clang  9.0.0svn
Decl.cpp
Go to the documentation of this file.
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ODRHash.h"
32 #include "clang/AST/Redeclarable.h"
33 #include "clang/AST/Stmt.h"
34 #include "clang/AST/TemplateBase.h"
35 #include "clang/AST/Type.h"
36 #include "clang/AST/TypeLoc.h"
37 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/Linkage.h"
42 #include "clang/Basic/Module.h"
45 #include "clang/Basic/Sanitizers.h"
48 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetInfo.h"
51 #include "clang/Basic/Visibility.h"
52 #include "llvm/ADT/APSInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/None.h"
55 #include "llvm/ADT/Optional.h"
56 #include "llvm/ADT/STLExtras.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringSwitch.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Triple.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstddef>
67 #include <cstring>
68 #include <memory>
69 #include <string>
70 #include <tuple>
71 #include <type_traits>
72 
73 using namespace clang;
74 
76  return D->getASTContext().getPrimaryMergedDecl(D);
77 }
78 
79 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
80  SourceLocation Loc = this->Loc;
81  if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
82  if (Loc.isValid()) {
83  Loc.print(OS, Context.getSourceManager());
84  OS << ": ";
85  }
86  OS << Message;
87 
88  if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
89  OS << " '";
90  ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
91  OS << "'";
92  }
93 
94  OS << '\n';
95 }
96 
97 // Defined here so that it can be inlined into its direct callers.
98 bool Decl::isOutOfLine() const {
99  return !getLexicalDeclContext()->Equals(getDeclContext());
100 }
101 
102 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
103  : Decl(TranslationUnit, nullptr, SourceLocation()),
104  DeclContext(TranslationUnit), Ctx(ctx) {}
105 
106 //===----------------------------------------------------------------------===//
107 // NamedDecl Implementation
108 //===----------------------------------------------------------------------===//
109 
110 // Visibility rules aren't rigorously externally specified, but here
111 // are the basic principles behind what we implement:
112 //
113 // 1. An explicit visibility attribute is generally a direct expression
114 // of the user's intent and should be honored. Only the innermost
115 // visibility attribute applies. If no visibility attribute applies,
116 // global visibility settings are considered.
117 //
118 // 2. There is one caveat to the above: on or in a template pattern,
119 // an explicit visibility attribute is just a default rule, and
120 // visibility can be decreased by the visibility of template
121 // arguments. But this, too, has an exception: an attribute on an
122 // explicit specialization or instantiation causes all the visibility
123 // restrictions of the template arguments to be ignored.
124 //
125 // 3. A variable that does not otherwise have explicit visibility can
126 // be restricted by the visibility of its type.
127 //
128 // 4. A visibility restriction is explicit if it comes from an
129 // attribute (or something like it), not a global visibility setting.
130 // When emitting a reference to an external symbol, visibility
131 // restrictions are ignored unless they are explicit.
132 //
133 // 5. When computing the visibility of a non-type, including a
134 // non-type member of a class, only non-type visibility restrictions
135 // are considered: the 'visibility' attribute, global value-visibility
136 // settings, and a few special cases like __private_extern.
137 //
138 // 6. When computing the visibility of a type, including a type member
139 // of a class, only type visibility restrictions are considered:
140 // the 'type_visibility' attribute and global type-visibility settings.
141 // However, a 'visibility' attribute counts as a 'type_visibility'
142 // attribute on any declaration that only has the former.
143 //
144 // The visibility of a "secondary" entity, like a template argument,
145 // is computed using the kind of that entity, not the kind of the
146 // primary entity for which we are computing visibility. For example,
147 // the visibility of a specialization of either of these templates:
148 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
149 // template <class T, bool (&compare)(T, X)> class matcher;
150 // is restricted according to the type visibility of the argument 'T',
151 // the type visibility of 'bool(&)(T,X)', and the value visibility of
152 // the argument function 'compare'. That 'has_match' is a value
153 // and 'matcher' is a type only matters when looking for attributes
154 // and settings from the immediate context.
155 
156 /// Does this computation kind permit us to consider additional
157 /// visibility settings from attributes and the like?
159  return computation.IgnoreExplicitVisibility;
160 }
161 
162 /// Given an LVComputationKind, return one of the same type/value sort
163 /// that records that it already has explicit visibility.
164 static LVComputationKind
166  Kind.IgnoreExplicitVisibility = true;
167  return Kind;
168 }
169 
172  assert(!kind.IgnoreExplicitVisibility &&
173  "asking for explicit visibility when we shouldn't be");
175 }
176 
177 /// Is the given declaration a "type" or a "value" for the purposes of
178 /// visibility computation?
179 static bool usesTypeVisibility(const NamedDecl *D) {
180  return isa<TypeDecl>(D) ||
181  isa<ClassTemplateDecl>(D) ||
182  isa<ObjCInterfaceDecl>(D);
183 }
184 
185 /// Does the given declaration have member specialization information,
186 /// and if so, is it an explicit specialization?
187 template <class T> static typename
188 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190  if (const MemberSpecializationInfo *member =
191  D->getMemberSpecializationInfo()) {
192  return member->isExplicitSpecialization();
193  }
194  return false;
195 }
196 
197 /// For templates, this question is easier: a member template can't be
198 /// explicitly instantiated, so there's a single bit indicating whether
199 /// or not this is an explicit member specialization.
201  return D->isMemberSpecialization();
202 }
203 
204 /// Given a visibility attribute, return the explicit visibility
205 /// associated with it.
206 template <class T>
207 static Visibility getVisibilityFromAttr(const T *attr) {
208  switch (attr->getVisibility()) {
209  case T::Default:
210  return DefaultVisibility;
211  case T::Hidden:
212  return HiddenVisibility;
213  case T::Protected:
214  return ProtectedVisibility;
215  }
216  llvm_unreachable("bad visibility kind");
217 }
218 
219 /// Return the explicit visibility of the given declaration.
222  // If we're ultimately computing the visibility of a type, look for
223  // a 'type_visibility' attribute before looking for 'visibility'.
224  if (kind == NamedDecl::VisibilityForType) {
225  if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
226  return getVisibilityFromAttr(A);
227  }
228  }
229 
230  // If this declaration has an explicit visibility attribute, use it.
231  if (const auto *A = D->getAttr<VisibilityAttr>()) {
232  return getVisibilityFromAttr(A);
233  }
234 
235  return None;
236 }
237 
238 LinkageInfo LinkageComputer::getLVForType(const Type &T,
239  LVComputationKind computation) {
240  if (computation.IgnoreAllVisibility)
241  return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
242  return getTypeLinkageAndVisibility(&T);
243 }
244 
245 /// Get the most restrictive linkage for the types in the given
246 /// template parameter list. For visibility purposes, template
247 /// parameters are part of the signature of a template.
248 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
249  const TemplateParameterList *Params, LVComputationKind computation) {
250  LinkageInfo LV;
251  for (const NamedDecl *P : *Params) {
252  // Template type parameters are the most common and never
253  // contribute to visibility, pack or not.
254  if (isa<TemplateTypeParmDecl>(P))
255  continue;
256 
257  // Non-type template parameters can be restricted by the value type, e.g.
258  // template <enum X> class A { ... };
259  // We have to be careful here, though, because we can be dealing with
260  // dependent types.
261  if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
262  // Handle the non-pack case first.
263  if (!NTTP->isExpandedParameterPack()) {
264  if (!NTTP->getType()->isDependentType()) {
265  LV.merge(getLVForType(*NTTP->getType(), computation));
266  }
267  continue;
268  }
269 
270  // Look at all the types in an expanded pack.
271  for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
272  QualType type = NTTP->getExpansionType(i);
273  if (!type->isDependentType())
274  LV.merge(getTypeLinkageAndVisibility(type));
275  }
276  continue;
277  }
278 
279  // Template template parameters can be restricted by their
280  // template parameters, recursively.
281  const auto *TTP = cast<TemplateTemplateParmDecl>(P);
282 
283  // Handle the non-pack case first.
284  if (!TTP->isExpandedParameterPack()) {
285  LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
286  computation));
287  continue;
288  }
289 
290  // Look at all expansions in an expanded pack.
291  for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
292  i != n; ++i) {
293  LV.merge(getLVForTemplateParameterList(
294  TTP->getExpansionTemplateParameters(i), computation));
295  }
296  }
297 
298  return LV;
299 }
300 
301 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
302  const Decl *Ret = nullptr;
303  const DeclContext *DC = D->getDeclContext();
304  while (DC->getDeclKind() != Decl::TranslationUnit) {
305  if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
306  Ret = cast<Decl>(DC);
307  DC = DC->getParent();
308  }
309  return Ret;
310 }
311 
312 /// Get the most restrictive linkage for the types and
313 /// declarations in the given template argument list.
314 ///
315 /// Note that we don't take an LVComputationKind because we always
316 /// want to honor the visibility of template arguments in the same way.
318 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
319  LVComputationKind computation) {
320  LinkageInfo LV;
321 
322  for (const TemplateArgument &Arg : Args) {
323  switch (Arg.getKind()) {
327  continue;
328 
330  LV.merge(getLVForType(*Arg.getAsType(), computation));
331  continue;
332 
334  const NamedDecl *ND = Arg.getAsDecl();
335  assert(!usesTypeVisibility(ND));
336  LV.merge(getLVForDecl(ND, computation));
337  continue;
338  }
339 
341  LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
342  continue;
343 
346  if (TemplateDecl *Template =
347  Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
348  LV.merge(getLVForDecl(Template, computation));
349  continue;
350 
352  LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
353  continue;
354  }
355  llvm_unreachable("bad template argument kind");
356  }
357 
358  return LV;
359 }
360 
362 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
363  LVComputationKind computation) {
364  return getLVForTemplateArgumentList(TArgs.asArray(), computation);
365 }
366 
368  const FunctionTemplateSpecializationInfo *specInfo) {
369  // Include visibility from the template parameters and arguments
370  // only if this is not an explicit instantiation or specialization
371  // with direct explicit visibility. (Implicit instantiations won't
372  // have a direct attribute.)
374  return true;
375 
376  return !fn->hasAttr<VisibilityAttr>();
377 }
378 
379 /// Merge in template-related linkage and visibility for the given
380 /// function template specialization.
381 ///
382 /// We don't need a computation kind here because we can assume
383 /// LVForValue.
384 ///
385 /// \param[out] LV the computation to use for the parent
386 void LinkageComputer::mergeTemplateLV(
387  LinkageInfo &LV, const FunctionDecl *fn,
388  const FunctionTemplateSpecializationInfo *specInfo,
389  LVComputationKind computation) {
390  bool considerVisibility =
391  shouldConsiderTemplateVisibility(fn, specInfo);
392 
393  // Merge information from the template parameters.
394  FunctionTemplateDecl *temp = specInfo->getTemplate();
395  LinkageInfo tempLV =
396  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
397  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
398 
399  // Merge information from the template arguments.
400  const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
401  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
402  LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
403 }
404 
405 /// Does the given declaration have a direct visibility attribute
406 /// that would match the given rules?
408  LVComputationKind computation) {
409  if (computation.IgnoreAllVisibility)
410  return false;
411 
412  return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
413  D->hasAttr<VisibilityAttr>();
414 }
415 
416 /// Should we consider visibility associated with the template
417 /// arguments and parameters of the given class template specialization?
420  LVComputationKind computation) {
421  // Include visibility from the template parameters and arguments
422  // only if this is not an explicit instantiation or specialization
423  // with direct explicit visibility (and note that implicit
424  // instantiations won't have a direct attribute).
425  //
426  // Furthermore, we want to ignore template parameters and arguments
427  // for an explicit specialization when computing the visibility of a
428  // member thereof with explicit visibility.
429  //
430  // This is a bit complex; let's unpack it.
431  //
432  // An explicit class specialization is an independent, top-level
433  // declaration. As such, if it or any of its members has an
434  // explicit visibility attribute, that must directly express the
435  // user's intent, and we should honor it. The same logic applies to
436  // an explicit instantiation of a member of such a thing.
437 
438  // Fast path: if this is not an explicit instantiation or
439  // specialization, we always want to consider template-related
440  // visibility restrictions.
442  return true;
443 
444  // This is the 'member thereof' check.
445  if (spec->isExplicitSpecialization() &&
446  hasExplicitVisibilityAlready(computation))
447  return false;
448 
449  return !hasDirectVisibilityAttribute(spec, computation);
450 }
451 
452 /// Merge in template-related linkage and visibility for the given
453 /// class template specialization.
454 void LinkageComputer::mergeTemplateLV(
456  LVComputationKind computation) {
457  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
458 
459  // Merge information from the template parameters, but ignore
460  // visibility if we're only considering template arguments.
461 
463  LinkageInfo tempLV =
464  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
465  LV.mergeMaybeWithVisibility(tempLV,
466  considerVisibility && !hasExplicitVisibilityAlready(computation));
467 
468  // Merge information from the template arguments. We ignore
469  // template-argument visibility if we've got an explicit
470  // instantiation with a visibility attribute.
471  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
472  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
473  if (considerVisibility)
474  LV.mergeVisibility(argsLV);
475  LV.mergeExternalVisibility(argsLV);
476 }
477 
478 /// Should we consider visibility associated with the template
479 /// arguments and parameters of the given variable template
480 /// specialization? As usual, follow class template specialization
481 /// logic up to initialization.
483  const VarTemplateSpecializationDecl *spec,
484  LVComputationKind computation) {
485  // Include visibility from the template parameters and arguments
486  // only if this is not an explicit instantiation or specialization
487  // with direct explicit visibility (and note that implicit
488  // instantiations won't have a direct attribute).
490  return true;
491 
492  // An explicit variable specialization is an independent, top-level
493  // declaration. As such, if it has an explicit visibility attribute,
494  // that must directly express the user's intent, and we should honor
495  // it.
496  if (spec->isExplicitSpecialization() &&
497  hasExplicitVisibilityAlready(computation))
498  return false;
499 
500  return !hasDirectVisibilityAttribute(spec, computation);
501 }
502 
503 /// Merge in template-related linkage and visibility for the given
504 /// variable template specialization. As usual, follow class template
505 /// specialization logic up to initialization.
506 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
507  const VarTemplateSpecializationDecl *spec,
508  LVComputationKind computation) {
509  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
510 
511  // Merge information from the template parameters, but ignore
512  // visibility if we're only considering template arguments.
513 
514  VarTemplateDecl *temp = spec->getSpecializedTemplate();
515  LinkageInfo tempLV =
516  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
517  LV.mergeMaybeWithVisibility(tempLV,
518  considerVisibility && !hasExplicitVisibilityAlready(computation));
519 
520  // Merge information from the template arguments. We ignore
521  // template-argument visibility if we've got an explicit
522  // instantiation with a visibility attribute.
523  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
524  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
525  if (considerVisibility)
526  LV.mergeVisibility(argsLV);
527  LV.mergeExternalVisibility(argsLV);
528 }
529 
530 static bool useInlineVisibilityHidden(const NamedDecl *D) {
531  // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
532  const LangOptions &Opts = D->getASTContext().getLangOpts();
533  if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
534  return false;
535 
536  const auto *FD = dyn_cast<FunctionDecl>(D);
537  if (!FD)
538  return false;
539 
542  = FD->getTemplateSpecializationInfo()) {
543  TSK = spec->getTemplateSpecializationKind();
544  } else if (MemberSpecializationInfo *MSI =
545  FD->getMemberSpecializationInfo()) {
546  TSK = MSI->getTemplateSpecializationKind();
547  }
548 
549  const FunctionDecl *Def = nullptr;
550  // InlineVisibilityHidden only applies to definitions, and
551  // isInlined() only gives meaningful answers on definitions
552  // anyway.
553  return TSK != TSK_ExplicitInstantiationDeclaration &&
555  FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
556 }
557 
558 template <typename T> static bool isFirstInExternCContext(T *D) {
559  const T *First = D->getFirstDecl();
560  return First->isInExternCContext();
561 }
562 
563 static bool isSingleLineLanguageLinkage(const Decl &D) {
564  if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
565  if (!SD->hasBraces())
566  return true;
567  return false;
568 }
569 
570 /// Determine whether D is declared in the purview of a named module.
571 static bool isInModulePurview(const NamedDecl *D) {
572  if (auto *M = D->getOwningModule())
573  return M->isModulePurview();
574  return false;
575 }
576 
578  // FIXME: Handle isModulePrivate.
579  switch (D->getModuleOwnershipKind()) {
582  return false;
585  return isInModulePurview(D);
586  }
587  llvm_unreachable("unexpected module ownership kind");
588 }
589 
591  // Internal linkage declarations within a module interface unit are modeled
592  // as "module-internal linkage", which means that they have internal linkage
593  // formally but can be indirectly accessed from outside the module via inline
594  // functions and templates defined within the module.
595  if (isInModulePurview(D))
597 
598  return LinkageInfo::internal();
599 }
600 
602  // C++ Modules TS [basic.link]/6.8:
603  // - A name declared at namespace scope that does not have internal linkage
604  // by the previous rules and that is introduced by a non-exported
605  // declaration has module linkage.
607  cast<NamedDecl>(D->getCanonicalDecl())))
609 
610  return LinkageInfo::external();
611 }
612 
614 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
615  LVComputationKind computation,
616  bool IgnoreVarTypeLinkage) {
617  assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
618  "Not a name having namespace scope");
619  ASTContext &Context = D->getASTContext();
620 
621  // C++ [basic.link]p3:
622  // A name having namespace scope (3.3.6) has internal linkage if it
623  // is the name of
624  // - an object, reference, function or function template that is
625  // explicitly declared static; or,
626  // (This bullet corresponds to C99 6.2.2p3.)
627  if (const auto *Var = dyn_cast<VarDecl>(D)) {
628  // Explicitly declared static.
629  if (Var->getStorageClass() == SC_Static)
630  return getInternalLinkageFor(Var);
631 
632  // - a non-inline, non-volatile object or reference that is explicitly
633  // declared const or constexpr and neither explicitly declared extern
634  // nor previously declared to have external linkage; or (there is no
635  // equivalent in C99)
636  // The C++ modules TS adds "non-exported" to this list.
637  if (Context.getLangOpts().CPlusPlus &&
638  Var->getType().isConstQualified() &&
639  !Var->getType().isVolatileQualified() &&
640  !Var->isInline() &&
642  const VarDecl *PrevVar = Var->getPreviousDecl();
643  if (PrevVar)
644  return getLVForDecl(PrevVar, computation);
645 
646  if (Var->getStorageClass() != SC_Extern &&
647  Var->getStorageClass() != SC_PrivateExtern &&
649  return getInternalLinkageFor(Var);
650  }
651 
652  for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
653  PrevVar = PrevVar->getPreviousDecl()) {
654  if (PrevVar->getStorageClass() == SC_PrivateExtern &&
655  Var->getStorageClass() == SC_None)
656  return getDeclLinkageAndVisibility(PrevVar);
657  // Explicitly declared static.
658  if (PrevVar->getStorageClass() == SC_Static)
659  return getInternalLinkageFor(Var);
660  }
661  } else if (const FunctionDecl *Function = D->getAsFunction()) {
662  // C++ [temp]p4:
663  // A non-member function template can have internal linkage; any
664  // other template name shall have external linkage.
665 
666  // Explicitly declared static.
667  if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
668  return getInternalLinkageFor(Function);
669  } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
670  // - a data member of an anonymous union.
671  const VarDecl *VD = IFD->getVarDecl();
672  assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
673  return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
674  }
675  assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
676 
677  if (D->isInAnonymousNamespace()) {
678  const auto *Var = dyn_cast<VarDecl>(D);
679  const auto *Func = dyn_cast<FunctionDecl>(D);
680  // FIXME: The check for extern "C" here is not justified by the standard
681  // wording, but we retain it from the pre-DR1113 model to avoid breaking
682  // code.
683  //
684  // C++11 [basic.link]p4:
685  // An unnamed namespace or a namespace declared directly or indirectly
686  // within an unnamed namespace has internal linkage.
