clang  7.0.0svn
ItaniumMangle.cpp
Go to the documentation of this file.
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implements C++ name mangling according to the Itanium C++ ABI,
11 // which is used in GCC 3.2 and newer (and many compilers that are
12 // ABI-compatible with GCC):
13 //
14 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/TypeLoc.h"
29 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 
36 #define MANGLE_CHECKER 0
37 
38 #if MANGLE_CHECKER
39 #include <cxxabi.h>
40 #endif
41 
42 using namespace clang;
43 
44 namespace {
45 
46 /// Retrieve the declaration context that should be used when mangling the given
47 /// declaration.
48 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
49  // The ABI assumes that lambda closure types that occur within
50  // default arguments live in the context of the function. However, due to
51  // the way in which Clang parses and creates function declarations, this is
52  // not the case: the lambda closure type ends up living in the context
53  // where the function itself resides, because the function declaration itself
54  // had not yet been created. Fix the context here.
55  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
56  if (RD->isLambda())
57  if (ParmVarDecl *ContextParam
58  = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
59  return ContextParam->getDeclContext();
60  }
61 
62  // Perform the same check for block literals.
63  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
64  if (ParmVarDecl *ContextParam
65  = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
66  return ContextParam->getDeclContext();
67  }
68 
69  const DeclContext *DC = D->getDeclContext();
70  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC)) {
71  return getEffectiveDeclContext(cast<Decl>(DC));
72  }
73 
74  if (const auto *VD = dyn_cast<VarDecl>(D))
75  if (VD->isExternC())
76  return VD->getASTContext().getTranslationUnitDecl();
77 
78  if (const auto *FD = dyn_cast<FunctionDecl>(D))
79  if (FD->isExternC())
80  return FD->getASTContext().getTranslationUnitDecl();
81 
82  return DC->getRedeclContext();
83 }
84 
85 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
86  return getEffectiveDeclContext(cast<Decl>(DC));
87 }
88 
89 static bool isLocalContainerContext(const DeclContext *DC) {
90  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
91 }
92 
93 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
94  const DeclContext *DC = getEffectiveDeclContext(D);
95  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
96  if (isLocalContainerContext(DC))
97  return dyn_cast<RecordDecl>(D);
98  D = cast<Decl>(DC);
99  DC = getEffectiveDeclContext(D);
100  }
101  return nullptr;
102 }
103 
104 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
105  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
106  return ftd->getTemplatedDecl();
107 
108  return fn;
109 }
110 
111 static const NamedDecl *getStructor(const NamedDecl *decl) {
112  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
113  return (fn ? getStructor(fn) : decl);
114 }
115 
116 static bool isLambda(const NamedDecl *ND) {
117  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
118  if (!Record)
119  return false;
120 
121  return Record->isLambda();
122 }
123 
124 static const unsigned UnknownArity = ~0U;
125 
126 class ItaniumMangleContextImpl : public ItaniumMangleContext {
127  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
128  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
129  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
130 
131 public:
132  explicit ItaniumMangleContextImpl(ASTContext &Context,
133  DiagnosticsEngine &Diags)
134  : ItaniumMangleContext(Context, Diags) {}
135 
136  /// @name Mangler Entry Points
137  /// @{
138 
139  bool shouldMangleCXXName(const NamedDecl *D) override;
140  bool shouldMangleStringLiteral(const StringLiteral *) override {
141  return false;
142  }
143  void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
144  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
145  raw_ostream &) override;
146  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
148  raw_ostream &) override;
149  void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
150  raw_ostream &) override;
151  void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
152  void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
153  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
154  const CXXRecordDecl *Type, raw_ostream &) override;
155  void mangleCXXRTTI(QualType T, raw_ostream &) override;
156  void mangleCXXRTTIName(QualType T, raw_ostream &) override;
157  void mangleTypeName(QualType T, raw_ostream &) override;
158  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
159  raw_ostream &) override;
160  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
161  raw_ostream &) override;
162 
163  void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
164  void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
165  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
166  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
167  void mangleDynamicAtExitDestructor(const VarDecl *D,
168  raw_ostream &Out) override;
169  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
170  raw_ostream &Out) override;
171  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
172  raw_ostream &Out) override;
173  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
174  void mangleItaniumThreadLocalWrapper(const VarDecl *D,
175  raw_ostream &) override;
176 
177  void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
178 
179  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
180  // Lambda closure types are already numbered.
181  if (isLambda(ND))
182  return false;
183 
184  // Anonymous tags are already numbered.
185  if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
186  if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
187  return false;
188  }
189 
190  // Use the canonical number for externally visible decls.
191  if (ND->isExternallyVisible()) {
192  unsigned discriminator = getASTContext().getManglingNumber(ND);
193  if (discriminator == 1)
194  return false;
195  disc = discriminator - 2;
196  return true;
197  }
198 
199  // Make up a reasonable number for internal decls.
200  unsigned &discriminator = Uniquifier[ND];
201  if (!discriminator) {
202  const DeclContext *DC = getEffectiveDeclContext(ND);
203  discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
204  }
205  if (discriminator == 1)
206  return false;
207  disc = discriminator-2;
208  return true;
209  }
210  /// @}
211 };
212 
213 /// Manage the mangling of a single name.
214 class CXXNameMangler {
215  ItaniumMangleContextImpl &Context;
216  raw_ostream &Out;
217  bool NullOut = false;
218  /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
219  /// This mode is used when mangler creates another mangler recursively to
220  /// calculate ABI tags for the function return value or the variable type.
221  /// Also it is required to avoid infinite recursion in some cases.
222  bool DisableDerivedAbiTags = false;
223 
224  /// The "structor" is the top-level declaration being mangled, if
225  /// that's not a template specialization; otherwise it's the pattern
226  /// for that specialization.
227  const NamedDecl *Structor;
228  unsigned StructorType;
229 
230  /// The next substitution sequence number.
231  unsigned SeqID;
232 
233  class FunctionTypeDepthState {
234  unsigned Bits;
235 
236  enum { InResultTypeMask = 1 };
237 
238  public:
239  FunctionTypeDepthState() : Bits(0) {}
240 
241  /// The number of function types we're inside.
242  unsigned getDepth() const {
243  return Bits >> 1;
244  }
245 
246  /// True if we're in the return type of the innermost function type.
247  bool isInResultType() const {
248  return Bits & InResultTypeMask;
249  }
250 
251  FunctionTypeDepthState push() {
252  FunctionTypeDepthState tmp = *this;
253  Bits = (Bits & ~InResultTypeMask) + 2;
254  return tmp;
255  }
256 
257  void enterResultType() {
258  Bits |= InResultTypeMask;
259  }
260 
261  void leaveResultType() {
262  Bits &= ~InResultTypeMask;
263  }
264 
265  void pop(FunctionTypeDepthState saved) {
266  assert(getDepth() == saved.getDepth() + 1);
267  Bits = saved.Bits;
268  }
269 
270  } FunctionTypeDepth;
271 
272  // abi_tag is a gcc attribute, taking one or more strings called "tags".
273  // The goal is to annotate against which version of a library an object was
274  // built and to be able to provide backwards compatibility ("dual abi").
275  // For more information see docs/ItaniumMangleAbiTags.rst.
276  typedef SmallVector<StringRef, 4> AbiTagList;
277 
278  // State to gather all implicit and explicit tags used in a mangled name.
279  // Must always have an instance of this while emitting any name to keep
280  // track.
281  class AbiTagState final {
282  public:
283  explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
284  Parent = LinkHead;
285  LinkHead = this;
286  }
287 
288  // No copy, no move.
289  AbiTagState(const AbiTagState &) = delete;
290  AbiTagState &operator=(const AbiTagState &) = delete;
291 
292  ~AbiTagState() { pop(); }
293 
294  void write(raw_ostream &Out, const NamedDecl *ND,
295  const AbiTagList *AdditionalAbiTags) {
296  ND = cast<NamedDecl>(ND->getCanonicalDecl());
297  if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
298  assert(
299  !AdditionalAbiTags &&
300  "only function and variables need a list of additional abi tags");
301  if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
302  if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
303  UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
304  AbiTag->tags().end());
305  }
306  // Don't emit abi tags for namespaces.
307  return;
308  }
309  }
310 
311  AbiTagList TagList;
312  if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
313  UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
314  AbiTag->tags().end());
315  TagList.insert(TagList.end(), AbiTag->tags().begin(),
316  AbiTag->tags().end());
317  }
318 
319  if (AdditionalAbiTags) {
320  UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
321  AdditionalAbiTags->end());
322  TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
323  AdditionalAbiTags->end());
324  }
325 
326  llvm::sort(TagList.begin(), TagList.end());
327  TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
328 
329  writeSortedUniqueAbiTags(Out, TagList);
330  }
331 
332  const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
333  void setUsedAbiTags(const AbiTagList &AbiTags) {
334  UsedAbiTags = AbiTags;
335  }
336 
337  const AbiTagList &getEmittedAbiTags() const {
338  return EmittedAbiTags;
339  }
340 
341  const AbiTagList &getSortedUniqueUsedAbiTags() {
342  llvm::sort(UsedAbiTags.begin(), UsedAbiTags.end());
343  UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
344  UsedAbiTags.end());
345  return UsedAbiTags;
346  }
347 
348  private:
349  //! All abi tags used implicitly or explicitly.
350  AbiTagList UsedAbiTags;
351  //! All explicit abi tags (i.e. not from namespace).
352  AbiTagList EmittedAbiTags;
353 
354  AbiTagState *&LinkHead;
355  AbiTagState *Parent = nullptr;
356 
357  void pop() {
358  assert(LinkHead == this &&
359  "abi tag link head must point to us on destruction");
360  if (Parent) {
361  Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
362  UsedAbiTags.begin(), UsedAbiTags.end());
363  Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
364  EmittedAbiTags.begin(),
365  EmittedAbiTags.end());
366  }
367  LinkHead = Parent;
368  }
369 
370  void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
371  for (const auto &Tag : AbiTags) {
372  EmittedAbiTags.push_back(Tag);
373  Out << "B";
374  Out << Tag.size();
375  Out << Tag;
376  }
377  }
378  };
379 
380  AbiTagState *AbiTags = nullptr;
381  AbiTagState AbiTagsRoot;
382 
383  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
384  llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
385 
386  ASTContext &getASTContext() const { return Context.getASTContext(); }
387 
388 public:
389  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
390  const NamedDecl *D = nullptr, bool NullOut_ = false)
391  : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)),
392  StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
393  // These can't be mangled without a ctor type or dtor type.
394  assert(!D || (!isa<CXXDestructorDecl>(D) &&
395  !isa<CXXConstructorDecl>(D)));
396  }
397  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
399  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
400  SeqID(0), AbiTagsRoot(AbiTags) { }
401  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
402  const CXXDestructorDecl *D, CXXDtorType Type)
403  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
404  SeqID(0), AbiTagsRoot(AbiTags) { }
405 
406  CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
407  : Context(Outer.Context), Out(Out_), NullOut(false),
408  Structor(Outer.Structor), StructorType(Outer.StructorType),
409  SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
410  AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
411 
412  CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
413  : Context(Outer.Context), Out(Out_), NullOut(true),
414  Structor(Outer.Structor), StructorType(Outer.StructorType),
415  SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
416  AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
417 
418 #if MANGLE_CHECKER
419  ~CXXNameMangler() {
420  if (Out.str()[0] == '\01')
421  return;
422 
423  int status = 0;
424  char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
425  assert(status == 0 && "Could not demangle mangled name!");
426  free(result);
427  }
428 #endif
429  raw_ostream &getStream() { return Out; }
430 
431  void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
432  static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
433 
434  void mangle(const NamedDecl *D);
435  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
436  void mangleNumber(const llvm::APSInt &I);
437  void mangleNumber(int64_t Number);
438  void mangleFloat(const llvm::APFloat &F);
439  void mangleFunctionEncoding(const FunctionDecl *FD);
440  void mangleSeqID(unsigned SeqID);
441  void mangleName(const NamedDecl *ND);
442  void mangleType(QualType T);
443  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
444 
445 private:
446 
447  bool mangleSubstitution(const NamedDecl *ND);
448  bool mangleSubstitution(QualType T);
449  bool mangleSubstitution(TemplateName Template);
450  bool mangleSubstitution(uintptr_t Ptr);
451 
452  void mangleExistingSubstitution(TemplateName name);
453 
454  bool mangleStandardSubstitution(const NamedDecl *ND);
455 
456  void addSubstitution(const NamedDecl *ND) {
457  ND = cast<NamedDecl>(ND->getCanonicalDecl());
458 
459  addSubstitution(reinterpret_cast<uintptr_t>(ND));
460  }
461  void addSubstitution(QualType T);
462  void addSubstitution(TemplateName Template);
463  void addSubstitution(uintptr_t Ptr);
464  // Destructive copy substitutions from other mangler.
465  void extendSubstitutions(CXXNameMangler* Other);
466 
467  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
468  bool recursive = false);
469  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
470  DeclarationName name,
471  const TemplateArgumentLoc *TemplateArgs,
472  unsigned NumTemplateArgs,
473  unsigned KnownArity = UnknownArity);
474 
475  void mangleFunctionEncodingBareType(const FunctionDecl *FD);
476 
477  void mangleNameWithAbiTags(const NamedDecl *ND,
478  const AbiTagList *AdditionalAbiTags);
479  void mangleModuleName(const Module *M);
480  void mangleModuleNamePrefix(StringRef Name);
481  void mangleTemplateName(const TemplateDecl *TD,
482  const TemplateArgument *TemplateArgs,
483  unsigned NumTemplateArgs);
484  void mangleUnqualifiedName(const NamedDecl *ND,
485  const AbiTagList *AdditionalAbiTags) {
486  mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity,
487  AdditionalAbiTags);
488  }
489  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
490  unsigned KnownArity,
491  const AbiTagList *AdditionalAbiTags);
492  void mangleUnscopedName(const NamedDecl *ND,
493  const AbiTagList *AdditionalAbiTags);
494  void mangleUnscopedTemplateName(const TemplateDecl *ND,
495  const AbiTagList *AdditionalAbiTags);
496  void mangleUnscopedTemplateName(TemplateName,
497  const AbiTagList *AdditionalAbiTags);
498  void mangleSourceName(const IdentifierInfo *II);
499  void mangleRegCallName(const IdentifierInfo *II);
500  void mangleSourceNameWithAbiTags(
501  const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
502  void mangleLocalName(const Decl *D,
503  const AbiTagList *AdditionalAbiTags);
504  void mangleBlockForPrefix(const BlockDecl *Block);
505  void mangleUnqualifiedBlock(const BlockDecl *Block);
506  void mangleLambda(const CXXRecordDecl *Lambda);
507  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
508  const AbiTagList *AdditionalAbiTags,
509  bool NoFunction=false);
510  void mangleNestedName(const TemplateDecl *TD,
511  const TemplateArgument *TemplateArgs,
512  unsigned NumTemplateArgs);
513  void manglePrefix(NestedNameSpecifier *qualifier);
514  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
515  void manglePrefix(QualType type);
516  void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
517  void mangleTemplatePrefix(TemplateName Template);
518  bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
519  StringRef Prefix = "");
520  void mangleOperatorName(DeclarationName Name, unsigned Arity);
521  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
522  void mangleVendorQualifier(StringRef qualifier);
523  void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
524  void mangleRefQualifier(RefQualifierKind RefQualifier);
525 
526  void mangleObjCMethodName(const ObjCMethodDecl *MD);
527 
528  // Declare manglers for every type class.
529 #define ABSTRACT_TYPE(CLASS, PARENT)
530 #define NON_CANONICAL_TYPE(CLASS, PARENT)
531 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
532 #include "clang/AST/TypeNodes.def"
533 
534  void mangleType(const TagType*);
535  void mangleType(TemplateName);
536  static StringRef getCallingConvQualifierName(CallingConv CC);
537  void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
538  void mangleExtFunctionInfo(const FunctionType *T);
539  void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
540  const FunctionDecl *FD = nullptr);
541  void mangleNeonVectorType(const VectorType *T);
542  void mangleAArch64NeonVectorType(const VectorType *T);
543 
544  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
545  void mangleMemberExprBase(const Expr *base, bool isArrow);
546  void mangleMemberExpr(const Expr *base, bool isArrow,
547  NestedNameSpecifier *qualifier,
548  NamedDecl *firstQualifierLookup,
549  DeclarationName name,
550  const TemplateArgumentLoc *TemplateArgs,
551  unsigned NumTemplateArgs,
552  unsigned knownArity);
553  void mangleCastExpression(const Expr *E, StringRef CastEncoding);
554  void mangleInitListElements(const InitListExpr *InitList);
555  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
556  void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
557  void mangleCXXDtorType(CXXDtorType T);
558 
559  void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
560  unsigned NumTemplateArgs);
561  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
562  unsigned NumTemplateArgs);
563  void mangleTemplateArgs(const TemplateArgumentList &AL);
564  void mangleTemplateArg(TemplateArgument A);
565 
566  void mangleTemplateParameter(unsigned Index);
567 
568  void mangleFunctionParam(const ParmVarDecl *parm);
569 
570  void writeAbiTags(const NamedDecl *ND,
571  const AbiTagList *AdditionalAbiTags);
572 
573  // Returns sorted unique list of ABI tags.
574  AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
575  // Returns sorted unique list of ABI tags.
576  AbiTagList makeVariableTypeTags(const VarDecl *VD);
577 };
578 
579 }
580 
581 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
582  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
583  if (FD) {
585  // Overloadable functions need mangling.
586  if (FD->hasAttr<OverloadableAttr>())
587  return true;
588 
589  // "main" is not mangled.
590  if (FD->isMain())
591  return false;
592 
593  // C++ functions and those whose names are not a simple identifier need
594  // mangling.
595  if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
596  return true;
597 
598  // C functions are not mangled.
599  if (L == CLanguageLinkage)
600  return false;
601  }
602 
603  // Otherwise, no mangling is done outside C++ mode.
604  if (!getASTContext().getLangOpts().CPlusPlus)
605  return false;
606 
607  const VarDecl *VD = dyn_cast<VarDecl>(D);
608  if (VD && !isa<DecompositionDecl>(D)) {
609  // C variables are not mangled.
610  if (VD->isExternC())
611  return false;
612 
613  // Variables at global scope with non-internal linkage are not mangled
614  const DeclContext *DC = getEffectiveDeclContext(D);
615  // Check for extern variable declared locally.
616  if (DC->isFunctionOrMethod() && D->hasLinkage())
617  while (!DC->isNamespace() && !DC->isTranslationUnit())
618  DC = getEffectiveParentContext(DC);
619  if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
620  !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
621  !isa<VarTemplateSpecializationDecl>(D))
622  return false;
623  }
624 
625  return true;
626 }
627 
628 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
629  const AbiTagList *AdditionalAbiTags) {
630  assert(AbiTags && "require AbiTagState");
631  AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
632 }
633 
634 void CXXNameMangler::mangleSourceNameWithAbiTags(
635  const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
636  mangleSourceName(ND->getIdentifier());
637  writeAbiTags(ND, AdditionalAbiTags);
638 }
639 
640 void CXXNameMangler::mangle(const NamedDecl *D) {
641  // <mangled-name> ::= _Z <encoding>
642  // ::= <data name>
643  // ::= <special-name>
644  Out << "_Z";
645  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
646  mangleFunctionEncoding(FD);
647  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
648  mangleName(VD);
649  else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
650  mangleName(IFD->getAnonField());
651  else
652  mangleName(cast<FieldDecl>(D));
653 }
654 
655 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
656  // <encoding> ::= <function name> <bare-function-type>
657 
658  // Don't mangle in the type if this isn't a decl we should typically mangle.
659  if (!Context.shouldMangleDeclName(FD)) {
660  mangleName(FD);
661  return;
662  }
663 
664  AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
665  if (ReturnTypeAbiTags.empty()) {
666  // There are no tags for return type, the simplest case.
667  mangleName(FD);
668  mangleFunctionEncodingBareType(FD);
669  return;
670  }
671 
672  // Mangle function name and encoding to temporary buffer.
673  // We have to output name and encoding to the same mangler to get the same
674  // substitution as it will be in final mangling.
675  SmallString<256> FunctionEncodingBuf;
676  llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
677  CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
678  // Output name of the function.
679  FunctionEncodingMangler.disableDerivedAbiTags();
680  FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
681 
682  // Remember length of the function name in the buffer.
683  size_t EncodingPositionStart = FunctionEncodingStream.str().size();
684  FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
685 
686  // Get tags from return type that are not present in function name or
687  // encoding.
688  const AbiTagList &UsedAbiTags =
689  FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
690  AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
691  AdditionalAbiTags.erase(
692  std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
693  UsedAbiTags.begin(), UsedAbiTags.end(),
694  AdditionalAbiTags.begin()),
695  AdditionalAbiTags.end());
696 
697  // Output name with implicit tags and function encoding from temporary buffer.
698  mangleNameWithAbiTags(FD, &AdditionalAbiTags);
699  Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
700 
701  // Function encoding could create new substitutions so we have to add
702  // temp mangled substitutions to main mangler.
703  extendSubstitutions(&FunctionEncodingMangler);
704 }
705 
706 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
707  if (FD->hasAttr<EnableIfAttr>()) {
708  FunctionTypeDepthState Saved = FunctionTypeDepth.push();
709  Out << "Ua9enable_ifI";
710  // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use
711  // it here.
712  for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(),
713  E = FD->getAttrs().rend();
714  I != E; ++I) {
715  EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
716  if (!EIA)
717  continue;
718  Out << 'X';
719  mangleExpression(EIA->getCond());
720  Out << 'E';
721  }
722  Out << 'E';
723  FunctionTypeDepth.pop(Saved);
724  }
725 
726  // When mangling an inheriting constructor, the bare function type used is
727  // that of the inherited constructor.
728  if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
729  if (auto Inherited = CD->getInheritedConstructor())
730  FD = Inherited.getConstructor();
731 
732  // Whether the mangling of a function type includes the return type depends on
733  // the context and the nature of the function. The rules for deciding whether
734  // the return type is included are:
735  //
736  // 1. Template functions (names or types) have return types encoded, with
737  // the exceptions listed below.
738  // 2. Function types not appearing as part of a function name mangling,
739  // e.g. parameters, pointer types, etc., have return type encoded, with the
740  // exceptions listed below.
741  // 3. Non-template function names do not have return types encoded.
742  //
743  // The exceptions mentioned in (1) and (2) above, for which the return type is
744  // never included, are
745  // 1. Constructors.
746  // 2. Destructors.
747  // 3. Conversion operator functions, e.g. operator int.
748  bool MangleReturnType = false;
749  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
750  if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
751  isa<CXXConversionDecl>(FD)))
752  MangleReturnType = true;
753 
754  // Mangle the type of the primary template.
755  FD = PrimaryTemplate->getTemplatedDecl();
756  }
757 
758  mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
759  MangleReturnType, FD);
760 }
761 
763  while (isa<LinkageSpecDecl>(DC)) {
764  DC = getEffectiveParentContext(DC);
765  }
766 
767  return DC;
768 }
769 
770 /// Return whether a given namespace is the 'std' namespace.
771 static bool isStd(const NamespaceDecl *NS) {
772  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
773  ->isTranslationUnit())
774  return false;
775 
777  return II && II->isStr("std");
778 }
779 
780 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
781 // namespace.
782 static bool isStdNamespace(const DeclContext *DC) {
783  if (!DC->isNamespace())
784  return false;
785 
786  return isStd(cast<NamespaceDecl>(DC));
787 }
788 
789 static const TemplateDecl *
790 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
791  // Check if we have a function template.
792  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
793  if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
794  TemplateArgs = FD->getTemplateSpecializationArgs();
795  return TD;
796  }
797  }
798 
799  // Check if we have a class template.
800  if (const ClassTemplateSpecializationDecl *Spec =
801  dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
802  TemplateArgs = &Spec->getTemplateArgs();
803  return Spec->getSpecializedTemplate();
804  }
805 
806  // Check if we have a variable template.
