clang  8.0.0svn
ASTContext.cpp
Go to the documentation of this file.
1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "CXXABI.h"
16 #include "clang/AST/APValue.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/AttrIterator.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/Comment.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclBase.h"
25 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclOpenMP.h"
29 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/Expr.h"
32 #include "clang/AST/ExprCXX.h"
34 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecordLayout.h"
40 #include "clang/AST/Stmt.h"
41 #include "clang/AST/TemplateBase.h"
42 #include "clang/AST/TemplateName.h"
43 #include "clang/AST/Type.h"
44 #include "clang/AST/TypeLoc.h"
48 #include "clang/Basic/Builtins.h"
51 #include "clang/Basic/FixedPoint.h"
53 #include "clang/Basic/LLVM.h"
55 #include "clang/Basic/Linkage.h"
60 #include "clang/Basic/Specifiers.h"
62 #include "clang/Basic/TargetInfo.h"
63 #include "clang/Basic/XRayLists.h"
64 #include "llvm/ADT/APInt.h"
65 #include "llvm/ADT/APSInt.h"
66 #include "llvm/ADT/ArrayRef.h"
67 #include "llvm/ADT/DenseMap.h"
68 #include "llvm/ADT/DenseSet.h"
69 #include "llvm/ADT/FoldingSet.h"
70 #include "llvm/ADT/None.h"
71 #include "llvm/ADT/Optional.h"
72 #include "llvm/ADT/PointerUnion.h"
73 #include "llvm/ADT/STLExtras.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/StringExtras.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/ADT/Triple.h"
79 #include "llvm/Support/Capacity.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/MathExtras.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include <algorithm>
86 #include <cassert>
87 #include <cstddef>
88 #include <cstdint>
89 #include <cstdlib>
90 #include <map>
91 #include <memory>
92 #include <string>
93 #include <tuple>
94 #include <utility>
95 
96 using namespace clang;
97 
110 
113 };
114 
116  if (!CommentsLoaded && ExternalSource) {
117  ExternalSource->ReadComments();
118 
119 #ifndef NDEBUG
121  assert(std::is_sorted(RawComments.begin(), RawComments.end(),
122  BeforeThanCompare<RawComment>(SourceMgr)));
123 #endif
124 
125  CommentsLoaded = true;
126  }
127 
128  assert(D);
129 
130  // User can not attach documentation to implicit declarations.
131  if (D->isImplicit())
132  return nullptr;
133 
134  // User can not attach documentation to implicit instantiations.
135  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
136  if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
137  return nullptr;
138  }
139 
140  if (const auto *VD = dyn_cast<VarDecl>(D)) {
141  if (VD->isStaticDataMember() &&
142  VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
143  return nullptr;
144  }
145 
146  if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
147  if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
148  return nullptr;
149  }
150 
151  if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
152  TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
153  if (TSK == TSK_ImplicitInstantiation ||
154  TSK == TSK_Undeclared)
155  return nullptr;
156  }
157 
158  if (const auto *ED = dyn_cast<EnumDecl>(D)) {
159  if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
160  return nullptr;
161  }
162  if (const auto *TD = dyn_cast<TagDecl>(D)) {
163  // When tag declaration (but not definition!) is part of the
164  // decl-specifier-seq of some other declaration, it doesn't get comment
165  if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
166  return nullptr;
167  }
168  // TODO: handle comments for function parameters properly.
169  if (isa<ParmVarDecl>(D))
170  return nullptr;
171 
172  // TODO: we could look up template parameter documentation in the template
173  // documentation.
174  if (isa<TemplateTypeParmDecl>(D) ||
175  isa<NonTypeTemplateParmDecl>(D) ||
176  isa<TemplateTemplateParmDecl>(D))
177  return nullptr;
178 
180 
181  // If there are no comments anywhere, we won't find anything.
182  if (RawComments.empty())
183  return nullptr;
184 
185  // Find declaration location.
186  // For Objective-C declarations we generally don't expect to have multiple
187  // declarators, thus use declaration starting location as the "declaration
188  // location".
189  // For all other declarations multiple declarators are used quite frequently,
190  // so we use the location of the identifier as the "declaration location".
191  SourceLocation DeclLoc;
192  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
193  isa<ObjCPropertyDecl>(D) ||
194  isa<RedeclarableTemplateDecl>(D) ||
195  isa<ClassTemplateSpecializationDecl>(D))
196  DeclLoc = D->getBeginLoc();
197  else {
198  DeclLoc = D->getLocation();
199  if (DeclLoc.isMacroID()) {
200  if (isa<TypedefDecl>(D)) {
201  // If location of the typedef name is in a macro, it is because being
202  // declared via a macro. Try using declaration's starting location as
203  // the "declaration location".
204  DeclLoc = D->getBeginLoc();
205  } else if (const auto *TD = dyn_cast<TagDecl>(D)) {
206  // If location of the tag decl is inside a macro, but the spelling of
207  // the tag name comes from a macro argument, it looks like a special
208  // macro like NS_ENUM is being used to define the tag decl. In that
209  // case, adjust the source location to the expansion loc so that we can
210  // attach the comment to the tag decl.
211  if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
212  TD->isCompleteDefinition())
213  DeclLoc = SourceMgr.getExpansionLoc(DeclLoc);
214  }
215  }
216  }
217 
218  // If the declaration doesn't map directly to a location in a file, we
219  // can't find the comment.
220  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
221  return nullptr;
222 
223  // Find the comment that occurs just after this declaration.
225  {
226  // When searching for comments during parsing, the comment we are looking
227  // for is usually among the last two comments we parsed -- check them
228  // first.
229  RawComment CommentAtDeclLoc(
230  SourceMgr, SourceRange(DeclLoc), LangOpts.CommentOpts, false);
231  BeforeThanCompare<RawComment> Compare(SourceMgr);
232  ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
233  bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
234  if (!Found && RawComments.size() >= 2) {
235  MaybeBeforeDecl--;
236  Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
237  }
238 
239  if (Found) {
240  Comment = MaybeBeforeDecl + 1;
241  assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
242  &CommentAtDeclLoc, Compare));
243  } else {
244  // Slow path.
245  Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
246  &CommentAtDeclLoc, Compare);
247  }
248  }
249 
250  // Decompose the location for the declaration and find the beginning of the
251  // file buffer.
252  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
253 
254  // First check whether we have a trailing comment.
255  if (Comment != RawComments.end() &&
256  ((*Comment)->isDocumentation() || LangOpts.CommentOpts.ParseAllComments)
257  && (*Comment)->isTrailingComment() &&
258  (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
259  isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
260  std::pair<FileID, unsigned> CommentBeginDecomp
261  = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
262  // Check that Doxygen trailing comment comes after the declaration, starts
263  // on the same line and in the same file as the declaration.
264  if (DeclLocDecomp.first == CommentBeginDecomp.first &&
265  SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
266  == SourceMgr.getLineNumber(CommentBeginDecomp.first,
267  CommentBeginDecomp.second)) {
268  return *Comment;
269  }
270  }
271 
272  // The comment just after the declaration was not a trailing comment.
273  // Let's look at the previous comment.
274  if (Comment == RawComments.begin())
275  return nullptr;
276  --Comment;
277 
278  // Check that we actually have a non-member Doxygen comment.
279  if (!((*Comment)->isDocumentation() ||
280  LangOpts.CommentOpts.ParseAllComments) ||
281  (*Comment)->isTrailingComment())
282  return nullptr;
283 
284  // Decompose the end of the comment.
285  std::pair<FileID, unsigned> CommentEndDecomp
286  = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
287 
288  // If the comment and the declaration aren't in the same file, then they
289  // aren't related.
290  if (DeclLocDecomp.first != CommentEndDecomp.first)
291  return nullptr;
292 
293  // Get the corresponding buffer.
294  bool Invalid = false;
295  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
296  &Invalid).data();
297  if (Invalid)
298  return nullptr;
299 
300  // Extract text between the comment and declaration.
301  StringRef Text(Buffer + CommentEndDecomp.second,
302  DeclLocDecomp.second - CommentEndDecomp.second);
303 
304  // There should be no other declarations or preprocessor directives between
305  // comment and declaration.
306  if (Text.find_first_of(";{}#@") != StringRef::npos)
307  return nullptr;
308 
309  return *Comment;
310 }
311 
312 /// If we have a 'templated' declaration for a template, adjust 'D' to
313 /// refer to the actual template.
314 /// If we have an implicit instantiation, adjust 'D' to refer to template.
315 static const Decl *adjustDeclToTemplate(const Decl *D) {
316  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
317  // Is this function declaration part of a function template?
318  if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
319  return FTD;
320 
321  // Nothing to do if function is not an implicit instantiation.
322  if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
323  return D;
324 
325  // Function is an implicit instantiation of a function template?
326  if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
327  return FTD;
328 
329  // Function is instantiated from a member definition of a class template?
330  if (const FunctionDecl *MemberDecl =
332  return MemberDecl;
333 
334  return D;
335  }
336  if (const auto *VD = dyn_cast<VarDecl>(D)) {
337  // Static data member is instantiated from a member definition of a class
338  // template?
339  if (VD->isStaticDataMember())
340  if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
341  return MemberDecl;
342 
343  return D;
344  }
345  if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
346  // Is this class declaration part of a class template?
347  if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
348  return CTD;
349 
350  // Class is an implicit instantiation of a class template or partial
351  // specialization?
352  if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
353  if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
354  return D;
355  llvm::PointerUnion<ClassTemplateDecl *,
357  PU = CTSD->getSpecializedTemplateOrPartial();
358  return PU.is<ClassTemplateDecl*>() ?
359  static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
360  static_cast<const Decl*>(
362  }
363 
364  // Class is instantiated from a member definition of a class template?
365  if (const MemberSpecializationInfo *Info =
366  CRD->getMemberSpecializationInfo())
367  return Info->getInstantiatedFrom();
368 
369  return D;
370  }
371  if (const auto *ED = dyn_cast<EnumDecl>(D)) {
372  // Enum is instantiated from a member definition of a class template?
373  if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
374  return MemberDecl;
375 
376  return D;
377  }
378  // FIXME: Adjust alias templates?
379  return D;
380 }
381 
383  const Decl *D,
384  const Decl **OriginalDecl) const {
385  D = adjustDeclToTemplate(D);
386 
387  // Check whether we have cached a comment for this declaration already.
388  {
389  llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
390  RedeclComments.find(D);
391  if (Pos != RedeclComments.end()) {
392  const RawCommentAndCacheFlags &Raw = Pos->second;
394  if (OriginalDecl)
395  *OriginalDecl = Raw.getOriginalDecl();
396  return Raw.getRaw();
397  }
398  }
399  }
400 
401  // Search for comments attached to declarations in the redeclaration chain.
402  const RawComment *RC = nullptr;
403  const Decl *OriginalDeclForRC = nullptr;
404  for (auto I : D->redecls()) {
405  llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
406  RedeclComments.find(I);
407  if (Pos != RedeclComments.end()) {
408  const RawCommentAndCacheFlags &Raw = Pos->second;
410  RC = Raw.getRaw();
411  OriginalDeclForRC = Raw.getOriginalDecl();
412  break;
413  }
414  } else {
416  OriginalDeclForRC = I;
418  if (RC) {
419  // Call order swapped to work around ICE in VS2015 RTM (Release Win32)
420  // https://connect.microsoft.com/VisualStudio/feedback/details/1741530
422  Raw.setRaw(RC);
423  } else
425  Raw.setOriginalDecl(I);
426  RedeclComments[I] = Raw;
427  if (RC)
428  break;
429  }
430  }
431 
432  // If we found a comment, it should be a documentation comment.
433  assert(!RC || RC->isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
434 
435  if (OriginalDecl)
436  *OriginalDecl = OriginalDeclForRC;
437 
438  // Update cache for every declaration in the redeclaration chain.
440  Raw.setRaw(RC);
442  Raw.setOriginalDecl(OriginalDeclForRC);
443 
444  for (auto I : D->redecls()) {
447  R = Raw;
448  }
449 
450  return RC;
451 }
452 
453 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
455  const DeclContext *DC = ObjCMethod->getDeclContext();
456  if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
457  const ObjCInterfaceDecl *ID = IMD->getClassInterface();
458  if (!ID)
459  return;
460  // Add redeclared method here.
461  for (const auto *Ext : ID->known_extensions()) {
462  if (ObjCMethodDecl *RedeclaredMethod =
463  Ext->getMethod(ObjCMethod->getSelector(),
464  ObjCMethod->isInstanceMethod()))
465  Redeclared.push_back(RedeclaredMethod);
466  }
467  }
468 }
469 
471  const Decl *D) const {
472  auto *ThisDeclInfo = new (*this) comments::DeclInfo;
473  ThisDeclInfo->CommentDecl = D;
474  ThisDeclInfo->IsFilled = false;
475  ThisDeclInfo->fill();
476  ThisDeclInfo->CommentDecl = FC->getDecl();
477  if (!ThisDeclInfo->TemplateParameters)
478  ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
479  comments::FullComment *CFC =
480  new (*this) comments::FullComment(FC->getBlocks(),
481  ThisDeclInfo);
482  return CFC;
483 }
484 
487  return RC ? RC->parse(*this, nullptr, D) : nullptr;
488 }
489 
491  const Decl *D,
492  const Preprocessor *PP) const {
493  if (D->isInvalidDecl())
494  return nullptr;
495  D = adjustDeclToTemplate(D);
496 
497  const Decl *Canonical = D->getCanonicalDecl();
498  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
499  ParsedComments.find(Canonical);
500 
501  if (Pos != ParsedComments.end()) {
502  if (Canonical != D) {
503  comments::FullComment *FC = Pos->second;
505  return CFC;
506  }
507  return Pos->second;
508  }
509 
510  const Decl *OriginalDecl;
511 
512  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
513  if (!RC) {
514  if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
516  const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
517  if (OMD && OMD->isPropertyAccessor())
518  if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
519  if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
520  return cloneFullComment(FC, D);
521  if (OMD)
522  addRedeclaredMethods(OMD, Overridden);
523  getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
524  for (unsigned i = 0, e = Overridden.size(); i < e; i++)
525  if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
526  return cloneFullComment(FC, D);
527  }
528  else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
529  // Attach any tag type's documentation to its typedef if latter
530  // does not have one of its own.
531  QualType QT = TD->getUnderlyingType();
532  if (const auto *TT = QT->getAs<TagType>())
533  if (const Decl *TD = TT->getDecl())
534  if (comments::FullComment *FC = getCommentForDecl(TD, PP))
535  return cloneFullComment(FC, D);
536  }
537  else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
538  while (IC->getSuperClass()) {
539  IC = IC->getSuperClass();
540  if (comments::FullComment *FC = getCommentForDecl(IC, PP))
541  return cloneFullComment(FC, D);
542  }
543  }
544  else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
545  if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
546  if (comments::FullComment *FC = getCommentForDecl(IC, PP))
547  return cloneFullComment(FC, D);
548  }
549  else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
550  if (!(RD = RD->getDefinition()))
551  return nullptr;
552  // Check non-virtual bases.
553  for (const auto &I : RD->bases()) {
554  if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
555  continue;
556  QualType Ty = I.getType();
557  if (Ty.isNull())
558  continue;
559  if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
560  if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
561  continue;
562 
563  if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
564  return cloneFullComment(FC, D);
565  }
566  }
567  // Check virtual bases.
568  for (const auto &I : RD->vbases()) {
569  if (I.getAccessSpecifier() != AS_public)
570  continue;
571  QualType Ty = I.getType();
572  if (Ty.isNull())
573  continue;
574  if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
575  if (!(VirtualBase= VirtualBase->getDefinition()))
576  continue;
577  if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
578  return cloneFullComment(FC, D);
579  }
580  }
581  }
582  return nullptr;
583  }
584 
585  // If the RawComment was attached to other redeclaration of this Decl, we
586  // should parse the comment in context of that other Decl. This is important
587  // because comments can contain references to parameter names which can be
588  // different across redeclarations.
589  if (D != OriginalDecl)
590  return getCommentForDecl(OriginalDecl, PP);
591 
592  comments::FullComment *FC = RC->parse(*this, PP, D);
593  ParsedComments[Canonical] = FC;
594  return FC;
595 }
596 
597 void
598 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
599  TemplateTemplateParmDecl *Parm) {
600  ID.AddInteger(Parm->getDepth());
601  ID.AddInteger(Parm->getPosition());
602  ID.AddBoolean(Parm->isParameterPack());
603 
605  ID.AddInteger(Params->size());
607  PEnd = Params->end();
608  P != PEnd; ++P) {
609  if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
610  ID.AddInteger(0);
611  ID.AddBoolean(TTP->isParameterPack());
612  continue;
613  }
614 
615  if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
616  ID.AddInteger(1);
617  ID.AddBoolean(NTTP->isParameterPack());
618  ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
619  if (NTTP->isExpandedParameterPack()) {
620  ID.AddBoolean(true);
621  ID.AddInteger(NTTP->getNumExpansionTypes());
622  for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
623  QualType T = NTTP->getExpansionType(I);
624  ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
625  }
626  } else
627  ID.AddBoolean(false);
628  continue;
629  }
630 
631  auto *TTP = cast<TemplateTemplateParmDecl>(*P);
632  ID.AddInteger(2);
633  Profile(ID, TTP);
634  }
635 }
636 
638 ASTContext::getCanonicalTemplateTemplateParmDecl(
639  TemplateTemplateParmDecl *TTP) const {
640  // Check if we already have a canonical template template parameter.
641  llvm::FoldingSetNodeID ID;
642  CanonicalTemplateTemplateParm::Profile(ID, TTP);
643  void *InsertPos = nullptr;
644  CanonicalTemplateTemplateParm *Canonical
645  = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
646  if (Canonical)
647  return Canonical->getParam();
648 
649  // Build a canonical template parameter list.
651  SmallVector<NamedDecl *, 4> CanonParams;
652  CanonParams.reserve(Params->size());
654  PEnd = Params->end();
655  P != PEnd; ++P) {
656  if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
657  CanonParams.push_back(
659  SourceLocation(),
660  SourceLocation(),
661  TTP->getDepth(),
662  TTP->getIndex(), nullptr, false,
663  TTP->isParameterPack()));
664  else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
665  QualType T = getCanonicalType(NTTP->getType());
668  if (NTTP->isExpandedParameterPack()) {
669  SmallVector<QualType, 2> ExpandedTypes;
670  SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
671  for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
672  ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
673  ExpandedTInfos.push_back(
674  getTrivialTypeSourceInfo(ExpandedTypes.back()));
675  }
676 
678  SourceLocation(),
679  SourceLocation(),
680  NTTP->getDepth(),
681  NTTP->getPosition(), nullptr,
682  T,
683  TInfo,
684  ExpandedTypes,
685  ExpandedTInfos);
686  } else {
688  SourceLocation(),
689  SourceLocation(),
690  NTTP->getDepth(),
691  NTTP->getPosition(), nullptr,
692  T,
693  NTTP->isParameterPack(),
694  TInfo);
695  }
696  CanonParams.push_back(Param);
697 
698  } else
699  CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
700  cast<TemplateTemplateParmDecl>(*P)));
701  }
702 
703  assert(!TTP->getRequiresClause() &&
704  "Unexpected requires-clause on template template-parameter");
705  Expr *const CanonRequiresClause = nullptr;
706 
707  TemplateTemplateParmDecl *CanonTTP
709  SourceLocation(), TTP->getDepth(),
710  TTP->getPosition(),
711  TTP->isParameterPack(),
712  nullptr,
714  SourceLocation(),
715  CanonParams,
716  SourceLocation(),
717  CanonRequiresClause));
718 
719  // Get the new insert position for the node we care about.
720  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
721  assert(!Canonical && "Shouldn't be in the map!");
722  (void)Canonical;
723 
724  // Create the canonical template template parameter entry.
725  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
726  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
727  return CanonTTP;
728 }
729 
730 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
731  if (!LangOpts.CPlusPlus) return nullptr;
732 
733  switch (T.getCXXABI().getKind()) {
734  case TargetCXXABI::GenericARM: // Same as Itanium at this level
735  case TargetCXXABI::iOS:
736  case TargetCXXABI::iOS64:
742  return CreateItaniumCXXABI(*this);
744  return CreateMicrosoftCXXABI(*this);
745  }
746  llvm_unreachable("Invalid CXXABI type!");
747 }
748 
749 static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
750  const LangOptions &LOpts) {
751  if (LOpts.FakeAddressSpaceMap) {
752  // The fake address space map must have a distinct entry for each
753  // language-specific address space.