687  if ((!Var || !isFirstInExternCContext(Var)) &&
688  (!Func || !isFirstInExternCContext(Func)))
689  return getInternalLinkageFor(D);
690  }
691 
692  // Set up the defaults.
693 
694  // C99 6.2.2p5:
695  // If the declaration of an identifier for an object has file
696  // scope and no storage-class specifier, its linkage is
697  // external.
699 
700  if (!hasExplicitVisibilityAlready(computation)) {
701  if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
702  LV.mergeVisibility(*Vis, true);
703  } else {
704  // If we're declared in a namespace with a visibility attribute,
705  // use that namespace's visibility, and it still counts as explicit.
706  for (const DeclContext *DC = D->getDeclContext();
707  !isa<TranslationUnitDecl>(DC);
708  DC = DC->getParent()) {
709  const auto *ND = dyn_cast<NamespaceDecl>(DC);
710  if (!ND) continue;
711  if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
712  LV.mergeVisibility(*Vis, true);
713  break;
714  }
715  }
716  }
717 
718  // Add in global settings if the above didn't give us direct visibility.
719  if (!LV.isVisibilityExplicit()) {
720  // Use global type/value visibility as appropriate.
721  Visibility globalVisibility =
722  computation.isValueVisibility()
723  ? Context.getLangOpts().getValueVisibilityMode()
724  : Context.getLangOpts().getTypeVisibilityMode();
725  LV.mergeVisibility(globalVisibility, /*explicit*/ false);
726 
727  // If we're paying attention to global visibility, apply
728  // -finline-visibility-hidden if this is an inline method.
730  LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
731  }
732  }
733 
734  // C++ [basic.link]p4:
735 
736  // A name having namespace scope has external linkage if it is the
737  // name of
738  //
739  // - an object or reference, unless it has internal linkage; or
740  if (const auto *Var = dyn_cast<VarDecl>(D)) {
741  // GCC applies the following optimization to variables and static
742  // data members, but not to functions:
743  //
744  // Modify the variable's LV by the LV of its type unless this is
745  // C or extern "C". This follows from [basic.link]p9:
746  // A type without linkage shall not be used as the type of a
747  // variable or function with external linkage unless
748  // - the entity has C language linkage, or
749  // - the entity is declared within an unnamed namespace, or
750  // - the entity is not used or is defined in the same
751  // translation unit.
752  // and [basic.link]p10:
753  // ...the types specified by all declarations referring to a
754  // given variable or function shall be identical...
755  // C does not have an equivalent rule.
756  //
757  // Ignore this if we've got an explicit attribute; the user
758  // probably knows what they're doing.
759  //
760  // Note that we don't want to make the variable non-external
761  // because of this, but unique-external linkage suits us.
762  if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
763  !IgnoreVarTypeLinkage) {
764  LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
765  if (!isExternallyVisible(TypeLV.getLinkage()))
767  if (!LV.isVisibilityExplicit())
768  LV.mergeVisibility(TypeLV);
769  }
770 
771  if (Var->getStorageClass() == SC_PrivateExtern)
773 
774  // Note that Sema::MergeVarDecl already takes care of implementing
775  // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
776  // to do it here.
777 
778  // As per function and class template specializations (below),
779  // consider LV for the template and template arguments. We're at file
780  // scope, so we do not need to worry about nested specializations.
781  if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
782  mergeTemplateLV(LV, spec, computation);
783  }
784 
785  // - a function, unless it has internal linkage; or
786  } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
787  // In theory, we can modify the function's LV by the LV of its
788  // type unless it has C linkage (see comment above about variables
789  // for justification). In practice, GCC doesn't do this, so it's
790  // just too painful to make work.
791 
792  if (Function->getStorageClass() == SC_PrivateExtern)
794 
795  // Note that Sema::MergeCompatibleFunctionDecls already takes care of
796  // merging storage classes and visibility attributes, so we don't have to
797  // look at previous decls in here.
798 
799  // In C++, then if the type of the function uses a type with
800  // unique-external linkage, it's not legally usable from outside
801  // this translation unit. However, we should use the C linkage
802  // rules instead for extern "C" declarations.
803  if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
804  // Only look at the type-as-written. Otherwise, deducing the return type
805  // of a function could change its linkage.
806  QualType TypeAsWritten = Function->getType();
807  if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
808  TypeAsWritten = TSI->getType();
809  if (!isExternallyVisible(TypeAsWritten->getLinkage()))
811  }
812 
813  // Consider LV from the template and the template arguments.
814  // We're at file scope, so we do not need to worry about nested
815  // specializations.
817  = Function->getTemplateSpecializationInfo()) {
818  mergeTemplateLV(LV, Function, specInfo, computation);
819  }
820 
821  // - a named class (Clause 9), or an unnamed class defined in a
822  // typedef declaration in which the class has the typedef name
823  // for linkage purposes (7.1.3); or
824  // - a named enumeration (7.2), or an unnamed enumeration
825  // defined in a typedef declaration in which the enumeration
826  // has the typedef name for linkage purposes (7.1.3); or
827  } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
828  // Unnamed tags have no linkage.
829  if (!Tag->hasNameForLinkage())
830  return LinkageInfo::none();
831 
832  // If this is a class template specialization, consider the
833  // linkage of the template and template arguments. We're at file
834  // scope, so we do not need to worry about nested specializations.
835  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
836  mergeTemplateLV(LV, spec, computation);
837  }
838 
839  // - an enumerator belonging to an enumeration with external linkage;
840  } else if (isa<EnumConstantDecl>(D)) {
841  LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
842  computation);
843  if (!isExternalFormalLinkage(EnumLV.getLinkage()))
844  return LinkageInfo::none();
845  LV.merge(EnumLV);
846 
847  // - a template, unless it is a function template that has
848  // internal linkage (Clause 14);
849  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
850  bool considerVisibility = !hasExplicitVisibilityAlready(computation);
851  LinkageInfo tempLV =
852  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
853  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
854 
855  // - a namespace (7.3), unless it is declared within an unnamed
856  // namespace.
857  //
858  // We handled names in anonymous namespaces above.
859  } else if (isa<NamespaceDecl>(D)) {
860  return LV;
861 
862  // By extension, we assign external linkage to Objective-C
863  // interfaces.
864  } else if (isa<ObjCInterfaceDecl>(D)) {
865  // fallout
866 
867  } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
868  // A typedef declaration has linkage if it gives a type a name for
869  // linkage purposes.
870  if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
871  return LinkageInfo::none();
872 
873  // Everything not covered here has no linkage.
874  } else {
875  return LinkageInfo::none();
876  }
877 
878  // If we ended up with non-externally-visible linkage, visibility should
879  // always be default.
880  if (!isExternallyVisible(LV.getLinkage()))
881  return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
882 
883  return LV;
884 }
885 
887 LinkageComputer::getLVForClassMember(const NamedDecl *D,
888  LVComputationKind computation,
889  bool IgnoreVarTypeLinkage) {
890  // Only certain class members have linkage. Note that fields don't
891  // really have linkage, but it's convenient to say they do for the
892  // purposes of calculating linkage of pointer-to-data-member
893  // template arguments.
894  //
895  // Templates also don't officially have linkage, but since we ignore
896  // the C++ standard and look at template arguments when determining
897  // linkage and visibility of a template specialization, we might hit
898  // a template template argument that way. If we do, we need to
899  // consider its linkage.
900  if (!(isa<CXXMethodDecl>(D) ||
901  isa<VarDecl>(D) ||
902  isa<FieldDecl>(D) ||
903  isa<IndirectFieldDecl>(D) ||
904  isa<TagDecl>(D) ||
905  isa<TemplateDecl>(D)))
906  return LinkageInfo::none();
907 
908  LinkageInfo LV;
909 
910  // If we have an explicit visibility attribute, merge that in.
911  if (!hasExplicitVisibilityAlready(computation)) {
912  if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
913  LV.mergeVisibility(*Vis, true);
914  // If we're paying attention to global visibility, apply
915  // -finline-visibility-hidden if this is an inline method.
916  //
917  // Note that we do this before merging information about
918  // the class visibility.
920  LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
921  }
922 
923  // If this class member has an explicit visibility attribute, the only
924  // thing that can change its visibility is the template arguments, so
925  // only look for them when processing the class.
926  LVComputationKind classComputation = computation;
927  if (LV.isVisibilityExplicit())
928  classComputation = withExplicitVisibilityAlready(computation);
929 
930  LinkageInfo classLV =
931  getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
932  // The member has the same linkage as the class. If that's not externally
933  // visible, we don't need to compute anything about the linkage.
934  // FIXME: If we're only computing linkage, can we bail out here?
935  if (!isExternallyVisible(classLV.getLinkage()))
936  return classLV;
937 
938 
939  // Otherwise, don't merge in classLV yet, because in certain cases
940  // we need to completely ignore the visibility from it.
941 
942  // Specifically, if this decl exists and has an explicit attribute.
943  const NamedDecl *explicitSpecSuppressor = nullptr;
944 
945  if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
946  // Only look at the type-as-written. Otherwise, deducing the return type
947  // of a function could change its linkage.
948  QualType TypeAsWritten = MD->getType();
949  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
950  TypeAsWritten = TSI->getType();
951  if (!isExternallyVisible(TypeAsWritten->getLinkage()))
953 
954  // If this is a method template specialization, use the linkage for
955  // the template parameters and arguments.
957  = MD->getTemplateSpecializationInfo()) {
958  mergeTemplateLV(LV, MD, spec, computation);
959  if (spec->isExplicitSpecialization()) {
960  explicitSpecSuppressor = MD;
961  } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
962  explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
963  }
964  } else if (isExplicitMemberSpecialization(MD)) {
965  explicitSpecSuppressor = MD;
966  }
967 
968  } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
969  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
970  mergeTemplateLV(LV, spec, computation);
971  if (spec->isExplicitSpecialization()) {
972  explicitSpecSuppressor = spec;
973  } else {
974  const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
975  if (isExplicitMemberSpecialization(temp)) {
976  explicitSpecSuppressor = temp->getTemplatedDecl();
977  }
978  }
979  } else if (isExplicitMemberSpecialization(RD)) {
980  explicitSpecSuppressor = RD;
981  }
982 
983  // Static data members.
984  } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
985  if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
986  mergeTemplateLV(LV, spec, computation);
987 
988  // Modify the variable's linkage by its type, but ignore the
989  // type's visibility unless it's a definition.
990  if (!IgnoreVarTypeLinkage) {
991  LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
992  // FIXME: If the type's linkage is not externally visible, we can
993  // give this static data member UniqueExternalLinkage.
994  if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
995  LV.mergeVisibility(typeLV);
996  LV.mergeExternalVisibility(typeLV);
997  }
998 
1000  explicitSpecSuppressor = VD;
1001  }
1002 
1003  // Template members.
1004  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1005  bool considerVisibility =
1006  (!LV.isVisibilityExplicit() &&
1007  !classLV.isVisibilityExplicit() &&
1008  !hasExplicitVisibilityAlready(computation));
1009  LinkageInfo tempLV =
1010  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1011  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1012 
1013  if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1014  if (isExplicitMemberSpecialization(redeclTemp)) {
1015  explicitSpecSuppressor = temp->getTemplatedDecl();
1016  }
1017  }
1018  }
1019 
1020  // We should never be looking for an attribute directly on a template.
1021  assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1022 
1023  // If this member is an explicit member specialization, and it has
1024  // an explicit attribute, ignore visibility from the parent.
1025  bool considerClassVisibility = true;
1026  if (explicitSpecSuppressor &&
1027  // optimization: hasDVA() is true only with explicit visibility.
1028  LV.isVisibilityExplicit() &&
1029  classLV.getVisibility() != DefaultVisibility &&
1030  hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1031  considerClassVisibility = false;
1032  }
1033 
1034  // Finally, merge in information from the class.
1035  LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1036  return LV;
1037 }
1038 
1039 void NamedDecl::anchor() {}
1040 
1042  if (!hasCachedLinkage())
1043  return true;
1044 
1045  Linkage L = LinkageComputer{}
1047  .getLinkage();
1048  return L == getCachedLinkage();
1049 }
1050 
1052  StringRef name = getName();
1053  if (name.empty()) return SFF_None;
1054 
1055  if (name.front() == 'C')
1056  if (name == "CFStringCreateWithFormat" ||
1057  name == "CFStringCreateWithFormatAndArguments" ||
1058  name == "CFStringAppendFormat" ||
1059  name == "CFStringAppendFormatAndArguments")
1060  return SFF_CFString;
1061  return SFF_None;
1062 }
1063 
1065  // We don't care about visibility here, so ask for the cheapest
1066  // possible visibility analysis.
1067  return LinkageComputer{}
1069  .getLinkage();
1070 }
1071 
1074 }
1075 
1076 static Optional<Visibility>
1079  bool IsMostRecent) {
1080  assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1081 
1082  // Check the declaration itself first.
1083  if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1084  return V;
1085 
1086  // If this is a member class of a specialization of a class template
1087  // and the corresponding decl has explicit visibility, use that.
1088  if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1089  CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1090  if (InstantiatedFrom)
1091  return getVisibilityOf(InstantiatedFrom, kind);
1092  }
1093 
1094  // If there wasn't explicit visibility there, and this is a
1095  // specialization of a class template, check for visibility
1096  // on the pattern.
1097  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1098  // Walk all the template decl till this point to see if there are
1099  // explicit visibility attributes.
1100  const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1101  while (TD != nullptr) {
1102  auto Vis = getVisibilityOf(TD, kind);
1103  if (Vis != None)
1104  return Vis;
1105  TD = TD->getPreviousDecl();
1106  }
1107  return None;
1108  }
1109 
1110  // Use the most recent declaration.
1111  if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1112  const NamedDecl *MostRecent = ND->getMostRecentDecl();
1113  if (MostRecent != ND)
1114  return getExplicitVisibilityAux(MostRecent, kind, true);
1115  }
1116 
1117  if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1118  if (Var->isStaticDataMember()) {
1119  VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1120  if (InstantiatedFrom)
1121  return getVisibilityOf(InstantiatedFrom, kind);
1122  }
1123 
1124  if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1125  return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1126  kind);
1127 
1128  return None;
1129  }
1130  // Also handle function template specializations.
1131  if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1132  // If the function is a specialization of a template with an
1133  // explicit visibility attribute, use that.
1134  if (FunctionTemplateSpecializationInfo *templateInfo
1136  return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1137  kind);
1138 
1139  // If the function is a member of a specialization of a class template
1140  // and the corresponding decl has explicit visibility, use that.
1141  FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1142  if (InstantiatedFrom)
1143  return getVisibilityOf(InstantiatedFrom, kind);
1144 
1145  return None;
1146  }
1147 
1148  // The visibility of a template is stored in the templated decl.
1149  if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1150  return getVisibilityOf(TD->getTemplatedDecl(), kind);
1151 
1152  return None;
1153 }
1154 
1157  return getExplicitVisibilityAux(this, kind, false);
1158 }
1159 
1160 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1161  Decl *ContextDecl,
1162  LVComputationKind computation) {
1163  // This lambda has its linkage/visibility determined by its owner.
1164  const NamedDecl *Owner;
1165  if (!ContextDecl)
1166  Owner = dyn_cast<NamedDecl>(DC);
1167  else if (isa<ParmVarDecl>(ContextDecl))
1168  Owner =
1169  dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1170  else
1171  Owner = cast<NamedDecl>(ContextDecl);
1172 
1173  if (!Owner)
1174  return LinkageInfo::none();
1175 
1176  // If the owner has a deduced type, we need to skip querying the linkage and
1177  // visibility of that type, because it might involve this closure type. The
1178  // only effect of this is that we might give a lambda VisibleNoLinkage rather
1179  // than NoLinkage when we don't strictly need to, which is benign.
1180  auto *VD = dyn_cast<VarDecl>(Owner);
1181  LinkageInfo OwnerLV =
1182  VD && VD->getType()->getContainedDeducedType()
1183  ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1184  : getLVForDecl(Owner, computation);
1185 
1186  // A lambda never formally has linkage. But if the owner is externally
1187  // visible, then the lambda is too. We apply the same rules to blocks.
1188  if (!isExternallyVisible(OwnerLV.getLinkage()))
1189  return LinkageInfo::none();
1190  return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1191  OwnerLV.isVisibilityExplicit());
1192 }
1193 
1194 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1195  LVComputationKind computation) {
1196  if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1197  if (Function->isInAnonymousNamespace() &&
1198  !isFirstInExternCContext(Function))
1199  return getInternalLinkageFor(Function);
1200 
1201  // This is a "void f();" which got merged with a file static.
1202  if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1203  return getInternalLinkageFor(Function);
1204 
1205  LinkageInfo LV;
1206  if (!hasExplicitVisibilityAlready(computation)) {
1207  if (Optional<Visibility> Vis =
1208  getExplicitVisibility(Function, computation))
1209  LV.mergeVisibility(*Vis, true);
1210  }
1211 
1212  // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1213  // merging storage classes and visibility attributes, so we don't have to
1214  // look at previous decls in here.
1215 
1216  return LV;
1217  }
1218 
1219  if (const auto *Var = dyn_cast<VarDecl>(D)) {
1220  if (Var->hasExternalStorage()) {
1221  if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1222  return getInternalLinkageFor(Var);
1223 
1224  LinkageInfo LV;
1225  if (Var->getStorageClass() == SC_PrivateExtern)
1227  else if (!hasExplicitVisibilityAlready(computation)) {
1228  if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1229  LV.mergeVisibility(*Vis, true);
1230  }
1231 
1232  if (const VarDecl *Prev = Var->getPreviousDecl()) {
1233  LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1234  if (PrevLV.getLinkage())
1235  LV.setLinkage(PrevLV.getLinkage());
1236  LV.mergeVisibility(PrevLV);
1237  }
1238 
1239  return LV;
1240  }
1241 
1242  if (!Var->isStaticLocal())
1243  return LinkageInfo::none();
1244  }
1245 
1246  ASTContext &Context = D->getASTContext();
1247  if (!Context.getLangOpts().CPlusPlus)
1248  return LinkageInfo::none();
1249 
1250  const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1251  if (!OuterD || OuterD->isInvalidDecl())
1252  return LinkageInfo::none();
1253 
1254  LinkageInfo LV;
1255  if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1256  if (!BD->getBlockManglingNumber())
1257  return LinkageInfo::none();
1258 
1259  LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1260  BD->getBlockManglingContextDecl(), computation);
1261  } else {
1262  const auto *FD = cast<FunctionDecl>(OuterD);
1263  if (!FD->isInlined() &&
1264  !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1265  return LinkageInfo::none();
1266 
1267  // If a function is hidden by -fvisibility-inlines-hidden option and
1268  // is not explicitly attributed as a hidden function,
1269  // we should not make static local variables in the function hidden.
1270  LV = getLVForDecl(FD, computation);
1271  if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1272  !LV.isVisibilityExplicit()) {
1273  assert(cast<VarDecl>(D)->isStaticLocal());
1274  // If this was an implicitly hidden inline method, check again for
1275  // explicit visibility on the parent class, and use that for static locals
1276  // if present.
1277  if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1278  LV = getLVForDecl(MD->getParent(), computation);
1279  if (!LV.isVisibilityExplicit()) {
1280  Visibility globalVisibility =
1281  computation.isValueVisibility()
1282  ? Context.getLangOpts().getValueVisibilityMode()
1283  : Context.getLangOpts().getTypeVisibilityMode();
1284  return LinkageInfo(VisibleNoLinkage, globalVisibility,
1285  /*visibilityExplicit=*/false);
1286  }
1287  }
1288  }
1289  if (!isExternallyVisible(LV.getLinkage()))
1290  return LinkageInfo::none();
1292  LV.isVisibilityExplicit());
1293 }
1294 
1295 static inline const CXXRecordDecl*
1297  const CXXRecordDecl *Ret = Record;
1298  while (Record && Record->isLambda()) {
1299  Ret = Record;
1300  if (!Record->getParent()) break;
1301  // Get the Containing Class of this Lambda Class
1302  Record = dyn_cast_or_null<CXXRecordDecl>(
1303  Record->getParent()->getParent());
1304  }
1305  return Ret;
1306 }
1307 
1309  LVComputationKind computation,
1310  bool IgnoreVarTypeLinkage) {
1311  // Internal_linkage attribute overrides other considerations.
