clang  8.0.0svn
ASTContext.cpp
Go to the documentation of this file.
1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "CXXABI.h"
16 #include "clang/AST/APValue.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/AttrIterator.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/Comment.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclBase.h"
25 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclOpenMP.h"
29 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/Expr.h"
32 #include "clang/AST/ExprCXX.h"
34 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecordLayout.h"
40 #include "clang/AST/Stmt.h"
41 #include "clang/AST/TemplateBase.h"
42 #include "clang/AST/TemplateName.h"
43 #include "clang/AST/Type.h"
44 #include "clang/AST/TypeLoc.h"
48 #include "clang/Basic/Builtins.h"
51 #include "clang/Basic/FixedPoint.h"
53 #include "clang/Basic/LLVM.h"
55 #include "clang/Basic/Linkage.h"
60 #include "clang/Basic/Specifiers.h"
62 #include "clang/Basic/TargetInfo.h"
63 #include "clang/Basic/XRayLists.h"
64 #include "llvm/ADT/APInt.h"
65 #include "llvm/ADT/APSInt.h"
66 #include "llvm/ADT/ArrayRef.h"
67 #include "llvm/ADT/DenseMap.h"
68 #include "llvm/ADT/DenseSet.h"
69 #include "llvm/ADT/FoldingSet.h"
70 #include "llvm/ADT/None.h"
71 #include "llvm/ADT/Optional.h"
72 #include "llvm/ADT/PointerUnion.h"
73 #include "llvm/ADT/STLExtras.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/StringExtras.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/ADT/Triple.h"
79 #include "llvm/Support/Capacity.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/MathExtras.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include <algorithm>
86 #include <cassert>
87 #include <cstddef>
88 #include <cstdint>
89 #include <cstdlib>
90 #include <map>
91 #include <memory>
92 #include <string>
93 #include <tuple>
94 #include <utility>
95 
96 using namespace clang;
97 
110 
113 };
114 
116  if (!CommentsLoaded && ExternalSource) {
117  ExternalSource->ReadComments();
118 
119 #ifndef NDEBUG
121  assert(std::is_sorted(RawComments.begin(), RawComments.end(),
122  BeforeThanCompare<RawComment>(SourceMgr)));
123 #endif
124 
125  CommentsLoaded = true;
126  }
127 
128  assert(D);
129 
130  // User can not attach documentation to implicit declarations.
131  if (D->isImplicit())
132  return nullptr;
133 
134  // User can not attach documentation to implicit instantiations.
135  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
136  if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
137  return nullptr;
138  }
139 
140  if (const auto *VD = dyn_cast<VarDecl>(D)) {
141  if (VD->isStaticDataMember() &&
142  VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
143  return nullptr;
144  }
145 
146  if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
147  if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
148  return nullptr;
149  }
150 
151  if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
152  TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
153  if (TSK == TSK_ImplicitInstantiation ||
154  TSK == TSK_Undeclared)
155  return nullptr;
156  }
157 
158  if (const auto *ED = dyn_cast<EnumDecl>(D)) {
159  if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
160  return nullptr;
161  }
162  if (const auto *TD = dyn_cast<TagDecl>(D)) {
163  // When tag declaration (but not definition!) is part of the
164  // decl-specifier-seq of some other declaration, it doesn't get comment
165  if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
166  return nullptr;
167  }
168  // TODO: handle comments for function parameters properly.
169  if (isa<ParmVarDecl>(D))
170  return nullptr;
171 
172  // TODO: we could look up template parameter documentation in the template
173  // documentation.
174  if (isa<TemplateTypeParmDecl>(D) ||
175  isa<NonTypeTemplateParmDecl>(D) ||
176  isa<TemplateTemplateParmDecl>(D))
177  return nullptr;
178 
180 
181  // If there are no comments anywhere, we won't find anything.
182  if (RawComments.empty())
183  return nullptr;
184 
185  // Find declaration location.
186  // For Objective-C declarations we generally don't expect to have multiple
187  // declarators, thus use declaration starting location as the "declaration
188  // location".
189  // For all other declarations multiple declarators are used quite frequently,
190  // so we use the location of the identifier as the "declaration location".
191  SourceLocation DeclLoc;
192  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
193  isa<ObjCPropertyDecl>(D) ||
194  isa<RedeclarableTemplateDecl>(D) ||
195  isa<ClassTemplateSpecializationDecl>(D))
196  DeclLoc = D->getBeginLoc();
197  else {
198  DeclLoc = D->getLocation();
199  if (DeclLoc.isMacroID()) {
200  if (isa<TypedefDecl>(D)) {
201  // If location of the typedef name is in a macro, it is because being
202  // declared via a macro. Try using declaration's starting location as
203  // the "declaration location".
204  DeclLoc = D->getBeginLoc();
205  } else if (const auto *TD = dyn_cast<TagDecl>(D)) {
206  // If location of the tag decl is inside a macro, but the spelling of
207  // the tag name comes from a macro argument, it looks like a special
208  // macro like NS_ENUM is being used to define the tag decl. In that
209  // case, adjust the source location to the expansion loc so that we can
210  // attach the comment to the tag decl.
211  if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
212  TD->isCompleteDefinition())
213  DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
214  }
215  }
216  }
217 
218  // If the declaration doesn't map directly to a location in a file, we
219  // can't find the comment.
220  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
221  return nullptr;
222 
223  // Find the comment that occurs just after this declaration.
225  {
226  // When searching for comments during parsing, the comment we are looking
227  // for is usually among the last two comments we parsed -- check them
228  // first.
229  RawComment CommentAtDeclLoc(
230  SourceMgr, SourceRange(DeclLoc), LangOpts.CommentOpts, false);
231  BeforeThanCompare<RawComment> Compare(SourceMgr);
232  ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
233  bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
234  if (!Found && RawComments.size() >= 2) {
235  MaybeBeforeDecl--;
236  Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
237  }
238 
239  if (Found) {
240  Comment = MaybeBeforeDecl + 1;
241  assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
242  &CommentAtDeclLoc, Compare));
243  } else {
244  // Slow path.
245  Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
246  &CommentAtDeclLoc, Compare);
247  }
248  }
249 
250  // Decompose the location for the declaration and find the beginning of the
251  // file buffer.
252  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
253 
254  // First check whether we have a trailing comment.
255  if (Comment != RawComments.end() &&
256  ((*Comment)->isDocumentation() || LangOpts.CommentOpts.ParseAllComments)
257  && (*Comment)->isTrailingComment() &&
258  (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
259  isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
260  std::pair<FileID, unsigned> CommentBeginDecomp
261  = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
262  // Check that Doxygen trailing comment comes after the declaration, starts
263  // on the same line and in the same file as the declaration.
264  if (DeclLocDecomp.first == CommentBeginDecomp.first &&
265  SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
266  == SourceMgr.getLineNumber(CommentBeginDecomp.first,
267  CommentBeginDecomp.second)) {
268  return *Comment;
269  }
270  }
271 
272  // The comment just after the declaration was not a trailing comment.
273  // Let's look at the previous comment.
274  if (Comment == RawComments.begin())
275  return nullptr;
276  --Comment;
277 
278  // Check that we actually have a non-member Doxygen comment.
279  if (!((*Comment)->isDocumentation() ||
280  LangOpts.CommentOpts.ParseAllComments) ||
281  (*Comment)->isTrailingComment())
282  return nullptr;
283 
284  // Decompose the end of the comment.
285  std::pair<FileID, unsigned> CommentEndDecomp
286  = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
287 
288  // If the comment and the declaration aren't in the same file, then they
289  // aren't related.
290  if (DeclLocDecomp.first != CommentEndDecomp.first)
291  return nullptr;
292 
293  // Get the corresponding buffer.
294  bool Invalid = false;
295  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
296  &Invalid).data();
297  if (Invalid)
298  return nullptr;
299 
300  // Extract text between the comment and declaration.
301  StringRef Text(Buffer + CommentEndDecomp.second,
302  DeclLocDecomp.second - CommentEndDecomp.second);
303 
304  // There should be no other declarations or preprocessor directives between
305  // comment and declaration.
306  if (Text.find_first_of(";{}#@") != StringRef::npos)
307  return nullptr;
308 
309  return *Comment;
310 }
311 
312 /// If we have a 'templated' declaration for a template, adjust 'D' to
313 /// refer to the actual template.
314 /// If we have an implicit instantiation, adjust 'D' to refer to template.
315 static const Decl *adjustDeclToTemplate(const Decl *D) {
316  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
317  // Is this function declaration part of a function template?
318  if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
319  return FTD;
320 
321  // Nothing to do if function is not an implicit instantiation.
322  if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
323  return D;
324 
325  // Function is an implicit instantiation of a function template?
326  if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
327  return FTD;
328 
329  // Function is instantiated from a member definition of a class template?
330  if (const FunctionDecl *MemberDecl =
332  return MemberDecl;
333 
334  return D;
335  }
336  if (const auto *VD = dyn_cast<VarDecl>(D)) {
337  // Static data member is instantiated from a member definition of a class
338  // template?
339  if (VD->isStaticDataMember())
340  if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
341  return MemberDecl;
342 
343  return D;
344  }
345  if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
346  // Is this class declaration part of a class template?
347  if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
348  return CTD;
349 
350  // Class is an implicit instantiation of a class template or partial
351  // specialization?
352  if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
353  if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
354  return D;
355  llvm::PointerUnion<ClassTemplateDecl *,
357  PU = CTSD->getSpecializedTemplateOrPartial();
358  return PU.is<ClassTemplateDecl*>() ?
359  static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
360  static_cast<const Decl*>(
362  }
363 
364  // Class is instantiated from a member definition of a class template?
365  if (const MemberSpecializationInfo *Info =
366  CRD->getMemberSpecializationInfo())
367  return Info->getInstantiatedFrom();
368 
369  return D;
370  }
371  if (const auto *ED = dyn_cast<EnumDecl>(D)) {
372  // Enum is instantiated from a member definition of a class template?
373  if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
374  return MemberDecl;
375 
376  return D;
377  }
378  // FIXME: Adjust alias templates?
379  return D;
380 }
381 
383  const Decl *D,
384  const Decl **OriginalDecl) const {
385  D = adjustDeclToTemplate(D);
386 
387  // Check whether we have cached a comment for this declaration already.
388  {
389  llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
390  RedeclComments.find(D);
391  if (Pos != RedeclComments.end()) {
392  const RawCommentAndCacheFlags &Raw = Pos->second;
394  if (OriginalDecl)
395  *OriginalDecl = Raw.getOriginalDecl();
396  return Raw.getRaw();
397  }
398  }
399  }
400 
401  // Search for comments attached to declarations in the redeclaration chain.
402  const RawComment *RC = nullptr;
403  const Decl *OriginalDeclForRC = nullptr;
404  for (auto I : D->redecls()) {
405  llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
406  RedeclComments.find(I);
407  if (Pos != RedeclComments.end()) {
408  const RawCommentAndCacheFlags &Raw = Pos->second;
410  RC = Raw.getRaw();
411  OriginalDeclForRC = Raw.getOriginalDecl();
412  break;
413  }
414  } else {
416  OriginalDeclForRC = I;
418  if (RC) {
419  // Call order swapped to work around ICE in VS2015 RTM (Release Win32)
420  // https://connect.microsoft.com/VisualStudio/feedback/details/1741530
422  Raw.setRaw(RC);
423  } else
425  Raw.setOriginalDecl(I);
426  RedeclComments[I] = Raw;
427  if (RC)
428  break;
429  }
430  }
431 
432  // If we found a comment, it should be a documentation comment.
433  assert(!RC || RC->isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
434 
435  if (OriginalDecl)
436  *OriginalDecl = OriginalDeclForRC;
437 
438  // Update cache for every declaration in the redeclaration chain.
440  Raw.setRaw(RC);
442  Raw.setOriginalDecl(OriginalDeclForRC);
443 
444  for (auto I : D->redecls()) {
447  R = Raw;
448  }
449 
450  return RC;
451 }
452 
453 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
455  const DeclContext *DC = ObjCMethod->getDeclContext();
456  if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
457  const ObjCInterfaceDecl *ID = IMD->getClassInterface();
458  if (!ID)
459  return;
460  // Add redeclared method here.
461  for (const auto *Ext : ID->known_extensions()) {
462  if (ObjCMethodDecl *RedeclaredMethod =
463  Ext->getMethod(ObjCMethod->getSelector(),
464  ObjCMethod->isInstanceMethod()))
465  Redeclared.push_back(RedeclaredMethod);
466  }
467  }
468 }
469 
471  const Decl *D) const {
472  auto *ThisDeclInfo = new (*this) comments::DeclInfo;
473  ThisDeclInfo->CommentDecl = D;
474  ThisDeclInfo->IsFilled = false;
475  ThisDeclInfo->fill();
476  ThisDeclInfo->CommentDecl = FC->getDecl();
477  if (!ThisDeclInfo->TemplateParameters)
478  ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
479  comments::FullComment *CFC =
480  new (*this) comments::FullComment(FC->getBlocks(),
481  ThisDeclInfo);
482  return CFC;
483 }
484 
487  return RC ? RC->parse(*this, nullptr, D) : nullptr;
488 }
489 
491  const Decl *D,
492  const Preprocessor *PP) const {
493  if (D->isInvalidDecl())
494  return nullptr;
495  D = adjustDeclToTemplate(D);
496 
497  const Decl *Canonical = D->getCanonicalDecl();
498  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
499  ParsedComments.find(Canonical);
500 
501  if (Pos != ParsedComments.end()) {
502  if (Canonical != D) {
503  comments::FullComment *FC = Pos->second;
505  return CFC;
506  }
507  return Pos->second;
508  }
509 
510  const Decl *OriginalDecl;
511 
512  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
513  if (!RC) {
514  if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
516  const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
517  if (OMD && OMD->isPropertyAccessor())
518  if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
519  if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
520  return cloneFullComment(FC, D);
521  if (OMD)
522  addRedeclaredMethods(OMD, Overridden);
523  getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
524  for (unsigned i = 0, e = Overridden.size(); i < e; i++)
525  if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
526  return cloneFullComment(FC, D);
527  }
528  else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
529  // Attach any tag type's documentation to its typedef if latter
530  // does not have one of its own.
531  QualType QT = TD->getUnderlyingType();
532  if (const auto *TT = QT->getAs<TagType>())
533  if (const Decl *TD = TT->getDecl())
534  if (comments::FullComment *FC = getCommentForDecl(TD, PP))
535  return cloneFullComment(FC, D);
536  }
537  else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
538  while (IC->getSuperClass()) {
539  IC = IC->getSuperClass();
540  if (comments::FullComment *FC = getCommentForDecl(IC, PP))
541  return cloneFullComment(FC, D);
542  }
543  }
544  else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
545  if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
546  if (comments::FullComment *FC = getCommentForDecl(IC, PP))
547  return cloneFullComment(FC, D);
548  }
549  else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
550  if (!(RD = RD->getDefinition()))
551  return nullptr;
552  // Check non-virtual bases.
553  for (const auto &I : RD->bases()) {
554  if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
555  continue;
556  QualType Ty = I.getType();
557  if (Ty.isNull())
558  continue;
559  if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
560  if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
561  continue;
562 
563  if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
564  return cloneFullComment(FC, D);
565  }
566  }
567  // Check virtual bases.
568  for (const auto &I : RD->vbases()) {
569  if (I.getAccessSpecifier() != AS_public)
570  continue;
571  QualType Ty = I.getType();
572  if (Ty.isNull())
573  continue;
574  if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
575  if (!(VirtualBase= VirtualBase->getDefinition()))
576  continue;
577  if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
578  return cloneFullComment(FC, D);
579  }
580  }
581  }
582  return nullptr;
583  }
584 
585  // If the RawComment was attached to other redeclaration of this Decl, we
586  // should parse the comment in context of that other Decl. This is important
587  // because comments can contain references to parameter names which can be
588  // different across redeclarations.
589  if (D != OriginalDecl)
590  return getCommentForDecl(OriginalDecl, PP);
591 
592  comments::FullComment *FC = RC->parse(*this, PP, D);
593  ParsedComments[Canonical] = FC;
594  return FC;
595 }
596 
597 void
598 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
599  TemplateTemplateParmDecl *Parm) {
600  ID.AddInteger(Parm->getDepth());
601  ID.AddInteger(Parm->getPosition());
602  ID.AddBoolean(Parm->isParameterPack());
603 
605  ID.AddInteger(Params->size());
607  PEnd = Params->end();
608  P != PEnd; ++P) {
609  if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
610  ID.AddInteger(0);
611  ID.AddBoolean(TTP->isParameterPack());
612  continue;
613  }
614 
615  if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
616  ID.AddInteger(1);
617  ID.AddBoolean(NTTP->isParameterPack());
618  ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
619  if (NTTP->isExpandedParameterPack()) {
620  ID.AddBoolean(true);
621  ID.AddInteger(NTTP->getNumExpansionTypes());
622  for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
623  QualType T = NTTP->getExpansionType(I);
624  ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
625  }
626  } else
627  ID.AddBoolean(false);
628  continue;
629  }
630 
631  auto *TTP = cast<TemplateTemplateParmDecl>(*P);
632  ID.AddInteger(2);
633  Profile(ID, TTP);
634  }
635 }
636 
638 ASTContext::getCanonicalTemplateTemplateParmDecl(
639  TemplateTemplateParmDecl *TTP) const {
640  // Check if we already have a canonical template template parameter.
641  llvm::FoldingSetNodeID ID;
642  CanonicalTemplateTemplateParm::Profile(ID, TTP);
643  void *InsertPos = nullptr;
644  CanonicalTemplateTemplateParm *Canonical
645  = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
646  if (Canonical)
647  return Canonical->getParam();
648 
649  // Build a canonical template parameter list.
651  SmallVector<NamedDecl *, 4> CanonParams;
652  CanonParams.reserve(Params->size());
654  PEnd = Params->end();
655  P != PEnd; ++P) {
656  if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
657  CanonParams.push_back(
659  SourceLocation(),
660  SourceLocation(),
661  TTP->getDepth(),
662  TTP->getIndex(), nullptr, false,
663  TTP->isParameterPack()));
664  else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
665  QualType T = getCanonicalType(NTTP->getType());
668  if (NTTP->isExpandedParameterPack()) {
669  SmallVector<QualType, 2> ExpandedTypes;
670  SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
671  for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
672  ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
673  ExpandedTInfos.push_back(
674  getTrivialTypeSourceInfo(ExpandedTypes.back()));
675  }
676 
678  SourceLocation(),
679  SourceLocation(),
680  NTTP->getDepth(),
681  NTTP->getPosition(), nullptr,
682  T,
683  TInfo,
684  ExpandedTypes,
685  ExpandedTInfos);
686  } else {
688  SourceLocation(),
689  SourceLocation(),
690  NTTP->getDepth(),
691  NTTP->getPosition(), nullptr,
692  T,
693  NTTP->isParameterPack(),
694  TInfo);
695  }
696  CanonParams.push_back(Param);
697 
698  } else
699  CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
700  cast<TemplateTemplateParmDecl>(*P)));
701  }
702 
703  assert(!TTP->getRequiresClause() &&
704  "Unexpected requires-clause on template template-parameter");
705  Expr *const CanonRequiresClause = nullptr;
706 
707  TemplateTemplateParmDecl *CanonTTP
709  SourceLocation(), TTP->getDepth(),
710  TTP->getPosition(),
711  TTP->isParameterPack(),
712  nullptr,
714  SourceLocation(),
715  CanonParams,
716  SourceLocation(),
717  CanonRequiresClause));
718 
719  // Get the new insert position for the node we care about.
720  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
721  assert(!Canonical && "Shouldn't be in the map!");
722  (void)Canonical;
723 
724  // Create the canonical template template parameter entry.
725  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
726  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
727  return CanonTTP;
728 }
729 
730 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
731  if (!LangOpts.CPlusPlus) return nullptr;
732 
733  switch (T.getCXXABI().getKind()) {
734  case TargetCXXABI::GenericARM: // Same as Itanium at this level
735  case TargetCXXABI::iOS:
736  case TargetCXXABI::iOS64:
742  return CreateItaniumCXXABI(*this);
744  return CreateMicrosoftCXXABI(*this);
745  }
746  llvm_unreachable("Invalid CXXABI type!");
747 }
748 
749 static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
750  const LangOptions &LOpts) {
751  if (LOpts.FakeAddressSpaceMap) {
752  // The fake address space map must have a distinct entry for each
753  // language-specific address space.
