCXXClassMember())
1720  return false;
1721 
1722  const NamedDecl *D = this;
1723  if (isa<UsingShadowDecl>(D))
1724  D = cast<UsingShadowDecl>(D)->getTargetDecl();
1725 
1726  if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1727  return true;
1728  if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1729  return MD->isInstance();
1730  return false;
1731 }
1732 
1733 //===----------------------------------------------------------------------===//
1734 // DeclaratorDecl Implementation
1735 //===----------------------------------------------------------------------===//
1736 
1737 template <typename DeclT>
1739  if (decl->getNumTemplateParameterLists() > 0)
1740  return decl->getTemplateParameterList(0)->getTemplateLoc();
1741  else
1742  return decl->getInnerLocStart();
1743 }
1744 
1746  TypeSourceInfo *TSI = getTypeSourceInfo();
1747  if (TSI) return TSI->getTypeLoc().getBeginLoc();
1748  return SourceLocation();
1749 }
1750 
1752  if (QualifierLoc) {
1753  // Make sure the extended decl info is allocated.
1754  if (!hasExtInfo()) {
1755  // Save (non-extended) type source info pointer.
1756  auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1757  // Allocate external info struct.
1758  DeclInfo = new (getASTContext()) ExtInfo;
1759  // Restore savedTInfo into (extended) decl info.
1760  getExtInfo()->TInfo = savedTInfo;
1761  }
1762  // Set qualifier info.
1763  getExtInfo()->QualifierLoc = QualifierLoc;
1764  } else {
1765  // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1766  if (hasExtInfo()) {
1767  if (getExtInfo()->NumTemplParamLists == 0) {
1768  // Save type source info pointer.
1769  TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1770  // Deallocate the extended decl info.
1771  getASTContext().Deallocate(getExtInfo());
1772  // Restore savedTInfo into (non-extended) decl info.
1773  DeclInfo = savedTInfo;
1774  }
1775  else
1776  getExtInfo()->QualifierLoc = QualifierLoc;
1777  }
1778  }
1779 }
1780 
1782  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1783  assert(!TPLists.empty());
1784  // Make sure the extended decl info is allocated.
1785  if (!hasExtInfo()) {
1786  // Save (non-extended) type source info pointer.
1787  auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1788  // Allocate external info struct.
1789  DeclInfo = new (getASTContext()) ExtInfo;
1790  // Restore savedTInfo into (extended) decl info.
1791  getExtInfo()->TInfo = savedTInfo;
1792  }
1793  // Set the template parameter lists info.
1794  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1795 }
1796 
1798  return getTemplateOrInnerLocStart(this);
1799 }
1800 
1801 // Helper function: returns true if QT is or contains a type
1802 // having a postfix component.
1803 static bool typeIsPostfix(QualType QT) {
1804  while (true) {
1805  const Type* T = QT.getTypePtr();
1806  switch (T->getTypeClass()) {
1807  default:
1808  return false;
1809  case Type::Pointer:
1810  QT = cast<PointerType>(T)->getPointeeType();
1811  break;
1812  case Type::BlockPointer:
1813  QT = cast<BlockPointerType>(T)->getPointeeType();
1814  break;
1815  case Type::MemberPointer:
1816  QT = cast<MemberPointerType>(T)->getPointeeType();
1817  break;
1818  case Type::LValueReference:
1819  case Type::RValueReference:
1820  QT = cast<ReferenceType>(T)->getPointeeType();
1821  break;
1822  case Type::PackExpansion:
1823  QT = cast<PackExpansionType>(T)->getPattern();
1824  break;
1825  case Type::Paren:
1826  case Type::ConstantArray:
1827  case Type::DependentSizedArray:
1828  case Type::IncompleteArray:
1829  case Type::VariableArray:
1830  case Type::FunctionProto:
1831  case Type::FunctionNoProto:
1832  return true;
1833  }
1834  }
1835 }
1836 
1838  SourceLocation RangeEnd = getLocation();
1839  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1840  // If the declaration has no name or the type extends past the name take the
1841  // end location of the type.
1842  if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1843  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1844  }
1845  return SourceRange(getOuterLocStart(), RangeEnd);
1846 }
1847 
1849  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1850  // Free previous template parameters (if any).
1851  if (NumTemplParamLists > 0) {
1852  Context.Deallocate(TemplParamLists);
1853  TemplParamLists = nullptr;
1854  NumTemplParamLists = 0;
1855  }
1856  // Set info on matched template parameter lists (if any).
1857  if (!TPLists.empty()) {
1858  TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1859  NumTemplParamLists = TPLists.size();
1860  std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1861  }
1862 }
1863 
1864 //===----------------------------------------------------------------------===//
1865 // VarDecl Implementation
1866 //===----------------------------------------------------------------------===//
1867 
1869  switch (SC) {
1870  case SC_None: break;
1871  case SC_Auto: return "auto";
1872  case SC_Extern: return "extern";
1873  case SC_PrivateExtern: return "__private_extern__";
1874  case SC_Register: return "register";
1875  case SC_Static: return "static";
1876  }
1877 
1878  llvm_unreachable("Invalid storage class");
1879 }
1880 
1882  SourceLocation StartLoc, SourceLocation IdLoc,
1884  StorageClass SC)
1885  : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1886  redeclarable_base(C) {
1887  static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1888  "VarDeclBitfields too large!");
1889  static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1890  "ParmVarDeclBitfields too large!");
1891  static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1892  "NonParmVarDeclBitfields too large!");
1893  AllBits = 0;
1894  VarDeclBits.SClass = SC;
1895  // Everything else is implicitly initialized to false.
1896 }
1897 
1899  SourceLocation StartL, SourceLocation IdL,
1901  StorageClass S) {
1902  return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1903 }
1904 
1906  return new (C, ID)
1907  VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1908  QualType(), nullptr, SC_None);
1909 }
1910 
1912  assert(isLegalForVariable(SC));
1913  VarDeclBits.SClass = SC;
1914 }
1915 
1917  switch (VarDeclBits.TSCSpec) {
1918  case TSCS_unspecified:
1919  if (!hasAttr<ThreadAttr>() &&
1920  !(getASTContext().getLangOpts().OpenMPUseTLS &&
1921  getASTContext().getTargetInfo().isTLSSupported() &&
1922  hasAttr<OMPThreadPrivateDeclAttr>()))
1923  return TLS_None;
1924  return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1926  hasAttr<OMPThreadPrivateDeclAttr>())
1927  ? TLS_Dynamic
1928  : TLS_Static;
1929  case TSCS___thread: // Fall through.
1930  case TSCS__Thread_local:
1931  return TLS_Static;
1932  case TSCS_thread_local:
1933  return TLS_Dynamic;
1934  }
1935  llvm_unreachable("Unknown thread storage class specifier!");
1936 }
1937 
1939  if (const Expr *Init = getInit()) {
1940  SourceLocation InitEnd = Init->getEndLoc();
1941  // If Init is implicit, ignore its source range and fallback on
1942  // DeclaratorDecl::getSourceRange() to handle postfix elements.
1943  if (InitEnd.isValid() && InitEnd != getLocation())
1944  return SourceRange(getOuterLocStart(), InitEnd);
1945  }
1947 }
1948 
1949 template<typename T>
1951  // C++ [dcl.link]p1: All function types, function names with external linkage,
1952  // and variable names with external linkage have a language linkage.
1953  if (!D.hasExternalFormalLinkage())
1954  return NoLanguageLinkage;
1955 
1956  // Language linkage is a C++ concept, but saying that everything else in C has
1957  // C language linkage fits the implementation nicely.
1958  ASTContext &Context = D.getASTContext();
1959  if (!Context.getLangOpts().CPlusPlus)
1960  return CLanguageLinkage;
1961 
1962  // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1963  // language linkage of the names of class members and the function type of
1964  // class member functions.
1965  const DeclContext *DC = D.getDeclContext();
1966  if (DC->isRecord())
1967  return CXXLanguageLinkage;
1968 
1969  // If the first decl is in an extern "C" context, any other redeclaration
1970  // will have C language linkage. If the first one is not in an extern "C"
1971  // context, we would have reported an error for any other decl being in one.
1972  if (isFirstInExternCContext(&D))
1973  return CLanguageLinkage;
1974  return CXXLanguageLinkage;
1975 }
1976 
1977 template<typename T>
1978 static bool isDeclExternC(const T &D) {
1979  // Since the context is ignored for class members, they can only have C++
1980  // language linkage or no language linkage.
1981  const DeclContext *DC = D.getDeclContext();
1982  if (DC->isRecord()) {
1983  assert(D.getASTContext().getLangOpts().CPlusPlus);
1984  return false;
1985  }
1986 
1987  return D.getLanguageLinkage() == CLanguageLinkage;
1988 }
1989 
1991  return getDeclLanguageLinkage(*this);
1992 }
1993 
1994 bool VarDecl::isExternC() const {
1995  return isDeclExternC(*this);
1996 }
1997 
2000 }
2001 
2004 }
2005 
2007 
2011  return DeclarationOnly;
2012 
2013  // C++ [basic.def]p2:
2014  // A declaration is a definition unless [...] it contains the 'extern'
2015  // specifier or a linkage-specification and neither an initializer [...],
2016  // it declares a non-inline static data member in a class declaration [...],
2017  // it declares a static data member outside a class definition and the variable
2018  // was defined within the class with the constexpr specifier [...],
2019  // C++1y [temp.expl.spec]p15:
2020  // An explicit specialization of a static data member or an explicit
2021  // specialization of a static data member template is a definition if the
2022  // declaration includes an initializer; otherwise, it is a declaration.
2023  //
2024  // FIXME: How do you declare (but not define) a partial specialization of
2025  // a static data member template outside the containing class?
2026  if (isStaticDataMember()) {
2027  if (isOutOfLine() &&
2028  !(getCanonicalDecl()->isInline() &&
2029  getCanonicalDecl()->isConstexpr()) &&
2030  (hasInit() ||
2031  // If the first declaration is out-of-line, this may be an
2032  // instantiation of an out-of-line partial specialization of a variable
2033  // template for which we have not yet instantiated the initializer.
2038  isa<VarTemplatePartialSpecializationDecl>(this)))
2039  return Definition;
2040  else if (!isOutOfLine() && isInline())
2041  return Definition;
2042  else
2043  return DeclarationOnly;
2044  }
2045  // C99 6.7p5:
2046  // A definition of an identifier is a declaration for that identifier that
2047  // [...] causes storage to be reserved for that object.
2048  // Note: that applies for all non-file-scope objects.
2049  // C99 6.9.2p1:
2050  // If the declaration of an identifier for an object has file scope and an
2051  // initializer, the declaration is an external definition for the identifier
2052  if (hasInit())
2053  return Definition;
2054 
2055  if (hasDefiningAttr())
2056  return Definition;
2057 
2058  if (const auto *SAA = getAttr<SelectAnyAttr>())
2059  if (!SAA->isInherited())
2060  return Definition;
2061 
2062  // A variable template specialization (other than a static data member
2063  // template or an explicit specialization) is a declaration until we
2064  // instantiate its initializer.
2065  if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2066  if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2067  !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2068  !VTSD->IsCompleteDefinition)
2069  return DeclarationOnly;
2070  }
2071 
2072  if (hasExternalStorage())
2073  return DeclarationOnly;
2074 
2075  // [dcl.link] p7:
2076  // A declaration directly contained in a linkage-specification is treated
2077  // as if it contains the extern specifier for the purpose of determining
2078  // the linkage of the declared name and whether it is a definition.
2079  if (isSingleLineLanguageLinkage(*this))
2080  return DeclarationOnly;
2081 
2082  // C99 6.9.2p2:
2083  // A declaration of an object that has file scope without an initializer,
2084  // and without a storage class specifier or the scs 'static', constitutes
2085  // a tentative definition.
2086  // No such thing in C++.
2087  if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2088  return TentativeDefinition;
2089 
2090  // What's left is (in C, block-scope) declarations without initializers or
2091  // external storage. These are definitions.
2092  return Definition;
2093 }
2094 
2097  if (Kind != TentativeDefinition)
2098  return nullptr;
2099 
2100  VarDecl *LastTentative = nullptr;
2101  VarDecl *First = getFirstDecl();
2102  for (auto I : First->redecls()) {
2103  Kind = I->isThisDeclarationADefinition();
2104  if (Kind == Definition)
2105  return nullptr;
2106  else if (Kind == TentativeDefinition)
2107  LastTentative = I;
2108  }
2109  return LastTentative;
2110 }
2111 
2113  VarDecl *First = getFirstDecl();
2114  for (auto I : First->redecls()) {
2115  if (I->isThisDeclarationADefinition(C) == Definition)
2116  return I;
2117  }
2118  return nullptr;
2119 }
2120 
2123 
2124  const VarDecl *First = getFirstDecl();
2125  for (auto I : First->redecls()) {
2126  Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2127  if (Kind == Definition)
2128  break;
2129  }
2130 
2131  return Kind;
2132 }
2133 
2134 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2135  for (auto I : redecls()) {
2136  if (auto Expr = I->getInit()) {
2137  D = I;
2138  return Expr;
2139  }
2140  }
2141  return nullptr;
2142 }
2143 
2144 bool VarDecl::hasInit() const {
2145  if (auto *P = dyn_cast<ParmVarDecl>(this))
2146  if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2147  return false;
2148 
2149  return !Init.isNull();
2150 }
2151 
2153  if (!hasInit())
2154  return nullptr;
2155 
2156  if (auto *S = Init.dyn_cast<Stmt *>())
2157  return cast<Expr>(S);
2158 
2159  return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2160 }
2161 
2163  if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2164  return &ES->Value;
2165 
2166  return Init.getAddrOfPtr1();
2167 }
2168 
2169 bool VarDecl::isOutOfLine() const {
2170  if (Decl::isOutOfLine())
2171  return true;
2172 
2173  if (!isStaticDataMember())
2174  return false;
2175 
2176  // If this static data member was instantiated from a static data member of
2177  // a class template, check whether that static data member was defined
2178  // out-of-line.