754  static const unsigned FakeAddrSpaceMap[] = {
755  0, // Default
756  1, // opencl_global
757  3, // opencl_local
758  2, // opencl_constant
759  0, // opencl_private
760  4, // opencl_generic
761  5, // cuda_device
762  6, // cuda_constant
763  7 // cuda_shared
764  };
765  return &FakeAddrSpaceMap;
766  } else {
767  return &T.getAddressSpaceMap();
768  }
769 }
770 
772  const LangOptions &LangOpts) {
773  switch (LangOpts.getAddressSpaceMapMangling()) {
775  return TI.useAddressSpaceMapMangling();
777  return true;
779  return false;
780  }
781  llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
782 }
783 
785  IdentifierTable &idents, SelectorTable &sels,
786  Builtin::Context &builtins)
787  : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()),
788  DependentTemplateSpecializationTypes(this_()),
789  SubstTemplateTemplateParmPacks(this_()), SourceMgr(SM), LangOpts(LOpts),
790  SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
791  XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
792  LangOpts.XRayNeverInstrumentFiles,
793  LangOpts.XRayAttrListFiles, SM)),
794  PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
795  BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM),
796  CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
797  CompCategories(this_()), LastSDM(nullptr, 0) {
798  TUDecl = TranslationUnitDecl::Create(*this);
799  TraversalScope = {TUDecl};
800 }
801 
803  // Release the DenseMaps associated with DeclContext objects.
804  // FIXME: Is this the ideal solution?
805  ReleaseDeclContextMaps();
806 
807  // Call all of the deallocation functions on all of their targets.
808  for (auto &Pair : Deallocations)
809  (Pair.first)(Pair.second);
810 
811  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
812  // because they can contain DenseMaps.
813  for (llvm::DenseMap<const ObjCContainerDecl*,
814  const ASTRecordLayout*>::iterator
815  I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
816  // Increment in loop to prevent using deallocated memory.
817  if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
818  R->Destroy(*this);
819 
820  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
821  I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
822  // Increment in loop to prevent using deallocated memory.
823  if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
824  R->Destroy(*this);
825  }
826 
827  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
828  AEnd = DeclAttrs.end();
829  A != AEnd; ++A)
830  A->second->~AttrVec();
831 
832  for (std::pair<const MaterializeTemporaryExpr *, APValue *> &MTVPair :
833  MaterializedTemporaryValues)
834  MTVPair.second->~APValue();
835 
836  for (const auto &Value : ModuleInitializers)
837  Value.second->~PerModuleInitializers();
838 }
839 
841  /// Contains parents of a node.
843 
844  /// Maps from a node to its parents. This is used for nodes that have
845  /// pointer identity only, which are more common and we can save space by
846  /// only storing a unique pointer to them.
847  using ParentMapPointers = llvm::DenseMap<
848  const void *,
849  llvm::PointerUnion4<const Decl *, const Stmt *,
851 
852  /// Parent map for nodes without pointer identity. We store a full
853  /// DynTypedNode for all keys.
854  using ParentMapOtherNodes = llvm::DenseMap<
856  llvm::PointerUnion4<const Decl *, const Stmt *,
857  ast_type_traits::DynTypedNode *, ParentVector *>>;
858 
859  ParentMapPointers PointerParents;
860  ParentMapOtherNodes OtherParents;
861  class ASTVisitor;
862 
863  static ast_type_traits::DynTypedNode
864  getSingleDynTypedNodeFromParentMap(ParentMapPointers::mapped_type U) {
865  if (const auto *D = U.dyn_cast<const Decl *>())
867  if (const auto *S = U.dyn_cast<const Stmt *>())
869  return *U.get<ast_type_traits::DynTypedNode *>();
870  }
871 
872  template <typename NodeTy, typename MapTy>
873  static ASTContext::DynTypedNodeList getDynNodeFromMap(const NodeTy &Node,
874  const MapTy &Map) {
875  auto I = Map.find(Node);
876  if (I == Map.end()) {
878  }
879  if (const auto *V = I->second.template dyn_cast<ParentVector *>()) {
880  return llvm::makeArrayRef(*V);
881  }
882  return getSingleDynTypedNodeFromParentMap(I->second);
883  }
884 
885 public:
886  ParentMap(ASTContext &Ctx);
888  for (const auto &Entry : PointerParents) {
889  if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
890  delete Entry.second.get<ast_type_traits::DynTypedNode *>();
891  } else if (Entry.second.is<ParentVector *>()) {
892  delete Entry.second.get<ParentVector *>();
893  }
894  }
895  for (const auto &Entry : OtherParents) {
896  if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
897  delete Entry.second.get<ast_type_traits::DynTypedNode *>();
898  } else if (Entry.second.is<ParentVector *>()) {
899  delete Entry.second.get<ParentVector *>();
900  }
901  }
902  }
903 
904  DynTypedNodeList getParents(const ast_type_traits::DynTypedNode &Node) {
905  if (Node.getNodeKind().hasPointerIdentity())
906  return getDynNodeFromMap(Node.getMemoizationData(), PointerParents);
907  return getDynNodeFromMap(Node, OtherParents);
908  }
909 };
910 
911 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
912  TraversalScope = TopLevelDecls;
913  Parents.reset();
914 }
915 
916 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
917  Deallocations.push_back({Callback, Data});
918 }
919 
920 void
922  ExternalSource = std::move(Source);
923 }
924 
926  llvm::errs() << "\n*** AST Context Stats:\n";
927  llvm::errs() << " " << Types.size() << " types total.\n";
928 
929  unsigned counts[] = {
930 #define TYPE(Name, Parent) 0,
931 #define ABSTRACT_TYPE(Name, Parent)
932 #include "clang/AST/TypeNodes.def"
933  0 // Extra
934  };
935 
936  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
937  Type *T = Types[i];
938  counts[(unsigned)T->getTypeClass()]++;
939  }
940 
941  unsigned Idx = 0;
942  unsigned TotalBytes = 0;
943 #define TYPE(Name, Parent) \
944  if (counts[Idx]) \
945  llvm::errs() << " " << counts[Idx] << " " << #Name \
946  << " types, " << sizeof(Name##Type) << " each " \
947  << "(" << counts[Idx] * sizeof(Name##Type) \
948  << " bytes)\n"; \
949  TotalBytes += counts[Idx] * sizeof(Name##Type); \
950  ++Idx;
951 #define ABSTRACT_TYPE(Name, Parent)
952 #include "clang/AST/TypeNodes.def"
953 
954  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
955 
956  // Implicit special member functions.
957  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
959  << " implicit default constructors created\n";
960  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
962  << " implicit copy constructors created\n";
963  if (getLangOpts().CPlusPlus)
964  llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
966  << " implicit move constructors created\n";
967  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
969  << " implicit copy assignment operators created\n";
970  if (getLangOpts().CPlusPlus)
971  llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
973  << " implicit move assignment operators created\n";
974  llvm::errs() << NumImplicitDestructorsDeclared << "/"
976  << " implicit destructors created\n";
977 
978  if (ExternalSource) {
979  llvm::errs() << "\n";
980  ExternalSource->PrintStats();
981  }
982 
983  BumpAlloc.PrintStats();
984 }
985 
987  bool NotifyListeners) {
988  if (NotifyListeners)
989  if (auto *Listener = getASTMutationListener())
991 
992  MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
993 }
994 
996  auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
997  if (It == MergedDefModules.end())
998  return;
999 
1000  auto &Merged = It->second;
1002  for (Module *&M : Merged)
1003  if (!Found.insert(M).second)
1004  M = nullptr;
1005  Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
1006 }
1007 
1008 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1009  if (LazyInitializers.empty())
1010  return;
1011 
1012  auto *Source = Ctx.getExternalSource();
1013  assert(Source && "lazy initializers but no external source");
1014 
1015  auto LazyInits = std::move(LazyInitializers);
1016  LazyInitializers.clear();
1017 
1018  for (auto ID : LazyInits)
1019  Initializers.push_back(Source->GetExternalDecl(ID));
1020 
1021  assert(LazyInitializers.empty() &&
1022  "GetExternalDecl for lazy module initializer added more inits");
1023 }
1024 
1026  // One special case: if we add a module initializer that imports another
1027  // module, and that module's only initializer is an ImportDecl, simplify.
1028  if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1029  auto It = ModuleInitializers.find(ID->getImportedModule());
1030 
1031  // Maybe the ImportDecl does nothing at all. (Common case.)
1032  if (It == ModuleInitializers.end())
1033  return;
1034 
1035  // Maybe the ImportDecl only imports another ImportDecl.
1036  auto &Imported = *It->second;
1037  if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1038  Imported.resolve(*this);
1039  auto *OnlyDecl = Imported.Initializers.front();
1040  if (isa<ImportDecl>(OnlyDecl))
1041  D = OnlyDecl;
1042  }
1043  }
1044 
1045  auto *&Inits = ModuleInitializers[M];
1046  if (!Inits)
1047  Inits = new (*this) PerModuleInitializers;
1048  Inits->Initializers.push_back(D);
1049 }
1050 
1052  auto *&Inits = ModuleInitializers[M];
1053  if (!Inits)
1054  Inits = new (*this) PerModuleInitializers;
1055  Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1056  IDs.begin(), IDs.end());
1057 }
1058 
1060  auto It = ModuleInitializers.find(M);
1061  if (It == ModuleInitializers.end())
1062  return None;
1063 
1064  auto *Inits = It->second;
1065  Inits->resolve(*this);
1066  return Inits->Initializers;
1067 }
1068 
1070  if (!ExternCContext)
1071  ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1072 
1073  return ExternCContext;
1074 }
1075 
1078  const IdentifierInfo *II) const {
1079  auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
1080  BuiltinTemplate->setImplicit();
1081  TUDecl->addDecl(BuiltinTemplate);
1082 
1083  return BuiltinTemplate;
1084 }
1085 
1088  if (!MakeIntegerSeqDecl)
1089  MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1091  return MakeIntegerSeqDecl;
1092 }
1093 
1096  if (!TypePackElementDecl)
1097  TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1099  return TypePackElementDecl;
1100 }
1101 
1103  RecordDecl::TagKind TK) const {
1104  SourceLocation Loc;
1105  RecordDecl *NewDecl;
1106  if (getLangOpts().CPlusPlus)
1107  NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1108  Loc, &Idents.get(Name));
1109  else
1110  NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1111  &Idents.get(Name));
1112  NewDecl->setImplicit();
1113  NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1114  const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1115  return NewDecl;
1116 }
1117 
1119  StringRef Name) const {
1121  TypedefDecl *NewDecl = TypedefDecl::Create(
1122  const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1123  SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1124  NewDecl->setImplicit();
1125  return NewDecl;
1126 }
1127 
1129  if (!Int128Decl)
1130  Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1131  return Int128Decl;
1132 }
1133 
1135  if (!UInt128Decl)
1136  UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1137  return UInt128Decl;
1138 }
1139 
1140 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1141  auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1142  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1143  Types.push_back(Ty);
1144 }
1145 
1147  const TargetInfo *AuxTarget) {
1148  assert((!this->Target || this->Target == &Target) &&
1149  "Incorrect target reinitialization");
1150  assert(VoidTy.isNull() && "Context reinitialized?");
1151 
1152  this->Target = &Target;
1153  this->AuxTarget = AuxTarget;
1154 
1155  ABI.reset(createCXXABI(Target));
1156  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
1157  AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1158 
1159  // C99 6.2.5p19.
1160  InitBuiltinType(VoidTy, BuiltinType::Void);
1161 
1162  // C99 6.2.5p2.
1163  InitBuiltinType(BoolTy, BuiltinType::Bool);
1164  // C99 6.2.5p3.
1165  if (LangOpts.CharIsSigned)
1166  InitBuiltinType(CharTy, BuiltinType::Char_S);
1167  else
1168  InitBuiltinType(CharTy, BuiltinType::Char_U);
1169  // C99 6.2.5p4.
1170  InitBuiltinType(SignedCharTy, BuiltinType::SChar);
1171  InitBuiltinType(ShortTy, BuiltinType::Short);
1172  InitBuiltinType(IntTy, BuiltinType::Int);
1173  InitBuiltinType(LongTy, BuiltinType::Long);
1174  InitBuiltinType(LongLongTy, BuiltinType::LongLong);
1175 
1176  // C99 6.2.5p6.
1177  InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
1178  InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
1179  InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
1180  InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
1181  InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
1182 
1183  // C99 6.2.5p10.
1184  InitBuiltinType(FloatTy, BuiltinType::Float);
1185  InitBuiltinType(DoubleTy, BuiltinType::Double);
1186  InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
1187 
1188  // GNU extension, __float128 for IEEE quadruple precision
1189  InitBuiltinType(Float128Ty, BuiltinType::Float128);
1190 
1191  // C11 extension ISO/IEC TS 18661-3
1192  InitBuiltinType(Float16Ty, BuiltinType::Float16);
1193 
1194  // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1195  InitBuiltinType(ShortAccumTy, BuiltinType::ShortAccum);
1196  InitBuiltinType(AccumTy, BuiltinType::Accum);
1197  InitBuiltinType(LongAccumTy, BuiltinType::LongAccum);
1198  InitBuiltinType(UnsignedShortAccumTy, BuiltinType::UShortAccum);
1199  InitBuiltinType(UnsignedAccumTy, BuiltinType::UAccum);
1200  InitBuiltinType(UnsignedLongAccumTy, BuiltinType::ULongAccum);
1201  InitBuiltinType(ShortFractTy, BuiltinType::ShortFract);
1202  InitBuiltinType(FractTy, BuiltinType::Fract);
1203  InitBuiltinType(LongFractTy, BuiltinType::LongFract);
1204  InitBuiltinType(UnsignedShortFractTy, BuiltinType::UShortFract);
1205  InitBuiltinType(UnsignedFractTy, BuiltinType::UFract);
1206  InitBuiltinType(UnsignedLongFractTy, BuiltinType::ULongFract);
1207  InitBuiltinType(SatShortAccumTy, BuiltinType::SatShortAccum);
1208  InitBuiltinType(SatAccumTy, BuiltinType::SatAccum);
1209  InitBuiltinType(SatLongAccumTy, BuiltinType::SatLongAccum);
1210  InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1211  InitBuiltinType(SatUnsignedAccumTy, BuiltinType::SatUAccum);
1212  InitBuiltinType(SatUnsignedLongAccumTy, BuiltinType::SatULongAccum);
1213  InitBuiltinType(SatShortFractTy, BuiltinType::SatShortFract);
1214  InitBuiltinType(SatFractTy, BuiltinType::SatFract);
1215  InitBuiltinType(SatLongFractTy, BuiltinType::SatLongFract);
1216  InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1217  InitBuiltinType(SatUnsignedFractTy, BuiltinType::SatUFract);
1218  InitBuiltinType(SatUnsignedLongFractTy, BuiltinType::SatULongFract);
1219 
1220  // GNU extension, 128-bit integers.
1221  InitBuiltinType(Int128Ty, BuiltinType::Int128);
1222  InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
1223 
1224  // C++ 3.9.1p5
1225  if (TargetInfo::isTypeSigned(Target.getWCharType()))
1226  InitBuiltinType(WCharTy, BuiltinType::WChar_S);
1227  else // -fshort-wchar makes wchar_t be unsigned.
1228  InitBuiltinType(WCharTy, BuiltinType::WChar_U);
1229  if (LangOpts.CPlusPlus && LangOpts.WChar)
1230  WideCharTy = WCharTy;
1231  else {
1232  // C99 (or C++ using -fno-wchar).
1233  WideCharTy = getFromTargetType(Target.getWCharType());
1234  }
1235 
1236  WIntTy = getFromTargetType(Target.getWIntType());
1237 
1238  // C++20 (proposed)
1239  InitBuiltinType(Char8Ty, BuiltinType::Char8);
1240 
1241  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1242  InitBuiltinType(Char16Ty, BuiltinType::Char16);
1243  else // C99
1244  Char16Ty = getFromTargetType(Target.getChar16Type());
1245 
1246  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1247  InitBuiltinType(Char32Ty, BuiltinType::Char32);
1248  else // C99
1249  Char32Ty = getFromTargetType(Target.getChar32Type());
1250 
1251  // Placeholder type for type-dependent expressions whose type is
1252  // completely unknown. No code should ever check a type against
1253  // DependentTy and users should never see it; however, it is here to
1254  // help diagnose failures to properly check for type-dependent
1255  // expressions.
1256  InitBuiltinType(DependentTy, BuiltinType::Dependent);
1257 
1258  // Placeholder type for functions.
1259  InitBuiltinType(OverloadTy, BuiltinType::Overload);
1260 
1261  // Placeholder type for bound members.
1262  InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
1263 
1264  // Placeholder type for pseudo-objects.
1265  InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
1266 
1267  // "any" type; useful for debugger-like clients.
1268  InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
1269 
1270  // Placeholder type for unbridged ARC casts.
1271  InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
1272 
1273  // Placeholder type for builtin functions.
1274  InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
1275 
1276  // Placeholder type for OMP array sections.
1277  if (LangOpts.OpenMP)
1278  InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1279 
1280  // C99 6.2.5p11.
1285 
1286  // Builtin types for 'id', 'Class', and 'SEL'.
1287  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1288  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1289  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1290 
1291  if (LangOpts.OpenCL) {
1292 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1293  InitBuiltinType(SingletonId, BuiltinType::Id);
1294 #include "clang/Basic/OpenCLImageTypes.def"
1295 
1296  InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1297  InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1298  InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1299  InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1300  InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1301 
1302 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1303  InitBuiltinType(Id##Ty, BuiltinType::Id);
1304 #include "clang/Basic/OpenCLExtensionTypes.def"
1305  }
1306 
1307  // Builtin type for __objc_yes and __objc_no
1308  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1309  SignedCharTy : BoolTy);
1310 
1311  ObjCConstantStringType = QualType();
1312 
1313  ObjCSuperType = QualType();
1314 
1315  // void * type
1316  if (LangOpts.OpenCLVersion >= 200) {
1317  auto Q = VoidTy.getQualifiers();
1321  } else {
1323  }
1324 
1325  // nullptr type (C++0x 2.14.7)
1326  InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
1327 
1328  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1329  InitBuiltinType(HalfTy, BuiltinType::Half);
1330 
1331  // Builtin type used to help define __builtin_va_list.
1332  VaListTagDecl = nullptr;
1333 }
1334 
1336  return SourceMgr.getDiagnostics();
1337 }
1338 
1340  AttrVec *&Result = DeclAttrs[D];
1341  if (!Result) {
1342  void *Mem = Allocate(sizeof(AttrVec));
1343  Result = new (Mem) AttrVec;
1344  }
1345 
1346  return *Result;
1347 }
1348 
1349 /// Erase the attributes corresponding to the given declaration.
1351  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1352  if (Pos != DeclAttrs.end()) {
1353  Pos->second->~AttrVec();
1354  DeclAttrs.erase(Pos);
1355  }
1356 }
1357 
1358 // FIXME: Remove ?
1361  assert(Var->isStaticDataMember() && "Not a static data member");
1363  .dyn_cast<MemberSpecializationInfo *>();
1364 }
1365 
1368  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1369  TemplateOrInstantiation.find(Var);
1370  if (Pos == TemplateOrInstantiation.end())
1371  return {};
1372 
1373  return Pos->second;
1374 }
1375 
1376 void
1379  SourceLocation PointOfInstantiation) {
1380  assert(Inst->isStaticDataMember() && "Not a static data member");
1381  assert(Tmpl->isStaticDataMember() && "Not a static data member");
1383  Tmpl, TSK, PointOfInstantiation));
1384 }
1385 
1386 void
1389  assert(!TemplateOrInstantiation[Inst] &&
1390  "Already noted what the variable was instantiated from");
1391  TemplateOrInstantiation[Inst] = TSI;
1392 }
1393 
1395  const FunctionDecl *FD){
1396  assert(FD && "Specialization is 0");
1397  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1398  = ClassScopeSpecializationPattern.find(FD);
1399  if (Pos == ClassScopeSpecializationPattern.end())
1400  return nullptr;
1401 
1402  return Pos->second;
1403 }
1404 
1406  FunctionDecl *Pattern) {
1407  assert(FD && "Specialization is 0");
1408  assert(Pattern && "Class scope specialization pattern is 0");
1409  ClassScopeSpecializationPattern[FD] = Pattern;
1410 }
1411 
1412 NamedDecl *
1414  auto Pos = InstantiatedFromUsingDecl.find(UUD);
1415  if (Pos == InstantiatedFromUsingDecl.end())
1416  return nullptr;
1417 
1418  return Pos->second;
1419 }
1420 
1421 void
1423  assert((isa<UsingDecl>(Pattern) ||
1424  isa<UnresolvedUsingValueDecl>(Pattern) ||
1425  isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1426  "pattern decl is not a using decl");
1427  assert((isa<UsingDecl>(Inst) ||
1428  isa<UnresolvedUsingValueDecl>(Inst) ||
1429  isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1430  "instantiation did not produce a using decl");
1431  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1432  InstantiatedFromUsingDecl[Inst] = Pattern;
1433 }
1434 
1437  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1438  = InstantiatedFromUsingShadowDecl.find(Inst);
1439  if (Pos == InstantiatedFromUsingShadowDecl.end())
1440  return nullptr;
1441 
1442  return Pos->second;
1443 }
1444 
1445 void
1447  UsingShadowDecl *Pattern) {
1448  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1449  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1450 }
1451 
1453  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1454  = InstantiatedFromUnnamedFieldDecl.find(Field);
1455  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1456  return nullptr;
1457 
1458  return Pos->second;
1459 }
1460 
1462  FieldDecl *Tmpl) {
1463  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1464  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1465  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1466  "Already noted what unnamed field was instantiated from");
1467 
1468  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1469 }
1470 
1473  return overridden_methods(Method).begin();
1474 }
1475 
1478  return overridden_methods(Method).end();
1479 }
1480 
1481 unsigned
1483  auto Range = overridden_methods(Method);
1484  return Range.end() - Range.begin();
1485 }
1486 
1489  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1490  OverriddenMethods.find(Method->getCanonicalDecl());
1491  if (Pos == OverriddenMethods.end())
1492  return overridden_method_range(nullptr, nullptr);
1493  return overridden_method_range(Pos->second.begin(), Pos->second.end());
1494 }
1495 
1497  const CXXMethodDecl *Overridden) {
1498  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1499  OverriddenMethods[Method].push_back(Overridden);
1500 }
1501 
1503  const NamedDecl *D,
1504  SmallVectorImpl<const NamedDecl *> &Overridden) const {
1505  assert(D);
1506 
1507  if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1508  Overridden.append(overridden_methods_begin(CXXMethod),
1509  overridden_methods_end(CXXMethod));
1510  return;
1511  }
1512 
1513  const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1514  if (!Method)
1515  return;
1516 
1518  Method->getOverriddenMethods(OverDecls);
1519  Overridden.append(OverDecls.begin(), OverDecls.end());
1520 }
1521 
1523  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1524  assert(!Import->isFromASTFile() && "Non-local import declaration");
1525  if (!FirstLocalImport) {
1526  FirstLocalImport = Import;
1527  LastLocalImport = Import;
1528  return;
1529  }
1530 
1531  LastLocalImport->NextLocalImport = Import;
1532  LastLocalImport = Import;
1533 }
1534 
1535 //===----------------------------------------------------------------------===//
1536 // Type Sizing and Analysis
1537 //===----------------------------------------------------------------------===//
1538 
1539 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1540 /// scalar floating point type.