754  static const unsigned FakeAddrSpaceMap[] = {
755  0, // Default
756  1, // opencl_global
757  3, // opencl_local
758  2, // opencl_constant
759  0, // opencl_private
760  4, // opencl_generic
761  5, // cuda_device
762  6, // cuda_constant
763  7 // cuda_shared
764  };
765  return &FakeAddrSpaceMap;
766  } else {
767  return &T.getAddressSpaceMap();
768  }
769 }
770 
772  const LangOptions &LangOpts) {
773  switch (LangOpts.getAddressSpaceMapMangling()) {
775  return TI.useAddressSpaceMapMangling();
777  return true;
779  return false;
780  }
781  llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
782 }
783 
785  IdentifierTable &idents, SelectorTable &sels,
786  Builtin::Context &builtins)
787  : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()),
788  DependentTemplateSpecializationTypes(this_()),
789  SubstTemplateTemplateParmPacks(this_()), SourceMgr(SM), LangOpts(LOpts),
790  SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
791  XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
792  LangOpts.XRayNeverInstrumentFiles,
793  LangOpts.XRayAttrListFiles, SM)),
794  PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
795  BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM),
796  CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
797  CompCategories(this_()), LastSDM(nullptr, 0) {
798  TUDecl = TranslationUnitDecl::Create(*this);
799 }
800 
802  ReleaseParentMapEntries();
803 
804  // Release the DenseMaps associated with DeclContext objects.
805  // FIXME: Is this the ideal solution?
806  ReleaseDeclContextMaps();
807 
808  // Call all of the deallocation functions on all of their targets.
809  for (auto &Pair : Deallocations)
810  (Pair.first)(Pair.second);
811 
812  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
813  // because they can contain DenseMaps.
814  for (llvm::DenseMap<const ObjCContainerDecl*,
815  const ASTRecordLayout*>::iterator
816  I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
817  // Increment in loop to prevent using deallocated memory.
818  if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
819  R->Destroy(*this);
820 
821  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
822  I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
823  // Increment in loop to prevent using deallocated memory.
824  if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
825  R->Destroy(*this);
826  }
827 
828  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
829  AEnd = DeclAttrs.end();
830  A != AEnd; ++A)
831  A->second->~AttrVec();
832 
833  for (std::pair<const MaterializeTemporaryExpr *, APValue *> &MTVPair :
834  MaterializedTemporaryValues)
835  MTVPair.second->~APValue();
836 
837  for (const auto &Value : ModuleInitializers)
838  Value.second->~PerModuleInitializers();
839 }
840 
841 void ASTContext::ReleaseParentMapEntries() {
842  if (!PointerParents) return;
843  for (const auto &Entry : *PointerParents) {
844  if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
845  delete Entry.second.get<ast_type_traits::DynTypedNode *>();
846  } else if (Entry.second.is<ParentVector *>()) {
847  delete Entry.second.get<ParentVector *>();
848  }
849  }
850  for (const auto &Entry : *OtherParents) {
851  if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
852  delete Entry.second.get<ast_type_traits::DynTypedNode *>();
853  } else if (Entry.second.is<ParentVector *>()) {
854  delete Entry.second.get<ParentVector *>();
855  }
856  }
857 }
858 
859 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
860  Deallocations.push_back({Callback, Data});
861 }
862 
863 void
865  ExternalSource = std::move(Source);
866 }
867 
869  llvm::errs() << "\n*** AST Context Stats:\n";
870  llvm::errs() << " " << Types.size() << " types total.\n";
871 
872  unsigned counts[] = {
873 #define TYPE(Name, Parent) 0,
874 #define ABSTRACT_TYPE(Name, Parent)
875 #include "clang/AST/TypeNodes.def"
876  0 // Extra
877  };
878 
879  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
880  Type *T = Types[i];
881  counts[(unsigned)T->getTypeClass()]++;
882  }
883 
884  unsigned Idx = 0;
885  unsigned TotalBytes = 0;
886 #define TYPE(Name, Parent) \
887  if (counts[Idx]) \
888  llvm::errs() << " " << counts[Idx] << " " << #Name \
889  << " types, " << sizeof(Name##Type) << " each " \
890  << "(" << counts[Idx] * sizeof(Name##Type) \
891  << " bytes)\n"; \
892  TotalBytes += counts[Idx] * sizeof(Name##Type); \
893  ++Idx;
894 #define ABSTRACT_TYPE(Name, Parent)
895 #include "clang/AST/TypeNodes.def"
896 
897  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
898 
899  // Implicit special member functions.
900  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
902  << " implicit default constructors created\n";
903  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
905  << " implicit copy constructors created\n";
906  if (getLangOpts().CPlusPlus)
907  llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
909  << " implicit move constructors created\n";
910  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
912  << " implicit copy assignment operators created\n";
913  if (getLangOpts().CPlusPlus)
914  llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
916  << " implicit move assignment operators created\n";
917  llvm::errs() << NumImplicitDestructorsDeclared << "/"
919  << " implicit destructors created\n";
920 
921  if (ExternalSource) {
922  llvm::errs() << "\n";
923  ExternalSource->PrintStats();
924  }
925 
926  BumpAlloc.PrintStats();
927 }
928 
930  bool NotifyListeners) {
931  if (NotifyListeners)
932  if (auto *Listener = getASTMutationListener())
934 
935  MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
936 }
937 
939  auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
940  if (It == MergedDefModules.end())
941  return;
942 
943  auto &Merged = It->second;
945  for (Module *&M : Merged)
946  if (!Found.insert(M).second)
947  M = nullptr;
948  Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
949 }
950 
951 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
952  if (LazyInitializers.empty())
953  return;
954 
955  auto *Source = Ctx.getExternalSource();
956  assert(Source && "lazy initializers but no external source");
957 
958  auto LazyInits = std::move(LazyInitializers);
959  LazyInitializers.clear();
960 
961  for (auto ID : LazyInits)
962  Initializers.push_back(Source->GetExternalDecl(ID));
963 
964  assert(LazyInitializers.empty() &&
965  "GetExternalDecl for lazy module initializer added more inits");
966 }
967 
969  // One special case: if we add a module initializer that imports another
970  // module, and that module's only initializer is an ImportDecl, simplify.
971  if (const auto *ID = dyn_cast<ImportDecl>(D)) {
972  auto It = ModuleInitializers.find(ID->getImportedModule());
973 
974  // Maybe the ImportDecl does nothing at all. (Common case.)
975  if (It == ModuleInitializers.end())
976  return;
977 
978  // Maybe the ImportDecl only imports another ImportDecl.
979  auto &Imported = *It->second;
980  if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
981  Imported.resolve(*this);
982  auto *OnlyDecl = Imported.Initializers.front();
983  if (isa<ImportDecl>(OnlyDecl))
984  D = OnlyDecl;
985  }
986  }
987 
988  auto *&Inits = ModuleInitializers[M];
989  if (!Inits)
990  Inits = new (*this) PerModuleInitializers;
991  Inits->Initializers.push_back(D);
992 }
993 
995  auto *&Inits = ModuleInitializers[M];
996  if (!Inits)
997  Inits = new (*this) PerModuleInitializers;
998  Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
999  IDs.begin(), IDs.end());
1000 }
1001 
1003  auto It = ModuleInitializers.find(M);
1004  if (It == ModuleInitializers.end())
1005  return None;
1006 
1007  auto *Inits = It->second;
1008  Inits->resolve(*this);
1009  return Inits->Initializers;
1010 }
1011 
1013  if (!ExternCContext)
1014  ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1015 
1016  return ExternCContext;
1017 }
1018 
1021  const IdentifierInfo *II) const {
1022  auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
1023  BuiltinTemplate->setImplicit();
1024  TUDecl->addDecl(BuiltinTemplate);
1025 
1026  return BuiltinTemplate;
1027 }
1028 
1031  if (!MakeIntegerSeqDecl)
1032  MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1034  return MakeIntegerSeqDecl;
1035 }
1036 
1039  if (!TypePackElementDecl)
1040  TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1042  return TypePackElementDecl;
1043 }
1044 
1046  RecordDecl::TagKind TK) const {
1047  SourceLocation Loc;
1048  RecordDecl *NewDecl;
1049  if (getLangOpts().CPlusPlus)
1050  NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1051  Loc, &Idents.get(Name));
1052  else
1053  NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1054  &Idents.get(Name));
1055  NewDecl->setImplicit();
1056  NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1057  const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1058  return NewDecl;
1059 }
1060 
1062  StringRef Name) const {
1064  TypedefDecl *NewDecl = TypedefDecl::Create(
1065  const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1066  SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1067  NewDecl->setImplicit();
1068  return NewDecl;
1069 }
1070 
1072  if (!Int128Decl)
1073  Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1074  return Int128Decl;
1075 }
1076 
1078  if (!UInt128Decl)
1079  UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1080  return UInt128Decl;
1081 }
1082 
1083 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1084  auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1085  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1086  Types.push_back(Ty);
1087 }
1088 
1090  const TargetInfo *AuxTarget) {
1091  assert((!this->Target || this->Target == &Target) &&
1092  "Incorrect target reinitialization");
1093  assert(VoidTy.isNull() && "Context reinitialized?");
1094 
1095  this->Target = &Target;
1096  this->AuxTarget = AuxTarget;
1097 
1098  ABI.reset(createCXXABI(Target));
1099  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
1100  AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1101 
1102  // C99 6.2.5p19.
1103  InitBuiltinType(VoidTy, BuiltinType::Void);
1104 
1105  // C99 6.2.5p2.
1106  InitBuiltinType(BoolTy, BuiltinType::Bool);
1107  // C99 6.2.5p3.
1108  if (LangOpts.CharIsSigned)
1109  InitBuiltinType(CharTy, BuiltinType::Char_S);
1110  else
1111  InitBuiltinType(CharTy, BuiltinType::Char_U);
1112  // C99 6.2.5p4.
1113  InitBuiltinType(SignedCharTy, BuiltinType::SChar);
1114  InitBuiltinType(ShortTy, BuiltinType::Short);
1115  InitBuiltinType(IntTy, BuiltinType::Int);
1116  InitBuiltinType(LongTy, BuiltinType::Long);
1117  InitBuiltinType(LongLongTy, BuiltinType::LongLong);
1118 
1119  // C99 6.2.5p6.
1120  InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
1121  InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
1122  InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
1123  InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
1124  InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
1125 
1126  // C99 6.2.5p10.
1127  InitBuiltinType(FloatTy, BuiltinType::Float);
1128  InitBuiltinType(DoubleTy, BuiltinType::Double);
1129  InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
1130 
1131  // GNU extension, __float128 for IEEE quadruple precision
1132  InitBuiltinType(Float128Ty, BuiltinType::Float128);
1133 
1134  // C11 extension ISO/IEC TS 18661-3
1135  InitBuiltinType(Float16Ty, BuiltinType::Float16);
1136 
1137  // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1138  InitBuiltinType(ShortAccumTy, BuiltinType::ShortAccum);
1139  InitBuiltinType(AccumTy, BuiltinType::Accum);
1140  InitBuiltinType(LongAccumTy, BuiltinType::LongAccum);
1141  InitBuiltinType(UnsignedShortAccumTy, BuiltinType::UShortAccum);
1142  InitBuiltinType(UnsignedAccumTy, BuiltinType::UAccum);
1143  InitBuiltinType(UnsignedLongAccumTy, BuiltinType::ULongAccum);
1144  InitBuiltinType(ShortFractTy, BuiltinType::ShortFract);
1145  InitBuiltinType(FractTy, BuiltinType::Fract);
1146  InitBuiltinType(LongFractTy, BuiltinType::LongFract);
1147  InitBuiltinType(UnsignedShortFractTy, BuiltinType::UShortFract);
1148  InitBuiltinType(UnsignedFractTy, BuiltinType::UFract);
1149  InitBuiltinType(UnsignedLongFractTy, BuiltinType::ULongFract);
1150  InitBuiltinType(SatShortAccumTy, BuiltinType::SatShortAccum);
1151  InitBuiltinType(SatAccumTy, BuiltinType::SatAccum);
1152  InitBuiltinType(SatLongAccumTy, BuiltinType::SatLongAccum);
1153  InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1154  InitBuiltinType(SatUnsignedAccumTy, BuiltinType::SatUAccum);
1155  InitBuiltinType(SatUnsignedLongAccumTy, BuiltinType::SatULongAccum);
1156  InitBuiltinType(SatShortFractTy, BuiltinType::SatShortFract);
1157  InitBuiltinType(SatFractTy, BuiltinType::SatFract);
1158  InitBuiltinType(SatLongFractTy, BuiltinType::SatLongFract);
1159  InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1160  InitBuiltinType(SatUnsignedFractTy, BuiltinType::SatUFract);
1161  InitBuiltinType(SatUnsignedLongFractTy, BuiltinType::SatULongFract);
1162 
1163  // GNU extension, 128-bit integers.
1164  InitBuiltinType(Int128Ty, BuiltinType::Int128);
1165  InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
1166 
1167  // C++ 3.9.1p5
1168  if (TargetInfo::isTypeSigned(Target.getWCharType()))
1169  InitBuiltinType(WCharTy, BuiltinType::WChar_S);
1170  else // -fshort-wchar makes wchar_t be unsigned.
1171  InitBuiltinType(WCharTy, BuiltinType::WChar_U);
1172  if (LangOpts.CPlusPlus && LangOpts.WChar)
1173  WideCharTy = WCharTy;
1174  else {
1175  // C99 (or C++ using -fno-wchar).
1176  WideCharTy = getFromTargetType(Target.getWCharType());
1177  }
1178 
1179  WIntTy = getFromTargetType(Target.getWIntType());
1180 
1181  // C++20 (proposed)
1182  InitBuiltinType(Char8Ty, BuiltinType::Char8);
1183 
1184  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1185  InitBuiltinType(Char16Ty, BuiltinType::Char16);
1186  else // C99
1187  Char16Ty = getFromTargetType(Target.getChar16Type());
1188 
1189  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1190  InitBuiltinType(Char32Ty, BuiltinType::Char32);
1191  else // C99
1192  Char32Ty = getFromTargetType(Target.getChar32Type());
1193 
1194  // Placeholder type for type-dependent expressions whose type is
1195  // completely unknown. No code should ever check a type against
1196  // DependentTy and users should never see it; however, it is here to
1197  // help diagnose failures to properly check for type-dependent
1198  // expressions.
1199  InitBuiltinType(DependentTy, BuiltinType::Dependent);
1200 
1201  // Placeholder type for functions.
1202  InitBuiltinType(OverloadTy, BuiltinType::Overload);
1203 
1204  // Placeholder type for bound members.
1205  InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
1206 
1207  // Placeholder type for pseudo-objects.
1208  InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
1209 
1210  // "any" type; useful for debugger-like clients.
1211  InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
1212 
1213  // Placeholder type for unbridged ARC casts.
1214  InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
1215 
1216  // Placeholder type for builtin functions.
1217  InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
1218 
1219  // Placeholder type for OMP array sections.
1220  if (LangOpts.OpenMP)
1221  InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1222 
1223  // C99 6.2.5p11.
1228 
1229  // Builtin types for 'id', 'Class', and 'SEL'.
1230  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1231  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1232  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1233 
1234  if (LangOpts.OpenCL) {
1235 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1236  InitBuiltinType(SingletonId, BuiltinType::Id);
1237 #include "clang/Basic/OpenCLImageTypes.def"
1238 
1239  InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1240  InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1241  InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1242  InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1243  InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1244  }
1245 
1246  // Builtin type for __objc_yes and __objc_no
1247  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1248  SignedCharTy : BoolTy);
1249 
1250  ObjCConstantStringType = QualType();
1251 
1252  ObjCSuperType = QualType();
1253 
1254  // void * type
1255  if (LangOpts.OpenCLVersion >= 200) {
1256  auto Q = VoidTy.getQualifiers();
1260  } else {
1262  }
1263 
1264  // nullptr type (C++0x 2.14.7)
1265  InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
1266 
1267  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1268  InitBuiltinType(HalfTy, BuiltinType::Half);
1269 
1270  // Builtin type used to help define __builtin_va_list.
1271  VaListTagDecl = nullptr;
1272 }
1273 
1275  return SourceMgr.getDiagnostics();
1276 }
1277 
1279  AttrVec *&Result = DeclAttrs[D];
1280  if (!Result) {
1281  void *Mem = Allocate(sizeof(AttrVec));
1282  Result = new (Mem) AttrVec;
1283  }
1284 
1285  return *Result;
1286 }
1287 
1288 /// Erase the attributes corresponding to the given declaration.
1290  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1291  if (Pos != DeclAttrs.end()) {
1292  Pos->second->~AttrVec();
1293  DeclAttrs.erase(Pos);
1294  }
1295 }
1296 
1297 // FIXME: Remove ?
1300  assert(Var->isStaticDataMember() && "Not a static data member");
1302  .dyn_cast<MemberSpecializationInfo *>();
1303 }
1304 
1307  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1308  TemplateOrInstantiation.find(Var);
1309  if (Pos == TemplateOrInstantiation.end())
1310  return {};
1311 
1312  return Pos->second;
1313 }
1314 
1315 void
1318  SourceLocation PointOfInstantiation) {
1319  assert(Inst->isStaticDataMember() && "Not a static data member");
1320  assert(Tmpl->isStaticDataMember() && "Not a static data member");
1322  Tmpl, TSK, PointOfInstantiation));
1323 }
1324 
1325 void
1328  assert(!TemplateOrInstantiation[Inst] &&
1329  "Already noted what the variable was instantiated from");
1330  TemplateOrInstantiation[Inst] = TSI;
1331 }
1332 
1334  const FunctionDecl *FD){
1335  assert(FD && "Specialization is 0");
1336  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1337  = ClassScopeSpecializationPattern.find(FD);
1338  if (Pos == ClassScopeSpecializationPattern.end())
1339  return nullptr;
1340 
1341  return Pos->second;
1342 }
1343 
1345  FunctionDecl *Pattern) {
1346  assert(FD && "Specialization is 0");
1347  assert(Pattern && "Class scope specialization pattern is 0");
1348  ClassScopeSpecializationPattern[FD] = Pattern;
1349 }
1350 
1351 NamedDecl *
1353  auto Pos = InstantiatedFromUsingDecl.find(UUD);
1354  if (Pos == InstantiatedFromUsingDecl.end())
1355  return nullptr;
1356 
1357  return Pos->second;
1358 }
1359 
1360 void
1362  assert((isa<UsingDecl>(Pattern) ||
1363  isa<UnresolvedUsingValueDecl>(Pattern) ||
1364  isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1365  "pattern decl is not a using decl");
1366  assert((isa<UsingDecl>(Inst) ||
1367  isa<UnresolvedUsingValueDecl>(Inst) ||
1368  isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1369  "instantiation did not produce a using decl");
1370  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1371  InstantiatedFromUsingDecl[Inst] = Pattern;
1372 }
1373 
1376  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1377  = InstantiatedFromUsingShadowDecl.find(Inst);
1378  if (Pos == InstantiatedFromUsingShadowDecl.end())
1379  return nullptr;
1380 
1381  return Pos->second;
1382 }
1383 
1384 void
1386  UsingShadowDecl *Pattern) {
1387  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1388  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1389 }
1390 
1392  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1393  = InstantiatedFromUnnamedFieldDecl.find(Field);
1394  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1395  return nullptr;
1396 
1397  return Pos->second;
1398 }
1399 
1401  FieldDecl *Tmpl) {
1402  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1403  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1404  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1405  "Already noted what unnamed field was instantiated from");
1406 
1407  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1408 }
1409 
1412  return overridden_methods(Method).begin();
1413 }
1414 
1417  return overridden_methods(Method).end();
1418 }
1419 
1420 unsigned
1422  auto Range = overridden_methods(Method);
1423  return Range.end() - Range.begin();
1424 }
1425 
1428  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1429  OverriddenMethods.find(Method->getCanonicalDecl());
1430  if (Pos == OverriddenMethods.end())
1431  return overridden_method_range(nullptr, nullptr);
1432  return overridden_method_range(Pos->second.begin(), Pos->second.end());
1433 }
1434 
1436  const CXXMethodDecl *Overridden) {
1437  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1438  OverriddenMethods[Method].push_back(Overridden);
1439 }
1440 
1442  const NamedDecl *D,
1443  SmallVectorImpl<const NamedDecl *> &Overridden) const {
1444  assert(D);
1445 
1446  if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1447  Overridden.append(overridden_methods_begin(CXXMethod),
1448  overridden_methods_end(CXXMethod));
1449  return;
1450  }
1451 
1452  const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1453  if (!Method)
1454  return;
1455 
1457  Method->getOverriddenMethods(OverDecls);
1458  Overridden.append(OverDecls.begin(), OverDecls.end());
1459 }
1460 
1462  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1463  assert(!Import->isFromASTFile() && "Non-local import declaration");
1464  if (!FirstLocalImport) {
1465  FirstLocalImport = Import;
1466  LastLocalImport = Import;
1467  return;
1468  }
1469 
1470  LastLocalImport->NextLocalImport = Import;
1471  LastLocalImport = Import;
1472 }
1473 
1474 //===----------------------------------------------------------------------===//
1475 // Type Sizing and Analysis
1476 //===----------------------------------------------------------------------===//
1477 
1478 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1479 /// scalar floating point type.