1312  if (D->hasAttr<InternalLinkageAttr>())
1313  return getInternalLinkageFor(D);
1314 
1315  // Objective-C: treat all Objective-C declarations as having external
1316  // linkage.
1317  switch (D->getKind()) {
1318  default:
1319  break;
1320 
1321  // Per C++ [basic.link]p2, only the names of objects, references,
1322  // functions, types, templates, namespaces, and values ever have linkage.
1323  //
1324  // Note that the name of a typedef, namespace alias, using declaration,
1325  // and so on are not the name of the corresponding type, namespace, or
1326  // declaration, so they do *not* have linkage.
1327  case Decl::ImplicitParam:
1328  case Decl::Label:
1329  case Decl::NamespaceAlias:
1330  case Decl::ParmVar:
1331  case Decl::Using:
1332  case Decl::UsingShadow:
1333  case Decl::UsingDirective:
1334  return LinkageInfo::none();
1335 
1336  case Decl::EnumConstant:
1337  // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1338  if (D->getASTContext().getLangOpts().CPlusPlus)
1339  return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1340  return LinkageInfo::visible_none();
1341 
1342  case Decl::Typedef:
1343  case Decl::TypeAlias:
1344  // A typedef declaration has linkage if it gives a type a name for
1345  // linkage purposes.
1346  if (!cast<TypedefNameDecl>(D)
1347  ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1348  return LinkageInfo::none();
1349  break;
1350 
1351  case Decl::TemplateTemplateParm: // count these as external
1352  case Decl::NonTypeTemplateParm:
1353  case Decl::ObjCAtDefsField:
1354  case Decl::ObjCCategory:
1355  case Decl::ObjCCategoryImpl:
1356  case Decl::ObjCCompatibleAlias:
1357  case Decl::ObjCImplementation:
1358  case Decl::ObjCMethod:
1359  case Decl::ObjCProperty:
1360  case Decl::ObjCPropertyImpl:
1361  case Decl::ObjCProtocol:
1362  return getExternalLinkageFor(D);
1363 
1364  case Decl::CXXRecord: {
1365  const auto *Record = cast<CXXRecordDecl>(D);
1366  if (Record->isLambda()) {
1367  if (!Record->getLambdaManglingNumber()) {
1368  // This lambda has no mangling number, so it's internal.
1369  return getInternalLinkageFor(D);
1370  }
1371 
1372  // This lambda has its linkage/visibility determined:
1373  // - either by the outermost lambda if that lambda has no mangling
1374  // number.
1375  // - or by the parent of the outer most lambda
1376  // This prevents infinite recursion in settings such as nested lambdas
1377  // used in NSDMI's, for e.g.
1378  // struct L {
1379  // int t{};
1380  // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1381  // };
1382  const CXXRecordDecl *OuterMostLambda =
1384  if (!OuterMostLambda->getLambdaManglingNumber())
1385  return getInternalLinkageFor(D);
1386 
1387  return getLVForClosure(
1388  OuterMostLambda->getDeclContext()->getRedeclContext(),
1389  OuterMostLambda->getLambdaContextDecl(), computation);
1390  }
1391 
1392  break;
1393  }
1394  }
1395 
1396  // Handle linkage for namespace-scope names.
1398  return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1399 
1400  // C++ [basic.link]p5:
1401  // In addition, a member function, static data member, a named
1402  // class or enumeration of class scope, or an unnamed class or
1403  // enumeration defined in a class-scope typedef declaration such
1404  // that the class or enumeration has the typedef name for linkage
1405  // purposes (7.1.3), has external linkage if the name of the class
1406  // has external linkage.
1407  if (D->getDeclContext()->isRecord())
1408  return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1409 
1410  // C++ [basic.link]p6:
1411  // The name of a function declared in block scope and the name of
1412  // an object declared by a block scope extern declaration have
1413  // linkage. If there is a visible declaration of an entity with
1414  // linkage having the same name and type, ignoring entities
1415  // declared outside the innermost enclosing namespace scope, the
1416  // block scope declaration declares that same entity and receives
1417  // the linkage of the previous declaration. If there is more than
1418  // one such matching entity, the program is ill-formed. Otherwise,
1419  // if no matching entity is found, the block scope entity receives
1420  // external linkage.
1421  if (D->getDeclContext()->isFunctionOrMethod())
1422  return getLVForLocalDecl(D, computation);
1423 
1424  // C++ [basic.link]p6:
1425  // Names not covered by these rules have no linkage.
1426  return LinkageInfo::none();
1427 }
1428 
1429 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1431  LVComputationKind computation) {
1432  // Internal_linkage attribute overrides other considerations.
1433  if (D->hasAttr<InternalLinkageAttr>())
1434  return getInternalLinkageFor(D);
1435 
1436  if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1437  return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1438 
1439  if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1440  return *LI;
1441 
1442  LinkageInfo LV = computeLVForDecl(D, computation);
1443  if (D->hasCachedLinkage())
1444  assert(D->getCachedLinkage() == LV.getLinkage());
1445 
1446  D->setCachedLinkage(LV.getLinkage());
1447  cache(D, computation, LV);
1448 
1449 #ifndef NDEBUG
1450  // In C (because of gnu inline) and in c++ with microsoft extensions an
1451  // static can follow an extern, so we can have two decls with different
1452  // linkages.
1453  const LangOptions &Opts = D->getASTContext().getLangOpts();
1454  if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1455  return LV;
1456 
1457  // We have just computed the linkage for this decl. By induction we know
1458  // that all other computed linkages match, check that the one we just
1459  // computed also does.
1460  NamedDecl *Old = nullptr;
1461  for (auto I : D->redecls()) {
1462  auto *T = cast<NamedDecl>(I);
1463  if (T == D)
1464  continue;
1465  if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1466  Old = T;
1467  break;
1468  }
1469  }
1470  assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1471 #endif
1472 
1473  return LV;
1474 }
1475 
1477  return getLVForDecl(D,
1481 }
1482 
1483 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1484  Module *M = getOwningModule();
1485  if (!M)
1486  return nullptr;
1487 
1488  switch (M->Kind) {
1490  // Module map modules have no special linkage semantics.
1491  return nullptr;
1492 
1494  return M;
1495 
1497  // External linkage declarations in the global module have no owning module
1498  // for linkage purposes. But internal linkage declarations in the global
1499  // module fragment of a particular module are owned by that module for
1500  // linkage purposes.
1501  if (IgnoreLinkage)
1502  return nullptr;
1503  bool InternalLinkage;
1504  if (auto *ND = dyn_cast<NamedDecl>(this))
1505  InternalLinkage = !ND->hasExternalFormalLinkage();
1506  else {
1507  auto *NSD = dyn_cast<NamespaceDecl>(this);
1508  InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1509  isInAnonymousNamespace();
1510  }
1511  return InternalLinkage ? M->Parent : nullptr;
1512  }
1513 
1515  // The private module fragment is part of its containing module for linkage
1516  // purposes.
1517  return M->Parent;
1518  }
1519 
1520  llvm_unreachable("unknown module kind");
1521 }
1522 
1523 void NamedDecl::printName(raw_ostream &os) const {
1524  os << Name;
1525 }
1526 
1528  std::string QualName;
1529  llvm::raw_string_ostream OS(QualName);
1530  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1531  return OS.str();
1532 }
1533 
1534 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1535  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1536 }
1537 
1538 void NamedDecl::printQualifiedName(raw_ostream &OS,
1539  const PrintingPolicy &P) const {
1540  const DeclContext *Ctx = getDeclContext();
1541 
1542  // For ObjC methods and properties, look through categories and use the
1543  // interface as context.
1544  if (auto *MD = dyn_cast<ObjCMethodDecl>(this))
1545  if (auto *ID = MD->getClassInterface())
1546  Ctx = ID;
1547  if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1548  if (auto *MD = PD->getGetterMethodDecl())
1549  if (auto *ID = MD->getClassInterface())
1550  Ctx = ID;
1551  }
1552 
1553  if (Ctx->isFunctionOrMethod()) {
1554  printName(OS);
1555  return;
1556  }
1557 
1558  using ContextsTy = SmallVector<const DeclContext *, 8>;
1559  ContextsTy Contexts;
1560 
1561  // Collect named contexts.
1562  while (Ctx) {
1563  if (isa<NamedDecl>(Ctx))
1564  Contexts.push_back(Ctx);
1565  Ctx = Ctx->getParent();
1566  }
1567 
1568  for (const DeclContext *DC : llvm::reverse(Contexts)) {
1569  if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1570  OS << Spec->getName();
1571  const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1572  printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
1573  } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1574  if (P.SuppressUnwrittenScope &&
1575  (ND->isAnonymousNamespace() || ND->isInline()))
1576  continue;
1577  if (ND->isAnonymousNamespace()) {
1578  OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1579  : "(anonymous namespace)");
1580  }
1581  else
1582  OS << *ND;
1583  } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1584  if (!RD->getIdentifier())
1585  OS << "(anonymous " << RD->getKindName() << ')';
1586  else
1587  OS << *RD;
1588  } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1589  const FunctionProtoType *FT = nullptr;
1590  if (FD->hasWrittenPrototype())
1591  FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1592 
1593  OS << *FD << '(';
1594  if (FT) {
1595  unsigned NumParams = FD->getNumParams();
1596  for (unsigned i = 0; i < NumParams; ++i) {
1597  if (i)
1598  OS << ", ";
1599  OS << FD->getParamDecl(i)->getType().stream(P);
1600  }
1601 
1602  if (FT->isVariadic()) {
1603  if (NumParams > 0)
1604  OS << ", ";
1605  OS << "...";
1606  }
1607  }
1608  OS << ')';
1609  } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1610  // C++ [dcl.enum]p10: Each enum-name and each unscoped
1611  // enumerator is declared in the scope that immediately contains
1612  // the enum-specifier. Each scoped enumerator is declared in the
1613  // scope of the enumeration.
1614  // For the case of unscoped enumerator, do not include in the qualified
1615  // name any information about its enum enclosing scope, as its visibility
1616  // is global.
1617  if (ED->isScoped())
1618  OS << *ED;
1619  else
1620  continue;
1621  } else {
1622  OS << *cast<NamedDecl>(DC);
1623  }
1624  OS << "::";
1625  }
1626 
1627  if (getDeclName() || isa<DecompositionDecl>(this))
1628  OS << *this;
1629  else
1630  OS << "(anonymous)";
1631 }
1632 
1633 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1634  const PrintingPolicy &Policy,
1635  bool Qualified) const {
1636  if (Qualified)
1637  printQualifiedName(OS, Policy);
1638  else
1639  printName(OS);
1640 }
1641 
1642 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1643  return true;
1644 }
1645 static bool isRedeclarableImpl(...) { return false; }
1646 static bool isRedeclarable(Decl::Kind K) {
1647  switch (K) {
1648 #define DECL(Type, Base) \
1649  case Decl::Type: \
1650  return isRedeclarableImpl((Type##Decl *)nullptr);
1651 #define ABSTRACT_DECL(DECL)
1652 #include "clang/AST/DeclNodes.inc"
1653  }
1654  llvm_unreachable("unknown decl kind");
1655 }
1656 
1657 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1658  assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1659 
1660  // Never replace one imported declaration with another; we need both results
1661  // when re-exporting.
1662  if (OldD->isFromASTFile() && isFromASTFile())
1663  return false;
1664 
1665  // A kind mismatch implies that the declaration is not replaced.
1666  if (OldD->getKind() != getKind())
1667  return false;
1668 
1669  // For method declarations, we never replace. (Why?)
1670  if (isa<ObjCMethodDecl>(this))
1671  return false;
1672 
1673  // For parameters, pick the newer one. This is either an error or (in
1674  // Objective-C) permitted as an extension.
1675  if (isa<ParmVarDecl>(this))
1676  return true;
1677 
1678  // Inline namespaces can give us two declarations with the same
1679  // name and kind in the same scope but different contexts; we should
1680  // keep both declarations in this case.
1681  if (!this->getDeclContext()->getRedeclContext()->Equals(
1682  OldD->getDeclContext()->getRedeclContext()))
1683  return false;
1684 
1685  // Using declarations can be replaced if they import the same name from the
1686  // same context.
1687  if (auto *UD = dyn_cast<UsingDecl>(this)) {
1688  ASTContext &Context = getASTContext();
1689  return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1691  cast<UsingDecl>(OldD)->getQualifier());
1692  }
1693  if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1694  ASTContext &Context = getASTContext();
1695  return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1697  cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1698  }
1699 
1700  if (isRedeclarable(getKind())) {
1701  if (getCanonicalDecl() != OldD->getCanonicalDecl())
1702  return false;
1703 
1704  if (IsKnownNewer)
1705  return true;
1706 
1707  // Check whether this is actually newer than OldD. We want to keep the
1708  // newer declaration. This loop will usually only iterate once, because
1709  // OldD is usually the previous declaration.
1710  for (auto D : redecls()) {
1711  if (D == OldD)
1712  break;
1713 
1714  // If we reach the canonical declaration, then OldD is not actually older
1715  // than this one.
1716  //
1717  // FIXME: In this case, we should not add this decl to the lookup table.
1718  if (D->isCanonicalDecl())
1719  return false;
1720  }
1721 
1722  // It's a newer declaration of the same kind of declaration in the same
1723  // scope: we want this decl instead of the existing one.
1724  return true;
1725  }
1726 
1727  // In all other cases, we need to keep both declarations in case they have
1728  // different visibility. Any attempt to use the name will result in an
1729  // ambiguity if more than one is visible.
1730  return false;
1731 }
1732 
1734  return getFormalLinkage() != NoLinkage;
1735 }
1736 
1737 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1738  NamedDecl *ND = this;
1739  while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1740  ND = UD->getTargetDecl();
1741 
1742  if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1743  return AD->getClassInterface();
1744 
1745  if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1746  return AD->getNamespace();
1747 
1748  return ND;
1749 }
1750 
1752  if (!isCXXClassMember())
1753  return false;
1754 
1755  const NamedDecl *D = this;
1756  if (isa<UsingShadowDecl>(D))
1757  D = cast<UsingShadowDecl>(D)->getTargetDecl();
1758 
1759  if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1760  return true;
1761  if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1762  return MD->isInstance();
1763  return false;
1764 }
1765 
1766 //===----------------------------------------------------------------------===//
1767 // DeclaratorDecl Implementation
1768 //===----------------------------------------------------------------------===//
1769 
1770 template <typename DeclT>
1772  if (decl->getNumTemplateParameterLists() > 0)
1773  return decl->getTemplateParameterList(0)->getTemplateLoc();
1774  else
1775  return decl->getInnerLocStart();
1776 }
1777 
1779  TypeSourceInfo *TSI = getTypeSourceInfo();
1780  if (TSI) return TSI->getTypeLoc().getBeginLoc();
1781  return SourceLocation();
1782 }
1783 
1785  if (QualifierLoc) {
1786  // Make sure the extended decl info is allocated.
1787  if (!hasExtInfo()) {
1788  // Save (non-extended) type source info pointer.
1789  auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1790  // Allocate external info struct.
1791  DeclInfo = new (getASTContext()) ExtInfo;
1792  // Restore savedTInfo into (extended) decl info.
1793  getExtInfo()->TInfo = savedTInfo;
1794  }
1795  // Set qualifier info.
1796  getExtInfo()->QualifierLoc = QualifierLoc;
1797  } else {
1798  // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1799  if (hasExtInfo()) {
1800  if (getExtInfo()->NumTemplParamLists == 0) {
1801  // Save type source info pointer.
1802  TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1803  // Deallocate the extended decl info.
1804  getASTContext().Deallocate(getExtInfo());
1805  // Restore savedTInfo into (non-extended) decl info.
1806  DeclInfo = savedTInfo;
1807  }
1808  else
1809  getExtInfo()->QualifierLoc = QualifierLoc;
1810  }
1811  }
1812 }
1813 
1815  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1816  assert(!TPLists.empty());
1817  // Make sure the extended decl info is allocated.
1818  if (!hasExtInfo()) {
1819  // Save (non-extended) type source info pointer.
1820  auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1821  // Allocate external info struct.
1822  DeclInfo = new (getASTContext()) ExtInfo;
1823  // Restore savedTInfo into (extended) decl info.
1824  getExtInfo()->TInfo = savedTInfo;
1825  }
1826  // Set the template parameter lists info.
1827  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1828 }
1829 
1831  return getTemplateOrInnerLocStart(this);
1832 }
1833 
1834 // Helper function: returns true if QT is or contains a type
1835 // having a postfix component.
1836 static bool typeIsPostfix(QualType QT) {
1837  while (true) {
1838  const Type* T = QT.getTypePtr();
1839  switch (T->getTypeClass()) {
1840  default:
1841  return false;
1842  case Type::Pointer:
1843  QT = cast<PointerType>(T)->getPointeeType();
1844  break;
1845  case Type::BlockPointer:
1846  QT = cast<BlockPointerType>(T)->getPointeeType();
1847  break;
1848  case Type::MemberPointer:
1849  QT = cast<MemberPointerType>(T)->getPointeeType();
1850  break;
1851  case Type::LValueReference:
1852  case Type::RValueReference:
1853  QT = cast<ReferenceType>(T)->getPointeeType();
1854  break;
1855  case Type::PackExpansion:
1856  QT = cast<PackExpansionType>(T)->getPattern();
1857  break;
1858  case Type::Paren:
1859  case Type::ConstantArray:
1860  case Type::DependentSizedArray:
1861  case Type::IncompleteArray:
1862  case Type::VariableArray:
1863  case Type::FunctionProto:
1864  case Type::FunctionNoProto:
1865  return true;
1866  }
1867  }
1868 }
1869 
1871  SourceLocation RangeEnd = getLocation();
1872  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1873  // If the declaration has no name or the type extends past the name take the
1874  // end location of the type.
1875  if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1876  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1877  }
1878  return SourceRange(getOuterLocStart(), RangeEnd);
1879 }
1880 
1882  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1883  // Free previous template parameters (if any).
1884  if (NumTemplParamLists > 0) {
1885  Context.Deallocate(TemplParamLists);
1886  TemplParamLists = nullptr;
1887  NumTemplParamLists = 0;
1888  }
1889  // Set info on matched template parameter lists (if any).
1890  if (!TPLists.empty()) {
1891  TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1892  NumTemplParamLists = TPLists.size();
1893  std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1894  }
1895 }
1896 
1897 //===----------------------------------------------------------------------===//
1898 // VarDecl Implementation
1899 //===----------------------------------------------------------------------===//
1900 
1902  switch (SC) {
1903  case SC_None: break;
1904  case SC_Auto: return "auto";
1905  case SC_Extern: return "extern";
1906  case SC_PrivateExtern: return "__private_extern__";
1907  case SC_Register: return "register";
1908  case SC_Static: return "static";
1909  }
1910 
1911  llvm_unreachable("Invalid storage class");
1912 }
1913 
1915  SourceLocation StartLoc, SourceLocation IdLoc,
1917  StorageClass SC)
1918  : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1919  redeclarable_base(C) {
1920  static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1921  "VarDeclBitfields too large!");
1922  static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1923  "ParmVarDeclBitfields too large!");
1924  static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1925  "NonParmVarDeclBitfields too large!");
1926  AllBits = 0;
1927  VarDeclBits.SClass = SC;
1928  // Everything else is implicitly initialized to false.