2180  return VD->isOutOfLine();
2181 
2182  return false;
2183 }
2184 
2186  if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2187  Eval->~EvaluatedStmt();
2188  getASTContext().Deallocate(Eval);
2189  }
2190 
2191  Init = I;
2192 }
2193 
2195  const LangOptions &Lang = C.getLangOpts();
2196 
2197  if (!Lang.CPlusPlus)
2198  return false;
2199 
2200  // In C++11, any variable of reference type can be used in a constant
2201  // expression if it is initialized by a constant expression.
2202  if (Lang.CPlusPlus11 && getType()->isReferenceType())
2203  return true;
2204 
2205  // Only const objects can be used in constant expressions in C++. C++98 does
2206  // not require the variable to be non-volatile, but we consider this to be a
2207  // defect.
2208  if (!getType().isConstQualified() || getType().isVolatileQualified())
2209  return false;
2210 
2211  // In C++, const, non-volatile variables of integral or enumeration types
2212  // can be used in constant expressions.
2213  if (getType()->isIntegralOrEnumerationType())
2214  return true;
2215 
2216  // Additionally, in C++11, non-volatile constexpr variables can be used in
2217  // constant expressions.
2218  return Lang.CPlusPlus11 && isConstexpr();
2219 }
2220 
2221 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2222 /// form, which contains extra information on the evaluated value of the
2223 /// initializer.
2225  auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2226  if (!Eval) {
2227  // Note: EvaluatedStmt contains an APValue, which usually holds
2228  // resources not allocated from the ASTContext. We need to do some
2229  // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2230  // where we can detect whether there's anything to clean up or not.
2231  Eval = new (getASTContext()) EvaluatedStmt;
2232  Eval->Value = Init.get<Stmt *>();
2233  Init = Eval;
2234  }
2235  return Eval;
2236 }
2237 
2240  return evaluateValue(Notes);
2241 }
2242 
2244  SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2246 
2247  // We only produce notes indicating why an initializer is non-constant the
2248  // first time it is evaluated. FIXME: The notes won't always be emitted the
2249  // first time we try evaluation, so might not be produced at all.
2250  if (Eval->WasEvaluated)
2251  return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2252 
2253  const auto *Init = cast<Expr>(Eval->Value);
2254  assert(!Init->isValueDependent());
2255 
2256  if (Eval->IsEvaluating) {
2257  // FIXME: Produce a diagnostic for self-initialization.
2258  Eval->CheckedICE = true;
2259  Eval->IsICE = false;
2260  return nullptr;
2261  }
2262 
2263  Eval->IsEvaluating = true;
2264 
2265  bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2266  this, Notes);
2267 
2268  // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2269  // or that it's empty (so that there's nothing to clean up) if evaluation
2270  // failed.
2271  if (!Result)
2272  Eval->Evaluated = APValue();
2273  else if (Eval->Evaluated.needsCleanup())
2275 
2276  Eval->IsEvaluating = false;
2277  Eval->WasEvaluated = true;
2278 
2279  // In C++11, we have determined whether the initializer was a constant
2280  // expression as a side-effect.
2281  if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2282  Eval->CheckedICE = true;
2283  Eval->IsICE = Result && Notes.empty();
2284  }
2285 
2286  return Result ? &Eval->Evaluated : nullptr;
2287 }
2288 
2290  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2291  if (Eval->WasEvaluated)
2292  return &Eval->Evaluated;
2293 
2294  return nullptr;
2295 }
2296 
2298  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2299  return Eval->CheckedICE;
2300 
2301  return false;
2302 }
2303 
2304 bool VarDecl::isInitICE() const {
2305  assert(isInitKnownICE() &&
2306  "Check whether we already know that the initializer is an ICE");
2307  return Init.get<EvaluatedStmt *>()->IsICE;
2308 }
2309 
2311  // Initializers of weak variables are never ICEs.
2312  if (isWeak())
2313  return false;
2314 
2316  if (Eval->CheckedICE)
2317  // We have already checked whether this subexpression is an
2318  // integral constant expression.
2319  return Eval->IsICE;
2320 
2321  const auto *Init = cast<Expr>(Eval->Value);
2322  assert(!Init->isValueDependent());
2323 
2324  // In C++11, evaluate the initializer to check whether it's a constant
2325  // expression.
2326  if (getASTContext().getLangOpts().CPlusPlus11) {
2328  evaluateValue(Notes);
2329  return Eval->IsICE;
2330  }
2331 
2332  // It's an ICE whether or not the definition we found is
2333  // out-of-line. See DR 721 and the discussion in Clang PR
2334  // 6206 for details.
2335 
2336  if (Eval->CheckingICE)
2337  return false;
2338  Eval->CheckingICE = true;
2339 
2340  Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2341  Eval->CheckingICE = false;
2342  Eval->CheckedICE = true;
2343  return Eval->IsICE;
2344 }
2345 
2346 template<typename DeclT>
2347 static DeclT *getDefinitionOrSelf(DeclT *D) {
2348  assert(D);
2349  if (auto *Def = D->getDefinition())
2350  return Def;
2351  return D;
2352 }
2353 
2355  // If it's a variable template specialization, find the template or partial
2356  // specialization from which it was instantiated.
2357  if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2358  auto From = VDTemplSpec->getInstantiatedFrom();
2359  if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2360  while (auto *NewVTD = VTD->getInstantiatedFromMemberTemplate()) {
2361  if (NewVTD->isMemberSpecialization())
2362  break;
2363  VTD = NewVTD;
2364  }
2365  return getDefinitionOrSelf(VTD->getTemplatedDecl());
2366  }
2367  if (auto *VTPSD =
2368  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2369  while (auto *NewVTPSD = VTPSD->getInstantiatedFromMember()) {
2370  if (NewVTPSD->isMemberSpecialization())
2371  break;
2372  VTPSD = NewVTPSD;
2373  }
2374  return getDefinitionOrSelf<VarDecl>(VTPSD);
2375  }
2376  }
2377 
2379  if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2381  while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2382  VD = NewVD;
2383  return getDefinitionOrSelf(VD);
2384  }
2385  }
2386 
2387  if (VarTemplateDecl *VarTemplate = getDescribedVarTemplate()) {
2388  while (VarTemplate->getInstantiatedFromMemberTemplate()) {
2389  if (VarTemplate->isMemberSpecialization())
2390  break;
2391  VarTemplate = VarTemplate->getInstantiatedFromMemberTemplate();
2392  }
2393 
2394  return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2395  }
2396  return nullptr;
2397 }
2398 
2401  return cast<VarDecl>(MSI->getInstantiatedFrom());
2402 
2403  return nullptr;
2404 }
2405 
2407  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2408  return Spec->getSpecializationKind();
2409 
2411  return MSI->getTemplateSpecializationKind();
2412 
2413  return TSK_Undeclared;
2414 }
2415 
2417  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2418  return Spec->getPointOfInstantiation();
2419 
2421  return MSI->getPointOfInstantiation();
2422 
2423  return SourceLocation();
2424 }
2425 
2428  .dyn_cast<VarTemplateDecl *>();
2429 }
2430 
2433 }
2434 
2436  const auto &LangOpts = getASTContext().getLangOpts();
2437  // In CUDA mode without relocatable device code, variables of form 'extern
2438  // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2439  // memory pool. These are never undefined variables, even if they appear
2440  // inside of an anon namespace or static function.
2441  //
2442  // With CUDA relocatable device code enabled, these variables don't get
2443  // special handling; they're treated like regular extern variables.
2444  if (LangOpts.CUDA && !LangOpts.CUDARelocatableDeviceCode &&
2445  hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2446  isa<IncompleteArrayType>(getType()))
2447  return true;
2448 
2449  return hasDefinition();
2450 }
2451 
2453  if (isStaticDataMember())
2454  // FIXME: Remove ?
2455  // return getASTContext().getInstantiatedFromStaticDataMember(this);
2457  .dyn_cast<MemberSpecializationInfo *>();
2458  return nullptr;
2459 }
2460 
2462  SourceLocation PointOfInstantiation) {
2463  assert((isa<VarTemplateSpecializationDecl>(this) ||
2465  "not a variable or static data member template specialization");
2466 
2467  if (VarTemplateSpecializationDecl *Spec =
2468  dyn_cast<VarTemplateSpecializationDecl>(this)) {
2469  Spec->setSpecializationKind(TSK);
2470  if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2471  Spec->getPointOfInstantiation().isInvalid()) {
2472  Spec->setPointOfInstantiation(PointOfInstantiation);
2474  L->InstantiationRequested(this);
2475  }
2476  }
2477 
2479  MSI->setTemplateSpecializationKind(TSK);
2480  if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2481  MSI->getPointOfInstantiation().isInvalid()) {
2482  MSI->setPointOfInstantiation(PointOfInstantiation);
2484  L->InstantiationRequested(this);
2485  }
2486  }
2487 }
2488 
2489 void
2492  assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2493  "Previous template or instantiation?");
2495 }
2496 
2497 //===----------------------------------------------------------------------===//
2498 // ParmVarDecl Implementation
2499 //===----------------------------------------------------------------------===//
2500 
2502  SourceLocation StartLoc,
2504  QualType T, TypeSourceInfo *TInfo,
2505  StorageClass S, Expr *DefArg) {
2506  return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2507  S, DefArg);
2508 }
2509 
2512  QualType T = TSI ? TSI->getType() : getType();
2513  if (const auto *DT = dyn_cast<DecayedType>(T))
2514  return DT->getOriginalType();
2515  return T;
2516 }
2517 
2519  return new (C, ID)
2520  ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2521  nullptr, QualType(), nullptr, SC_None, nullptr);
2522 }
2523 
2525  if (!hasInheritedDefaultArg()) {
2526  SourceRange ArgRange = getDefaultArgRange();
2527  if (ArgRange.isValid())
2528  return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2529  }
2530 
2531  // DeclaratorDecl considers the range of postfix types as overlapping with the
2532  // declaration name, but this is not the case with parameters in ObjC methods.
2533  if (isa<ObjCMethodDecl>(getDeclContext()))
2535 
2537 }
2538 
2540  assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2541  assert(!hasUninstantiatedDefaultArg() &&
2542  "Default argument is not yet instantiated!");
2543 
2544  Expr *Arg = getInit();
2545  if (auto *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2546  return E->getSubExpr();
2547 
2548  return Arg;
2549 }
2550 
2552  ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2553  Init = defarg;
2554 }
2555 
2557  switch (ParmVarDeclBits.DefaultArgKind) {
2558  case DAK_None:
2559  case DAK_Unparsed:
2560  // Nothing we can do here.
2561  return SourceRange();
2562 
2563  case DAK_Uninstantiated:
2564  return getUninstantiatedDefaultArg()->getSourceRange();
2565 
2566  case DAK_Normal:
2567  if (const Expr *E = getInit())
2568  return E->getSourceRange();
2569 
2570  // Missing an actual expression, may be invalid.
2571  return SourceRange();
2572  }
2573  llvm_unreachable("Invalid default argument kind.");
2574 }
2575 
2577  ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2578  Init = arg;
2579 }
2580 
2582  assert(hasUninstantiatedDefaultArg() &&
2583  "Wrong kind of initialization expression!");
2584  return cast_or_null<Expr>(Init.get<Stmt *>());
2585 }
2586 
2588  // FIXME: We should just return false for DAK_None here once callers are
2589  // prepared for the case that we encountered an invalid default argument and
2590  // were unable to even build an invalid expression.
2591  return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2592  !Init.isNull();
2593 }
2594 
2596  return isa<PackExpansionType>(getType());
2597 }
2598 
2599 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2600  getASTContext().setParameterIndex(this, parameterIndex);
2601  ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2602 }
2603 
2604 unsigned ParmVarDecl::getParameterIndexLarge() const {
2605  return getASTContext().getParameterIndex(this);
2606 }
2607 
2608 //===----------------------------------------------------------------------===//
2609 // FunctionDecl Implementation
2610 //===----------------------------------------------------------------------===//
2611 
2613  SourceLocation StartLoc,
2614  const DeclarationNameInfo &NameInfo, QualType T,
2615  TypeSourceInfo *TInfo, StorageClass S,
2616  bool isInlineSpecified, bool isConstexprSpecified)
2617  : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2618  StartLoc),
2620  EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2621  setStorageClass(S);
2622  setInlineSpecified(isInlineSpecified);
2623  setExplicitSpecified(false);
2624  setVirtualAsWritten(false);
2625  setPure(false);
2626  setHasInheritedPrototype(false);
2627  setHasWrittenPrototype(true);
2628  setDeletedAsWritten(false);
2629  setTrivial(false);
2630  setTrivialForCall(false);
2631  setDefaulted(false);
2632  setExplicitlyDefaulted(false);
2633  setHasImplicitReturnZero(false);
2634  setLateTemplateParsed(false);
2635  setConstexpr(isConstexprSpecified);
2637  setUsesSEHTry(false);
2638  setHasSkippedBody(false);
2639  setWillHaveBody(false);
2640  setIsMultiVersion(false);
2641  setHasODRHash(false);
2642 }
2643 
2645  raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2646  NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2647  const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2648  if (TemplateArgs)
2649  printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2650 }
2651 
2653  if (const auto *FT = getType()->getAs<FunctionProtoType>())
2654  return FT->isVariadic();
2655  return false;
2656 }
2657 
2658 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2659  for (auto I : redecls()) {
2660  if (I->doesThisDeclarationHaveABody()) {
2661  Definition = I;
2662  return true;
2663  }
2664  }
2665 
2666  return false;
2667 }
2668 
2670 {
2671  Stmt *S = getBody();
2672  if (!S) {
2673  // Since we don't have a body for this function, we don't know if it's
2674  // trivial or not.
