clang  10.0.0svn
Decl.cpp
Go to the documentation of this file.
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ODRHash.h"
32 #include "clang/AST/Redeclarable.h"
33 #include "clang/AST/Stmt.h"
34 #include "clang/AST/TemplateBase.h"
35 #include "clang/AST/Type.h"
36 #include "clang/AST/TypeLoc.h"
37 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/Linkage.h"
42 #include "clang/Basic/Module.h"
45 #include "clang/Basic/Sanitizers.h"
48 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetInfo.h"
51 #include "clang/Basic/Visibility.h"
52 #include "llvm/ADT/APSInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/None.h"
55 #include "llvm/ADT/Optional.h"
56 #include "llvm/ADT/STLExtras.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringSwitch.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Triple.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstddef>
67 #include <cstring>
68 #include <memory>
69 #include <string>
70 #include <tuple>
71 #include <type_traits>
72 
73 using namespace clang;
74 
76  return D->getASTContext().getPrimaryMergedDecl(D);
77 }
78 
79 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
80  SourceLocation Loc = this->Loc;
81  if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
82  if (Loc.isValid()) {
83  Loc.print(OS, Context.getSourceManager());
84  OS << ": ";
85  }
86  OS << Message;
87 
88  if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
89  OS << " '";
90  ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
91  OS << "'";
92  }
93 
94  OS << '\n';
95 }
96 
97 // Defined here so that it can be inlined into its direct callers.
98 bool Decl::isOutOfLine() const {
99  return !getLexicalDeclContext()->Equals(getDeclContext());
100 }
101 
102 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
103  : Decl(TranslationUnit, nullptr, SourceLocation()),
104  DeclContext(TranslationUnit), Ctx(ctx) {}
105 
106 //===----------------------------------------------------------------------===//
107 // NamedDecl Implementation
108 //===----------------------------------------------------------------------===//
109 
110 // Visibility rules aren't rigorously externally specified, but here
111 // are the basic principles behind what we implement:
112 //
113 // 1. An explicit visibility attribute is generally a direct expression
114 // of the user's intent and should be honored. Only the innermost
115 // visibility attribute applies. If no visibility attribute applies,
116 // global visibility settings are considered.
117 //
118 // 2. There is one caveat to the above: on or in a template pattern,
119 // an explicit visibility attribute is just a default rule, and
120 // visibility can be decreased by the visibility of template
121 // arguments. But this, too, has an exception: an attribute on an
122 // explicit specialization or instantiation causes all the visibility
123 // restrictions of the template arguments to be ignored.
124 //
125 // 3. A variable that does not otherwise have explicit visibility can
126 // be restricted by the visibility of its type.
127 //
128 // 4. A visibility restriction is explicit if it comes from an
129 // attribute (or something like it), not a global visibility setting.
130 // When emitting a reference to an external symbol, visibility
131 // restrictions are ignored unless they are explicit.
132 //
133 // 5. When computing the visibility of a non-type, including a
134 // non-type member of a class, only non-type visibility restrictions
135 // are considered: the 'visibility' attribute, global value-visibility
136 // settings, and a few special cases like __private_extern.
137 //
138 // 6. When computing the visibility of a type, including a type member
139 // of a class, only type visibility restrictions are considered:
140 // the 'type_visibility' attribute and global type-visibility settings.
141 // However, a 'visibility' attribute counts as a 'type_visibility'
142 // attribute on any declaration that only has the former.
143 //
144 // The visibility of a "secondary" entity, like a template argument,
145 // is computed using the kind of that entity, not the kind of the
146 // primary entity for which we are computing visibility. For example,
147 // the visibility of a specialization of either of these templates:
148 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
149 // template <class T, bool (&compare)(T, X)> class matcher;
150 // is restricted according to the type visibility of the argument 'T',
151 // the type visibility of 'bool(&)(T,X)', and the value visibility of
152 // the argument function 'compare'. That 'has_match' is a value
153 // and 'matcher' is a type only matters when looking for attributes
154 // and settings from the immediate context.
155 
156 /// Does this computation kind permit us to consider additional
157 /// visibility settings from attributes and the like?
159  return computation.IgnoreExplicitVisibility;
160 }
161 
162 /// Given an LVComputationKind, return one of the same type/value sort
163 /// that records that it already has explicit visibility.
164 static LVComputationKind
166  Kind.IgnoreExplicitVisibility = true;
167  return Kind;
168 }
169 
172  assert(!kind.IgnoreExplicitVisibility &&
173  "asking for explicit visibility when we shouldn't be");
175 }
176 
177 /// Is the given declaration a "type" or a "value" for the purposes of
178 /// visibility computation?
179 static bool usesTypeVisibility(const NamedDecl *D) {
180  return isa<TypeDecl>(D) ||
181  isa<ClassTemplateDecl>(D) ||
182  isa<ObjCInterfaceDecl>(D);
183 }
184 
185 /// Does the given declaration have member specialization information,
186 /// and if so, is it an explicit specialization?
187 template <class T> static typename
188 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190  if (const MemberSpecializationInfo *member =
191  D->getMemberSpecializationInfo()) {
192  return member->isExplicitSpecialization();
193  }
194  return false;
195 }
196 
197 /// For templates, this question is easier: a member template can't be
198 /// explicitly instantiated, so there's a single bit indicating whether
199 /// or not this is an explicit member specialization.
201  return D->isMemberSpecialization();
202 }
203 
204 /// Given a visibility attribute, return the explicit visibility
205 /// associated with it.
206 template <class T>
207 static Visibility getVisibilityFromAttr(const T *attr) {
208  switch (attr->getVisibility()) {
209  case T::Default:
210  return DefaultVisibility;
211  case T::Hidden:
212  return HiddenVisibility;
213  case T::Protected:
214  return ProtectedVisibility;
215  }
216  llvm_unreachable("bad visibility kind");
217 }
218 
219 /// Return the explicit visibility of the given declaration.
222  // If we're ultimately computing the visibility of a type, look for
223  // a 'type_visibility' attribute before looking for 'visibility'.
224  if (kind == NamedDecl::VisibilityForType) {
225  if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
226  return getVisibilityFromAttr(A);
227  }
228  }
229 
230  // If this declaration has an explicit visibility attribute, use it.
231  if (const auto *A = D->getAttr<VisibilityAttr>()) {
232  return getVisibilityFromAttr(A);
233  }
234 
235  return None;
236 }
237 
238 LinkageInfo LinkageComputer::getLVForType(const Type &T,
239  LVComputationKind computation) {
240  if (computation.IgnoreAllVisibility)
241  return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
242  return getTypeLinkageAndVisibility(&T);
243 }
244 
245 /// Get the most restrictive linkage for the types in the given
246 /// template parameter list. For visibility purposes, template
247 /// parameters are part of the signature of a template.
248 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
249  const TemplateParameterList *Params, LVComputationKind computation) {
250  LinkageInfo LV;
251  for (const NamedDecl *P : *Params) {
252  // Template type parameters are the most common and never
253  // contribute to visibility, pack or not.
254  if (isa<TemplateTypeParmDecl>(P))
255  continue;
256 
257  // Non-type template parameters can be restricted by the value type, e.g.
258  // template <enum X> class A { ... };
259  // We have to be careful here, though, because we can be dealing with
260  // dependent types.
261  if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
262  // Handle the non-pack case first.
263  if (!NTTP->isExpandedParameterPack()) {
264  if (!NTTP->getType()->isDependentType()) {
265  LV.merge(getLVForType(*NTTP->getType(), computation));
266  }
267  continue;
268  }
269 
270  // Look at all the types in an expanded pack.
271  for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
272  QualType type = NTTP->getExpansionType(i);
273  if (!type->isDependentType())
274  LV.merge(getTypeLinkageAndVisibility(type));
275  }
276  continue;
277  }
278 
279  // Template template parameters can be restricted by their
280  // template parameters, recursively.
281  const auto *TTP = cast<TemplateTemplateParmDecl>(P);
282 
283  // Handle the non-pack case first.
284  if (!TTP->isExpandedParameterPack()) {
285  LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
286  computation));
287  continue;
288  }
289 
290  // Look at all expansions in an expanded pack.
291  for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
292  i != n; ++i) {
293  LV.merge(getLVForTemplateParameterList(
294  TTP->getExpansionTemplateParameters(i), computation));
295  }
296  }
297 
298  return LV;
299 }
300 
301 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
302  const Decl *Ret = nullptr;
303  const DeclContext *DC = D->getDeclContext();
304  while (DC->getDeclKind() != Decl::TranslationUnit) {
305  if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
306  Ret = cast<Decl>(DC);
307  DC = DC->getParent();
308  }
309  return Ret;
310 }
311 
312 /// Get the most restrictive linkage for the types and
313 /// declarations in the given template argument list.
314 ///
315 /// Note that we don't take an LVComputationKind because we always
316 /// want to honor the visibility of template arguments in the same way.
318 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
319  LVComputationKind computation) {
320  LinkageInfo LV;
321 
322  for (const TemplateArgument &Arg : Args) {
323  switch (Arg.getKind()) {
327  continue;
328 
330  LV.merge(getLVForType(*Arg.getAsType(), computation));
331  continue;
332 
334  const NamedDecl *ND = Arg.getAsDecl();
335  assert(!usesTypeVisibility(ND));
336  LV.merge(getLVForDecl(ND, computation));
337  continue;
338  }
339 
341  LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
342  continue;
343 
346  if (TemplateDecl *Template =
347  Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
348  LV.merge(getLVForDecl(Template, computation));
349  continue;
350 
352  LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
353  continue;
354  }
355  llvm_unreachable("bad template argument kind");
356  }
357 
358  return LV;
359 }
360 
362 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
363  LVComputationKind computation) {
364  return getLVForTemplateArgumentList(TArgs.asArray(), computation);
365 }
366 
368  const FunctionTemplateSpecializationInfo *specInfo) {
369  // Include visibility from the template parameters and arguments
370  // only if this is not an explicit instantiation or specialization
371  // with direct explicit visibility. (Implicit instantiations won't
372  // have a direct attribute.)
374  return true;
375 
376  return !fn->hasAttr<VisibilityAttr>();
377 }
378 
379 /// Merge in template-related linkage and visibility for the given
380 /// function template specialization.
381 ///
382 /// We don't need a computation kind here because we can assume
383 /// LVForValue.
384 ///
385 /// \param[out] LV the computation to use for the parent
386 void LinkageComputer::mergeTemplateLV(
387  LinkageInfo &LV, const FunctionDecl *fn,
388  const FunctionTemplateSpecializationInfo *specInfo,
389  LVComputationKind computation) {
390  bool considerVisibility =
391  shouldConsiderTemplateVisibility(fn, specInfo);
392 
393  // Merge information from the template parameters.
394  FunctionTemplateDecl *temp = specInfo->getTemplate();
395  LinkageInfo tempLV =
396  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
397  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
398 
399  // Merge information from the template arguments.
400  const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
401  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
402  LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
403 }
404 
405 /// Does the given declaration have a direct visibility attribute
406 /// that would match the given rules?
408  LVComputationKind computation) {
409  if (computation.IgnoreAllVisibility)
410  return false;
411 
412  return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
413  D->hasAttr<VisibilityAttr>();
414 }
415 
416 /// Should we consider visibility associated with the template
417 /// arguments and parameters of the given class template specialization?
420  LVComputationKind computation) {
421  // Include visibility from the template parameters and arguments
422  // only if this is not an explicit instantiation or specialization
423  // with direct explicit visibility (and note that implicit
424  // instantiations won't have a direct attribute).
425  //
426  // Furthermore, we want to ignore template parameters and arguments
427  // for an explicit specialization when computing the visibility of a
428  // member thereof with explicit visibility.
429  //
430  // This is a bit complex; let's unpack it.
431  //
432  // An explicit class specialization is an independent, top-level
433  // declaration. As such, if it or any of its members has an
434  // explicit visibility attribute, that must directly express the
435  // user's intent, and we should honor it. The same logic applies to
436  // an explicit instantiation of a member of such a thing.
437 
438  // Fast path: if this is not an explicit instantiation or
439  // specialization, we always want to consider template-related
440  // visibility restrictions.
442  return true;
443 
444  // This is the 'member thereof' check.
445  if (spec->isExplicitSpecialization() &&
446  hasExplicitVisibilityAlready(computation))
447  return false;
448 
449  return !hasDirectVisibilityAttribute(spec, computation);
450 }
451 
452 /// Merge in template-related linkage and visibility for the given
453 /// class template specialization.
454 void LinkageComputer::mergeTemplateLV(
456  LVComputationKind computation) {
457  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
458 
459  // Merge information from the template parameters, but ignore
460  // visibility if we're only considering template arguments.
461 
463  LinkageInfo tempLV =
464  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
465  LV.mergeMaybeWithVisibility(tempLV,
466  considerVisibility && !hasExplicitVisibilityAlready(computation));
467 
468  // Merge information from the template arguments. We ignore
469  // template-argument visibility if we've got an explicit
470  // instantiation with a visibility attribute.
471  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
472  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
473  if (considerVisibility)
474  LV.mergeVisibility(argsLV);
475  LV.mergeExternalVisibility(argsLV);
476 }
477 
478 /// Should we consider visibility associated with the template
479 /// arguments and parameters of the given variable template
480 /// specialization? As usual, follow class template specialization
481 /// logic up to initialization.
483  const VarTemplateSpecializationDecl *spec,
484  LVComputationKind computation) {
485  // Include visibility from the template parameters and arguments
486  // only if this is not an explicit instantiation or specialization
487  // with direct explicit visibility (and note that implicit
488  // instantiations won't have a direct attribute).
490  return true;
491 
492  // An explicit variable specialization is an independent, top-level
493  // declaration. As such, if it has an explicit visibility attribute,
494  // that must directly express the user's intent, and we should honor
495  // it.
496  if (spec->isExplicitSpecialization() &&
497  hasExplicitVisibilityAlready(computation))
498  return false;
499 
500  return !hasDirectVisibilityAttribute(spec, computation);
501 }
502 
503 /// Merge in template-related linkage and visibility for the given
504 /// variable template specialization. As usual, follow class template
505 /// specialization logic up to initialization.
506 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
507  const VarTemplateSpecializationDecl *spec,
508  LVComputationKind computation) {
509  bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
510 
511  // Merge information from the template parameters, but ignore
512  // visibility if we're only considering template arguments.
513 
514  VarTemplateDecl *temp = spec->getSpecializedTemplate();
515  LinkageInfo tempLV =
516  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
517  LV.mergeMaybeWithVisibility(tempLV,
518  considerVisibility && !hasExplicitVisibilityAlready(computation));
519 
520  // Merge information from the template arguments. We ignore
521  // template-argument visibility if we've got an explicit
522  // instantiation with a visibility attribute.
523  const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
524  LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
525  if (considerVisibility)
526  LV.mergeVisibility(argsLV);
527  LV.mergeExternalVisibility(argsLV);
528 }
529 
530 static bool useInlineVisibilityHidden(const NamedDecl *D) {
531  // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
532  const LangOptions &Opts = D->getASTContext().getLangOpts();
533  if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
534  return false;
535 
536  const auto *FD = dyn_cast<FunctionDecl>(D);
537  if (!FD)
538  return false;
539 
542  = FD->getTemplateSpecializationInfo()) {
543  TSK = spec->getTemplateSpecializationKind();
544  } else if (MemberSpecializationInfo *MSI =
545  FD->getMemberSpecializationInfo()) {
546  TSK = MSI->getTemplateSpecializationKind();
547  }
548 
549  const FunctionDecl *Def = nullptr;
550  // InlineVisibilityHidden only applies to definitions, and
551  // isInlined() only gives meaningful answers on definitions
552  // anyway.
553  return TSK != TSK_ExplicitInstantiationDeclaration &&
555  FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
556 }
557 
558 template <typename T> static bool isFirstInExternCContext(T *D) {
559  const T *First = D->getFirstDecl();
560  return First->isInExternCContext();
561 }
562 
563 static bool isSingleLineLanguageLinkage(const Decl &D) {
564  if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
565  if (!SD->hasBraces())
566  return true;
567  return false;
568 }
569 
570 /// Determine whether D is declared in the purview of a named module.
571 static bool isInModulePurview(const NamedDecl *D) {
572  if (auto *M = D->getOwningModule())
573  return M->isModulePurview();
574  return false;
575 }
576 
578  // FIXME: Handle isModulePrivate.
579  switch (D->getModuleOwnershipKind()) {
582  return false;
585  return isInModulePurview(D);
586  }
587  llvm_unreachable("unexpected module ownership kind");
588 }
589 
591  // Internal linkage declarations within a module interface unit are modeled
592  // as "module-internal linkage", which means that they have internal linkage
593  // formally but can be indirectly accessed from outside the module via inline
594  // functions and templates defined within the module.
595  if (isInModulePurview(D))
597 
598  return LinkageInfo::internal();
599 }
600 
602  // C++ Modules TS [basic.link]/6.8:
603  // - A name declared at namespace scope that does not have internal linkage
604  // by the previous rules and that is introduced by a non-exported
605  // declaration has module linkage.
607  cast<NamedDecl>(D->getCanonicalDecl())))
609 
610  return LinkageInfo::external();
611 }
612 
614  if (auto *TD = dyn_cast<TemplateDecl>(D))
615  D = TD->getTemplatedDecl();
616  if (D) {
617  if (auto *VD = dyn_cast<VarDecl>(D))
618  return VD->getStorageClass();
619  if (auto *FD = dyn_cast<FunctionDecl>(D))
620  return FD->getStorageClass();
621  }
622  return SC_None;
623 }
624 
626 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
627  LVComputationKind computation,
628  bool IgnoreVarTypeLinkage) {
629  assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
630  "Not a name having namespace scope");
631  ASTContext &Context = D->getASTContext();
632 
633  // C++ [basic.link]p3:
634  // A name having namespace scope (3.3.6) has internal linkage if it
635  // is the name of
636 
638  // - a variable, variable template, function, or function template
639  // that is explicitly declared static; or
640  // (This bullet corresponds to C99 6.2.2p3.)
641  return getInternalLinkageFor(D);
642  }
643 
644  if (const auto *Var = dyn_cast<VarDecl>(D)) {
645  // - a non-template variable of non-volatile const-qualified type, unless
646  // - it is explicitly declared extern, or
647  // - it is inline or exported, or
648  // - it was previously declared and the prior declaration did not have
649  // internal linkage
650  // (There is no equivalent in C99.)
651  if (Context.getLangOpts().CPlusPlus &&
652  Var->getType().isConstQualified() &&
653  !Var->getType().isVolatileQualified() &&
654  !Var->isInline() &&
656  !isa<VarTemplateSpecializationDecl>(Var) &&
657  !Var->getDescribedVarTemplate()) {
658  const VarDecl *PrevVar = Var->getPreviousDecl();
659  if (PrevVar)
660  return getLVForDecl(PrevVar, computation);
661 
662  if (Var->getStorageClass() != SC_Extern &&
663  Var->getStorageClass() != SC_PrivateExtern &&
665  return getInternalLinkageFor(Var);
666  }
667 
668  for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
669  PrevVar = PrevVar->getPreviousDecl()) {
670  if (PrevVar->getStorageClass() == SC_PrivateExtern &&
671  Var->getStorageClass() == SC_None)
672  return getDeclLinkageAndVisibility(PrevVar);
673  // Explicitly declared static.
674  if (PrevVar->getStorageClass() == SC_Static)
675  return getInternalLinkageFor(Var);
676  }
677  } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
678  // - a data member of an anonymous union.
679  const VarDecl *VD = IFD->getVarDecl();
680  assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
681  return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
682  }
683  assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
684 
685  // FIXME: This gives internal linkage to names that should have no linkage
686  // (those not covered by [basic.link]p6).
687  if (D->isInAnonymousNamespace()) {
688  const auto *Var = dyn_cast<VarDecl>(D);
689  const auto *Func = dyn_cast<FunctionDecl>(D);
690  // FIXME: The check for extern "C" here is not justified by the standard
691  // wording, but we retain it from the pre-DR1113 model to avoid breaking
692  // code.