1929 }
1930 
1932  SourceLocation StartL, SourceLocation IdL,
1934  StorageClass S) {
1935  return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1936 }
1937 
1939  return new (C, ID)
1940  VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1941  QualType(), nullptr, SC_None);
1942 }
1943 
1945  assert(isLegalForVariable(SC));
1946  VarDeclBits.SClass = SC;
1947 }
1948 
1950  switch (VarDeclBits.TSCSpec) {
1951  case TSCS_unspecified:
1952  if (!hasAttr<ThreadAttr>() &&
1953  !(getASTContext().getLangOpts().OpenMPUseTLS &&
1954  getASTContext().getTargetInfo().isTLSSupported() &&
1955  hasAttr<OMPThreadPrivateDeclAttr>()))
1956  return TLS_None;
1957  return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1959  hasAttr<OMPThreadPrivateDeclAttr>())
1960  ? TLS_Dynamic
1961  : TLS_Static;
1962  case TSCS___thread: // Fall through.
1963  case TSCS__Thread_local:
1964  return TLS_Static;
1965  case TSCS_thread_local:
1966  return TLS_Dynamic;
1967  }
1968  llvm_unreachable("Unknown thread storage class specifier!");
1969 }
1970 
1972  if (const Expr *Init = getInit()) {
1973  SourceLocation InitEnd = Init->getEndLoc();
1974  // If Init is implicit, ignore its source range and fallback on
1975  // DeclaratorDecl::getSourceRange() to handle postfix elements.
1976  if (InitEnd.isValid() && InitEnd != getLocation())
1977  return SourceRange(getOuterLocStart(), InitEnd);
1978  }
1980 }
1981 
1982 template<typename T>
1984  // C++ [dcl.link]p1: All function types, function names with external linkage,
1985  // and variable names with external linkage have a language linkage.
1986  if (!D.hasExternalFormalLinkage())
1987  return NoLanguageLinkage;
1988 
1989  // Language linkage is a C++ concept, but saying that everything else in C has
1990  // C language linkage fits the implementation nicely.
1991  ASTContext &Context = D.getASTContext();
1992  if (!Context.getLangOpts().CPlusPlus)
1993  return CLanguageLinkage;
1994 
1995  // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1996  // language linkage of the names of class members and the function type of
1997  // class member functions.
1998  const DeclContext *DC = D.getDeclContext();
1999  if (DC->isRecord())
2000  return CXXLanguageLinkage;
2001 
2002  // If the first decl is in an extern "C" context, any other redeclaration
2003  // will have C language linkage. If the first one is not in an extern "C"
2004  // context, we would have reported an error for any other decl being in one.
2005  if (isFirstInExternCContext(&D))
2006  return CLanguageLinkage;
2007  return CXXLanguageLinkage;
2008 }
2009 
2010 template<typename T>
2011 static bool isDeclExternC(const T &D) {
2012  // Since the context is ignored for class members, they can only have C++
2013  // language linkage or no language linkage.
2014  const DeclContext *DC = D.getDeclContext();
2015  if (DC->isRecord()) {
2016  assert(D.getASTContext().getLangOpts().CPlusPlus);
2017  return false;
2018  }
2019 
2020  return D.getLanguageLinkage() == CLanguageLinkage;
2021 }
2022 
2024  return getDeclLanguageLinkage(*this);
2025 }
2026 
2027 bool VarDecl::isExternC() const {
2028  return isDeclExternC(*this);
2029 }
2030 
2033 }
2034 
2037 }
2038 
2040 
2044  return DeclarationOnly;
2045 
2046  // C++ [basic.def]p2:
2047  // A declaration is a definition unless [...] it contains the 'extern'
2048  // specifier or a linkage-specification and neither an initializer [...],
2049  // it declares a non-inline static data member in a class declaration [...],
2050  // it declares a static data member outside a class definition and the variable
2051  // was defined within the class with the constexpr specifier [...],
2052  // C++1y [temp.expl.spec]p15:
2053  // An explicit specialization of a static data member or an explicit
2054  // specialization of a static data member template is a definition if the
2055  // declaration includes an initializer; otherwise, it is a declaration.
2056  //
2057  // FIXME: How do you declare (but not define) a partial specialization of
2058  // a static data member template outside the containing class?
2059  if (isStaticDataMember()) {
2060  if (isOutOfLine() &&
2061  !(getCanonicalDecl()->isInline() &&
2062  getCanonicalDecl()->isConstexpr()) &&
2063  (hasInit() ||
2064  // If the first declaration is out-of-line, this may be an
2065  // instantiation of an out-of-line partial specialization of a variable
2066  // template for which we have not yet instantiated the initializer.
2071  isa<VarTemplatePartialSpecializationDecl>(this)))
2072  return Definition;
2073  else if (!isOutOfLine() && isInline())
2074  return Definition;
2075  else
2076  return DeclarationOnly;
2077  }
2078  // C99 6.7p5:
2079  // A definition of an identifier is a declaration for that identifier that
2080  // [...] causes storage to be reserved for that object.
2081  // Note: that applies for all non-file-scope objects.
2082  // C99 6.9.2p1:
2083  // If the declaration of an identifier for an object has file scope and an
2084  // initializer, the declaration is an external definition for the identifier
2085  if (hasInit())
2086  return Definition;
2087 
2088  if (hasDefiningAttr())
2089  return Definition;
2090 
2091  if (const auto *SAA = getAttr<SelectAnyAttr>())
2092  if (!SAA->isInherited())
2093  return Definition;
2094 
2095  // A variable template specialization (other than a static data member
2096  // template or an explicit specialization) is a declaration until we
2097  // instantiate its initializer.
2098  if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2099  if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2100  !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2101  !VTSD->IsCompleteDefinition)
2102  return DeclarationOnly;
2103  }
2104 
2105  if (hasExternalStorage())
2106  return DeclarationOnly;
2107 
2108  // [dcl.link] p7:
2109  // A declaration directly contained in a linkage-specification is treated
2110  // as if it contains the extern specifier for the purpose of determining
2111  // the linkage of the declared name and whether it is a definition.
2112  if (isSingleLineLanguageLinkage(*this))
2113  return DeclarationOnly;
2114 
2115  // C99 6.9.2p2:
2116  // A declaration of an object that has file scope without an initializer,
2117  // and without a storage class specifier or the scs 'static', constitutes
2118  // a tentative definition.
2119  // No such thing in C++.
2120  if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2121  return TentativeDefinition;
2122 
2123  // What's left is (in C, block-scope) declarations without initializers or
2124  // external storage. These are definitions.
2125  return Definition;
2126 }
2127 
2130  if (Kind != TentativeDefinition)
2131  return nullptr;
2132 
2133  VarDecl *LastTentative = nullptr;
2134  VarDecl *First = getFirstDecl();
2135  for (auto I : First->redecls()) {
2136  Kind = I->isThisDeclarationADefinition();
2137  if (Kind == Definition)
2138  return nullptr;
2139  else if (Kind == TentativeDefinition)
2140  LastTentative = I;
2141  }
2142  return LastTentative;
2143 }
2144 
2146  VarDecl *First = getFirstDecl();
2147  for (auto I : First->redecls()) {
2148  if (I->isThisDeclarationADefinition(C) == Definition)
2149  return I;
2150  }
2151  return nullptr;
2152 }
2153 
2156 
2157  const VarDecl *First = getFirstDecl();
2158  for (auto I : First->redecls()) {
2159  Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2160  if (Kind == Definition)
2161  break;
2162  }
2163 
2164  return Kind;
2165 }
2166 
2167 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2168  for (auto I : redecls()) {
2169  if (auto Expr = I->getInit()) {
2170  D = I;
2171  return Expr;
2172  }
2173  }
2174  return nullptr;
2175 }
2176 
2177 bool VarDecl::hasInit() const {
2178  if (auto *P = dyn_cast<ParmVarDecl>(this))
2179  if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2180  return false;
2181 
2182  return !Init.isNull();
2183 }
2184 
2186  if (!hasInit())
2187  return nullptr;
2188 
2189  if (auto *S = Init.dyn_cast<Stmt *>())
2190  return cast<Expr>(S);
2191 
2192  return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2193 }
2194 
2196  if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2197  return &ES->Value;
2198 
2199  return Init.getAddrOfPtr1();
2200 }
2201 
2202 bool VarDecl::isOutOfLine() const {
2203  if (Decl::isOutOfLine())
2204  return true;
2205 
2206  if (!isStaticDataMember())
2207  return false;
2208 
2209  // If this static data member was instantiated from a static data member of
2210  // a class template, check whether that static data member was defined
2211  // out-of-line.
2213  return VD->isOutOfLine();
2214 
2215  return false;
2216 }
2217 
2219  if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2220  Eval->~EvaluatedStmt();
2221  getASTContext().Deallocate(Eval);
2222  }
2223 
2224  Init = I;
2225 }
2226 
2228  const LangOptions &Lang = C.getLangOpts();
2229 
2230  if (!Lang.CPlusPlus)
2231  return false;
2232 
2233  // In C++11, any variable of reference type can be used in a constant
2234  // expression if it is initialized by a constant expression.
2235  if (Lang.CPlusPlus11 && getType()->isReferenceType())
2236  return true;
2237 
2238  // Only const objects can be used in constant expressions in C++. C++98 does
2239  // not require the variable to be non-volatile, but we consider this to be a
2240  // defect.
2241  if (!getType().isConstQualified() || getType().isVolatileQualified())
2242  return false;
2243 
2244  // In C++, const, non-volatile variables of integral or enumeration types
2245  // can be used in constant expressions.
2246  if (getType()->isIntegralOrEnumerationType())
2247  return true;
2248 
2249  // Additionally, in C++11, non-volatile constexpr variables can be used in
2250  // constant expressions.
2251  return Lang.CPlusPlus11 && isConstexpr();
2252 }
2253 
2254 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2255 /// form, which contains extra information on the evaluated value of the
2256 /// initializer.
2258  auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2259  if (!Eval) {
2260  // Note: EvaluatedStmt contains an APValue, which usually holds
2261  // resources not allocated from the ASTContext. We need to do some
2262  // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2263  // where we can detect whether there's anything to clean up or not.
2264  Eval = new (getASTContext()) EvaluatedStmt;
2265  Eval->Value = Init.get<Stmt *>();
2266  Init = Eval;
2267  }
2268  return Eval;
2269 }
2270 
2273  return evaluateValue(Notes);
2274 }
2275 
2277  SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2279 
2280  // We only produce notes indicating why an initializer is non-constant the
2281  // first time it is evaluated. FIXME: The notes won't always be emitted the
2282  // first time we try evaluation, so might not be produced at all.
2283  if (Eval->WasEvaluated)
2284  return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2285 
2286  const auto *Init = cast<Expr>(Eval->Value);
2287  assert(!Init->isValueDependent());
2288 
2289  if (Eval->IsEvaluating) {
2290  // FIXME: Produce a diagnostic for self-initialization.
2291  Eval->CheckedICE = true;
2292  Eval->IsICE = false;
2293  return nullptr;
2294  }
2295 
2296  Eval->IsEvaluating = true;
2297 
2298  bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2299  this, Notes);
2300 
2301  // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2302  // or that it's empty (so that there's nothing to clean up) if evaluation
2303  // failed.
2304  if (!Result)
2305  Eval->Evaluated = APValue();
2306  else if (Eval->Evaluated.needsCleanup())
2308 
2309  Eval->IsEvaluating = false;
2310  Eval->WasEvaluated = true;
2311 
2312  // In C++11, we have determined whether the initializer was a constant
2313  // expression as a side-effect.
2314  if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2315  Eval->CheckedICE = true;
2316  Eval->IsICE = Result && Notes.empty();
2317  }
2318 
2319  return Result ? &Eval->Evaluated : nullptr;
2320 }
2321 
2323  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2324  if (Eval->WasEvaluated)
2325  return &Eval->Evaluated;
2326 
2327  return nullptr;
2328 }
2329 
2331  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2332  return Eval->CheckedICE;
2333 
2334  return false;
2335 }
2336 
2337 bool VarDecl::isInitICE() const {
2338  assert(isInitKnownICE() &&
2339  "Check whether we already know that the initializer is an ICE");
2340  return Init.get<EvaluatedStmt *>()->IsICE;
2341 }
2342 
2344  // Initializers of weak variables are never ICEs.
2345  if (isWeak())
2346  return false;
2347 
2349  if (Eval->CheckedICE)
2350  // We have already checked whether this subexpression is an
2351  // integral constant expression.
2352  return Eval->IsICE;
2353 
2354  const auto *Init = cast<Expr>(Eval->Value);
2355  assert(!Init->isValueDependent());
2356 
2357  // In C++11, evaluate the initializer to check whether it's a constant
2358  // expression.
2359  if (getASTContext().getLangOpts().CPlusPlus11) {
2361  evaluateValue(Notes);
2362  return Eval->IsICE;
2363  }
2364 
2365  // It's an ICE whether or not the definition we found is
2366  // out-of-line. See DR 721 and the discussion in Clang PR
2367  // 6206 for details.
2368 
2369  if (Eval->CheckingICE)
2370  return false;
2371  Eval->CheckingICE = true;
2372 
2373  Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2374  Eval->CheckingICE = false;
2375  Eval->CheckedICE = true;
2376  return Eval->IsICE;
2377 }
2378 
2379 template<typename DeclT>
2380 static DeclT *getDefinitionOrSelf(DeclT *D) {
2381  assert(D);
2382  if (auto *Def = D->getDefinition())
2383  return Def;
2384  return D;
2385 }
2386 
2388  return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2389 }
2390 
2392  return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2393 }
2394 
2396  // If it's a variable template specialization, find the template or partial
2397  // specialization from which it was instantiated.
2398  if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2399  auto From = VDTemplSpec->getInstantiatedFrom();
2400  if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2401  while (auto *NewVTD = VTD->getInstantiatedFromMemberTemplate()) {
2402  if (NewVTD->isMemberSpecialization())
2403  break;
2404  VTD = NewVTD;
2405  }
2406  return getDefinitionOrSelf(VTD->getTemplatedDecl());
2407  }
2408  if (auto *VTPSD =
2409  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2410  while (auto *NewVTPSD = VTPSD->getInstantiatedFromMember()) {
2411  if (NewVTPSD->isMemberSpecialization())
2412  break;
2413  VTPSD = NewVTPSD;
2414  }
2415  return getDefinitionOrSelf<VarDecl>(VTPSD);
2416  }
2417  }
2418 
2420  if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2422  while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2423  VD = NewVD;
2424  return getDefinitionOrSelf(VD);
2425  }
2426  }
2427 
2428  if (VarTemplateDecl *VarTemplate = getDescribedVarTemplate()) {
2429  while (VarTemplate->getInstantiatedFromMemberTemplate()) {
2430  if (VarTemplate->isMemberSpecialization())
2431  break;
2432  VarTemplate = VarTemplate->getInstantiatedFromMemberTemplate();
2433  }
2434 
2435  return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2436  }
2437  return nullptr;
2438 }
2439 
2442  return cast<VarDecl>(MSI->getInstantiatedFrom());
2443 
2444  return nullptr;
2445 }
2446 
2448  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2449  return Spec->getSpecializationKind();
2450 
2452  return MSI->getTemplateSpecializationKind();
2453 
2454  return TSK_Undeclared;
2455 }
2456 
2458  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2459  return Spec->getPointOfInstantiation();
2460 
2462  return MSI->getPointOfInstantiation();
2463 
2464  return SourceLocation();
2465 }
2466 
2469  .dyn_cast<VarTemplateDecl *>();
2470 }
2471 
2474 }
2475 
2477  const auto &LangOpts = getASTContext().getLangOpts();
2478  // In CUDA mode without relocatable device code, variables of form 'extern
2479  // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2480  // memory pool. These are never undefined variables, even if they appear
2481  // inside of an anon namespace or static function.
2482  //
2483  // With CUDA relocatable device code enabled, these variables don't get
2484  // special handling; they're treated like regular extern variables.
2485  if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2486  hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2487  isa<IncompleteArrayType>(getType()))
2488  return true;
2489 
2490  return hasDefinition();
2491 }
2492 
2493 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2494  return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2495  (!Ctx.getLangOpts().RegisterStaticDestructors &&
2496  !hasAttr<AlwaysDestroyAttr>()));
2497 }
2498 
2500  if (isStaticDataMember())
2501  // FIXME: Remove ?
2502  // return getASTContext().getInstantiatedFromStaticDataMember(this);
2504  .dyn_cast<MemberSpecializationInfo *>();
2505  return nullptr;
2506 }
2507 
2509  SourceLocation PointOfInstantiation) {
2510  assert((isa<VarTemplateSpecializationDecl>(this) ||
2512  "not a variable or static data member template specialization");
2513 
2514  if (VarTemplateSpecializationDecl *Spec =
2515  dyn_cast<VarTemplateSpecializationDecl>(this)) {
2516  Spec->setSpecializationKind(TSK);
2517  if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2518  Spec->getPointOfInstantiation().isInvalid()) {
2519  Spec->setPointOfInstantiation(PointOfInstantiation);
2521  L->InstantiationRequested(this);
2522  }
2523  }
2524 
2526  MSI->setTemplateSpecializationKind(TSK);
2527  if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2528  MSI->getPointOfInstantiation().isInvalid()) {
2529  MSI->setPointOfInstantiation(PointOfInstantiation);
2531  L->InstantiationRequested(this);
2532  }
2533  }
2534 }
2535 
2536 void
2539  assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2540  "Previous template or instantiation?");
2542 }
2543 
2544 //===----------------------------------------------------------------------===//
2545 // ParmVarDecl Implementation
2546 //===----------------------------------------------------------------------===//
2547 
2549  SourceLocation StartLoc,
2551  QualType T, TypeSourceInfo *TInfo,
2552  StorageClass S, Expr *DefArg) {
2553  return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2554  S, DefArg);
2555 }
2556 
2559  QualType T = TSI ? TSI->getType() : getType();
2560  if (const auto *DT = dyn_cast<DecayedType>(T))
2561  return DT->getOriginalType();
2562  return T;
2563 }
2564 
2566  return new (C, ID)
2567  ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2568  nullptr, QualType(), nullptr, SC_None, nullptr);
2569 }
2570 
2572  if (!hasInheritedDefaultArg()) {
2573  SourceRange ArgRange = getDefaultArgRange();
2574  if (ArgRange.isValid())
2575  return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2576  }
2577 
2578  // DeclaratorDecl considers the range of postfix types as overlapping with the
2579  // declaration name, but this is not the case with parameters in ObjC methods.
2580  if (isa<ObjCMethodDecl>(getDeclContext()))
2582 
2584 }
2585 
2587  assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2588  assert(!hasUninstantiatedDefaultArg() &&
2589  "Default argument is not yet instantiated!");
2590 
2591  Expr *Arg = getInit();
2592  if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2593  return E->getSubExpr();
2594 
2595  return Arg;
2596 }
2597 
2599  ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2600  Init = defarg;
2601 }
2602 
2604  switch (ParmVarDeclBits.DefaultArgKind) {
2605  case DAK_None:
2606  case DAK_Unparsed:
2607  // Nothing we can do here.
2608  return SourceRange();
2609 
2610  case DAK_Uninstantiated:
2611  return getUninstantiatedDefaultArg()->getSourceRange();
2612 
2613  case DAK_Normal:
2614  if (const Expr *E = getInit())
2615  return E->getSourceRange();
2616 
2617  // Missing an actual expression, may be invalid.
2618  return SourceRange();
2619  }
2620  llvm_unreachable("Invalid default argument kind.");
2621 }
2622 
2624  ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2625  Init = arg;
2626 }
2627 
2629  assert(hasUninstantiatedDefaultArg() &&
2630  "Wrong kind of initialization expression!");
2631  return cast_or_null<Expr>(Init.get<Stmt *>());
2632 }
2633 
2635  // FIXME: We should just return false for DAK_None here once callers are
2636  // prepared for the case that we encountered an invalid default argument and
2637  // were unable to even build an invalid expression.
