clang  9.0.0svn
Type.cpp
Go to the documentation of this file.
1 //===- Type.cpp - Type representation and manipulation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements type-related functionality.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Type.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/Expr.h"
27 #include "clang/AST/TemplateBase.h"
28 #include "clang/AST/TemplateName.h"
29 #include "clang/AST/TypeVisitor.h"
33 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/Linkage.h"
36 #include "clang/Basic/Specifiers.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/Visibility.h"
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/APSInt.h"
42 #include "llvm/ADT/ArrayRef.h"
43 #include "llvm/ADT/FoldingSet.h"
44 #include "llvm/ADT/None.h"
45 #include "llvm/ADT/SmallVector.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MathExtras.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <cstring>
53 
54 using namespace clang;
55 
57  return (*this != Other) &&
58  // CVR qualifiers superset
59  (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
60  // ObjC GC qualifiers superset
61  ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
62  (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
63  // Address space superset.
64  ((getAddressSpace() == Other.getAddressSpace()) ||
65  (hasAddressSpace()&& !Other.hasAddressSpace())) &&
66  // Lifetime qualifier superset.
67  ((getObjCLifetime() == Other.getObjCLifetime()) ||
68  (hasObjCLifetime() && !Other.hasObjCLifetime()));
69 }
70 
72  const Type* ty = getTypePtr();
73  NamedDecl *ND = nullptr;
74  if (ty->isPointerType() || ty->isReferenceType())
76  else if (ty->isRecordType())
77  ND = ty->getAs<RecordType>()->getDecl();
78  else if (ty->isEnumeralType())
79  ND = ty->getAs<EnumType>()->getDecl();
80  else if (ty->getTypeClass() == Type::Typedef)
81  ND = ty->getAs<TypedefType>()->getDecl();
82  else if (ty->isArrayType())
83  return ty->castAsArrayTypeUnsafe()->
84  getElementType().getBaseTypeIdentifier();
85 
86  if (ND)
87  return ND->getIdentifier();
88  return nullptr;
89 }
90 
92  const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl();
93  return ClassDecl && ClassDecl->mayBeDynamicClass();
94 }
95 
97  const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl();
98  return !ClassDecl || ClassDecl->mayBeNonDynamicClass();
99 }
100 
101 bool QualType::isConstant(QualType T, const ASTContext &Ctx) {
102  if (T.isConstQualified())
103  return true;
104 
105  if (const ArrayType *AT = Ctx.getAsArrayType(T))
106  return AT->getElementType().isConstant(Ctx);
107 
109 }
110 
112  QualType ElementType,
113  const llvm::APInt &NumElements) {
114  uint64_t ElementSize = Context.getTypeSizeInChars(ElementType).getQuantity();
115 
116  // Fast path the common cases so we can avoid the conservative computation
117  // below, which in common cases allocates "large" APSInt values, which are
118  // slow.
119 
120  // If the element size is a power of 2, we can directly compute the additional
121  // number of addressing bits beyond those required for the element count.
122  if (llvm::isPowerOf2_64(ElementSize)) {
123  return NumElements.getActiveBits() + llvm::Log2_64(ElementSize);
124  }
125 
126  // If both the element count and element size fit in 32-bits, we can do the
127  // computation directly in 64-bits.
128  if ((ElementSize >> 32) == 0 && NumElements.getBitWidth() <= 64 &&
129  (NumElements.getZExtValue() >> 32) == 0) {
130  uint64_t TotalSize = NumElements.getZExtValue() * ElementSize;
131  return 64 - llvm::countLeadingZeros(TotalSize);
132  }
133 
134  // Otherwise, use APSInt to handle arbitrary sized values.
135  llvm::APSInt SizeExtended(NumElements, true);
136  unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
137  SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
138  SizeExtended.getBitWidth()) * 2);
139 
140  llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
141  TotalSize *= SizeExtended;
142 
143  return TotalSize.getActiveBits();
144 }
145 
147  unsigned Bits = Context.getTypeSize(Context.getSizeType());
148 
149  // Limit the number of bits in size_t so that maximal bit size fits 64 bit
150  // integer (see PR8256). We can do this as currently there is no hardware
151  // that supports full 64-bit virtual space.
152  if (Bits > 61)
153  Bits = 61;
154 
155  return Bits;
156 }
157 
158 DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
159  QualType et, QualType can,
160  Expr *e, ArraySizeModifier sm,
161  unsigned tq,
162  SourceRange brackets)
163  : ArrayType(DependentSizedArray, et, can, sm, tq,
165  (e && e->containsUnexpandedParameterPack()))),
166  Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
167 
168 void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
169  const ASTContext &Context,
170  QualType ET,
171  ArraySizeModifier SizeMod,
172  unsigned TypeQuals,
173  Expr *E) {
174  ID.AddPointer(ET.getAsOpaquePtr());
175  ID.AddInteger(SizeMod);
176  ID.AddInteger(TypeQuals);
177  E->Profile(ID, Context, true);
178 }
179 
180 DependentVectorType::DependentVectorType(
181  const ASTContext &Context, QualType ElementType, QualType CanonType,
182  Expr *SizeExpr, SourceLocation Loc, VectorType::VectorKind VecKind)
183  : Type(DependentVector, CanonType, /*Dependent=*/true,
184  /*InstantiationDependent=*/true,
185  ElementType->isVariablyModifiedType(),
186  ElementType->containsUnexpandedParameterPack() ||
187  (SizeExpr && SizeExpr->containsUnexpandedParameterPack())),
188  Context(Context), ElementType(ElementType), SizeExpr(SizeExpr), Loc(Loc) {
189  VectorTypeBits.VecKind = VecKind;
190 }
191 
192 void DependentVectorType::Profile(llvm::FoldingSetNodeID &ID,
193  const ASTContext &Context,
194  QualType ElementType, const Expr *SizeExpr,
195  VectorType::VectorKind VecKind) {
196  ID.AddPointer(ElementType.getAsOpaquePtr());
197  ID.AddInteger(VecKind);
198  SizeExpr->Profile(ID, Context, true);
199 }
200 
201 DependentSizedExtVectorType::DependentSizedExtVectorType(const
202  ASTContext &Context,
203  QualType ElementType,
204  QualType can,
205  Expr *SizeExpr,
206  SourceLocation loc)
207  : Type(DependentSizedExtVector, can, /*Dependent=*/true,
208  /*InstantiationDependent=*/true,
209  ElementType->isVariablyModifiedType(),
210  (ElementType->containsUnexpandedParameterPack() ||
211  (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
212  Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
213  loc(loc) {}
214 
215 void
216 DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
217  const ASTContext &Context,
218  QualType ElementType, Expr *SizeExpr) {
219  ID.AddPointer(ElementType.getAsOpaquePtr());
220  SizeExpr->Profile(ID, Context, true);
221 }
222 
223 DependentAddressSpaceType::DependentAddressSpaceType(
224  const ASTContext &Context, QualType PointeeType, QualType can,
225  Expr *AddrSpaceExpr, SourceLocation loc)
226  : Type(DependentAddressSpace, can, /*Dependent=*/true,
227  /*InstantiationDependent=*/true,
228  PointeeType->isVariablyModifiedType(),
229  (PointeeType->containsUnexpandedParameterPack() ||
230  (AddrSpaceExpr &&
231  AddrSpaceExpr->containsUnexpandedParameterPack()))),
232  Context(Context), AddrSpaceExpr(AddrSpaceExpr), PointeeType(PointeeType),
233  loc(loc) {}
234 
235 void DependentAddressSpaceType::Profile(llvm::FoldingSetNodeID &ID,
236  const ASTContext &Context,
237  QualType PointeeType,
238  Expr *AddrSpaceExpr) {
239  ID.AddPointer(PointeeType.getAsOpaquePtr());
240  AddrSpaceExpr->Profile(ID, Context, true);
241 }
242 
243 VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
244  VectorKind vecKind)
245  : VectorType(Vector, vecType, nElements, canonType, vecKind) {}
246 
247 VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
248  QualType canonType, VectorKind vecKind)
249  : Type(tc, canonType, vecType->isDependentType(),
250  vecType->isInstantiationDependentType(),
251  vecType->isVariablyModifiedType(),
253  ElementType(vecType) {
254  VectorTypeBits.VecKind = vecKind;
255  VectorTypeBits.NumElements = nElements;
256 }
257 
258 /// getArrayElementTypeNoTypeQual - If this is an array type, return the
259 /// element type of the array, potentially with type qualifiers missing.
260 /// This method should never be used when type qualifiers are meaningful.
262  // If this is directly an array type, return it.
263  if (const auto *ATy = dyn_cast<ArrayType>(this))
264  return ATy->getElementType().getTypePtr();
265 
266  // If the canonical form of this type isn't the right kind, reject it.
267  if (!isa<ArrayType>(CanonicalType))
268  return nullptr;
269 
270  // If this is a typedef for an array type, strip the typedef off without
271  // losing all typedef information.
272  return cast<ArrayType>(getUnqualifiedDesugaredType())
274 }
275 
276 /// getDesugaredType - Return the specified type with any "sugar" removed from
277 /// the type. This takes off typedefs, typeof's etc. If the outer level of
278 /// the type is already concrete, it returns it unmodified. This is similar
279 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
280 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
281 /// concrete.
283  SplitQualType split = getSplitDesugaredType(T);
284  return Context.getQualifiedType(split.Ty, split.Quals);
285 }
286 
287 QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
288  const ASTContext &Context) {
289  SplitQualType split = type.split();
291  return Context.getQualifiedType(desugar, split.Quals);
292 }
293 
294 // Check that no type class is polymorphic. LLVM style RTTI should be used
295 // instead. If absolutely needed an exception can still be added here by
296 // defining the appropriate macro (but please don't do this).
297 #define TYPE(CLASS, BASE) \
298  static_assert(!std::is_polymorphic<CLASS##Type>::value, \
299  #CLASS "Type should not be polymorphic!");
300 #include "clang/AST/TypeNodes.def"
301 
303  switch (getTypeClass()) {
304 #define ABSTRACT_TYPE(Class, Parent)
305 #define TYPE(Class, Parent) \
306  case Type::Class: { \
307  const auto *ty = cast<Class##Type>(this); \
308  if (!ty->isSugared()) return QualType(ty, 0); \
309  return ty->desugar(); \
310  }
311 #include "clang/AST/TypeNodes.def"
312  }
313  llvm_unreachable("bad type kind!");
314 }
315 
318 
319  QualType Cur = T;
320  while (true) {
321  const Type *CurTy = Qs.strip(Cur);
322  switch (CurTy->getTypeClass()) {
323 #define ABSTRACT_TYPE(Class, Parent)
324 #define TYPE(Class, Parent) \
325  case Type::Class: { \
326  const auto *Ty = cast<Class##Type>(CurTy); \
327  if (!Ty->isSugared()) \
328  return SplitQualType(Ty, Qs); \
329  Cur = Ty->desugar(); \
330  break; \
331  }
332 #include "clang/AST/TypeNodes.def"
333  }
334  }
335 }
336 
337 SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
338  SplitQualType split = type.split();
339 
340  // All the qualifiers we've seen so far.
341  Qualifiers quals = split.Quals;
342 
343  // The last type node we saw with any nodes inside it.
344  const Type *lastTypeWithQuals = split.Ty;
345 
346  while (true) {
347  QualType next;
348 
349  // Do a single-step desugar, aborting the loop if the type isn't
350  // sugared.
351  switch (split.Ty->getTypeClass()) {
352 #define ABSTRACT_TYPE(Class, Parent)
353 #define TYPE(Class, Parent) \
354  case Type::Class: { \
355  const auto *ty = cast<Class##Type>(split.Ty); \
356  if (!ty->isSugared()) goto done; \
357  next = ty->desugar(); \
358  break; \
359  }
360 #include "clang/AST/TypeNodes.def"
361  }
362 
363  // Otherwise, split the underlying type. If that yields qualifiers,
364  // update the information.
365  split = next.split();
366  if (!split.Quals.empty()) {
367  lastTypeWithQuals = split.Ty;
368  quals.addConsistentQualifiers(split.Quals);
369  }
370  }
371 
372  done:
373  return SplitQualType(lastTypeWithQuals, quals);
374 }
375 
377  // FIXME: this seems inherently un-qualifiers-safe.
378  while (const auto *PT = T->getAs<ParenType>())
379  T = PT->getInnerType();
380  return T;
381 }
382 
383 /// This will check for a T (which should be a Type which can act as
384 /// sugar, such as a TypedefType) by removing any existing sugar until it
385 /// reaches a T or a non-sugared type.
386 template<typename T> static const T *getAsSugar(const Type *Cur) {
387  while (true) {
388  if (const auto *Sugar = dyn_cast<T>(Cur))
389  return Sugar;
390  switch (Cur->getTypeClass()) {
391 #define ABSTRACT_TYPE(Class, Parent)
392 #define TYPE(Class, Parent) \
393  case Type::Class: { \
394  const auto *Ty = cast<Class##Type>(Cur); \
395  if (!Ty->isSugared()) return 0; \
396  Cur = Ty->desugar().getTypePtr(); \
397  break; \
398  }
399 #include "clang/AST/TypeNodes.def"
400  }
401  }
402 }
403 
404 template <> const TypedefType *Type::getAs() const {
405  return getAsSugar<TypedefType>(this);
406 }
407 
408 template <> const TemplateSpecializationType *Type::getAs() const {
409  return getAsSugar<TemplateSpecializationType>(this);
410 }
411 
412 template <> const AttributedType *Type::getAs() const {
413  return getAsSugar<AttributedType>(this);
414 }
415 
416 /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
417 /// sugar off the given type. This should produce an object of the
418 /// same dynamic type as the canonical type.
420  const Type *Cur = this;
421 
422  while (true) {
423  switch (Cur->getTypeClass()) {
424 #define ABSTRACT_TYPE(Class, Parent)
425 #define TYPE(Class, Parent) \
426  case Class: { \
427  const auto *Ty = cast<Class##Type>(Cur); \
428  if (!Ty->isSugared()) return Cur; \
429  Cur = Ty->desugar().getTypePtr(); \
430  break; \
431  }
432 #include "clang/AST/TypeNodes.def"
433  }
434  }
435 }
436 
437 bool Type::isClassType() const {
438  if (const auto *RT = getAs<RecordType>())
439  return RT->getDecl()->isClass();
440  return false;
441 }
442 
443 bool Type::isStructureType() const {
444  if (const auto *RT = getAs<RecordType>())
445  return RT->getDecl()->isStruct();
446  return false;
447 }
448 
450  if (const auto *RT = getAs<RecordType>())
451  return RT->getDecl()->hasAttr<ObjCBoxableAttr>();
452  return false;
453 }
454 
455 bool Type::isInterfaceType() const {
456  if (const auto *RT = getAs<RecordType>())
457  return RT->getDecl()->isInterface();
458  return false;
459 }
460 
462  if (const auto *RT = getAs<RecordType>()) {
463  RecordDecl *RD = RT->getDecl();
464  return RD->isStruct() || RD->isClass() || RD->isInterface();
465  }
466  return false;
467 }
468 
470  if (const auto *PT = getAs<PointerType>())
471  return PT->getPointeeType()->isVoidType();
472  return false;
473 }
474 
475 bool Type::isUnionType() const {
476  if (const auto *RT = getAs<RecordType>())
477  return RT->getDecl()->isUnion();
478  return false;
479 }
480 
481 bool Type::isComplexType() const {
482  if (const auto *CT = dyn_cast<ComplexType>(CanonicalType))
483  return CT->getElementType()->isFloatingType();
484  return false;
485 }
486 
488  // Check for GCC complex integer extension.
489  return getAsComplexIntegerType();
490 }
491 
493  if (const auto *ET = getAs<EnumType>())
494  return ET->getDecl()->isScoped();
495  return false;
496 }
497 
499  if (const auto *Complex = getAs<ComplexType>())
500  if (Complex->getElementType()->isIntegerType())
501  return Complex;
502  return nullptr;
503 }
504 
506  if (const auto *PT = getAs<PointerType>())
507  return PT->getPointeeType();
508  if (const auto *OPT = getAs<ObjCObjectPointerType>())
509  return OPT->getPointeeType();
510  if (const auto *BPT = getAs<BlockPointerType>())
511  return BPT->getPointeeType();
512  if (const auto *RT = getAs<ReferenceType>())
513  return RT->getPointeeType();
514  if (const auto *MPT = getAs<MemberPointerType>())
515  return MPT->getPointeeType();
516  if (const auto *DT = getAs<DecayedType>())
517  return DT->getPointeeType();
518  return {};
519 }
520 
522  // If this is directly a structure type, return it.
523  if (const auto *RT = dyn_cast<RecordType>(this)) {
524  if (RT->getDecl()->isStruct())
525  return RT;
526  }
527 
528  // If the canonical form of this type isn't the right kind, reject it.
529  if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) {
530  if (!RT->getDecl()->isStruct())
531  return nullptr;
532 
533  // If this is a typedef for a structure type, strip the typedef off without
534  // losing all typedef information.
535  return cast<RecordType>(getUnqualifiedDesugaredType());
536  }
537  return nullptr;
538 }
539 
541  // If this is directly a union type, return it.
542  if (const auto *RT = dyn_cast<RecordType>(this)) {
543  if (RT->getDecl()->isUnion())
544  return RT;
545  }
546 
547  // If the canonical form of this type isn't the right kind, reject it.
548  if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) {
549  if (!RT->getDecl()->isUnion())
550  return nullptr;
551 
552  // If this is a typedef for a union type, strip the typedef off without
553  // losing all typedef information.
554  return cast<RecordType>(getUnqualifiedDesugaredType());
555  }
556 
557  return nullptr;
558 }
559 
561  const ObjCObjectType *&bound) const {
562  bound = nullptr;
563 
564  const auto *OPT = getAs<ObjCObjectPointerType>();
565  if (!OPT)
566  return false;
567 
568  // Easy case: id.
569  if (OPT->isObjCIdType())
570  return true;
571 
572  // If it's not a __kindof type, reject it now.
573  if (!OPT->isKindOfType())
574  return false;
575 
576  // If it's Class or qualified Class, it's not an object type.
577  if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType())
578  return false;
579 
580  // Figure out the type bound for the __kindof type.
581  bound = OPT->getObjectType()->stripObjCKindOfTypeAndQuals(ctx)
582  ->getAs<ObjCObjectType>();
583  return true;
584 }
585 
587  const auto *OPT = getAs<ObjCObjectPointerType>();
588  if (!OPT)
589  return false;
590 
591  // Easy case: Class.
592  if (OPT->isObjCClassType())
593  return true;
594 
595  // If it's not a __kindof type, reject it now.
596  if (!OPT->isKindOfType())
597  return false;
598 
599  // If it's Class or qualified Class, it's a class __kindof type.
600  return OPT->isObjCClassType() || OPT->isObjCQualifiedClassType();
601 }
602 
603 ObjCTypeParamType::ObjCTypeParamType(const ObjCTypeParamDecl *D,
604  QualType can,
606  : Type(ObjCTypeParam, can, can->isDependentType(),
608  can->isVariablyModifiedType(),
609  /*ContainsUnexpandedParameterPack=*/false),
610  OTPDecl(const_cast<ObjCTypeParamDecl*>(D)) {
611  initialize(protocols);
612 }
613 
615  ArrayRef<QualType> typeArgs,
617  bool isKindOf)
618  : Type(ObjCObject, Canonical, Base->isDependentType(),
620  Base->isVariablyModifiedType(),
622  BaseType(Base) {
623  ObjCObjectTypeBits.IsKindOf = isKindOf;
624 
625  ObjCObjectTypeBits.NumTypeArgs = typeArgs.size();
626  assert(getTypeArgsAsWritten().size() == typeArgs.size() &&
627  "bitfield overflow in type argument count");
628  if (!typeArgs.empty())
629  memcpy(getTypeArgStorage(), typeArgs.data(),
630  typeArgs.size() * sizeof(QualType));
631 
632  for (auto typeArg : typeArgs) {
633  if (typeArg->isDependentType())
634  setDependent();
635  else if (typeArg->isInstantiationDependentType())
637 
638  if (typeArg->containsUnexpandedParameterPack())
640  }
641  // Initialize the protocol qualifiers. The protocol storage is known
642  // after we set number of type arguments.
643  initialize(protocols);
644 }
645 
647  // If we have type arguments written here, the type is specialized.
648  if (ObjCObjectTypeBits.NumTypeArgs > 0)
649  return true;
650 
651  // Otherwise, check whether the base type is specialized.
652  if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
653  // Terminate when we reach an interface type.
654  if (isa<ObjCInterfaceType>(objcObject))
655  return false;
656 
657  return objcObject->isSpecialized();
658  }
659 
660  // Not specialized.
661  return false;
662 }
663 
665  // We have type arguments written on this type.
667  return getTypeArgsAsWritten();
668 
669  // Look at the base type, which might have type arguments.
670  if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
671  // Terminate when we reach an interface type.
672  if (isa<ObjCInterfaceType>(objcObject))
673  return {};
674 
675  return objcObject->getTypeArgs();
676  }
677 
678  // No type arguments.
679  return {};
680 }
681 
683  if (isKindOfTypeAsWritten())
684  return true;
685 
686  // Look at the base type, which might have type arguments.
687  if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
688  // Terminate when we reach an interface type.
689  if (isa<ObjCInterfaceType>(objcObject))
690  return false;
691 
692  return objcObject->isKindOfType();
693  }
694 
695  // Not a "__kindof" type.
696  return false;
697 }
698 
700  const ASTContext &ctx) const {
701  if (!isKindOfType() && qual_empty())
702  return QualType(this, 0);
703 
704  // Recursively strip __kindof.
705  SplitQualType splitBaseType = getBaseType().split();
706  QualType baseType(splitBaseType.Ty, 0);
707  if (const auto *baseObj = splitBaseType.Ty->getAs<ObjCObjectType>())
708  baseType = baseObj->stripObjCKindOfTypeAndQuals(ctx);
709 
710  return ctx.getObjCObjectType(ctx.getQualifiedType(baseType,
711  splitBaseType.Quals),
713  /*protocols=*/{},
714  /*isKindOf=*/false);
715 }
716 
718  const ASTContext &ctx) const {
719  if (!isKindOfType() && qual_empty())
720  return this;
721 
722  QualType obj = getObjectType()->stripObjCKindOfTypeAndQuals(ctx);
724 }
725 
726 namespace {
727 
728 /// Visitor used to perform a simple type transformation that does not change
729 /// the semantics of the type.
730 template <typename Derived>
731 struct SimpleTransformVisitor : public TypeVisitor<Derived, QualType> {
732  ASTContext &Ctx;
733 
734  QualType recurse(QualType type) {
735  // Split out the qualifiers from the type.
736  SplitQualType splitType = type.split();
737 
738  // Visit the type itself.