693  //
694  // C++11 [basic.link]p4:
695  // An unnamed namespace or a namespace declared directly or indirectly
696  // within an unnamed namespace has internal linkage.
697  if ((!Var || !isFirstInExternCContext(Var)) &&
698  (!Func || !isFirstInExternCContext(Func)))
699  return getInternalLinkageFor(D);
700  }
701 
702  // Set up the defaults.
703 
704  // C99 6.2.2p5:
705  // If the declaration of an identifier for an object has file
706  // scope and no storage-class specifier, its linkage is
707  // external.
709 
710  if (!hasExplicitVisibilityAlready(computation)) {
711  if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
712  LV.mergeVisibility(*Vis, true);
713  } else {
714  // If we're declared in a namespace with a visibility attribute,
715  // use that namespace's visibility, and it still counts as explicit.
716  for (const DeclContext *DC = D->getDeclContext();
717  !isa<TranslationUnitDecl>(DC);
718  DC = DC->getParent()) {
719  const auto *ND = dyn_cast<NamespaceDecl>(DC);
720  if (!ND) continue;
721  if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
722  LV.mergeVisibility(*Vis, true);
723  break;
724  }
725  }
726  }
727 
728  // Add in global settings if the above didn't give us direct visibility.
729  if (!LV.isVisibilityExplicit()) {
730  // Use global type/value visibility as appropriate.
731  Visibility globalVisibility =
732  computation.isValueVisibility()
733  ? Context.getLangOpts().getValueVisibilityMode()
734  : Context.getLangOpts().getTypeVisibilityMode();
735  LV.mergeVisibility(globalVisibility, /*explicit*/ false);
736 
737  // If we're paying attention to global visibility, apply
738  // -finline-visibility-hidden if this is an inline method.
740  LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
741  }
742  }
743 
744  // C++ [basic.link]p4:
745 
746  // A name having namespace scope that has not been given internal linkage
747  // above and that is the name of
748  // [...bullets...]
749  // has its linkage determined as follows:
750  // - if the enclosing namespace has internal linkage, the name has
751  // internal linkage; [handled above]
752  // - otherwise, if the declaration of the name is attached to a named
753  // module and is not exported, the name has module linkage;
754  // - otherwise, the name has external linkage.
755  // LV is currently set up to handle the last two bullets.
756  //
757  // The bullets are:
758 
759  // - a variable; or
760  if (const auto *Var = dyn_cast<VarDecl>(D)) {
761  // GCC applies the following optimization to variables and static
762  // data members, but not to functions:
763  //
764  // Modify the variable's LV by the LV of its type unless this is
765  // C or extern "C". This follows from [basic.link]p9:
766  // A type without linkage shall not be used as the type of a
767  // variable or function with external linkage unless
768  // - the entity has C language linkage, or
769  // - the entity is declared within an unnamed namespace, or
770  // - the entity is not used or is defined in the same
771  // translation unit.
772  // and [basic.link]p10:
773  // ...the types specified by all declarations referring to a
774  // given variable or function shall be identical...
775  // C does not have an equivalent rule.
776  //
777  // Ignore this if we've got an explicit attribute; the user
778  // probably knows what they're doing.
779  //
780  // Note that we don't want to make the variable non-external
781  // because of this, but unique-external linkage suits us.
782  if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
783  !IgnoreVarTypeLinkage) {
784  LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
785  if (!isExternallyVisible(TypeLV.getLinkage()))
787  if (!LV.isVisibilityExplicit())
788  LV.mergeVisibility(TypeLV);
789  }
790 
791  if (Var->getStorageClass() == SC_PrivateExtern)
793 
794  // Note that Sema::MergeVarDecl already takes care of implementing
795  // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
796  // to do it here.
797 
798  // As per function and class template specializations (below),
799  // consider LV for the template and template arguments. We're at file
800  // scope, so we do not need to worry about nested specializations.
801  if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
802  mergeTemplateLV(LV, spec, computation);
803  }
804 
805  // - a function; or
806  } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
807  // In theory, we can modify the function's LV by the LV of its
808  // type unless it has C linkage (see comment above about variables
809  // for justification). In practice, GCC doesn't do this, so it's
810  // just too painful to make work.
811 
812  if (Function->getStorageClass() == SC_PrivateExtern)
814 
815  // Note that Sema::MergeCompatibleFunctionDecls already takes care of
816  // merging storage classes and visibility attributes, so we don't have to
817  // look at previous decls in here.
818 
819  // In C++, then if the type of the function uses a type with
820  // unique-external linkage, it's not legally usable from outside
821  // this translation unit. However, we should use the C linkage
822  // rules instead for extern "C" declarations.
823  if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
824  // Only look at the type-as-written. Otherwise, deducing the return type
825  // of a function could change its linkage.
826  QualType TypeAsWritten = Function->getType();
827  if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
828  TypeAsWritten = TSI->getType();
829  if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831  }
832 
833  // Consider LV from the template and the template arguments.
834  // We're at file scope, so we do not need to worry about nested
835  // specializations.
837  = Function->getTemplateSpecializationInfo()) {
838  mergeTemplateLV(LV, Function, specInfo, computation);
839  }
840 
841  // - a named class (Clause 9), or an unnamed class defined in a
842  // typedef declaration in which the class has the typedef name
843  // for linkage purposes (7.1.3); or
844  // - a named enumeration (7.2), or an unnamed enumeration
845  // defined in a typedef declaration in which the enumeration
846  // has the typedef name for linkage purposes (7.1.3); or
847  } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
848  // Unnamed tags have no linkage.
849  if (!Tag->hasNameForLinkage())
850  return LinkageInfo::none();
851 
852  // If this is a class template specialization, consider the
853  // linkage of the template and template arguments. We're at file
854  // scope, so we do not need to worry about nested specializations.
855  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
856  mergeTemplateLV(LV, spec, computation);
857  }
858 
859  // FIXME: This is not part of the C++ standard any more.
860  // - an enumerator belonging to an enumeration with external linkage; or
861  } else if (isa<EnumConstantDecl>(D)) {
862  LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
863  computation);
864  if (!isExternalFormalLinkage(EnumLV.getLinkage()))
865  return LinkageInfo::none();
866  LV.merge(EnumLV);
867 
868  // - a template
869  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
870  bool considerVisibility = !hasExplicitVisibilityAlready(computation);
871  LinkageInfo tempLV =
872  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
873  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
874 
875  // An unnamed namespace or a namespace declared directly or indirectly
876  // within an unnamed namespace has internal linkage. All other namespaces
877  // have external linkage.
878  //
879  // We handled names in anonymous namespaces above.
880  } else if (isa<NamespaceDecl>(D)) {
881  return LV;
882 
883  // By extension, we assign external linkage to Objective-C
884  // interfaces.
885  } else if (isa<ObjCInterfaceDecl>(D)) {
886  // fallout
887 
888  } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
889  // A typedef declaration has linkage if it gives a type a name for
890  // linkage purposes.
891  if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
892  return LinkageInfo::none();
893 
894  // Everything not covered here has no linkage.
895  } else {
896  return LinkageInfo::none();
897  }
898 
899  // If we ended up with non-externally-visible linkage, visibility should
900  // always be default.
901  if (!isExternallyVisible(LV.getLinkage()))
902  return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
903 
904  return LV;
905 }
906 
908 LinkageComputer::getLVForClassMember(const NamedDecl *D,
909  LVComputationKind computation,
910  bool IgnoreVarTypeLinkage) {
911  // Only certain class members have linkage. Note that fields don't
912  // really have linkage, but it's convenient to say they do for the
913  // purposes of calculating linkage of pointer-to-data-member
914  // template arguments.
915  //
916  // Templates also don't officially have linkage, but since we ignore
917  // the C++ standard and look at template arguments when determining
918  // linkage and visibility of a template specialization, we might hit
919  // a template template argument that way. If we do, we need to
920  // consider its linkage.
921  if (!(isa<CXXMethodDecl>(D) ||
922  isa<VarDecl>(D) ||
923  isa<FieldDecl>(D) ||
924  isa<IndirectFieldDecl>(D) ||
925  isa<TagDecl>(D) ||
926  isa<TemplateDecl>(D)))
927  return LinkageInfo::none();
928 
929  LinkageInfo LV;
930 
931  // If we have an explicit visibility attribute, merge that in.
932  if (!hasExplicitVisibilityAlready(computation)) {
933  if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
934  LV.mergeVisibility(*Vis, true);
935  // If we're paying attention to global visibility, apply
936  // -finline-visibility-hidden if this is an inline method.
937  //
938  // Note that we do this before merging information about
939  // the class visibility.
941  LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
942  }
943 
944  // If this class member has an explicit visibility attribute, the only
945  // thing that can change its visibility is the template arguments, so
946  // only look for them when processing the class.
947  LVComputationKind classComputation = computation;
948  if (LV.isVisibilityExplicit())
949  classComputation = withExplicitVisibilityAlready(computation);
950 
951  LinkageInfo classLV =
952  getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
953  // The member has the same linkage as the class. If that's not externally
954  // visible, we don't need to compute anything about the linkage.
955  // FIXME: If we're only computing linkage, can we bail out here?
956  if (!isExternallyVisible(classLV.getLinkage()))
957  return classLV;
958 
959 
960  // Otherwise, don't merge in classLV yet, because in certain cases
961  // we need to completely ignore the visibility from it.
962 
963  // Specifically, if this decl exists and has an explicit attribute.
964  const NamedDecl *explicitSpecSuppressor = nullptr;
965 
966  if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
967  // Only look at the type-as-written. Otherwise, deducing the return type
968  // of a function could change its linkage.
969  QualType TypeAsWritten = MD->getType();
970  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
971  TypeAsWritten = TSI->getType();
972  if (!isExternallyVisible(TypeAsWritten->getLinkage()))
974 
975  // If this is a method template specialization, use the linkage for
976  // the template parameters and arguments.
978  = MD->getTemplateSpecializationInfo()) {
979  mergeTemplateLV(LV, MD, spec, computation);
980  if (spec->isExplicitSpecialization()) {
981  explicitSpecSuppressor = MD;
982  } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
983  explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
984  }
985  } else if (isExplicitMemberSpecialization(MD)) {
986  explicitSpecSuppressor = MD;
987  }
988 
989  } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
990  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
991  mergeTemplateLV(LV, spec, computation);
992  if (spec->isExplicitSpecialization()) {
993  explicitSpecSuppressor = spec;
994  } else {
995  const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
996  if (isExplicitMemberSpecialization(temp)) {
997  explicitSpecSuppressor = temp->getTemplatedDecl();
998  }
999  }
1000  } else if (isExplicitMemberSpecialization(RD)) {
1001  explicitSpecSuppressor = RD;
1002  }
1003 
1004  // Static data members.
1005  } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1006  if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1007  mergeTemplateLV(LV, spec, computation);
1008 
1009  // Modify the variable's linkage by its type, but ignore the
1010  // type's visibility unless it's a definition.
1011  if (!IgnoreVarTypeLinkage) {
1012  LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1013  // FIXME: If the type's linkage is not externally visible, we can
1014  // give this static data member UniqueExternalLinkage.
1015  if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1016  LV.mergeVisibility(typeLV);
1017  LV.mergeExternalVisibility(typeLV);
1018  }
1019 
1021  explicitSpecSuppressor = VD;
1022  }
1023 
1024  // Template members.
1025  } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1026  bool considerVisibility =
1027  (!LV.isVisibilityExplicit() &&
1028  !classLV.isVisibilityExplicit() &&
1029  !hasExplicitVisibilityAlready(computation));
1030  LinkageInfo tempLV =
1031  getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1032  LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1033 
1034  if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1035  if (isExplicitMemberSpecialization(redeclTemp)) {
1036  explicitSpecSuppressor = temp->getTemplatedDecl();
1037  }
1038  }
1039  }
1040 
1041  // We should never be looking for an attribute directly on a template.
1042  assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1043 
1044  // If this member is an explicit member specialization, and it has
1045  // an explicit attribute, ignore visibility from the parent.
1046  bool considerClassVisibility = true;
1047  if (explicitSpecSuppressor &&
1048  // optimization: hasDVA() is true only with explicit visibility.
1049  LV.isVisibilityExplicit() &&
1050  classLV.getVisibility() != DefaultVisibility &&
1051  hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1052  considerClassVisibility = false;
1053  }
1054 
1055  // Finally, merge in information from the class.
1056  LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1057  return LV;
1058 }
1059 
1060 void NamedDecl::anchor() {}
1061 
1063  if (!hasCachedLinkage())
1064  return true;
1065 
1066  Linkage L = LinkageComputer{}
1068  .getLinkage();
1069  return L == getCachedLinkage();
1070 }
1071 
1073  StringRef name = getName();
1074  if (name.empty()) return SFF_None;
1075 
1076  if (name.front() == 'C')
1077  if (name == "CFStringCreateWithFormat" ||
1078  name == "CFStringCreateWithFormatAndArguments" ||
1079  name == "CFStringAppendFormat" ||
1080  name == "CFStringAppendFormatAndArguments")
1081  return SFF_CFString;
1082  return SFF_None;
1083 }
1084 
1086  // We don't care about visibility here, so ask for the cheapest
1087  // possible visibility analysis.
1088  return LinkageComputer{}
1090  .getLinkage();
1091 }
1092 
1095 }
1096 
1097 static Optional<Visibility>
1100  bool IsMostRecent) {
1101  assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1102 
1103  // Check the declaration itself first.
1104  if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1105  return V;
1106 
1107  // If this is a member class of a specialization of a class template
1108  // and the corresponding decl has explicit visibility, use that.
1109  if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1110  CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1111  if (InstantiatedFrom)
1112  return getVisibilityOf(InstantiatedFrom, kind);
1113  }
1114 
1115  // If there wasn't explicit visibility there, and this is a
1116  // specialization of a class template, check for visibility
1117  // on the pattern.
1118  if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1119  // Walk all the template decl till this point to see if there are
1120  // explicit visibility attributes.
1121  const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1122  while (TD != nullptr) {
1123  auto Vis = getVisibilityOf(TD, kind);
1124  if (Vis != None)
1125  return Vis;
1126  TD = TD->getPreviousDecl();
1127  }
1128  return None;
1129  }
1130 
1131  // Use the most recent declaration.
1132  if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1133  const NamedDecl *MostRecent = ND->getMostRecentDecl();
1134  if (MostRecent != ND)
1135  return getExplicitVisibilityAux(MostRecent, kind, true);
1136  }
1137 
1138  if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1139  if (Var->isStaticDataMember()) {
1140  VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1141  if (InstantiatedFrom)
1142  return getVisibilityOf(InstantiatedFrom, kind);
1143  }
1144 
1145  if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1146  return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1147  kind);
1148 
1149  return None;
1150  }
1151  // Also handle function template specializations.
1152  if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1153  // If the function is a specialization of a template with an
1154  // explicit visibility attribute, use that.
1155  if (FunctionTemplateSpecializationInfo *templateInfo
1157  return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1158  kind);
1159 
1160  // If the function is a member of a specialization of a class template
1161  // and the corresponding decl has explicit visibility, use that.
1162  FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1163  if (InstantiatedFrom)
1164  return getVisibilityOf(InstantiatedFrom, kind);
1165 
1166  return None;
1167  }
1168 
1169  // The visibility of a template is stored in the templated decl.
1170  if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1171  return getVisibilityOf(TD->getTemplatedDecl(), kind);
1172 
1173  return None;
1174 }
1175 
1178  return getExplicitVisibilityAux(this, kind, false);
1179 }
1180 
1181 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1182  Decl *ContextDecl,
1183  LVComputationKind computation) {
1184  // This lambda has its linkage/visibility determined by its owner.
1185  const NamedDecl *Owner;
1186  if (!ContextDecl)
1187  Owner = dyn_cast<NamedDecl>(DC);
1188  else if (isa<ParmVarDecl>(ContextDecl))
1189  Owner =
1190  dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1191  else
1192  Owner = cast<NamedDecl>(ContextDecl);
1193 
1194  if (!Owner)
1195  return LinkageInfo::none();
1196 
1197  // If the owner has a deduced type, we need to skip querying the linkage and
1198  // visibility of that type, because it might involve this closure type. The
1199  // only effect of this is that we might give a lambda VisibleNoLinkage rather
1200  // than NoLinkage when we don't strictly need to, which is benign.
1201  auto *VD = dyn_cast<VarDecl>(Owner);
1202  LinkageInfo OwnerLV =
1203  VD && VD->getType()->getContainedDeducedType()
1204  ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1205  : getLVForDecl(Owner, computation);
1206 
1207  // A lambda never formally has linkage. But if the owner is externally
1208  // visible, then the lambda is too. We apply the same rules to blocks.
1209  if (!isExternallyVisible(OwnerLV.getLinkage()))
1210  return LinkageInfo::none();
1211  return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1212  OwnerLV.isVisibilityExplicit());
1213 }
1214 
1215 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1216  LVComputationKind computation) {
1217  if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1218  if (Function->isInAnonymousNamespace() &&
1219  !isFirstInExternCContext(Function))
1220  return getInternalLinkageFor(Function);
1221 
1222  // This is a "void f();" which got merged with a file static.
1223  if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1224  return getInternalLinkageFor(Function);
1225 
1226  LinkageInfo LV;
1227  if (!hasExplicitVisibilityAlready(computation)) {
1228  if (Optional<Visibility> Vis =
1229  getExplicitVisibility(Function, computation))
1230  LV.mergeVisibility(*Vis, true);
1231  }
1232 
1233  // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1234  // merging storage classes and visibility attributes, so we don't have to
1235  // look at previous decls in here.
1236 
1237  return LV;
1238  }
1239 
1240  if (const auto *Var = dyn_cast<VarDecl>(D)) {
1241  if (Var->hasExternalStorage()) {
1242  if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1243  return getInternalLinkageFor(Var);
1244 
1245  LinkageInfo LV;
1246  if (Var->getStorageClass() == SC_PrivateExtern)
1248  else if (!hasExplicitVisibilityAlready(computation)) {
1249  if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1250  LV.mergeVisibility(*Vis, true);
1251  }
1252 
1253  if (const VarDecl *Prev = Var->getPreviousDecl()) {
1254  LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1255  if (PrevLV.getLinkage())
1256  LV.setLinkage(PrevLV.getLinkage());
1257  LV.mergeVisibility(PrevLV);
1258  }
1259 
1260  return LV;
1261  }
1262 
1263  if (!Var->isStaticLocal())
1264  return LinkageInfo::none();
1265  }
1266 
1267  ASTContext &Context = D->getASTContext();
1268  if (!Context.getLangOpts().CPlusPlus)
1269  return LinkageInfo::none();
1270 
1271  const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1272  if (!OuterD || OuterD->isInvalidDecl())
1273  return LinkageInfo::none();
1274 
1275  LinkageInfo LV;
1276  if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1277  if (!BD->getBlockManglingNumber())
1278  return LinkageInfo::none();
1279 
1280  LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1281  BD->getBlockManglingContextDecl(), computation);
1282  } else {
1283  const auto *FD = cast<FunctionDecl>(OuterD);
1284  if (!FD->isInlined() &&
1285  !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1286  return LinkageInfo::none();
1287 
1288  // If a function is hidden by -fvisibility-inlines-hidden option and
1289  // is not explicitly attributed as a hidden function,
1290  // we should not make static local variables in the function hidden.
1291  LV = getLVForDecl(FD, computation);
1292  if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1293  !LV.isVisibilityExplicit()) {
1294  assert(cast<VarDecl>(D)->isStaticLocal());
1295  // If this was an implicitly hidden inline method, check again for
1296  // explicit visibility on the parent class, and use that for static locals
1297  // if present.