1541 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1542  const auto *BT = T->getAs<BuiltinType>();
1543  assert(BT && "Not a floating point type!");
1544  switch (BT->getKind()) {
1545  default: llvm_unreachable("Not a floating point type!");
1546  case BuiltinType::Float16:
1547  case BuiltinType::Half:
1548  return Target->getHalfFormat();
1549  case BuiltinType::Float: return Target->getFloatFormat();
1550  case BuiltinType::Double: return Target->getDoubleFormat();
1551  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1552  case BuiltinType::Float128: return Target->getFloat128Format();
1553  }
1554 }
1555 
1556 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1557  unsigned Align = Target->getCharWidth();
1558 
1559  bool UseAlignAttrOnly = false;
1560  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1561  Align = AlignFromAttr;
1562 
1563  // __attribute__((aligned)) can increase or decrease alignment
1564  // *except* on a struct or struct member, where it only increases
1565  // alignment unless 'packed' is also specified.
1566  //
1567  // It is an error for alignas to decrease alignment, so we can
1568  // ignore that possibility; Sema should diagnose it.
1569  if (isa<FieldDecl>(D)) {
1570  UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1571  cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1572  } else {
1573  UseAlignAttrOnly = true;
1574  }
1575  }
1576  else if (isa<FieldDecl>(D))
1577  UseAlignAttrOnly =
1578  D->hasAttr<PackedAttr>() ||
1579  cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1580 
1581  // If we're using the align attribute only, just ignore everything
1582  // else about the declaration and its type.
1583  if (UseAlignAttrOnly) {
1584  // do nothing
1585  } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1586  QualType T = VD->getType();
1587  if (const auto *RT = T->getAs<ReferenceType>()) {
1588  if (ForAlignof)
1589  T = RT->getPointeeType();
1590  else
1591  T = getPointerType(RT->getPointeeType());
1592  }
1593  QualType BaseT = getBaseElementType(T);
1594  if (T->isFunctionType())
1595  Align = getTypeInfoImpl(T.getTypePtr()).Align;
1596  else if (!BaseT->isIncompleteType()) {
1597  // Adjust alignments of declarations with array type by the
1598  // large-array alignment on the target.
1599  if (const ArrayType *arrayType = getAsArrayType(T)) {
1600  unsigned MinWidth = Target->getLargeArrayMinWidth();
1601  if (!ForAlignof && MinWidth) {
1602  if (isa<VariableArrayType>(arrayType))
1603  Align = std::max(Align, Target->getLargeArrayAlign());
1604  else if (isa<ConstantArrayType>(arrayType) &&
1605  MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1606  Align = std::max(Align, Target->getLargeArrayAlign());
1607  }
1608  }
1609  Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1610  if (BaseT.getQualifiers().hasUnaligned())
1611  Align = Target->getCharWidth();
1612  if (const auto *VD = dyn_cast<VarDecl>(D)) {
1613  if (VD->hasGlobalStorage() && !ForAlignof)
1614  Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1615  }
1616  }
1617 
1618  // Fields can be subject to extra alignment constraints, like if
1619  // the field is packed, the struct is packed, or the struct has a
1620  // a max-field-alignment constraint (#pragma pack). So calculate
1621  // the actual alignment of the field within the struct, and then
1622  // (as we're expected to) constrain that by the alignment of the type.
1623  if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1624  const RecordDecl *Parent = Field->getParent();
1625  // We can only produce a sensible answer if the record is valid.
1626  if (!Parent->isInvalidDecl()) {
1627  const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1628 
1629  // Start with the record's overall alignment.
1630  unsigned FieldAlign = toBits(Layout.getAlignment());
1631 
1632  // Use the GCD of that and the offset within the record.
1633  uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1634  if (Offset > 0) {
1635  // Alignment is always a power of 2, so the GCD will be a power of 2,
1636  // which means we get to do this crazy thing instead of Euclid's.
1637  uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1638  if (LowBitOfOffset < FieldAlign)
1639  FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1640  }
1641 
1642  Align = std::min(Align, FieldAlign);
1643  }
1644  }
1645  }
1646 
1647  return toCharUnitsFromBits(Align);
1648 }
1649 
1650 // getTypeInfoDataSizeInChars - Return the size of a type, in
1651 // chars. If the type is a record, its data size is returned. This is
1652 // the size of the memcpy that's performed when assigning this type
1653 // using a trivial copy/move assignment operator.
1654 std::pair<CharUnits, CharUnits>
1656  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1657 
1658  // In C++, objects can sometimes be allocated into the tail padding
1659  // of a base-class subobject. We decide whether that's possible
1660  // during class layout, so here we can just trust the layout results.
1661  if (getLangOpts().CPlusPlus) {
1662  if (const auto *RT = T->getAs<RecordType>()) {
1663  const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1664  sizeAndAlign.first = layout.getDataSize();
1665  }
1666  }
1667 
1668  return sizeAndAlign;
1669 }
1670 
1671 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1672 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1673 std::pair<CharUnits, CharUnits>
1675  const ConstantArrayType *CAT) {
1676  std::pair<CharUnits, CharUnits> EltInfo =
1677  Context.getTypeInfoInChars(CAT->getElementType());
1678  uint64_t Size = CAT->getSize().getZExtValue();
1679  assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1680  (uint64_t)(-1)/Size) &&
1681  "Overflow in array type char size evaluation");
1682  uint64_t Width = EltInfo.first.getQuantity() * Size;
1683  unsigned Align = EltInfo.second.getQuantity();
1684  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1685  Context.getTargetInfo().getPointerWidth(0) == 64)
1686  Width = llvm::alignTo(Width, Align);
1687  return std::make_pair(CharUnits::fromQuantity(Width),
1688  CharUnits::fromQuantity(Align));
1689 }
1690 
1691 std::pair<CharUnits, CharUnits>
1693  if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1694  return getConstantArrayInfoInChars(*this, CAT);
1695  TypeInfo Info = getTypeInfo(T);
1696  return std::make_pair(toCharUnitsFromBits(Info.Width),
1697  toCharUnitsFromBits(Info.Align));
1698 }
1699 
1700 std::pair<CharUnits, CharUnits>
1702  return getTypeInfoInChars(T.getTypePtr());
1703 }
1704 
1706  return getTypeInfo(T).AlignIsRequired;
1707 }
1708 
1710  return isAlignmentRequired(T.getTypePtr());
1711 }
1712 
1714  // An alignment on a typedef overrides anything else.
1715  if (const auto *TT = T->getAs<TypedefType>())
1716  if (unsigned Align = TT->getDecl()->getMaxAlignment())
1717  return Align;
1718 
1719  // If we have an (array of) complete type, we're done.
1720  T = getBaseElementType(T);
1721  if (!T->isIncompleteType())
1722  return getTypeAlign(T);
1723 
1724  // If we had an array type, its element type might be a typedef
1725  // type with an alignment attribute.
1726  if (const auto *TT = T->getAs<TypedefType>())
1727  if (unsigned Align = TT->getDecl()->getMaxAlignment())
1728  return Align;
1729 
1730  // Otherwise, see if the declaration of the type had an attribute.
1731  if (const auto *TT = T->getAs<TagType>())
1732  return TT->getDecl()->getMaxAlignment();
1733 
1734  return 0;
1735 }
1736 
1738  TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1739  if (I != MemoizedTypeInfo.end())
1740  return I->second;
1741 
1742  // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1743  TypeInfo TI = getTypeInfoImpl(T);
1744  MemoizedTypeInfo[T] = TI;
1745  return TI;
1746 }
1747 
1748 /// getTypeInfoImpl - Return the size of the specified type, in bits. This
1749 /// method does not work on incomplete types.
1750 ///
1751 /// FIXME: Pointers into different addr spaces could have different sizes and
1752 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1753 /// should take a QualType, &c.
1754 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1755  uint64_t Width = 0;
1756  unsigned Align = 8;
1757  bool AlignIsRequired = false;
1758  unsigned AS = 0;
1759  switch (T->getTypeClass()) {
1760 #define TYPE(Class, Base)
1761 #define ABSTRACT_TYPE(Class, Base)
1762 #define NON_CANONICAL_TYPE(Class, Base)
1763 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1764 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
1765  case Type::Class: \
1766  assert(!T->isDependentType() && "should not see dependent types here"); \
1767  return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1768 #include "clang/AST/TypeNodes.def"
1769  llvm_unreachable("Should not see dependent types");
1770 
1771  case Type::FunctionNoProto:
1772  case Type::FunctionProto:
1773  // GCC extension: alignof(function) = 32 bits
1774  Width = 0;
1775  Align = 32;
1776  break;
1777 
1778  case Type::IncompleteArray:
1779  case Type::VariableArray:
1780  Width = 0;
1781  Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1782  break;
1783 
1784  case Type::ConstantArray: {
1785  const auto *CAT = cast<ConstantArrayType>(T);
1786 
1787  TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
1788  uint64_t Size = CAT->getSize().getZExtValue();
1789  assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1790  "Overflow in array type bit size evaluation");
1791  Width = EltInfo.Width * Size;
1792  Align = EltInfo.Align;
1793  if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1794  getTargetInfo().getPointerWidth(0) == 64)
1795  Width = llvm::alignTo(Width, Align);
1796  break;
1797  }
1798  case Type::ExtVector:
1799  case Type::Vector: {
1800  const auto *VT = cast<VectorType>(T);
1801  TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1802  Width = EltInfo.Width * VT->getNumElements();
1803  Align = Width;
1804  // If the alignment is not a power of 2, round up to the next power of 2.
1805  // This happens for non-power-of-2 length vectors.
1806  if (Align & (Align-1)) {
1807  Align = llvm::NextPowerOf2(Align);
1808  Width = llvm::alignTo(Width, Align);
1809  }
1810  // Adjust the alignment based on the target max.
1811  uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1812  if (TargetVectorAlign && TargetVectorAlign < Align)
1813  Align = TargetVectorAlign;
1814  break;
1815  }
1816 
1817  case Type::Builtin:
1818  switch (cast<BuiltinType>(T)->getKind()) {
1819  default: llvm_unreachable("Unknown builtin type!");
1820  case BuiltinType::Void:
1821  // GCC extension: alignof(void) = 8 bits.
1822  Width = 0;
1823  Align = 8;
1824  break;
1825  case BuiltinType::Bool:
1826  Width = Target->getBoolWidth();
1827  Align = Target->getBoolAlign();
1828  break;
1829  case BuiltinType::Char_S:
1830  case BuiltinType::Char_U:
1831  case BuiltinType::UChar:
1832  case BuiltinType::SChar:
1833  case BuiltinType::Char8:
1834  Width = Target->getCharWidth();
1835  Align = Target->getCharAlign();
1836  break;
1837  case BuiltinType::WChar_S:
1838  case BuiltinType::WChar_U:
1839  Width = Target->getWCharWidth();
1840  Align = Target->getWCharAlign();
1841  break;
1842  case BuiltinType::Char16:
1843  Width = Target->getChar16Width();
1844  Align = Target->getChar16Align();
1845  break;
1846  case BuiltinType::Char32:
1847  Width = Target->getChar32Width();
1848  Align = Target->getChar32Align();
1849  break;
1850  case BuiltinType::UShort:
1851  case BuiltinType::Short:
1852  Width = Target->getShortWidth();
1853  Align = Target->getShortAlign();
1854  break;
1855  case BuiltinType::UInt:
1856  case BuiltinType::Int:
1857  Width = Target->getIntWidth();
1858  Align = Target->getIntAlign();
1859  break;
1860  case BuiltinType::ULong:
1861  case BuiltinType::Long:
1862  Width = Target->getLongWidth();
1863  Align = Target->getLongAlign();
1864  break;
1865  case BuiltinType::ULongLong:
1866  case BuiltinType::LongLong:
1867  Width = Target->getLongLongWidth();
1868  Align = Target->getLongLongAlign();
1869  break;
1870  case BuiltinType::Int128:
1871  case BuiltinType::UInt128:
1872  Width = 128;
1873  Align = 128; // int128_t is 128-bit aligned on all targets.
1874  break;
1875  case BuiltinType::ShortAccum:
1876  case BuiltinType::UShortAccum:
1877  case BuiltinType::SatShortAccum:
1878  case BuiltinType::SatUShortAccum:
1879  Width = Target->getShortAccumWidth();
1880  Align = Target->getShortAccumAlign();
1881  break;
1882  case BuiltinType::Accum:
1883  case BuiltinType::UAccum:
1884  case BuiltinType::SatAccum:
1885  case BuiltinType::SatUAccum:
1886  Width = Target->getAccumWidth();
1887  Align = Target->getAccumAlign();
1888  break;
1889  case BuiltinType::LongAccum:
1890  case BuiltinType::ULongAccum:
1891  case BuiltinType::SatLongAccum:
1892  case BuiltinType::SatULongAccum:
1893  Width = Target->getLongAccumWidth();
1894  Align = Target->getLongAccumAlign();
1895  break;
1896  case BuiltinType::ShortFract:
1897  case BuiltinType::UShortFract:
1898  case BuiltinType::SatShortFract:
1899  case BuiltinType::SatUShortFract:
1900  Width = Target->getShortFractWidth();
1901  Align = Target->getShortFractAlign();
1902  break;
1903  case BuiltinType::Fract:
1904  case BuiltinType::UFract:
1905  case BuiltinType::SatFract:
1906  case BuiltinType::SatUFract:
1907  Width = Target->getFractWidth();
1908  Align = Target->getFractAlign();
1909  break;
1910  case BuiltinType::LongFract:
1911  case BuiltinType::ULongFract:
1912  case BuiltinType::SatLongFract:
1913  case BuiltinType::SatULongFract:
1914  Width = Target->getLongFractWidth();
1915  Align = Target->getLongFractAlign();
1916  break;
1917  case BuiltinType::Float16:
1918  case BuiltinType::Half:
1919  Width = Target->getHalfWidth();
1920  Align = Target->getHalfAlign();
1921  break;
1922  case BuiltinType::Float:
1923  Width = Target->getFloatWidth();
1924  Align = Target->getFloatAlign();
1925  break;
1926  case BuiltinType::Double:
1927  Width = Target->getDoubleWidth();
1928  Align = Target->getDoubleAlign();
1929  break;
1930  case BuiltinType::LongDouble:
1931  Width = Target->getLongDoubleWidth();
1932  Align = Target->getLongDoubleAlign();
1933  break;
1934  case BuiltinType::Float128:
1935  Width = Target->getFloat128Width();
1936  Align = Target->getFloat128Align();
1937  break;
1938  case BuiltinType::NullPtr:
1939  Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1940  Align = Target->getPointerAlign(0); // == sizeof(void*)
1941  break;
1942  case BuiltinType::ObjCId:
1943  case BuiltinType::ObjCClass:
1944  case BuiltinType::ObjCSel:
1945  Width = Target->getPointerWidth(0);
1946  Align = Target->getPointerAlign(0);
1947  break;
1948  case BuiltinType::OCLSampler:
1949  case BuiltinType::OCLEvent:
1950  case BuiltinType::OCLClkEvent:
1951  case BuiltinType::OCLQueue:
1952  case BuiltinType::OCLReserveID:
1953 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1954  case BuiltinType::Id:
1955 #include "clang/Basic/OpenCLImageTypes.def"
1956 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1957  case BuiltinType::Id:
1958 #include "clang/Basic/OpenCLExtensionTypes.def"
1959  AS = getTargetAddressSpace(
1960  Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
1961  Width = Target->getPointerWidth(AS);
1962  Align = Target->getPointerAlign(AS);
1963  break;
1964  }
1965  break;
1966  case Type::ObjCObjectPointer:
1967  Width = Target->getPointerWidth(0);
1968  Align = Target->getPointerAlign(0);
1969  break;
1970  case Type::BlockPointer:
1971  AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
1972  Width = Target->getPointerWidth(AS);
1973  Align = Target->getPointerAlign(AS);
1974  break;
1975  case Type::LValueReference:
1976  case Type::RValueReference:
1977  // alignof and sizeof should never enter this code path here, so we go
1978  // the pointer route.
1979  AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
1980  Width = Target->getPointerWidth(AS);
1981  Align = Target->getPointerAlign(AS);
1982  break;
1983  case Type::Pointer:
1984  AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1985  Width = Target->getPointerWidth(AS);
1986  Align = Target->getPointerAlign(AS);
1987  break;
1988  case Type::MemberPointer: {
1989  const auto *MPT = cast<MemberPointerType>(T);
1990  CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
1991  Width = MPI.Width;
1992  Align = MPI.Align;
1993  break;
1994  }
1995  case Type::Complex: {
1996  // Complex types have the same alignment as their elements, but twice the
1997  // size.
1998  TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
1999  Width = EltInfo.Width * 2;
2000  Align = EltInfo.Align;
2001  break;
2002  }
2003  case Type::ObjCObject:
2004  return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2005  case Type::Adjusted:
2006  case Type::Decayed:
2007  return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2008  case Type::ObjCInterface: {
2009  const auto *ObjCI = cast<ObjCInterfaceType>(T);
2010  const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2011  Width = toBits(Layout.getSize());
2012  Align = toBits(Layout.getAlignment());
2013  break;
2014  }
2015  case Type::Record:
2016  case Type::Enum: {
2017  const auto *TT = cast<TagType>(T);
2018 
2019  if (TT->getDecl()->isInvalidDecl()) {
2020  Width = 8;
2021  Align = 8;
2022  break;
2023  }
2024 
2025  if (const auto *ET = dyn_cast<EnumType>(TT)) {
2026  const EnumDecl *ED = ET->getDecl();
2027  TypeInfo Info =
2029  if (unsigned AttrAlign = ED->getMaxAlignment()) {
2030  Info.Align = AttrAlign;
2031  Info.AlignIsRequired = true;
2032  }
2033  return Info;
2034  }
2035 
2036  const auto *RT = cast<RecordType>(TT);
2037  const RecordDecl *RD = RT->getDecl();
2038  const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2039  Width = toBits(Layout.getSize());
2040  Align = toBits(Layout.getAlignment());
2041  AlignIsRequired = RD->hasAttr<AlignedAttr>();
2042  break;
2043  }
2044 
2045  case Type::SubstTemplateTypeParm:
2046  return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2047  getReplacementType().getTypePtr());
2048 
2049  case Type::Auto:
2050  case Type::DeducedTemplateSpecialization: {
2051  const auto *A = cast<DeducedType>(T);
2052  assert(!A->getDeducedType().isNull() &&
2053  "cannot request the size of an undeduced or dependent auto type");
2054  return getTypeInfo(A->getDeducedType().getTypePtr());
2055  }
2056 
2057  case Type::Paren:
2058  return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2059 
2060  case Type::ObjCTypeParam:
2061  return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2062 
2063  case Type::Typedef: {
2064  const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
2065  TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
2066  // If the typedef has an aligned attribute on it, it overrides any computed
2067  // alignment we have. This violates the GCC documentation (which says that
2068  // attribute(aligned) can only round up) but matches its implementation.
