clang  8.0.0svn
ItaniumMangle.cpp
Go to the documentation of this file.
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implements C++ name mangling according to the Itanium C++ ABI,
11 // which is used in GCC 3.2 and newer (and many compilers that are
12 // ABI-compatible with GCC):
13 //
14 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/TypeLoc.h"
29 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 
36 #define MANGLE_CHECKER 0
37 
38 #if MANGLE_CHECKER
39 #include <cxxabi.h>
40 #endif
41 
42 using namespace clang;
43 
44 namespace {
45 
46 /// Retrieve the declaration context that should be used when mangling the given
47 /// declaration.
48 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
49  // The ABI assumes that lambda closure types that occur within
50  // default arguments live in the context of the function. However, due to
51  // the way in which Clang parses and creates function declarations, this is
52  // not the case: the lambda closure type ends up living in the context
53  // where the function itself resides, because the function declaration itself
54  // had not yet been created. Fix the context here.
55  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
56  if (RD->isLambda())
57  if (ParmVarDecl *ContextParam
58  = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
59  return ContextParam->getDeclContext();
60  }
61 
62  // Perform the same check for block literals.
63  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
64  if (ParmVarDecl *ContextParam
65  = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
66  return ContextParam->getDeclContext();
67  }
68 
69  const DeclContext *DC = D->getDeclContext();
70  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC)) {
71  return getEffectiveDeclContext(cast<Decl>(DC));
72  }
73 
74  if (const auto *VD = dyn_cast<VarDecl>(D))
75  if (VD->isExternC())
76  return VD->getASTContext().getTranslationUnitDecl();
77 
78  if (const auto *FD = dyn_cast<FunctionDecl>(D))
79  if (FD->isExternC())
80  return FD->getASTContext().getTranslationUnitDecl();
81 
82  return DC->getRedeclContext();
83 }
84 
85 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
86  return getEffectiveDeclContext(cast<Decl>(DC));
87 }
88 
89 static bool isLocalContainerContext(const DeclContext *DC) {
90  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
91 }
92 
93 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
94  const DeclContext *DC = getEffectiveDeclContext(D);
95  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
96  if (isLocalContainerContext(DC))
97  return dyn_cast<RecordDecl>(D);
98  D = cast<Decl>(DC);
99  DC = getEffectiveDeclContext(D);
100  }
101  return nullptr;
102 }
103 
104 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
105  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
106  return ftd->getTemplatedDecl();
107 
108  return fn;
109 }
110 
111 static const NamedDecl *getStructor(const NamedDecl *decl) {
112  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
113  return (fn ? getStructor(fn) : decl);
114 }
115 
116 static bool isLambda(const NamedDecl *ND) {
117  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
118  if (!Record)
119  return false;
120 
121  return Record->isLambda();
122 }
123 
124 static const unsigned UnknownArity = ~0U;
125 
126 class ItaniumMangleContextImpl : public ItaniumMangleContext {
127  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
128  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
129  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
130 
131 public:
132  explicit ItaniumMangleContextImpl(ASTContext &Context,
133  DiagnosticsEngine &Diags)
134  : ItaniumMangleContext(Context, Diags) {}
135 
136  /// @name Mangler Entry Points
137  /// @{
138 
139  bool shouldMangleCXXName(const NamedDecl *D) override;
140  bool shouldMangleStringLiteral(const StringLiteral *) override {
141  return false;
142  }
143  void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
144  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
145  raw_ostream &) override;
146  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
148  raw_ostream &) override;
149  void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
150  raw_ostream &) override;
151  void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
152  void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
153  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
154  const CXXRecordDecl *Type, raw_ostream &) override;
155  void mangleCXXRTTI(QualType T, raw_ostream &) override;
156  void mangleCXXRTTIName(QualType T, raw_ostream &) override;
157  void mangleTypeName(QualType T, raw_ostream &) override;
158  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
159  raw_ostream &) override;
160  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
161  raw_ostream &) override;
162 
163  void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
164  void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
165  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
166  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
167  void mangleDynamicAtExitDestructor(const VarDecl *D,
168  raw_ostream &Out) override;
169  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
170  raw_ostream &Out) override;
171  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
172  raw_ostream &Out) override;
173  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
174  void mangleItaniumThreadLocalWrapper(const VarDecl *D,
175  raw_ostream &) override;
176 
177  void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
178 
179  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
180  // Lambda closure types are already numbered.
181  if (isLambda(ND))
182  return false;
183 
184  // Anonymous tags are already numbered.
185  if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
186  if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
187  return false;
188  }
189 
190  // Use the canonical number for externally visible decls.
191  if (ND->isExternallyVisible()) {
192  unsigned discriminator = getASTContext().getManglingNumber(ND);
193  if (discriminator == 1)
194  return false;
195  disc = discriminator - 2;
196  return true;
197  }
198 
199  // Make up a reasonable number for internal decls.
200  unsigned &discriminator = Uniquifier[ND];
201  if (!discriminator) {
202  const DeclContext *DC = getEffectiveDeclContext(ND);
203  discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
204  }
205  if (discriminator == 1)
206  return false;
207  disc = discriminator-2;
208  return true;
209  }
210  /// @}
211 };
212 
213 /// Manage the mangling of a single name.
214 class CXXNameMangler {
215  ItaniumMangleContextImpl &Context;
216  raw_ostream &Out;
217  bool NullOut = false;
218  /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
219  /// This mode is used when mangler creates another mangler recursively to
220  /// calculate ABI tags for the function return value or the variable type.
221  /// Also it is required to avoid infinite recursion in some cases.
222  bool DisableDerivedAbiTags = false;
223 
224  /// The "structor" is the top-level declaration being mangled, if
225  /// that's not a template specialization; otherwise it's the pattern
226  /// for that specialization.
227  const NamedDecl *Structor;
228  unsigned StructorType;
229 
230  /// The next substitution sequence number.
231  unsigned SeqID;
232 
233  class FunctionTypeDepthState {
234  unsigned Bits;
235 
236  enum { InResultTypeMask = 1 };
237 
238  public:
239  FunctionTypeDepthState() : Bits(0) {}
240 
241  /// The number of function types we're inside.
242  unsigned getDepth() const {
243  return Bits >> 1;
244  }
245 
246  /// True if we're in the return type of the innermost function type.
247  bool isInResultType() const {
248  return Bits & InResultTypeMask;
249  }
250 
251  FunctionTypeDepthState push() {
252  FunctionTypeDepthState tmp = *this;
253  Bits = (Bits & ~InResultTypeMask) + 2;
254  return tmp;
255  }
256 
257  void enterResultType() {
258  Bits |= InResultTypeMask;
259  }
260 
261  void leaveResultType() {
262  Bits &= ~InResultTypeMask;
263  }
264 
265  void pop(FunctionTypeDepthState saved) {
266  assert(getDepth() == saved.getDepth() + 1);
267  Bits = saved.Bits;
268  }
269 
270  } FunctionTypeDepth;
271 
272  // abi_tag is a gcc attribute, taking one or more strings called "tags".
273  // The goal is to annotate against which version of a library an object was
274  // built and to be able to provide backwards compatibility ("dual abi").
275  // For more information see docs/ItaniumMangleAbiTags.rst.
276  typedef SmallVector<StringRef, 4> AbiTagList;
277 
278  // State to gather all implicit and explicit tags used in a mangled name.
279  // Must always have an instance of this while emitting any name to keep
280  // track.
281  class AbiTagState final {
282  public:
283  explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
284  Parent = LinkHead;
285  LinkHead = this;
286  }
287 
288  // No copy, no move.
289  AbiTagState(const AbiTagState &) = delete;
290  AbiTagState &operator=(const AbiTagState &) = delete;
291 
292  ~AbiTagState() { pop(); }
293 
294  void write(raw_ostream &Out, const NamedDecl *ND,
295  const AbiTagList *AdditionalAbiTags) {
296  ND = cast<NamedDecl>(ND->getCanonicalDecl());
297  if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
298  assert(
299  !AdditionalAbiTags &&
300  "only function and variables need a list of additional abi tags");
301  if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
302  if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
303  UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
304  AbiTag->tags().end());
305  }
306  // Don't emit abi tags for namespaces.
307  return;
308  }
309  }
310 
311  AbiTagList TagList;
312  if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
313  UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
314  AbiTag->tags().end());
315  TagList.insert(TagList.end(), AbiTag->tags().begin(),
316  AbiTag->tags().end());
317  }
318 
319  if (AdditionalAbiTags) {
320  UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
321  AdditionalAbiTags->end());
322  TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
323  AdditionalAbiTags->end());
324  }
325 
326  llvm::sort(TagList.begin(), TagList.end());
327  TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
328 
329  writeSortedUniqueAbiTags(Out, TagList);
330  }
331 
332  const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
333  void setUsedAbiTags(const AbiTagList &AbiTags) {
334  UsedAbiTags = AbiTags;
335  }
336 
337  const AbiTagList &getEmittedAbiTags() const {
338  return EmittedAbiTags;
339  }
340 
341  const AbiTagList &getSortedUniqueUsedAbiTags() {
342  llvm::sort(UsedAbiTags.begin(), UsedAbiTags.end());
343  UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
344  UsedAbiTags.end());
345  return UsedAbiTags;
346  }
347 
348  private:
349  //! All abi tags used implicitly or explicitly.
350  AbiTagList UsedAbiTags;
351  //! All explicit abi tags (i.e. not from namespace).
352  AbiTagList EmittedAbiTags;
353 
354  AbiTagState *&LinkHead;
355  AbiTagState *Parent = nullptr;
356 
357  void pop() {
358  assert(LinkHead == this &&
359  "abi tag link head must point to us on destruction");
360  if (Parent) {
361  Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
362  UsedAbiTags.begin(), UsedAbiTags.end());
363  Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
364  EmittedAbiTags.begin(),
365  EmittedAbiTags.end());
366  }
367  LinkHead = Parent;
368  }
369 
370  void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
371  for (const auto &Tag : AbiTags) {
372  EmittedAbiTags.push_back(Tag);
373  Out << "B";
374  Out << Tag.size();
375  Out << Tag;
376  }
377  }
378  };
379 
380  AbiTagState *AbiTags = nullptr;
381  AbiTagState AbiTagsRoot;
382 
383  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
384  llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
385 
386  ASTContext &getASTContext() const { return Context.getASTContext(); }
387 
388 public:
389  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
390  const NamedDecl *D = nullptr, bool NullOut_ = false)
391  : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)),
392  StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
393  // These can't be mangled without a ctor type or dtor type.
394  assert(!D || (!isa<CXXDestructorDecl>(D) &&
395  !isa<CXXConstructorDecl>(D)));
396  }
397  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
399  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
400  SeqID(0), AbiTagsRoot(AbiTags) { }
401  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
402  const CXXDestructorDecl *D, CXXDtorType Type)
403  : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
404  SeqID(0), AbiTagsRoot(AbiTags) { }
405 
406  CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
407  : Context(Outer.Context), Out(Out_), NullOut(false),
408  Structor(Outer.Structor), StructorType(Outer.StructorType),
409  SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
410  AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
411 
412  CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
413  : Context(Outer.Context), Out(Out_), NullOut(true),
414  Structor(Outer.Structor), StructorType(Outer.StructorType),
415  SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
416  AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
417 
418 #if MANGLE_CHECKER
419  ~CXXNameMangler() {
420  if (Out.str()[0] == '\01')
421  return;
422 
423  int status = 0;
424  char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
425  assert(status == 0 && "Could not demangle mangled name!");
426  free(result);
427  }
428 #endif
429  raw_ostream &getStream() { return Out; }
430 
431  void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
432  static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
433 
434  void mangle(const NamedDecl *D);
435  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
436  void mangleNumber(const llvm::APSInt &I);
437  void mangleNumber(int64_t Number);
438  void mangleFloat(const llvm::APFloat &F);
439  void mangleFunctionEncoding(const FunctionDecl *FD);
440  void mangleSeqID(unsigned SeqID);
441  void mangleName(const NamedDecl *ND);
442  void mangleType(QualType T);
443  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
444 
445 private:
446 
447  bool mangleSubstitution(const NamedDecl *ND);
448  bool mangleSubstitution(QualType T);
449  bool mangleSubstitution(TemplateName Template);
450  bool mangleSubstitution(uintptr_t Ptr);
451 
452  void mangleExistingSubstitution(TemplateName name);
453 
454  bool mangleStandardSubstitution(const NamedDecl *ND);
455 
456  void addSubstitution(const NamedDecl *ND) {
457  ND = cast<NamedDecl>(ND->getCanonicalDecl());
458 
459  addSubstitution(reinterpret_cast<uintptr_t>(ND));
460  }
461  void addSubstitution(QualType T);
462  void addSubstitution(TemplateName Template);
463  void addSubstitution(uintptr_t Ptr);
464  // Destructive copy substitutions from other mangler.
465  void extendSubstitutions(CXXNameMangler* Other);
466 
467  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
468  bool recursive = false);
469  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
470  DeclarationName name,
471  const TemplateArgumentLoc *TemplateArgs,
472  unsigned NumTemplateArgs,
473  unsigned KnownArity = UnknownArity);
474 
475  void mangleFunctionEncodingBareType(const FunctionDecl *FD);
476 
477  void mangleNameWithAbiTags(const NamedDecl *ND,
478  const AbiTagList *AdditionalAbiTags);
479  void mangleModuleName(const Module *M);
480  void mangleModuleNamePrefix(StringRef Name);
481  void mangleTemplateName(const TemplateDecl *TD,
482  const TemplateArgument *TemplateArgs,
483  unsigned NumTemplateArgs);
484  void mangleUnqualifiedName(const NamedDecl *ND,
485  const AbiTagList *AdditionalAbiTags) {
486  mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity,
487  AdditionalAbiTags);
488  }
489  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
490  unsigned KnownArity,
491  const AbiTagList *AdditionalAbiTags);
492  void mangleUnscopedName(const NamedDecl *ND,
493  const AbiTagList *AdditionalAbiTags);
494  void mangleUnscopedTemplateName(const TemplateDecl *ND,
495  const AbiTagList *AdditionalAbiTags);
496  void mangleUnscopedTemplateName(TemplateName,
497  const AbiTagList *AdditionalAbiTags);
498  void mangleSourceName(const IdentifierInfo *II);
499  void mangleRegCallName(const IdentifierInfo *II);
500  void mangleSourceNameWithAbiTags(
501  const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
502  void mangleLocalName(const Decl *D,
503  const AbiTagList *AdditionalAbiTags);
504  void mangleBlockForPrefix(const BlockDecl *Block);
505  void mangleUnqualifiedBlock(const BlockDecl *Block);
506  void mangleLambda(const CXXRecordDecl *Lambda);
507  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
508  const AbiTagList *AdditionalAbiTags,
509  bool NoFunction=false);
510  void mangleNestedName(const TemplateDecl *TD,
511  const TemplateArgument *TemplateArgs,
512  unsigned NumTemplateArgs);
513  void manglePrefix(NestedNameSpecifier *qualifier);
514  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
515  void manglePrefix(QualType type);
516  void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
517  void mangleTemplatePrefix(TemplateName Template);
518  bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
519  StringRef Prefix = "");
520  void mangleOperatorName(DeclarationName Name, unsigned Arity);
521  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
522  void mangleVendorQualifier(StringRef qualifier);
523  void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
524  void mangleRefQualifier(RefQualifierKind RefQualifier);
525 
526  void mangleObjCMethodName(const ObjCMethodDecl *MD);
527 
528  // Declare manglers for every type class.
529 #define ABSTRACT_TYPE(CLASS, PARENT)
530 #define NON_CANONICAL_TYPE(CLASS, PARENT)
531 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
532 #include "clang/AST/TypeNodes.def"
533 
534  void mangleType(const TagType*);
535  void mangleType(TemplateName);
536  static StringRef getCallingConvQualifierName(CallingConv CC);
537  void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
538  void mangleExtFunctionInfo(const FunctionType *T);
539  void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
540  const FunctionDecl *FD = nullptr);
541  void mangleNeonVectorType(const VectorType *T);
542  void mangleNeonVectorType(const DependentVectorType *T);
543  void mangleAArch64NeonVectorType(const VectorType *T);
544  void mangleAArch64NeonVectorType(const DependentVectorType *T);
545 
546  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
547  void mangleMemberExprBase(const Expr *base, bool isArrow);
548  void mangleMemberExpr(const Expr *base, bool isArrow,
549  NestedNameSpecifier *qualifier,
550  NamedDecl *firstQualifierLookup,
551  DeclarationName name,
552  const TemplateArgumentLoc *TemplateArgs,
553  unsigned NumTemplateArgs,
554  unsigned knownArity);
555  void mangleCastExpression(const Expr *E, StringRef CastEncoding);
556  void mangleInitListElements(const InitListExpr *InitList);
557  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
558  void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
559  void mangleCXXDtorType(CXXDtorType T);
560 
561  void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
562  unsigned NumTemplateArgs);
563  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
564  unsigned NumTemplateArgs);
565  void mangleTemplateArgs(const TemplateArgumentList &AL);
566  void mangleTemplateArg(TemplateArgument A);
567 
568  void mangleTemplateParameter(unsigned Index);
569 
570  void mangleFunctionParam(const ParmVarDecl *parm);
571 
572  void writeAbiTags(const NamedDecl *ND,
573  const AbiTagList *AdditionalAbiTags);
574 
575  // Returns sorted unique list of ABI tags.
576  AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
577  // Returns sorted unique list of ABI tags.
578  AbiTagList makeVariableTypeTags(const VarDecl *VD);
579 };
580 
581 }
582 
583 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
584  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
585  if (FD) {
587  // Overloadable functions need mangling.
588  if (FD->hasAttr<OverloadableAttr>())
589  return true;
590 
591  // "main" is not mangled.
592  if (FD->isMain())
593  return false;
594 
595  // The Windows ABI expects that we would never mangle "typical"
596  // user-defined entry points regardless of visibility or freestanding-ness.
597  //
598  // N.B. This is distinct from asking about "main". "main" has a lot of
599  // special rules associated with it in the standard while these
600  // user-defined entry points are outside of the purview of the standard.
601  // For example, there can be only one definition for "main" in a standards
602  // compliant program; however nothing forbids the existence of wmain and
603  // WinMain in the same translation unit.
604  if (FD->isMSVCRTEntryPoint())
605  return false;
606 
607  // C++ functions and those whose names are not a simple identifier need
608  // mangling.
609  if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
610  return true;
611 
612  // C functions are not mangled.
613  if (L == CLanguageLinkage)
614  return false;
615  }
616 
617  // Otherwise, no mangling is done outside C++ mode.
618  if (!getASTContext().getLangOpts().CPlusPlus)
619  return false;
620 
621  const VarDecl *VD = dyn_cast<VarDecl>(D);
622  if (VD && !isa<DecompositionDecl>(D)) {
623  // C variables are not mangled.
624  if (VD->isExternC())
625  return false;
626 
627  // Variables at global scope with non-internal linkage are not mangled
628  const DeclContext *DC = getEffectiveDeclContext(D);
629  // Check for extern variable declared locally.
630  if (DC->isFunctionOrMethod() && D->hasLinkage())
631  while (!DC->isNamespace() && !DC->isTranslationUnit())
632  DC = getEffectiveParentContext(DC);
633  if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
634  !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
635  !isa<VarTemplateSpecializationDecl>(D))
636  return false;
637  }
638 
639  return true;
640 }
641 
642 void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
643  const AbiTagList *AdditionalAbiTags) {
644  assert(AbiTags && "require AbiTagState");
645  AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
646 }
647 
648 void CXXNameMangler::mangleSourceNameWithAbiTags(
649  const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
650  mangleSourceName(ND->getIdentifier());
651  writeAbiTags(ND, AdditionalAbiTags);
652 }
653 
654 void CXXNameMangler::mangle(const NamedDecl *D) {
655  // <mangled-name> ::= _Z <encoding>
656  // ::= <data name>
657  // ::= <special-name>
658  Out << "_Z";
659  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
660  mangleFunctionEncoding(FD);
661  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
662  mangleName(VD);
663  else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
664  mangleName(IFD->getAnonField());
665  else
666  mangleName(cast<FieldDecl>(D));
667 }
668 
669 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
670  // <encoding> ::= <function name> <bare-function-type>
671 
672  // Don't mangle in the type if this isn't a decl we should typically mangle.
673  if (!Context.shouldMangleDeclName(FD)) {
674  mangleName(FD);
675  return;
676  }
677 
678  AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
679  if (ReturnTypeAbiTags.empty()) {
680  // There are no tags for return type, the simplest case.
681  mangleName(FD);
682  mangleFunctionEncodingBareType(FD);
683  return;
684  }
685 
686  // Mangle function name and encoding to temporary buffer.
687  // We have to output name and encoding to the same mangler to get the same
688  // substitution as it will be in final mangling.
689  SmallString<256> FunctionEncodingBuf;
690  llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
691  CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
692  // Output name of the function.
693  FunctionEncodingMangler.disableDerivedAbiTags();
694  FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
695 
696  // Remember length of the function name in the buffer.
697  size_t EncodingPositionStart = FunctionEncodingStream.str().size();
698  FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
699 
700  // Get tags from return type that are not present in function name or
701  // encoding.
702  const AbiTagList &UsedAbiTags =
703  FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
704  AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
705  AdditionalAbiTags.erase(
706  std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
707  UsedAbiTags.begin(), UsedAbiTags.end(),
708  AdditionalAbiTags.begin()),
709  AdditionalAbiTags.end());
710 
711  // Output name with implicit tags and function encoding from temporary buffer.
712  mangleNameWithAbiTags(FD, &AdditionalAbiTags);
713  Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
714 
715  // Function encoding could create new substitutions so we have to add
716  // temp mangled substitutions to main mangler.
717  extendSubstitutions(&FunctionEncodingMangler);
718 }
719 
720 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
721  if (FD->hasAttr<EnableIfAttr>()) {
722  FunctionTypeDepthState Saved = FunctionTypeDepth.push();
723  Out << "Ua9enable_ifI";
724  for (AttrVec::const_iterator I = FD->getAttrs().begin(),
725  E = FD->getAttrs().end();
726  I != E; ++I) {
727  EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
728  if (!EIA)
729  continue;
730  Out << 'X';
731  mangleExpression(EIA->getCond());
732  Out << 'E';
733  }
734  Out << 'E';
735  FunctionTypeDepth.pop(Saved);
736  }
737 
738  // When mangling an inheriting constructor, the bare function type used is
739  // that of the inherited constructor.
740  if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
741  if (auto Inherited = CD->getInheritedConstructor())
742  FD = Inherited.getConstructor();
743 
744  // Whether the mangling of a function type includes the return type depends on
745  // the context and the nature of the function. The rules for deciding whether
746  // the return type is included are:
747  //
748  // 1. Template functions (names or types) have return types encoded, with
749  // the exceptions listed below.
750  // 2. Function types not appearing as part of a function name mangling,
751  // e.g. parameters, pointer types, etc., have return type encoded, with the
752  // exceptions listed below.
753  // 3. Non-template function names do not have return types encoded.
754  //
755  // The exceptions mentioned in (1) and (2) above, for which the return type is
756  // never included, are
757  // 1. Constructors.
758  // 2. Destructors.
759  // 3. Conversion operator functions, e.g. operator int.
760  bool MangleReturnType = false;
761  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
762  if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
763  isa<CXXConversionDecl>(FD)))
764  MangleReturnType = true;
765 
766  // Mangle the type of the primary template.
767  FD = PrimaryTemplate->getTemplatedDecl();
768  }
769 
770  mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
771  MangleReturnType, FD);
772 }
773 
775  while (isa<LinkageSpecDecl>(DC)) {
776  DC = getEffectiveParentContext(DC);
777  }
778 
779  return DC;
780 }
781 
782 /// Return whether a given namespace is the 'std' namespace.
783 static bool isStd(const NamespaceDecl *NS) {
784  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
785  ->isTranslationUnit())
786  return false;
787 
789  return II && II->isStr("std");
790 }
791 
792 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
793 // namespace.
794 static bool isStdNamespace(const DeclContext *DC) {
795  if (!DC->isNamespace())
796  return false;
797 
798  return isStd(cast<NamespaceDecl>(DC));
799 }
800 
801 static const TemplateDecl *
802 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
803  // Check if we have a function template.
804  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
805  if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
806  TemplateArgs = FD->getTemplateSpecializationArgs();
807  return TD;
808  }
809  }
810 
811  // Check if we have a class template.