2638  return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2639  !Init.isNull();
2640 }
2641 
2643  return isa<PackExpansionType>(getType());
2644 }
2645 
2646 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2647  getASTContext().setParameterIndex(this, parameterIndex);
2648  ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2649 }
2650 
2651 unsigned ParmVarDecl::getParameterIndexLarge() const {
2652  return getASTContext().getParameterIndex(this);
2653 }
2654 
2655 //===----------------------------------------------------------------------===//
2656 // FunctionDecl Implementation
2657 //===----------------------------------------------------------------------===//
2658 
2660  SourceLocation StartLoc,
2661  const DeclarationNameInfo &NameInfo, QualType T,
2662  TypeSourceInfo *TInfo, StorageClass S,
2663  bool isInlineSpecified, bool isConstexprSpecified)
2664  : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2665  StartLoc),
2667  EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2668  assert(T.isNull() || T->isFunctionType());
2669  FunctionDeclBits.SClass = S;
2671  FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2672  FunctionDeclBits.IsExplicitSpecified = false;
2673  FunctionDeclBits.IsVirtualAsWritten = false;
2674  FunctionDeclBits.IsPure = false;
2675  FunctionDeclBits.HasInheritedPrototype = false;
2676  FunctionDeclBits.HasWrittenPrototype = true;
2677  FunctionDeclBits.IsDeleted = false;
2678  FunctionDeclBits.IsTrivial = false;
2679  FunctionDeclBits.IsTrivialForCall = false;
2680  FunctionDeclBits.IsDefaulted = false;
2681  FunctionDeclBits.IsExplicitlyDefaulted = false;
2682  FunctionDeclBits.HasImplicitReturnZero = false;
2683  FunctionDeclBits.IsLateTemplateParsed = false;
2684  FunctionDeclBits.IsConstexpr = isConstexprSpecified;
2685  FunctionDeclBits.InstantiationIsPending = false;
2686  FunctionDeclBits.UsesSEHTry = false;
2687  FunctionDeclBits.HasSkippedBody = false;
2688  FunctionDeclBits.WillHaveBody = false;
2689  FunctionDeclBits.IsMultiVersion = false;
2690  FunctionDeclBits.IsCopyDeductionCandidate = false;
2691  FunctionDeclBits.HasODRHash = false;
2692 }
2693 
2695  raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2696  NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2697  const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2698  if (TemplateArgs)
2699  printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2700 }
2701 
2703  if (const auto *FT = getType()->getAs<FunctionProtoType>())
2704  return FT->isVariadic();
2705  return false;
2706 }
2707 
2708 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2709  for (auto I : redecls()) {
2710  if (I->doesThisDeclarationHaveABody()) {
2711  Definition = I;
2712  return true;
2713  }
2714  }
2715 
2716  return false;
2717 }
2718 
2720 {
2721  Stmt *S = getBody();
2722  if (!S) {
2723  // Since we don't have a body for this function, we don't know if it's
2724  // trivial or not.
2725  return false;
2726  }
2727 
2728  if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2729  return true;
2730  return false;
2731 }
2732 
2733 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2734  for (auto I : redecls()) {
2735  if (I->isThisDeclarationADefinition()) {
2736  Definition = I;
2737  return true;
2738  }
2739  }
2740 
2741  return false;
2742 }
2743 
2744 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2745  if (!hasBody(Definition))
2746  return nullptr;
2747 
2748  if (Definition->Body)
2749  return Definition->Body.get(getASTContext().getExternalSource());
2750 
2751  return nullptr;
2752 }
2753 
2755  Body = B;
2756  if (B)
2757  EndRangeLoc = B->getEndLoc();
2758 }
2759 
2761  FunctionDeclBits.IsPure = P;
2762  if (P)
2763  if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2764  Parent->markedVirtualFunctionPure();
2765 }
2766 
2767 template<std::size_t Len>
2768 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2769  IdentifierInfo *II = ND->getIdentifier();
2770  return II && II->isStr(Str);
2771 }
2772 
2773 bool FunctionDecl::isMain() const {
2774  const TranslationUnitDecl *tunit =
2776  return tunit &&
2777  !tunit->getASTContext().getLangOpts().Freestanding &&
2778  isNamed(this, "main");
2779 }
2780 
2782  const TranslationUnitDecl *TUnit =
2784  if (!TUnit)
2785  return false;
2786 
2787  // Even though we aren't really targeting MSVCRT if we are freestanding,
2788  // semantic analysis for these functions remains the same.
2789 
2790  // MSVCRT entry points only exist on MSVCRT targets.
2791  if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2792  return false;
2793 
2794  // Nameless functions like constructors cannot be entry points.
2795  if (!getIdentifier())
2796  return false;
2797 
2798  return llvm::StringSwitch<bool>(getName())
2799  .Cases("main", // an ANSI console app
2800  "wmain", // a Unicode console App
2801  "WinMain", // an ANSI GUI app
2802  "wWinMain", // a Unicode GUI app
2803  "DllMain", // a DLL
2804  true)
2805  .Default(false);
2806 }
2807 
2809  assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2810  assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2811  getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2812  getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2813  getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2814 
2816  return false;
2817 
2818  const auto *proto = getType()->castAs<FunctionProtoType>();
2819  if (proto->getNumParams() != 2 || proto->isVariadic())
2820  return false;
2821 
2822  ASTContext &Context =
2823  cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2824  ->getASTContext();
2825 
2826  // The result type and first argument type are constant across all
2827  // these operators. The second argument must be exactly void*.
2828  return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2829 }
2830 
2832  if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2833  return false;
2834  if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2835  getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2836  getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2837  getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2838  return false;
2839 
2840  if (isa<CXXRecordDecl>(getDeclContext()))
2841  return false;
2842 
2843  // This can only fail for an invalid 'operator new' declaration.
2845  return false;
2846 
2847  const auto *FPT = getType()->castAs<FunctionProtoType>();
2848  if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
2849  return false;
2850 
2851  // If this is a single-parameter function, it must be a replaceable global
2852  // allocation or deallocation function.
2853  if (FPT->getNumParams() == 1)
2854  return true;
2855 
2856  unsigned Params = 1;
2857  QualType Ty = FPT->getParamType(Params);
2858  ASTContext &Ctx = getASTContext();
2859 
2860  auto Consume = [&] {
2861  ++Params;
2862  Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
2863  };
2864 
2865  // In C++14, the next parameter can be a 'std::size_t' for sized delete.
2866  bool IsSizedDelete = false;
2867  if (Ctx.getLangOpts().SizedDeallocation &&
2868  (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2869  getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
2870  Ctx.hasSameType(Ty, Ctx.getSizeType())) {
2871  IsSizedDelete = true;
2872  Consume();
2873  }
2874 
2875  // In C++17, the next parameter can be a 'std::align_val_t' for aligned
2876  // new/delete.
2877  if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
2878  if (IsAligned)
2879  *IsAligned = true;
2880  Consume();
2881  }
2882 
2883  // Finally, if this is not a sized delete, the final parameter can
2884  // be a 'const std::nothrow_t&'.
2885  if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
2886  Ty = Ty->getPointeeType();
2887  if (Ty.getCVRQualifiers() != Qualifiers::Const)
2888  return false;
2889  const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2890  if (RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace())
2891  Consume();
2892  }
2893 
2894  return Params == FPT->getNumParams();
2895 }
2896 
2898  // C++ P0722:
2899  // Within a class C, a single object deallocation function with signature
2900  // (T, std::destroying_delete_t, <more params>)
2901  // is a destroying operator delete.
2902  if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
2903  getNumParams() < 2)
2904  return false;
2905 
2906  auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
2907  return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
2908  RD->getIdentifier()->isStr("destroying_delete_t");
2909 }
2910 
2912  return getDeclLanguageLinkage(*this);
2913 }
2914 
2916  return isDeclExternC(*this);
2917 }
2918 
2921 }
2922 
2925 }
2926 
2928  if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
2929  return Method->isStatic();
2930 
2932  return false;
2933 
2934  for (const DeclContext *DC = getDeclContext();
2935  DC->isNamespace();
2936  DC = DC->getParent()) {
2937  if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
2938  if (!Namespace->getDeclName())
2939  return false;
2940  break;
2941  }
2942  }
2943 
2944  return true;
2945 }
2946 
2948  if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2949  hasAttr<C11NoReturnAttr>())
2950  return true;
2951 
2952  if (auto *FnTy = getType()->getAs<FunctionType>())
2953  return FnTy->getNoReturnAttr();
2954 
2955  return false;
2956 }
2957 
2958 
2960  if (hasAttr<TargetAttr>())
2961  return MultiVersionKind::Target;
2962  if (hasAttr<CPUDispatchAttr>())
2964  if (hasAttr<CPUSpecificAttr>())
2966  return MultiVersionKind::None;
2967 }
2968 
2970  return isMultiVersion() && hasAttr<CPUDispatchAttr>();
2971 }
2972 
2974  return isMultiVersion() && hasAttr<CPUSpecificAttr>();
2975 }
2976 
2978  return isMultiVersion() && hasAttr<TargetAttr>();
2979 }
2980 
2981 void
2984 
2986  FunctionTemplateDecl *PrevFunTmpl
2987  = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
2988  assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2989  FunTmpl->setPreviousDecl(PrevFunTmpl);
2990  }
2991 
2992  if (PrevDecl && PrevDecl->isInlined())
2993  setImplicitlyInline(true);
2994 }
2995 
2997 
2998 /// Returns a value indicating whether this function corresponds to a builtin
2999 /// function.
3000 ///
3001 /// The function corresponds to a built-in function if it is declared at
3002 /// translation scope or within an extern "C" block and its name matches with
3003 /// the name of a builtin. The returned value will be 0 for functions that do
3004 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3005 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3006 /// value.
3007 ///
3008 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3009 /// functions as their wrapped builtins. This shouldn't be done in general, but
3010 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3011 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3012  if (!getIdentifier())
3013  return 0;
3014 
3015  unsigned BuiltinID = getIdentifier()->getBuiltinID();
3016  if (!BuiltinID)
3017  return 0;
3018 
3019  ASTContext &Context = getASTContext();
3020  if (Context.getLangOpts().CPlusPlus) {
3021  const auto *LinkageDecl =
3023  // In C++, the first declaration of a builtin is always inside an implicit
3024  // extern "C".
3025  // FIXME: A recognised library function may not be directly in an extern "C"
3026  // declaration, for instance "extern "C" { namespace std { decl } }".
3027  if (!LinkageDecl) {
3028  if (BuiltinID == Builtin::BI__GetExceptionInfo &&
3029  Context.getTargetInfo().getCXXABI().isMicrosoft())
3030  return Builtin::BI__GetExceptionInfo;
3031  return 0;
3032  }
3033  if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
3034  return 0;
3035  }
3036 
3037  // If the function is marked "overloadable", it has a different mangled name
3038  // and is not the C library function.
3039  if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>())
3040  return 0;
3041 
3042  if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3043  return BuiltinID;
3044 
3045  // This function has the name of a known C library
3046  // function. Determine whether it actually refers to the C library
3047  // function or whether it just has the same name.
3048 
3049  // If this is a static function, it's not a builtin.
3050  if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3051  return 0;
3052 
3053  // OpenCL v1.2 s6.9.f - The library functions defined in
3054  // the C99 standard headers are not available.
3055  if (Context.getLangOpts().OpenCL &&
3056  Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3057  return 0;
3058 
3059  // CUDA does not have device-side standard library. printf and malloc are the
3060  // only special cases that are supported by device-side runtime.
3061  if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3062  !hasAttr<CUDAHostAttr>() &&
3063  !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3064  return 0;
3065 
3066  return BuiltinID;
3067 }
3068 
3069 /// getNumParams - Return the number of parameters this function must have
3070 /// based on its FunctionType. This is the length of the ParamInfo array
3071 /// after it has been created.
3072 unsigned FunctionDecl::getNumParams() const {
3073  const auto *FPT = getType()->getAs<FunctionProtoType>();
3074  return FPT ? FPT->getNumParams() : 0;
3075 }
3076 
3077 void FunctionDecl::setParams(ASTContext &C,
3078  ArrayRef<ParmVarDecl *> NewParamInfo) {
3079  assert(!ParamInfo && "Already has param info!");
3080  assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3081 
3082  // Zero params -> null pointer.
3083  if (!NewParamInfo.empty()) {
3084  ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3085  std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3086  }
3087 }
3088 
3089 /// getMinRequiredArguments - Returns the minimum number of arguments
3090 /// needed to call this function. This may be fewer than the number of
3091 /// function parameters, if some of the parameters have default
3092 /// arguments (in C++) or are parameter packs (C++11).
3094  if (!getASTContext().getLangOpts().CPlusPlus)
3095  return getNumParams();
3096 
3097  unsigned NumRequiredArgs = 0;
3098  for (auto *Param : parameters())
3099  if (!Param->isParameterPack() && !Param->hasDefaultArg())
3100  ++NumRequiredArgs;
3101  return NumRequiredArgs;
3102 }
3103 
3104 /// The combination of the extern and inline keywords under MSVC forces
3105 /// the function to be required.
3106 ///
3107 /// Note: This function assumes that we will only get called when isInlined()
3108 /// would return true for this FunctionDecl.
3110  assert(isInlined() && "expected to get called on an inlined function!");
3111 
3112  const ASTContext &Context = getASTContext();
3113  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3114  !hasAttr<DLLExportAttr>())
3115  return false;
3116 
3117  for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3118  FD = FD->getPreviousDecl())
3119  if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3120  return true;
3121 
3122  return false;
3123 }
3124 
3125 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3126  if (Redecl->getStorageClass() != SC_Extern)
3127  return false;
3128 
3129  for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3130  FD = FD->getPreviousDecl())
3131  if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3132  return false;
3133 
3134  return true;
3135 }
3136 
3137 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3138  // Only consider file-scope declarations in this test.
3139  if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3140  return false;
3141 
3142  // Only consider explicit declarations; the presence of a builtin for a
3143  // libcall shouldn't affect whether a definition is externally visible.
3144  if (Redecl->isImplicit())
3145  return false;
3146 
3147  if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3148  return true; // Not an inline definition
3149 
3150  return false;
3151 }
3152 
3153 /// For a function declaration in C or C++, determine whether this
3154 /// declaration causes the definition to be externally visible.
3155 ///
3156 /// For instance, this determines if adding the current declaration to the set
3157 /// of redeclarations of the given functions causes
3158 /// isInlineDefinitionExternallyVisible to change from false to true.
3160  assert(!doesThisDeclarationHaveABody() &&
3161  "Must have a declaration without a body.");
3162 
3163  ASTContext &Context = getASTContext();
3164 
3165  if (Context.getLangOpts().MSVCCompat) {
3166  const FunctionDecl *Definition;
3167  if (hasBody(Definition) && Definition->isInlined() &&
3168  redeclForcesDefMSVC(this))
3169  return true;
3170  }
3171 
3172  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3173  // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3174  // an externally visible definition.
3175  //
3176  // FIXME: What happens if gnu_inline gets added on after the first
3177  // declaration?
3179  return false;
3180 
3181  const FunctionDecl *Prev = this;
3182  bool FoundBody = false;
3183  while ((Prev = Prev->getPreviousDecl())) {
3184  FoundBody |= Prev->Body.isValid();
3185 
3186  if (Prev->Body) {
3187  // If it's not the case that both 'inline' and 'extern' are
3188  // specified on the definition, then it is always externally visible.
3189  if (!Prev->isInlineSpecified() ||
3190  Prev->getStorageClass() != SC_Extern)
3191  return false;
3192  } else if (Prev->isInlineSpecified() &&
3193  Prev->getStorageClass() != SC_Extern) {
3194  return false;
3195  }
3196  }
3197  return FoundBody;
3198  }
3199 
3200  if (Context.getLangOpts().CPlusPlus)
3201  return false;
3202 
3203  // C99 6.7.4p6:
3204  // [...] If all of the file scope declarations for a function in a
3205  // translation unit include the inline function specifier without extern,
3206  // then the definition in that translation unit is an inline definition.
3208  return false;
3209  const FunctionDecl *Prev = this;
3210  bool FoundBody = false;
3211  while ((Prev = Prev->getPreviousDecl())) {
3212  FoundBody |= Prev->Body.isValid();
3213  if (RedeclForcesDefC99(Prev))
3214  return false;
3215  }
3216  return FoundBody;
3217 }
3218 
3220  const TypeSourceInfo *TSI = getTypeSourceInfo();
3221  if (!TSI)
3222  return SourceRange();
3223  FunctionTypeLoc FTL =
3225  if (!FTL)
3226  return SourceRange();
3227 
3228  // Skip self-referential return types.
3230  SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3231  SourceLocation Boundary = getNameInfo().getBeginLoc();
3232  if (RTRange.isInvalid() || Boundary.isInvalid() ||
3233  !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3234  return SourceRange();
3235 
3236  return RTRange;
3237 }
3238 
3240  const TypeSourceInfo *TSI = getTypeSourceInfo();
3241  if (!TSI)
3242  return SourceRange();
3243  FunctionTypeLoc FTL =
3245  if (!FTL)
3246  return SourceRange();
3247 
3248  return FTL.getExceptionSpecRange();
3249 }
3250 
3251 /// For an inline function definition in C, or for a gnu_inline function
3252 /// in C++, determine whether the definition will be externally visible.
3253 ///
3254 /// Inline function definitions are always available for inlining optimizations.
3255 /// However, depending on the language dialect, declaration specifiers, and
3256 /// attributes, the definition of an inline function may or may not be
3257 /// "externally" visible to other translation units in the program.
3258 ///
3259 /// In C99, inline definitions are not externally visible by default. However,
3260 /// if even one of the global-scope declarations is marked "extern inline", the
3261 /// inline definition becomes externally visible (C99 6.7.4p6).
3262 ///
3263 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3264 /// definition, we use the GNU semantics for inline, which are nearly the
3265 /// opposite of C99 semantics. In particular, "inline" by itself will create
3266 /// an externally visible symbol, but "extern inline" will not create an
3267 /// externally visible symbol.
3269  assert((doesThisDeclarationHaveABody() || willHaveBody()) &&
3270  "Must be a function definition");
3271  assert(isInlined() && "Function must be inline");
3272  ASTContext &Context = getASTContext();
3273 
3274  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3275  // Note: If you change the logic here, please change
3276  // doesDeclarationForceExternallyVisibleDefinition as well.
3277  //
3278  // If it's not the case that both 'inline' and 'extern' are
3279  // specified on the definition, then this inline definition is
3280  // externally visible.
3281  if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3282  return true;
3283 
3284  // If any declaration is 'inline' but not 'extern', then this definition
3285  // is externally visible.
3286  for (auto Redecl : redecls()) {
3287  if (Redecl->isInlineSpecified() &&
3288  Redecl->getStorageClass() != SC_Extern)
3289  return true;
3290  }
3291 
3292  return false;
3293  }
3294 
3295  // The rest of this function is C-only.
3296  assert(!Context.getLangOpts().CPlusPlus &&
3297  "should not use C inline rules in C++");
3298 
3299  // C99 6.7.4p6:
3300  // [...] If all of the file scope declarations for a function in a
3301  // translation unit include the inline function specifier without extern,
3302  // then the definition in that translation unit is an inline definition.
3303  for (auto Redecl : redecls()) {
3304  if (RedeclForcesDefC99(Redecl))
3305  return true;
3306  }
3307 
3308  // C99 6.7.4p6:
3309  // An inline definition does not provide an external definition for the
3310  // function, and does not forbid an external definition in another
3311  // translation unit.
3312  return false;
3313 }
3314 
3315 /// getOverloadedOperator - Which C++ overloaded operator this
3316 /// function represents, if any.
3318  if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3320  else
3321  return OO_None;
3322 }
3323 
3324 /// getLiteralIdentifier - The literal suffix identifier this function
3325 /// represents, if any.
3329  else
3330  return nullptr;
3331 }
3332 
3334  if (TemplateOrSpecialization.isNull())
3335  return TK_NonTemplate;
3336  if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3337  return TK_FunctionTemplate;
3338  if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3339  return TK_MemberSpecialization;
3340  if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3342  if (TemplateOrSpecialization.is
3345 
3346  llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3347 }
3348 
3351  return cast<FunctionDecl>(Info->getInstantiatedFrom());
3352 
3353  return nullptr;
3354 }
3355 
3357  return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>();
3358 }
3359 
3360 void
3361 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3362  FunctionDecl *FD,
3364  assert(TemplateOrSpecialization.isNull() &&
3365  "Member function is already a specialization");
3367  = new (C) MemberSpecializationInfo(FD, TSK);
3368  TemplateOrSpecialization = Info;
3369 }
3370 
3372  return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3373 }
3374 
3376  TemplateOrSpecialization = Template;
3377 }
3378 
3380  // If the function is invalid, it can't be implicitly instantiated.