1298  if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1299  LV = getLVForDecl(MD->getParent(), computation);
1300  if (!LV.isVisibilityExplicit()) {
1301  Visibility globalVisibility =
1302  computation.isValueVisibility()
1303  ? Context.getLangOpts().getValueVisibilityMode()
1304  : Context.getLangOpts().getTypeVisibilityMode();
1305  return LinkageInfo(VisibleNoLinkage, globalVisibility,
1306  /*visibilityExplicit=*/false);
1307  }
1308  }
1309  }
1310  if (!isExternallyVisible(LV.getLinkage()))
1311  return LinkageInfo::none();
1313  LV.isVisibilityExplicit());
1314 }
1315 
1316 static inline const CXXRecordDecl*
1318  const CXXRecordDecl *Ret = Record;
1319  while (Record && Record->isLambda()) {
1320  Ret = Record;
1321  if (!Record->getParent()) break;
1322  // Get the Containing Class of this Lambda Class
1323  Record = dyn_cast_or_null<CXXRecordDecl>(
1324  Record->getParent()->getParent());
1325  }
1326  return Ret;
1327 }
1328 
1330  LVComputationKind computation,
1331  bool IgnoreVarTypeLinkage) {
1332  // Internal_linkage attribute overrides other considerations.
1333  if (D->hasAttr<InternalLinkageAttr>())
1334  return getInternalLinkageFor(D);
1335 
1336  // Objective-C: treat all Objective-C declarations as having external
1337  // linkage.
1338  switch (D->getKind()) {
1339  default:
1340  break;
1341 
1342  // Per C++ [basic.link]p2, only the names of objects, references,
1343  // functions, types, templates, namespaces, and values ever have linkage.
1344  //
1345  // Note that the name of a typedef, namespace alias, using declaration,
1346  // and so on are not the name of the corresponding type, namespace, or
1347  // declaration, so they do *not* have linkage.
1348  case Decl::ImplicitParam:
1349  case Decl::Label:
1350  case Decl::NamespaceAlias:
1351  case Decl::ParmVar:
1352  case Decl::Using:
1353  case Decl::UsingShadow:
1354  case Decl::UsingDirective:
1355  return LinkageInfo::none();
1356 
1357  case Decl::EnumConstant:
1358  // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1359  if (D->getASTContext().getLangOpts().CPlusPlus)
1360  return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1361  return LinkageInfo::visible_none();
1362 
1363  case Decl::Typedef:
1364  case Decl::TypeAlias:
1365  // A typedef declaration has linkage if it gives a type a name for
1366  // linkage purposes.
1367  if (!cast<TypedefNameDecl>(D)
1368  ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1369  return LinkageInfo::none();
1370  break;
1371 
1372  case Decl::TemplateTemplateParm: // count these as external
1373  case Decl::NonTypeTemplateParm:
1374  case Decl::ObjCAtDefsField:
1375  case Decl::ObjCCategory:
1376  case Decl::ObjCCategoryImpl:
1377  case Decl::ObjCCompatibleAlias:
1378  case Decl::ObjCImplementation:
1379  case Decl::ObjCMethod:
1380  case Decl::ObjCProperty:
1381  case Decl::ObjCPropertyImpl:
1382  case Decl::ObjCProtocol:
1383  return getExternalLinkageFor(D);
1384 
1385  case Decl::CXXRecord: {
1386  const auto *Record = cast<CXXRecordDecl>(D);
1387  if (Record->isLambda()) {
1388  if (Record->hasKnownLambdaInternalLinkage() ||
1389  !Record->getLambdaManglingNumber()) {
1390  // This lambda has no mangling number, so it's internal.
1391  return getInternalLinkageFor(D);
1392  }
1393 
1394  // This lambda has its linkage/visibility determined:
1395  // - either by the outermost lambda if that lambda has no mangling
1396  // number.
1397  // - or by the parent of the outer most lambda
1398  // This prevents infinite recursion in settings such as nested lambdas
1399  // used in NSDMI's, for e.g.
1400  // struct L {
1401  // int t{};
1402  // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1403  // };
1404  const CXXRecordDecl *OuterMostLambda =
1406  if (OuterMostLambda->hasKnownLambdaInternalLinkage() ||
1407  !OuterMostLambda->getLambdaManglingNumber())
1408  return getInternalLinkageFor(D);
1409 
1410  return getLVForClosure(
1411  OuterMostLambda->getDeclContext()->getRedeclContext(),
1412  OuterMostLambda->getLambdaContextDecl(), computation);
1413  }
1414 
1415  break;
1416  }
1417  }
1418 
1419  // Handle linkage for namespace-scope names.
1421  return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1422 
1423  // C++ [basic.link]p5:
1424  // In addition, a member function, static data member, a named
1425  // class or enumeration of class scope, or an unnamed class or
1426  // enumeration defined in a class-scope typedef declaration such
1427  // that the class or enumeration has the typedef name for linkage
1428  // purposes (7.1.3), has external linkage if the name of the class
1429  // has external linkage.
1430  if (D->getDeclContext()->isRecord())
1431  return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1432 
1433  // C++ [basic.link]p6:
1434  // The name of a function declared in block scope and the name of
1435  // an object declared by a block scope extern declaration have
1436  // linkage. If there is a visible declaration of an entity with
1437  // linkage having the same name and type, ignoring entities
1438  // declared outside the innermost enclosing namespace scope, the
1439  // block scope declaration declares that same entity and receives
1440  // the linkage of the previous declaration. If there is more than
1441  // one such matching entity, the program is ill-formed. Otherwise,
1442  // if no matching entity is found, the block scope entity receives
1443  // external linkage.
1444  if (D->getDeclContext()->isFunctionOrMethod())
1445  return getLVForLocalDecl(D, computation);
1446 
1447  // C++ [basic.link]p6:
1448  // Names not covered by these rules have no linkage.
1449  return LinkageInfo::none();
1450 }
1451 
1452 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1454  LVComputationKind computation) {
1455  // Internal_linkage attribute overrides other considerations.
1456  if (D->hasAttr<InternalLinkageAttr>())
1457  return getInternalLinkageFor(D);
1458 
1459  if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1460  return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1461 
1462  if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1463  return *LI;
1464 
1465  LinkageInfo LV = computeLVForDecl(D, computation);
1466  if (D->hasCachedLinkage())
1467  assert(D->getCachedLinkage() == LV.getLinkage());
1468 
1469  D->setCachedLinkage(LV.getLinkage());
1470  cache(D, computation, LV);
1471 
1472 #ifndef NDEBUG
1473  // In C (because of gnu inline) and in c++ with microsoft extensions an
1474  // static can follow an extern, so we can have two decls with different
1475  // linkages.
1476  const LangOptions &Opts = D->getASTContext().getLangOpts();
1477  if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1478  return LV;
1479 
1480  // We have just computed the linkage for this decl. By induction we know
1481  // that all other computed linkages match, check that the one we just
1482  // computed also does.
1483  NamedDecl *Old = nullptr;
1484  for (auto I : D->redecls()) {
1485  auto *T = cast<NamedDecl>(I);
1486  if (T == D)
1487  continue;
1488  if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1489  Old = T;
1490  break;
1491  }
1492  }
1493  assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1494 #endif
1495 
1496  return LV;
1497 }
1498 
1500  return getLVForDecl(D,
1504 }
1505 
1506 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1507  Module *M = getOwningModule();
1508  if (!M)
1509  return nullptr;
1510 
1511  switch (M->Kind) {
1513  // Module map modules have no special linkage semantics.
1514  return nullptr;
1515 
1517  return M;
1518 
1520  // External linkage declarations in the global module have no owning module
1521  // for linkage purposes. But internal linkage declarations in the global
1522  // module fragment of a particular module are owned by that module for
1523  // linkage purposes.
1524  if (IgnoreLinkage)
1525  return nullptr;
1526  bool InternalLinkage;
1527  if (auto *ND = dyn_cast<NamedDecl>(this))
1528  InternalLinkage = !ND->hasExternalFormalLinkage();
1529  else {
1530  auto *NSD = dyn_cast<NamespaceDecl>(this);
1531  InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1532  isInAnonymousNamespace();
1533  }
1534  return InternalLinkage ? M->Parent : nullptr;
1535  }
1536 
1538  // The private module fragment is part of its containing module for linkage
1539  // purposes.
1540  return M->Parent;
1541  }
1542 
1543  llvm_unreachable("unknown module kind");
1544 }
1545 
1546 void NamedDecl::printName(raw_ostream &os) const {
1547  os << Name;
1548 }
1549 
1551  std::string QualName;
1552  llvm::raw_string_ostream OS(QualName);
1553  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1554  return OS.str();
1555 }
1556 
1557 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1558  printQualifiedName(OS, getASTContext().getPrintingPolicy());
1559 }
1560 
1561 void NamedDecl::printQualifiedName(raw_ostream &OS,
1562  const PrintingPolicy &P) const {
1563  if (getDeclContext()->isFunctionOrMethod()) {
1564  // We do not print '(anonymous)' for function parameters without name.
1565  printName(OS);
1566  return;
1567  }
1568  printNestedNameSpecifier(OS, P);
1569  if (getDeclName() || isa<DecompositionDecl>(this))
1570  OS << *this;
1571  else
1572  OS << "(anonymous)";
1573 }
1574 
1575 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1576  printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1577 }
1578 
1580  const PrintingPolicy &P) const {
1581  const DeclContext *Ctx = getDeclContext();
1582 
1583  // For ObjC methods and properties, look through categories and use the
1584  // interface as context.
1585  if (auto *MD = dyn_cast<ObjCMethodDecl>(this))
1586  if (auto *ID = MD->getClassInterface())
1587  Ctx = ID;
1588  if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1589  if (auto *MD = PD->getGetterMethodDecl())
1590  if (auto *ID = MD->getClassInterface())
1591  Ctx = ID;
1592  }
1593 
1594  if (Ctx->isFunctionOrMethod())
1595  return;
1596 
1597  using ContextsTy = SmallVector<const DeclContext *, 8>;
1598  ContextsTy Contexts;
1599 
1600  // Collect named contexts.
1601  while (Ctx) {
1602  if (isa<NamedDecl>(Ctx))
1603  Contexts.push_back(Ctx);
1604  Ctx = Ctx->getParent();
1605  }
1606 
1607  for (const DeclContext *DC : llvm::reverse(Contexts)) {
1608  if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1609  OS << Spec->getName();
1610  const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1611  printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
1612  } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1613  if (P.SuppressUnwrittenScope &&
1614  (ND->isAnonymousNamespace() || ND->isInline()))
1615  continue;
1616  if (ND->isAnonymousNamespace()) {
1617  OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1618  : "(anonymous namespace)");
1619  }
1620  else
1621  OS << *ND;
1622  } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1623  if (!RD->getIdentifier())
1624  OS << "(anonymous " << RD->getKindName() << ')';
1625  else
1626  OS << *RD;
1627  } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1628  const FunctionProtoType *FT = nullptr;
1629  if (FD->hasWrittenPrototype())
1630  FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1631 
1632  OS << *FD << '(';
1633  if (FT) {
1634  unsigned NumParams = FD->getNumParams();
1635  for (unsigned i = 0; i < NumParams; ++i) {
1636  if (i)
1637  OS << ", ";
1638  OS << FD->getParamDecl(i)->getType().stream(P);
1639  }
1640 
1641  if (FT->isVariadic()) {
1642  if (NumParams > 0)
1643  OS << ", ";
1644  OS << "...";
1645  }
1646  }
1647  OS << ')';
1648  } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1649  // C++ [dcl.enum]p10: Each enum-name and each unscoped
1650  // enumerator is declared in the scope that immediately contains
1651  // the enum-specifier. Each scoped enumerator is declared in the
1652  // scope of the enumeration.
1653  // For the case of unscoped enumerator, do not include in the qualified
1654  // name any information about its enum enclosing scope, as its visibility
1655  // is global.
1656  if (ED->isScoped())
1657  OS << *ED;
1658  else
1659  continue;
1660  } else {
1661  OS << *cast<NamedDecl>(DC);
1662  }
1663  OS << "::";
1664  }
1665 }
1666 
1667 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1668  const PrintingPolicy &Policy,
1669  bool Qualified) const {
1670  if (Qualified)
1671  printQualifiedName(OS, Policy);
1672  else
1673  printName(OS);
1674 }
1675 
1676 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1677  return true;
1678 }
1679 static bool isRedeclarableImpl(...) { return false; }
1680 static bool isRedeclarable(Decl::Kind K) {
1681  switch (K) {
1682 #define DECL(Type, Base) \
1683  case Decl::Type: \
1684  return isRedeclarableImpl((Type##Decl *)nullptr);
1685 #define ABSTRACT_DECL(DECL)
1686 #include "clang/AST/DeclNodes.inc"
1687  }
1688  llvm_unreachable("unknown decl kind");
1689 }
1690 
1691 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1692  assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1693 
1694  // Never replace one imported declaration with another; we need both results
1695  // when re-exporting.
1696  if (OldD->isFromASTFile() && isFromASTFile())
1697  return false;
1698 
1699  // A kind mismatch implies that the declaration is not replaced.
1700  if (OldD->getKind() != getKind())
1701  return false;
1702 
1703  // For method declarations, we never replace. (Why?)
1704  if (isa<ObjCMethodDecl>(this))
1705  return false;
1706 
1707  // For parameters, pick the newer one. This is either an error or (in
1708  // Objective-C) permitted as an extension.
1709  if (isa<ParmVarDecl>(this))
1710  return true;
1711 
1712  // Inline namespaces can give us two declarations with the same
1713  // name and kind in the same scope but different contexts; we should
1714  // keep both declarations in this case.
1715  if (!this->getDeclContext()->getRedeclContext()->Equals(
1716  OldD->getDeclContext()->getRedeclContext()))
1717  return false;
1718 
1719  // Using declarations can be replaced if they import the same name from the
1720  // same context.
1721  if (auto *UD = dyn_cast<UsingDecl>(this)) {
1722  ASTContext &Context = getASTContext();
1723  return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1725  cast<UsingDecl>(OldD)->getQualifier());
1726  }
1727  if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1728  ASTContext &Context = getASTContext();
1729  return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1731  cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1732  }
1733 
1734  if (isRedeclarable(getKind())) {
1735  if (getCanonicalDecl() != OldD->getCanonicalDecl())
1736  return false;
1737 
1738  if (IsKnownNewer)
1739  return true;
1740 
1741  // Check whether this is actually newer than OldD. We want to keep the
1742  // newer declaration. This loop will usually only iterate once, because
1743  // OldD is usually the previous declaration.
1744  for (auto D : redecls()) {
1745  if (D == OldD)
1746  break;
1747 
1748  // If we reach the canonical declaration, then OldD is not actually older
1749  // than this one.
1750  //
1751  // FIXME: In this case, we should not add this decl to the lookup table.
1752  if (D->isCanonicalDecl())
1753  return false;
1754  }
1755 
1756  // It's a newer declaration of the same kind of declaration in the same
1757  // scope: we want this decl instead of the existing one.
1758  return true;
1759  }
1760 
1761  // In all other cases, we need to keep both declarations in case they have
1762  // different visibility. Any attempt to use the name will result in an
1763  // ambiguity if more than one is visible.
1764  return false;
1765 }
1766 
1768  return getFormalLinkage() != NoLinkage;
1769 }
1770 
1771 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1772  NamedDecl *ND = this;
1773  while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1774  ND = UD->getTargetDecl();
1775 
1776  if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1777  return AD->getClassInterface();
1778 
1779  if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1780  return AD->getNamespace();
1781 
1782  return ND;
1783 }
1784 
1786  if (!isCXXClassMember())
1787  return false;
1788 
1789  const NamedDecl *D = this;
1790  if (isa<UsingShadowDecl>(D))
1791  D = cast<UsingShadowDecl>(D)->getTargetDecl();
1792 
1793  if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1794  return true;
1795  if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1796  return MD->isInstance();
1797  return false;
1798 }
1799 
1800 //===----------------------------------------------------------------------===//
1801 // DeclaratorDecl Implementation
1802 //===----------------------------------------------------------------------===//
1803 
1804 template <typename DeclT>
1806  if (decl->getNumTemplateParameterLists() > 0)
1807  return decl->getTemplateParameterList(0)->getTemplateLoc();
1808  else
1809  return decl->getInnerLocStart();
1810 }
1811 
1813  TypeSourceInfo *TSI = getTypeSourceInfo();
1814  if (TSI) return TSI->getTypeLoc().getBeginLoc();
1815  return SourceLocation();
1816 }
1817 
1819  if (QualifierLoc) {
1820  // Make sure the extended decl info is allocated.
1821  if (!hasExtInfo()) {
1822  // Save (non-extended) type source info pointer.
1823  auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1824  // Allocate external info struct.
1825  DeclInfo = new (getASTContext()) ExtInfo;
1826  // Restore savedTInfo into (extended) decl info.
1827  getExtInfo()->TInfo = savedTInfo;
1828  }
1829  // Set qualifier info.
1830  getExtInfo()->QualifierLoc = QualifierLoc;
1831  } else {
1832  // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1833  if (hasExtInfo()) {
1834  if (getExtInfo()->NumTemplParamLists == 0) {
1835  // Save type source info pointer.
1836  TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1837  // Deallocate the extended decl info.
1838  getASTContext().Deallocate(getExtInfo());
1839  // Restore savedTInfo into (non-extended) decl info.
1840  DeclInfo = savedTInfo;
1841  }
1842  else
1843  getExtInfo()->QualifierLoc = QualifierLoc;
1844  }
1845  }
1846 }
1847 
1849  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1850  assert(!TPLists.empty());
1851  // Make sure the extended decl info is allocated.
1852  if (!hasExtInfo()) {
1853  // Save (non-extended) type source info pointer.
1854  auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1855  // Allocate external info struct.
1856  DeclInfo = new (getASTContext()) ExtInfo;
1857  // Restore savedTInfo into (extended) decl info.
1858  getExtInfo()->TInfo = savedTInfo;
1859  }
1860  // Set the template parameter lists info.
1861  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1862 }
1863 
1865  return getTemplateOrInnerLocStart(this);
1866 }
1867 
1868 // Helper function: returns true if QT is or contains a type
1869 // having a postfix component.
1870 static bool typeIsPostfix(QualType QT) {
1871  while (true) {
1872  const Type* T = QT.getTypePtr();
1873  switch (T->getTypeClass()) {
1874  default:
1875  return false;
1876  case Type::Pointer:
1877  QT = cast<PointerType>(T)->getPointeeType();
1878  break;
1879  case Type::BlockPointer:
1880  QT = cast<BlockPointerType>(T)->getPointeeType();
1881  break;
1882  case Type::MemberPointer:
1883  QT = cast<MemberPointerType>(T)->getPointeeType();
1884  break;
1885  case Type::LValueReference:
1886  case Type::RValueReference:
1887  QT = cast<ReferenceType>(T)->getPointeeType();
1888  break;
1889  case Type::PackExpansion:
1890  QT = cast<PackExpansionType>(T)->getPattern();
1891  break;
1892  case Type::Paren:
1893  case Type::ConstantArray:
1894  case Type::DependentSizedArray:
1895  case Type::IncompleteArray:
1896  case Type::VariableArray:
1897  case Type::FunctionProto:
1898  case Type::FunctionNoProto:
1899  return true;
1900  }
1901  }
1902 }
1903 
1905  SourceLocation RangeEnd = getLocation();
1906  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1907  // If the declaration has no name or the type extends past the name take the
1908  // end location of the type.
1909  if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1910  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1911  }
1912  return SourceRange(getOuterLocStart(), RangeEnd);
1913 }
1914 
1916  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1917  // Free previous template parameters (if any).
1918  if (NumTemplParamLists > 0) {
1919  Context.Deallocate(TemplParamLists);
1920  TemplParamLists = nullptr;
1921  NumTemplParamLists = 0;
1922  }
1923  // Set info on matched template parameter lists (if any).