812  if (const ClassTemplateSpecializationDecl *Spec =
813  dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
814  TemplateArgs = &Spec->getTemplateArgs();
815  return Spec->getSpecializedTemplate();
816  }
817 
818  // Check if we have a variable template.
819  if (const VarTemplateSpecializationDecl *Spec =
820  dyn_cast<VarTemplateSpecializationDecl>(ND)) {
821  TemplateArgs = &Spec->getTemplateArgs();
822  return Spec->getSpecializedTemplate();
823  }
824 
825  return nullptr;
826 }
827 
828 void CXXNameMangler::mangleName(const NamedDecl *ND) {
829  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
830  // Variables should have implicit tags from its type.
831  AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
832  if (VariableTypeAbiTags.empty()) {
833  // Simple case no variable type tags.
834  mangleNameWithAbiTags(VD, nullptr);
835  return;
836  }
837 
838  // Mangle variable name to null stream to collect tags.
839  llvm::raw_null_ostream NullOutStream;
840  CXXNameMangler VariableNameMangler(*this, NullOutStream);
841  VariableNameMangler.disableDerivedAbiTags();
842  VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
843 
844  // Get tags from variable type that are not present in its name.
845  const AbiTagList &UsedAbiTags =
846  VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
847  AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
848  AdditionalAbiTags.erase(
849  std::set_difference(VariableTypeAbiTags.begin(),
850  VariableTypeAbiTags.end(), UsedAbiTags.begin(),
851  UsedAbiTags.end(), AdditionalAbiTags.begin()),
852  AdditionalAbiTags.end());
853 
854  // Output name with implicit tags.
855  mangleNameWithAbiTags(VD, &AdditionalAbiTags);
856  } else {
857  mangleNameWithAbiTags(ND, nullptr);
858  }
859 }
860 
861 void CXXNameMangler::mangleNameWithAbiTags(const NamedDecl *ND,
862  const AbiTagList *AdditionalAbiTags) {
863  // <name> ::= [<module-name>] <nested-name>
864  // ::= [<module-name>] <unscoped-name>
865  // ::= [<module-name>] <unscoped-template-name> <template-args>
866  // ::= <local-name>
867  //
868  const DeclContext *DC = getEffectiveDeclContext(ND);
869 
870  // If this is an extern variable declared locally, the relevant DeclContext
871  // is that of the containing namespace, or the translation unit.
872  // FIXME: This is a hack; extern variables declared locally should have
873  // a proper semantic declaration context!
874  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
875  while (!DC->isNamespace() && !DC->isTranslationUnit())
876  DC = getEffectiveParentContext(DC);
877  else if (GetLocalClassDecl(ND)) {
878  mangleLocalName(ND, AdditionalAbiTags);
879  return;
880  }
881 
882  DC = IgnoreLinkageSpecDecls(DC);
883 
884  if (isLocalContainerContext(DC)) {
885  mangleLocalName(ND, AdditionalAbiTags);
886  return;
887  }
888 
889  // Do not mangle the owning module for an external linkage declaration.
890  // This enables backwards-compatibility with non-modular code, and is
891  // a valid choice since conflicts are not permitted by C++ Modules TS
892  // [basic.def.odr]/6.2.
893  if (!ND->hasExternalFormalLinkage())
894  if (Module *M = ND->getOwningModuleForLinkage())
895  mangleModuleName(M);
896 
897  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
898  // Check if we have a template.
899  const TemplateArgumentList *TemplateArgs = nullptr;
900  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
901  mangleUnscopedTemplateName(TD, AdditionalAbiTags);
902  mangleTemplateArgs(*TemplateArgs);
903  return;
904  }
905 
906  mangleUnscopedName(ND, AdditionalAbiTags);
907  return;
908  }
909 
910  mangleNestedName(ND, DC, AdditionalAbiTags);
911 }
912 
913 void CXXNameMangler::mangleModuleName(const Module *M) {
914  // Implement the C++ Modules TS name mangling proposal; see
915  // https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
916  //
917  // <module-name> ::= W <unscoped-name>+ E
918  // ::= W <module-subst> <unscoped-name>* E
919  Out << 'W';
920  mangleModuleNamePrefix(M->Name);
921  Out << 'E';
922 }
923 
924 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
925  // <module-subst> ::= _ <seq-id> # 0 < seq-id < 10
926  // ::= W <seq-id - 10> _ # otherwise
927  auto It = ModuleSubstitutions.find(Name);
928  if (It != ModuleSubstitutions.end()) {
929  if (It->second < 10)
930  Out << '_' << static_cast<char>('0' + It->second);
931  else
932  Out << 'W' << (It->second - 10) << '_';
933  return;
934  }
935 
936  // FIXME: Preserve hierarchy in module names rather than flattening
937  // them to strings; use Module*s as substitution keys.
938  auto Parts = Name.rsplit('.');
939  if (Parts.second.empty())
940  Parts.second = Parts.first;
941  else
942  mangleModuleNamePrefix(Parts.first);
943 
944  Out << Parts.second.size() << Parts.second;
945  ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
946 }
947 
948 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
949  const TemplateArgument *TemplateArgs,
950  unsigned NumTemplateArgs) {
951  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
952 
953  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
954  mangleUnscopedTemplateName(TD, nullptr);
955  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
956  } else {
957  mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
958  }
959 }
960 
961 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND,
962  const AbiTagList *AdditionalAbiTags) {
963  // <unscoped-name> ::= <unqualified-name>
964  // ::= St <unqualified-name> # ::std::
965 
966  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
967  Out << "St";
968 
969  mangleUnqualifiedName(ND, AdditionalAbiTags);
970 }
971 
972 void CXXNameMangler::mangleUnscopedTemplateName(
973  const TemplateDecl *ND, const AbiTagList *AdditionalAbiTags) {
974  // <unscoped-template-name> ::= <unscoped-name>
975  // ::= <substitution>
976  if (mangleSubstitution(ND))
977  return;
978 
979  // <template-template-param> ::= <template-param>
980  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
981  assert(!AdditionalAbiTags &&
982  "template template param cannot have abi tags");
983  mangleTemplateParameter(TTP->getIndex());
984  } else if (isa<BuiltinTemplateDecl>(ND)) {
985  mangleUnscopedName(ND, AdditionalAbiTags);
986  } else {
987  mangleUnscopedName(ND->getTemplatedDecl(), AdditionalAbiTags);
988  }
989 
990  addSubstitution(ND);
991 }
992 
993 void CXXNameMangler::mangleUnscopedTemplateName(
994  TemplateName Template, const AbiTagList *AdditionalAbiTags) {
995  // <unscoped-template-name> ::= <unscoped-name>
996  // ::= <substitution>
997  if (TemplateDecl *TD = Template.getAsTemplateDecl())
998  return mangleUnscopedTemplateName(TD, AdditionalAbiTags);
999 
1000  if (mangleSubstitution(Template))
1001  return;
1002 
1003  assert(!AdditionalAbiTags &&
1004  "dependent template name cannot have abi tags");
1005 
1006  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1007  assert(Dependent && "Not a dependent template name?");
1008  if (const IdentifierInfo *Id = Dependent->getIdentifier())
1009  mangleSourceName(Id);
1010  else
1011  mangleOperatorName(Dependent->getOperator(), UnknownArity);
1012 
1013  addSubstitution(Template);
1014 }
1015 
1016 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1017  // ABI:
1018  // Floating-point literals are encoded using a fixed-length
1019  // lowercase hexadecimal string corresponding to the internal
1020  // representation (IEEE on Itanium), high-order bytes first,
1021  // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1022  // on Itanium.
1023  // The 'without leading zeroes' thing seems to be an editorial
1024  // mistake; see the discussion on cxx-abi-dev beginning on
1025  // 2012-01-16.
1026 
1027  // Our requirements here are just barely weird enough to justify
1028  // using a custom algorithm instead of post-processing APInt::toString().
1029 
1030  llvm::APInt valueBits = f.bitcastToAPInt();
1031  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1032  assert(numCharacters != 0);
1033 
1034  // Allocate a buffer of the right number of characters.
1035  SmallVector<char, 20> buffer(numCharacters);
1036 
1037  // Fill the buffer left-to-right.
1038  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1039  // The bit-index of the next hex digit.
1040  unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1041 
1042  // Project out 4 bits starting at 'digitIndex'.
1043  uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1044  hexDigit >>= (digitBitIndex % 64);
1045  hexDigit &= 0xF;
1046 
1047  // Map that over to a lowercase hex digit.
1048  static const char charForHex[16] = {
1049  '0', '1', '2', '3', '4', '5', '6', '7',
1050  '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1051  };
1052  buffer[stringIndex] = charForHex[hexDigit];
1053  }
1054 
1055  Out.write(buffer.data(), numCharacters);
1056 }
1057 
1058 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1059  if (Value.isSigned() && Value.isNegative()) {
1060  Out << 'n';
1061  Value.abs().print(Out, /*signed*/ false);
1062  } else {
1063  Value.print(Out, /*signed*/ false);
1064  }
1065 }
1066 
1067 void CXXNameMangler::mangleNumber(int64_t Number) {
1068  // <number> ::= [n] <non-negative decimal integer>
1069  if (Number < 0) {
1070  Out << 'n';
1071  Number = -Number;
1072  }
1073 
1074  Out << Number;
1075 }
1076 
1077 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1078  // <call-offset> ::= h <nv-offset> _
1079  // ::= v <v-offset> _
1080  // <nv-offset> ::= <offset number> # non-virtual base override
1081  // <v-offset> ::= <offset number> _ <virtual offset number>
1082  // # virtual base override, with vcall offset
1083  if (!Virtual) {
1084  Out << 'h';
1085  mangleNumber(NonVirtual);
1086  Out << '_';
1087  return;
1088  }
1089 
1090  Out << 'v';
1091  mangleNumber(NonVirtual);
1092  Out << '_';
1093  mangleNumber(Virtual);
1094  Out << '_';
1095 }
1096 
1097 void CXXNameMangler::manglePrefix(QualType type) {
1098  if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1099  if (!mangleSubstitution(QualType(TST, 0))) {
1100  mangleTemplatePrefix(TST->getTemplateName());
1101 
1102  // FIXME: GCC does not appear to mangle the template arguments when
1103  // the template in question is a dependent template name. Should we
1104  // emulate that badness?
1105  mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1106  addSubstitution(QualType(TST, 0));
1107  }
1108  } else if (const auto *DTST =
1110  if (!mangleSubstitution(QualType(DTST, 0))) {
1111  TemplateName Template = getASTContext().getDependentTemplateName(
1112  DTST->getQualifier(), DTST->getIdentifier());
1113  mangleTemplatePrefix(Template);
1114 
1115  // FIXME: GCC does not appear to mangle the template arguments when
1116  // the template in question is a dependent template name. Should we
1117  // emulate that badness?
1118  mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1119  addSubstitution(QualType(DTST, 0));
1120  }
1121  } else {
1122  // We use the QualType mangle type variant here because it handles
1123  // substitutions.
1124  mangleType(type);
1125  }
1126 }
1127 
1128 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1129 ///
1130 /// \param recursive - true if this is being called recursively,
1131 /// i.e. if there is more prefix "to the right".
1132 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1133  bool recursive) {
1134 
1135  // x, ::x
1136  // <unresolved-name> ::= [gs] <base-unresolved-name>
1137 
1138  // T::x / decltype(p)::x
1139  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1140 
1141  // T::N::x /decltype(p)::N::x
1142  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1143  // <base-unresolved-name>
1144 
1145  // A::x, N::y, A<T>::z; "gs" means leading "::"
1146  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1147  // <base-unresolved-name>
1148 
1149  switch (qualifier->getKind()) {
1151  Out << "gs";
1152 
1153  // We want an 'sr' unless this is the entire NNS.
1154  if (recursive)
1155  Out << "sr";
1156 
1157  // We never want an 'E' here.
1158  return;
1159 
1161  llvm_unreachable("Can't mangle __super specifier");
1162 
1164  if (qualifier->getPrefix())
1165  mangleUnresolvedPrefix(qualifier->getPrefix(),
1166  /*recursive*/ true);
1167  else
1168  Out << "sr";
1169  mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1170  break;
1172  if (qualifier->getPrefix())
1173  mangleUnresolvedPrefix(qualifier->getPrefix(),
1174  /*recursive*/ true);
1175  else
1176  Out << "sr";
1177  mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1178  break;
1179 
1182  const Type *type = qualifier->getAsType();
1183 
1184  // We only want to use an unresolved-type encoding if this is one of:
1185  // - a decltype
1186  // - a template type parameter
1187  // - a template template parameter with arguments
1188  // In all of these cases, we should have no prefix.
1189  if (qualifier->getPrefix()) {
1190  mangleUnresolvedPrefix(qualifier->getPrefix(),
1191  /*recursive*/ true);
1192  } else {
1193  // Otherwise, all the cases want this.
1194  Out << "sr";
1195  }
1196 
1197  if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1198  return;
1199 
1200  break;
1201  }
1202 
1204  // Member expressions can have these without prefixes.
1205  if (qualifier->getPrefix())
1206  mangleUnresolvedPrefix(qualifier->getPrefix(),
1207  /*recursive*/ true);
1208  else
1209  Out << "sr";
1210 
1211  mangleSourceName(qualifier->getAsIdentifier());
1212  // An Identifier has no type information, so we can't emit abi tags for it.
1213  break;
1214  }
1215 
1216  // If this was the innermost part of the NNS, and we fell out to
1217  // here, append an 'E'.
1218  if (!recursive)
1219  Out << 'E';
1220 }
1221 
1222 /// Mangle an unresolved-name, which is generally used for names which
1223 /// weren't resolved to specific entities.
1224 void CXXNameMangler::mangleUnresolvedName(
1225  NestedNameSpecifier *qualifier, DeclarationName name,
1226  const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1227  unsigned knownArity) {
1228  if (qualifier) mangleUnresolvedPrefix(qualifier);
1229  switch (name.getNameKind()) {
1230  // <base-unresolved-name> ::= <simple-id>
1232  mangleSourceName(name.getAsIdentifierInfo());
1233  break;
1234  // <base-unresolved-name> ::= dn <destructor-name>
1236  Out << "dn";
1237  mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1238  break;
1239  // <base-unresolved-name> ::= on <operator-name>
1243  Out << "on";
1244  mangleOperatorName(name, knownArity);
1245  break;
1247  llvm_unreachable("Can't mangle a constructor name!");
1249  llvm_unreachable("Can't mangle a using directive name!");
1251  llvm_unreachable("Can't mangle a deduction guide name!");
1255  llvm_unreachable("Can't mangle Objective-C selector names here!");
1256  }
1257 
1258  // The <simple-id> and on <operator-name> productions end in an optional
1259  // <template-args>.
1260  if (TemplateArgs)
1261  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1262 }
1263 
1264 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1265  DeclarationName Name,
1266  unsigned KnownArity,
1267  const AbiTagList *AdditionalAbiTags) {
1268  unsigned Arity = KnownArity;
1269  // <unqualified-name> ::= <operator-name>
1270  // ::= <ctor-dtor-name>
1271  // ::= <source-name>
1272  switch (Name.getNameKind()) {
1274  const IdentifierInfo *II = Name.getAsIdentifierInfo();
1275 
1276  // We mangle decomposition declarations as the names of their bindings.
1277  if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1278  // FIXME: Non-standard mangling for decomposition declarations:
1279  //
1280  // <unqualified-name> ::= DC <source-name>* E
1281  //
1282  // These can never be referenced across translation units, so we do
1283  // not need a cross-vendor mangling for anything other than demanglers.
1284  // Proposed on cxx-abi-dev on 2016-08-12
1285  Out << "DC";
1286  for (auto *BD : DD->bindings())
1287  mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1288  Out << 'E';
1289  writeAbiTags(ND, AdditionalAbiTags);
1290  break;
1291  }
1292 
1293  if (II) {
1294  // Match GCC's naming convention for internal linkage symbols, for
1295  // symbols that are not actually visible outside of this TU. GCC
1296  // distinguishes between internal and external linkage symbols in
1297  // its mangling, to support cases like this that were valid C++ prior
1298  // to DR426:
1299  //
1300  // void test() { extern void foo(); }
1301  // static void foo();
1302  //
1303  // Don't bother with the L marker for names in anonymous namespaces; the
1304  // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1305  // matches GCC anyway, because GCC does not treat anonymous namespaces as
1306  // implying internal linkage.
1307  if (ND && ND->getFormalLinkage() == InternalLinkage &&
1308  !ND->isExternallyVisible() &&
1309  getEffectiveDeclContext(ND)->isFileContext() &&
1310  !ND->isInAnonymousNamespace())
1311  Out << 'L';
1312 
1313  auto *FD = dyn_cast<FunctionDecl>(ND);
1314  bool IsRegCall = FD &&
1315  FD->getType()->castAs<FunctionType>()->getCallConv() ==
1317  if (IsRegCall)
1318  mangleRegCallName(II);
1319  else
1320  mangleSourceName(II);
1321 
1322  writeAbiTags(ND, AdditionalAbiTags);
1323  break;
1324  }
1325 
1326  // Otherwise, an anonymous entity. We must have a declaration.
1327  assert(ND && "mangling empty name without declaration");
1328 
1329  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1330  if (NS->isAnonymousNamespace()) {
1331  // This is how gcc mangles these names.
1332  Out << "12_GLOBAL__N_1";
1333  break;
1334  }
1335  }
1336 
1337  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1338  // We must have an anonymous union or struct declaration.
1339  const RecordDecl *RD = VD->getType()->getAs<RecordType>()->getDecl();
1340 
1341  // Itanium C++ ABI 5.1.2:
1342  //
1343  // For the purposes of mangling, the name of an anonymous union is
1344  // considered to be the name of the first named data member found by a
1345  // pre-order, depth-first, declaration-order walk of the data members of
1346  // the anonymous union. If there is no such data member (i.e., if all of
1347  // the data members in the union are unnamed), then there is no way for
1348  // a program to refer to the anonymous union, and there is therefore no
1349  // need to mangle its name.
1350  assert(RD->isAnonymousStructOrUnion()
1351  && "Expected anonymous struct or union!");
1352  const FieldDecl *FD = RD->findFirstNamedDataMember();
1353 
1354  // It's actually possible for various reasons for us to get here
1355  // with an empty anonymous struct / union. Fortunately, it
1356  // doesn't really matter what name we generate.
1357  if (!FD) break;
1358  assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1359 
1360  mangleSourceName(FD->getIdentifier());
1361  // Not emitting abi tags: internal name anyway.
1362  break;
1363  }
1364 
1365  // Class extensions have no name as a category, and it's possible
1366  // for them to be the semantic parent of certain declarations
1367  // (primarily, tag decls defined within declarations). Such
1368  // declarations will always have internal linkage, so the name
1369  // doesn't really matter, but we shouldn't crash on them. For
1370  // safety, just handle all ObjC containers here.
1371  if (isa<ObjCContainerDecl>(ND))
1372  break;
1373 
1374  // We must have an anonymous struct.
1375  const TagDecl *TD = cast<TagDecl>(ND);
1376  if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1377  assert(TD->getDeclContext() == D->getDeclContext() &&
1378  "Typedef should not be in another decl context!");
1379  assert(D->getDeclName().getAsIdentifierInfo() &&
1380  "Typedef was not named!");
1381  mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1382  assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1383  // Explicit abi tags are still possible; take from underlying type, not
1384  // from typedef.
1385  writeAbiTags(TD, nullptr);
1386  break;
1387  }
1388 
1389  // <unnamed-type-name> ::= <closure-type-name>
1390  //
1391  // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1392  // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
1393  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1394  if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1395  assert(!AdditionalAbiTags &&
1396  "Lambda type cannot have additional abi tags");
1397  mangleLambda(Record);
1398  break;
1399  }
1400  }
1401 
1402  if (TD->isExternallyVisible()) {
1403  unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1404  Out << "Ut";
1405  if (UnnamedMangle > 1)
1406  Out << UnnamedMangle - 2;
1407  Out << '_';
1408  writeAbiTags(TD, AdditionalAbiTags);
1409  break;
1410  }
1411 
1412  // Get a unique id for the anonymous struct. If it is not a real output
1413  // ID doesn't matter so use fake one.
1414  unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1415 
1416  // Mangle it as a source name in the form
1417  // [n] $_<id>
1418  // where n is the length of the string.
1419  SmallString<8> Str;
1420  Str += "$_";
1421  Str += llvm::utostr(AnonStructId);
1422 
1423  Out << Str.size();
1424  Out << Str;
1425  break;
1426  }
1427 
1431  llvm_unreachable("Can't mangle Objective-C selector names here!");
1432 
1434  const CXXRecordDecl *InheritedFrom = nullptr;
1435  const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1436  if (auto Inherited =
1437  cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1438  InheritedFrom = Inherited.getConstructor()->getParent();
1439  InheritedTemplateArgs =
1440  Inherited.getConstructor()->getTemplateSpecializationArgs();
1441  }
1442 
1443  if (ND == Structor)
1444  // If the named decl is the C++ constructor we're mangling, use the type
1445  // we were given.
1446  mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1447  else
1448  // Otherwise, use the complete constructor name. This is relevant if a
1449  // class with a constructor is declared within a constructor.
1450  mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1451 
1452  // FIXME: The template arguments are part of the enclosing prefix or
1453  // nested-name, but it's more convenient to mangle them here.
1454  if (InheritedTemplateArgs)
1455  mangleTemplateArgs(*InheritedTemplateArgs);
1456 
1457  writeAbiTags(ND, AdditionalAbiTags);
1458  break;
1459  }
1460 
1462  if (ND == Structor)
1463  // If the named decl is the C++ destructor we're mangling, use the type we
1464  // were given.
1465  mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1466  else
1467  // Otherwise, use the complete destructor name. This is relevant if a
1468  // class with a destructor is declared within a destructor.
1469  mangleCXXDtorType(Dtor_Complete);
1470  writeAbiTags(ND, AdditionalAbiTags);
1471  break;
1472 
1474  if (ND && Arity == UnknownArity) {
1475  Arity = cast<FunctionDecl>(ND)->getNumParams();
1476 
1477  // If we have a member function, we need to include the 'this' pointer.
1478  if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1479  if (!MD->isStatic())
1480  Arity++;
1481  }
1482  LLVM_FALLTHROUGH;
1485  mangleOperatorName(Name, Arity);
1486  writeAbiTags(ND, AdditionalAbiTags);
1487  break;
1488 
1490  llvm_unreachable("Can't mangle a deduction guide name!");
1491 
1493  llvm_unreachable("Can't mangle a using directive name!");
1494  }
1495 }
1496 
1497 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1498  // <source-name> ::= <positive length number> __regcall3__ <identifier>
1499  // <number> ::= [n] <non-negative decimal integer>
1500  // <identifier> ::= <unqualified source code identifier>
1501  Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1502  << II->getName();
1503 }
1504 
1505 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1506  // <source-name> ::= <positive length number> <identifier>
1507  // <number> ::= [n] <non-negative decimal integer>
1508  // <identifier> ::= <unqualified source code identifier>
1509  Out << II->getLength() << II->getName();
1510 }
1511 
1512 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1513  const DeclContext *DC,
1514  const AbiTagList *AdditionalAbiTags,
1515  bool NoFunction) {
1516  // <nested-name>
1517  // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1518  // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1519  // <template-args> E
1520 
1521  Out << 'N';
1522  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1523  Qualifiers MethodQuals =
1524  Qualifiers::fromCVRUMask(Method->getTypeQualifiers());
1525  // We do not consider restrict a distinguishing attribute for overloading
1526  // purposes so we must not mangle it.
1527  MethodQuals.removeRestrict();
1528  mangleQualifiers(MethodQuals);
1529  mangleRefQualifier(Method->getRefQualifier());
1530  }
1531 
1532  // Check if we have a template.
1533  const TemplateArgumentList *TemplateArgs = nullptr;
1534  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1535  mangleTemplatePrefix(TD, NoFunction);
1536  mangleTemplateArgs(*TemplateArgs);
1537  }
1538  else {
1539  manglePrefix(DC, NoFunction);
1540  mangleUnqualifiedName(ND, AdditionalAbiTags);
1541  }
1542 
1543  Out << 'E';
1544 }
1545 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1546  const TemplateArgument *TemplateArgs,
1547  unsigned NumTemplateArgs) {
1548  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1549 
1550  Out << 'N';
1551 
1552  mangleTemplatePrefix(TD);
1553  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1554 
1555  Out << 'E';
1556 }
1557 
1558 void CXXNameMangler::mangleLocalName(const Decl *D,
1559  const AbiTagList *AdditionalAbiTags) {
1560  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1561  // := Z <function encoding> E s [<discriminator>]
1562  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1563  // _ <entity name>
1564  // <discriminator> := _ <non-negative number>
1565  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1566  const RecordDecl *RD = GetLocalClassDecl(D);
1567  const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1568 
1569  Out << 'Z';
1570 
1571  {
1572  AbiTagState LocalAbiTags(AbiTags);
1573 
1574  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1575  mangleObjCMethodName(MD);
1576  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1577  mangleBlockForPrefix(BD);
1578  else
1579  mangleFunctionEncoding(cast<FunctionDecl>(DC));
1580 
1581  // Implicit ABI tags (from namespace) are not available in the following
1582  // entity; reset to actually emitted tags, which are available.
1583  LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1584  }
1585 
1586  Out << 'E';
1587 
1588  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1589  // be a bug that is fixed in trunk.
1590 
1591  if (RD) {
1592  // The parameter number is omitted for the last parameter, 0 for the
1593  // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1594  // <entity name> will of course contain a <closure-type-name>: Its
1595  // numbering will be local to the particular argument in which it appears
1596  // -- other default arguments do not affect its encoding.
1597  const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1598  if (CXXRD && CXXRD->isLambda()) {
1599  if (const ParmVarDecl *Parm
1600  = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1601  if (const FunctionDecl *Func
1602  = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1603  Out << 'd';
1604  unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1605  if (Num > 1)
1606  mangleNumber(Num - 2);
1607  Out << '_';
1608  }
1609  }
1610  }
1611 
1612  // Mangle the name relative to the closest enclosing function.
1613  // equality ok because RD derived from ND above
1614  if (D == RD) {
1615  mangleUnqualifiedName(RD, AdditionalAbiTags);
1616  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1617  manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1618  assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1619  mangleUnqualifiedBlock(BD);
1620  } else {
1621  const NamedDecl *ND = cast<NamedDecl>(D);
1622  mangleNestedName(ND, getEffectiveDeclContext(ND), AdditionalAbiTags,
1623  true /*NoFunction*/);
1624  }
1625  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1626  // Mangle a block in a default parameter; see above explanation for
1627  // lambdas.
1628  if (const ParmVarDecl *Parm
1629  = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1630  if (const FunctionDecl *Func
1631  = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1632  Out << 'd';
1633  unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1634  if (Num > 1)
1635  mangleNumber(Num - 2);
1636  Out << '_';
1637  }
1638  }
1639 
1640  assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1641  mangleUnqualifiedBlock(BD);
1642  } else {
1643  mangleUnqualifiedName(cast<NamedDecl>(D), AdditionalAbiTags);
1644  }
1645 
1646  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1647  unsigned disc;
1648  if (Context.getNextDiscriminator(ND, disc)) {
1649  if (disc < 10)
1650  Out << '_' << disc;
1651  else
1652  Out << "__" << disc << '_';
1653  }
1654  }
1655 }
1656 
1657 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1658  if (GetLocalClassDecl(Block)) {
1659  mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1660  return;
1661  }
1662  const DeclContext *DC = getEffectiveDeclContext(Block);
1663  if (isLocalContainerContext(DC)) {
1664  mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1665  return;
1666  }
1667  manglePrefix(getEffectiveDeclContext(Block));
1668  mangleUnqualifiedBlock(Block);
1669 }
1670 
1671 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1672  if (Decl *Context = Block->getBlockManglingContextDecl()) {
1673  if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1674  Context->getDeclContext()->isRecord()) {
1675  const auto *ND = cast<NamedDecl>(Context);
1676  if (ND->getIdentifier()) {
1677  mangleSourceNameWithAbiTags(ND);
1678  Out << 'M';
1679  }
1680  }
1681  }
1682 
1683  // If we have a block mangling number, use it.
1684  unsigned Number = Block->getBlockManglingNumber();
1685  // Otherwise, just make up a number. It doesn't matter what it is because
1686  // the symbol in question isn't externally visible.
1687  if (!Number)
1688  Number = Context.getBlockId(Block, false);
1689  else {
1690  // Stored mangling numbers are 1-based.
1691  --Number;
1692  }
1693  Out << "Ub";
1694  if (Number > 0)
1695  Out << Number - 1;
1696  Out << '_';
1697 }
1698 
1699 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1700  // If the context of a closure type is an initializer for a class member
1701  // (static or nonstatic), it is encoded in a qualified name with a final
1702  // <prefix> of the form:
1703  //
1704  // <data-member-prefix> := <member source-name> M
1705  //
1706  // Technically, the data-member-prefix is part of the <prefix>. However,
1707  // since a closure type will always be mangled with a prefix, it's easier
1708  // to emit that last part of the prefix here.
1709  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1710  if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1711  !isa<ParmVarDecl>(Context)) {
1712  // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
1713  // reasonable mangling here.
1714  if (const IdentifierInfo *Name
1715  = cast<NamedDecl>(Context)->getIdentifier()) {
1716  mangleSourceName(Name);
1717  const TemplateArgumentList *TemplateArgs = nullptr;
1718  if (isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1719  mangleTemplateArgs(*TemplateArgs);
1720  Out << 'M';
1721  }
1722  }
1723  }
1724 
1725  Out << "Ul";
1726  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1727  getAs<FunctionProtoType>();
1728  mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1729  Lambda->getLambdaStaticInvoker());
1730  Out << "E";
1731 
1732  // The number is omitted for the first closure type with a given
1733  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1734  // (in lexical order) with that same <lambda-sig> and context.
1735  //
1736  // The AST keeps track of the number for us.
1737  unsigned Number = Lambda->getLambdaManglingNumber();
1738  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1739  if (Number > 1)
1740  mangleNumber(Number - 2);
1741  Out << '_';
1742 }
1743 
1744 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1745  switch (qualifier->getKind()) {
1747  // nothing
1748  return;
1749 
1751  llvm_unreachable("Can't mangle __super specifier");
1752 
1754  mangleName(qualifier->getAsNamespace());
1755  return;
1756 
1758  mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1759  return;
1760 
1763  manglePrefix(QualType(qualifier->getAsType(), 0));
1764  return;
1765 
1767  // Member expressions can have these without prefixes, but that
1768  // should end up in mangleUnresolvedPrefix instead.
1769  assert(qualifier->getPrefix());
1770  manglePrefix(qualifier->getPrefix());
1771 
1772  mangleSourceName(qualifier->getAsIdentifier());
1773  return;
1774  }
1775 
1776  llvm_unreachable("unexpected nested name specifier");
1777 }
1778 
1779 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1780  // <prefix> ::= <prefix> <unqualified-name>
1781  // ::= <template-prefix> <template-args>
1782  // ::= <template-param>
1783  // ::= # empty
1784  // ::= <substitution>
1785 
1786  DC = IgnoreLinkageSpecDecls(DC);
1787 
1788  if (DC->isTranslationUnit())
1789  return;
1790 
1791  if (NoFunction && isLocalContainerContext(DC))
1792  return;
1793 
1794  assert(!isLocalContainerContext(DC));
1795 
1796  const NamedDecl *ND = cast<NamedDecl>(DC);
1797  if (mangleSubstitution(ND))
1798  return;
1799 
1800  // Check if we have a template.
1801  const TemplateArgumentList *TemplateArgs = nullptr;
1802  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1803  mangleTemplatePrefix(TD);
1804  mangleTemplateArgs(*TemplateArgs);
1805  } else {
1806  manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1807  mangleUnqualifiedName(ND, nullptr);
1808  }
1809 
1810  addSubstitution(ND);
1811 }
1812 
1813 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1814  // <template-prefix> ::= <prefix> <template unqualified-name>
1815  // ::= <template-param>
1816  // ::= <substitution>
1817  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1818  return mangleTemplatePrefix(TD);
1819 
1820  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1821  manglePrefix(Qualified->getQualifier());
1822 
1823  if (OverloadedTemplateStorage *Overloaded
1824  = Template.getAsOverloadedTemplate()) {
1825  mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1826  UnknownArity, nullptr);
1827  return;
1828  }
1829 
1830  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1831  assert(Dependent && "Unknown template name kind?");
1832  if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1833  manglePrefix(Qualifier);
1834  mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr);
1835 }
1836 
1837 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1838  bool NoFunction) {
1839  // <template-prefix> ::= <prefix> <template unqualified-name>
1840  // ::= <template-param>
1841  // ::= <substitution>
1842  // <template-template-param> ::= <template-param>
1843  // <substitution>
1844 
1845  if (mangleSubstitution(ND))
1846  return;
1847 
1848  // <template-template-param> ::= <template-param>
1849  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1850  mangleTemplateParameter(TTP->getIndex());
1851  } else {
1852  manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1853  if (isa<BuiltinTemplateDecl>(ND))
1854  mangleUnqualifiedName(ND, nullptr);
1855  else
1856  mangleUnqualifiedName(ND->getTemplatedDecl(), nullptr);
1857  }
1858 
1859  addSubstitution(ND);
1860 }
1861 
1862 /// Mangles a template name under the production <type>. Required for
1863 /// template template arguments.
1864 /// <type> ::= <class-enum-type>
1865 /// ::= <template-param>
1866 /// ::= <substitution>
1867 void CXXNameMangler::mangleType(TemplateName TN) {
1868  if (mangleSubstitution(TN))
1869  return;
1870 
1871  TemplateDecl *TD = nullptr;
1872 
1873  switch (TN.getKind()) {
1876  goto HaveDecl;
1877 
1879  TD = TN.getAsTemplateDecl();
1880  goto HaveDecl;
1881 
1882  HaveDecl:
1883  if (isa<TemplateTemplateParmDecl>(TD))
1884  mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1885  else
1886  mangleName(TD);
1887  break;
1888 
1890  llvm_unreachable("can't mangle an overloaded template name as a <type>");
1891 
1893  const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1894  assert(Dependent->isIdentifier());
1895 
1896  // <class-enum-type> ::= <name>
1897  // <name> ::= <nested-name>
1898  mangleUnresolvedPrefix(Dependent->getQualifier());
1899  mangleSourceName(Dependent->getIdentifier());
1900  break;
1901  }
1902 
1904  // Substituted template parameters are mangled as the substituted
1905  // template. This will check for the substitution twice, which is
1906  // fine, but we have to return early so that we don't try to *add*
1907  // the substitution twice.
1910  mangleType(subst->getReplacement());
1911  return;
1912  }
1913 
1915  // FIXME: not clear how to mangle this!
1916  // template <template <class> class T...> class A {
1917  // template <template <class> class U...> void foo(B<T,U> x...);
1918  // };
1919  Out << "_SUBSTPACK_";
1920  break;
1921  }
1922  }
1923 
1924  addSubstitution(TN);
1925 }
1926 
1927 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
1928  StringRef Prefix) {
1929  // Only certain other types are valid as prefixes; enumerate them.
1930  switch (Ty->getTypeClass()) {
1931  case Type::Builtin:
1932  case Type::Complex:
1933  case Type::Adjusted:
1934  case Type::Decayed:
1935  case Type::Pointer:
1936  case Type::BlockPointer:
1937  case Type::LValueReference:
1938  case Type::RValueReference:
1939  case Type::MemberPointer:
1940  case Type::ConstantArray:
1941  case Type::IncompleteArray:
1942  case Type::VariableArray:
1943  case Type::DependentSizedArray:
1944  case Type::DependentAddressSpace:
1945  case Type::DependentVector:
1946  case Type::DependentSizedExtVector:
1947  case Type::Vector:
1948  case Type::ExtVector:
1949  case Type::FunctionProto:
1950  case Type::FunctionNoProto:
1951  case Type::Paren:
1952  case Type::Attributed:
1953  case Type::Auto:
1954  case Type::DeducedTemplateSpecialization:
1955  case Type::PackExpansion:
1956  case Type::ObjCObject:
1957  case Type::ObjCInterface:
1958  case Type::ObjCObjectPointer:
1959  case Type::ObjCTypeParam:
1960  case Type::Atomic:
1961  case Type::Pipe:
1962  llvm_unreachable("type is illegal as a nested name specifier");
1963 
1964  case Type::SubstTemplateTypeParmPack:
1965  // FIXME: not clear how to mangle this!
1966  // template <class T...> class A {
1967  // template <class U...> void foo(decltype(T::foo(U())) x...);
1968  // };
1969  Out << "_SUBSTPACK_";
1970  break;
1971 
1972  // <unresolved-type> ::= <template-param>
1973  // ::= <decltype>
1974  // ::= <template-template-param> <template-args>
1975  // (this last is not official yet)
1976  case Type::TypeOfExpr:
1977  case Type::TypeOf:
1978  case Type::Decltype:
1979  case Type::TemplateTypeParm:
1980  case Type::UnaryTransform:
1981  case Type::SubstTemplateTypeParm:
1982  unresolvedType:
1983  // Some callers want a prefix before the mangled type.
1984  Out << Prefix;
1985 
1986  // This seems to do everything we want. It's not really
1987  // sanctioned for a substituted template parameter, though.
1988  mangleType(Ty);
1989 
1990  // We never want to print 'E' directly after an unresolved-type,
1991  // so we return directly.
1992  return true;
1993 
1994  case Type::Typedef:
1995  mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
1996  break;
1997 
1998  case Type::UnresolvedUsing:
1999  mangleSourceNameWithAbiTags(
2000  cast<UnresolvedUsingType>(Ty)->getDecl());
2001  break;
2002 
2003  case Type::Enum:
2004  case Type::Record:
2005  mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2006  break;
2007 
2008  case Type::TemplateSpecialization: {
2009  const TemplateSpecializationType *TST =
2010  cast<TemplateSpecializationType>(Ty);
2011  TemplateName TN = TST->getTemplateName();
2012  switch (TN.getKind()) {
2015  TemplateDecl *TD = TN.getAsTemplateDecl();
2016 
2017  // If the base is a template template parameter, this is an
2018  // unresolved type.
2019  assert(TD && "no template for template specialization type");
2020  if (isa<TemplateTemplateParmDecl>(TD))
2021  goto unresolvedType;
2022 
2023  mangleSourceNameWithAbiTags(TD);
2024  break;
2025  }
2026 
2029  llvm_unreachable("invalid base for a template specialization type");
2030 
2034  mangleExistingSubstitution(subst->getReplacement());
2035  break;
2036  }
2037 
2039  // FIXME: not clear how to mangle this!
2040  // template <template <class U> class T...> class A {
2041  // template <class U...> void foo(decltype(T<U>::foo) x...);
2042  // };
2043  Out << "_SUBSTPACK_";
2044  break;
2045  }
2046  }
2047 
2048  mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
2049  break;
2050  }
2051 
2052  case Type::InjectedClassName:
2053  mangleSourceNameWithAbiTags(
2054  cast<InjectedClassNameType>(Ty)->getDecl());
2055  break;
2056 
2057  case Type::DependentName:
2058  mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2059  break;
2060 
2061  case Type::DependentTemplateSpecialization: {
2063  cast<DependentTemplateSpecializationType>(Ty);
2064  mangleSourceName(DTST->getIdentifier());
2065  mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
2066  break;
2067  }
2068 
2069  case Type::Elaborated:
2070  return mangleUnresolvedTypeOrSimpleId(
2071  cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2072  }
2073 
2074  return false;
2075 }
2076 
2077 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2078  switch (Name.getNameKind()) {
2087  llvm_unreachable("Not an operator name");
2088 
2090  // <operator-name> ::= cv <type> # (cast)
2091  Out << "cv";
2092  mangleType(Name.getCXXNameType());
2093  break;
2094 
2096  Out << "li";
2097  mangleSourceName(Name.getCXXLiteralIdentifier());
2098  return;
2099 
2101  mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2102  break;
2103  }
2104 }
2105 
2106 void
2107 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2108  switch (OO) {
2109  // <operator-name> ::= nw # new
2110  case OO_New: Out << "nw"; break;
2111  // ::= na # new[]
2112  case OO_Array_New: Out << "na"; break;
2113  // ::= dl # delete
2114  case OO_Delete: Out << "dl"; break;
2115  // ::= da # delete[]
2116  case OO_Array_Delete: Out << "da"; break;
2117  // ::= ps # + (unary)
2118  // ::= pl # + (binary or unknown)
2119  case OO_Plus:
2120  Out << (Arity == 1? "ps" : "pl"); break;
2121  // ::= ng # - (unary)
2122  // ::= mi # - (binary or unknown)
2123  case OO_Minus:
2124  Out << (Arity == 1? "ng" : "mi"); break;
2125  // ::= ad # & (unary)
2126  // ::= an # & (binary or unknown)
2127  case OO_Amp:
2128  Out << (Arity == 1? "ad" : "an"); break;
2129  // ::= de # * (unary)
2130  // ::= ml # * (binary or unknown)
2131  case OO_Star:
2132  // Use binary when unknown.
2133  Out << (Arity == 1? "de" : "ml"); break;
2134  // ::= co # ~
2135  case OO_Tilde: Out << "co"; break;
2136  // ::= dv # /
2137  case OO_Slash: Out << "dv"; break;
2138  // ::= rm # %
2139  case OO_Percent: Out << "rm"; break;
2140  // ::= or # |
2141  case OO_Pipe: Out << "or"; break;
2142  // ::= eo # ^
2143  case OO_Caret: Out << "eo"; break;
2144  // ::= aS # =
2145  case OO_Equal: Out << "aS"; break;
2146  // ::= pL # +=
2147  case OO_PlusEqual: Out << "pL"; break;
2148  // ::= mI # -=
2149  case OO_MinusEqual: Out << "mI"; break;
2150  // ::= mL # *=
2151  case OO_StarEqual: Out << "mL"; break;
2152  // ::= dV # /=
2153  case OO_SlashEqual: Out << "dV"; break;
2154  // ::= rM # %=
2155  case OO_PercentEqual: Out << "rM"; break;
2156  // ::= aN # &=
2157  case OO_AmpEqual: Out << "aN"; break;
2158  // ::= oR # |=
2159  case OO_PipeEqual: Out << "oR"; break;
2160  // ::= eO # ^=
2161  case OO_CaretEqual: Out << "eO"; break;
2162  // ::= ls # <<
2163  case OO_LessLess: Out << "ls"; break;
2164  // ::= rs # >>
2165  case OO_GreaterGreater: Out << "rs"; break;
2166  // ::= lS # <<=
2167  case OO_LessLessEqual: Out << "lS"; break;
2168  // ::= rS # >>=
2169  case OO_GreaterGreaterEqual: Out << "rS"; break;
2170  // ::= eq # ==
2171  case OO_EqualEqual: Out << "eq"; break;
2172  // ::= ne # !=
2173  case OO_ExclaimEqual: Out << "ne"; break;
2174  // ::= lt # <
2175  case OO_Less: Out << "lt"; break;
2176  // ::= gt # >
2177  case OO_Greater: Out << "gt"; break;
2178  // ::= le # <=
2179  case OO_LessEqual: Out << "le"; break;
2180  // ::= ge # >=
2181  case OO_GreaterEqual: Out << "ge"; break;
2182  // ::= nt # !
2183  case OO_Exclaim: Out << "nt"; break;
2184  // ::= aa # &&
2185  case OO_AmpAmp: Out << "aa"; break;
2186  // ::= oo # ||
2187  case OO_PipePipe: Out << "oo"; break;
2188  // ::= pp # ++
2189  case OO_PlusPlus: Out << "pp"; break;
2190  // ::= mm # --
2191  case OO_MinusMinus: Out << "mm"; break;
2192  // ::= cm # ,
2193  case OO_Comma: Out << "cm"; break;
2194  // ::= pm # ->*
2195  case OO_ArrowStar: Out << "pm"; break;
2196  // ::= pt # ->
2197  case OO_Arrow: Out << "pt"; break;
2198  // ::= cl # ()
2199  case OO_Call: Out << "cl"; break;
2200  // ::= ix # []
2201  case OO_Subscript: Out << "ix"; break;
2202 
2203  // ::= qu # ?
2204  // The conditional operator can't be overloaded, but we still handle it when
2205  // mangling expressions.
2206  case OO_Conditional: Out << "qu"; break;
2207  // Proposal on cxx-abi-dev, 2015-10-21.
2208  // ::= aw # co_await
2209  case OO_Coawait: Out << "aw"; break;
2210  // Proposed in cxx-abi github issue 43.
2211  // ::= ss # <=>
2212  case OO_Spaceship: Out << "ss"; break;
2213 
2214  case OO_None:
2216  llvm_unreachable("Not an overloaded operator");
2217  }
2218 }
2219 
2220 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2221  // Vendor qualifiers come first and if they are order-insensitive they must
2222  // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2223 
2224  // <type> ::= U <addrspace-expr>
2225  if (DAST) {
2226  Out << "U2ASI";
2227  mangleExpression(DAST->getAddrSpaceExpr());
2228  Out << "E";
2229  }
2230 
2231  // Address space qualifiers start with an ordinary letter.
2232  if (Quals.hasAddressSpace()) {
2233  // Address space extension:
2234  //
2235  // <type> ::= U <target-addrspace>
2236  // <type> ::= U <OpenCL-addrspace>
2237  // <type> ::= U <CUDA-addrspace>
2238 
2239  SmallString<64> ASString;
2240  LangAS AS = Quals.getAddressSpace();
2241 
2242  if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2243  // <target-addrspace> ::= "AS" <address-space-number>
2244  unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2245  if (TargetAS != 0)
2246  ASString = "AS" + llvm::utostr(TargetAS);
2247  } else {
2248  switch (AS) {
2249  default: llvm_unreachable("Not a language specific address space");
2250  // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2251  // "private"| "generic" ]
2252  case LangAS::opencl_global: ASString = "CLglobal"; break;
2253  case LangAS::opencl_local: ASString = "CLlocal"; break;
2254  case LangAS::opencl_constant: ASString = "CLconstant"; break;
2255  case LangAS::opencl_private: ASString = "CLprivate"; break;
2256  case LangAS::opencl_generic: ASString = "CLgeneric"; break;
2257  // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2258  case LangAS::cuda_device: ASString = "CUdevice"; break;
2259  case LangAS::cuda_constant: ASString = "CUconstant"; break;
2260  case LangAS::cuda_shared: ASString = "CUshared"; break;
2261  }
2262  }
2263  if (!ASString.empty())
2264  mangleVendorQualifier(ASString);
2265  }
2266 
2267  // The ARC ownership qualifiers start with underscores.
2268  // Objective-C ARC Extension:
2269  //
2270  // <type> ::= U "__strong"
2271  // <type> ::= U "__weak"
2272  // <type> ::= U "__autoreleasing"
2273  //
2274  // Note: we emit __weak first to preserve the order as
2275  // required by the Itanium ABI.
2276  if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2277  mangleVendorQualifier("__weak");
2278 
2279  // __unaligned (from -fms-extensions)
2280  if (Quals.hasUnaligned())
2281  mangleVendorQualifier("__unaligned");
2282 
2283  // Remaining ARC ownership qualifiers.
2284  switch (Quals.getObjCLifetime()) {
2285  case Qualifiers::OCL_None:
2286  break;
2287 
2288  case Qualifiers::OCL_Weak:
2289  // Do nothing as we already handled this case above.
2290  break;
2291 
2293  mangleVendorQualifier("__strong");
2294  break;
2295 
2297  mangleVendorQualifier("__autoreleasing");
2298  break;
2299 
2301  // The __unsafe_unretained qualifier is *not* mangled, so that
2302  // __unsafe_unretained types in ARC produce the same manglings as the
2303  // equivalent (but, naturally, unqualified) types in non-ARC, providing
2304  // better ABI compatibility.
2305  //
2306  // It's safe to do this because unqualified 'id' won't show up
2307  // in any type signatures that need to be mangled.
2308  break;
2309  }
2310 
2311  // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
2312  if (Quals.hasRestrict())
2313  Out << 'r';
2314  if (Quals.hasVolatile())
2315  Out << 'V';
2316  if (Quals.hasConst())
2317  Out << 'K';
2318 }
2319 
2320 void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2321  Out << 'U' << name.size() << name;
2322 }
2323 
2324 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2325  // <ref-qualifier> ::= R # lvalue reference
2326  // ::= O # rvalue-reference
2327  switch (RefQualifier) {
2328  case RQ_None:
2329  break;
2330 
2331  case RQ_LValue:
2332  Out << 'R';
2333  break;
2334 
2335  case RQ_RValue:
2336  Out << 'O';
2337  break;
2338  }
2339 }
2340 
2341 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2342  Context.mangleObjCMethodName(MD, Out);
2343 }
2344 
2345 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2346  ASTContext &Ctx) {
2347  if (Quals)
2348  return true;
2349  if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2350  return true;
2351  if (Ty->isOpenCLSpecificType())
2352  return true;
2353  if (Ty->isBuiltinType())
2354  return false;
2355  // Through to Clang 6.0, we accidentally treated undeduced auto types as
2356  // substitution candidates.
2357  if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2358  isa<AutoType>(Ty))
2359  return false;
2360  return true;
2361 }
2362 
2363 void CXXNameMangler::mangleType(QualType T) {
2364  // If our type is instantiation-dependent but not dependent, we mangle
2365  // it as it was written in the source, removing any top-level sugar.
2366  // Otherwise, use the canonical type.
2367  //
2368  // FIXME: This is an approximation of the instantiation-dependent name
2369  // mangling rules, since we should really be using the type as written and
2370  // augmented via semantic analysis (i.e., with implicit conversions and
2371  // default template arguments) for any instantiation-dependent type.
2372  // Unfortunately, that requires several changes to our AST:
2373  // - Instantiation-dependent TemplateSpecializationTypes will need to be
2374  // uniqued, so that we can handle substitutions properly
2375  // - Default template arguments will need to be represented in the
2376  // TemplateSpecializationType, since they need to be mangled even though
2377  // they aren't written.
2378  // - Conversions on non-type template arguments need to be expressed, since
2379  // they can affect the mangling of sizeof/alignof.
2380  //
2381  // FIXME: This is wrong when mapping to the canonical type for a dependent
2382  // type discards instantiation-dependent portions of the type, such as for:
2383  //
2384  // template<typename T, int N> void f(T (&)[sizeof(N)]);
2385  // template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2386  //
2387  // It's also wrong in the opposite direction when instantiation-dependent,
2388  // canonically-equivalent types differ in some irrelevant portion of inner
2389  // type sugar. In such cases, we fail to form correct substitutions, eg:
2390  //
2391  // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2392  //
2393  // We should instead canonicalize the non-instantiation-dependent parts,
2394  // regardless of whether the type as a whole is dependent or instantiation
2395  // dependent.
2397  T = T.getCanonicalType();
2398  else {
2399  // Desugar any types that are purely sugar.
2400  do {
2401  // Don't desugar through template specialization types that aren't
2402  // type aliases. We need to mangle the template arguments as written.
2403  if (const TemplateSpecializationType *TST
2404  = dyn_cast<TemplateSpecializationType>(T))
2405  if (!TST->isTypeAlias())
2406  break;
2407 
2408  QualType Desugared
2409  = T.getSingleStepDesugaredType(Context.getASTContext());
2410  if (Desugared == T)
2411  break;
2412 
2413  T = Desugared;
2414  } while (true);
2415  }
2416  SplitQualType split = T.split();
2417  Qualifiers quals = split.Quals;
2418  const Type *ty = split.Ty;
2419 
2420  bool isSubstitutable =
2421  isTypeSubstitutable(quals, ty, Context.getASTContext());
2422  if (isSubstitutable && mangleSubstitution(T))
2423  return;
2424 
2425  // If we're mangling a qualified array type, push the qualifiers to
2426  // the element type.
2427  if (quals && isa<ArrayType>(T)) {
2428  ty = Context.getASTContext().getAsArrayType(T);
2429  quals = Qualifiers();
2430 
2431  // Note that we don't update T: we want to add the
2432  // substitution at the original type.
2433  }
2434 
2435  if (quals || ty->isDependentAddressSpaceType()) {
2436  if (const DependentAddressSpaceType *DAST =
2437  dyn_cast<DependentAddressSpaceType>(ty)) {
2438  SplitQualType splitDAST = DAST->getPointeeType().split();
2439  mangleQualifiers(splitDAST.Quals, DAST);
2440  mangleType(QualType(splitDAST.Ty, 0));
2441  } else {
2442  mangleQualifiers(quals);
2443 
2444  // Recurse: even if the qualified type isn't yet substitutable,
2445  // the unqualified type might be.
2446  mangleType(QualType(ty, 0));
2447  }
2448  } else {
2449  switch (ty->getTypeClass()) {
2450 #define ABSTRACT_TYPE(CLASS, PARENT)
2451 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
2452  case Type::CLASS: \
2453  llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2454  return;
2455 #define TYPE(CLASS, PARENT) \
2456  case Type::CLASS: \
2457  mangleType(static_cast<const CLASS##Type*>(ty)); \
2458  break;
2459 #include "clang/AST/TypeNodes.def"
2460  }
2461  }
2462 
2463  // Add the substitution.
2464  if (isSubstitutable)
2465  addSubstitution(T);
2466 }
2467 
2468 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2469  if (!mangleStandardSubstitution(ND))
2470  mangleName(ND);
2471 }
2472 
2473 void CXXNameMangler::mangleType(const BuiltinType *T) {
2474  // <type> ::= <builtin-type>
2475  // <builtin-type> ::= v # void
2476  // ::= w # wchar_t
2477  // ::= b # bool
2478  // ::= c # char
2479  // ::= a # signed char
2480  // ::= h # unsigned char
2481  // ::= s # short
2482  // ::= t # unsigned short
2483  // ::= i # int
2484  // ::= j # unsigned int
2485  // ::= l # long
2486  // ::= m # unsigned long
2487  // ::= x # long long, __int64
2488  // ::= y # unsigned long long, __int64
2489  // ::= n # __int128
2490  // ::= o # unsigned __int128
2491  // ::= f # float
2492  // ::= d # double
2493  // ::= e # long double, __float80
2494  // ::= g # __float128
2495  // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
2496  // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
2497  // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
2498  // ::= Dh # IEEE 754r half-precision floating point (16 bits)
2499  // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2500  // ::= Di # char32_t
2501  // ::= Ds # char16_t
2502  // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2503  // ::= u <source-name> # vendor extended type
2504  std::string type_name;
2505  switch (T->getKind()) {
2506  case BuiltinType::Void:
2507  Out << 'v';
2508  break;
2509  case BuiltinType::Bool:
2510  Out << 'b';
2511  break;
2512  case BuiltinType::Char_U:
2513  case BuiltinType::Char_S:
2514  Out << 'c';
2515  break;
2516  case BuiltinType::UChar:
2517  Out << 'h';
2518  break;
2519  case BuiltinType::UShort:
2520  Out << 't';
2521  break;
2522  case BuiltinType::UInt:
2523  Out << 'j';
2524  break;
2525  case BuiltinType::ULong:
2526  Out << 'm';
2527  break;
2528  case BuiltinType::ULongLong:
2529  Out << 'y';
2530  break;
2531  case BuiltinType::UInt128:
2532  Out << 'o';
2533  break;
2534  case BuiltinType::SChar:
2535  Out << 'a';
2536  break;
2537  case BuiltinType::WChar_S:
2538  case BuiltinType::WChar_U:
2539  Out << 'w';
2540  break;
2541  case BuiltinType::Char8:
2542  Out << "Du";
2543  break;
2544  case BuiltinType::Char16:
2545  Out << "Ds";
2546  break;
2547  case BuiltinType::Char32:
2548  Out << "Di";
2549  break;
2550  case BuiltinType::Short:
2551  Out << 's';
2552  break;
2553  case BuiltinType::Int:
2554  Out << 'i';
2555  break;
2556  case BuiltinType::Long:
2557  Out << 'l';
2558  break;
2559  case BuiltinType::LongLong:
2560  Out << 'x';
2561  break;
2562  case BuiltinType::Int128:
2563  Out << 'n';
2564  break;
2565  case BuiltinType::Float16:
2566  Out << "DF16_";
2567  break;
2568  case BuiltinType::ShortAccum:
2569  case BuiltinType::Accum:
2570  case BuiltinType::LongAccum:
2571  case BuiltinType::UShortAccum:
2572  case BuiltinType::UAccum:
2573  case BuiltinType::ULongAccum:
2574  case BuiltinType::ShortFract:
2575  case BuiltinType::Fract:
2576  case BuiltinType::LongFract:
2577  case BuiltinType::UShortFract:
2578  case BuiltinType::UFract:
2579  case BuiltinType::ULongFract:
2580  case BuiltinType::SatShortAccum:
2581  case BuiltinType::SatAccum:
2582  case BuiltinType::SatLongAccum:
2583  case BuiltinType::SatUShortAccum:
2584  case BuiltinType::SatUAccum:
2585  case BuiltinType::SatULongAccum:
2586  case BuiltinType::SatShortFract:
2587  case BuiltinType::SatFract:
2588  case BuiltinType::SatLongFract:
2589  case BuiltinType::SatUShortFract:
2590  case BuiltinType::SatUFract:
2591  case BuiltinType::SatULongFract:
2592  llvm_unreachable("Fixed point types are disabled for c++");
2593  case BuiltinType::Half:
2594  Out << "Dh";
2595  break;
2596  case BuiltinType::Float:
2597  Out << 'f';
2598  break;
2599  case BuiltinType::Double:
2600  Out << 'd';
2601  break;
2602  case BuiltinType::LongDouble:
2603  Out << (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble()
2604  ? 'g'
2605  : 'e');
2606  break;
2607  case BuiltinType::Float128:
2608  if (getASTContext().getTargetInfo().useFloat128ManglingForLongDouble())
2609  Out << "U10__float128"; // Match the GCC mangling
2610  else
2611  Out << 'g';
2612  break;
2613  case BuiltinType::NullPtr:
2614  Out << "Dn";
2615  break;
2616 
2617 #define BUILTIN_TYPE(Id, SingletonId)
2618 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2619  case BuiltinType::Id:
2620 #include "clang/AST/BuiltinTypes.def"
2621  case BuiltinType::Dependent:
2622  if (!NullOut)
2623  llvm_unreachable("mangling a placeholder type");
2624  break;
2625  case BuiltinType::ObjCId:
2626  Out << "11objc_object";
2627  break;
2628  case BuiltinType::ObjCClass:
2629  Out << "10objc_class";
2630  break;
2631  case BuiltinType::ObjCSel:
2632  Out << "13objc_selector";
2633  break;
2634 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2635  case BuiltinType::Id: \
2636  type_name = "ocl_" #ImgType "_" #Suffix; \
2637  Out << type_name.size() << type_name; \
2638  break;
2639 #include "clang/Basic/OpenCLImageTypes.def"
2640  case BuiltinType::OCLSampler:
2641  Out << "11ocl_sampler";
2642  break;
2643  case BuiltinType::OCLEvent:
2644  Out << "9ocl_event";
2645  break;
2646  case BuiltinType::OCLClkEvent:
2647  Out << "12ocl_clkevent";
2648  break;
2649  case BuiltinType::OCLQueue:
2650  Out << "9ocl_queue";
2651  break;
2652  case BuiltinType::OCLReserveID:
2653  Out << "13ocl_reserveid";
2654  break;
2655  }
2656 }
2657 
2658 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
2659  switch (CC) {
2660  case CC_C:
2661  return "";
2662 
2663  case CC_X86StdCall:
2664  case CC_X86FastCall:
2665  case CC_X86ThisCall:
2666  case CC_X86VectorCall:
2667  case CC_X86Pascal:
2668  case CC_Win64:
2669  case CC_X86_64SysV:
2670  case CC_X86RegCall:
2671  case CC_AAPCS:
2672  case CC_AAPCS_VFP:
2673  case CC_IntelOclBicc:
2674  case CC_SpirFunction:
2675  case CC_OpenCLKernel:
2676  case CC_PreserveMost:
2677  case CC_PreserveAll:
2678  // FIXME: we should be mangling all of the above.
2679  return "";
2680 
2681  case CC_Swift:
2682  return "swiftcall";
2683  }
2684  llvm_unreachable("bad calling convention");
2685 }
2686 
2687 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
2688  // Fast path.
2689  if (T->getExtInfo() == FunctionType::ExtInfo())
2690  return;
2691 
2692  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2693  // This will get more complicated in the future if we mangle other
2694  // things here; but for now, since we mangle ns_returns_retained as
2695  // a qualifier on the result type, we can get away with this:
2696  StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
2697  if (!CCQualifier.empty())
2698  mangleVendorQualifier(CCQualifier);
2699 
2700  // FIXME: regparm
2701  // FIXME: noreturn
2702 }
2703 
2704 void
2705 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
2706  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2707 
2708  // Note that these are *not* substitution candidates. Demanglers might
2709  // have trouble with this if the parameter type is fully substituted.
2710 
2711  switch (PI.getABI()) {
2713  break;
2714 
2715  // All of these start with "swift", so they come before "ns_consumed".
2719  mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
2720  break;
2721  }
2722 
2723  if (PI.isConsumed())
2724  mangleVendorQualifier("ns_consumed");
2725 
2726  if (PI.isNoEscape())
2727  mangleVendorQualifier("noescape");
2728 }
2729 
2730 // <type> ::= <function-type>
2731 // <function-type> ::= [<CV-qualifiers>] F [Y]
2732 // <bare-function-type> [<ref-qualifier>] E
2733 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2734  mangleExtFunctionInfo(T);
2735 
2736  // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
2737  // e.g. "const" in "int (A::*)() const".
2738  mangleQualifiers(Qualifiers::fromCVRUMask(T->getTypeQuals()));
2739 
2740  // Mangle instantiation-dependent exception-specification, if present,
2741  // per cxx-abi-dev proposal on 2016-10-11.
2744  Out << "DO";
2745  mangleExpression(T->getNoexceptExpr());
2746  Out << "E";
2747  } else {
2748  assert(T->getExceptionSpecType() == EST_Dynamic);
2749  Out << "Dw";
2750  for (auto ExceptTy : T->exceptions())
2751  mangleType(ExceptTy);
2752  Out << "E";
2753  }
2754  } else if (T->isNothrow()) {
2755  Out << "Do";
2756  }
2757 
2758  Out << 'F';
2759 
2760  // FIXME: We don't have enough information in the AST to produce the 'Y'
2761  // encoding for extern "C" function types.
2762  mangleBareFunctionType(T, /*MangleReturnType=*/true);
2763 
2764  // Mangle the ref-qualifier, if present.
2765  mangleRefQualifier(T->getRefQualifier());
2766 
2767  Out << 'E';
2768 }
2769 
2770 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2771  // Function types without prototypes can arise when mangling a function type
2772  // within an overloadable function in C. We mangle these as the absence of any
2773  // parameter types (not even an empty parameter list).
2774  Out << 'F';
2775 
2776  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2777 
2778  FunctionTypeDepth.enterResultType();
2779  mangleType(T->getReturnType());
2780  FunctionTypeDepth.leaveResultType();
2781 
2782  FunctionTypeDepth.pop(saved);
2783  Out << 'E';
2784 }
2785 
2786 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
2787  bool MangleReturnType,
2788  const FunctionDecl *FD) {
2789  // Record that we're in a function type. See mangleFunctionParam
2790  // for details on what we're trying to achieve here.
2791  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2792 
2793  // <bare-function-type> ::= <signature type>+
2794  if (MangleReturnType) {
2795  FunctionTypeDepth.enterResultType();
2796 
2797  // Mangle ns_returns_retained as an order-sensitive qualifier here.
2798  if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
2799  mangleVendorQualifier("ns_returns_retained");
2800 
2801  // Mangle the return type without any direct ARC ownership qualifiers.
2802  QualType ReturnTy = Proto->getReturnType();
2803  if (ReturnTy.getObjCLifetime()) {
2804  auto SplitReturnTy = ReturnTy.split();
2805  SplitReturnTy.Quals.removeObjCLifetime();
2806  ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
2807  }
2808  mangleType(ReturnTy);
2809 
2810  FunctionTypeDepth.leaveResultType();
2811  }
2812 
2813  if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2814  // <builtin-type> ::= v # void
2815  Out << 'v';
2816 
2817  FunctionTypeDepth.pop(saved);
2818  return;
2819  }
2820 
2821  assert(!FD || FD->getNumParams() == Proto->getNumParams());
2822  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
2823  // Mangle extended parameter info as order-sensitive qualifiers here.
2824  if (Proto->hasExtParameterInfos() && FD == nullptr) {
2825  mangleExtParameterInfo(Proto->getExtParameterInfo(I));
2826  }
2827 
2828  // Mangle the type.
2829  QualType ParamTy = Proto->getParamType(I);
2830  mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
2831 
2832  if (FD) {
2833  if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
2834  // Attr can only take 1 character, so we can hardcode the length below.
2835  assert(Attr->getType() <= 9 && Attr->getType() >= 0);
2836  Out << "U17pass_object_size" << Attr->getType();
2837  }
2838  }
2839  }
2840 
2841  FunctionTypeDepth.pop(saved);
2842 
2843  // <builtin-type> ::= z # ellipsis
2844  if (Proto->isVariadic())
2845  Out << 'z';
2846 }
2847 
2848 // <type> ::= <class-enum-type>
2849 // <class-enum-type> ::= <name>
2850 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2851  mangleName(T->getDecl());
2852 }
2853 
2854 // <type> ::= <class-enum-type>
2855 // <class-enum-type> ::= <name>
2856 void CXXNameMangler::mangleType(const EnumType *T) {
2857  mangleType(static_cast<const TagType*>(T));
2858 }
2859 void CXXNameMangler::mangleType(const RecordType *T) {
2860  mangleType(static_cast<const TagType*>(T));
2861 }
2862 void CXXNameMangler::mangleType(const TagType *T) {
2863  mangleName(T->getDecl());
2864 }
2865 
2866 // <type> ::= <array-type>
2867 // <array-type> ::= A <positive dimension number> _ <element type>
2868 // ::= A [<dimension expression>] _ <element type>
2869 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2870  Out << 'A' << T->getSize() << '_';
2871  mangleType(T->getElementType());
2872 }
2873 void CXXNameMangler::mangleType(const VariableArrayType *T) {
2874  Out << 'A';
2875  // decayed vla types (size 0) will just be skipped.
2876  if (T->getSizeExpr())
2877  mangleExpression(T->getSizeExpr());
2878  Out << '_';
2879  mangleType(T->getElementType());
2880 }
2881 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2882  Out << 'A';
2883  mangleExpression(T->getSizeExpr());
2884  Out << '_';
2885  mangleType(T->getElementType());
2886 }
2887 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2888  Out << "A_";
2889  mangleType(T->getElementType());
2890 }
2891 
2892 // <type> ::= <pointer-to-member-type>
2893 // <pointer-to-member-type> ::= M <class type> <member type>
2894 void CXXNameMangler::mangleType(const MemberPointerType *T) {
2895  Out << 'M';
2896  mangleType(QualType(T->getClass(), 0));
2897  QualType PointeeType = T->getPointeeType();
2898  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2899  mangleType(FPT);
2900 
2901  // Itanium C++ ABI 5.1.8:
2902  //
2903  // The type of a non-static member function is considered to be different,
2904  // for the purposes of substitution, from the type of a namespace-scope or
2905  // static member function whose type appears similar. The types of two
2906  // non-static member functions are considered to be different, for the
2907  // purposes of substitution, if the functions are members of different
2908  // classes. In other words, for the purposes of substitution, the class of
2909  // which the function is a member is considered part of the type of
2910  // function.
2911 
2912  // Given that we already substitute member function pointers as a
2913  // whole, the net effect of this rule is just to unconditionally
2914  // suppress substitution on the function type in a member pointer.
2915  // We increment the SeqID here to emulate adding an entry to the
2916  // substitution table.
2917  ++SeqID;
2918  } else
2919  mangleType(PointeeType);
2920 }
2921 
2922 // <type> ::= <template-param>
2923 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2924  mangleTemplateParameter(T->getIndex());
2925 }
2926 
2927 // <type> ::= <template-param>
2928 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2929  // FIXME: not clear how to mangle this!
2930  // template <class T...> class A {
2931  // template <class U...> void foo(T(*)(U) x...);
2932  // };
2933  Out << "_SUBSTPACK_";
2934 }
2935 
2936 // <type> ::= P <type> # pointer-to
2937 void CXXNameMangler::mangleType(const PointerType *T) {
2938  Out << 'P';
2939  mangleType(T->getPointeeType());
2940 }
2941 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2942  Out << 'P';
2943  mangleType(T->getPointeeType());
2944 }
2945 
2946 // <type> ::= R <type> # reference-to
2947 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2948  Out << 'R';
2949  mangleType(T->getPointeeType());
2950 }
2951 
2952 // <type> ::= O <type> # rvalue reference-to (C++0x)
2953 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2954  Out << 'O';
2955  mangleType(T->getPointeeType());
2956 }
2957 
2958 // <type> ::= C <type> # complex pair (C 2000)
2959 void CXXNameMangler::mangleType(const ComplexType *T) {
2960  Out << 'C';
2961  mangleType(T->getElementType());
2962 }
2963 
2964 // ARM's ABI for Neon vector types specifies that they should be mangled as
2965 // if they are structs (to match ARM's initial implementation). The
2966 // vector type must be one of the special types predefined by ARM.
2967 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2968  QualType EltType = T->getElementType();
2969  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2970  const char *EltName = nullptr;
2972  switch (cast<BuiltinType>(EltType)->getKind()) {
2973  case BuiltinType::SChar:
2974  case BuiltinType::UChar:
2975  EltName = "poly8_t";
2976  break;
2977  case BuiltinType::Short:
2978  case BuiltinType::UShort:
2979  EltName = "poly16_t";
2980  break;
2981  case BuiltinType::ULongLong:
2982  EltName = "poly64_t";
2983  break;
2984  default: llvm_unreachable("unexpected Neon polynomial vector element type");
2985  }
2986  } else {
2987  switch (cast<BuiltinType>(EltType)->getKind()) {
2988  case BuiltinType::SChar: EltName = "int8_t"; break;
2989  case BuiltinType::UChar: EltName = "uint8_t"; break;
2990  case BuiltinType::Short: EltName = "int16_t"; break;
2991  case BuiltinType::UShort: EltName = "uint16_t"; break;
2992  case BuiltinType::Int: EltName = "int32_t"; break;
2993  case BuiltinType::UInt: EltName = "uint32_t"; break;
2994  case BuiltinType::LongLong: EltName = "int64_t"; break;
2995  case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2996  case BuiltinType::Double: EltName = "float64_t"; break;
2997  case BuiltinType::Float: EltName = "float32_t"; break;
2998  case BuiltinType::Half: EltName = "float16_t";break;
2999  default:
3000  llvm_unreachable("unexpected Neon vector element type");
3001  }
3002  }
3003  const char *BaseName = nullptr;
3004  unsigned BitSize = (T->getNumElements() *
3005  getASTContext().getTypeSize(EltType));
3006  if (BitSize == 64)
3007  BaseName = "__simd64_";
3008  else {
3009  assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3010  BaseName = "__simd128_";
3011  }
3012  Out << strlen(BaseName) + strlen(EltName);
3013  Out << BaseName << EltName;
3014 }
3015 
3016 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3017  DiagnosticsEngine &Diags = Context.getDiags();
3018  unsigned DiagID = Diags.getCustomDiagID(
3020  "cannot mangle this dependent neon vector type yet");
3021  Diags.Report(T->getAttributeLoc(), DiagID);
3022 }
3023 
3024 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3025  switch (EltType->getKind()) {
3026  case BuiltinType::SChar:
3027  return "Int8";
3028  case BuiltinType::Short:
3029  return "Int16";
3030  case BuiltinType::Int:
3031  return "Int32";
3032  case BuiltinType::Long:
3033  case BuiltinType::LongLong:
3034  return "Int64";
3035  case BuiltinType::UChar:
3036  return "Uint8";
3037  case BuiltinType::UShort:
3038  return "Uint16";
3039  case BuiltinType::UInt:
3040  return "Uint32";
3041  case BuiltinType::ULong:
3042  case BuiltinType::ULongLong:
3043  return "Uint64";
3044  case BuiltinType::Half:
3045  return "Float16";
3046  case BuiltinType::Float:
3047  return "Float32";
3048  case BuiltinType::Double:
3049  return "Float64";
3050  default:
3051  llvm_unreachable("Unexpected vector element base type");
3052  }
3053 }
3054 
3055 // AArch64's ABI for Neon vector types specifies that they should be mangled as
3056 // the equivalent internal name. The vector type must be one of the special
3057 // types predefined by ARM.
3058 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3059  QualType EltType = T->getElementType();
3060  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3061  unsigned BitSize =
3062  (T->getNumElements() * getASTContext().getTypeSize(EltType));
3063  (void)BitSize; // Silence warning.
3064 
3065  assert((BitSize == 64 || BitSize == 128) &&
3066  "Neon vector type not 64 or 128 bits");
3067 
3068  StringRef EltName;
3070  switch (cast<BuiltinType>(EltType)->getKind()) {
3071  case BuiltinType::UChar:
3072  EltName = "Poly8";
3073  break;
3074  case BuiltinType::UShort:
3075  EltName = "Poly16";
3076  break;
3077  case BuiltinType::ULong:
3078  case BuiltinType::ULongLong:
3079  EltName = "Poly64";
3080  break;
3081  default:
3082  llvm_unreachable("unexpected Neon polynomial vector element type");
3083  }
3084  } else
3085  EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3086 
3087  std::string TypeName =
3088  ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3089  Out << TypeName.length() << TypeName;
3090 }
3091 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3092  DiagnosticsEngine &Diags = Context.getDiags();
3093  unsigned DiagID = Diags.getCustomDiagID(
3095  "cannot mangle this dependent neon vector type yet");
3096  Diags.Report(T->getAttributeLoc(), DiagID);
3097 }
3098 
3099 // GNU extension: vector types
3100 // <type> ::= <vector-type>
3101 // <vector-type> ::= Dv <positive dimension number> _
3102 // <extended element type>
3103 // ::= Dv [<dimension expression>] _ <element type>
3104 // <extended element type> ::= <element type>
3105 // ::= p # AltiVec vector pixel
3106 // ::= b # Altivec vector bool
3107 void CXXNameMangler::mangleType(const VectorType *T) {
3108  if ((T->getVectorKind() == VectorType::NeonVector ||
3110  llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3111  llvm::Triple::ArchType Arch =
3112  getASTContext().getTargetInfo().getTriple().getArch();
3113  if ((Arch == llvm::Triple::aarch64 ||
3114  Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3115  mangleAArch64NeonVectorType(T);
3116  else
3117  mangleNeonVectorType(T);
3118  return;
3119  }
3120  Out << "Dv" << T->getNumElements() << '_';
3122  Out << 'p';
3123  else if (T->getVectorKind() == VectorType::AltiVecBool)
3124  Out << 'b';
3125  else
3126  mangleType(T->getElementType());
3127 }
3128 
3129 void CXXNameMangler::mangleType(const DependentVectorType *T) {
3130  if ((T->getVectorKind() == VectorType::NeonVector ||
3132  llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3133  llvm::Triple::ArchType Arch =
3134  getASTContext().getTargetInfo().getTriple().getArch();
3135  if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3136  !Target.isOSDarwin())
3137  mangleAArch64NeonVectorType(T);
3138  else
3139  mangleNeonVectorType(T);
3140  return;
3141  }
3142 
3143  Out << "Dv";
3144  mangleExpression(T->getSizeExpr());
3145  Out << '_';
3147  Out << 'p';
3148  else if (T->getVectorKind() == VectorType::AltiVecBool)
3149  Out << 'b';
3150  else
3151  mangleType(T->getElementType());
3152 }
3153 
3154 void CXXNameMangler::mangleType(const ExtVectorType *T) {
3155  mangleType(static_cast<const VectorType*>(T));
3156 }
3157 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3158  Out << "Dv";
3159  mangleExpression(T->getSizeExpr());
3160  Out << '_';
3161  mangleType(T->getElementType());
3162 }
3163 
3164 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3165  SplitQualType split = T->getPointeeType().split();
3166  mangleQualifiers(split.Quals, T);
3167  mangleType(QualType(split.Ty, 0));
3168 }
3169 
3170 void CXXNameMangler::mangleType(const PackExpansionType *T) {
3171  // <type> ::= Dp <type> # pack expansion (C++0x)
3172  Out << "Dp";
3173  mangleType(T->getPattern());
3174 }
3175 
3176 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3177  mangleSourceName(T->getDecl()->getIdentifier());
3178 }
3179 
3180 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3181  // Treat __kindof as a vendor extended type qualifier.
3182  if (T->isKindOfType())
3183  Out << "U8__kindof";
3184 
3185  if (!T->qual_empty()) {
3186  // Mangle protocol qualifiers.
3187  SmallString<64> QualStr;
3188  llvm::raw_svector_ostream QualOS(QualStr);
3189  QualOS << "objcproto";
3190  for (const auto *I : T->quals()) {
3191  StringRef name = I->getName();
3192  QualOS << name.size() << name;
3193  }
3194  Out << 'U' << QualStr.size() << QualStr;
3195  }
3196 
3197  mangleType(T->getBaseType());
3198 
3199  if (T->isSpecialized()) {
3200  // Mangle type arguments as I <type>+ E
3201  Out << 'I';
3202  for (auto typeArg : T->getTypeArgs())
3203  mangleType(typeArg);
3204  Out << 'E';
3205  }
3206 }
3207 
3208 void CXXNameMangler::mangleType(const BlockPointerType *T) {
3209  Out << "U13block_pointer";
3210  mangleType(T->getPointeeType());
3211 }
3212 
3213 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3214  // Mangle injected class name types as if the user had written the
3215  // specialization out fully. It may not actually be possible to see
3216  // this mangling, though.
3217  mangleType(T->getInjectedSpecializationType());
3218 }
3219 
3220 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3221  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3222  mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3223  } else {
3224  if (mangleSubstitution(QualType(T, 0)))
3225  return;
3226 
3227  mangleTemplatePrefix(T->getTemplateName());
3228 
3229  // FIXME: GCC does not appear to mangle the template arguments when
3230  // the template in question is a dependent template name. Should we
3231  // emulate that badness?
3232  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3233  addSubstitution(QualType(T, 0));
3234  }
3235 }
3236 
3237 void CXXNameMangler::mangleType(const DependentNameType *T) {
3238  // Proposal by cxx-abi-dev, 2014-03-26
3239  // <class-enum-type> ::= <name> # non-dependent or dependent type name or
3240  // # dependent elaborated type specifier using
3241  // # 'typename'
3242  // ::= Ts <name> # dependent elaborated type specifier using
3243  // # 'struct' or 'class'
3244  // ::= Tu <name> # dependent elaborated type specifier using
3245  // # 'union'
3246  // ::= Te <name> # dependent elaborated type specifier using
3247  // # 'enum'
3248  switch (T->getKeyword()) {
3249  case ETK_None:
3250  case ETK_Typename:
3251  break;
3252  case ETK_Struct:
3253  case ETK_Class:
3254  case ETK_Interface:
3255  Out << "Ts";
3256  break;
3257  case ETK_Union:
3258  Out << "Tu";
3259  break;
3260  case ETK_Enum:
3261  Out << "Te";
3262  break;
3263  }
3264  // Typename types are always nested
3265  Out << 'N';
3266  manglePrefix(T->getQualifier());
3267  mangleSourceName(T->getIdentifier());
3268  Out << 'E';
3269 }
3270 
3271 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3272  // Dependently-scoped template types are nested if they have a prefix.
3273  Out << 'N';
3274 
3275  // TODO: avoid making this TemplateName.
3276  TemplateName Prefix =
3277  getASTContext().getDependentTemplateName(T->getQualifier(),
3278  T->getIdentifier());
3279  mangleTemplatePrefix(Prefix);
3280 
3281  // FIXME: GCC does not appear to mangle the template arguments when
3282  // the template in question is a dependent template name. Should we
3283  // emulate that badness?
3284  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3285  Out << 'E';
3286 }
3287 
3288 void CXXNameMangler::mangleType(const TypeOfType *T) {
3289  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3290  // "extension with parameters" mangling.
3291  Out << "u6typeof";
3292 }
3293 
3294 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3295  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3296  // "extension with parameters" mangling.
3297  Out << "u6typeof";
3298 }
3299 
3300 void CXXNameMangler::mangleType(const DecltypeType *T) {
3301  Expr *E = T->getUnderlyingExpr();
3302 
3303  // type ::= Dt <expression> E # decltype of an id-expression
3304  // # or class member access
3305  // ::= DT <expression> E # decltype of an expression
3306 
3307  // This purports to be an exhaustive list of id-expressions and
3308  // class member accesses. Note that we do not ignore parentheses;
3309  // parentheses change the semantics of decltype for these
3310  // expressions (and cause the mangler to use the other form).
3311  if (isa<DeclRefExpr>(E) ||
3312  isa<MemberExpr>(E) ||
3313  isa<UnresolvedLookupExpr>(E) ||
3314  isa<DependentScopeDeclRefExpr>(E) ||
3315  isa<CXXDependentScopeMemberExpr>(E) ||
3316  isa<UnresolvedMemberExpr>(E))
3317  Out << "Dt";
3318  else
3319  Out << "DT";
3320  mangleExpression(E);
3321  Out << 'E';
3322 }
3323 
3324 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3325  // If this is dependent, we need to record that. If not, we simply
3326  // mangle it as the underlying type since they are equivalent.
3327  if (T->isDependentType()) {
3328  Out << 'U';
3329 
3330  switch (T->getUTTKind()) {
3332  Out << "3eut";
3333  break;
3334  }
3335  }
3336 
3337  mangleType(T->getBaseType());
3338 }
3339 
3340 void CXXNameMangler::mangleType(const AutoType *T) {
3341  assert(T->getDeducedType().isNull() &&
3342  "Deduced AutoType shouldn't be handled here!");
3343  assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3344  "shouldn't need to mangle __auto_type!");
3345  // <builtin-type> ::= Da # auto
3346  // ::= Dc # decltype(auto)
3347  Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3348 }
3349 
3350 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3351  // FIXME: This is not the right mangling. We also need to include a scope
3352  // here in some cases.
3353  QualType D = T->getDeducedType();
3354  if (D.isNull())
3355  mangleUnscopedTemplateName(T->getTemplateName(), nullptr);
3356  else
3357  mangleType(D);
3358 }
3359 
3360 void CXXNameMangler::mangleType(const AtomicType *T) {
3361  // <type> ::= U <source-name> <type> # vendor extended type qualifier
3362  // (Until there's a standardized mangling...)
3363  Out << "U7_Atomic";
3364  mangleType(T->getValueType());
3365 }
3366 
3367 void CXXNameMangler::mangleType(const PipeType *T) {
3368  // Pipe type mangling rules are described in SPIR 2.0 specification
3369  // A.1 Data types and A.3 Summary of changes
3370  // <type> ::= 8ocl_pipe
3371  Out << "8ocl_pipe";
3372 }
3373 
3374 void CXXNameMangler::mangleIntegerLiteral(QualType T,
3375  const llvm::APSInt &Value) {
3376  // <expr-primary> ::= L <type> <value number> E # integer literal
3377  Out << 'L';
3378 
3379  mangleType(T);
3380  if (T->isBooleanType()) {
3381  // Boolean values are encoded as 0/1.
3382  Out << (Value.getBoolValue() ? '1' : '0');
3383  } else {
3384  mangleNumber(Value);
3385  }
3386  Out << 'E';
3387 
3388 }
3389 
3390 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3391  // Ignore member expressions involving anonymous unions.
3392  while (const auto *RT = Base->getType()->getAs<RecordType>()) {
3393  if (!RT->getDecl()->isAnonymousStructOrUnion())
3394  break;
3395  const auto *ME = dyn_cast<MemberExpr>(Base);
3396  if (!ME)
3397  break;
3398  Base = ME->getBase();
3399  IsArrow = ME->isArrow();
3400  }
3401 
3402  if (Base->isImplicitCXXThis()) {
3403  // Note: GCC mangles member expressions to the implicit 'this' as
3404  // *this., whereas we represent them as this->. The Itanium C++ ABI
3405  // does not specify anything here, so we follow GCC.
3406  Out << "dtdefpT";
3407  } else {
3408  Out << (IsArrow ? "pt" : "dt");
3409  mangleExpression(Base);
3410  }
3411 }
3412 
3413 /// Mangles a member expression.
3414 void CXXNameMangler::mangleMemberExpr(const Expr *base,
3415  bool isArrow,
3416  NestedNameSpecifier *qualifier,
3417  NamedDecl *firstQualifierLookup,
3418  DeclarationName member,
3419  const TemplateArgumentLoc *TemplateArgs,
3420  unsigned NumTemplateArgs,
3421  unsigned arity) {
3422  // <expression> ::= dt <expression> <unresolved-name>
3423  // ::= pt <expression> <unresolved-name>
3424  if (base)
3425  mangleMemberExprBase(base, isArrow);
3426  mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
3427 }
3428 
3429 /// Look at the callee of the given call expression and determine if
3430 /// it's a parenthesized id-expression which would have triggered ADL
3431 /// otherwise.
3432 static bool isParenthesizedADLCallee(const CallExpr *call) {
3433  const Expr *callee = call->getCallee();
3434  const Expr *fn = callee->IgnoreParens();
3435 
3436  // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
3437  // too, but for those to appear in the callee, it would have to be
3438  // parenthesized.
3439  if (callee == fn) return false;
3440 
3441  // Must be an unresolved lookup.
3442  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
3443  if (!lookup) return false;
3444 
3445  assert(!lookup->requiresADL());
3446 
3447  // Must be an unqualified lookup.
3448  if (lookup->getQualifier()) return false;
3449 
3450  // Must not have found a class member. Note that if one is a class
3451  // member, they're all class members.
3452  if (lookup->getNumDecls() > 0 &&
3453  (*lookup->decls_begin())->isCXXClassMember())
3454  return false;
3455 
3456  // Otherwise, ADL would have been triggered.
3457  return true;
3458 }
3459 
3460 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
3461  const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
3462  Out << CastEncoding;
3463  mangleType(ECE->getType());
3464  mangleExpression(ECE->getSubExpr());
3465 }
3466 
3467 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
3468  if (auto *Syntactic = InitList->getSyntacticForm())
3469  InitList = Syntactic;
3470  for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
3471  mangleExpression(InitList->getInit(i));
3472 }
3473 
3474 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
3475  // <expression> ::= <unary operator-name> <expression>
3476  // ::= <binary operator-name> <expression> <expression>
3477  // ::= <trinary operator-name> <expression> <expression> <expression>
3478  // ::= cv <type> expression # conversion with one argument
3479  // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
3480  // ::= dc <type> <expression> # dynamic_cast<type> (expression)
3481  // ::= sc <type> <expression> # static_cast<type> (expression)
3482  // ::= cc <type> <expression> # const_cast<type> (expression)
3483  // ::= rc <type> <expression> # reinterpret_cast<type> (expression)
3484  // ::= st <type> # sizeof (a type)
3485  // ::= at <type> # alignof (a type)
3486  // ::= <template-param>
3487  // ::= <function-param>
3488  // ::= sr <type> <unqualified-name> # dependent name
3489  // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
3490  // ::= ds <expression> <expression> # expr.*expr
3491  // ::= sZ <template-param> # size of a parameter pack
3492  // ::= sZ <function-param> # size of a function parameter pack
3493  // ::= <expr-primary>
3494  // <expr-primary> ::= L <type> <value number> E # integer literal
3495  // ::= L <type <value float> E # floating literal
3496  // ::= L <mangled-name> E # external name
3497  // ::= fpT # 'this' expression
3498  QualType ImplicitlyConvertedToType;
3499 
3500 recurse:
3501  switch (E->getStmtClass()) {
3502  case Expr::NoStmtClass:
3503 #define ABSTRACT_STMT(Type)
3504 #define EXPR(Type, Base)
3505 #define STMT(Type, Base) \
3506  case Expr::Type##Class:
3507 #include "clang/AST/StmtNodes.inc"
3508  // fallthrough
3509 
3510  // These all can only appear in local or variable-initialization
3511  // contexts and so should never appear in a mangling.
3512  case Expr::AddrLabelExprClass:
3513  case Expr::DesignatedInitUpdateExprClass:
3514  case Expr::ImplicitValueInitExprClass:
3515  case Expr::ArrayInitLoopExprClass:
3516  case Expr::ArrayInitIndexExprClass:
3517  case Expr::NoInitExprClass:
3518  case Expr::ParenListExprClass:
3519  case Expr::LambdaExprClass:
3520  case Expr::MSPropertyRefExprClass:
3521  case Expr::MSPropertySubscriptExprClass:
3522  case Expr::TypoExprClass: // This should no longer exist in the AST by now.
3523  case Expr::OMPArraySectionExprClass:
3524  case Expr::CXXInheritedCtorInitExprClass:
3525  llvm_unreachable("unexpected statement kind");
3526 
3527  // FIXME: invent manglings for all these.
3528  case Expr::BlockExprClass:
3529  case Expr::ChooseExprClass:
3530  case Expr::CompoundLiteralExprClass:
3531  case Expr::ExtVectorElementExprClass:
3532  case Expr::GenericSelectionExprClass:
3533  case Expr::ObjCEncodeExprClass:
3534  case Expr::ObjCIsaExprClass:
3535  case Expr::ObjCIvarRefExprClass:
3536  case Expr::ObjCMessageExprClass:
3537  case Expr::ObjCPropertyRefExprClass:
3538  case Expr::ObjCProtocolExprClass:
3539  case Expr::ObjCSelectorExprClass:
3540  case Expr::ObjCStringLiteralClass:
3541  case Expr::ObjCBoxedExprClass:
3542  case Expr::ObjCArrayLiteralClass:
3543  case Expr::ObjCDictionaryLiteralClass:
3544  case Expr::ObjCSubscriptRefExprClass:
3545  case Expr::ObjCIndirectCopyRestoreExprClass:
3546  case Expr::ObjCAvailabilityCheckExprClass:
3547  case Expr::OffsetOfExprClass:
3548  case Expr::PredefinedExprClass:
3549  case Expr::ShuffleVectorExprClass:
3550  case Expr::ConvertVectorExprClass:
3551  case Expr::StmtExprClass:
3552  case Expr::TypeTraitExprClass:
3553  case Expr::ArrayTypeTraitExprClass:
3554  case Expr::ExpressionTraitExprClass:
3555  case Expr::VAArgExprClass:
3556  case Expr::CUDAKernelCallExprClass:
3557  case Expr::AsTypeExprClass:
3558  case Expr::PseudoObjectExprClass:
3559  case Expr::AtomicExprClass:
3560  case Expr::FixedPointLiteralClass:
3561  {
3562  if (!NullOut) {
3563  // As bad as this diagnostic is, it's better than crashing.
3564  DiagnosticsEngine &Diags = Context.getDiags();
3565  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3566  "cannot yet mangle expression type %0");
3567  Diags.Report(E->getExprLoc(), DiagID)
3568  << E->getStmtClassName() << E->getSourceRange();
3569  }
3570  break;
3571  }
3572 
3573  case Expr::CXXUuidofExprClass: {
3574  const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
3575  if (UE->isTypeOperand()) {
3576  QualType UuidT = UE->getTypeOperand(Context.getASTContext());
3577  Out << "u8__uuidoft";
3578  mangleType(UuidT);
3579  } else {
3580  Expr *UuidExp = UE->getExprOperand();
3581  Out << "u8__uuidofz";
3582  mangleExpression(UuidExp, Arity);
3583  }
3584  break;
3585  }
3586 
3587  // Even gcc-4.5 doesn't mangle this.
3588  case Expr::BinaryConditionalOperatorClass: {
3589  DiagnosticsEngine &Diags = Context.getDiags();
3590  unsigned DiagID =
3592  "?: operator with omitted middle operand cannot be mangled");
3593  Diags.Report(E->getExprLoc(), DiagID)
3594  << E->getStmtClassName() << E->getSourceRange();
3595  break;
3596  }
3597 
3598  // These are used for internal purposes and cannot be meaningfully mangled.
3599  case Expr::OpaqueValueExprClass:
3600  llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
3601 
3602  case Expr::InitListExprClass: {
3603  Out << "il";
3604  mangleInitListElements(cast<InitListExpr>(E));
3605  Out << "E";
3606  break;
3607  }
3608 
3609  case Expr::DesignatedInitExprClass: {
3610  auto *DIE = cast<DesignatedInitExpr>(E);
3611  for (const auto &Designator : DIE->designators()) {
3612  if (Designator.isFieldDesignator()) {
3613  Out << "di";
3614  mangleSourceName(Designator.getFieldName());
3615  } else if (Designator.isArrayDesignator()) {
3616  Out << "dx";
3617  mangleExpression(DIE->getArrayIndex(Designator));
3618  } else {
3620  "unknown designator kind");
3621  Out << "dX";
3622  mangleExpression(DIE->getArrayRangeStart(Designator));
3623  mangleExpression(DIE->getArrayRangeEnd(Designator));
3624  }
3625  }
3626  mangleExpression(DIE->getInit());
3627  break;
3628  }
3629 
3630  case Expr::CXXDefaultArgExprClass:
3631  mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
3632  break;
3633 
3634  case Expr::CXXDefaultInitExprClass:
3635  mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
3636  break;
3637 
3638  case Expr::CXXStdInitializerListExprClass:
3639  mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
3640  break;
3641 
3642  case Expr::SubstNonTypeTemplateParmExprClass:
3643  mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
3644  Arity);
3645  break;
3646 
3647  case Expr::UserDefinedLiteralClass:
3648  // We follow g++'s approach of mangling a UDL as a call to the literal
3649  // operator.
3650  case Expr::CXXMemberCallExprClass: // fallthrough
3651  case Expr::CallExprClass: {
3652  const CallExpr *CE = cast<CallExpr>(E);
3653 
3654  // <expression> ::= cp <simple-id> <expression>* E
3655  // We use this mangling only when the call would use ADL except
3656  // for being parenthesized. Per discussion with David
3657  // Vandervoorde, 2011.04.25.
3658  if (isParenthesizedADLCallee(CE)) {
3659  Out << "cp";
3660  // The callee here is a parenthesized UnresolvedLookupExpr with
3661  // no qualifier and should always get mangled as a <simple-id>
3662  // anyway.
3663 
3664  // <expression> ::= cl <expression>* E
3665  } else {
3666  Out << "cl";
3667  }
3668 
3669  unsigned CallArity = CE->getNumArgs();
3670  for (const Expr *Arg : CE->arguments())
3671  if (isa<PackExpansionExpr>(Arg))
3672  CallArity = UnknownArity;
3673 
3674  mangleExpression(CE->getCallee(), CallArity);
3675  for (const Expr *Arg : CE->arguments())
3676  mangleExpression(Arg);
3677  Out << 'E';
3678  break;
3679  }
3680 
3681  case Expr::CXXNewExprClass: {
3682  const CXXNewExpr *New = cast<CXXNewExpr>(E);
3683  if (New->isGlobalNew()) Out << "gs";
3684  Out << (New->isArray() ? "na" : "nw");
3686  E = New->placement_arg_end(); I != E; ++I)
3687  mangleExpression(*I);
3688  Out << '_';
3689  mangleType(New->getAllocatedType());
3690  if (New->hasInitializer()) {
3692  Out << "il";
3693  else
3694  Out << "pi";
3695  const Expr *Init = New->getInitializer();
3696  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
3697  // Directly inline the initializers.
3698  for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
3699  E = CCE->arg_end();
3700  I != E; ++I)
3701  mangleExpression(*I);
3702  } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
3703  for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
3704  mangleExpression(PLE->getExpr(i));
3705  } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
3706  isa<InitListExpr>(Init)) {
3707  // Only take InitListExprs apart for list-initialization.
3708  mangleInitListElements(cast<InitListExpr>(Init));
3709  } else
3710  mangleExpression(Init);
3711  }
3712  Out << 'E';
3713  break;
3714  }
3715 
3716  case Expr::CXXPseudoDestructorExprClass: {
3717  const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
3718  if (const Expr *Base = PDE->getBase())
3719  mangleMemberExprBase(Base, PDE->isArrow());
3720  NestedNameSpecifier *Qualifier = PDE->getQualifier();
3721  if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
3722  if (Qualifier) {
3723  mangleUnresolvedPrefix(Qualifier,
3724  /*Recursive=*/true);
3725  mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
3726  Out << 'E';
3727  } else {
3728  Out << "sr";
3729  if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
3730  Out << 'E';
3731  }
3732  } else if (Qualifier) {
3733  mangleUnresolvedPrefix(Qualifier);
3734  }
3735  // <base-unresolved-name> ::= dn <destructor-name>
3736  Out << "dn";
3737  QualType DestroyedType = PDE->getDestroyedType();
3738  mangleUnresolvedTypeOrSimpleId(DestroyedType);
3739  break;
3740  }
3741 
3742  case Expr::MemberExprClass: {
3743  const MemberExpr *ME = cast<MemberExpr>(E);
3744  mangleMemberExpr(ME->getBase(), ME->isArrow(),
3745  ME->getQualifier(), nullptr,
3746  ME->getMemberDecl()->getDeclName(),
3747  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3748  Arity);
3749  break;
3750  }
3751 
3752  case Expr::UnresolvedMemberExprClass: {
3753  const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
3754  mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3755  ME->isArrow(), ME->getQualifier(), nullptr,
3756  ME->getMemberName(),
3757  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3758  Arity);
3759  break;
3760  }
3761 
3762  case Expr::CXXDependentScopeMemberExprClass: {
3763  const CXXDependentScopeMemberExpr *ME
3764  = cast<CXXDependentScopeMemberExpr>(E);
3765  mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
3766  ME->isArrow(), ME->getQualifier(),
3768  ME->getMember(),
3769  ME->getTemplateArgs(), ME->getNumTemplateArgs(),
3770  Arity);
3771  break;
3772  }
3773 
3774  case Expr::UnresolvedLookupExprClass: {
3775  const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
3776  mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
3777  ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
3778  Arity);
3779  break;
3780  }
3781 
3782  case Expr::CXXUnresolvedConstructExprClass: {
3783  const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
3784  unsigned N = CE->arg_size();
3785 
3786  if (CE->isListInitialization()) {
3787  assert(N == 1 && "unexpected form for list initialization");
3788  auto *IL = cast<InitListExpr>(CE->getArg(0));
3789  Out << "tl";
3790  mangleType(CE->getType());
3791  mangleInitListElements(IL);
3792  Out << "E";
3793  return;
3794  }
3795 
3796  Out << "cv";
3797  mangleType(CE->getType());
3798  if (N != 1) Out << '_';
3799  for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
3800  if (N != 1) Out << 'E';
3801  break;
3802  }
3803 
3804  case Expr::CXXConstructExprClass: {
3805  const auto *CE = cast<CXXConstructExpr>(E);
3806  if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
3807  assert(
3808  CE->getNumArgs() >= 1 &&
3809  (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
3810  "implicit CXXConstructExpr must have one argument");
3811  return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
3812  }
3813  Out << "il";
3814  for (auto *E : CE->arguments())
3815  mangleExpression(E);
3816  Out << "E";
3817  break;
3818  }
3819 
3820  case Expr::CXXTemporaryObjectExprClass: {
3821  const auto *CE = cast<CXXTemporaryObjectExpr>(E);
3822  unsigned N = CE->getNumArgs();
3823  bool List = CE->isListInitialization();
3824 
3825  if (List)
3826  Out << "tl";
3827  else
3828  Out << "cv";
3829  mangleType(CE->getType());
3830  if (!List && N != 1)
3831  Out << '_';
3832  if (CE->isStdInitListInitialization()) {
3833  // We implicitly created a std::initializer_list<T> for the first argument
3834  // of a constructor of type U in an expression of the form U{a, b, c}.
3835  // Strip all the semantic gunk off the initializer list.
3836  auto *SILE =
3837  cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
3838  auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
3839  mangleInitListElements(ILE);
3840  } else {
3841  for (auto *E : CE->arguments())
3842  mangleExpression(E);
3843  }
3844  if (List || N != 1)
3845  Out << 'E';
3846  break;
3847  }
3848 
3849  case Expr::CXXScalarValueInitExprClass:
3850  Out << "cv";
3851  mangleType(E->getType());
3852  Out << "_E";
3853  break;
3854 
3855  case Expr::CXXNoexceptExprClass:
3856  Out << "nx";
3857  mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
3858  break;
3859 
3860  case Expr::UnaryExprOrTypeTraitExprClass: {
3861  const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
3862 
3863  if (!SAE->isInstantiationDependent()) {
3864  // Itanium C++ ABI:
3865  // If the operand of a sizeof or alignof operator is not
3866  // instantiation-dependent it is encoded as an integer literal
3867  // reflecting the result of the operator.
3868  //
3869  // If the result of the operator is implicitly converted to a known
3870  // integer type, that type is used for the literal; otherwise, the type
3871  // of std::size_t or std::ptrdiff_t is used.
3872  QualType T = (ImplicitlyConvertedToType.isNull() ||
3873  !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
3874  : ImplicitlyConvertedToType;
3875  llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
3876  mangleIntegerLiteral(T, V);
3877  break;
3878  }
3879 
3880  switch(SAE->getKind()) {
3881  case UETT_SizeOf:
3882  Out << 's';
3883  break;
3884  case UETT_AlignOf:
3885  Out << 'a';
3886  break;
3887  case UETT_VecStep: {
3888  DiagnosticsEngine &Diags = Context.getDiags();
3889  unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3890  "cannot yet mangle vec_step expression");
3891  Diags.Report(DiagID);
3892  return;
3893  }
3895  DiagnosticsEngine &Diags = Context.getDiags();
3896  unsigned DiagID = Diags.getCustomDiagID(
3898  "cannot yet mangle __builtin_omp_required_simd_align expression");
3899  Diags.Report(DiagID);
3900  return;
3901  }
3902  if (SAE->isArgumentType()) {
3903  Out << 't';
3904  mangleType(SAE->getArgumentType());
3905  } else {
3906  Out << 'z';
3907  mangleExpression(SAE->getArgumentExpr());
3908  }
3909  break;
3910  }
3911 
3912  case Expr::CXXThrowExprClass: {
3913  const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
3914  // <expression> ::= tw <expression> # throw expression
3915  // ::= tr # rethrow
3916  if (TE->getSubExpr()) {
3917  Out << "tw";
3918  mangleExpression(TE->getSubExpr());
3919  } else {
3920  Out << "tr";
3921  }
3922  break;
3923  }
3924 
3925  case Expr::CXXTypeidExprClass: {
3926  const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
3927  // <expression> ::= ti <type> # typeid (type)
3928  // ::= te <expression> # typeid (expression)
3929  if (TIE->isTypeOperand()) {
3930  Out << "ti";
3931  mangleType(TIE->getTypeOperand(Context.getASTContext()));
3932  } else {
3933  Out << "te";
3934  mangleExpression(TIE->getExprOperand());
3935  }
3936  break;
3937  }
3938 
3939  case Expr::CXXDeleteExprClass: {
3940  const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
3941  // <expression> ::= [gs] dl <expression> # [::] delete expr
3942  // ::= [gs] da <expression> # [::] delete [] expr
3943  if (DE->isGlobalDelete()) Out << "gs";
3944  Out << (DE->isArrayForm() ? "da" : "dl");
3945  mangleExpression(DE->getArgument());
3946  break;
3947  }
3948 
3949  case Expr::UnaryOperatorClass: {
3950  const UnaryOperator *UO = cast<UnaryOperator>(E);
3951  mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
3952  /*Arity=*/1);
3953  mangleExpression(UO->getSubExpr());
3954  break;
3955  }
3956 
3957  case Expr::ArraySubscriptExprClass: {
3958  const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
3959 
3960  // Array subscript is treated as a syntactically weird form of
3961  // binary operator.
3962  Out << "ix";
3963  mangleExpression(AE->getLHS());
3964  mangleExpression(AE->getRHS());
3965  break;
3966  }
3967 
3968  case Expr::CompoundAssignOperatorClass: // fallthrough
3969  case Expr::BinaryOperatorClass: {
3970  const BinaryOperator *BO = cast<BinaryOperator>(E);
3971  if (BO->getOpcode() == BO_PtrMemD)
3972  Out << "ds";
3973  else
3974  mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
3975  /*Arity=*/2);
3976  mangleExpression(BO->getLHS());
3977  mangleExpression(BO->getRHS());
3978  break;
3979  }
3980 
3981  case Expr::ConditionalOperatorClass: {
3982  const ConditionalOperator *CO = cast<ConditionalOperator>(E);
3983  mangleOperatorName(OO_Conditional, /*Arity=*/3);
3984  mangleExpression(CO->getCond());
3985  mangleExpression(CO->getLHS(), Arity);
3986  mangleExpression(CO->getRHS(), Arity);
3987  break;
3988  }
3989 
3990  case Expr::ImplicitCastExprClass: {
3991  ImplicitlyConvertedToType = E->getType();
3992  E = cast<ImplicitCastExpr>(E)->getSubExpr();
3993  goto recurse;
3994  }
3995 
3996  case Expr::ObjCBridgedCastExprClass: {
3997  // Mangle ownership casts as a vendor extended operator __bridge,
3998  // __bridge_transfer, or __bridge_retain.
3999  StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4000  Out << "v1U" << Kind.size() << Kind;
4001  }
4002  // Fall through to mangle the cast itself.
4003  LLVM_FALLTHROUGH;
4004 
4005  case Expr::CStyleCastExprClass:
4006  mangleCastExpression(E, "cv");
4007  break;
4008 
4009  case Expr::CXXFunctionalCastExprClass: {
4010  auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4011  // FIXME: Add isImplicit to CXXConstructExpr.
4012  if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4013  if (CCE->getParenOrBraceRange().isInvalid())
4014  Sub = CCE->getArg(0)->IgnoreImplicit();
4015  if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4016  Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4017  if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4018  Out << "tl";
4019  mangleType(E->getType());
4020  mangleInitListElements(IL);
4021  Out << "E";
4022  } else {
4023  mangleCastExpression(E, "cv");
4024  }
4025  break;
4026  }
4027 
4028  case Expr::CXXStaticCastExprClass:
4029  mangleCastExpression(E, "sc");
4030  break;
4031  case Expr::CXXDynamicCastExprClass:
4032  mangleCastExpression(E, "dc");
4033  break;
4034  case Expr::CXXReinterpretCastExprClass:
4035  mangleCastExpression(E, "rc");
4036  break;
4037  case Expr::CXXConstCastExprClass:
4038  mangleCastExpression(E, "cc");
4039  break;
4040 
4041  case Expr::CXXOperatorCallExprClass: {
4042  const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4043  unsigned NumArgs = CE->getNumArgs();
4044  // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4045  // (the enclosing MemberExpr covers the syntactic portion).
4046  if (CE->getOperator() != OO_Arrow)
4047  mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4048  // Mangle the arguments.
4049  for (unsigned i = 0; i != NumArgs; ++i)
4050  mangleExpression(CE->getArg(i));
4051  break;
4052  }
4053 
4054  case Expr::ParenExprClass:
4055  mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
4056  break;
4057 
4058  case Expr::DeclRefExprClass: {
4059  const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
4060 
4061  switch (D->getKind()) {
4062  default:
4063  // <expr-primary> ::= L <mangled-name> E # external name
4064  Out << 'L';
4065  mangle(D);
4066  Out << 'E';
4067  break;
4068 
4069  case Decl::ParmVar:
4070  mangleFunctionParam(cast<ParmVarDecl>(D));
4071  break;
4072 
4073  case Decl::EnumConstant: {
4074  const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
4075  mangleIntegerLiteral(ED->getType(), ED->getInitVal());
4076  break;
4077  }
4078 
4079  case Decl::NonTypeTemplateParm: {
4080  const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
4081  mangleTemplateParameter(PD->getIndex());
4082  break;
4083  }
4084 
4085  }
4086 
4087  break;
4088  }
4089 
4090  case Expr::SubstNonTypeTemplateParmPackExprClass:
4091  // FIXME: not clear how to mangle this!
4092  // template <unsigned N...> class A {
4093  // template <class U...> void foo(U (&x)[N]...);
4094  // };
4095  Out << "_SUBSTPACK_";
4096  break;
4097 
4098  case Expr::FunctionParmPackExprClass: {
4099  // FIXME: not clear how to mangle this!
4100  const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4101  Out << "v110_SUBSTPACK";
4102  mangleFunctionParam(FPPE->getParameterPack());
4103  break;
4104  }
4105 
4106  case Expr::DependentScopeDeclRefExprClass: {
4107  const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4108  mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4109  DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4110  Arity);
4111  break;
4112  }
4113 
4114  case Expr::CXXBindTemporaryExprClass:
4115  mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
4116  break;
4117 
4118  case Expr::ExprWithCleanupsClass:
4119  mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
4120  break;
4121 
4122  case Expr::FloatingLiteralClass: {
4123  const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4124  Out << 'L';
4125  mangleType(FL->getType());
4126  mangleFloat(FL->getValue());
4127  Out << 'E';
4128  break;
4129  }
4130 
4131  case Expr::CharacterLiteralClass:
4132  Out << 'L';
4133  mangleType(E->getType());
4134  Out << cast<CharacterLiteral>(E)->getValue();
4135  Out << 'E';
4136  break;
4137 
4138  // FIXME. __objc_yes/__objc_no are mangled same as true/false
4139  case Expr::ObjCBoolLiteralExprClass:
4140  Out << "Lb";
4141  Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4142  Out << 'E';
4143  break;
4144 
4145  case Expr::CXXBoolLiteralExprClass:
4146  Out << "Lb";
4147  Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4148  Out << 'E';
4149  break;
4150 
4151  case Expr::IntegerLiteralClass: {
4152  llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4153  if (E->getType()->isSignedIntegerType())
4154  Value.setIsSigned(true);
4155  mangleIntegerLiteral(E->getType(), Value);
4156  break;
4157  }
4158 
4159  case Expr::ImaginaryLiteralClass: {
4160  const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4161  // Mangle as if a complex literal.
4162  // Proposal from David Vandevoorde, 2010.06.30.
4163  Out << 'L';
4164  mangleType(E->getType());
4165  if (const FloatingLiteral *Imag =
4166  dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4167  // Mangle a floating-point zero of the appropriate type.
4168  mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4169  Out << '_';
4170  mangleFloat(Imag->getValue());
4171  } else {
4172  Out << "0_";
4173  llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4174  if (IE->getSubExpr()->getType()->isSignedIntegerType())
4175  Value.setIsSigned(true);
4176  mangleNumber(Value);
4177  }
4178  Out << 'E';
4179  break;
4180  }
4181 
4182  case Expr::StringLiteralClass: {
4183  // Revised proposal from David Vandervoorde, 2010.07.15.
4184  Out << 'L';
4185  assert(isa<ConstantArrayType>(E->getType()));
4186  mangleType(E->getType());
4187  Out << 'E';
4188  break;
4189  }
4190 
4191  case Expr::GNUNullExprClass:
4192  // FIXME: should this really be mangled the same as nullptr?
4193  // fallthrough
4194 
4195  case Expr::CXXNullPtrLiteralExprClass: {
4196  Out << "LDnE";
4197  break;
4198  }
4199 
4200  case Expr::PackExpansionExprClass:
4201  Out << "sp";
4202  mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4203  break;
4204 
4205  case Expr::SizeOfPackExprClass: {
4206  auto *SPE = cast<SizeOfPackExpr>(E);
4207  if (SPE->isPartiallySubstituted()) {
4208  Out << "sP";
4209  for (const auto &A : SPE->getPartialArguments())
4210  mangleTemplateArg(A);
4211  Out << "E";
4212  break;
4213  }
4214 
4215  Out << "sZ";
4216  const NamedDecl *Pack = SPE->getPack();
4217  if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4218  mangleTemplateParameter(TTP->getIndex());
4219  else if (const NonTypeTemplateParmDecl *NTTP
4220  = dyn_cast<NonTypeTemplateParmDecl>(Pack))
4221  mangleTemplateParameter(NTTP->getIndex());
4222  else if (const TemplateTemplateParmDecl *TempTP
4223  = dyn_cast<TemplateTemplateParmDecl>(Pack))
4224  mangleTemplateParameter(TempTP->getIndex());
4225  else
4226  mangleFunctionParam(cast<ParmVarDecl>(Pack));
4227  break;
4228  }
4229 
4230  case Expr::MaterializeTemporaryExprClass: {
4231  mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
4232  break;
4233  }
4234 
4235  case Expr::CXXFoldExprClass: {
4236  auto *FE = cast<CXXFoldExpr>(E);
4237  if (FE->isLeftFold())
4238  Out << (FE->getInit() ? "fL" : "fl");
4239  else
4240  Out << (FE->getInit() ? "fR" : "fr");
4241 
4242  if (FE->getOperator() == BO_PtrMemD)
4243  Out << "ds";
4244  else
4245  mangleOperatorName(
4246  BinaryOperator::getOverloadedOperator(FE->getOperator()),
4247  /*Arity=*/2);
4248 
4249  if (FE->getLHS())
4250  mangleExpression(FE->getLHS());
4251  if (FE->getRHS())
4252  mangleExpression(FE->getRHS());
4253  break;
4254  }
4255 
4256  case Expr::CXXThisExprClass:
4257  Out << "fpT";
4258  break;
4259 
4260  case Expr::CoawaitExprClass:
4261  // FIXME: Propose a non-vendor mangling.
4262  Out << "v18co_await";
4263  mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4264  break;
4265 
4266  case Expr::DependentCoawaitExprClass:
4267  // FIXME: Propose a non-vendor mangling.
4268  Out << "v18co_await";
4269  mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
4270  break;
4271 
4272  case Expr::CoyieldExprClass:
4273  // FIXME: Propose a non-vendor mangling.
4274  Out << "v18co_yield";
4275  mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4276  break;
4277  }
4278 }
4279 
4280 /// Mangle an expression which refers to a parameter variable.
4281 ///
4282 /// <expression> ::= <function-param>
4283 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
4284 /// <function-param> ::= fp <top-level CV-qualifiers>
4285 /// <parameter-2 non-negative number> _ # L == 0, I > 0
4286 /// <function-param> ::= fL <L-1 non-negative number>
4287 /// p <top-level CV-qualifiers> _ # L > 0, I == 0
4288 /// <function-param> ::= fL <L-1 non-negative number>
4289 /// p <top-level CV-qualifiers>
4290 /// <I-1 non-negative number> _ # L > 0, I > 0
4291 ///
4292 /// L is the nesting depth of the parameter, defined as 1 if the
4293 /// parameter comes from the innermost function prototype scope
4294 /// enclosing the current context, 2 if from the next enclosing
4295 /// function prototype scope, and so on, with one special case: if
4296 /// we've processed the full parameter clause for the innermost
4297 /// function type, then L is one less. This definition conveniently
4298 /// makes it irrelevant whether a function's result type was written
4299 /// trailing or leading, but is otherwise overly complicated; the
4300 /// numbering was first designed without considering references to
4301 /// parameter in locations other than return types, and then the
4302 /// mangling had to be generalized without changing the existing
4303 /// manglings.
4304 ///
4305 /// I is the zero-based index of the parameter within its parameter
4306 /// declaration clause. Note that the original ABI document describes
4307 /// this using 1-based ordinals.
4308 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
4309  unsigned parmDepth = parm->getFunctionScopeDepth();
4310  unsigned parmIndex = parm->getFunctionScopeIndex();
4311 
4312  // Compute 'L'.
4313  // parmDepth does not include the declaring function prototype.
4314  // FunctionTypeDepth does account for that.
4315  assert(parmDepth < FunctionTypeDepth.getDepth());
4316  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
4317  if (FunctionTypeDepth.isInResultType())
4318  nestingDepth--;
4319 
4320  if (nestingDepth == 0) {
4321  Out << "fp";
4322  } else {
4323  Out << "fL" << (nestingDepth - 1) << 'p';
4324  }
4325 
4326  // Top-level qualifiers. We don't have to worry about arrays here,
4327  // because parameters declared as arrays should already have been
4328  // transformed to have pointer type. FIXME: apparently these don't
4329  // get mangled if used as an rvalue of a known non-class type?
4330  assert(!parm->getType()->isArrayType()
4331  && "parameter's type is still an array type?");
4332 
4333  if (const DependentAddressSpaceType *DAST =
4334  dyn_cast<DependentAddressSpaceType>(parm->getType())) {
4335  mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
4336  } else {
4337  mangleQualifiers(parm->getType().getQualifiers());
4338  }
4339 
4340  // Parameter index.
4341  if (parmIndex != 0) {
4342  Out << (parmIndex - 1);
4343  }
4344  Out << '_';
4345 }
4346 
4347 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
4348  const CXXRecordDecl *InheritedFrom) {
4349  // <ctor-dtor-name> ::= C1 # complete object constructor
4350  // ::= C2 # base object constructor
4351  // ::= CI1 <type> # complete inheriting constructor
4352  // ::= CI2 <type> # base inheriting constructor
4353  //
4354  // In addition, C5 is a comdat name with C1 and C2 in it.
4355  Out << 'C';
4356  if (InheritedFrom)
4357  Out << 'I';
4358  switch (T) {
4359  case Ctor_Complete:
4360  Out << '1';
4361  break;
4362  case Ctor_Base:
4363  Out << '2';
4364  break;
4365  case Ctor_Comdat:
4366  Out << '5';
4367  break;
4368  case Ctor_DefaultClosure:
4369  case Ctor_CopyingClosure:
4370  llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
4371  }
4372  if (InheritedFrom)
4373  mangleName(InheritedFrom);
4374 }
4375 
4376 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
4377  // <ctor-dtor-name> ::= D0 # deleting destructor
4378  // ::= D1 # complete object destructor
4379  // ::= D2 # base object destructor
4380  //
4381  // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
4382  switch (T) {
4383  case Dtor_Deleting:
4384  Out << "D0";
4385  break;
4386  case Dtor_Complete:
4387  Out << "D1";
4388  break;
4389  case Dtor_Base:
4390  Out << "D2";
4391  break;
4392  case Dtor_Comdat:
4393  Out << "D5";
4394  break;
4395  }
4396 }
4397 
4398 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
4399  unsigned NumTemplateArgs) {
4400  // <template-args> ::= I <template-arg>+ E
4401  Out << 'I';
4402  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4403  mangleTemplateArg(TemplateArgs[i].getArgument());
4404  Out << 'E';
4405 }
4406 
4407 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
4408  // <template-args> ::= I <template-arg>+ E
4409  Out << 'I';
4410  for (unsigned i = 0, e = AL.size(); i != e; ++i)
4411  mangleTemplateArg(AL[i]);
4412  Out << 'E';
4413 }
4414 
4415 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
4416  unsigned NumTemplateArgs) {
4417  // <template-args> ::= I <template-arg>+ E
4418  Out << 'I';
4419  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4420  mangleTemplateArg(TemplateArgs[i]);
4421  Out << 'E';
4422 }
4423 
4424 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
4425  // <template-arg> ::= <type> # type or template
4426  // ::= X <expression> E # expression
4427  // ::= <expr-primary> # simple expressions
4428  // ::= J <template-arg>* E # argument pack
4429  if (!A.isInstantiationDependent() || A.isDependent())
4430  A = Context.getASTContext().getCanonicalTemplateArgument(A);
4431 
4432  switch (A.getKind()) {
4434  llvm_unreachable("Cannot mangle NULL template argument");
4435 
4437  mangleType(A.getAsType());
4438  break;
4440  // This is mangled as <type>.
4441  mangleType(A.getAsTemplate());
4442  break;
4444  // <type> ::= Dp <type> # pack expansion (C++0x)
4445  Out << "Dp";
4446  mangleType(A.getAsTemplateOrTemplatePattern());
4447  break;
4449  // It's possible to end up with a DeclRefExpr here in certain
4450  // dependent cases, in which case we should mangle as a
4451  // declaration.
4452  const Expr *E = A.getAsExpr()->IgnoreParens();
4453  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4454  const ValueDecl *D = DRE->getDecl();
4455  if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
4456  Out << 'L';
4457  mangle(D);
4458  Out << 'E';
4459  break;
4460  }
4461  }
4462 
4463  Out << 'X';
4464  mangleExpression(E);
4465  Out << 'E';
4466  break;
4467  }
4469  mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
4470  break;
4472  // <expr-primary> ::= L <mangled-name> E # external name
4473  // Clang produces AST's where pointer-to-member-function expressions
4474  // and pointer-to-function expressions are represented as a declaration not
4475  // an expression. We compensate for it here to produce the correct mangling.
4476  ValueDecl *D = A.getAsDecl();
4477  bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
4478  if (compensateMangling) {
4479  Out << 'X';
4480  mangleOperatorName(OO_Amp, 1);
4481  }
4482 
4483  Out << 'L';
4484  // References to external entities use the mangled name; if the name would
4485  // not normally be mangled then mangle it as unqualified.
4486  mangle(D);
4487  Out << 'E';
4488 
4489  if (compensateMangling)
4490  Out << 'E';
4491 
4492  break;
4493  }
4495  // <expr-primary> ::= L <type> 0 E
4496  Out << 'L';
4497  mangleType(A.getNullPtrType());
4498  Out << "0E";
4499  break;
4500  }
4501  case TemplateArgument::Pack: {
4502  // <template-arg> ::= J <template-arg>* E
4503  Out << 'J';
4504  for (const auto &P : A.pack_elements())
4505  mangleTemplateArg(P);
4506  Out << 'E';
4507  }
4508  }
4509 }
4510 
4511 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
4512  // <template-param> ::= T_ # first template parameter
4513  // ::= T <parameter-2 non-negative number> _
4514  if (Index == 0)
4515  Out << "T_";
4516  else
4517  Out << 'T' << (Index - 1) << '_';
4518 }
4519 
4520 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
4521  if (SeqID == 1)
4522  Out << '0';
4523  else if (SeqID > 1) {
4524  SeqID--;
4525 
4526  // <seq-id> is encoded in base-36, using digits and upper case letters.
4527  char Buffer[7]; // log(2**32) / log(36) ~= 7
4528  MutableArrayRef<char> BufferRef(Buffer);
4529  MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
4530 
4531  for (; SeqID != 0; SeqID /= 36) {
4532  unsigned C = SeqID % 36;
4533  *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
4534  }
4535 
4536  Out.write(I.base(), I - BufferRef.rbegin());
4537  }
4538  Out << '_';
4539 }
4540 
4541 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
4542  bool result = mangleSubstitution(tname);
4543  assert(result && "no existing substitution for template name");
4544  (void) result;
4545 }
4546 
4547 // <substitution> ::= S <seq-id> _
4548 // ::= S_
4549 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
4550  // Try one of the standard substitutions first.
4551  if (mangleStandardSubstitution(ND))
4552  return true;
4553 
4554  ND = cast<NamedDecl>(ND->getCanonicalDecl());
4555  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
4556 }
4557 
4558 /// Determine whether the given type has any qualifiers that are relevant for
4559 /// substitutions.
4561  Qualifiers Qs = T.getQualifiers();
4562  return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
4563 }
4564 
4565 bool CXXNameMangler::mangleSubstitution(QualType T) {
4567  if (const RecordType *RT = T->getAs<RecordType>())
4568  return mangleSubstitution(RT->getDecl());
4569  }
4570 
4571  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4572 
4573  return mangleSubstitution(TypePtr);
4574 }
4575 
4576 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
4577  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4578  return mangleSubstitution(TD);
4579 
4580  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4581  return mangleSubstitution(
4582  reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4583 }
4584 
4585 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
4586  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
4587  if (I == Substitutions.end())
4588  return false;
4589 
4590  unsigned SeqID = I->second;
4591  Out << 'S';
4592  mangleSeqID(SeqID);
4593 
4594  return true;
4595 }
4596 
4597 static bool isCharType(QualType T) {
4598  if (T.isNull())
4599  return false;
4600 
4601  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
4602  T->isSpecificBuiltinType(BuiltinType::Char_U);
4603 }
4604 
4605 /// Returns whether a given type is a template specialization of a given name
4606 /// with a single argument of type char.
4607 static bool isCharSpecialization(QualType T, const char *Name) {
4608  if (T.isNull())
4609  return false;
4610 
4611  const RecordType *RT = T->getAs<RecordType>();
4612  if (!RT)
4613  return false;
4614 
4616  dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
4617  if (!SD)
4618  return false;
4619 
4620  if (!isStdNamespace(getEffectiveDeclContext(SD)))
4621  return false;
4622 
4623  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4624  if (TemplateArgs.size() != 1)
4625  return false;
4626 
4627  if (!isCharType(TemplateArgs[0].getAsType()))
4628  return false;
4629 
4630  return SD->getIdentifier()->getName() == Name;
4631 }
4632 
4633 template <std::size_t StrLen>
4635  const char (&Str)[StrLen]) {
4636  if (!SD->getIdentifier()->isStr(Str))
4637  return false;
4638 
4639  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4640  if (TemplateArgs.size() != 2)
4641  return false;
4642 
4643  if (!isCharType(TemplateArgs[0].getAsType()))
4644  return false;
4645 
4646  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4647  return false;
4648 
4649  return true;
4650 }
4651 
4652 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
4653  // <substitution> ::= St # ::std::
4654  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
4655  if (isStd(NS)) {
4656  Out << "St";
4657  return true;
4658  }
4659  }
4660 
4661  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
4662  if (!isStdNamespace(getEffectiveDeclContext(TD)))
4663  return false;
4664 
4665  // <substitution> ::= Sa # ::std::allocator
4666  if (TD->getIdentifier()->isStr("allocator")) {
4667  Out << "Sa";
4668  return true;
4669  }
4670 
4671  // <<substitution> ::= Sb # ::std::basic_string
4672  if (TD->getIdentifier()->isStr("basic_string")) {
4673  Out << "Sb";
4674  return true;
4675  }
4676  }
4677 
4678  if (const ClassTemplateSpecializationDecl *SD =
4679  dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
4680  if (!isStdNamespace(getEffectiveDeclContext(SD)))
4681  return false;
4682 
4683  // <substitution> ::= Ss # ::std::basic_string<char,
4684  // ::std::char_traits<char>,
4685  // ::std::allocator<char> >
4686  if (SD->getIdentifier()->isStr("basic_string")) {
4687  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4688 
4689  if (TemplateArgs.size() != 3)
4690  return false;
4691 
4692  if (!isCharType(TemplateArgs[0].getAsType()))
4693  return false;
4694 
4695  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4696  return false;
4697 
4698  if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
4699  return false;
4700 
4701  Out << "Ss";
4702  return true;
4703  }
4704 
4705  // <substitution> ::= Si # ::std::basic_istream<char,
4706  // ::std::char_traits<char> >
4707  if (isStreamCharSpecialization(SD, "basic_istream")) {
4708  Out << "Si";
4709  return true;
4710  }
4711 
4712  // <substitution> ::= So # ::std::basic_ostream<char,
4713  // ::std::char_traits<char> >
4714  if (isStreamCharSpecialization(SD, "basic_ostream")) {
4715  Out << "So";
4716  return true;
4717  }
4718 
4719  // <substitution> ::= Sd # ::std::basic_iostream<char,
4720  // ::std::char_traits<char> >
4721  if (isStreamCharSpecialization(SD, "basic_iostream")) {
4722  Out << "Sd";
4723  return true;
4724  }
4725  }
4726  return false;
4727 }
4728 
4729 void CXXNameMangler::addSubstitution(QualType T) {
4731  if (const RecordType *RT = T->getAs<RecordType>()) {
4732  addSubstitution(RT->getDecl());
4733  return;
4734  }
4735  }
4736 
4737  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4738  addSubstitution(TypePtr);
4739 }
4740 
4741 void CXXNameMangler::addSubstitution(TemplateName Template) {
4742  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4743  return addSubstitution(TD);
4744 
4745  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4746  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4747 }
4748 
4749 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
4750  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
4751  Substitutions[Ptr] = SeqID++;
4752 }
4753 
4754 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
4755  assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
4756  if (Other->SeqID > SeqID) {
4757  Substitutions.swap(Other->Substitutions);
4758  SeqID = Other->SeqID;
4759  }
4760 }
4761 
4762 CXXNameMangler::AbiTagList
4763 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
4764  // When derived abi tags are disabled there is no need to make any list.
4765  if (DisableDerivedAbiTags)
4766  return AbiTagList();
4767 
4768  llvm::raw_null_ostream NullOutStream;
4769  CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
4770  TrackReturnTypeTags.disableDerivedAbiTags();
4771 
4772  const FunctionProtoType *Proto =
4773  cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
4774  FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
4775  TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
4776  TrackReturnTypeTags.mangleType(Proto->getReturnType());
4777  TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
4778  TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
4779 
4780  return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4781 }
4782 
4783 CXXNameMangler::AbiTagList
4784 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
4785  // When derived abi tags are disabled there is no need to make any list.
4786  if (DisableDerivedAbiTags)
4787  return AbiTagList();
4788 
4789  llvm::raw_null_ostream NullOutStream;
4790  CXXNameMangler TrackVariableType(*this, NullOutStream);
4791  TrackVariableType.disableDerivedAbiTags();
4792 
4793  TrackVariableType.mangleType(VD->getType());
4794 
4795  return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
4796 }
4797 
4798 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
4799  const VarDecl *VD) {
4800  llvm::raw_null_ostream NullOutStream;
4801  CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
4802  TrackAbiTags.mangle(VD);
4803  return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
4804 }
4805 
4806 //
4807 
4808 /// Mangles the name of the declaration D and emits that name to the given
4809 /// output stream.
4810 ///
4811 /// If the declaration D requires a mangled name, this routine will emit that
4812 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
4813 /// and this routine will return false. In this case, the caller should just
4814 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
4815 /// name.
4816 void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
4817  raw_ostream &Out) {
4818  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
4819  "Invalid mangleName() call, argument is not a variable or function!");
4820  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
4821  "Invalid mangleName() call on 'structor decl!");
4822 
4823  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
4824  getASTContext().getSourceManager(),
4825  "Mangling declaration");
4826 
4827  CXXNameMangler Mangler(*this, Out, D);
4828  Mangler.mangle(D);
4829 }
4830 
4831 void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
4832  CXXCtorType Type,
4833  raw_ostream &Out) {
4834  CXXNameMangler Mangler(*this, Out, D, Type);
4835  Mangler.mangle(D);
4836 }
4837 
4838 void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
4839  CXXDtorType Type,
4840  raw_ostream &Out) {
4841  CXXNameMangler Mangler(*this, Out, D, Type);
4842  Mangler.mangle(D);
4843 }
4844 
4845 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
4846  raw_ostream &Out) {
4847  CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
4848  Mangler.mangle(D);
4849 }
4850 
4851 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
4852  raw_ostream &Out) {
4853  CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
4854  Mangler.mangle(D);
4855 }
4856 
4857 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
4858  const ThunkInfo &Thunk,
4859  raw_ostream &Out) {
4860  // <special-name> ::= T <call-offset> <base encoding>
4861  // # base is the nominal target function of thunk
4862  // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
4863  // # base is the nominal target function of thunk
4864  // # first call-offset is 'this' adjustment
4865  // # second call-offset is result adjustment
4866 
4867  assert(!isa<CXXDestructorDecl>(MD) &&
4868  "Use mangleCXXDtor for destructor decls!");
4869  CXXNameMangler Mangler(*this, Out);
4870  Mangler.getStream() << "_ZT";
4871  if (!Thunk.Return.isEmpty())
4872  Mangler.getStream() << 'c';
4873 
4874  // Mangle the 'this' pointer adjustment.
4875  Mangler.mangleCallOffset(Thunk.This.NonVirtual,
4877 
4878  // Mangle the return pointer adjustment if there is one.
4879  if (!Thunk.Return.isEmpty())
4880  Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
4882 
4883  Mangler.mangleFunctionEncoding(MD);
4884 }
4885 
4886 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
4887  const CXXDestructorDecl *DD, CXXDtorType Type,
4888  const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
4889  // <special-name> ::= T <call-offset> <base encoding>
4890  // # base is the nominal target function of thunk
4891  CXXNameMangler Mangler(*this, Out, DD, Type);
4892  Mangler.getStream() << "_ZT";
4893 
4894  // Mangle the 'this' pointer adjustment.
4895  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
4896  ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
4897 
4898  Mangler.mangleFunctionEncoding(DD);
4899 }
4900 
4901 /// Returns the mangled name for a guard variable for the passed in VarDecl.
4902 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
4903  raw_ostream &Out) {
4904  // <special-name> ::= GV <object name> # Guard variable for one-time
4905  // # initialization
4906  CXXNameMangler Mangler(*this, Out);
4907  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
4908  // be a bug that is fixed in trunk.
4909  Mangler.getStream() << "_ZGV";
4910  Mangler.mangleName(D);
4911 }
4912 
4913 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
4914  raw_ostream &Out) {
4915  // These symbols are internal in the Itanium ABI, so the names don't matter.
4916  // Clang has traditionally used this symbol and allowed LLVM to adjust it to
4917  // avoid duplicate symbols.
4918  Out << "__cxx_global_var_init";
4919 }
4920 
4921 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
4922  raw_ostream &Out) {
4923  // Prefix the mangling of D with __dtor_.
4924  CXXNameMangler Mangler(*this, Out);
4925  Mangler.getStream() << "__dtor_";
4926  if (shouldMangleDeclName(D))
4927  Mangler.mangle(D);
4928  else
4929  Mangler.getStream() << D->getName();
4930 }
4931 
4932 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
4933  const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4934  CXXNameMangler Mangler(*this, Out);
4935  Mangler.getStream() << "__filt_";
4936  if (shouldMangleDeclName(EnclosingDecl))
4937  Mangler.mangle(EnclosingDecl);
4938  else
4939  Mangler.getStream() << EnclosingDecl->getName();
4940 }
4941 
4942 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
4943  const NamedDecl *EnclosingDecl, raw_ostream &Out) {
4944  CXXNameMangler Mangler(*this, Out);
4945  Mangler.getStream() << "__fin_";
4946  if (shouldMangleDeclName(EnclosingDecl))
4947  Mangler.mangle(EnclosingDecl);
4948  else
4949  Mangler.getStream() << EnclosingDecl->getName();
4950 }
4951 
4952 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
4953  raw_ostream &Out) {
4954  // <special-name> ::= TH <object name>
4955  CXXNameMangler Mangler(*this, Out);
4956  Mangler.getStream() << "_ZTH";
4957  Mangler.mangleName(D);
4958 }
4959 
4960 void
4961 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
4962  raw_ostream &Out) {
4963  // <special-name> ::= TW <object name>
4964  CXXNameMangler Mangler(*this, Out);
4965  Mangler.getStream() << "_ZTW";
4966  Mangler.mangleName(D);
4967 }
4968 
4969 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
4970  unsigned ManglingNumber,
4971  raw_ostream &Out) {
4972  // We match the GCC mangling here.
4973  // <special-name> ::= GR <object name>
4974  CXXNameMangler Mangler(*this, Out);
4975  Mangler.getStream() << "_ZGR";
4976  Mangler.mangleName(D);
4977  assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
4978  Mangler.mangleSeqID(ManglingNumber - 1);
4979 }
4980 
4981 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
4982  raw_ostream &Out) {
4983  // <special-name> ::= TV <type> # virtual table
4984  CXXNameMangler Mangler(*this, Out);
4985  Mangler.getStream() << "_ZTV";
4986  Mangler.mangleNameOrStandardSubstitution(RD);
4987 }
4988 
4989 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
4990  raw_ostream &Out) {
4991  // <special-name> ::= TT <type> # VTT structure
4992  CXXNameMangler Mangler(*this, Out);
4993  Mangler.getStream() << "_ZTT";
4994  Mangler.mangleNameOrStandardSubstitution(RD);
4995 }
4996 
4997 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
4998  int64_t Offset,
4999  const CXXRecordDecl *Type,
5000  raw_ostream &Out) {
5001  // <special-name> ::= TC <type> <offset number> _ <base type>
5002  CXXNameMangler Mangler(*this, Out);
5003  Mangler.getStream() << "_ZTC";
5004  Mangler.mangleNameOrStandardSubstitution(RD);
5005  Mangler.getStream() << Offset;
5006  Mangler.getStream() << '_';
5007  Mangler.mangleNameOrStandardSubstitution(Type);
5008 }
5009 
5010 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
5011  // <special-name> ::= TI <type> # typeinfo structure
5012  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
5013  CXXNameMangler Mangler(*this, Out);
5014  Mangler.getStream() << "_ZTI";
5015  Mangler.mangleType(Ty);
5016 }
5017 
5018 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
5019  raw_ostream &Out) {
5020  // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
5021  CXXNameMangler Mangler(*this, Out);
5022  Mangler.getStream() << "_ZTS";
5023  Mangler.mangleType(Ty);
5024 }
5025 
5026 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
5027  mangleCXXRTTIName(Ty, Out);
5028 }
5029 
5030 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
5031  llvm_unreachable("Can't mangle string literals");
5032 }
5033 
5036  return new ItaniumMangleContextImpl(Context, Diags);
5037 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
ParameterABI getABI() const
Return the ABI treatment of this parameter.
Definition: Type.h:3570
QualType getPattern() const
Retrieve the pattern of this pack expansion, which is the type that will be repeatedly instantiated w...
Definition: Type.h:5292
Defines the clang::ASTContext interface.
QualType getDeducedType() const
Get the type deduced for this placeholder type, or null if it&#39;s either not been deduced or was deduce...
Definition: Type.h:4653
const Type * Ty
The locally-unqualified type.
Definition: Type.h:582
unsigned getNumDecls() const
Gets the number of declarations in the unresolved set.
Definition: ExprCXX.h:2902
Represents a function declaration or definition.
Definition: Decl.h:1722
std::string Name
The name of this module.
Definition: Module.h:68
static Qualifiers fromCVRUMask(unsigned CVRU)
Definition: Type.h:239
Expr * getLHS() const
Definition: Expr.h:3606
The "enum" keyword introduces the elaborated-type-specifier.
Definition: Type.h:4980
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this __uuidof() expression after various required adjustments (removing...
Definition: ExprCXX.cpp:84
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2497
RefQualifierKind getRefQualifier() const
Retrieve the ref-qualifier associated with this function type.
Definition: Type.h:3893
Complete object ctor.
Definition: ABI.h:26
void * getAsVoidPointer() const
Retrieve the template name as a void pointer.
Definition: TemplateName.h:310
QualType getPointeeType() const
Definition: Type.h:2510
Represents the dependent type named by a dependently-scoped typename using declaration, e.g.
Definition: Type.h:3990
A (possibly-)qualified type.
Definition: Type.h:641
OverloadedOperatorKind getOperator() const
Return the overloaded operator to which this template name refers.
Definition: TemplateName.h:494
bool isArrayType() const
Definition: Type.h:6261
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2692
Attempt to be ABI-compatible with code generated by Clang 6.0.x (SVN r321711).
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2475
static const TemplateArgument & getArgument(const TemplateArgument &A)
QualType getInjectedSpecializationType() const
Definition: Type.h:4926
NestedNameSpecifier * getQualifier() const
Return the nested name specifier that qualifies this name.
Definition: TemplateName.h:478
const Expr * getSubExpr() const
Definition: ExprCXX.h:1116
__auto_type (GNU extension)
The COMDAT used for ctors.
Definition: ABI.h:28
const Expr * getInit(unsigned Init) const
Definition: Expr.h:4284
bool isListInitialization() const
Determine whether this expression models list-initialization.
Definition: ExprCXX.h:3423
Expr * getUnderlyingExpr() const
Definition: Type.h:4125
bool isDependent() const
Whether this template argument is dependent on a template parameter such that its result can change f...
Module * getOwningModuleForLinkage(bool IgnoreLinkage=false) const
Get the module that owns this declaration for linkage purposes.
Definition: Decl.cpp:1461
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2463
Kind getKind() const
Definition: Type.h:2378
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3315
bool isMain() const
Determines whether this function is "main", which is the entry point into an executable program...
Definition: Decl.cpp:2723
bool hasExtParameterInfos() const
Is there any interesting extra information for any of the parameters of this function type...
Definition: Type.h:3931
TemplateArgumentLoc const * getTemplateArgs() const
Definition: ExprCXX.h:3212
An instance of this object exists for each enum constant that is defined.
Definition: Decl.h:2761
Defines the SourceManager interface.
Microsoft&#39;s &#39;__super&#39; specifier, stored as a CXXRecordDecl* of the class it appeared in...
Represents a qualified type name for which the type name is dependent.
Definition: Type.h:5128
The template argument is an expression, and we&#39;ve not resolved it to one of the other forms yet...
Definition: TemplateBase.h:87
Expr * getBase() const
Definition: Expr.h:2686
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:270
NestedNameSpecifier * getQualifier() const
Retrieve the qualification on this type.
Definition: Type.h:5147
bool isEmpty() const
Definition: ABI.h:87
bool isDecltypeAuto() const
Definition: Type.h:4678
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
bool isVariadic() const
Definition: Type.h:3878
TagDecl * getDecl() const
Definition: Type.cpp:3149
static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl *SD, const char(&Str)[StrLen])
llvm::APFloat getValue() const
Definition: Expr.h:1511
A reference to a name which we were able to look up during parsing but could not resolve to a specifi...
Definition: ExprCXX.h:2989
NestedNameSpecifier * getPrefix() const
Return the prefix of this nested name specifier.
Defines the C++ template declaration subclasses.
Opcode getOpcode() const
Definition: Expr.h:3304
StringRef P
NamedDecl * getTemplatedDecl() const
Get the underlying, templated declaration.
Definition: DeclTemplate.h:453
Represents a C++11 auto or C++14 decltype(auto) type.
Definition: Type.h:4667
unsigned getBlockManglingNumber() const
Definition: Decl.h:3988
The base class of the type hierarchy.
Definition: Type.h:1414
NestedNameSpecifier * getQualifier() const
Retrieve the nested-name-specifier that qualifies this declaration.
Definition: ExprCXX.h:3173
int64_t NonVirtual
The non-virtual adjustment from the derived object to its nearest virtual base.
Definition: ABI.h:111
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1294
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:64
Represent a C++ namespace.
Definition: Decl.h:514
bool isArrayRangeDesignator() const
Definition: Designator.h:72
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1382
static bool isParenthesizedADLCallee(const CallExpr *call)
Look at the callee of the given call expression and determine if it&#39;s a parenthesized id-expression w...
A container of type source information.
Definition: Decl.h:86
QualType getValueType() const
Gets the type contained by this atomic type, i.e.
Definition: Type.h:5899
SourceLocation getAttributeLoc() const
Definition: Type.h:3220
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2483
A template template parameter that has been substituted for some other template name.
Definition: TemplateName.h:206
Default closure variant of a ctor.
Definition: ABI.h:30
QualType getElementType() const
Definition: Type.h:2807
const Expr * getSubExpr() const
Definition: Expr.h:1589
const IdentifierInfo * getIdentifier() const
Returns the identifier to which this template name refers.
Definition: TemplateName.h:484
TemplateName getTemplateName() const
Retrieve the name of the template that we are deducing.
Definition: Type.h:4721
An identifier, stored as an IdentifierInfo*.
Represents a variable declaration or definition.
Definition: Decl.h:820
void removeObjCLifetime()
Definition: Type.h:335
unsigned getNumParams() const
Definition: Type.h:3772
QualType getCXXNameType() const
getCXXNameType - If this name is one of the C++ names (of a constructor, destructor, or conversion function), return the type associated with that name.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6625
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:57
LangAS
Defines the address space values used by the address space qualifier of QualType. ...
Definition: AddressSpaces.h:26
Represents a C++17 deduced template specialization type.
Definition: Type.h:4703
A this pointer adjustment.
Definition: ABI.h:108
QualifiedTemplateName * getAsQualifiedTemplateName() const
Retrieve the underlying qualified template name structure, if any.
Represents a variable template specialization, which refers to a variable template with a given set o...
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
A namespace, stored as a NamespaceDecl*.
DeclarationName getName() const
Gets the name looked up.
Definition: ExprCXX.h:2908
bool requiresADL() const
True if this declaration should be extended by argument-dependent lookup.
Definition: ExprCXX.h:3062
SpecifierKind getKind() const
Determine what kind of nested name specifier is stored.
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:1094
Expr * getExprOperand() const
Definition: ExprCXX.h:764
Represents a parameter to a function.
Definition: Decl.h:1541
Defines the clang::Expr interface and subclasses for C++ expressions.
QualType getIntegralType() const
Retrieve the type of the integral value.
Definition: TemplateBase.h:315
static const TemplateDecl * isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs)
The collection of all-type qualifiers we support.
Definition: Type.h:140
PipeType - OpenCL20.
Definition: Type.h:5918
Expr * getExprOperand() const
Definition: ExprCXX.h:995
SubstTemplateTemplateParmStorage * getAsSubstTemplateTemplateParm() const
Retrieve the substituted template template parameter, if known.
const char * getStmtClassName() const
Definition: Stmt.cpp:75
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Represents a struct/union/class.
Definition: Decl.h:3572
TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg) const
Retrieve the "canonical" template argument.
const TemplateArgumentList & getTemplateArgs() const
Retrieve the template arguments of the class template specialization.
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
Linkage getFormalLinkage() const
Get the linkage from a semantic point of view.
Definition: Decl.h:370
Represents a class template specialization, which refers to a class template with a given set of temp...
One of these records is kept for each identifier that is lexed.
bool isNothrow(bool ResultIfDependent=false) const
Determine whether this function type has a non-throwing exception specification.
Definition: Type.h:3873
bool isInAnonymousNamespace() const
Definition: DeclBase.cpp:347
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
Represents a class type in Objective C.
Definition: Type.h:5454
void removeRestrict()
Definition: Type.h:275
QualType getPointeeType() const
Definition: Type.h:2614
Expr * getAsExpr() const
Retrieve the template argument as an expression.
Definition: TemplateBase.h:330
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:153
is ARM Neon vector
Definition: Type.h:3144
Represents a dependent template name that cannot be resolved prior to template instantiation.
Definition: TemplateName.h:422
NamespaceDecl * getNamespace()
Retrieve the namespace declaration aliased by this directive.
Definition: DeclCXX.h:3096
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:72
TemplateDecl * getAsTemplateDecl() const
Retrieve the underlying template declaration that this template name refers to, if known...
Represents a member of a struct/union/class.
Definition: Decl.h:2554
TemplateName getTemplateName() const
Retrieve the name of the template that we are specializing.
Definition: Type.h:4822
const Type * getAsType() const
Retrieve the type stored in this nested name specifier.
Expr * getBase()
Retrieve the base object of this member expressions, e.g., the x in x.m.
Definition: ExprCXX.h:3808
const llvm::APSInt & getInitVal() const
Definition: Decl.h:2782
bool isNamespace() const
Definition: DeclBase.h:1849
unsigned getFunctionScopeIndex() const
Returns the index of this parameter in its prototype or method scope.
Definition: Decl.h:1594
SubstTemplateTemplateParmStorage * getAsSubstTemplateTemplateParm()
Definition: TemplateName.h:80
bool isReferenceType() const
Definition: Type.h:6224
Interesting information about a specific parameter that can&#39;t simply be reflected in parameter&#39;s type...
Definition: Type.h:3557
bool addressSpaceMapManglingFor(LangAS AS) const
Definition: ASTContext.h:2519
Represents the result of substituting a set of types for a template type parameter pack...
Definition: Type.h:4577
bool isSpecificBuiltinType(unsigned K) const
Test for a particular builtin type.
Definition: Type.h:6406
Expr * getArg(unsigned I)
Definition: ExprCXX.h:3446
Represents a C++ member access expression for which lookup produced a set of overloaded functions...
Definition: ExprCXX.h:3740
Expr * getSubExpr()
Definition: Expr.h:3000
The this pointer adjustment as well as an optional return adjustment for a thunk. ...
Definition: ABI.h:179
TypeSourceInfo * getLambdaTypeInfo() const
Definition: DeclCXX.h:1974
QualType getParamTypeForDecl() const
Definition: TemplateBase.h:269
Describes a module or submodule.
Definition: Module.h:65
unsigned getTypeQuals() const
Definition: Type.h:3890
bool getProducesResult() const
Definition: Type.h:3387
Describes an C or C++ initializer list.
Definition: Expr.h:4236
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:707
This parameter (which must have pointer type) uses the special Swift context-pointer ABI treatment...
An rvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2698
UnresolvedUsingTypenameDecl * getDecl() const
Definition: Type.h:4001
IdentifierInfo * getAsIdentifier() const
Retrieve the identifier stored in this nested name specifier.
A qualified template name, where the qualification is kept to describe the source code as written...
Definition: TemplateName.h:198
An lvalue ref-qualifier was provided (&).
Definition: Type.h:1370
Base object ctor.
Definition: ABI.h:27
static ItaniumMangleContext * create(ASTContext &Context, DiagnosticsEngine &Diags)
bool isGlobalNew() const
Definition: ExprCXX.h:2173
uint32_t Offset
Definition: CacheTokens.cpp:43
ArrayRef< QualType > getTypeArgs() const
Retrieve the type arguments of this object type (semantically).
Definition: Type.cpp:678
bool hasAddressSpace() const
Definition: Type.h:354
The "struct" keyword introduces the elaborated-type-specifier.
Definition: Type.h:4968
QualType getNullPtrType() const
Retrieve the type for null non-type template argument.
Definition: TemplateBase.h:275
Expr * getInitializer()
The initializer of this new-expression.
Definition: ExprCXX.h:2186
Deleting dtor.
Definition: ABI.h:35
static bool isStdNamespace(const DeclContext *DC)
NamespaceAliasDecl * getAsNamespaceAlias() const
Retrieve the namespace alias stored in this nested name specifier.
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
Represents a typeof (or typeof) expression (a GCC extension).
Definition: Type.h:4045
unsigned getNumTemplateArgs() const
Retrieve the number of template arguments provided as part of this template-id.
Definition: ExprCXX.h:3680
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3263
LangAS getAddressSpace() const
Definition: Type.h:355
const Type * getClass() const
Definition: Type.h:2750
bool isArrow() const
Definition: Expr.h:2791
bool isLambda() const
Determine whether this class describes a lambda function object.
Definition: DeclCXX.h:1210
Expr * getSizeExpr() const
Definition: Type.h:2951
const TemplateArgument * getArgs() const
Retrieve the template arguments.
Definition: Type.h:4825
unsigned getIndex() const
Get the index of the template parameter within its parameter list.
NestedNameSpecifier * getQualifier() const
Fetches the nested-name qualifier, if one was given.
Definition: ExprCXX.h:2914
Enums/classes describing ABI related information about constructors, destructors and thunks...
bool isInstantiationDependent() const
Whether this template argument is dependent on a template parameter.
void * getAsOpaquePtr() const
Definition: Type.h:686
DeclarationName getDeclName() const
Retrieve the name that this expression refers to.
Definition: ExprCXX.h:3160
Represents a C++ member access expression where the actual member referenced could not be resolved be...
Definition: ExprCXX.h:3495
is ARM Neon polynomial vector
Definition: Type.h:3147
NameKind getNameKind() const
getNameKind - Determine what kind of name this is.
bool hasConst() const
Definition: Type.h:257
Expr * getSizeExpr() const
Definition: Type.h:3008
unsigned getLength() const
Efficiently return the length of this identifier info.
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:883
bool isTypeOperand() const
Definition: ExprCXX.h:978
Expr * getSizeExpr() const
Definition: Type.h:3218
QualType getElementType() const
Definition: Type.h:3104
arg_iterator placement_arg_end()
Definition: ExprCXX.h:2225
This parameter (which must have pointer-to-pointer type) uses the special Swift error-result ABI trea...
bool isAnonymousStructOrUnion() const
Whether this is an anonymous struct or union.
Definition: Decl.h:3645
Represents an extended vector type where either the type or size is dependent.
Definition: Type.h:3088
This object can be modified without requiring retains or releases.
Definition: Type.h:161
NamedDecl * getFirstQualifierFoundInScope() const
Retrieve the first part of the nested-name-specifier that was found in the scope of the member access...
Definition: ExprCXX.h:3615
DeclarationName getMemberName() const
Retrieve the name of the member that this expression refers to.
Definition: ExprCXX.h:3839
bool isArrayForm() const
Definition: ExprCXX.h:2321
FunctionTemplateDecl * getPrimaryTemplate() const
Retrieve the primary template that this function template specialization either specializes or was in...
Definition: Decl.cpp:3417
Represents a K&R-style &#39;int foo()&#39; function, which has no information available about its arguments...
Definition: Type.h:3501
Expr * getAddrSpaceExpr() const
Definition: Type.h:3059
NodeId Parent
Definition: ASTDiff.cpp:192
bool isExternC() const
Determines whether this variable is a variable with external, C linkage.
Definition: Decl.cpp:1994
llvm::StringRef getParameterABISpelling(ParameterABI kind)
unsigned getLambdaManglingNumber() const
If this is the closure type of a lambda expression, retrieve the number to be used for name mangling ...
Definition: DeclCXX.h:1914
bool hasAttr() const
Definition: DeclBase.h:544
ConditionalOperator - The ?: ternary operator.
Definition: Expr.h:3561
QualType getBaseType() const
Gets the base type of this object type.
Definition: Type.h:5517
Const iterator for iterating over Stmt * arrays that contain only Expr *.
Definition: Stmt.h:359
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3536
NestedNameSpecifier * getQualifier() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name...
Definition: Expr.h:2721
qual_range quals() const
Definition: Type.h:5354
const TemplateArgumentLoc * getTemplateArgs() const
Retrieve the template arguments provided as part of this template-id.
Definition: ExprCXX.h:3671
A dependent template name that has not been resolved to a template (or set of templates).
Definition: TemplateName.h:202
OverloadedOperatorKind getCXXOverloadedOperator() const
getCXXOverloadedOperator - If this name is the name of an overloadable operator in C++ (e...
UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) expression operand...
Definition: Expr.h:2212
union clang::ReturnAdjustment::VirtualAdjustment Virtual
bool hasQualifiers() const
Determine whether this type has any qualifiers.
Definition: Type.h:6063
ValueDecl * getAsDecl() const
Retrieve the declaration for a declaration non-type template argument.
Definition: TemplateBase.h:264
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
Represents an array type in C++ whose size is a value-dependent expression.
Definition: Type.h:2986
CXXDtorType
C++ destructor types.
Definition: ABI.h:34
Expr * getCond() const
Definition: Expr.h:3595
QualType getElementType() const
Definition: Type.h:2450
unsigned getNumArgs() const
Retrieve the number of template arguments.
Definition: Type.h:5215
unsigned getFunctionScopeDepth() const
Definition: Decl.h:1588
Pepresents a block literal declaration, which is like an unnamed FunctionDecl.
Definition: Decl.h:3837
NamespaceDecl * getAsNamespace() const
Retrieve the namespace stored in this nested name specifier.
const FieldDecl * findFirstNamedDataMember() const
Finds the first data member which has a name.
Definition: Decl.cpp:4199
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:640
Expr - This represents one expression.
Definition: Expr.h:106
static const DeclContext * IgnoreLinkageSpecDecls(const DeclContext *DC)
QualType getPointeeType() const
Definition: Type.h:2654
TemplateDecl * getTemplateDecl() const
The template declaration to which this qualified name refers.
Definition: TemplateName.h:400
The "typename" keyword precedes the qualified type name, e.g., typename T::type.
Definition: Type.h:4984
TemplateArgumentLoc const * getTemplateArgs() const
Definition: ExprCXX.h:2949
bool isArrow() const
Determine whether this member expression used the &#39;->&#39; operator; otherwise, it used the &#39;...
Definition: ExprCXX.h:3825
int Id
Definition: ASTDiff.cpp:191
Declaration of a template type parameter.
unsigned getIndex() const
Definition: Type.h:4484
bool isImplicitAccess() const
True if this is an implicit access, i.e., one in which the member being accessed was not written in t...
Definition: ExprCXX.cpp:1257
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6688
The template argument is a null pointer or null pointer to member that was provided for a non-type te...
Definition: TemplateBase.h:68
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2705
New-expression has a C++11 list-initializer.
Definition: ExprCXX.h:2099
const internal::VariadicAllOfMatcher< Decl > decl
Matches declarations.
unsigned getNumInits() const
Definition: Expr.h:4266
bool isArrayDesignator() const
Definition: Designator.h:71
bool isImplicitAccess() const
True if this is an implicit access, i.e.
Definition: ExprCXX.cpp:1204
const TemplateArgumentList * getTemplateSpecializationArgs() const
Retrieve the template arguments used to produce this function template specialization from the primar...
Definition: Decl.cpp:3437
const Expr * getCallee() const
Definition: Expr.h:2446
struct clang::ThisAdjustment::VirtualAdjustment::@134 Itanium
QualType getArgumentType() const
Definition: Expr.h:2249
ObjCLifetime getObjCLifetime() const
Definition: Type.h:329
unsigned getNumTemplateArgs() const
Definition: ExprCXX.h:2955
DeclContext * getDeclContext()
Definition: DeclBase.h:434
LanguageLinkage getLanguageLinkage() const
Compute the language linkage.
Definition: Decl.cpp:2861
A structure for storing the information associated with a substituted template template parameter...
Definition: TemplateName.h:325
QualType getBaseType() const
Definition: Type.h:4184
static OverloadedOperatorKind getOverloadedOperator(Opcode Opc)
Retrieve the overloaded operator kind that corresponds to the given unary opcode. ...
Definition: Expr.cpp:1175
const IdentifierInfo * getIdentifier() const
Retrieve the type named by the typename specifier as an identifier.
Definition: Type.h:5154
NonTypeTemplateParmDecl - Declares a non-type template parameter, e.g., "Size" in.
Represents a C++ template name within the type system.
Definition: TemplateName.h:178
Represents the type decltype(expr) (C++11).
Definition: Type.h:4115
decls_iterator decls_begin() const
Definition: ExprCXX.h:2893
static SVal getValue(SVal val, SValBuilder &svalBuilder)
Defines the clang::TypeLoc interface and its subclasses.
bool isIdentifier() const
Determine whether this template name refers to an identifier.
Definition: TemplateName.h:481
A namespace alias, stored as a NamespaceAliasDecl*.
IdentifierInfo * getAsIdentifierInfo() const
getAsIdentifierInfo - Retrieve the IdentifierInfo * stored in this declaration name, or NULL if this declaration name isn&#39;t a simple identifier.
A std::pair-like structure for storing a qualified type split into its local qualifiers and its local...
Definition: Type.h:580
static StringRef mangleAArch64VectorBase(const BuiltinType *EltType)
bool isSignedIntegerType() const
Return true if this is an integer type that is signed, according to C99 6.2.5p4 [char, signed char, short, int, long..], or an enum decl which has a signed representation.
Definition: Type.cpp:1848
Base object dtor.
Definition: ABI.h:37
QualType getType() const
Definition: Expr.h:128
bool isFunctionOrMethod() const
Definition: DeclBase.h:1817
A unary type transform, which is a type constructed from another.
Definition: Type.h:4158
bool isIdentifier() const
Predicate functions for querying what type of name this is.
Qualifiers Quals
The local qualifiers.
Definition: Type.h:585
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:1769
bool hasInitializer() const
Whether this new-expression has any initializer at all.
Definition: ExprCXX.h:2176
bool hasInstantiationDependentExceptionSpec() const
Return whether this function has an instantiation-dependent exception spec.
Definition: Type.cpp:2956
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1865
Represents a GCC generic vector type.
Definition: Type.h:3128
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this typeid() expression after various required adjustments (removing r...
Definition: ExprCXX.cpp:77
An lvalue reference type, per C++11 [dcl.ref].
Definition: Type.h:2680
TemplateTemplateParmDecl - Declares a template template parameter, e.g., "T" in.
UTTKind getUTTKind() const
Definition: Type.h:4186
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:706
Expr * getLHS()
An array access can be written A[4] or 4[A] (both are equivalent).
Definition: Expr.h:2343
The COMDAT used for dtors.
Definition: ABI.h:38
static StringRef getIdentifier(const Token &Tok)
__UINTPTR_TYPE__ uintptr_t
An unsigned integer type with the property that any valid pointer to void can be converted to this ty...
Definition: opencl-c.h:82
CallingConv
CallingConv - Specifies the calling convention that a function uses.
Definition: Specifiers.h:236
ImaginaryLiteral - We support imaginary integer and floating point literals, like "1...
Definition: Expr.h:1577
AttrVec & getAttrs()
Definition: DeclBase.h:486
SplitQualType split() const
Divides a QualType into its unqualified type and a set of local qualifiers.
Definition: Type.h:5996
RecordDecl * getDecl() const
Definition: Type.h:4249
NestedNameSpecifier * getQualifier() const
Retrieve the nested-name-specifier that qualifies the member name.
Definition: ExprCXX.h:3596
int64_t NonVirtual
The non-virtual adjustment from the derived object to its nearest virtual base.
Definition: ABI.h:45
static bool hasMangledSubstitutionQualifiers(QualType T)
Determine whether the given type has any qualifiers that are relevant for substitutions.
Expr * getArgument()
Definition: ExprCXX.h:2334
A template template parameter pack that has been substituted for a template template argument pack...
Definition: TemplateName.h:211
bool isComputedNoexcept(ExceptionSpecificationType ESpecType)
There is no lifetime qualification on this type.
Definition: Type.h:157
IdentifierInfo * getCXXLiteralIdentifier() const
getCXXLiteralIdentifier - If this name is the name of a literal operator, retrieve the identifier ass...
OverloadedTemplateStorage * getAsOverloadedTemplate() const
Retrieve the underlying, overloaded function template.
is AltiVec &#39;vector Pixel&#39;
Definition: Type.h:3138
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:168
Kind
QualType getCanonicalType() const
Definition: Type.h:6027
bool isBuiltinType() const
Helper methods to distinguish type categories.
Definition: Type.h:6281
bool isInstantiationDependent() const
Whether this expression is instantiation-dependent, meaning that it depends in some way on a template...
Definition: Expr.h:191
ExtParameterInfo getExtParameterInfo(unsigned I) const
Definition: Type.h:3947
bool isSpecialized() const
Determine whether this object type is "specialized", meaning that it has type arguments.
Definition: Type.cpp:660
ElaboratedTypeKeyword getKeyword() const
Definition: Type.h:5006
QualType getSignatureParameterType(QualType T) const
Retrieve the parameter type as adjusted for use in the signature of a function, decaying array and fu...
Encodes a location in the source.
ObjCInterfaceDecl * getDecl() const
Get the declaration of this interface.
Definition: Type.h:5667
QualType getReturnType() const
Definition: Type.h:3469
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4265
QualType getSingleStepDesugaredType(const ASTContext &Context) const
Return the specified type with one level of "sugar" removed from the type.
Definition: Type.h:954
Expr * getSubExpr() const
Definition: Expr.h:1892
Represents typeof(type), a GCC extension.
Definition: Type.h:4088
Interfaces are the core concept in Objective-C for object oriented design.
Definition: Type.h:5654
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:2041
Represents the declaration of a struct/union/class/enum.
Definition: Decl.h:3043
LanguageLinkage
Describes the different kinds of language linkage (C++ [dcl.link]) that an entity may have...
Definition: Linkage.h:65
CallingConv getCC() const
Definition: Type.h:3399
QualType getElementType() const
Definition: Type.h:3163
Represents a vector type where either the type or size is dependent.
Definition: Type.h:3205
bool isFieldDesignator() const
Definition: Designator.h:70
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2051
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
No ref-qualifier was provided.
Definition: Type.h:1367
bool isConsumed() const
Is this parameter considered "consumed" by Objective-C ARC? Consumed parameters must have retainable ...
Definition: Type.h:3581
QualType getAllocatedType() const
Definition: ExprCXX.h:2115
const ParmVarDecl * getParamDecl(unsigned i) const
Definition: Decl.h:2259
This file defines OpenMP nodes for declarative directives.
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
Expr * getNoexceptExpr() const
Definition: Type.h:3838
UnaryExprOrTypeTrait getKind() const
Definition: Expr.h:2243
bool isArray() const
Definition: ExprCXX.h:2146
bool hasRestrict() const
Definition: Type.h:271
arg_range arguments()
Definition: Expr.h:2500
is AltiVec &#39;vector bool ...&#39;
Definition: Type.h:3141
RefQualifierKind
The kind of C++11 ref-qualifier associated with a function type.
Definition: Type.h:1365
Decl * getBlockManglingContextDecl() const
Definition: Decl.h:3992
unsigned getCustomDiagID(Level L, const char(&FormatString)[N])
Return an ID for a diagnostic with the specified format string and level.
Definition: Diagnostic.h:775
AutoTypeKeyword getKeyword() const
Definition: Type.h:4682
TypeClass getTypeClass() const
Definition: Type.h:1795
int64_t VCallOffsetOffset
The offset (in bytes), relative to the address point, of the virtual call offset. ...
Definition: ABI.h:120
Complete object dtor.
Definition: ABI.h:36
llvm::APSInt getAsIntegral() const
Retrieve the template argument as an integral value.
Definition: TemplateBase.h:301
An rvalue ref-qualifier was provided (&&).
Definition: Type.h:1373
Assigning into this object requires a lifetime extension.
Definition: Type.h:174
bool isArgumentType() const
Definition: Expr.h:2248
DependentTemplateName * getAsDependentTemplateName() const
Retrieve the underlying dependent template name structure, if any.
bool isInstantiationDependentType() const
Determine whether this type is an instantiation-dependent type, meaning that the type involves a temp...
Definition: Type.h:2052
ExceptionSpecificationType getExceptionSpecType() const
Get the kind of exception specification on this function.
Definition: Type.h:3807
CXXCtorType
C++ constructor types.
Definition: ABI.h:25
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
The injected class name of a C++ class template or class template partial specialization.
Definition: Type.h:4894
A qualified reference to a name whose declaration cannot yet be resolved.
Definition: ExprCXX.h:3115
QualType getPointeeType() const
Definition: Type.h:3060
Represents a pack expansion of types.
Definition: Type.h:5271
Expr * getLHS() const
Definition: Expr.h:3307
InitializationStyle getInitializationStyle() const
The kind of initializer this new-expression has.
Definition: ExprCXX.h:2179
ArrayRef< TemplateArgument > pack_elements() const
Iterator range referencing all of the elements of a template argument pack.
Definition: TemplateBase.h:354
StringRef getName() const
Return the actual identifier string.
Base class for declarations which introduce a typedef-name.
Definition: Decl.h:2895
Represents a reference to a function parameter pack that has been substituted but not yet expanded...
Definition: ExprCXX.h:4307
Represents a template argument.
Definition: TemplateBase.h:51
Represents a template name that was expressed as a qualified name.
Definition: TemplateName.h:366
bool isTypeOperand() const
Definition: ExprCXX.h:747
Dataflow Directional Tag Classes.
ThisAdjustment This
The this pointer adjustment.
Definition: ABI.h:181
ExtInfo getExtInfo() const
Definition: Type.h:3480
const TemplateArgumentLoc * getTemplateArgs() const
Retrieve the template arguments provided as part of this template-id.
Definition: Expr.h:2763
NestedNameSpecifier * getQualifier() const
Definition: Type.h:5206
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1272
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2280
The base class of all kinds of template declarations (e.g., class, function, etc.).
Definition: DeclTemplate.h:399
OverloadedOperatorKind getOperator() const
Returns the kind of overloaded operator that this expression refers to.
Definition: ExprCXX.h:106
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:22
The template argument is a pack expansion of a template name that was provided for a template templat...
Definition: TemplateBase.h:80
const TemplateArgument * getArgs() const
Retrieve the template arguments.
Definition: Type.h:5210
Represents a field injected from an anonymous union/struct into the parent scope. ...
Definition: Decl.h:2800
bool isDependentAddressSpaceType() const
Definition: Type.h:6305
NamespaceDecl * getOriginalNamespace()
Get the original (first) namespace declaration.
Definition: DeclCXX.cpp:2560
DeclarationName getMember() const
Retrieve the name of the member that this expression refers to.
Definition: ExprCXX.h:3627
DeclarationName - The name of a declaration.
StmtClass getStmtClass() const
Definition: Stmt.h:391
VectorKind getVectorKind() const
Definition: Type.h:3173
ArrayRef< QualType > exceptions() const
Definition: Type.h:3914
The "union" keyword introduces the elaborated-type-specifier.
Definition: Type.h:4974
Kind getKind() const
Definition: DeclBase.h:428
bool isBooleanType() const
Definition: Type.h:6552
bool isMSVCRTEntryPoint() const
Determines whether this function is a MSVCRT user defined entry point.
Definition: Decl.cpp:2731
The "class" keyword introduces the elaborated-type-specifier.
Definition: Type.h:4977
bool isKindOfType() const
Whether this ia a "__kindof" type (semantically).
Definition: Type.cpp:696
int64_t VBaseOffsetOffset
The offset (in bytes), relative to the address point of the virtual base class offset.
Definition: ABI.h:54
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2716
ExplicitCastExpr - An explicit cast written in the source code.
Definition: Expr.h:3153
A type that was preceded by the &#39;template&#39; keyword, stored as a Type*.
union clang::ThisAdjustment::VirtualAdjustment Virtual
Represents a pointer to an Objective C object.
Definition: Type.h:5710
Pointer to a block type.
Definition: Type.h:2599
Not an overloaded operator.
Definition: OperatorKinds.h:23
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4239
Complex values, per C99 6.2.5p11.
Def