3381  if (isInvalidDecl())
3382  return false;
3383 
3384  switch (getTemplateSpecializationKind()) {
3385  case TSK_Undeclared:
3387  return false;
3388 
3390  return true;
3391 
3392  // It is possible to instantiate TSK_ExplicitSpecialization kind
3393  // if the FunctionDecl has a class scope specialization pattern.
3395  return getClassScopeSpecializationPattern() != nullptr;
3396 
3398  // Handled below.
3399  break;
3400  }
3401 
3402  // Find the actual template from which we will instantiate.
3403  const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3404  bool HasPattern = false;
3405  if (PatternDecl)
3406  HasPattern = PatternDecl->hasBody(PatternDecl);
3407 
3408  // C++0x [temp.explicit]p9:
3409  // Except for inline functions, other explicit instantiation declarations
3410  // have the effect of suppressing the implicit instantiation of the entity
3411  // to which they refer.
3412  if (!HasPattern || !PatternDecl)
3413  return true;
3414 
3415  return PatternDecl->isInlined();
3416 }
3417 
3419  switch (getTemplateSpecializationKind()) {
3420  case TSK_Undeclared:
3422  return false;
3426  return true;
3427  }
3428  llvm_unreachable("All TSK values handled.");
3429 }
3430 
3432  // Handle class scope explicit specialization special case.
3434  if (auto *Spec = getClassScopeSpecializationPattern())
3435  return getDefinitionOrSelf(Spec);
3436  return nullptr;
3437  }
3438 
3439  // If this is a generic lambda call operator specialization, its
3440  // instantiation pattern is always its primary template's pattern
3441  // even if its primary template was instantiated from another
3442  // member template (which happens with nested generic lambdas).
3443  // Since a lambda's call operator's body is transformed eagerly,
3444  // we don't have to go hunting for a prototype definition template
3445  // (i.e. instantiated-from-member-template) to use as an instantiation
3446  // pattern.
3447 
3449  dyn_cast<CXXMethodDecl>(this))) {
3450  assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3451  return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3452  }
3453 
3454  if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3455  while (Primary->getInstantiatedFromMemberTemplate()) {
3456  // If we have hit a point where the user provided a specialization of
3457  // this template, we're done looking.
3458  if (Primary->isMemberSpecialization())
3459  break;
3460  Primary = Primary->getInstantiatedFromMemberTemplate();
3461  }
3462 
3463  return getDefinitionOrSelf(Primary->getTemplatedDecl());
3464  }
3465 
3466  if (auto *MFD = getInstantiatedFromMemberFunction())
3467  return getDefinitionOrSelf(MFD);
3468 
3469  return nullptr;
3470 }
3471 
3474  = TemplateOrSpecialization
3475  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3476  return Info->Template.getPointer();
3477  }
3478  return nullptr;
3479 }
3480 
3483 }
3484 
3487  return TemplateOrSpecialization
3488  .dyn_cast<FunctionTemplateSpecializationInfo *>();
3489 }
3490 
3491 const TemplateArgumentList *
3494  = TemplateOrSpecialization
3495  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3496  return Info->TemplateArguments;
3497  }
3498  return nullptr;
3499 }
3500 
3504  = TemplateOrSpecialization
3505  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3506  return Info->TemplateArgumentsAsWritten;
3507  }
3508  return nullptr;
3509 }
3510 
3511 void
3512 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3513  FunctionTemplateDecl *Template,
3514  const TemplateArgumentList *TemplateArgs,
3515  void *InsertPos,
3517  const TemplateArgumentListInfo *TemplateArgsAsWritten,
3518  SourceLocation PointOfInstantiation) {
3519  assert(TSK != TSK_Undeclared &&
3520  "Must specify the type of function template specialization");
3522  = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3523  if (!Info)
3524  Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
3525  TemplateArgs,
3526  TemplateArgsAsWritten,
3527  PointOfInstantiation);
3528  TemplateOrSpecialization = Info;
3529  Template->addSpecialization(Info, InsertPos);
3530 }
3531 
3532 void
3534  const UnresolvedSetImpl &Templates,
3535  const TemplateArgumentListInfo &TemplateArgs) {
3536  assert(TemplateOrSpecialization.isNull());
3539  TemplateArgs);
3540  TemplateOrSpecialization = Info;
3541 }
3542 
3545  return TemplateOrSpecialization
3547 }
3548 
3551  ASTContext &Context, const UnresolvedSetImpl &Ts,
3552  const TemplateArgumentListInfo &TArgs) {
3553  void *Buffer = Context.Allocate(
3554  totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3555  TArgs.size(), Ts.size()));
3556  return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3557 }
3558 
3559 DependentFunctionTemplateSpecializationInfo::
3560 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3561  const TemplateArgumentListInfo &TArgs)
3562  : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3563  NumTemplates = Ts.size();
3564  NumArgs = TArgs.size();
3565 
3566  FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3567  for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3568  TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3569 
3570  TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3571  for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3572  new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3573 }
3574 
3576  // For a function template specialization, query the specialization
3577  // information object.
3579  = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3580  if (FTSInfo)
3581  return FTSInfo->getTemplateSpecializationKind();
3582 
3583  MemberSpecializationInfo *MSInfo
3584  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
3585  if (MSInfo)
3586  return MSInfo->getTemplateSpecializationKind();
3587 
3588  return TSK_Undeclared;
3589 }
3590 
3591 void
3593  SourceLocation PointOfInstantiation) {
3595  = TemplateOrSpecialization.dyn_cast<
3597  FTSInfo->setTemplateSpecializationKind(TSK);
3598  if (TSK != TSK_ExplicitSpecialization &&
3599  PointOfInstantiation.isValid() &&
3600  FTSInfo->getPointOfInstantiation().isInvalid()) {
3601  FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3603  L->InstantiationRequested(this);
3604  }
3605  } else if (MemberSpecializationInfo *MSInfo
3606  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3607  MSInfo->setTemplateSpecializationKind(TSK);
3608  if (TSK != TSK_ExplicitSpecialization &&
3609  PointOfInstantiation.isValid() &&
3610  MSInfo->getPointOfInstantiation().isInvalid()) {
3611  MSInfo->setPointOfInstantiation(PointOfInstantiation);
3613  L->InstantiationRequested(this);
3614  }
3615  } else
3616  llvm_unreachable("Function cannot have a template specialization kind");
3617 }
3618 
3621  = TemplateOrSpecialization.dyn_cast<
3623  return FTSInfo->getPointOfInstantiation();
3624  else if (MemberSpecializationInfo *MSInfo
3625  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3626  return MSInfo->getPointOfInstantiation();
3627 
3628  return SourceLocation();
3629 }
3630 
3632  if (Decl::isOutOfLine())
3633  return true;
3634 
3635  // If this function was instantiated from a member function of a
3636  // class template, check whether that member function was defined out-of-line.
3638  const FunctionDecl *Definition;
3639  if (FD->hasBody(Definition))
3640  return Definition->isOutOfLine();
3641  }
3642 
3643  // If this function was instantiated from a function template,
3644  // check whether that function template was defined out-of-line.
3645  if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3646  const FunctionDecl *Definition;
3647  if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3648  return Definition->isOutOfLine();
3649  }
3650 
3651  return false;
3652 }
3653 
3655  return SourceRange(getOuterLocStart(), EndRangeLoc);
3656 }
3657 
3659  IdentifierInfo *FnInfo = getIdentifier();
3660 
3661  if (!FnInfo)
3662  return 0;
3663 
3664  // Builtin handling.
3665  switch (getBuiltinID()) {
3666  case Builtin::BI__builtin_memset:
3667  case Builtin::BI__builtin___memset_chk:
3668  case Builtin::BImemset:
3669  return Builtin::BImemset;
3670 
3671  case Builtin::BI__builtin_memcpy:
3672  case Builtin::BI__builtin___memcpy_chk:
3673  case Builtin::BImemcpy:
3674  return Builtin::BImemcpy;
3675 
3676  case Builtin::BI__builtin_memmove:
3677  case Builtin::BI__builtin___memmove_chk:
3678  case Builtin::BImemmove:
3679  return Builtin::BImemmove;
3680 
3681  case Builtin::BIstrlcpy:
3682  case Builtin::BI__builtin___strlcpy_chk:
3683  return Builtin::BIstrlcpy;
3684 
3685  case Builtin::BIstrlcat:
3686  case Builtin::BI__builtin___strlcat_chk:
3687  return Builtin::BIstrlcat;
3688 
3689  case Builtin::BI__builtin_memcmp:
3690  case Builtin::BImemcmp:
3691  return Builtin::BImemcmp;
3692 
3693  case Builtin::BI__builtin_bcmp:
3694  case Builtin::BIbcmp:
3695  return Builtin::BIbcmp;
3696 
3697  case Builtin::BI__builtin_strncpy:
3698  case Builtin::BI__builtin___strncpy_chk:
3699  case Builtin::BIstrncpy:
3700  return Builtin::BIstrncpy;
3701 
3702  case Builtin::BI__builtin_strncmp:
3703  case Builtin::BIstrncmp:
3704  return Builtin::BIstrncmp;
3705 
3706  case Builtin::BI__builtin_strncasecmp:
3707  case Builtin::BIstrncasecmp:
3708  return Builtin::BIstrncasecmp;
3709 
3710  case Builtin::BI__builtin_strncat:
3711  case Builtin::BI__builtin___strncat_chk:
3712  case Builtin::BIstrncat:
3713  return Builtin::BIstrncat;
3714 
3715  case Builtin::BI__builtin_strndup:
3716  case Builtin::BIstrndup:
3717  return Builtin::BIstrndup;
3718 
3719  case Builtin::BI__builtin_strlen:
3720  case Builtin::BIstrlen:
3721  return Builtin::BIstrlen;
3722 
3723  case Builtin::BI__builtin_bzero:
3724  case Builtin::BIbzero:
3725  return Builtin::BIbzero;
3726 
3727  default:
3728  if (isExternC()) {
3729  if (FnInfo->isStr("memset"))
3730  return Builtin::BImemset;
3731  else if (FnInfo->isStr("memcpy"))
3732  return Builtin::BImemcpy;
3733  else if (FnInfo->isStr("memmove"))
3734  return Builtin::BImemmove;
3735  else if (FnInfo->isStr("memcmp"))
3736  return Builtin::BImemcmp;
3737  else if (FnInfo->isStr("bcmp"))
3738  return Builtin::BIbcmp;
3739  else if (FnInfo->isStr("strncpy"))
3740  return Builtin::BIstrncpy;
3741  else if (FnInfo->isStr("strncmp"))
3742  return Builtin::BIstrncmp;
3743  else if (FnInfo->isStr("strncasecmp"))
3744  return Builtin::BIstrncasecmp;
3745  else if (FnInfo->isStr("strncat"))
3746  return Builtin::BIstrncat;
3747  else if (FnInfo->isStr("strndup"))
3748  return Builtin::BIstrndup;
3749  else if (FnInfo->isStr("strlen"))
3750  return Builtin::BIstrlen;
3751  else if (FnInfo->isStr("bzero"))
3752  return Builtin::BIbzero;
3753  }
3754  break;
3755  }
3756  return 0;
3757 }
3758 
3759 unsigned FunctionDecl::getODRHash() const {
3760  assert(hasODRHash());
3761  return ODRHash;
3762 }
3763 
3765  if (hasODRHash())
3766  return ODRHash;
3767 
3768  if (auto *FT = getInstantiatedFromMemberFunction()) {
3769  setHasODRHash(true);
3770  ODRHash = FT->getODRHash();
3771  return ODRHash;
3772  }
3773 
3774  class ODRHash Hash;
3775  Hash.AddFunctionDecl(this);
3776  setHasODRHash(true);
3777  ODRHash = Hash.CalculateHash();
3778  return ODRHash;
3779 }
3780 
3781 //===----------------------------------------------------------------------===//
3782 // FieldDecl Implementation
3783 //===----------------------------------------------------------------------===//
3784 
3786  SourceLocation StartLoc, SourceLocation IdLoc,
3788  TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3789  InClassInitStyle InitStyle) {
3790  return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3791  BW, Mutable, InitStyle);
3792 }
3793 
3795  return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3796  SourceLocation(), nullptr, QualType(), nullptr,
3797  nullptr, false, ICIS_NoInit);
3798 }
3799 
3801  if (!isImplicit() || getDeclName())
3802  return false;
3803 
3804  if (const auto *Record = getType()->getAs<RecordType>())
3805  return Record->getDecl()->isAnonymousStructOrUnion();
3806 
3807  return false;
3808 }
3809 
3810 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3811  assert(isBitField() && "not a bitfield");
3812  return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
3813 }
3814 
3816  return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
3817  getBitWidthValue(Ctx) == 0;
3818 }
3819 
3820 unsigned FieldDecl::getFieldIndex() const {
3821  const FieldDecl *Canonical = getCanonicalDecl();
3822  if (Canonical != this)
3823  return Canonical->getFieldIndex();
3824 
3825  if (CachedFieldIndex) return CachedFieldIndex - 1;
3826 
3827  unsigned Index = 0;
3828  const RecordDecl *RD = getParent()->getDefinition();
3829  assert(RD && "requested index for field of struct with no definition");
3830 
3831  for (auto *Field : RD->fields()) {
3832  Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3833  ++Index;
3834  }
3835 
3836  assert(CachedFieldIndex && "failed to find field in parent");
3837  return CachedFieldIndex - 1;
3838 }
3839 
3841  const Expr *FinalExpr = getInClassInitializer();
3842  if (!FinalExpr)
3843  FinalExpr = getBitWidth();
3844  if (FinalExpr)
3845  return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
3847 }
3848 
3850  assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3851  "capturing type in non-lambda or captured record.");
3852  assert(InitStorage.getInt() == ISK_NoInit &&
3853  InitStorage.getPointer() == nullptr &&
3854  "bit width, initializer or captured type already set");
3855  InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3856  ISK_CapturedVLAType);
3857 }
3858 
3859 //===----------------------------------------------------------------------===//
3860 // TagDecl Implementation
3861 //===----------------------------------------------------------------------===//
3862 
3864  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3865  SourceLocation StartL)
3866  : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
3867  TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
3868  assert((DK != Enum || TK == TTK_Enum) &&
3869  "EnumDecl not matched with TTK_Enum");
3870  setPreviousDecl(PrevDecl);
3871  setTagKind(TK);
3872  setCompleteDefinition(false);
3873  setBeingDefined(false);
3874  setEmbeddedInDeclarator(false);
3875  setFreeStanding(false);
3877 }
3878 
3880  return getTemplateOrInnerLocStart(this);
3881 }
3882 
3884  SourceLocation RBraceLoc = BraceRange.getEnd();
3885  SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3886  return SourceRange(getOuterLocStart(), E);
3887 }
3888 
3890 
3892  TypedefNameDeclOrQualifier = TDD;
3893  if (const Type *T = getTypeForDecl()) {
3894  (void)T;
3895  assert(T->isLinkageValid());
3896  }
3897  assert(isLinkageValid());
3898 }
3899 
3901  setBeingDefined(true);
3902 
3903  if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
3904  struct CXXRecordDecl::DefinitionData *Data =
3905  new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3906  for (auto I : redecls())
3907  cast<CXXRecordDecl>(I)->DefinitionData = Data;
3908  }
3909 }
3910 
3912  assert((!isa<CXXRecordDecl>(this) ||
3913  cast<CXXRecordDecl>(this)->hasDefinition()) &&
3914  "definition completed but not started");
3915 
3916  setCompleteDefinition(true);
3917  setBeingDefined(false);
3918 
3920  L->CompletedTagDefinition(this);
3921 }
3922 
3924  if (isCompleteDefinition())
3925  return const_cast<TagDecl *>(this);
3926 
3927  // If it's possible for us to have an out-of-date definition, check now.
3928  if (mayHaveOutOfDateDef()) {
3929  if (IdentifierInfo *II = getIdentifier()) {
3930  if (II->isOutOfDate()) {
3931  updateOutOfDate(*II);
3932  }
3933  }
3934  }
3935 
3936  if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
3937  return CXXRD->getDefinition();
3938 
3939  for (auto R : redecls())
3940  if (R->isCompleteDefinition())
3941  return R;
3942 
3943  return nullptr;
3944 }
3945 
3947  if (QualifierLoc) {
3948  // Make sure the extended qualifier info is allocated.
3949  if (!hasExtInfo())
3950  TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3951  // Set qualifier info.
3952  getExtInfo()->QualifierLoc = QualifierLoc;
3953  } else {
3954  // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3955  if (hasExtInfo()) {
3956  if (getExtInfo()->NumTemplParamLists == 0) {
3957  getASTContext().Deallocate(getExtInfo());
3958  TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
3959  }
3960  else
3961  getExtInfo()->QualifierLoc = QualifierLoc;
3962  }
3963  }
3964 }
3965 
3967  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
3968  assert(!TPLists.empty());
3969  // Make sure the extended decl info is allocated.
3970  if (!hasExtInfo())
3971  // Allocate external info struct.
3972  TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3973  // Set the template parameter lists info.
3974  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
3975 }
3976 
3977 //===----------------------------------------------------------------------===//
3978 // EnumDecl Implementation
3979 //===----------------------------------------------------------------------===//
3980 
3981 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3982  SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
3983  bool Scoped, bool ScopedUsingClassTag, bool Fixed)
3984  : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
3985  assert(Scoped || !ScopedUsingClassTag);
3986  IntegerType = nullptr;
3987  setNumPositiveBits(0);
3988  setNumNegativeBits(0);
3989  setScoped(Scoped);
3990  setScopedUsingClassTag(ScopedUsingClassTag);
3991  setFixed(Fixed);
3992  setHasODRHash(false);
3993  ODRHash = 0;
3994 }
3995 
3996 void EnumDecl::anchor() {}
3997 
3999  SourceLocation StartLoc, SourceLocation IdLoc,
4000  IdentifierInfo *Id,
4001  EnumDecl *PrevDecl, bool IsScoped,
4002  bool IsScopedUsingClassTag, bool IsFixed) {
4003  auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4004  IsScoped, IsScopedUsingClassTag, IsFixed);
4005  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4006  C.getTypeDeclType(Enum, PrevDecl);
4007  return Enum;
4008 }
4009 
4011  EnumDecl *Enum =
4012  new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4013  nullptr, nullptr, false, false, false);
4014  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4015  return Enum;
4016 }
4017 
4019  if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4020  return TI->getTypeLoc().getSourceRange();
4021  return SourceRange();
4022 }
4023 
4025  QualType NewPromotionType,
4026  unsigned NumPositiveBits,
4027  unsigned NumNegativeBits) {
4028  assert(!isCompleteDefinition() && "Cannot redefine enums!");
4029  if (!IntegerType)
4030  IntegerType = NewType.getTypePtr();
4031  PromotionType = NewPromotionType;
4032  setNumPositiveBits(NumPositiveBits);
4033  setNumNegativeBits(NumNegativeBits);
4035 }
4036 
4037 bool EnumDecl::isClosed() const {
4038  if (const auto *A = getAttr<EnumExtensibilityAttr>())
4039  return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4040  return true;
4041 }
4042 
4044  return isClosed() && hasAttr<FlagEnumAttr>();
4045 }
4046 
4048  return isClosed() && !hasAttr<FlagEnumAttr>();
4049 }
4050 
4052  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4053  return MSI->getTemplateSpecializationKind();
4054 
4055  return TSK_Undeclared;
4056 }
4057 
4059  SourceLocation PointOfInstantiation) {
4060  MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4061  assert(MSI && "Not an instantiated member enumeration?");
4063  if (TSK != TSK_ExplicitSpecialization &&
4064  PointOfInstantiation.isValid() &&
4066  MSI->setPointOfInstantiation(PointOfInstantiation);
4067 }
4068 
4070  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4071  if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4072  EnumDecl *ED = getInstantiatedFromMemberEnum();
4073  while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4074  ED = NewED;
4075  return getDefinitionOrSelf(ED);
4076  }
4077  }
4078 
4080  "couldn't find pattern for enum instantiation");
4081  return nullptr;
4082 }
4083 
4085  if (SpecializationInfo)
4086  return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4087 
4088  return nullptr;
4089 }
4090 
4091 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4093  assert(!SpecializationInfo && "Member enum is already a specialization");
4094  SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4095 }
4096 
4098  if (hasODRHash())
4099  return ODRHash;
4100 
4101  class ODRHash Hash;
4102  Hash.AddEnumDecl(this);
4103  setHasODRHash(true);
4104  ODRHash = Hash.CalculateHash();
4105  return ODRHash;
4106 }
4107 
4108 //===----------------------------------------------------------------------===//
4109 // RecordDecl Implementation
4110 //===----------------------------------------------------------------------===//
4111 
4113  DeclContext *DC, SourceLocation StartLoc,
4114  SourceLocation IdLoc, IdentifierInfo *Id,
4115  RecordDecl *PrevDecl)
4116  : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4117  assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4120  setHasObjectMember(false);
4121  setHasVolatileMember(false);
4128 }
4129 
4131  SourceLocation StartLoc, SourceLocation IdLoc,
4132  IdentifierInfo *Id, RecordDecl* PrevDecl) {
4133  RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4134  StartLoc, IdLoc, Id, PrevDecl);
4135  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4136 
4137  C.getTypeDeclType(R, PrevDecl);
4138  return R;
4139 }
4140 
4142  RecordDecl *R =
4143  new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4144  SourceLocation(), nullptr, nullptr);
4145  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4146  return R;
4147 }
4148 
4150  return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4151  cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4152 }
4153 
4154 bool RecordDecl::isLambda() const {
4155  if (auto RD = dyn_cast<CXXRecordDecl>(this))
4156  return RD->isLambda();
4157  return false;
4158 }
4159 
4161  return hasAttr<CapturedRecordAttr>();
4162 }
4163 
4165  addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4166 }
4167 
4170  LoadFieldsFromExternalStorage();
4171 
4173 }
4174 
4175 /// completeDefinition - Notes that the definition of this type is now
4176 /// complete.