1480 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1481  const auto *BT = T->getAs<BuiltinType>();
1482  assert(BT && "Not a floating point type!");
1483  switch (BT->getKind()) {
1484  default: llvm_unreachable("Not a floating point type!");
1485  case BuiltinType::Float16:
1486  case BuiltinType::Half:
1487  return Target->getHalfFormat();
1488  case BuiltinType::Float: return Target->getFloatFormat();
1489  case BuiltinType::Double: return Target->getDoubleFormat();
1490  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1491  case BuiltinType::Float128: return Target->getFloat128Format();
1492  }
1493 }
1494 
1495 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1496  unsigned Align = Target->getCharWidth();
1497 
1498  bool UseAlignAttrOnly = false;
1499  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1500  Align = AlignFromAttr;
1501 
1502  // __attribute__((aligned)) can increase or decrease alignment
1503  // *except* on a struct or struct member, where it only increases
1504  // alignment unless 'packed' is also specified.
1505  //
1506  // It is an error for alignas to decrease alignment, so we can
1507  // ignore that possibility; Sema should diagnose it.
1508  if (isa<FieldDecl>(D)) {
1509  UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1510  cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1511  } else {
1512  UseAlignAttrOnly = true;
1513  }
1514  }
1515  else if (isa<FieldDecl>(D))
1516  UseAlignAttrOnly =
1517  D->hasAttr<PackedAttr>() ||
1518  cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1519 
1520  // If we're using the align attribute only, just ignore everything
1521  // else about the declaration and its type.
1522  if (UseAlignAttrOnly) {
1523  // do nothing
1524  } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1525  QualType T = VD->getType();
1526  if (const auto *RT = T->getAs<ReferenceType>()) {
1527  if (ForAlignof)
1528  T = RT->getPointeeType();
1529  else
1530  T = getPointerType(RT->getPointeeType());
1531  }
1532  QualType BaseT = getBaseElementType(T);
1533  if (T->isFunctionType())
1534  Align = getTypeInfoImpl(T.getTypePtr()).Align;
1535  else if (!BaseT->isIncompleteType()) {
1536  // Adjust alignments of declarations with array type by the
1537  // large-array alignment on the target.
1538  if (const ArrayType *arrayType = getAsArrayType(T)) {
1539  unsigned MinWidth = Target->getLargeArrayMinWidth();
1540  if (!ForAlignof && MinWidth) {
1541  if (isa<VariableArrayType>(arrayType))
1542  Align = std::max(Align, Target->getLargeArrayAlign());
1543  else if (isa<ConstantArrayType>(arrayType) &&
1544  MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1545  Align = std::max(Align, Target->getLargeArrayAlign());
1546  }
1547  }
1548  Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1549  if (BaseT.getQualifiers().hasUnaligned())
1550  Align = Target->getCharWidth();
1551  if (const auto *VD = dyn_cast<VarDecl>(D)) {
1552  if (VD->hasGlobalStorage() && !ForAlignof)
1553  Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1554  }
1555  }
1556 
1557  // Fields can be subject to extra alignment constraints, like if
1558  // the field is packed, the struct is packed, or the struct has a
1559  // a max-field-alignment constraint (#pragma pack). So calculate
1560  // the actual alignment of the field within the struct, and then
1561  // (as we're expected to) constrain that by the alignment of the type.
1562  if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1563  const RecordDecl *Parent = Field->getParent();
1564  // We can only produce a sensible answer if the record is valid.
1565  if (!Parent->isInvalidDecl()) {
1566  const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1567 
1568  // Start with the record's overall alignment.
1569  unsigned FieldAlign = toBits(Layout.getAlignment());
1570 
1571  // Use the GCD of that and the offset within the record.
1572  uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1573  if (Offset > 0) {
1574  // Alignment is always a power of 2, so the GCD will be a power of 2,
1575  // which means we get to do this crazy thing instead of Euclid's.
1576  uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1577  if (LowBitOfOffset < FieldAlign)
1578  FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1579  }
1580 
1581  Align = std::min(Align, FieldAlign);
1582  }
1583  }
1584  }
1585 
1586  return toCharUnitsFromBits(Align);
1587 }
1588 
1589 // getTypeInfoDataSizeInChars - Return the size of a type, in
1590 // chars. If the type is a record, its data size is returned. This is
1591 // the size of the memcpy that's performed when assigning this type
1592 // using a trivial copy/move assignment operator.
1593 std::pair<CharUnits, CharUnits>
1595  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1596 
1597  // In C++, objects can sometimes be allocated into the tail padding
1598  // of a base-class subobject. We decide whether that's possible
1599  // during class layout, so here we can just trust the layout results.
1600  if (getLangOpts().CPlusPlus) {
1601  if (const auto *RT = T->getAs<RecordType>()) {
1602  const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1603  sizeAndAlign.first = layout.getDataSize();
1604  }
1605  }
1606 
1607  return sizeAndAlign;
1608 }
1609 
1610 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1611 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1612 std::pair<CharUnits, CharUnits>
1614  const ConstantArrayType *CAT) {
1615  std::pair<CharUnits, CharUnits> EltInfo =
1616  Context.getTypeInfoInChars(CAT->getElementType());
1617  uint64_t Size = CAT->getSize().getZExtValue();
1618  assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1619  (uint64_t)(-1)/Size) &&
1620  "Overflow in array type char size evaluation");
1621  uint64_t Width = EltInfo.first.getQuantity() * Size;
1622  unsigned Align = EltInfo.second.getQuantity();
1623  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1624  Context.getTargetInfo().getPointerWidth(0) == 64)
1625  Width = llvm::alignTo(Width, Align);
1626  return std::make_pair(CharUnits::fromQuantity(Width),
1627  CharUnits::fromQuantity(Align));
1628 }
1629 
1630 std::pair<CharUnits, CharUnits>
1632  if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1633  return getConstantArrayInfoInChars(*this, CAT);
1634  TypeInfo Info = getTypeInfo(T);
1635  return std::make_pair(toCharUnitsFromBits(Info.Width),
1636  toCharUnitsFromBits(Info.Align));
1637 }
1638 
1639 std::pair<CharUnits, CharUnits>
1641  return getTypeInfoInChars(T.getTypePtr());
1642 }
1643 
1645  return getTypeInfo(T).AlignIsRequired;
1646 }
1647 
1649  return isAlignmentRequired(T.getTypePtr());
1650 }
1651 
1653  // An alignment on a typedef overrides anything else.
1654  if (const auto *TT = T->getAs<TypedefType>())
1655  if (unsigned Align = TT->getDecl()->getMaxAlignment())
1656  return Align;
1657 
1658  // If we have an (array of) complete type, we're done.
1659  T = getBaseElementType(T);
1660  if (!T->isIncompleteType())
1661  return getTypeAlign(T);
1662 
1663  // If we had an array type, its element type might be a typedef
1664  // type with an alignment attribute.
1665  if (const auto *TT = T->getAs<TypedefType>())
1666  if (unsigned Align = TT->getDecl()->getMaxAlignment())
1667  return Align;
1668 
1669  // Otherwise, see if the declaration of the type had an attribute.
1670  if (const auto *TT = T->getAs<TagType>())
1671  return TT->getDecl()->getMaxAlignment();
1672 
1673  return 0;
1674 }
1675 
1677  TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1678  if (I != MemoizedTypeInfo.end())
1679  return I->second;
1680 
1681  // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1682  TypeInfo TI = getTypeInfoImpl(T);
1683  MemoizedTypeInfo[T] = TI;
1684  return TI;
1685 }
1686 
1687 /// getTypeInfoImpl - Return the size of the specified type, in bits. This
1688 /// method does not work on incomplete types.
1689 ///
1690 /// FIXME: Pointers into different addr spaces could have different sizes and
1691 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1692 /// should take a QualType, &c.
1693 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1694  uint64_t Width = 0;
1695  unsigned Align = 8;
1696  bool AlignIsRequired = false;
1697  unsigned AS = 0;
1698  switch (T->getTypeClass()) {
1699 #define TYPE(Class, Base)
1700 #define ABSTRACT_TYPE(Class, Base)
1701 #define NON_CANONICAL_TYPE(Class, Base)
1702 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1703 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
1704  case Type::Class: \
1705  assert(!T->isDependentType() && "should not see dependent types here"); \
1706  return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1707 #include "clang/AST/TypeNodes.def"
1708  llvm_unreachable("Should not see dependent types");
1709 
1710  case Type::FunctionNoProto:
1711  case Type::FunctionProto:
1712  // GCC extension: alignof(function) = 32 bits
1713  Width = 0;
1714  Align = 32;
1715  break;
1716 
1717  case Type::IncompleteArray:
1718  case Type::VariableArray:
1719  Width = 0;
1720  Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1721  break;
1722 
1723  case Type::ConstantArray: {
1724  const auto *CAT = cast<ConstantArrayType>(T);
1725 
1726  TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
1727  uint64_t Size = CAT->getSize().getZExtValue();
1728  assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1729  "Overflow in array type bit size evaluation");
1730  Width = EltInfo.Width * Size;
1731  Align = EltInfo.Align;
1732  if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1733  getTargetInfo().getPointerWidth(0) == 64)
1734  Width = llvm::alignTo(Width, Align);
1735  break;
1736  }
1737  case Type::ExtVector:
1738  case Type::Vector: {
1739  const auto *VT = cast<VectorType>(T);
1740  TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1741  Width = EltInfo.Width * VT->getNumElements();
1742  Align = Width;
1743  // If the alignment is not a power of 2, round up to the next power of 2.
1744  // This happens for non-power-of-2 length vectors.
1745  if (Align & (Align-1)) {
1746  Align = llvm::NextPowerOf2(Align);
1747  Width = llvm::alignTo(Width, Align);
1748  }
1749  // Adjust the alignment based on the target max.
1750  uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1751  if (TargetVectorAlign && TargetVectorAlign < Align)
1752  Align = TargetVectorAlign;
1753  break;
1754  }
1755 
1756  case Type::Builtin:
1757  switch (cast<BuiltinType>(T)->getKind()) {
1758  default: llvm_unreachable("Unknown builtin type!");
1759  case BuiltinType::Void:
1760  // GCC extension: alignof(void) = 8 bits.
1761  Width = 0;
1762  Align = 8;
1763  break;
1764  case BuiltinType::Bool:
1765  Width = Target->getBoolWidth();
1766  Align = Target->getBoolAlign();
1767  break;
1768  case BuiltinType::Char_S:
1769  case BuiltinType::Char_U:
1770  case BuiltinType::UChar:
1771  case BuiltinType::SChar:
1772  case BuiltinType::Char8:
1773  Width = Target->getCharWidth();
1774  Align = Target->getCharAlign();
1775  break;
1776  case BuiltinType::WChar_S:
1777  case BuiltinType::WChar_U:
1778  Width = Target->getWCharWidth();
1779  Align = Target->getWCharAlign();
1780  break;
1781  case BuiltinType::Char16:
1782  Width = Target->getChar16Width();
1783  Align = Target->getChar16Align();
1784  break;
1785  case BuiltinType::Char32:
1786  Width = Target->getChar32Width();
1787  Align = Target->getChar32Align();
1788  break;
1789  case BuiltinType::UShort:
1790  case BuiltinType::Short:
1791  Width = Target->getShortWidth();
1792  Align = Target->getShortAlign();
1793  break;
1794  case BuiltinType::UInt:
1795  case BuiltinType::Int:
1796  Width = Target->getIntWidth();
1797  Align = Target->getIntAlign();
1798  break;
1799  case BuiltinType::ULong:
1800  case BuiltinType::Long:
1801  Width = Target->getLongWidth();
1802  Align = Target->getLongAlign();
1803  break;
1804  case BuiltinType::ULongLong:
1805  case BuiltinType::LongLong:
1806  Width = Target->getLongLongWidth();
1807  Align = Target->getLongLongAlign();
1808  break;
1809  case BuiltinType::Int128:
1810  case BuiltinType::UInt128:
1811  Width = 128;
1812  Align = 128; // int128_t is 128-bit aligned on all targets.
1813  break;
1814  case BuiltinType::ShortAccum:
1815  case BuiltinType::UShortAccum:
1816  case BuiltinType::SatShortAccum:
1817  case BuiltinType::SatUShortAccum:
1818  Width = Target->getShortAccumWidth();
1819  Align = Target->getShortAccumAlign();
1820  break;
1821  case BuiltinType::Accum:
1822  case BuiltinType::UAccum:
1823  case BuiltinType::SatAccum:
1824  case BuiltinType::SatUAccum:
1825  Width = Target->getAccumWidth();
1826  Align = Target->getAccumAlign();
1827  break;
1828  case BuiltinType::LongAccum:
1829  case BuiltinType::ULongAccum:
1830  case BuiltinType::SatLongAccum:
1831  case BuiltinType::SatULongAccum:
1832  Width = Target->getLongAccumWidth();
1833  Align = Target->getLongAccumAlign();
1834  break;
1835  case BuiltinType::ShortFract:
1836  case BuiltinType::UShortFract:
1837  case BuiltinType::SatShortFract:
1838  case BuiltinType::SatUShortFract:
1839  Width = Target->getShortFractWidth();
1840  Align = Target->getShortFractAlign();
1841  break;
1842  case BuiltinType::Fract:
1843  case BuiltinType::UFract:
1844  case BuiltinType::SatFract:
1845  case BuiltinType::SatUFract:
1846  Width = Target->getFractWidth();
1847  Align = Target->getFractAlign();
1848  break;
1849  case BuiltinType::LongFract:
1850  case BuiltinType::ULongFract:
1851  case BuiltinType::SatLongFract:
1852  case BuiltinType::SatULongFract:
1853  Width = Target->getLongFractWidth();
1854  Align = Target->getLongFractAlign();
1855  break;
1856  case BuiltinType::Float16:
1857  case BuiltinType::Half:
1858  Width = Target->getHalfWidth();
1859  Align = Target->getHalfAlign();
1860  break;
1861  case BuiltinType::Float:
1862  Width = Target->getFloatWidth();
1863  Align = Target->getFloatAlign();
1864  break;
1865  case BuiltinType::Double:
1866  Width = Target->getDoubleWidth();
1867  Align = Target->getDoubleAlign();
1868  break;
1869  case BuiltinType::LongDouble:
1870  Width = Target->getLongDoubleWidth();
1871  Align = Target->getLongDoubleAlign();
1872  break;
1873  case BuiltinType::Float128:
1874  Width = Target->getFloat128Width();
1875  Align = Target->getFloat128Align();
1876  break;
1877  case BuiltinType::NullPtr:
1878  Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1879  Align = Target->getPointerAlign(0); // == sizeof(void*)
1880  break;
1881  case BuiltinType::ObjCId:
1882  case BuiltinType::ObjCClass:
1883  case BuiltinType::ObjCSel:
1884  Width = Target->getPointerWidth(0);
1885  Align = Target->getPointerAlign(0);
1886  break;
1887  case BuiltinType::OCLSampler:
1888  case BuiltinType::OCLEvent:
1889  case BuiltinType::OCLClkEvent:
1890  case BuiltinType::OCLQueue:
1891  case BuiltinType::OCLReserveID:
1892 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1893  case BuiltinType::Id:
1894 #include "clang/Basic/OpenCLImageTypes.def"
1895  AS = getTargetAddressSpace(
1897  Width = Target->getPointerWidth(AS);
1898  Align = Target->getPointerAlign(AS);
1899  break;
1900  }
1901  break;
1902  case Type::ObjCObjectPointer:
1903  Width = Target->getPointerWidth(0);
1904  Align = Target->getPointerAlign(0);
1905  break;
1906  case Type::BlockPointer:
1907  AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
1908  Width = Target->getPointerWidth(AS);
1909  Align = Target->getPointerAlign(AS);
1910  break;
1911  case Type::LValueReference:
1912  case Type::RValueReference:
1913  // alignof and sizeof should never enter this code path here, so we go
1914  // the pointer route.
1915  AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
1916  Width = Target->getPointerWidth(AS);
1917  Align = Target->getPointerAlign(AS);
1918  break;
1919  case Type::Pointer:
1920  AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1921  Width = Target->getPointerWidth(AS);
1922  Align = Target->getPointerAlign(AS);
1923  break;
1924  case Type::MemberPointer: {
1925  const auto *MPT = cast<MemberPointerType>(T);
1926  CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
1927  Width = MPI.Width;
1928  Align = MPI.Align;
1929  break;
1930  }
1931  case Type::Complex: {
1932  // Complex types have the same alignment as their elements, but twice the
1933  // size.
1934  TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
1935  Width = EltInfo.Width * 2;
1936  Align = EltInfo.Align;
1937  break;
1938  }
1939  case Type::ObjCObject:
1940  return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1941  case Type::Adjusted:
1942  case Type::Decayed:
1943  return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
1944  case Type::ObjCInterface: {
1945  const auto *ObjCI = cast<ObjCInterfaceType>(T);
1946  const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1947  Width = toBits(Layout.getSize());
1948  Align = toBits(Layout.getAlignment());
1949  break;
1950  }
1951  case Type::Record:
1952  case Type::Enum: {
1953  const auto *TT = cast<TagType>(T);
1954 
1955  if (TT->getDecl()->isInvalidDecl()) {
1956  Width = 8;
1957  Align = 8;
1958  break;
1959  }
1960 
1961  if (const auto *ET = dyn_cast<EnumType>(TT)) {
1962  const EnumDecl *ED = ET->getDecl();
1963  TypeInfo Info =
1965  if (unsigned AttrAlign = ED->getMaxAlignment()) {
1966  Info.Align = AttrAlign;
1967  Info.AlignIsRequired = true;
1968  }
1969  return Info;
1970  }
1971 
1972  const auto *RT = cast<RecordType>(TT);
1973  const RecordDecl *RD = RT->getDecl();
1974  const ASTRecordLayout &Layout = getASTRecordLayout(RD);
1975  Width = toBits(Layout.getSize());
1976  Align = toBits(Layout.getAlignment());
1977  AlignIsRequired = RD->hasAttr<AlignedAttr>();
1978  break;
1979  }
1980 
1981  case Type::SubstTemplateTypeParm:
1982  return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1983  getReplacementType().getTypePtr());
1984 
1985  case Type::Auto:
1986  case Type::DeducedTemplateSpecialization: {
1987  const auto *A = cast<DeducedType>(T);
1988  assert(!A->getDeducedType().isNull() &&
1989  "cannot request the size of an undeduced or dependent auto type");
1990  return getTypeInfo(A->getDeducedType().getTypePtr());
1991  }
1992 
1993  case Type::Paren:
1994  return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1995 
1996  case Type::ObjCTypeParam:
1997  return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
1998 
1999  case Type::Typedef: {
2000  const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
2001  TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
2002  // If the typedef has an aligned attribute on it, it overrides any computed
2003  // alignment we have. This violates the GCC documentation (which says that
2004  // attribute(aligned) can only round up) but matches its implementation.
2005  if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
2006  Align = AttrAlign;
2007  AlignIsRequired = true;
2008  } else {
2009  Align = Info.Align;
2010  AlignIsRequired = Info.AlignIsRequired;
2011  }
2012  Width = Info.Width;
2013  break;
2014  }
2015 
2016  case Type::Elaborated:
2017  return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2018 
2019  case Type::Attributed:
2020  return getTypeInfo(
2021  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2022 
2023  case Type::Atomic: {
2024  // Start with the base type information.
2025  TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2026  Width = Info.Width;
2027  Align = Info.Align;
2028 
2029  if (!Width) {
2030  // An otherwise zero-sized type should still generate an
2031  // atomic operation.
2032  Width = Target->getCharWidth();
2033  assert(Align);
2034  } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2035  // If the size of the type doesn't exceed the platform's max
2036  // atomic promotion width, make the size and alignment more
2037  // favorable to atomic operations:
2038 
2039  // Round the size up to a power of 2.
2040  if (!llvm::isPowerOf2_64(Width))
2041  Width = llvm::NextPowerOf2(Width);
2042 
2043  // Set the alignment equal to the size.
2044  Align = static_cast<unsigned>(Width);
2045  }
2046  }
2047  break;
2048 
2049  case Type::Pipe:
2052  break;
2053  }
2054 
2055  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2056  return TypeInfo(Width, Align, AlignIsRequired);
2057 }
2058 
2059 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2060  UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2061  if (I != MemoizedUnadjustedAlign.end())
2062  return I->second;
2063 
2064  unsigned UnadjustedAlign;
2065  if (const auto *RT = T->getAs<RecordType>()) {
2066  const RecordDecl *RD = RT->getDecl();
2067  const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2068  UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2069  } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2070  const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2071  UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2072  } else {
2073  UnadjustedAlign = getTypeAlign(T);
2074  }
2075 
2076  MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2077  return UnadjustedAlign;
2078 }
2079 
2081  unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
2082  // Target ppc64 with QPX: simd default alignment for pointer to double is 32.
2083  if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 ||
2084  getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) &&
2085  getTargetInfo().getABI() == "elfv1-qpx" &&
2086  T->isSpecificBuiltinType(BuiltinType::Double))
2087  SimdAlign = 256;
2088  return SimdAlign;
2089 }
2090 
2091 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
2093  return CharUnits::fromQuantity(BitSize / getCharWidth());
2094 }
2095 
2096 /// toBits - Convert a size in characters to a size in characters.