1924  if (!TPLists.empty()) {
1925  TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1926  NumTemplParamLists = TPLists.size();
1927  std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1928  }
1929 }
1930 
1931 //===----------------------------------------------------------------------===//
1932 // VarDecl Implementation
1933 //===----------------------------------------------------------------------===//
1934 
1936  switch (SC) {
1937  case SC_None: break;
1938  case SC_Auto: return "auto";
1939  case SC_Extern: return "extern";
1940  case SC_PrivateExtern: return "__private_extern__";
1941  case SC_Register: return "register";
1942  case SC_Static: return "static";
1943  }
1944 
1945  llvm_unreachable("Invalid storage class");
1946 }
1947 
1949  SourceLocation StartLoc, SourceLocation IdLoc,
1951  StorageClass SC)
1952  : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1953  redeclarable_base(C) {
1954  static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1955  "VarDeclBitfields too large!");
1956  static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1957  "ParmVarDeclBitfields too large!");
1958  static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1959  "NonParmVarDeclBitfields too large!");
1960  AllBits = 0;
1961  VarDeclBits.SClass = SC;
1962  // Everything else is implicitly initialized to false.
1963 }
1964 
1966  SourceLocation StartL, SourceLocation IdL,
1968  StorageClass S) {
1969  return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1970 }
1971 
1973  return new (C, ID)
1974  VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1975  QualType(), nullptr, SC_None);
1976 }
1977 
1979  assert(isLegalForVariable(SC));
1980  VarDeclBits.SClass = SC;
1981 }
1982 
1984  switch (VarDeclBits.TSCSpec) {
1985  case TSCS_unspecified:
1986  if (!hasAttr<ThreadAttr>() &&
1987  !(getASTContext().getLangOpts().OpenMPUseTLS &&
1988  getASTContext().getTargetInfo().isTLSSupported() &&
1989  hasAttr<OMPThreadPrivateDeclAttr>()))
1990  return TLS_None;
1991  return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1993  hasAttr<OMPThreadPrivateDeclAttr>())
1994  ? TLS_Dynamic
1995  : TLS_Static;
1996  case TSCS___thread: // Fall through.
1997  case TSCS__Thread_local:
1998  return TLS_Static;
1999  case TSCS_thread_local:
2000  return TLS_Dynamic;
2001  }
2002  llvm_unreachable("Unknown thread storage class specifier!");
2003 }
2004 
2006  if (const Expr *Init = getInit()) {
2007  SourceLocation InitEnd = Init->getEndLoc();
2008  // If Init is implicit, ignore its source range and fallback on
2009  // DeclaratorDecl::getSourceRange() to handle postfix elements.
2010  if (InitEnd.isValid() && InitEnd != getLocation())
2011  return SourceRange(getOuterLocStart(), InitEnd);
2012  }
2014 }
2015 
2016 template<typename T>
2018  // C++ [dcl.link]p1: All function types, function names with external linkage,
2019  // and variable names with external linkage have a language linkage.
2020  if (!D.hasExternalFormalLinkage())
2021  return NoLanguageLinkage;
2022 
2023  // Language linkage is a C++ concept, but saying that everything else in C has
2024  // C language linkage fits the implementation nicely.
2025  ASTContext &Context = D.getASTContext();
2026  if (!Context.getLangOpts().CPlusPlus)
2027  return CLanguageLinkage;
2028 
2029  // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2030  // language linkage of the names of class members and the function type of
2031  // class member functions.
2032  const DeclContext *DC = D.getDeclContext();
2033  if (DC->isRecord())
2034  return CXXLanguageLinkage;
2035 
2036  // If the first decl is in an extern "C" context, any other redeclaration
2037  // will have C language linkage. If the first one is not in an extern "C"
2038  // context, we would have reported an error for any other decl being in one.
2039  if (isFirstInExternCContext(&D))
2040  return CLanguageLinkage;
2041  return CXXLanguageLinkage;
2042 }
2043 
2044 template<typename T>
2045 static bool isDeclExternC(const T &D) {
2046  // Since the context is ignored for class members, they can only have C++
2047  // language linkage or no language linkage.
2048  const DeclContext *DC = D.getDeclContext();
2049  if (DC->isRecord()) {
2050  assert(D.getASTContext().getLangOpts().CPlusPlus);
2051  return false;
2052  }
2053 
2054  return D.getLanguageLinkage() == CLanguageLinkage;
2055 }
2056 
2058  return getDeclLanguageLinkage(*this);
2059 }
2060 
2061 bool VarDecl::isExternC() const {
2062  return isDeclExternC(*this);
2063 }
2064 
2067 }
2068 
2071 }
2072 
2074 
2078  return DeclarationOnly;
2079 
2080  // C++ [basic.def]p2:
2081  // A declaration is a definition unless [...] it contains the 'extern'
2082  // specifier or a linkage-specification and neither an initializer [...],
2083  // it declares a non-inline static data member in a class declaration [...],
2084  // it declares a static data member outside a class definition and the variable
2085  // was defined within the class with the constexpr specifier [...],
2086  // C++1y [temp.expl.spec]p15:
2087  // An explicit specialization of a static data member or an explicit
2088  // specialization of a static data member template is a definition if the
2089  // declaration includes an initializer; otherwise, it is a declaration.
2090  //
2091  // FIXME: How do you declare (but not define) a partial specialization of
2092  // a static data member template outside the containing class?
2093  if (isStaticDataMember()) {
2094  if (isOutOfLine() &&
2095  !(getCanonicalDecl()->isInline() &&
2096  getCanonicalDecl()->isConstexpr()) &&
2097  (hasInit() ||
2098  // If the first declaration is out-of-line, this may be an
2099  // instantiation of an out-of-line partial specialization of a variable
2100  // template for which we have not yet instantiated the initializer.
2105  isa<VarTemplatePartialSpecializationDecl>(this)))
2106  return Definition;
2107  else if (!isOutOfLine() && isInline())
2108  return Definition;
2109  else
2110  return DeclarationOnly;
2111  }
2112  // C99 6.7p5:
2113  // A definition of an identifier is a declaration for that identifier that
2114  // [...] causes storage to be reserved for that object.
2115  // Note: that applies for all non-file-scope objects.
2116  // C99 6.9.2p1:
2117  // If the declaration of an identifier for an object has file scope and an
2118  // initializer, the declaration is an external definition for the identifier
2119  if (hasInit())
2120  return Definition;
2121 
2122  if (hasDefiningAttr())
2123  return Definition;
2124 
2125  if (const auto *SAA = getAttr<SelectAnyAttr>())
2126  if (!SAA->isInherited())
2127  return Definition;
2128 
2129  // A variable template specialization (other than a static data member
2130  // template or an explicit specialization) is a declaration until we
2131  // instantiate its initializer.
2132  if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2133  if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2134  !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2135  !VTSD->IsCompleteDefinition)
2136  return DeclarationOnly;
2137  }
2138 
2139  if (hasExternalStorage())
2140  return DeclarationOnly;
2141 
2142  // [dcl.link] p7:
2143  // A declaration directly contained in a linkage-specification is treated
2144  // as if it contains the extern specifier for the purpose of determining
2145  // the linkage of the declared name and whether it is a definition.
2146  if (isSingleLineLanguageLinkage(*this))
2147  return DeclarationOnly;
2148 
2149  // C99 6.9.2p2:
2150  // A declaration of an object that has file scope without an initializer,
2151  // and without a storage class specifier or the scs 'static', constitutes
2152  // a tentative definition.
2153  // No such thing in C++.
2154  if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2155  return TentativeDefinition;
2156 
2157  // What's left is (in C, block-scope) declarations without initializers or
2158  // external storage. These are definitions.
2159  return Definition;
2160 }
2161 
2164  if (Kind != TentativeDefinition)
2165  return nullptr;
2166 
2167  VarDecl *LastTentative = nullptr;
2168  VarDecl *First = getFirstDecl();
2169  for (auto I : First->redecls()) {
2170  Kind = I->isThisDeclarationADefinition();
2171  if (Kind == Definition)
2172  return nullptr;
2173  else if (Kind == TentativeDefinition)
2174  LastTentative = I;
2175  }
2176  return LastTentative;
2177 }
2178 
2180  VarDecl *First = getFirstDecl();
2181  for (auto I : First->redecls()) {
2182  if (I->isThisDeclarationADefinition(C) == Definition)
2183  return I;
2184  }
2185  return nullptr;
2186 }
2187 
2190 
2191  const VarDecl *First = getFirstDecl();
2192  for (auto I : First->redecls()) {
2193  Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2194  if (Kind == Definition)
2195  break;
2196  }
2197 
2198  return Kind;
2199 }
2200 
2201 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2202  for (auto I : redecls()) {
2203  if (auto Expr = I->getInit()) {
2204  D = I;
2205  return Expr;
2206  }
2207  }
2208  return nullptr;
2209 }
2210 
2211 bool VarDecl::hasInit() const {
2212  if (auto *P = dyn_cast<ParmVarDecl>(this))
2213  if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2214  return false;
2215 
2216  return !Init.isNull();
2217 }
2218 
2220  if (!hasInit())
2221  return nullptr;
2222 
2223  if (auto *S = Init.dyn_cast<Stmt *>())
2224  return cast<Expr>(S);
2225 
2226  return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2227 }
2228 
2230  if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2231  return &ES->Value;
2232 
2233  return Init.getAddrOfPtr1();
2234 }
2235 
2237  VarDecl *Def = nullptr;
2238  for (auto I : redecls()) {
2239  if (I->hasInit())
2240  return I;
2241 
2242  if (I->isThisDeclarationADefinition()) {
2243  if (isStaticDataMember())
2244  return I;
2245  else
2246  Def = I;
2247  }
2248  }
2249  return Def;
2250 }
2251 
2252 bool VarDecl::isOutOfLine() const {
2253  if (Decl::isOutOfLine())
2254  return true;
2255 
2256  if (!isStaticDataMember())
2257  return false;
2258 
2259  // If this static data member was instantiated from a static data member of
2260  // a class template, check whether that static data member was defined
2261  // out-of-line.
2263  return VD->isOutOfLine();
2264 
2265  return false;
2266 }
2267 
2269  if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2270  Eval->~EvaluatedStmt();
2271  getASTContext().Deallocate(Eval);
2272  }
2273 
2274  Init = I;
2275 }
2276 
2278  const LangOptions &Lang = C.getLangOpts();
2279 
2280  if (!Lang.CPlusPlus)
2281  return false;
2282 
2283  // Function parameters are never usable in constant expressions.
2284  if (isa<ParmVarDecl>(this))
2285  return false;
2286 
2287  // In C++11, any variable of reference type can be used in a constant
2288  // expression if it is initialized by a constant expression.
2289  if (Lang.CPlusPlus11 && getType()->isReferenceType())
2290  return true;
2291 
2292  // Only const objects can be used in constant expressions in C++. C++98 does
2293  // not require the variable to be non-volatile, but we consider this to be a
2294  // defect.
2295  if (!getType().isConstQualified() || getType().isVolatileQualified())
2296  return false;
2297 
2298  // In C++, const, non-volatile variables of integral or enumeration types
2299  // can be used in constant expressions.
2300  if (getType()->isIntegralOrEnumerationType())
2301  return true;
2302 
2303  // Additionally, in C++11, non-volatile constexpr variables can be used in
2304  // constant expressions.
2305  return Lang.CPlusPlus11 && isConstexpr();
2306 }
2307 
2309  // C++2a [expr.const]p3:
2310  // A variable is usable in constant expressions after its initializing
2311  // declaration is encountered...
2312  const VarDecl *DefVD = nullptr;
2313  const Expr *Init = getAnyInitializer(DefVD);
2314  if (!Init || Init->isValueDependent() || getType()->isDependentType())
2315  return false;
2316  // ... if it is a constexpr variable, or it is of reference type or of
2317  // const-qualified integral or enumeration type, ...
2318  if (!DefVD->mightBeUsableInConstantExpressions(Context))
2319  return false;
2320  // ... and its initializer is a constant initializer.
2321  return DefVD->checkInitIsICE();
2322 }
2323 
2324 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2325 /// form, which contains extra information on the evaluated value of the
2326 /// initializer.
2328  auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2329  if (!Eval) {
2330  // Note: EvaluatedStmt contains an APValue, which usually holds
2331  // resources not allocated from the ASTContext. We need to do some
2332  // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2333  // where we can detect whether there's anything to clean up or not.
2334  Eval = new (getASTContext()) EvaluatedStmt;
2335  Eval->Value = Init.get<Stmt *>();
2336  Init = Eval;
2337  }
2338  return Eval;
2339 }
2340 
2343  return evaluateValue(Notes);
2344 }
2345 
2347  SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2349 
2350  // We only produce notes indicating why an initializer is non-constant the
2351  // first time it is evaluated. FIXME: The notes won't always be emitted the
2352  // first time we try evaluation, so might not be produced at all.
2353  if (Eval->WasEvaluated)
2354  return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2355 
2356  const auto *Init = cast<Expr>(Eval->Value);
2357  assert(!Init->isValueDependent());
2358 
2359  if (Eval->IsEvaluating) {
2360  // FIXME: Produce a diagnostic for self-initialization.
2361  Eval->CheckedICE = true;
2362  Eval->IsICE = false;
2363  return nullptr;
2364  }
2365 
2366  Eval->IsEvaluating = true;
2367 
2368  bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2369  this, Notes);
2370 
2371  // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2372  // or that it's empty (so that there's nothing to clean up) if evaluation
2373  // failed.
2374  if (!Result)
2375  Eval->Evaluated = APValue();
2376  else if (Eval->Evaluated.needsCleanup())
2378 
2379  Eval->IsEvaluating = false;
2380  Eval->WasEvaluated = true;
2381 
2382  // In C++11, we have determined whether the initializer was a constant
2383  // expression as a side-effect.
2384  if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2385  Eval->CheckedICE = true;
2386  Eval->IsICE = Result && Notes.empty();
2387  }
2388 
2389  return Result ? &Eval->Evaluated : nullptr;
2390 }
2391 
2393  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2394  if (Eval->WasEvaluated)
2395  return &Eval->Evaluated;
2396 
2397  return nullptr;
2398 }
2399 
2401  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2402  return Eval->CheckedICE;
2403 
2404  return false;
2405 }
2406 
2407 bool VarDecl::isInitICE() const {
2408  assert(isInitKnownICE() &&
2409  "Check whether we already know that the initializer is an ICE");
2410  return Init.get<EvaluatedStmt *>()->IsICE;
2411 }
2412 
2414  // Initializers of weak variables are never ICEs.
2415  if (isWeak())
2416  return false;
2417 
2419  if (Eval->CheckedICE)
2420  // We have already checked whether this subexpression is an
2421  // integral constant expression.
2422  return Eval->IsICE;
2423 
2424  const auto *Init = cast<Expr>(Eval->Value);
2425  assert(!Init->isValueDependent());
2426 
2427  // In C++11, evaluate the initializer to check whether it's a constant
2428  // expression.
2429  if (getASTContext().getLangOpts().CPlusPlus11) {
2431  evaluateValue(Notes);
2432  return Eval->IsICE;
2433  }
2434 
2435  // It's an ICE whether or not the definition we found is
2436  // out-of-line. See DR 721 and the discussion in Clang PR
2437  // 6206 for details.
2438 
2439  if (Eval->CheckingICE)
2440  return false;
2441  Eval->CheckingICE = true;
2442 
2443  Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2444  Eval->CheckingICE = false;
2445  Eval->CheckedICE = true;
2446  return Eval->IsICE;
2447 }
2448 
2450  return isa<PackExpansionType>(getType());
2451 }
2452 
2453 template<typename DeclT>
2454 static DeclT *getDefinitionOrSelf(DeclT *D) {
2455  assert(D);
2456  if (auto *Def = D->getDefinition())
2457  return Def;
2458  return D;
2459 }
2460 
2462  return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2463 }
2464 
2466  return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2467 }
2468 
2470  const VarDecl *VD = this;
2471 
2472  // If this is an instantiated member, walk back to the template from which
2473  // it was instantiated.
2475  if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2477  while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2478  VD = NewVD;
2479  }
2480  }
2481 
2482  // If it's an instantiated variable template specialization, find the
2483  // template or partial specialization from which it was instantiated.
2484  if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2485  if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2486  auto From = VDTemplSpec->getInstantiatedFrom();
2487  if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2488  while (!VTD->isMemberSpecialization()) {
2489  auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2490  if (!NewVTD)
2491  break;
2492  VTD = NewVTD;
2493  }
2494  return getDefinitionOrSelf(VTD->getTemplatedDecl());
2495  }
2496  if (auto *VTPSD =
2497  From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2498  while (!VTPSD->isMemberSpecialization()) {
2499  auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2500  if (!NewVTPSD)
2501  break;
2502  VTPSD = NewVTPSD;
2503  }
2504  return getDefinitionOrSelf<VarDecl>(VTPSD);
2505  }
2506  }
2507  }
2508 
2509  // If this is the pattern of a variable template, find where it was
2510  // instantiated from. FIXME: Is this necessary?
2511  if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2512  while (!VarTemplate->isMemberSpecialization()) {
2513  auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2514  if (!NewVT)
2515  break;
2516  VarTemplate = NewVT;
2517  }
2518 
2519  return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2520  }
2521 
2522  if (VD == this)
2523  return nullptr;
2524  return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2525 }
2526 
2529  return cast<VarDecl>(MSI->getInstantiatedFrom());
2530 
2531  return nullptr;
2532 }
2533 
2535  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2536  return Spec->getSpecializationKind();
2537 
2539  return MSI->getTemplateSpecializationKind();
2540 
2541  return TSK_Undeclared;
2542 }
2543 
2547  return MSI->getTemplateSpecializationKind();
2548 
2549  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2550  return Spec->getSpecializationKind();
2551 
2552  return TSK_Undeclared;
2553 }
2554 
2556  if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2557  return Spec->getPointOfInstantiation();
2558 
2560  return MSI->getPointOfInstantiation();
2561 
2562  return SourceLocation();
2563 }
2564 
2567  .dyn_cast<VarTemplateDecl *>();
2568 }
2569 
2572 }
2573 
2575  const auto &LangOpts = getASTContext().getLangOpts();
2576  // In CUDA mode without relocatable device code, variables of form 'extern
2577  // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2578  // memory pool. These are never undefined variables, even if they appear
2579  // inside of an anon namespace or static function.
2580  //
2581  // With CUDA relocatable device code enabled, these variables don't get
2582  // special handling; they're treated like regular extern variables.
2583  if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2584  hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2585  isa<IncompleteArrayType>(getType()))
2586  return true;
2587 
2588  return hasDefinition();
2589 }
2590 
2591 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2592  return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2593  (!Ctx.getLangOpts().RegisterStaticDestructors &&
2594  !hasAttr<AlwaysDestroyAttr>()));
2595 }
2596 
2599  if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2600  if (Eval->HasConstantDestruction)
2601  return QualType::DK_none;
2602 
2603  if (isNoDestroy(Ctx))
2604  return QualType::DK_none;
2605 
2606  return getType().isDestructedType();
2607 }
2608 
2610  if (isStaticDataMember())
2611  // FIXME: Remove ?