807  if (const VarTemplateSpecializationDecl *Spec =
808  dyn_cast<VarTemplateSpecializationDecl>(ND)) {
809  TemplateArgs = &Spec->getTemplateArgs();
810  return Spec->getSpecializedTemplate();
811  }
812 
813  return nullptr;
814 }
815 
816 void CXXNameMangler::mangleName(const NamedDecl *ND) {
817  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
818  // Variables should have implicit tags from its type.
819  AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
820  if (VariableTypeAbiTags.empty()) {
821  // Simple case no variable type tags.
822  mangleNameWithAbiTags(VD, nullptr);
823  return;
824  }
825 
826  // Mangle variable name to null stream to collect tags.
827  llvm::raw_null_ostream NullOutStream;
828  CXXNameMangler VariableNameMangler(*this, NullOutStream);
829  VariableNameMangler.disableDerivedAbiTags();
830  VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
831 
832  // Get tags from variable type that are not present in its name.
833  const AbiTagList &UsedAbiTags =
834  VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
835  AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
836  AdditionalAbiTags.erase(
837  std::set_difference(VariableTypeAbiTags.begin(),
838  VariableTypeAbiTags.end(), UsedAbiTags.begin(),
839  UsedAbiTags.end(), AdditionalAbiTags.begin()),
840  AdditionalAbiTags.end());
841 
842  // Output name with implicit tags.
843  mangleNameWithAbiTags(VD, &AdditionalAbiTags);
844  } else {
845  mangleNameWithAbiTags(ND, nullptr);
846  }
847 }
848 
849 void CXXNameMangler::mangleNameWithAbiTags(const NamedDecl *ND,
850  const AbiTagList *AdditionalAbiTags) {
851  // <name> ::= [<module-name>] <nested-name>
852  // ::= [<module-name>] <unscoped-name>
853  // ::= [<module-name>] <unscoped-template-name> <template-args>
854  // ::= <local-name>
855  //
856  const DeclContext *DC = getEffectiveDeclContext(ND);
857 
858  // If this is an extern variable declared locally, the relevant DeclContext
859  // is that of the containing namespace, or the translation unit.
860  // FIXME: This is a hack; extern variables declared locally should have
861  // a proper semantic declaration context!
862  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
863  while (!DC->isNamespace() && !DC->isTranslationUnit())
864  DC = getEffectiveParentContext(DC);
865  else if (GetLocalClassDecl(ND)) {
866  mangleLocalName(ND, AdditionalAbiTags);
867  return;
868  }
869 
870  DC = IgnoreLinkageSpecDecls(DC);
871 
872  if (isLocalContainerContext(DC)) {
873  mangleLocalName(ND, AdditionalAbiTags);
874  return;
875  }
876 
877  // Do not mangle the owning module for an external linkage declaration.
878  // This enables backwards-compatibility with non-modular code, and is
879  // a valid choice since conflicts are not permitted by C++ Modules TS
880  // [basic.def.odr]/6.2.
881  if (!ND->hasExternalFormalLinkage())
882  if (Module *M = ND->getOwningModuleForLinkage())
883  mangleModuleName(M);
884 
885  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
886  // Check if we have a template.
887  const TemplateArgumentList *TemplateArgs = nullptr;
888  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
889  mangleUnscopedTemplateName(TD, AdditionalAbiTags);
890  mangleTemplateArgs(*TemplateArgs);
891  return;
892  }
893 
894  mangleUnscopedName(ND, AdditionalAbiTags);
895  return;
896  }
897 
898  mangleNestedName(ND, DC, AdditionalAbiTags);
899 }
900 
901 void CXXNameMangler::mangleModuleName(const Module *M) {
902  // Implement the C++ Modules TS name mangling proposal; see
903  // https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
904  //
905  // <module-name> ::= W <unscoped-name>+ E
906  // ::= W <module-subst> <unscoped-name>* E
907  Out << 'W';
908  mangleModuleNamePrefix(M->Name);
909  Out << 'E';
910 }
911 
912 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
913  // <module-subst> ::= _ <seq-id> # 0 < seq-id < 10
914  // ::= W <seq-id - 10> _ # otherwise
915  auto It = ModuleSubstitutions.find(Name);
916  if (It != ModuleSubstitutions.end()) {
917  if (It->second < 10)
918  Out << '_' << static_cast<char>('0' + It->second);
919  else
920  Out << 'W' << (It->second - 10) << '_';
921  return;
922  }
923 
924  // FIXME: Preserve hierarchy in module names rather than flattening
925  // them to strings; use Module*s as substitution keys.
926  auto Parts = Name.rsplit('.');
927  if (Parts.second.empty())
928  Parts.second = Parts.first;
929  else
930  mangleModuleNamePrefix(Parts.first);
931 
932  Out << Parts.second.size() << Parts.second;
933  ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
934 }
935 
936 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
937  const TemplateArgument *TemplateArgs,
938  unsigned NumTemplateArgs) {
939  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
940 
941  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
942  mangleUnscopedTemplateName(TD, nullptr);
943  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
944  } else {
945  mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
946  }
947 }
948 
949 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND,
950  const AbiTagList *AdditionalAbiTags) {
951  // <unscoped-name> ::= <unqualified-name>
952  // ::= St <unqualified-name> # ::std::
953 
954  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
955  Out << "St";
956 
957  mangleUnqualifiedName(ND, AdditionalAbiTags);
958 }
959 
960 void CXXNameMangler::mangleUnscopedTemplateName(
961  const TemplateDecl *ND, const AbiTagList *AdditionalAbiTags) {
962  // <unscoped-template-name> ::= <unscoped-name>
963  // ::= <substitution>
964  if (mangleSubstitution(ND))
965  return;
966 
967  // <template-template-param> ::= <template-param>
968  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
969  assert(!AdditionalAbiTags &&
970  "template template param cannot have abi tags");
971  mangleTemplateParameter(TTP->getIndex());
972  } else if (isa<BuiltinTemplateDecl>(ND)) {
973  mangleUnscopedName(ND, AdditionalAbiTags);
974  } else {
975  mangleUnscopedName(ND->getTemplatedDecl(), AdditionalAbiTags);
976  }
977 
978  addSubstitution(ND);
979 }
980 
981 void CXXNameMangler::mangleUnscopedTemplateName(
982  TemplateName Template, const AbiTagList *AdditionalAbiTags) {
983  // <unscoped-template-name> ::= <unscoped-name>
984  // ::= <substitution>
985  if (TemplateDecl *TD = Template.getAsTemplateDecl())
986  return mangleUnscopedTemplateName(TD, AdditionalAbiTags);
987 
988  if (mangleSubstitution(Template))
989  return;
990 
991  assert(!AdditionalAbiTags &&
992  "dependent template name cannot have abi tags");
993 
994  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
995  assert(Dependent && "Not a dependent template name?");
996  if (const IdentifierInfo *Id = Dependent->getIdentifier())
997  mangleSourceName(Id);
998  else
999  mangleOperatorName(Dependent->getOperator(), UnknownArity);
1000 
1001  addSubstitution(Template);
1002 }
1003 
1004 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1005  // ABI:
1006  // Floating-point literals are encoded using a fixed-length
1007  // lowercase hexadecimal string corresponding to the internal
1008  // representation (IEEE on Itanium), high-order bytes first,
1009  // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1010  // on Itanium.
1011  // The 'without leading zeroes' thing seems to be an editorial
1012  // mistake; see the discussion on cxx-abi-dev beginning on
1013  // 2012-01-16.
1014 
1015  // Our requirements here are just barely weird enough to justify
1016  // using a custom algorithm instead of post-processing APInt::toString().
1017 
1018  llvm::APInt valueBits = f.bitcastToAPInt();
1019  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1020  assert(numCharacters != 0);
1021 
1022  // Allocate a buffer of the right number of characters.
1023  SmallVector<char, 20> buffer(numCharacters);
1024 
1025  // Fill the buffer left-to-right.
1026  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1027  // The bit-index of the next hex digit.
1028  unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1029 
1030  // Project out 4 bits starting at 'digitIndex'.
1031  uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1032  hexDigit >>= (digitBitIndex % 64);
1033  hexDigit &= 0xF;
1034 
1035  // Map that over to a lowercase hex digit.
1036  static const char charForHex[16] = {
1037  '0', '1', '2', '3', '4', '5', '6', '7',
1038  '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1039  };
1040  buffer[stringIndex] = charForHex[hexDigit];
1041  }
1042 
1043  Out.write(buffer.data(), numCharacters);
1044 }
1045 
1046 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1047  if (Value.isSigned() && Value.isNegative()) {
1048  Out << 'n';
1049  Value.abs().print(Out, /*signed*/ false);
1050  } else {
1051  Value.print(Out, /*signed*/ false);
1052  }
1053 }
1054 
1055 void CXXNameMangler::mangleNumber(int64_t Number) {
1056  // <number> ::= [n] <non-negative decimal integer>
1057  if (Number < 0) {
1058  Out << 'n';
1059  Number = -Number;
1060  }
1061 
1062  Out << Number;
1063 }
1064 
1065 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1066  // <call-offset> ::= h <nv-offset> _
1067  // ::= v <v-offset> _
1068  // <nv-offset> ::= <offset number> # non-virtual base override
1069  // <v-offset> ::= <offset number> _ <virtual offset number>
1070  // # virtual base override, with vcall offset
1071  if (!Virtual) {
1072  Out << 'h';
1073  mangleNumber(NonVirtual);
1074  Out << '_';
1075  return;
1076  }
1077 
1078  Out << 'v';
1079  mangleNumber(NonVirtual);
1080  Out << '_';
1081  mangleNumber(Virtual);
1082  Out << '_';
1083 }
1084 
1085 void CXXNameMangler::manglePrefix(QualType type) {
1086  if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1087  if (!mangleSubstitution(QualType(TST, 0))) {
1088  mangleTemplatePrefix(TST->getTemplateName());
1089 
1090  // FIXME: GCC does not appear to mangle the template arguments when
1091  // the template in question is a dependent template name. Should we
1092  // emulate that badness?
1093  mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1094  addSubstitution(QualType(TST, 0));
1095  }
1096  } else if (const auto *DTST =
1098  if (!mangleSubstitution(QualType(DTST, 0))) {
1099  TemplateName Template = getASTContext().getDependentTemplateName(
1100  DTST->getQualifier(), DTST->getIdentifier());
1101  mangleTemplatePrefix(Template);
1102 
1103  // FIXME: GCC does not appear to mangle the template arguments when
1104  // the template in question is a dependent template name. Should we
1105  // emulate that badness?
1106  mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1107  addSubstitution(QualType(DTST, 0));
1108  }
1109  } else {
1110  // We use the QualType mangle type variant here because it handles
1111  // substitutions.
1112  mangleType(type);
1113  }
1114 }
1115 
1116 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1117 ///
1118 /// \param recursive - true if this is being called recursively,
1119 /// i.e. if there is more prefix "to the right".
1120 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1121  bool recursive) {
1122 
1123  // x, ::x
1124  // <unresolved-name> ::= [gs] <base-unresolved-name>
1125 
1126  // T::x / decltype(p)::x
1127  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1128 
1129  // T::N::x /decltype(p)::N::x
1130  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1131  // <base-unresolved-name>
1132 
1133  // A::x, N::y, A<T>::z; "gs" means leading "::"
1134  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1135  // <base-unresolved-name>
1136 
1137  switch (qualifier->getKind()) {
1139  Out << "gs";
1140 
1141  // We want an 'sr' unless this is the entire NNS.
1142  if (recursive)
1143  Out << "sr";
1144 
1145  // We never want an 'E' here.
1146  return;
1147 
1149  llvm_unreachable("Can't mangle __super specifier");
1150 
1152  if (qualifier->getPrefix())
1153  mangleUnresolvedPrefix(qualifier->getPrefix(),
1154  /*recursive*/ true);
1155  else
1156  Out << "sr";
1157  mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1158  break;
1160  if (qualifier->getPrefix())
1161  mangleUnresolvedPrefix(qualifier->getPrefix(),
1162  /*recursive*/ true);
1163  else
1164  Out << "sr";
1165  mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1166  break;
1167 
1170  const Type *type = qualifier->getAsType();
1171 
1172  // We only want to use an unresolved-type encoding if this is one of:
1173  // - a decltype
1174  // - a template type parameter
1175  // - a template template parameter with arguments
1176  // In all of these cases, we should have no prefix.
1177  if (qualifier->getPrefix()) {
1178  mangleUnresolvedPrefix(qualifier->getPrefix(),
1179  /*recursive*/ true);
1180  } else {
1181  // Otherwise, all the cases want this.
1182  Out << "sr";
1183  }
1184 
1185  if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1186  return;
1187 
1188  break;
1189  }
1190 
1192  // Member expressions can have these without prefixes.
1193  if (qualifier->getPrefix())
1194  mangleUnresolvedPrefix(qualifier->getPrefix(),
1195  /*recursive*/ true);
1196  else
1197  Out << "sr";
1198 
1199  mangleSourceName(qualifier->getAsIdentifier());
1200  // An Identifier has no type information, so we can't emit abi tags for it.
1201  break;
1202  }
1203 
1204  // If this was the innermost part of the NNS, and we fell out to
1205  // here, append an 'E'.
1206  if (!recursive)
1207  Out << 'E';
1208 }
1209 
1210 /// Mangle an unresolved-name, which is generally used for names which
1211 /// weren't resolved to specific entities.
1212 void CXXNameMangler::mangleUnresolvedName(
1213  NestedNameSpecifier *qualifier, DeclarationName name,
1214  const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1215  unsigned knownArity) {
1216  if (qualifier) mangleUnresolvedPrefix(qualifier);
1217  switch (name.getNameKind()) {
1218  // <base-unresolved-name> ::= <simple-id>
1220  mangleSourceName(name.getAsIdentifierInfo());
1221  break;
1222  // <base-unresolved-name> ::= dn <destructor-name>
1224  Out << "dn";
1225  mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1226  break;
1227  // <base-unresolved-name> ::= on <operator-name>
1231  Out << "on";
1232  mangleOperatorName(name, knownArity);
1233  break;
1235  llvm_unreachable("Can't mangle a constructor name!");
1237  llvm_unreachable("Can't mangle a using directive name!");
1239  llvm_unreachable("Can't mangle a deduction guide name!");
1243  llvm_unreachable("Can't mangle Objective-C selector names here!");
1244  }
1245 
1246  // The <simple-id> and on <operator-name> productions end in an optional
1247  // <template-args>.
1248  if (TemplateArgs)
1249  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1250 }
1251 
1252 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1253  DeclarationName Name,
1254  unsigned KnownArity,
1255  const AbiTagList *AdditionalAbiTags) {
1256  unsigned Arity = KnownArity;
1257  // <unqualified-name> ::= <operator-name>
1258  // ::= <ctor-dtor-name>
1259  // ::= <source-name>
1260  switch (Name.getNameKind()) {
1262  const IdentifierInfo *II = Name.getAsIdentifierInfo();
1263 
1264  // We mangle decomposition declarations as the names of their bindings.
1265  if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1266  // FIXME: Non-standard mangling for decomposition declarations:
1267  //
1268  // <unqualified-name> ::= DC <source-name>* E
1269  //
1270  // These can never be referenced across translation units, so we do
1271  // not need a cross-vendor mangling for anything other than demanglers.
1272  // Proposed on cxx-abi-dev on 2016-08-12
1273  Out << "DC";
1274  for (auto *BD : DD->bindings())
1275  mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1276  Out << 'E';
1277  writeAbiTags(ND, AdditionalAbiTags);
1278  break;
1279  }
1280 
1281  if (II) {
1282  // Match GCC's naming convention for internal linkage symbols, for
1283  // symbols that are not actually visible outside of this TU. GCC
1284  // distinguishes between internal and external linkage symbols in
1285  // its mangling, to support cases like this that were valid C++ prior
1286  // to DR426:
1287  //
1288  // void test() { extern void foo(); }
1289  // static void foo();
1290  //
1291  // Don't bother with the L marker for names in anonymous namespaces; the
1292  // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1293  // matches GCC anyway, because GCC does not treat anonymous namespaces as
1294  // implying internal linkage.
1295  if (ND && ND->getFormalLinkage() == InternalLinkage &&
1296  !ND->isExternallyVisible() &&
1297  getEffectiveDeclContext(ND)->isFileContext() &&
1298  !ND->isInAnonymousNamespace())
1299  Out << 'L';
1300 
1301  auto *FD = dyn_cast<FunctionDecl>(ND);
1302  bool IsRegCall = FD &&
1303  FD->getType()->castAs<FunctionType>()->getCallConv() ==
1305  if (IsRegCall)
1306  mangleRegCallName(II);
1307  else
1308  mangleSourceName(II);
1309 
1310  writeAbiTags(ND, AdditionalAbiTags);
1311  break;
1312  }
1313 
1314  // Otherwise, an anonymous entity. We must have a declaration.
1315  assert(ND && "mangling empty name without declaration");
1316 
1317  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1318  if (NS->isAnonymousNamespace()) {
1319  // This is how gcc mangles these names.
1320  Out << "12_GLOBAL__N_1";
1321  break;
1322  }
1323  }
1324 
1325  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1326  // We must have an anonymous union or struct declaration.
1327  const RecordDecl *RD = VD->getType()->getAs<RecordType>()->getDecl();
1328 
1329  // Itanium C++ ABI 5.1.2:
1330  //
1331  // For the purposes of mangling, the name of an anonymous union is
1332  // considered to be the name of the first named data member found by a
1333  // pre-order, depth-first, declaration-order walk of the data members of
1334  // the anonymous union. If there is no such data member (i.e., if all of
1335  // the data members in the union are unnamed), then there is no way for
1336  // a program to refer to the anonymous union, and there is therefore no
1337  // need to mangle its name.
1338  assert(RD->isAnonymousStructOrUnion()
1339  && "Expected anonymous struct or union!");
1340  const FieldDecl *FD = RD->findFirstNamedDataMember();
1341 
1342  // It's actually possible for various reasons for us to get here
1343  // with an empty anonymous struct / union. Fortunately, it
1344  // doesn't really matter what name we generate.
1345  if (!FD) break;
1346  assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1347 
1348  mangleSourceName(FD->getIdentifier());
1349  // Not emitting abi tags: internal name anyway.
1350  break;
1351  }
1352 
1353  // Class extensions have no name as a category, and it's possible
1354  // for them to be the semantic parent of certain declarations
1355  // (primarily, tag decls defined within declarations). Such
1356  // declarations will always have internal linkage, so the name
1357  // doesn't really matter, but we shouldn't crash on them. For
1358  // safety, just handle all ObjC containers here.
1359  if (isa<ObjCContainerDecl>(ND))
1360  break;
1361 
1362  // We must have an anonymous struct.
1363  const TagDecl *TD = cast<TagDecl>(ND);
1364  if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1365  assert(TD->getDeclContext() == D->getDeclContext() &&
1366  "Typedef should not be in another decl context!");
1367  assert(D->getDeclName().getAsIdentifierInfo() &&
1368  "Typedef was not named!");
1369  mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1370  assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1371  // Explicit abi tags are still possible; take from underlying type, not
1372  // from typedef.
1373  writeAbiTags(TD, nullptr);
1374  break;
1375  }
1376 
1377  // <unnamed-type-name> ::= <closure-type-name>
1378  //
1379  // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1380  // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
1381  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1382  if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1383  assert(!AdditionalAbiTags &&
1384  "Lambda type cannot have additional abi tags");
1385  mangleLambda(Record);
1386  break;
1387  }
1388  }
1389 
1390  if (TD->isExternallyVisible()) {
1391  unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1392  Out << "Ut";
1393  if (UnnamedMangle > 1)
1394  Out << UnnamedMangle - 2;
1395  Out << '_';
1396  writeAbiTags(TD, AdditionalAbiTags);
1397  break;
1398  }
1399 
1400  // Get a unique id for the anonymous struct. If it is not a real output
1401  // ID doesn't matter so use fake one.
1402  unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1403 
1404  // Mangle it as a source name in the form
1405  // [n] $_<id>
1406  // where n is the length of the string.
1407  SmallString<8> Str;
1408  Str += "$_";
1409  Str += llvm::utostr(AnonStructId);
1410 
1411  Out << Str.size();
1412  Out << Str;
1413  break;
1414  }
1415 
1419  llvm_unreachable("Can't mangle Objective-C selector names here!");
1420 
1422  const CXXRecordDecl *InheritedFrom = nullptr;
1423  const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1424  if (auto Inherited =
1425  cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1426  InheritedFrom = Inherited.getConstructor()->getParent();
1427  InheritedTemplateArgs =
1428  Inherited.getConstructor()->getTemplateSpecializationArgs();
1429  }
1430 
1431  if (ND == Structor)
1432  // If the named decl is the C++ constructor we're mangling, use the type
1433  // we were given.
1434  mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1435  else
1436  // Otherwise, use the complete constructor name. This is relevant if a
1437  // class with a constructor is declared within a constructor.
1438  mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1439 
1440  // FIXME: The template arguments are part of the enclosing prefix or
1441  // nested-name, but it's more convenient to mangle them here.
1442  if (InheritedTemplateArgs)
1443  mangleTemplateArgs(*InheritedTemplateArgs);
1444 
1445  writeAbiTags(ND, AdditionalAbiTags);
1446  break;
1447  }
1448 
1450  if (ND == Structor)
1451  // If the named decl is the C++ destructor we're mangling, use the type we
1452  // were given.
1453  mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1454  else
1455  // Otherwise, use the complete destructor name. This is relevant if a
1456  // class with a destructor is declared within a destructor.
1457  mangleCXXDtorType(Dtor_Complete);
1458  writeAbiTags(ND, AdditionalAbiTags);
1459  break;
1460 
1462  if (ND && Arity == UnknownArity) {
1463  Arity = cast<FunctionDecl>(ND)->getNumParams();
1464 
1465  // If we have a member function, we need to include the 'this' pointer.
1466  if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1467  if (!MD->isStatic())
1468  Arity++;
1469  }
1470  LLVM_FALLTHROUGH;
1473  mangleOperatorName(Name, Arity);
1474  writeAbiTags(ND, AdditionalAbiTags);
1475  break;
1476 
1478  llvm_unreachable("Can't mangle a deduction guide name!");
1479 
1481  llvm_unreachable("Can't mangle a using directive name!");
1482  }
1483 }
1484 
1485 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1486  // <source-name> ::= <positive length number> __regcall3__ <identifier>
1487  // <number> ::= [n] <non-negative decimal integer>
1488  // <identifier> ::= <unqualified source code identifier>
1489  Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1490  << II->getName();
1491 }
1492 
1493 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1494  // <source-name> ::= <positive length number> <identifier>
1495  // <number> ::= [n] <non-negative decimal integer>
1496  // <identifier> ::= <unqualified source code identifier>
1497  Out << II->getLength() << II->getName();
1498 }
1499 
1500 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1501  const DeclContext *DC,
1502  const AbiTagList *AdditionalAbiTags,
1503  bool NoFunction) {
1504  // <nested-name>
1505  // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1506  // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1507  // <template-args> E
1508 
1509  Out << 'N';
1510  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1511  Qualifiers MethodQuals =
1512  Qualifiers::fromCVRUMask(Method->getTypeQualifiers());
1513  // We do not consider restrict a distinguishing attribute for overloading
1514  // purposes so we must not mangle it.
1515  MethodQuals.removeRestrict();
1516  mangleQualifiers(MethodQuals);
1517  mangleRefQualifier(Method->getRefQualifier());
1518  }
1519 
1520  // Check if we have a template.