2097 int64_t ASTContext::toBits(CharUnits CharSize) const {
2098  return CharSize.getQuantity() * getCharWidth();
2099 }
2100 
2101 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2102 /// This method does not work on incomplete types.
2104  return getTypeInfoInChars(T).first;
2105 }
2107  return getTypeInfoInChars(T).first;
2108 }
2109 
2110 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2111 /// characters. This method does not work on incomplete types.
2113  return toCharUnitsFromBits(getTypeAlign(T));
2114 }
2116  return toCharUnitsFromBits(getTypeAlign(T));
2117 }
2118 
2119 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2120 /// type, in characters, before alignment adustments. This method does
2121 /// not work on incomplete types.
2124 }
2127 }
2128 
2129 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2130 /// type for the current target in bits. This can be different than the ABI
2131 /// alignment in cases where it is beneficial for performance to overalign
2132 /// a data type.
2133 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2134  TypeInfo TI = getTypeInfo(T);
2135  unsigned ABIAlign = TI.Align;
2136 
2137  T = T->getBaseElementTypeUnsafe();
2138 
2139  // The preferred alignment of member pointers is that of a pointer.
2140  if (T->isMemberPointerType())
2142 
2143  if (!Target->allowsLargerPreferedTypeAlignment())
2144  return ABIAlign;
2145 
2146  // Double and long long should be naturally aligned if possible.
2147  if (const auto *CT = T->getAs<ComplexType>())
2148  T = CT->getElementType().getTypePtr();
2149  if (const auto *ET = T->getAs<EnumType>())
2150  T = ET->getDecl()->getIntegerType().getTypePtr();
2151  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2152  T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2153  T->isSpecificBuiltinType(BuiltinType::ULongLong))
2154  // Don't increase the alignment if an alignment attribute was specified on a
2155  // typedef declaration.
2156  if (!TI.AlignIsRequired)
2157  return std::max(ABIAlign, (unsigned)getTypeSize(T));
2158 
2159  return ABIAlign;
2160 }
2161 
2162 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2163 /// for __attribute__((aligned)) on this target, to be used if no alignment
2164 /// value is specified.
2167 }
2168 
2169 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2170 /// to a global variable of the specified type.
2172  return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
2173 }
2174 
2175 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2176 /// should be given to a global variable of the specified type.
2179 }
2180 
2183  const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2184  while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2185  Offset += Layout->getBaseClassOffset(Base);
2186  Layout = &getASTRecordLayout(Base);
2187  }
2188  return Offset;
2189 }
2190 
2191 /// DeepCollectObjCIvars -
2192 /// This routine first collects all declared, but not synthesized, ivars in
2193 /// super class and then collects all ivars, including those synthesized for
2194 /// current class. This routine is used for implementation of current class
2195 /// when all ivars, declared and synthesized are known.
2197  bool leafClass,
2198  SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2199  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2200  DeepCollectObjCIvars(SuperClass, false, Ivars);
2201  if (!leafClass) {
2202  for (const auto *I : OI->ivars())
2203  Ivars.push_back(I);
2204  } else {
2205  auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2206  for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2207  Iv= Iv->getNextIvar())
2208  Ivars.push_back(Iv);
2209  }
2210 }
2211 
2212 /// CollectInheritedProtocols - Collect all protocols in current class and
2213 /// those inherited by it.
2215  llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2216  if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2217  // We can use protocol_iterator here instead of
2218  // all_referenced_protocol_iterator since we are walking all categories.
2219  for (auto *Proto : OI->all_referenced_protocols()) {
2220  CollectInheritedProtocols(Proto, Protocols);
2221  }
2222 
2223  // Categories of this Interface.
2224  for (const auto *Cat : OI->visible_categories())
2225  CollectInheritedProtocols(Cat, Protocols);
2226 
2227  if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2228  while (SD) {
2229  CollectInheritedProtocols(SD, Protocols);
2230  SD = SD->getSuperClass();
2231  }
2232  } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2233  for (auto *Proto : OC->protocols()) {
2234  CollectInheritedProtocols(Proto, Protocols);
2235  }
2236  } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2237  // Insert the protocol.
2238  if (!Protocols.insert(
2239  const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2240  return;
2241 
2242  for (auto *Proto : OP->protocols())
2243  CollectInheritedProtocols(Proto, Protocols);
2244  }
2245 }
2246 
2248  const RecordDecl *RD) {
2249  assert(RD->isUnion() && "Must be union type");
2250  CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2251 
2252  for (const auto *Field : RD->fields()) {
2253  if (!Context.hasUniqueObjectRepresentations(Field->getType()))
2254  return false;
2255  CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2256  if (FieldSize != UnionSize)
2257  return false;
2258  }
2259  return !RD->field_empty();
2260 }
2261 
2262 static bool isStructEmpty(QualType Ty) {
2263  const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
2264 
2265  if (!RD->field_empty())
2266  return false;
2267 
2268  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD))
2269  return ClassDecl->isEmpty();
2270 
2271  return true;
2272 }
2273 
2276  const RecordDecl *RD) {
2277  assert(!RD->isUnion() && "Must be struct/class type");
2278  const auto &Layout = Context.getASTRecordLayout(RD);
2279 
2280  int64_t CurOffsetInBits = 0;
2281  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2282  if (ClassDecl->isDynamicClass())
2283  return llvm::None;
2284 
2286  for (const auto Base : ClassDecl->bases()) {
2287  // Empty types can be inherited from, and non-empty types can potentially
2288  // have tail padding, so just make sure there isn't an error.
2289  if (!isStructEmpty(Base.getType())) {
2291  Context, Base.getType()->getAs<RecordType>()->getDecl());
2292  if (!Size)
2293  return llvm::None;
2294  Bases.emplace_back(Base.getType(), Size.getValue());
2295  }
2296  }
2297 
2298  llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L,
2299  const std::pair<QualType, int64_t> &R) {
2300  return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) <
2301  Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl());
2302  });
2303 
2304  for (const auto Base : Bases) {
2305  int64_t BaseOffset = Context.toBits(
2306  Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl()));
2307  int64_t BaseSize = Base.second;
2308  if (BaseOffset != CurOffsetInBits)
2309  return llvm::None;
2310  CurOffsetInBits = BaseOffset + BaseSize;
2311  }
2312  }
2313 
2314  for (const auto *Field : RD->fields()) {
2315  if (!Field->getType()->isReferenceType() &&
2316  !Context.hasUniqueObjectRepresentations(Field->getType()))
2317  return llvm::None;
2318 
2319  int64_t FieldSizeInBits =
2320  Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2321  if (Field->isBitField()) {
2322  int64_t BitfieldSize = Field->getBitWidthValue(Context);
2323 
2324  if (BitfieldSize > FieldSizeInBits)
2325  return llvm::None;
2326  FieldSizeInBits = BitfieldSize;
2327  }
2328 
2329  int64_t FieldOffsetInBits = Context.getFieldOffset(Field);
2330 
2331  if (FieldOffsetInBits != CurOffsetInBits)
2332  return llvm::None;
2333 
2334  CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits;
2335  }
2336 
2337  return CurOffsetInBits;
2338 }
2339 
2341  // C++17 [meta.unary.prop]:
2342  // The predicate condition for a template specialization
2343  // has_unique_object_representations<T> shall be
2344  // satisfied if and only if:
2345  // (9.1) - T is trivially copyable, and
2346  // (9.2) - any two objects of type T with the same value have the same
2347  // object representation, where two objects
2348  // of array or non-union class type are considered to have the same value
2349  // if their respective sequences of
2350  // direct subobjects have the same values, and two objects of union type
2351  // are considered to have the same
2352  // value if they have the same active member and the corresponding members
2353  // have the same value.
2354  // The set of scalar types for which this condition holds is
2355  // implementation-defined. [ Note: If a type has padding
2356  // bits, the condition does not hold; otherwise, the condition holds true
2357  // for unsigned integral types. -- end note ]
2358  assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2359 
2360  // Arrays are unique only if their element type is unique.
2361  if (Ty->isArrayType())
2363 
2364  // (9.1) - T is trivially copyable...
2365  if (!Ty.isTriviallyCopyableType(*this))
2366  return false;
2367 
2368  // All integrals and enums are unique.
2369  if (Ty->isIntegralOrEnumerationType())
2370  return true;
2371 
2372  // All other pointers are unique.
2373  if (Ty->isPointerType())
2374  return true;
2375 
2376  if (Ty->isMemberPointerType()) {
2377  const auto *MPT = Ty->getAs<MemberPointerType>();
2378  return !ABI->getMemberPointerInfo(MPT).HasPadding;
2379  }
2380 
2381  if (Ty->isRecordType()) {
2382  const RecordDecl *Record = Ty->getAs<RecordType>()->getDecl();
2383 
2384  if (Record->isInvalidDecl())
2385  return false;
2386 
2387  if (Record->isUnion())
2388  return unionHasUniqueObjectRepresentations(*this, Record);
2389 
2390  Optional<int64_t> StructSize =
2391  structHasUniqueObjectRepresentations(*this, Record);
2392 
2393  return StructSize &&
2394  StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
2395  }
2396 
2397  // FIXME: More cases to handle here (list by rsmith):
2398  // vectors (careful about, eg, vector of 3 foo)
2399  // _Complex int and friends
2400  // _Atomic T
2401  // Obj-C block pointers
2402  // Obj-C object pointers
2403  // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2404  // clk_event_t, queue_t, reserve_id_t)
2405  // There're also Obj-C class types and the Obj-C selector type, but I think it
2406  // makes sense for those to return false here.
2407 
2408  return false;
2409 }
2410 
2412  unsigned count = 0;
2413  // Count ivars declared in class extension.
2414  for (const auto *Ext : OI->known_extensions())
2415  count += Ext->ivar_size();
2416 
2417  // Count ivar defined in this class's implementation. This
2418  // includes synthesized ivars.
2419  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2420  count += ImplDecl->ivar_size();
2421 
2422  return count;
2423 }
2424 
2426  if (!E)
2427  return false;
2428 
2429  // nullptr_t is always treated as null.
2430  if (E->getType()->isNullPtrType()) return true;
2431 
2432  if (E->getType()->isAnyPointerType() &&
2435  return true;
2436 
2437  // Unfortunately, __null has type 'int'.
2438  if (isa<GNUNullExpr>(E)) return true;
2439 
2440  return false;
2441 }
2442 
2443 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2444 /// exists.
2446  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2447  I = ObjCImpls.find(D);
2448  if (I != ObjCImpls.end())
2449  return cast<ObjCImplementationDecl>(I->second);
2450  return nullptr;
2451 }
2452 
2453 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2454 /// exists.
2456  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2457  I = ObjCImpls.find(D);
2458  if (I != ObjCImpls.end())
2459  return cast<ObjCCategoryImplDecl>(I->second);
2460  return nullptr;
2461 }
2462 
2463 /// Set the implementation of ObjCInterfaceDecl.
2465  ObjCImplementationDecl *ImplD) {
2466  assert(IFaceD && ImplD && "Passed null params");
2467  ObjCImpls[IFaceD] = ImplD;
2468 }
2469 
2470 /// Set the implementation of ObjCCategoryDecl.
2472  ObjCCategoryImplDecl *ImplD) {
2473  assert(CatD && ImplD && "Passed null params");
2474  ObjCImpls[CatD] = ImplD;
2475 }
2476 
2477 const ObjCMethodDecl *
2479  return ObjCMethodRedecls.lookup(MD);
2480 }
2481 
2483  const ObjCMethodDecl *Redecl) {
2484  assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2485  ObjCMethodRedecls[MD] = Redecl;
2486 }
2487 
2489  const NamedDecl *ND) const {
2490  if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2491  return ID;
2492  if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2493  return CD->getClassInterface();
2494  if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2495  return IMD->getClassInterface();
2496 
2497  return nullptr;
2498 }
2499 
2500 /// Get the copy initialization expression of VarDecl, or nullptr if
2501 /// none exists.
2504  assert(VD && "Passed null params");
2505  assert(VD->hasAttr<BlocksAttr>() &&
2506  "getBlockVarCopyInits - not __block var");
2507  auto I = BlockVarCopyInits.find(VD);
2508  if (I != BlockVarCopyInits.end())
2509  return I->second;
2510  return {nullptr, false};
2511 }
2512 
2513 /// Set the copy inialization expression of a block var decl.
2515  bool CanThrow) {
2516  assert(VD && CopyExpr && "Passed null params");
2517  assert(VD->hasAttr<BlocksAttr>() &&
2518  "setBlockVarCopyInits - not __block var");
2519  BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2520 }
2521 
2523  unsigned DataSize) const {
2524  if (!DataSize)
2525  DataSize = TypeLoc::getFullDataSizeForType(T);
2526  else
2527  assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2528  "incorrect data size provided to CreateTypeSourceInfo!");
2529 
2530  auto *TInfo =
2531  (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2532  new (TInfo) TypeSourceInfo(T);
2533  return TInfo;
2534 }
2535 
2537  SourceLocation L) const {
2539  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2540  return DI;
2541 }
2542 
2543 const ASTRecordLayout &
2545  return getObjCLayout(D, nullptr);
2546 }
2547 
2548 const ASTRecordLayout &
2550  const ObjCImplementationDecl *D) const {
2551  return getObjCLayout(D->getClassInterface(), D);
2552 }
2553 
2554 //===----------------------------------------------------------------------===//
2555 // Type creation/memoization methods
2556 //===----------------------------------------------------------------------===//
2557 
2558 QualType
2559 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2560  unsigned fastQuals = quals.getFastQualifiers();
2561  quals.removeFastQualifiers();
2562 
2563  // Check if we've already instantiated this type.
2564  llvm::FoldingSetNodeID ID;
2565  ExtQuals::Profile(ID, baseType, quals);
2566  void *insertPos = nullptr;
2567  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2568  assert(eq->getQualifiers() == quals);
2569  return QualType(eq, fastQuals);
2570  }
2571 
2572  // If the base type is not canonical, make the appropriate canonical type.
2573  QualType canon;
2574  if (!baseType->isCanonicalUnqualified()) {
2575  SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2576  canonSplit.Quals.addConsistentQualifiers(quals);
2577  canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2578 
2579  // Re-find the insert position.
2580  (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2581  }
2582 
2583  auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2584  ExtQualNodes.InsertNode(eq, insertPos);
2585  return QualType(eq, fastQuals);
2586 }
2587 
2589  LangAS AddressSpace) const {
2590  QualType CanT = getCanonicalType(T);
2591  if (CanT.getAddressSpace() == AddressSpace)
2592  return T;
2593 
2594  // If we are composing extended qualifiers together, merge together
2595  // into one ExtQuals node.
2596  QualifierCollector Quals;
2597  const Type *TypeNode = Quals.strip(T);
2598 
2599  // If this type already has an address space specified, it cannot get
2600  // another one.
2601  assert(!Quals.hasAddressSpace() &&
2602  "Type cannot be in multiple addr spaces!");
2603  Quals.addAddressSpace(AddressSpace);
2604 
2605  return getExtQualType(TypeNode, Quals);
2606 }
2607 
2609  // If we are composing extended qualifiers together, merge together
2610  // into one ExtQuals node.
2611  QualifierCollector Quals;
2612  const Type *TypeNode = Quals.strip(T);
2613 
2614  // If the qualifier doesn't have an address space just return it.
2615  if (!Quals.hasAddressSpace())
2616  return T;
2617 
2618  Quals.removeAddressSpace();
2619 
2620  // Removal of the address space can mean there are no longer any
2621  // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
2622  // or required.
2623  if (Quals.hasNonFastQualifiers())
2624  return getExtQualType(TypeNode, Quals);
2625  else
2626  return QualType(TypeNode, Quals.getFastQualifiers());
2627 }
2628 
2630  Qualifiers::GC GCAttr) const {
2631  QualType CanT = getCanonicalType(T);
2632  if (CanT.getObjCGCAttr() == GCAttr)
2633  return T;
2634 
2635  if (const auto *ptr = T->getAs<PointerType>()) {
2636  QualType Pointee = ptr->getPointeeType();
2637  if (Pointee->isAnyPointerType()) {
2638  QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2639  return getPointerType(ResultType);
2640  }
2641  }
2642 
2643  // If we are composing extended qualifiers together, merge together
2644  // into one ExtQuals node.
2645  QualifierCollector Quals;
2646  const Type *TypeNode = Quals.strip(T);
2647 
2648  // If this type already has an ObjCGC specified, it cannot get
2649  // another one.
2650  assert(!Quals.hasObjCGCAttr() &&
2651  "Type cannot have multiple ObjCGCs!");
2652  Quals.addObjCGCAttr(GCAttr);
2653 
2654  return getExtQualType(TypeNode, Quals);
2655 }
2656 
2658  FunctionType::ExtInfo Info) {
2659  if (T->getExtInfo() == Info)
2660  return T;
2661 
2662  QualType Result;
2663  if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2664  Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2665  } else {
2666  const auto *FPT = cast<FunctionProtoType>(T);
2667  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2668  EPI.ExtInfo = Info;
2669  Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2670  }
2671 
2672  return cast<FunctionType>(Result.getTypePtr());
2673 }
2674 
2676  QualType ResultType) {
2677  FD = FD->getMostRecentDecl();
2678  while (true) {
2679  const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
2680  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2681  FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2682  if (FunctionDecl *Next = FD->getPreviousDecl())
2683  FD = Next;
2684  else
2685  break;
2686  }
2688  L->DeducedReturnType(FD, ResultType);
2689 }
2690 
2691 /// Get a function type and produce the equivalent function type with the
2692 /// specified exception specification. Type sugar that can be present on a
2693 /// declaration of a function with an exception specification is permitted
2694 /// and preserved. Other type sugar (for instance, typedefs) is not.
2697  // Might have some parens.
2698  if (const auto *PT = dyn_cast<ParenType>(Orig))
2699  return getParenType(
2700  getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
2701 
2702  // Might have a calling-convention attribute.
2703  if (const auto *AT = dyn_cast<AttributedType>(Orig))
2704  return getAttributedType(
2705  AT->getAttrKind(),
2706  getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
2707  getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
2708 
2709  // Anything else must be a function type. Rebuild it with the new exception
2710  // specification.
2711  const auto *Proto = cast<FunctionProtoType>(Orig);
2712  return getFunctionType(
2713  Proto->getReturnType(), Proto->getParamTypes(),
2714  Proto->getExtProtoInfo().withExceptionSpec(ESI));
2715 }
2716 
2718  QualType U) {
2719  return hasSameType(T, U) ||
2720  (getLangOpts().CPlusPlus17 &&
2723 }
2724 
2727  bool AsWritten) {
2728  // Update the type.
2729  QualType Updated =
2731  FD->setType(Updated);
2732 
2733  if (!AsWritten)
2734  return;
2735 
2736  // Update the type in the type source information too.
2737  if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
2738  // If the type and the type-as-written differ, we may need to update
2739  // the type-as-written too.
2740  if (TSInfo->getType() != FD->getType())
2741  Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
2742 
2743  // FIXME: When we get proper type location information for exceptions,
2744  // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
2745  // up the TypeSourceInfo;
2746  assert(TypeLoc::getFullDataSizeForType(Updated) ==
2747  TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
2748  "TypeLoc size mismatch from updating exception specification");
2749  TSInfo->overrideType(Updated);
2750  }
2751 }
2752 
2753 /// getComplexType - Return the uniqued reference to the type for a complex
2754 /// number with the specified element type.
2756  // Unique pointers, to guarantee there is only one pointer of a particular
2757  // structure.
2758  llvm::FoldingSetNodeID ID;
2759  ComplexType::Profile(ID, T);
2760 
2761  void *InsertPos = nullptr;
2762  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2763  return QualType(CT, 0);
2764 
2765  // If the pointee type isn't canonical, this won't be a canonical type either,
2766  // so fill in the canonical type field.
2767  QualType Canonical;
2768  if (!T.isCanonical()) {
2769  Canonical = getComplexType(getCanonicalType(T));
2770 
2771  // Get the new insert position for the node we care about.
2772  ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2773  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2774  }
2775  auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2776  Types.push_back(New);
2777  ComplexTypes.InsertNode(New, InsertPos);
2778  return QualType(New, 0);
2779 }
2780 
2781 /// getPointerType - Return the uniqued reference to the type for a pointer to
2782 /// the specified type.
2784  // Unique pointers, to guarantee there is only one pointer of a particular
2785  // structure.
2786  llvm::FoldingSetNodeID ID;
2787  PointerType::Profile(ID, T);
2788 
2789  void *InsertPos = nullptr;
2790  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2791  return QualType(PT, 0);
2792 
2793  // If the pointee type isn't canonical, this won't be a canonical type either,
2794  // so fill in the canonical type field.
2795  QualType Canonical;
2796  if (!T.isCanonical()) {
2797  Canonical = getPointerType(getCanonicalType(T));
2798 
2799  // Get the new insert position for the node we care about.