2612  // return getASTContext().getInstantiatedFromStaticDataMember(this);
2614  .dyn_cast<MemberSpecializationInfo *>();
2615  return nullptr;
2616 }
2617 
2619  SourceLocation PointOfInstantiation) {
2620  assert((isa<VarTemplateSpecializationDecl>(this) ||
2622  "not a variable or static data member template specialization");
2623 
2624  if (VarTemplateSpecializationDecl *Spec =
2625  dyn_cast<VarTemplateSpecializationDecl>(this)) {
2626  Spec->setSpecializationKind(TSK);
2627  if (TSK != TSK_ExplicitSpecialization &&
2628  PointOfInstantiation.isValid() &&
2629  Spec->getPointOfInstantiation().isInvalid()) {
2630  Spec->setPointOfInstantiation(PointOfInstantiation);
2632  L->InstantiationRequested(this);
2633  }
2635  MSI->setTemplateSpecializationKind(TSK);
2636  if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2637  MSI->getPointOfInstantiation().isInvalid()) {
2638  MSI->setPointOfInstantiation(PointOfInstantiation);
2640  L->InstantiationRequested(this);
2641  }
2642  }
2643 }
2644 
2645 void
2648  assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2649  "Previous template or instantiation?");
2651 }
2652 
2653 //===----------------------------------------------------------------------===//
2654 // ParmVarDecl Implementation
2655 //===----------------------------------------------------------------------===//
2656 
2658  SourceLocation StartLoc,
2660  QualType T, TypeSourceInfo *TInfo,
2661  StorageClass S, Expr *DefArg) {
2662  return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2663  S, DefArg);
2664 }
2665 
2668  QualType T = TSI ? TSI->getType() : getType();
2669  if (const auto *DT = dyn_cast<DecayedType>(T))
2670  return DT->getOriginalType();
2671  return T;
2672 }
2673 
2675  return new (C, ID)
2676  ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2677  nullptr, QualType(), nullptr, SC_None, nullptr);
2678 }
2679 
2681  if (!hasInheritedDefaultArg()) {
2682  SourceRange ArgRange = getDefaultArgRange();
2683  if (ArgRange.isValid())
2684  return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2685  }
2686 
2687  // DeclaratorDecl considers the range of postfix types as overlapping with the
2688  // declaration name, but this is not the case with parameters in ObjC methods.
2689  if (isa<ObjCMethodDecl>(getDeclContext()))
2691 
2693 }
2694 
2696  assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2697  assert(!hasUninstantiatedDefaultArg() &&
2698  "Default argument is not yet instantiated!");
2699 
2700  Expr *Arg = getInit();
2701  if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2702  return E->getSubExpr();
2703 
2704  return Arg;
2705 }
2706 
2708  ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2709  Init = defarg;
2710 }
2711 
2713  switch (ParmVarDeclBits.DefaultArgKind) {
2714  case DAK_None:
2715  case DAK_Unparsed:
2716  // Nothing we can do here.
2717  return SourceRange();
2718 
2719  case DAK_Uninstantiated:
2720  return getUninstantiatedDefaultArg()->getSourceRange();
2721 
2722  case DAK_Normal:
2723  if (const Expr *E = getInit())
2724  return E->getSourceRange();
2725 
2726  // Missing an actual expression, may be invalid.
2727  return SourceRange();
2728  }
2729  llvm_unreachable("Invalid default argument kind.");
2730 }
2731 
2733  ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2734  Init = arg;
2735 }
2736 
2738  assert(hasUninstantiatedDefaultArg() &&
2739  "Wrong kind of initialization expression!");
2740  return cast_or_null<Expr>(Init.get<Stmt *>());
2741 }
2742 
2744  // FIXME: We should just return false for DAK_None here once callers are
2745  // prepared for the case that we encountered an invalid default argument and
2746  // were unable to even build an invalid expression.
2747  return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2748  !Init.isNull();
2749 }
2750 
2751 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2752  getASTContext().setParameterIndex(this, parameterIndex);
2753  ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2754 }
2755 
2756 unsigned ParmVarDecl::getParameterIndexLarge() const {
2757  return getASTContext().getParameterIndex(this);
2758 }
2759 
2760 //===----------------------------------------------------------------------===//
2761 // FunctionDecl Implementation
2762 //===----------------------------------------------------------------------===//
2763 
2765  SourceLocation StartLoc,
2766  const DeclarationNameInfo &NameInfo, QualType T,
2767  TypeSourceInfo *TInfo, StorageClass S,
2768  bool isInlineSpecified,
2769  ConstexprSpecKind ConstexprKind)
2770  : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2771  StartLoc),
2773  EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2774  assert(T.isNull() || T->isFunctionType());
2775  FunctionDeclBits.SClass = S;
2777  FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2778  FunctionDeclBits.IsVirtualAsWritten = false;
2779  FunctionDeclBits.IsPure = false;
2780  FunctionDeclBits.HasInheritedPrototype = false;
2781  FunctionDeclBits.HasWrittenPrototype = true;
2782  FunctionDeclBits.IsDeleted = false;
2783  FunctionDeclBits.IsTrivial = false;
2784  FunctionDeclBits.IsTrivialForCall = false;
2785  FunctionDeclBits.IsDefaulted = false;
2786  FunctionDeclBits.IsExplicitlyDefaulted = false;
2787  FunctionDeclBits.HasImplicitReturnZero = false;
2788  FunctionDeclBits.IsLateTemplateParsed = false;
2789  FunctionDeclBits.ConstexprKind = ConstexprKind;
2790  FunctionDeclBits.InstantiationIsPending = false;
2791  FunctionDeclBits.UsesSEHTry = false;
2792  FunctionDeclBits.HasSkippedBody = false;
2793  FunctionDeclBits.WillHaveBody = false;
2794  FunctionDeclBits.IsMultiVersion = false;
2795  FunctionDeclBits.IsCopyDeductionCandidate = false;
2796  FunctionDeclBits.HasODRHash = false;
2797 }
2798 
2800  raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2801  NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2802  const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2803  if (TemplateArgs)
2804  printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2805 }
2806 
2808  if (const auto *FT = getType()->getAs<FunctionProtoType>())
2809  return FT->isVariadic();
2810  return false;
2811 }
2812 
2813 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2814  for (auto I : redecls()) {
2815  if (I->doesThisDeclarationHaveABody()) {
2816  Definition = I;
2817  return true;
2818  }
2819  }
2820 
2821  return false;
2822 }
2823 
2825 {
2826  Stmt *S = getBody();
2827  if (!S) {
2828  // Since we don't have a body for this function, we don't know if it's
2829  // trivial or not.
2830  return false;
2831  }
2832 
2833  if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2834  return true;
2835  return false;
2836 }
2837 
2838 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2839  for (auto I : redecls()) {
2840  if (I->isThisDeclarationADefinition()) {
2841  Definition = I;
2842  return true;
2843  }
2844  }
2845 
2846  return false;
2847 }
2848 
2849 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2850  if (!hasBody(Definition))
2851  return nullptr;
2852 
2853  if (Definition->Body)
2854  return Definition->Body.get(getASTContext().getExternalSource());
2855 
2856  return nullptr;
2857 }
2858 
2860  Body = B;
2861  if (B)
2862  EndRangeLoc = B->getEndLoc();
2863 }
2864 
2866  FunctionDeclBits.IsPure = P;
2867  if (P)
2868  if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2869  Parent->markedVirtualFunctionPure();
2870 }
2871 
2872 template<std::size_t Len>
2873 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2874  IdentifierInfo *II = ND->getIdentifier();
2875  return II && II->isStr(Str);
2876 }
2877 
2878 bool FunctionDecl::isMain() const {
2879  const TranslationUnitDecl *tunit =
2881  return tunit &&
2882  !tunit->getASTContext().getLangOpts().Freestanding &&
2883  isNamed(this, "main");
2884 }
2885 
2887  const TranslationUnitDecl *TUnit =
2889  if (!TUnit)
2890  return false;
2891 
2892  // Even though we aren't really targeting MSVCRT if we are freestanding,
2893  // semantic analysis for these functions remains the same.
2894 
2895  // MSVCRT entry points only exist on MSVCRT targets.
2896  if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2897  return false;
2898 
2899  // Nameless functions like constructors cannot be entry points.
2900  if (!getIdentifier())
2901  return false;
2902 
2903  return llvm::StringSwitch<bool>(getName())
2904  .Cases("main", // an ANSI console app
2905  "wmain", // a Unicode console App
2906  "WinMain", // an ANSI GUI app
2907  "wWinMain", // a Unicode GUI app
2908  "DllMain", // a DLL
2909  true)
2910  .Default(false);
2911 }
2912 
2914  assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2915  assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2916  getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2917  getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2918  getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2919 
2921  return false;
2922 
2923  const auto *proto = getType()->castAs<FunctionProtoType>();
2924  if (proto->getNumParams() != 2 || proto->isVariadic())
2925  return false;
2926 
2927  ASTContext &Context =
2928  cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2929  ->getASTContext();
2930 
2931  // The result type and first argument type are constant across all
2932  // these operators. The second argument must be exactly void*.
2933  return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2934 }
2935 
2937  if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2938  return false;
2939  if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2940  getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2941  getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2942  getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2943  return false;
2944 
2945  if (isa<CXXRecordDecl>(getDeclContext()))
2946  return false;
2947 
2948  // This can only fail for an invalid 'operator new' declaration.
2950  return false;
2951 
2952  const auto *FPT = getType()->castAs<FunctionProtoType>();
2953  if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
2954  return false;
2955 
2956  // If this is a single-parameter function, it must be a replaceable global
2957  // allocation or deallocation function.
2958  if (FPT->getNumParams() == 1)
2959  return true;
2960 
2961  unsigned Params = 1;
2962  QualType Ty = FPT->getParamType(Params);
2963  ASTContext &Ctx = getASTContext();
2964 
2965  auto Consume = [&] {
2966  ++Params;
2967  Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
2968  };
2969 
2970  // In C++14, the next parameter can be a 'std::size_t' for sized delete.
2971  bool IsSizedDelete = false;
2972  if (Ctx.getLangOpts().SizedDeallocation &&
2973  (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2974  getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
2975  Ctx.hasSameType(Ty, Ctx.getSizeType())) {
2976  IsSizedDelete = true;
2977  Consume();
2978  }
2979 
2980  // In C++17, the next parameter can be a 'std::align_val_t' for aligned
2981  // new/delete.
2982  if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
2983  if (IsAligned)
2984  *IsAligned = true;
2985  Consume();
2986  }
2987 
2988  // Finally, if this is not a sized delete, the final parameter can
2989  // be a 'const std::nothrow_t&'.
2990  if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
2991  Ty = Ty->getPointeeType();
2992  if (Ty.getCVRQualifiers() != Qualifiers::Const)
2993  return false;
2994  if (Ty->isNothrowT())
2995  Consume();
2996  }
2997 
2998  return Params == FPT->getNumParams();
2999 }
3000 
3002  // C++ P0722:
3003  // Within a class C, a single object deallocation function with signature
3004  // (T, std::destroying_delete_t, <more params>)
3005  // is a destroying operator delete.
3006  if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3007  getNumParams() < 2)
3008  return false;
3009 
3010  auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3011  return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3012  RD->getIdentifier()->isStr("destroying_delete_t");
3013 }
3014 
3016  return getDeclLanguageLinkage(*this);
3017 }
3018 
3020  return isDeclExternC(*this);
3021 }
3022 
3024  if (hasAttr<OpenCLKernelAttr>())
3025  return true;
3027 }
3028 
3031 }
3032 
3034  if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3035  return Method->isStatic();
3036 
3038  return false;
3039 
3040  for (const DeclContext *DC = getDeclContext();
3041  DC->isNamespace();
3042  DC = DC->getParent()) {
3043  if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3044  if (!Namespace->getDeclName())
3045  return false;
3046  break;
3047  }
3048  }
3049 
3050  return true;
3051 }
3052 
3054  if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3055  hasAttr<C11NoReturnAttr>())
3056  return true;
3057 
3058  if (auto *FnTy = getType()->getAs<FunctionType>())
3059  return FnTy->getNoReturnAttr();
3060 
3061  return false;
3062 }
3063 
3064 
3066  if (hasAttr<TargetAttr>())
3067  return MultiVersionKind::Target;
3068  if (hasAttr<CPUDispatchAttr>())
3070  if (hasAttr<CPUSpecificAttr>())
3072  return MultiVersionKind::None;
3073 }
3074 
3076  return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3077 }
3078 
3080  return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3081 }
3082 
3084  return isMultiVersion() && hasAttr<TargetAttr>();
3085 }
3086 
3087 void
3090 
3092  FunctionTemplateDecl *PrevFunTmpl
3093  = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3094  assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3095  FunTmpl->setPreviousDecl(PrevFunTmpl);
3096  }
3097 
3098  if (PrevDecl && PrevDecl->isInlined())
3099  setImplicitlyInline(true);
3100 }
3101 
3103 
3104 /// Returns a value indicating whether this function corresponds to a builtin
3105 /// function.
3106 ///
3107 /// The function corresponds to a built-in function if it is declared at
3108 /// translation scope or within an extern "C" block and its name matches with
3109 /// the name of a builtin. The returned value will be 0 for functions that do
3110 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3111 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3112 /// value.
3113 ///
3114 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3115 /// functions as their wrapped builtins. This shouldn't be done in general, but
3116 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3117 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3118  if (!getIdentifier())
3119  return 0;
3120 
3121  unsigned BuiltinID = getIdentifier()->getBuiltinID();
3122  if (!BuiltinID)
3123  return 0;
3124 
3125  ASTContext &Context = getASTContext();
3126  if (Context.getLangOpts().CPlusPlus) {
3127  const auto *LinkageDecl =
3129  // In C++, the first declaration of a builtin is always inside an implicit
3130  // extern "C".
3131  // FIXME: A recognised library function may not be directly in an extern "C"
3132  // declaration, for instance "extern "C" { namespace std { decl } }".
3133  if (!LinkageDecl) {
3134  if (BuiltinID == Builtin::BI__GetExceptionInfo &&
3135  Context.getTargetInfo().getCXXABI().isMicrosoft())
3136  return Builtin::BI__GetExceptionInfo;
3137  return 0;
3138  }
3139  if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
3140  return 0;
3141  }
3142 
3143  // If the function is marked "overloadable", it has a different mangled name
3144  // and is not the C library function.
3145  if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>())
3146  return 0;
3147 
3148  if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3149  return BuiltinID;
3150 
3151  // This function has the name of a known C library
3152  // function. Determine whether it actually refers to the C library
3153  // function or whether it just has the same name.
3154 
3155  // If this is a static function, it's not a builtin.
3156  if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3157  return 0;
3158 
3159  // OpenCL v1.2 s6.9.f - The library functions defined in
3160  // the C99 standard headers are not available.
3161  if (Context.getLangOpts().OpenCL &&
3162  Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3163  return 0;
3164 
3165  // CUDA does not have device-side standard library. printf and malloc are the
3166  // only special cases that are supported by device-side runtime.
3167  if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3168  !hasAttr<CUDAHostAttr>() &&
3169  !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3170  return 0;
3171 
3172  return BuiltinID;
3173 }
3174 
3175 /// getNumParams - Return the number of parameters this function must have
3176 /// based on its FunctionType. This is the length of the ParamInfo array
3177 /// after it has been created.
3178 unsigned FunctionDecl::getNumParams() const {
3179  const auto *FPT = getType()->getAs<FunctionProtoType>();
3180  return FPT ? FPT->getNumParams() : 0;
3181 }
3182 
3183 void FunctionDecl::setParams(ASTContext &C,
3184  ArrayRef<ParmVarDecl *> NewParamInfo) {
3185  assert(!ParamInfo && "Already has param info!");
3186  assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3187 
3188  // Zero params -> null pointer.
3189  if (!NewParamInfo.empty()) {
3190  ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3191  std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3192  }
3193 }
3194 
3195 /// getMinRequiredArguments - Returns the minimum number of arguments
3196 /// needed to call this function. This may be fewer than the number of
3197 /// function parameters, if some of the parameters have default
3198 /// arguments (in C++) or are parameter packs (C++11).
3200  if (!getASTContext().getLangOpts().CPlusPlus)
3201  return getNumParams();
3202 
3203  unsigned NumRequiredArgs = 0;
3204  for (auto *Param : parameters())
3205  if (!Param->isParameterPack() && !Param->hasDefaultArg())
3206  ++NumRequiredArgs;
3207  return NumRequiredArgs;
3208 }
3209 
3210 /// The combination of the extern and inline keywords under MSVC forces
3211 /// the function to be required.
3212 ///
3213 /// Note: This function assumes that we will only get called when isInlined()
3214 /// would return true for this FunctionDecl.
3216  assert(isInlined() && "expected to get called on an inlined function!");
3217 
3218  const ASTContext &Context = getASTContext();
3219  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3220  !hasAttr<DLLExportAttr>())
3221  return false;
3222 
3223  for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3224  FD = FD->getPreviousDecl())
3225  if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3226  return true;
3227 
3228  return false;
3229 }
3230 
3231 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3232  if (Redecl->getStorageClass() != SC_Extern)
3233  return false;
3234 
3235  for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3236  FD = FD->getPreviousDecl())
3237  if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3238  return false;
3239 
3240  return true;
3241 }
3242 
3243 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3244  // Only consider file-scope declarations in this test.
3245  if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3246  return false;
3247 
3248  // Only consider explicit declarations; the presence of a builtin for a
3249  // libcall shouldn't affect whether a definition is externally visible.
3250  if (Redecl->isImplicit())
3251  return false;
3252 
3253  if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3254  return true; // Not an inline definition
3255 
3256  return false;
3257 }
3258 
3259 /// For a function declaration in C or C++, determine whether this
3260 /// declaration causes the definition to be externally visible.
3261 ///
3262 /// For instance, this determines if adding the current declaration to the set
3263 /// of redeclarations of the given functions causes
3264 /// isInlineDefinitionExternallyVisible to change from false to true.
3266  assert(!doesThisDeclarationHaveABody() &&
3267  "Must have a declaration without a body.");
3268 
3269  ASTContext &Context = getASTContext();
3270 
3271  if (Context.getLangOpts().MSVCCompat) {
3272  const FunctionDecl *Definition;
3273  if (hasBody(Definition) && Definition->isInlined() &&
3274  redeclForcesDefMSVC(this))
3275  return true;
3276  }
3277 
3278  if (Context.getLangOpts().CPlusPlus)
3279  return false;
3280 
3281  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3282  // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3283  // an externally visible definition.
3284  //
3285  // FIXME: What happens if gnu_inline gets added on after the first
3286  // declaration?
3288  return false;
3289 
3290  const FunctionDecl *Prev = this;
3291  bool FoundBody = false;
3292  while ((Prev = Prev->getPreviousDecl())) {
3293  FoundBody |= Prev->Body.isValid();
3294 
3295  if (Prev->Body) {
3296  // If it's not the case that both 'inline' and 'extern' are
3297  // specified on the definition, then it is always externally visible.
3298  if (!Prev->isInlineSpecified() ||
3299  Prev->getStorageClass() != SC_Extern)
3300  return false;
3301  } else if (Prev->isInlineSpecified() &&
3302  Prev->getStorageClass() != SC_Extern) {
3303  return false;
3304  }
3305  }
3306  return FoundBody;
3307  }
3308 
3309  // C99 6.7.4p6:
3310  // [...] If all of the file scope declarations for a function in a
3311  // translation unit include the inline function specifier without extern,
3312  // then the definition in that translation unit is an inline definition.
3314  return false;
3315  const FunctionDecl *Prev = this;
3316  bool FoundBody = false;
3317  while ((Prev = Prev->getPreviousDecl())) {
3318  FoundBody |= Prev->Body.isValid();
3319  if (RedeclForcesDefC99(Prev))
3320  return false;
3321  }
3322  return FoundBody;
3323 }
3324 
3326  const TypeSourceInfo *TSI = getTypeSourceInfo();
3327  if (!TSI)
3328  return SourceRange();
3329  FunctionTypeLoc FTL =
3331  if (!FTL)
3332  return SourceRange();
3333 
3334  // Skip self-referential return types.
3336  SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3337  SourceLocation Boundary = getNameInfo().getBeginLoc();
3338  if (RTRange.isInvalid() || Boundary.isInvalid() ||
3339  !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3340  return SourceRange();
3341 
3342  return RTRange;
3343 }
3344 
3346  const TypeSourceInfo *TSI = getTypeSourceInfo();
3347  if (!TSI)
3348  return SourceRange();
3349  FunctionTypeLoc FTL =
3351  if (!FTL)
3352  return SourceRange();
3353 
3354  return FTL.getExceptionSpecRange();
3355 }
3356 
3357 /// For an inline function definition in C, or for a gnu_inline function
3358 /// in C++, determine whether the definition will be externally visible.
3359 ///
3360 /// Inline function definitions are always available for inlining optimizations.