1521  const TemplateArgumentList *TemplateArgs = nullptr;
1522  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1523  mangleTemplatePrefix(TD, NoFunction);
1524  mangleTemplateArgs(*TemplateArgs);
1525  }
1526  else {
1527  manglePrefix(DC, NoFunction);
1528  mangleUnqualifiedName(ND, AdditionalAbiTags);
1529  }
1530 
1531  Out << 'E';
1532 }
1533 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1534  const TemplateArgument *TemplateArgs,
1535  unsigned NumTemplateArgs) {
1536  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1537 
1538  Out << 'N';
1539 
1540  mangleTemplatePrefix(TD);
1541  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1542 
1543  Out << 'E';
1544 }
1545 
1546 void CXXNameMangler::mangleLocalName(const Decl *D,
1547  const AbiTagList *AdditionalAbiTags) {
1548  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1549  // := Z <function encoding> E s [<discriminator>]
1550  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1551  // _ <entity name>
1552  // <discriminator> := _ <non-negative number>
1553  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1554  const RecordDecl *RD = GetLocalClassDecl(D);
1555  const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1556 
1557  Out << 'Z';
1558 
1559  {
1560  AbiTagState LocalAbiTags(AbiTags);
1561 
1562  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1563  mangleObjCMethodName(MD);
1564  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1565  mangleBlockForPrefix(BD);
1566  else
1567  mangleFunctionEncoding(cast<FunctionDecl>(DC));
1568 
1569  // Implicit ABI tags (from namespace) are not available in the following
1570  // entity; reset to actually emitted tags, which are available.
1571  LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1572  }
1573 
1574  Out << 'E';
1575 
1576  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1577  // be a bug that is fixed in trunk.
1578 
1579  if (RD) {
1580  // The parameter number is omitted for the last parameter, 0 for the
1581  // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1582  // <entity name> will of course contain a <closure-type-name>: Its
1583  // numbering will be local to the particular argument in which it appears
1584  // -- other default arguments do not affect its encoding.
1585  const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1586  if (CXXRD && CXXRD->isLambda()) {
1587  if (const ParmVarDecl *Parm
1588  = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1589  if (const FunctionDecl *Func
1590  = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1591  Out << 'd';
1592  unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1593  if (Num > 1)
1594  mangleNumber(Num - 2);
1595  Out << '_';
1596  }
1597  }
1598  }
1599 
1600  // Mangle the name relative to the closest enclosing function.
1601  // equality ok because RD derived from ND above
1602  if (D == RD) {
1603  mangleUnqualifiedName(RD, AdditionalAbiTags);
1604  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1605  manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1606  assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1607  mangleUnqualifiedBlock(BD);
1608  } else {
1609  const NamedDecl *ND = cast<NamedDecl>(D);
1610  mangleNestedName(ND, getEffectiveDeclContext(ND), AdditionalAbiTags,
1611  true /*NoFunction*/);
1612  }
1613  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1614  // Mangle a block in a default parameter; see above explanation for
1615  // lambdas.
1616  if (const ParmVarDecl *Parm
1617  = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1618  if (const FunctionDecl *Func
1619  = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1620  Out << 'd';
1621  unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1622  if (Num > 1)
1623  mangleNumber(Num - 2);
1624  Out << '_';
1625  }
1626  }
1627 
1628  assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1629  mangleUnqualifiedBlock(BD);
1630  } else {
1631  mangleUnqualifiedName(cast<NamedDecl>(D), AdditionalAbiTags);
1632  }
1633 
1634  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1635  unsigned disc;
1636  if (Context.getNextDiscriminator(ND, disc)) {
1637  if (disc < 10)
1638  Out << '_' << disc;
1639  else
1640  Out << "__" << disc << '_';
1641  }
1642  }
1643 }
1644 
1645 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1646  if (GetLocalClassDecl(Block)) {
1647  mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1648  return;
1649  }
1650  const DeclContext *DC = getEffectiveDeclContext(Block);
1651  if (isLocalContainerContext(DC)) {
1652  mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1653  return;
1654  }
1655  manglePrefix(getEffectiveDeclContext(Block));
1656  mangleUnqualifiedBlock(Block);
1657 }
1658 
1659 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1660  if (Decl *Context = Block->getBlockManglingContextDecl()) {
1661  if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1662  Context->getDeclContext()->isRecord()) {
1663  const auto *ND = cast<NamedDecl>(Context);
1664  if (ND->getIdentifier()) {
1665  mangleSourceNameWithAbiTags(ND);
1666  Out << 'M';
1667  }
1668  }
1669  }
1670 
1671  // If we have a block mangling number, use it.
1672  unsigned Number = Block->getBlockManglingNumber();
1673  // Otherwise, just make up a number. It doesn't matter what it is because
1674  // the symbol in question isn't externally visible.
1675  if (!Number)
1676  Number = Context.getBlockId(Block, false);
1677  else {
1678  // Stored mangling numbers are 1-based.
1679  --Number;
1680  }
1681  Out << "Ub";
1682  if (Number > 0)
1683  Out << Number - 1;
1684  Out << '_';
1685 }
1686 
1687 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1688  // If the context of a closure type is an initializer for a class member
1689  // (static or nonstatic), it is encoded in a qualified name with a final
1690  // <prefix> of the form:
1691  //
1692  // <data-member-prefix> := <member source-name> M
1693  //
1694  // Technically, the data-member-prefix is part of the <prefix>. However,
1695  // since a closure type will always be mangled with a prefix, it's easier
1696  // to emit that last part of the prefix here.
1697  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1698  if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1699  !isa<ParmVarDecl>(Context)) {
1700  // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
1701  // reasonable mangling here.
1702  if (const IdentifierInfo *Name
1703  = cast<NamedDecl>(Context)->getIdentifier()) {
1704  mangleSourceName(Name);
1705  const TemplateArgumentList *TemplateArgs = nullptr;
1706  if (isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1707  mangleTemplateArgs(*TemplateArgs);
1708  Out << 'M';
1709  }
1710  }
1711  }
1712 
1713  Out << "Ul";
1714  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1715  getAs<FunctionProtoType>();
1716  mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1717  Lambda->getLambdaStaticInvoker());
1718  Out << "E";
1719 
1720  // The number is omitted for the first closure type with a given
1721  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1722  // (in lexical order) with that same <lambda-sig> and context.
1723  //
1724  // The AST keeps track of the number for us.
1725  unsigned Number = Lambda->getLambdaManglingNumber();
1726  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1727  if (Number > 1)
1728  mangleNumber(Number - 2);
1729  Out << '_';
1730 }
1731 
1732 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1733  switch (qualifier->getKind()) {
1735  // nothing
1736  return;
1737 
1739  llvm_unreachable("Can't mangle __super specifier");
1740 
1742  mangleName(qualifier->getAsNamespace());
1743  return;
1744 
1746  mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1747  return;
1748 
1751  manglePrefix(QualType(qualifier->getAsType(), 0));
1752  return;
1753 
1755  // Member expressions can have these without prefixes, but that
1756  // should end up in mangleUnresolvedPrefix instead.
1757  assert(qualifier->getPrefix());
1758  manglePrefix(qualifier->getPrefix());
1759 
1760  mangleSourceName(qualifier->getAsIdentifier());
1761  return;
1762  }
1763 
1764  llvm_unreachable("unexpected nested name specifier");
1765 }
1766 
1767 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1768  // <prefix> ::= <prefix> <unqualified-name>
1769  // ::= <template-prefix> <template-args>
1770  // ::= <template-param>
1771  // ::= # empty
1772  // ::= <substitution>
1773 
1774  DC = IgnoreLinkageSpecDecls(DC);
1775 
1776  if (DC->isTranslationUnit())
1777  return;
1778 
1779  if (NoFunction && isLocalContainerContext(DC))
1780  return;
1781 
1782  assert(!isLocalContainerContext(DC));
1783 
1784  const NamedDecl *ND = cast<NamedDecl>(DC);
1785  if (mangleSubstitution(ND))
1786  return;
1787 
1788  // Check if we have a template.
1789  const TemplateArgumentList *TemplateArgs = nullptr;
1790  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1791  mangleTemplatePrefix(TD);
1792  mangleTemplateArgs(*TemplateArgs);
1793  } else {
1794  manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1795  mangleUnqualifiedName(ND, nullptr);
1796  }
1797 
1798  addSubstitution(ND);
1799 }
1800 
1801 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1802  // <template-prefix> ::= <prefix> <template unqualified-name>
1803  // ::= <template-param>
1804  // ::= <substitution>
1805  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1806  return mangleTemplatePrefix(TD);
1807 
1808  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1809  manglePrefix(Qualified->getQualifier());
1810 
1811  if (OverloadedTemplateStorage *Overloaded
1812  = Template.getAsOverloadedTemplate()) {
1813  mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1814  UnknownArity, nullptr);
1815  return;
1816  }
1817 
1818  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1819  assert(Dependent && "Unknown template name kind?");
1820  if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1821  manglePrefix(Qualifier);
1822  mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr);
1823 }
1824 
1825 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1826  bool NoFunction) {
1827  // <template-prefix> ::= <prefix> <template unqualified-name>
1828  // ::= <template-param>
1829  // ::= <substitution>
1830  // <template-template-param> ::= <template-param>
1831  // <substitution>
1832 
1833  if (mangleSubstitution(ND))
1834  return;
1835 
1836  // <template-template-param> ::= <template-param>
1837  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1838  mangleTemplateParameter(TTP->getIndex());
1839  } else {
1840  manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1841  if (isa<BuiltinTemplateDecl>(ND))
1842  mangleUnqualifiedName(ND, nullptr);
1843  else
1844  mangleUnqualifiedName(ND->getTemplatedDecl(), nullptr);
1845  }
1846 
1847  addSubstitution(ND);
1848 }
1849 
1850 /// Mangles a template name under the production <type>. Required for
1851 /// template template arguments.
1852 /// <type> ::= <class-enum-type>
1853 /// ::= <template-param>
1854 /// ::= <substitution>
1855 void CXXNameMangler::mangleType(TemplateName TN) {
1856  if (mangleSubstitution(TN))
1857  return;
1858 
1859  TemplateDecl *TD = nullptr;
1860 
1861  switch (TN.getKind()) {
1864  goto HaveDecl;
1865 
1867  TD = TN.getAsTemplateDecl();
1868  goto HaveDecl;
1869 
1870  HaveDecl:
1871  if (isa<TemplateTemplateParmDecl>(TD))
1872  mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1873  else
1874  mangleName(TD);
1875  break;
1876 
1878  llvm_unreachable("can't mangle an overloaded template name as a <type>");
1879 
1881  const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1882  assert(Dependent->isIdentifier());
1883 
1884  // <class-enum-type> ::= <name>
1885  // <name> ::= <nested-name>
1886  mangleUnresolvedPrefix(Dependent->getQualifier());
1887  mangleSourceName(Dependent->getIdentifier());
1888  break;
1889  }
1890 
1892  // Substituted template parameters are mangled as the substituted
1893  // template. This will check for the substitution twice, which is
1894  // fine, but we have to return early so that we don't try to *add*
1895  // the substitution twice.
1898  mangleType(subst->getReplacement());
1899  return;
1900  }
1901 
1903  // FIXME: not clear how to mangle this!
1904  // template <template <class> class T...> class A {
1905  // template <template <class> class U...> void foo(B<T,U> x...);
1906  // };
1907  Out << "_SUBSTPACK_";
1908  break;
1909  }
1910  }
1911 
1912  addSubstitution(TN);
1913 }
1914 
1915 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
1916  StringRef Prefix) {
1917  // Only certain other types are valid as prefixes; enumerate them.
1918  switch (Ty->getTypeClass()) {
1919  case Type::Builtin:
1920  case Type::Complex:
1921  case Type::Adjusted:
1922  case Type::Decayed:
1923  case Type::Pointer:
1924  case Type::BlockPointer:
1925  case Type::LValueReference:
1926  case Type::RValueReference:
1927  case Type::MemberPointer:
1928  case Type::ConstantArray:
1929  case Type::IncompleteArray:
1930  case Type::VariableArray:
1931  case Type::DependentSizedArray:
1932  case Type::DependentAddressSpace:
1933  case Type::DependentSizedExtVector:
1934  case Type::Vector:
1935  case Type::ExtVector:
1936  case Type::FunctionProto:
1937  case Type::FunctionNoProto:
1938  case Type::Paren:
1939  case Type::Attributed:
1940  case Type::Auto:
1941  case Type::DeducedTemplateSpecialization:
1942  case Type::PackExpansion:
1943  case Type::ObjCObject:
1944  case Type::ObjCInterface:
1945  case Type::ObjCObjectPointer:
1946  case Type::ObjCTypeParam:
1947  case Type::Atomic:
1948  case Type::Pipe:
1949  llvm_unreachable("type is illegal as a nested name specifier");
1950 
1951  case Type::SubstTemplateTypeParmPack:
1952  // FIXME: not clear how to mangle this!
1953  // template <class T...> class A {
1954  // template <class U...> void foo(decltype(T::foo(U())) x...);
1955  // };
1956  Out << "_SUBSTPACK_";
1957  break;
1958 
1959  // <unresolved-type> ::= <template-param>
1960  // ::= <decltype>
1961  // ::= <template-template-param> <template-args>
1962  // (this last is not official yet)
1963  case Type::TypeOfExpr:
1964  case Type::TypeOf:
1965  case Type::Decltype:
1966  case Type::TemplateTypeParm:
1967  case Type::UnaryTransform:
1968  case Type::SubstTemplateTypeParm:
1969  unresolvedType:
1970  // Some callers want a prefix before the mangled type.
1971  Out << Prefix;
1972 
1973  // This seems to do everything we want. It's not really
1974  // sanctioned for a substituted template parameter, though.
1975  mangleType(Ty);
1976 
1977  // We never want to print 'E' directly after an unresolved-type,
1978  // so we return directly.
1979  return true;
1980 
1981  case Type::Typedef:
1982  mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
1983  break;
1984 
1985  case Type::UnresolvedUsing:
1986  mangleSourceNameWithAbiTags(
1987  cast<UnresolvedUsingType>(Ty)->getDecl());
1988  break;
1989 
1990  case Type::Enum:
1991  case Type::Record:
1992  mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
1993  break;
1994 
1995  case Type::TemplateSpecialization: {
1996  const TemplateSpecializationType *TST =
1997  cast<TemplateSpecializationType>(Ty);
1998  TemplateName TN = TST->getTemplateName();
1999  switch (TN.getKind()) {
2002  TemplateDecl *TD = TN.getAsTemplateDecl();
2003 
2004  // If the base is a template template parameter, this is an
2005  // unresolved type.
2006  assert(TD && "no template for template specialization type");
2007  if (isa<TemplateTemplateParmDecl>(TD))
2008  goto unresolvedType;
2009 
2010  mangleSourceNameWithAbiTags(TD);
2011  break;
2012  }
2013 
2016  llvm_unreachable("invalid base for a template specialization type");
2017 
2021  mangleExistingSubstitution(subst->getReplacement());
2022  break;
2023  }
2024 
2026  // FIXME: not clear how to mangle this!
2027  // template <template <class U> class T...> class A {
2028  // template <class U...> void foo(decltype(T<U>::foo) x...);
2029  // };
2030  Out << "_SUBSTPACK_";
2031  break;
2032  }
2033  }
2034 
2035  mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
2036  break;
2037  }
2038 
2039  case Type::InjectedClassName:
2040  mangleSourceNameWithAbiTags(
2041  cast<InjectedClassNameType>(Ty)->getDecl());
2042  break;
2043 
2044  case Type::DependentName:
2045  mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2046  break;
2047 
2048  case Type::DependentTemplateSpecialization: {
2050  cast<DependentTemplateSpecializationType>(Ty);
2051  mangleSourceName(DTST->getIdentifier());
2052  mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
2053  break;
2054  }
2055 
2056  case Type::Elaborated:
2057  return mangleUnresolvedTypeOrSimpleId(
2058  cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2059  }
2060 
2061  return false;
2062 }
2063 
2064 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2065  switch (Name.getNameKind()) {
2074  llvm_unreachable("Not an operator name");
2075 
2077  // <operator-name> ::= cv <type> # (cast)
2078  Out << "cv";
2079  mangleType(Name.getCXXNameType());
2080  break;
2081 
2083  Out << "li";
2084  mangleSourceName(Name.getCXXLiteralIdentifier());
2085  return;
2086 
2088  mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2089  break;
2090  }
2091 }
2092 
2093 void
2094 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2095  switch (OO) {
2096  // <operator-name> ::= nw # new
2097  case OO_New: Out << "nw"; break;
2098  // ::= na # new[]
2099  case OO_Array_New: Out << "na"; break;
2100  // ::= dl # delete
2101  case OO_Delete: Out << "dl"; break;
2102  // ::= da # delete[]
2103  case OO_Array_Delete: Out << "da"; break;
2104  // ::= ps # + (unary)
2105  // ::= pl # + (binary or unknown)
2106  case OO_Plus:
2107  Out << (Arity == 1? "ps" : "pl"); break;
2108  // ::= ng # - (unary)
2109  // ::= mi # - (binary or unknown)
2110  case OO_Minus:
2111  Out << (Arity == 1? "ng" : "mi"); break;
2112  // ::= ad # & (unary)
2113  // ::= an # & (binary or unknown)
2114  case OO_Amp:
2115  Out << (Arity == 1? "ad" : "an"); break;
2116  // ::= de # * (unary)
2117  // ::= ml # * (binary or unknown)
2118  case OO_Star:
2119  // Use binary when unknown.
2120  Out << (Arity == 1? "de" : "ml"); break;
2121  // ::= co # ~
2122  case OO_Tilde: Out << "co"; break;
2123  // ::= dv # /
2124  case OO_Slash: Out << "dv"; break;
2125  // ::= rm # %
2126  case OO_Percent: Out << "rm"; break;
2127  // ::= or # |
2128  case OO_Pipe: Out << "or"; break;
2129  // ::= eo # ^
2130  case OO_Caret: Out << "eo"; break;
2131  // ::= aS # =
2132  case OO_Equal: Out << "aS"; break;
2133  // ::= pL # +=
2134  case OO_PlusEqual: Out << "pL"; break;
2135  // ::= mI # -=
2136  case OO_MinusEqual: Out << "mI"; break;
2137  // ::= mL # *=
2138  case OO_StarEqual: Out << "mL"; break;
2139  // ::= dV # /=
2140  case OO_SlashEqual: Out << "dV"; break;
2141  // ::= rM # %=
2142  case OO_PercentEqual: Out << "rM"; break;
2143  // ::= aN # &=
2144  case OO_AmpEqual: Out << "aN"; break;
2145  // ::= oR # |=
2146  case OO_PipeEqual: Out << "oR"; break;
2147  // ::= eO # ^=
2148  case OO_CaretEqual: Out << "eO"; break;
2149  // ::= ls # <<
2150  case OO_LessLess: Out << "ls"; break;
2151  // ::= rs # >>
2152  case OO_GreaterGreater: Out << "rs"; break;
2153  // ::= lS # <<=
2154  case OO_LessLessEqual: Out << "lS"; break;
2155  // ::= rS # >>=
2156  case OO_GreaterGreaterEqual: Out << "rS"; break;
2157  // ::= eq # ==
2158  case OO_EqualEqual: Out << "eq"; break;
2159  // ::= ne # !=
2160  case OO_ExclaimEqual: Out << "ne"; break;
2161  // ::= lt # <
2162  case OO_Less: Out << "lt"; break;
2163  // ::= gt # >
2164  case OO_Greater: Out << "gt"; break;
2165  // ::= le # <=
2166  case OO_LessEqual: Out << "le"; break;
2167  // ::= ge # >=
2168  case OO_GreaterEqual: Out << "ge"; break;
2169  // ::= nt # !
2170  case OO_Exclaim: Out << "nt"; break;
2171  // ::= aa # &&
2172  case OO_AmpAmp: Out << "aa"; break;
2173  // ::= oo # ||
2174  case OO_PipePipe: Out << "oo"; break;
2175  // ::= pp # ++
2176  case OO_PlusPlus: Out << "pp"; break;
2177  // ::= mm # --
2178  case OO_MinusMinus: Out << "mm"; break;
2179  // ::= cm # ,
2180  case OO_Comma: Out << "cm"; break;
2181  // ::= pm # ->*
2182  case OO_ArrowStar: Out << "pm"; break;
2183  // ::= pt # ->
2184  case OO_Arrow: Out << "pt"; break;
2185  // ::= cl # ()
2186  case OO_Call: Out << "cl"; break;
2187  // ::= ix # []
2188  case OO_Subscript: Out << "ix"; break;
2189 
2190  // ::= qu # ?
2191  // The conditional operator can't be overloaded, but we still handle it when
2192  // mangling expressions.
2193  case OO_Conditional: Out << "qu"; break;
2194  // Proposal on cxx-abi-dev, 2015-10-21.
2195  // ::= aw # co_await
2196  case OO_Coawait: Out << "aw"; break;
2197  // Proposed in cxx-abi github issue 43.
2198  // ::= ss # <=>
2199  case OO_Spaceship: Out << "ss"; break;
2200 
2201  case OO_None:
2203  llvm_unreachable("Not an overloaded operator");
2204  }
2205 }
2206 
2207 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2208  // Vendor qualifiers come first and if they are order-insensitive they must
2209  // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2210 
2211  // <type> ::= U <addrspace-expr>
2212  if (DAST) {
2213  Out << "U2ASI";
2214  mangleExpression(DAST->getAddrSpaceExpr());
2215  Out << "E";
2216  }
2217 
2218  // Address space qualifiers start with an ordinary letter.
2219  if (Quals.hasAddressSpace()) {
2220  // Address space extension:
2221  //
2222  // <type> ::= U <target-addrspace>
2223  // <type> ::= U <OpenCL-addrspace>
2224  // <type> ::= U <CUDA-addrspace>
2225 
2226  SmallString<64> ASString;
2227  LangAS AS = Quals.getAddressSpace();
2228 
2229  if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2230  // <target-addrspace> ::= "AS" <address-space-number>
2231  unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2232  if (TargetAS != 0)
2233  ASString = "AS" + llvm::utostr(TargetAS);
2234  } else {
2235  switch (AS) {
2236  default: llvm_unreachable("Not a language specific address space");
2237  // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2238  // "private"| "generic" ]
2239  case LangAS::opencl_global: ASString = "CLglobal"; break;
2240  case LangAS::opencl_local: ASString = "CLlocal"; break;
2241  case LangAS::opencl_constant: ASString = "CLconstant"; break;
2242  case LangAS::opencl_private: ASString = "CLprivate"; break;
2243  case LangAS::opencl_generic: ASString = "CLgeneric"; break;
2244  // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2245  case LangAS::cuda_device: ASString = "CUdevice"; break;
2246  case LangAS::cuda_constant: ASString = "CUconstant"; break;
2247  case LangAS::cuda_shared: ASString = "CUshared"; break;
2248  }
2249  }
2250  if (!ASString.empty())
2251  mangleVendorQualifier(ASString);
2252  }
2253 
2254  // The ARC ownership qualifiers start with underscores.
2255  // Objective-C ARC Extension:
2256  //
2257  // <type> ::= U "__strong"
2258  // <type> ::= U "__weak"
2259  // <type> ::= U "__autoreleasing"
2260  //
2261  // Note: we emit __weak first to preserve the order as
2262  // required by the Itanium ABI.
2263  if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2264  mangleVendorQualifier("__weak");
2265 
2266  // __unaligned (from -fms-extensions)
2267  if (Quals.hasUnaligned())
2268  mangleVendorQualifier("__unaligned");
2269 
2270  // Remaining ARC ownership qualifiers.
2271  switch (Quals.getObjCLifetime()) {
2272  case Qualifiers::OCL_None:
2273  break;
2274 
2275  case Qualifiers::OCL_Weak:
2276  // Do nothing as we already handled this case above.
2277  break;
2278 
2280  mangleVendorQualifier("__strong");
2281  break;
2282 
2284  mangleVendorQualifier("__autoreleasing");
2285  break;
2286 
2288  // The __unsafe_unretained qualifier is *not* mangled, so that
2289  // __unsafe_unretained types in ARC produce the same manglings as the
2290  // equivalent (but, naturally, unqualified) types in non-ARC, providing
2291  // better ABI compatibility.
2292  //
2293  // It's safe to do this because unqualified 'id' won't show up
2294  // in any type signatures that need to be mangled.