2675  return false;
2676  }
2677 
2678  if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2679  return true;
2680  return false;
2681 }
2682 
2683 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2684  for (auto I : redecls()) {
2685  if (I->isThisDeclarationADefinition()) {
2686  Definition = I;
2687  return true;
2688  }
2689  }
2690 
2691  return false;
2692 }
2693 
2694 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2695  if (!hasBody(Definition))
2696  return nullptr;
2697 
2698  if (Definition->Body)
2699  return Definition->Body.get(getASTContext().getExternalSource());
2700 
2701  return nullptr;
2702 }
2703 
2705  Body = B;
2706  if (B)
2707  EndRangeLoc = B->getEndLoc();
2708 }
2709 
2711  FunctionDeclBits.IsPure = P;
2712  if (P)
2713  if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2714  Parent->markedVirtualFunctionPure();
2715 }
2716 
2717 template<std::size_t Len>
2718 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2719  IdentifierInfo *II = ND->getIdentifier();
2720  return II && II->isStr(Str);
2721 }
2722 
2723 bool FunctionDecl::isMain() const {
2724  const TranslationUnitDecl *tunit =
2726  return tunit &&
2727  !tunit->getASTContext().getLangOpts().Freestanding &&
2728  isNamed(this, "main");
2729 }
2730 
2732  const TranslationUnitDecl *TUnit =
2734  if (!TUnit)
2735  return false;
2736 
2737  // Even though we aren't really targeting MSVCRT if we are freestanding,
2738  // semantic analysis for these functions remains the same.
2739 
2740  // MSVCRT entry points only exist on MSVCRT targets.
2741  if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2742  return false;
2743 
2744  // Nameless functions like constructors cannot be entry points.
2745  if (!getIdentifier())
2746  return false;
2747 
2748  return llvm::StringSwitch<bool>(getName())
2749  .Cases("main", // an ANSI console app
2750  "wmain", // a Unicode console App
2751  "WinMain", // an ANSI GUI app
2752  "wWinMain", // a Unicode GUI app
2753  "DllMain", // a DLL
2754  true)
2755  .Default(false);
2756 }
2757 
2759  assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2760  assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2761  getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2762  getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2763  getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2764 
2766  return false;
2767 
2768  const auto *proto = getType()->castAs<FunctionProtoType>();
2769  if (proto->getNumParams() != 2 || proto->isVariadic())
2770  return false;
2771 
2772  ASTContext &Context =
2773  cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2774  ->getASTContext();
2775 
2776  // The result type and first argument type are constant across all
2777  // these operators. The second argument must be exactly void*.
2778  return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2779 }
2780 
2782  if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2783  return false;
2784  if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2785  getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2786  getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2787  getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2788  return false;
2789 
2790  if (isa<CXXRecordDecl>(getDeclContext()))
2791  return false;
2792 
2793  // This can only fail for an invalid 'operator new' declaration.
2795  return false;
2796 
2797  const auto *FPT = getType()->castAs<FunctionProtoType>();
2798  if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
2799  return false;
2800 
2801  // If this is a single-parameter function, it must be a replaceable global
2802  // allocation or deallocation function.
2803  if (FPT->getNumParams() == 1)
2804  return true;
2805 
2806  unsigned Params = 1;
2807  QualType Ty = FPT->getParamType(Params);
2808  ASTContext &Ctx = getASTContext();
2809 
2810  auto Consume = [&] {
2811  ++Params;
2812  Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
2813  };
2814 
2815  // In C++14, the next parameter can be a 'std::size_t' for sized delete.
2816  bool IsSizedDelete = false;
2817  if (Ctx.getLangOpts().SizedDeallocation &&
2818  (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2819  getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
2820  Ctx.hasSameType(Ty, Ctx.getSizeType())) {
2821  IsSizedDelete = true;
2822  Consume();
2823  }
2824 
2825  // In C++17, the next parameter can be a 'std::align_val_t' for aligned
2826  // new/delete.
2827  if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
2828  if (IsAligned)
2829  *IsAligned = true;
2830  Consume();
2831  }
2832 
2833  // Finally, if this is not a sized delete, the final parameter can
2834  // be a 'const std::nothrow_t&'.
2835  if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
2836  Ty = Ty->getPointeeType();
2837  if (Ty.getCVRQualifiers() != Qualifiers::Const)
2838  return false;
2839  const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2840  if (RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace())
2841  Consume();
2842  }
2843 
2844  return Params == FPT->getNumParams();
2845 }
2846 
2848  // C++ P0722:
2849  // Within a class C, a single object deallocation function with signature
2850  // (T, std::destroying_delete_t, <more params>)
2851  // is a destroying operator delete.
2852  if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
2853  getNumParams() < 2)
2854  return false;
2855 
2856  auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
2857  return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
2858  RD->getIdentifier()->isStr("destroying_delete_t");
2859 }
2860 
2862  return getDeclLanguageLinkage(*this);
2863 }
2864 
2866  return isDeclExternC(*this);
2867 }
2868 
2871 }
2872 
2875 }
2876 
2878  if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
2879  return Method->isStatic();
2880 
2882  return false;
2883 
2884  for (const DeclContext *DC = getDeclContext();
2885  DC->isNamespace();
2886  DC = DC->getParent()) {
2887  if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
2888  if (!Namespace->getDeclName())
2889  return false;
2890  break;
2891  }
2892  }
2893 
2894  return true;
2895 }
2896 
2898  if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2899  hasAttr<C11NoReturnAttr>())
2900  return true;
2901 
2902  if (auto *FnTy = getType()->getAs<FunctionType>())
2903  return FnTy->getNoReturnAttr();
2904 
2905  return false;
2906 }
2907 
2909  return isMultiVersion() && hasAttr<CPUDispatchAttr>();
2910 }
2911 
2913  return isMultiVersion() && hasAttr<CPUSpecificAttr>();
2914 }
2915 
2916 void
2919 
2921  FunctionTemplateDecl *PrevFunTmpl
2922  = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
2923  assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2924  FunTmpl->setPreviousDecl(PrevFunTmpl);
2925  }
2926 
2927  if (PrevDecl && PrevDecl->isInlined())
2928  setImplicitlyInline(true);
2929 }
2930 
2932 
2933 /// Returns a value indicating whether this function
2934 /// corresponds to a builtin function.
2935 ///
2936 /// The function corresponds to a built-in function if it is
2937 /// declared at translation scope or within an extern "C" block and
2938 /// its name matches with the name of a builtin. The returned value
2939 /// will be 0 for functions that do not correspond to a builtin, a
2940 /// value of type \c Builtin::ID if in the target-independent range
2941 /// \c [1,Builtin::First), or a target-specific builtin value.
2942 unsigned FunctionDecl::getBuiltinID() const {
2943  if (!getIdentifier())
2944  return 0;
2945 
2946  unsigned BuiltinID = getIdentifier()->getBuiltinID();
2947  if (!BuiltinID)
2948  return 0;
2949 
2950  ASTContext &Context = getASTContext();
2951  if (Context.getLangOpts().CPlusPlus) {
2952  const auto *LinkageDecl =
2954  // In C++, the first declaration of a builtin is always inside an implicit
2955  // extern "C".
2956  // FIXME: A recognised library function may not be directly in an extern "C"
2957  // declaration, for instance "extern "C" { namespace std { decl } }".
2958  if (!LinkageDecl) {
2959  if (BuiltinID == Builtin::BI__GetExceptionInfo &&
2960  Context.getTargetInfo().getCXXABI().isMicrosoft())
2961  return Builtin::BI__GetExceptionInfo;
2962  return 0;
2963  }
2964  if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
2965  return 0;
2966  }
2967 
2968  // If the function is marked "overloadable", it has a different mangled name
2969  // and is not the C library function.
2970  if (hasAttr<OverloadableAttr>())
2971  return 0;
2972 
2973  if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2974  return BuiltinID;
2975 
2976  // This function has the name of a known C library
2977  // function. Determine whether it actually refers to the C library
2978  // function or whether it just has the same name.
2979 
2980  // If this is a static function, it's not a builtin.
2981  if (getStorageClass() == SC_Static)
2982  return 0;
2983 
2984  // OpenCL v1.2 s6.9.f - The library functions defined in
2985  // the C99 standard headers are not available.
2986  if (Context.getLangOpts().OpenCL &&
2987  Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2988  return 0;
2989 
2990  // CUDA does not have device-side standard library. printf and malloc are the
2991  // only special cases that are supported by device-side runtime.
2992  if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
2993  !hasAttr<CUDAHostAttr>() &&
2994  !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
2995  return 0;
2996 
2997  return BuiltinID;
2998 }
2999 
3000 /// getNumParams - Return the number of parameters this function must have
3001 /// based on its FunctionType. This is the length of the ParamInfo array
3002 /// after it has been created.
3003 unsigned FunctionDecl::getNumParams() const {
3004  const auto *FPT = getType()->getAs<FunctionProtoType>();
3005  return FPT ? FPT->getNumParams() : 0;
3006 }
3007 
3008 void FunctionDecl::setParams(ASTContext &C,
3009  ArrayRef<ParmVarDecl *> NewParamInfo) {
3010  assert(!ParamInfo && "Already has param info!");
3011  assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3012 
3013  // Zero params -> null pointer.
3014  if (!NewParamInfo.empty()) {
3015  ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3016  std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3017  }
3018 }
3019 
3020 /// getMinRequiredArguments - Returns the minimum number of arguments
3021 /// needed to call this function. This may be fewer than the number of
3022 /// function parameters, if some of the parameters have default
3023 /// arguments (in C++) or are parameter packs (C++11).
3025  if (!getASTContext().getLangOpts().CPlusPlus)
3026  return getNumParams();
3027 
3028  unsigned NumRequiredArgs = 0;
3029  for (auto *Param : parameters())
3030  if (!Param->isParameterPack() && !Param->hasDefaultArg())
3031  ++NumRequiredArgs;
3032  return NumRequiredArgs;
3033 }
3034 
3035 /// The combination of the extern and inline keywords under MSVC forces
3036 /// the function to be required.
3037 ///
3038 /// Note: This function assumes that we will only get called when isInlined()
3039 /// would return true for this FunctionDecl.
3041  assert(isInlined() && "expected to get called on an inlined function!");
3042 
3043  const ASTContext &Context = getASTContext();
3044  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3045  !hasAttr<DLLExportAttr>())
3046  return false;
3047 
3048  for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3049  FD = FD->getPreviousDecl())
3050  if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3051  return true;
3052 
3053  return false;
3054 }
3055 
3056 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3057  if (Redecl->getStorageClass() != SC_Extern)
3058  return false;
3059 
3060  for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3061  FD = FD->getPreviousDecl())
3062  if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3063  return false;
3064 
3065  return true;
3066 }
3067 
3068 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3069  // Only consider file-scope declarations in this test.
3070  if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3071  return false;
3072 
3073  // Only consider explicit declarations; the presence of a builtin for a
3074  // libcall shouldn't affect whether a definition is externally visible.
3075  if (Redecl->isImplicit())
3076  return false;
3077 
3078  if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3079  return true; // Not an inline definition
3080 
3081  return false;
3082 }
3083 
3084 /// For a function declaration in C or C++, determine whether this
3085 /// declaration causes the definition to be externally visible.
3086 ///
3087 /// For instance, this determines if adding the current declaration to the set
3088 /// of redeclarations of the given functions causes
3089 /// isInlineDefinitionExternallyVisible to change from false to true.
3091  assert(!doesThisDeclarationHaveABody() &&
3092  "Must have a declaration without a body.");
3093 
3094  ASTContext &Context = getASTContext();
3095 
3096  if (Context.getLangOpts().MSVCCompat) {
3097  const FunctionDecl *Definition;
3098  if (hasBody(Definition) && Definition->isInlined() &&
3099  redeclForcesDefMSVC(this))
3100  return true;
3101  }
3102 
3103  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3104  // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3105  // an externally visible definition.
3106  //
3107  // FIXME: What happens if gnu_inline gets added on after the first
3108  // declaration?
3110  return false;
3111 
3112  const FunctionDecl *Prev = this;
3113  bool FoundBody = false;
3114  while ((Prev = Prev->getPreviousDecl())) {
3115  FoundBody |= Prev->Body.isValid();
3116 
3117  if (Prev->Body) {
3118  // If it's not the case that both 'inline' and 'extern' are
3119  // specified on the definition, then it is always externally visible.
3120  if (!Prev->isInlineSpecified() ||
3121  Prev->getStorageClass() != SC_Extern)
3122  return false;
3123  } else if (Prev->isInlineSpecified() &&
3124  Prev->getStorageClass() != SC_Extern) {
3125  return false;
3126  }
3127  }
3128  return FoundBody;
3129  }
3130 
3131  if (Context.getLangOpts().CPlusPlus)
3132  return false;
3133 
3134  // C99 6.7.4p6:
3135  // [...] If all of the file scope declarations for a function in a
3136  // translation unit include the inline function specifier without extern,
3137  // then the definition in that translation unit is an inline definition.