3361 /// However, depending on the language dialect, declaration specifiers, and
3362 /// attributes, the definition of an inline function may or may not be
3363 /// "externally" visible to other translation units in the program.
3364 ///
3365 /// In C99, inline definitions are not externally visible by default. However,
3366 /// if even one of the global-scope declarations is marked "extern inline", the
3367 /// inline definition becomes externally visible (C99 6.7.4p6).
3368 ///
3369 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3370 /// definition, we use the GNU semantics for inline, which are nearly the
3371 /// opposite of C99 semantics. In particular, "inline" by itself will create
3372 /// an externally visible symbol, but "extern inline" will not create an
3373 /// externally visible symbol.
3375  assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3376  hasAttr<AliasAttr>()) &&
3377  "Must be a function definition");
3378  assert(isInlined() && "Function must be inline");
3379  ASTContext &Context = getASTContext();
3380 
3381  if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3382  // Note: If you change the logic here, please change
3383  // doesDeclarationForceExternallyVisibleDefinition as well.
3384  //
3385  // If it's not the case that both 'inline' and 'extern' are
3386  // specified on the definition, then this inline definition is
3387  // externally visible.
3388  if (Context.getLangOpts().CPlusPlus)
3389  return false;
3390  if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3391  return true;
3392 
3393  // If any declaration is 'inline' but not 'extern', then this definition
3394  // is externally visible.
3395  for (auto Redecl : redecls()) {
3396  if (Redecl->isInlineSpecified() &&
3397  Redecl->getStorageClass() != SC_Extern)
3398  return true;
3399  }
3400 
3401  return false;
3402  }
3403 
3404  // The rest of this function is C-only.
3405  assert(!Context.getLangOpts().CPlusPlus &&
3406  "should not use C inline rules in C++");
3407 
3408  // C99 6.7.4p6:
3409  // [...] If all of the file scope declarations for a function in a
3410  // translation unit include the inline function specifier without extern,
3411  // then the definition in that translation unit is an inline definition.
3412  for (auto Redecl : redecls()) {
3413  if (RedeclForcesDefC99(Redecl))
3414  return true;
3415  }
3416 
3417  // C99 6.7.4p6:
3418  // An inline definition does not provide an external definition for the
3419  // function, and does not forbid an external definition in another
3420  // translation unit.
3421  return false;
3422 }
3423 
3424 /// getOverloadedOperator - Which C++ overloaded operator this
3425 /// function represents, if any.
3427  if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3429  else
3430  return OO_None;
3431 }
3432 
3433 /// getLiteralIdentifier - The literal suffix identifier this function
3434 /// represents, if any.
3438  else
3439  return nullptr;
3440 }
3441 
3443  if (TemplateOrSpecialization.isNull())
3444  return TK_NonTemplate;
3445  if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3446  return TK_FunctionTemplate;
3447  if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3448  return TK_MemberSpecialization;
3449  if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3451  if (TemplateOrSpecialization.is
3454 
3455  llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3456 }
3457 
3460  return cast<FunctionDecl>(Info->getInstantiatedFrom());
3461 
3462  return nullptr;
3463 }
3464 
3466  if (auto *MSI =
3467  TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3468  return MSI;
3469  if (auto *FTSI = TemplateOrSpecialization
3470  .dyn_cast<FunctionTemplateSpecializationInfo *>())
3471  return FTSI->getMemberSpecializationInfo();
3472  return nullptr;
3473 }
3474 
3475 void
3476 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3477  FunctionDecl *FD,
3479  assert(TemplateOrSpecialization.isNull() &&
3480  "Member function is already a specialization");
3482  = new (C) MemberSpecializationInfo(FD, TSK);
3483  TemplateOrSpecialization = Info;
3484 }
3485 
3487  return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3488 }
3489 
3491  assert(TemplateOrSpecialization.isNull() &&
3492  "Member function is already a specialization");
3493  TemplateOrSpecialization = Template;
3494 }
3495 
3497  // If the function is invalid, it can't be implicitly instantiated.
3498  if (isInvalidDecl())
3499  return false;
3500 
3502  case TSK_Undeclared:
3505  return false;
3506 
3508  return true;
3509 
3511  // Handled below.
3512  break;
3513  }
3514 
3515  // Find the actual template from which we will instantiate.
3516  const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3517  bool HasPattern = false;
3518  if (PatternDecl)
3519  HasPattern = PatternDecl->hasBody(PatternDecl);
3520 
3521  // C++0x [temp.explicit]p9:
3522  // Except for inline functions, other explicit instantiation declarations
3523  // have the effect of suppressing the implicit instantiation of the entity
3524  // to which they refer.
3525  if (!HasPattern || !PatternDecl)
3526  return true;
3527 
3528  return PatternDecl->isInlined();
3529 }
3530 
3532  // FIXME: Remove this, it's not clear what it means. (Which template
3533  // specialization kind?)
3535 }
3536 
3538  // If this is a generic lambda call operator specialization, its
3539  // instantiation pattern is always its primary template's pattern
3540  // even if its primary template was instantiated from another
3541  // member template (which happens with nested generic lambdas).
3542  // Since a lambda's call operator's body is transformed eagerly,
3543  // we don't have to go hunting for a prototype definition template
3544  // (i.e. instantiated-from-member-template) to use as an instantiation
3545  // pattern.
3546 
3548  dyn_cast<CXXMethodDecl>(this))) {
3549  assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3550  return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3551  }
3552 
3554  if (!clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3555  return nullptr;
3556  return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3557  }
3558 
3560  return nullptr;
3561 
3562  if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3563  // If we hit a point where the user provided a specialization of this
3564  // template, we're done looking.
3565  while (!Primary->isMemberSpecialization()) {
3566  auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3567  if (!NewPrimary)
3568  break;
3569  Primary = NewPrimary;
3570  }
3571 
3572  return getDefinitionOrSelf(Primary->getTemplatedDecl());
3573  }
3574 
3575  return nullptr;
3576 }
3577 
3580  = TemplateOrSpecialization
3581  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3582  return Info->getTemplate();
3583  }
3584  return nullptr;
3585 }
3586 
3589  return TemplateOrSpecialization
3590  .dyn_cast<FunctionTemplateSpecializationInfo *>();
3591 }
3592 
3593 const TemplateArgumentList *
3596  = TemplateOrSpecialization
3597  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3598  return Info->TemplateArguments;
3599  }
3600  return nullptr;
3601 }
3602 
3606  = TemplateOrSpecialization
3607  .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3608  return Info->TemplateArgumentsAsWritten;
3609  }
3610  return nullptr;
3611 }
3612 
3613 void
3614 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3615  FunctionTemplateDecl *Template,
3616  const TemplateArgumentList *TemplateArgs,
3617  void *InsertPos,
3619  const TemplateArgumentListInfo *TemplateArgsAsWritten,
3620  SourceLocation PointOfInstantiation) {
3621  assert((TemplateOrSpecialization.isNull() ||
3622  TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3623  "Member function is already a specialization");
3624  assert(TSK != TSK_Undeclared &&
3625  "Must specify the type of function template specialization");
3626  assert((TemplateOrSpecialization.isNull() ||
3627  TSK == TSK_ExplicitSpecialization) &&
3628  "Member specialization must be an explicit specialization");
3631  C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3632  PointOfInstantiation,
3633  TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3634  TemplateOrSpecialization = Info;
3635  Template->addSpecialization(Info, InsertPos);
3636 }
3637 
3638 void
3640  const UnresolvedSetImpl &Templates,
3641  const TemplateArgumentListInfo &TemplateArgs) {
3642  assert(TemplateOrSpecialization.isNull());
3645  TemplateArgs);
3646  TemplateOrSpecialization = Info;
3647 }
3648 
3651  return TemplateOrSpecialization
3653 }
3654 
3657  ASTContext &Context, const UnresolvedSetImpl &Ts,
3658  const TemplateArgumentListInfo &TArgs) {
3659  void *Buffer = Context.Allocate(
3660  totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3661  TArgs.size(), Ts.size()));
3662  return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3663 }
3664 
3665 DependentFunctionTemplateSpecializationInfo::
3666 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3667  const TemplateArgumentListInfo &TArgs)
3668  : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3669  NumTemplates = Ts.size();
3670  NumArgs = TArgs.size();
3671 
3672  FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3673  for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3674  TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3675 
3676  TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3677  for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3678  new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3679 }
3680 
3682  // For a function template specialization, query the specialization
3683  // information object.
3684  if (FunctionTemplateSpecializationInfo *FTSInfo =
3685  TemplateOrSpecialization
3686  .dyn_cast<FunctionTemplateSpecializationInfo *>())
3687  return FTSInfo->getTemplateSpecializationKind();
3688 
3689  if (MemberSpecializationInfo *MSInfo =
3690  TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3691  return MSInfo->getTemplateSpecializationKind();
3692 
3693  return TSK_Undeclared;
3694 }
3695 
3698  // This is the same as getTemplateSpecializationKind(), except that for a
3699  // function that is both a function template specialization and a member
3700  // specialization, we prefer the member specialization information. Eg:
3701  //
3702  // template<typename T> struct A {
3703  // template<typename U> void f() {}
3704  // template<> void f<int>() {}
3705  // };
3706  //
3707  // For A<int>::f<int>():
3708  // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3709  // * getTemplateSpecializationKindForInstantiation() will return
3710  // TSK_ImplicitInstantiation
3711  //
3712  // This reflects the facts that A<int>::f<int> is an explicit specialization
3713  // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3714  // from A::f<int> if a definition is needed.
3715  if (FunctionTemplateSpecializationInfo *FTSInfo =
3716  TemplateOrSpecialization
3717  .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3718  if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3719  return MSInfo->getTemplateSpecializationKind();
3720  return FTSInfo->getTemplateSpecializationKind();
3721  }
3722 
3723  if (MemberSpecializationInfo *MSInfo =
3724  TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3725  return MSInfo->getTemplateSpecializationKind();
3726 
3727  return TSK_Undeclared;
3728 }
3729 
3730 void
3732  SourceLocation PointOfInstantiation) {
3734  = TemplateOrSpecialization.dyn_cast<
3736  FTSInfo->setTemplateSpecializationKind(TSK);
3737  if (TSK != TSK_ExplicitSpecialization &&
3738  PointOfInstantiation.isValid() &&
3739  FTSInfo->getPointOfInstantiation().isInvalid()) {
3740  FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3742  L->InstantiationRequested(this);
3743  }
3744  } else if (MemberSpecializationInfo *MSInfo
3745  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3746  MSInfo->setTemplateSpecializationKind(TSK);
3747  if (TSK != TSK_ExplicitSpecialization &&
3748  PointOfInstantiation.isValid() &&
3749  MSInfo->getPointOfInstantiation().isInvalid()) {
3750  MSInfo->setPointOfInstantiation(PointOfInstantiation);
3752  L->InstantiationRequested(this);
3753  }
3754  } else
3755  llvm_unreachable("Function cannot have a template specialization kind");
3756 }
3757 
3760  = TemplateOrSpecialization.dyn_cast<
3762  return FTSInfo->getPointOfInstantiation();
3763  else if (MemberSpecializationInfo *MSInfo
3764  = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3765  return MSInfo->getPointOfInstantiation();
3766 
3767  return SourceLocation();
3768 }
3769 
3771  if (Decl::isOutOfLine())
3772  return true;
3773 
3774  // If this function was instantiated from a member function of a
3775  // class template, check whether that member function was defined out-of-line.
3777  const FunctionDecl *Definition;
3778  if (FD->hasBody(Definition))
3779  return Definition->isOutOfLine();
3780  }
3781 
3782  // If this function was instantiated from a function template,
3783  // check whether that function template was defined out-of-line.
3784  if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3785  const FunctionDecl *Definition;
3786  if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3787  return Definition->isOutOfLine();
3788  }
3789 
3790  return false;
3791 }
3792 
3794  return SourceRange(getOuterLocStart(), EndRangeLoc);
3795 }
3796 
3798  IdentifierInfo *FnInfo = getIdentifier();
3799 
3800  if (!FnInfo)
3801  return 0;
3802 
3803  // Builtin handling.
3804  switch (getBuiltinID()) {
3805  case Builtin::BI__builtin_memset:
3806  case Builtin::BI__builtin___memset_chk:
3807  case Builtin::BImemset:
3808  return Builtin::BImemset;
3809 
3810  case Builtin::BI__builtin_memcpy:
3811  case Builtin::BI__builtin___memcpy_chk:
3812  case Builtin::BImemcpy:
3813  return Builtin::BImemcpy;
3814 
3815  case Builtin::BI__builtin_memmove:
3816  case Builtin::BI__builtin___memmove_chk:
3817  case Builtin::BImemmove:
3818  return Builtin::BImemmove;
3819 
3820  case Builtin::BIstrlcpy:
3821  case Builtin::BI__builtin___strlcpy_chk:
3822  return Builtin::BIstrlcpy;
3823 
3824  case Builtin::BIstrlcat:
3825  case Builtin::BI__builtin___strlcat_chk:
3826  return Builtin::BIstrlcat;
3827 
3828  case Builtin::BI__builtin_memcmp:
3829  case Builtin::BImemcmp:
3830  return Builtin::BImemcmp;
3831 
3832  case Builtin::BI__builtin_bcmp:
3833  case Builtin::BIbcmp:
3834  return Builtin::BIbcmp;
3835 
3836  case Builtin::BI__builtin_strncpy:
3837  case Builtin::BI__builtin___strncpy_chk:
3838  case Builtin::BIstrncpy:
3839  return Builtin::BIstrncpy;
3840 
3841  case Builtin::BI__builtin_strncmp:
3842  case Builtin::BIstrncmp:
3843  return Builtin::BIstrncmp;
3844 
3845  case Builtin::BI__builtin_strncasecmp:
3846  case Builtin::BIstrncasecmp:
3847  return Builtin::BIstrncasecmp;
3848 
3849  case Builtin::BI__builtin_strncat:
3850  case Builtin::BI__builtin___strncat_chk:
3851  case Builtin::BIstrncat:
3852  return Builtin::BIstrncat;
3853 
3854  case Builtin::BI__builtin_strndup:
3855  case Builtin::BIstrndup:
3856  return Builtin::BIstrndup;
3857 
3858  case Builtin::BI__builtin_strlen:
3859  case Builtin::BIstrlen:
3860  return Builtin::BIstrlen;
3861 
3862  case Builtin::BI__builtin_bzero:
3863  case Builtin::BIbzero:
3864  return Builtin::BIbzero;
3865 
3866  default:
3867  if (isExternC()) {
3868  if (FnInfo->isStr("memset"))
3869  return Builtin::BImemset;
3870  else if (FnInfo->isStr("memcpy"))
3871  return Builtin::BImemcpy;
3872  else if (FnInfo->isStr("memmove"))
3873  return Builtin::BImemmove;
3874  else if (FnInfo->isStr("memcmp"))
3875  return Builtin::BImemcmp;
3876  else if (FnInfo->isStr("bcmp"))
3877  return Builtin::BIbcmp;
3878  else if (FnInfo->isStr("strncpy"))
3879  return Builtin::BIstrncpy;
3880  else if (FnInfo->isStr("strncmp"))
3881  return Builtin::BIstrncmp;
3882  else if (FnInfo->isStr("strncasecmp"))
3883  return Builtin::BIstrncasecmp;
3884  else if (FnInfo->isStr("strncat"))
3885  return Builtin::BIstrncat;
3886  else if (FnInfo->isStr("strndup"))
3887  return Builtin::BIstrndup;
3888  else if (FnInfo->isStr("strlen"))
3889  return Builtin::BIstrlen;
3890  else if (FnInfo->isStr("bzero"))
3891  return Builtin::BIbzero;
3892  }
3893  break;
3894  }
3895  return 0;
3896 }
3897 
3898 unsigned FunctionDecl::getODRHash() const {
3899  assert(hasODRHash());
3900  return ODRHash;
3901 }
3902 
3904  if (hasODRHash())
3905  return ODRHash;
3906 
3907  if (auto *FT = getInstantiatedFromMemberFunction()) {
3908  setHasODRHash(true);
3909  ODRHash = FT->getODRHash();
3910  return ODRHash;
3911  }
3912 
3913  class ODRHash Hash;
3914  Hash.AddFunctionDecl(this);
3915  setHasODRHash(true);
3916  ODRHash = Hash.CalculateHash();
3917  return ODRHash;
3918 }
3919 
3920 //===----------------------------------------------------------------------===//
3921 // FieldDecl Implementation
3922 //===----------------------------------------------------------------------===//
3923 
3925  SourceLocation StartLoc, SourceLocation IdLoc,
3927  TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3928  InClassInitStyle InitStyle) {
3929  return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3930  BW, Mutable, InitStyle);
3931 }
3932 
3934  return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3935  SourceLocation(), nullptr, QualType(), nullptr,
3936  nullptr, false, ICIS_NoInit);
3937 }
3938 
3940  if (!isImplicit() || getDeclName())
3941  return false;
3942 
3943  if (const auto *Record = getType()->getAs<RecordType>())
3944  return Record->getDecl()->isAnonymousStructOrUnion();
3945 
3946  return false;
3947 }
3948 
3949 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3950  assert(isBitField() && "not a bitfield");
3951  return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
3952 }
3953 
3955  return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
3956  getBitWidthValue(Ctx) == 0;
3957 }
3958 
3959 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
3960  if (isZeroLengthBitField(Ctx))
3961  return true;
3962 
3963  // C++2a [intro.object]p7:
3964  // An object has nonzero size if it
3965  // -- is not a potentially-overlapping subobject, or
3966  if (!hasAttr<NoUniqueAddressAttr>())
3967  return false;
3968 
3969  // -- is not of class type, or
3970  const auto *RT = getType()->getAs<RecordType>();
3971  if (!RT)
3972  return false;
3973  const RecordDecl *RD = RT->getDecl()->getDefinition();
3974  if (!RD) {
3975  assert(isInvalidDecl() && "valid field has incomplete type");
3976  return false;
3977  }
3978 
3979  // -- [has] virtual member functions or virtual base classes, or
3980  // -- has subobjects of nonzero size or bit-fields of nonzero length
3981  const auto *CXXRD = cast<CXXRecordDecl>(RD);
3982  if (!CXXRD->isEmpty())
3983  return false;
3984 
3985  // Otherwise, [...] the circumstances under which the object has zero size
3986  // are implementation-defined.
3987  // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
3988  // ABI will do.
3989  return true;
3990 }
3991 
3992 unsigned FieldDecl::getFieldIndex() const {
3993  const FieldDecl *Canonical = getCanonicalDecl();
3994  if (Canonical != this)
3995  return Canonical->getFieldIndex();
3996 
3997  if (CachedFieldIndex) return CachedFieldIndex - 1;
3998 
3999  unsigned Index = 0;
4000  const RecordDecl *RD = getParent()->getDefinition();
4001  assert(RD && "requested index for field of struct with no definition");
4002 
4003  for (auto *Field : RD->fields()) {
4004  Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4005  ++Index;
4006  }
4007 
4008  assert(CachedFieldIndex && "failed to find field in parent");
4009  return CachedFieldIndex - 1;
4010 }
4011 
4013  const Expr *FinalExpr = getInClassInitializer();
4014  if (!FinalExpr)
4015  FinalExpr = getBitWidth();
4016  if (FinalExpr)
4017  return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4019 }
4020 
4022  assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4023  "capturing type in non-lambda or captured record.");
4024  assert(InitStorage.getInt() == ISK_NoInit &&
4025  InitStorage.getPointer() == nullptr &&
4026  "bit width, initializer or captured type already set");
4027  InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4028  ISK_CapturedVLAType);
4029 }
4030 
4031 //===----------------------------------------------------------------------===//
4032 // TagDecl Implementation
4033 //===----------------------------------------------------------------------===//
4034 
4036  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4037  SourceLocation StartL)
4038  : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4039  TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4040  assert((DK != Enum || TK == TTK_Enum) &&
4041  "EnumDecl not matched with TTK_Enum");
4042  setPreviousDecl(PrevDecl);
4043  setTagKind(TK);
4044  setCompleteDefinition(false);
4045  setBeingDefined(false);
4046  setEmbeddedInDeclarator(false);
4047  setFreeStanding(false);
4049 }
4050 
4052  return getTemplateOrInnerLocStart(this);
4053 }
4054 
4056  SourceLocation RBraceLoc = BraceRange.getEnd();
4057  SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4058  return SourceRange(getOuterLocStart(), E);
4059 }
4060 
4062 
4064  TypedefNameDeclOrQualifier = TDD;
4065  if (const Type *T = getTypeForDecl()) {
4066  (void)T;
4067  assert(T->isLinkageValid());
4068  }
4069  assert(isLinkageValid());
4070 }
4071 
4073  setBeingDefined(true);
4074 
4075  if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4076  struct CXXRecordDecl::DefinitionData *Data =
4077  new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4078  for (auto I : redecls())
4079  cast<CXXRecordDecl>(I)->DefinitionData = Data;
4080  }
4081 }
4082 
4084  assert((!isa<CXXRecordDecl>(this) ||
4085  cast<CXXRecordDecl>(this)->hasDefinition()) &&
4086  "definition completed but not started");
4087 
4088  setCompleteDefinition(true);
4089  setBeingDefined(false);
4090 
4092  L->CompletedTagDefinition(this);
4093 }
4094 
4096  if (isCompleteDefinition())
4097  return const_cast<TagDecl *>(this);
4098 
4099  // If it's possible for us to have an out-of-date definition, check now.