2295  break;
2296  }
2297 
2298  // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
2299  if (Quals.hasRestrict())
2300  Out << 'r';
2301  if (Quals.hasVolatile())
2302  Out << 'V';
2303  if (Quals.hasConst())
2304  Out << 'K';
2305 }
2306 
2307 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2308  Out << 'U' << name.size() << name;
2309 }
2310 
2311 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2312  // <ref-qualifier> ::= R # lvalue reference
2313  // ::= O # rvalue-reference
2314  switch (RefQualifier) {
2315  case RQ_None:
2316  break;
2317 
2318  case RQ_LValue:
2319  Out << 'R';
2320  break;
2321 
2322  case RQ_RValue:
2323  Out << 'O';
2324  break;
2325  }
2326 }
2327 
2328 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2329  Context.mangleObjCMethodName(MD, Out);
2330 }
2331 
2332 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2333  ASTContext &Ctx) {
2334  if (Quals)
2335  return true;
2336  if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2337  return true;
2338  if (Ty->isOpenCLSpecificType())
2339  return true;
2340  if (Ty->isBuiltinType())
2341  return false;
2342  // Through to Clang 6.0, we accidentally treated undeduced auto types as
2343  // substitution candidates.
2344  if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2345  isa<AutoType>(Ty))
2346  return false;
2347  return true;
2348 }
2349 
2350 void CXXNameMangler::mangleType(QualType T) {
2351  // If our type is instantiation-dependent but not dependent, we mangle
2352  // it as it was written in the source, removing any top-level sugar.
2353  // Otherwise, use the canonical type.
2354  //
2355  // FIXME: This is an approximation of the instantiation-dependent name
2356  // mangling rules, since we should really be using the type as written and
2357  // augmented via semantic analysis (i.e., with implicit conversions and
2358  // default template arguments) for any instantiation-dependent type.
2359  // Unfortunately, that requires several changes to our AST:
2360  // - Instantiation-dependent TemplateSpecializationTypes will need to be
2361  // uniqued, so that we can handle substitutions properly
2362  // - Default template arguments will need to be represented in the
2363  // TemplateSpecializationType, since they need to be mangled even though
2364  // they aren't written.
2365  // - Conversions on non-type template arguments need to be expressed, since
2366  // they can affect the mangling of sizeof/alignof.
2367  //
2368  // FIXME: This is wrong when mapping to the canonical type for a dependent
2369  // type discards instantiation-dependent portions of the type, such as for:
2370  //
2371  // template<typename T, int N> void f(T (&)[sizeof(N)]);
2372  // template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2373  //
2374  // It's also wrong in the opposite direction when instantiation-dependent,
2375  // canonically-equivalent types differ in some irrelevant portion of inner
2376  // type sugar. In such cases, we fail to form correct substitutions, eg:
2377  //
2378  // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2379  //
2380  // We should instead canonicalize the non-instantiation-dependent parts,
2381  // regardless of whether the type as a whole is dependent or instantiation
2382  // dependent.
2384  T = T.getCanonicalType();
2385  else {
2386  // Desugar any types that are purely sugar.
2387  do {
2388  // Don't desugar through template specialization types that aren't
2389  // type aliases. We need to mangle the template arguments as written.
2390  if (const TemplateSpecializationType *TST
2391  = dyn_cast<TemplateSpecializationType>(T))
2392  if (!TST->isTypeAlias())
2393  break;
2394 
2395  QualType Desugared
2396  = T.getSingleStepDesugaredType(Context.getASTContext());
2397  if (Desugared == T)
2398  break;
2399 
2400  T = Desugared;
2401  } while (true);
2402  }
2403  SplitQualType split = T.split();
2404  Qualifiers quals = split.Quals;
2405  const Type *ty = split.Ty;
2406 
2407  bool isSubstitutable =
2408  isTypeSubstitutable(quals, ty, Context.getASTContext());
2409  if (isSubstitutable && mangleSubstitution(T))
2410  return;
2411 
2412  // If we're mangling a qualified array type, push the qualifiers to
2413  // the element type.
2414  if (quals && isa<ArrayType>(T)) {
2415  ty = Context.getASTContext().getAsArrayType(T);
2416  quals = Qualifiers();
2417 
2418  // Note that we don't update T: we want to add the
2419  // substitution at the original type.
2420  }
2421 
2422  if (quals || ty->isDependentAddressSpaceType()) {
2423  if (const DependentAddressSpaceType *DAST =
2424  dyn_cast<DependentAddressSpaceType>(ty)) {
2425  SplitQualType splitDAST = DAST->getPointeeType().split();
2426  mangleQualifiers(splitDAST.Quals, DAST);
2427  mangleType(QualType(splitDAST.Ty, 0));
2428  } else {
2429  mangleQualifiers(quals);
2430 
2431  // Recurse: even if the qualified type isn't yet substitutable,
2432  // the unqualified type might be.
2433  mangleType(QualType(ty, 0));
2434  }
2435  } else {
2436  switch (ty->getTypeClass()) {
2437 #define ABSTRACT_TYPE(CLASS, PARENT)
2438 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2439  case Type::CLASS: \
2440  llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2441  return;
2442 #define TYPE(CLASS, PARENT) \
2443  case Type::CLASS: \
2444  mangleType(static_cast<const CLASS##Type*>(ty)); \
2445  break;
2446 #include "clang/AST/TypeNodes.def"
2447  }
2448  }
2449 
2450  // Add the substitution.
2451  if (isSubstitutable)
2452  addSubstitution(T);
2453 }
2454 
2455 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2456  if (!mangleStandardSubstitution(ND))
2457  mangleName(ND);
2458 }
2459 
2460 void CXXNameMangler::mangleType(const BuiltinType *T) {
2461  // <type> ::= <builtin-type>
2462  // <builtin-type> ::= v # void
2463  // ::= w # wchar_t
2464  // ::= b # bool
2465  // ::= c # char
2466  // ::= a # signed char
2467  // ::= h # unsigned char
2468  // ::= s # short
2469  // ::= t # unsigned short
2470  // ::= i # int
2471  // ::= j # unsigned int
2472  // ::= l # long
2473  // ::= m # unsigned long
2474  // ::= x # long long, __int64
2475  // ::= y # unsigned long long, __int64
2476  // ::= n # __int128
2477  // ::= o # unsigned __int128
2478  // ::= f # float
2479  // ::= d # double
2480  // ::= e # long double, __float80
2481  // ::= g # __float128
2482  // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
2483  // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
2484  // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
2485  // ::= Dh # IEEE 754r half-precision floating point (16 bits)
2486  // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2487  // ::= Di # char32_t
2488  // ::= Ds # char16_t
2489  // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2490  // ::= u <source-name> # vendor extended type
2491  std::string type_name;
2492  switch (T->getKind()) {
2493  case BuiltinType::Void:
2494  Out << 'v';
2495  break;
2496  case BuiltinType::Bool:
2497  Out << 'b';
2498  break;
2499  case BuiltinType::Char_U:
2500  case BuiltinType::Char_S:
2501  Out << 'c';
2502  break;
2503  case BuiltinType::UChar:
2504  Out << 'h';
2505  break;
2506  case BuiltinType::UShort:
2507  Out << 't';
2508  break;
2509  case BuiltinType::UInt:
2510  Out << 'j';
2511  break;
2512  case BuiltinType::ULong:
2513  Out << 'm';
2514  break;
2515  case BuiltinType::ULongLong:
2516  Out << 'y';
2517  break;
2518  case BuiltinType::UInt128:
2519  Out << 'o';
2520  break;
2521  case BuiltinType::SChar:
2522  Out << 'a';
2523  break;
2524  case BuiltinType::WChar_S:
2525  case BuiltinType::WChar_U:
2526  Out << 'w';
2527  break;
2528  case BuiltinType::Char8:
2529  Out << "Du";
2530  break;
2531  case BuiltinType::Char16:
2532  Out << "Ds";
2533  break;
2534  case BuiltinType::Char32:
2535  Out << "Di";
2536  break;
2537  case BuiltinType::Short:
2538  Out << 's';
2539  break;
2540  case BuiltinType::Int:
2541  Out << 'i';
2542  break;
2543  case BuiltinType::Long:
2544  Out << 'l';
2545  break;
2546  case BuiltinType::LongLong:
2547  Out << 'x';
2548  break;
2549  case BuiltinType::Int128:
2550  Out << 'n';
2551  break;
2552  case BuiltinType::Float16:
2553  Out << "DF16_";
2554  break;
2555  case BuiltinType::Half:
2556  Out << "Dh";
2557  break;
2558  case BuiltinType::Float:
2559  Out << 'f';
2560  break;
2561  case BuiltinType::Double:
2562  Out << 'd';
2563  break;
2564  case BuiltinType::LongDouble:
2565  Out << (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble()
2566  ? 'g'
2567  : 'e');
2568  break;
2569  case BuiltinType::Float128:
2570  if (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble())
2571  Out << "U10__float128"; // Match the GCC mangling
2572  else
2573  Out << 'g';
2574  break;
2575  case BuiltinType::NullPtr:
2576  Out << "Dn";
2577  break;
2578 
2579 #define BUILTIN_TYPE(Id, SingletonId)
2580 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2581  case BuiltinType::Id:
2582 #include "clang/AST/BuiltinTypes.def"
2583  case BuiltinType::Dependent:
2584  if (!NullOut)
2585  llvm_unreachable("mangling a placeholder type");
2586  break;
2587  case BuiltinType::ObjCId:
2588  Out << "11objc_object";
2589  break;
2590  case BuiltinType::ObjCClass:
2591  Out << "10objc_class";
2592  break;
2593  case BuiltinType::ObjCSel:
2594  Out << "13objc_selector";
2595  break;
2596 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2597  case BuiltinType::Id: \
2598  type_name = "ocl_" #ImgType "_" #Suffix; \
2599  Out << type_name.size() << type_name; \
2600  break;
2601 #include "clang/Basic/OpenCLImageTypes.def"
2602  case BuiltinType::OCLSampler:
2603  Out << "11ocl_sampler";
2604  break;
2605  case BuiltinType::OCLEvent:
2606  Out << "9ocl_event";
2607  break;
2608  case BuiltinType::OCLClkEvent:
2609  Out << "12ocl_clkevent";
2610  break;
2611  case BuiltinType::OCLQueue:
2612  Out << "9ocl_queue";
2613  break;
2614  case BuiltinType::OCLReserveID:
2615  Out << "13ocl_reserveid";
2616  break;
2617  }
2618 }
2619 
2620 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
2621  switch (CC) {
2622  case CC_C:
2623  return "";
2624 
2625  case CC_X86StdCall:
2626  case CC_X86FastCall:
2627  case CC_X86ThisCall:
2628  case CC_X86VectorCall:
2629  case CC_X86Pascal:
2630  case CC_Win64:
2631  case CC_X86_64SysV:
2632  case CC_X86RegCall:
2633  case CC_AAPCS:
2634  case CC_AAPCS_VFP:
2635  case CC_IntelOclBicc:
2636  case CC_SpirFunction:
2637  case CC_OpenCLKernel:
2638  case CC_PreserveMost:
2639  case CC_PreserveAll:
2640  // FIXME: we should be mangling all of the above.
2641  return "";
2642 
2643  case CC_Swift:
2644  return "swiftcall";
2645  }
2646  llvm_unreachable("bad calling convention");
2647 }
2648 
2649 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
2650  // Fast path.
2651  if (T->getExtInfo() == FunctionType::ExtInfo())
2652  return;
2653 
2654  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2655  // This will get more complicated in the future if we mangle other
2656  // things here; but for now, since we mangle ns_returns_retained as
2657  // a qualifier on the result type, we can get away with this:
2658  StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
2659  if (!CCQualifier.empty())
2660  mangleVendorQualifier(CCQualifier);
2661 
2662  // FIXME: regparm
2663  // FIXME: noreturn
2664 }
2665 
2666 void
2667 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
2668  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2669 
2670  // Note that these are *not* substitution candidates. Demanglers might
2671  // have trouble with this if the parameter type is fully substituted.
2672 
2673  switch (PI.getABI()) {
2675  break;
2676 
2677  // All of these start with "swift", so they come before "ns_consumed".
2681  mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
2682  break;
2683  }
2684 
2685  if (PI.isConsumed())
2686  mangleVendorQualifier("ns_consumed");
2687 
2688  if (PI.isNoEscape())
2689  mangleVendorQualifier("noescape");
2690 }
2691 
2692 // <type> ::= <function-type>
2693 // <function-type> ::= [<CV-qualifiers>] F [Y]
2694 // <bare-function-type> [<ref-qualifier>] E
2695 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2696  mangleExtFunctionInfo(T);
2697 
2698  // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
2699  // e.g. "const" in "int (A::*)() const".
2700  mangleQualifiers(Qualifiers::fromCVRUMask(T->getTypeQuals()));
2701 
2702  // Mangle instantiation-dependent exception-specification, if present,
2703  // per cxx-abi-dev proposal on 2016-10-11.
2706  Out << "DO";
2707  mangleExpression(T->getNoexceptExpr());
2708  Out << "E";
2709  } else {
2710  assert(T->getExceptionSpecType() == EST_Dynamic);
2711  Out << "Dw";
2712  for (auto ExceptTy : T->exceptions())
2713  mangleType(ExceptTy);
2714  Out << "E";
2715  }
2716  } else if (T->isNothrow()) {
2717  Out << "Do";
2718  }
2719 
2720  Out << 'F';
2721 
2722  // FIXME: We don't have enough information in the AST to produce the 'Y'
2723  // encoding for extern "C" function types.
2724  mangleBareFunctionType(T, /*MangleReturnType=*/true);
2725 
2726  // Mangle the ref-qualifier, if present.
2727  mangleRefQualifier(T->getRefQualifier());
2728 
2729  Out << 'E';
2730 }
2731 
2732 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2733  // Function types without prototypes can arise when mangling a function type
2734  // within an overloadable function in C. We mangle these as the absence of any
2735  // parameter types (not even an empty parameter list).
2736  Out << 'F';
2737 
2738  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2739 
2740  FunctionTypeDepth.enterResultType();
2741  mangleType(T->getReturnType());
2742  FunctionTypeDepth.leaveResultType();
2743 
2744  FunctionTypeDepth.pop(saved);
2745  Out << 'E';
2746 }
2747 
2748 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
2749  bool MangleReturnType,
2750  const FunctionDecl *FD) {
2751  // Record that we're in a function type. See mangleFunctionParam
2752  // for details on what we're trying to achieve here.
2753  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2754 
2755  // <bare-function-type> ::= <signature type>+
2756  if (MangleReturnType) {
2757  FunctionTypeDepth.enterResultType();
2758 
2759  // Mangle ns_returns_retained as an order-sensitive qualifier here.
2760  if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
2761  mangleVendorQualifier("ns_returns_retained");
2762 
2763  // Mangle the return type without any direct ARC ownership qualifiers.
2764  QualType ReturnTy = Proto->getReturnType();
2765  if (ReturnTy.getObjCLifetime()) {
2766  auto SplitReturnTy = ReturnTy.split();
2767  SplitReturnTy.Quals.removeObjCLifetime();
2768  ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
2769  }
2770  mangleType(ReturnTy);
2771 
2772  FunctionTypeDepth.leaveResultType();
2773  }
2774 
2775  if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2776  // <builtin-type> ::= v # void
2777  Out << 'v';
2778 
2779  FunctionTypeDepth.pop(saved);
2780  return;
2781  }
2782 
2783  assert(!FD || FD->getNumParams() == Proto->getNumParams());
2784  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2785  // Mangle extended parameter info as order-sensitive qualifiers here.
2786  if (Proto->hasExtParameterInfos() && FD == nullptr) {
2787  mangleExtParameterInfo(Proto->getExtParameterInfo(I));
2788  }
2789 
2790  // Mangle the type.
2791  QualType ParamTy = Proto->getParamType(I);
2792  mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
2793 
2794  if (FD) {
2795  if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
2796  // Attr can only take 1 character, so we can hardcode the length below.
2797  assert(Attr->getType() <= 9 && Attr->getType() >= 0);
2798  Out << "U17pass_object_size" << Attr->getType();
2799  }
2800  }
2801  }
2802 
2803  FunctionTypeDepth.pop(saved);
2804 
2805  // <builtin-type> ::= z # ellipsis
2806  if (Proto->isVariadic())
2807  Out << 'z';
2808 }
2809 
2810 // <type> ::= <class-enum-type>
2811 // <class-enum-type> ::= <name>
2812 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2813  mangleName(T->getDecl());
2814 }
2815 
2816 // <type> ::= <class-enum-type>
2817 // <class-enum-type> ::= <name>
2818 void CXXNameMangler::mangleType(const EnumType *T) {
2819  mangleType(static_cast<const TagType*>(T));
2820 }
2821 void CXXNameMangler::mangleType(const RecordType *T) {
2822  mangleType(static_cast<const TagType*>(T));
2823 }
2824 void CXXNameMangler::mangleType(const TagType *T) {
2825  mangleName(T->getDecl());
2826 }
2827 
2828 // <type> ::= <array-type>
2829 // <array-type> ::= A <positive dimension number> _ <element type>
2830 // ::= A [<dimension expression>] _ <element type>
2831 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2832  Out << 'A' << T->getSize() << '_';
2833  mangleType(T->getElementType());
2834 }
2835 void CXXNameMangler::mangleType(const VariableArrayType *T) {
2836  Out << 'A';
2837  // decayed vla types (size 0) will just be skipped.
2838  if (T->getSizeExpr())
2839  mangleExpression(T->getSizeExpr());
2840  Out << '_';
2841  mangleType(T->getElementType());
2842 }
2843 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2844  Out << 'A';
2845  mangleExpression(T->getSizeExpr());
2846  Out << '_';
2847  mangleType(T->getElementType());
2848 }
2849 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2850  Out << "A_";
2851  mangleType(T->getElementType());
2852 }
2853 
2854 // <type> ::= <pointer-to-member-type>
2855 // <pointer-to-member-type> ::= M <class type> <member type>
2856 void CXXNameMangler::mangleType(const MemberPointerType *T) {
2857  Out << 'M';
2858  mangleType(QualType(T->getClass(), 0));
2859  QualType PointeeType = T->getPointeeType();
2860  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2861  mangleType(FPT);
2862 
2863  // Itanium C++ ABI 5.1.8:
2864  //
2865  // The type of a non-static member function is considered to be different,
2866  // for the purposes of substitution, from the type of a namespace-scope or
2867  // static member function whose type appears similar. The types of two
2868  // non-static member functions are considered to be different, for the
2869  // purposes of substitution, if the functions are members of different
2870  // classes. In other words, for the purposes of substitution, the class of
2871  // which the function is a member is considered part of the type of
2872  // function.
2873 
2874  // Given that we already substitute member function pointers as a
2875  // whole, the net effect of this rule is just to unconditionally
2876  // suppress substitution on the function type in a member pointer.
2877  // We increment the SeqID here to emulate adding an entry to the
2878  // substitution table.
2879  ++SeqID;
2880  } else
2881  mangleType(PointeeType);
2882 }
2883 
2884 // <type> ::= <template-param>
2885 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2886  mangleTemplateParameter(T->getIndex());
2887 }
2888 
2889 // <type> ::= <template-param>
2890 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2891  // FIXME: not clear how to mangle this!
2892  // template <class T...> class A {
2893  // template <class U...> void foo(T(*)(U) x...);
2894  // };
2895  Out << "_SUBSTPACK_";
2896 }
2897 
2898 // <type> ::= P <type> # pointer-to
2899 void CXXNameMangler::mangleType(const PointerType *T) {
2900  Out << 'P';
2901  mangleType(T->getPointeeType());
2902 }
2903 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2904  Out << 'P';
2905  mangleType(T->getPointeeType());
2906 }
2907 
2908 // <type> ::= R <type> # reference-to
2909 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2910  Out << 'R';
2911  mangleType(T->getPointeeType());
2912 }
2913 
2914 // <type> ::= O <type> # rvalue reference-to (C++0x)
2915 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2916  Out << 'O';
2917  mangleType(T->getPointeeType());
2918 }
2919 
2920 // <type> ::= C <type> # complex pair (C 2000)
2921 void CXXNameMangler::mangleType(const ComplexType *T) {
2922  Out << 'C';
2923  mangleType(T->getElementType());
2924 }
2925 
2926 // ARM's ABI for Neon vector types specifies that they should be mangled as
2927 // if they are structs (to match ARM's initial implementation). The
2928 // vector type must be one of the special types predefined by ARM.
2929 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2930  QualType EltType = T->getElementType();
2931  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2932  const char *EltName = nullptr;
2934  switch (cast<BuiltinType>(EltType)->getKind()) {
2935  case BuiltinType::SChar:
2936  case BuiltinType::UChar:
2937  EltName = "poly8_t";
2938  break;
2939  case BuiltinType::Short:
2940  case BuiltinType::UShort:
2941  EltName = "poly16_t";
2942  break;
2943  case BuiltinType::ULongLong:
2944  EltName = "poly64_t";
2945  break;
2946  default: llvm_unreachable("unexpected Neon polynomial vector element type");
2947  }
2948  } else {
2949  switch (cast<BuiltinType>(EltType)->getKind()) {
2950  case BuiltinType::SChar: EltName = "int8_t"; break;
2951  case BuiltinType::UChar: EltName = "uint8_t"; break;
2952  case BuiltinType::Short: EltName = "int16_t"; break;
2953  case BuiltinType::UShort: EltName = "uint16_t"; break;
2954  case BuiltinType::Int: EltName = "int32_t"; break;
2955  case BuiltinType::UInt: EltName = "uint32_t"; break;
2956  case BuiltinType::LongLong: EltName = "int64_t"; break;
2957  case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2958  case BuiltinType::Double: EltName = "float64_t"; break;
2959  case BuiltinType::Float: EltName = "float32_t"; break;
2960  case BuiltinType::Half: EltName = "float16_t";break;
2961  default:
2962  llvm_unreachable("unexpected Neon vector element type");
2963  }
2964  }
2965  const char *BaseName = nullptr;
2966  unsigned BitSize = (T->getNumElements() *
2967  getASTContext().getTypeSize(EltType));
2968  if (BitSize == 64)
2969  BaseName = "__simd64_";
2970  else {
2971  assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2972  BaseName = "__simd128_";
2973  }
2974  Out << strlen(BaseName) + strlen(EltName);
2975  Out << BaseName << EltName;
2976 }
2977 
2978 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2979  switch (EltType->getKind()) {
2980  case BuiltinType::SChar:
2981  return "Int8";
2982  case BuiltinType::Short:
2983  return "Int16";
2984  case BuiltinType::Int:
2985  return "Int32";
2986  case BuiltinType::Long:
2987  case BuiltinType::LongLong:
2988  return "Int64";
2989  case BuiltinType::UChar:
2990  return "Uint8";
2991  case BuiltinType::UShort:
2992  return "Uint16";
2993  case BuiltinType::UInt:
2994  return "Uint32";
2995  case BuiltinType::ULong:
2996  case BuiltinType::ULongLong:
2997  return "Uint64";
2998  case BuiltinType::Half:
2999  return "Float16";
3000  case BuiltinType::Float:
3001  return "Float32";
3002  case BuiltinType::Double:
3003  return "Float64";
3004  default:
3005  llvm_unreachable("Unexpected vector element base type");
3006  }
3007 }
3008 
3009 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3010 // the equivalent internal name. The vector type must be one of the special
3011 // types predefined by ARM.
3012 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3013  QualType EltType = T->getElementType();
3014  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3015  unsigned BitSize =
3016  (T->getNumElements() * getASTContext().getTypeSize(EltType));
3017  (void)BitSize; // Silence warning.