2800  PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2801  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2802  }
2803  auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2804  Types.push_back(New);
2805  PointerTypes.InsertNode(New, InsertPos);
2806  return QualType(New, 0);
2807 }
2808 
2810  llvm::FoldingSetNodeID ID;
2811  AdjustedType::Profile(ID, Orig, New);
2812  void *InsertPos = nullptr;
2813  AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2814  if (AT)
2815  return QualType(AT, 0);
2816 
2817  QualType Canonical = getCanonicalType(New);
2818 
2819  // Get the new insert position for the node we care about.
2820  AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2821  assert(!AT && "Shouldn't be in the map!");
2822 
2823  AT = new (*this, TypeAlignment)
2824  AdjustedType(Type::Adjusted, Orig, New, Canonical);
2825  Types.push_back(AT);
2826  AdjustedTypes.InsertNode(AT, InsertPos);
2827  return QualType(AT, 0);
2828 }
2829 
2831  assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
2832 
2833  QualType Decayed;
2834 
2835  // C99 6.7.5.3p7:
2836  // A declaration of a parameter as "array of type" shall be
2837  // adjusted to "qualified pointer to type", where the type
2838  // qualifiers (if any) are those specified within the [ and ] of
2839  // the array type derivation.
2840  if (T->isArrayType())
2841  Decayed = getArrayDecayedType(T);
2842 
2843  // C99 6.7.5.3p8:
2844  // A declaration of a parameter as "function returning type"
2845  // shall be adjusted to "pointer to function returning type", as
2846  // in 6.3.2.1.
2847  if (T->isFunctionType())
2848  Decayed = getPointerType(T);
2849 
2850  llvm::FoldingSetNodeID ID;
2851  AdjustedType::Profile(ID, T, Decayed);
2852  void *InsertPos = nullptr;
2853  AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2854  if (AT)
2855  return QualType(AT, 0);
2856 
2857  QualType Canonical = getCanonicalType(Decayed);
2858 
2859  // Get the new insert position for the node we care about.
2860  AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2861  assert(!AT && "Shouldn't be in the map!");
2862 
2863  AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2864  Types.push_back(AT);
2865  AdjustedTypes.InsertNode(AT, InsertPos);
2866  return QualType(AT, 0);
2867 }
2868 
2869 /// getBlockPointerType - Return the uniqued reference to the type for
2870 /// a pointer to the specified block.
2872  assert(T->isFunctionType() && "block of function types only");
2873  // Unique pointers, to guarantee there is only one block of a particular
2874  // structure.
2875  llvm::FoldingSetNodeID ID;
2877 
2878  void *InsertPos = nullptr;
2879  if (BlockPointerType *PT =
2880  BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2881  return QualType(PT, 0);
2882 
2883  // If the block pointee type isn't canonical, this won't be a canonical
2884  // type either so fill in the canonical type field.
2885  QualType Canonical;
2886  if (!T.isCanonical()) {
2887  Canonical = getBlockPointerType(getCanonicalType(T));
2888 
2889  // Get the new insert position for the node we care about.
2890  BlockPointerType *NewIP =
2891  BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2892  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2893  }
2894  auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2895  Types.push_back(New);
2896  BlockPointerTypes.InsertNode(New, InsertPos);
2897  return QualType(New, 0);
2898 }
2899 
2900 /// getLValueReferenceType - Return the uniqued reference to the type for an
2901 /// lvalue reference to the specified type.
2902 QualType
2903 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2904  assert(getCanonicalType(T) != OverloadTy &&
2905  "Unresolved overloaded function type");
2906 
2907  // Unique pointers, to guarantee there is only one pointer of a particular
2908  // structure.
2909  llvm::FoldingSetNodeID ID;
2910  ReferenceType::Profile(ID, T, SpelledAsLValue);
2911 
2912  void *InsertPos = nullptr;
2913  if (LValueReferenceType *RT =
2914  LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2915  return QualType(RT, 0);
2916 
2917  const auto *InnerRef = T->getAs<ReferenceType>();
2918 
2919  // If the referencee type isn't canonical, this won't be a canonical type
2920  // either, so fill in the canonical type field.
2921  QualType Canonical;
2922  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2923  QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2924  Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2925 
2926  // Get the new insert position for the node we care about.
2927  LValueReferenceType *NewIP =
2928  LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2929  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2930  }
2931 
2932  auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2933  SpelledAsLValue);
2934  Types.push_back(New);
2935  LValueReferenceTypes.InsertNode(New, InsertPos);
2936 
2937  return QualType(New, 0);
2938 }
2939 
2940 /// getRValueReferenceType - Return the uniqued reference to the type for an
2941 /// rvalue reference to the specified type.
2943  // Unique pointers, to guarantee there is only one pointer of a particular
2944  // structure.
2945  llvm::FoldingSetNodeID ID;
2946  ReferenceType::Profile(ID, T, false);
2947 
2948  void *InsertPos = nullptr;
2949  if (RValueReferenceType *RT =
2950  RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2951  return QualType(RT, 0);
2952 
2953  const auto *InnerRef = T->getAs<ReferenceType>();
2954 
2955  // If the referencee type isn't canonical, this won't be a canonical type
2956  // either, so fill in the canonical type field.
2957  QualType Canonical;
2958  if (InnerRef || !T.isCanonical()) {
2959  QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2960  Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2961 
2962  // Get the new insert position for the node we care about.
2963  RValueReferenceType *NewIP =
2964  RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2965  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2966  }
2967 
2968  auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2969  Types.push_back(New);
2970  RValueReferenceTypes.InsertNode(New, InsertPos);
2971  return QualType(New, 0);
2972 }
2973 
2974 /// getMemberPointerType - Return the uniqued reference to the type for a
2975 /// member pointer to the specified type, in the specified class.
2977  // Unique pointers, to guarantee there is only one pointer of a particular
2978  // structure.
2979  llvm::FoldingSetNodeID ID;
2980  MemberPointerType::Profile(ID, T, Cls);
2981 
2982  void *InsertPos = nullptr;
2983  if (MemberPointerType *PT =
2984  MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2985  return QualType(PT, 0);
2986 
2987  // If the pointee or class type isn't canonical, this won't be a canonical
2988  // type either, so fill in the canonical type field.
2989  QualType Canonical;
2990  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2992 
2993  // Get the new insert position for the node we care about.
2994  MemberPointerType *NewIP =
2995  MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2996  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2997  }
2998  auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2999  Types.push_back(New);
3000  MemberPointerTypes.InsertNode(New, InsertPos);
3001  return QualType(New, 0);
3002 }
3003 
3004 /// getConstantArrayType - Return the unique reference to the type for an
3005 /// array of the specified element type.
3007  const llvm::APInt &ArySizeIn,
3009  unsigned IndexTypeQuals) const {
3010  assert((EltTy->isDependentType() ||
3011  EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3012  "Constant array of VLAs is illegal!");
3013 
3014  // Convert the array size into a canonical width matching the pointer size for
3015  // the target.
3016  llvm::APInt ArySize(ArySizeIn);
3017  ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3018 
3019  llvm::FoldingSetNodeID ID;
3020  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
3021 
3022  void *InsertPos = nullptr;
3023  if (ConstantArrayType *ATP =
3024  ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3025  return QualType(ATP, 0);
3026 
3027  // If the element type isn't canonical or has qualifiers, this won't
3028  // be a canonical type either, so fill in the canonical type field.
3029  QualType Canon;
3030  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3031  SplitQualType canonSplit = getCanonicalType(EltTy).split();
3032  Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
3033  ASM, IndexTypeQuals);
3034  Canon = getQualifiedType(Canon, canonSplit.Quals);
3035 
3036  // Get the new insert position for the node we care about.
3037  ConstantArrayType *NewIP =
3038  ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3039  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3040  }
3041 
3042  auto *New = new (*this,TypeAlignment)
3043  ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
3044  ConstantArrayTypes.InsertNode(New, InsertPos);
3045  Types.push_back(New);
3046  return QualType(New, 0);
3047 }
3048 
3049 /// getVariableArrayDecayedType - Turns the given type, which may be
3050 /// variably-modified, into the corresponding type with all the known
3051 /// sizes replaced with [*].
3053  // Vastly most common case.
3054  if (!type->isVariablyModifiedType()) return type;
3055 
3056  QualType result;
3057 
3058  SplitQualType split = type.getSplitDesugaredType();
3059  const Type *ty = split.Ty;
3060  switch (ty->getTypeClass()) {
3061 #define TYPE(Class, Base)
3062 #define ABSTRACT_TYPE(Class, Base)
3063 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3064 #include "clang/AST/TypeNodes.def"
3065  llvm_unreachable("didn't desugar past all non-canonical types?");
3066 
3067  // These types should never be variably-modified.
3068  case Type::Builtin:
3069  case Type::Complex:
3070  case Type::Vector:
3071  case Type::DependentVector:
3072  case Type::ExtVector:
3073  case Type::DependentSizedExtVector:
3074  case Type::DependentAddressSpace:
3075  case Type::ObjCObject:
3076  case Type::ObjCInterface:
3077  case Type::ObjCObjectPointer:
3078  case Type::Record:
3079  case Type::Enum:
3080  case Type::UnresolvedUsing:
3081  case Type::TypeOfExpr:
3082  case Type::TypeOf:
3083  case Type::Decltype:
3084  case Type::UnaryTransform:
3085  case Type::DependentName:
3086  case Type::InjectedClassName:
3087  case Type::TemplateSpecialization:
3088  case Type::DependentTemplateSpecialization:
3089  case Type::TemplateTypeParm:
3090  case Type::SubstTemplateTypeParmPack:
3091  case Type::Auto:
3092  case Type::DeducedTemplateSpecialization:
3093  case Type::PackExpansion:
3094  llvm_unreachable("type should never be variably-modified");
3095 
3096  // These types can be variably-modified but should never need to
3097  // further decay.
3098  case Type::FunctionNoProto:
3099  case Type::FunctionProto:
3100  case Type::BlockPointer:
3101  case Type::MemberPointer:
3102  case Type::Pipe:
3103  return type;
3104 
3105  // These types can be variably-modified. All these modifications
3106  // preserve structure except as noted by comments.
3107  // TODO: if we ever care about optimizing VLAs, there are no-op
3108  // optimizations available here.
3109  case Type::Pointer:
3111  cast<PointerType>(ty)->getPointeeType()));
3112  break;
3113 
3114  case Type::LValueReference: {
3115  const auto *lv = cast<LValueReferenceType>(ty);
3116  result = getLValueReferenceType(
3117  getVariableArrayDecayedType(lv->getPointeeType()),
3118  lv->isSpelledAsLValue());
3119  break;
3120  }
3121 
3122  case Type::RValueReference: {
3123  const auto *lv = cast<RValueReferenceType>(ty);
3124  result = getRValueReferenceType(
3125  getVariableArrayDecayedType(lv->getPointeeType()));
3126  break;
3127  }
3128 
3129  case Type::Atomic: {
3130  const auto *at = cast<AtomicType>(ty);
3131  result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3132  break;
3133  }
3134 
3135  case Type::ConstantArray: {
3136  const auto *cat = cast<ConstantArrayType>(ty);
3137  result = getConstantArrayType(
3138  getVariableArrayDecayedType(cat->getElementType()),
3139  cat->getSize(),
3140  cat->getSizeModifier(),
3141  cat->getIndexTypeCVRQualifiers());
3142  break;
3143  }
3144 
3145  case Type::DependentSizedArray: {
3146  const auto *dat = cast<DependentSizedArrayType>(ty);
3147  result = getDependentSizedArrayType(
3148  getVariableArrayDecayedType(dat->getElementType()),
3149  dat->getSizeExpr(),
3150  dat->getSizeModifier(),
3151  dat->getIndexTypeCVRQualifiers(),
3152  dat->getBracketsRange());
3153  break;
3154  }
3155 
3156  // Turn incomplete types into [*] types.
3157  case Type::IncompleteArray: {
3158  const auto *iat = cast<IncompleteArrayType>(ty);
3159  result = getVariableArrayType(
3160  getVariableArrayDecayedType(iat->getElementType()),
3161  /*size*/ nullptr,
3163  iat->getIndexTypeCVRQualifiers(),
3164  SourceRange());
3165  break;
3166  }
3167 
3168  // Turn VLA types into [*] types.
3169  case Type::VariableArray: {
3170  const auto *vat = cast<VariableArrayType>(ty);
3171  result = getVariableArrayType(
3172  getVariableArrayDecayedType(vat->getElementType()),
3173  /*size*/ nullptr,
3175  vat->getIndexTypeCVRQualifiers(),
3176  vat->getBracketsRange());
3177  break;
3178  }
3179  }
3180 
3181  // Apply the top-level qualifiers from the original.
3182  return getQualifiedType(result, split.Quals);
3183 }
3184 
3185 /// getVariableArrayType - Returns a non-unique reference to the type for a
3186 /// variable array of the specified element type.
3188  Expr *NumElts,
3190  unsigned IndexTypeQuals,
3191  SourceRange Brackets) const {
3192  // Since we don't unique expressions, it isn't possible to unique VLA's
3193  // that have an expression provided for their size.
3194  QualType Canon;
3195 
3196  // Be sure to pull qualifiers off the element type.
3197  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3198  SplitQualType canonSplit = getCanonicalType(EltTy).split();
3199  Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3200  IndexTypeQuals, Brackets);
3201  Canon = getQualifiedType(Canon, canonSplit.Quals);
3202  }
3203 
3204  auto *New = new (*this, TypeAlignment)
3205  VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3206 
3207  VariableArrayTypes.push_back(New);
3208  Types.push_back(New);
3209  return QualType(New, 0);
3210 }
3211 
3212 /// getDependentSizedArrayType - Returns a non-unique reference to
3213 /// the type for a dependently-sized array of the specified element
3214 /// type.
3216  Expr *numElements,
3218  unsigned elementTypeQuals,
3219  SourceRange brackets) const {
3220  assert((!numElements || numElements->isTypeDependent() ||
3221  numElements->isValueDependent()) &&
3222  "Size must be type- or value-dependent!");
3223 
3224  // Dependently-sized array types that do not have a specified number
3225  // of elements will have their sizes deduced from a dependent
3226  // initializer. We do no canonicalization here at all, which is okay
3227  // because they can't be used in most locations.
3228  if (!numElements) {
3229  auto *newType
3230  = new (*this, TypeAlignment)
3231  DependentSizedArrayType(*this, elementType, QualType(),
3232  numElements, ASM, elementTypeQuals,
3233  brackets);
3234  Types.push_back(newType);
3235  return QualType(newType, 0);
3236  }
3237 
3238  // Otherwise, we actually build a new type every time, but we
3239  // also build a canonical type.
3240 
3241  SplitQualType canonElementType = getCanonicalType(elementType).split();
3242 
3243  void *insertPos = nullptr;
3244  llvm::FoldingSetNodeID ID;
3246  QualType(canonElementType.Ty, 0),
3247  ASM, elementTypeQuals, numElements);
3248 
3249  // Look for an existing type with these properties.
3250  DependentSizedArrayType *canonTy =
3251  DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3252 
3253  // If we don't have one, build one.
3254  if (!canonTy) {
3255  canonTy = new (*this, TypeAlignment)
3256  DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3257  QualType(), numElements, ASM, elementTypeQuals,
3258  brackets);
3259  DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3260  Types.push_back(canonTy);
3261  }
3262 
3263  // Apply qualifiers from the element type to the array.
3264  QualType canon = getQualifiedType(QualType(canonTy,0),
3265  canonElementType.Quals);
3266 
3267  // If we didn't need extra canonicalization for the element type or the size
3268  // expression, then just use that as our result.
3269  if (QualType(canonElementType.Ty, 0) == elementType &&
3270  canonTy->getSizeExpr() == numElements)
3271  return canon;
3272 
3273  // Otherwise, we need to build a type which follows the spelling
3274  // of the element type.
3275  auto *sugaredType
3276  = new (*this, TypeAlignment)
3277  DependentSizedArrayType(*this, elementType, canon, numElements,
3278  ASM, elementTypeQuals, brackets);
3279  Types.push_back(sugaredType);
3280  return QualType(sugaredType, 0);
3281 }
3282 
3285  unsigned elementTypeQuals) const {
3286  llvm::FoldingSetNodeID ID;
3287  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3288 
3289  void *insertPos = nullptr;
3290  if (IncompleteArrayType *iat =
3291  IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3292  return QualType(iat, 0);
3293 
3294  // If the element type isn't canonical, this won't be a canonical type
3295  // either, so fill in the canonical type field. We also have to pull
3296  // qualifiers off the element type.
3297  QualType canon;
3298 
3299  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3300  SplitQualType canonSplit = getCanonicalType(elementType).split();
3301  canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3302  ASM, elementTypeQuals);
3303  canon = getQualifiedType(canon, canonSplit.Quals);
3304 
3305  // Get the new insert position for the node we care about.
3306  IncompleteArrayType *existing =
3307  IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3308  assert(!existing && "Shouldn't be in the map!"); (void) existing;
3309  }
3310 
3311  auto *newType = new (*this, TypeAlignment)
3312  IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3313 
3314  IncompleteArrayTypes.InsertNode(newType, insertPos);
3315  Types.push_back(newType);
3316  return QualType(newType, 0);
3317 }
3318 
3319 /// getVectorType - Return the unique reference to a vector type of
3320 /// the specified element type and size. VectorType must be a built-in type.
3321 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
3322  VectorType::VectorKind VecKind) const {
3323  assert(vecType->isBuiltinType());
3324 
3325  // Check if we've already instantiated a vector of this type.
3326  llvm::FoldingSetNodeID ID;
3327  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
3328 
3329  void *InsertPos = nullptr;
3330  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3331  return QualType(VTP, 0);
3332 
3333  // If the element type isn't canonical, this won't be a canonical type either,
3334  // so fill in the canonical type field.
3335  QualType Canonical;
3336  if (!vecType.isCanonical()) {
3337  Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
3338 
3339  // Get the new insert position for the node we care about.
3340  VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3341  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3342  }
3343  auto *New = new (*this, TypeAlignment)
3344  VectorType(vecType, NumElts, Canonical, VecKind);
3345  VectorTypes.InsertNode(New, InsertPos);
3346  Types.push_back(New);
3347  return QualType(New, 0);
3348 }
3349 
3350 QualType
3352  SourceLocation AttrLoc,
3353  VectorType::VectorKind VecKind) const {
3354  llvm::FoldingSetNodeID ID;
3355  DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
3356  VecKind);
3357  void *InsertPos = nullptr;
3358  DependentVectorType *Canon =
3359  DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3360  DependentVectorType *New;
3361 
3362  if (Canon) {
3363  New = new (*this, TypeAlignment) DependentVectorType(
3364  *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
3365  } else {
3366  QualType CanonVecTy = getCanonicalType(VecType);
3367  if (CanonVecTy == VecType) {
3368  New = new (*this, TypeAlignment) DependentVectorType(
3369  *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
3370 
3371  DependentVectorType *CanonCheck =
3372  DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3373  assert(!CanonCheck &&
3374  "Dependent-sized vector_size canonical type broken");
3375  (void)CanonCheck;
3376  DependentVectorTypes.InsertNode(New, InsertPos);
3377  } else {
3378  QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
3379  SourceLocation());
3380  New = new (*this, TypeAlignment) DependentVectorType(
3381  *this, VecType, Canon, SizeExpr, AttrLoc, VecKind);
3382  }
3383  }
3384 
3385  Types.push_back(New);
3386  return QualType(New, 0);
3387 }
3388 
3389 /// getExtVectorType - Return the unique reference to an extended vector type of
3390 /// the specified element type and size. VectorType must be a built-in type.
3391 QualType
3392 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
3393  assert(vecType->isBuiltinType() || vecType->isDependentType());
3394 
3395  // Check if we've already instantiated a vector of this type.
3396  llvm::FoldingSetNodeID ID;
3397  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
3399  void *InsertPos = nullptr;
3400  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3401  return QualType(VTP, 0);
3402 
3403  // If the element type isn't canonical, this won't be a canonical type either,
3404  // so fill in the canonical type field.
3405  QualType Canonical;
3406  if (!vecType.isCanonical()) {
3407  Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
3408 
3409  // Get the new insert position for the node we care about.
3410  VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3411  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3412  }
3413  auto *New = new (*this, TypeAlignment)
3414  ExtVectorType(vecType, NumElts, Canonical);
3415  VectorTypes.InsertNode(New, InsertPos);
3416  Types.push_back(New);
3417  return QualType(New, 0);
3418 }
3419 
3420 QualType
3422  Expr *SizeExpr,
3423  SourceLocation AttrLoc) const {
3424  llvm::FoldingSetNodeID ID;
3426  SizeExpr);
3427 
3428  void *InsertPos = nullptr;
3430  = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3432  if (Canon) {
3433  // We already have a canonical version of this array type; use it as
3434  // the canonical type for a newly-built type.