2069  if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
2070  Align = AttrAlign;
2071  AlignIsRequired = true;
2072  } else {
2073  Align = Info.Align;
2074  AlignIsRequired = Info.AlignIsRequired;
2075  }
2076  Width = Info.Width;
2077  break;
2078  }
2079 
2080  case Type::Elaborated:
2081  return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2082 
2083  case Type::Attributed:
2084  return getTypeInfo(
2085  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2086 
2087  case Type::Atomic: {
2088  // Start with the base type information.
2089  TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2090  Width = Info.Width;
2091  Align = Info.Align;
2092 
2093  if (!Width) {
2094  // An otherwise zero-sized type should still generate an
2095  // atomic operation.
2096  Width = Target->getCharWidth();
2097  assert(Align);
2098  } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2099  // If the size of the type doesn't exceed the platform's max
2100  // atomic promotion width, make the size and alignment more
2101  // favorable to atomic operations:
2102 
2103  // Round the size up to a power of 2.
2104  if (!llvm::isPowerOf2_64(Width))
2105  Width = llvm::NextPowerOf2(Width);
2106 
2107  // Set the alignment equal to the size.
2108  Align = static_cast<unsigned>(Width);
2109  }
2110  }
2111  break;
2112 
2113  case Type::Pipe:
2114  Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
2115  Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
2116  break;
2117  }
2118 
2119  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2120  return TypeInfo(Width, Align, AlignIsRequired);
2121 }
2122 
2123 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2124  UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2125  if (I != MemoizedUnadjustedAlign.end())
2126  return I->second;
2127 
2128  unsigned UnadjustedAlign;
2129  if (const auto *RT = T->getAs<RecordType>()) {
2130  const RecordDecl *RD = RT->getDecl();
2131  const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2132  UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2133  } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2134  const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2135  UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2136  } else {
2137  UnadjustedAlign = getTypeAlign(T);
2138  }
2139 
2140  MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2141  return UnadjustedAlign;
2142 }
2143 
2145  unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
2146  // Target ppc64 with QPX: simd default alignment for pointer to double is 32.
2147  if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 ||
2148  getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) &&
2149  getTargetInfo().getABI() == "elfv1-qpx" &&
2150  T->isSpecificBuiltinType(BuiltinType::Double))
2151  SimdAlign = 256;
2152  return SimdAlign;
2153 }
2154 
2155 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
2157  return CharUnits::fromQuantity(BitSize / getCharWidth());
2158 }
2159 
2160 /// toBits - Convert a size in characters to a size in characters.
2161 int64_t ASTContext::toBits(CharUnits CharSize) const {
2162  return CharSize.getQuantity() * getCharWidth();
2163 }
2164 
2165 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2166 /// This method does not work on incomplete types.
2168  return getTypeInfoInChars(T).first;
2169 }
2171  return getTypeInfoInChars(T).first;
2172 }
2173 
2174 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2175 /// characters. This method does not work on incomplete types.
2177  return toCharUnitsFromBits(getTypeAlign(T));
2178 }
2180  return toCharUnitsFromBits(getTypeAlign(T));
2181 }
2182 
2183 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2184 /// type, in characters, before alignment adustments. This method does
2185 /// not work on incomplete types.
2188 }
2191 }
2192 
2193 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2194 /// type for the current target in bits. This can be different than the ABI
2195 /// alignment in cases where it is beneficial for performance to overalign
2196 /// a data type.
2197 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2198  TypeInfo TI = getTypeInfo(T);
2199  unsigned ABIAlign = TI.Align;
2200 
2201  T = T->getBaseElementTypeUnsafe();
2202 
2203  // The preferred alignment of member pointers is that of a pointer.
2204  if (T->isMemberPointerType())
2206 
2207  if (!Target->allowsLargerPreferedTypeAlignment())
2208  return ABIAlign;
2209 
2210  // Double and long long should be naturally aligned if possible.
2211  if (const auto *CT = T->getAs<ComplexType>())
2212  T = CT->getElementType().getTypePtr();
2213  if (const auto *ET = T->getAs<EnumType>())
2214  T = ET->getDecl()->getIntegerType().getTypePtr();
2215  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2216  T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2217  T->isSpecificBuiltinType(BuiltinType::ULongLong))
2218  // Don't increase the alignment if an alignment attribute was specified on a
2219  // typedef declaration.
2220  if (!TI.AlignIsRequired)
2221  return std::max(ABIAlign, (unsigned)getTypeSize(T));
2222 
2223  return ABIAlign;
2224 }
2225 
2226 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2227 /// for __attribute__((aligned)) on this target, to be used if no alignment
2228 /// value is specified.
2231 }
2232 
2233 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2234 /// to a global variable of the specified type.
2236  return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
2237 }
2238 
2239 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2240 /// should be given to a global variable of the specified type.
2243 }
2244 
2247  const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2248  while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2249  Offset += Layout->getBaseClassOffset(Base);
2250  Layout = &getASTRecordLayout(Base);
2251  }
2252  return Offset;
2253 }
2254 
2255 /// DeepCollectObjCIvars -
2256 /// This routine first collects all declared, but not synthesized, ivars in
2257 /// super class and then collects all ivars, including those synthesized for
2258 /// current class. This routine is used for implementation of current class
2259 /// when all ivars, declared and synthesized are known.
2261  bool leafClass,
2262  SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2263  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2264  DeepCollectObjCIvars(SuperClass, false, Ivars);
2265  if (!leafClass) {
2266  for (const auto *I : OI->ivars())
2267  Ivars.push_back(I);
2268  } else {
2269  auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2270  for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2271  Iv= Iv->getNextIvar())
2272  Ivars.push_back(Iv);
2273  }
2274 }
2275 
2276 /// CollectInheritedProtocols - Collect all protocols in current class and
2277 /// those inherited by it.
2279  llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2280  if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2281  // We can use protocol_iterator here instead of
2282  // all_referenced_protocol_iterator since we are walking all categories.
2283  for (auto *Proto : OI->all_referenced_protocols()) {
2284  CollectInheritedProtocols(Proto, Protocols);
2285  }
2286 
2287  // Categories of this Interface.
2288  for (const auto *Cat : OI->visible_categories())
2289  CollectInheritedProtocols(Cat, Protocols);
2290 
2291  if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2292  while (SD) {
2293  CollectInheritedProtocols(SD, Protocols);
2294  SD = SD->getSuperClass();
2295  }
2296  } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2297  for (auto *Proto : OC->protocols()) {
2298  CollectInheritedProtocols(Proto, Protocols);
2299  }
2300  } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2301  // Insert the protocol.
2302  if (!Protocols.insert(
2303  const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2304  return;
2305 
2306  for (auto *Proto : OP->protocols())
2307  CollectInheritedProtocols(Proto, Protocols);
2308  }
2309 }
2310 
2312  const RecordDecl *RD) {
2313  assert(RD->isUnion() && "Must be union type");
2314  CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2315 
2316  for (const auto *Field : RD->fields()) {
2317  if (!Context.hasUniqueObjectRepresentations(Field->getType()))
2318  return false;
2319  CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2320  if (FieldSize != UnionSize)
2321  return false;
2322  }
2323  return !RD->field_empty();
2324 }
2325 
2326 static bool isStructEmpty(QualType Ty) {
2327  const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
2328 
2329  if (!RD->field_empty())
2330  return false;
2331 
2332  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD))
2333  return ClassDecl->isEmpty();
2334 
2335  return true;
2336 }
2337 
2340  const RecordDecl *RD) {
2341  assert(!RD->isUnion() && "Must be struct/class type");
2342  const auto &Layout = Context.getASTRecordLayout(RD);
2343 
2344  int64_t CurOffsetInBits = 0;
2345  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2346  if (ClassDecl->isDynamicClass())
2347  return llvm::None;
2348 
2350  for (const auto Base : ClassDecl->bases()) {
2351  // Empty types can be inherited from, and non-empty types can potentially
2352  // have tail padding, so just make sure there isn't an error.
2353  if (!isStructEmpty(Base.getType())) {
2355  Context, Base.getType()->getAs<RecordType>()->getDecl());
2356  if (!Size)
2357  return llvm::None;
2358  Bases.emplace_back(Base.getType(), Size.getValue());
2359  }
2360  }
2361 
2362  llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L,
2363  const std::pair<QualType, int64_t> &R) {
2364  return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) <
2365  Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl());
2366  });
2367 
2368  for (const auto Base : Bases) {
2369  int64_t BaseOffset = Context.toBits(
2370  Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl()));
2371  int64_t BaseSize = Base.second;
2372  if (BaseOffset != CurOffsetInBits)
2373  return llvm::None;
2374  CurOffsetInBits = BaseOffset + BaseSize;
2375  }
2376  }
2377 
2378  for (const auto *Field : RD->fields()) {
2379  if (!Field->getType()->isReferenceType() &&
2380  !Context.hasUniqueObjectRepresentations(Field->getType()))
2381  return llvm::None;
2382 
2383  int64_t FieldSizeInBits =
2384  Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2385  if (Field->isBitField()) {
2386  int64_t BitfieldSize = Field->getBitWidthValue(Context);
2387 
2388  if (BitfieldSize > FieldSizeInBits)
2389  return llvm::None;
2390  FieldSizeInBits = BitfieldSize;
2391  }
2392 
2393  int64_t FieldOffsetInBits = Context.getFieldOffset(Field);
2394 
2395  if (FieldOffsetInBits != CurOffsetInBits)
2396  return llvm::None;
2397 
2398  CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits;
2399  }
2400 
2401  return CurOffsetInBits;
2402 }
2403 
2405  // C++17 [meta.unary.prop]:
2406  // The predicate condition for a template specialization
2407  // has_unique_object_representations<T> shall be
2408  // satisfied if and only if:
2409  // (9.1) - T is trivially copyable, and
2410  // (9.2) - any two objects of type T with the same value have the same
2411  // object representation, where two objects
2412  // of array or non-union class type are considered to have the same value
2413  // if their respective sequences of
2414  // direct subobjects have the same values, and two objects of union type
2415  // are considered to have the same
2416  // value if they have the same active member and the corresponding members
2417  // have the same value.
2418  // The set of scalar types for which this condition holds is
2419  // implementation-defined. [ Note: If a type has padding
2420  // bits, the condition does not hold; otherwise, the condition holds true
2421  // for unsigned integral types. -- end note ]
2422  assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2423 
2424  // Arrays are unique only if their element type is unique.
2425  if (Ty->isArrayType())
2427 
2428  // (9.1) - T is trivially copyable...
2429  if (!Ty.isTriviallyCopyableType(*this))
2430  return false;
2431 
2432  // All integrals and enums are unique.
2433  if (Ty->isIntegralOrEnumerationType())
2434  return true;
2435 
2436  // All other pointers are unique.
2437  if (Ty->isPointerType())
2438  return true;
2439 
2440  if (Ty->isMemberPointerType()) {
2441  const auto *MPT = Ty->getAs<MemberPointerType>();
2442  return !ABI->getMemberPointerInfo(MPT).HasPadding;
2443  }
2444 
2445  if (Ty->isRecordType()) {
2446  const RecordDecl *Record = Ty->getAs<RecordType>()->getDecl();
2447 
2448  if (Record->isInvalidDecl())
2449  return false;
2450 
2451  if (Record->isUnion())
2452  return unionHasUniqueObjectRepresentations(*this, Record);
2453 
2454  Optional<int64_t> StructSize =
2455  structHasUniqueObjectRepresentations(*this, Record);
2456 
2457  return StructSize &&
2458  StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
2459  }
2460 
2461  // FIXME: More cases to handle here (list by rsmith):
2462  // vectors (careful about, eg, vector of 3 foo)
2463  // _Complex int and friends
2464  // _Atomic T
2465  // Obj-C block pointers
2466  // Obj-C object pointers
2467  // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2468  // clk_event_t, queue_t, reserve_id_t)
2469  // There're also Obj-C class types and the Obj-C selector type, but I think it
2470  // makes sense for those to return false here.
2471 
2472  return false;
2473 }
2474 
2476  unsigned count = 0;
2477  // Count ivars declared in class extension.
2478  for (const auto *Ext : OI->known_extensions())
2479  count += Ext->ivar_size();
2480 
2481  // Count ivar defined in this class's implementation. This
2482  // includes synthesized ivars.
2483  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2484  count += ImplDecl->ivar_size();
2485 
2486  return count;
2487 }
2488 
2490  if (!E)
2491  return false;
2492 
2493  // nullptr_t is always treated as null.
2494  if (E->getType()->isNullPtrType()) return true;
2495 
2496  if (E->getType()->isAnyPointerType() &&
2499  return true;
2500 
2501  // Unfortunately, __null has type 'int'.
2502  if (isa<GNUNullExpr>(E)) return true;
2503 
2504  return false;
2505 }
2506 
2507 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2508 /// exists.
2510  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2511  I = ObjCImpls.find(D);
2512  if (I != ObjCImpls.end())
2513  return cast<ObjCImplementationDecl>(I->second);
2514  return nullptr;
2515 }
2516 
2517 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2518 /// exists.
2520  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2521  I = ObjCImpls.find(D);
2522  if (I != ObjCImpls.end())
2523  return cast<ObjCCategoryImplDecl>(I->second);
2524  return nullptr;
2525 }
2526 
2527 /// Set the implementation of ObjCInterfaceDecl.
2529  ObjCImplementationDecl *ImplD) {
2530  assert(IFaceD && ImplD && "Passed null params");
2531  ObjCImpls[IFaceD] = ImplD;
2532 }
2533 
2534 /// Set the implementation of ObjCCategoryDecl.
2536  ObjCCategoryImplDecl *ImplD) {
2537  assert(CatD && ImplD && "Passed null params");
2538  ObjCImpls[CatD] = ImplD;
2539 }
2540 
2541 const ObjCMethodDecl *
2543  return ObjCMethodRedecls.lookup(MD);
2544 }
2545 
2547  const ObjCMethodDecl *Redecl) {
2548  assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2549  ObjCMethodRedecls[MD] = Redecl;
2550 }
2551 
2553  const NamedDecl *ND) const {
2554  if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2555  return ID;
2556  if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2557  return CD->getClassInterface();
2558  if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2559  return IMD->getClassInterface();
2560 
2561  return nullptr;
2562 }
2563 
2564 /// Get the copy initialization expression of VarDecl, or nullptr if
2565 /// none exists.
2568  assert(VD && "Passed null params");
2569  assert(VD->hasAttr<BlocksAttr>() &&
2570  "getBlockVarCopyInits - not __block var");
2571  auto I = BlockVarCopyInits.find(VD);
2572  if (I != BlockVarCopyInits.end())
2573  return I->second;
2574  return {nullptr, false};
2575 }
2576 
2577 /// Set the copy inialization expression of a block var decl.
2579  bool CanThrow) {
2580  assert(VD && CopyExpr && "Passed null params");
2581  assert(VD->hasAttr<BlocksAttr>() &&
2582  "setBlockVarCopyInits - not __block var");
2583  BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2584 }
2585 
2587  unsigned DataSize) const {
2588  if (!DataSize)
2589  DataSize = TypeLoc::getFullDataSizeForType(T);
2590  else
2591  assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2592  "incorrect data size provided to CreateTypeSourceInfo!");
2593 
2594  auto *TInfo =
2595  (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2596  new (TInfo) TypeSourceInfo(T);
2597  return TInfo;
2598 }
2599 
2601  SourceLocation L) const {
2603  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2604  return DI;
2605 }
2606 
2607 const ASTRecordLayout &
2609  return getObjCLayout(D, nullptr);
2610 }
2611 
2612 const ASTRecordLayout &
2614  const ObjCImplementationDecl *D) const {
2615  return getObjCLayout(D->getClassInterface(), D);
2616 }
2617 
2618 //===----------------------------------------------------------------------===//
2619 // Type creation/memoization methods
2620 //===----------------------------------------------------------------------===//
2621 
2622 QualType
2623 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2624  unsigned fastQuals = quals.getFastQualifiers();
2625  quals.removeFastQualifiers();
2626 
2627  // Check if we've already instantiated this type.
2628  llvm::FoldingSetNodeID ID;
2629  ExtQuals::Profile(ID, baseType, quals);
2630  void *insertPos = nullptr;
2631  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2632  assert(eq->getQualifiers() == quals);
2633  return QualType(eq, fastQuals);
2634  }
2635 
2636  // If the base type is not canonical, make the appropriate canonical type.
2637  QualType canon;
2638  if (!baseType->isCanonicalUnqualified()) {
2639  SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2640  canonSplit.Quals.addConsistentQualifiers(quals);
2641  canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2642 
2643  // Re-find the insert position.
2644  (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2645  }
2646 
2647  auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2648  ExtQualNodes.InsertNode(eq, insertPos);
2649  return QualType(eq, fastQuals);
2650 }
2651 
2653  LangAS AddressSpace) const {
2654  QualType CanT = getCanonicalType(T);
2655  if (CanT.getAddressSpace() == AddressSpace)
2656  return T;
2657 
2658  // If we are composing extended qualifiers together, merge together
2659  // into one ExtQuals node.
2660  QualifierCollector Quals;
2661  const Type *TypeNode = Quals.strip(T);
2662 
2663  // If this type already has an address space specified, it cannot get
2664  // another one.
2665  assert(!Quals.hasAddressSpace() &&
2666  "Type cannot be in multiple addr spaces!");
2667  Quals.addAddressSpace(AddressSpace);
2668 
2669  return getExtQualType(TypeNode, Quals);
2670 }
2671 
2673  // If we are composing extended qualifiers together, merge together
2674  // into one ExtQuals node.
2675  QualifierCollector Quals;
2676  const Type *TypeNode = Quals.strip(T);
2677 
2678  // If the qualifier doesn't have an address space just return it.
2679  if (!Quals.hasAddressSpace())
2680  return T;
2681 
2682  Quals.removeAddressSpace();
2683 
2684  // Removal of the address space can mean there are no longer any
2685  // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
2686  // or required.
2687  if (Quals.hasNonFastQualifiers())
2688  return getExtQualType(TypeNode, Quals);
2689  else
2690  return QualType(TypeNode, Quals.getFastQualifiers());
2691 }
2692 
2694  Qualifiers::GC GCAttr) const {
2695  QualType CanT = getCanonicalType(T);
2696  if (CanT.getObjCGCAttr() == GCAttr)
2697  return T;
2698 
2699  if (const auto *ptr = T->getAs<PointerType>()) {
2700  QualType Pointee = ptr->getPointeeType();
2701  if (Pointee->isAnyPointerType()) {
2702  QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2703  return getPointerType(ResultType);
2704  }
2705  }
2706 
2707  // If we are composing extended qualifiers together, merge together
2708  // into one ExtQuals node.
2709  QualifierCollector Quals;
2710  const Type *TypeNode = Quals.strip(T);
2711 
2712  // If this type already has an ObjCGC specified, it cannot get
2713  // another one.
2714  assert(!Quals.hasObjCGCAttr() &&
2715  "Type cannot have multiple ObjCGCs!");
2716  Quals.addObjCGCAttr(GCAttr);
2717 
2718  return getExtQualType(TypeNode, Quals);
2719 }
2720 
2722  FunctionType::ExtInfo Info) {
2723  if (T->getExtInfo() == Info)
2724  return T;
2725 
2726  QualType Result;
2727  if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2728  Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2729  } else {
2730  const auto *FPT = cast<FunctionProtoType>(T);
2731  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2732  EPI.ExtInfo = Info;
2733  Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2734  }
2735 
2736  return cast<FunctionType>(Result.getTypePtr());
2737 }
2738 
2740  QualType ResultType) {
2741  FD = FD->getMostRecentDecl();
2742  while (true) {
2743  const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
2744  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2745  FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2746  if (FunctionDecl *Next = FD->getPreviousDecl())
2747  FD = Next;
2748  else
2749  break;
2750  }
2752  L->DeducedReturnType(FD, ResultType);
2753 }
2754 
2755 /// Get a function type and produce the equivalent function type with the
2756 /// specified exception specification. Type sugar that can be present on a
2757 /// declaration of a function with an exception specification is permitted
2758 /// and preserved. Other type sugar (for instance, typedefs) is not.
2761  // Might have some parens.
2762  if (const auto *PT = dyn_cast<ParenType>(Orig))
2763  return getParenType(
2764  getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
2765 
2766  // Might have a calling-convention attribute.
2767  if (const auto *AT = dyn_cast<AttributedType>(Orig))
2768  return getAttributedType(
2769  AT->getAttrKind(),
2770  getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
2771  getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
2772 
2773  // Anything else must be a function type. Rebuild it with the new exception
2774  // specification.
2775  const auto *Proto = cast<FunctionProtoType>(Orig);
2776  return getFunctionType(
2777  Proto->getReturnType(), Proto->getParamTypes(),
2778  Proto->getExtProtoInfo().withExceptionSpec(ESI));
2779 }
2780 
2782  QualType U) {
2783  return hasSameType(T, U) ||
2784  (getLangOpts().CPlusPlus17 &&
2787 }
2788 
2791  bool AsWritten) {
2792  // Update the type.
2793  QualType Updated =
2795  FD->setType(Updated);
2796 
2797  if (!AsWritten)
2798  return;
2799 
2800  // Update the type in the type source information too.