739  QualType result = static_cast<Derived *>(this)->Visit(splitType.Ty);
740  if (result.isNull())
741  return result;
742 
743  // Reconstruct the transformed type by applying the local qualifiers
744  // from the split type.
745  return Ctx.getQualifiedType(result, splitType.Quals);
746  }
747 
748 public:
749  explicit SimpleTransformVisitor(ASTContext &ctx) : Ctx(ctx) {}
750 
751  // None of the clients of this transformation can occur where
752  // there are dependent types, so skip dependent types.
753 #define TYPE(Class, Base)
754 #define DEPENDENT_TYPE(Class, Base) \
755  QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
756 #include "clang/AST/TypeNodes.def"
757 
758 #define TRIVIAL_TYPE_CLASS(Class) \
759  QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
760 #define SUGARED_TYPE_CLASS(Class) \
761  QualType Visit##Class##Type(const Class##Type *T) { \
762  if (!T->isSugared()) \
763  return QualType(T, 0); \
764  QualType desugaredType = recurse(T->desugar()); \
765  if (desugaredType.isNull()) \
766  return {}; \
767  if (desugaredType.getAsOpaquePtr() == T->desugar().getAsOpaquePtr()) \
768  return QualType(T, 0); \
769  return desugaredType; \
770  }
771 
772  TRIVIAL_TYPE_CLASS(Builtin)
773 
774  QualType VisitComplexType(const ComplexType *T) {
775  QualType elementType = recurse(T->getElementType());
776  if (elementType.isNull())
777  return {};
778 
779  if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
780  return QualType(T, 0);
781 
782  return Ctx.getComplexType(elementType);
783  }
784 
785  QualType VisitPointerType(const PointerType *T) {
786  QualType pointeeType = recurse(T->getPointeeType());
787  if (pointeeType.isNull())
788  return {};
789 
790  if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
791  return QualType(T, 0);
792 
793  return Ctx.getPointerType(pointeeType);
794  }
795 
796  QualType VisitBlockPointerType(const BlockPointerType *T) {
797  QualType pointeeType = recurse(T->getPointeeType());
798  if (pointeeType.isNull())
799  return {};
800 
801  if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
802  return QualType(T, 0);
803 
804  return Ctx.getBlockPointerType(pointeeType);
805  }
806 
807  QualType VisitLValueReferenceType(const LValueReferenceType *T) {
808  QualType pointeeType = recurse(T->getPointeeTypeAsWritten());
809  if (pointeeType.isNull())
810  return {};
811 
812  if (pointeeType.getAsOpaquePtr()
814  return QualType(T, 0);
815 
816  return Ctx.getLValueReferenceType(pointeeType, T->isSpelledAsLValue());
817  }
818 
819  QualType VisitRValueReferenceType(const RValueReferenceType *T) {
820  QualType pointeeType = recurse(T->getPointeeTypeAsWritten());
821  if (pointeeType.isNull())
822  return {};
823 
824  if (pointeeType.getAsOpaquePtr()
826  return QualType(T, 0);
827 
828  return Ctx.getRValueReferenceType(pointeeType);
829  }
830 
831  QualType VisitMemberPointerType(const MemberPointerType *T) {
832  QualType pointeeType = recurse(T->getPointeeType());
833  if (pointeeType.isNull())
834  return {};
835 
836  if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
837  return QualType(T, 0);
838 
839  return Ctx.getMemberPointerType(pointeeType, T->getClass());
840  }
841 
842  QualType VisitConstantArrayType(const ConstantArrayType *T) {
843  QualType elementType = recurse(T->getElementType());
844  if (elementType.isNull())
845  return {};
846 
847  if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
848  return QualType(T, 0);
849 
850  return Ctx.getConstantArrayType(elementType, T->getSize(),
851  T->getSizeModifier(),
853  }
854 
855  QualType VisitVariableArrayType(const VariableArrayType *T) {
856  QualType elementType = recurse(T->getElementType());
857  if (elementType.isNull())
858  return {};
859 
860  if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
861  return QualType(T, 0);
862 
863  return Ctx.getVariableArrayType(elementType, T->getSizeExpr(),
864  T->getSizeModifier(),
866  T->getBracketsRange());
867  }
868 
869  QualType VisitIncompleteArrayType(const IncompleteArrayType *T) {
870  QualType elementType = recurse(T->getElementType());
871  if (elementType.isNull())
872  return {};
873 
874  if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
875  return QualType(T, 0);
876 
877  return Ctx.getIncompleteArrayType(elementType, T->getSizeModifier(),
879  }
880 
881  QualType VisitVectorType(const VectorType *T) {
882  QualType elementType = recurse(T->getElementType());
883  if (elementType.isNull())
884  return {};
885 
886  if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
887  return QualType(T, 0);
888 
889  return Ctx.getVectorType(elementType, T->getNumElements(),
890  T->getVectorKind());
891  }
892 
893  QualType VisitExtVectorType(const ExtVectorType *T) {
894  QualType elementType = recurse(T->getElementType());
895  if (elementType.isNull())
896  return {};
897 
898  if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
899  return QualType(T, 0);
900 
901  return Ctx.getExtVectorType(elementType, T->getNumElements());
902  }
903 
904  QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
905  QualType returnType = recurse(T->getReturnType());
906  if (returnType.isNull())
907  return {};
908 
909  if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr())
910  return QualType(T, 0);
911 
912  return Ctx.getFunctionNoProtoType(returnType, T->getExtInfo());
913  }
914 
915  QualType VisitFunctionProtoType(const FunctionProtoType *T) {
916  QualType returnType = recurse(T->getReturnType());
917  if (returnType.isNull())
918  return {};
919 
920  // Transform parameter types.
921  SmallVector<QualType, 4> paramTypes;
922  bool paramChanged = false;
923  for (auto paramType : T->getParamTypes()) {
924  QualType newParamType = recurse(paramType);
925  if (newParamType.isNull())
926  return {};
927 
928  if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
929  paramChanged = true;
930 
931  paramTypes.push_back(newParamType);
932  }
933 
934  // Transform extended info.
936  bool exceptionChanged = false;
937  if (info.ExceptionSpec.Type == EST_Dynamic) {
938  SmallVector<QualType, 4> exceptionTypes;
939  for (auto exceptionType : info.ExceptionSpec.Exceptions) {
940  QualType newExceptionType = recurse(exceptionType);
941  if (newExceptionType.isNull())
942  return {};
943 
944  if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr())
945  exceptionChanged = true;
946 
947  exceptionTypes.push_back(newExceptionType);
948  }
949 
950  if (exceptionChanged) {
952  llvm::makeArrayRef(exceptionTypes).copy(Ctx);
953  }
954  }
955 
956  if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr() &&
957  !paramChanged && !exceptionChanged)
958  return QualType(T, 0);
959 
960  return Ctx.getFunctionType(returnType, paramTypes, info);
961  }
962 
963  QualType VisitParenType(const ParenType *T) {
964  QualType innerType = recurse(T->getInnerType());
965  if (innerType.isNull())
966  return {};
967 
968  if (innerType.getAsOpaquePtr() == T->getInnerType().getAsOpaquePtr())
969  return QualType(T, 0);
970 
971  return Ctx.getParenType(innerType);
972  }
973 
974  SUGARED_TYPE_CLASS(Typedef)
975  SUGARED_TYPE_CLASS(ObjCTypeParam)
976 
977  QualType VisitAdjustedType(const AdjustedType *T) {
978  QualType originalType = recurse(T->getOriginalType());
979  if (originalType.isNull())
980  return {};
981 
982  QualType adjustedType = recurse(T->getAdjustedType());
983  if (adjustedType.isNull())
984  return {};
985 
986  if (originalType.getAsOpaquePtr()
987  == T->getOriginalType().getAsOpaquePtr() &&
988  adjustedType.getAsOpaquePtr() == T->getAdjustedType().getAsOpaquePtr())
989  return QualType(T, 0);
990 
991  return Ctx.getAdjustedType(originalType, adjustedType);
992  }
993 
994  QualType VisitDecayedType(const DecayedType *T) {
995  QualType originalType = recurse(T->getOriginalType());
996  if (originalType.isNull())
997  return {};
998 
999  if (originalType.getAsOpaquePtr()
1000  == T->getOriginalType().getAsOpaquePtr())
1001  return QualType(T, 0);
1002 
1003  return Ctx.getDecayedType(originalType);
1004  }
1005 
1006  SUGARED_TYPE_CLASS(TypeOfExpr)
1007  SUGARED_TYPE_CLASS(TypeOf)
1008  SUGARED_TYPE_CLASS(Decltype)
1009  SUGARED_TYPE_CLASS(UnaryTransform)
1010  TRIVIAL_TYPE_CLASS(Record)
1011  TRIVIAL_TYPE_CLASS(Enum)
1012 
1013  // FIXME: Non-trivial to implement, but important for C++
1014  SUGARED_TYPE_CLASS(Elaborated)
1015 
1016  QualType VisitAttributedType(const AttributedType *T) {
1017  QualType modifiedType = recurse(T->getModifiedType());
1018  if (modifiedType.isNull())
1019  return {};
1020 
1021  QualType equivalentType = recurse(T->getEquivalentType());
1022  if (equivalentType.isNull())
1023  return {};
1024 
1025  if (modifiedType.getAsOpaquePtr()
1026  == T->getModifiedType().getAsOpaquePtr() &&
1027  equivalentType.getAsOpaquePtr()
1029  return QualType(T, 0);
1030 
1031  return Ctx.getAttributedType(T->getAttrKind(), modifiedType,
1032  equivalentType);
1033  }
1034 
1035  QualType VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1036  QualType replacementType = recurse(T->getReplacementType());
1037  if (replacementType.isNull())
1038  return {};
1039 
1040  if (replacementType.getAsOpaquePtr()
1042  return QualType(T, 0);
1043 
1044  return Ctx.getSubstTemplateTypeParmType(T->getReplacedParameter(),
1045  replacementType);
1046  }
1047 
1048  // FIXME: Non-trivial to implement, but important for C++
1049  SUGARED_TYPE_CLASS(TemplateSpecialization)
1050 
1051  QualType VisitAutoType(const AutoType *T) {
1052  if (!T->isDeduced())
1053  return QualType(T, 0);
1054 
1055  QualType deducedType = recurse(T->getDeducedType());
1056  if (deducedType.isNull())
1057  return {};
1058 
1059  if (deducedType.getAsOpaquePtr()
1060  == T->getDeducedType().getAsOpaquePtr())
1061  return QualType(T, 0);
1062 
1063  return Ctx.getAutoType(deducedType, T->getKeyword(),
1064  T->isDependentType());
1065  }
1066 
1067  // FIXME: Non-trivial to implement, but important for C++
1068  SUGARED_TYPE_CLASS(PackExpansion)
1069 
1070  QualType VisitObjCObjectType(const ObjCObjectType *T) {
1071  QualType baseType = recurse(T->getBaseType());
1072  if (baseType.isNull())
1073  return {};
1074 
1075  // Transform type arguments.
1076  bool typeArgChanged = false;
1077  SmallVector<QualType, 4> typeArgs;
1078  for (auto typeArg : T->getTypeArgsAsWritten()) {
1079  QualType newTypeArg = recurse(typeArg);
1080  if (newTypeArg.isNull())
1081  return {};
1082 
1083  if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr())
1084  typeArgChanged = true;
1085 
1086  typeArgs.push_back(newTypeArg);
1087  }
1088 
1089  if (baseType.getAsOpaquePtr() == T->getBaseType().getAsOpaquePtr() &&
1090  !typeArgChanged)
1091  return QualType(T, 0);
1092 
1093  return Ctx.getObjCObjectType(baseType, typeArgs,
1094  llvm::makeArrayRef(T->qual_begin(),
1095  T->getNumProtocols()),
1096  T->isKindOfTypeAsWritten());
1097  }
1098 
1099  TRIVIAL_TYPE_CLASS(ObjCInterface)
1100 
1101  QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
1102  QualType pointeeType = recurse(T->getPointeeType());
1103  if (pointeeType.isNull())
1104  return {};
1105 
1106  if (pointeeType.getAsOpaquePtr()
1107  == T->getPointeeType().getAsOpaquePtr())
1108  return QualType(T, 0);
1109 
1110  return Ctx.getObjCObjectPointerType(pointeeType);
1111  }
1112 
1113  QualType VisitAtomicType(const AtomicType *T) {
1114  QualType valueType = recurse(T->getValueType());
1115  if (valueType.isNull())
1116  return {};
1117 
1118  if (valueType.getAsOpaquePtr()
1119  == T->getValueType().getAsOpaquePtr())
1120  return QualType(T, 0);
1121 
1122  return Ctx.getAtomicType(valueType);
1123  }
1124 
1125 #undef TRIVIAL_TYPE_CLASS
1126 #undef SUGARED_TYPE_CLASS
1127 };
1128 
1129 struct SubstObjCTypeArgsVisitor
1130  : public SimpleTransformVisitor<SubstObjCTypeArgsVisitor> {
1131  using BaseType = SimpleTransformVisitor<SubstObjCTypeArgsVisitor>;
1132 
1133  ArrayRef<QualType> TypeArgs;
1134  ObjCSubstitutionContext SubstContext;
1135 
1136  SubstObjCTypeArgsVisitor(ASTContext &ctx, ArrayRef<QualType> typeArgs,
1137  ObjCSubstitutionContext context)
1138  : BaseType(ctx), TypeArgs(typeArgs), SubstContext(context) {}
1139 
1140  QualType VisitObjCTypeParamType(const ObjCTypeParamType *OTPTy) {
1141  // Replace an Objective-C type parameter reference with the corresponding
1142  // type argument.
1143  ObjCTypeParamDecl *typeParam = OTPTy->getDecl();
1144  // If we have type arguments, use them.
1145  if (!TypeArgs.empty()) {
1146  QualType argType = TypeArgs[typeParam->getIndex()];
1147  if (OTPTy->qual_empty())
1148  return argType;
1149 
1150  // Apply protocol lists if exists.
1151  bool hasError;
1153  protocolsVec.append(OTPTy->qual_begin(), OTPTy->qual_end());
1154  ArrayRef<ObjCProtocolDecl *> protocolsToApply = protocolsVec;
1155  return Ctx.applyObjCProtocolQualifiers(
1156  argType, protocolsToApply, hasError, true/*allowOnPointerType*/);
1157  }
1158 
1159  switch (SubstContext) {
1163  // Substitute the bound.
1164  return typeParam->getUnderlyingType();
1165 
1168  // Substitute the __kindof form of the underlying type.
1169  const auto *objPtr =
1171 
1172  // __kindof types, id, and Class don't need an additional
1173  // __kindof.
1174  if (objPtr->isKindOfType() || objPtr->isObjCIdOrClassType())
1175  return typeParam->getUnderlyingType();
1176 
1177  // Add __kindof.
1178  const auto *obj = objPtr->getObjectType();
1179  QualType resultTy = Ctx.getObjCObjectType(
1180  obj->getBaseType(), obj->getTypeArgsAsWritten(), obj->getProtocols(),
1181  /*isKindOf=*/true);
1182 
1183  // Rebuild object pointer type.
1184  return Ctx.getObjCObjectPointerType(resultTy);
1185  }
1186  }
1187  llvm_unreachable("Unexpected ObjCSubstitutionContext!");
1188  }
1189 
1190  QualType VisitFunctionType(const FunctionType *funcType) {
1191  // If we have a function type, update the substitution context
1192  // appropriately.
1193 
1194  //Substitute result type.
1195  QualType returnType = funcType->getReturnType().substObjCTypeArgs(
1196  Ctx, TypeArgs, ObjCSubstitutionContext::Result);
1197  if (returnType.isNull())
1198  return {};
1199 
1200  // Handle non-prototyped functions, which only substitute into the result
1201  // type.
1202  if (isa<FunctionNoProtoType>(funcType)) {
1203  // If the return type was unchanged, do nothing.
1204  if (returnType.getAsOpaquePtr() ==
1205  funcType->getReturnType().getAsOpaquePtr())
1206  return BaseType::VisitFunctionType(funcType);
1207 
1208  // Otherwise, build a new type.
1209  return Ctx.getFunctionNoProtoType(returnType, funcType->getExtInfo());
1210  }
1211 
1212  const auto *funcProtoType = cast<FunctionProtoType>(funcType);
1213 
1214  // Transform parameter types.
1215  SmallVector<QualType, 4> paramTypes;
1216  bool paramChanged = false;
1217  for (auto paramType : funcProtoType->getParamTypes()) {
1218  QualType newParamType = paramType.substObjCTypeArgs(
1219  Ctx, TypeArgs, ObjCSubstitutionContext::Parameter);
1220  if (newParamType.isNull())
1221  return {};
1222 
1223  if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
1224  paramChanged = true;
1225 
1226  paramTypes.push_back(newParamType);
1227  }
1228 
1229  // Transform extended info.
1230  FunctionProtoType::ExtProtoInfo info = funcProtoType->getExtProtoInfo();
1231  bool exceptionChanged = false;
1232  if (info.ExceptionSpec.Type == EST_Dynamic) {
1233  SmallVector<QualType, 4> exceptionTypes;
1234  for (auto exceptionType : info.ExceptionSpec.Exceptions) {
1235  QualType newExceptionType = exceptionType.substObjCTypeArgs(
1236  Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary);
1237  if (newExceptionType.isNull())
1238  return {};
1239 
1240  if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr())
1241  exceptionChanged = true;
1242 
1243  exceptionTypes.push_back(newExceptionType);
1244  }
1245 
1246  if (exceptionChanged) {
1247  info.ExceptionSpec.Exceptions =
1248  llvm::makeArrayRef(exceptionTypes).copy(Ctx);
1249  }
1250  }
1251 
1252  if (returnType.getAsOpaquePtr() ==
1253  funcProtoType->getReturnType().getAsOpaquePtr() &&
1254  !paramChanged && !exceptionChanged)
1255  return BaseType::VisitFunctionType(funcType);
1256 
1257  return Ctx.getFunctionType(returnType, paramTypes, info);
1258  }
1259 
1260  QualType VisitObjCObjectType(const ObjCObjectType *objcObjectType) {
1261  // Substitute into the type arguments of a specialized Objective-C object
1262  // type.
1263  if (objcObjectType->isSpecializedAsWritten()) {
1264  SmallVector<QualType, 4> newTypeArgs;
1265  bool anyChanged = false;
1266  for (auto typeArg : objcObjectType->getTypeArgsAsWritten()) {
1267  QualType newTypeArg = typeArg.substObjCTypeArgs(
1268  Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary);
1269  if (newTypeArg.isNull())
1270  return {};
1271 
1272  if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) {
1273  // If we're substituting based on an unspecialized context type,
1274  // produce an unspecialized type.
1275  ArrayRef<ObjCProtocolDecl *> protocols(
1276  objcObjectType->qual_begin(), objcObjectType->getNumProtocols());
1277  if (TypeArgs.empty() &&
1278  SubstContext != ObjCSubstitutionContext::Superclass) {
1279  return Ctx.getObjCObjectType(
1280  objcObjectType->getBaseType(), {}, protocols,
1281  objcObjectType->isKindOfTypeAsWritten());
1282  }
1283 
1284  anyChanged = true;
1285  }
1286 
1287  newTypeArgs.push_back(newTypeArg);
1288  }
1289 
1290  if (anyChanged) {
1291  ArrayRef<ObjCProtocolDecl *> protocols(
1292  objcObjectType->qual_begin(), objcObjectType->getNumProtocols());
1293  return Ctx.getObjCObjectType(objcObjectType->getBaseType(), newTypeArgs,
1294  protocols,
1295  objcObjectType->isKindOfTypeAsWritten());
1296  }
1297  }
1298 
1299  return BaseType::VisitObjCObjectType(objcObjectType);
1300  }
1301 
1302  QualType VisitAttributedType(const AttributedType *attrType) {
1303  QualType newType = BaseType::VisitAttributedType(attrType);
1304  if (newType.isNull())
1305  return {};
1306 
1307  const auto *newAttrType = dyn_cast<AttributedType>(newType.getTypePtr());
1308  if (!newAttrType || newAttrType->getAttrKind() != attr::ObjCKindOf)
1309  return newType;
1310 
1311  // Find out if it's an Objective-C object or object pointer type;
1312  QualType newEquivType = newAttrType->getEquivalentType();
1313  const ObjCObjectPointerType *ptrType =
1314  newEquivType->getAs<ObjCObjectPointerType>();
1315  const ObjCObjectType *objType = ptrType
1316  ? ptrType->getObjectType()
1317  : newEquivType->getAs<ObjCObjectType>();
1318  if (!objType)
1319  return newType;
1320 
1321  // Rebuild the "equivalent" type, which pushes __kindof down into
1322  // the object type.
1323  newEquivType = Ctx.getObjCObjectType(
1324  objType->getBaseType(), objType->getTypeArgsAsWritten(),
1325  objType->getProtocols(),
1326  // There is no need to apply kindof on an unqualified id type.
1327  /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
1328 
1329  // If we started with an object pointer type, rebuild it.
1330  if (ptrType)
1331  newEquivType = Ctx.getObjCObjectPointerType(newEquivType);
1332 
1333  // Rebuild the attributed type.
1334  return Ctx.getAttributedType(newAttrType->getAttrKind(),
1335  newAttrType->getModifiedType(), newEquivType);
1336  }
1337 };
1338 
1339 struct StripObjCKindOfTypeVisitor
1340  : public SimpleTransformVisitor<StripObjCKindOfTypeVisitor> {
1341  using BaseType = SimpleTransformVisitor<StripObjCKindOfTypeVisitor>;
1342 
1343  explicit StripObjCKindOfTypeVisitor(ASTContext &ctx) : BaseType(ctx) {}
1344 
1345  QualType VisitObjCObjectType(const ObjCObjectType *objType) {
1346  if (!objType->isKindOfType())
1347  return BaseType::VisitObjCObjectType(objType);
1348 
1349  QualType baseType = objType->getBaseType().stripObjCKindOfType(Ctx);
1350  return Ctx.getObjCObjectType(baseType, objType->getTypeArgsAsWritten(),
1351  objType->getProtocols(),
1352  /*isKindOf=*/false);
1353  }
1354 };
1355 
1356 } // namespace
1357 
1358 /// Substitute the given type arguments for Objective-C type
1359 /// parameters within the given type, recursively.
1361  ArrayRef<QualType> typeArgs,
1362  ObjCSubstitutionContext context) const {
1363  SubstObjCTypeArgsVisitor visitor(ctx, typeArgs, context);
1364  return visitor.recurse(*this);
1365 }
1366 
1368  const DeclContext *dc,
1369  ObjCSubstitutionContext context) const {
1370  if (auto subs = objectType->getObjCSubstitutions(dc))
1371  return substObjCTypeArgs(dc->getParentASTContext(), *subs, context);
1372 
1373  return *this;
1374 }
1375 
1377  // FIXME: Because ASTContext::getAttributedType() is non-const.