3435  New = new (*this, TypeAlignment)
3436  DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
3437  SizeExpr, AttrLoc);
3438  } else {
3439  QualType CanonVecTy = getCanonicalType(vecType);
3440  if (CanonVecTy == vecType) {
3441  New = new (*this, TypeAlignment)
3442  DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
3443  AttrLoc);
3444 
3445  DependentSizedExtVectorType *CanonCheck
3446  = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3447  assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
3448  (void)CanonCheck;
3449  DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
3450  } else {
3451  QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
3452  SourceLocation());
3453  New = new (*this, TypeAlignment)
3454  DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
3455  }
3456  }
3457 
3458  Types.push_back(New);
3459  return QualType(New, 0);
3460 }
3461 
3463  Expr *AddrSpaceExpr,
3464  SourceLocation AttrLoc) const {
3465  assert(AddrSpaceExpr->isInstantiationDependent());
3466 
3467  QualType canonPointeeType = getCanonicalType(PointeeType);
3468 
3469  void *insertPos = nullptr;
3470  llvm::FoldingSetNodeID ID;
3471  DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
3472  AddrSpaceExpr);
3473 
3474  DependentAddressSpaceType *canonTy =
3475  DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
3476 
3477  if (!canonTy) {
3478  canonTy = new (*this, TypeAlignment)
3479  DependentAddressSpaceType(*this, canonPointeeType,
3480  QualType(), AddrSpaceExpr, AttrLoc);
3481  DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
3482  Types.push_back(canonTy);
3483  }
3484 
3485  if (canonPointeeType == PointeeType &&
3486  canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
3487  return QualType(canonTy, 0);
3488 
3489  auto *sugaredType
3490  = new (*this, TypeAlignment)
3491  DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
3492  AddrSpaceExpr, AttrLoc);
3493  Types.push_back(sugaredType);
3494  return QualType(sugaredType, 0);
3495 }
3496 
3497 /// Determine whether \p T is canonical as the result type of a function.
3499  return T.isCanonical() &&
3502 }
3503 
3504 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
3505 QualType
3507  const FunctionType::ExtInfo &Info) const {
3508  // Unique functions, to guarantee there is only one function of a particular
3509  // structure.
3510  llvm::FoldingSetNodeID ID;
3511  FunctionNoProtoType::Profile(ID, ResultTy, Info);
3512 
3513  void *InsertPos = nullptr;
3514  if (FunctionNoProtoType *FT =
3515  FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
3516  return QualType(FT, 0);
3517 
3518  QualType Canonical;
3519  if (!isCanonicalResultType(ResultTy)) {
3520  Canonical =
3522 
3523  // Get the new insert position for the node we care about.
3524  FunctionNoProtoType *NewIP =
3525  FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
3526  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3527  }
3528 
3529  auto *New = new (*this, TypeAlignment)
3530  FunctionNoProtoType(ResultTy, Canonical, Info);
3531  Types.push_back(New);
3532  FunctionNoProtoTypes.InsertNode(New, InsertPos);
3533  return QualType(New, 0);
3534 }
3535 
3538  CanQualType CanResultType = getCanonicalType(ResultType);
3539 
3540  // Canonical result types do not have ARC lifetime qualifiers.
3541  if (CanResultType.getQualifiers().hasObjCLifetime()) {
3542  Qualifiers Qs = CanResultType.getQualifiers();
3543  Qs.removeObjCLifetime();
3545  getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
3546  }
3547 
3548  return CanResultType;
3549 }
3550 
3552  const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
3553  if (ESI.Type == EST_None)
3554  return true;
3555  if (!NoexceptInType)
3556  return false;
3557 
3558  // C++17 onwards: exception specification is part of the type, as a simple
3559  // boolean "can this function type throw".
3560  if (ESI.Type == EST_BasicNoexcept)
3561  return true;
3562 
3563  // A noexcept(expr) specification is (possibly) canonical if expr is
3564  // value-dependent.
3565  if (ESI.Type == EST_DependentNoexcept)
3566  return true;
3567 
3568  // A dynamic exception specification is canonical if it only contains pack
3569  // expansions (so we can't tell whether it's non-throwing) and all its
3570  // contained types are canonical.
3571  if (ESI.Type == EST_Dynamic) {
3572  bool AnyPackExpansions = false;
3573  for (QualType ET : ESI.Exceptions) {
3574  if (!ET.isCanonical())
3575  return false;
3576  if (ET->getAs<PackExpansionType>())
3577  AnyPackExpansions = true;
3578  }
3579  return AnyPackExpansions;
3580  }
3581 
3582  return false;
3583 }
3584 
3585 QualType ASTContext::getFunctionTypeInternal(
3586  QualType ResultTy, ArrayRef<QualType> ArgArray,
3587  const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
3588  size_t NumArgs = ArgArray.size();
3589 
3590  // Unique functions, to guarantee there is only one function of a particular
3591  // structure.
3592  llvm::FoldingSetNodeID ID;
3593  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
3594  *this, true);
3595 
3596  QualType Canonical;
3597  bool Unique = false;
3598 
3599  void *InsertPos = nullptr;
3600  if (FunctionProtoType *FPT =
3601  FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
3602  QualType Existing = QualType(FPT, 0);
3603 
3604  // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
3605  // it so long as our exception specification doesn't contain a dependent
3606  // noexcept expression, or we're just looking for a canonical type.
3607  // Otherwise, we're going to need to create a type
3608  // sugar node to hold the concrete expression.
3609  if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
3610  EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
3611  return Existing;
3612 
3613  // We need a new type sugar node for this one, to hold the new noexcept
3614  // expression. We do no canonicalization here, but that's OK since we don't
3615  // expect to see the same noexcept expression much more than once.
3616  Canonical = getCanonicalType(Existing);
3617  Unique = true;
3618  }
3619 
3620  bool NoexceptInType = getLangOpts().CPlusPlus17;
3621  bool IsCanonicalExceptionSpec =
3622  isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
3623 
3624  // Determine whether the type being created is already canonical or not.
3625  bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
3626  isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
3627  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
3628  if (!ArgArray[i].isCanonicalAsParam())
3629  isCanonical = false;
3630 
3631  if (OnlyWantCanonical)
3632  assert(isCanonical &&
3633  "given non-canonical parameters constructing canonical type");
3634 
3635  // If this type isn't canonical, get the canonical version of it if we don't
3636  // already have it. The exception spec is only partially part of the
3637  // canonical type, and only in C++17 onwards.
3638  if (!isCanonical && Canonical.isNull()) {
3639  SmallVector<QualType, 16> CanonicalArgs;
3640  CanonicalArgs.reserve(NumArgs);
3641  for (unsigned i = 0; i != NumArgs; ++i)
3642  CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
3643 
3644  llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
3645  FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
3646  CanonicalEPI.HasTrailingReturn = false;
3647 
3648  if (IsCanonicalExceptionSpec) {
3649  // Exception spec is already OK.
3650  } else if (NoexceptInType) {
3651  switch (EPI.ExceptionSpec.Type) {
3653  // We don't know yet. It shouldn't matter what we pick here; no-one
3654  // should ever look at this.
3655  LLVM_FALLTHROUGH;
3656  case EST_None: case EST_MSAny: case EST_NoexceptFalse:
3657  CanonicalEPI.ExceptionSpec.Type = EST_None;
3658  break;
3659 
3660  // A dynamic exception specification is almost always "not noexcept",
3661  // with the exception that a pack expansion might expand to no types.
3662  case EST_Dynamic: {
3663  bool AnyPacks = false;
3664  for (QualType ET : EPI.ExceptionSpec.Exceptions) {
3665  if (ET->getAs<PackExpansionType>())
3666  AnyPacks = true;
3667  ExceptionTypeStorage.push_back(getCanonicalType(ET));
3668  }
3669  if (!AnyPacks)
3670  CanonicalEPI.ExceptionSpec.Type = EST_None;
3671  else {
3672  CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
3673  CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
3674  }
3675  break;
3676  }
3677 
3679  CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
3680  break;
3681 
3682  case EST_DependentNoexcept:
3683  llvm_unreachable("dependent noexcept is already canonical");
3684  }
3685  } else {
3687  }
3688 
3689  // Adjust the canonical function result type.
3690  CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
3691  Canonical =
3692  getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
3693 
3694  // Get the new insert position for the node we care about.
3695  FunctionProtoType *NewIP =
3696  FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
3697  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3698  }
3699 
3700  // Compute the needed size to hold this FunctionProtoType and the
3701  // various trailing objects.
3702  auto ESH = FunctionProtoType::getExceptionSpecSize(
3703  EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
3704  size_t Size = FunctionProtoType::totalSizeToAlloc<
3707  FunctionProtoType::ExtParameterInfo>(
3708  NumArgs, FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
3709  ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
3710  EPI.ExtParameterInfos ? NumArgs : 0);
3711 
3712  auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
3713  FunctionProtoType::ExtProtoInfo newEPI = EPI;
3714  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
3715  Types.push_back(FTP);
3716  if (!Unique)
3717  FunctionProtoTypes.InsertNode(FTP, InsertPos);
3718  return QualType(FTP, 0);
3719 }
3720 
3721 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
3722  llvm::FoldingSetNodeID ID;
3723  PipeType::Profile(ID, T, ReadOnly);
3724 
3725  void *InsertPos = nullptr;
3726  if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
3727  return QualType(PT, 0);
3728 
3729  // If the pipe element type isn't canonical, this won't be a canonical type
3730  // either, so fill in the canonical type field.
3731  QualType Canonical;
3732  if (!T.isCanonical()) {
3733  Canonical = getPipeType(getCanonicalType(T), ReadOnly);
3734 
3735  // Get the new insert position for the node we care about.
3736  PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
3737  assert(!NewIP && "Shouldn't be in the map!");
3738  (void)NewIP;
3739  }
3740  auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
3741  Types.push_back(New);
3742  PipeTypes.InsertNode(New, InsertPos);
3743  return QualType(New, 0);
3744 }
3745 
3747  // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
3748  return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
3749  : Ty;
3750 }
3751 
3753  return getPipeType(T, true);
3754 }
3755 
3757  return getPipeType(T, false);
3758 }
3759 
3760 #ifndef NDEBUG
3762  if (!isa<CXXRecordDecl>(D)) return false;
3763  const auto *RD = cast<CXXRecordDecl>(D);
3764  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
3765  return true;
3766  if (RD->getDescribedClassTemplate() &&
3767  !isa<ClassTemplateSpecializationDecl>(RD))
3768  return true;
3769  return false;
3770 }
3771 #endif
3772 
3773 /// getInjectedClassNameType - Return the unique reference to the
3774 /// injected class name type for the specified templated declaration.
3776  QualType TST) const {
3777  assert(NeedsInjectedClassNameType(Decl));
3778  if (Decl->TypeForDecl) {
3779  assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
3780  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
3781  assert(PrevDecl->TypeForDecl && "previous declaration has no type");
3782  Decl->TypeForDecl = PrevDecl->TypeForDecl;
3783  assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
3784  } else {
3785  Type *newType =
3786  new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
3787  Decl->TypeForDecl = newType;
3788  Types.push_back(newType);
3789  }
3790  return QualType(Decl->TypeForDecl, 0);
3791 }
3792 
3793 /// getTypeDeclType - Return the unique reference to the type for the
3794 /// specified type declaration.
3795 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
3796  assert(Decl && "Passed null for Decl param");
3797  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
3798 
3799  if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
3800  return getTypedefType(Typedef);
3801 
3802  assert(!isa<TemplateTypeParmDecl>(Decl) &&
3803  "Template type parameter types are always available.");
3804 
3805  if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
3806  assert(Record->isFirstDecl() && "struct/union has previous declaration");
3807  assert(!NeedsInjectedClassNameType(Record));
3808  return getRecordType(Record);
3809  } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
3810  assert(Enum->isFirstDecl() && "enum has previous declaration");
3811  return getEnumType(Enum);
3812  } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
3813  Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
3814  Decl->TypeForDecl = newType;
3815  Types.push_back(newType);
3816  } else
3817  llvm_unreachable("TypeDecl without a type?");
3818 
3819  return QualType(Decl->TypeForDecl, 0);
3820 }
3821 
3822 /// getTypedefType - Return the unique reference to the type for the
3823 /// specified typedef name decl.
3824 QualType
3826  QualType Canonical) const {
3827  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3828 
3829  if (Canonical.isNull())
3830  Canonical = getCanonicalType(Decl->getUnderlyingType());
3831  auto *newType = new (*this, TypeAlignment)
3832  TypedefType(Type::Typedef, Decl, Canonical);
3833  Decl->TypeForDecl = newType;
3834  Types.push_back(newType);
3835  return QualType(newType, 0);
3836 }
3837 
3839  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3840 
3841  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
3842  if (PrevDecl->TypeForDecl)
3843  return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3844 
3845  auto *newType = new (*this, TypeAlignment) RecordType(Decl);
3846  Decl->TypeForDecl = newType;
3847  Types.push_back(newType);
3848  return QualType(newType, 0);
3849 }
3850 
3852  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3853 
3854  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
3855  if (PrevDecl->TypeForDecl)
3856  return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3857 
3858  auto *newType = new (*this, TypeAlignment) EnumType(Decl);
3859  Decl->TypeForDecl = newType;
3860  Types.push_back(newType);
3861  return QualType(newType, 0);
3862 }
3863 
3865  QualType modifiedType,
3866  QualType equivalentType) {
3867  llvm::FoldingSetNodeID id;
3868  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
3869 
3870  void *insertPos = nullptr;
3871  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
3872  if (type) return QualType(type, 0);
3873 
3874  QualType canon = getCanonicalType(equivalentType);
3875  type = new (*this, TypeAlignment)
3876  AttributedType(canon, attrKind, modifiedType, equivalentType);
3877 
3878  Types.push_back(type);
3879  AttributedTypes.InsertNode(type, insertPos);
3880 
3881  return QualType(type, 0);
3882 }
3883 
3884 /// Retrieve a substitution-result type.
3885 QualType
3887  QualType Replacement) const {
3888  assert(Replacement.isCanonical()
3889  && "replacement types must always be canonical");
3890 
3891  llvm::FoldingSetNodeID ID;
3892  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3893  void *InsertPos = nullptr;
3894  SubstTemplateTypeParmType *SubstParm
3895  = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3896 
3897  if (!SubstParm) {
3898  SubstParm = new (*this, TypeAlignment)
3899  SubstTemplateTypeParmType(Parm, Replacement);
3900  Types.push_back(SubstParm);
3901  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3902  }
3903 
3904  return QualType(SubstParm, 0);
3905 }
3906 
3907 /// Retrieve a
3909  const TemplateTypeParmType *Parm,
3910  const TemplateArgument &ArgPack) {
3911 #ifndef NDEBUG
3912  for (const auto &P : ArgPack.pack_elements()) {
3913  assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3914  assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
3915  }
3916 #endif
3917 
3918  llvm::FoldingSetNodeID ID;
3919  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3920  void *InsertPos = nullptr;
3921  if (SubstTemplateTypeParmPackType *SubstParm
3922  = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3923  return QualType(SubstParm, 0);
3924 
3925  QualType Canon;
3926  if (!Parm->isCanonicalUnqualified()) {
3927  Canon = getCanonicalType(QualType(Parm, 0));
3928  Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3929  ArgPack);
3930  SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3931  }
3932 
3933  auto *SubstParm
3934  = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3935  ArgPack);
3936  Types.push_back(SubstParm);
3937  SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
3938  return QualType(SubstParm, 0);
3939 }
3940 
3941 /// Retrieve the template type parameter type for a template
3942 /// parameter or parameter pack with the given depth, index, and (optionally)
3943 /// name.
3945  bool ParameterPack,
3946  TemplateTypeParmDecl *TTPDecl) const {
3947  llvm::FoldingSetNodeID ID;
3948  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3949  void *InsertPos = nullptr;
3950  TemplateTypeParmType *TypeParm
3951  = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3952 
3953  if (TypeParm)
3954  return QualType(TypeParm, 0);
3955 
3956  if (TTPDecl) {
3957  QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3958  TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3959 
3960  TemplateTypeParmType *TypeCheck
3961  = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3962  assert(!TypeCheck && "Template type parameter canonical type broken");
3963  (void)TypeCheck;
3964  } else
3965  TypeParm = new (*this, TypeAlignment)
3966  TemplateTypeParmType(Depth, Index, ParameterPack);
3967 
3968  Types.push_back(TypeParm);
3969  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3970 
3971  return QualType(TypeParm, 0);
3972 }
3973 
3976  SourceLocation NameLoc,
3977  const TemplateArgumentListInfo &Args,
3978  QualType Underlying) const {
3979  assert(!Name.getAsDependentTemplateName() &&
3980  "No dependent template names here!");
3981  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3982 
3987  TL.setTemplateNameLoc(NameLoc);
3988  TL.setLAngleLoc(Args.getLAngleLoc());
3989  TL.setRAngleLoc(Args.getRAngleLoc());
3990  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3991  TL.setArgLocInfo(i, Args[i].getLocInfo());
3992  return DI;
3993 }
3994 
3995 QualType
3997  const TemplateArgumentListInfo &Args,
3998  QualType Underlying) const {
3999  assert(!Template.getAsDependentTemplateName() &&
4000  "No dependent template names here!");
4001 
4003  ArgVec.reserve(Args.size());
4004  for (const TemplateArgumentLoc &Arg : Args.arguments())
4005  ArgVec.push_back(Arg.getArgument());
4006 
4007  return getTemplateSpecializationType(Template, ArgVec, Underlying);
4008 }
4009 
4010 #ifndef NDEBUG
4012  for (const TemplateArgument &Arg : Args)
4013  if (Arg.isPackExpansion())
4014  return true;
4015 
4016  return true;
4017 }
4018 #endif
4019 
4020 QualType
4023  QualType Underlying) const {
4024  assert(!Template.getAsDependentTemplateName() &&
4025  "No dependent template names here!");
4026  // Look through qualified template names.
4027  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4028  Template = TemplateName(QTN->getTemplateDecl());
4029 
4030  bool IsTypeAlias =
4031  Template.getAsTemplateDecl() &&
4032  isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
4033  QualType CanonType;
4034  if (!Underlying.isNull())
4035  CanonType = getCanonicalType(Underlying);
4036  else {
4037  // We can get here with an alias template when the specialization contains
4038  // a pack expansion that does not match up with a parameter pack.
4039  assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4040  "Caller must compute aliased type");
4041  IsTypeAlias = false;
4042  CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4043  }
4044 
4045  // Allocate the (non-canonical) template specialization type, but don't
4046  // try to unique it: these types typically have location information that
4047  // we don't unique and don't want to lose.
4048  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4049  sizeof(TemplateArgument) * Args.size() +
4050  (IsTypeAlias? sizeof(QualType) : 0),
4051  TypeAlignment);
4052  auto *Spec
4053  = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4054  IsTypeAlias ? Underlying : QualType());
4055 
4056  Types.push_back(Spec);
4057  return QualType(Spec, 0);
4058 }
4059 
4061  TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4062  assert(!Template.getAsDependentTemplateName() &&
4063  "No dependent template names here!");
4064 
4065  // Look through qualified template names.
4066  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4067  Template = TemplateName(QTN->getTemplateDecl());
4068 
4069  // Build the canonical template specialization type.
4070  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4072  unsigned NumArgs = Args.size();
4073  CanonArgs.reserve(NumArgs);
4074  for (const TemplateArgument &Arg : Args)
4075  CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
4076 
4077  // Determine whether this canonical template specialization type already
4078  // exists.
4079  llvm::FoldingSetNodeID ID;
4080  TemplateSpecializationType::Profile(ID, CanonTemplate,
4081  CanonArgs, *this);
4082 
4083  void *InsertPos = nullptr;
4085  = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4086 
4087  if (!Spec) {
4088  // Allocate a new canonical template specialization type.