4100  if (mayHaveOutOfDateDef()) {
4101  if (IdentifierInfo *II = getIdentifier()) {
4102  if (II->isOutOfDate()) {
4103  updateOutOfDate(*II);
4104  }
4105  }
4106  }
4107 
4108  if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4109  return CXXRD->getDefinition();
4110 
4111  for (auto R : redecls())
4112  if (R->isCompleteDefinition())
4113  return R;
4114 
4115  return nullptr;
4116 }
4117 
4119  if (QualifierLoc) {
4120  // Make sure the extended qualifier info is allocated.
4121  if (!hasExtInfo())
4122  TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4123  // Set qualifier info.
4124  getExtInfo()->QualifierLoc = QualifierLoc;
4125  } else {
4126  // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4127  if (hasExtInfo()) {
4128  if (getExtInfo()->NumTemplParamLists == 0) {
4129  getASTContext().Deallocate(getExtInfo());
4130  TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4131  }
4132  else
4133  getExtInfo()->QualifierLoc = QualifierLoc;
4134  }
4135  }
4136 }
4137 
4139  ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4140  assert(!TPLists.empty());
4141  // Make sure the extended decl info is allocated.
4142  if (!hasExtInfo())
4143  // Allocate external info struct.
4144  TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4145  // Set the template parameter lists info.
4146  getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4147 }
4148 
4149 //===----------------------------------------------------------------------===//
4150 // EnumDecl Implementation
4151 //===----------------------------------------------------------------------===//
4152 
4153 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4154  SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4155  bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4156  : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4157  assert(Scoped || !ScopedUsingClassTag);
4158  IntegerType = nullptr;
4159  setNumPositiveBits(0);
4160  setNumNegativeBits(0);
4161  setScoped(Scoped);
4162  setScopedUsingClassTag(ScopedUsingClassTag);
4163  setFixed(Fixed);
4164  setHasODRHash(false);
4165  ODRHash = 0;
4166 }
4167 
4168 void EnumDecl::anchor() {}
4169 
4171  SourceLocation StartLoc, SourceLocation IdLoc,
4172  IdentifierInfo *Id,
4173  EnumDecl *PrevDecl, bool IsScoped,
4174  bool IsScopedUsingClassTag, bool IsFixed) {
4175  auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4176  IsScoped, IsScopedUsingClassTag, IsFixed);
4177  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4178  C.getTypeDeclType(Enum, PrevDecl);
4179  return Enum;
4180 }
4181 
4183  EnumDecl *Enum =
4184  new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4185  nullptr, nullptr, false, false, false);
4186  Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4187  return Enum;
4188 }
4189 
4191  if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4192  return TI->getTypeLoc().getSourceRange();
4193  return SourceRange();
4194 }
4195 
4197  QualType NewPromotionType,
4198  unsigned NumPositiveBits,
4199  unsigned NumNegativeBits) {
4200  assert(!isCompleteDefinition() && "Cannot redefine enums!");
4201  if (!IntegerType)
4202  IntegerType = NewType.getTypePtr();
4203  PromotionType = NewPromotionType;
4204  setNumPositiveBits(NumPositiveBits);
4205  setNumNegativeBits(NumNegativeBits);
4207 }
4208 
4209 bool EnumDecl::isClosed() const {
4210  if (const auto *A = getAttr<EnumExtensibilityAttr>())
4211  return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4212  return true;
4213 }
4214 
4216  return isClosed() && hasAttr<FlagEnumAttr>();
4217 }
4218 
4220  return isClosed() && !hasAttr<FlagEnumAttr>();
4221 }
4222 
4224  if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4225  return MSI->getTemplateSpecializationKind();
4226 
4227  return TSK_Undeclared;
4228 }
4229 
4231  SourceLocation PointOfInstantiation) {
4232  MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4233  assert(MSI && "Not an instantiated member enumeration?");
4235  if (TSK != TSK_ExplicitSpecialization &&
4236  PointOfInstantiation.isValid() &&
4238  MSI->setPointOfInstantiation(PointOfInstantiation);
4239 }
4240 
4242  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4243  if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4244  EnumDecl *ED = getInstantiatedFromMemberEnum();
4245  while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4246  ED = NewED;
4247  return getDefinitionOrSelf(ED);
4248  }
4249  }
4250 
4252  "couldn't find pattern for enum instantiation");
4253  return nullptr;
4254 }
4255 
4257  if (SpecializationInfo)
4258  return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4259 
4260  return nullptr;
4261 }
4262 
4263 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4265  assert(!SpecializationInfo && "Member enum is already a specialization");
4266  SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4267 }
4268 
4270  if (hasODRHash())
4271  return ODRHash;
4272 
4273  class ODRHash Hash;
4274  Hash.AddEnumDecl(this);
4275  setHasODRHash(true);
4276  ODRHash = Hash.CalculateHash();
4277  return ODRHash;
4278 }
4279 
4280 //===----------------------------------------------------------------------===//
4281 // RecordDecl Implementation
4282 //===----------------------------------------------------------------------===//
4283 
4285  DeclContext *DC, SourceLocation StartLoc,
4286  SourceLocation IdLoc, IdentifierInfo *Id,
4287  RecordDecl *PrevDecl)
4288  : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4289  assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4292  setHasObjectMember(false);
4293  setHasVolatileMember(false);
4303 }
4304 
4306  SourceLocation StartLoc, SourceLocation IdLoc,
4307  IdentifierInfo *Id, RecordDecl* PrevDecl) {
4308  RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4309  StartLoc, IdLoc, Id, PrevDecl);
4310  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4311 
4312  C.getTypeDeclType(R, PrevDecl);
4313  return R;
4314 }
4315 
4317  RecordDecl *R =
4318  new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4319  SourceLocation(), nullptr, nullptr);
4320  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4321  return R;
4322 }
4323 
4325  return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4326  cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4327 }
4328 
4329 bool RecordDecl::isLambda() const {
4330  if (auto RD = dyn_cast<CXXRecordDecl>(this))
4331  return RD->isLambda();
4332  return false;
4333 }
4334 
4336  return hasAttr<CapturedRecordAttr>();
4337 }
4338 
4340  addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4341 }
4342 
4345  LoadFieldsFromExternalStorage();
4346 
4348 }
4349 
4350 /// completeDefinition - Notes that the definition of this type is now
4351 /// complete.
4353  assert(!isCompleteDefinition() && "Cannot redefine record!");
4355 }
4356 
4357 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4358 /// This which can be turned on with an attribute, pragma, or the
4359 /// -mms-bitfields command-line option.
4360 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4361  return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4362 }
4363 
4364 void RecordDecl::LoadFieldsFromExternalStorage() const {
4366  assert(hasExternalLexicalStorage() && Source && "No external storage?");
4367 
4368  // Notify that we have a RecordDecl doing some initialization.
4369  ExternalASTSource::Deserializing TheFields(Source);
4370 
4371  SmallVector<Decl*, 64> Decls;
4373  Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4375  }, Decls);
4376 
4377 #ifndef NDEBUG
4378  // Check that all decls we got were FieldDecls.
4379  for (unsigned i=0, e=Decls.size(); i != e; ++i)
4380  assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4381 #endif
4382 
4383  if (Decls.empty())
4384  return;
4385 
4386  std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4387  /*FieldsAlreadyLoaded=*/false);
4388 }
4389 
4390 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4391  ASTContext &Context = getASTContext();
4392  const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4393  (SanitizerKind::Address | SanitizerKind::KernelAddress);
4394  if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4395  return false;
4396  const auto &Blacklist = Context.getSanitizerBlacklist();
4397  const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4398  // We may be able to relax some of these requirements.
4399  int ReasonToReject = -1;
4400  if (!CXXRD || CXXRD->isExternCContext())
4401  ReasonToReject = 0; // is not C++.
4402  else if (CXXRD->hasAttr<PackedAttr>())
4403  ReasonToReject = 1; // is packed.
4404  else if (CXXRD->isUnion())
4405  ReasonToReject = 2; // is a union.
4406  else if (CXXRD->isTriviallyCopyable())
4407  ReasonToReject = 3; // is trivially copyable.
4408  else if (CXXRD->hasTrivialDestructor())
4409  ReasonToReject = 4; // has trivial destructor.
4410  else if (CXXRD->isStandardLayout())
4411  ReasonToReject = 5; // is standard layout.
4412  else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4413  "field-padding"))
4414  ReasonToReject = 6; // is in a blacklisted file.
4415  else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4417  "field-padding"))
4418  ReasonToReject = 7; // is blacklisted.
4419 
4420  if (EmitRemark) {
4421  if (ReasonToReject >= 0)
4422  Context.getDiagnostics().Report(
4423  getLocation(),
4424  diag::remark_sanitize_address_insert_extra_padding_rejected)
4425  << getQualifiedNameAsString() << ReasonToReject;
4426  else
4427  Context.getDiagnostics().Report(
4428  getLocation(),
4429  diag::remark_sanitize_address_insert_extra_padding_accepted)
4431  }
4432  return ReasonToReject < 0;
4433 }
4434 
4436  for (const auto *I : fields()) {
4437  if (I->getIdentifier())
4438  return I;
4439 
4440  if (const auto *RT = I->getType()->getAs<RecordType>())
4441  if (const FieldDecl *NamedDataMember =
4442  RT->getDecl()->findFirstNamedDataMember())
4443  return NamedDataMember;
4444  }
4445 
4446  // We didn't find a named data member.
4447  return nullptr;
4448 }
4449 
4450 //===----------------------------------------------------------------------===//
4451 // BlockDecl Implementation
4452 //===----------------------------------------------------------------------===//
4453 
4455  : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4456  setIsVariadic(false);
4457  setCapturesCXXThis(false);
4460  setDoesNotEscape(false);
4461  setCanAvoidCopyToHeap(false);
4462 }
4463 
4465  assert(!ParamInfo && "Already has param info!");
4466 
4467  // Zero params -> null pointer.
4468  if (!NewParamInfo.empty()) {
4469  NumParams = NewParamInfo.size();
4470  ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4471  std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4472  }
4473 }
4474 
4476  bool CapturesCXXThis) {
4477  this->setCapturesCXXThis(CapturesCXXThis);
4478  this->NumCaptures = Captures.size();
4479 
4480  if (Captures.empty()) {
4481  this->Captures = nullptr;
4482  return;
4483  }
4484 
4485  this->Captures = Captures.copy(Context).data();
4486 }
4487 
4488 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4489  for (const auto &I : captures())
4490  // Only auto vars can be captured, so no redeclaration worries.
4491  if (I.getVariable() == variable)
4492  return true;
4493 
4494  return false;
4495 }
4496 
4498  return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4499 }
4500 
4501 //===----------------------------------------------------------------------===//
4502 // Other Decl Allocation/Deallocation Method Implementations
4503 //===----------------------------------------------------------------------===//
4504 
4505 void TranslationUnitDecl::anchor() {}
4506 
4508  return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4509 }
4510 
4511 void PragmaCommentDecl::anchor() {}
4512 
4514  TranslationUnitDecl *DC,
4515  SourceLocation CommentLoc,
4516  PragmaMSCommentKind CommentKind,
4517  StringRef Arg) {
4518  PragmaCommentDecl *PCD =
4519  new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4520  PragmaCommentDecl(DC, CommentLoc, CommentKind);
4521  memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4522  PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4523  return PCD;
4524 }
4525 
4527  unsigned ID,
4528  unsigned ArgSize) {
4529  return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4531 }
4532 
4533 void PragmaDetectMismatchDecl::anchor() {}
4534 
4537  SourceLocation Loc, StringRef Name,
4538  StringRef Value) {
4539  size_t ValueStart = Name.size() + 1;
4540  PragmaDetectMismatchDecl *PDMD =
4541  new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4542  PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4543  memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4544  PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4545  memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4546  Value.size());
4547  PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4548  return PDMD;
4549 }
4550 
4553  unsigned NameValueSize) {
4554  return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4556 }
4557 
4558 void ExternCContextDecl::anchor() {}
4559 
4561  TranslationUnitDecl *DC) {
4562  return new (C, DC) ExternCContextDecl(DC);
4563 }
4564 
4565 void LabelDecl::anchor() {}
4566 
4568  SourceLocation IdentL, IdentifierInfo *II) {
4569  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4570 }
4571 
4573  SourceLocation IdentL, IdentifierInfo *II,
4574  SourceLocation GnuLabelL) {
4575  assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4576  return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4577 }
4578 
4580  return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4581  SourceLocation());
4582 }
4583 
4584 void LabelDecl::setMSAsmLabel(StringRef Name) {
4585  char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4586  memcpy(Buffer, Name.data(), Name.size());
4587  Buffer[Name.size()] = '\0';
4588  MSAsmName = Buffer;
4589 }
4590 
4591 void ValueDecl::anchor() {}
4592 
4593 bool ValueDecl::isWeak() const {
4594  for (const auto *I : attrs())
4595  if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4596  return true;
4597 
4598  return isWeakImported();
4599 }
4600 
4601 void ImplicitParamDecl::anchor() {}
4602 
4604  SourceLocation IdLoc,
4606  ImplicitParamKind ParamKind) {
4607  return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4608 }
4609 
4611  ImplicitParamKind ParamKind) {
4612  return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4613 }
4614 
4616  unsigned ID) {
4617  return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4618 }
4619 
4621  SourceLocation StartLoc,
4622  const DeclarationNameInfo &NameInfo,
4623  QualType T, TypeSourceInfo *TInfo,
4624  StorageClass SC, bool isInlineSpecified,
4625  bool hasWrittenPrototype,
4626  ConstexprSpecKind ConstexprKind) {
4627  FunctionDecl *New =
4628  new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4629  SC, isInlineSpecified, ConstexprKind);
4630  New->setHasWrittenPrototype(hasWrittenPrototype);
4631  return New;
4632 }
4633 
4635  return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4636  DeclarationNameInfo(), QualType(), nullptr,
4637  SC_None, false, CSK_unspecified);
4638 }
4639 
4641  return new (C, DC) BlockDecl(DC, L);
4642 }
4643 
4645  return new (C, ID) BlockDecl(nullptr, SourceLocation());
4646 }
4647 
4648 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4649  : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4650  NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4651 
4653  unsigned NumParams) {
4654  return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4655  CapturedDecl(DC, NumParams);
4656 }
4657 
4659  unsigned NumParams) {
4660  return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4661  CapturedDecl(nullptr, NumParams);
4662 }
4663 
4664 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4665 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4666 
4667 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4668 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4669 
4671  SourceLocation L,
4672  IdentifierInfo *Id, QualType T,
4673  Expr *E, const llvm::APSInt &V) {
4674  return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4675 }
4676 
4679  return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4680  QualType(), nullptr, llvm::APSInt());
4681 }
4682 
4683 void IndirectFieldDecl::anchor() {}
4684 
4685 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4687  QualType T,
4689  : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4690  ChainingSize(CH.size()) {
4691  // In C++, indirect field declarations conflict with tag declarations in the
4692  // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4693  if (C.getLangOpts().CPlusPlus)
4695 }
4696 
4699  IdentifierInfo *Id, QualType T,
4701  return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4702 }
4703 
4705  unsigned ID) {
4706  return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4707  DeclarationName(), QualType(), None);
4708 }
4709 
4712  if (Init)
4713  End = Init->getEndLoc();
4714  return SourceRange(getLocation(), End);
4715 }
4716 
4717 void TypeDecl::anchor() {}
4718 
4720  SourceLocation StartLoc, SourceLocation IdLoc,
4721  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4722  return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4723 }
4724 
4725 void TypedefNameDecl::anchor() {}
4726 
4728  if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4729  auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4730  auto *ThisTypedef = this;
4731  if (AnyRedecl && OwningTypedef) {
4732  OwningTypedef = OwningTypedef->getCanonicalDecl();
4733  ThisTypedef = ThisTypedef->getCanonicalDecl();
4734  }
4735  if (OwningTypedef == ThisTypedef)
4736  return TT->getDecl();
4737  }
4738 
4739  return nullptr;
4740 }
4741 
4742 bool TypedefNameDecl::isTransparentTagSlow() const {
4743  auto determineIsTransparent = [&]() {
4744  if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4745  if (auto *TD = TT->getDecl()) {
4746  if (TD->getName() != getName())
4747  return false;
4748  SourceLocation TTLoc = getLocation();
4749  SourceLocation TDLoc = TD->getLocation();
4750  if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4751  return false;
4753  return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4754  }
4755  }
4756  return false;
4757  };
4758 
4759  bool isTransparent = determineIsTransparent();
4760  MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4761  return isTransparent;
4762 }
4763 
4765  return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4766  nullptr, nullptr);
4767 }
4768 
4770  SourceLocation StartLoc,
4771  SourceLocation IdLoc, IdentifierInfo *Id,
4772  TypeSourceInfo *TInfo) {
4773  return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4774 }
4775 
4777  return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4778  SourceLocation(), nullptr, nullptr);
4779 }
4780 
4782  SourceLocation RangeEnd = getLocation();
4783  if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4784  if (typeIsPostfix(TInfo->getType()))
4785  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4786  }
4787  return SourceRange(getBeginLoc(), RangeEnd);
4788 }
4789 
4791  SourceLocation RangeEnd = getBeginLoc();
4792  if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4793  RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4794  return SourceRange(getBeginLoc(), RangeEnd);
4795 }
4796 
4797 void FileScopeAsmDecl::anchor() {}
4798 
4800  StringLiteral *Str,
4801  SourceLocation AsmLoc,
4802  SourceLocation RParenLoc) {
4803  return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4804 }
4805 
4807  unsigned ID) {
4808  return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4809  SourceLocation());
4810 }
4811 
4812 void EmptyDecl::anchor() {}
4813 
4815  return new (C, DC) EmptyDecl(DC, L);
4816 }
4817 
4819  return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4820 }
4821 
4822 //===----------------------------------------------------------------------===//
4823 // ImportDecl Implementation
4824 //===----------------------------------------------------------------------===//
4825 
4826 /// Retrieve the number of module identifiers needed to name the given
4827 /// module.