3018 
3019  assert((BitSize == 64 || BitSize == 128) &&
3020  "Neon vector type not 64 or 128 bits");
3021 
3022  StringRef EltName;
3024  switch (cast<BuiltinType>(EltType)->getKind()) {
3025  case BuiltinType::UChar:
3026  EltName = "Poly8";
3027  break;
3028  case BuiltinType::UShort:
3029  EltName = "Poly16";
3030  break;
3031  case BuiltinType::ULong:
3032  case BuiltinType::ULongLong:
3033  EltName = "Poly64";
3034  break;
3035  default:
3036  llvm_unreachable("unexpected Neon polynomial vector element type");
3037  }
3038  } else
3039  EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3040 
3041  std::string TypeName =
3042  ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3043  Out << TypeName.length() << TypeName;
3044 }
3045 
3046 // GNU extension: vector types
3047 // <type> ::= <vector-type>
3048 // <vector-type> ::= Dv <positive dimension number> _
3049 // <extended element type>
3050 // ::= Dv [<dimension expression>] _ <element type>
3051 // <extended element type> ::= <element type>
3052 // ::= p # AltiVec vector pixel
3053 // ::= b # Altivec vector bool
3054 void CXXNameMangler::mangleType(const VectorType *T) {
3055  if ((T->getVectorKind() == VectorType::NeonVector ||
3057  llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3058  llvm::Triple::ArchType Arch =
3059  getASTContext().getTargetInfo().getTriple().getArch();
3060  if ((Arch == llvm::Triple::aarch64 ||
3061  Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3062  mangleAArch64NeonVectorType(T);
3063  else
3064  mangleNeonVectorType(T);
3065  return;
3066  }
3067  Out << "Dv" << T->getNumElements() << '_';
3069  Out << 'p';
3070  else if (T->getVectorKind() == VectorType::AltiVecBool)
3071  Out << 'b';
3072  else
3073  mangleType(T->getElementType());
3074 }
3075 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3076  mangleType(static_cast<const VectorType*>(T));
3077 }
3078 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3079  Out << "Dv";
3080  mangleExpression(T->getSizeExpr());
3081  Out << '_';
3082  mangleType(T->getElementType());
3083 }
3084 
3085 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3086  SplitQualType split = T->getPointeeType().split();
3087  mangleQualifiers(split.Quals, T);
3088  mangleType(QualType(split.Ty, 0));
3089 }
3090 
3091 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3092  // <type> ::= Dp <type> # pack expansion (C++0x)
3093  Out << "Dp";
3094  mangleType(T->getPattern());
3095 }
3096 
3097 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3098  mangleSourceName(T->getDecl()->getIdentifier());
3099 }
3100 
3101 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3102  // Treat __kindof as a vendor extended type qualifier.
3103  if (T->isKindOfType())
3104  Out << "U8__kindof";
3105 
3106  if (!T->qual_empty()) {
3107  // Mangle protocol qualifiers.
3108  SmallString<64> QualStr;
3109  llvm::raw_svector_ostream QualOS(QualStr);
3110  QualOS << "objcproto";
3111  for (const auto *I : T->quals()) {
3112  StringRef name = I->getName();
3113  QualOS << name.size() << name;
3114  }
3115  Out << 'U' << QualStr.size() << QualStr;
3116  }
3117 
3118  mangleType(T->getBaseType());
3119 
3120  if (T->isSpecialized()) {
3121  // Mangle type arguments as I <type>+ E
3122  Out << 'I';
3123  for (auto typeArg : T->getTypeArgs())
3124  mangleType(typeArg);
3125  Out << 'E';
3126  }
3127 }
3128 
3129 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3130  Out << "U13block_pointer";
3131  mangleType(T->getPointeeType());
3132 }
3133 
3134 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3135  // Mangle injected class name types as if the user had written the
3136  // specialization out fully. It may not actually be possible to see
3137  // this mangling, though.
3138  mangleType(T->getInjectedSpecializationType());
3139 }
3140 
3141 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3142  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3143  mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3144  } else {
3145  if (mangleSubstitution(QualType(T, 0)))
3146  return;
3147 
3148  mangleTemplatePrefix(T->getTemplateName());
3149 
3150  // FIXME: GCC does not appear to mangle the template arguments when
3151  // the template in question is a dependent template name. Should we
3152  // emulate that badness?
3153  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3154  addSubstitution(QualType(T, 0));
3155  }
3156 }
3157 
3158 void CXXNameMangler::mangleType(const DependentNameType *T) {
3159  // Proposal by cxx-abi-dev, 2014-03-26
3160  // <class-enum-type> ::= <name> # non-dependent or dependent type name or
3161  // # dependent elaborated type specifier using
3162  // # 'typename'
3163  // ::= Ts <name> # dependent elaborated type specifier using
3164  // # 'struct' or 'class'
3165  // ::= Tu <name> # dependent elaborated type specifier using
3166  // # 'union'
3167  // ::= Te <name> # dependent elaborated type specifier using
3168  // # 'enum'
3169  switch (T->getKeyword()) {
3170  case ETK_None:
3171  case ETK_Typename:
3172  break;
3173  case ETK_Struct:
3174  case ETK_Class:
3175  case ETK_Interface:
3176  Out << "Ts";
3177  break;
3178  case ETK_Union:
3179  Out << "Tu";
3180  break;
3181  case ETK_Enum:
3182  Out << "Te";
3183  break;
3184  }
3185  // Typename types are always nested
3186  Out << 'N';
3187  manglePrefix(T->getQualifier());
3188  mangleSourceName(T->getIdentifier());
3189  Out << 'E';
3190 }
3191 
3192 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3193  // Dependently-scoped template types are nested if they have a prefix.
3194  Out << 'N';
3195 
3196  // TODO: avoid making this TemplateName.
3197  TemplateName Prefix =
3198  getASTContext().getDependentTemplateName(T->getQualifier(),
3199  T->getIdentifier());
3200  mangleTemplatePrefix(Prefix);
3201 
3202  // FIXME: GCC does not appear to mangle the template arguments when
3203  // the template in question is a dependent template name. Should we
3204  // emulate that badness?
3205  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3206  Out << 'E';
3207 }
3208 
3209 void CXXNameMangler::mangleType(const TypeOfType *T) {
3210  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3211  // "extension with parameters" mangling.
3212  Out << "u6typeof";
3213 }
3214 
3215 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3216  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3217  // "extension with parameters" mangling.
3218  Out << "u6typeof";
3219 }
3220 
3221 void CXXNameMangler::mangleType(const DecltypeType *T) {
3222  Expr *E = T->getUnderlyingExpr();
3223 
3224  // type ::= Dt <expression> E # decltype of an id-expression
3225  // # or class member access
3226  // ::= DT <expression> E # decltype of an expression
3227 
3228  // This purports to be an exhaustive list of id-expressions and
3229  // class member accesses. Note that we do not ignore parentheses;
3230  // parentheses change the semantics of decltype for these
3231  // expressions (and cause the mangler to use the other form).
3232  if (isa<DeclRefExpr>(E) ||
3233  isa<MemberExpr>(E) ||
3234  isa<UnresolvedLookupExpr>(E) ||
3235  isa<DependentScopeDeclRefExpr>(E) ||
3236  isa<CXXDependentScopeMemberExpr>(E) ||
3237  isa<UnresolvedMemberExpr>(E))
3238  Out << "Dt";
3239  else
3240  Out << "DT";
3241  mangleExpression(E);
3242  Out << 'E';
3243 }
3244 
3245 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3246  // If this is dependent, we need to record that. If not, we simply
3247  // mangle it as the underlying type since they are equivalent.
3248  if (T->isDependentType()) {
3249  Out << 'U';
3250 
3251  switch (T->getUTTKind()) {
3253  Out << "3eut";
3254  break;
3255  }
3256  }
3257 
3258  mangleType(T->getBaseType());
3259 }
3260 
3261 void CXXNameMangler::mangleType(const AutoType *T) {
3262  assert(T->getDeducedType().isNull() &&
3263  "Deduced AutoType shouldn't be handled here!");
3264  assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3265  "shouldn't need to mangle __auto_type!");
3266  // <builtin-type> ::= Da # auto
3267  // ::= Dc # decltype(auto)
3268  Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3269 }
3270 
3271 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3272  // FIXME: This is not the right mangling. We also need to include a scope
3273  // here in some cases.
3274  QualType D = T->getDeducedType();
3275  if (D.isNull())
3276  mangleUnscopedTemplateName(T->getTemplateName(), nullptr);
3277  else
3278  mangleType(D);
3279 }
3280 
3281 void CXXNameMangler::mangleType(const AtomicType *T) {
3282  // <type> ::= U <source-name> <type> # vendor extended type qualifier
3283  // (Until there's a standardized mangling...)
3284  Out << "U7_Atomic";
3285  mangleType(T->getValueType());
3286 }
3287 
3288 void CXXNameMangler::mangleType(const PipeType *T) {
3289  // Pipe type mangling rules are described in SPIR 2.0 specification
3290  // A.1 Data types and A.3 Summary of changes
3291  // <type> ::= 8ocl_pipe
3292  Out << "8ocl_pipe";
3293 }
3294 
3295 void CXXNameMangler::mangleIntegerLiteral(QualType T,
3296  const llvm::APSInt &Value) {
3297  // <expr-primary> ::= L <type> <value number> E # integer literal
3298  Out << 'L';
3299 
3300  mangleType(T);
3301  if (T->isBooleanType()) {
3302  // Boolean values are encoded as 0/1.
3303  Out << (Value.getBoolValue() ? '1' : '0');
3304  } else {
3305  mangleNumber(Value);
3306  }
3307  Out << 'E';
3308 
3309 }
3310 
3311 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3312  // Ignore member expressions involving anonymous unions.
3313  while (const auto *RT = Base->getType()->getAs<RecordType>()) {
3314  if (!RT->getDecl()->isAnonymousStructOrUnion())
3315  break;
3316  const auto *ME = dyn_cast<MemberExpr>(Base);
3317  if (!ME)
3318  break;
3319  Base = ME->getBase();
3320  IsArrow = ME->isArrow();
3321  }
3322 
3323  if (Base->isImplicitCXXThis()) {
3324  // Note: GCC mangles member expressions to the implicit 'this' as
3325  // *this., whereas we represent them as this->. The Itanium C++ ABI
3326  // does not specify anything here, so we follow GCC.
3327  Out << "dtdefpT";
3328  } else {
3329  Out << (IsArrow ? "pt" : "dt");
3330  mangleExpression(Base);
3331  }
3332 }
3333 
3334 /// Mangles a member expression.
3335 void CXXNameMangler::mangleMemberExpr(const Expr *base,
3336  bool isArrow,
3337  NestedNameSpecifier *qualifier,
3338  NamedDecl *firstQualifierLookup,
3339  DeclarationName member,
3340  const TemplateArgumentLoc *TemplateArgs,
3341  unsigned NumTemplateArgs,
3342  unsigned arity) {
3343  // <expression> ::= dt <expression> <unresolved-name>
3344  // ::= pt <expression> <unresolved-name>
3345  if (base)
3346  mangleMemberExprBase(base, isArrow);
3347  mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
3348 }
3349 
3350 /// Look at the callee of the given call expression and determine if
3351 /// it's a parenthesized id-expression which would have triggered ADL
3352 /// otherwise.
3353 static bool isParenthesizedADLCallee(const CallExpr *call) {
3354  const Expr *callee = call->getCallee();
3355  const Expr *fn = callee->IgnoreParens();
3356 
3357  // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
3358  // too, but for those to appear in the callee, it would have to be
3359  // parenthesized.
3360  if (callee == fn) return false;
3361 
3362  // Must be an unresolved lookup.
3363  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
3364  if (!lookup) return false;
3365 
3366  assert(!lookup->requiresADL());
3367 
3368  // Must be an unqualified lookup.
3369  if (lookup->getQualifier()) return false;
3370 
3371  // Must not have found a class member. Note that if one is a class
3372  // member, they're all class members.
3373  if (lookup->getNumDecls() > 0 &&
3374  (*lookup->decls_begin())->isCXXClassMember())
3375  return false;
3376 
3377  // Otherwise, ADL would have been triggered.
3378  return true;
3379 }
3380 
3381 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
3382  const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
3383  Out << CastEncoding;
3384  mangleType(ECE->getType());
3385  mangleExpression(ECE->getSubExpr());
3386 }
3387 
3388 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
3389  if (auto *Syntactic = InitList->getSyntacticForm())
3390  InitList = Syntactic;
3391  for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
3392  mangleExpression(InitList->getInit(i));
3393 }
3394 
3395 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
3396  // <expression> ::= <unary operator-name> <expression>
3397  // ::= <binary operator-name> <expression> <expression>
3398  // ::= <trinary operator-name> <expression> <expression> <expression>
3399  // ::= cv <type> expression # conversion with one argument
3400  // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
3401  // ::= dc <type> <expression> # dynamic_cast<type> (expression)
3402  // ::= sc <type> <expression> # static_cast<type> (expression)
3403  // ::= cc <type> <expression> # const_cast<type> (expression)
3404  // ::= rc <type> <expression> # reinterpret_cast<type> (expression)
3405  // ::= st <type> # sizeof (a type)
3406  // ::= at <type> # alignof (a type)
3407  // ::= <template-param>
3408  // ::= <function-param>
3409  // ::= sr <type> <unqualified-name> # dependent name
3410  // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
3411  // ::= ds <expression> <expression> # expr.*expr
3412  // ::= sZ <template-param> # size of a parameter pack
3413  // ::= sZ <function-param> # size of a function parameter pack
3414  // ::= <expr-primary>
3415  // <expr-primary> ::= L <type> <value number> E # integer literal
3416  // ::= L <type <value float> E # floating literal
3417  // ::= L <mangled-name> E # external name
3418  // ::= fpT # 'this' expression
3419  QualType ImplicitlyConvertedToType;
3420 
3421 recurse:
3422  switch (E->getStmtClass()) {
3423  case Expr::NoStmtClass:
3424 #define ABSTRACT_STMT(Type)
3425 #define EXPR(Type, Base)
3426 #define STMT(Type, Base) \
3427  case Expr::Type##Class:
3428 #include "clang/AST/StmtNodes.inc"
3429  // fallthrough
3430 
3431  // These all can only appear in local or variable-initialization
3432  // contexts and so should never appear in a mangling.
3433  case Expr::AddrLabelExprClass:
3434  case Expr::DesignatedInitUpdateExprClass:
3435  case Expr::ImplicitValueInitExprClass:
3436  case Expr::ArrayInitLoopExprClass:
3437  case Expr::ArrayInitIndexExprClass:
3438  case Expr::NoInitExprClass:
3439  case Expr::ParenListExprClass:
3440  case Expr::LambdaExprClass:
3441  case Expr::MSPropertyRefExprClass:
3442  case Expr::MSPropertySubscriptExprClass:
3443  case Expr::TypoExprClass: // This should no longer exist in the AST by now.
3444  case Expr::OMPArraySectionExprClass:
3445  case Expr::CXXInheritedCtorInitExprClass:
3446  llvm_unreachable("unexpected statement kind");
3447 
3448  // FIXME: invent manglings for all these.
3449  case Expr::BlockExprClass:
3450  case Expr::ChooseExprClass:
3451  case Expr::CompoundLiteralExprClass:
3452  case Expr::ExtVectorElementExprClass:
3453  case Expr::GenericSelectionExprClass:
3454  case Expr::ObjCEncodeExprClass:
3455  case Expr::ObjCIsaExprClass:
3456  case Expr::ObjCIvarRefExprClass:
3457  case Expr::ObjCMessageExprClass:
3458  case Expr::ObjCPropertyRefExprClass:
3459  case Expr::ObjCProtocolExprClass:
3460  case Expr::ObjCSelectorExprClass:
3461  case Expr::ObjCStringLiteralClass:
3462  case Expr::ObjCBoxedExprClass:
3463  case Expr::ObjCArrayLiteralClass:
3464  case Expr::ObjCDictionaryLiteralClass:
3465  case Expr::ObjCSubscriptRefExprClass:
3466  case Expr::ObjCIndirectCopyRestoreExprClass:
3467  case Expr::ObjCAvailabilityCheckExprClass:
3468  case Expr::OffsetOfExprClass:
3469  case Expr::PredefinedExprClass:
3470  case Expr::ShuffleVectorExprClass:
3471  case Expr::ConvertVectorExprClass:
3472  case Expr::StmtExprClass:
3473  case Expr::TypeTraitExprClass:
3474  case Expr::ArrayTypeTraitExprClass:
3475  case Expr::ExpressionTraitExprClass:
3476  case Expr::VAArgExprClass:
3477  case Expr::CUDAKernelCallExprClass:
3478  case Expr::AsTypeExprClass:
3479  case Expr::PseudoObjectExprClass:
3480  case Expr::AtomicExprClass:
3481  {
3482  if (!NullOut) {
3483  // As bad as this diagnostic is, it's better than crashing.
3484  DiagnosticsEngine &Diags = Context.getDiags();
3485  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3486  "cannot yet mangle expression type %0");
3487  Diags.Report(E->getExprLoc(), DiagID)
3488  << E->getStmtClassName() << E->getSourceRange();
3489  }
3490  break;
3491  }
3492 
3493  case Expr::CXXUuidofExprClass: {
3494  const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
3495  if (UE->isTypeOperand()) {
3496  QualType UuidT = UE->getTypeOperand(Context.getASTContext());
3497  Out << "u8__uuidoft";
3498  mangleType(UuidT);
3499  } else {
3500  Expr *UuidExp = UE->getExprOperand();
3501  Out << "u8__uuidofz";
3502  mangleExpression(UuidExp, Arity);
3503  }
3504  break;
3505  }
3506 
3507  // Even gcc-4.5 doesn't mangle this.
3508  case Expr::BinaryConditionalOperatorClass: {
3509  DiagnosticsEngine &Diags = Context.getDiags();
3510  unsigned DiagID =
3512  "?: operator with omitted middle operand cannot be mangled");
3513  Diags.Report(E->getExprLoc(), DiagID)
3514  << E->getStmtClassName() << E->getSourceRange();
3515  break;
3516  }
3517 
3518  // These are used for internal purposes and cannot be meaningfully mangled.
3519  case Expr::OpaqueValueExprClass:
3520  llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
3521 
3522  case Expr::InitListExprClass: {
3523  Out << "il";
3524  mangleInitListElements(cast<InitListExpr>(E));
3525  Out << "E";
3526  break;
3527  }
3528 
3529  case Expr::DesignatedInitExprClass: {
3530  auto *DIE = cast<DesignatedInitExpr>(E);
3531  for (const auto &Designator : DIE->designators()) {
3532  if (Designator.isFieldDesignator()) {
3533  Out << "di";
3534  mangleSourceName(Designator.getFieldName());
3535  } else if (Designator.isArrayDesignator()) {
3536  Out << "dx";
3537  mangleExpression(DIE->getArrayIndex(Designator));
3538  } else {
3540  "unknown designator kind");
3541  Out << "dX";
3542  mangleExpression(DIE->getArrayRangeStart(Designator));
3543  mangleExpression(DIE->getArrayRangeEnd(Designator));
3544  }
3545  }
3546  mangleExpression(DIE->getInit());
3547  break;
3548  }
3549 
3550  case Expr::CXXDefaultArgExprClass:
3551  mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
3552  break;
3553 
3554  case Expr::CXXDefaultInitExprClass:
3555  mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
3556  break;
3557 
3558  case Expr::CXXStdInitializerListExprClass:
3559  mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
3560  break;
3561 
3562  case Expr::SubstNonTypeTemplateParmExprClass:
3563  mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
3564  Arity);
3565  break;
3566 
3567  case Expr::UserDefinedLiteralClass:
3568  // We follow g++'s approach of mangling a UDL as a call to the literal
3569  // operator.
3570  case Expr::CXXMemberCallExprClass: // fallthrough
3571  case Expr::CallExprClass: {
3572  const CallExpr *CE = cast<CallExpr>(E);
3573 
3574  // <expression> ::= cp <simple-id> <expression>* E
3575  // We use this mangling only when the call would use ADL except
3576  // for being parenthesized. Per discussion with David
3577  // Vandervoorde, 2011.04.25.
3578  if (isParenthesizedADLCallee(CE)) {
3579  Out << "cp";
3580  // The callee here is a parenthesized UnresolvedLookupExpr with
3581  // no qualifier and should always get mangled as a <simple-id>
3582  // anyway.
3583 
3584  // <expression> ::= cl <expression>* E
3585  } else {
3586  Out << "cl";
3587  }
3588 
3589  unsigned CallArity = CE->getNumArgs();
3590  for (const Expr *Arg : CE->arguments())
3591  if (isa<PackExpansionExpr>(Arg))
3592  CallArity = UnknownArity;
3593 
3594  mangleExpression(CE->getCallee(), CallArity);
3595  for (const Expr *Arg : CE->arguments())
3596  mangleExpression(Arg);
3597  Out << 'E';
3598  break;
3599  }
3600 
3601  case Expr::CXXNewExprClass: {
3602  const CXXNewExpr *New = cast<CXXNewExpr>(E);
3603  if (New->isGlobalNew()) Out << "gs";
3604  Out << (New->isArray() ? "na" : "nw");
3606  E = New->placement_arg_end(); I != E; ++I)
3607  mangleExpression(*I);
3608  Out << '_';
3609  mangleType(New->getAllocatedType());
3610  if (New->hasInitializer()) {
3612  Out << "il";
3613  else
3614  Out << "pi";
3615  const Expr *Init = New->getInitializer();
3616  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
3617  // Directly inline the initializers.
3618  for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
3619  E = CCE->arg_end();
3620  I != E; ++I)
3621  mangleExpression(*I);
3622  } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
3623  for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
3624  mangleExpression(PLE->getExpr(i));
3625  } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
3626  isa<InitListExpr>(Init)) {
3627  // Only take InitListExprs apart for list-initialization.
3628  mangleInitListElements(cast<InitListExpr>(Init));
3629  } else
3630  mangleExpression(Init);
3631  }
3632  Out << 'E';
3633  break;
3634  }
3635 
3636  case Expr::CXXPseudoDestructorExprClass: {
3637  const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
3638  if (const Expr *Base = PDE->getBase())
3639  mangleMemberExprBase(Base, PDE->isArrow());
3640  NestedNameSpecifier *Qualifier = PDE->getQualifier();
3641  if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
3642  if (Qualifier) {
3643  mangleUnresolvedPrefix(Qualifier,
3644  /*Recursive=*/true);
3645  mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
3646  Out << 'E';
3647  } else {
3648  Out << "sr";
3649  if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
3650  Out << 'E';
3651  }
3652  } else if (Qualifier) {
3653  mangleUnresolvedPrefix(Qualifier);
3654  }
3655  // <base-unresolved-name> ::= dn <destructor-name>
3656  Out << "dn";
3657  QualType DestroyedType = PDE->getDestroyedType();
3658  mangleUnresolvedTypeOrSimpleId(DestroyedType);
3659  break;
3660  }
3661 
3662  case Expr::MemberExprClass: {
3663  const MemberExpr *ME = cast<MemberExpr>(E);
3664  mangleMemberExpr(ME->getBase(), ME->isArrow(),
3665  ME->getQualifier(), nullptr,
3666  ME->getMemberDecl()->getDeclName(),
3667  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3668  Arity);
3669  break;
3670  }
3671 
3672  case Expr::UnresolvedMemberExprClass: {
3673  const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
3674  mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3675  ME->isArrow(), ME->getQualifier(), nullptr,
3676  ME->getMemberName(),
3677  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3678  Arity);
3679  break;
3680  }
3681 
3682  case Expr::CXXDependentScopeMemberExprClass: {
3683  const CXXDependentScopeMemberExpr *ME
3684  = cast<CXXDependentScopeMemberExpr>(E);
3685  mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3686  ME->isArrow(), ME->getQualifier(),
3688  ME->getMember(),
3689  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3690  Arity);
3691  break;
3692  }
3693 
3694  case Expr::UnresolvedLookupExprClass: {
3695  const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
3696  mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
3697  ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
3698  Arity);
3699  break;
3700  }
3701 
3702  case Expr::CXXUnresolvedConstructExprClass: {
3703  const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
3704  unsigned N = CE->arg_size();
3705 
3706  if (CE->isListInitialization()) {
3707  assert(N == 1 && "unexpected form for list initialization");
3708  auto *IL = cast<InitListExpr>(CE->getArg(0));
3709  Out << "tl";
3710  mangleType(CE->getType());
3711  mangleInitListElements(IL);
3712  Out << "E";
3713  return;
3714  }
3715 
3716  Out << "cv";
3717  mangleType(CE->getType());
3718  if (N != 1) Out << '_';
3719  for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
3720  if (N != 1) Out << 'E';
3721  break;
3722  }
3723 
3724  case Expr::CXXConstructExprClass: {
3725  const auto *CE = cast<CXXConstructExpr>(E);
3726  if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
3727  assert(
3728  CE->getNumArgs() >= 1 &&
3729  (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
3730  "implicit CXXConstructExpr must have one argument");
3731  return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
3732  }
3733  Out << "il";
3734  for (auto *E : CE->arguments())
3735  mangleExpression(E);
3736  Out << "E";
3737  break;
3738  }
3739 
3740  case Expr::CXXTemporaryObjectExprClass: {
3741  const auto *CE = cast<CXXTemporaryObjectExpr>(E);
3742  unsigned N = CE->getNumArgs();
3743  bool List = CE->isListInitialization();
3744 
3745  if (List)
3746  Out << "tl";
3747  else
3748  Out << "cv";
3749  mangleType(CE->getType());
3750  if (!List && N != 1)
3751  Out << '_';
3752  if (CE->isStdInitListInitialization()) {
3753  // We implicitly created a std::initializer_list<T> for the first argument
3754  // of a constructor of type U in an expression of the form U{a, b, c}.