4089  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4090  sizeof(TemplateArgument) * NumArgs),
4091  TypeAlignment);
4092  Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4093  CanonArgs,
4094  QualType(), QualType());
4095  Types.push_back(Spec);
4096  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
4097  }
4098 
4099  assert(Spec->isDependentType() &&
4100  "Non-dependent template-id type must have a canonical type");
4101  return QualType(Spec, 0);
4102 }
4103 
4105  NestedNameSpecifier *NNS,
4106  QualType NamedType,
4107  TagDecl *OwnedTagDecl) const {
4108  llvm::FoldingSetNodeID ID;
4109  ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
4110 
4111  void *InsertPos = nullptr;
4112  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4113  if (T)
4114  return QualType(T, 0);
4115 
4116  QualType Canon = NamedType;
4117  if (!Canon.isCanonical()) {
4118  Canon = getCanonicalType(NamedType);
4119  ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4120  assert(!CheckT && "Elaborated canonical type broken");
4121  (void)CheckT;
4122  }
4123 
4124  void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
4125  TypeAlignment);
4126  T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
4127 
4128  Types.push_back(T);
4129  ElaboratedTypes.InsertNode(T, InsertPos);
4130  return QualType(T, 0);
4131 }
4132 
4133 QualType
4135  llvm::FoldingSetNodeID ID;
4136  ParenType::Profile(ID, InnerType);
4137 
4138  void *InsertPos = nullptr;
4139  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4140  if (T)
4141  return QualType(T, 0);
4142 
4143  QualType Canon = InnerType;
4144  if (!Canon.isCanonical()) {
4145  Canon = getCanonicalType(InnerType);
4146  ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4147  assert(!CheckT && "Paren canonical type broken");
4148  (void)CheckT;
4149  }
4150 
4151  T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
4152  Types.push_back(T);
4153  ParenTypes.InsertNode(T, InsertPos);
4154  return QualType(T, 0);
4155 }
4156 
4158  NestedNameSpecifier *NNS,
4159  const IdentifierInfo *Name,
4160  QualType Canon) const {
4161  if (Canon.isNull()) {
4163  if (CanonNNS != NNS)
4164  Canon = getDependentNameType(Keyword, CanonNNS, Name);
4165  }
4166 
4167  llvm::FoldingSetNodeID ID;
4168  DependentNameType::Profile(ID, Keyword, NNS, Name);
4169 
4170  void *InsertPos = nullptr;
4172  = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
4173  if (T)
4174  return QualType(T, 0);
4175 
4176  T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
4177  Types.push_back(T);
4178  DependentNameTypes.InsertNode(T, InsertPos);
4179  return QualType(T, 0);
4180 }
4181 
4182 QualType
4184  ElaboratedTypeKeyword Keyword,
4185  NestedNameSpecifier *NNS,
4186  const IdentifierInfo *Name,
4187  const TemplateArgumentListInfo &Args) const {
4188  // TODO: avoid this copy
4190  for (unsigned I = 0, E = Args.size(); I != E; ++I)
4191  ArgCopy.push_back(Args[I].getArgument());
4192  return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
4193 }
4194 
4195 QualType
4197  ElaboratedTypeKeyword Keyword,
4198  NestedNameSpecifier *NNS,
4199  const IdentifierInfo *Name,
4200  ArrayRef<TemplateArgument> Args) const {
4201  assert((!NNS || NNS->isDependent()) &&
4202  "nested-name-specifier must be dependent");
4203 
4204  llvm::FoldingSetNodeID ID;
4205  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
4206  Name, Args);
4207 
4208  void *InsertPos = nullptr;
4210  = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4211  if (T)
4212  return QualType(T, 0);
4213 
4215 
4216  ElaboratedTypeKeyword CanonKeyword = Keyword;
4217  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
4218 
4219  bool AnyNonCanonArgs = false;
4220  unsigned NumArgs = Args.size();
4221  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
4222  for (unsigned I = 0; I != NumArgs; ++I) {
4223  CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
4224  if (!CanonArgs[I].structurallyEquals(Args[I]))
4225  AnyNonCanonArgs = true;
4226  }
4227 
4228  QualType Canon;
4229  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
4230  Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
4231  Name,
4232  CanonArgs);
4233 
4234  // Find the insert position again.
4235  DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4236  }
4237 
4238  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
4239  sizeof(TemplateArgument) * NumArgs),
4240  TypeAlignment);
4241  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
4242  Name, Args, Canon);
4243  Types.push_back(T);
4244  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
4245  return QualType(T, 0);
4246 }
4247 
4249  TemplateArgument Arg;
4250  if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4251  QualType ArgType = getTypeDeclType(TTP);
4252  if (TTP->isParameterPack())
4253  ArgType = getPackExpansionType(ArgType, None);
4254 
4255  Arg = TemplateArgument(ArgType);
4256  } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4257  Expr *E = new (*this) DeclRefExpr(
4258  NTTP, /*enclosing*/false,
4259  NTTP->getType().getNonLValueExprType(*this),
4260  Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
4261 
4262  if (NTTP->isParameterPack())
4263  E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
4264  None);
4265  Arg = TemplateArgument(E);
4266  } else {
4267  auto *TTP = cast<TemplateTemplateParmDecl>(Param);
4268  if (TTP->isParameterPack())
4270  else
4271  Arg = TemplateArgument(TemplateName(TTP));
4272  }
4273 
4274  if (Param->isTemplateParameterPack())
4275  Arg = TemplateArgument::CreatePackCopy(*this, Arg);
4276 
4277  return Arg;
4278 }
4279 
4280 void
4283  Args.reserve(Args.size() + Params->size());
4284 
4285  for (NamedDecl *Param : *Params)
4286  Args.push_back(getInjectedTemplateArg(Param));
4287 }
4288 
4290  Optional<unsigned> NumExpansions) {
4291  llvm::FoldingSetNodeID ID;
4292  PackExpansionType::Profile(ID, Pattern, NumExpansions);
4293 
4294  assert(Pattern->containsUnexpandedParameterPack() &&
4295  "Pack expansions must expand one or more parameter packs");
4296  void *InsertPos = nullptr;
4298  = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4299  if (T)
4300  return QualType(T, 0);
4301 
4302  QualType Canon;
4303  if (!Pattern.isCanonical()) {
4304  Canon = getCanonicalType(Pattern);
4305  // The canonical type might not contain an unexpanded parameter pack, if it
4306  // contains an alias template specialization which ignores one of its
4307  // parameters.
4308  if (Canon->containsUnexpandedParameterPack()) {
4309  Canon = getPackExpansionType(Canon, NumExpansions);
4310 
4311  // Find the insert position again, in case we inserted an element into
4312  // PackExpansionTypes and invalidated our insert position.
4313  PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4314  }
4315  }
4316 
4317  T = new (*this, TypeAlignment)
4318  PackExpansionType(Pattern, Canon, NumExpansions);
4319  Types.push_back(T);
4320  PackExpansionTypes.InsertNode(T, InsertPos);
4321  return QualType(T, 0);
4322 }
4323 
4324 /// CmpProtocolNames - Comparison predicate for sorting protocols
4325 /// alphabetically.
4326 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
4327  ObjCProtocolDecl *const *RHS) {
4328  return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
4329 }
4330 
4332  if (Protocols.empty()) return true;
4333 
4334  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
4335  return false;
4336 
4337  for (unsigned i = 1; i != Protocols.size(); ++i)
4338  if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
4339  Protocols[i]->getCanonicalDecl() != Protocols[i])
4340  return false;
4341  return true;
4342 }
4343 
4344 static void
4346  // Sort protocols, keyed by name.
4347  llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
4348 
4349  // Canonicalize.
4350  for (ObjCProtocolDecl *&P : Protocols)
4351  P = P->getCanonicalDecl();
4352 
4353  // Remove duplicates.
4354  auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
4355  Protocols.erase(ProtocolsEnd, Protocols.end());
4356 }
4357 
4359  ObjCProtocolDecl * const *Protocols,
4360  unsigned NumProtocols) const {
4361  return getObjCObjectType(BaseType, {},
4362  llvm::makeArrayRef(Protocols, NumProtocols),
4363  /*isKindOf=*/false);
4364 }
4365 
4367  QualType baseType,
4368  ArrayRef<QualType> typeArgs,
4369  ArrayRef<ObjCProtocolDecl *> protocols,
4370  bool isKindOf) const {
4371  // If the base type is an interface and there aren't any protocols or
4372  // type arguments to add, then the interface type will do just fine.
4373  if (typeArgs.empty() && protocols.empty() && !isKindOf &&
4374  isa<ObjCInterfaceType>(baseType))
4375  return baseType;
4376 
4377  // Look in the folding set for an existing type.
4378  llvm::FoldingSetNodeID ID;
4379  ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
4380  void *InsertPos = nullptr;
4381  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
4382  return QualType(QT, 0);
4383 
4384  // Determine the type arguments to be used for canonicalization,
4385  // which may be explicitly specified here or written on the base
4386  // type.
4387  ArrayRef<QualType> effectiveTypeArgs = typeArgs;
4388  if (effectiveTypeArgs.empty()) {
4389  if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
4390  effectiveTypeArgs = baseObject->getTypeArgs();
4391  }
4392 
4393  // Build the canonical type, which has the canonical base type and a
4394  // sorted-and-uniqued list of protocols and the type arguments
4395  // canonicalized.
4396  QualType canonical;
4397  bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
4398  effectiveTypeArgs.end(),
4399  [&](QualType type) {
4400  return type.isCanonical();
4401  });
4402  bool protocolsSorted = areSortedAndUniqued(protocols);
4403  if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
4404  // Determine the canonical type arguments.
4405  ArrayRef<QualType> canonTypeArgs;
4406  SmallVector<QualType, 4> canonTypeArgsVec;
4407  if (!typeArgsAreCanonical) {
4408  canonTypeArgsVec.reserve(effectiveTypeArgs.size());
4409  for (auto typeArg : effectiveTypeArgs)
4410  canonTypeArgsVec.push_back(getCanonicalType(typeArg));
4411  canonTypeArgs = canonTypeArgsVec;
4412  } else {
4413  canonTypeArgs = effectiveTypeArgs;
4414  }
4415 
4416  ArrayRef<ObjCProtocolDecl *> canonProtocols;
4417  SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
4418  if (!protocolsSorted) {
4419  canonProtocolsVec.append(protocols.begin(), protocols.end());
4420  SortAndUniqueProtocols(canonProtocolsVec);
4421  canonProtocols = canonProtocolsVec;
4422  } else {
4423  canonProtocols = protocols;
4424  }
4425 
4426  canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
4427  canonProtocols, isKindOf);
4428 
4429  // Regenerate InsertPos.
4430  ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
4431  }
4432 
4433  unsigned size = sizeof(ObjCObjectTypeImpl);
4434  size += typeArgs.size() * sizeof(QualType);
4435  size += protocols.size() * sizeof(ObjCProtocolDecl *);
4436  void *mem = Allocate(size, TypeAlignment);
4437  auto *T =
4438  new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
4439  isKindOf);
4440 
4441  Types.push_back(T);
4442  ObjCObjectTypes.InsertNode(T, InsertPos);
4443  return QualType(T, 0);
4444 }
4445 
4446 /// Apply Objective-C protocol qualifiers to the given type.
4447 /// If this is for the canonical type of a type parameter, we can apply
4448 /// protocol qualifiers on the ObjCObjectPointerType.
4449 QualType
4451  ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
4452  bool allowOnPointerType) const {
4453  hasError = false;
4454 
4455  if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
4456  return getObjCTypeParamType(objT->getDecl(), protocols);
4457  }
4458 
4459  // Apply protocol qualifiers to ObjCObjectPointerType.
4460  if (allowOnPointerType) {
4461  if (const auto *objPtr =
4462  dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
4463  const ObjCObjectType *objT = objPtr->getObjectType();
4464  // Merge protocol lists and construct ObjCObjectType.
4465  SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
4466  protocolsVec.append(objT->qual_begin(),
4467  objT->qual_end());
4468  protocolsVec.append(protocols.begin(), protocols.end());
4469  ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
4470  type = getObjCObjectType(
4471  objT->getBaseType(),
4472  objT->getTypeArgsAsWritten(),
4473  protocols,
4474  objT->isKindOfTypeAsWritten());
4475  return getObjCObjectPointerType(type);
4476  }
4477  }
4478 
4479  // Apply protocol qualifiers to ObjCObjectType.
4480  if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
4481  // FIXME: Check for protocols to which the class type is already
4482  // known to conform.
4483 
4484  return getObjCObjectType(objT->getBaseType(),
4485  objT->getTypeArgsAsWritten(),
4486  protocols,
4487  objT->isKindOfTypeAsWritten());
4488  }
4489 
4490  // If the canonical type is ObjCObjectType, ...
4491  if (type->isObjCObjectType()) {
4492  // Silently overwrite any existing protocol qualifiers.
4493  // TODO: determine whether that's the right thing to do.
4494 
4495  // FIXME: Check for protocols to which the class type is already
4496  // known to conform.
4497  return getObjCObjectType(type, {}, protocols, false);
4498  }
4499 
4500  // id<protocol-list>
4501  if (type->isObjCIdType()) {
4502  const auto *objPtr = type->castAs<ObjCObjectPointerType>();
4503  type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
4504  objPtr->isKindOfType());
4505  return getObjCObjectPointerType(type);
4506  }
4507 
4508  // Class<protocol-list>
4509  if (type->isObjCClassType()) {
4510  const auto *objPtr = type->castAs<ObjCObjectPointerType>();
4511  type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
4512  objPtr->isKindOfType());
4513  return getObjCObjectPointerType(type);
4514  }
4515 
4516  hasError = true;
4517  return type;
4518 }
4519 
4520 QualType
4522  ArrayRef<ObjCProtocolDecl *> protocols,
4523  QualType Canonical) const {
4524  // Look in the folding set for an existing type.
4525  llvm::FoldingSetNodeID ID;
4526  ObjCTypeParamType::Profile(ID, Decl, protocols);
4527  void *InsertPos = nullptr;
4528  if (ObjCTypeParamType *TypeParam =
4529  ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
4530  return QualType(TypeParam, 0);
4531 
4532  if (Canonical.isNull()) {
4533  // We canonicalize to the underlying type.
4534  Canonical = getCanonicalType(Decl->getUnderlyingType());
4535  if (!protocols.empty()) {
4536  // Apply the protocol qualifers.
4537  bool hasError;
4539  Canonical, protocols, hasError, true /*allowOnPointerType*/));
4540  assert(!hasError && "Error when apply protocol qualifier to bound type");
4541  }
4542  }
4543 
4544  unsigned size = sizeof(ObjCTypeParamType);
4545  size += protocols.size() * sizeof(ObjCProtocolDecl *);
4546  void *mem = Allocate(size, TypeAlignment);
4547  auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
4548 
4549  Types.push_back(newType);
4550  ObjCTypeParamTypes.InsertNode(newType, InsertPos);
4551  return QualType(newType, 0);
4552 }
4553 
4554 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
4555 /// protocol list adopt all protocols in QT's qualified-id protocol
4556 /// list.
4558  ObjCInterfaceDecl *IC) {
4559  if (!QT->isObjCQualifiedIdType())
4560  return false;
4561 
4562  if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
4563  // If both the right and left sides have qualifiers.
4564  for (auto *Proto : OPT->quals()) {
4565  if (!IC->ClassImplementsProtocol(Proto, false))
4566  return false;
4567  }
4568  return true;
4569  }
4570  return false;
4571 }
4572 
4573 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
4574 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
4575 /// of protocols.
4577  ObjCInterfaceDecl *IDecl) {
4578  if (!QT->isObjCQualifiedIdType())
4579  return false;
4580  const auto *OPT = QT->getAs<ObjCObjectPointerType>();
4581  if (!OPT)
4582  return false;
4583  if (!IDecl->hasDefinition())
4584  return false;
4585  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
4586  CollectInheritedProtocols(IDecl, InheritedProtocols);
4587  if (InheritedProtocols.empty())
4588  return false;
4589  // Check that if every protocol in list of id<plist> conforms to a protocol
4590  // of IDecl's, then bridge casting is ok.
4591  bool Conforms = false;
4592  for (auto *Proto : OPT->quals()) {
4593  Conforms = false;
4594  for (auto *PI : InheritedProtocols) {
4595  if (ProtocolCompatibleWithProtocol(Proto, PI)) {
4596  Conforms = true;
4597  break;
4598  }
4599  }
4600  if (!Conforms)
4601  break;
4602  }
4603  if (Conforms)
4604  return true;
4605 
4606  for (auto *PI : InheritedProtocols) {
4607  // If both the right and left sides have qualifiers.
4608  bool Adopts = false;
4609  for (auto *Proto : OPT->quals()) {
4610  // return 'true' if 'PI' is in the inheritance hierarchy of Proto
4611  if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
4612  break;
4613  }
4614  if (!Adopts)
4615  return false;
4616  }
4617  return true;
4618 }
4619 
4620 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
4621 /// the given object type.
4623  llvm::FoldingSetNodeID ID;
4624  ObjCObjectPointerType::Profile(ID, ObjectT);
4625 
4626  void *InsertPos = nullptr;
4627  if (ObjCObjectPointerType *QT =
4628  ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
4629  return QualType(QT, 0);
4630 
4631  // Find the canonical object type.
4632  QualType Canonical;
4633  if (!ObjectT.isCanonical()) {
4634  Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
4635 
4636  // Regenerate InsertPos.
4637  ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
4638  }
4639 
4640  // No match.
4641  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
4642  auto *QType =
4643  new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
4644 
4645  Types.push_back(QType);
4646  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
4647  return QualType(QType, 0);
4648 }
4649 
4650 /// getObjCInterfaceType - Return the unique reference to the type for the
4651 /// specified ObjC interface decl. The list of protocols is optional.
4653  ObjCInterfaceDecl *PrevDecl) const {
4654  if (Decl->TypeForDecl)
4655  return QualType(Decl->TypeForDecl, 0);
4656 
4657  if (PrevDecl) {
4658  assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
4659  Decl->TypeForDecl = PrevDecl->TypeForDecl;
4660  return QualType(PrevDecl->TypeForDecl, 0);
4661  }
4662 
4663  // Prefer the definition, if there is one.
4664  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
4665  Decl = Def;
4666 
4667  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
4668  auto *T = new (Mem) ObjCInterfaceType(Decl);
4669  Decl->TypeForDecl = T;
4670  Types.push_back(T);
4671  return QualType(T, 0);
4672 }
4673 
4674 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
4675 /// TypeOfExprType AST's (since expression's are never shared). For example,
4676 /// multiple declarations that refer to "typeof(x)" all contain different
4677 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
4678 /// on canonical type's (which are always unique).
4680  TypeOfExprType *toe;
4681  if (tofExpr->isTypeDependent()) {
4682  llvm::FoldingSetNodeID ID;
4683  DependentTypeOfExprType::Profile(ID, *this, tofExpr);
4684 
4685  void *InsertPos = nullptr;
4687  = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
4688  if (Canon) {
4689  // We already have a "canonical" version of an identical, dependent
4690  // typeof(expr) type. Use that as our canonical type.
4691  toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
4692  QualType((TypeOfExprType*)Canon, 0));
4693  } else {
4694  // Build a new, canonical typeof(expr) type.
4695  Canon
4696  = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
4697  DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
4698  toe = Canon;
4699  }
4700  } else {
4701  QualType Canonical = getCanonicalType(tofExpr->getType());
4702  toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
4703  }
4704  Types.push_back(toe);
4705  return QualType(toe, 0);
4706 }
4707 
4708 /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
4709 /// TypeOfType nodes. The only motivation to unique these nodes would be
4710 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
4711 /// an issue. This doesn't affect the type checker, since it operates
4712 /// on canonical types (which are always unique).
4714  QualType Canonical = getCanonicalType(tofType);
4715  auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
4716  Types.push_back(tot);
4717  return QualType(tot, 0);
4718 }
4719 
4720 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
4721 /// nodes. This would never be helpful, since each such type has its own
4722 /// expression, and would not give a significant memory saving, since there
4723 /// is an Expr tree under each such type.
4725  DecltypeType *dt;
4726 
4727  // C++11 [temp.type]p2:
4728  // If an expression e involves a template parameter, decltype(e) denotes a
4729  // unique dependent type. Two such decltype-specifiers refer to the same
4730  // type only if their expressions are equivalent (14.5.6.1).
4731  if (e->isInstantiationDependent()) {
4732  llvm::FoldingSetNodeID ID;
4733  DependentDecltypeType::Profile(ID, *this, e);
4734 
4735  void *InsertPos = nullptr;
4736  DependentDecltypeType *Canon
4737  = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
4738  if (!Canon) {
4739  // Build a new, canonical decltype(expr) type.
4740  Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
4741  DependentDecltypeTypes.InsertNode(Canon, InsertPos);
4742  }
4743  dt = new (*this, TypeAlignment)
4744  DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
4745  } else {
4746  dt = new (*this, TypeAlignment)
4747  DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
4748  }
4749  Types.push_back(dt);
4750  return QualType(dt, 0);
4751 }
4752 
4753 /// getUnaryTransformationType - We don't unique these, since the memory
4754 /// savings are minimal and these are rare.
4756  QualType UnderlyingType,
4758  const {
4759  UnaryTransformType *ut = nullptr;
4760 
4761  if (BaseType->isDependentType()) {
4762  // Look in the folding set for an existing type.
4763  llvm::FoldingSetNodeID ID;
4765 
4766  void *InsertPos = nullptr;
4768  = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
4769 
4770  if (!Canon) {
4771  // Build a new, canonical __underlying_type(type) type.
4772  Canon = new (*this, TypeAlignment)
4774  Kind);
4775  DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
4776  }
4777  ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
4778  QualType(), Kind,
4779  QualType(Canon, 0));
4780  } else {
4781  QualType CanonType = getCanonicalType(UnderlyingType);
4782  ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
4783  UnderlyingType, Kind,
4784  CanonType);
4785  }
4786  Types.push_back(ut);
4787  return QualType(ut, 0);
4788 }
4789 
4790 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
4791 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
4792 /// canonical deduced-but-dependent 'auto' type.
4794  bool IsDependent) const {
4795  if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && !IsDependent)
4796  return getAutoDeductType();
4797 
4798  // Look in the folding set for an existing type.