4828 static unsigned getNumModuleIdentifiers(Module *Mod) {
4829  unsigned Result = 1;
4830  while (Mod->Parent) {
4831  Mod = Mod->Parent;
4832  ++Result;
4833  }
4834  return Result;
4835 }
4836 
4837 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4838  Module *Imported,
4839  ArrayRef<SourceLocation> IdentifierLocs)
4840  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) {
4841  assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4842  auto *StoredLocs = getTrailingObjects<SourceLocation>();
4843  std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4844  StoredLocs);
4845 }
4846 
4847 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4848  Module *Imported, SourceLocation EndLoc)
4849  : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) {
4850  *getTrailingObjects<SourceLocation>() = EndLoc;
4851 }
4852 
4854  SourceLocation StartLoc, Module *Imported,
4855  ArrayRef<SourceLocation> IdentifierLocs) {
4856  return new (C, DC,
4857  additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4858  ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4859 }
4860 
4862  SourceLocation StartLoc,
4863  Module *Imported,
4864  SourceLocation EndLoc) {
4865  ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4866  ImportDecl(DC, StartLoc, Imported, EndLoc);
4867  Import->setImplicit();
4868  return Import;
4869 }
4870 
4872  unsigned NumLocations) {
4873  return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4875 }
4876 
4878  if (!ImportedAndComplete.getInt())
4879  return None;
4880 
4881  const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4882  return llvm::makeArrayRef(StoredLocs,
4883  getNumModuleIdentifiers(getImportedModule()));
4884 }
4885 
4887  if (!ImportedAndComplete.getInt())
4888  return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4889 
4890  return SourceRange(getLocation(), getIdentifierLocs().back());
4891 }
4892 
4893 //===----------------------------------------------------------------------===//
4894 // ExportDecl Implementation
4895 //===----------------------------------------------------------------------===//
4896 
4897 void ExportDecl::anchor() {}
4898 
4900  SourceLocation ExportLoc) {
4901  return new (C, DC) ExportDecl(DC, ExportLoc);
4902 }
4903 
4905  return new (C, ID) ExportDecl(nullptr, SourceLocation());
4906 }
void setLinkage(Linkage L)
Definition: Visibility.h:87
EnumDecl * getTemplateInstantiationPattern() const
Retrieve the enum definition from which this enumeration could be instantiated, if it is an instantia...
Definition: Decl.cpp:4241
VarTemplateDecl * getDescribedVarTemplate() const
Retrieves the variable template that is described by this variable declaration.
Definition: Decl.cpp:2565
bool isNoReturn() const
Determines whether this function is known to be &#39;noreturn&#39;, through an attribute on its declaration o...
Definition: Decl.cpp:3053
Defines the clang::ASTContext interface.
void setTemplateOrSpecializationInfo(VarDecl *Inst, TemplateOrSpecializationInfo TSI)
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4781
ObjCStringFormatFamily
static const Decl * getCanonicalDecl(const Decl *D)
bool mightBeUsableInConstantExpressions(ASTContext &C) const
Determine whether this variable&#39;s value might be usable in a constant expression, according to the re...
Definition: Decl.cpp:2277
void setImplicit(bool I=true)
Definition: DeclBase.h:559
Represents a function declaration or definition.
Definition: Decl.h:1784
void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation=SourceLocation())
Note that the static data member Inst is an instantiation of the static data member template Tmpl of ...
SourceRange getExceptionSpecRange() const
Definition: TypeLoc.h:1417
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2913
FunctionTemplateDecl * getTemplate() const
Retrieve the template from which this function was specialized.
Definition: DeclTemplate.h:514
unsigned getMemoryFunctionKind() const
Identify a memory copying or setting function.
Definition: Decl.cpp:3797
bool isThisDeclarationADemotedDefinition() const
If this definition should pretend to be a declaration.
Definition: Decl.h:1324
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified=false, bool hasWrittenPrototype=true, ConstexprSpecKind ConstexprKind=CSK_unspecified)
Definition: Decl.h:1931
void setNonTrivialToPrimitiveDestroy(bool V)
Definition: Decl.h:3781
bool isPredefinedLibFunction(unsigned ID) const
Determines whether this builtin is a predefined libc/libm function, such as "malloc", where we know the signature a priori.
Definition: Builtins.h:140
LanguageLinkage getLanguageLinkage() const
Compute the language linkage.
Definition: Decl.cpp:2057
bool isClosedNonFlag() const
Returns true if this enum is annotated with neither flag_enum nor enum_extensibility(open).
Definition: Decl.cpp:4219
RangeSelector member(std::string ID)
Given a MemberExpr, selects the member token.
void setAnonymousStructOrUnion(bool Anon)
Definition: Decl.h:3739
Module * getOwningModule() const
Get the module that owns this declaration (for visibility purposes).
Definition: DeclBase.h:759
static ImportDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumLocations)
Create a new, deserialized module import declaration.
Definition: Decl.cpp:4871
CanQualType VoidPtrTy
Definition: ASTContext.h:1043
bool isInExternCXXContext() const
Determines whether this function&#39;s context is, or is nested within, a C++ extern "C++" linkage spec...
Definition: Decl.cpp:3029
bool isExplicitInstantiationOrSpecialization() const
True if this declaration is an explicit specialization, explicit instantiation declaration, or explicit instantiation definition.
A (possibly-)qualified type.
Definition: Type.h:643
TagDecl * getDefinition() const
Returns the TagDecl that actually defines this struct/union/class/enum.
Definition: Decl.cpp:4095
void setCompleteDefinition(bool V=true)
True if this decl has its body fully specified.
Definition: Decl.h:3241
virtual void FindExternalLexicalDecls(const DeclContext *DC, llvm::function_ref< bool(Decl::Kind)> IsKindWeWant, SmallVectorImpl< Decl *> &Result)
Finds all declarations lexically contained within the given DeclContext, after applying an optional f...
void setMayHaveOutOfDateDef(bool V=true)
Indicates whether it is possible for declarations of this kind to have an out-of-date definition...
Definition: Decl.h:3196
Internal linkage according to the Modules TS, but can be referred to from other translation units ind...
Definition: Linkage.h:49
bool isExternC() const
Determines whether this function is a function with external, C linkage.
Definition: Decl.cpp:3019
RAII class for safely pairing a StartedDeserializing call with FinishedDeserializing.
static VarDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:1972
This file contains the declaration of the ODRHash class, which calculates a hash based on AST nodes...
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4710
bool willHaveBody() const
True if this function will eventually have a body, once it&#39;s fully parsed.
Definition: Decl.h:2284
This declaration has an owning module, but is only visible to lookups that occur within that module...
Module * getOwningModuleForLinkage(bool IgnoreLinkage=false) const
Get the module that owns this declaration for linkage purposes.
Definition: Decl.cpp:1506
void setNonTrivialToPrimitiveDefaultInitialize(bool V)
Definition: Decl.h:3765
static IndirectFieldDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, llvm::MutableArrayRef< NamedDecl *> CH)
Definition: Decl.cpp:4698
Stmt - This represents one statement.
Definition: Stmt.h:66
bool isGenericLambdaCallOperatorSpecialization(const CXXMethodDecl *MD)
Definition: ASTLambda.h:38
void setPreviousDecl(FunctionDecl *PrevDecl)
Set the previous declaration.
Definition: Decl.h:4387
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3393
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:200
bool IsICE
Whether this statement is an integral constant expression, or in C++11, whether the statement is a co...
Definition: Decl.h:809
const ASTTemplateArgumentListInfo * getTemplateSpecializationArgsAsWritten() const
Retrieve the template argument list as written in the sources, if any.
Definition: Decl.cpp:3604
VarDecl * getTemplatedDecl() const
Get the underlying variable declarations of the template.
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:557
bool isMain() const
Determines whether this function is "main", which is the entry point into an executable program...
Definition: Decl.cpp:2878
bool isOutOfLine() const override
Determine whether this is or was instantiated from an out-of-line definition of a member function...
Definition: Decl.cpp:3770
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:991
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:2855
void setEmbeddedInDeclarator(bool isInDeclarator)
True if this tag declaration is "embedded" (i.e., defined or declared for the very first time) in the...
Definition: Decl.h:3268
No linkage, which means that the entity is unique and can only be referred to from within its scope...
Definition: Linkage.h:26
void setTypedefNameForAnonDecl(TypedefNameDecl *TDD)
Definition: Decl.cpp:4063
Represents the declaration of a typedef-name via the &#39;typedef&#39; type specifier.
Definition: Decl.h:3087
C Language Family Type Representation.
Defines the SourceManager interface.
bool IsEvaluating
Whether this statement is being evaluated.
Definition: Decl.h:796
static PragmaCommentDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned ArgSize)
Definition: Decl.cpp:4526
The template argument is an expression, and we&#39;ve not resolved it to one of the other forms yet...
Definition: TemplateBase.h:86
bool isInExternCContext() const
Determines whether this function&#39;s context is, or is nested within, a C++ extern "C" linkage spec...
Definition: Decl.cpp:3023
bool isInitICE() const
Determines whether the initializer is an integral constant expression, or in C++11, whether the initializer is a constant expression.
Definition: Decl.cpp:2407
static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D)
Determine what kind of template specialization the given declaration is.
Defines the clang::Module class, which describes a module in the source code.
const Type * getTypeForDecl() const
Definition: Decl.h:2967
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
bool isVariadic() const
Whether this function prototype is variadic.
Definition: Type.h:4041
static LinkageInfo getExternalLinkageFor(const NamedDecl *D)
Definition: Decl.cpp:601
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclBase.h:421
bool isNothrow() const
Definition: Decl.cpp:4667
void setArgPassingRestrictions(ArgPassingKind Kind)
Definition: Decl.h:3820
SourceRange getSourceRange() const override LLVM_READONLY
Source range that this declaration covers.
Definition: Decl.cpp:4886
Defines the C++ template declaration subclasses.
StringRef P
OverloadedOperatorKind getCXXOverloadedOperator() const
If this name is the name of an overloadable operator in C++ (e.g., operator+), retrieve the kind of o...
void setPure(bool P=true)
Definition: Decl.cpp:2865
bool isBeforeInTranslationUnit(SourceLocation LHS, SourceLocation RHS) const
Determines the order of 2 source locations in the translation unit.
void setPreviousDeclaration(FunctionDecl *PrevDecl)
Definition: Decl.cpp:3088
unsigned getFieldIndex() const
Returns the index of this field within its record, as appropriate for passing to ASTRecordLayout::get...
Definition: Decl.cpp:3992
static Visibility getVisibilityFromAttr(const T *attr)
Given a visibility attribute, return the explicit visibility associated with it.
Definition: Decl.cpp:207
ImplicitParamKind
Defines the kind of the implicit parameter: is this an implicit parameter with pointer to &#39;this&#39;...
Definition: Decl.h:1543
The base class of the type hierarchy.
Definition: Type.h:1436
Represents an empty-declaration.
Definition: Decl.h:4357
void setParameterIndex(const ParmVarDecl *D, unsigned index)
Used by ParmVarDecl to store on the side the index of the parameter when it exceeds the size of the n...
SourceLocation getBeginLoc() const
getBeginLoc - Retrieve the location of the first token.
void setParams(ArrayRef< ParmVarDecl *> NewParamInfo)
Definition: Decl.cpp:4464
DiagnosticsEngine & getDiagnostics() const
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1290
Declaration of a variable template.
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:63
Represent a C++ namespace.
Definition: Decl.h:522
static FunctionTemplateSpecializationInfo * Create(ASTContext &C, FunctionDecl *FD, FunctionTemplateDecl *Template, TemplateSpecializationKind TSK, const TemplateArgumentList *TemplateArgs, const TemplateArgumentListInfo *TemplateArgsAsWritten, SourceLocation POI, MemberSpecializationInfo *MSInfo)
static std::enable_if<!std::is_base_of< RedeclarableTemplateDecl, T >::value, bool >::type isExplicitMemberSpecialization(const T *D)
Does the given declaration have member specialization information, and if so, is it an explicit speci...
Definition: Decl.cpp:189
virtual void completeDefinition()
Note that the definition of this type is now complete.
Definition: Decl.cpp:4352
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclBase.h:425
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:706
A container of type source information.
Definition: Decl.h:86
constexpr XRayInstrMask Function
Definition: XRayInstr.h:38
Linkage getLinkage() const
Determine the linkage of this type.
Definition: Type.cpp:3718
SourceRange getIntegerTypeRange() const LLVM_READONLY
Retrieve the source range that covers the underlying type if specified.
Definition: Decl.cpp:4190
bool CheckingICE
Whether we are checking whether this statement is an integral constant expression.
Definition: Decl.h:804
void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const override
Appends a human-readable name for this declaration into the given stream.
Definition: Decl.cpp:2799
SourceLocation getOuterLocStart() const
Return SourceLocation representing start of source range taking into account any outer template decla...
Definition: Decl.cpp:4051
void setTemplateParameterListsInfo(ASTContext &Context, ArrayRef< TemplateParameterList *> TPLists)
Sets info about "outer" template parameter lists.
Definition: Decl.cpp:1915
const Expr * getAnyInitializer() const
Get the initializer for this variable, no matter which declaration it is attached to...
Definition: Decl.h:1224
bool isImplicitlyInstantiable() const
Determines whether this function is a function template specialization or a member of a class templat...
Definition: Decl.cpp:3496
This is a module that was defined by a module map and built out of header files.
Definition: Module.h:75
static CapturedDecl * CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumParams)
Definition: Decl.cpp:4658
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3238
Represents a #pragma comment line.
Definition: Decl.h:139
LinkageInfo getDeclLinkageAndVisibility(const NamedDecl *D)
Definition: Decl.cpp:1499
void setBeingDefined(bool V=true)
True if this decl is currently being defined.
Definition: Decl.h:3190
void setNothrow(bool Nothrow=true)
Definition: Decl.cpp:4668
This file provides some common utility functions for processing Lambda related AST Constructs...
unsigned getODRHash()
Definition: Decl.cpp:4269
ExplicitVisibilityKind
Kinds of explicit visibility.
Definition: Decl.h:406
Represents a variable declaration or definition.
Definition: Decl.h:827
ASTMutationListener * getASTMutationListener() const
Definition: DeclBase.cpp:381
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:36
bool WasEvaluated
Whether this statement was already evaluated.
Definition: Decl.h:793
Declaration of a redeclarable template.
Definition: DeclTemplate.h:736
static LanguageLinkage getDeclLanguageLinkage(const T &D)
Definition: Decl.cpp:2017
unsigned getNumParams() const
Definition: Type.h:3927
void mergeVisibility(Visibility newVis, bool newExplicit)
Merge in the visibility &#39;newVis&#39;.
Definition: Visibility.h:111
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6858
bool hasDefaultArg() const
Determines whether this parameter has a default argument, either parsed or not.
Definition: Decl.cpp:2743
Visibility getVisibility() const
Definition: Visibility.h:84
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:56
Declaration context for names declared as extern "C" in C++.
Definition: Decl.h:221
Represents a variable template specialization, which refers to a variable template with a given set o...
bool isExternCContext() const
Determines whether this context or some of its ancestors is a linkage specification context that spec...
Definition: DeclBase.cpp:1140
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition: Decl.h:439
bool isZeroLengthBitField(const ASTContext &Ctx) const
Is this a zero-length bit-field? Such bit-fields aren&#39;t really bit-fields at all and instead act as a...
Definition: Decl.cpp:3954
Represents an explicit template argument list in C++, e.g., the "<int>" in "sort<int>".
Definition: TemplateBase.h:603
Decl * FirstDecl
FirstDecl - The first declaration stored within this declaration context.
Definition: DeclBase.h:1753
bool isInvalidDecl() const
Definition: DeclBase.h:553
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:67
Not a TLS variable.
Definition: Decl.h:844
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:37
Represents a parameter to a function.
Definition: Decl.h:1600
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:23
Defines the clang::Expr interface and subclasses for C++ expressions.
LinkageInfo getLVForDecl(const NamedDecl *D, LVComputationKind computation)
getLVForDecl - Get the linkage and visibility for the given declaration.
Definition: Decl.cpp:1453
Provides information about a dependent function-template specialization declaration.
Definition: DeclTemplate.h:671
bool isAnonymousStructOrUnion() const
Determines whether this field is a representative for an anonymous struct or union.
Definition: Decl.cpp:3939
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:4390
ModuleKind Kind
The kind of this module.
Definition: Module.h:88
SourceRange getReturnTypeSourceRange() const
Attempt to compute an informative source range covering the function return type. ...
Definition: Decl.cpp:3325
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Defines the clang::SanitizerKind enum.
Represents a struct/union/class.
Definition: Decl.h:3662
This is the private module fragment within some C++ module.
Definition: Module.h:84
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the class template specialization.
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
Provides common interface for the Decls that can be redeclared.
Definition: Redeclarable.h:84
C11 _Thread_local.
Definition: Specifiers.h:231
static bool isRedeclarable(Decl::Kind K)
Definition: Decl.cpp:1680
One of these records is kept for each identifier that is lexed.
Represents a class template specialization, which refers to a class template with a given set of temp...
bool hasBody() const override
Returns true if this Decl represents a declaration for a body of code, such as a function or method d...
Definition: Decl.h:1983
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1060
SourceLocation getOuterLocStart() const
Return start of source range taking into account any outer template declarations. ...
Definition: Decl.cpp:1864
static bool typeIsPostfix(QualType QT)
Definition: Decl.cpp:1870
bool isInAnonymousNamespace() const
Definition: DeclBase.cpp:347
QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const
Do we need to emit an exit-time destructor for this variable, and if so, what kind?
Definition: Decl.cpp:2598
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
bool isCapturedRecord() const
Determine whether this record is a record for captured variables in CapturedStmt construct.
Definition: Decl.cpp:4335
static RecordDecl * Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl=nullptr)
Definition: Decl.cpp:4305
void print(raw_ostream &OS, const SourceManager &SM) const
void setUninstantiatedDefaultArg(Expr *arg)
Definition: Decl.cpp:2732
static IndirectFieldDecl * CreateDeserialized(ASTContext &C, unsigned ID)
Definition: Decl.cpp:4704
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:160
bool hasTrivialBody() const
Returns whether the function has a trivial body that does not require any specific codegen...
Definition: Decl.cpp:2824
A C++ nested-name-specifier augmented with source location information.
static bool redeclForcesDefMSVC(const FunctionDecl *Redecl)
Definition: Decl.cpp:3231
bool CheckedICE
Whether we already checked whether this statement was an integral constant expression.
Definition: Decl.h:800
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:71
static LinkageInfo internal()
Definition: Visibility.h:70
static bool usesTypeVisibility(const NamedDecl *D)
Is the given declaration a "type" or a "value" for the purposes of visibility computation?
Definition: Decl.cpp:179
RecordDecl * getDefinition() const
Returns the RecordDecl that actually defines this struct/union/class.
Definition: Decl.h:3867
field_range fields() const
Definition: Decl.h:3877
static unsigned getNumModuleIdentifiers(Module *Mod)
Retrieve the number of module identifiers needed to name the given module.
Definition: Decl.cpp:4828
static bool isInModulePurview(const NamedDecl *D)
Determine whether D is declared in the purview of a named module.
Definition: Decl.cpp:571
static const Decl * getOutermostFuncOrBlockContext(const Decl *D)
Definition: Decl.cpp:301
Represents a member of a struct/union/class.
Definition: Decl.h:2643
friend class DeclContext
Definition: DeclBase.h:247
void completeDefinition()
Completes the definition of this tag declaration.
Definition: Decl.cpp:4083
bool isNamespace() const
Definition: DeclBase.h:1863
bool isNothrowT() const
Definition: Type.cpp:2536
void startDefinition()
Starts the definition of this tag declaration.
Definition: Decl.cpp:4072
BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
Definition: Decl.cpp:4454
bool isReferenceType() const
Definition: Type.h:6403
SanitizerMask Mask
Bitmask of enabled sanitizers.
Definition: Sanitizers.h:173
Linkage getFormalLinkage(Linkage L)
Definition: Linkage.h:95
This declaration is definitely a definition.
Definition: Decl.h:1167
bool isLinkageValid() const
True if the computed linkage is valid.
Definition: Decl.cpp:1062
__DEVICE__ int max(int __a, int __b)
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Decl.h:746
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:49
bool hasLoadedFieldsFromExternalStorage() const
Definition: Decl.h:3752
bool hasKnownLambdaInternalLinkage() const
The lambda is known to has internal linkage no matter wheth