3139  return false;
3140  const FunctionDecl *Prev = this;
3141  bool FoundBody = false;
3142  while ((Prev = Prev->getPreviousDecl())) {
3143  FoundBody |= Prev->Body.isValid();
3144  if (RedeclForcesDefC99(Prev))
3145  return false;
3146  }
3147  return FoundBody;
3148 }
3149 
3151  const TypeSourceInfo *TSI = getTypeSourceInfo();
3152  if (!TSI)
3153  return SourceRange();
3154  FunctionTypeLoc FTL =
3156  if (!FTL)
3157  return SourceRange();
3158 
3159  // Skip self-referential return types.
3161  SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3162  SourceLocation Boundary = getNameInfo().getBeginLoc();
3163  if (RTRange.isInvalid() || Boundary.isInvalid() ||
3164  !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3165  return SourceRange();
3166 
3167  return RTRange;
3168 }
3169 
3171  const TypeSourceInfo *TSI = getTypeSourceInfo();
3172  if (!TSI)
3173  return SourceRange();
3174  FunctionTypeLoc FTL =
3176  if (!FTL)
3177  return SourceRange();
3178 
3179  return FTL.getExceptionSpecRange();
3180 }
3181 
3183  QualType RetType = getReturnType();
3184  if (const auto *Ret = RetType->getAsRecordDecl()) {
3185  if (const auto *R = Ret->getAttr<WarnUnusedResultAttr>())
3186  return R;
3187  } else if (const auto *ET = RetType->getAs<EnumType>()) {
3188  if (const EnumDecl *ED = ET->getDecl()) {
3189  if (const auto *R = ED->getAttr<WarnUnusedResultAttr>())
3190  return R;
3191  }
3192  }
3193  return getAttr<WarnUnusedResultAttr>();
3194 }
3195 
3196 /// For an inline function definition in C, or for a gnu_inline function
3197 /// in C++, determine whether the definition will be externally visible.
3198 ///
3199 /// Inline function definitions are always available for inlining optimizations.
3200 /// However, depending on the language dialect, declaration specifiers, and
3201 /// attributes, the definition of an inline function may or may not be
3202 /// "externally" visible to other translation units in the program.
3203 ///
3204 /// In C99, inline definitions are not externally visible by default. However,
3205 /// if even one of the global-scope declarations is marked "extern inline", the
3206 /// inline definition becomes externally visible (C99 6.7.4p6).
3207 ///
3208 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3209 /// definition, we use the GNU semantics for inline, which are nearly the
3210 /// opposite of C99 semantics. In particular, "inline" by itself will create
3211 /// an externally visible symbol, but "extern inline" will not create an
3212 /// externally visible symbol.
3214  assert((doesThisDeclarationHaveABody() || willHaveBody()) &&
3215  "Must be a function definition");
3216  assert(isInlined() && "Function must be inline");
3217  ASTContext &Context = getASTContext();
3218 
3219  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3220  // Note: If you change the logic here, please change
3221  // doesDeclarationForceExternallyVisibleDefinition as well.
3222  //
3223  // If it's not the case that both 'inline' and 'extern' are
3224  // specified on the definition, then this inline definition is
3225  // externally visible.
3226  if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3227  return true;
3228 
3229  // If any declaration is 'inline' but not 'extern', then this definition
3230  // is externally visible.
3231  for (auto Redecl : redecls()) {
3232  if (Redecl->isInlineSpecified() &&
3233  Redecl->getStorageClass() != SC_Extern)
3234  return true;
3235  }
3236 
3237  return false;
3238  }
3239 
3240  // The rest of this function is C-only.
3241  assert(!Context.getLangOpts().CPlusPlus &&
3242  "should not use C inline rules in C++");
3243 
3244  // C99 6.7.4p6:
3245  // [...] If all of the file scope declarations for a function in a
3246  // translation unit include the inline function specifier without extern,
3247  // then the definition in that translation unit is an inline definition.
3248  for (auto Redecl : redecls()) {
3249  if (RedeclForcesDefC99(Redecl))
3250  return true;
3251  }
3252 
3253  // C99 6.7.4p6:
3254  // An inline definition does not provide an external definition for the
3255  // function, and does not forbid an external definition in another
3256  // translation unit.
3257  return false;
3258 }
3259 
3260 /// getOverloadedOperator - Which C++ overloaded operator this
3261 /// function represents, if any.
3263  if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3265  else
3266  return OO_None;
3267 }
3268 
3269 /// getLiteralIdentifier - The literal suffix identifier this function
3270 /// represents, if any.
3274  else
3275  return nullptr;
3276 }
3277 
3279  if (TemplateOrSpecialization.isNull())
3280  return TK_NonTemplate;
3281  if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3282  return TK_FunctionTemplate;
3283  if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3284  return TK_MemberSpecialization;
3285  if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3287  if (TemplateOrSpecialization.is
3290 
3291  llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3292 }
3293 
3296  return cast<FunctionDecl>(Info->getInstantiatedFrom());
3297 
3298  return nullptr;
3299 }
3300 
3302  return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>();
3303 }
3304 
3305 void
3306 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3307  FunctionDecl *FD,
3309  assert(TemplateOrSpecialization.isNull() &&
3310  "Member function is already a specialization");
3312  = new (C) MemberSpecializationInfo(FD, TSK);
3313  TemplateOrSpecialization = Info;
3314 }
3315 
3317  return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3318 }
3319 
3321  TemplateOrSpecialization = Template;
3322 }
3323 
3325  // If the function is invalid, it can't be implicitly instantiated.
3326  if (isInvalidDecl())
3327  return false;
3328 
3329  switch (getTemplateSpecializationKind()) {
3330  case TSK_Undeclared:
3332  return false;
3333 
3335  return true;
3336 
3337  // It is possible to instantiate TSK_ExplicitSpecialization kind
3338  // if the FunctionDecl has a class scope specialization pattern.
3340  return getClassScopeSpecializationPattern() != nullptr;
3341 
3343  // Handled below.
3344  break;
3345  }
3346 
3347  // Find the actual template from which we will instantiate.
3348  const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3349  bool HasPattern = false;
3350  if (PatternDecl)
3351  HasPattern = PatternDecl->hasBody(PatternDecl);
3352 
3353  // C++0x [temp.explicit]p9:
3354  // Except for inline functions, other explicit instantiation declarations
3355  // have the effect of suppressing the implicit instantiation of the entity
3356  // to which they refer.
3357  if (!HasPattern || !PatternDecl)
3358  return true;
3359 
3360  return PatternDecl->isInlined();
3361 }
3362 
3364  switch (getTemplateSpecializationKind()) {
3365  case TSK_Undeclared:
3367  return false;
3371  return true;
3372  }
3373  llvm_unreachable("All TSK values handled.");
3374 }
3375 
3377  // Handle class scope explicit specialization special case.
3379  if (auto *Spec = getClassScopeSpecializationPattern())
3380  return getDefinitionOrSelf(Spec);
3381  return nullptr;
3382  }
3383 
3384  // If this is a generic lambda call operator specialization, its
3385  // instantiation pattern is always its primary template's pattern
3386  // even if its primary template was instantiated from another
3387  // member template (which happens with nested generic lambdas).
3388  // Since a lambda's call operator's body is transformed eagerly,
3389  // we don't have to go hunting for a prototype definition template
3390  // (i.e. instantiated-from-member-template) to use as an instantiation
3391  // pattern.
3392 
3394  dyn_cast<CXXMethodDecl>(this))) {
3395  assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3396  return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3397  }
3398 
3399  if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3400  while (Primary->getInstantiatedFromMemberTemplate()) {
3401  // If we have hit a point where the user provided a specialization of
3402  // this template, we're done looking.
3403  if (Primary->isMemberSpecialization())
3404  break;
3405  Primary = Primary->getInstantiatedFromMemberTemplate();
3406  }
3407 
3408  return getDefinitionOrSelf(Primary->getTemplatedDecl());
3409  }
3410 
3411  if (auto *MFD = getInstantiatedFromMemberFunction())
3412  return getDefinitionOrSelf(MFD);
3413 
3414  return nullptr;
3415 }
3416 
3419  = TemplateOrSpecialization
3420  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3421  return Info->Template.getPointer();
3422  }
3423  return nullptr;
3424 }
3425 
3428 }
3429 
3432  return TemplateOrSpecialization
3433  .dyn_cast<FunctionTemplateSpecializationInfo *>();
3434 }
3435 
3436 const TemplateArgumentList *
3439  = TemplateOrSpecialization
3440  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3441  return Info->TemplateArguments;
3442  }
3443  return nullptr;
3444 }
3445 
3449  = TemplateOrSpecialization
3450  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3451  return Info->TemplateArgumentsAsWritten;
3452  }
3453  return nullptr;
3454 }
3455 
3456 void
3457 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3458  FunctionTemplateDecl *Template,
3459  const TemplateArgumentList *TemplateArgs,
3460  void *InsertPos,
3462  const TemplateArgumentListInfo *TemplateArgsAsWritten,
3463  SourceLocation PointOfInstantiation) {
3464  assert(TSK != TSK_Undeclared &&
3465  "Must specify the type of function template specialization");
3467  = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3468  if (!Info)
3469  Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
3470  TemplateArgs,
3471  TemplateArgsAsWritten,
3472  PointOfInstantiation);
3473  TemplateOrSpecialization = Info;
3474  Template->addSpecialization(Info, InsertPos);
3475 }
3476 
3477 void
3479  const UnresolvedSetImpl &Templates,
3480  const TemplateArgumentListInfo &TemplateArgs) {
3481  assert(TemplateOrSpecialization.isNull());
3484  TemplateArgs);
3485  TemplateOrSpecialization = Info;
3486 }
3487 
3490  return TemplateOrSpecialization
3492 }
3493 
3496  ASTContext &Context, const UnresolvedSetImpl &Ts,
3497  const TemplateArgumentListInfo &TArgs) {
3498  void *Buffer = Context.Allocate(
3499  totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3500  TArgs.size(), Ts.size()));
3501  return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3502 }
3503 
3504 DependentFunctionTemplateSpecializationInfo::
3505 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3506  const TemplateArgumentListInfo &TArgs)
3507  : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3508  NumTemplates = Ts.size();
3509  NumArgs = TArgs.size();
3510 
3511  FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3512  for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3513  TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3514 
3515  TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3516  for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3517  new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3518 }
3519 
3521  // For a function template specialization, query the specialization
3522  // information object.
3524  = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3525  if (FTSInfo)
3526  return FTSInfo->getTemplateSpecializationKind();
3527 
3528  MemberSpecializationInfo *MSInfo
3529  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
3530  if (MSInfo)
3531  return MSInfo->getTemplateSpecializationKind();
3532 
3533  return TSK_Undeclared;
3534 }
3535 
3536 void
3538  SourceLocation PointOfInstantiation) {
3540  = TemplateOrSpecialization.dyn_cast<
3542  FTSInfo->setTemplateSpecializationKind(TSK);
3543  if (TSK != TSK_ExplicitSpecialization &&
3544  PointOfInstantiation.isValid() &&
3545  FTSInfo->getPointOfInstantiation().isInvalid()) {
3546  FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3548  L->InstantiationRequested(this);
3549  }
3550  } else if (MemberSpecializationInfo *MSInfo
3551  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3552  MSInfo->setTemplateSpecializationKind(TSK);
3553  if (TSK != TSK_ExplicitSpecialization &&
3554  PointOfInstantiation.isValid() &&
3555  MSInfo->getPointOfInstantiation().isInvalid()) {
3556  MSInfo->setPointOfInstantiation(PointOfInstantiation);
3558  L->InstantiationRequested(this);
3559  }
3560  } else
3561  llvm_unreachable("Function cannot have a template specialization kind");
3562 }
3563 
3566  = TemplateOrSpecialization.dyn_cast<
3568  return FTSInfo->getPointOfInstantiation();
3569  else if (MemberSpecializationInfo *MSInfo
3570  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3571  return MSInfo->getPointOfInstantiation();
3572 
3573  return SourceLocation();
3574 }
3575 
3577  if (Decl::isOutOfLine())
3578  return true;
3579 
3580  // If this function was instantiated from a member function of a
3581  // class template, check whether that member function was defined out-of-line.
3583  const FunctionDecl *Definition;
3584  if (FD->hasBody(Definition))
3585  return Definition->isOutOfLine();
3586  }
3587 
3588  // If this function was instantiated from a function template,
3589  // check whether that function template was defined out-of-line.
3590  if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3591  const FunctionDecl *Definition;
3592  if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3593  return Definition->isOutOfLine();
3594  }
3595 
3596  return false;
3597 }
3598 
3600  return SourceRange(getOuterLocStart(), EndRangeLoc);
3601 }
3602 
3604  IdentifierInfo *FnInfo = getIdentifier();
3605 
3606  if (!FnInfo)
3607  return 0;
3608 
3609  // Builtin handling.