4178  assert(!isCompleteDefinition() && "Cannot redefine record!");
4180 }
4181 
4182 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4183 /// This which can be turned on with an attribute, pragma, or the
4184 /// -mms-bitfields command-line option.
4185 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4186  return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4187 }
4188 
4189 void RecordDecl::LoadFieldsFromExternalStorage() const {
4191  assert(hasExternalLexicalStorage() && Source && "No external storage?");
4192 
4193  // Notify that we have a RecordDecl doing some initialization.
4194  ExternalASTSource::Deserializing TheFields(Source);
4195 
4196  SmallVector<Decl*, 64> Decls;
4198  Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4200  }, Decls);
4201 
4202 #ifndef NDEBUG
4203  // Check that all decls we got were FieldDecls.
4204  for (unsigned i=0, e=Decls.size(); i != e; ++i)
4205  assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4206 #endif
4207 
4208  if (Decls.empty())
4209  return;
4210 
4211  std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4212  /*FieldsAlreadyLoaded=*/false);
4213 }
4214 
4215 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4216  ASTContext &Context = getASTContext();
4217  const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4218  (SanitizerKind::Address | SanitizerKind::KernelAddress);
4219  if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4220  return false;
4221  const auto &Blacklist = Context.getSanitizerBlacklist();
4222  const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4223  // We may be able to relax some of these requirements.
4224  int ReasonToReject = -1;
4225  if (!CXXRD || CXXRD->isExternCContext())
4226  ReasonToReject = 0; // is not C++.
4227  else if (CXXRD->hasAttr<PackedAttr>())
4228  ReasonToReject = 1; // is packed.
4229  else if (CXXRD->isUnion())
4230  ReasonToReject = 2; // is a union.
4231  else if (CXXRD->isTriviallyCopyable())
4232  ReasonToReject = 3; // is trivially copyable.
4233  else if (CXXRD->hasTrivialDestructor())
4234  ReasonToReject = 4; // has trivial destructor.
4235  else if (CXXRD->isStandardLayout())
4236  ReasonToReject = 5; // is standard layout.
4237  else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4238  "field-padding"))
4239  ReasonToReject = 6; // is in a blacklisted file.
4240  else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4242  "field-padding"))
4243  ReasonToReject = 7; // is blacklisted.
4244 
4245  if (EmitRemark) {
4246  if (ReasonToReject >= 0)
4247  Context.getDiagnostics().Report(
4248  getLocation(),
4249  diag::remark_sanitize_address_insert_extra_padding_rejected)
4250  << getQualifiedNameAsString() << ReasonToReject;
4251  else
4252  Context.getDiagnostics().Report(
4253  getLocation(),
4254  diag::remark_sanitize_address_insert_extra_padding_accepted)
4256  }
4257  return ReasonToReject < 0;
4258 }
4259 
4261  for (const auto *I : fields()) {
4262  if (I->getIdentifier())
4263  return I;
4264 
4265  if (const auto *RT = I->getType()->getAs<RecordType>())
4266  if (const FieldDecl *NamedDataMember =
4267  RT->getDecl()->findFirstNamedDataMember())
4268  return NamedDataMember;
4269  }
4270 
4271  // We didn't find a named data member.
4272  return nullptr;
4273 }
4274 
4275 //===----------------------------------------------------------------------===//
4276 // BlockDecl Implementation
4277 //===----------------------------------------------------------------------===//
4278 
4280  : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4281  setIsVariadic(false);
4282  setCapturesCXXThis(false);
4285  setDoesNotEscape(false);
4286  setCanAvoidCopyToHeap(false);
4287 }
4288 
4290  assert(!ParamInfo && "Already has param info!");
4291 
4292  // Zero params -> null pointer.
4293  if (!NewParamInfo.empty()) {
4294  NumParams = NewParamInfo.size();
4295  ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4296  std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4297  }
4298 }
4299 
4301  bool CapturesCXXThis) {
4302  this->setCapturesCXXThis(CapturesCXXThis);
4303  this->NumCaptures = Captures.size();
4304 
4305  if (Captures.empty()) {
4306  this->Captures = nullptr;
4307  return;
4308  }
4309 
4310  this->Captures = Captures.copy(Context).data();
4311 }
4312 
4313 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4314  for (const auto &I : captures())
4315  // Only auto vars can be captured, so no redeclaration worries.
4316  if (I.getVariable() == variable)
4317  return true;
4318 
4319  return false;
4320 }
4321 
4323  return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4324 }
4325 
4326 //===----------------------------------------------------------------------===//
4327 // Other Decl Allocation/Deallocation Method Implementations
4328 //===----------------------------------------------------------------------===//
4329 
4330 void TranslationUnitDecl::anchor() {}
4331 
4333  return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4334 }
4335 
4336 void PragmaCommentDecl::anchor() {}
4337 
4339  TranslationUnitDecl *DC,
4340  SourceLocation CommentLoc,
4341  PragmaMSCommentKind CommentKind,
4342  StringRef Arg) {
4343  PragmaCommentDecl *PCD =
4344  new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4345  PragmaCommentDecl(DC, CommentLoc, CommentKind);
4346  memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4347  PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4348  return PCD;
4349 }
4350 
4352  unsigned ID,
4353  unsigned ArgSize) {
4354  return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4356 }
4357 
4358 void PragmaDetectMismatchDecl::anchor() {}
4359 
4362  SourceLocation Loc, StringRef Name,
4363  StringRef Value) {
4364  size_t ValueStart = Name.size() + 1;
4365  PragmaDetectMismatchDecl *PDMD =
4366  new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4367  PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4368  memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4369  PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4370  memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4371  Value.size());
4372  PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4373  return PDMD;
4374 }
4375 
4378  unsigned NameValueSize) {
4379  return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4381 }
4382 
4383 void ExternCContextDecl::anchor() {}
4384 
4386  TranslationUnitDecl *DC) {
4387  return new (C, DC) ExternCContextDecl(DC);
4388 }
4389 
4390 void LabelDecl::anchor() {}
4391 
4393  SourceLocation IdentL, IdentifierInfo *II) {
4394  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4395 }
4396 
4398  SourceLocation IdentL, IdentifierInfo *II,
4399  SourceLocation GnuLabelL) {
4400  assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4401  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4402 }
4403 
4405  return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4406  SourceLocation());
4407 }
4408 
4409 void LabelDecl::setMSAsmLabel(StringRef Name) {
4410  char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4411  memcpy(Buffer, Name.data(), Name.size());
4412  Buffer[Name.size()] = '\0';
4413  MSAsmName = Buffer;
4414 }
4415 
4416 void ValueDecl::anchor() {}
4417 
4418 bool ValueDecl::isWeak() const {
4419  for (const auto *I : attrs())
4420  if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4421  return true;
4422 
4423  return isWeakImported();
4424 }
4425 
4426 void ImplicitParamDecl::anchor() {}
4427 
4429  SourceLocation IdLoc,
4431  ImplicitParamKind ParamKind) {
4432  return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4433 }
4434 
4436  ImplicitParamKind ParamKind) {
4437  return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4438 }
4439 
4441  unsigned ID) {
4442  return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4443 }
4444 
4446  SourceLocation StartLoc,
4447  const DeclarationNameInfo &NameInfo,
4448  QualType T, TypeSourceInfo *TInfo,
4449  StorageClass SC,
4450  bool isInlineSpecified,
4451  bool hasWrittenPrototype,
4452  bool isConstexprSpecified) {
4453  FunctionDecl *New =
4454  new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4455  SC, isInlineSpecified, isConstexprSpecified);
4456  New->setHasWrittenPrototype(hasWrittenPrototype);
4457  return New;
4458 }
4459 
4461  return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4462  DeclarationNameInfo(), QualType(), nullptr,
4463  SC_None, false, false);
4464 }
4465 
4467  return new (C, DC) BlockDecl(DC, L);
4468 }
4469 
4471  return new (C, ID) BlockDecl(nullptr, SourceLocation());
4472 }
4473 
4474 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4475  : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4476  NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4477 
4479  unsigned NumParams) {
4480  return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4481  CapturedDecl(DC, NumParams);
4482 }
4483 
4485  unsigned NumParams) {
4486  return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4487  CapturedDecl(nullptr, NumParams);
4488 }
4489 
4490 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4491 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4492 
4493 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4494 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4495 
4497  SourceLocation L,
4498  IdentifierInfo *Id, QualType T,
4499  Expr *E, const llvm::APSInt &V) {
4500  return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4501 }
4502 
4505  return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4506  QualType(), nullptr, llvm::APSInt());
4507 }
4508 
4509 void IndirectFieldDecl::anchor() {}
4510 
4511 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4513  QualType T,
4515  : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4516  ChainingSize(CH.size()) {
4517  // In C++, indirect field declarations conflict with tag declarations in the
4518  // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4519  if (C.getLangOpts().CPlusPlus)
4521 }
4522 
4525  IdentifierInfo *Id, QualType T,
4527  return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4528 }
4529 
4531  unsigned ID) {
4532  return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4533  DeclarationName(), QualType(), None);
4534 }
4535 
4538  if (Init)
4539  End = Init->getEndLoc();
4540  return SourceRange(getLocation(), End);
4541 }
4542 
4543 void TypeDecl::anchor() {}
4544 
4546  SourceLocation StartLoc, SourceLocation IdLoc,
4547  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4548  return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4549 }
4550 
4551 void TypedefNameDecl::anchor() {}
4552 
4554  if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4555  auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4556  auto *ThisTypedef = this;
4557  if (AnyRedecl && OwningTypedef) {
4558  OwningTypedef = OwningTypedef->getCanonicalDecl();
4559  ThisTypedef = ThisTypedef->getCanonicalDecl();
4560  }
4561  if (OwningTypedef == ThisTypedef)
4562  return TT->getDecl();
4563  }
4564 
4565  return nullptr;
4566 }
4567 
4568 bool TypedefNameDecl::isTransparentTagSlow() const {
4569  auto determineIsTransparent = [&]() {
4570  if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4571  if (auto *TD = TT->getDecl()) {
4572  if (TD->getName() != getName())
4573  return false;
4574  SourceLocation TTLoc = getLocation();
4575  SourceLocation TDLoc = TD->getLocation();
4576  if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4577  return false;
4579  return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4580  }
4581  }
4582  return false;
4583  };
4584 
4585  bool isTransparent = determineIsTransparent();
4586  MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4587  return isTransparent;
4588 }
4589 
4591  return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4592  nullptr, nullptr);
4593 }
4594 
4596  SourceLocation StartLoc,
4597  SourceLocation IdLoc, IdentifierInfo *Id,
4598  TypeSourceInfo *TInfo) {
4599  return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4600 }
4601 
4603  return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4604  SourceLocation(), nullptr, nullptr);
4605 }
4606 
4608  SourceLocation RangeEnd = getLocation();
4609  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4610  if (typeIsPostfix(TInfo->getType()))
4611  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4612  }
4613  return SourceRange(getBeginLoc(), RangeEnd);
4614 }
4615 
4617  SourceLocation RangeEnd = getBeginLoc();
4618  if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4619  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4620  return SourceRange(getBeginLoc(), RangeEnd);
4621 }
4622 
4623 void FileScopeAsmDecl::anchor() {}
4624 
4626  StringLiteral *Str,
4627  SourceLocation AsmLoc,
4628  SourceLocation RParenLoc) {
4629  return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4630 }
4631 
4633  unsigned ID) {
4634  return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4635  SourceLocation());
4636 }
4637 
4638 void EmptyDecl::anchor() {}
4639 
4641  return new (C, DC) EmptyDecl(DC, L);
4642 }
4643 
4645  return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4646 }
4647 
4648 //===----------------------------------------------------------------------===//
4649 // ImportDecl Implementation
4650 //===----------------------------------------------------------------------===//
4651 
4652 /// Retrieve the number of module identifiers needed to name the given
4653 /// module.
4654 static unsigned getNumModuleIdentifiers(Module *Mod) {
4655  unsigned Result = 1;
4656  while (Mod->Parent) {
4657  Mod = Mod->Parent;
4658  ++Result;
4659  }
4660  return Result;
4661 }
4662 
4663 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4664  Module *Imported,
4665  ArrayRef<SourceLocation> IdentifierLocs)
4666  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) {
4667  assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4668  auto *StoredLocs = getTrailingObjects<SourceLocation>();
4669  std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4670  StoredLocs);
4671 }
4672 
4673 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4674  Module *Imported, SourceLocation EndLoc)
4675  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) {
4676  *getTrailingObjects<SourceLocation>() = EndLoc;
4677 }
4678 
4680  SourceLocation StartLoc, Module *Imported,
4681  ArrayRef<SourceLocation> IdentifierLocs) {
4682  return new (C, DC,
4683  additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4684  ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4685 }
4686 
4688  SourceLocation StartLoc,
4689  Module *Imported,
4690  SourceLocation EndLoc) {
4691  ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4692  ImportDecl(DC, StartLoc, Imported, EndLoc);
4693  Import->setImplicit();
4694  return Import;
4695 }
4696 
4698  unsigned NumLocations) {
4699  return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4701 }
4702 
4704  if (!ImportedAndComplete.getInt())
4705  return None;
4706 
4707  const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4708  return llvm::makeArrayRef(StoredLocs,
4709  getNumModuleIdentifiers(getImportedModule()));
4710 }
4711 
4713  if (!ImportedAndComplete.getInt())
4714  return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4715 
4716  return SourceRange(getLocation(), getIdentifierLocs().back());
4717 }
4718 
4719 //===----------------------------------------------------------------------===//
4720 // ExportDecl Implementation
4721 //===----------------------------------------------------------------------===//
4722 
4723 void ExportDecl::anchor() {}
4724 
4726  SourceLocation ExportLoc) {
4727  return new (C, DC) ExportDecl(DC, ExportLoc);
4728 }
4729 
4731  return new (C, ID) ExportDecl(nullptr, SourceLocation());
4732 }
void setLinkage(Linkage L)
Definition: Visibility.h:87
EnumDecl * getTemplateInstantiationPattern() const
Retrieve the enum definition from which this enumeration could be instantiated, if it is an instantia...
Definition: Decl.cpp:4069
VarTemplateDecl * getDescribedVarTemplate() const
Retrieves the variable template that is described by this variable declaration.
Definition: Decl.cpp:2467
bool isNoReturn() const
Determines whether this function is known to be &#39;noreturn&#39;, through an attribute on its declaration o...
Definition: Decl.cpp:2947
Defines the clang::ASTContext interface.
void setTemplateOrSpecializationInfo(VarDecl *Inst, TemplateOrSpecializationInfo TSI)
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4607
ObjCStringFormatFamily
static const Decl * getCanonicalDecl(const Decl *D)
void setImplicit(bool I=true)
Definition: DeclBase.h:551
Represents a function declaration or definition.
Definition: Decl.h:1737
void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
Note that the static data member Inst is an instantiation of the static data member template Tmpl of ...
SourceRange getExceptionSpecRange() const
Definition: TypeLoc.h:1381
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2808
FunctionTemplateDecl * getTemplate() const
Retrieve the template from which this function was specialized.
Definition: DeclTemplate.h:549
unsigned getMemoryFunctionKind() const
Identify a memory copying or setting function.
Definition: Decl.cpp:3658
bool isThisDeclarationADemotedDefinition() const
If this definition should pretend to be a declaration.
Definition: Decl.h:1288
void setNonTrivialToPrimitiveDestroy(bool V)
Definition: Decl.h:3711
bool isPredefinedLibFunction(unsigned ID) const
Determines whether this builtin is a predefined libc/libm function, such as "malloc", where we know the signature a priori.
Definition: Builtins.h:140
FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified, bool isConstexprSpecified)
Definition: Decl.cpp:2659
LanguageLinkage getLanguageLinkage() const
Compute the language linkage.
Definition: Decl.cpp:2023
bool isClosedNonFlag() const
Returns true if this enum is annotated with neither flag_enum nor enum_extensibility(open).
Definition: Decl.cpp:4047
void setAnonymousStructOrUnion(bool Anon)
Definition: Decl.h:3669
Module * getOwningModule() const
Get the module that owns this declaration (for visibility purposes).
Definition: DeclBase.h:755
static ImportDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumLocations)
Create a new, deserialized module import declaration.
Definition: Decl.cpp:4697
CanQualType VoidPtrTy
Definition: ASTContext.h:1043
bool isInExternCXXContext() const
Determines whether this function&#39;s context is, or is nested within, a C++ extern "C++" linkage spec...
Definition: Decl.cpp:2923
bool isExplicitInstantiationOrSpecialization() const
True if this declaration is an explicit specialization, explicit instantiation declaration, or explicit instantiation definition.
A (possibly-)qualified type.
Definition: Type.h:639
TagDecl * getDefinition() const
Returns the TagDecl that actually defines this struct/union/class/enum.
Definition: Decl.cpp:3923
void setCompleteDefinition(bool V=true)
True if this decl has its body fully specified.
Definition: Decl.h:3171
virtual void FindExternalLexicalDecls(const DeclContext *DC, llvm::function_ref< bool(Decl::Kind)> IsKindWeWant, SmallVectorImpl< Decl *> &Result)
Finds all declarations lexically contained within the given DeclContext, after applying an optional f...
void setMayHaveOutOfDateDef(bool V=true)
Indicates whether it is possible for declarations of this kind to have an out-of-date definition...
Definition: Decl.h:3126
Internal linkage according to the Modules TS, but can be referred to from other translation units ind...
Definition: Linkage.h:49
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition: Decl.cpp:2915
RAII class for safely pairing a StartedDeserializing call with FinishedDeserializing.
static VarDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:1938
This file contains the declaration of the ODRHash class, which calculates a hash based on AST nodes...
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4536
bool willHaveBody() const
True if this function will eventually have a body, once it&#39;s fully parsed.
Definition: Decl.h:2220
This declaration has an owning module, but is only visible to lookups that occur within that module...
Module * getOwningModuleForLinkage(bool IgnoreLinkage=false) const
Get the module that owns this declaration for linkage purposes.
Definition: Decl.cpp:1483
void setNonTrivialToPrimitiveDefaultInitialize(bool V)
Definition: Decl.h:3695
static IndirectFieldDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, llvm::MutableArrayRef< NamedDecl *> CH)
Definition: Decl.cpp:4524
Stmt - This represents one statement.
Definition: Stmt.h:65
bool isGenericLambdaCallOperatorSpecialization(const CXXMethodDecl *MD)
Definition: ASTLambda.h:38
void setPreviousDecl(FunctionDecl *PrevDecl)
Set the previous declaration.
Definition: Decl.h:4295
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3367
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:183
bool IsICE
Whether this statement is an integral constant expression, or in C++11, whether the statement is a co...
Definition: Decl.h:801
const ASTTemplateArgumentListInfo * getTemplateSpecializationArgsAsWritten() const
Retrieve the template argument list as written in the sources, if any.
Definition: Decl.cpp:3502
VarDecl * getTemplatedDecl() const
Get the underlying variable declarations of the template.
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
bool isMain() const
Determines whether this function is "main", which is the entry point into an executable program...
Definition: Decl.cpp:2773
bool isOutOfLine() const override
Determine whether this is or was instantiated from an out-of-line definition of a member function...
Definition: Decl.cpp:3631
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:966
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:2785
void setEmbeddedInDeclarator(bool isInDeclarator)
True if this tag declaration is "embedded" (i.e., defined or declared for the very first time) in the...
Definition: Decl.h:3198
No linkage, which means that the entity is unique and can only be referred to from within its scope...
Definition: Linkage.h:26
void setTypedefNameForAnonDecl(TypedefNameDecl *TDD)
Definition: Decl.cpp:3891
Represents the declaration of a typedef-name via the &#39;typedef&#39; type specifier.
Definition: Decl.h:3017
C Language Family Type Representation.
Defines the SourceManager interface.
bool IsEvaluating
Whether this statement is being evaluated.
Definition: Decl.h:788
static PragmaCommentDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned ArgSize)
Definition: Decl.cpp:4351
The template argument is an expression, and we&#39;ve not resolved it to one of the other forms yet...
Definition: TemplateBase.h:86
bool isInExternCContext() const
Determines whether this function&#39;s context is, or is nested within, a C++ extern "C" linkage spec...
Definition: Decl.cpp:2919
bool isInitICE() const
Determines whether the initializer is an integral constant expression, or in C++11, whether the initializer is a constant expression.
Definition: Decl.cpp:2337
static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D)
Determine what kind of template specialization the given declaration is.
Defines the clang::Module class, which describes a module in the source code.
const Type * getTypeForDecl() const
Definition: Decl.h:2897
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:87
bool isVariadic() const
Whether this function prototype is variadic.
Definition: Type.h:4014
static LinkageInfo getExternalLinkageFor(const NamedDecl *D)
Definition: Decl.cpp:601
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclBase.h:413
bool isNothrow() const
Definition: Decl.cpp:4493
void setArgPassingRestrictions(ArgPassingKind Kind)
Definition: Decl.h:3726
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4712
Defines the C++ template declaration subclasses.
StringRef P
OverloadedOperatorKind getCXXOverloadedOperator() const
If this name is the name of an overloadable operator in C++ (e.g., operator+), retrieve the kind of o...
void setPure(bool P=true)
Definition: Decl.cpp:2760
bool isBeforeInTranslationUnit(SourceLocation LHS, SourceLocation RHS) const
Determines the order of 2 source locations in the translation unit.
void setPreviousDeclaration(FunctionDecl *PrevDecl)
Definition: Decl.cpp:2982
unsigned getFieldIndex() const
Returns the index of this field within its record, as appropriate for passing to ASTRecordLayout::get...
Definition: Decl.cpp:3820
static Visibility getVisibilityFromAttr(const T *attr)
Given a visibility attribute, return the explicit visibility associated with it.
Definition: Decl.cpp:207
bool isUninit() const
Definition: APValue.h:237
ImplicitParamKind
Defines the kind of the implicit parameter: is this an implicit parameter with pointer to &#39;this&#39;...
Definition: Decl.h:1492
The base class of the type hierarchy.
Definition: Type.h:1414
Represents an empty-declaration.
Definition: Decl.h:4265
void setParameterIndex(const ParmVarDecl *D, unsigned index)
Used by ParmVarDecl to store on the side the index of the parameter when it exceeds the size of the n...
SourceLocation getBeginLoc() const
getBeginLoc - Retrieve the location of the first token.
void setParams(ArrayRef< ParmVarDecl *> NewParamInfo)
Definition: Decl.cpp:4289
DiagnosticsEngine & getDiagnostics() const
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1296
Declaration of a variable template.
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:63
Represent a C++ namespace.
Definition: Decl.h:514
static std::enable_if<!std::is_base_of< RedeclarableTemplateDecl, T >::value, bool >::type isExplicitMemberSpecialization(const T *D)
Does the given declaration have member specialization information, and if so, is it an explicit speci...
Definition: Decl.cpp:189
virtual void completeDefinition()
Note that the definition of this type is now complete.
Definition: Decl.cpp:4177
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclBase.h:417
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:689
A container of type source information.
Definition: Decl.h:86
constexpr XRayInstrMask Function
Definition: XRayInstr.h:38
Linkage getLinkage() const
Determine the linkage of this type.
Definition: Type.cpp:3668
SourceRange getIntegerTypeRange() const LLVM_READONLY
Retrieve the source range that covers the underlying type if specified.
Definition: Decl.cpp:4018
bool CheckingICE
Whether we are checking whether this statement is an integral constant expression.
Definition: Decl.h:796
void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const override
Appends a human-readable name for this declaration into the given stream.
Definition: Decl.cpp:2694
SourceLocation getOuterLocStart() const
Return SourceLocation representing start of source range taking into account any outer template decla...
Definition: Decl.cpp:3879
void setTemplateParameterListsInfo(ASTContext &Context, ArrayRef< TemplateParameterList *> TPLists)
Sets info about "outer" template parameter lists.
Definition: Decl.cpp:1881
const Expr * getAnyInitializer() const
Get the initializer for this variable, no matter which declaration it is attached to...
Definition: Decl.h:1209
bool isImplicitlyInstantiable() const
Determines whether this function is a function template specialization or a member of a class templat...
Definition: Decl.cpp:3379
This is a module that was defined by a module map and built out of header files.
Definition: Module.h:75
static CapturedDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumParams)
Definition: Decl.cpp:4484
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3168
Represents a #pragma comment line.
Definition: Decl.h:139
LinkageInfo getDeclLinkageAndVisibility(const NamedDecl *D)
Definition: Decl.cpp:1476
void setBeingDefined(bool V=true)
True if this decl is currently being defined.
Definition: Decl.h:3120
void setNothrow(bool Nothrow=true)
Definition: Decl.cpp:4494
This file provides some common utility functions for processing Lambda related AST Constructs...
unsigned getODRHash()
Definition: Decl.cpp:4097
ExplicitVisibilityKind
Kinds of explicit visibility.
Definition: Decl.h:398
Represents a variable declaration or definition.
Definition: Decl.h:812
ASTMutationListener * getASTMutationListener() const
Definition: DeclBase.cpp:379
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:36
bool WasEvaluated
Whether this statement was already evaluated.
Definition: Decl.h:785
Declaration of a redeclarable template.
Definition: DeclTemplate.h:736
static LanguageLinkage getDeclLanguageLinkage(const T &D)
Definition: Decl.cpp:1983
unsigned getNumParams() const
Definition: Type.h:3900
void mergeVisibility(Visibility newVis, bool newExplicit)
Merge in the visibility &#39;newVis&#39;.
Definition: Visibility.h:111
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6768
bool hasDefaultArg() const
Determines whether this parameter has a default argument, either parsed or not.
Definition: Decl.cpp:2634
Visibility getVisibility() const
Definition: Visibility.h:84
TemplateSpecializationKind getTemplateSpecializationKind() const
Determine what kind of template specialization this is.
Definition: DeclTemplate.h:552
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:56
Declaration context for names declared as extern "C" in C++.
Definition: Decl.h:221
Represents a variable template specialization, which refers to a variable template with a given set o...
bool isExternCContext() const
Determines whether this context or some of its ancestors is a linkage specification context that spec...
Definition: DeclBase.cpp:1144
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition: Decl.h:431
bool isZeroLengthBitField(const ASTContext &Ctx) const
Is this a zero-length bit-field? Such bit-fields aren&#39;t really bit-fields at all and instead act as a...
Definition: Decl.cpp:3815
Represents an explicit template argument list in C++, e.g., the "<int>" in "sort<int>".
Definition: TemplateBase.h:603
Decl * FirstDecl
FirstDecl - The first declaration stored within this declaration context.
Definition: DeclBase.h:1735
bool isInvalidDecl() const
Definition: DeclBase.h:545
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:67
Not a TLS variable.
Definition: Decl.h:829
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:37
TemplateSpecializationKind getTemplateSpecializationKind() const
Determine what kind of template specialization this is.
Definition: DeclTemplate.h:629
Represents a parameter to a function.
Definition: Decl.h:1549
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:23
Defines the clang::Expr interface and subclasses for C++ expressions.
LinkageInfo getLVForDecl(const NamedDecl *D, LVComputationKind computation)
getLVForDecl - Get the linkage and visibility for the given declaration.
Definition: Decl.cpp:1430
std::string getName(ArrayRef< StringRef > Parts) const
Get the platform-specific name separator.
Provides information about a dependent function-template specialization declaration.
Definition: DeclTemplate.h:671
bool isAnonymousStructOrUnion() const
Determines whether this field is a representative for an anonymous struct or union.
Definition: Decl.cpp:3800
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:4215
ModuleKind Kind
The kind of this module.
Definition: Module.h:88
SourceRange getReturnTypeSourceRange() const
Attempt to compute an informative source range covering the function return type. ...
Definition: Decl.cpp:3219
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Defines the clang::SanitizerKind enum.
Represents a struct/union/class.
Definition: Decl.h:3592
This is the private module fragment within some C++ module.
Definition: Module.h:84
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the class template specialization.
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
Provides common interface for the Decls that can be redeclared.
Definition: Redeclarable.h:84
C11 _Thread_local.
Definition: Specifiers.h:201
static bool isRedeclarable(Decl::Kind K)
Definition: Decl.cpp:1646
One of these records is kept for each identifier that is lexed.
Represents a class template specialization, which refers to a class template with a given set of temp...
bool hasBody() const override
Returns true if this Decl represents a declaration for a body of code, such as a function or method d...
Definition: Decl.h:1932
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1035
SourceLocation getOuterLocStart() const
Return start of source range taking into account any outer template declarations. ...
Definition: Decl.cpp:1830
static bool typeIsPostfix(QualType QT)
Definition: Decl.cpp:1836
bool isInAnonymousNamespace() const
Definition: DeclBase.cpp:346
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
bool isCapturedRecord() const
Determine whether this record is a record for captured variables in CapturedStmt construct.
Definition: Decl.cpp:4160
static RecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl=nullptr)
Definition: Decl.cpp:4130
void print(raw_ostream &OS, const SourceManager &SM) const
void setUninstantiatedDefaultArg(Expr *arg)
Definition: Decl.cpp:2623
static IndirectFieldDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:4530
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
bool hasTrivialBody() const
Returns whether the function has a trivial body that does not require any specific codegen...
Definition: Decl.cpp:2719
A C++ nested-name-specifier augmented with source location information.
static bool redeclForcesDefMSVC(const FunctionDecl *Redecl)
Definition: Decl.cpp:3125
bool CheckedICE
Whether we already checked whether this statement was an integral constant expression.
Definition: Decl.h:792
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:71
static LinkageInfo internal()
Definition: Visibility.h:70
static bool usesTypeVisibility(const NamedDecl *D)
Is the given declaration a "type" or a "value" for the purposes of visibility computation?
Definition: Decl.cpp:179
field_range fields() const
Definition: Decl.h:3783
static unsigned getNumModuleIdentifiers(Module *Mod)
Retrieve the number of module identifiers needed to name the given module.
Definition: Decl.cpp:4654
static bool isInModulePurview(const NamedDecl *D)
Determine whether D is declared in the purview of a named module.
Definition: Decl.cpp:571
static const Decl * getOutermostFuncOrBlockContext(const Decl *D)
Definition: Decl.cpp:301
Represents a member of a struct/union/class.
Definition: Decl.h:2578
friend class DeclContext
Definition: DeclBase.h:246
void completeDefinition()
Completes the definition of this tag declaration.
Definition: Decl.cpp:3911
bool isNamespace() const
Definition: DeclBase.h:1845
void startDefinition()
Starts the definition of this tag declaration.
Definition: Decl.cpp:3900
BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
Definition: Decl.cpp:4279
bool isReferenceType() const
Definition: Type.h:6320
SanitizerMask Mask
Bitmask of enabled sanitizers.
Definition: Sanitizers.h:173
Linkage getFormalLinkage(Linkage L)
Definition: Linkage.h:89
This declaration is definitely a definition.
Definition: Decl.h:1152
bool isLinkageValid() const
True if the computed linkage is valid.
Definition: Decl.cpp:1041
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:738
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:49
bool hasLoadedFieldsFromExternalStorage() const
Definition: Decl.h:3682
Describes a module or submodule.
Definition: Module.h:64
static PragmaCommentDecl * Create(const ASTContext &C, TranslationUnitDecl *DC, SourceLocation CommentLoc, PragmaMSCommentKind CommentKind, StringRef Arg)
Definition: Decl.cpp:4338
specific_decl_iterator< FieldDecl > field_iterator
Definition: Decl.h:3780
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2261
Objects with "default" visibility are seen by the dynamic linker and act like normal objects...
Definition: Visibility.h:45
virtual bool isDefined() const
Definition: Decl.h:1948
Provides information about a function template specialization, which is a FunctionDecl that has been ...
Definition: DeclTemplate.h:507
SourceLocation getPointOfInstantiation() const
If this variable is an instantiation of a variable template or a static data member of a class templa...
Definition: Decl.cpp:2457
TypedefNameDecl * getCanonicalDecl() override
Retrieves the canonical declaration of this typedef-name.
Definition: Decl.h:2987
VarDecl * getActingDefinition()
Get the tentative definition that acts as the real definition in a TU.
Definition: Decl.cpp:2128
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2831
const TemplateArgumentList * TemplateArguments
The template arguments used to produce the function template specialization from the function templat...
Definition: DeclTemplate.h:539
Stmt * getBody() const override
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: Decl.cpp:4490
The argument of this type can be passed directly in registers.
Definition: Decl.h:3603
Kinds of LV computation.
Definition: Linkage.h:28
void setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
For an enumeration member that was instantiated from a member enumeration of a templated class...
Definition: Decl.cpp:4058
QualType getOriginalType() const
Definition: Decl.cpp:2557
static ExternCContextDecl * Create(const ASTContext &C, TranslationUnitDecl *TU)
Definition: Decl.cpp:4385
A convenient class for passing around template argument information.
Definition: TemplateBase.h:554
void setParamDestroyedInCallee(bool V)
Definition: Decl.h:3734
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the variable template specialization.
void AddFunctionDecl(const FunctionDecl *Function, bool SkipBody=false)
Definition: ODRHash.cpp:508
TagDecl * getAnonDeclWithTypedefName(bool AnyRedecl=false) const
Retrieves the tag declaration for which this is the typedef name for linkage purposes, if any.
Definition: Decl.cpp:4553
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified...
Wrapper for source info for functions.
Definition: TypeLoc.h:1326
ModuleOwnershipKind getModuleOwnershipKind() const
Get the kind of module ownership for this declaration.
Definition: DeclBase.h:782
static EnumConstantDecl * Create(ASTContext &C, EnumDecl *DC, SourceLocation L, IdentifierInfo *Id, QualType T, Expr *E, const llvm::APSInt &V)
Definition: Decl.cpp:4496
FunctionTemplateDecl * getDescribedFunctionTemplate() const
Retrieves the function template that is described by this function declaration.
Definition: Decl.cpp:3371
bool isMemberSpecialization() const
Determines whether this template was a specialization of a member template.
Definition: DeclTemplate.h:879
ASTContext & getASTContext() const
Definition: Decl.h:119
Visibility
Describes the different kinds of visibility that a declaration may have.
Definition: Visibility.h:33
DefinitionKind hasDefinition() const
Definition: Decl.h:1165
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:653
TemplateSpecializationKind getTemplateSpecializationKind() const
If this variable is an instantiation of a variable template or a static data member of a class templa...
Definition: Decl.cpp:2447
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:1870
Represents a declaration of a type.
Definition: Decl.h:2873
void setHasObjectMember(bool val)
Definition: Decl.h:3674
A set of unresolved declarations.
Definition: UnresolvedSet.h:60
Module * Parent
The parent of this module.
Definition: Module.h:92
bool isConstexpr() const
Whether this variable is (C++11) constexpr.
Definition: Decl.h:1381
FunctionTemplateSpecializationInfo * getTemplateSpecializationInfo() const
If this function is actually a function template specialization, retrieve information about this func...
Definition: Decl.cpp:3486
VarTemplateDecl * getSpecializedTemplate() const
Retrieve the template that this specialization specializes.
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition: DeclCXX.h:1195
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:6084
field_iterator field_begin() const
Definition: Decl.cpp:4168
unsigned getBitWidthValue(const ASTContext &Ctx) const
Definition: Decl.cpp:3810
static FileScopeAsmDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:4632
bool isTargetMultiVersion() const
True if this function is a multiversioned dispatch function as a part of the target functionality...
Definition: Decl.cpp:2977
bool isInlineDefinitionExternallyVisible() const
For an inline function definition in C, or for a gnu_inline function in C++, determine whether the de...
Definition: Decl.cpp:3268
bool isCPUSpecificMultiVersion() const
True if this function is a multiversioned processor specific function as a part of the cpu_specific/c...
Definition: Decl.cpp:2973
Defines the Linkage enumeration and various utility functions.
static TypeAliasDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:4602
DeclContext * getLexicalDeclContext()
getLexicalDeclContext - The declaration context where this Decl was lexically declared (LexicalDC)...
Definition: DeclBase.h:824
SourceLocation getSpellingLoc(SourceLocation Loc) const
Given a SourceLocation object, return the spelling location referenced by the ID. ...
static VarDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S)
Definition: Decl.cpp:1931
ArrayRef< SourceLocation > getIdentifierLocs() const
Retrieves the locations of each of the identifiers that make up the complete module name in the impor...
Definition: Decl.cpp:4703
bool needsCleanup() const
Returns whether the object performed allocations.
Definition: APValue.cpp:263
SourceRange getExceptionSpecSourceRange() const
Attempt to compute an informative source range covering the function exception specification, if any.
Definition: Decl.cpp:3239
FunctionDecl * getInstantiatedFromMemberFunction() const
If this function is an instantiation of a member function of a class template specialization, retrieves the function from which it was instantiated.
Definition: Decl.cpp:3349
static FunctionTemplateSpecializationInfo * Create(ASTContext &C, FunctionDecl *FD, FunctionTemplateDecl *Template, TemplateSpecializationKind TSK, const TemplateArgumentList *TemplateArgs, const TemplateArgumentListInfo *TemplateArgsAsWritten, SourceLocation POI)
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4050
Represents a linkage specification.
Definition: DeclCXX.h:2833
static ParmVarDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:2565
unsigned getBuiltinID(bool ConsiderWrapperFunctions=false) const
Returns a value indicating whether this function corresponds to a builtin function.
Definition: Decl.cpp:3011
SourceLocation getTypeSpecStartLoc() const
Definition: Decl.cpp:1778
CXXRecordDecl * getTemplatedDecl() const
Get the underlying class declarations of the template.