3755  // Strip all the semantic gunk off the initializer list.
3756  auto *SILE =
3757  cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
3758  auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
3759  mangleInitListElements(ILE);
3760  } else {
3761  for (auto *E : CE->arguments())
3762  mangleExpression(E);
3763  }
3764  if (List || N != 1)
3765  Out << 'E';
3766  break;
3767  }
3768 
3769  case Expr::CXXScalarValueInitExprClass:
3770  Out << "cv";
3771  mangleType(E->getType());
3772  Out << "_E";
3773  break;
3774 
3775  case Expr::CXXNoexceptExprClass:
3776  Out << "nx";
3777  mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
3778  break;
3779 
3780  case Expr::UnaryExprOrTypeTraitExprClass: {
3781  const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
3782 
3783  if (!SAE->isInstantiationDependent()) {
3784  // Itanium C++ ABI:
3785  // If the operand of a sizeof or alignof operator is not
3786  // instantiation-dependent it is encoded as an integer literal
3787  // reflecting the result of the operator.
3788  //
3789  // If the result of the operator is implicitly converted to a known
3790  // integer type, that type is used for the literal; otherwise, the type
3791  // of std::size_t or std::ptrdiff_t is used.
3792  QualType T = (ImplicitlyConvertedToType.isNull() ||
3793  !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
3794  : ImplicitlyConvertedToType;
3795  llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
3796  mangleIntegerLiteral(T, V);
3797  break;
3798  }
3799 
3800  switch(SAE->getKind()) {
3801  case UETT_SizeOf:
3802  Out << 's';
3803  break;
3804  case UETT_AlignOf:
3805  Out << 'a';
3806  break;
3807  case UETT_VecStep: {
3808  DiagnosticsEngine &Diags = Context.getDiags();
3809  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3810  "cannot yet mangle vec_step expression");
3811  Diags.Report(DiagID);
3812  return;
3813  }
3815  DiagnosticsEngine &Diags = Context.getDiags();
3816  unsigned DiagID = Diags.getCustomDiagID(
3818  "cannot yet mangle __builtin_omp_required_simd_align expression");
3819  Diags.Report(DiagID);
3820  return;
3821  }
3822  if (SAE->isArgumentType()) {
3823  Out << 't';
3824  mangleType(SAE->getArgumentType());
3825  } else {
3826  Out << 'z';
3827  mangleExpression(SAE->getArgumentExpr());
3828  }
3829  break;
3830  }
3831 
3832  case Expr::CXXThrowExprClass: {
3833  const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
3834  // <expression> ::= tw <expression> # throw expression
3835  // ::= tr # rethrow
3836  if (TE->getSubExpr()) {
3837  Out << "tw";
3838  mangleExpression(TE->getSubExpr());
3839  } else {
3840  Out << "tr";
3841  }
3842  break;
3843  }
3844 
3845  case Expr::CXXTypeidExprClass: {
3846  const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
3847  // <expression> ::= ti <type> # typeid (type)
3848  // ::= te <expression> # typeid (expression)
3849  if (TIE->isTypeOperand()) {
3850  Out << "ti";
3851  mangleType(TIE->getTypeOperand(Context.getASTContext()));
3852  } else {
3853  Out << "te";
3854  mangleExpression(TIE->getExprOperand());
3855  }
3856  break;
3857  }
3858 
3859  case Expr::CXXDeleteExprClass: {
3860  const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
3861  // <expression> ::= [gs] dl <expression> # [::] delete expr
3862  // ::= [gs] da <expression> # [::] delete [] expr
3863  if (DE->isGlobalDelete()) Out << "gs";
3864  Out << (DE->isArrayForm() ? "da" : "dl");
3865  mangleExpression(DE->getArgument());
3866  break;
3867  }
3868 
3869  case Expr::UnaryOperatorClass: {
3870  const UnaryOperator *UO = cast<UnaryOperator>(E);
3871  mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
3872  /*Arity=*/1);
3873  mangleExpression(UO->getSubExpr());
3874  break;
3875  }
3876 
3877  case Expr::ArraySubscriptExprClass: {
3878  const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
3879 
3880  // Array subscript is treated as a syntactically weird form of
3881  // binary operator.
3882  Out << "ix";
3883  mangleExpression(AE->getLHS());
3884  mangleExpression(AE->getRHS());
3885  break;
3886  }
3887 
3888  case Expr::CompoundAssignOperatorClass: // fallthrough
3889  case Expr::BinaryOperatorClass: {
3890  const BinaryOperator *BO = cast<BinaryOperator>(E);
3891  if (BO->getOpcode() == BO_PtrMemD)
3892  Out << "ds";
3893  else
3894  mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
3895  /*Arity=*/2);
3896  mangleExpression(BO->getLHS());
3897  mangleExpression(BO->getRHS());
3898  break;
3899  }
3900 
3901  case Expr::ConditionalOperatorClass: {
3902  const ConditionalOperator *CO = cast<ConditionalOperator>(E);
3903  mangleOperatorName(OO_Conditional, /*Arity=*/3);
3904  mangleExpression(CO->getCond());
3905  mangleExpression(CO->getLHS(), Arity);
3906  mangleExpression(CO->getRHS(), Arity);
3907  break;
3908  }
3909 
3910  case Expr::ImplicitCastExprClass: {
3911  ImplicitlyConvertedToType = E->getType();
3912  E = cast<ImplicitCastExpr>(E)->getSubExpr();
3913  goto recurse;
3914  }
3915 
3916  case Expr::ObjCBridgedCastExprClass: {
3917  // Mangle ownership casts as a vendor extended operator __bridge,
3918  // __bridge_transfer, or __bridge_retain.
3919  StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
3920  Out << "v1U" << Kind.size() << Kind;
3921  }
3922  // Fall through to mangle the cast itself.
3923  LLVM_FALLTHROUGH;
3924 
3925  case Expr::CStyleCastExprClass:
3926  mangleCastExpression(E, "cv");
3927  break;
3928 
3929  case Expr::CXXFunctionalCastExprClass: {
3930  auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
3931  // FIXME: Add isImplicit to CXXConstructExpr.
3932  if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
3933  if (CCE->getParenOrBraceRange().isInvalid())
3934  Sub = CCE->getArg(0)->IgnoreImplicit();
3935  if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
3936  Sub = StdInitList->getSubExpr()->IgnoreImplicit();
3937  if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
3938  Out << "tl";
3939  mangleType(E->getType());
3940  mangleInitListElements(IL);
3941  Out << "E";
3942  } else {
3943  mangleCastExpression(E, "cv");
3944  }
3945  break;
3946  }
3947 
3948  case Expr::CXXStaticCastExprClass:
3949  mangleCastExpression(E, "sc");
3950  break;
3951  case Expr::CXXDynamicCastExprClass:
3952  mangleCastExpression(E, "dc");
3953  break;
3954  case Expr::CXXReinterpretCastExprClass:
3955  mangleCastExpression(E, "rc");
3956  break;
3957  case Expr::CXXConstCastExprClass:
3958  mangleCastExpression(E, "cc");
3959  break;
3960 
3961  case Expr::CXXOperatorCallExprClass: {
3962  const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
3963  unsigned NumArgs = CE->getNumArgs();
3964  // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
3965  // (the enclosing MemberExpr covers the syntactic portion).
3966  if (CE->getOperator() != OO_Arrow)
3967  mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
3968  // Mangle the arguments.
3969  for (unsigned i = 0; i != NumArgs; ++i)
3970  mangleExpression(CE->getArg(i));
3971  break;
3972  }
3973 
3974  case Expr::ParenExprClass:
3975  mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
3976  break;
3977 
3978  case Expr::DeclRefExprClass: {
3979  const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
3980 
3981  switch (D->getKind()) {
3982  default:
3983  // <expr-primary> ::= L <mangled-name> E # external name
3984  Out << 'L';
3985  mangle(D);
3986  Out << 'E';
3987  break;
3988 
3989  case Decl::ParmVar:
3990  mangleFunctionParam(cast<ParmVarDecl>(D));
3991  break;
3992 
3993  case Decl::EnumConstant: {
3994  const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3995  mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3996  break;
3997  }
3998 
3999  case Decl::NonTypeTemplateParm: {
4000  const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
4001  mangleTemplateParameter(PD->getIndex());
4002  break;
4003  }
4004 
4005  }
4006 
4007  break;
4008  }
4009 
4010  case Expr::SubstNonTypeTemplateParmPackExprClass:
4011  // FIXME: not clear how to mangle this!
4012  // template <unsigned N...> class A {
4013  // template <class U...> void foo(U (&x)[N]...);
4014  // };
4015  Out << "_SUBSTPACK_";
4016  break;
4017 
4018  case Expr::FunctionParmPackExprClass: {
4019  // FIXME: not clear how to mangle this!
4020  const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4021  Out << "v110_SUBSTPACK";
4022  mangleFunctionParam(FPPE->getParameterPack());
4023  break;
4024  }
4025 
4026  case Expr::DependentScopeDeclRefExprClass: {
4027  const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4028  mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4029  DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4030  Arity);
4031  break;
4032  }
4033 
4034  case Expr::CXXBindTemporaryExprClass:
4035  mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
4036  break;
4037 
4038  case Expr::ExprWithCleanupsClass:
4039  mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
4040  break;
4041 
4042  case Expr::FloatingLiteralClass: {
4043  const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4044  Out << 'L';
4045  mangleType(FL->getType());
4046  mangleFloat(FL->getValue());
4047  Out << 'E';
4048  break;
4049  }
4050 
4051  case Expr::CharacterLiteralClass:
4052  Out << 'L';
4053  mangleType(E->getType());
4054  Out << cast<CharacterLiteral>(E)->getValue();
4055  Out << 'E';
4056  break;
4057 
4058  // FIXME. __objc_yes/__objc_no are mangled same as true/false
4059  case Expr::ObjCBoolLiteralExprClass:
4060  Out << "Lb";
4061  Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4062  Out << 'E';
4063  break;
4064 
4065  case Expr::CXXBoolLiteralExprClass:
4066  Out << "Lb";
4067  Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4068  Out << 'E';
4069  break;
4070 
4071  case Expr::IntegerLiteralClass: {
4072  llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4073  if (E->getType()->isSignedIntegerType())
4074  Value.setIsSigned(true);
4075  mangleIntegerLiteral(E->getType(), Value);
4076  break;
4077  }
4078 
4079  case Expr::ImaginaryLiteralClass: {
4080  const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4081  // Mangle as if a complex literal.
4082  // Proposal from David Vandevoorde, 2010.06.30.
4083  Out << 'L';
4084  mangleType(E->getType());
4085  if (const FloatingLiteral *Imag =
4086  dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4087  // Mangle a floating-point zero of the appropriate type.
4088  mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4089  Out << '_';
4090  mangleFloat(Imag->getValue());
4091  } else {
4092  Out << "0_";
4093  llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4094  if (IE->getSubExpr()->getType()->isSignedIntegerType())
4095  Value.setIsSigned(true);
4096  mangleNumber(Value);
4097  }
4098  Out << 'E';
4099  break;
4100  }
4101 
4102  case Expr::StringLiteralClass: {
4103  // Revised proposal from David Vandervoorde, 2010.07.15.
4104  Out << 'L';
4105  assert(isa<ConstantArrayType>(E->getType()));
4106  mangleType(E->getType());
4107  Out << 'E';
4108  break;
4109  }
4110 
4111  case Expr::GNUNullExprClass:
4112  // FIXME: should this really be mangled the same as nullptr?
4113  // fallthrough
4114 
4115  case Expr::CXXNullPtrLiteralExprClass: {
4116  Out << "LDnE";
4117  break;
4118  }
4119 
4120  case Expr::PackExpansionExprClass:
4121  Out << "sp";
4122  mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4123  break;
4124 
4125  case Expr::SizeOfPackExprClass: {
4126  auto *SPE = cast<SizeOfPackExpr>(E);
4127  if (SPE->isPartiallySubstituted()) {
4128  Out << "sP";
4129  for (const auto &A : SPE->getPartialArguments())
4130  mangleTemplateArg(A);
4131  Out << "E";
4132  break;
4133  }
4134 
4135  Out << "sZ";
4136  const NamedDecl *Pack = SPE->getPack();
4137  if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4138  mangleTemplateParameter(TTP->getIndex());
4139  else if (const NonTypeTemplateParmDecl *NTTP
4140  = dyn_cast<NonTypeTemplateParmDecl>(Pack))
4141  mangleTemplateParameter(NTTP->getIndex());
4142  else if (const TemplateTemplateParmDecl *TempTP
4143  = dyn_cast<TemplateTemplateParmDecl>(Pack))
4144  mangleTemplateParameter(TempTP->getIndex());
4145  else
4146  mangleFunctionParam(cast<ParmVarDecl>(Pack));
4147  break;
4148  }
4149 
4150  case Expr::MaterializeTemporaryExprClass: {
4151  mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
4152  break;
4153  }
4154 
4155  case Expr::CXXFoldExprClass: {
4156  auto *FE = cast<CXXFoldExpr>(E);
4157  if (FE->isLeftFold())
4158  Out << (FE->getInit() ? "fL" : "fl");
4159  else
4160  Out << (FE->getInit() ? "fR" : "fr");
4161 
4162  if (FE->getOperator() == BO_PtrMemD)
4163  Out << "ds";
4164  else
4165  mangleOperatorName(
4166  BinaryOperator::getOverloadedOperator(FE->getOperator()),
4167  /*Arity=*/2);
4168 
4169  if (FE->getLHS())
4170  mangleExpression(FE->getLHS());
4171  if (FE->getRHS())
4172  mangleExpression(FE->getRHS());
4173  break;
4174  }
4175 
4176  case Expr::CXXThisExprClass:
4177  Out << "fpT";
4178  break;
4179 
4180  case Expr::CoawaitExprClass:
4181  // FIXME: Propose a non-vendor mangling.
4182  Out << "v18co_await";
4183  mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4184  break;
4185 
4186  case Expr::DependentCoawaitExprClass:
4187  // FIXME: Propose a non-vendor mangling.
4188  Out << "v18co_await";
4189  mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
4190  break;
4191 
4192  case Expr::CoyieldExprClass:
4193  // FIXME: Propose a non-vendor mangling.
4194  Out << "v18co_yield";
4195  mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4196  break;
4197  }
4198 }
4199 
4200 /// Mangle an expression which refers to a parameter variable.
4201 ///
4202 /// <expression> ::= <function-param>
4203 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
4204 /// <function-param> ::= fp <top-level CV-qualifiers>
4205 /// <parameter-2 non-negative number> _ # L == 0, I > 0
4206 /// <function-param> ::= fL <L-1 non-negative number>
4207 /// p <top-level CV-qualifiers> _ # L > 0, I == 0
4208 /// <function-param> ::= fL <L-1 non-negative number>
4209 /// p <top-level CV-qualifiers>
4210 /// <I-1 non-negative number> _ # L > 0, I > 0
4211 ///
4212 /// L is the nesting depth of the parameter, defined as 1 if the
4213 /// parameter comes from the innermost function prototype scope
4214 /// enclosing the current context, 2 if from the next enclosing
4215 /// function prototype scope, and so on, with one special case: if
4216 /// we've processed the full parameter clause for the innermost
4217 /// function type, then L is one less. This definition conveniently
4218 /// makes it irrelevant whether a function's result type was written
4219 /// trailing or leading, but is otherwise overly complicated; the
4220 /// numbering was first designed without considering references to
4221 /// parameter in locations other than return types, and then the
4222 /// mangling had to be generalized without changing the existing
4223 /// manglings.
4224 ///
4225 /// I is the zero-based index of the parameter within its parameter
4226 /// declaration clause. Note that the original ABI document describes
4227 /// this using 1-based ordinals.
4228 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
4229  unsigned parmDepth = parm->getFunctionScopeDepth();
4230  unsigned parmIndex = parm->getFunctionScopeIndex();
4231 
4232  // Compute 'L'.
4233  // parmDepth does not include the declaring function prototype.
4234  // FunctionTypeDepth does account for that.
4235  assert(parmDepth < FunctionTypeDepth.getDepth());
4236  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
4237  if (FunctionTypeDepth.isInResultType())
4238  nestingDepth--;
4239 
4240  if (nestingDepth == 0) {
4241  Out << "fp";
4242  } else {
4243  Out << "fL" << (nestingDepth - 1) << 'p';
4244  }
4245 
4246  // Top-level qualifiers. We don't have to worry about arrays here,
4247  // because parameters declared as arrays should already have been
4248  // transformed to have pointer type. FIXME: apparently these don't
4249  // get mangled if used as an rvalue of a known non-class type?
4250  assert(!parm->getType()->isArrayType()
4251  && "parameter's type is still an array type?");
4252 
4253  if (const DependentAddressSpaceType *DAST =
4254  dyn_cast<DependentAddressSpaceType>(parm->getType())) {
4255  mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
4256  } else {
4257  mangleQualifiers(parm->getType().getQualifiers());
4258  }
4259 
4260  // Parameter index.
4261  if (parmIndex != 0) {
4262  Out << (parmIndex - 1);
4263  }
4264  Out << '_';
4265 }
4266 
4267 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
4268  const CXXRecordDecl *InheritedFrom) {
4269  // <ctor-dtor-name> ::= C1 # complete object constructor
4270  // ::= C2 # base object constructor
4271  // ::= CI1 <type> # complete inheriting constructor
4272  // ::= CI2 <type> # base inheriting constructor
4273  //
4274  // In addition, C5 is a comdat name with C1 and C2 in it.
4275  Out << 'C';
4276  if (InheritedFrom)
4277  Out << 'I';
4278  switch (T) {
4279  case Ctor_Complete:
4280  Out << '1';
4281  break;
4282  case Ctor_Base:
4283  Out << '2';
4284  break;
4285  case Ctor_Comdat:
4286  Out << '5';
4287  break;
4288  case Ctor_DefaultClosure:
4289  case Ctor_CopyingClosure:
4290  llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
4291  }
4292  if (InheritedFrom)
4293  mangleName(InheritedFrom);
4294 }
4295 
4296 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
4297  // <ctor-dtor-name> ::= D0 # deleting destructor
4298  // ::= D1 # complete object destructor
4299  // ::= D2 # base object destructor
4300  //
4301  // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
4302  switch (T) {
4303  case Dtor_Deleting:
4304  Out << "D0";
4305  break;
4306  case Dtor_Complete:
4307  Out << "D1";
4308  break;
4309  case Dtor_Base:
4310  Out << "D2";
4311  break;
4312  case Dtor_Comdat:
4313  Out << "D5";
4314  break;
4315  }
4316 }
4317 
4318 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
4319  unsigned NumTemplateArgs) {
4320  // <template-args> ::= I <template-arg>+ E
4321  Out << 'I';
4322  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4323  mangleTemplateArg(TemplateArgs[i].getArgument());
4324  Out << 'E';
4325 }
4326 
4327 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
4328  // <template-args> ::= I <template-arg>+ E
4329  Out << 'I';
4330  for (unsigned i = 0, e = AL.size(); i != e; ++i)
4331  mangleTemplateArg(AL[i]);
4332  Out << 'E';
4333 }
4334 
4335 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
4336  unsigned NumTemplateArgs) {
4337  // <template-args> ::= I <template-arg>+ E
4338  Out << 'I';
4339  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4340  mangleTemplateArg(TemplateArgs[i]);
4341  Out << 'E';
4342 }
4343 
4344 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
4345  // <template-arg> ::= <type> # type or template
4346  // ::= X <expression> E # expression
4347  // ::= <expr-primary> # simple expressions
4348  // ::= J <template-arg>* E # argument pack
4349  if (!A.isInstantiationDependent() || A.isDependent())
4350  A = Context.getASTContext().getCanonicalTemplateArgument(A);
4351 
4352  switch (A.getKind()) {
4354  llvm_unreachable("Cannot mangle NULL template argument");
4355 
4357  mangleType(A.getAsType());
4358  break;
4360  // This is mangled as <type>.
4361  mangleType(A.getAsTemplate());
4362  break;
4364  // <type> ::= Dp <type> # pack expansion (C++0x)
4365  Out << "Dp";
4366  mangleType(A.getAsTemplateOrTemplatePattern());
4367  break;
4369  // It's possible to end up with a DeclRefExpr here in certain
4370  // dependent cases, in which case we should mangle as a
4371  // declaration.
4372  const Expr *E = A.getAsExpr()->IgnoreParens();
4373  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4374  const ValueDecl *D = DRE->getDecl();
4375  if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
4376  Out << 'L';
4377  mangle(D);
4378  Out << 'E';
4379  break;
4380  }
4381  }
4382 
4383  Out << 'X';
4384  mangleExpression(E);
4385  Out << 'E';
4386  break;
4387  }
4389  mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
4390  break;
4392  // <expr-primary> ::= L <mangled-name> E # external name
4393  // Clang produces AST's where pointer-to-member-function expressions
4394  // and pointer-to-function expressions are represented as a declaration not
4395  // an expression. We compensate for it here to produce the correct mangling.
4396  ValueDecl *D = A.getAsDecl();
4397  bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
4398  if (compensateMangling) {
4399  Out << 'X';
4400  mangleOperatorName(OO_Amp, 1);
4401  }
4402 
4403  Out << 'L';
4404  // References to external entities use the mangled name; if the name would
4405  // not normally be mangled then mangle it as unqualified.
4406  mangle(D);
4407  Out << 'E';
4408 
4409  if (compensateMangling)
4410  Out << 'E';
4411 
4412  break;
4413  }
4415  // <expr-primary> ::= L <type> 0 E
4416  Out << 'L';
4417  mangleType(A.getNullPtrType());
4418  Out << "0E";
4419  break;
4420  }
4421  case TemplateArgument::Pack: {
4422  // <template-arg> ::= J <template-arg>* E
4423  Out << 'J';
4424  for (const auto &P : A.pack_elements())
4425  mangleTemplateArg(P);
4426  Out << 'E';
4427  }
4428  }
4429 }
4430 
4431 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
4432  // <template-param> ::= T_ # first template parameter
4433  // ::= T <parameter-2 non-negative number> _
4434  if (Index == 0)
4435  Out << "T_";
4436  else
4437  Out << 'T' << (Index - 1) << '_';
4438 }
4439 
4440 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
4441  if (SeqID == 1)
4442  Out << '0';
4443  else if (SeqID > 1) {
4444  SeqID--;
4445 
4446  // <seq-id> is encoded in base-36, using digits and upper case letters.
4447  char Buffer[7]; // log(2**32) / log(36) ~= 7
4448  MutableArrayRef<char> BufferRef(Buffer);
4449  MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
4450 
4451  for (; SeqID != 0; SeqID /= 36) {
4452  unsigned C = SeqID % 36;
4453  *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
4454  }
4455 
4456  Out.write(I.base(), I - BufferRef.rbegin());
4457  }
4458  Out << '_';
4459 }
4460 
4461 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
4462  bool result = mangleSubstitution(tname);
4463  assert(result && "no existing substitution for template name");
4464  (void) result;
4465 }
4466 
4467 // <substitution> ::= S <seq-id> _
4468 // ::= S_
4469 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
4470  // Try one of the standard substitutions first.
4471  if (mangleStandardSubstitution(ND))
4472  return true;
4473 
4474  ND = cast<NamedDecl>(ND->getCanonicalDecl());
4475  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
4476 }
4477 
4478 /// Determine whether the given type has any qualifiers that are relevant for
4479 /// substitutions.
4481  Qualifiers Qs = T.getQualifiers();
4482  return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
4483 }
4484 
4485 bool CXXNameMangler::mangleSubstitution(QualType T) {
4487  if (const RecordType *RT = T->getAs<RecordType>())
4488  return mangleSubstitution(RT->getDecl());
4489  }
4490 
4491  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4492 
4493  return mangleSubstitution(TypePtr);
4494 }
4495 
4496 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
4497  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4498  return mangleSubstitution(TD);
4499 
4500  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4501  return mangleSubstitution(
4502  reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4503 }
4504 
4505 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
4506  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
4507  if (I == Substitutions.end())
4508  return false;
4509 
4510  unsigned SeqID = I->second;
4511  Out << 'S';
4512  mangleSeqID(SeqID);
4513 
4514  return true;
4515 }
4516 
4517 static bool isCharType(QualType T) {
4518  if (T.isNull())
4519  return false;
4520 
4521  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
4522  T->isSpecificBuiltinType(BuiltinType::Char_U);
4523 }
4524 
4525 /// Returns whether a given type is a template specialization of a given name
4526 /// with a single argument of type char.
4527 static bool isCharSpecialization(QualType T, const char *Name) {
4528  if (T.isNull())
4529  return false;
4530 
4531  const RecordType *RT = T->getAs<RecordType>();
4532  if (!RT)
4533  return false;
4534 
4536  dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
4537  if (!SD)
4538  return false;
4539 
4540  if (!isStdNamespace(getEffectiveDeclContext(SD)))
4541  return false;
4542 
4543  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4544  if (TemplateArgs.size() != 1)
4545  return false;
4546 
4547  if (!isCharType(TemplateArgs[0].getAsType()))
4548  return false;
4549 
4550  return SD->getIdentifier()->getName() == Name;
4551 }
4552 
4553 template <std::size_t StrLen>
4555  const char (&Str)[StrLen]) {
4556  if (!SD->getIdentifier()->isStr(Str))
4557  return false;
4558 
4559  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4560  if (TemplateArgs.size() != 2)
4561  return false;
4562 
4563  if (!isCharType(TemplateArgs[0].getAsType()))
4564  return false;
4565 
4566  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4567  return false;
4568 
4569  return true;
4570 }
4571 
4572 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
4573  // <substitution> ::= St # ::std::
4574  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
4575  if (isStd(NS)) {
4576  Out << "St";
4577  return true;
4578  }
4579  }
4580 
4581  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
4582  if (!isStdNamespace(getEffectiveDeclContext(TD)))
4583  return false;
4584 
4585  // <substitution> ::= Sa # ::std::allocator
4586  if (TD->getIdentifier()->isStr("allocator")) {
4587  Out << "Sa";
4588  return true;
4589  }
4590 
4591  // <<substitution> ::= Sb # ::std::basic_string
4592  if (TD->getIdentifier()->isStr("basic_string")) {
4593  Out << "Sb";
4594  return true;
4595  }
4596  }
4597 
4598  if (const ClassTemplateSpecializationDecl *SD =
4599  dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
4600  if (!isStdNamespace(getEffectiveDeclContext(SD)))
4601  return false;
4602 
4603  // <substitution> ::= Ss # ::std::basic_string<char,
4604  // ::std::char_traits<char>,
4605  // ::std::allocator<char> >
4606  if (SD->getIdentifier()->isStr("basic_string")) {
4607  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4608 
4609  if (TemplateArgs.size() != 3)
4610  return false;
4611 
4612  if (!isCharType(TemplateArgs[0].getAsType()))
4613  return false;
4614 
4615  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4616  return false;
4617 
4618  if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
4619  return false;
4620 
4621  Out << "Ss";
4622  return true;
4623  }
4624 
4625  // <substitution> ::= Si # ::std::basic_istream<char,
4626  // ::std::char_traits<char> >
4627  if (isStreamCharSpecialization(SD, "basic_istream")) {
4628  Out << "Si";
4629  return true;
4630  }
4631 
4632  // <substitution> ::= So # ::std::basic_ostream<char,
4633  // ::std::char_traits<char> >
4634  if (isStreamCharSpecialization(SD, "basic_ostream")) {
4635  Out << "So";
4636  return true;
4637  }
4638 
4639  // <substitution> ::= Sd # ::std::basic_iostream<char,
4640  // ::std::char_traits<char> >
4641  if (isStreamCharSpecialization(SD, "basic_iostream")) {
4642  Out << "Sd";
4643  return true;
4644  }
4645  }
4646  return false;
4647 }
4648 
4649 void CXXNameMangler::addSubstitution(QualType T) {
4651  if (const RecordType *RT = T->getAs<RecordType>()) {
4652  addSubstitution(RT->getDecl());
4653  return;
4654  }
4655  }
4656 
4657  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4658  addSubstitution(TypePtr);
4659 }
4660 
4661 void CXXNameMangler::addSubstitution(TemplateName Template) {
4662  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4663  return addSubstitution(TD);
4664 
4665  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4666  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4667 }
4668 
4669 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
4670  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
4671  Substitutions[Ptr] = SeqID++;
4672 }
4673 
4674 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
4675  assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
4676  if (Other->SeqID > SeqID) {
4677  Substitutions.swap(Other->Substitutions);
4678  SeqID = Other->SeqID;
4679  }
4680 }
4681 
4682 CXXNameMangler::AbiTagList
4683 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
4684  // When derived abi tags are disabled there is no need to make any list.
4685  if (DisableDerivedAbiTags)
4686  return AbiTagList();
4687 
4688  llvm::raw_null_ostream NullOutStream;
4689  CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
4690  TrackReturnTypeTags.disableDerivedAbiTags();
4691 
4692  const FunctionProtoType *Proto =
4693  cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
4694  FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
4695  TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
4696  TrackReturnTypeTags.mangleType(Proto->getReturnType());
4697  TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
4698  TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
4699 
4700  return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4701 }
4702 
4703 CXXNameMangler::AbiTagList
4704 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
4705  // When derived abi tags are disabled there is no need to make any list.
4706  if (DisableDerivedAbiTags)
4707  return AbiTagList();
4708 
4709  llvm::raw_null_ostream NullOutStream;
4710  CXXNameMangler TrackVariableType(*this, NullOutStream);
4711  TrackVariableType.disableDerivedAbiTags();
4712 
4713  TrackVariableType.mangleType(VD->getType());
4714 
4715  return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4716 }
4717 
4718 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
4719  const VarDecl *VD) {
4720  llvm::raw_null_ostream NullOutStream;
4721  CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
4722  TrackAbiTags.mangle(VD);
4723  return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
4724 }
4725 
4726 //
4727 
4728 /// Mangles the name of the declaration D and emits that name to the given
4729 /// output stream.
4730 ///
4731 /// If the declaration D requires a mangled name, this routine will emit that
4732 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
4733 /// and this routine will return false. In this case, the caller should just
4734 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
4735 /// name.
4736 void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
4737  raw_ostream &Out) {
4738  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
4739  "Invalid mangleName() call, argument is not a variable or function!");
4740  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
4741  "Invalid mangleName() call on 'structor decl!");
4742 
4743  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
4744  getASTContext().getSourceManager(),
4745  "Mangling declaration");
4746 
4747  CXXNameMangler Mangler(*this, Out, D);
4748  Mangler.mangle(D);
4749 }
4750 
4751 void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
4752  CXXCtorType Type,
4753  raw_ostream &Out) {
4754  CXXNameMangler Mangler(*this, Out, D, Type);
4755  Mangler.mangle(D);
4756 }
4757 
4758 void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
4759  CXXDtorType Type,
4760  raw_ostream &Out) {
4761  CXXNameMangler Mangler(*this, Out, D, Type);
4762  Mangler.mangle(D);
4763 }
4764 
4765 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
4766  raw_ostream &Out) {
4767  CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
4768  Mangler.mangle(D);
4769 }
4770 
4771 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
4772  raw_ostream &Out) {
4773  CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
4774  Mangler.mangle(D);
4775 }
4776 
4777 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
4778  const ThunkInfo &Thunk,
4779  raw_ostream &Out) {
4780  // <special-name> ::= T <call-offset> <base encoding>
4781  // # base is the nominal target function of thunk
4782  // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
4783  // # base is the nominal target function of thunk
4784  // # first call-offset is 'this' adjustment
4785  // # second call-offset is result adjustment
4786 
4787  assert(!isa<CXXDestructorDecl>(MD) &&
4788  "Use mangleCXXDtor for destructor decls!");
4789  CXXNameMangler Mangler(*this, Out);
4790  Mangler.getStream() << "_ZT";
4791  if (!Thunk.Return.isEmpty())
4792  Mangler.getStream() << 'c';
4793 
4794  // Mangle the 'this' pointer adjustment.
4795  Mangler.mangleCallOffset(Thunk.This.NonVirtual,
4797 
4798  // Mangle the return pointer adjustment if there is one.
4799  if (!Thunk.Return.isEmpty())
4800  Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
4802 
4803  Mangler.mangleFunctionEncoding(MD);
4804 }
4805 
4806 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
4807  const CXXDestructorDecl *DD, CXXDtorType Type,
4808  const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
4809  // <special-name> ::= T <call-offset> <base encoding>
4810  // # base is the nominal target function of thunk
4811  CXXNameMangler Mangler(*this, Out, DD, Type);
4812  Mangler.getStream() << "_ZT";
4813 
4814  // Mangle the 'this' pointer adjustment.
4815  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
4816  ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
4817 
4818  Mangler.mangleFunctionEncoding(DD);
4819 }
4820 
4821 /// Returns the mangled name for a guard variable for the passed in VarDecl.
4822 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
4823  raw_ostream &Out) {
4824  // <special-name> ::= GV <object name> # Guard variable for one-time
4825  // # initialization
4826  CXXNameMangler Mangler(*this, Out);
4827  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
4828  // be a bug that is fixed in trunk.
4829  Mangler.getStream() << "_ZGV";
4830  Mangler.mangleName(D);
4831 }
4832 
4833 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
4834  raw_ostream &Out) {
4835  // These symbols are internal in the Itanium ABI, so the names don't matter.
4836  // Clang has traditionally used this symbol and allowed LLVM to adjust it to
4837  // avoid duplicate symbols.
4838  Out << "__cxx_global_var_init";
4839 }
4840 
4841 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
4842  raw_ostream &Out) {
4843  // Prefix the mangling of D with __dtor_.
4844  CXXNameMangler Mangler(*this, Out);
4845  Mangler.getStream() << "__dtor_";
4846  if (shouldMangleDeclName(D))
4847  Mangler.mangle(D);
4848  else
4849  Mangler.getStream() << D->getName();
4850 }
4851 
4852 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
4853  const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4854  CXXNameMangler Mangler(*this, Out);
4855  Mangler.getStream() << "__filt_";
4856  if (shouldMangleDeclName(EnclosingDecl))
4857  Mangler.mangle(EnclosingDecl);
4858  else
4859  Mangler.getStream() << EnclosingDecl->getName();
4860 }
4861 
4862 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
4863  const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4864  CXXNameMangler Mangler(*this, Out);
4865  Mangler.getStream() << "__fin_";
4866  if (shouldMangleDeclName(EnclosingDecl))
4867  Mangler.mangle(EnclosingDecl);
4868  else
4869  Mangler.getStream() << EnclosingDecl->getName();
4870 }
4871 
4872 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
4873  raw_ostream &Out) {
4874  // <special-name> ::= TH <object name>
4875  CXXNameMangler Mangler(*this, Out);
4876  Mangler.getStream() << "_ZTH";
4877  Mangler.mangleName(D);
4878 }
4879 
4880 void
4881 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
4882  raw_ostream &Out) {
4883  // <special-name> ::= TW <object name>
4884  CXXNameMangler Mangler(*this, Out);
4885  Mangler.getStream() << "_ZTW";
4886  Mangler.mangleName(D);
4887 }
4888 
4889 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
4890  unsigned ManglingNumber,
4891  raw_ostream &Out) {
4892  // We match the GCC mangling here.
4893  // <special-name> ::= GR <object name>
4894  CXXNameMangler Mangler(*this, Out);
4895  Mangler.getStream() << "_ZGR";
4896  Mangler.mangleName(D);
4897  assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
4898  Mangler.mangleSeqID(ManglingNumber - 1);
4899 }
4900 
4901 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
4902  raw_ostream &Out) {
4903  // <special-name> ::= TV <type> # virtual table
4904  CXXNameMangler Mangler(*this, Out);
4905  Mangler.getStream() << "_ZTV";
4906  Mangler.mangleNameOrStandardSubstitution(RD);
4907 }
4908 
4909 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
4910  raw_ostream &Out) {
4911  // <special-name> ::= TT <type> # VTT structure
4912  CXXNameMangler Mangler(*this, Out);
4913  Mangler.getStream() << "_ZTT";
4914  Mangler.mangleNameOrStandardSubstitution(RD);
4915 }
4916 
4917 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
4918  int64_t Offset,
4919  const CXXRecordDecl *Type,
4920  raw_ostream &Out) {
4921  // <special-name> ::= TC <type> <offset number> _ <base type>
4922  CXXNameMangler Mangler(*this, Out);
4923  Mangler.getStream() << "_ZTC";
4924  Mangler.mangleNameOrStandardSubstitution(RD);
4925  Mangler.getStream() << Offset;
4926  Mangler.getStream() << '_';
4927  Mangler.mangleNameOrStandardSubstitution(Type);
4928 }
4929 
4930 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
4931  // <special-name> ::= TI <type> # typeinfo structure
4932  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
4933  CXXNameMangler Mangler(*this, Out);
4934  Mangler.getStream() << "_ZTI";
4935  Mangler.mangleType(Ty);
4936 }
4937 
4938 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
4939  raw_ostream &Out) {
4940  // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
4941  CXXNameMangler Mangler(*this, Out);
4942  Mangler.getStream() << "_ZTS";
4943  Mangler.mangleType(Ty);
4944 }
4945 
4946 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
4947  mangleCXXRTTIName(Ty, Out);
4948 }
4949 
4950 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
4951  llvm_unreachable("Can't mangle string literals");
4952 }
4953 
4956  return new ItaniumMangleContextImpl(Context, Diags);
4957 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
ParameterABI getABI() const
Return the ABI treatment of this parameter.
Definition: Type.h:3382
QualType getPattern() const
Retrieve the pattern of this pack expansion, which is the type that will be repeatedly instantiated w...
Definition: Type.h:5107
Defines the clang::ASTContext interface.
QualType getDeducedType() const
Get the type deduced for this placeholder type, or null if it&#39;s either not been deduced or was deduce...
Definition: Type.h:4463
const Type * Ty
The locally-unqualified type.
Definition: Type.h:595
unsigned getNumDecls() const
Gets the number of declarations in the unresolved set.
Definition: ExprCXX.h:2652
Represents a function declaration or definition.
Definition: Decl.h:1714
std::string Name
The name of this module.
Definition: Module.h:68
static Qualifiers fromCVRUMask(unsigned CVRU)
Definition: Type.h:252
Expr * getLHS() const
Definition: Expr.h:3353
The "enum" keyword introduces the elaborated-type-specifier.
Definition: Type.h:4795
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this __uuidof() expression after various required adjustments (removing...
Definition: ExprCXX.cpp:84
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2354
RefQualifierKind getRefQualifier() const
Retrieve the ref-qualifier associated with this function type.
Definition: Type.h:3705
Complete object ctor.
Definition: ABI.h:26
void * getAsVoidPointer() const
Retrieve the template name as a void pointer.
Definition: TemplateName.h:310
QualType getPointeeType() const
Definition: Type.h:2367
Represents the dependent type named by a dependently-scoped typename using declaration, e.g.
Definition: Type.h:3802
A (possibly-)qualified type.
Definition: Type.h:654
OverloadedOperatorKind getOperator() const
Return the overloaded operator to which this template name refers.
Definition: TemplateName.h:494
bool isArrayType() const
Definition: Type.h:6077
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2520
Attempt to be ABI-compatible with code generated by Clang 6.0.x (SVN r321711).
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2311
static const TemplateArgument & getArgument(const TemplateArgument &A)
QualType getInjectedSpecializationType() const
Definition: Type.h:4741
NestedNameSpecifier * getQualifier() const
Return the nested name specifier that qualifies this name.
Definition: TemplateName.h:478
const Expr * getSubExpr() const
Definition: ExprCXX.h:1007
__auto_type (GNU extension)
The COMDAT used for ctors.
Definition: ABI.h:28
const Expr * getInit(unsigned Init) const
Definition: Expr.h:3959
bool isListInitialization() const
Determine whether this expression models list-initialization.
Definition: ExprCXX.h:3147
Expr * getUnderlyingExpr() const
Definition: Type.h:3937
bool isDependent() const
Whether this template argument is dependent on a template parameter such that its result can change f...
Module * getOwningModuleForLinkage(bool IgnoreLinkage=false) const
Get the module that owns this declaration for linkage purposes.
Definition: Decl.cpp:1461
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2299
Kind getKind() const
Definition: Type.h:2235
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3127
bool isMain() const
Determines whether this function is "main", which is the entry point into an executable program...
Definition: Decl.cpp:2691
bool hasExtParameterInfos() const
Is there any interesting extra information for any of the parameters of this function type...
Definition: Type.h:3743
TemplateArgumentLoc const * getTemplateArgs() const
Definition: ExprCXX.h:2954
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:2728
Defines the SourceManager interface.
Microsoft&#39;s &#39;__super&#39; specifier, stored as a CXXRecordDecl* of the class it appeared in...
Represents a qualified type name for which the type name is dependent.
Definition: Type.h:4935
The template argument is an expression, and we&#39;ve not resolved it to one of the other forms yet...
Definition: TemplateBase.h:87
Expr * getBase() const
Definition: Expr.h:2514
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:270
NestedNameSpecifier * getQualifier() const
Retrieve the qualification on this type.
Definition: Type.h:4954
bool isEmpty() const
Definition: ABI.h:87
bool isDecltypeAuto() const
Definition: Type.h:4488
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
bool isVariadic() const
Definition: Type.h:3690
TagDecl * getDecl() const
Definition: Type.cpp:3059
static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl *SD, const char(&Str)[StrLen])
llvm::APFloat getValue() const
Definition: Expr.h:1421
A reference to a name which we were able to look up during parsing but could not resolve to a specifi...
Definition: ExprCXX.h:2739
NestedNameSpecifier * getPrefix() const
Return the prefix of this nested name specifier.
Defines the C++ template declaration subclasses.
Opcode getOpcode() const
Definition: Expr.h:3065
StringRef P
NamedDecl * getTemplatedDecl() const
Get the underlying, templated declaration.
Definition: DeclTemplate.h:453
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:4477
unsigned getBlockManglingNumber() const
Definition: Decl.h:3988
The base class of the type hierarchy.
Definition: Type.h:1420
NestedNameSpecifier * getQualifier() const
Retrieve the nested-name-specifier that qualifies this declaration.
Definition: ExprCXX.h:2915
int64_t NonVirtual
The non-virtual adjustment from the derived object to its nearest virtual base.
Definition: ABI.h:111
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1294
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:64
Represent a C++ namespace.
Definition: Decl.h:514
bool isArrayRangeDesignator() const
Definition: Designator.h:72
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1239
static bool isParenthesizedADLCallee(const CallExpr *call)
Look at the callee of the given call expression and determine if it&#39;s a parenthesized id-expression w...
A container of type source information.
Definition: Decl.h:86
QualType getValueType() const
Gets the type contained by this atomic type, i.e.
Definition: Type.h:5715
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2448
A template template parameter that has been substituted for some other template name.
Definition: TemplateName.h:206
Default closure variant of a ctor.
Definition: ABI.h:30
QualType getElementType() const
Definition: Type.h:2664
const Expr * getSubExpr() const
Definition: Expr.h:1491
const IdentifierInfo * getIdentifier() const
Returns the identifier to which this template name refers.
Definition: TemplateName.h:484
TemplateName getTemplateName() const
Retrieve the name of the template that we are deducing.
Definition: Type.h:4531
An identifier, stored as an IdentifierInfo*.
Represents a variable declaration or definition.
Definition: Decl.h:812
void removeObjCLifetime()
Definition: Type.h:348
unsigned getNumParams() const
Definition: Type.h:3584
QualType getCXXNameType() const
getCXXNameType - If this name is one of the C++ names (of a constructor, destructor, or conversion function), return the type associated with that name.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6397
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:57
LangAS
Defines the address space values used by the address space qualifier of QualType. ...
Definition: AddressSpaces.h:26
Represents a C++17 deduced template specialization type.
Definition: Type.h:4513
A this pointer adjustment.
Definition: ABI.h:108
QualifiedTemplateName * getAsQualifiedTemplateName() const
Retrieve the underlying qualified template name structure, if any.
Represents a variable template specialization, which refers to a variable template with a given set o...
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
A namespace, stored as a NamespaceDecl*.
DeclarationName getName() const
Gets the name looked up.
Definition: ExprCXX.h:2658
bool requiresADL() const
True if this declaration should be extended by argument-dependent lookup.
Definition: ExprCXX.h:2812
SpecifierKind getKind() const
Determine what kind of nested name specifier is stored.
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:985
Expr * getExprOperand() const
Definition: ExprCXX.h:695
Represents a parameter to a function.
Definition: Decl.h:1533
Defines the clang::Expr interface and subclasses for C++ expressions.
QualType getIntegralType() const
Retrieve the type of the integral value.
Definition: TemplateBase.h:315
static const TemplateDecl * isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs)
The collection of all-type qualifiers we support.
Definition: Type.h:153
PipeType - OpenCL20.
Definition: Type.h:5734
Expr * getExprOperand() const
Definition: ExprCXX.h:902
SubstTemplateTemplateParmStorage * getAsSubstTemplateTemplateParm() const
Retrieve the substituted template template parameter, if known.
const char * getStmtClassName() const
Definition: Stmt.cpp:75
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Represents a struct/union/class.
Definition: Decl.h:3548
TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg) const
Retrieve the "canonical" template argument.
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the class template specialization.
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
Linkage getFormalLinkage() const
Get the linkage from a semantic point of view.
Definition: Decl.h:370
Represents a class template specialization, which refers to a class template with a given set of temp...
One of these records is kept for each identifier that is lexed.
bool isNothrow(bool ResultIfDependent=false) const
Determine whether this function type has a non-throwing exception specification.
Definition: Type.h:3685
bool isInAnonymousNamespace() const
Definition: DeclBase.cpp:347
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
Represents a class type in Objective C.
Definition: Type.h:5270
void removeRestrict()
Definition: Type.h:288
QualType getPointeeType() const
Definition: Type.h:2471
Expr * getAsExpr() const
Retrieve the template argument as an expression.
Definition: TemplateBase.h:330
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:150
is ARM Neon vector
Definition: Type.h:3001
Represents a dependent template name that cannot be resolved prior to template instantiation.
Definition: TemplateName.h:422
NamespaceDecl * getNamespace()
Retrieve the namespace declaration aliased by this directive.
Definition: DeclCXX.h:3071
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:72
TemplateDecl * getAsTemplateDecl() const
Retrieve the underlying template declaration that this template name refers to, if known...
Represents a member of a struct/union/class.
Definition: Decl.h:2521
TemplateName getTemplateName() const
Retrieve the name of the template that we are specializing.
Definition: Type.h:4639
const Type * getAsType() const
Retrieve the type stored in this nested name specifier.
Expr * getBase()
Retrieve the base object of this member expressions, e.g., the x in x.m.
Definition: ExprCXX.h:3510
const llvm::APSInt & getInitVal() const
Definition: Decl.h:2749
bool isNamespace() const
Definition: DeclBase.h:1419
unsigned getFunctionScopeIndex() const
Returns the index of this parameter in its prototype or method scope.
Definition: Decl.h:1586
SubstTemplateTemplateParmStorage * getAsSubstTemplateTemplateParm()
Definition: TemplateName.h:80
bool isReferenceType() const
Definition: Type.h:6040
Interesting information about a specific parameter that can&#39;t simply be reflected in parameter&#39;s type...
Definition: Type.h:3369
bool addressSpaceMapManglingFor(LangAS AS) const
Definition: ASTContext.h:2440
Represents the result of substituting a set of types for a template type parameter pack...
Definition: Type.h:4388
bool isSpecificBuiltinType(unsigned K) const
Test for a particular builtin type.
Definition: Type.h:6222
Expr * getArg(unsigned I)
Definition: ExprCXX.h:3164
Represents a C++ member access expression for which lookup produced a set of overloaded functions...
Definition: ExprCXX.h:3442
Expr * getSubExpr()
Definition: Expr.h:2800
The this pointer adjustment as well as an optional return adjustment for a thunk. ...
Definition: ABI.h:179
TypeSourceInfo * getLambdaTypeInfo() const
Definition: DeclCXX.h:1939
QualType getParamTypeForDecl() const
Definition: TemplateBase.h:269
Describes a module or submodule.
Definition: Module.h:65
unsigned getTypeQuals() const
Definition: Type.h:3702
bool getProducesResult() const
Definition: Type.h:3199
Describes an C or C++ initializer list.
Definition: Expr.h:3911
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:638
This parameter (which must have pointer type) uses the special Swift context-pointer ABI treatment...
An rvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2555
UnresolvedUsingTypenameDecl * getDecl() const
Definition: Type.h:3813
IdentifierInfo * getAsIdentifier() const
Retrieve the identifier stored in this nested name specifier.
A qualified template name, where the qualification is kept to describe the source code as written...
Definition: TemplateName.h:198
An lvalue ref-qualifier was provided (&).
Definition: Type.h:1376
Base object ctor.
Definition: ABI.h:27
static ItaniumMangleContext * create(ASTContext &Context, DiagnosticsEngine &Diags)
bool isGlobalNew() const
Definition: ExprCXX.h:1977
uint32_t Offset
Definition: CacheTokens.cpp:43
ArrayRef< QualType > getTypeArgs() const
Retrieve the type arguments of this object type (semantically).
Definition: Type.cpp:641
bool hasAddressSpace() const
Definition: Type.h:367
The "struct" keyword introduces the elaborated-type-specifier.
Definition: Type.h:4783
struct clang::ReturnAdjustment::VirtualAdjustment::@117 Itanium
QualType getNullPtrType() const
Retrieve the type for null non-type template argument.
Definition: TemplateBase.h:275
Expr * getInitializer()
The initializer of this new-expression.
Definition: ExprCXX.h:1990
Deleting dtor.
Definition: ABI.h:35
static bool isStdNamespace(const DeclContext *DC)
NamespaceAliasDecl * getAsNamespaceAlias() const
Retrieve the namespace alias stored in this nested name specifier.
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
Represents a typeof (or typeof) expression (a GCC extension).
Definition: Type.h:3857
unsigned getNumTemplateArgs() const
Retrieve the number of template arguments provided as part of this template-id.
Definition: ExprCXX.h:3390
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3024
LangAS getAddressSpace() const
Definition: Type.h:368
const Type * getClass() const
Definition: Type.h:2607
bool isArrow() const
Definition: Expr.h:2619
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition: DeclCXX.h:1175
Expr * getSizeExpr() const
Definition: Type.h:2808
const TemplateArgument * getArgs() const
Retrieve the template arguments.
Definition: Type.h:4642
unsigned getIndex() const
Get the index of the template parameter within its parameter list.
NestedNameSpecifier * getQualifier() const
Fetches the nested-name qualifier, if one was given.
Definition: ExprCXX.h:2664
Enums/classes describing ABI related information about constructors, destructors and thunks...
bool isInstantiationDependent() const
Whether this template argument is dependent on a template parameter.
void * getAsOpaquePtr() const
Definition: Type.h:699
DeclarationName getDeclName() const
Retrieve the name that this expression refers to.
Definition: ExprCXX.h:2902
Represents a C++ member access expression where the actual member referenced could not be resolved be...
Definition: ExprCXX.h:3205
is ARM Neon polynomial vector
Definition: Type.h:3004
NameKind getNameKind() const
getNameKind - Determine what kind of name this is.
bool hasConst() const
Definition: Type.h:270
Expr * getSizeExpr() const
Definition: Type.h:2865
unsigned getLength() const
Efficiently return the length of this identifier info.
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:875
bool isTypeOperand() const
Definition: ExprCXX.h:885
QualType getElementType() const
Definition: Type.h:2961
arg_iterator placement_arg_end()
Definition: ExprCXX.h:2029
This parameter (which must have pointer-to-pointer type) uses the special Swift error-result ABI trea...
bool isAnonymousStructOrUnion() const
Whether this is an anonymous struct or union.
Definition: Decl.h:3653
Represents an extended vector type where either the type or size is dependent.
Definition: Type.h:2945
This object can be modified without requiring retains or releases.
Definition: Type.h:174
NamedDecl * getFirstQualifierFoundInScope() const
Retrieve the first part of the nested-name-specifier that was found in the scope of the member access...
Definition: ExprCXX.h:3325
DeclarationName getMemberName() const
Retrieve the name of the member that this expression refers to.
Definition: ExprCXX.h:3541
bool isArrayForm() const
Definition: ExprCXX.h:2115
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3380
Represents a K&R-style &#39;int foo()&#39; function, which has no information available about its arguments...
Definition: Type.h:3313
Expr * getAddrSpaceExpr() const
Definition: Type.h:2916
NodeId Parent
Definition: ASTDiff.cpp:192
bool isExternC() const
Determines whether this variable is a variable with external, C linkage.
Definition: Decl.cpp:1994
llvm::StringRef getParameterABISpelling(ParameterABI kind)
unsigned getLambdaManglingNumber() const
If this is the closure type of a lambda expression, retrieve the number to be used for name mangling ...
Definition: DeclCXX.h:1879
bool hasAttr() const
Definition: DeclBase.h:536
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3308
QualType getBaseType() const
Gets the base type of this object type.
Definition: Type.h:5333
Const iterator for iterating over Stmt * arrays that contain only Expr *.
Definition: Stmt.h:357
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3348
NestedNameSpecifier * getQualifier() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name...
Definition: Expr.h:2549
qual_range quals() const
Definition: Type.h:5170
const TemplateArgumentLoc * getTemplateArgs() const
Retrieve the template arguments provided as part of this template-id.
Definition: ExprCXX.h:3381
A dependent template name that has not been resolved to a template (or set of templates).
Definition: TemplateName.h:202
OverloadedOperatorKind getCXXOverloadedOperator() const
getCXXOverloadedOperator - If this name is the name of an overloadable operator in C++ (e...
UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) expression operand...
Definition: Expr.h:2064
union clang::ReturnAdjustment::VirtualAdjustment Virtual
bool hasQualifiers() const
Determine whether this type has any qualifiers.
Definition: Type.h:5879
ValueDecl * getAsDecl() const
Retrieve the declaration for a declaration non-type template argument.
Definition: TemplateBase.h:264
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
Represents an array type in C++ whose size is a value-dependent expression.
Definition: Type.h:2843
CXXDtorType
C++ destructor types.
Definition: ABI.h:34
Expr * getCond() const
Definition: Expr.h:3342
QualType getElementType() const
Definition: Type.h:2307
unsigned getNumArgs() const
Retrieve the number of template arguments.
Definition: Type.h:5026
unsigned getFunctionScopeDepth() const
Definition: Decl.h:1580
Pepresents a block literal declaration, which is like an unnamed FunctionDecl.
Definition: Decl.h:3838
NamespaceDecl * getAsNamespace() const
Retrieve the namespace stored in this nested name specifier.
const FieldDecl * findFirstNamedDataMember() const
Finds the first data member which has a name.
Definition: Decl.cpp:4119
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:636
Expr - This represents one expression.
Definition: Expr.h:106
static const DeclContext * IgnoreLinkageSpecDecls(const DeclContext *DC)
QualType getPointeeType() const
Definition: Type.h:2511
TemplateDecl * getTemplateDecl() const
The template declaration to which this qualified name refers.
Definition: TemplateName.h:400
The "typename" keyword precedes the qualified type name, e.g., typename T::type.
Definition: Type.h:4799
TemplateArgumentLoc const * getTemplateArgs() const
Definition: ExprCXX.h:2699
bool isArrow() const
Determine whether this member expression used the &#39;->&#39; operator; otherwise, it used the &#39;...
Definition: ExprCXX.h:3527
int Id
Definition: ASTDiff.cpp:191
const FunctionProtoType * T
Declaration of a template type parameter.
unsigned getIndex() const
Definition: Type.h:4295
bool isImplicitAccess() const
True if this is an implicit access, i.e., one in which the member being accessed was not written in t...
Definition: ExprCXX.cpp:1241
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6460
The template argument is a null pointer or null pointer to member that was provided for a non-type te...
Definition: TemplateBase.h:68
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2671
New-expression has a C++11 list-initializer.
Definition: ExprCXX.h:1903
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
unsigned getNumInits() const
Definition: Expr.h:3941
bool isArrayDesignator() const
Definition: Designator.h:71
bool isImplicitAccess() const
True if this is an implicit access, i.e.
Definition: ExprCXX.cpp:1188
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition: Decl.cpp:3400
const Expr * getCallee() const
Definition: Expr.h:2282
QualType getArgumentType() const
Definition: Expr.h:2101
ObjCLifetime getObjCLifetime() const
Definition: Type.h:342
unsigned getNumTemplateArgs() const
Definition: ExprCXX.h:2705
DeclContext * getDeclContext()
Definition: DeclBase.h:426
LanguageLinkage getLanguageLinkage() const
Compute the language linkage.
Definition: Decl.cpp:2829
A structure for storing the information associated with a substituted template template parameter...
Definition: TemplateName.h:325
QualType getBaseType() const
Definition: Type.h:3996
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)
Retrieve the overloaded operator kind that corresponds to the given unary opcode. ...
Definition: Expr.cpp:1141
const IdentifierInfo * getIdentifier() const
Retrieve the type named by the typename specifier as an identifier.
Definition: Type.h:4961
NonTypeTemplateParmDecl - Declares a non-type template parameter, e.g., "Size" in.
Represents a C++ template name within the type system.
Definition: TemplateName.h:178
Represents the type decltype(expr) (C++11).
Definition: Type.h:3927
decls_iterator decls_begin() const
Definition: ExprCXX.h:2643
static SVal getValue(SVal val, SValBuilder &svalBuilder)
Defines the clang::TypeLoc interface and its subclasses.
bool isIdentifier() const
Determine whether this template name refers to an identifier.
Definition: TemplateName.h:481
A namespace alias, stored as a NamespaceAliasDecl*.
IdentifierInfo * getAsIdentifierInfo() const
getAsIdentifierInfo - Retrieve the IdentifierInfo * stored in this declaration name, or NULL if this declaration name isn&#39;t a simple identifier.
A std::pair-like structure for storing a qualified type split into its local qualifiers and its local...
Definition: Type.h:593
static StringRef mangleAArch64VectorBase(const BuiltinType *EltType)
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char, signed char, short, int, long..], or an enum decl which has a signed representation.
Definition: Type.cpp:1807
Base object dtor.
Definition: ABI.h:37
QualType getType() const
Definition: Expr.h:128
bool isFunctionOrMethod() const
Definition: DeclBase.h:1390
A unary type transform, which is a type constructed from another.
Definition: Type.h:3970
bool isIdentifier() const
Predicate functions for querying what type of name this is.
Qualifiers Quals
The local qualifiers.
Definition: Type.h:598
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1341
bool hasInitializer() const
Whether this new-expression has any initializer at all.
Definition: ExprCXX.h:1980
bool hasInstantiationDependentExceptionSpec() const
Return whether this function has an instantiation-dependent exception spec.
Definition: Type.cpp:2866
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1741
Represents a GCC generic vector type.
Definition: Type.h:2985
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this typeid() expression after various required adjustments (removing r...
Definition: ExprCXX.cpp:77
An lvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2537
TemplateTemplateParmDecl - Declares a template template parameter, e.g., "T" in.
UTTKind getUTTKind() const
Definition: Type.h:3998
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:719
Expr * getLHS()
An array access can be written A[4] or 4[A] (both are equivalent).
Definition: Expr.h:2187
The COMDAT used for dtors.
Definition: ABI.h:38
static StringRef getIdentifier(const Token &Tok)
__UINTPTR_TYPE__ uintptr_t
An unsigned integer type with the property that any valid pointer to void can be converted to this ty...
Definition: opencl-c.h:82
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:234
ImaginaryLiteral - We support imaginary integer and floating point literals, like "1...
Definition: Expr.h:1479
AttrVec & getAttrs()
Definition: DeclBase.h:478
SplitQualType split() const
Divides a QualType into its unqualified type and a set of local qualifiers.
Definition: Type.h:5812
RecordDecl * getDecl() const
Definition: Type.h:4061
NestedNameSpecifier * getQualifier() const
Retrieve the nested-name-specifier that qualifies the member name.
Definition: ExprCXX.h:3306
int64_t NonVirtual
The non-virtual adjustment from the derived object to its nearest virtual base.
Definition: ABI.h:45
static bool hasMangledSubstitutionQualifiers(QualType T)
Determine whether the given type has any qualifiers that are relevant for substitutions.
Expr * getArgument()
Definition: ExprCXX.h:2128
A template template parameter pack that has been substituted for a template template argument pack...
Definition: TemplateName.h:211
bool isComputedNoexcept(ExceptionSpecificationType ESpecType)
There is no lifetime qualification on this type.
Definition: Type.h:170
IdentifierInfo * getCXXLiteralIdentifier() const
getCXXLiteralIdentifier - If this name is the name of a literal operator, retrieve the identifier ass...
OverloadedTemplateStorage * getAsOverloadedTemplate() const
Retrieve the underlying, overloaded function template.
is AltiVec &#39;vector Pixel&#39;
Definition: Type.h:2995
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:181
Kind
QualType getCanonicalType() const
Definition: Type.h:5843
bool isBuiltinType() const
Helper methods to distinguish type categories.
Definition: Type.h:6097
bool isInstantiationDependent() const
Whether this expression is instantiation-dependent, meaning that it depends in some way on a template...
Definition: Expr.h:191
ExtParameterInfo getExtParameterInfo(unsigned I) const
Definition: Type.h:3759
bool isSpecialized() const
Determine whether this object type is "specialized", meaning that it has type arguments.
Definition: Type.cpp:623
ElaboratedTypeKeyword getKeyword() const
Definition: Type.h:4821
QualType getSignatureParameterType(QualType T) const
Retrieve the parameter type as adjusted for use in the signature of a function, decaying array and fu...
Encodes a location in the source.
ObjCInterfaceDecl * getDecl() const
Get the declaration of this interface.
Definition: Type.h:5483
QualType getReturnType() const
Definition: Type.h:3281
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4077
QualType getSingleStepDesugaredType(const ASTContext &Context) const
Return the specified type with one level of "sugar" removed from the type.
Definition: Type.h:960
Expr * getSubExpr() const
Definition: Expr.h:1768
Represents typeof(type), a GCC extension.
Definition: Type.h:3900
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:5470
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1845
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3006
LanguageLinkage
Describes the different kinds of language linkage (C++ [dcl.link]) that an entity may have...
Definition: Linkage.h:65
CallingConv getCC() const
Definition: Type.h:3211
QualType getElementType() const
Definition: Type.h:3020
bool isFieldDesignator() const
Definition: Designator.h:70
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2016
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
No ref-qualifier was provided.
Definition: Type.h:1373
bool isConsumed() const
Is this parameter considered "consumed" by Objective-C ARC? Consumed parameters must have retainable ...
Definition: Type.h:3393
QualType getAllocatedType() const
Definition: ExprCXX.h:1919
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2245
This file defines OpenMP nodes for declarative directives.
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
Expr * getNoexceptExpr() const
Definition: Type.h:3650
UnaryExprOrTypeTrait getKind() const
Definition: Expr.h:2095
bool isArray() const
Definition: ExprCXX.h:1950
bool hasRestrict() const
Definition: Type.h:284
arg_range arguments()
Definition: Expr.h:2336
is AltiVec &#39;vector bool ...&#39;
Definition: Type.h:2998
RefQualifierKind
The kind of C++11 ref-qualifier associated with a function type.
Definition: Type.h:1371
Decl * getBlockManglingContextDecl() const
Definition: Decl.h:3992
unsigned getCustomDiagID(Level L, const char(&FormatString)[N])
Return an ID for a diagnostic with the specified format string and level.
Definition: Diagnostic.h:775
AutoTypeKeyword getKeyword() const
Definition: Type.h:4492
TypeClass getTypeClass() const
Definition: Type.h:1682
int64_t VCallOffsetOffset
The offset (in bytes), relative to the address point, of the virtual call offset. ...
Definition: ABI.h:120
Complete object dtor.
Definition: ABI.h:36
llvm::APSInt getAsIntegral() const
Retrieve the template argument as an integral value.
Definition: TemplateBase.h:301
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1379
Assigning into this object requires a lifetime extension.
Definition: Type.h:187
bool isArgumentType() const
Definition: Expr.h:2100
DependentTemplateName * getAsDependentTemplateName() const
Retrieve the underlying dependent template name structure, if any.
bool isInstantiationDependentType() const
Determine whether this type is an instantiation-dependent type, meaning that the type involves a temp...
Definition: Type.h:1935
ExceptionSpecificationType getExceptionSpecType() const
Get the kind of exception specification on this function.
Definition: Type.h:3619
CXXCtorType
C++ constructor types.
Definition: ABI.h:25
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
The injected class name of a C++ class template or class template partial specialization.
Definition: Type.h:4709
A qualified reference to a name whose declaration cannot yet be resolved.
Definition: ExprCXX.h:2857
QualType getPointeeType() const
Definition: Type.h:2917
Represents a pack expansion of types.
Definition: Type.h:5080
Expr * getLHS() const
Definition: Expr.h:3068
InitializationStyle getInitializationStyle() const
The kind of initializer this new-expression has.
Definition: ExprCXX.h:1983
ArrayRef< TemplateArgument > pack_elements() const
Iterator range referencing all of the elements of a template argument pack.
Definition: TemplateBase.h:354
StringRef getName() const
Return the actual identifier string.
Base class for declarations which introduce a typedef-name.
Definition: Decl.h:2858
Represents a reference to a function parameter pack that has been substituted but not yet expanded...
Definition: ExprCXX.h:3961
Represents a template argument.
Definition: TemplateBase.h:51
Represents a template name that was expressed as a qualified name.
Definition: TemplateName.h:366
bool isTypeOperand() const
Definition: ExprCXX.h:678
Dataflow Directional Tag Classes.
ThisAdjustment This
The this pointer adjustment.
Definition: ABI.h:181
ExtInfo getExtInfo() const
Definition: Type.h:3292
const TemplateArgumentLoc * getTemplateArgs() const
Retrieve the template arguments provided as part of this template-id.
Definition: Expr.h:2591
NestedNameSpecifier * getQualifier() const
Definition: Type.h:5017
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1262
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2074
The base class of all kinds of template declarations (e.g., class, function, etc.).
Definition: DeclTemplate.h:399
OverloadedOperatorKind getOperator() const
Returns the kind of overloaded operator that this expression refers to.
Definition: ExprCXX.h:106
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:22
The template argument is a pack expansion of a template name that was provided for a template templat...
Definition: TemplateBase.h:80
const TemplateArgument * getArgs() const
Retrieve the template arguments.
Definition: Type.h:5021
Represents a field injected from an anonymous union/struct into the parent scope. ...
Definition: Decl.h:2767
bool isDependentAddressSpaceType() const
Definition: Type.h:6121
NamespaceDecl * getOriginalNamespace()
Get the original (first) namespace declaration.
Definition: DeclCXX.cpp:2521
DeclarationName getMember() const
Retrieve the name of the member that this expression refers to.
Definition: ExprCXX.h:3337
DeclarationName - The name of a declaration.
StmtClass getStmtClass() const
Definition: Stmt.h:389
VectorKind getVectorKind() const
Definition: Type.h:3030
ArrayRef< QualType > exceptions() const
Definition: Type.h:3726
The "union" keyword introduces the elaborated-type-specifier.
Definition: Type.h:4789
Kind getKind() const
Definition: DeclBase.h:420
bool isBooleanType() const
Definition: Type.h:6324
The "class" keyword introduces the elaborated-type-specifier.
Definition: Type.h:4792
bool isKindOfType() const
Whether this ia a "__kindof" type (semantically).
Definition: Type.cpp:659
int64_t VBaseOffsetOffset
The offset (in bytes), relative to the address point of the virtual base class offset.
Definition: ABI.h:54
struct clang::ThisAdjustment::VirtualAdjustment::@119 Itanium
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2573
ExplicitCastExpr - An explicit cast written in the source code.
Definition: Expr.h:2927
A type that was preceded by the &#39;template&#39; keyword, stored as a Type*.
union clang::ThisAdjustment::VirtualAdjustment Virtual
Represents a pointer to an Objective C object.
Definition: Type.h:5526
Pointer to a block type.
Definition: Type.h:2456
Not an overloaded operator.
Definition: OperatorKinds.h:23
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4051
Complex values, per C99 6.2.5p11.
Definition: Type.h:2294
Location wrapper for a TemplateArgument.
Definition: TemplateBase.h:450
unsigned getNumArgs() const
Retrieve the number of template arguments.
Definition: Type.h:4647
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2154
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6283
T * getAttr() const
Definition: DeclBase.h:532
const llvm::APInt & getSize() const
Definition: Type.h:2707
ExtVectorType - Extended vector type.
Definition: Type.h:3059
Opcode getOpcode() const
Definition: Expr.h:1765
DeclContext * getRedeclContext()
getRedeclContext - Retrieve the context in which an entity conflicts with other entities of the same ...
Definition: DeclBase.cpp:1669
ReturnAdjustment Return
The return adjustment.
Definition: ABI.h:184
The template argument is a type.
Definition: TemplateBase.h:60
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition: Linkage.h:32
The template argument is actually a parameter pack.
Definition: TemplateBase.h:91
bool isArrow() const
Determine whether this member expression used the &#39;->&#39; operator; otherwise, it used the &#39;...
Definition: ExprCXX.h:3299
unsigned getNumTemplateArgs() const
Retrieve the number of template arguments provided as part of this template-id.
Definition: Expr.h:2600
arg_iterator placement_arg_begin()
Definition: ExprCXX.h:2026
CXXMethodDecl * getLambdaStaticInvoker() const
Retrieve the lambda static invoker, the address of which is returned by the conversion operator...
Definition: DeclCXX.cpp:1342
unsigned arg_size() const
Retrieve the number of arguments.
Definition: ExprCXX.h:3150
Describes an explicit type conversion that uses functional notion but could not be resolved because o...
Definition: ExprCXX.h:3090
A template argument list.
Definition: DeclTemplate.h:210
Reading or writing from this object requires a barrier call.
Definition: Type.h:184
ArgKind getKind() const
Return the kind of stored template argument.
Definition: TemplateBase.h:235
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate.h) and friends (in DeclFriend.h).
QualType getParamType(unsigned i) const
Definition: Type.h:3586
static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty, ASTContext &Ctx)
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2424
TypedefNameDecl * getTypedefNameForAnonDecl() const
Definition: Decl.h:3247
bool hasUnaligned() const
Definition: Type.h:313
Represents a C++ struct/union/class.
Definition: DeclCXX.h:300
Represents a template specialization type whose template cannot be resolved, e.g. ...
Definition: Type.h:4987
The template argument is a template name that was provided for a template template parameter...