3610  switch (getBuiltinID()) {
3611  case Builtin::BI__builtin_memset:
3612  case Builtin::BI__builtin___memset_chk:
3613  case Builtin::BImemset:
3614  return Builtin::BImemset;
3615 
3616  case Builtin::BI__builtin_memcpy:
3617  case Builtin::BI__builtin___memcpy_chk:
3618  case Builtin::BImemcpy:
3619  return Builtin::BImemcpy;
3620 
3621  case Builtin::BI__builtin_memmove:
3622  case Builtin::BI__builtin___memmove_chk:
3623  case Builtin::BImemmove:
3624  return Builtin::BImemmove;
3625 
3626  case Builtin::BIstrlcpy:
3627  case Builtin::BI__builtin___strlcpy_chk:
3628  return Builtin::BIstrlcpy;
3629 
3630  case Builtin::BIstrlcat:
3631  case Builtin::BI__builtin___strlcat_chk:
3632  return Builtin::BIstrlcat;
3633 
3634  case Builtin::BI__builtin_memcmp:
3635  case Builtin::BImemcmp:
3636  return Builtin::BImemcmp;
3637 
3638  case Builtin::BI__builtin_strncpy:
3639  case Builtin::BI__builtin___strncpy_chk:
3640  case Builtin::BIstrncpy:
3641  return Builtin::BIstrncpy;
3642 
3643  case Builtin::BI__builtin_strncmp:
3644  case Builtin::BIstrncmp:
3645  return Builtin::BIstrncmp;
3646 
3647  case Builtin::BI__builtin_strncasecmp:
3648  case Builtin::BIstrncasecmp:
3649  return Builtin::BIstrncasecmp;
3650 
3651  case Builtin::BI__builtin_strncat:
3652  case Builtin::BI__builtin___strncat_chk:
3653  case Builtin::BIstrncat:
3654  return Builtin::BIstrncat;
3655 
3656  case Builtin::BI__builtin_strndup:
3657  case Builtin::BIstrndup:
3658  return Builtin::BIstrndup;
3659 
3660  case Builtin::BI__builtin_strlen:
3661  case Builtin::BIstrlen:
3662  return Builtin::BIstrlen;
3663 
3664  case Builtin::BI__builtin_bzero:
3665  case Builtin::BIbzero:
3666  return Builtin::BIbzero;
3667 
3668  default:
3669  if (isExternC()) {
3670  if (FnInfo->isStr("memset"))
3671  return Builtin::BImemset;
3672  else if (FnInfo->isStr("memcpy"))
3673  return Builtin::BImemcpy;
3674  else if (FnInfo->isStr("memmove"))
3675  return Builtin::BImemmove;
3676  else if (FnInfo->isStr("memcmp"))
3677  return Builtin::BImemcmp;
3678  else if (FnInfo->isStr("strncpy"))
3679  return Builtin::BIstrncpy;
3680  else if (FnInfo->isStr("strncmp"))
3681  return Builtin::BIstrncmp;
3682  else if (FnInfo->isStr("strncasecmp"))
3683  return Builtin::BIstrncasecmp;
3684  else if (FnInfo->isStr("strncat"))
3685  return Builtin::BIstrncat;
3686  else if (FnInfo->isStr("strndup"))
3687  return Builtin::BIstrndup;
3688  else if (FnInfo->isStr("strlen"))
3689  return Builtin::BIstrlen;
3690  else if (FnInfo->isStr("bzero"))
3691  return Builtin::BIbzero;
3692  }
3693  break;
3694  }
3695  return 0;
3696 }
3697 
3698 unsigned FunctionDecl::getODRHash() const {
3699  assert(hasODRHash());
3700  return ODRHash;
3701 }
3702 
3704  if (hasODRHash())
3705  return ODRHash;
3706 
3707  if (auto *FT = getInstantiatedFromMemberFunction()) {
3708  setHasODRHash(true);
3709  ODRHash = FT->getODRHash();
3710  return ODRHash;
3711  }
3712 
3713  class ODRHash Hash;
3714  Hash.AddFunctionDecl(this);
3715  setHasODRHash(true);
3716  ODRHash = Hash.CalculateHash();
3717  return ODRHash;
3718 }
3719 
3720 //===----------------------------------------------------------------------===//
3721 // FieldDecl Implementation
3722 //===----------------------------------------------------------------------===//
3723 
3725  SourceLocation StartLoc, SourceLocation IdLoc,
3727  TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3728  InClassInitStyle InitStyle) {
3729  return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3730  BW, Mutable, InitStyle);
3731 }
3732 
3734  return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3735  SourceLocation(), nullptr, QualType(), nullptr,
3736  nullptr, false, ICIS_NoInit);
3737 }
3738 
3740  if (!isImplicit() || getDeclName())
3741  return false;
3742 
3743  if (const auto *Record = getType()->getAs<RecordType>())
3744  return Record->getDecl()->isAnonymousStructOrUnion();
3745 
3746  return false;
3747 }
3748 
3749 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3750  assert(isBitField() && "not a bitfield");
3751  return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
3752 }
3753 
3755  return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
3756  getBitWidthValue(Ctx) == 0;
3757 }
3758 
3759 unsigned FieldDecl::getFieldIndex() const {
3760  const FieldDecl *Canonical = getCanonicalDecl();
3761  if (Canonical != this)
3762  return Canonical->getFieldIndex();
3763 
3764  if (CachedFieldIndex) return CachedFieldIndex - 1;
3765 
3766  unsigned Index = 0;
3767  const RecordDecl *RD = getParent()->getDefinition();
3768  assert(RD && "requested index for field of struct with no definition");
3769 
3770  for (auto *Field : RD->fields()) {
3771  Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3772  ++Index;
3773  }
3774 
3775  assert(CachedFieldIndex && "failed to find field in parent");
3776  return CachedFieldIndex - 1;
3777 }
3778 
3780  const Expr *FinalExpr = getInClassInitializer();
3781  if (!FinalExpr)
3782  FinalExpr = getBitWidth();
3783  if (FinalExpr)
3784  return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
3786 }
3787 
3789  assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3790  "capturing type in non-lambda or captured record.");
3791  assert(InitStorage.getInt() == ISK_NoInit &&
3792  InitStorage.getPointer() == nullptr &&
3793  "bit width, initializer or captured type already set");
3794  InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3795  ISK_CapturedVLAType);
3796 }
3797 
3798 //===----------------------------------------------------------------------===//
3799 // TagDecl Implementation
3800 //===----------------------------------------------------------------------===//
3801 
3803  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3804  SourceLocation StartL)
3805  : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
3806  TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
3807  assert((DK != Enum || TK == TTK_Enum) &&
3808  "EnumDecl not matched with TTK_Enum");
3809  setPreviousDecl(PrevDecl);
3810  setTagKind(TK);
3811  setCompleteDefinition(false);
3812  setBeingDefined(false);
3813  setEmbeddedInDeclarator(false);
3814  setFreeStanding(false);
3816 }
3817 
3819  return getTemplateOrInnerLocStart(this);
3820 }
3821 
3823  SourceLocation RBraceLoc = BraceRange.getEnd();
3824  SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3825  return SourceRange(getOuterLocStart(), E);
3826 }
3827 
3829 
3831  TypedefNameDeclOrQualifier = TDD;
3832  if (const Type *T = getTypeForDecl()) {
3833  (void)T;
3834  assert(T->isLinkageValid());
3835  }
3836  assert(isLinkageValid());
3837 }
3838 
3840  setBeingDefined(true);
3841 
3842  if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
3843  struct CXXRecordDecl::DefinitionData *Data =
3844  new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3845  for (auto I : redecls())
3846  cast<CXXRecordDecl>(I)->DefinitionData = Data;
3847  }
3848 }
3849 
3851  assert((!isa<CXXRecordDecl>(this) ||
3852  cast<CXXRecordDecl>(this)->hasDefinition()) &&
3853  "definition completed but not started");
3854 
3855  setCompleteDefinition(true);
3856  setBeingDefined(false);
3857 
3859  L->CompletedTagDefinition(this);
3860 }
3861 
3863  if (isCompleteDefinition())
3864  return const_cast<TagDecl *>(this);
3865 
3866  // If it's possible for us to have an out-of-date definition, check now.
3867  if (mayHaveOutOfDateDef()) {
3868  if (IdentifierInfo *II = getIdentifier()) {
3869  if (II->isOutOfDate()) {
3870  updateOutOfDate(*II);
3871  }
3872  }
3873  }
3874 
3875  if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
3876  return CXXRD->getDefinition();
3877 
3878  for (auto R : redecls())
3879  if (R->isCompleteDefinition())
3880  return R;
3881 
3882  return nullptr;
3883 }
3884 
3886  if (QualifierLoc) {
3887  // Make sure the extended qualifier info is allocated.
3888  if (!hasExtInfo())
3889  TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3890  // Set qualifier info.
3891  getExtInfo()->QualifierLoc = QualifierLoc;
3892  } else {
3893  // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3894  if (hasExtInfo()) {
3895  if (getExtInfo()->NumTemplParamLists == 0) {
3896  getASTContext().Deallocate(getExtInfo());
3897  TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
3898  }
3899  else
3900  getExtInfo()->QualifierLoc = QualifierLoc;
3901  }
3902  }
3903 }
3904 
3906  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
3907  assert(!TPLists.empty());
3908  // Make sure the extended decl info is allocated.
3909  if (!hasExtInfo())
3910  // Allocate external info struct.
3911  TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3912  // Set the template parameter lists info.
3913  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
3914 }
3915 
3916 //===----------------------------------------------------------------------===//
3917 // EnumDecl Implementation
3918 //===----------------------------------------------------------------------===//
3919 
3920 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3921  SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
3922  bool Scoped, bool ScopedUsingClassTag, bool Fixed)
3923  : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
3924  assert(Scoped || !ScopedUsingClassTag);
3925  IntegerType = nullptr;
3926  setNumPositiveBits(0);
3927  setNumNegativeBits(0);
3928  setScoped(Scoped);
3929  setScopedUsingClassTag(ScopedUsingClassTag);
3930  setFixed(Fixed);
3931  setHasODRHash(false);
3932  ODRHash = 0;
3933 }
3934 
3935 void EnumDecl::anchor() {}
3936 
3938  SourceLocation StartLoc, SourceLocation IdLoc,
3939  IdentifierInfo *Id,
3940  EnumDecl *PrevDecl, bool IsScoped,
3941  bool IsScopedUsingClassTag, bool IsFixed) {
3942  auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
3943  IsScoped, IsScopedUsingClassTag, IsFixed);
3944  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
3945  C.getTypeDeclType(Enum, PrevDecl);
3946  return Enum;
3947 }
3948 
3950  EnumDecl *Enum =
3951  new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
3952  nullptr, nullptr, false, false, false);
3953  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
3954  return Enum;
3955 }
3956 
3958  if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
3959  return TI->getTypeLoc().getSourceRange();
3960  return SourceRange();
3961 }
3962 
3964  QualType NewPromotionType,
3965  unsigned NumPositiveBits,
3966  unsigned NumNegativeBits) {
3967  assert(!isCompleteDefinition() && "Cannot redefine enums!");
3968  if (!IntegerType)
3969  IntegerType = NewType.getTypePtr();
3970  PromotionType = NewPromotionType;
3971  setNumPositiveBits(NumPositiveBits);
3972  setNumNegativeBits(NumNegativeBits);
3974 }
3975 
3976 bool EnumDecl::isClosed() const {
3977  if (const auto *A = getAttr<EnumExtensibilityAttr>())
3978  return A->getExtensibility() == EnumExtensibilityAttr::Closed;
3979  return true;
3980 }
3981 
3983  return isClosed() && hasAttr<FlagEnumAttr>();
3984 }
3985 
3987  return isClosed() && !hasAttr<FlagEnumAttr>();
3988 }
3989 
3991  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
3992  return MSI->getTemplateSpecializationKind();
3993 
3994  return TSK_Undeclared;
3995 }
3996 
3998  SourceLocation PointOfInstantiation) {
3999  MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4000  assert(MSI && "Not an instantiated member enumeration?");
4002  if (TSK != TSK_ExplicitSpecialization &&
4003  PointOfInstantiation.isValid() &&
4005  MSI->setPointOfInstantiation(PointOfInstantiation);
4006 }
4007 
4009  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4010  if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4011  EnumDecl *ED = getInstantiatedFromMemberEnum();
4012  while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4013  ED = NewED;
4014  return getDefinitionOrSelf(ED);
4015  }
4016  }
4017 
4019  "couldn't find pattern for enum instantiation");
4020  return nullptr;
4021 }
4022 
4024  if (SpecializationInfo)
4025  return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4026 
4027  return nullptr;
4028 }
4029 
4030 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4032  assert(!SpecializationInfo && "Member enum is already a specialization");
4033  SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4034 }
4035 
4037  if (hasODRHash())
4038  return ODRHash;
4039 
4040  class ODRHash Hash;
4041  Hash.AddEnumDecl(this);
4042  setHasODRHash(true);
4043  ODRHash = Hash.CalculateHash();
4044  return ODRHash;
4045 }
4046 
4047 //===----------------------------------------------------------------------===//
4048 // RecordDecl Implementation
4049 //===----------------------------------------------------------------------===//
4050 
4052  DeclContext *DC, SourceLocation StartLoc,
4053  SourceLocation IdLoc, IdentifierInfo *Id,
4054  RecordDecl *PrevDecl)
4055  : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4056  assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4059  setHasObjectMember(false);
4060  setHasVolatileMember(false);
4067 }
4068 
4070  SourceLocation StartLoc, SourceLocation IdLoc,
4071  IdentifierInfo *Id, RecordDecl* PrevDecl) {
4072  RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4073  StartLoc, IdLoc, Id, PrevDecl);
4074  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4075 
4076  C.getTypeDeclType(R, PrevDecl);
4077  return R;
4078 }
4079 
4081  RecordDecl *R =
4082  new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4083  SourceLocation(), nullptr, nullptr);
4084  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4085  return R;
4086 }
4087 
4089  return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4090  cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4091 }
4092 
4093 bool RecordDecl::isLambda() const {
4094  if (auto RD = dyn_cast<CXXRecordDecl>(this))
4095  return RD->isLambda();
4096  return false;
4097 }
4098 
4100  return hasAttr<CapturedRecordAttr>();
4101 }
4102 
4104  addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4105 }
4106 
4109  LoadFieldsFromExternalStorage();
4110 
4112 }
4113 
4114 /// completeDefinition - Notes that the definition of this type is now
4115 /// complete.