1378  auto &ctx = const_cast<ASTContext &>(constCtx);
1379  StripObjCKindOfTypeVisitor visitor(ctx);
1380  return visitor.recurse(*this);
1381 }
1382 
1384  if (const auto AT = getTypePtr()->getAs<AtomicType>())
1385  return AT->getValueType().getUnqualifiedType();
1386  return getUnqualifiedType();
1387 }
1388 
1390  const DeclContext *dc) const {
1391  // Look through method scopes.
1392  if (const auto method = dyn_cast<ObjCMethodDecl>(dc))
1393  dc = method->getDeclContext();
1394 
1395  // Find the class or category in which the type we're substituting
1396  // was declared.
1397  const auto *dcClassDecl = dyn_cast<ObjCInterfaceDecl>(dc);
1398  const ObjCCategoryDecl *dcCategoryDecl = nullptr;
1399  ObjCTypeParamList *dcTypeParams = nullptr;
1400  if (dcClassDecl) {
1401  // If the class does not have any type parameters, there's no
1402  // substitution to do.
1403  dcTypeParams = dcClassDecl->getTypeParamList();
1404  if (!dcTypeParams)
1405  return None;
1406  } else {
1407  // If we are in neither a class nor a category, there's no
1408  // substitution to perform.
1409  dcCategoryDecl = dyn_cast<ObjCCategoryDecl>(dc);
1410  if (!dcCategoryDecl)
1411  return None;
1412 
1413  // If the category does not have any type parameters, there's no
1414  // substitution to do.
1415  dcTypeParams = dcCategoryDecl->getTypeParamList();
1416  if (!dcTypeParams)
1417  return None;
1418 
1419  dcClassDecl = dcCategoryDecl->getClassInterface();
1420  if (!dcClassDecl)
1421  return None;
1422  }
1423  assert(dcTypeParams && "No substitutions to perform");
1424  assert(dcClassDecl && "No class context");
1425 
1426  // Find the underlying object type.
1427  const ObjCObjectType *objectType;
1428  if (const auto *objectPointerType = getAs<ObjCObjectPointerType>()) {
1429  objectType = objectPointerType->getObjectType();
1430  } else if (getAs<BlockPointerType>()) {
1431  ASTContext &ctx = dc->getParentASTContext();
1432  objectType = ctx.getObjCObjectType(ctx.ObjCBuiltinIdTy, {}, {})
1433  ->castAs<ObjCObjectType>();
1434  } else {
1435  objectType = getAs<ObjCObjectType>();
1436  }
1437 
1438  /// Extract the class from the receiver object type.
1439  ObjCInterfaceDecl *curClassDecl = objectType ? objectType->getInterface()
1440  : nullptr;
1441  if (!curClassDecl) {
1442  // If we don't have a context type (e.g., this is "id" or some
1443  // variant thereof), substitute the bounds.
1444  return llvm::ArrayRef<QualType>();
1445  }
1446 
1447  // Follow the superclass chain until we've mapped the receiver type
1448  // to the same class as the context.
1449  while (curClassDecl != dcClassDecl) {
1450  // Map to the superclass type.
1451  QualType superType = objectType->getSuperClassType();
1452  if (superType.isNull()) {
1453  objectType = nullptr;
1454  break;
1455  }
1456 
1457  objectType = superType->castAs<ObjCObjectType>();
1458  curClassDecl = objectType->getInterface();
1459  }
1460 
1461  // If we don't have a receiver type, or the receiver type does not
1462  // have type arguments, substitute in the defaults.
1463  if (!objectType || objectType->isUnspecialized()) {
1464  return llvm::ArrayRef<QualType>();
1465  }
1466 
1467  // The receiver type has the type arguments we want.
1468  return objectType->getTypeArgs();
1469 }
1470 
1472  if (auto *IfaceT = getAsObjCInterfaceType()) {
1473  if (auto *ID = IfaceT->getInterface()) {
1474  if (ID->getTypeParamList())
1475  return true;
1476  }
1477  }
1478 
1479  return false;
1480 }
1481 
1483  // Retrieve the class declaration for this type. If there isn't one
1484  // (e.g., this is some variant of "id" or "Class"), then there is no
1485  // superclass type.
1486  ObjCInterfaceDecl *classDecl = getInterface();
1487  if (!classDecl) {
1488  CachedSuperClassType.setInt(true);
1489  return;
1490  }
1491 
1492  // Extract the superclass type.
1493  const ObjCObjectType *superClassObjTy = classDecl->getSuperClassType();
1494  if (!superClassObjTy) {
1495  CachedSuperClassType.setInt(true);
1496  return;
1497  }
1498 
1499  ObjCInterfaceDecl *superClassDecl = superClassObjTy->getInterface();
1500  if (!superClassDecl) {
1501  CachedSuperClassType.setInt(true);
1502  return;
1503  }
1504 
1505  // If the superclass doesn't have type parameters, then there is no
1506  // substitution to perform.
1507  QualType superClassType(superClassObjTy, 0);
1508  ObjCTypeParamList *superClassTypeParams = superClassDecl->getTypeParamList();
1509  if (!superClassTypeParams) {
1510  CachedSuperClassType.setPointerAndInt(
1511  superClassType->castAs<ObjCObjectType>(), true);
1512  return;
1513  }
1514 
1515  // If the superclass reference is unspecialized, return it.
1516  if (superClassObjTy->isUnspecialized()) {
1517  CachedSuperClassType.setPointerAndInt(superClassObjTy, true);
1518  return;
1519  }
1520 
1521  // If the subclass is not parameterized, there aren't any type
1522  // parameters in the superclass reference to substitute.
1523  ObjCTypeParamList *typeParams = classDecl->getTypeParamList();
1524  if (!typeParams) {
1525  CachedSuperClassType.setPointerAndInt(
1526  superClassType->castAs<ObjCObjectType>(), true);
1527  return;
1528  }
1529 
1530  // If the subclass type isn't specialized, return the unspecialized
1531  // superclass.
1532  if (isUnspecialized()) {
1533  QualType unspecializedSuper
1534  = classDecl->getASTContext().getObjCInterfaceType(
1535  superClassObjTy->getInterface());
1536  CachedSuperClassType.setPointerAndInt(
1537  unspecializedSuper->castAs<ObjCObjectType>(),
1538  true);
1539  return;
1540  }
1541 
1542  // Substitute the provided type arguments into the superclass type.
1543  ArrayRef<QualType> typeArgs = getTypeArgs();
1544  assert(typeArgs.size() == typeParams->size());
1545  CachedSuperClassType.setPointerAndInt(
1546  superClassType.substObjCTypeArgs(classDecl->getASTContext(), typeArgs,
1548  ->castAs<ObjCObjectType>(),
1549  true);
1550 }
1551 
1553  if (auto interfaceDecl = getObjectType()->getInterface()) {
1554  return interfaceDecl->getASTContext().getObjCInterfaceType(interfaceDecl)
1556  }
1557 
1558  return nullptr;
1559 }
1560 
1562  QualType superObjectType = getObjectType()->getSuperClassType();
1563  if (superObjectType.isNull())
1564  return superObjectType;
1565 
1566  ASTContext &ctx = getInterfaceDecl()->getASTContext();
1567  return ctx.getObjCObjectPointerType(superObjectType);
1568 }
1569 
1571  // There is no sugar for ObjCObjectType's, just return the canonical
1572  // type pointer if it is the right class. There is no typedef information to
1573  // return and these cannot be Address-space qualified.
1574  if (const auto *T = getAs<ObjCObjectType>())
1575  if (T->getNumProtocols() && T->getInterface())
1576  return T;
1577  return nullptr;
1578 }
1579 
1581  return getAsObjCQualifiedInterfaceType() != nullptr;
1582 }
1583 
1585  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
1586  // type pointer if it is the right class.
1587  if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1588  if (OPT->isObjCQualifiedIdType())
1589  return OPT;
1590  }
1591  return nullptr;
1592 }
1593 
1595  // There is no sugar for ObjCQualifiedClassType's, just return the canonical
1596  // type pointer if it is the right class.
1597  if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1598  if (OPT->isObjCQualifiedClassType())
1599  return OPT;
1600  }
1601  return nullptr;
1602 }
1603 
1605  if (const auto *OT = getAs<ObjCObjectType>()) {
1606  if (OT->getInterface())
1607  return OT;
1608  }
1609  return nullptr;
1610 }
1611 
1613  if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1614  if (OPT->getInterfaceType())
1615  return OPT;
1616  }
1617  return nullptr;
1618 }
1619 
1621  QualType PointeeType;
1622  if (const auto *PT = getAs<PointerType>())
1623  PointeeType = PT->getPointeeType();
1624  else if (const auto *RT = getAs<ReferenceType>())
1625  PointeeType = RT->getPointeeType();
1626  else
1627  return nullptr;
1628 
1629  if (const auto *RT = PointeeType->getAs<RecordType>())
1630  return dyn_cast<CXXRecordDecl>(RT->getDecl());
1631 
1632  return nullptr;
1633 }
1634 
1636  return dyn_cast_or_null<CXXRecordDecl>(getAsTagDecl());
1637 }
1638 
1640  return dyn_cast_or_null<RecordDecl>(getAsTagDecl());
1641 }
1642 
1644  if (const auto *TT = getAs<TagType>())
1645  return TT->getDecl();
1646  if (const auto *Injected = getAs<InjectedClassNameType>())
1647  return Injected->getDecl();
1648 
1649  return nullptr;
1650 }
1651 
1652 bool Type::hasAttr(attr::Kind AK) const {
1653  const Type *Cur = this;
1654  while (const auto *AT = Cur->getAs<AttributedType>()) {
1655  if (AT->getAttrKind() == AK)
1656  return true;
1657  Cur = AT->getEquivalentType().getTypePtr();
1658  }
1659  return false;
1660 }
1661 
1662 namespace {
1663 
1664  class GetContainedDeducedTypeVisitor :
1665  public TypeVisitor<GetContainedDeducedTypeVisitor, Type*> {
1666  bool Syntactic;
1667 
1668  public:
1669  GetContainedDeducedTypeVisitor(bool Syntactic = false)
1670  : Syntactic(Syntactic) {}
1671 
1673 
1674  Type *Visit(QualType T) {
1675  if (T.isNull())
1676  return nullptr;
1677  return Visit(T.getTypePtr());
1678  }
1679 
1680  // The deduced type itself.
1681  Type *VisitDeducedType(const DeducedType *AT) {
1682  return const_cast<DeducedType*>(AT);
1683  }
1684 
1685  // Only these types can contain the desired 'auto' type.
1686 
1687  Type *VisitElaboratedType(const ElaboratedType *T) {
1688  return Visit(T->getNamedType());
1689  }
1690 
1691  Type *VisitPointerType(const PointerType *T) {
1692  return Visit(T->getPointeeType());
1693  }
1694 
1695  Type *VisitBlockPointerType(const BlockPointerType *T) {
1696  return Visit(T->getPointeeType());
1697  }
1698 
1699  Type *VisitReferenceType(const ReferenceType *T) {
1700  return Visit(T->getPointeeTypeAsWritten());
1701  }
1702 
1703  Type *VisitMemberPointerType(const MemberPointerType *T) {
1704  return Visit(T->getPointeeType());
1705  }
1706 
1707  Type *VisitArrayType(const ArrayType *T) {
1708  return Visit(T->getElementType());
1709  }
1710 
1711  Type *VisitDependentSizedExtVectorType(
1712  const DependentSizedExtVectorType *T) {
1713  return Visit(T->getElementType());
1714  }
1715 
1716  Type *VisitVectorType(const VectorType *T) {
1717  return Visit(T->getElementType());
1718  }
1719 
1720  Type *VisitFunctionProtoType(const FunctionProtoType *T) {
1721  if (Syntactic && T->hasTrailingReturn())
1722  return const_cast<FunctionProtoType*>(T);
1723  return VisitFunctionType(T);
1724  }
1725 
1726  Type *VisitFunctionType(const FunctionType *T) {
1727  return Visit(T->getReturnType());
1728  }
1729 
1730  Type *VisitParenType(const ParenType *T) {
1731  return Visit(T->getInnerType());
1732  }
1733 
1734  Type *VisitAttributedType(const AttributedType *T) {
1735  return Visit(T->getModifiedType());
1736  }
1737 
1738  Type *VisitAdjustedType(const AdjustedType *T) {
1739  return Visit(T->getOriginalType());
1740  }
1741  };
1742 
1743 } // namespace
1744 
1746  return cast_or_null<DeducedType>(
1747  GetContainedDeducedTypeVisitor().Visit(this));
1748 }
1749 
1751  return dyn_cast_or_null<FunctionType>(
1752  GetContainedDeducedTypeVisitor(true).Visit(this));
1753 }
1754 
1756  if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
1757  return VT->getElementType()->isIntegerType();
1758  else
1759  return isIntegerType();
1760 }
1761 
1762 /// Determine whether this type is an integral type.
1763 ///
1764 /// This routine determines whether the given type is an integral type per
1765 /// C++ [basic.fundamental]p7. Although the C standard does not define the
1766 /// term "integral type", it has a similar term "integer type", and in C++
1767 /// the two terms are equivalent. However, C's "integer type" includes
1768 /// enumeration types, while C++'s "integer type" does not. The \c ASTContext
1769 /// parameter is used to determine whether we should be following the C or
1770 /// C++ rules when determining whether this type is an integral/integer type.
1771 ///
1772 /// For cases where C permits "an integer type" and C++ permits "an integral
1773 /// type", use this routine.
1774 ///
1775 /// For cases where C permits "an integer type" and C++ permits "an integral
1776 /// or enumeration type", use \c isIntegralOrEnumerationType() instead.
1777 ///
1778 /// \param Ctx The context in which this type occurs.
1779 ///
1780 /// \returns true if the type is considered an integral type, false otherwise.
1781 bool Type::isIntegralType(const ASTContext &Ctx) const {
1782  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1783  return BT->getKind() >= BuiltinType::Bool &&
1784  BT->getKind() <= BuiltinType::Int128;
1785 
1786  // Complete enum types are integral in C.
1787  if (!Ctx.getLangOpts().CPlusPlus)
1788  if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
1789  return ET->getDecl()->isComplete();
1790 
1791  return false;
1792 }
1793 
1795  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1796  return BT->getKind() >= BuiltinType::Bool &&
1797  BT->getKind() <= BuiltinType::Int128;
1798 
1799  // Check for a complete enum type; incomplete enum types are not properly an
1800  // enumeration type in the sense required here.
1801  // C++0x: However, if the underlying type of the enum is fixed, it is
1802  // considered complete.
1803  if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
1804  return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
1805 
1806  return false;
1807 }
1808 
1809 bool Type::isCharType() const {
1810  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1811  return BT->getKind() == BuiltinType::Char_U ||
1812  BT->getKind() == BuiltinType::UChar ||
1813  BT->getKind() == BuiltinType::Char_S ||
1814  BT->getKind() == BuiltinType::SChar;
1815  return false;
1816 }
1817 
1818 bool Type::isWideCharType() const {
1819  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1820  return BT->getKind() == BuiltinType::WChar_S ||
1821  BT->getKind() == BuiltinType::WChar_U;
1822  return false;
1823 }
1824 
1825 bool Type::isChar8Type() const {
1826  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
1827  return BT->getKind() == BuiltinType::Char8;
1828  return false;
1829 }
1830 
1831 bool Type::isChar16Type() const {
1832  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1833  return BT->getKind() == BuiltinType::Char16;
1834  return false;
1835 }
1836 
1837 bool Type::isChar32Type() const {
1838  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1839  return BT->getKind() == BuiltinType::Char32;
1840  return false;
1841 }
1842 
1843 /// Determine whether this type is any of the built-in character
1844 /// types.
1846  const auto *BT = dyn_cast<BuiltinType>(CanonicalType);
1847  if (!BT) return false;
1848  switch (BT->getKind()) {
1849  default: return false;
1850  case BuiltinType::Char_U:
1851  case BuiltinType::UChar:
1852  case BuiltinType::WChar_U:
1853  case BuiltinType::Char8:
1854  case BuiltinType::Char16:
1855  case BuiltinType::Char32:
1856  case BuiltinType::Char_S:
1857  case BuiltinType::SChar:
1858  case BuiltinType::WChar_S:
1859  return true;
1860  }
1861 }
1862 
1863 /// isSignedIntegerType - Return true if this is an integer type that is
1864 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1865 /// an enum decl which has a signed representation
1867  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
1868  return BT->getKind() >= BuiltinType::Char_S &&
1869  BT->getKind() <= BuiltinType::Int128;
1870  }
1871 
1872  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
1873  // Incomplete enum types are not treated as integer types.
1874  // FIXME: In C++, enum types are never integer types.
1875  if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
1876  return ET->getDecl()->getIntegerType()->isSignedIntegerType();
1877  }
1878 
1879  return false;
1880 }
1881 
1883  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
1884  return BT->getKind() >= BuiltinType::Char_S &&
1885  BT->getKind() <= BuiltinType::Int128;
1886  }
1887 
1888  if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
1889  if (ET->getDecl()->isComplete())
1890  return ET->getDecl()->getIntegerType()->isSignedIntegerType();
1891  }
1892 
1893  return false;
1894 }
1895 
1897  if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
1898  return VT->getElementType()->isSignedIntegerOrEnumerationType();
1899  else
1901 }
1902 
1903 /// isUnsignedIntegerType - Return true if this is an integer type that is
1904 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1905 /// decl which has an unsigned representation
1907  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
1908  return BT->getKind() >= BuiltinType::Bool &&
1909  BT->getKind() <= BuiltinType::UInt128;
1910  }
1911 
1912  if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
1913  // Incomplete enum types are not treated as integer types.
1914  // FIXME: In C++, enum types are never integer types.
1915  if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
1916  return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
1917  }
1918 
1919  return false;
1920 }
1921 
1923  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
1924  return BT->getKind() >= BuiltinType::Bool &&
1925  BT->getKind() <= BuiltinType::UInt128;
1926  }
1927 
1928  if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
1929  if (ET->getDecl()->isComplete())
1930  return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
1931  }
1932 
1933  return false;
1934 }
1935 
1937  if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
1938  return VT->getElementType()->isUnsignedIntegerOrEnumerationType();
1939  else
1941 }
1942 
1943 bool Type::isFloatingType() const {
1944  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1945  return BT->getKind() >= BuiltinType::Half &&
1946  BT->getKind() <= BuiltinType::Float128;
1947  if (const auto *CT = dyn_cast<ComplexType>(CanonicalType))
1948  return CT->getElementType()->isFloatingType();
1949  return false;
1950 }
1951 
1953  if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
1954  return VT->getElementType()->isFloatingType();
1955  else
1956  return isFloatingType();
1957 }
1958 
1960  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1961  return BT->isFloatingPoint();
1962  return false;
1963 }
1964 
1965 bool Type::isRealType() const {
1966  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1967  return BT->getKind() >= BuiltinType::Bool &&
1968  BT->getKind() <= BuiltinType::Float128;
1969  if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
1970  return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
1971  return false;
1972 }
1973 
1975  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1976  return BT->getKind() >= BuiltinType::Bool &&
1977  BT->getKind() <= BuiltinType::Float128;
1978  if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
1979  // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
1980  // If a body isn't seen by the time we get here, return false.
1981  //
1982  // C++0x: Enumerations are not arithmetic types. For now, just return
1983  // false for scoped enumerations since that will disable any
1984  // unwanted implicit conversions.
1985  return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
1986  return isa<ComplexType>(CanonicalType);
1987 }
1988 
1990  assert(isScalarType());
1991 
1992  const Type *T = CanonicalType.getTypePtr();
1993  if (const auto *BT = dyn_cast<BuiltinType>(T)) {
1994  if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
1995  if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
1996  if (BT->isInteger()) return STK_Integral;
1997  if (BT->isFloatingPoint()) return STK_Floating;
1998  if (BT->isFixedPointType()) return STK_FixedPoint;
1999  llvm_unreachable("unknown scalar builtin type");
2000  } else if (isa<PointerType>(T)) {
2001  return STK_CPointer;
2002  } else if (isa<BlockPointerType>(T)) {
2003  return STK_BlockPointer;
2004  } else if (isa<ObjCObjectPointerType>(T)) {
2005  return STK_ObjCObjectPointer;
2006  } else if (isa<MemberPointerType>(T)) {
2007  return STK_MemberPointer;
2008  } else if (isa<EnumType>(T)) {
2009  assert(cast<EnumType>(T)->getDecl()->isComplete());
2010  return STK_Integral;
2011  } else if (const auto *CT = dyn_cast<ComplexType>(T)) {
2012  if (CT->getElementType()->isRealFloatingType())
2013  return STK_FloatingComplex;
2014  return STK_IntegralComplex;
2015  }
2016 
2017  llvm_unreachable("unknown scalar type");
2018 }
2019 
2020 /// Determines whether the type is a C++ aggregate type or C
2021 /// aggregate or union type.
2022 ///
2023 /// An aggregate type is an array or a class type (struct, union, or
2024 /// class) that has no user-declared constructors, no private or
2025 /// protected non-static data members, no base classes, and no virtual
2026 /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
2027 /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
2028 /// includes union types.
2030  if (const auto *Record = dyn_cast<RecordType>(CanonicalType)) {
2031  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
2032  return ClassDecl->isAggregate();
2033 
2034  return true;
2035  }
2036 
2037  return isa<ArrayType>(CanonicalType);
2038 }
2039 
2040 /// isConstantSizeType - Return true if this is not a variable sized type,
2041 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2042 /// incomplete types or dependent types.
2044  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
2045  assert(!isDependentType() && "This doesn't make sense for dependent types");
2046  // The VAT must have a size, as it is known to be complete.
2047  return !isa<VariableArrayType>(CanonicalType);
2048 }
2049 
2050 /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
2051 /// - a type that can describe objects, but which lacks information needed to
2052 /// determine its size.
2054  if (Def)
2055  *Def = nullptr;
2056 
2057  switch (CanonicalType->getTypeClass()) {
2058  default: return false;
2059  case Builtin:
2060  // Void is the only incomplete builtin type. Per C99 6.2.5p19, it can never
2061  // be completed.
2062  return isVoidType();
2063  case Enum: {
2064  EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
2065  if (Def)
2066  *Def = EnumD;
2067  return !EnumD->isComplete();
2068  }
2069  case Record: {
2070  // A tagged type (struct/union/enum/class) is incomplete if the decl is a
2071  // forward declaration, but not a full definition (C99 6.2.5p22).
2072  RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
2073  if (Def)
2074  *Def = Rec;
2075  return !Rec->isCompleteDefinition();
2076  }
2077  case ConstantArray:
2078  // An array is incomplete if its element type is incomplete
2079  // (C++ [dcl.array]p1).