4799  void *InsertPos = nullptr;
4800  llvm::FoldingSetNodeID ID;
4801  AutoType::Profile(ID, DeducedType, Keyword, IsDependent);
4802  if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
4803  return QualType(AT, 0);
4804 
4805  auto *AT = new (*this, TypeAlignment)
4806  AutoType(DeducedType, Keyword, IsDependent);
4807  Types.push_back(AT);
4808  if (InsertPos)
4809  AutoTypes.InsertNode(AT, InsertPos);
4810  return QualType(AT, 0);
4811 }
4812 
4813 /// Return the uniqued reference to the deduced template specialization type
4814 /// which has been deduced to the given type, or to the canonical undeduced
4815 /// such type, or the canonical deduced-but-dependent such type.
4817  TemplateName Template, QualType DeducedType, bool IsDependent) const {
4818  // Look in the folding set for an existing type.
4819  void *InsertPos = nullptr;
4820  llvm::FoldingSetNodeID ID;
4821  DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
4822  IsDependent);
4824  DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
4825  return QualType(DTST, 0);
4826 
4827  auto *DTST = new (*this, TypeAlignment)
4828  DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
4829  Types.push_back(DTST);
4830  if (InsertPos)
4831  DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
4832  return QualType(DTST, 0);
4833 }
4834 
4835 /// getAtomicType - Return the uniqued reference to the atomic type for
4836 /// the given value type.
4838  // Unique pointers, to guarantee there is only one pointer of a particular
4839  // structure.
4840  llvm::FoldingSetNodeID ID;
4841  AtomicType::Profile(ID, T);
4842 
4843  void *InsertPos = nullptr;
4844  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
4845  return QualType(AT, 0);
4846 
4847  // If the atomic value type isn't canonical, this won't be a canonical type
4848  // either, so fill in the canonical type field.
4849  QualType Canonical;
4850  if (!T.isCanonical()) {
4851  Canonical = getAtomicType(getCanonicalType(T));
4852 
4853  // Get the new insert position for the node we care about.
4854  AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
4855  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4856  }
4857  auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
4858  Types.push_back(New);
4859  AtomicTypes.InsertNode(New, InsertPos);
4860  return QualType(New, 0);
4861 }
4862 
4863 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
4865  if (AutoDeductTy.isNull())
4868  /*dependent*/false),
4869  0);
4870  return AutoDeductTy;
4871 }
4872 
4873 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
4875  if (AutoRRefDeductTy.isNull())
4877  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
4878  return AutoRRefDeductTy;
4879 }
4880 
4881 /// getTagDeclType - Return the unique reference to the type for the
4882 /// specified TagDecl (struct/union/class/enum) decl.
4884  assert(Decl);
4885  // FIXME: What is the design on getTagDeclType when it requires casting
4886  // away const? mutable?
4887  return getTypeDeclType(const_cast<TagDecl*>(Decl));
4888 }
4889 
4890 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
4891 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
4892 /// needs to agree with the definition in <stddef.h>.
4894  return getFromTargetType(Target->getSizeType());
4895 }
4896 
4897 /// Return the unique signed counterpart of the integer type
4898 /// corresponding to size_t.
4900  return getFromTargetType(Target->getSignedSizeType());
4901 }
4902 
4903 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
4905  return getFromTargetType(Target->getIntMaxType());
4906 }
4907 
4908 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
4910  return getFromTargetType(Target->getUIntMaxType());
4911 }
4912 
4913 /// getSignedWCharType - Return the type of "signed wchar_t".
4914 /// Used when in C++, as a GCC extension.
4916  // FIXME: derive from "Target" ?
4917  return WCharTy;
4918 }
4919 
4920 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
4921 /// Used when in C++, as a GCC extension.
4923  // FIXME: derive from "Target" ?
4924  return UnsignedIntTy;
4925 }
4926 
4928  return getFromTargetType(Target->getIntPtrType());
4929 }
4930 
4933 }
4934 
4935 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
4936 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
4938  return getFromTargetType(Target->getPtrDiffType(0));
4939 }
4940 
4941 /// Return the unique unsigned counterpart of "ptrdiff_t"
4942 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
4943 /// in the definition of %tu format specifier.
4945  return getFromTargetType(Target->getUnsignedPtrDiffType(0));
4946 }
4947 
4948 /// Return the unique type for "pid_t" defined in
4949 /// <sys/types.h>. We need this to compute the correct type for vfork().
4951  return getFromTargetType(Target->getProcessIDType());
4952 }
4953 
4954 //===----------------------------------------------------------------------===//
4955 // Type Operators
4956 //===----------------------------------------------------------------------===//
4957 
4959  // Push qualifiers into arrays, and then discard any remaining
4960  // qualifiers.
4961  T = getCanonicalType(T);
4963  const Type *Ty = T.getTypePtr();
4964  QualType Result;
4965  if (isa<ArrayType>(Ty)) {
4966  Result = getArrayDecayedType(QualType(Ty,0));
4967  } else if (isa<FunctionType>(Ty)) {
4968  Result = getPointerType(QualType(Ty, 0));
4969  } else {
4970  Result = QualType(Ty, 0);
4971  }
4972 
4973  return CanQualType::CreateUnsafe(Result);
4974 }
4975 
4977  Qualifiers &quals) {
4978  SplitQualType splitType = type.getSplitUnqualifiedType();
4979 
4980  // FIXME: getSplitUnqualifiedType() actually walks all the way to
4981  // the unqualified desugared type and then drops it on the floor.
4982  // We then have to strip that sugar back off with
4983  // getUnqualifiedDesugaredType(), which is silly.
4984  const auto *AT =
4985  dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
4986 
4987  // If we don't have an array, just use the results in splitType.
4988  if (!AT) {
4989  quals = splitType.Quals;
4990  return QualType(splitType.Ty, 0);
4991  }
4992 
4993  // Otherwise, recurse on the array's element type.
4994  QualType elementType = AT->getElementType();
4995  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
4996 
4997  // If that didn't change the element type, AT has no qualifiers, so we
4998  // can just use the results in splitType.
4999  if (elementType == unqualElementType) {
5000  assert(quals.empty()); // from the recursive call
5001  quals = splitType.Quals;
5002  return QualType(splitType.Ty, 0);
5003  }
5004 
5005  // Otherwise, add in the qualifiers from the outermost type, then
5006  // build the type back up.
5007  quals.addConsistentQualifiers(splitType.Quals);
5008 
5009  if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
5010  return getConstantArrayType(unqualElementType, CAT->getSize(),
5011  CAT->getSizeModifier(), 0);
5012  }
5013 
5014  if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
5015  return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
5016  }
5017 
5018  if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
5019  return getVariableArrayType(unqualElementType,
5020  VAT->getSizeExpr(),
5021  VAT->getSizeModifier(),
5022  VAT->getIndexTypeCVRQualifiers(),
5023  VAT->getBracketsRange());
5024  }
5025 
5026  const auto *DSAT = cast<DependentSizedArrayType>(AT);
5027  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
5028  DSAT->getSizeModifier(), 0,
5029  SourceRange());
5030 }
5031 
5032 /// Attempt to unwrap two types that may both be array types with the same bound
5033 /// (or both be array types of unknown bound) for the purpose of comparing the
5034 /// cv-decomposition of two types per C++ [conv.qual].
5036  bool UnwrappedAny = false;
5037  while (true) {
5038  auto *AT1 = getAsArrayType(T1);
5039  if (!AT1) return UnwrappedAny;
5040 
5041  auto *AT2 = getAsArrayType(T2);
5042  if (!AT2) return UnwrappedAny;
5043 
5044  // If we don't have two array types with the same constant bound nor two
5045  // incomplete array types, we've unwrapped everything we can.
5046  if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
5047  auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
5048  if (!CAT2 || CAT1->getSize() != CAT2->getSize())
5049  return UnwrappedAny;
5050  } else if (!isa<IncompleteArrayType>(AT1) ||
5051  !isa<IncompleteArrayType>(AT2)) {
5052  return UnwrappedAny;
5053  }
5054 
5055  T1 = AT1->getElementType();
5056  T2 = AT2->getElementType();
5057  UnwrappedAny = true;
5058  }
5059 }
5060 
5061 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
5062 ///
5063 /// If T1 and T2 are both pointer types of the same kind, or both array types
5064 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
5065 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
5066 ///
5067 /// This function will typically be called in a loop that successively
5068 /// "unwraps" pointer and pointer-to-member types to compare them at each
5069 /// level.
5070 ///
5071 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
5072 /// pair of types that can't be unwrapped further.
5074  UnwrapSimilarArrayTypes(T1, T2);
5075 
5076  const auto *T1PtrType = T1->getAs<PointerType>();
5077  const auto *T2PtrType = T2->getAs<PointerType>();
5078  if (T1PtrType && T2PtrType) {
5079  T1 = T1PtrType->getPointeeType();
5080  T2 = T2PtrType->getPointeeType();
5081  return true;
5082  }
5083 
5084  const auto *T1MPType = T1->getAs<MemberPointerType>();
5085  const auto *T2MPType = T2->getAs<MemberPointerType>();
5086  if (T1MPType && T2MPType &&
5087  hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
5088  QualType(T2MPType->getClass(), 0))) {
5089  T1 = T1MPType->getPointeeType();
5090  T2 = T2MPType->getPointeeType();
5091  return true;
5092  }
5093 
5094  if (getLangOpts().ObjC1) {
5095  const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
5096  const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
5097  if (T1OPType && T2OPType) {
5098  T1 = T1OPType->getPointeeType();
5099  T2 = T2OPType->getPointeeType();
5100  return true;
5101  }
5102  }
5103 
5104  // FIXME: Block pointers, too?
5105 
5106  return false;
5107 }
5108 
5110  while (true) {
5111  Qualifiers Quals;
5112  T1 = getUnqualifiedArrayType(T1, Quals);
5113  T2 = getUnqualifiedArrayType(T2, Quals);
5114  if (hasSameType(T1, T2))
5115  return true;
5116  if (!UnwrapSimilarTypes(T1, T2))
5117  return false;
5118  }
5119 }
5120 
5122  while (true) {
5123  Qualifiers Quals1, Quals2;
5124  T1 = getUnqualifiedArrayType(T1, Quals1);
5125  T2 = getUnqualifiedArrayType(T2, Quals2);
5126 
5127  Quals1.removeCVRQualifiers();
5128  Quals2.removeCVRQualifiers();
5129  if (Quals1 != Quals2)
5130  return false;
5131 
5132  if (hasSameType(T1, T2))
5133  return true;
5134 
5135  if (!UnwrapSimilarTypes(T1, T2))
5136  return false;
5137  }
5138 }
5139 
5142  SourceLocation NameLoc) const {
5143  switch (Name.getKind()) {
5146  // DNInfo work in progress: CHECKME: what about DNLoc?
5148  NameLoc);
5149 
5152  // DNInfo work in progress: CHECKME: what about DNLoc?
5153  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
5154  }
5155 
5158  DeclarationName DName;
5159  if (DTN->isIdentifier()) {
5161  return DeclarationNameInfo(DName, NameLoc);
5162  } else {
5164  // DNInfo work in progress: FIXME: source locations?
5165  DeclarationNameLoc DNLoc;
5168  return DeclarationNameInfo(DName, NameLoc, DNLoc);
5169  }
5170  }
5171 
5175  return DeclarationNameInfo(subst->getParameter()->getDeclName(),
5176  NameLoc);
5177  }
5178 
5183  NameLoc);
5184  }
5185  }
5186 
5187  llvm_unreachable("bad template name kind!");
5188 }
5189 
5191  switch (Name.getKind()) {
5193  case TemplateName::Template: {
5194  TemplateDecl *Template = Name.getAsTemplateDecl();
5195  if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Template))
5196  Template = getCanonicalTemplateTemplateParmDecl(TTP);
5197 
5198  // The canonical template name is the canonical template declaration.
5199  return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
5200  }
5201 
5203  llvm_unreachable("cannot canonicalize overloaded template");
5204 
5207  assert(DTN && "Non-dependent template names must refer to template decls.");
5208  return DTN->CanonicalTemplateName;
5209  }
5210 
5214  return getCanonicalTemplateName(subst->getReplacement());
5215  }
5216 
5220  TemplateTemplateParmDecl *canonParameter
5221  = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
5222  TemplateArgument canonArgPack
5224  return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
5225  }
5226  }
5227 
5228  llvm_unreachable("bad template name!");
5229 }
5230 
5232  X = getCanonicalTemplateName(X);
5233  Y = getCanonicalTemplateName(Y);
5234  return X.getAsVoidPointer() == Y.getAsVoidPointer();
5235 }
5236 
5239  switch (Arg.getKind()) {
5241  return Arg;
5242 
5244  return Arg;
5245 
5247  auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
5248  return TemplateArgument(D, Arg.getParamTypeForDecl());
5249  }
5250 
5253  /*isNullPtr*/true);
5254 
5257 
5261  Arg.getNumTemplateExpansions());
5262 
5265 
5268 
5269  case TemplateArgument::Pack: {
5270  if (Arg.pack_size() == 0)
5271  return Arg;
5272 
5273  auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
5274  unsigned Idx = 0;
5276  AEnd = Arg.pack_end();
5277  A != AEnd; (void)++A, ++Idx)
5278  CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
5279 
5280  return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
5281  }
5282  }
5283 
5284  // Silence GCC warning
5285  llvm_unreachable("Unhandled template argument kind");
5286 }
5287 
5290  if (!NNS)
5291  return nullptr;
5292 
5293  switch (NNS->getKind()) {
5295  // Canonicalize the prefix but keep the identifier the same.
5296  return NestedNameSpecifier::Create(*this,
5298  NNS->getAsIdentifier());
5299 
5301  // A namespace is canonical; build a nested-name-specifier with
5302  // this namespace and no prefix.
5303  return NestedNameSpecifier::Create(*this, nullptr,
5305 
5307  // A namespace is canonical; build a nested-name-specifier with
5308  // this namespace and no prefix.
5309  return NestedNameSpecifier::Create(*this, nullptr,
5311  ->getOriginalNamespace());
5312 
5315  QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
5316 
5317  // If we have some kind of dependent-named type (e.g., "typename T::type"),
5318  // break it apart into its prefix and identifier, then reconsititute those
5319  // as the canonical nested-name-specifier. This is required to canonicalize
5320  // a dependent nested-name-specifier involving typedefs of dependent-name
5321  // types, e.g.,
5322  // typedef typename T::type T1;
5323  // typedef typename T1::type T2;
5324  if (const auto *DNT = T->getAs<DependentNameType>())
5325  return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
5326  const_cast<IdentifierInfo *>(DNT->getIdentifier()));
5327 
5328  // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
5329  // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
5330  // first place?
5331  return NestedNameSpecifier::Create(*this, nullptr, false,
5332  const_cast<Type *>(T.getTypePtr()));
5333  }
5334 
5337  // The global specifier and __super specifer are canonical and unique.
5338  return NNS;
5339  }
5340 
5341  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
5342 }
5343 
5345  // Handle the non-qualified case efficiently.
5346  if (!T.hasLocalQualifiers()) {
5347  // Handle the common positive case fast.
5348  if (const auto *AT = dyn_cast<ArrayType>(T))
5349  return AT;
5350  }
5351 
5352  // Handle the common negative case fast.
5353  if (!isa<ArrayType>(T.getCanonicalType()))
5354  return nullptr;
5355 
5356  // Apply any qualifiers from the array type to the element type. This
5357  // implements C99 6.7.3p8: "If the specification of an array type includes
5358  // any type qualifiers, the element type is so qualified, not the array type."
5359 
5360  // If we get here, we either have type qualifiers on the type, or we have
5361  // sugar such as a typedef in the way. If we have type qualifiers on the type
5362  // we must propagate them down into the element type.
5363 
5365  Qualifiers qs = split.Quals;
5366 
5367  // If we have a simple case, just return now.
5368  const auto *ATy = dyn_cast<ArrayType>(split.Ty);
5369  if (!ATy || qs.empty())
5370  return ATy;
5371 
5372  // Otherwise, we have an array and we have qualifiers on it. Push the
5373  // qualifiers into the array element type and return a new array type.
5374  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
5375 
5376  if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
5377  return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
5378  CAT->getSizeModifier(),
5379  CAT->getIndexTypeCVRQualifiers()));
5380  if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
5381  return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
5382  IAT->getSizeModifier(),
5383  IAT->getIndexTypeCVRQualifiers()));
5384 
5385  if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
5386  return cast<ArrayType>(
5387  getDependentSizedArrayType(NewEltTy,
5388  DSAT->getSizeExpr(),
5389  DSAT->getSizeModifier(),
5390  DSAT->getIndexTypeCVRQualifiers(),
5391  DSAT->getBracketsRange()));
5392 
5393  const auto *VAT = cast<VariableArrayType>(ATy);
5394  return cast<ArrayType>(getVariableArrayType(NewEltTy,
5395  VAT->getSizeExpr(),
5396  VAT->getSizeModifier(),
5397  VAT->getIndexTypeCVRQualifiers(),
5398  VAT->getBracketsRange()));
5399 }
5400 
5402  if (T->isArrayType() || T->isFunctionType())
5403  return getDecayedType(T);
5404  return T;
5405 }
5406 
5409  T = getAdjustedParameterType(T);
5410  return T.getUnqualifiedType();
5411 }
5412 
5414  // C++ [except.throw]p3:
5415  // A throw-expression initializes a temporary object, called the exception
5416  // object, the type of which is determined by removing any top-level
5417  // cv-qualifiers from the static type of the operand of throw and adjusting
5418  // the type from "array of T" or "function returning T" to "pointer to T"
5419  // or "pointer to function returning T", [...]
5421  if (T->isArrayType() || T->isFunctionType())
5422  T = getDecayedType(T);
5423  return T.getUnqualifiedType();
5424 }
5425 
5426 /// getArrayDecayedType - Return the properly qualified result of decaying the
5427 /// specified array type to a pointer. This operation is non-trivial when
5428 /// handling typedefs etc. The canonical type of "T" must be an array type,
5429 /// this returns a pointer to a properly qualified element of the array.
5430 ///
5431 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
5433  // Get the element type with 'getAsArrayType' so that we don't lose any
5434  // typedefs in the element type of the array. This also handles propagation
5435  // of type qualifiers from the array type into the element type if present
5436  // (C99 6.7.3p8).
5437  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
5438  assert(PrettyArrayType && "Not an array type!");
5439 
5440  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
5441 
5442  // int x[restrict 4] -> int *restrict
5444  PrettyArrayType->getIndexTypeQualifiers());
5445 
5446  // int x[_Nullable] -> int * _Nullable
5447  if (auto Nullability = Ty->getNullability(*this)) {
5448  Result = const_cast<ASTContext *>(this)->getAttributedType(
5450  }
5451  return Result;
5452 }
5453 
5455  return getBaseElementType(array->getElementType());
5456 }
5457 
5459  Qualifiers qs;
5460  while (true) {
5461  SplitQualType split = type.getSplitDesugaredType();
5462  const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
5463  if (!array) break;
5464 
5465  type = array->getElementType();
5466  qs.addConsistentQualifiers(split.Quals);
5467  }
5468 
5469  return getQualifiedType(type, qs);
5470 }
5471 
5472 /// getConstantArrayElementCount - Returns number of constant array elements.
5473 uint64_t
5475  uint64_t ElementCount = 1;
5476  do {
5477  ElementCount *= CA->getSize().getZExtValue();
5478  CA = dyn_cast_or_null<ConstantArrayType>(
5480  } while (CA);
5481  return ElementCount;
5482 }
5483 
5484 /// getFloatingRank - Return a relative rank for floating point types.
5485 /// This routine will assert if passed a built-in type that isn't a float.
5487  if (const auto *CT = T->getAs<ComplexType>())
5488  return getFloatingRank(CT->getElementType());
5489 
5490  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
5491  switch (T->getAs<BuiltinType>()->getKind()) {
5492  default: llvm_unreachable("getFloatingRank(): not a floating type");
5493  case BuiltinType::Float16: return Float16Rank;
5494  case BuiltinType::Half: return HalfRank;
5495  case BuiltinType::Float: return FloatRank;
5496  case BuiltinType::Double: return DoubleRank;
5497  case BuiltinType::LongDouble: return LongDoubleRank;
5498  case BuiltinType::Float128: return Float128Rank;
5499  }
5500 }
5501 
5502 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
5503 /// point or a complex type (based on typeDomain/typeSize).
5504 /// 'typeDomain' is a real floating point or complex type.
5505 /// 'typeSize' is a real floating point or complex type.
5507  QualType Domain) const {
5508  FloatingRank EltRank = getFloatingRank(Size);
5509  if (Domain->isComplexType()) {
5510  switch (EltRank) {
5511  case Float16Rank:
5512  case HalfRank: llvm_unreachable("Complex half is not supported");
5513  case FloatRank: return FloatComplexTy;
5514  case DoubleRank: return DoubleComplexTy;
5515  case LongDoubleRank: return LongDoubleComplexTy;
5516  case Float128Rank: return Float128ComplexTy;
5517  }
5518  }
5519 
5520  assert(Domain->isRealFloatingType() && "Unknown domain!");
5521  switch (EltRank) {
5522  case Float16Rank: return