4117  assert(!isCompleteDefinition() && "Cannot redefine record!");
4119 }
4120 
4121 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4122 /// This which can be turned on with an attribute, pragma, or the
4123 /// -mms-bitfields command-line option.
4124 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4125  return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4126 }
4127 
4128 void RecordDecl::LoadFieldsFromExternalStorage() const {
4130  assert(hasExternalLexicalStorage() && Source && "No external storage?");
4131 
4132  // Notify that we have a RecordDecl doing some initialization.
4133  ExternalASTSource::Deserializing TheFields(Source);
4134 
4135  SmallVector<Decl*, 64> Decls;
4137  Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4139  }, Decls);
4140 
4141 #ifndef NDEBUG
4142  // Check that all decls we got were FieldDecls.
4143  for (unsigned i=0, e=Decls.size(); i != e; ++i)
4144  assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4145 #endif
4146 
4147  if (Decls.empty())
4148  return;
4149 
4150  std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4151  /*FieldsAlreadyLoaded=*/false);
4152 }
4153 
4154 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4155  ASTContext &Context = getASTContext();
4156  const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4157  (SanitizerKind::Address | SanitizerKind::KernelAddress);
4158  if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4159  return false;
4160  const auto &Blacklist = Context.getSanitizerBlacklist();
4161  const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4162  // We may be able to relax some of these requirements.
4163  int ReasonToReject = -1;
4164  if (!CXXRD || CXXRD->isExternCContext())
4165  ReasonToReject = 0; // is not C++.
4166  else if (CXXRD->hasAttr<PackedAttr>())
4167  ReasonToReject = 1; // is packed.
4168  else if (CXXRD->isUnion())
4169  ReasonToReject = 2; // is a union.
4170  else if (CXXRD->isTriviallyCopyable())
4171  ReasonToReject = 3; // is trivially copyable.
4172  else if (CXXRD->hasTrivialDestructor())
4173  ReasonToReject = 4; // has trivial destructor.
4174  else if (CXXRD->isStandardLayout())
4175  ReasonToReject = 5; // is standard layout.
4176  else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4177  "field-padding"))
4178  ReasonToReject = 6; // is in a blacklisted file.
4179  else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4181  "field-padding"))
4182  ReasonToReject = 7; // is blacklisted.
4183 
4184  if (EmitRemark) {
4185  if (ReasonToReject >= 0)
4186  Context.getDiagnostics().Report(
4187  getLocation(),
4188  diag::remark_sanitize_address_insert_extra_padding_rejected)
4189  << getQualifiedNameAsString() << ReasonToReject;
4190  else
4191  Context.getDiagnostics().Report(
4192  getLocation(),
4193  diag::remark_sanitize_address_insert_extra_padding_accepted)
4195  }
4196  return ReasonToReject < 0;
4197 }
4198 
4200  for (const auto *I : fields()) {
4201  if (I->getIdentifier())
4202  return I;
4203 
4204  if (const auto *RT = I->getType()->getAs<RecordType>())
4205  if (const FieldDecl *NamedDataMember =
4206  RT->getDecl()->findFirstNamedDataMember())
4207  return NamedDataMember;
4208  }
4209 
4210  // We didn't find a named data member.
4211  return nullptr;
4212 }
4213 
4214 //===----------------------------------------------------------------------===//
4215 // BlockDecl Implementation
4216 //===----------------------------------------------------------------------===//
4217 
4219  : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4220  setIsVariadic(false);
4221  setCapturesCXXThis(false);
4224  setDoesNotEscape(false);
4225 }
4226 
4228  assert(!ParamInfo && "Already has param info!");
4229 
4230  // Zero params -> null pointer.
4231  if (!NewParamInfo.empty()) {
4232  NumParams = NewParamInfo.size();
4233  ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4234  std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4235  }
4236 }
4237 
4239  bool CapturesCXXThis) {
4240  this->setCapturesCXXThis(CapturesCXXThis);
4241  this->NumCaptures = Captures.size();
4242 
4243  if (Captures.empty()) {
4244  this->Captures = nullptr;
4245  return;
4246  }
4247 
4248  this->Captures = Captures.copy(Context).data();
4249 }
4250 
4251 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4252  for (const auto &I : captures())
4253  // Only auto vars can be captured, so no redeclaration worries.
4254  if (I.getVariable() == variable)
4255  return true;
4256 
4257  return false;
4258 }
4259 
4261  return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4262 }
4263 
4264 //===----------------------------------------------------------------------===//
4265 // Other Decl Allocation/Deallocation Method Implementations
4266 //===----------------------------------------------------------------------===//
4267 
4268 void TranslationUnitDecl::anchor() {}
4269 
4271  return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4272 }
4273 
4274 void PragmaCommentDecl::anchor() {}
4275 
4277  TranslationUnitDecl *DC,
4278  SourceLocation CommentLoc,
4279  PragmaMSCommentKind CommentKind,
4280  StringRef Arg) {
4281  PragmaCommentDecl *PCD =
4282  new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4283  PragmaCommentDecl(DC, CommentLoc, CommentKind);
4284  memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4285  PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4286  return PCD;
4287 }
4288 
4290  unsigned ID,
4291  unsigned ArgSize) {
4292  return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4294 }
4295 
4296 void PragmaDetectMismatchDecl::anchor() {}
4297 
4300  SourceLocation Loc, StringRef Name,
4301  StringRef Value) {
4302  size_t ValueStart = Name.size() + 1;
4303  PragmaDetectMismatchDecl *PDMD =
4304  new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4305  PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4306  memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4307  PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4308  memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4309  Value.size());
4310  PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4311  return PDMD;
4312 }
4313 
4316  unsigned NameValueSize) {
4317  return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4319 }
4320 
4321 void ExternCContextDecl::anchor() {}
4322 
4324  TranslationUnitDecl *DC) {
4325  return new (C, DC) ExternCContextDecl(DC);
4326 }
4327 
4328 void LabelDecl::anchor() {}
4329 
4331  SourceLocation IdentL, IdentifierInfo *II) {
4332  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4333 }
4334 
4336  SourceLocation IdentL, IdentifierInfo *II,
4337  SourceLocation GnuLabelL) {
4338  assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4339  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4340 }
4341 
4343  return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4344  SourceLocation());
4345 }
4346 
4347 void LabelDecl::setMSAsmLabel(StringRef Name) {
4348  char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4349  memcpy(Buffer, Name.data(), Name.size());
4350  Buffer[Name.size()] = '\0';
4351  MSAsmName = Buffer;
4352 }
4353 
4354 void ValueDecl::anchor() {}
4355 
4356 bool ValueDecl::isWeak() const {
4357  for (const auto *I : attrs())
4358  if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4359  return true;
4360 
4361  return isWeakImported();
4362 }
4363 
4364 void ImplicitParamDecl::anchor() {}
4365 
4367  SourceLocation IdLoc,
4369  ImplicitParamKind ParamKind) {
4370  return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4371 }
4372 
4374  ImplicitParamKind ParamKind) {
4375  return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4376 }
4377 
4379  unsigned ID) {
4380  return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4381 }
4382 
4384  SourceLocation StartLoc,
4385  const DeclarationNameInfo &NameInfo,
4386  QualType T, TypeSourceInfo *TInfo,
4387  StorageClass SC,
4388  bool isInlineSpecified,
4389  bool hasWrittenPrototype,
4390  bool isConstexprSpecified) {
4391  FunctionDecl *New =
4392  new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4393  SC, isInlineSpecified, isConstexprSpecified);
4394  New->setHasWrittenPrototype(hasWrittenPrototype);
4395  return New;
4396 }
4397 
4399  return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4400  DeclarationNameInfo(), QualType(), nullptr,
4401  SC_None, false, false);
4402 }
4403 
4405  return new (C, DC) BlockDecl(DC, L);
4406 }
4407 
4409  return new (C, ID) BlockDecl(nullptr, SourceLocation());
4410 }
4411 
4412 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4413  : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4414  NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4415 
4417  unsigned NumParams) {
4418  return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4419  CapturedDecl(DC, NumParams);
4420 }
4421 
4423  unsigned NumParams) {
4424  return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4425  CapturedDecl(nullptr, NumParams);
4426 }
4427 
4428 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4429 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4430 
4431 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4432 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4433 
4435  SourceLocation L,
4436  IdentifierInfo *Id, QualType T,
4437  Expr *E, const llvm::APSInt &V) {
4438  return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4439 }
4440 
4443  return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4444  QualType(), nullptr, llvm::APSInt());
4445 }
4446 
4447 void IndirectFieldDecl::anchor() {}
4448 
4449 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4451  QualType T,
4453  : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4454  ChainingSize(CH.size()) {
4455  // In C++, indirect field declarations conflict with tag declarations in the
4456  // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4457  if (C.getLangOpts().CPlusPlus)
4459 }
4460 
4463  IdentifierInfo *Id, QualType T,
4465  return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4466 }
4467 
4469  unsigned ID) {
4470  return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4471  DeclarationName(), QualType(), None);
4472 }
4473 
4476  if (Init)
4477  End = Init->getEndLoc();
4478  return SourceRange(getLocation(), End);
4479 }
4480 
4481 void TypeDecl::anchor() {}
4482 
4484  SourceLocation StartLoc, SourceLocation IdLoc,
4485  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4486  return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4487 }
4488 
4489 void TypedefNameDecl::anchor() {}
4490 
4492  if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4493  auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4494  auto *ThisTypedef = this;
4495  if (AnyRedecl && OwningTypedef) {
4496  OwningTypedef = OwningTypedef->getCanonicalDecl();
4497  ThisTypedef = ThisTypedef->getCanonicalDecl();
4498  }
4499  if (OwningTypedef == ThisTypedef)
4500  return TT->getDecl();
4501  }
4502 
4503  return nullptr;
4504 }
4505 
4506 bool TypedefNameDecl::isTransparentTagSlow() const {
4507  auto determineIsTransparent = [&]() {
4508  if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4509  if (auto *TD = TT->getDecl()) {
4510  if (TD->getName() != getName())
4511  return false;
4512  SourceLocation TTLoc = getLocation();
4513  SourceLocation TDLoc = TD->getLocation();
4514  if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4515  return false;
4517  return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4518  }
4519  }
4520  return false;
4521  };
4522 
4523  bool isTransparent = determineIsTransparent();
4524  MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4525  return isTransparent;
4526 }
4527 
4529  return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4530  nullptr, nullptr);
4531 }
4532 
4534  SourceLocation StartLoc,
4535  SourceLocation IdLoc, IdentifierInfo *Id,
4536  TypeSourceInfo *TInfo) {
4537  return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4538 }
4539 
4541  return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4542  SourceLocation(), nullptr, nullptr);
4543 }
4544 
4546  SourceLocation RangeEnd = getLocation();
4547  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4548  if (typeIsPostfix(TInfo->getType()))
4549  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4550  }
4551  return SourceRange(getBeginLoc(), RangeEnd);
4552 }
4553 
4555  SourceLocation RangeEnd = getBeginLoc();
4556  if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4557  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4558  return SourceRange(getBeginLoc(), RangeEnd);
4559 }
4560 
4561 void FileScopeAsmDecl::anchor() {}
4562 
4564  StringLiteral *Str,
4565  SourceLocation AsmLoc,
4566  SourceLocation RParenLoc) {
4567  return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4568 }
4569 
4571  unsigned ID) {
4572  return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4573  SourceLocation());
4574 }
4575 
4576 void EmptyDecl::anchor() {}
4577 
4579  return new (C, DC) EmptyDecl(DC, L);
4580 }
4581 
4583  return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4584 }
4585 
4586 //===----------------------------------------------------------------------===//
4587 // ImportDecl Implementation
4588 //===----------------------------------------------------------------------===//
4589 
4590 /// Retrieve the number of module identifiers needed to name the given
4591 /// module.
4592 static unsigned getNumModuleIdentifiers(Module *Mod) {
4593  unsigned Result = 1;
4594  while (Mod->Parent) {
4595  Mod = Mod->Parent;
4596  ++Result;
4597  }
4598  return Result;
4599 }
4600 
4601 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4602  Module *Imported,
4603  ArrayRef<SourceLocation> IdentifierLocs)
4604  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) {
4605  assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4606  auto *StoredLocs = getTrailingObjects<SourceLocation>();
4607  std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4608  StoredLocs);
4609 }
4610 
4611 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4612  Module *Imported, SourceLocation EndLoc)
4613  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) {
4614  *getTrailingObjects<SourceLocation>() = EndLoc;
4615 }
4616 
4618  SourceLocation StartLoc, Module *Imported,
4619  ArrayRef<SourceLocation> IdentifierLocs) {
4620  return new (C, DC,
4621  additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4622  ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4623 }
4624 
4626  SourceLocation StartLoc,
4627  Module *Imported,
4628  SourceLocation EndLoc) {
4629  ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4630  ImportDecl(DC, StartLoc, Imported, EndLoc);
4631  Import->setImplicit();
4632  return Import;
4633 }
4634 
4636  unsigned NumLocations) {
4637  return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4639 }
4640 
4642  if (!ImportedAndComplete.getInt())
4643  return None;
4644 
4645  const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4646  return llvm::makeArrayRef(StoredLocs,
4647  getNumModuleIdentifiers(getImportedModule()));
4648 }
4649 
4651  if (!ImportedAndComplete.getInt())
4652  return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4653 
4654  return SourceRange(getLocation(), getIdentifierLocs().back());
4655 }
4656 
4657 //===----------------------------------------------------------------------===//
4658 // ExportDecl Implementation
4659 //===----------------------------------------------------------------------===//
4660 
4661 void ExportDecl::anchor() {}
4662 
4664  SourceLocation ExportLoc) {
4665  return new (C, DC) ExportDecl(DC, ExportLoc);
4666 }
4667 
4669  return new (C, ID) ExportDecl(nullptr, SourceLocation());
4670 }
void setLinkage(Linkage L)
Definition: Visibility.h:88
EnumDecl * getTemplateInstantiationPattern() const
Retrieve the enum definition from which this enumeration could be instantiated, if it is an instantia...