2080  // We don't handle variable arrays (they're not allowed in C++) or
2081  // dependent-sized arrays (dependent types are never treated as incomplete).
2082  return cast<ArrayType>(CanonicalType)->getElementType()
2083  ->isIncompleteType(Def);
2084  case IncompleteArray:
2085  // An array of unknown size is an incomplete type (C99 6.2.5p22).
2086  return true;
2087  case MemberPointer: {
2088  // Member pointers in the MS ABI have special behavior in
2089  // RequireCompleteType: they attach a MSInheritanceAttr to the CXXRecordDecl
2090  // to indicate which inheritance model to use.
2091  auto *MPTy = cast<MemberPointerType>(CanonicalType);
2092  const Type *ClassTy = MPTy->getClass();
2093  // Member pointers with dependent class types don't get special treatment.
2094  if (ClassTy->isDependentType())
2095  return false;
2096  const CXXRecordDecl *RD = ClassTy->getAsCXXRecordDecl();
2097  ASTContext &Context = RD->getASTContext();
2098  // Member pointers not in the MS ABI don't get special treatment.
2099  if (!Context.getTargetInfo().getCXXABI().isMicrosoft())
2100  return false;
2101  // The inheritance attribute might only be present on the most recent
2102  // CXXRecordDecl, use that one.
2103  RD = RD->getMostRecentNonInjectedDecl();
2104  // Nothing interesting to do if the inheritance attribute is already set.
2105  if (RD->hasAttr<MSInheritanceAttr>())
2106  return false;
2107  return true;
2108  }
2109  case ObjCObject:
2110  return cast<ObjCObjectType>(CanonicalType)->getBaseType()
2111  ->isIncompleteType(Def);
2112  case ObjCInterface: {
2113  // ObjC interfaces are incomplete if they are @class, not @interface.
2114  ObjCInterfaceDecl *Interface
2115  = cast<ObjCInterfaceType>(CanonicalType)->getDecl();
2116  if (Def)
2117  *Def = Interface;
2118  return !Interface->hasDefinition();
2119  }
2120  }
2121 }
2122 
2123 bool QualType::isPODType(const ASTContext &Context) const {
2124  // C++11 has a more relaxed definition of POD.
2125  if (Context.getLangOpts().CPlusPlus11)
2126  return isCXX11PODType(Context);
2127 
2128  return isCXX98PODType(Context);
2129 }
2130 
2131 bool QualType::isCXX98PODType(const ASTContext &Context) const {
2132  // The compiler shouldn't query this for incomplete types, but the user might.
2133  // We return false for that case. Except for incomplete arrays of PODs, which
2134  // are PODs according to the standard.
2135  if (isNull())
2136  return false;
2137 
2138  if ((*this)->isIncompleteArrayType())
2139  return Context.getBaseElementType(*this).isCXX98PODType(Context);
2140 
2141  if ((*this)->isIncompleteType())
2142  return false;
2143 
2144  if (hasNonTrivialObjCLifetime())
2145  return false;
2146 
2147  QualType CanonicalType = getTypePtr()->CanonicalType;
2148  switch (CanonicalType->getTypeClass()) {
2149  // Everything not explicitly mentioned is not POD.
2150  default: return false;
2151  case Type::VariableArray:
2152  case Type::ConstantArray:
2153  // IncompleteArray is handled above.
2154  return Context.getBaseElementType(*this).isCXX98PODType(Context);
2155 
2156  case Type::ObjCObjectPointer:
2157  case Type::BlockPointer:
2158  case Type::Builtin:
2159  case Type::Complex:
2160  case Type::Pointer:
2161  case Type::MemberPointer:
2162  case Type::Vector:
2163  case Type::ExtVector:
2164  return true;
2165 
2166  case Type::Enum:
2167  return true;
2168 
2169  case Type::Record:
2170  if (const auto *ClassDecl =
2171  dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
2172  return ClassDecl->isPOD();
2173 
2174  // C struct/union is POD.
2175  return true;
2176  }
2177 }
2178 
2179 bool QualType::isTrivialType(const ASTContext &Context) const {
2180  // The compiler shouldn't query this for incomplete types, but the user might.
2181  // We return false for that case. Except for incomplete arrays of PODs, which
2182  // are PODs according to the standard.
2183  if (isNull())
2184  return false;
2185 
2186  if ((*this)->isArrayType())
2187  return Context.getBaseElementType(*this).isTrivialType(Context);
2188 
2189  // Return false for incomplete types after skipping any incomplete array
2190  // types which are expressly allowed by the standard and thus our API.
2191  if ((*this)->isIncompleteType())
2192  return false;
2193 
2194  if (hasNonTrivialObjCLifetime())
2195  return false;
2196 
2197  QualType CanonicalType = getTypePtr()->CanonicalType;
2198  if (CanonicalType->isDependentType())
2199  return false;
2200 
2201  // C++0x [basic.types]p9:
2202  // Scalar types, trivial class types, arrays of such types, and
2203  // cv-qualified versions of these types are collectively called trivial
2204  // types.
2205 
2206  // As an extension, Clang treats vector types as Scalar types.
2207  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
2208  return true;
2209  if (const auto *RT = CanonicalType->getAs<RecordType>()) {
2210  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2211  // C++11 [class]p6:
2212  // A trivial class is a class that has a default constructor,
2213  // has no non-trivial default constructors, and is trivially
2214  // copyable.
2215  return ClassDecl->hasDefaultConstructor() &&
2216  !ClassDecl->hasNonTrivialDefaultConstructor() &&
2217  ClassDecl->isTriviallyCopyable();
2218  }
2219 
2220  return true;
2221  }
2222 
2223  // No other types can match.
2224  return false;
2225 }
2226 
2227 bool QualType::isTriviallyCopyableType(const ASTContext &Context) const {
2228  if ((*this)->isArrayType())
2229  return Context.getBaseElementType(*this).isTriviallyCopyableType(Context);
2230 
2231  if (hasNonTrivialObjCLifetime())
2232  return false;
2233 
2234  // C++11 [basic.types]p9 - See Core 2094
2235  // Scalar types, trivially copyable class types, arrays of such types, and
2236  // cv-qualified versions of these types are collectively
2237  // called trivially copyable types.
2238 
2239  QualType CanonicalType = getCanonicalType();
2240  if (CanonicalType->isDependentType())
2241  return false;
2242 
2243  // Return false for incomplete types after skipping any incomplete array types
2244  // which are expressly allowed by the standard and thus our API.
2245  if (CanonicalType->isIncompleteType())
2246  return false;
2247 
2248  // As an extension, Clang treats vector types as Scalar types.
2249  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
2250  return true;
2251 
2252  if (const auto *RT = CanonicalType->getAs<RecordType>()) {
2253  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2254  if (!ClassDecl->isTriviallyCopyable()) return false;
2255  }
2256 
2257  return true;
2258  }
2259 
2260  // No other types can match.
2261  return false;
2262 }
2263 
2265  return !Context.getLangOpts().ObjCAutoRefCount &&
2266  Context.getLangOpts().ObjCWeak &&
2267  getObjCLifetime() != Qualifiers::OCL_Weak;
2268 }
2269 
2270 namespace {
2271 // Helper class that determines whether this is a type that is non-trivial to
2272 // primitive copy or move, or is a struct type that has a field of such type.
2273 template <bool IsMove>
2274 struct IsNonTrivialCopyMoveVisitor
2275  : CopiedTypeVisitor<IsNonTrivialCopyMoveVisitor<IsMove>, IsMove, bool> {
2276  using Super =
2278  IsNonTrivialCopyMoveVisitor(const ASTContext &C) : Ctx(C) {}
2279  void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT) {}
2280 
2281  bool visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT) {
2282  if (const auto *AT = this->Ctx.getAsArrayType(QT))
2283  return this->asDerived().visit(Ctx.getBaseElementType(AT));
2284  return Super::visitWithKind(PCK, QT);
2285  }
2286 
2287  bool visitARCStrong(QualType QT) { return true; }
2288  bool visitARCWeak(QualType QT) { return true; }
2289  bool visitTrivial(QualType QT) { return false; }
2290  // Volatile fields are considered trivial.
2291  bool visitVolatileTrivial(QualType QT) { return false; }
2292 
2293  bool visitStruct(QualType QT) {
2294  const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
2295  // We don't want to apply the C restriction in C++ because C++
2296  // (1) can apply the restriction at a finer grain by banning copying or
2297  // destroying the union, and
2298  // (2) allows users to override these restrictions by declaring explicit
2299  // constructors/etc, which we're not proposing to add to C.
2300  if (isa<CXXRecordDecl>(RD))
2301  return false;
2302  for (const FieldDecl *FD : RD->fields())
2303  if (this->asDerived().visit(FD->getType()))
2304  return true;
2305  return false;
2306  }
2307 
2308  const ASTContext &Ctx;
2309 };
2310 
2311 } // namespace
2312 
2314  if (isNonTrivialToPrimitiveDefaultInitialize())
2315  return true;
2316  DestructionKind DK = isDestructedType();
2317  if (DK != DK_none && DK != DK_cxx_destructor)
2318  return true;
2319  if (IsNonTrivialCopyMoveVisitor<false>(Ctx).visit(*this))
2320  return true;
2321  if (IsNonTrivialCopyMoveVisitor<true>(Ctx).visit(*this))
2322  return true;
2323  return false;
2324 }
2325 
2328  if (const auto *RT =
2329  getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>())
2330  if (RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize())
2331  return PDIK_Struct;
2332 
2333  switch (getQualifiers().getObjCLifetime()) {
2335  return PDIK_ARCStrong;
2336  case Qualifiers::OCL_Weak:
2337  return PDIK_ARCWeak;
2338  default:
2339  return PDIK_Trivial;
2340  }
2341 }
2342 
2344  if (const auto *RT =
2345  getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>())
2346  if (RT->getDecl()->isNonTrivialToPrimitiveCopy())
2347  return PCK_Struct;
2348 
2349  Qualifiers Qs = getQualifiers();
2350  switch (Qs.getObjCLifetime()) {
2352  return PCK_ARCStrong;
2353  case Qualifiers::OCL_Weak:
2354  return PCK_ARCWeak;
2355  default:
2356  return Qs.hasVolatile() ? PCK_VolatileTrivial : PCK_Trivial;
2357  }
2358 }
2359 
2362  return isNonTrivialToPrimitiveCopy();
2363 }
2364 
2365 bool Type::isLiteralType(const ASTContext &Ctx) const {
2366  if (isDependentType())
2367  return false;
2368 
2369  // C++1y [basic.types]p10:
2370  // A type is a literal type if it is:
2371  // -- cv void; or
2372  if (Ctx.getLangOpts().CPlusPlus14 && isVoidType())
2373  return true;
2374 
2375  // C++11 [basic.types]p10:
2376  // A type is a literal type if it is:
2377  // [...]
2378  // -- an array of literal type other than an array of runtime bound; or
2379  if (isVariableArrayType())
2380  return false;
2381  const Type *BaseTy = getBaseElementTypeUnsafe();
2382  assert(BaseTy && "NULL element type");
2383 
2384  // Return false for incomplete types after skipping any incomplete array
2385  // types; those are expressly allowed by the standard and thus our API.
2386  if (BaseTy->isIncompleteType())
2387  return false;
2388 
2389  // C++11 [basic.types]p10:
2390  // A type is a literal type if it is:
2391  // -- a scalar type; or
2392  // As an extension, Clang treats vector types and complex types as
2393  // literal types.
2394  if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
2395  BaseTy->isAnyComplexType())
2396  return true;
2397  // -- a reference type; or
2398  if (BaseTy->isReferenceType())
2399  return true;
2400  // -- a class type that has all of the following properties:
2401  if (const auto *RT = BaseTy->getAs<RecordType>()) {
2402  // -- a trivial destructor,
2403  // -- every constructor call and full-expression in the
2404  // brace-or-equal-initializers for non-static data members (if any)
2405  // is a constant expression,
2406  // -- it is an aggregate type or has at least one constexpr
2407  // constructor or constructor template that is not a copy or move
2408  // constructor, and
2409  // -- all non-static data members and base classes of literal types
2410  //
2411  // We resolve DR1361 by ignoring the second bullet.
2412  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2413  return ClassDecl->isLiteral();
2414 
2415  return true;
2416  }
2417 
2418  // We treat _Atomic T as a literal type if T is a literal type.
2419  if (const auto *AT = BaseTy->getAs<AtomicType>())
2420  return AT->getValueType()->isLiteralType(Ctx);
2421 
2422  // If this type hasn't been deduced yet, then conservatively assume that
2423  // it'll work out to be a literal type.
2424  if (isa<AutoType>(BaseTy->getCanonicalTypeInternal()))
2425  return true;
2426 
2427  return false;
2428 }
2429 
2431  if (isDependentType())
2432  return false;
2433 
2434  // C++0x [basic.types]p9:
2435  // Scalar types, standard-layout class types, arrays of such types, and
2436  // cv-qualified versions of these types are collectively called
2437  // standard-layout types.
2438  const Type *BaseTy = getBaseElementTypeUnsafe();
2439  assert(BaseTy && "NULL element type");
2440 
2441  // Return false for incomplete types after skipping any incomplete array
2442  // types which are expressly allowed by the standard and thus our API.
2443  if (BaseTy->isIncompleteType())
2444  return false;
2445 
2446  // As an extension, Clang treats vector types as Scalar types.
2447  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
2448  if (const auto *RT = BaseTy->getAs<RecordType>()) {
2449  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2450  if (!ClassDecl->isStandardLayout())
2451  return false;
2452 
2453  // Default to 'true' for non-C++ class types.
2454  // FIXME: This is a bit dubious, but plain C structs should trivially meet
2455  // all the requirements of standard layout classes.
2456  return true;
2457  }
2458 
2459  // No other types can match.
2460  return false;
2461 }
2462 
2463 // This is effectively the intersection of isTrivialType and
2464 // isStandardLayoutType. We implement it directly to avoid redundant
2465 // conversions from a type to a CXXRecordDecl.
2466 bool QualType::isCXX11PODType(const ASTContext &Context) const {
2467  const Type *ty = getTypePtr();
2468  if (ty->isDependentType())
2469  return false;
2470 
2471  if (hasNonTrivialObjCLifetime())
2472  return false;
2473 
2474  // C++11 [basic.types]p9:
2475  // Scalar types, POD classes, arrays of such types, and cv-qualified
2476  // versions of these types are collectively called trivial types.
2477  const Type *BaseTy = ty->getBaseElementTypeUnsafe();
2478  assert(BaseTy && "NULL element type");
2479 
2480  // Return false for incomplete types after skipping any incomplete array
2481  // types which are expressly allowed by the standard and thus our API.
2482  if (BaseTy->isIncompleteType())
2483  return false;
2484 
2485  // As an extension, Clang treats vector types as Scalar types.
2486  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
2487  if (const auto *RT = BaseTy->getAs<RecordType>()) {
2488  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2489  // C++11 [class]p10:
2490  // A POD struct is a non-union class that is both a trivial class [...]
2491  if (!ClassDecl->isTrivial()) return false;
2492 
2493  // C++11 [class]p10:
2494  // A POD struct is a non-union class that is both a trivial class and
2495  // a standard-layout class [...]
2496  if (!ClassDecl->isStandardLayout()) return false;
2497 
2498  // C++11 [class]p10:
2499  // A POD struct is a non-union class that is both a trivial class and
2500  // a standard-layout class, and has no non-static data members of type
2501  // non-POD struct, non-POD union (or array of such types). [...]
2502  //
2503  // We don't directly query the recursive aspect as the requirements for
2504  // both standard-layout classes and trivial classes apply recursively
2505  // already.
2506  }
2507 
2508  return true;
2509  }
2510 
2511  // No other types can match.
2512  return false;
2513 }
2514 
2515 bool Type::isAlignValT() const {
2516  if (const auto *ET = getAs<EnumType>()) {
2517  IdentifierInfo *II = ET->getDecl()->getIdentifier();
2518  if (II && II->isStr("align_val_t") && ET->getDecl()->isInStdNamespace())
2519  return true;
2520  }
2521  return false;
2522 }
2523 
2524 bool Type::isStdByteType() const {
2525  if (const auto *ET = getAs<EnumType>()) {
2526  IdentifierInfo *II = ET->getDecl()->getIdentifier();
2527  if (II && II->isStr("byte") && ET->getDecl()->isInStdNamespace())
2528  return true;
2529  }
2530  return false;
2531 }
2532 
2534  if (const auto *BT = getAs<BuiltinType>())
2535  switch (BT->getKind()) {
2536  case BuiltinType::Bool:
2537  case BuiltinType::Char_S:
2538  case BuiltinType::Char_U:
2539  case BuiltinType::SChar:
2540  case BuiltinType::UChar:
2541  case BuiltinType::Short:
2542  case BuiltinType::UShort:
2543  case BuiltinType::WChar_S:
2544  case BuiltinType::WChar_U:
2545  case BuiltinType::Char8:
2546  case BuiltinType::Char16:
2547  case BuiltinType::Char32:
2548  return true;
2549  default:
2550  return false;
2551  }
2552 
2553  // Enumerated types are promotable to their compatible integer types
2554  // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
2555  if (const auto *ET = getAs<EnumType>()){
2556  if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
2557  || ET->getDecl()->isScoped())
2558  return false;
2559 
2560  return true;
2561  }
2562 
2563  return false;
2564 }
2565 
2567  // Note that this intentionally does not use the canonical type.
2568  switch (getTypeClass()) {
2569  case Builtin:
2570  case Record:
2571  case Enum:
2572  case Typedef:
2573  case Complex:
2574  case TypeOfExpr:
2575  case TypeOf:
2576  case TemplateTypeParm:
2577  case SubstTemplateTypeParm:
2578  case TemplateSpecialization:
2579  case Elaborated:
2580  case DependentName:
2581  case DependentTemplateSpecialization:
2582  case ObjCInterface:
2583  case ObjCObject:
2584  case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
2585  return true;
2586  default:
2587  return false;
2588  }
2589 }
2590 
2593  switch (TypeSpec) {
2594  default: return ETK_None;
2595  case TST_typename: return ETK_Typename;
2596  case TST_class: return ETK_Class;
2597  case TST_struct: return ETK_Struct;
2598  case TST_interface: return ETK_Interface;
2599  case TST_union: return ETK_Union;
2600  case TST_enum: return ETK_Enum;
2601  }
2602 }
2603 
2606  switch(TypeSpec) {
2607  case TST_class: return TTK_Class;
2608  case TST_struct: return TTK_Struct;
2609  case TST_interface: return TTK_Interface;
2610  case TST_union: return TTK_Union;
2611  case TST_enum: return TTK_Enum;
2612  }
2613 
2614  llvm_unreachable("Type specifier is not a tag type kind.");
2615 }
2616 
2619  switch (Kind) {
2620  case TTK_Class: return ETK_Class;
2621  case TTK_Struct: return ETK_Struct;
2622  case TTK_Interface: return ETK_Interface;
2623  case TTK_Union: return ETK_Union;
2624  case TTK_Enum: return ETK_Enum;
2625  }
2626  llvm_unreachable("Unknown tag type kind.");
2627 }
2628 
2631  switch (Keyword) {
2632  case ETK_Class: return TTK_Class;
2633  case ETK_Struct: return TTK_Struct;
2634  case ETK_Interface: return TTK_Interface;
2635  case ETK_Union: return TTK_Union;
2636  case ETK_Enum: return TTK_Enum;
2637  case ETK_None: // Fall through.