2801  if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
2802  // If the type and the type-as-written differ, we may need to update
2803  // the type-as-written too.
2804  if (TSInfo->getType() != FD->getType())
2805  Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
2806 
2807  // FIXME: When we get proper type location information for exceptions,
2808  // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
2809  // up the TypeSourceInfo;
2810  assert(TypeLoc::getFullDataSizeForType(Updated) ==
2811  TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
2812  "TypeLoc size mismatch from updating exception specification");
2813  TSInfo->overrideType(Updated);
2814  }
2815 }
2816 
2817 /// getComplexType - Return the uniqued reference to the type for a complex
2818 /// number with the specified element type.
2820  // Unique pointers, to guarantee there is only one pointer of a particular
2821  // structure.
2822  llvm::FoldingSetNodeID ID;
2823  ComplexType::Profile(ID, T);
2824 
2825  void *InsertPos = nullptr;
2826  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2827  return QualType(CT, 0);
2828 
2829  // If the pointee type isn't canonical, this won't be a canonical type either,
2830  // so fill in the canonical type field.
2831  QualType Canonical;
2832  if (!T.isCanonical()) {
2833  Canonical = getComplexType(getCanonicalType(T));
2834 
2835  // Get the new insert position for the node we care about.
2836  ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2837  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2838  }
2839  auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2840  Types.push_back(New);
2841  ComplexTypes.InsertNode(New, InsertPos);
2842  return QualType(New, 0);
2843 }
2844 
2845 /// getPointerType - Return the uniqued reference to the type for a pointer to
2846 /// the specified type.
2848  // Unique pointers, to guarantee there is only one pointer of a particular
2849  // structure.
2850  llvm::FoldingSetNodeID ID;
2851  PointerType::Profile(ID, T);
2852 
2853  void *InsertPos = nullptr;
2854  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2855  return QualType(PT, 0);
2856 
2857  // If the pointee type isn't canonical, this won't be a canonical type either,
2858  // so fill in the canonical type field.
2859  QualType Canonical;
2860  if (!T.isCanonical()) {
2861  Canonical = getPointerType(getCanonicalType(T));
2862 
2863  // Get the new insert position for the node we care about.
2864  PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2865  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2866  }
2867  auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2868  Types.push_back(New);
2869  PointerTypes.InsertNode(New, InsertPos);
2870  return QualType(New, 0);
2871 }
2872 
2874  llvm::FoldingSetNodeID ID;
2875  AdjustedType::Profile(ID, Orig, New);
2876  void *InsertPos = nullptr;
2877  AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2878  if (AT)
2879  return QualType(AT, 0);
2880 
2881  QualType Canonical = getCanonicalType(New);
2882 
2883  // Get the new insert position for the node we care about.
2884  AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2885  assert(!AT && "Shouldn't be in the map!");
2886 
2887  AT = new (*this, TypeAlignment)
2888  AdjustedType(Type::Adjusted, Orig, New, Canonical);
2889  Types.push_back(AT);
2890  AdjustedTypes.InsertNode(AT, InsertPos);
2891  return QualType(AT, 0);
2892 }
2893 
2895  assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
2896 
2897  QualType Decayed;
2898 
2899  // C99 6.7.5.3p7:
2900  // A declaration of a parameter as "array of type" shall be
2901  // adjusted to "qualified pointer to type", where the type
2902  // qualifiers (if any) are those specified within the [ and ] of
2903  // the array type derivation.
2904  if (T->isArrayType())
2905  Decayed = getArrayDecayedType(T);
2906 
2907  // C99 6.7.5.3p8:
2908  // A declaration of a parameter as "function returning type"
2909  // shall be adjusted to "pointer to function returning type", as
2910  // in 6.3.2.1.
2911  if (T->isFunctionType())
2912  Decayed = getPointerType(T);
2913 
2914  llvm::FoldingSetNodeID ID;
2915  AdjustedType::Profile(ID, T, Decayed);
2916  void *InsertPos = nullptr;
2917  AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2918  if (AT)
2919  return QualType(AT, 0);
2920 
2921  QualType Canonical = getCanonicalType(Decayed);
2922 
2923  // Get the new insert position for the node we care about.
2924  AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
2925  assert(!AT && "Shouldn't be in the map!");
2926 
2927  AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
2928  Types.push_back(AT);
2929  AdjustedTypes.InsertNode(AT, InsertPos);
2930  return QualType(AT, 0);
2931 }
2932 
2933 /// getBlockPointerType - Return the uniqued reference to the type for
2934 /// a pointer to the specified block.
2936  assert(T->isFunctionType() && "block of function types only");
2937  // Unique pointers, to guarantee there is only one block of a particular
2938  // structure.
2939  llvm::FoldingSetNodeID ID;
2941 
2942  void *InsertPos = nullptr;
2943  if (BlockPointerType *PT =
2944  BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2945  return QualType(PT, 0);
2946 
2947  // If the block pointee type isn't canonical, this won't be a canonical
2948  // type either so fill in the canonical type field.
2949  QualType Canonical;
2950  if (!T.isCanonical()) {
2951  Canonical = getBlockPointerType(getCanonicalType(T));
2952 
2953  // Get the new insert position for the node we care about.
2954  BlockPointerType *NewIP =
2955  BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2956  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2957  }
2958  auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2959  Types.push_back(New);
2960  BlockPointerTypes.InsertNode(New, InsertPos);
2961  return QualType(New, 0);
2962 }
2963 
2964 /// getLValueReferenceType - Return the uniqued reference to the type for an
2965 /// lvalue reference to the specified type.
2966 QualType
2967 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2968  assert(getCanonicalType(T) != OverloadTy &&
2969  "Unresolved overloaded function type");
2970 
2971  // Unique pointers, to guarantee there is only one pointer of a particular
2972  // structure.
2973  llvm::FoldingSetNodeID ID;
2974  ReferenceType::Profile(ID, T, SpelledAsLValue);
2975 
2976  void *InsertPos = nullptr;
2977  if (LValueReferenceType *RT =
2978  LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2979  return QualType(RT, 0);
2980 
2981  const auto *InnerRef = T->getAs<ReferenceType>();
2982 
2983  // If the referencee type isn't canonical, this won't be a canonical type
2984  // either, so fill in the canonical type field.
2985  QualType Canonical;
2986  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2987  QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2988  Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2989 
2990  // Get the new insert position for the node we care about.
2991  LValueReferenceType *NewIP =
2992  LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2993  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
2994  }
2995 
2996  auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2997  SpelledAsLValue);
2998  Types.push_back(New);
2999  LValueReferenceTypes.InsertNode(New, InsertPos);
3000 
3001  return QualType(New, 0);
3002 }
3003 
3004 /// getRValueReferenceType - Return the uniqued reference to the type for an
3005 /// rvalue reference to the specified type.
3007  // Unique pointers, to guarantee there is only one pointer of a particular
3008  // structure.
3009  llvm::FoldingSetNodeID ID;
3010  ReferenceType::Profile(ID, T, false);
3011 
3012  void *InsertPos = nullptr;
3013  if (RValueReferenceType *RT =
3014  RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3015  return QualType(RT, 0);
3016 
3017  const auto *InnerRef = T->getAs<ReferenceType>();
3018 
3019  // If the referencee type isn't canonical, this won't be a canonical type
3020  // either, so fill in the canonical type field.
3021  QualType Canonical;
3022  if (InnerRef || !T.isCanonical()) {
3023  QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3024  Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3025 
3026  // Get the new insert position for the node we care about.
3027  RValueReferenceType *NewIP =
3028  RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3029  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3030  }
3031 
3032  auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3033  Types.push_back(New);
3034  RValueReferenceTypes.InsertNode(New, InsertPos);
3035  return QualType(New, 0);
3036 }
3037 
3038 /// getMemberPointerType - Return the uniqued reference to the type for a
3039 /// member pointer to the specified type, in the specified class.
3041  // Unique pointers, to guarantee there is only one pointer of a particular
3042  // structure.
3043  llvm::FoldingSetNodeID ID;
3044  MemberPointerType::Profile(ID, T, Cls);
3045 
3046  void *InsertPos = nullptr;
3047  if (MemberPointerType *PT =
3048  MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3049  return QualType(PT, 0);
3050 
3051  // If the pointee or class type isn't canonical, this won't be a canonical
3052  // type either, so fill in the canonical type field.
3053  QualType Canonical;
3054  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3056 
3057  // Get the new insert position for the node we care about.
3058  MemberPointerType *NewIP =
3059  MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3060  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3061  }
3062  auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3063  Types.push_back(New);
3064  MemberPointerTypes.InsertNode(New, InsertPos);
3065  return QualType(New, 0);
3066 }
3067 
3068 /// getConstantArrayType - Return the unique reference to the type for an
3069 /// array of the specified element type.
3071  const llvm::APInt &ArySizeIn,
3073  unsigned IndexTypeQuals) const {
3074  assert((EltTy->isDependentType() ||
3075  EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3076  "Constant array of VLAs is illegal!");
3077 
3078  // Convert the array size into a canonical width matching the pointer size for
3079  // the target.
3080  llvm::APInt ArySize(ArySizeIn);
3081  ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3082 
3083  llvm::FoldingSetNodeID ID;
3084  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
3085 
3086  void *InsertPos = nullptr;
3087  if (ConstantArrayType *ATP =
3088  ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3089  return QualType(ATP, 0);
3090 
3091  // If the element type isn't canonical or has qualifiers, this won't
3092  // be a canonical type either, so fill in the canonical type field.
3093  QualType Canon;
3094  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3095  SplitQualType canonSplit = getCanonicalType(EltTy).split();
3096  Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
3097  ASM, IndexTypeQuals);
3098  Canon = getQualifiedType(Canon, canonSplit.Quals);
3099 
3100  // Get the new insert position for the node we care about.
3101  ConstantArrayType *NewIP =
3102  ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3103  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3104  }
3105 
3106  auto *New = new (*this,TypeAlignment)
3107  ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
3108  ConstantArrayTypes.InsertNode(New, InsertPos);
3109  Types.push_back(New);
3110  return QualType(New, 0);
3111 }
3112 
3113 /// getVariableArrayDecayedType - Turns the given type, which may be
3114 /// variably-modified, into the corresponding type with all the known
3115 /// sizes replaced with [*].
3117  // Vastly most common case.
3118  if (!type->isVariablyModifiedType()) return type;
3119 
3120  QualType result;
3121 
3122  SplitQualType split = type.getSplitDesugaredType();
3123  const Type *ty = split.Ty;
3124  switch (ty->getTypeClass()) {
3125 #define TYPE(Class, Base)
3126 #define ABSTRACT_TYPE(Class, Base)
3127 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3128 #include "clang/AST/TypeNodes.def"
3129  llvm_unreachable("didn't desugar past all non-canonical types?");
3130 
3131  // These types should never be variably-modified.
3132  case Type::Builtin:
3133  case Type::Complex:
3134  case Type::Vector:
3135  case Type::DependentVector:
3136  case Type::ExtVector:
3137  case Type::DependentSizedExtVector:
3138  case Type::DependentAddressSpace:
3139  case Type::ObjCObject:
3140  case Type::ObjCInterface:
3141  case Type::ObjCObjectPointer:
3142  case Type::Record:
3143  case Type::Enum:
3144  case Type::UnresolvedUsing:
3145  case Type::TypeOfExpr:
3146  case Type::TypeOf:
3147  case Type::Decltype:
3148  case Type::UnaryTransform:
3149  case Type::DependentName:
3150  case Type::InjectedClassName:
3151  case Type::TemplateSpecialization:
3152  case Type::DependentTemplateSpecialization:
3153  case Type::TemplateTypeParm:
3154  case Type::SubstTemplateTypeParmPack:
3155  case Type::Auto:
3156  case Type::DeducedTemplateSpecialization:
3157  case Type::PackExpansion:
3158  llvm_unreachable("type should never be variably-modified");
3159 
3160  // These types can be variably-modified but should never need to
3161  // further decay.
3162  case Type::FunctionNoProto:
3163  case Type::FunctionProto:
3164  case Type::BlockPointer:
3165  case Type::MemberPointer:
3166  case Type::Pipe:
3167  return type;
3168 
3169  // These types can be variably-modified. All these modifications
3170  // preserve structure except as noted by comments.
3171  // TODO: if we ever care about optimizing VLAs, there are no-op
3172  // optimizations available here.
3173  case Type::Pointer:
3175  cast<PointerType>(ty)->getPointeeType()));
3176  break;
3177 
3178  case Type::LValueReference: {
3179  const auto *lv = cast<LValueReferenceType>(ty);
3180  result = getLValueReferenceType(
3181  getVariableArrayDecayedType(lv->getPointeeType()),
3182  lv->isSpelledAsLValue());
3183  break;
3184  }
3185 
3186  case Type::RValueReference: {
3187  const auto *lv = cast<RValueReferenceType>(ty);
3188  result = getRValueReferenceType(
3189  getVariableArrayDecayedType(lv->getPointeeType()));
3190  break;
3191  }
3192 
3193  case Type::Atomic: {
3194  const auto *at = cast<AtomicType>(ty);
3195  result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3196  break;
3197  }
3198 
3199  case Type::ConstantArray: {
3200  const auto *cat = cast<ConstantArrayType>(ty);
3201  result = getConstantArrayType(
3202  getVariableArrayDecayedType(cat->getElementType()),
3203  cat->getSize(),
3204  cat->getSizeModifier(),
3205  cat->getIndexTypeCVRQualifiers());
3206  break;
3207  }
3208 
3209  case Type::DependentSizedArray: {
3210  const auto *dat = cast<DependentSizedArrayType>(ty);
3211  result = getDependentSizedArrayType(
3212  getVariableArrayDecayedType(dat->getElementType()),
3213  dat->getSizeExpr(),
3214  dat->getSizeModifier(),
3215  dat->getIndexTypeCVRQualifiers(),
3216  dat->getBracketsRange());
3217  break;
3218  }
3219 
3220  // Turn incomplete types into [*] types.
3221  case Type::IncompleteArray: {
3222  const auto *iat = cast<IncompleteArrayType>(ty);
3223  result = getVariableArrayType(
3224  getVariableArrayDecayedType(iat->getElementType()),
3225  /*size*/ nullptr,
3227  iat->getIndexTypeCVRQualifiers(),
3228  SourceRange());
3229  break;
3230  }
3231 
3232  // Turn VLA types into [*] types.
3233  case Type::VariableArray: {
3234  const auto *vat = cast<VariableArrayType>(ty);
3235  result = getVariableArrayType(
3236  getVariableArrayDecayedType(vat->getElementType()),
3237  /*size*/ nullptr,
3239  vat->getIndexTypeCVRQualifiers(),
3240  vat->getBracketsRange());
3241  break;
3242  }
3243  }
3244 
3245  // Apply the top-level qualifiers from the original.
3246  return getQualifiedType(result, split.Quals);
3247 }
3248 
3249 /// getVariableArrayType - Returns a non-unique reference to the type for a
3250 /// variable array of the specified element type.
3252  Expr *NumElts,
3254  unsigned IndexTypeQuals,
3255  SourceRange Brackets) const {
3256  // Since we don't unique expressions, it isn't possible to unique VLA's
3257  // that have an expression provided for their size.
3258  QualType Canon;
3259 
3260  // Be sure to pull qualifiers off the element type.
3261  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3262  SplitQualType canonSplit = getCanonicalType(EltTy).split();
3263  Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3264  IndexTypeQuals, Brackets);
3265  Canon = getQualifiedType(Canon, canonSplit.Quals);
3266  }
3267 
3268  auto *New = new (*this, TypeAlignment)
3269  VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3270 
3271  VariableArrayTypes.push_back(New);
3272  Types.push_back(New);
3273  return QualType(New, 0);
3274 }
3275 
3276 /// getDependentSizedArrayType - Returns a non-unique reference to
3277 /// the type for a dependently-sized array of the specified element
3278 /// type.
3280  Expr *numElements,
3282  unsigned elementTypeQuals,
3283  SourceRange brackets) const {
3284  assert((!numElements || numElements->isTypeDependent() ||
3285  numElements->isValueDependent()) &&
3286  "Size must be type- or value-dependent!");
3287 
3288  // Dependently-sized array types that do not have a specified number
3289  // of elements will have their sizes deduced from a dependent
3290  // initializer. We do no canonicalization here at all, which is okay
3291  // because they can't be used in most locations.
3292  if (!numElements) {
3293  auto *newType
3294  = new (*this, TypeAlignment)
3295  DependentSizedArrayType(*this, elementType, QualType(),
3296  numElements, ASM, elementTypeQuals,
3297  brackets);
3298  Types.push_back(newType);
3299  return QualType(newType, 0);
3300  }
3301 
3302  // Otherwise, we actually build a new type every time, but we
3303  // also build a canonical type.
3304 
3305  SplitQualType canonElementType = getCanonicalType(elementType).split();
3306 
3307  void *insertPos = nullptr;
3308  llvm::FoldingSetNodeID ID;
3310  QualType(canonElementType.Ty, 0),
3311  ASM, elementTypeQuals, numElements);
3312 
3313  // Look for an existing type with these properties.
3314  DependentSizedArrayType *canonTy =
3315  DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3316 
3317  // If we don't have one, build one.
3318  if (!canonTy) {
3319  canonTy = new (*this, TypeAlignment)
3320  DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3321  QualType(), numElements, ASM, elementTypeQuals,
3322  brackets);
3323  DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3324  Types.push_back(canonTy);
3325  }
3326 
3327  // Apply qualifiers from the element type to the array.
3328  QualType canon = getQualifiedType(QualType(canonTy,0),
3329  canonElementType.Quals);
3330 
3331  // If we didn't need extra canonicalization for the element type or the size
3332  // expression, then just use that as our result.
3333  if (QualType(canonElementType.Ty, 0) == elementType &&
3334  canonTy->getSizeExpr() == numElements)
3335  return canon;
3336 
3337  // Otherwise, we need to build a type which follows the spelling
3338  // of the element type.
3339  auto *sugaredType
3340  = new (*this, TypeAlignment)
3341  DependentSizedArrayType(*this, elementType, canon, numElements,
3342  ASM, elementTypeQuals, brackets);
3343  Types.push_back(sugaredType);
3344  return QualType(sugaredType, 0);
3345 }
3346 
3349  unsigned elementTypeQuals) const {
3350  llvm::FoldingSetNodeID ID;
3351  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3352 
3353  void *insertPos = nullptr;
3354  if (IncompleteArrayType *iat =
3355  IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3356  return QualType(iat, 0);
3357 
3358  // If the element type isn't canonical, this won't be a canonical type
3359  // either, so fill in the canonical type field. We also have to pull
3360  // qualifiers off the element type.
3361  QualType canon;
3362 
3363  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3364  SplitQualType canonSplit = getCanonicalType(elementType).split();
3365  canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3366  ASM, elementTypeQuals);
3367  canon = getQualifiedType(canon, canonSplit.Quals);
3368 
3369  // Get the new insert position for the node we care about.
3370  IncompleteArrayType *existing =
3371  IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3372  assert(!existing && "Shouldn't be in the map!"); (void) existing;
3373  }
3374 
3375  auto *newType = new (*this, TypeAlignment)
3376  IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3377 
3378  IncompleteArrayTypes.InsertNode(newType, insertPos);
3379  Types.push_back(newType);
3380  return QualType(newType, 0);
3381 }
3382 
3383 /// getVectorType - Return the unique reference to a vector type of
3384 /// the specified element type and size. VectorType must be a built-in type.
3385 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
3386  VectorType::VectorKind VecKind) const {
3387  assert(vecType->isBuiltinType());
3388 
3389  // Check if we've already instantiated a vector of this type.
3390  llvm::FoldingSetNodeID ID;
3391  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
3392 
3393  void *InsertPos = nullptr;
3394  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3395  return QualType(VTP, 0);
3396 
3397  // If the element type isn't canonical, this won't be a canonical type either,
3398  // so fill in the canonical type field.
3399  QualType Canonical;
3400  if (!vecType.isCanonical()) {
3401  Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
3402 
3403  // Get the new insert position for the node we care about.
3404  VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3405  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3406  }
3407  auto *New = new (*this, TypeAlignment)
3408  VectorType(vecType, NumElts, Canonical, VecKind);
3409  VectorTypes.InsertNode(New, InsertPos);
3410  Types.push_back(New);
3411  return QualType(New, 0);
3412 }
3413 
3414 QualType
3416  SourceLocation AttrLoc,
3417  VectorType::VectorKind VecKind) const {
3418  llvm::FoldingSetNodeID ID;
3419  DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
3420  VecKind);
3421  void *InsertPos = nullptr;
3422  DependentVectorType *Canon =
3423  DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3424  DependentVectorType *New;
3425 
3426  if (Canon) {
3427  New = new (*this, TypeAlignment) DependentVectorType(
3428  *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
3429  } else {
3430  QualType CanonVecTy = getCanonicalType(VecType);
3431  if (CanonVecTy == VecType) {
3432  New = new (*this, TypeAlignment) DependentVectorType(
3433  *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
3434 
3435  DependentVectorType *CanonCheck =
3436  DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3437  assert(!CanonCheck &&
3438  "Dependent-sized vector_size canonical type broken");
3439  (void)CanonCheck;
3440  DependentVectorTypes.InsertNode(New, InsertPos);
3441  } else {
3442  QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
3443  SourceLocation());
3444  New = new (*this, TypeAlignment) DependentVectorType(
3445  *this, VecType, Canon, SizeExpr, AttrLoc, VecKind);
3446  }
3447  }
3448 
3449  Types.push_back(New);
3450  return QualType(New, 0);
3451 }
3452 
3453 /// getExtVectorType - Return the unique reference to an extended vector type of
3454 /// the specified element type and size. VectorType must be a built-in type.
3455 QualType
3456 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
3457  assert(vecType->isBuiltinType() || vecType->isDependentType());
3458 
3459  // Check if we've already instantiated a vector of this type.
3460  llvm::FoldingSetNodeID ID;
3461  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
3463  void *InsertPos = nullptr;
3464  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3465  return QualType(VTP, 0);
3466 
3467  // If the element type isn't canonical, this won't be a canonical type either,
3468  // so fill in the canonical type field.
3469  QualType Canonical;
3470  if (!vecType.isCanonical()) {
3471  Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
3472 
3473  // Get the new insert position for the node we care about.
3474  VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3475  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3476  }
3477  auto *New = new (*this, TypeAlignment)
3478  ExtVectorType(vecType, NumElts, Canonical);
3479  VectorTypes.InsertNode(New, InsertPos);
3480  Types.push_back(New);
3481  return QualType(New, 0);
3482 }
3483 
3484 QualType
3486  Expr *SizeExpr,
3487  SourceLocation AttrLoc) const {
3488  llvm::FoldingSetNodeID ID;
3490  SizeExpr);
3491 
3492  void *InsertPos = nullptr;
3494  = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3496  if (Canon) {
3497  // We already have a canonical version of this array type; use it as
3498  // the canonical type for a newly-built type.
3499  New = new (*this, TypeAlignment)
3500  DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
3501  SizeExpr, AttrLoc);
3502  } else {
3503  QualType CanonVecTy = getCanonicalType(vecType);
3504  if (CanonVecTy == vecType) {
3505  New = new (*this, TypeAlignment)
3506  DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
3507  AttrLoc);
3508 
3509  DependentSizedExtVectorType *CanonCheck
3510  = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3511  assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
3512  (void)CanonCheck;
3513  DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
3514  } else {
3515  QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
3516  SourceLocation());
3517  New = new (*this, TypeAlignment)
3518  DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
3519  }
3520  }
3521 
3522  Types.push_back(New);
3523  return QualType(New, 0);
3524 }
3525 
3527  Expr *AddrSpaceExpr,
3528  SourceLocation AttrLoc) const {
3529  assert(AddrSpaceExpr->isInstantiationDependent());
3530 
3531  QualType canonPointeeType = getCanonicalType(PointeeType);
3532 
3533  void *insertPos = nullptr;
3534  llvm::FoldingSetNodeID ID;
3535  DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
3536  AddrSpaceExpr);
3537 
3538  DependentAddressSpaceType *canonTy =
3539  DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
3540 
3541  if (!canonTy) {
3542  canonTy = new (*this, TypeAlignment)
3543  DependentAddressSpaceType(*this, canonPointeeType,
3544  QualType(), AddrSpaceExpr, AttrLoc);
3545  DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
3546  Types.push_back(canonTy);
3547  }
3548 
3549  if (canonPointeeType == PointeeType &&
3550  canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
3551  return QualType(canonTy, 0);
3552 
3553  auto *sugaredType
3554  = new (*this, TypeAlignment)
3555  DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
3556  AddrSpaceExpr, AttrLoc);
3557  Types.push_back(sugaredType);
3558  return QualType(sugaredType, 0);
3559 }
3560 
3561 /// Determine whether \p T is canonical as the result type of a function.
3563  return T.isCanonical() &&
3566 }
3567 
3568 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
3569 QualType
3571  const FunctionType::ExtInfo &Info) const {
3572  // Unique functions, to guarantee there is only one function of a particular
3573  // structure.
3574  llvm::FoldingSetNodeID ID;
3575  FunctionNoProtoType::Profile(ID, ResultTy, Info);
3576 
3577  void *InsertPos = nullptr;
3578  if (FunctionNoProtoType *FT =
3579  FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
3580  return QualType(FT, 0);
3581 
3582  QualType Canonical;
3583  if (!isCanonicalResultType(ResultTy)) {
3584  Canonical =
3586 
3587  // Get the new insert position for the node we care about.
3588  FunctionNoProtoType *NewIP =
3589  FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
3590  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3591  }
3592 
3593  auto *New = new (*this, TypeAlignment)
3594  FunctionNoProtoType(ResultTy, Canonical, Info);
3595  Types.push_back(New);
3596  FunctionNoProtoTypes.InsertNode(New, InsertPos);
3597  return QualType(New, 0);
3598 }
3599 
3602  CanQualType CanResultType = getCanonicalType(ResultType);
3603 
3604  // Canonical result types do not have ARC lifetime qualifiers.
3605  if (CanResultType.getQualifiers().hasObjCLifetime()) {
3606  Qualifiers Qs = CanResultType.getQualifiers();
3607  Qs.removeObjCLifetime();
3609  getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
3610  }
3611 
3612  return CanResultType;
3613 }
3614 
3616  const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
3617  if (ESI.Type == EST_None)
3618  return true;
3619  if (!NoexceptInType)
3620  return false;
3621 
3622  // C++17 onwards: exception specification is part of the type, as a simple
3623  // boolean "can this function type throw".
3624  if (ESI.Type == EST_BasicNoexcept)
3625  return true;
3626 
3627  // A noexcept(expr) specification is (possibly) canonical if expr is
3628  // value-dependent.
3629  if (ESI.Type == EST_DependentNoexcept)
3630  return true;
3631 
3632  // A dynamic exception specification is canonical if it only contains pack
3633  // expansions (so we can't tell whether it's non-throwing) and all its
3634  // contained types are canonical.
3635  if (ESI.Type == EST_Dynamic) {
3636  bool AnyPackExpansions = false;
3637  for (QualType ET : ESI.Exceptions) {
3638  if (!ET.isCanonical())
3639  return false;
3640  if (ET->getAs<PackExpansionType>())
3641  AnyPackExpansions = true;
3642  }
3643  return AnyPackExpansions;
3644  }
3645 
3646  return false;
3647 }
3648 
3649 QualType ASTContext::getFunctionTypeInternal(
3650  QualType ResultTy, ArrayRef<QualType> ArgArray,
3651  const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
3652  size_t NumArgs = ArgArray.size();
3653 
3654  // Unique functions, to guarantee there is only one function of a particular
3655  // structure.
3656  llvm::FoldingSetNodeID ID;
3657  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
3658  *this, true);
3659 
3660  QualType Canonical;
3661  bool Unique = false;
3662 
3663  void *InsertPos = nullptr;
3664  if (FunctionProtoType *FPT =
3665  FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
3666  QualType Existing = QualType(FPT, 0);
3667 
3668  // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
3669  // it so long as our exception specification doesn't contain a dependent
3670  // noexcept expression, or we're just looking for a canonical type.
3671  // Otherwise, we're going to need to create a type
3672  // sugar node to hold the concrete expression.
3673  if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
3674  EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
3675  return Existing;
3676 
3677  // We need a new type sugar node for this one, to hold the new noexcept
3678  // expression. We do no canonicalization here, but that's OK since we don't
3679  // expect to see the same noexcept expression much more than once.
3680  Canonical = getCanonicalType(Existing);
3681  Unique = true;
3682  }
3683 
3684  bool NoexceptInType = getLangOpts().CPlusPlus17;
3685  bool IsCanonicalExceptionSpec =
3686  isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
3687 
3688  // Determine whether the type being created is already canonical or not.
3689  bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
3690  isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
3691  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
3692  if (!ArgArray[i].isCanonicalAsParam())
3693  isCanonical = false;
3694 
3695  if (OnlyWantCanonical)
3696  assert(isCanonical &&
3697  "given non-canonical parameters constructing canonical type");
3698 
3699  // If this type isn't canonical, get the canonical version of it if we don't
3700  // already have it. The exception spec is only partially part of the
3701  // canonical type, and only in C++17 onwards.
3702  if (!isCanonical && Canonical.isNull()) {
3703  SmallVector<QualType, 16> CanonicalArgs;
3704  CanonicalArgs.reserve(NumArgs);
3705  for (unsigned i = 0; i != NumArgs; ++i)
3706  CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
3707 
3708  llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
3709  FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
3710  CanonicalEPI.HasTrailingReturn = false;
3711 
3712  if (IsCanonicalExceptionSpec) {
3713  // Exception spec is already OK.
3714  } else if (NoexceptInType) {
3715  switch (EPI.ExceptionSpec.Type) {
3717  // We don't know yet. It shouldn't matter what we pick here; no-one
3718  // should ever look at this.
3719  LLVM_FALLTHROUGH;
3720  case EST_None: case EST_MSAny: case EST_NoexceptFalse:
3721  CanonicalEPI.ExceptionSpec.Type = EST_None;
3722  break;
3723 
3724  // A dynamic exception specification is almost always "not noexcept",
3725  // with the exception that a pack expansion might expand to no types.
3726  case EST_Dynamic: {
3727  bool AnyPacks = false;
3728  for (QualType ET : EPI.ExceptionSpec.Exceptions) {
3729  if (ET->getAs<PackExpansionType>())
3730  AnyPacks = true;
3731  ExceptionTypeStorage.push_back(getCanonicalType(ET));
3732  }
3733  if (!AnyPacks)
3734  CanonicalEPI.ExceptionSpec.Type = EST_None;
3735  else {
3736  CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
3737  CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
3738  }
3739  break;
3740  }
3741 
3743  CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
3744  break;
3745 
3746  case EST_DependentNoexcept:
3747  llvm_unreachable("dependent noexcept is already canonical");
3748  }
3749  } else {
3751  }
3752 
3753  // Adjust the canonical function result type.
3754  CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
3755  Canonical =
3756  getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
3757 
3758  // Get the new insert position for the node we care about.
3759  FunctionProtoType *NewIP =
3760  FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
3761  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3762  }
3763 
3764  // Compute the needed size to hold this FunctionProtoType and the
3765  // various trailing objects.
3766  auto ESH = FunctionProtoType::getExceptionSpecSize(
3767  EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
3768  size_t Size = FunctionProtoType::totalSizeToAlloc<
3771  FunctionProtoType::ExtParameterInfo>(
3772  NumArgs, FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
3773  ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
3774  EPI.ExtParameterInfos ? NumArgs : 0);
3775 
3776  auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
3777  FunctionProtoType::ExtProtoInfo newEPI = EPI;
3778  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
3779  Types.push_back(FTP);
3780  if (!Unique)
3781  FunctionProtoTypes.InsertNode(FTP, InsertPos);
3782  return QualType(FTP, 0);
3783 }
3784 
3785 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
3786  llvm::FoldingSetNodeID ID;
3787  PipeType::Profile(ID, T, ReadOnly);
3788 
3789  void *InsertPos = nullptr;
3790  if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
3791  return QualType(PT, 0);
3792 
3793  // If the pipe element type isn't canonical, this won't be a canonical type
3794  // either, so fill in the canonical type field.
3795  QualType Canonical;
3796  if (!T.isCanonical()) {
3797  Canonical = getPipeType(getCanonicalType(T), ReadOnly);
3798 
3799  // Get the new insert position for the node we care about.
3800  PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
3801  assert(!NewIP && "Shouldn't be in the map!");
3802  (void)NewIP;
3803  }
3804  auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
3805  Types.push_back(New);
3806  PipeTypes.InsertNode(New, InsertPos);
3807  return QualType(New, 0);
3808 }
3809 
3811  // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
3812  return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
3813  : Ty;
3814 }
3815 
3817  return getPipeType(T, true);
3818 }
3819 
3821  return getPipeType(T, false);
3822 }
3823 
3824 #ifndef NDEBUG
3826  if (!isa<CXXRecordDecl>(D)) return false;
3827  const auto *RD = cast<CXXRecordDecl>(D);
3828  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
3829  return true;
3830  if (RD->getDescribedClassTemplate() &&
3831  !isa<ClassTemplateSpecializationDecl>(RD))
3832  return true;
3833  return false;
3834 }
3835 #endif
3836 
3837 /// getInjectedClassNameType - Return the unique reference to the
3838 /// injected class name type for the specified templated declaration.
3840  QualType TST) const {
3841  assert(NeedsInjectedClassNameType(Decl));
3842  if (Decl->TypeForDecl) {
3843  assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
3844  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
3845  assert(PrevDecl->TypeForDecl && "previous declaration has no type");
3846  Decl->TypeForDecl = PrevDecl->TypeForDecl;
3847  assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
3848  } else {
3849  Type *newType =
3850  new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
3851  Decl->TypeForDecl = newType;
3852  Types.push_back(newType);
3853  }
3854  return QualType(Decl->TypeForDecl, 0);
3855 }
3856 
3857 /// getTypeDeclType - Return the unique reference to the type for the
3858 /// specified type declaration.
3859 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
3860  assert(Decl && "Passed null for Decl param");
3861  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
3862 
3863  if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
3864  return getTypedefType(Typedef);
3865 
3866  assert(!isa<TemplateTypeParmDecl>(Decl) &&
3867  "Template type parameter types are always available.");
3868 
3869  if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
3870  assert(Record->isFirstDecl() && "struct/union has previous declaration");
3871  assert(!NeedsInjectedClassNameType(Record));
3872  return getRecordType(Record);
3873  } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
3874  assert(Enum->isFirstDecl() && "enum has previous declaration");
3875  return getEnumType(Enum);
3876  } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
3877  Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
3878  Decl->TypeForDecl = newType;
3879  Types.push_back(newType);
3880  } else
3881  llvm_unreachable("TypeDecl without a type?");
3882 
3883  return QualType(Decl->TypeForDecl, 0);
3884 }
3885 
3886 /// getTypedefType - Return the unique reference to the type for the
3887 /// specified typedef name decl.
3888 QualType
3890  QualType Canonical) const {
3891  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3892 
3893  if (Canonical.isNull())
3894  Canonical = getCanonicalType(Decl->getUnderlyingType());
3895  auto *newType = new (*this, TypeAlignment)
3896  TypedefType(Type::Typedef, Decl, Canonical);
3897  Decl->TypeForDecl = newType;
3898  Types.push_back(newType);
3899  return QualType(newType, 0);
3900 }
3901 
3903  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3904 
3905  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
3906  if (PrevDecl->TypeForDecl)
3907  return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3908 
3909  auto *newType = new (*this, TypeAlignment) RecordType(Decl);
3910  Decl->TypeForDecl = newType;
3911  Types.push_back(newType);
3912  return QualType(newType, 0);
3913 }
3914 
3916  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
3917 
3918  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
3919  if (PrevDecl->TypeForDecl)
3920  return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
3921 
3922  auto *newType = new (*this, TypeAlignment) EnumType(Decl);
3923  Decl->TypeForDecl = newType;
3924  Types.push_back(newType);
3925  return QualType(newType, 0);
3926 }
3927 
3929  QualType modifiedType,
3930  QualType equivalentType) {
3931  llvm::FoldingSetNodeID id;
3932  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
3933 
3934  void *insertPos = nullptr;
3935  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
3936  if (type) return QualType(type, 0);
3937 
3938  QualType canon = getCanonicalType(equivalentType);
3939  type = new (*this, TypeAlignment)
3940  AttributedType(canon, attrKind, modifiedType, equivalentType);
3941 
3942  Types.push_back(type);
3943  AttributedTypes.InsertNode(type, insertPos);
3944 
3945  return QualType(type, 0);
3946 }
3947 
3948 /// Retrieve a substitution-result type.
3949 QualType
3951  QualType Replacement) const {
3952  assert(Replacement.isCanonical()
3953  && "replacement types must always be canonical");
3954 
3955  llvm::FoldingSetNodeID ID;
3956  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
3957  void *InsertPos = nullptr;
3958  SubstTemplateTypeParmType *SubstParm
3959  = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3960 
3961  if (!SubstParm) {
3962  SubstParm = new (*this, TypeAlignment)
3963  SubstTemplateTypeParmType(Parm, Replacement);
3964  Types.push_back(SubstParm);
3965  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3966  }
3967 
3968  return QualType(SubstParm, 0);
3969 }
3970 
3971 /// Retrieve a
3973  const TemplateTypeParmType *Parm,
3974  const TemplateArgument &ArgPack) {
3975 #ifndef NDEBUG
3976  for (const auto &P : ArgPack.pack_elements()) {
3977  assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3978  assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
3979  }
3980 #endif
3981 
3982  llvm::FoldingSetNodeID ID;
3983  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3984  void *InsertPos = nullptr;
3985  if (SubstTemplateTypeParmPackType *SubstParm
3986  = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3987  return QualType(SubstParm, 0);
3988 
3989  QualType Canon;
3990  if (!Parm->isCanonicalUnqualified()) {
3991  Canon = getCanonicalType(QualType(Parm, 0));
3992  Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3993  ArgPack);
3994  SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3995  }
3996 
3997  auto *SubstParm
3998  = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3999  ArgPack);
4000  Types.push_back(SubstParm);
4001  SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4002  return QualType(SubstParm, 0);
4003 }
4004 
4005 /// Retrieve the template type parameter type for a template
4006 /// parameter or parameter pack with the given depth, index, and (optionally)
4007 /// name.
4009  bool ParameterPack,
4010  TemplateTypeParmDecl *TTPDecl) const {
4011  llvm::FoldingSetNodeID ID;
4012  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4013  void *InsertPos = nullptr;
4014  TemplateTypeParmType *TypeParm
4015  = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4016 
4017  if (TypeParm)
4018  return QualType(TypeParm, 0);
4019 
4020  if (TTPDecl) {
4021  QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4022  TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4023 
4024  TemplateTypeParmType *TypeCheck
4025  = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4026  assert(!TypeCheck && "Template type parameter canonical type broken");
4027  (void)TypeCheck;
4028  } else
4029  TypeParm = new (*this, TypeAlignment)
4030  TemplateTypeParmType(Depth, Index, ParameterPack);
4031 
4032  Types.push_back(TypeParm);
4033  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4034 
4035  return QualType(TypeParm, 0);
4036 }
4037 
4040  SourceLocation NameLoc,
4041  const TemplateArgumentListInfo &Args,
4042  QualType Underlying) const {
4043  assert(!Name.getAsDependentTemplateName() &&
4044  "No dependent template names here!");
4045  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
4046 
4051  TL.setTemplateNameLoc(NameLoc);
4052  TL.setLAngleLoc(Args.getLAngleLoc());
4053  TL.setRAngleLoc(Args.getRAngleLoc());
4054  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4055  TL.setArgLocInfo(i, Args[i].getLocInfo());
4056  return DI;
4057 }
4058 
4059 QualType
4061  const TemplateArgumentListInfo &Args,
4062  QualType Underlying) const {
4063  assert(!Template.getAsDependentTemplateName() &&
4064  "No dependent template names here!");
4065 
4067  ArgVec.reserve(Args.size());
4068  for (const TemplateArgumentLoc &Arg : Args.arguments())
4069  ArgVec.push_back(Arg.getArgument());
4070 
4071  return getTemplateSpecializationType(Template, ArgVec, Underlying);
4072 }
4073 
4074 #ifndef NDEBUG
4076  for (const TemplateArgument &Arg : Args)
4077  if (Arg.isPackExpansion())
4078  return true;
4079 
4080  return true;
4081 }
4082 #endif
4083 
4084 QualType
4087  QualType Underlying) const {
4088  assert(!Template.getAsDependentTemplateName() &&
4089  "No dependent template names here!");
4090  // Look through qualified template names.
4091  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4092  Template = TemplateName(QTN->getTemplateDecl());
4093 
4094  bool IsTypeAlias =
4095  Template.getAsTemplateDecl() &&
4096  isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
4097  QualType CanonType;
4098  if (!Underlying.isNull())
4099  CanonType = getCanonicalType(Underlying);
4100  else {
4101  // We can get here with an alias template when the specialization contains
4102  // a pack expansion that does not match up with a parameter pack.
4103  assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4104  "Caller must compute aliased type");
4105  IsTypeAlias = false;
4106  CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4107  }
4108 
4109  // Allocate the (non-canonical) template specialization type, but don't
4110  // try to unique it: these types typically have location information that
4111  // we don't unique and don't want to lose.
4112  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4113  sizeof(TemplateArgument) * Args.size() +
4114  (IsTypeAlias? sizeof(QualType) : 0),
4115  TypeAlignment);
4116  auto *Spec
4117  = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4118  IsTypeAlias ? Underlying : QualType());
4119 
4120  Types.push_back(Spec);
4121  return QualType(Spec, 0);
4122 }
4123 
4125  TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4126  assert(!Template.getAsDependentTemplateName() &&
4127  "No dependent template names here!");
4128 
4129  // Look through qualified template names.
4130  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4131  Template = TemplateName(QTN->getTemplateDecl());
4132 
4133  // Build the canonical template specialization type.
4134  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4136  unsigned NumArgs = Args.size();
4137  CanonArgs.reserve(NumArgs);
4138  for (const TemplateArgument &Arg : Args)
4139  CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
4140 
4141  // Determine whether this canonical template specialization type already
4142  // exists.
4143  llvm::FoldingSetNodeID ID;
4144  TemplateSpecializationType::Profile(ID, CanonTemplate,
4145  CanonArgs, *this);
4146 
4147  void *InsertPos = nullptr;
4149  = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4150 
4151  if (!Spec) {
4152  // Allocate a new canonical template specialization type.
4153  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4154  sizeof(TemplateArgument) * NumArgs),
4155  TypeAlignment);
4156  Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4157  CanonArgs,
4158  QualType(), QualType());
4159  Types.push_back(Spec);
4160  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
4161  }
4162 
4163  assert(Spec->isDependentType() &&
4164  "Non-dependent template-id type must have a canonical type");
4165  return QualType(Spec, 0);
4166 }
4167 
4169  NestedNameSpecifier *NNS,
4170  QualType NamedType,
4171  TagDecl *OwnedTagDecl) const {
4172  llvm::FoldingSetNodeID ID;
4173  ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
4174 
4175  void *InsertPos = nullptr;
4176  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4177  if (T)
4178  return QualType(T, 0);
4179 
4180  QualType Canon = NamedType;
4181  if (!Canon.isCanonical()) {
4182  Canon = getCanonicalType(NamedType);
4183  ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4184  assert(!CheckT && "Elaborated canonical type broken");
4185  (void)CheckT;
4186  }
4187 
4188  void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
4189  TypeAlignment);
4190  T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
4191 
4192  Types.push_back(T);
4193  ElaboratedTypes.InsertNode(T, InsertPos);
4194  return QualType(T, 0);
4195 }
4196 
4197 QualType
4199  llvm::FoldingSetNodeID ID;
4200  ParenType::Profile(ID, InnerType);
4201 
4202  void *InsertPos = nullptr;
4203  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4204  if (T)
4205  return QualType(T, 0);
4206 
4207  QualType Canon = InnerType;
4208  if (!Canon.isCanonical()) {
4209  Canon = getCanonicalType(InnerType);
4210  ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4211  assert(!CheckT && "Paren canonical type broken");
4212  (void)CheckT;
4213  }
4214 
4215  T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
4216  Types.push_back(T);
4217  ParenTypes.InsertNode(T, InsertPos);
4218  return QualType(T, 0);
4219 }
4220 
4222  NestedNameSpecifier *NNS,
4223  const IdentifierInfo *Name,
4224  QualType Canon) const {
4225  if (Canon.isNull()) {
4227  if (CanonNNS != NNS)
4228  Canon = getDependentNameType(Keyword, CanonNNS, Name);
4229  }
4230 
4231  llvm::FoldingSetNodeID ID;
4232  DependentNameType::Profile(ID, Keyword, NNS, Name);
4233 
4234  void *InsertPos = nullptr;
4236  = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
4237  if (T)
4238  return QualType(T, 0);
4239 
4240  T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
4241  Types.push_back(T);
4242  DependentNameTypes.InsertNode(T, InsertPos);
4243  return QualType(T, 0);
4244 }
4245 
4246 QualType
4248  ElaboratedTypeKeyword Keyword,
4249  NestedNameSpecifier *NNS,
4250  const IdentifierInfo *Name,
4251  const TemplateArgumentListInfo &Args) const {
4252  // TODO: avoid this copy
4254  for (unsigned I = 0, E = Args.size(); I != E; ++I)
4255  ArgCopy.push_back(Args[I].getArgument());
4256  return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
4257 }
4258 
4259 QualType
4261  ElaboratedTypeKeyword Keyword,
4262  NestedNameSpecifier *NNS,
4263  const IdentifierInfo *Name,
4264  ArrayRef<TemplateArgument> Args) const {
4265  assert((!NNS || NNS->isDependent()) &&
4266  "nested-name-specifier must be dependent");
4267 
4268  llvm::FoldingSetNodeID ID;
4269  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
4270  Name, Args);
4271 
4272  void *InsertPos = nullptr;
4274  = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4275  if (T)
4276  return QualType(T, 0);
4277 
4279 
4280  ElaboratedTypeKeyword CanonKeyword = Keyword;
4281  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
4282 
4283  bool AnyNonCanonArgs = false;
4284  unsigned NumArgs = Args.size();
4285  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
4286  for (unsigned I = 0; I != NumArgs; ++I) {
4287  CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
4288  if (!CanonArgs[I].structurallyEquals(Args[I]))
4289  AnyNonCanonArgs = true;
4290  }
4291 
4292  QualType Canon;
4293  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
4294  Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
4295  Name,
4296  CanonArgs);
4297 
4298  // Find the insert position again.
4299  DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4300  }
4301 
4302  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
4303  sizeof(TemplateArgument) * NumArgs),
4304  TypeAlignment);
4305  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
4306  Name, Args, Canon);
4307  Types.push_back(T);
4308  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
4309  return QualType(T, 0);
4310 }
4311 
4313  TemplateArgument Arg;
4314  if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4315  QualType ArgType = getTypeDeclType(TTP);
4316  if (TTP->isParameterPack())
4317  ArgType = getPackExpansionType(ArgType, None);
4318 
4319  Arg = TemplateArgument(ArgType);
4320  } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4321  Expr *E = new (*this) DeclRefExpr(
4322  NTTP, /*enclosing*/false,
4323  NTTP->getType().getNonLValueExprType(*this),
4324  Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
4325 
4326  if (NTTP->isParameterPack())
4327  E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
4328  None);
4329  Arg = TemplateArgument(E);
4330  } else {
4331  auto *TTP = cast<TemplateTemplateParmDecl>(Param);
4332  if (TTP->isParameterPack())
4334  else
4335  Arg = TemplateArgument(TemplateName(TTP));
4336  }
4337 
4338  if (Param->isTemplateParameterPack())
4339  Arg = TemplateArgument::CreatePackCopy(*this, Arg);
4340 
4341  return Arg;
4342 }
4343 
4344 void
4347  Args.reserve(Args.size() + Params->size());
4348 
4349  for (NamedDecl *Param : *Params)
4350  Args.push_back(getInjectedTemplateArg(Param));
4351 }
4352 
4354  Optional<unsigned> NumExpansions) {
4355  llvm::FoldingSetNodeID ID;
4356  PackExpansionType::Profile(ID, Pattern, NumExpansions);
4357 
4358  assert(Pattern->containsUnexpandedParameterPack() &&
4359  "Pack expansions must expand one or more parameter packs");
4360  void *InsertPos = nullptr;
4362  = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4363  if (T)
4364  return QualType(T, 0);
4365 
4366  QualType Canon;
4367  if (!Pattern.isCanonical()) {
4368  Canon = getCanonicalType(Pattern);
4369  // The canonical type might not contain an unexpanded parameter pack, if it
4370  // contains an alias template specialization which ignores one of its
4371  // parameters.
4372  if (Canon->containsUnexpandedParameterPack()) {
4373  Canon = getPackExpansionType(Canon, NumExpansions);
4374 
4375  // Find the insert position again, in case we inserted an element into
4376  // PackExpansionTypes and invalidated our insert position.
4377  PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4378  }
4379  }
4380 
4381  T = new (*this, TypeAlignment)
4382  PackExpansionType(Pattern, Canon, NumExpansions);
4383  Types.push_back(T);
4384  PackExpansionTypes.InsertNode(T, InsertPos);
4385  return QualType(T, 0);
4386 }
4387 
4388 /// CmpProtocolNames - Comparison predicate for sorting protocols
4389 /// alphabetically.
4390 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
4391  ObjCProtocolDecl *const *RHS) {
4392  return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
4393 }
4394 
4396  if (Protocols.empty()) return true;
4397 
4398  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
4399  return false;
4400 
4401  for (unsigned i = 1; i != Protocols.size(); ++i)
4402  if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
4403  Protocols[i]->getCanonicalDecl() != Protocols[i])
4404  return false;
4405  return true;
4406 }
4407 
4408 static void
4410  // Sort protocols, keyed by name.
4411  llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
4412 
4413  // Canonicalize.
4414  for (ObjCProtocolDecl *&P : Protocols)
4415  P = P->getCanonicalDecl();
4416 
4417  // Remove duplicates.
4418  auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
4419  Protocols.erase(ProtocolsEnd, Protocols.end());
4420 }
4421 
4423  ObjCProtocolDecl * const *Protocols,
4424  unsigned NumProtocols) const {
4425  return getObjCObjectType(BaseType, {},
4426  llvm::makeArrayRef(Protocols, NumProtocols),
4427  /*isKindOf=*/false);
4428 }
4429 
4431  QualType baseType,
4432  ArrayRef<QualType> typeArgs,
4433  ArrayRef<ObjCProtocolDecl *> protocols,
4434  bool isKindOf) const {
4435  // If the base type is an interface and there aren't any protocols or
4436  // type arguments to add, then the interface type will do just fine.
4437  if (typeArgs.empty() && protocols.empty() && !isKindOf &&
4438  isa<ObjCInterfaceType>(baseType))
4439  return baseType;
4440 
4441  // Look in the folding set for an existing type.
4442  llvm::FoldingSetNodeID ID;
4443  ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
4444  void *InsertPos = nullptr;
4445  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
4446  return QualType(QT, 0);
4447 
4448  // Determine the type arguments to be used for canonicalization,
4449  // which may be explicitly specified here or written on the base
4450  // type.
4451  ArrayRef<QualType> effectiveTypeArgs = typeArgs;
4452  if (effectiveTypeArgs.empty()) {
4453  if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
4454  effectiveTypeArgs = baseObject->getTypeArgs();
4455  }
4456 
4457  // Build the canonical type, which has the canonical base type and a
4458  // sorted-and-uniqued list of protocols and the type arguments
4459  // canonicalized.
4460  QualType canonical;
4461  bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
4462  effectiveTypeArgs.end(),
4463  [&](QualType type) {
4464  return type.isCanonical();
4465  });
4466  bool protocolsSorted = areSortedAndUniqued(protocols);
4467  if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
4468  // Determine the canonical type arguments.
4469  ArrayRef<QualType> canonTypeArgs;
4470  SmallVector<QualType, 4> canonTypeArgsVec;
4471  if (!typeArgsAreCanonical) {
4472  canonTypeArgsVec.reserve(effectiveTypeArgs.size());
4473  for (auto typeArg : effectiveTypeArgs)
4474  canonTypeArgsVec.push_back(getCanonicalType(typeArg));
4475  canonTypeArgs = canonTypeArgsVec;
4476  } else {
4477  canonTypeArgs = effectiveTypeArgs;
4478  }
4479 
4480  ArrayRef<ObjCProtocolDecl *> canonProtocols;
4481  SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
4482  if (!protocolsSorted) {
4483  canonProtocolsVec.append(protocols.begin(), protocols.end());
4484  SortAndUniqueProtocols(canonProtocolsVec);
4485  canonProtocols = canonProtocolsVec;
4486  } else {
4487  canonProtocols = protocols;
4488  }
4489 
4490  canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
4491  canonProtocols, isKindOf);
4492 
4493  // Regenerate InsertPos.
4494  ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
4495  }
4496 
4497  unsigned size = sizeof(ObjCObjectTypeImpl);
4498  size += typeArgs.size() * sizeof(QualType);
4499  size += protocols.size() * sizeof(ObjCProtocolDecl *);
4500  void *mem = Allocate(size, TypeAlignment);
4501  auto *T =
4502  new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
4503  isKindOf);
4504 
4505  Types.push_back(T);
4506  ObjCObjectTypes.InsertNode(T, InsertPos);
4507  return QualType(T, 0);
4508 }
4509 
4510 /// Apply Objective-C protocol qualifiers to the given type.
4511 /// If this is for the canonical type of a type parameter, we can apply
4512 /// protocol qualifiers on the ObjCObjectPointerType.
4513 QualType
4515  ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
4516  bool allowOnPointerType) const {
4517  hasError = false;
4518 
4519  if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
4520  return getObjCTypeParamType(objT->getDecl(), protocols);
4521  }
4522 
4523  // Apply protocol qualifiers to ObjCObjectPointerType.
4524  if (allowOnPointerType) {
4525  if (const auto *objPtr =
4526  dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
4527  const ObjCObjectType *objT = objPtr->getObjectType();
4528  // Merge protocol lists and construct ObjCObjectType.
4529  SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
4530  protocolsVec.append(objT->qual_begin(),
4531  objT->qual_end());
4532  protocolsVec.append(protocols.begin(), protocols.end());
4533  ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
4534  type = getObjCObjectType(
4535  objT->getBaseType(),
4536  objT->getTypeArgsAsWritten(),
4537  protocols,
4538  objT->isKindOfTypeAsWritten());
4539  return getObjCObjectPointerType(type);
4540  }
4541  }
4542 
4543  // Apply protocol qualifiers to ObjCObjectType.
4544  if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
4545  // FIXME: Check for protocols to which the class type is already
4546  // known to conform.
4547 
4548  return getObjCObjectType(objT->getBaseType(),
4549  objT->getTypeArgsAsWritten(),
4550  protocols,
4551  objT->isKindOfTypeAsWritten());
4552  }
4553 
4554  // If the canonical type is ObjCObjectType, ...
4555  if (type->isObjCObjectType()) {
4556  // Silently overwrite any existing protocol qualifiers.
4557  // TODO: determine whether that's the right thing to do.
4558 
4559  // FIXME: Check for protocols to which the class type is already
4560  // known to conform.
4561  return getObjCObjectType(type, {}, protocols, false);
4562  }
4563 
4564  // id<protocol-list>
4565  if (type->isObjCIdType()) {
4566  const auto *objPtr = type->castAs<ObjCObjectPointerType>();
4567  type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
4568  objPtr->isKindOfType());
4569  return getObjCObjectPointerType(type);
4570  }
4571 
4572  // Class<protocol-list>
4573  if (type->isObjCClassType()) {
4574  const auto *objPtr = type->castAs<ObjCObjectPointerType>();
4575  type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
4576  objPtr->isKindOfType());
4577  return getObjCObjectPointerType(type);
4578  }
4579 
4580  hasError = true;
4581  return type;
4582 }
4583 
4584 QualType
4586  ArrayRef<ObjCProtocolDecl *> protocols,
4587  QualType Canonical) const {
4588  // Look in the folding set for an existing type.
4589  llvm::FoldingSetNodeID ID;
4590  ObjCTypeParamType::Profile(ID, Decl, protocols);
4591  void *InsertPos = nullptr;
4592  if (ObjCTypeParamType *TypeParam =
4593  ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
4594  return QualType(TypeParam, 0);
4595 
4596  if (Canonical.isNull()) {
4597  // We canonicalize to the underlying type.
4598  Canonical = getCanonicalType(Decl->getUnderlyingType());
4599  if (!protocols.empty()) {
4600  // Apply the protocol qualifers.
4601  bool hasError;
4603  Canonical, protocols, hasError, true /*allowOnPointerType*/));
4604  assert(!hasError && "Error when apply protocol qualifier to bound type");
4605  }
4606  }
4607 
4608  unsigned size = sizeof(ObjCTypeParamType);
4609  size += protocols.size() * sizeof(ObjCProtocolDecl *);
4610  void *mem = Allocate(size, TypeAlignment);
4611  auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
4612 
4613  Types.push_back(newType);
4614  ObjCTypeParamTypes.InsertNode(newType, InsertPos);
4615  return QualType(newType, 0);
4616 }
4617 
4618 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
4619 /// protocol list adopt all protocols in QT's qualified-id protocol
4620 /// list.
4622  ObjCInterfaceDecl *IC) {
4623  if (!QT->isObjCQualifiedIdType())
4624  return false;
4625 
4626  if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
4627  // If both the right and left sides have qualifiers.
4628  for (auto *Proto : OPT->quals()) {
4629  if (!IC->ClassImplementsProtocol(Proto, false))
4630  return false;
4631  }
4632  return true;
4633  }
4634  return false;
4635 }
4636 
4637 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
4638 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
4639 /// of protocols.
4641  ObjCInterfaceDecl *IDecl) {
4642  if (!QT->isObjCQualifiedIdType())
4643  return false;
4644  const auto *OPT = QT->getAs<ObjCObjectPointerType>();
4645  if (!OPT)
4646  return false;
4647  if (!IDecl->hasDefinition())
4648  return false;
4649  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
4650  CollectInheritedProtocols(IDecl, InheritedProtocols);
4651  if (InheritedProtocols.empty())
4652  return false;
4653  // Check that if every protocol in list of id<plist> conforms to a protocol
4654  // of IDecl's, then bridge casting is ok.
4655  bool Conforms = false;
4656  for (auto *Proto : OPT->quals()) {
4657  Conforms = false;
4658  for (auto *PI : InheritedProtocols) {
4659  if (ProtocolCompatibleWithProtocol(Proto, PI)) {
4660  Conforms = true;
4661  break;
4662  }
4663  }
4664  if (!Conforms)
4665  break;
4666  }
4667  if (Conforms)
4668  return true;
4669 
4670  for (auto *PI : InheritedProtocols) {
4671  // If both the right and left sides have qualifiers.
4672  bool Adopts = false;
4673  for (auto *Proto : OPT->quals()) {
4674  // return 'true' if 'PI' is in the inheritance hierarchy of Proto
4675  if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
4676  break;
4677  }
4678  if (!Adopts)
4679  return false;
4680  }
4681  return true;
4682 }
4683 
4684 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
4685 /// the given object type.
4687  llvm::FoldingSetNodeID ID;
4688  ObjCObjectPointerType::Profile(ID, ObjectT);
4689 
4690  void *InsertPos = nullptr;
4691  if (ObjCObjectPointerType *QT =
4692  ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
4693  return QualType(QT, 0);
4694 
4695  // Find the canonical object type.
4696  QualType Canonical;
4697  if (!ObjectT.isCanonical()) {
4698  Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
4699 
4700  // Regenerate InsertPos.
4701  ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
4702  }
4703 
4704  // No match.
4705  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
4706  auto *QType =
4707  new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
4708 
4709  Types.push_back(QType);
4710  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
4711  return QualType(QType, 0);
4712 }
4713 
4714 /// getObjCInterfaceType - Return the unique reference to the type for the
4715 /// specified ObjC interface decl. The list of protocols is optional.
4717  ObjCInterfaceDecl *PrevDecl) const {
4718  if (Decl->TypeForDecl)
4719  return QualType(Decl->TypeForDecl, 0);
4720 
4721  if (PrevDecl) {
4722  assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
4723  Decl->TypeForDecl = PrevDecl->TypeForDecl;
4724  return QualType(PrevDecl->TypeForDecl, 0);
4725  }
4726 
4727  // Prefer the definition, if there is one.
4728  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
4729  Decl = Def;
4730 
4731  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
4732  auto *T = new (Mem) ObjCInterfaceType(Decl);
4733  Decl->TypeForDecl = T;
4734  Types.push_back(T);
4735  return QualType(T, 0);
4736 }
4737 
4738 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
4739 /// TypeOfExprType AST's (since expression's are never shared). For example,
4740 /// multiple declarations that refer to "typeof(x)" all contain different
4741 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
4742 /// on canonical type's (which are always unique).
4744  TypeOfExprType *toe;
4745  if (tofExpr->isTypeDependent()) {
4746  llvm::FoldingSetNodeID ID;
4747  DependentTypeOfExprType::Profile(ID, *this, tofExpr);
4748 
4749  void *InsertPos = nullptr;
4751  = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
4752  if (Canon) {
4753  // We already have a "canonical" version of an identical, dependent
4754  // typeof(expr) type. Use that as our canonical type.
4755  toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
4756  QualType((TypeOfExprType*)Canon, 0));
4757  } else {
4758  // Build a new, canonical typeof(expr) type.
4759  Canon
4760  = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
4761  DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
4762  toe = Canon;
4763  }
4764  } else {
4765  QualType Canonical = getCanonicalType(tofExpr->getType());
4766  toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
4767  }
4768  Types.push_back(toe);
4769  return QualType(toe, 0);
4770 }
4771 
4772 /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
4773 /// TypeOfType nodes. The only motivation to unique these nodes would be
4774 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
4775 /// an issue. This doesn't affect the type checker, since it operates
4776 /// on canonical types (which are always unique).
4778  QualType Canonical = getCanonicalType(tofType);
4779  auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
4780  Types.push_back(tot);
4781  return QualType(tot, 0);
4782 }
4783 
4784 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
4785 /// nodes. This would never be helpful, since each such type has its own
4786 /// expression, and would not give a significant memory saving, since there
4787 /// is an Expr tree under each such type.
4789  DecltypeType *dt;
4790 
4791  // C++11 [temp.type]p2:
4792  // If an expression e involves a template parameter, decltype(e) denotes a
4793  // unique dependent type. Two such decltype-specifiers refer to the same
4794  // type only if their expressions are equivalent (14.5.6.1).
4795  if (e->isInstantiationDependent()) {
4796  llvm::FoldingSetNodeID ID;
4797  DependentDecltypeType::Profile(ID, *this, e);
4798 
4799  void *InsertPos = nullptr;
4800  DependentDecltypeType *Canon
4801  = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
4802  if (!Canon) {
4803  // Build a new, canonical decltype(expr) type.
4804  Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
4805  DependentDecltypeTypes.InsertNode(Canon, InsertPos);
4806  }
4807  dt = new (*this, TypeAlignment)
4808  DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
4809  } else {
4810  dt = new (*this, TypeAlignment)
4811  DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
4812  }
4813  Types.push_back(dt);
4814  return QualType(dt, 0);
4815 }
4816 
4817 /// getUnaryTransformationType - We don't unique these, since the memory
4818 /// savings are minimal and these are rare.
4820  QualType UnderlyingType,
4822  const {
4823  UnaryTransformType *ut = nullptr;
4824 
4825  if (BaseType->isDependentType()) {
4826  // Look in the folding set for an existing type.
4827  llvm::FoldingSetNodeID ID;
4829 
4830  void *InsertPos = nullptr;
4832  = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
4833 
4834  if (!Canon) {
4835  // Build a new, canonical __underlying_type(type) type.
4836  Canon = new (*this, TypeAlignment)
4838  Kind);
4839  DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
4840  }
4841  ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
4842  QualType(), Kind,
4843  QualType(Canon, 0));
4844  } else {
4845  QualType CanonType = getCanonicalType(UnderlyingType);
4846  ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
4847  UnderlyingType, Kind,
4848  CanonType);
4849  }
4850  Types.push_back(ut);
4851  return QualType(ut, 0);
4852 }
4853 
4854 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
4855 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
4856 /// canonical deduced-but-dependent 'auto' type.
4858  bool IsDependent) const {
4859  if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && !IsDependent)
4860  return getAutoDeductType();
4861 
4862  // Look in the folding set for an existing type.
4863  void *InsertPos = nullptr;
4864  llvm::FoldingSetNodeID ID;
4865  AutoType::Profile(ID, DeducedType, Keyword, IsDependent);
4866  if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
4867  return QualType(AT, 0);
4868 
4869  auto *AT = new (*this, TypeAlignment)
4870  AutoType(DeducedType, Keyword, IsDependent);
4871  Types.push_back(AT);
4872  if (InsertPos)
4873  AutoTypes.InsertNode(AT, InsertPos);
4874  return QualType(AT, 0);
4875 }
4876 
4877 /// Return the uniqued reference to the deduced template specialization type
4878 /// which has been deduced to the given type, or to the canonical undeduced
4879 /// such type, or the canonical deduced-but-dependent such type.
4881  TemplateName Template, QualType DeducedType, bool IsDependent) const {
4882  // Look in the folding set for an existing type.
4883  void *InsertPos = nullptr;
4884  llvm::FoldingSetNodeID ID;
4885  DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
4886  IsDependent);
4888  DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
4889  return QualType(DTST, 0);
4890 
4891  auto *DTST = new (*this, TypeAlignment)
4892  DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
4893  Types.push_back(DTST);
4894  if (InsertPos)
4895  DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
4896  return QualType(DTST, 0);
4897 }
4898 
4899 /// getAtomicType - Return the uniqued reference to the atomic type for
4900 /// the given value type.
4902  // Unique pointers, to guarantee there is only one pointer of a particular
4903  // structure.
4904  llvm::FoldingSetNodeID ID;
4905  AtomicType::Profile(ID, T);
4906 
4907  void *InsertPos = nullptr;
4908  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
4909  return QualType(AT, 0);
4910 
4911  // If the atomic value type isn't canonical, this won't be a canonical type
4912  // either, so fill in the canonical type field.
4913  QualType Canonical;
4914  if (!T.isCanonical()) {
4915  Canonical = getAtomicType(getCanonicalType(T));
4916 
4917  // Get the new insert position for the node we care about.
4918  AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
4919  assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4920  }
4921  auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
4922  Types.push_back(New);
4923  AtomicTypes.InsertNode(New, InsertPos);
4924  return QualType(New, 0);
4925 }
4926 
4927 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
4929  if (AutoDeductTy.isNull())
4932  /*dependent*/false),
4933  0);
4934  return AutoDeductTy;
4935 }
4936 
4937 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
4939  if (AutoRRefDeductTy.isNull())
4941  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
4942  return AutoRRefDeductTy;
4943 }
4944 
4945 /// getTagDeclType - Return the unique reference to the type for the
4946 /// specified TagDecl (struct/union/class/enum) decl.
4948  assert(Decl);
4949  // FIXME: What is the design on getTagDeclType when it requires casting
4950  // away const? mutable?
4951  return getTypeDeclType(const_cast<TagDecl*>(Decl));
4952 }
4953 
4954 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
4955 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
4956 /// needs to agree with the definition in <stddef.h>.
4958  return getFromTargetType(Target->getSizeType());
4959 }
4960 
4961 /// Return the unique signed counterpart of the integer type
4962 /// corresponding to size_t.
4964  return getFromTargetType(Target->getSignedSizeType());
4965 }
4966 
4967 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
4969  return getFromTargetType(Target->getIntMaxType());
4970 }
4971 
4972 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
4974  return getFromTargetType(Target->getUIntMaxType());
4975 }
4976 
4977 /// getSignedWCharType - Return the type of "signed wchar_t".
4978 /// Used when in C++, as a GCC extension.
4980  // FIXME: derive from "Target" ?
4981  return WCharTy;
4982 }
4983 
4984 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
4985 /// Used when in C++, as a GCC extension.
4987  // FIXME: derive from "Target" ?
4988  return UnsignedIntTy;
4989 }
4990 
4992  return getFromTargetType(Target->getIntPtrType());
4993 }
4994 
4997 }
4998 
4999 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5000 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
5002  return getFromTargetType(Target->getPtrDiffType(0));
5003 }
5004 
5005 /// Return the unique unsigned counterpart of "ptrdiff_t"
5006 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
5007 /// in the definition of %tu format specifier.
5009  return getFromTargetType(Target->getUnsignedPtrDiffType(0));
5010 }
5011 
5012 /// Return the unique type for "pid_t" defined in
5013 /// <sys/types.h>. We need this to compute the correct type for vfork().
5015  return getFromTargetType(Target->getProcessIDType());
5016 }
5017 
5018 //===----------------------------------------------------------------------===//
5019 // Type Operators
5020 //===----------------------------------------------------------------------===//
5021 
5023  // Push qualifiers into arrays, and then discard any remaining
5024  // qualifiers.
5025  T = getCanonicalType(T);
5027  const Type *Ty = T.getTypePtr();
5028  QualType Result;
5029  if (isa<ArrayType>(Ty)) {
5030  Result = getArrayDecayedType(QualType(Ty,0));
5031  } else if (isa<FunctionType>(Ty)) {
5032  Result = getPointerType(QualType(Ty, 0));
5033  } else {
5034  Result = QualType(Ty, 0);
5035  }
5036 
5037  return CanQualType::CreateUnsafe(Result);
5038 }
5039 
5041  Qualifiers &quals) {
5042  SplitQualType splitType = type.getSplitUnqualifiedType();
5043 
5044  // FIXME: getSplitUnqualifiedType() actually walks all the way to
5045  // the unqualified desugared type and then drops it on the floor.
5046  // We then have to strip that sugar back off with
5047  // getUnqualifiedDesugaredType(), which is silly.
5048  const auto *AT =
5049  dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5050 
5051  // If we don't have an array, just use the results in splitType.
5052  if (!AT) {
5053  quals = splitType.Quals;
5054  return QualType(splitType.Ty, 0);
5055  }
5056 
5057  // Otherwise, recurse on the array's element type.
5058  QualType elementType = AT->getElementType();
5059  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
5060 
5061  // If that didn't change the element type, AT has no qualifiers, so we
5062  // can just use the results in splitType.
5063  if (elementType == unqualElementType) {
5064  assert(quals.empty()); // from the recursive call
5065  quals = splitType.Quals;
5066  return QualType(splitType.Ty, 0);
5067  }
5068 
5069  // Otherwise, add in the qualifiers from the outermost type, then
5070  // build the type back up.
5071  quals.addConsistentQualifiers(splitType.Quals);
5072 
5073  if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
5074  return getConstantArrayType(unqualElementType, CAT->getSize(),
5075  CAT->getSizeModifier(), 0);
5076  }
5077 
5078  if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
5079  return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
5080  }
5081 
5082  if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
5083  return getVariableArrayType(unqualElementType,
5084  VAT->getSizeExpr(),
5085  VAT->getSizeModifier(),
5086  VAT->getIndexTypeCVRQualifiers(),
5087  VAT->getBracketsRange());
5088  }
5089 
5090  const auto *DSAT = cast<DependentSizedArrayType>(AT);
5091  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
5092  DSAT->getSizeModifier(), 0,
5093  SourceRange());
5094 }
5095 
5096 /// Attempt to unwrap two types that may both be array types with the same bound
5097 /// (or both be array types of unknown bound) for the purpose of comparing the
5098 /// cv-decomposition of two types per C++ [conv.qual].
5100  bool UnwrappedAny = false;
5101  while (true) {
5102  auto *AT1 = getAsArrayType(T1);
5103  if (!AT1) return UnwrappedAny;
5104 
5105  auto *AT2 = getAsArrayType(T2);
5106  if (!AT2) return UnwrappedAny;
5107 
5108  // If we don't have two array types with the same constant bound nor two
5109  // incomplete array types, we've unwrapped everything we can.
5110  if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
5111  auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
5112  if (!CAT2 || CAT1->getSize() != CAT2->getSize())
5113  return UnwrappedAny;
5114  } else if (!isa<IncompleteArrayType>(AT1) ||
5115  !isa<IncompleteArrayType>(AT2)) {
5116  return UnwrappedAny;
5117  }
5118 
5119  T1 = AT1->getElementType();
5120  T2 = AT2->getElementType();
5121  UnwrappedAny = true;
5122  }
5123 }
5124 
5125 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
5126 ///
5127 /// If T1 and T2 are both pointer types of the same kind, or both array types
5128 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
5129 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
5130 ///
5131 /// This function will typically be called in a loop that successively
5132 /// "unwraps" pointer and pointer-to-member types to compare them at each
5133 /// level.
5134 ///
5135 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
5136 /// pair of types that can't be unwrapped further.
5138  UnwrapSimilarArrayTypes(T1, T2);
5139 
5140  const auto *T1PtrType = T1->getAs<PointerType>();
5141  const auto *T2PtrType = T2->getAs<PointerType>();
5142  if (T1PtrType && T2PtrType) {
5143  T1 = T1PtrType->getPointeeType();
5144  T2 = T2PtrType->getPointeeType();
5145  return true;
5146  }
5147 
5148  const auto *T1MPType = T1->getAs<MemberPointerType>();
5149  const auto *T2MPType = T2->getAs<MemberPointerType>();
5150  if (T1MPType && T2MPType &&
5151  hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
5152  QualType(T2MPType->getClass(), 0))) {
5153  T1 = T1MPType->getPointeeType();
5154  T2 = T2MPType->getPointeeType();
5155  return true;
5156  }
5157 
5158  if (getLangOpts().ObjC) {
5159  const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
5160  const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
5161  if (T1OPType && T2OPType) {
5162  T1 = T1OPType->getPointeeType();
5163  T2 = T2OPType->getPointeeType();
5164  return true;
5165  }
5166  }
5167 
5168  // FIXME: Block pointers, too?
5169 
5170  return false;
5171 }
5172 
5174  while (true) {
5175  Qualifiers Quals;
5176  T1 = getUnqualifiedArrayType(T1, Quals);
5177  T2 = getUnqualifiedArrayType(T2, Quals);
5178  if (hasSameType(T1, T2))
5179  return true;
5180  if (!UnwrapSimilarTypes(T1, T2))
5181  return false;
5182  }
5183 }
5184 
5186  while (true) {
5187  Qualifiers Quals1, Quals2;
5188  T1 = getUnqualifiedArrayType(T1, Quals1);
5189  T2 = getUnqualifiedArrayType(T2, Quals2);
5190 
5191  Quals1.removeCVRQualifiers();
5192  Quals2.removeCVRQualifiers();
5193  if (Quals1 != Quals2)
5194  return false;
5195 
5196  if (hasSameType(T1, T2))
5197  return true;
5198 
5199  if (!UnwrapSimilarTypes(T1, T2))
5200  return false;
5201  }
5202 }
5203 
5206  SourceLocation NameLoc) const {
5207  switch (Name.getKind()) {
5210  // DNInfo work in progress: CHECKME: what about DNLoc?
5212  NameLoc);
5213 
5216  // DNInfo work in progress: CHECKME: what about DNLoc?
5217  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
5218  }
5219 
5222  DeclarationName DName;
5223  if (DTN->isIdentifier()) {
5225  return DeclarationNameInfo(DName, NameLoc);
5226  } else {
5228  // DNInfo work in progress: FIXME: source locations?
5229  DeclarationNameLoc DNLoc;
5232  return DeclarationNameInfo(DName, NameLoc, DNLoc);
5233  }
5234  }
5235 
5239  return DeclarationNameInfo(subst->getParameter()->getDeclName(),
5240  NameLoc);
5241  }
5242 
5247  NameLoc);
5248  }
5249  }
5250 
5251  llvm_unreachable("bad template name kind!");
5252 }
5253 
5255  switch (Name.getKind()) {
5257  case TemplateName::Template: {
5258  TemplateDecl *Template = Name.getAsTemplateDecl();
5259  if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Template))
5260  Template = getCanonicalTemplateTemplateParmDecl(TTP);
5261 
5262  // The canonical template name is the canonical template declaration.
5263  return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
5264  }
5265 
5267  llvm_unreachable("cannot canonicalize overloaded template");
5268 
5271  assert(DTN && "Non-dependent template names must refer to template decls.");
5272  return DTN->CanonicalTemplateName;
5273  }
5274 
5278  return getCanonicalTemplateName(subst->getReplacement());
5279  }
5280 
5284  TemplateTemplateParmDecl *canonParameter
5285  = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
5286  TemplateArgument canonArgPack
5288  return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
5289  }
5290  }
5291 
5292  llvm_unreachable("bad template name!");
5293 }
5294 
5296  X = getCanonicalTemplateName(X);
5297  Y = getCanonicalTemplateName(Y);
5298  return X.getAsVoidPointer() == Y.getAsVoidPointer();
5299 }
5300 
5303  switch (Arg.getKind()) {
5305  return Arg;
5306 
5308  return Arg;
5309 
5311  auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
5312  return TemplateArgument(D, Arg.getParamTypeForDecl());
5313  }
5314 
5317  /*isNullPtr*/true);
5318 
5321 
5325  Arg.getNumTemplateExpansions());
5326 
5329 
5332 
5333  case TemplateArgument::Pack: {
5334  if (Arg.pack_size() == 0)
5335  return Arg;
5336 
5337  auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
5338  unsigned Idx = 0;
5340  AEnd = Arg.pack_end();
5341  A != AEnd; (void)++A, ++Idx)
5342  CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
5343 
5344  return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
5345  }
5346  }
5347 
5348  // Silence GCC warning
5349  llvm_unreachable("Unhandled template argument kind");
5350 }
5351 
5354  if (!NNS)
5355  return nullptr;
5356 
5357  switch (NNS->getKind()) {
5359  // Canonicalize the prefix but keep the identifier the same.
5360  return NestedNameSpecifier::Create(*this,
5362  NNS->getAsIdentifier());
5363 
5365  // A namespace is canonical; build a nested-name-specifier with
5366  // this namespace and no prefix.
5367  return NestedNameSpecifier::Create(*this, nullptr,
5369 
5371  // A namespace is canonical; build a nested-name-specifier with
5372  // this namespace and no prefix.
5373  return NestedNameSpecifier::Create(*this, nullptr,
5375  ->getOriginalNamespace());
5376 
5379  QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
5380 
5381  // If we have some kind of dependent-named type (e.g., "typename T::type"),
5382  // break it apart into its prefix and identifier, then reconsititute those
5383  // as the canonical nested-name-specifier. This is required to canonicalize
5384  // a dependent nested-name-specifier involving typedefs of dependent-name
5385  // types, e.g.,
5386  // typedef typename T::type T1;
5387  // typedef typename T1::type T2;
5388  if (const auto *DNT = T->getAs<DependentNameType>())
5389  return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
5390  const_cast<IdentifierInfo *>(DNT->getIdentifier()));
5391 
5392  // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
5393  // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
5394  // first place?
5395  return NestedNameSpecifier::Create(*this, nullptr, false,
5396  const_cast<Type *>(T.getTypePtr()));
5397  }
5398 
5401  // The global specifier and __super specifer are canonical and unique.
5402  return NNS;
5403  }
5404 
5405  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
5406 }
5407 
5409  // Handle the non-qualified case efficiently.
5410  if (!T.hasLocalQualifiers()) {
5411  // Handle the common positive case fast.
5412  if (const auto *AT = dyn_cast<ArrayType>(T))
5413  return AT;
5414  }
5415 
5416  // Handle the common negative case fast.
5417  if (!isa<ArrayType>(T.getCanonicalType()))
5418  return nullptr;
5419 
5420  // Apply any qualifiers from the array type to the element type. This
5421  // implements C99 6.7.3p8: "If the specification of an array type includes
5422  // any type qualifiers, the element type is so qualified, not the array type."
5423 
5424  // If we get here, we either have type qualifiers on the type, or we have
5425  // sugar such as a typedef in the way. If we have type qualifiers on the type
5426  // we must propagate them down into the element type.
5427 
5429  Qualifiers qs = split.Quals;
5430 
5431  // If we have a simple case, just return now.
5432  const auto *ATy = dyn_cast<ArrayType>(split.Ty);
5433  if (!ATy || qs.empty())
5434  return ATy;
5435 
5436  // Otherwise, we have an array and we have qualifiers on it. Push the
5437  // qualifiers into the array element type and return a new array type.
5438  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
5439 
5440  if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
5441  return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
5442  CAT->getSizeModifier(),
5443  CAT->getIndexTypeCVRQualifiers()));
5444  if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
5445  return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
5446  IAT->getSizeModifier(),
5447  IAT->getIndexTypeCVRQualifiers()));
5448 
5449  if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
5450  return cast<ArrayType>(
5451  getDependentSizedArrayType(NewEltTy,
5452  DSAT->getSizeExpr(),
5453  DSAT->getSizeModifier(),
5454  DSAT->getIndexTypeCVRQualifiers(),
5455  DSAT->getBracketsRange()));
5456 
5457  const auto *VAT = cast<VariableArrayType>(ATy);
5458  return cast<ArrayType>(getVariableArrayType(NewEltTy,
5459  VAT->getSizeExpr(),
5460  VAT->getSizeModifier(),
5461  VAT->getIndexTypeCVRQualifiers(),
5462  VAT->getBracketsRange()));
5463 }
5464 
5466  if (T->isArrayType() || T->isFunctionType())
5467  return getDecayedType(T);
5468  return T;
5469 }
5470 
5473  T = getAdjustedParameterType(T);
5474  return T.getUnqualifiedType();
5475 }
5476 
5478  // C++ [except.throw]p3:
5479  // A throw-expression initializes a temporary object, called the exception
5480  // object, the type of which is determined by removing any top-level
5481  // cv-qualifiers from the static type of the operand of throw and adjusting
5482  // the type from "array of T" or "function returning T" to "pointer to T"
5483  // or "pointer to function returning T", [...]
5485  if (T->isArrayType() || T->isFunctionType())
5486  T = getDecayedType(T);
5487  return T.getUnqualifiedType();
5488 }
5489 
5490 /// getArrayDecayedType - Return the properly qualified result of decaying the
5491 /// specified array type to a pointer. This operation is non-trivial when
5492 /// handling typedefs etc. The canonical type of "T" must be an array type,
5493 /// this returns a pointer to a properly qualified element of the array.
5494 ///
5495 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
5497  // Get the element type with 'getAsArrayType' so that we don't lose any
5498  // typedefs in the element type of the array. This also handles propagation
5499  // of type qualifiers from the array type into the element type if present
5500  // (C99 6.7.3p8).
5501  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
5502  assert(PrettyArrayType && "Not an array type!");
5503 
5504  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
5505 
5506  // int x[restrict 4] -> int *restrict
5508  PrettyArrayType->getIndexTypeQualifiers());
5509 
5510  // int x[_Nullable] -> int * _Nullable
5511  if (auto Nullability = Ty->getNullability(*this)) {
5512  Result = const_cast<ASTContext *>(this)->getAttributedType(
5514  }
5515  return Result;
5516 }
5517 
5519  return getBaseElementType(array->getElementType());
5520 }
5521 
5523  Qualifiers qs;
5524  while (true) {
5525  SplitQualType split = type.getSplitDesugaredType();
5526  const ArrayType</