Definition: Decl.cpp:4008
VarTemplateDecl * getDescribedVarTemplate() const
Retrieves the variable template that is described by this variable declaration.
Definition: Decl.cpp:2426
bool isNoReturn() const
Determines whether this function is known to be &#39;noreturn&#39;, through an attribute on its declaration o...
Definition: Decl.cpp:2897
void setHasSkippedBody(bool Skipped=true)
Definition: Decl.h:2200
Defines the clang::ASTContext interface.
void setTemplateOrSpecializationInfo(VarDecl *Inst, TemplateOrSpecializationInfo TSI)
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4545
ObjCStringFormatFamily
static const Decl * getCanonicalDecl(const Decl *D)
void setImplicit(bool I=true)
Definition: DeclBase.h:561
Represents a function declaration or definition.
Definition: Decl.h:1722
void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
Note that the static data member Inst is an instantiation of the static data member template Tmpl of ...
SourceRange getExceptionSpecRange() const
Definition: TypeLoc.h:1457
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2758
FunctionTemplateDecl * getTemplate() const
Retrieve the template from which this function was specialized.
Definition: DeclTemplate.h:550
unsigned getMemoryFunctionKind() const
Identify a memory copying or setting function.
Definition: Decl.cpp:3603
bool isThisDeclarationADemotedDefinition() const
If this definition should pretend to be a declaration.
Definition: Decl.h:1294
void setNonTrivialToPrimitiveDestroy(bool V)
Definition: Decl.h:3691
bool isPredefinedLibFunction(unsigned ID) const
Determines whether this builtin is a predefined libc/libm function, such as "malloc", where we know the signature a priori.
Definition: Builtins.h:141
FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified, bool isConstexprSpecified)
Definition: Decl.cpp:2612
LanguageLinkage getLanguageLinkage() const
Compute the language linkage.
Definition: Decl.cpp:1990
bool isClosedNonFlag() const
Returns true if this enum is annotated with neither flag_enum nor enum_extensibility(open).
Definition: Decl.cpp:3986
void setAnonymousStructOrUnion(bool Anon)
Definition: Decl.h:3649
Module * getOwningModule() const
Get the module that owns this declaration (for visibility purposes).
Definition: DeclBase.h:765
static ImportDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumLocations)
Create a new, deserialized module import declaration.
Definition: Decl.cpp:4635
CanQualType VoidPtrTy
Definition: ASTContext.h:1051
bool isInExternCXXContext() const
Determines whether this function&#39;s context is, or is nested within, a C++ extern "C++" linkage spec...
Definition: Decl.cpp:2873
bool isExplicitInstantiationOrSpecialization() const
True if this declaration is an explicit specialization, explicit instantiation declaration, or explicit instantiation definition.
A (possibly-)qualified type.
Definition: Type.h:640
TagDecl * getDefinition() const
Returns the TagDecl that actually defines this struct/union/class/enum.
Definition: Decl.cpp:3862
void setCompleteDefinition(bool V=true)
True if this decl has its body fully specified.
Definition: Decl.h:3151
virtual void FindExternalLexicalDecls(const DeclContext *DC, llvm::function_ref< bool(Decl::Kind)> IsKindWeWant, SmallVectorImpl< Decl *> &Result)
Finds all declarations lexically contained within the given DeclContext, after applying an optional f...
void setMayHaveOutOfDateDef(bool V=true)
Indicates whether it is possible for declarations of this kind to have an out-of-date definition...
Definition: Decl.h:3106
Internal linkage according to the Modules TS, but can be referred to from other translation units ind...
Definition: Linkage.h:50
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition: Decl.cpp:2865
RAII class for safely pairing a StartedDeserializing call with FinishedDeserializing.
static VarDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:1905
This file contains the declaration of the ODRHash class, which calculates a hash based on AST nodes...
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4474
bool willHaveBody() const
True if this function will eventually have a body, once it&#39;s fully parsed.
Definition: Decl.h:2205
This declaration has an owning module, but is only visible to lookups that occur within that module...
Module * getOwningModuleForLinkage(bool IgnoreLinkage=false) const
Get the module that owns this declaration for linkage purposes.
Definition: Decl.cpp:1461
void setNonTrivialToPrimitiveDefaultInitialize(bool V)
Definition: Decl.h:3675
static IndirectFieldDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, llvm::MutableArrayRef< NamedDecl *> CH)
Definition: Decl.cpp:4462
void setExplicitSpecified(bool ExpSpec=true)
State that this function is marked as explicit explicitly.
Definition: Decl.h:2339
Stmt - This represents one statement.
Definition: Stmt.h:66
bool isGenericLambdaCallOperatorSpecialization(const CXXMethodDecl *MD)
Definition: ASTLambda.h:39
void setPreviousDecl(FunctionDecl *PrevDecl)
Set the previous declaration.
Definition: Decl.h:4264
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3259
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:150
bool IsICE
Whether this statement is an integral constant expression, or in C++11, whether the statement is a co...
Definition: Decl.h:809
const ASTTemplateArgumentListInfo * getTemplateSpecializationArgsAsWritten() const
Retrieve the template argument list as written in the sources, if any.
Definition: Decl.cpp:3447
VarDecl * getTemplatedDecl() const
Get the underlying variable declarations of the template.
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:497
bool isMain() const
Determines whether this function is "main", which is the entry point into an executable program...
Definition: Decl.cpp:2723
bool isOutOfLine() const override
Determine whether this is or was instantiated from an out-of-line definition of a member function...
Definition: Decl.cpp:3576
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:949
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:2761
void setEmbeddedInDeclarator(bool isInDeclarator)
True if this tag declaration is "embedded" (i.e., defined or declared for the very first time) in the...
Definition: Decl.h:3178
No linkage, which means that the entity is unique and can only be referred to from within its scope...
Definition: Linkage.h:27
void setTypedefNameForAnonDecl(TypedefNameDecl *TDD)
Definition: Decl.cpp:3830
Represents the declaration of a typedef-name via the &#39;typedef&#39; type specifier.
Definition: Decl.h:2997
C Language Family Type Representation.
Defines the SourceManager interface.
bool IsEvaluating
Whether this statement is being evaluated.
Definition: Decl.h:796
static PragmaCommentDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned ArgSize)
Definition: Decl.cpp:4289
The template argument is an expression, and we&#39;ve not resolved it to one of the other forms yet...
Definition: TemplateBase.h:87
bool isInExternCContext() const
Determines whether this function&#39;s context is, or is nested within, a C++ extern "C" linkage spec...
Definition: Decl.cpp:2869
bool isInitICE() const
Determines whether the initializer is an integral constant expression, or in C++11, whether the initializer is a constant expression.
Definition: Decl.cpp:2304
static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D)
Determine what kind of template specialization the given declaration is.
Defines the clang::Module class, which describes a module in the source code.
const Type * getTypeForDecl() const
Definition: Decl.h:2873
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
bool isVariadic() const
Definition: Type.h:3822
static LinkageInfo getExternalLinkageFor(const NamedDecl *D)
Definition: Decl.cpp:597
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclBase.h:413
bool isNothrow() const
Definition: Decl.cpp:4431
void setArgPassingRestrictions(ArgPassingKind Kind)
Definition: Decl.h:3706
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4650
Defines the C++ template declaration subclasses.
StringRef P
void setPure(bool P=true)
Definition: Decl.cpp:2710
bool isBeforeInTranslationUnit(SourceLocation LHS, SourceLocation RHS) const
Determines the order of 2 source locations in the translation unit.
void setPreviousDeclaration(FunctionDecl *PrevDecl)
Definition: Decl.cpp:2917
unsigned getFieldIndex() const
Returns the index of this field within its record, as appropriate for passing to ASTRecordLayout::get...
Definition: Decl.cpp:3759
static Visibility getVisibilityFromAttr(const T *attr)
Given a visibility attribute, return the explicit visibility associated with it.
Definition: Decl.cpp:208
bool isUninit() const
Definition: APValue.h:233
ImplicitParamKind
Defines the kind of the implicit parameter: is this an implicit parameter with pointer to &#39;this&#39;...
Definition: Decl.h:1484
The base class of the type hierarchy.
Definition: Type.h:1413
Represents an empty-declaration.
Definition: Decl.h:4234
void setParameterIndex(const ParmVarDecl *D, unsigned index)
Used by ParmVarDecl to store on the side the index of the parameter when it exceeds the size of the n...
SourceLocation getBeginLoc() const
getBeginLoc - Retrieve the location of the first token.
void setParams(ArrayRef< ParmVarDecl *> NewParamInfo)
Definition: Decl.cpp:4227
DiagnosticsEngine & getDiagnostics() const
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1294
Declaration of a variable template.
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:64
Represent a C++ namespace.
Definition: Decl.h:514
static std::enable_if<!std::is_base_of< RedeclarableTemplateDecl, T >::value, bool >::type isExplicitMemberSpecialization(const T *D)
Does the given declaration have member specialization information, and if so, is it an explicit speci...
Definition: Decl.cpp:190
virtual void completeDefinition()
Note that the definition of this type is now complete.
Definition: Decl.cpp:4116
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclBase.h:421
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:698
A container of type source information.
Definition: Decl.h:86
constexpr XRayInstrMask Function
Definition: XRayInstr.h:39
Linkage getLinkage() const
Determine the linkage of this type.
Definition: Type.cpp:3607
SourceRange getIntegerTypeRange() const LLVM_READONLY
Retrieve the source range that covers the underlying type if specified.
Definition: Decl.cpp:3957
bool CheckingICE
Whether we are checking whether this statement is an integral constant expression.
Definition: Decl.h:804
void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const override
Appends a human-readable name for this declaration into the given stream.
Definition: Decl.cpp:2644
SourceLocation getOuterLocStart() const
Return SourceLocation representing start of source range taking into account any outer template decla...
Definition: Decl.cpp:3818
void setTemplateParameterListsInfo(ASTContext &Context, ArrayRef< TemplateParameterList *> TPLists)
Sets info about "outer" template parameter lists.
Definition: Decl.cpp:1848
const Expr * getAnyInitializer() const
Get the initializer for this variable, no matter which declaration it is attached to...
Definition: Decl.h:1215
bool isImplicitlyInstantiable() const
Determines whether this function is a function template specialization or a member of a class templat...
Definition: Decl.cpp:3324
This is a module that was defined by a module map and built out of header files.
Definition: Module.h:76
static CapturedDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumParams)
Definition: Decl.cpp:4422
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3148
Represents a #pragma comment line.
Definition: Decl.h:139
LinkageInfo getDeclLinkageAndVisibility(const NamedDecl *D)
Definition: Decl.cpp:1454
void setBeingDefined(bool V=true)
True if this decl is currently being defined.
Definition: Decl.h:3100
void setNothrow(bool Nothrow=true)
Definition: Decl.cpp:4432
This file provides some common utility functions for processing Lambda related AST Constructs...
unsigned getODRHash()
Definition: Decl.cpp:4036
ExplicitVisibilityKind
Kinds of explicit visibility.
Definition: Decl.h:398
Represents a variable declaration or definition.
Definition: Decl.h:820
ASTMutationListener * getASTMutationListener() const
Definition: DeclBase.cpp:380
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:37
bool WasEvaluated
Whether this statement was already evaluated.
Definition: Decl.h:793
Declaration of a redeclarable template.
Definition: DeclTemplate.h:737
QualType getReturnType() const
Definition: Decl.h:2276
static LanguageLinkage getDeclLanguageLinkage(const T &D)
Definition: Decl.cpp:1950
unsigned getNumParams() const
Definition: Type.h:3716
void mergeVisibility(Visibility newVis, bool newExplicit)
Merge in the visibility &#39;newVis&#39;.
Definition: Visibility.h:112
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6562
bool hasDefaultArg() const
Determines whether this parameter has a default argument, either parsed or not.
Definition: Decl.cpp:2587
Visibility getVisibility() const
Definition: Visibility.h:85
TemplateSpecializationKind getTemplateSpecializationKind() const
Determine what kind of template specialization this is.
Definition: DeclTemplate.h:553
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:57
Declaration context for names declared as extern "C" in C++.
Definition: Decl.h:221
Represents a variable template specialization, which refers to a variable template with a given set o...
bool isExternCContext() const
Determines whether this context or some of its ancestors is a linkage specification context that spec...
Definition: DeclBase.cpp:1101
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition: Decl.h:431
bool isZeroLengthBitField(const ASTContext &Ctx) const
Is this a zero-length bit-field? Such bit-fields aren&#39;t really bit-fields at all and instead act as a...
Definition: Decl.cpp:3754
Represents an explicit template argument list in C++, e.g., the "<int>" in "sort<int>".