2638  case ETK_Typename:
2639  llvm_unreachable("Elaborated type keyword is not a tag type kind.");
2640  }
2641  llvm_unreachable("Unknown elaborated type keyword.");
2642 }
2643 
2644 bool
2646  switch (Keyword) {
2647  case ETK_None:
2648  case ETK_Typename:
2649  return false;
2650  case ETK_Class:
2651  case ETK_Struct:
2652  case ETK_Interface:
2653  case ETK_Union:
2654  case ETK_Enum:
2655  return true;
2656  }
2657  llvm_unreachable("Unknown elaborated type keyword.");
2658 }
2659 
2661  switch (Keyword) {
2662  case ETK_None: return {};
2663  case ETK_Typename: return "typename";
2664  case ETK_Class: return "class";
2665  case ETK_Struct: return "struct";
2666  case ETK_Interface: return "__interface";
2667  case ETK_Union: return "union";
2668  case ETK_Enum: return "enum";
2669  }
2670 
2671  llvm_unreachable("Unknown elaborated type keyword.");
2672 }
2673 
2674 DependentTemplateSpecializationType::DependentTemplateSpecializationType(
2675  ElaboratedTypeKeyword Keyword,
2676  NestedNameSpecifier *NNS, const IdentifierInfo *Name,
2678  QualType Canon)
2679  : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
2680  /*VariablyModified=*/false,
2681  NNS && NNS->containsUnexpandedParameterPack()),
2682  NNS(NNS), Name(Name) {
2683  DependentTemplateSpecializationTypeBits.NumArgs = Args.size();
2684  assert((!NNS || NNS->isDependent()) &&
2685  "DependentTemplateSpecializatonType requires dependent qualifier");
2686  TemplateArgument *ArgBuffer = getArgBuffer();
2687  for (const TemplateArgument &Arg : Args) {
2688  if (Arg.containsUnexpandedParameterPack())
2690 
2691  new (ArgBuffer++) TemplateArgument(Arg);
2692  }
2693 }
2694 
2695 void
2697  const ASTContext &Context,
2698  ElaboratedTypeKeyword Keyword,
2699  NestedNameSpecifier *Qualifier,
2700  const IdentifierInfo *Name,
2702  ID.AddInteger(Keyword);
2703  ID.AddPointer(Qualifier);
2704  ID.AddPointer(Name);
2705  for (const TemplateArgument &Arg : Args)
2706  Arg.Profile(ID, Context);
2707 }
2708 
2710  ElaboratedTypeKeyword Keyword;
2711  if (const auto *Elab = dyn_cast<ElaboratedType>(this))
2712  Keyword = Elab->getKeyword();
2713  else if (const auto *DepName = dyn_cast<DependentNameType>(this))
2714  Keyword = DepName->getKeyword();
2715  else if (const auto *DepTST =
2716  dyn_cast<DependentTemplateSpecializationType>(this))
2717  Keyword = DepTST->getKeyword();
2718  else
2719  return false;
2720 
2721  return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
2722 }
2723 
2724 const char *Type::getTypeClassName() const {
2725  switch (TypeBits.TC) {
2726 #define ABSTRACT_TYPE(Derived, Base)
2727 #define TYPE(Derived, Base) case Derived: return #Derived;
2728 #include "clang/AST/TypeNodes.def"
2729  }
2730 
2731  llvm_unreachable("Invalid type class.");
2732 }
2733 
2734 StringRef BuiltinType::getName(const PrintingPolicy &Policy) const {
2735  switch (getKind()) {
2736  case Void:
2737  return "void";
2738  case Bool:
2739  return Policy.Bool ? "bool" : "_Bool";
2740  case Char_S:
2741  return "char";
2742  case Char_U:
2743  return "char";
2744  case SChar:
2745  return "signed char";
2746  case Short:
2747  return "short";
2748  case Int:
2749  return "int";
2750  case Long:
2751  return "long";
2752  case LongLong:
2753  return "long long";
2754  case Int128:
2755  return "__int128";
2756  case UChar:
2757  return "unsigned char";
2758  case UShort:
2759  return "unsigned short";
2760  case UInt:
2761  return "unsigned int";
2762  case ULong:
2763  return "unsigned long";
2764  case ULongLong:
2765  return "unsigned long long";
2766  case UInt128:
2767  return "unsigned __int128";
2768  case Half:
2769  return Policy.Half ? "half" : "__fp16";
2770  case Float:
2771  return "float";
2772  case Double:
2773  return "double";
2774  case LongDouble:
2775  return "long double";
2776  case ShortAccum:
2777  return "short _Accum";
2778  case Accum:
2779  return "_Accum";
2780  case LongAccum:
2781  return "long _Accum";
2782  case UShortAccum:
2783  return "unsigned short _Accum";
2784  case UAccum:
2785  return "unsigned _Accum";
2786  case ULongAccum:
2787  return "unsigned long _Accum";
2788  case BuiltinType::ShortFract:
2789  return "short _Fract";
2790  case BuiltinType::Fract:
2791  return "_Fract";
2792  case BuiltinType::LongFract:
2793  return "long _Fract";
2794  case BuiltinType::UShortFract:
2795  return "unsigned short _Fract";
2796  case BuiltinType::UFract:
2797  return "unsigned _Fract";
2798  case BuiltinType::ULongFract:
2799  return "unsigned long _Fract";
2800  case BuiltinType::SatShortAccum:
2801  return "_Sat short _Accum";
2802  case BuiltinType::SatAccum:
2803  return "_Sat _Accum";
2804  case BuiltinType::SatLongAccum:
2805  return "_Sat long _Accum";
2806  case BuiltinType::SatUShortAccum:
2807  return "_Sat unsigned short _Accum";
2808  case BuiltinType::SatUAccum:
2809  return "_Sat unsigned _Accum";
2810  case BuiltinType::SatULongAccum:
2811  return "_Sat unsigned long _Accum";
2812  case BuiltinType::SatShortFract:
2813  return "_Sat short _Fract";
2814  case BuiltinType::SatFract:
2815  return "_Sat _Fract";
2816  case BuiltinType::SatLongFract:
2817  return "_Sat long _Fract";
2818  case BuiltinType::SatUShortFract:
2819  return "_Sat unsigned short _Fract";
2820  case BuiltinType::SatUFract:
2821  return "_Sat unsigned _Fract";
2822  case BuiltinType::SatULongFract:
2823  return "_Sat unsigned long _Fract";
2824  case Float16:
2825  return "_Float16";
2826  case Float128:
2827  return "__float128";
2828  case WChar_S:
2829  case WChar_U:
2830  return Policy.MSWChar ? "__wchar_t" : "wchar_t";
2831  case Char8:
2832  return "char8_t";
2833  case Char16:
2834  return "char16_t";
2835  case Char32:
2836  return "char32_t";
2837  case NullPtr:
2838  return "nullptr_t";
2839  case Overload:
2840  return "<overloaded function type>";
2841  case BoundMember:
2842  return "<bound member function type>";
2843  case PseudoObject:
2844  return "<pseudo-object type>";
2845  case Dependent:
2846  return "<dependent type>";
2847  case UnknownAny:
2848  return "<unknown type>";
2849  case ARCUnbridgedCast:
2850  return "<ARC unbridged cast type>";
2851  case BuiltinFn:
2852  return "<builtin fn type>";
2853  case ObjCId:
2854  return "id";
2855  case ObjCClass:
2856  return "Class";
2857  case ObjCSel:
2858  return "SEL";
2859 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2860  case Id: \
2861  return "__" #Access " " #ImgType "_t";
2862 #include "clang/Basic/OpenCLImageTypes.def"
2863  case OCLSampler:
2864  return "sampler_t";
2865  case OCLEvent:
2866  return "event_t";
2867  case OCLClkEvent:
2868  return "clk_event_t";
2869  case OCLQueue:
2870  return "queue_t";
2871  case OCLReserveID:
2872  return "reserve_id_t";
2873  case OMPArraySection:
2874  return "<OpenMP array section type>";
2875 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2876  case Id: \
2877  return #ExtType;
2878 #include "clang/Basic/OpenCLExtensionTypes.def"
2879  }
2880 
2881  llvm_unreachable("Invalid builtin type.");
2882 }
2883 
2885  if (const auto *RefType = getTypePtr()->getAs<ReferenceType>())
2886  return RefType->getPointeeType();
2887 
2888  // C++0x [basic.lval]:
2889  // Class prvalues can have cv-qualified types; non-class prvalues always
2890  // have cv-unqualified types.
2891  //
2892  // See also C99 6.3.2.1p2.
2893  if (!Context.getLangOpts().CPlusPlus ||
2894  (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
2895  return getUnqualifiedType();
2896 
2897  return *this;
2898 }
2899 
2901  switch (CC) {
2902  case CC_C: return "cdecl";
2903  case CC_X86StdCall: return "stdcall";
2904  case CC_X86FastCall: return "fastcall";
2905  case CC_X86ThisCall: return "thiscall";
2906  case CC_X86Pascal: return "pascal";
2907  case CC_X86VectorCall: return "vectorcall";
2908  case CC_Win64: return "ms_abi";
2909  case CC_X86_64SysV: return "sysv_abi";
2910  case CC_X86RegCall : return "regcall";
2911  case CC_AAPCS: return "aapcs";
2912  case CC_AAPCS_VFP: return "aapcs-vfp";
2913  case CC_AArch64VectorCall: return "aarch64_vector_pcs";
2914  case CC_IntelOclBicc: return "intel_ocl_bicc";
2915  case CC_SpirFunction: return "spir_function";
2916  case CC_OpenCLKernel: return "opencl_kernel";
2917  case CC_Swift: return "swiftcall";
2918  case CC_PreserveMost: return "preserve_most";
2919  case CC_PreserveAll: return "preserve_all";
2920  }
2921 
2922  llvm_unreachable("Invalid calling convention.");
2923 }
2924 
2925 FunctionProtoType::FunctionProtoType(QualType result, ArrayRef<QualType> params,
2926  QualType canonical,
2927  const ExtProtoInfo &epi)
2928  : FunctionType(FunctionProto, result, canonical, result->isDependentType(),
2929  result->isInstantiationDependentType(),
2930  result->isVariablyModifiedType(),
2931  result->containsUnexpandedParameterPack(), epi.ExtInfo) {
2932  FunctionTypeBits.FastTypeQuals = epi.TypeQuals.getFastQualifiers();
2933  FunctionTypeBits.RefQualifier = epi.RefQualifier;
2934  FunctionTypeBits.NumParams = params.size();
2935  assert(getNumParams() == params.size() && "NumParams overflow!");
2936  FunctionTypeBits.ExceptionSpecType = epi.ExceptionSpec.Type;
2937  FunctionTypeBits.HasExtParameterInfos = !!epi.ExtParameterInfos;
2938  FunctionTypeBits.Variadic = epi.Variadic;
2939  FunctionTypeBits.HasTrailingReturn = epi.HasTrailingReturn;
2940 
2941  // Fill in the extra trailing bitfields if present.
2942  if (hasExtraBitfields(epi.ExceptionSpec.Type)) {
2943  auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>();
2944  ExtraBits.NumExceptionType = epi.ExceptionSpec.Exceptions.size();
2945  }
2946 
2947  // Fill in the trailing argument array.
2948  auto *argSlot = getTrailingObjects<QualType>();
2949  for (unsigned i = 0; i != getNumParams(); ++i) {
2950  if (params[i]->isDependentType())
2951  setDependent();
2952  else if (params[i]->isInstantiationDependentType())
2954 
2955  if (params[i]->containsUnexpandedParameterPack())
2957 
2958  argSlot[i] = params[i];
2959  }
2960 
2961  // Fill in the exception type array if present.
2962  if (getExceptionSpecType() == EST_Dynamic) {
2963  assert(hasExtraBitfields() && "missing trailing extra bitfields!");
2964  auto *exnSlot =
2965  reinterpret_cast<QualType *>(getTrailingObjects<ExceptionType>());
2966  unsigned I = 0;
2967  for (QualType ExceptionType : epi.ExceptionSpec.Exceptions) {
2968  // Note that, before C++17, a dependent exception specification does
2969  // *not* make a type dependent; it's not even part of the C++ type
2970  // system.
2971  if (ExceptionType->isInstantiationDependentType())
2973 
2974  if (ExceptionType->containsUnexpandedParameterPack())
2976 
2977  exnSlot[I++] = ExceptionType;
2978  }
2979  }
2980  // Fill in the Expr * in the exception specification if present.
2981  else if (isComputedNoexcept(getExceptionSpecType())) {
2982  assert(epi.ExceptionSpec.NoexceptExpr && "computed noexcept with no expr");
2983  assert((getExceptionSpecType() == EST_DependentNoexcept) ==
2984  epi.ExceptionSpec.NoexceptExpr->isValueDependent());
2985 
2986  // Store the noexcept expression and context.
2987  *getTrailingObjects<Expr *>() = epi.ExceptionSpec.NoexceptExpr;
2988 
2989  if (epi.ExceptionSpec.NoexceptExpr->isValueDependent() ||
2990  epi.ExceptionSpec.NoexceptExpr->isInstantiationDependent())
2992 
2993  if (epi.ExceptionSpec.NoexceptExpr->containsUnexpandedParameterPack())
2995  }
2996  // Fill in the FunctionDecl * in the exception specification if present.
2997  else if (getExceptionSpecType() == EST_Uninstantiated) {
2998  // Store the function decl from which we will resolve our
2999  // exception specification.
3000  auto **slot = getTrailingObjects<FunctionDecl *>();
3001  slot[0] = epi.ExceptionSpec.SourceDecl;
3002  slot[1] = epi.ExceptionSpec.SourceTemplate;
3003  // This exception specification doesn't make the type dependent, because
3004  // it's not instantiated as part of instantiating the type.
3005  } else if (getExceptionSpecType() == EST_Unevaluated) {
3006  // Store the function decl from which we will resolve our
3007  // exception specification.
3008  auto **slot = getTrailingObjects<FunctionDecl *>();
3009  slot[0] = epi.ExceptionSpec.SourceDecl;
3010  }
3011 
3012  // If this is a canonical type, and its exception specification is dependent,
3013  // then it's a dependent type. This only happens in C++17 onwards.
3014  if (isCanonicalUnqualified()) {
3015  if (getExceptionSpecType() == EST_Dynamic ||
3016  getExceptionSpecType() == EST_DependentNoexcept) {
3017  assert(hasDependentExceptionSpec() && "type should not be canonical");
3018  setDependent();
3019  }
3020  } else if (getCanonicalTypeInternal()->isDependentType()) {
3021  // Ask our canonical type whether our exception specification was dependent.
3022  setDependent();
3023  }
3024 
3025  // Fill in the extra parameter info if present.
3026  if (epi.ExtParameterInfos) {
3027  auto *extParamInfos = getTrailingObjects<ExtParameterInfo>();
3028  for (unsigned i = 0; i != getNumParams(); ++i)
3029  extParamInfos[i] = epi.ExtParameterInfos[i];
3030  }
3031 
3032  if (epi.TypeQuals.hasNonFastQualifiers()) {
3033  FunctionTypeBits.HasExtQuals = 1;
3034  *getTrailingObjects<Qualifiers>() = epi.TypeQuals;
3035  } else {
3036  FunctionTypeBits.HasExtQuals = 0;
3037  }
3038 }
3039 
3041  if (Expr *NE = getNoexceptExpr())
3042  return NE->isValueDependent();
3043  for (QualType ET : exceptions())
3044  // A pack expansion with a non-dependent pattern is still dependent,
3045  // because we don't know whether the pattern is in the exception spec
3046  // or not (that depends on whether the pack has 0 expansions).
3047  if (ET->isDependentType() || ET->getAs<PackExpansionType>())
3048  return true;
3049  return false;
3050 }
3051 
3053  if (Expr *NE = getNoexceptExpr())
3054  return NE->isInstantiationDependent();
3055  for (QualType ET : exceptions())
3056  if (ET->isInstantiationDependentType())
3057  return true;
3058  return false;
3059 }
3060 
3062  switch (getExceptionSpecType()) {
3063  case EST_Unparsed:
3064  case EST_Unevaluated:
3065  case EST_Uninstantiated:
3066  llvm_unreachable("should not call this with unresolved exception specs");
3067 
3068  case EST_DynamicNone:
3069  case EST_BasicNoexcept:
3070  case EST_NoexceptTrue:
3071  return CT_Cannot;
3072 
3073  case EST_None:
3074  case EST_MSAny:
3075  case EST_NoexceptFalse:
3076  return CT_Can;
3077 
3078  case EST_Dynamic:
3079  // A dynamic exception specification is throwing unless every exception
3080  // type is an (unexpanded) pack expansion type.
3081  for (unsigned I = 0; I != getNumExceptions(); ++I)
3082  if (!getExceptionType(I)->getAs<PackExpansionType>())
3083  return CT_Can;
3084  return CT_Dependent;
3085 
3086  case EST_DependentNoexcept:
3087  return CT_Dependent;
3088  }
3089 
3090  llvm_unreachable("unexpected exception specification kind");
3091 }
3092 
3094  for (unsigned ArgIdx = getNumParams(); ArgIdx; --ArgIdx)
3095  if (isa<PackExpansionType>(getParamType(ArgIdx - 1)))
3096  return true;
3097 
3098  return false;
3099 }
3100 
3101 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3102  const QualType *ArgTys, unsigned NumParams,
3103  const ExtProtoInfo &epi,
3104  const ASTContext &Context, bool Canonical) {
3105  // We have to be careful not to get ambiguous profile encodings.
3106  // Note that valid type pointers are never ambiguous with anything else.
3107  //
3108  // The encoding grammar begins:
3109  // type type* bool int bool
3110  // If that final bool is true, then there is a section for the EH spec:
3111  // bool type*
3112  // This is followed by an optional "consumed argument" section of the
3113  // same length as the first type sequence:
3114  // bool*
3115  // Finally, we have the ext info and trailing return type flag:
3116  // int bool
3117  //
3118  // There is no ambiguity between the consumed arguments and an empty EH
3119  // spec because of the leading 'bool' which unambiguously indicates
3120  // whether the following bool is the EH spec or part of the arguments.
3121 
3122  ID.AddPointer(Result.getAsOpaquePtr());
3123  for (unsigned i = 0; i != NumParams; ++i)
3124  ID.AddPointer(ArgTys[i].getAsOpaquePtr());
3125  // This method is relatively performance sensitive, so as a performance
3126  // shortcut, use one AddInteger call instead of four for the next four
3127  // fields.
3128  assert(!(unsigned(epi.Variadic) & ~1) &&
3129  !(unsigned(epi.RefQualifier) & ~3) &&
3130  !(unsigned(epi.ExceptionSpec.Type) & ~15) &&
3131  "Values larger than expected.");
3132  ID.AddInteger(unsigned(epi.Variadic) +
3133  (epi.RefQualifier << 1) +
3134  (epi.ExceptionSpec.Type << 3));
3135  ID.Add(epi.TypeQuals);
3136  if (epi.ExceptionSpec.Type == EST_Dynamic) {
3137  for (QualType Ex : epi.ExceptionSpec.Exceptions)
3138  ID.AddPointer(Ex.getAsOpaquePtr());
3139  } else if (isComputedNoexcept(epi.ExceptionSpec.Type)) {
3140  epi.ExceptionSpec.NoexceptExpr->Profile(ID, Context, Canonical);
3141  } else if (epi.ExceptionSpec.Type == EST_Uninstantiated ||
3143  ID.AddPointer(epi.ExceptionSpec.SourceDecl->getCanonicalDecl());
3144  }
3145  if (epi.ExtParameterInfos) {
3146  for (unsigned i = 0; i != NumParams; ++i)
3147  ID.AddInteger(epi.ExtParameterInfos[i].getOpaqueValue());
3148  }
3149  epi.ExtInfo.Profile(ID);
3150  ID.AddBoolean(epi.HasTrailingReturn);
3151 }
3152 
3153 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
3154  const ASTContext &Ctx) {
3155  Profile(ID, getReturnType(), param_type_begin(), getNumParams(),
3156  getExtProtoInfo(), Ctx, isCanonicalUnqualified());
3157 }
3158 
3160  return getDecl()->getUnderlyingType();
3161 }
3162 
3164  : Type(TypeOfExpr, can, E->isTypeDependent(),
3165  E->isInstantiationDependent(),
3166  E->getType()->isVariablyModifiedType(),
3168  TOExpr(E) {}
3169 
3171  return !TOExpr->isTypeDependent();
3172 }
3173 
3175  if (isSugared())
3176  return getUnderlyingExpr()->getType();
3177 
3178  return QualType(this, 0);
3179 }
3180 
3181 void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
3182  const ASTContext &Context, Expr *E) {
3183  E->Profile(ID, Context, true);
3184 }
3185 
3187  // C++11 [temp.type]p2: "If an expression e involves a template parameter,
3188  // decltype(e) denotes a unique dependent type." Hence a decltype type is
3189  // type-dependent even if its expression is only instantiation-dependent.
3190  : Type(Decltype, can, E->isInstantiationDependent(),
3191  E->isInstantiationDependent(),
3192  E->getType()->isVariablyModifiedType(),
3194  E(E), UnderlyingType(underlyingType) {}
3195 
3197 
3199  if (isSugared())
3200  return getUnderlyingType();
3201 
3202  return QualType(this, 0);
3203 }
3204 
3206  : DecltypeType(E, Context.DependentTy), Context(Context) {}
3207 
3208 void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
3209  const ASTContext &Context, Expr *E) {
3210  E->Profile(ID, Context, true);
3211 }
3212 
3214  QualType UnderlyingType,
3215  UTTKind UKind,
3216  QualType CanonicalType)
3217  : Type(UnaryTransform, CanonicalType, BaseType->isDependentType(),
3218  BaseType->isInstantiationDependentType(),
3219  BaseType->isVariablyModifiedType(),
3220  BaseType->containsUnexpandedParameterPack()),
3221  BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind) {}
3222 
3224  QualType BaseType,
3225  UTTKind UKind)
3226  : UnaryTransformType(BaseType, C.DependentTy, UKind, QualType()) {}
3227 
3229  : Type(TC, can, D->isDependentType(),
3230  /*InstantiationDependent=*/D->isDependentType(),
3231  /*VariablyModified=*/false,
3232  /*ContainsUnexpandedParameterPack=*/false),
3233  decl(const_cast<TagDecl*>(D)) {}
3234 
3236  for (auto I : decl->redecls()) {
3237  if (I->isCompleteDefinition() || I->isBeingDefined())
3238  return I;
3239  }
3240  // If there's no definition (not even in progress), return what we have.
3241  return decl;
3242 }
3243 
3245  return getInterestingTagDecl(decl);
3246 }
3247 
3249  return getDecl()->isBeingDefined();
3250 }
3251 
3253  std::vector<const RecordType*> RecordTypeList;
3254  RecordTypeList.push_back(this);
3255  unsigned NextToCheckIndex = 0;
3256 
3257  while (RecordTypeList.size() > NextToCheckIndex) {
3258  for (FieldDecl *FD :
3259  RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
3260  QualType FieldTy = FD->getType();
3261  if (FieldTy.isConstQualified())
3262  return true;
3263  FieldTy = FieldTy.getCanonicalType();
3264  if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
3265  if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
3266  RecordTypeList.push_back(FieldRecTy);
3267  }
3268  }
3269  ++NextToCheckIndex;
3270  }
3271  return false;
3272 }
3273 
3275  // FIXME: Generate this with TableGen.
3276  switch (getAttrKind()) {
3277  // These are type qualifiers in the traditional C sense: they annotate
3278  // something about a specific value/variable of a type. (They aren't
3279  // always part of the canonical type, though.)
3280  case attr::ObjCGC:
3281  case attr::ObjCOwnership:
3282  case attr::ObjCInertUnsafeUnretained:
3283  case attr::TypeNonNull:
3284  case attr::TypeNullable:
3285  case attr::TypeNullUnspecified:
3286  case attr::LifetimeBound:
3287  case attr::AddressSpace:
3288  return true;
3289 
3290  // All other type attributes aren't qualifiers; they rewrite the modified
3291  // type to be a semantically different type.
3292  default:
3293  return false;
3294  }
3295 }
3296 
3298  // FIXME: Generate this with TableGen?
3299  switch (getAttrKind()) {
3300  default: return false;
3301  case attr::Ptr32:
3302  case attr::Ptr64:
3303  case attr::SPtr:
3304  case attr::UPtr:
3305  return true;
3306  }
3307  llvm_unreachable("invalid attr kind");
3308 }
3309 
3311  // FIXME: Generate this with TableGen.
3312  switch (getAttrKind()) {
3313  default: return false;
3314  case attr::Pcs:
3315  case attr::CDecl:
3316  case attr::FastCall:
3317  case attr::StdCall:
3318  case attr::ThisCall:
3319  case attr::RegCall:
3320  case attr::SwiftCall:
3321  case attr::VectorCall:
3322  case attr::AArch64VectorPcs:
3323  case attr::Pascal:
3324  case attr::MSABI:
3325  case attr::SysVABI:
3326  case attr::IntelOclBicc:
3327  case attr::PreserveMost:
3328  case attr::PreserveAll:
3329  return true;
3330  }
3331  llvm_unreachable("invalid attr kind");
3332 }
3333 
3335  return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
3336 }
3337 
3339  return isCanonicalUnqualified() ? nullptr : getDecl()->getIdentifier();
3340 }
3341 
3342 SubstTemplateTypeParmPackType::
3343 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3344  QualType Canon,
3345  const TemplateArgument &ArgPack)
3346  : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
3347  Replaced(Param), Arguments(ArgPack.pack_begin()) {
3348  SubstTemplateTypeParmPackTypeBits.NumArgs = ArgPack.pack_size();
3349 }
3350 
3352  return TemplateArgument(llvm::makeArrayRef(Arguments, getNumArgs()));
3353 }
3354 
3355 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
3356  Profile(ID, getReplacedParameter(), getArgumentPack());
3357 }
3358 
3359 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
3360  const TemplateTypeParmType *Replaced,
3361  const TemplateArgument &ArgPack) {
3362  ID.AddPointer(Replaced);
3363  ID.AddInteger(ArgPack.pack_size());
3364  for (const auto &P : ArgPack.pack_elements())
3365  ID.AddPointer(P.getAsType().getAsOpaquePtr());
3366 }
3367 
3370  bool &InstantiationDependent) {
3371  return anyDependentTemplateArguments(Args.arguments(),
3372  InstantiationDependent);
3373 }
3374 
3377  bool &InstantiationDependent) {
3378  for (const TemplateArgumentLoc &ArgLoc : Args) {
3379  if (ArgLoc.getArgument().isDependent()) {
3380  InstantiationDependent = true;
3381  return true;
3382  }
3383 
3384  if (ArgLoc.getArgument().isInstantiationDependent())
3385  InstantiationDependent = true;
3386  }
3387  return false;
3388 }
3389 
3390 TemplateSpecializationType::
3391 TemplateSpecializationType(TemplateName T,
3393  QualType Canon, QualType AliasedType)
3394  : Type(TemplateSpecialization,
3395  Canon.isNull()? QualType(this, 0) : Canon,
3396  Canon.isNull()? true : Canon->isDependentType(),
3397  Canon.isNull()? true : Canon->isInstantiationDependentType(),
3398  false,
3399  T.containsUnexpandedParameterPack()), Template(T) {
3400  TemplateSpecializationTypeBits.NumArgs = Args.size();
3401  TemplateSpecializationTypeBits.TypeAlias = !AliasedType.isNull();
3402 
3403  assert(!T.getAsDependentTemplateName() &&
3404  "Use DependentTemplateSpecializationType for dependent template-name");
3405  assert((T.getKind() == TemplateName::Template ||
3408  "Unexpected template name for TemplateSpecializationType");
3409 
3410  auto *TemplateArgs = reinterpret_cast<TemplateArgument *>(this + 1);
3411  for (const TemplateArgument &Arg : Args) {
3412  // Update instantiation-dependent and variably-modified bits.
3413  // If the canonical type exists and is non-dependent, the template
3414  // specialization type can be non-dependent even if one of the type
3415  // arguments is. Given:
3416  // template<typename T> using U = int;
3417  // U<T> is always non-dependent, irrespective of the type T.
3418  // However, U<Ts> contains an unexpanded parameter pack, even though
3419  // its expansion (and thus its desugared type) doesn't.
3420  if (Arg.isInstantiationDependent())
3422  if (Arg.getKind() == TemplateArgument::Type &&
3423  Arg.getAsType()->isVariablyModifiedType())
3425  if (Arg.containsUnexpandedParameterPack())
3427  new (TemplateArgs++) TemplateArgument(Arg);
3428  }
3429 
3430  // Store the aliased type if this is a type alias template specialization.
3431  if (isTypeAlias()) {
3432  auto *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
3433  *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
3434  }
3435 }
3436 
3437 void
3438 TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
3439  TemplateName T,
3441  const ASTContext &Context) {
3442  T.Profile(ID);
3443  for (const TemplateArgument &Arg : Args)
3444  Arg.Profile(ID, Context);
3445 }
3446 
3447 QualType
3448 QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
3449  if (!hasNonFastQualifiers())
3450  return QT.withFastQualifiers(getFastQualifiers());
3451 
3452  return Context.getQualifiedType(QT, *this);
3453 }
3454 
3455 QualType
3456 QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
3457  if (!hasNonFastQualifiers())
3458  return QualType(T, getFastQualifiers());
3459 
3460  return Context.getQualifiedType(T, *this);
3461 }
3462 
3463 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
3464  QualType BaseType,
3465  ArrayRef<QualType> typeArgs,
3466  ArrayRef<ObjCProtocolDecl *> protocols,
3467  bool isKindOf) {
3468  ID.AddPointer(BaseType.getAsOpaquePtr());
3469  ID.AddInteger(typeArgs.size());
3470  for (auto typeArg : typeArgs)
3471  ID.AddPointer(typeArg.getAsOpaquePtr());
3472  ID.AddInteger(protocols.size());
3473  for (auto proto : protocols)
3474  ID.AddPointer(proto);
3475  ID.AddBoolean(isKindOf);
3476 }
3477 
3478 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
3479  Profile(ID, getBaseType(), getTypeArgsAsWritten(),
3480  llvm::makeArrayRef(qual_begin(), getNumProtocols()),
3481  isKindOfTypeAsWritten());
3482 }
3483 
3484 void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID,
3485  const ObjCTypeParamDecl *OTPDecl,
3486  ArrayRef<ObjCProtocolDecl *> protocols) {
3487  ID.AddPointer(OTPDecl);
3488  ID.AddInteger(protocols.size());
3489  for (auto proto : protocols)
3490  ID.AddPointer(proto);
3491 }
3492 
3493 void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID) {
3494  Profile(ID, getDecl(),
3495  llvm::makeArrayRef(qual_begin(), getNumProtocols()));
3496 }
3497 
3498 namespace {
3499 
3500 /// The cached properties of a type.
3501 class CachedProperties {
3502  Linkage L;
3503  bool local;
3504 
3505 public:
3506  CachedProperties(Linkage L, bool local) : L(L), local(local) {}
3507 
3508  Linkage getLinkage() const { return L; }
3509  bool hasLocalOrUnnamedType() const { return local; }
3510 
3511  friend CachedProperties merge(CachedProperties L, CachedProperties R) {
3512  Linkage MergedLinkage = minLinkage(L.L, R.L);
3513  return CachedProperties(MergedLinkage,
3514  L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
3515  }
3516 };
3517 
3518 } // namespace
3519 
3520 static CachedProperties computeCachedProperties(const Type *T);
3521 
3522 namespace clang {
3523 
3524 /// The type-property cache. This is templated so as to be
3525 /// instantiated at an internal type to prevent unnecessary symbol
3526 /// leakage.
3527 template <class Private> class TypePropertyCache {
3528 public:
3529  static CachedProperties get(QualType T) {
3530  return get(T.getTypePtr());
3531  }
3532 
3533  static CachedProperties get(const Type *T) {
3534  ensure(T);
3535  return CachedProperties(T->TypeBits.getLinkage(),
3536  T->TypeBits.hasLocalOrUnnamedType());
3537  }
3538 
3539  static void ensure(const Type *T) {
3540  // If the cache is valid, we're okay.
3541  if (T->TypeBits.isCacheValid()) return;
3542 
3543  // If this type is non-canonical, ask its canonical type for the
3544  // relevant information.
3545  if (!T->isCanonicalUnqualified()) {
3546  const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
3547  ensure(CT);
3548  T->TypeBits.CacheValid = true;
3549  T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
3550  T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
3551  return;
3552  }
3553 
3554  // Compute the cached properties and then set the cache.
3555  CachedProperties Result = computeCachedProperties(T);
3556  T->TypeBits.CacheValid = true;
3557  T->TypeBits.CachedLinkage = Result.getLinkage();
3558  T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
3559  }
3560 };
3561 
3562 } // namespace clang
3563 
3564 // Instantiate the friend template at a private class. In a
3565 // reasonable implementation, these symbols will be internal.
3566 // It is terrible that this is the best way to accomplish this.
3567 namespace {
3568 
3569 class Private {};
3570 
3571 } // namespace
3572 
3574 
3575 static CachedProperties computeCachedProperties(const Type *T) {
3576  switch (T->getTypeClass()) {
3577 #define TYPE(Class,Base)
3578 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
3579 #include "clang/AST/TypeNodes.def"
3580  llvm_unreachable("didn't expect a non-canonical type here");
3581 
3582 #define TYPE(Class,Base)
3583 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
3584 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
3585 #include "clang/AST/TypeNodes.def"
3586  // Treat instantiation-dependent types as external.
3587  assert(T->isInstantiationDependentType());
3588  return CachedProperties(ExternalLinkage, false);
3589 
3590  case Type::Auto:
3591  case Type::DeducedTemplateSpecialization:
3592  // Give non-deduced 'auto' types external linkage. We should only see them
3593  // here in error recovery.
3594  return CachedProperties(ExternalLinkage, false);
3595 
3596  case Type::Builtin:
3597  // C++ [basic.link]p8:
3598  // A type is said to have linkage if and only if:
3599  // - it is a fundamental type (3.9.1); or
3600  return CachedProperties(ExternalLinkage, false);
3601 
3602  case Type::Record:
3603  case Type::Enum: {
3604  const TagDecl *Tag = cast<TagType>(T)->getDecl();
3605 
3606  // C++ [basic.link]p8:
3607  // - it is a class or enumeration type that is named (or has a name
3608  // for linkage purposes (7.1.3)) and the name has linkage; or
3609  // - it is a specialization of a class template (14); or
3610  Linkage L = Tag->getLinkageInternal();
3611  bool IsLocalOrUnnamed =
3612  Tag->getDeclContext()->isFunctionOrMethod() ||
3613  !Tag->hasNameForLinkage();
3614  return CachedProperties(L, IsLocalOrUnnamed);
3615  }
3616 
3617  // C++ [basic.link]p8:
3618  // - it is a compound type (3.9.2) other than a class or enumeration,
3619  // compounded exclusively from types that have linkage; or
3620  case Type::Complex:
3621  return Cache::get(cast<ComplexType>(T)->getElementType());
3622  case Type::Pointer:
3623  return Cache::get(cast<PointerType>(T)->getPointeeType());
3624  case Type::BlockPointer:
3625  return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
3626  case Type::LValueReference:
3627  case Type::RValueReference:
3628  return Cache::get(cast<ReferenceType>(T)->getPointeeType());
3629  case Type::MemberPointer: {
3630  const auto *MPT = cast<MemberPointerType>(T);
3631  return merge(Cache::get(MPT->getClass()),
3632  Cache::get(MPT->getPointeeType()));
3633  }
3634  case Type::ConstantArray:
3635  case Type::IncompleteArray:
3636  case Type::VariableArray:
3637  return Cache::get(cast<ArrayType>(T)->getElementType());
3638  case Type::Vector:
3639  case Type::ExtVector:
3640  return Cache::get(cast<VectorType>(T)->getElementType());
3641  case Type::FunctionNoProto:
3642  return Cache::get(cast<FunctionType>(T)->getReturnType());
3643  case Type::FunctionProto: {
3644  const auto *FPT = cast<FunctionProtoType>(T);
3645  CachedProperties result = Cache::get(FPT->getReturnType());
3646  for (const auto &ai : FPT->param_types())
3647  result = merge(result, Cache::get(ai));
3648  return result;
3649  }
3650  case Type::ObjCInterface: {
3651  Linkage L = cast<ObjCInterfaceType>(T)->getDecl()->getLinkageInternal();
3652  return CachedProperties(L, false);
3653  }
3654  case Type::ObjCObject:
3655  return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
3656  case Type::ObjCObjectPointer:
3657  return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
3658  case Type::Atomic:
3659  return Cache::get(cast<AtomicType>(T)->getValueType());
3660  case Type::Pipe:
3661  return Cache::get(cast<PipeType>(T)->getElementType());
3662  }
3663 
3664  llvm_unreachable("unhandled type class");
3665 }
3666 
3667 /// Determine the linkage of this type.
3669  Cache::ensure(this);
3670  return TypeBits.getLinkage();
3671 }
3672 
3674  Cache::ensure(this);
3675  return TypeBits.hasLocalOrUnnamedType();
3676 }
3677 
3679  switch (T->getTypeClass()) {
3680 #define TYPE(Class,Base)
3681 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
3682 #include "clang/AST/TypeNodes.def"
3683  llvm_unreachable("didn't expect a non-canonical type here");
3684 
3685 #define TYPE(Class,Base)
3686 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
3687 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
3688 #include "clang/AST/TypeNodes.def"
3689  // Treat instantiation-dependent types as external.
3690  assert(T->isInstantiationDependentType());
3691  return LinkageInfo::external();
3692 
3693  case Type::Builtin:
3694  return LinkageInfo::external();
3695 
3696  case Type::Auto:
3697  case Type::DeducedTemplateSpecialization:
3698  return LinkageInfo::external();
3699 
3700  case Type::Record:
3701  case Type::Enum:
3702  return getDeclLinkageAndVisibility(cast<TagType>(T)->getDecl());
3703 
3704  case Type::Complex:
3705  return computeTypeLinkageInfo(cast<ComplexType>(T)->getElementType());
3706  case Type::Pointer:
3707  return computeTypeLinkageInfo(cast<PointerType>(T)->getPointeeType());
3708  case Type::BlockPointer:
3709  return computeTypeLinkageInfo(cast<BlockPointerType>(T)->getPointeeType());
3710  case Type::LValueReference:
3711  case Type::RValueReference:
3712  return computeTypeLinkageInfo(cast<ReferenceType>(T)->getPointeeType());
3713  case Type::MemberPointer: {
3714  const auto *MPT = cast<MemberPointerType>(T);
3715  LinkageInfo LV = computeTypeLinkageInfo(MPT->getClass());
3716  LV.merge(computeTypeLinkageInfo(MPT->getPointeeType()));
3717  return LV;
3718  }
3719  case Type::ConstantArray:
3720  case Type::IncompleteArray:
3721  case Type::VariableArray:
3722  return computeTypeLinkageInfo(cast<ArrayType>(T)->getElementType());
3723  case Type::Vector:
3724  case Type::ExtVector:
3725  return computeTypeLinkageInfo(cast<VectorType>(T)->getElementType());
3726  case Type::FunctionNoProto:
3727  return computeTypeLinkageInfo(cast<FunctionType>(T)->getReturnType());
3728  case Type::FunctionProto: {
3729  const auto *FPT = cast<FunctionProtoType>(T);
3730  LinkageInfo LV = computeTypeLinkageInfo(FPT->getReturnType());
3731  for (const auto &ai : FPT->param_types())
3732  LV.merge(computeTypeLinkageInfo(ai));
3733  return LV;
3734  }
3735  case Type::ObjCInterface:
3736  return getDeclLinkageAndVisibility(cast<ObjCInterfaceType>(T)->getDecl());
3737  case Type::ObjCObject:
3738  return computeTypeLinkageInfo(cast<ObjCObjectType>(T)->getBaseType());
3739  case Type::ObjCObjectPointer:
3740  return computeTypeLinkageInfo(
3741  cast<ObjCObjectPointerType>(T)->getPointeeType());
3742  case Type::Atomic:
3743  return computeTypeLinkageInfo(cast<AtomicType>(T)->getValueType());
3744  case Type::Pipe:
3745  return computeTypeLinkageInfo(cast<PipeType>(T)->getElementType());
3746  }
3747 
3748  llvm_unreachable("unhandled type class");
3749 }
3750 
3751 bool Type::isLinkageValid() const {
3752  if (!TypeBits.isCacheValid())
3753  return true;
3754 
3755  Linkage L = LinkageComputer{}
3757  .getLinkage();
3758  return L == TypeBits.getLinkage();
3759 }
3760 
3762  if (!T->isCanonicalUnqualified())
3763  return computeTypeLinkageInfo(T->getCanonicalTypeInternal());
3764 
3765  LinkageInfo LV = computeTypeLinkageInfo(T);
3766  assert(LV.getLinkage() == T->getLinkage());
3767  return LV;
3768 }
3769 
3772 }
3773 
3775 Type::getNullability(const ASTContext &Context) const {
3776  QualType Type(this, 0);
3777  while (const auto *AT = Type->getAs<AttributedType>()) {
3778  // Check whether this is an attributed type with nullability
3779  // information.
3780  if (auto Nullability = AT->getImmediateNullability())
3781  return Nullability;
3782 
3783  Type = AT->getEquivalentType();
3784  }
3785  return None;
3786 }
3787 
3788 bool Type::canHaveNullability(bool ResultIfUnknown) const {
3790 
3791  switch (type->getTypeClass()) {
3792  // We'll only see canonical types here.
3793 #define NON_CANONICAL_TYPE(Class, Parent) \
3794  case Type::Class: \
3795  llvm_unreachable("non-canonical type");
3796 #define TYPE(Class, Parent)
3797 #include "clang/AST/TypeNodes.def"
3798 
3799  // Pointer types.
3800  case Type::Pointer:
3801  case Type::BlockPointer:
3802  case Type::MemberPointer:
3803  case Type::ObjCObjectPointer:
3804  return true;
3805 
3806  // Dependent types that could instantiate to pointer types.
3807  case Type::UnresolvedUsing:
3808  case Type::TypeOfExpr:
3809  case Type::TypeOf:
3810  case Type::Decltype:
3811  case Type::UnaryTransform:
3812  case Type::TemplateTypeParm:
3813  case Type::SubstTemplateTypeParmPack:
3814  case Type::DependentName:
3815  case Type::DependentTemplateSpecialization:
3816  case Type::Auto:
3817  return ResultIfUnknown;
3818 
3819  // Dependent template specializations can instantiate to pointer
3820  // types unless they're known to be specializations of a class
3821  // template.
3822  case Type::TemplateSpecialization:
3823  if (TemplateDecl *templateDecl
3824  = cast<TemplateSpecializationType>(type.getTypePtr())
3825  ->getTemplateName().getAsTemplateDecl()) {
3826  if (isa<ClassTemplateDecl>(templateDecl))
3827  return false;
3828  }
3829  return ResultIfUnknown;
3830 
3831  case Type::Builtin:
3832  switch (cast<BuiltinType>(type.getTypePtr())->getKind()) {
3833  // Signed, unsigned, and floating-point types cannot have nullability.
3834 #define SIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
3835 #define UNSIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
3836 #define FLOATING_TYPE(Id, SingletonId) case BuiltinType::Id:
3837 #define BUILTIN_TYPE(Id, SingletonId)
3838 #include "clang/AST/BuiltinTypes.def"
3839  return false;
3840 
3841  // Dependent types that could instantiate to a pointer type.
3842  case BuiltinType::Dependent:
3843  case BuiltinType::Overload:
3844  case BuiltinType::BoundMember:
3845  case BuiltinType::PseudoObject:
3846  case BuiltinType::UnknownAny:
3847  case BuiltinType::ARCUnbridgedCast:
3848  return ResultIfUnknown;
3849 
3850  case BuiltinType::Void:
3851  case BuiltinType::ObjCId:
3852  case BuiltinType::ObjCClass:
3853  case BuiltinType::ObjCSel:
3854 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3855  case BuiltinType::Id:
3856 #include "clang/Basic/OpenCLImageTypes.def"
3857 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3858  case BuiltinType::Id:
3859 #include "clang/Basic/OpenCLExtensionTypes.def"
3860  case BuiltinType::OCLSampler:
3861  case BuiltinType::OCLEvent:
3862  case BuiltinType::OCLClkEvent:
3863  case BuiltinType::OCLQueue:
3864  case BuiltinType::OCLReserveID:
3865  case BuiltinType::BuiltinFn:
3866  case BuiltinType::NullPtr:
3867  case BuiltinType::OMPArraySection:
3868  return false;
3869  }
3870  llvm_unreachable("unknown builtin type");
3871 
3872  // Non-pointer types.
3873  case Type::Complex:
3874  case Type::LValueReference:
3875  case Type::RValueReference:
3876  case Type::ConstantArray:
3877  case Type::IncompleteArray:
3878  case Type::VariableArray:
3879  case Type::DependentSizedArray:
3880  case Type::DependentVector:
3881  case Type::DependentSizedExtVector:
3882  case Type::Vector:
3883  case Type::ExtVector:
3884  case Type::DependentAddressSpace:
3885  case Type::FunctionProto:
3886  case Type::FunctionNoProto:
3887  case Type::Record:
3888  case Type::DeducedTemplateSpecialization:
3889  case Type::Enum:
3890  case Type::InjectedClassName:
3891  case Type::PackExpansion:
3892  case Type::ObjCObject:
3893  case Type::ObjCInterface:
3894  case Type::Atomic:
3895  case Type::Pipe:
3896  return false;
3897  }
3898  llvm_unreachable("bad type kind!");
3899 }
3900 
3903  if (getAttrKind() == attr::TypeNonNull)
3904  return NullabilityKind::NonNull;
3905  if (getAttrKind() == attr::TypeNullable)
3907  if (getAttrKind() == attr::TypeNullUnspecified)
3909  return None;
3910 }
3911 
3913  if (auto attributed = dyn_cast<AttributedType>(T.getTypePtr())) {
3914  if (auto nullability = attributed->getImmediateNullability()) {
3915  T = attributed->getModifiedType();
3916  return nullability;
3917  }
3918  }
3919 
3920  return None;
3921 }
3922 
3924  const auto *objcPtr = getAs<ObjCObjectPointerType>();
3925  if (!objcPtr)
3926  return false;
3927 
3928  if (objcPtr->isObjCIdType()) {
3929  // id is always okay.
3930  return true;
3931  }
3932 
3933  // Blocks are NSObjects.
3934  if (ObjCInterfaceDecl *iface = objcPtr->getInterfaceDecl()) {
3935  if (iface->getIdentifier() != ctx.getNSObjectName())
3936  return false;
3937 
3938  // Continue to check qualifiers, below.
3939  } else if (objcPtr->isObjCQualifiedIdType()) {
3940  // Continue to check qualifiers, below.
3941  } else {
3942  return false;
3943  }
3944 
3945  // Check protocol qualifiers.
3946  for (ObjCProtocolDecl *proto : objcPtr->quals()) {
3947  // Blocks conform to NSObject and NSCopying.
3948  if (proto->getIdentifier() != ctx.getNSObjectName() &&
3949  proto->getIdentifier() != ctx.getNSCopyingName())
3950  return false;
3951  }
3952 
3953  return true;
3954 }
3955 
3959  return Qualifiers::OCL_Strong;
3960 }
3961 
3963  assert(isObjCLifetimeType() &&
3964  "cannot query implicit lifetime for non-inferrable type");
3965 
3966  const Type *canon = getCanonicalTypeInternal().getTypePtr();
3967 
3968  // Walk down to the base type. We don't care about qualifiers for this.
3969  while (const auto *array = dyn_cast<ArrayType>(canon))
3970  canon = array->getElementType().getTypePtr();
3971 
3972  if (const auto *opt = dyn_cast<ObjCObjectPointerType>(canon)) {
3973  // Class and Class<Protocol> don't require retention.
3974  if (opt->getObjectType()->isObjCClass())
3975  return true;
3976  }
3977 
3978  return false;
3979 }
3980 
3982  const Type *cur = this;
3983  while (true) {
3984  if (const auto *typedefType = dyn_cast<TypedefType>(cur))
3985  return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
3986 
3987  // Single-step desugar until we run out of sugar.
3989  if (next.getTypePtr() == cur) return false;
3990  cur = next.getTypePtr();
3991  }
3992 }
3993 
3995  if (const auto *typedefType = dyn_cast<TypedefType>(this))
3996  return typedefType->getDecl()->hasAttr<ObjCIndependentClassAttr>();
3997  return false;
3998 }
3999 
4001  return isObjCObjectPointerType() ||
4002  isBlockPointerType() ||
4004 }
4005 
4007  if (isObjCLifetimeType())
4008  return true;
4009  if (const auto *OPT = getAs<PointerType>())
4010  return OPT->getPointeeType()->isObjCIndirectLifetimeType();
4011  if (const auto *Ref = getAs<ReferenceType>())
4012  return Ref->getPointeeType()->isObjCIndirectLifetimeType();
4013  if (const auto *MemPtr = getAs<MemberPointerType>())
4014  return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
4015  return false;
4016 }
4017 
4018 /// Returns true if objects of this type have lifetime semantics under
4019 /// ARC.
4021  const Type *type = this;
4022  while (const ArrayType *array = type->getAsArrayTypeUnsafe())
4023  type = array->getElementType().getTypePtr();
4024  return type->isObjCRetainableType();
4025 }
4026 
4027 /// Determine whether the given type T is a "bridgable" Objective-C type,
4028 /// which is either an Objective-C object pointer type or an
4031 }
4032 
4033 /// Determine whether the given type T is a "bridgeable" C type.
4035  const auto *Pointer = getAs<PointerType>();
4036  if (!Pointer)
4037  return false;
4038 
4039  QualType Pointee = Pointer->getPointeeType();
4040  return Pointee->isVoidType() || Pointee->isRecordType();
4041 }
4042 
4044  if (!isVariablyModifiedType()) return false;
4045 
4046  if (const auto *ptr = getAs<PointerType>())
4047  return ptr->getPointeeType()->hasSizedVLAType();
4048  if (const auto *ref = getAs<ReferenceType>())
4049  return ref->getPointeeType()->hasSizedVLAType();
4050  if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
4051  if (isa<VariableArrayType>(arr) &&
4052  cast<VariableArrayType>(arr)->getSizeExpr())
4053  return true;
4054 
4055  return arr->getElementType()->hasSizedVLAType();
4056  }
4057 
4058  return false;
4059 }
4060 
4061 QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
4062  switch (type.getObjCLifetime()) {
4063  case Qualifiers::OCL_None:
4066  break;
4067 
4069  return DK_objc_strong_lifetime;
4070  case Qualifiers::OCL_Weak:
4071  return DK_objc_weak_lifetime;
4072  }
4073 
4074  if (const auto *RT =
4076  const RecordDecl *RD = RT->getDecl();
4077  if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4078  /// Check if this is a C++ object with a non-trivial destructor.
4079  if (CXXRD->hasDefinition() && !CXXRD->hasTrivialDestructor())
4080  return DK_cxx_destructor;
4081  } else {
4082  /// Check if this is a C struct that is non-trivial to destroy or an array
4083  /// that contains such a struct.
4085  return DK_nontrivial_c_struct;
4086  }
4087  }
4088 
4089  return DK_none;
4090 }
4091 
4093  return getClass()->getAsCXXRecordDecl()->getMostRecentNonInjectedDecl();
4094 }
4095 
4097  llvm::APSInt Val, unsigned Scale) {
4098  FixedPointSemantics FXSema(Val.getBitWidth(), Scale, Val.isSigned(),
4099  /*isSaturated=*/false,
4100  /*hasUnsignedPadding=*/false);
4101  APFixedPoint(Val, FXSema).toString(Str);
4102 }
DecltypeType(Expr *E, QualType underlyingType, QualType can=QualType())
Definition: Type.cpp:3186
static StringRef getKeywordName(ElaboratedTypeKeyword Keyword)
Definition: Type.cpp:2660
const ObjCInterfaceType * getInterfaceType() const
If this pointer points to an Objective C @interface type, gets the type for that interface.
Definition: Type.cpp:1552
Defines the clang::ASTContext interface.
bool hasDefinition() const
Determine whether this class has been defined.
Definition: DeclObjC.h:1534
bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const
Definition: Type.cpp:2264
QualType getDeducedType() const
Get the type deduced for this placeholder type, or null if it&#39;s either not been deduced or was deduce...
Definition: Type.h:4747
Represents a type that was referred to using an elaborated type keyword, e.g., struct S...
Definition: Type.h:5141
const Type * Ty
The locally-unqualified type.
Definition: Type.h:580
bool isStruct() const
Definition: Decl.h:3248
QualType getObjCObjectType(QualType Base, ObjCProtocolDecl *const *Protocols, unsigned NumProtocols) const
Legacy interface: cannot provide type arguments or __kindof.
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx)
Definition: Type.h:4944
bool hasAttr(attr::Kind AK) const
Determine whether this type had the specified attribute applied to it (looking through top-level type...
Definition: Type.cpp:1652
bool isKindOfTypeAsWritten() const
Whether this is a "__kindof" type as written.
Definition: Type.h:5667
External linkage, which indicates that the entity can be referred to from other translation units...
Definition: Linkage.h:59
bool isStrictSupersetOf(Qualifiers Other) const
Determine whether this set of qualifiers is a strict superset of another set of qualifiers, not considering qualifier compatibility.
Definition: Type.cpp:56
The "enum" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5076
DependentUnaryTransformType(const ASTContext &C, QualType BaseType, UTTKind UKind)
Definition: Type.cpp:3223
void setDependent(bool D=true)
Definition: Type.h:1796
no exception specification
bool isTemplateVariadic() const
Determines whether this function prototype contains a parameter pack at the end.
Definition: Type.cpp:3093
StringRef getName(const PrintingPolicy &Policy) const
Definition: Type.cpp:2734
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2549
ArrayRef< QualType > getTypeArgsAsWritten() const
Retrieve the type arguments of this object type as they were written.
Definition: Type.h:5661
QualType getPointeeType() const
Definition: Type.h:2562
A (possibly-)qualified type.
Definition: Type.h:639
bool isBlockPointerType() const
Definition: Type.h:6316
QualType substObjCTypeArgs(ASTContext &ctx, ArrayRef< QualType > typeArgs, ObjCSubstitutionContext context) const
Substitute type arguments for the Objective-C type parameters used in the subject type...
Definition: Type.cpp:1360
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2123
bool isArrayType() const
Definition: Type.h:6357
bool isUnsignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is unsigned or an enumeration types whose underlying ...
Definition: Type.cpp:1922
static QualType getObjectType(APValue::LValueBase B)
Retrieves the "underlying object type" of the given expression, as used by __builtin_object_size.
QualType getDesugaredType(const ASTContext &Context) const
Return the specified type with any "sugar" removed from the type.
Definition: Type.h:939
PrimitiveDefaultInitializeKind isNonTrivialToPrimitiveDefaultInitialize() const
Functions to query basic properties of non-trivial C struct types.
Definition: Type.cpp:2327
void Profile(llvm::FoldingSetNodeID &ID) const
Definition: Type.h:3587
bool isArithmeticType() const
Definition: Type.cpp:1974
void setInstantiationDependent(bool D=true)
Definition: Type.h:1802
Stmt - This represents one statement.
Definition: Stmt.h:65
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3367
bool isObjCClassOrClassKindOfType() const
Whether the type is Objective-C &#39;Class&#39; or a __kindof type of an Class type, e.g., __kindof Class <NSCopying>.
Definition: Type.cpp:586
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
bool isElaboratedTypeSpecifier() const
Determine wither this type is a C++ elaborated-type-specifier.
Definition: Type.cpp:2709
unsigned MSWChar
When true, print the built-in wchar_t type as __wchar_t.
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:1959
The fixed point semantics work similarly to llvm::fltSemantics.
Definition: FixedPoint.h:33
C Language Family Type Representation.
bool isObjCARCBridgableType() const
Determine whether the given type T is a "bridgable" Objective-C type, which is either an Objective-C ...
Definition: Type.cpp:4029
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.cpp:3355
bool isRecordType() const
Definition: Type.h:6381
QualType getQualifiedType(SplitQualType split) const
Un-split a SplitQualType.
Definition: ASTContext.h:1932
const ObjCObjectType * getAsObjCInterfaceType() const
Definition: Type.cpp:1604
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:87
TagDecl * getDecl() const
Definition: Type.cpp:3244
ObjCObjectTypeBitfields ObjCObjectTypeBits
Definition: Type.h:1720
const RecordType * getAsStructureType() const
Definition: Type.cpp:521
SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits
Definition: Type.h:1725
Defines the C++ template declaration subclasses.
StringRef P
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:4761
QualType desugar() const
Remove a single level of sugar.
Definition: Type.cpp:3198
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx)
Definition: Type.cpp:3153
ObjCTypeParamList * getTypeParamList() const
Retrieve the type parameters of this class.
Definition: DeclObjC.cpp:307
static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag)
Converts a TagTypeKind into an elaborated type keyword.
Definition: Type.cpp:2618
The base class of the type hierarchy.
Definition: Type.h:1414
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2824
bool isObjCBoxableRecordType() const
Definition: Type.cpp:449
const ObjCObjectPointerType * getAsObjCInterfacePointerType() const
Definition: Type.cpp:1612
DependentDecltypeType(const ASTContext &Context, Expr *E)
Definition: Type.cpp:3205
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:689
QualType getValueType() const
Gets the type contained by this atomic type, i.e.
Definition: Type.h:5995
bool isCARCBridgableType() const
Determine whether the given type T is a "bridgeable" C type.
Definition: Type.cpp:4034
bool isUnspecialized() const
Determine whether this object type is "unspecialized", meaning that it has no type arguments...
Definition: Type.h:5650
Linkage getLinkage() const
Determine the linkage of this type.
Definition: Type.cpp:3668
A template template parameter that has been substituted for some other template name.
Definition: TemplateName.h:206
QualType getElementType() const
Definition: Type.h:2859
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3168
const RecordType * getAsUnionType() const
NOTE: getAs*ArrayType are methods on ASTContext.
Definition: Type.cpp:540
QualType withFastQualifiers(unsigned TQs) const
Definition: Type.h:854
static CachedProperties computeCachedProperties(const Type *T)
Definition: Type.cpp:3575
bool isTrivialType(const ASTContext &Context) const
Return true if this is a trivial type per (C++0x [basic.types]p9)
Definition: Type.cpp:2179
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition: Type.cpp:1906
bool isInterface() const
Definition: Decl.h:3249
bool isStructureType() const
Definition: Type.cpp:443
ArrayRef< ObjCProtocolDecl * > getProtocols() const
Retrieve all of the protocol qualifiers.
Definition: Type.h:5469
bool isEnumeralType() const
Definition: Type.h:6385
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6768
The "union" keyword.
Definition: Type.h:5051
Extra information about a function prototype.
Definition: Type.h:3779
const ArrayType * castAsArrayTypeUnsafe() const
A variant of castAs<> for array type which silently discards qualifiers from the outermost type...
Definition: Type.h:6840
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, bool Canonical) const
Produce a unique representation of the given statement.
The "__interface" keyword.
Definition: Type.h:5048
bool isChar32Type() const
Definition: Type.cpp:1837
bool isCallingConv() const
Definition: Type.cpp:3310
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:37
LinkageInfo computeTypeLinkageInfo(const Type *T)
Definition: Type.cpp:3678
Represents the result of substituting a type for a template type parameter.
Definition: Type.h:4615
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:23
noexcept(expression), value-dependent
bool isStandardLayoutType() const
Test if this type is a standard-layout type.
Definition: Type.cpp:2430
The collection of all-type qualifiers we support.
Definition: Type.h:137
bool isVariableArrayType() const
Definition: Type.h:6369
bool isSugared() const
Returns whether this type directly provides sugar.
Definition: Type.cpp:3196
bool hasFloatingRepresentation() const
Determine whether this type has a floating-point representation of some sort, e.g., it is a floating-point type or a vector thereof.
Definition: Type.cpp:1952
bool isClass() const
Definition: Decl.h:3250
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.h:3077
bool canHaveNullability(bool ResultIfUnknown=true) const
Determine whether the given type can have a nullability specifier applied to it, i.e., if it is any kind of pointer type.
Definition: Type.cpp:3788
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Represents a struct/union/class.
Definition: Decl.h:3592
QualType getOriginalType() const
Definition: Type.h:2613
bool isWideCharType() const
Definition: Type.cpp:1818
FunctionType::ExtInfo ExtInfo
Definition: Type.h:3780
bool isComplete() const
Returns true if this can be considered a complete type.
Definition: Decl.h:3533
One of these records is kept for each identifier that is lexed.
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1035
bool isObjCIdOrObjectKindOfType(const ASTContext &ctx, const ObjCObjectType *&bound) const
Whether the type is Objective-C &#39;id&#39; or a __kindof type of an object type, e.g., __kindof NSView * or...
Definition: Type.cpp:560
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
QualType IgnoreParens() const
Returns the specified type after dropping any outer-level parentheses.
Definition: Type.h:958
Represents a class type in Objective C.
Definition: Type.h:5550
bool isObjCIndependentClassType() const
Definition: Type.cpp:3994
QualType getPointeeType() const
Definition: Type.h:2666
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
bool isStdByteType() const
Definition: Type.cpp:2524
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:3907
bool isObjCLifetimeType() const
Returns true if objects of this type have lifetime semantics under ARC.
Definition: Type.cpp:4020
static bool anyDependentTemplateArguments(ArrayRef< TemplateArgumentLoc > Args, bool &InstantiationDependent)
Determine whether any of the given template arguments are dependent.
Definition: Type.cpp:3376
bool isCharType() const
Definition: Type.cpp:1809
bool isSpelledAsLValue() const
Definition: Type.h:2701
field_range fields() const
Definition: Decl.h:3783
Represents a member of a struct/union/class.
Definition: Decl.h:2578
bool isCanonicalUnqualified() const
Determines if this type would be canonical if it had no further qualification.
Definition: Type.h:1846
Defines the ExceptionSpecificationType enumeration and various utility functions. ...
An operation on a type.
Definition: TypeVisitor.h:64
const ObjCObjectPointerType * getAsObjCQualifiedIdType() const
Definition: Type.cpp:1584
bool isReferenceType() const
Definition: Type.h:6320
qual_iterator qual_begin() const
Definition: Type.h:5451
unsigned char getOpaqueValue() const
Definition: Type.h:3442
const AstTypeMatcher< TypedefType > typedefType
Matches typedef types.
unsigned getIndex() const
Retrieve the index into its type parameter list.
Definition: DeclObjC.h:614
const ObjCObjectPointerType * stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const
Strip off the Objective-C "kindof" type and (with it) any protocol qualifiers.
Definition: Type.cpp:717
Values of this type can be null.
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.h:3122
Type(TypeClass tc, QualType canon, bool Dependent, bool InstantiationDependent, bool VariablyModified, bool ContainsUnexpandedParameterPack)
Definition: Type.h:1777
An rvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2750
bool isMSTypeSpec() const
Definition: Type.cpp:3297
const ObjCObjectType * getAsObjCQualifiedInterfaceType() const
Definition: Type.cpp:1570
qual_iterator qual_end() const
Definition: Type.h:5452
bool isCXX11PODType(const ASTContext &Context) const
Return true if this is a POD type according to the more relaxed rules of the C++11 standard...
Definition: Type.cpp:2466
Microsoft throw(...) extension.
A convenient class for passing around template argument information.
Definition: TemplateBase.h:554
ArrayRef< QualType > getTypeArgs() const
Retrieve the type arguments of this object type (semantically).
Definition: Type.cpp:664
bool isTriviallyCopyableType(const ASTContext &Context) const
Return true if this is a trivially copyable type (C++0x [basic.types]p9)
Definition: Type.cpp:2227
bool hasAddressSpace() const
Definition: Type.h:352
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified...
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6817
The "struct" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5064
static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec)
Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
Definition: Type.cpp:2592
Whether values of this type can be null is (explicitly) unspecified.
const ObjCObjectPointerType * getAsObjCQualifiedClassType() const
Definition: Type.cpp:1594
bool containsUnexpandedParameterPack() const
Whether this type is or contains an unexpanded parameter pack, used to support C++0x variadic templat...
Definition: Type.h:1840
LangAS getAddressSpace() const
Definition: Type.h:353
const Type * getClass() const
Definition: Type.h:2802
CXXRecordDecl * getDecl() const
Definition: Type.cpp:3334
Values of this type can never be null.
Expr * getSizeExpr() const
Definition: Type.h:3003
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:6084
LinkageInfo getTypeLinkageAndVisibility(const Type *T)
Definition: Type.cpp:3761
static unsigned getNumAddressingBits(const ASTContext &Context, QualType ElementType, const llvm::APInt &NumElements)
Determine the number of bits required to address a member of.
Definition: Type.cpp:111
Defines the Linkage enumeration and various utility functions.
static TagDecl * getInterestingTagDecl(TagDecl *decl)
Definition: Type.cpp:3235
bool hasNameForLinkage() const
Is this tag type named, either directly or via being defined in a typedef of this type...
Definition: Decl.h:3269
unsigned Half
When true, print the half-precision floating-point type as &#39;half&#39; instead of &#39;__fp16&#39;.
Represents an Objective-C protocol declaration.
Definition: DeclObjC.h:2063
bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const
Definition: Type.cpp:3923
bool isTypeDependent() const
isTypeDependent - Determines whether this expression is type-dependent (C++ [temp.dep.expr]), which means that its type could change from one template instantiation to the next.
Definition: Expr.h:169
bool isScalarType() const
Definition: Type.h:6649
void * getAsOpaquePtr() const
Definition: Type.h:684
Represents an ObjC class declaration.
Definition: DeclObjC.h:1171
const Type * getUnqualifiedDesugaredType() const
Return the specified type with any "sugar" removed from the type, removing any typedefs, typeofs, etc., as well as any qualifiers.
Definition: Type.cpp:419
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface...
Definition: Type.h:5785
PrimitiveDefaultInitializeKind
Definition: Type.h:1074
FunctionDecl * SourceDecl
The function whose exception specification this is, for EST_Unevaluated and EST_Uninstantiated.
Definition: Type.h:3765
SplitQualType getSplitDesugaredType() const
Definition: Type.h:943
QualType getPointeeTypeAsWritten() const
Definition: Type.h:2704
TagType(TypeClass TC, const TagDecl *D, QualType can)
Definition: Type.cpp:3228
unsigned getNumProtocols() const
Return the number of qualifying protocols in this type, or 0 if there are none.
Definition: Type.h:5458
QualType getElementType() const
Definition: Type.h:3156
bool hasUnsignedIntegerRepresentation() const
Determine whether this type has an unsigned integer representation of some sort, e.g., it is an unsigned integer type or a vector.
Definition: Type.cpp:1936
Represents an extended vector type where either the type or size is dependent.
Definition: Type.h:3140
This object can be modified without requiring retains or releases.
Definition: Type.h:158
CXXRecordDecl * getMostRecentNonInjectedDecl()
Definition: DeclCXX.h:753
Defines the clang::Visibility enumeration and various utility functions.
The APFixedPoint class works similarly to APInt/APSInt in that it is a functional replacement for a s...
Definition: FixedPoint.h:95
bool isIntegralOrUnscopedEnumerationType() const
Determine whether this type is an integral or unscoped enumeration type.
Definition: Type.cpp:1794
Represents a K&R-style &#39;int foo()&#39; function, which has no information available about its arguments...
Definition: Type.h:3662
Provides definitions for the various language-specific address spaces.
bool isSpecializedAsWritten() const
Determine whether this object type was written with type arguments.
Definition: Type.h:5644
bool isNonTrivialPrimitiveCType(const ASTContext &Ctx) const
Check if this is a non-trivial type that would cause a C struct transitively containing this type to ...
Definition: Type.cpp:2313
bool hasAttr() const
Definition: DeclBase.h:534
QualType getBaseType() const
Gets the base type of this object type.
Definition: Type.h:5613
RecordDecl * getAsRecordDecl() const
Retrieves the RecordDecl this type refers to.
Definition: Type.cpp:1639
static void ensure(const Type *T)
Definition: Type.cpp:3539
bool acceptsObjCTypeParams() const
Determines if this is an ObjC interface type that may accept type parameters.
Definition: Type.cpp:1471
bool containsUnexpandedParameterPack() const
Determines whether this template name contains an unexpanded parameter pack (for C++0x variadic templ...
bool isPromotableIntegerType() const
More type predicates useful for type checking/promotion.
Definition: Type.cpp:2533
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1635
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3699
const ObjCObjectType * getSuperClassType() const
Retrieve the superclass type.
Definition: DeclObjC.h:1564
static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword)
Definition: Type.cpp:2645
QualType applyObjCProtocolQualifiers(QualType type, ArrayRef< ObjCProtocolDecl *> protocols, bool &hasError, bool allowOnPointerType=false) const
Apply Objective-C protocol qualifiers to the given type.
bool isComplexType() const
isComplexType() does not include complex integers (a GCC extension).
Definition: Type.cpp:481
IdentifierInfo * getNSObjectName() const
Retrieve the identifier &#39;NSObject&#39;.
Definition: ASTContext.h:1673
ArraySizeModifier
Capture whether this is a normal array (e.g.
Definition: Type.h:2830
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:178
ObjCTypeParamDecl * getDecl() const
Definition: Type.h:5519
DependentTemplateSpecializationTypeBitfields DependentTemplateSpecializationTypeBits
Definition: Type.h:1728
Defines the TargetCXXABI class, which abstracts details of the C++ ABI that we&#39;re targeting...
PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const
Check if this is a non-trivial type that would cause a C struct transitively containing this type to ...
Definition: Type.cpp:2361
QualType getElementType() const
Definition: Type.h:2502
IdentifierInfo * getIdentifier() const
Definition: Type.cpp:3338
This represents one expression.
Definition: Expr.h:108
Defines the clang::LangOptions interface.
The "typename" keyword precedes the qualified type name, e.g., typename T::type.
Definition: Type.h:5080
bool isObjCARCImplicitlyUnretainedType() const
Determines if this type, which must satisfy isObjCLifetimeType(), is implicitly __unsafe_unretained r...
Definition: Type.cpp:3962
QualType desugar() const
Definition: Type.h:3223
const CXXRecordDecl * getPointeeCXXRecordDecl() const
If this is a pointer or reference to a RecordType, return the CXXRecordDecl that the type refers to...
Definition: Type.cpp:1620
const IdentifierInfo * getBaseTypeIdentifier() const
Retrieves a pointer to the name of the base type.
Definition: Type.cpp:71
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6831
ElaboratedTypeKeyword
The elaboration keyword that precedes a qualified type name or introduces an elaborated-type-specifie...
Definition: Type.h:5062
bool isObjCRetainableType() const
Definition: Type.cpp:4000
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
ObjCSubstitutionContext
The kind of type we are substituting Objective-C type arguments into.
Definition: Type.h:608
bool isChar16Type() const
Definition: Type.cpp:1831
const char * getTypeClassName() const
Definition: Type.cpp:2724
Linkage getLinkage() const
Definition: Visibility.h:83
ObjCLifetime getObjCLifetime() const
Definition: Type.h:327
DeclContext * getDeclContext()
Definition: DeclBase.h:430
bool isAnyComplexType() const
Definition: Type.h:6389
SourceLocation Begin
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.h:4292
static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec)
Converts a type specifier (DeclSpec::TST) into a tag type kind.
Definition: Type.cpp:2605
ObjCObjectType(QualType Canonical, QualType Base, ArrayRef< QualType > typeArgs, ArrayRef< ObjCProtocolDecl *> protocols, bool isKindOf)
Definition: Type.cpp:614
ScalarTypeKind getScalarTypeKind() const
Given that this is a scalar type, classify it.
Definition: Type.cpp:1989
Represents a C++ template name within the type system.
Definition: TemplateName.h:178
Represents the type decltype(expr) (C++11).
Definition: Type.h:4258
A std::pair-like structure for storing a qualified type split into its local qualifiers and its local...
Definition: Type.h:578
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char, signed char, short, int, long..], or an enum decl which has a signed representation.
Definition: Type.cpp:1866
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.h:3284
QualType desugar() const
Remove a single level of sugar.
Definition: Type.cpp:3174
Defines the clang::IdentifierInfo, clang::IdentifierTable, and clang::Selector interfaces.
QualType getType() const
Definition: Expr.h:130
bool isFunctionOrMethod() const
Definition: DeclBase.h:1813
static Optional< NullabilityKind > stripOuterNullability(QualType &T)
Strip off the top-level nullability annotation on the given type, if it&#39;s there.
Definition: Type.cpp:3912
TagDecl * getAsTagDecl() const
Retrieves the TagDecl that this type refers to, either because the type is a TagType or because it is...
Definition: Type.cpp:1643
A unary type transform, which is a type constructed from another.
Definition: Type.h:4301
Qualifiers Quals
The local qualifiers.
Definition: Type.h:583
bool isSpecifierType() const
Returns true if this type can be represented by some set of type specifiers.
Definition: Type.cpp:2566
QualType substObjCMemberType(QualType objectType, const DeclContext *dc, ObjCSubstitutionContext context) const
Substitute type arguments from an object type for the Objective-C type parameters used in the subject...
Definition: Type.cpp:1367
#define TRIVIAL_TYPE_CLASS(Class)
Definition: Type.cpp:758
ScalarTypeKind
Definition: Type.h:2070
bool hasInstantiationDependentExceptionSpec() const
Return whether this function has an instantiation-dependent exception spec.
Definition: Type.cpp:3052
A helper class for Type nodes having an ElaboratedTypeKeyword.
Definition: Type.h:5090
QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl, ObjCInterfaceDecl *PrevDecl=nullptr) const
getObjCInterfaceType - Return the unique reference to the type for the specified ObjC interface decl...
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
Definition: ASTContext.h:1379
Represents a GCC generic vector type.
Definition: Type.h:3180
ArraySizeModifier getSizeModifier() const
Definition: Type.h:2861
An lvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2732
Common base class for placeholders for types that get replaced by placeholder type deduction: C++11 a...
Definition: Type.h:4721
const Type * getBaseElementTypeUnsafe() const
Get the base element type of this type, potentially discarding type qualifiers.
Definition: Type.h:6708
The result type of a method or function.
bool isUnionType() const
Definition: Type.cpp:475
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:704
bool hasAutoForTrailingReturnType() const
Determine whether this type was written with a leading &#39;auto&#39; corresponding to a trailing return type...
Definition: Type.cpp:1750
bool isChar8Type() const
Definition: Type.cpp:1825
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:235
static LinkageInfo external()
Definition: Visibility.h:67
Expr * getUnderlyingExpr() const
Definition: Type.h:4197
bool isNonTrivialToPrimitiveDestroy() const
Definition: Decl.h:3707
QualType getAttributedType(attr::Kind attrKind, QualType modifiedType, QualType equivalentType)
bool isVoidPointerType() const
Definition: Type.cpp:469
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:6143
IdentifierInfo * getNSCopyingName()
Retrieve the identifier &#39;NSCopying&#39;.
Definition: ASTContext.h:1682
bool hasTrailingReturn() const
Whether this function prototype has a trailing return type.
Definition: Type.h:4025
SplitQualType split() const
Divides a QualType into its unqualified type and a set of local qualifiers.
Definition: Type.h:6092
RecordDecl * getDecl() const
Definition: Type.h:4392
void toString(llvm::SmallVectorImpl< char > &Str) const
Definition: FixedPoint.cpp:176
noexcept(expression), evals to &#39;false&#39;
bool isAlignValT() const
Definition: Type.cpp:2515
LinkageInfo getLinkageAndVisibility() const
Determine the linkage and visibility of this type.
Definition: Type.cpp:3770
unsigned Bool
Whether we can use &#39;bool&#39; rather than &#39;_Bool&#39; (even if the language doesn&#39;t actually have &#39;bool&#39;...
bool isStructureOrClassType() const
Definition: Type.cpp:461
A template template parameter pack that has been substituted for a template template argument pack...
Definition: TemplateName.h:211
CanThrowResult
Possible results from evaluation of a noexcept expression.
bool isComputedNoexcept(ExceptionSpecificationType ESpecType)
There is no lifetime qualification on this type.
Definition: Type.h:154
bool containsUnexpandedParameterPack() const
Whether this nested-name-specifier contains an unexpanded parameter pack (for C++11 variadic template...
#define false
Definition: stdbool.h:17
The "struct" keyword.
Definition: Type.h:5045
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:165
Kind
QualType getCanonicalType() const
Definition: Type.h:6123
ExceptionSpecificationType Type
The kind of exception specification this is.
Definition: Type.h:3755
bool isInstantiationDependent() const
Whether this expression is instantiation-dependent, meaning that it depends in some way on a template...
Definition: Expr.h:193
bool isSpecialized() const
Determine whether this object type is "specialized", meaning that it has type arguments.
Definition: Type.cpp:646
ExtProtoInfo getExtProtoInfo() const
Definition: Type.h:3911
redecl_range redecls() const
Returns an iterator range for all the redeclarations of the same decl.
Definition: Redeclarable.h:294
const ExtParameterInfo * ExtParameterInfos
Definition: Type.h:3786
Encodes a location in the source.
Sugar for parentheses used when specifying types.
Definition: Type.h:2519
QualType getAdjustedType() const
Definition: Type.h:2614
QualType getReturnType() const
Definition: Type.h:3625
bool isLinkageValid() const
True if the computed linkage is valid.
Definition: Type.cpp:3751
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4408
bool mayBeNotDynamicClass() const
Returns true if it is not a class or if the class might not be dynamic.
Definition: Type.cpp:96
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:6200
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:5750
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition: Type.h:2104
const ComplexType * getAsComplexIntegerType() const
Definition: Type.cpp:498
bool isLiteralType(const ASTContext &Ctx) const
Return true if this is a literal type (C++11 [basic.types]p10)
Definition: Type.cpp:2365
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3063
TemplateArgument getArgumentPack() const
Definition: Type.cpp:3351
ASTContext & getASTContext() const LLVM_READONLY
Definition: DeclBase.cpp:375
QualType getElementType() const
Definition: Type.h:3215
void FixedPointValueToString(SmallVectorImpl< char > &Str, llvm::APSInt Val, unsigned Scale)
Definition: Type.cpp:4096
QualType getBaseElementType(const ArrayType *VAT) const
Return the innermost element type of an array type.
bool isIntegralType(const ASTContext &Ctx) const
Determine whether this type is an integral type.
Definition: Type.cpp:1781
QualType getLocallyUnqualifiedSingleStepDesugaredType() const
Pull a single level of sugar off of this locally-unqualified type.
Definition: Type.cpp:302
void initialize(ArrayRef< ObjCProtocolDecl * > protocols)
Definition: Type.h:5437
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
ObjCCategoryDecl - Represents a category declaration.
Definition: DeclObjC.h:2279
unsigned pack_size() const
The number of template arguments in the given template argument pack.
Definition: TemplateBase.h:359
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1882
QualType getEquivalentType() const
Definition: Type.h:4463
void Profile(llvm::FoldingSetNodeID &ID)
Definition: TemplateName.h:305
QualType getInnerType() const
Definition: Type.h:2532
bool isObjCObjectPointerType() const
Definition: Type.h:6405
AutoTypeKeyword getKeyword() const
Definition: Type.h:4776
TypeClass getTypeClass() const
Definition: Type.h:1820
bool isAnyCharacterType() const
Determine whether this type is any of the built-in character types.
Definition: Type.cpp:1845
PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const
Check if this is a non-trivial type that would cause a C struct transitively containing this type to ...
Definition: Type.cpp:2343
QualType getSuperClassType() const
Retrieve the type of the superclass of this object type.
Definition: Type.h:5678
EnumDecl * getDecl() const
Definition: Type.h:4415
bool isVectorType() const
Definition: Type.h:6393
__DEVICE__ void * memcpy(void *__a, const void *__b, size_t __c)
bool hasConstFields() const
Recursively check all fields in the record for const-ness.
Definition: Type.cpp:3252
Assigning into this object requires a lifetime extension.
Definition: Type.h:171
TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits
Definition: Type.h:1726
static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword)
Converts an elaborated type keyword into a TagTypeKind.
Definition: Type.cpp:2630
void setVariablyModified(bool VM=true)
Definition: Type.h:1805
DependentTemplateName * getAsDependentTemplateName() const
Retrieve the underlying dependent template name structure, if any.
TypeOfExprType(Expr *E, QualType can=QualType())
Definition: Type.cpp:3163
bool isInstantiationDependentType() const
Determine whether this type is an instantiation-dependent type, meaning that the type involves a temp...
Definition: Type.h:2094
Linkage getLinkageInternal() const
Determine what kind of linkage this entity has.
Definition: Decl.cpp:1064
Represents a pointer type decayed from an array or function type.
Definition: Type.h:2634
Represents a pack expansion of types.
Definition: Type.h:5367
ArrayRef< TemplateArgument > pack_elements() const
Iterator range referencing all of the elements of a template argument pack.
Definition: TemplateBase.h:353
#define SUGARED_TYPE_CLASS(Class)
Definition: Type.cpp:760
Defines various enumerations that describe declaration and type specifiers.
bool isRealType() const
Definition: Type.cpp:1965
static unsigned getMaxSizeBits(const ASTContext &Context)
Determine the maximum number of active bits that an array&#39;s size can require, which limits the maximu...
Definition: Type.cpp:146
Linkage minLinkage(Linkage L1, Linkage L2)
Compute the minimum linkage given two linkages.
Definition: Linkage.h:114
CXXRecordDecl * getMostRecentCXXRecordDecl() const
Definition: Type.cpp:4092
Represents a template argument.
Definition: TemplateBase.h:50
bool isDeduced() const
Definition: Type.h:4750
bool isScopedEnumeralType() const
Determine whether this type is a scoped enumeration type.
Definition: Type.cpp:492
Represents a type which was implicitly adjusted by the semantic engine for arbitrary reasons...
Definition: Type.h:2597
TagTypeKind
The kind of a tag type.
Definition: Type.h:5043
Optional< types::ID > Type
CanQualType ObjCBuiltinIdTy
Definition: ASTContext.h:1047
GC getObjCGCAttr() const
Definition: Type.h:301
Dataflow Directional Tag Classes.
bool isObjCQualifiedInterfaceType() const
Definition: Type.cpp:1580
DeducedType * getContainedDeducedType() const
Get the DeducedType whose type will be deduced for a variable with an initializer of this type...
Definition: Type.cpp:1745
ExtInfo getExtInfo() const
Definition: Type.h:3636
not evaluated yet, for special member function
A qualifier set is used to build a set of qualifiers.
Definition: Type.h:6051
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1266
void setContainsUnexpandedParameterPack(bool PP=true)
Definition: Type.h:1807
The base class of all kinds of template declarations (e.g., class, function, etc.).
Definition: DeclTemplate.h:398
bool hasUnnamedOrLocalType() const
Whether this type is or contains a local or unnamed type.
Definition: Type.cpp:3673
static CachedProperties get(QualType T)
Definition: Type.cpp:3529
bool hasDependentExceptionSpec() const
Return whether this function has a dependent exception spec.
Definition: Type.cpp:3040
bool isCXX98PODType(const ASTContext &Context) const
Return true if this is a POD type according to the rules of the C++98 standard, regardless of the cur...
Definition: Type.cpp:2131
QualType getUnderlyingType() const
Definition: Decl.h:2970
bool isDependent() const
Whether this nested name specifier refers to a dependent type or not.
QualType stripObjCKindOfType(const ASTContext &ctx) const
Strip Objective-C "__kindof" types from the given type.
Definition: Type.cpp:1376
QualType getUnderlyingType() const
Definition: Type.h:4269
const Type * getArrayElementTypeNoTypeQual() const
If this is an array type, return the element type of the array, potentially with type qualifiers miss...
Definition: Type.cpp:261
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.cpp:3478
VectorKind getVectorKind() const
Definition: Type.h:3225
Represents the declaration of an Objective-C type parameter.
Definition: DeclObjC.h:558
The "union" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5070
const Type * strip(QualType type)
Collect any qualifiers on the given type and return an unqualified type.
Definition: Type.h:6058
QualType getFunctionNoProtoType(QualType ResultTy, const FunctionType::ExtInfo &Info) const
Return a K&R style C function type like &#39;int()&#39;.
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.h:3166
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.cpp:3493
bool isObjCIndirectLifetimeType() const
Definition: Type.cpp:4006
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5847
The "class" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5073
bool isKindOfType() const
Whether this ia a "__kindof" type (semantically).
Definition: Type.cpp:682
static const T * getAsSugar(const Type *Cur)
This will check for a T (which should be a Type which can act as sugar, such as a TypedefType) by rem...
Definition: Type.cpp:386
Represents an enum.
Definition: Decl.h:3325
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2768
bool hasObjCLifetime() const
Definition: Type.h:326
bool isAggregateType() const
Determines whether the type is a C++ aggregate type or C aggregate or union type. ...
Definition: Type.cpp:2029
bool isQualifier() const
Does this attribute behave like a type qualifier?
Definition: Type.cpp:3274
llvm::ArrayRef< TemplateArgumentLoc > arguments() const
Definition: TemplateBase.h:582
QualType apply(const ASTContext &Context, QualType QT) const
Apply the collected qualifiers to the given type.
Definition: Type.cpp:3448
UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind, QualType CanonicalTy)
Definition: Type.cpp:3213
pack_iterator pack_begin() const
Iterator referencing the first argument of a template argument pack.
Definition: TemplateBase.h:339
const TemplateTypeParmType * getReplacedParameter() const
Gets the template parameter that was substituted for.
Definition: Type.h:4630
void addConsistentQualifiers(Qualifiers qs)
Add the qualifiers from the given set to this set, given that they don&#39;t conflict.
Definition: Type.h:453
QualType getModifiedType() const
Definition: Type.h:4462
Represents a pointer to an Objective C object.
Definition: Type.h:5806
Pointer to a block type.
Definition: Type.h:2651
bool isSugared() const
Returns whether this type directly provides sugar.
Definition: Type.cpp:3170
FunctionTypeBitfields FunctionTypeBits
Definition: Type.h:1719
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4382
Complex values, per C99 6.2.5p11.
Definition: Type.h:2489
Location wrapper for a TemplateArgument.
Definition: TemplateBase.h:449
unsigned getIndexTypeCVRQualifiers() const
Definition: Type.h:2869
bool empty() const
Definition: Type.h:415
bool isConstantSizeType() const
Return true if this is not a variable sized type, according to the rules of C99 6.7.5p3.
Definition: Type.cpp:2043
QualType getCanonicalTypeInternal() const
Definition: Type.h:2367
QualType getAtomicUnqualifiedType() const
Remove all qualifiers including _Atomic.
Definition: Type.cpp:1383
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6594
CanThrowResult canThrow() const
Determine whether this function type has a non-throwing exception specification.
Definition: Type.cpp:3061
const llvm::APInt & getSize() const
Definition: Type.h:2902
Kind getAttrKind() const
Definition: Type.h:4458
VectorTypeBitfields VectorTypeBits
Definition: Type.h:1724
ExtVectorType - Extended vector type.
Definition: Type.h:3299
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2685
SourceRange getBracketsRange() const
Definition: Type.h:3009
The template argument is a type.
Definition: TemplateBase.h:59
Optional< ArrayRef< QualType > > getObjCSubstitutions(const DeclContext *dc) const
Retrieve the set of substitutions required when accessing a member of the Objective-C receiver type t...
Definition: Type.cpp:1389
Optional< NullabilityKind > getNullability(const ASTContext &context) const
Determine the nullability of the given type.
Definition: Type.cpp:3775
The "class" keyword.
Definition: Type.h:5054
QualType getNonLValueExprType(const ASTContext &Context) const
Determine the type of a (typically non-lvalue) expression with the specified result type...
Definition: Type.cpp:2884
bool isBeingDefined() const
Determines whether this type is in the process of being defined.
Definition: Type.cpp:3248
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2072
ArrayRef< QualType > Exceptions
Explicitly-specified list of exception types.
Definition: Type.h:3758
void merge(LinkageInfo other)
Merge both linkage and visibility.
Definition: Visibility.h:132
bool isIncompleteType(NamedDecl **Def=nullptr) const
Types are partitioned into 3 broad categories (C99 6.2.5p1): object types, function types...
Definition: Type.cpp:2053
bool hasObjCGCAttr() const
Definition: Type.h:300
The type-property cache.
Definition: Type.cpp:3527
bool isClassType() const
Definition: Type.cpp:437
TypedefNameDecl * getDecl() const
Definition: Type.h:4179
TypeBitfields TypeBits
Definition: Type.h:1714
Reading or writing from this object requires a barrier call.
Definition: Type.h:168
Expr * NoexceptExpr
Noexcept expression, if this is a computed noexcept specification.
Definition: Type.h:3761
An attributed type is a type to which a type attribute has been applied.
Definition: Type.h:4437
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
Represents a type parameter type in Objective C.
Definition: Type.h:5476
bool hasSignedIntegerRepresentation() const
Determine whether this type has an signed integer representation of some sort, e.g., it is an signed integer type or a vector.
Definition: Type.cpp:1896
Represents a C++ struct/union/class.
Definition: DeclCXX.h:299
bool isVoidType() const
Definition: Type.h:6560
Represents a C array with an unspecified size.
Definition: Type.h:2938
QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const
Strip off the Objective-C "kindof" type and (with it) any protocol qualifiers.
Definition: Type.cpp:699
bool hasIntegerRepresentation() const
Determine whether this type has an integer representation of some sort, e.g., it is an integer type o...
Definition: Type.cpp:1755
The parameter type of a method or function.
QualType getNamedType() const
Retrieve the type named by the qualified-id.
Definition: Type.h:5181
QualType getReplacementType() const
Gets the type that was substituted for the template parameter.
Definition: Type.h:4636
The "enum" keyword.
Definition: Type.h:5057
bool containsUnexpandedParameterPack() const
Whether this expression contains an unexpanded parameter pack (for C++11 variadic templates)...
Definition: Expr.h:216
void Profile(llvm::FoldingSetNodeID &ID)
Definition: Type.h:4222
Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const
Return the implicit lifetime for this type, which must not be dependent.
Definition: Type.cpp:3956
Stores a list of Objective-C type parameters for a parameterized class or a category/extension thereo...
Definition: DeclObjC.h:636
This class is used for builtin types like &#39;int&#39;.
Definition: Type.h:2403
Defines the clang::TargetInfo interface.
bool isComplexIntegerType() const
Definition: Type.cpp:487
ASTContext & getParentASTContext() const
Definition: DeclBase.h:1790
bool isMicrosoft() const
Is this ABI an MSVC-compatible ABI?
Definition: TargetCXXABI.h:153
bool hasVolatile() const
Definition: Type.h:259
__DEVICE__ int max(int __a, int __b)
NameKind getKind() const
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:957
unsigned getNumElements() const
Definition: Type.h:3216
QualType getSuperClassType() const
Retrieve the type of the superclass of this object pointer type.
Definition: Type.cpp:1561
void initialize(TemplateInstantiationCallbackPtrs &Callbacks, const Sema &TheSema)
bool isDependentType() const
Whether this type is a dependent type, meaning that its definition somehow depends on a template para...
Definition: Type.h:2088
bool mayBeDynamicClass() const
Returns true if it is a class and it might be dynamic.
Definition: Type.cpp:91
Represents a type template specialization; the template must be a class template, a type alias templa...
Definition: Type.h:4853
bool isPointerType() const
Definition: Type.h:6308
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
static StringRef getNameForCallConv(CallingConv CC)
Definition: Type.cpp:2900
#define true
Definition: stdbool.h:16
bool isFloatingType() const
Definition: Type.cpp:1943
A trivial tuple used to represent a source range.
VectorType(QualType vecType, unsigned nElements, QualType canonType, VectorKind vecKind)
Definition: Type.cpp:243
FunctionDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:2996
void computeSuperClassTypeSlow() const
Definition: Type.cpp:1482
This represents a decl that may have a name.
Definition: Decl.h:248
QualType getObjCObjectPointerType(QualType OIT) const
Return a ObjCObjectPointerType type for the given ObjCObjectType.
A simple holder for a QualType representing a type in an exception specification. ...
Definition: Type.h:3595
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2983
No keyword precedes the qualified type name.
Definition: Type.h:5083
bool isConstant(const ASTContext &Ctx) const
Definition: Type.h:774
bool isInterfaceType() const
Definition: Type.cpp:455
void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context)
Definition: Type.h:5329
QualType desugar() const
Definition: Type.cpp:3159
const LangOptions & getLangOpts() const
Definition: ASTContext.h:706
unsigned size() const
Determine the number of type parameters in this list.
Definition: DeclObjC.h:676
llvm::Optional< NullabilityKind > getImmediateNullability() const
Definition: Type.cpp:3902
The "__interface" keyword introduces the elaborated-type-specifier.
Definition: Type.h:5067
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2884
ExceptionSpecInfo ExceptionSpec
Definition: Type.h:3785
bool isObjCNSObjectType() const
Definition: Type.cpp:3981
bool hasSizedVLAType() const
Whether this type involves a variable-length array type with a definite size.
Definition: Type.cpp:4043
QualType getPointeeType() const
Definition: Type.h:2788
A single template declaration.
Definition: TemplateName.h:191
bool isBeingDefined() const
Return true if this decl is currently being defined.
Definition: Decl.h:3188
static QualType getParamType(Sema &SemaRef, ArrayRef< ResultCandidate > Candidates, unsigned N)
Get the type of the Nth parameter from a given set of overload candidates.
noexcept(expression), evals to &#39;true&#39;
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1059
QualType getPointeeType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5822