Definition: TemplateBase.h:601
Decl * FirstDecl
FirstDecl - The first declaration stored within this declaration context.
Definition: DeclBase.h:1743
bool isInvalidDecl() const
Definition: DeclBase.h:555
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:68
Not a TLS variable.
Definition: Decl.h:837
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:38
TemplateSpecializationKind getTemplateSpecializationKind() const
Determine what kind of template specialization this is.
Definition: DeclTemplate.h:630
Represents a parameter to a function.
Definition: Decl.h:1541
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:24
Defines the clang::Expr interface and subclasses for C++ expressions.
LinkageInfo getLVForDecl(const NamedDecl *D, LVComputationKind computation)
getLVForDecl - Get the linkage and visibility for the given declaration.
Definition: Decl.cpp:1408
std::string getName(ArrayRef< StringRef > Parts) const
Get the platform-specific name separator.
Provides information about a dependent function-template specialization declaration.
Definition: DeclTemplate.h:672
bool isAnonymousStructOrUnion() const
Determines whether this field is a representative for an anonymous struct or union.
Definition: Decl.cpp:3739
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:4154
ModuleKind Kind
The kind of this module.
Definition: Module.h:87
SourceRange getReturnTypeSourceRange() const
Attempt to compute an informative source range covering the function return type. ...
Definition: Decl.cpp:3150
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Defines the clang::SanitizerKind enum.
Represents a struct/union/class.
Definition: Decl.h:3572
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the class template specialization.
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
Provides common interface for the Decls that can be redeclared.
Definition: Redeclarable.h:85
C11 _Thread_local.
Definition: Specifiers.h:202
static bool isRedeclarable(Decl::Kind K)
Definition: Decl.cpp:1613
One of these records is kept for each identifier that is lexed.
Represents a class template specialization, which refers to a class template with a given set of temp...
bool hasBody() const override
Returns true if this Decl represents a declaration for a body of code, such as a function or method d...
Definition: Decl.h:1917
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1018
SourceLocation getOuterLocStart() const
Return start of source range taking into account any outer template declarations. ...
Definition: Decl.cpp:1797
static bool typeIsPostfix(QualType QT)
Definition: Decl.cpp:1803
bool isInAnonymousNamespace() const
Definition: DeclBase.cpp:347
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
bool isCapturedRecord() const
Determine whether this record is a record for captured variables in CapturedStmt construct.
Definition: Decl.cpp:4099
static RecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl=nullptr)
Definition: Decl.cpp:4069
void print(raw_ostream &OS, const SourceManager &SM) const
void setUninstantiatedDefaultArg(Expr *arg)
Definition: Decl.cpp:2576
static IndirectFieldDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:4468
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:153
bool hasTrivialBody() const
Returns whether the function has a trivial body that does not require any specific codegen...
Definition: Decl.cpp:2669
A C++ nested-name-specifier augmented with source location information.
static bool redeclForcesDefMSVC(const FunctionDecl *Redecl)
Definition: Decl.cpp:3056
bool CheckedICE
Whether we already checked whether this statement was an integral constant expression.
Definition: Decl.h:800
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:72
static LinkageInfo internal()
Definition: Visibility.h:71
static bool usesTypeVisibility(const NamedDecl *D)
Is the given declaration a "type" or a "value" for the purposes of visibility computation?
Definition: Decl.cpp:180
field_range fields() const
Definition: Decl.h:3763
static unsigned getNumModuleIdentifiers(Module *Mod)
Retrieve the number of module identifiers needed to name the given module.
Definition: Decl.cpp:4592
static const Decl * getOutermostFuncOrBlockContext(const Decl *D)
Definition: Decl.cpp:302
Represents a member of a struct/union/class.
Definition: Decl.h:2554
friend class DeclContext
Definition: DeclBase.h:242
void completeDefinition()
Completes the definition of this tag declaration.
Definition: Decl.cpp:3850
bool isNamespace() const
Definition: DeclBase.h:1849
void startDefinition()
Starts the definition of this tag declaration.
Definition: Decl.cpp:3839
BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
Definition: Decl.cpp:4218
bool isReferenceType() const
Definition: Type.h:6161
SanitizerMask Mask
Bitmask of enabled sanitizers.
Definition: Sanitizers.h:73
const Attr * getUnusedResultAttr() const
Returns the WarnUnusedResultAttr that is either declared on this function, or its return type declara...
Definition: Decl.cpp:3182
Linkage getFormalLinkage(Linkage L)
Definition: Linkage.h:90
This declaration is definitely a definition.
Definition: Decl.h:1158
bool isLinkageValid() const
True if the computed linkage is valid.
Definition: Decl.cpp:1039
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:746
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
bool hasLoadedFieldsFromExternalStorage() const
Definition: Decl.h:3662
Describes a module or submodule.
Definition: Module.h:65
static PragmaCommentDecl * Create(const ASTContext &C, TranslationUnitDecl *DC, SourceLocation CommentLoc, PragmaMSCommentKind CommentKind, StringRef Arg)
Definition: Decl.cpp:4276
specific_decl_iterator< FieldDecl > field_iterator
Definition: Decl.h:3760
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2236
Objects with "default" visibility are seen by the dynamic linker and act like normal objects...
Definition: Visibility.h:46
virtual bool isDefined() const
Definition: Decl.h:1933
Provides information about a function template specialization, which is a FunctionDecl that has been ...
Definition: DeclTemplate.h:508
SourceLocation getPointOfInstantiation() const
If this variable is an instantiation of a variable template or a static data member of a class templa...
Definition: Decl.cpp:2416
TypedefNameDecl * getCanonicalDecl() override
Retrieves the canonical declaration of this typedef-name.
Definition: Decl.h:2967
VarDecl * getActingDefinition()
Get the tentative definition that acts as the real definition in a TU.
Definition: Decl.cpp:2095
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2781
const TemplateArgumentList * TemplateArguments
The template arguments used to produce the function template specialization from the function templat...
Definition: DeclTemplate.h:540
Stmt * getBody() const override
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: Decl.cpp:4428
The argument of this type can be passed directly in registers.
Definition: Decl.h:3583
Kinds of LV computation.
Definition: Linkage.h:28
void setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
For an enumeration member that was instantiated from a member enumeration of a templated class...
Definition: Decl.cpp:3997
QualType getOriginalType() const
Definition: Decl.cpp:2510
static ExternCContextDecl * Create(const ASTContext &C, TranslationUnitDecl *TU)
Definition: Decl.cpp:4323
A convenient class for passing around template argument information.
Definition: TemplateBase.h:552
void setParamDestroyedInCallee(bool V)
Definition: Decl.h:3714
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the variable template specialization.
void AddFunctionDecl(const FunctionDecl *Function, bool SkipBody=false)
Definition: ODRHash.cpp:496
TagDecl * getAnonDeclWithTypedefName(bool AnyRedecl=false) const
Retrieves the tag declaration for which this is the typedef name for linkage purposes, if any.
Definition: Decl.cpp:4491
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified...
Wrapper for source info for functions.
Definition: TypeLoc.h:1402
ModuleOwnershipKind getModuleOwnershipKind() const
Get the kind of module ownership for this declaration.
Definition: DeclBase.h:792
static EnumConstantDecl * Create(ASTContext &C, EnumDecl *DC, SourceLocation L, IdentifierInfo *Id, QualType T, Expr *E, const llvm::APSInt &V)
Definition: Decl.cpp:4434
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition: Decl.cpp:3316
bool isMemberSpecialization() const
Determines whether this template was a specialization of a member template.
Definition: DeclTemplate.h:879
ASTContext & getASTContext() const
Definition: Decl.h:119
Visibility
Describes the different kinds of visibility that a declaration may have.
Definition: Visibility.h:34
DefinitionKind hasDefinition() const
Definition: Decl.h:1171
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:662
TemplateSpecializationKind getTemplateSpecializationKind() const
If this variable is an instantiation of a variable template or a static data member of a class templa...
Definition: Decl.cpp:2406
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:1837
Represents a declaration of a type.
Definition: Decl.h:2849
void setHasObjectMember(bool val)
Definition: Decl.h:3654
A set of unresolved declarations.
Definition: UnresolvedSet.h:61
void setHasImplicitReturnZero(bool IRZ)
State that falling off this function implicitly returns null/zero.
Definition: Decl.h:2043
Module * Parent
The parent of this module.
Definition: Module.h:91
bool isConstexpr() const
Whether this variable is (C++11) constexpr.
Definition: Decl.h:1389
FunctionTemplateSpecializationInfo * getTemplateSpecializationInfo() const
If this function is actually a function template specialization, retrieve information about this func...
Definition: Decl.cpp:3431
VarTemplateDecl * getSpecializedTemplate() const
Retrieve the template that this specialization specializes.
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition: DeclCXX.h:1210
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:5925
field_iterator field_begin() const
Definition: Decl.cpp:4107
unsigned getBitWidthValue(const ASTContext &Ctx) const
Definition: Decl.cpp:3749
static FileScopeAsmDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:4570
void setTrivial(bool IT)
Definition: Decl.h:2011
bool isInlineDefinitionExternallyVisible() const
For an inline function definition in C, or for a gnu_inline function in C++, determine whether the de...
Definition: Decl.cpp:3213
bool isCPUSpecificMultiVersion() const
True if this function is a multiversioned processor specific function as a part of the cpu_specific/c...
Definition: Decl.cpp:2912
Defines the Linkage enumeration and various utility functions.
static TypeAliasDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:4540
DeclContext * getLexicalDeclContext()
getLexicalDeclContext - The declaration context where this Decl was lexically declared (LexicalDC)...
Definition: DeclBase.h:834
SourceLocation getSpellingLoc(SourceLocation Loc) const
Given a SourceLocation object, return the spelling location referenced by the ID. ...
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:1898
ArrayRef< SourceLocation > getIdentifierLocs() const
Retrieves the locations of each of the identifiers that make up the complete module name in the impor...
Definition: Decl.cpp:4641
bool needsCleanup() const
Returns whether the object performed allocations.
Definition: APValue.cpp:257
SourceRange getExceptionSpecSourceRange() const
Attempt to compute an informative source range covering the function exception specification, if any.
Definition: Decl.cpp:3170
FunctionDecl * getInstantiatedFromMemberFunction() const
If this function is an instantiation of a member function of a class template specialization, retrieves the function from which it was instantiated.
Definition: Decl.cpp:3294
static FunctionTemplateSpecializationInfo * Create(ASTContext &C, FunctionDecl *FD, FunctionTemplateDecl *Template, TemplateSpecializationKind TSK, const TemplateArgumentList *TemplateArgs, const TemplateArgumentListInfo *TemplateArgsAsWritten, SourceLocation POI)
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4015
Represents a linkage specification.
Definition: DeclCXX.h:2825
static ParmVarDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:2518
SourceLocation getTypeSpecStartLoc() const
Definition: Decl.cpp:1745
CXXRecordDecl * getTemplatedDecl() const
Get the underlying class declarations of the template.
LinkageInfo computeLVForDecl(const NamedDecl *D, LVComputationKind computation, bool IgnoreVarTypeLinkage=false)
Definition: Decl.cpp:1286
MemberSpecializationInfo * getMemberSpecializationInfo() const
If this function is an instantiation of a member function of a class template specialization, retrieves the member specialization information.
Definition: Decl.cpp:3301
Decl * getPrimaryMergedDecl(Decl *D)
Definition: ASTContext.h:979
void setCachedLinkage(Linkage L) const
Definition: DeclBase.h:395
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified=false, bool hasWrittenPrototype=true, bool isConstexprSpecified=false)
Definition: Decl.h:1859
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:883
void setHasInheritedPrototype(bool P=true)
State that this function inherited its prototype from a previous declaration.
Definition: Decl.h:2073
Defines the clang::Visibility enumeration and various utility functions.
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3417
static ImplicitParamDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, ImplicitParamKind ParamKind)
Create implicit parameter.
Definition: Decl.cpp:4366
NodeId Parent
Definition: ASTDiff.cpp:192
bool isExternC() const
Determines whether this variable is a variable with external, C linkage.
Definition: Decl.cpp:1994
bool isInExternCContext() const
Determines whether this variable&#39;s context is, or is nested within, a C++ extern "C" linkage spec...
Definition: Decl.cpp:1998
static ImportDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, Module *Imported, ArrayRef< SourceLocation > IdentifierLocs)
Create a new module import declaration.
Definition: Decl.cpp:4617
unsigned getLambdaManglingNumber() const
If this is the closure type of a lambda expression, retrieve the number to be used for name mangling ...
Definition: DeclCXX.h:1914
bool hasAttr() const
Definition: DeclBase.h:544
RecordDecl * getAsRecordDecl() const
Retrieves the RecordDecl this type refers to.
Definition: Type.cpp:1631
bool isExternalFormalLinkage(Linkage L)
Definition: Linkage.h:103
A placeholder type used to construct an empty shell of a decl-derived type that will be filled in lat...
Definition: DeclBase.h:102
static bool isExportedFromModuleIntefaceUnit(const NamedDecl *D)
Definition: Decl.cpp:571
Represents the declaration of a typedef-name via a C++11 alias-declaration.
Definition: Decl.h:3017
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1627
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3480
bool isFileVarDecl() const
Returns true for file scoped variable declaration.
Definition: Decl.h:1199
bool isUsableInConstantExpressions(ASTContext &C) const
Determine whether this variable&#39;s value can be used in a constant expression, according to the releva...
Definition: Decl.cpp:2194
void setImplicitlyInline(bool I=true)
Flag that this function is implicitly inline.
Definition: