clang  6.0.0svn
SemaLookup.cpp
Go to the documentation of this file.
1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements name lookup for C, C++, Objective-C, and
11 // Objective-C++.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclLookups.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/Basic/Builtins.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/ModuleLoader.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/Sema.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/TinyPtrVector.h"
41 #include "llvm/ADT/edit_distance.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include <algorithm>
44 #include <iterator>
45 #include <list>
46 #include <set>
47 #include <utility>
48 #include <vector>
49 
50 using namespace clang;
51 using namespace sema;
52 
53 namespace {
54  class UnqualUsingEntry {
55  const DeclContext *Nominated;
56  const DeclContext *CommonAncestor;
57 
58  public:
59  UnqualUsingEntry(const DeclContext *Nominated,
60  const DeclContext *CommonAncestor)
61  : Nominated(Nominated), CommonAncestor(CommonAncestor) {
62  }
63 
64  const DeclContext *getCommonAncestor() const {
65  return CommonAncestor;
66  }
67 
68  const DeclContext *getNominatedNamespace() const {
69  return Nominated;
70  }
71 
72  // Sort by the pointer value of the common ancestor.
73  struct Comparator {
74  bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
75  return L.getCommonAncestor() < R.getCommonAncestor();
76  }
77 
78  bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
79  return E.getCommonAncestor() < DC;
80  }
81 
82  bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
83  return DC < E.getCommonAncestor();
84  }
85  };
86  };
87 
88  /// A collection of using directives, as used by C++ unqualified
89  /// lookup.
90  class UnqualUsingDirectiveSet {
91  Sema &SemaRef;
92 
93  typedef SmallVector<UnqualUsingEntry, 8> ListTy;
94 
95  ListTy list;
96  llvm::SmallPtrSet<DeclContext*, 8> visited;
97 
98  public:
99  UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
100 
101  void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
102  // C++ [namespace.udir]p1:
103  // During unqualified name lookup, the names appear as if they
104  // were declared in the nearest enclosing namespace which contains
105  // both the using-directive and the nominated namespace.
106  DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
107  assert(InnermostFileDC && InnermostFileDC->isFileContext());
108 
109  for (; S; S = S->getParent()) {
110  // C++ [namespace.udir]p1:
111  // A using-directive shall not appear in class scope, but may
112  // appear in namespace scope or in block scope.
113  DeclContext *Ctx = S->getEntity();
114  if (Ctx && Ctx->isFileContext()) {
115  visit(Ctx, Ctx);
116  } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117  for (auto *I : S->using_directives())
118  if (SemaRef.isVisible(I))
119  visit(I, InnermostFileDC);
120  }
121  }
122  }
123 
124  // Visits a context and collect all of its using directives
125  // recursively. Treats all using directives as if they were
126  // declared in the context.
127  //
128  // A given context is only every visited once, so it is important
129  // that contexts be visited from the inside out in order to get
130  // the effective DCs right.
131  void visit(DeclContext *DC, DeclContext *EffectiveDC) {
132  if (!visited.insert(DC).second)
133  return;
134 
135  addUsingDirectives(DC, EffectiveDC);
136  }
137 
138  // Visits a using directive and collects all of its using
139  // directives recursively. Treats all using directives as if they
140  // were declared in the effective DC.
141  void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
143  if (!visited.insert(NS).second)
144  return;
145 
146  addUsingDirective(UD, EffectiveDC);
147  addUsingDirectives(NS, EffectiveDC);
148  }
149 
150  // Adds all the using directives in a context (and those nominated
151  // by its using directives, transitively) as if they appeared in
152  // the given effective context.
153  void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
155  while (true) {
156  for (auto UD : DC->using_directives()) {
158  if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
159  addUsingDirective(UD, EffectiveDC);
160  queue.push_back(NS);
161  }
162  }
163 
164  if (queue.empty())
165  return;
166 
167  DC = queue.pop_back_val();
168  }
169  }
170 
171  // Add a using directive as if it had been declared in the given
172  // context. This helps implement C++ [namespace.udir]p3:
173  // The using-directive is transitive: if a scope contains a
174  // using-directive that nominates a second namespace that itself
175  // contains using-directives, the effect is as if the
176  // using-directives from the second namespace also appeared in
177  // the first.
178  void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
179  // Find the common ancestor between the effective context and
180  // the nominated namespace.
181  DeclContext *Common = UD->getNominatedNamespace();
182  while (!Common->Encloses(EffectiveDC))
183  Common = Common->getParent();
184  Common = Common->getPrimaryContext();
185 
186  list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
187  }
188 
189  void done() {
190  std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
191  }
192 
193  typedef ListTy::const_iterator const_iterator;
194 
195  const_iterator begin() const { return list.begin(); }
196  const_iterator end() const { return list.end(); }
197 
198  llvm::iterator_range<const_iterator>
199  getNamespacesFor(DeclContext *DC) const {
200  return llvm::make_range(std::equal_range(begin(), end(),
201  DC->getPrimaryContext(),
202  UnqualUsingEntry::Comparator()));
203  }
204  };
205 } // end anonymous namespace
206 
207 // Retrieve the set of identifier namespaces that correspond to a
208 // specific kind of name lookup.
209 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
210  bool CPlusPlus,
211  bool Redeclaration) {
212  unsigned IDNS = 0;
213  switch (NameKind) {
218  IDNS = Decl::IDNS_Ordinary;
219  if (CPlusPlus) {
221  if (Redeclaration)
223  }
224  if (Redeclaration)
225  IDNS |= Decl::IDNS_LocalExtern;
226  break;
227 
229  // Operator lookup is its own crazy thing; it is not the same
230  // as (e.g.) looking up an operator name for redeclaration.
231  assert(!Redeclaration && "cannot do redeclaration operator lookup");
233  break;
234 
235  case Sema::LookupTagName:
236  if (CPlusPlus) {
237  IDNS = Decl::IDNS_Type;
238 
239  // When looking for a redeclaration of a tag name, we add:
240  // 1) TagFriend to find undeclared friend decls
241  // 2) Namespace because they can't "overload" with tag decls.
242  // 3) Tag because it includes class templates, which can't
243  // "overload" with tag decls.
244  if (Redeclaration)
246  } else {
247  IDNS = Decl::IDNS_Tag;
248  }
249  break;
250 
251  case Sema::LookupLabel:
252  IDNS = Decl::IDNS_Label;
253  break;
254 
256  IDNS = Decl::IDNS_Member;
257  if (CPlusPlus)
259  break;
260 
263  break;
264 
266  IDNS = Decl::IDNS_Namespace;
267  break;
268 
270  assert(Redeclaration && "should only be used for redecl lookup");
274  break;
275 
278  break;
279 
282  break;
283 
284  case Sema::LookupAnyName:
287  | Decl::IDNS_Type;
288  break;
289  }
290  return IDNS;
291 }
292 
293 void LookupResult::configure() {
294  IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
295  isForRedeclaration());
296 
297  // If we're looking for one of the allocation or deallocation
298  // operators, make sure that the implicitly-declared new and delete
299  // operators can be found.
300  switch (NameInfo.getName().getCXXOverloadedOperator()) {
301  case OO_New:
302  case OO_Delete:
303  case OO_Array_New:
304  case OO_Array_Delete:
305  getSema().DeclareGlobalNewDelete();
306  break;
307 
308  default:
309  break;
310  }
311 
312  // Compiler builtins are always visible, regardless of where they end
313  // up being declared.
314  if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
315  if (unsigned BuiltinID = Id->getBuiltinID()) {
316  if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
317  AllowHidden = true;
318  }
319  }
320 }
321 
322 bool LookupResult::sanity() const {
323  // This function is never called by NDEBUG builds.
324  assert(ResultKind != NotFound || Decls.size() == 0);
325  assert(ResultKind != Found || Decls.size() == 1);
326  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
327  (Decls.size() == 1 &&
328  isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
329  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
330  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
331  (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
332  Ambiguity == AmbiguousBaseSubobjectTypes)));
333  assert((Paths != nullptr) == (ResultKind == Ambiguous &&
334  (Ambiguity == AmbiguousBaseSubobjectTypes ||
335  Ambiguity == AmbiguousBaseSubobjects)));
336  return true;
337 }
338 
339 // Necessary because CXXBasePaths is not complete in Sema.h
340 void LookupResult::deletePaths(CXXBasePaths *Paths) {
341  delete Paths;
342 }
343 
344 /// Get a representative context for a declaration such that two declarations
345 /// will have the same context if they were found within the same scope.
347  // For function-local declarations, use that function as the context. This
348  // doesn't account for scopes within the function; the caller must deal with
349  // those.
351  if (DC->isFunctionOrMethod())
352  return DC;
353 
354  // Otherwise, look at the semantic context of the declaration. The
355  // declaration must have been found there.
356  return D->getDeclContext()->getRedeclContext();
357 }
358 
359 /// \brief Determine whether \p D is a better lookup result than \p Existing,
360 /// given that they declare the same entity.
362  NamedDecl *D, NamedDecl *Existing) {
363  // When looking up redeclarations of a using declaration, prefer a using
364  // shadow declaration over any other declaration of the same entity.
365  if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
366  !isa<UsingShadowDecl>(Existing))
367  return true;
368 
369  auto *DUnderlying = D->getUnderlyingDecl();
370  auto *EUnderlying = Existing->getUnderlyingDecl();
371 
372  // If they have different underlying declarations, prefer a typedef over the
373  // original type (this happens when two type declarations denote the same
374  // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
375  // might carry additional semantic information, such as an alignment override.
376  // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
377  // declaration over a typedef.
378  if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
379  assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
380  bool HaveTag = isa<TagDecl>(EUnderlying);
381  bool WantTag = Kind == Sema::LookupTagName;
382  return HaveTag != WantTag;
383  }
384 
385  // Pick the function with more default arguments.
386  // FIXME: In the presence of ambiguous default arguments, we should keep both,
387  // so we can diagnose the ambiguity if the default argument is needed.
388  // See C++ [over.match.best]p3.
389  if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
390  auto *EFD = cast<FunctionDecl>(EUnderlying);
391  unsigned DMin = DFD->getMinRequiredArguments();
392  unsigned EMin = EFD->getMinRequiredArguments();
393  // If D has more default arguments, it is preferred.
394  if (DMin != EMin)
395  return DMin < EMin;
396  // FIXME: When we track visibility for default function arguments, check
397  // that we pick the declaration with more visible default arguments.
398  }
399 
400  // Pick the template with more default template arguments.
401  if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
402  auto *ETD = cast<TemplateDecl>(EUnderlying);
403  unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
404  unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
405  // If D has more default arguments, it is preferred. Note that default
406  // arguments (and their visibility) is monotonically increasing across the
407  // redeclaration chain, so this is a quick proxy for "is more recent".
408  if (DMin != EMin)
409  return DMin < EMin;
410  // If D has more *visible* default arguments, it is preferred. Note, an
411  // earlier default argument being visible does not imply that a later
412  // default argument is visible, so we can't just check the first one.
413  for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
414  I != N; ++I) {
416  ETD->getTemplateParameters()->getParam(I)) &&
418  DTD->getTemplateParameters()->getParam(I)))
419  return true;
420  }
421  }
422 
423  // VarDecl can have incomplete array types, prefer the one with more complete
424  // array type.
425  if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
426  VarDecl *EVD = cast<VarDecl>(EUnderlying);
427  if (EVD->getType()->isIncompleteType() &&
428  !DVD->getType()->isIncompleteType()) {
429  // Prefer the decl with a more complete type if visible.
430  return S.isVisible(DVD);
431  }
432  return false; // Avoid picking up a newer decl, just because it was newer.
433  }
434 
435  // For most kinds of declaration, it doesn't really matter which one we pick.
436  if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
437  // If the existing declaration is hidden, prefer the new one. Otherwise,
438  // keep what we've got.
439  return !S.isVisible(Existing);
440  }
441 
442  // Pick the newer declaration; it might have a more precise type.
443  for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
444  Prev = Prev->getPreviousDecl())
445  if (Prev == EUnderlying)
446  return true;
447  return false;
448 }
449 
450 /// Determine whether \p D can hide a tag declaration.
451 static bool canHideTag(NamedDecl *D) {
452  // C++ [basic.scope.declarative]p4:
453  // Given a set of declarations in a single declarative region [...]
454  // exactly one declaration shall declare a class name or enumeration name
455  // that is not a typedef name and the other declarations shall all refer to
456  // the same variable, non-static data member, or enumerator, or all refer
457  // to functions and function templates; in this case the class name or
458  // enumeration name is hidden.
459  // C++ [basic.scope.hiding]p2:
460  // A class name or enumeration name can be hidden by the name of a
461  // variable, data member, function, or enumerator declared in the same
462  // scope.
463  // An UnresolvedUsingValueDecl always instantiates to one of these.
464  D = D->getUnderlyingDecl();
465  return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
466  isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
467  isa<UnresolvedUsingValueDecl>(D);
468 }
469 
470 /// Resolves the result kind of this lookup.
472  unsigned N = Decls.size();
473 
474  // Fast case: no possible ambiguity.
475  if (N == 0) {
476  assert(ResultKind == NotFound ||
477  ResultKind == NotFoundInCurrentInstantiation);
478  return;
479  }
480 
481  // If there's a single decl, we need to examine it to decide what
482  // kind of lookup this is.
483  if (N == 1) {
484  NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
485  if (isa<FunctionTemplateDecl>(D))
486  ResultKind = FoundOverloaded;
487  else if (isa<UnresolvedUsingValueDecl>(D))
488  ResultKind = FoundUnresolvedValue;
489  return;
490  }
491 
492  // Don't do any extra resolution if we've already resolved as ambiguous.
493  if (ResultKind == Ambiguous) return;
494 
495  llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
496  llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
497 
498  bool Ambiguous = false;
499  bool HasTag = false, HasFunction = false;
500  bool HasFunctionTemplate = false, HasUnresolved = false;
501  NamedDecl *HasNonFunction = nullptr;
502 
503  llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
504 
505  unsigned UniqueTagIndex = 0;
506 
507  unsigned I = 0;
508  while (I < N) {
509  NamedDecl *D = Decls[I]->getUnderlyingDecl();
510  D = cast<NamedDecl>(D->getCanonicalDecl());
511 
512  // Ignore an invalid declaration unless it's the only one left.
513  if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
514  Decls[I] = Decls[--N];
515  continue;
516  }
517 
518  llvm::Optional<unsigned> ExistingI;
519 
520  // Redeclarations of types via typedef can occur both within a scope
521  // and, through using declarations and directives, across scopes. There is
522  // no ambiguity if they all refer to the same type, so unique based on the
523  // canonical type.
524  if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
525  QualType T = getSema().Context.getTypeDeclType(TD);
526  auto UniqueResult = UniqueTypes.insert(
527  std::make_pair(getSema().Context.getCanonicalType(T), I));
528  if (!UniqueResult.second) {
529  // The type is not unique.
530  ExistingI = UniqueResult.first->second;
531  }
532  }
533 
534  // For non-type declarations, check for a prior lookup result naming this
535  // canonical declaration.
536  if (!ExistingI) {
537  auto UniqueResult = Unique.insert(std::make_pair(D, I));
538  if (!UniqueResult.second) {
539  // We've seen this entity before.
540  ExistingI = UniqueResult.first->second;
541  }
542  }
543 
544  if (ExistingI) {
545  // This is not a unique lookup result. Pick one of the results and
546  // discard the other.
547  if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
548  Decls[*ExistingI]))
549  Decls[*ExistingI] = Decls[I];
550  Decls[I] = Decls[--N];
551  continue;
552  }
553 
554  // Otherwise, do some decl type analysis and then continue.
555 
556  if (isa<UnresolvedUsingValueDecl>(D)) {
557  HasUnresolved = true;
558  } else if (isa<TagDecl>(D)) {
559  if (HasTag)
560  Ambiguous = true;
561  UniqueTagIndex = I;
562  HasTag = true;
563  } else if (isa<FunctionTemplateDecl>(D)) {
564  HasFunction = true;
565  HasFunctionTemplate = true;
566  } else if (isa<FunctionDecl>(D)) {
567  HasFunction = true;
568  } else {
569  if (HasNonFunction) {
570  // If we're about to create an ambiguity between two declarations that
571  // are equivalent, but one is an internal linkage declaration from one
572  // module and the other is an internal linkage declaration from another
573  // module, just skip it.
574  if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
575  D)) {
576  EquivalentNonFunctions.push_back(D);
577  Decls[I] = Decls[--N];
578  continue;
579  }
580 
581  Ambiguous = true;
582  }
583  HasNonFunction = D;
584  }
585  I++;
586  }
587 
588  // C++ [basic.scope.hiding]p2:
589  // A class name or enumeration name can be hidden by the name of
590  // an object, function, or enumerator declared in the same
591  // scope. If a class or enumeration name and an object, function,
592  // or enumerator are declared in the same scope (in any order)
593  // with the same name, the class or enumeration name is hidden
594  // wherever the object, function, or enumerator name is visible.
595  // But it's still an error if there are distinct tag types found,
596  // even if they're not visible. (ref?)
597  if (N > 1 && HideTags && HasTag && !Ambiguous &&
598  (HasFunction || HasNonFunction || HasUnresolved)) {
599  NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
600  if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
601  getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
602  getContextForScopeMatching(OtherDecl)) &&
603  canHideTag(OtherDecl))
604  Decls[UniqueTagIndex] = Decls[--N];
605  else
606  Ambiguous = true;
607  }
608 
609  // FIXME: This diagnostic should really be delayed until we're done with
610  // the lookup result, in case the ambiguity is resolved by the caller.
611  if (!EquivalentNonFunctions.empty() && !Ambiguous)
612  getSema().diagnoseEquivalentInternalLinkageDeclarations(
613  getNameLoc(), HasNonFunction, EquivalentNonFunctions);
614 
615  Decls.set_size(N);
616 
617  if (HasNonFunction && (HasFunction || HasUnresolved))
618  Ambiguous = true;
619 
620  if (Ambiguous)
621  setAmbiguous(LookupResult::AmbiguousReference);
622  else if (HasUnresolved)
624  else if (N > 1 || HasFunctionTemplate)
625  ResultKind = LookupResult::FoundOverloaded;
626  else
627  ResultKind = LookupResult::Found;
628 }
629 
630 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
632  for (I = P.begin(), E = P.end(); I != E; ++I)
633  for (DeclContext::lookup_iterator DI = I->Decls.begin(),
634  DE = I->Decls.end(); DI != DE; ++DI)
635  addDecl(*DI);
636 }
637 
639  Paths = new CXXBasePaths;
640  Paths->swap(P);
641  addDeclsFromBasePaths(*Paths);
642  resolveKind();
643  setAmbiguous(AmbiguousBaseSubobjects);
644 }
645 
647  Paths = new CXXBasePaths;
648  Paths->swap(P);
649  addDeclsFromBasePaths(*Paths);
650  resolveKind();
651  setAmbiguous(AmbiguousBaseSubobjectTypes);
652 }
653 
654 void LookupResult::print(raw_ostream &Out) {
655  Out << Decls.size() << " result(s)";
656  if (isAmbiguous()) Out << ", ambiguous";
657  if (Paths) Out << ", base paths present";
658 
659  for (iterator I = begin(), E = end(); I != E; ++I) {
660  Out << "\n";
661  (*I)->print(Out, 2);
662  }
663 }
664 
665 LLVM_DUMP_METHOD void LookupResult::dump() {
666  llvm::errs() << "lookup results for " << getLookupName().getAsString()
667  << ":\n";
668  for (NamedDecl *D : *this)
669  D->dump();
670 }
671 
672 /// \brief Lookup a builtin function, when name lookup would otherwise
673 /// fail.
674 static bool LookupBuiltin(Sema &S, LookupResult &R) {
675  Sema::LookupNameKind NameKind = R.getLookupKind();
676 
677  // If we didn't find a use of this identifier, and if the identifier
678  // corresponds to a compiler builtin, create the decl object for the builtin
679  // now, injecting it into translation unit scope, and return it.
680  if (NameKind == Sema::LookupOrdinaryName ||
683  if (II) {
684  if (S.getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
685  if (II == S.getASTContext().getMakeIntegerSeqName()) {
687  return true;
688  } else if (II == S.getASTContext().getTypePackElementName()) {
690  return true;
691  }
692  }
693 
694  // If this is a builtin on this (or all) targets, create the decl.
695  if (unsigned BuiltinID = II->getBuiltinID()) {
696  // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
697  // library functions like 'malloc'. Instead, we'll just error.
698  if ((S.getLangOpts().CPlusPlus || S.getLangOpts().OpenCL) &&
700  return false;
701 
703  BuiltinID, S.TUScope,
704  R.isForRedeclaration(),
705  R.getNameLoc())) {
706  R.addDecl(D);
707  return true;
708  }
709  }
710  }
711  }
712 
713  return false;
714 }
715 
716 /// \brief Determine whether we can declare a special member function within
717 /// the class at this point.
719  // We need to have a definition for the class.
720  if (!Class->getDefinition() || Class->isDependentContext())
721  return false;
722 
723  // We can't be in the middle of defining the class.
724  return !Class->isBeingDefined();
725 }
726 
729  return;
730 
731  // If the default constructor has not yet been declared, do so now.
732  if (Class->needsImplicitDefaultConstructor())
733  DeclareImplicitDefaultConstructor(Class);
734 
735  // If the copy constructor has not yet been declared, do so now.
736  if (Class->needsImplicitCopyConstructor())
737  DeclareImplicitCopyConstructor(Class);
738 
739  // If the copy assignment operator has not yet been declared, do so now.
740  if (Class->needsImplicitCopyAssignment())
741  DeclareImplicitCopyAssignment(Class);
742 
743  if (getLangOpts().CPlusPlus11) {
744  // If the move constructor has not yet been declared, do so now.
745  if (Class->needsImplicitMoveConstructor())
746  DeclareImplicitMoveConstructor(Class);
747 
748  // If the move assignment operator has not yet been declared, do so now.
749  if (Class->needsImplicitMoveAssignment())
750  DeclareImplicitMoveAssignment(Class);
751  }
752 
753  // If the destructor has not yet been declared, do so now.
754  if (Class->needsImplicitDestructor())
755  DeclareImplicitDestructor(Class);
756 }
757 
758 /// \brief Determine whether this is the name of an implicitly-declared
759 /// special member function.
761  switch (Name.getNameKind()) {
764  return true;
765 
767  return Name.getCXXOverloadedOperator() == OO_Equal;
768 
769  default:
770  break;
771  }
772 
773  return false;
774 }
775 
776 /// \brief If there are any implicit member functions with the given name
777 /// that need to be declared in the given declaration context, do so.
779  DeclarationName Name,
780  SourceLocation Loc,
781  const DeclContext *DC) {
782  if (!DC)
783  return;
784 
785  switch (Name.getNameKind()) {
787  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
788  if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
789  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
790  if (Record->needsImplicitDefaultConstructor())
792  if (Record->needsImplicitCopyConstructor())
794  if (S.getLangOpts().CPlusPlus11 &&
795  Record->needsImplicitMoveConstructor())
797  }
798  break;
799 
801  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
802  if (Record->getDefinition() && Record->needsImplicitDestructor() &&
804  S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
805  break;
806 
808  if (Name.getCXXOverloadedOperator() != OO_Equal)
809  break;
810 
811  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
812  if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
813  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
814  if (Record->needsImplicitCopyAssignment())
816  if (S.getLangOpts().CPlusPlus11 &&
817  Record->needsImplicitMoveAssignment())
819  }
820  }
821  break;
822 
825  break;
826 
827  default:
828  break;
829  }
830 }
831 
832 // Adds all qualifying matches for a name within a decl context to the
833 // given lookup result. Returns true if any matches were found.
834 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
835  bool Found = false;
836 
837  // Lazily declare C++ special member functions.
838  if (S.getLangOpts().CPlusPlus)
840  DC);
841 
842  // Perform lookup into this declaration context.
844  for (NamedDecl *D : DR) {
845  if ((D = R.getAcceptableDecl(D))) {
846  R.addDecl(D);
847  Found = true;
848  }
849  }
850 
851  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
852  return true;
853 
854  if (R.getLookupName().getNameKind()
857  !isa<CXXRecordDecl>(DC))
858  return Found;
859 
860  // C++ [temp.mem]p6:
861  // A specialization of a conversion function template is not found by
862  // name lookup. Instead, any conversion function templates visible in the
863  // context of the use are considered. [...]
864  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
865  if (!Record->isCompleteDefinition())
866  return Found;
867 
868  // For conversion operators, 'operator auto' should only match
869  // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
870  // as a candidate for template substitution.
871  auto *ContainedDeducedType =
873  if (R.getLookupName().getNameKind() ==
875  ContainedDeducedType && ContainedDeducedType->isUndeducedType())
876  return Found;
877 
879  UEnd = Record->conversion_end(); U != UEnd; ++U) {
880  FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
881  if (!ConvTemplate)
882  continue;
883 
884  // When we're performing lookup for the purposes of redeclaration, just
885  // add the conversion function template. When we deduce template
886  // arguments for specializations, we'll end up unifying the return
887  // type of the new declaration with the type of the function template.
888  if (R.isForRedeclaration()) {
889  R.addDecl(ConvTemplate);
890  Found = true;
891  continue;
892  }
893 
894  // C++ [temp.mem]p6:
895  // [...] For each such operator, if argument deduction succeeds
896  // (14.9.2.3), the resulting specialization is used as if found by
897  // name lookup.
898  //
899  // When referencing a conversion function for any purpose other than
900  // a redeclaration (such that we'll be building an expression with the
901  // result), perform template argument deduction and place the
902  // specialization into the result set. We do this to avoid forcing all
903  // callers to perform special deduction for conversion functions.
905  FunctionDecl *Specialization = nullptr;
906 
907  const FunctionProtoType *ConvProto
908  = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
909  assert(ConvProto && "Nonsensical conversion function template type");
910 
911  // Compute the type of the function that we would expect the conversion
912  // function to have, if it were to match the name given.
913  // FIXME: Calling convention!
915  EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
916  EPI.ExceptionSpec = EST_None;
917  QualType ExpectedType
919  None, EPI);
920 
921  // Perform template argument deduction against the type that we would
922  // expect the function to have.
923  if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
924  Specialization, Info)
925  == Sema::TDK_Success) {
926  R.addDecl(Specialization);
927  Found = true;
928  }
929  }
930 
931  return Found;
932 }
933 
934 // Performs C++ unqualified lookup into the given file context.
935 static bool
937  DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
938 
939  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
940 
941  // Perform direct name lookup into the LookupCtx.
942  bool Found = LookupDirect(S, R, NS);
943 
944  // Perform direct name lookup into the namespaces nominated by the
945  // using directives whose common ancestor is this namespace.
946  for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
947  if (LookupDirect(S, R, UUE.getNominatedNamespace()))
948  Found = true;
949 
950  R.resolveKind();
951 
952  return Found;
953 }
954 
956  if (DeclContext *Ctx = S->getEntity())
957  return Ctx->isFileContext();
958  return false;
959 }
960 
961 // Find the next outer declaration context from this scope. This
962 // routine actually returns the semantic outer context, which may
963 // differ from the lexical context (encoded directly in the Scope
964 // stack) when we are parsing a member of a class template. In this
965 // case, the second element of the pair will be true, to indicate that
966 // name lookup should continue searching in this semantic context when
967 // it leaves the current template parameter scope.
968 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
969  DeclContext *DC = S->getEntity();
970  DeclContext *Lexical = nullptr;
971  for (Scope *OuterS = S->getParent(); OuterS;
972  OuterS = OuterS->getParent()) {
973  if (OuterS->getEntity()) {
974  Lexical = OuterS->getEntity();
975  break;
976  }
977  }
978 
979  // C++ [temp.local]p8:
980  // In the definition of a member of a class template that appears
981  // outside of the namespace containing the class template
982  // definition, the name of a template-parameter hides the name of
983  // a member of this namespace.
984  //
985  // Example:
986  //
987  // namespace N {
988  // class C { };
989  //
990  // template<class T> class B {
991  // void f(T);
992  // };
993  // }
994  //
995  // template<class C> void N::B<C>::f(C) {
996  // C b; // C is the template parameter, not N::C
997  // }
998  //
999  // In this example, the lexical context we return is the
1000  // TranslationUnit, while the semantic context is the namespace N.
1001  if (!Lexical || !DC || !S->getParent() ||
1003  return std::make_pair(Lexical, false);
1004 
1005  // Find the outermost template parameter scope.
1006  // For the example, this is the scope for the template parameters of
1007  // template<class C>.
1008  Scope *OutermostTemplateScope = S->getParent();
1009  while (OutermostTemplateScope->getParent() &&
1010  OutermostTemplateScope->getParent()->isTemplateParamScope())
1011  OutermostTemplateScope = OutermostTemplateScope->getParent();
1012 
1013  // Find the namespace context in which the original scope occurs. In
1014  // the example, this is namespace N.
1015  DeclContext *Semantic = DC;
1016  while (!Semantic->isFileContext())
1017  Semantic = Semantic->getParent();
1018 
1019  // Find the declaration context just outside of the template
1020  // parameter scope. This is the context in which the template is
1021  // being lexically declaration (a namespace context). In the
1022  // example, this is the global scope.
1023  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1024  Lexical->Encloses(Semantic))
1025  return std::make_pair(Semantic, true);
1026 
1027  return std::make_pair(Lexical, false);
1028 }
1029 
1030 namespace {
1031 /// An RAII object to specify that we want to find block scope extern
1032 /// declarations.
1033 struct FindLocalExternScope {
1034  FindLocalExternScope(LookupResult &R)
1035  : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1039  }
1040  void restore() {
1041  R.setFindLocalExtern(OldFindLocalExtern);
1042  }
1043  ~FindLocalExternScope() {
1044  restore();
1045  }
1046  LookupResult &R;
1047  bool OldFindLocalExtern;
1048 };
1049 } // end anonymous namespace
1050 
1051 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1052  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1053 
1054  DeclarationName Name = R.getLookupName();
1055  Sema::LookupNameKind NameKind = R.getLookupKind();
1056 
1057  // If this is the name of an implicitly-declared special member function,
1058  // go through the scope stack to implicitly declare
1060  for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1061  if (DeclContext *DC = PreS->getEntity())
1062  DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1063  }
1064 
1065  // Implicitly declare member functions with the name we're looking for, if in
1066  // fact we are in a scope where it matters.
1067 
1068  Scope *Initial = S;
1070  I = IdResolver.begin(Name),
1071  IEnd = IdResolver.end();
1072 
1073  // First we lookup local scope.
1074  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1075  // ...During unqualified name lookup (3.4.1), the names appear as if
1076  // they were declared in the nearest enclosing namespace which contains
1077  // both the using-directive and the nominated namespace.
1078  // [Note: in this context, "contains" means "contains directly or
1079  // indirectly".
1080  //
1081  // For example:
1082  // namespace A { int i; }
1083  // void foo() {
1084  // int i;
1085  // {
1086  // using namespace A;
1087  // ++i; // finds local 'i', A::i appears at global scope
1088  // }
1089  // }
1090  //
1091  UnqualUsingDirectiveSet UDirs(*this);
1092  bool VisitedUsingDirectives = false;
1093  bool LeftStartingScope = false;
1094  DeclContext *OutsideOfTemplateParamDC = nullptr;
1095 
1096  // When performing a scope lookup, we want to find local extern decls.
1097  FindLocalExternScope FindLocals(R);
1098 
1099  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1100  DeclContext *Ctx = S->getEntity();
1101  bool SearchNamespaceScope = true;
1102  // Check whether the IdResolver has anything in this scope.
1103  for (; I != IEnd && S->isDeclScope(*I); ++I) {
1104  if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1105  if (NameKind == LookupRedeclarationWithLinkage &&
1106  !(*I)->isTemplateParameter()) {
1107  // If it's a template parameter, we still find it, so we can diagnose
1108  // the invalid redeclaration.
1109 
1110  // Determine whether this (or a previous) declaration is
1111  // out-of-scope.
1112  if (!LeftStartingScope && !Initial->isDeclScope(*I))
1113  LeftStartingScope = true;
1114 
1115  // If we found something outside of our starting scope that
1116  // does not have linkage, skip it.
1117  if (LeftStartingScope && !((*I)->hasLinkage())) {
1118  R.setShadowed();
1119  continue;
1120  }
1121  } else {
1122  // We found something in this scope, we should not look at the
1123  // namespace scope
1124  SearchNamespaceScope = false;
1125  }
1126  R.addDecl(ND);
1127  }
1128  }
1129  if (!SearchNamespaceScope) {
1130  R.resolveKind();
1131  if (S->isClassScope())
1132  if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1133  R.setNamingClass(Record);
1134  return true;
1135  }
1136 
1137  if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1138  // C++11 [class.friend]p11:
1139  // If a friend declaration appears in a local class and the name
1140  // specified is an unqualified name, a prior declaration is
1141  // looked up without considering scopes that are outside the
1142  // innermost enclosing non-class scope.
1143  return false;
1144  }
1145 
1146  if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1147  S->getParent() && !S->getParent()->isTemplateParamScope()) {
1148  // We've just searched the last template parameter scope and
1149  // found nothing, so look into the contexts between the
1150  // lexical and semantic declaration contexts returned by
1151  // findOuterContext(). This implements the name lookup behavior
1152  // of C++ [temp.local]p8.
1153  Ctx = OutsideOfTemplateParamDC;
1154  OutsideOfTemplateParamDC = nullptr;
1155  }
1156 
1157  if (Ctx) {
1158  DeclContext *OuterCtx;
1159  bool SearchAfterTemplateScope;
1160  std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1161  if (SearchAfterTemplateScope)
1162  OutsideOfTemplateParamDC = OuterCtx;
1163 
1164  for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1165  // We do not directly look into transparent contexts, since
1166  // those entities will be found in the nearest enclosing
1167  // non-transparent context.
1168  if (Ctx->isTransparentContext())
1169  continue;
1170 
1171  // We do not look directly into function or method contexts,
1172  // since all of the local variables and parameters of the
1173  // function/method are present within the Scope.
1174  if (Ctx->isFunctionOrMethod()) {
1175  // If we have an Objective-C instance method, look for ivars
1176  // in the corresponding interface.
1177  if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1178  if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1179  if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1180  ObjCInterfaceDecl *ClassDeclared;
1181  if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1182  Name.getAsIdentifierInfo(),
1183  ClassDeclared)) {
1184  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1185  R.addDecl(ND);
1186  R.resolveKind();
1187  return true;
1188  }
1189  }
1190  }
1191  }
1192 
1193  continue;
1194  }
1195 
1196  // If this is a file context, we need to perform unqualified name
1197  // lookup considering using directives.
1198  if (Ctx->isFileContext()) {
1199  // If we haven't handled using directives yet, do so now.
1200  if (!VisitedUsingDirectives) {
1201  // Add using directives from this context up to the top level.
1202  for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1203  if (UCtx->isTransparentContext())
1204  continue;
1205 
1206  UDirs.visit(UCtx, UCtx);
1207  }
1208 
1209  // Find the innermost file scope, so we can add using directives
1210  // from local scopes.
1211  Scope *InnermostFileScope = S;
1212  while (InnermostFileScope &&
1213  !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1214  InnermostFileScope = InnermostFileScope->getParent();
1215  UDirs.visitScopeChain(Initial, InnermostFileScope);
1216 
1217  UDirs.done();
1218 
1219  VisitedUsingDirectives = true;
1220  }
1221 
1222  if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1223  R.resolveKind();
1224  return true;
1225  }
1226 
1227  continue;
1228  }
1229 
1230  // Perform qualified name lookup into this context.
1231  // FIXME: In some cases, we know that every name that could be found by
1232  // this qualified name lookup will also be on the identifier chain. For
1233  // example, inside a class without any base classes, we never need to
1234  // perform qualified lookup because all of the members are on top of the
1235  // identifier chain.
1236  if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1237  return true;
1238  }
1239  }
1240  }
1241 
1242  // Stop if we ran out of scopes.
1243  // FIXME: This really, really shouldn't be happening.
1244  if (!S) return false;
1245 
1246  // If we are looking for members, no need to look into global/namespace scope.
1247  if (NameKind == LookupMemberName)
1248  return false;
1249 
1250  // Collect UsingDirectiveDecls in all scopes, and recursively all
1251  // nominated namespaces by those using-directives.
1252  //
1253  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1254  // don't build it for each lookup!
1255  if (!VisitedUsingDirectives) {
1256  UDirs.visitScopeChain(Initial, S);
1257  UDirs.done();
1258  }
1259 
1260  // If we're not performing redeclaration lookup, do not look for local
1261  // extern declarations outside of a function scope.
1262  if (!R.isForRedeclaration())
1263  FindLocals.restore();
1264 
1265  // Lookup namespace scope, and global scope.
1266  // Unqualified name lookup in C++ requires looking into scopes
1267  // that aren't strictly lexical, and therefore we walk through the
1268  // context as well as walking through the scopes.
1269  for (; S; S = S->getParent()) {
1270  // Check whether the IdResolver has anything in this scope.
1271  bool Found = false;
1272  for (; I != IEnd && S->isDeclScope(*I); ++I) {
1273  if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1274  // We found something. Look for anything else in our scope
1275  // with this same name and in an acceptable identifier
1276  // namespace, so that we can construct an overload set if we
1277  // need to.
1278  Found = true;
1279  R.addDecl(ND);
1280  }
1281  }
1282 
1283  if (Found && S->isTemplateParamScope()) {
1284  R.resolveKind();
1285  return true;
1286  }
1287 
1288  DeclContext *Ctx = S->getEntity();
1289  if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1290  S->getParent() && !S->getParent()->isTemplateParamScope()) {
1291  // We've just searched the last template parameter scope and
1292  // found nothing, so look into the contexts between the
1293  // lexical and semantic declaration contexts returned by
1294  // findOuterContext(). This implements the name lookup behavior
1295  // of C++ [temp.local]p8.
1296  Ctx = OutsideOfTemplateParamDC;
1297  OutsideOfTemplateParamDC = nullptr;
1298  }
1299 
1300  if (Ctx) {
1301  DeclContext *OuterCtx;
1302  bool SearchAfterTemplateScope;
1303  std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1304  if (SearchAfterTemplateScope)
1305  OutsideOfTemplateParamDC = OuterCtx;
1306 
1307  for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1308  // We do not directly look into transparent contexts, since
1309  // those entities will be found in the nearest enclosing
1310  // non-transparent context.
1311  if (Ctx->isTransparentContext())
1312  continue;
1313 
1314  // If we have a context, and it's not a context stashed in the
1315  // template parameter scope for an out-of-line definition, also
1316  // look into that context.
1317  if (!(Found && S->isTemplateParamScope())) {
1318  assert(Ctx->isFileContext() &&
1319  "We should have been looking only at file context here already.");
1320 
1321  // Look into context considering using-directives.
1322  if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1323  Found = true;
1324  }
1325 
1326  if (Found) {
1327  R.resolveKind();
1328  return true;
1329  }
1330 
1331  if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1332  return false;
1333  }
1334  }
1335 
1336  if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1337  return false;
1338  }
1339 
1340  return !R.empty();
1341 }
1342 
1344  if (auto *M = getCurrentModule())
1345  Context.mergeDefinitionIntoModule(ND, M);
1346  else
1347  // We're not building a module; just make the definition visible.
1349 
1350  // If ND is a template declaration, make the template parameters
1351  // visible too. They're not (necessarily) within a mergeable DeclContext.
1352  if (auto *TD = dyn_cast<TemplateDecl>(ND))
1353  for (auto *Param : *TD->getTemplateParameters())
1354  makeMergedDefinitionVisible(Param);
1355 }
1356 
1357 /// \brief Find the module in which the given declaration was defined.
1358 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1359  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1360  // If this function was instantiated from a template, the defining module is
1361  // the module containing the pattern.
1362  if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1363  Entity = Pattern;
1364  } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1365  if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1366  Entity = Pattern;
1367  } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1368  if (auto *Pattern = ED->getTemplateInstantiationPattern())
1369  Entity = Pattern;
1370  } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1371  if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1372  Entity = Pattern;
1373  }
1374 
1375  // Walk up to the containing context. That might also have been instantiated
1376  // from a template.
1377  DeclContext *Context = Entity->getLexicalDeclContext();
1378  if (Context->isFileContext())
1379  return S.getOwningModule(Entity);
1380  return getDefiningModule(S, cast<Decl>(Context));
1381 }
1382 
1384  unsigned N = CodeSynthesisContexts.size();
1385  for (unsigned I = CodeSynthesisContextLookupModules.size();
1386  I != N; ++I) {
1387  Module *M = getDefiningModule(*this, CodeSynthesisContexts[I].Entity);
1388  if (M && !LookupModulesCache.insert(M).second)
1389  M = nullptr;
1390  CodeSynthesisContextLookupModules.push_back(M);
1391  }
1392  return LookupModulesCache;
1393 }
1394 
1396  for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
1397  if (isModuleVisible(Merged))
1398  return true;
1399  return false;
1400 }
1401 
1403  // FIXME: When not in local visibility mode, we can't tell the difference
1404  // between a declaration being visible because we merged a local copy of
1405  // the same declaration into it, and it being visible because its owning
1406  // module is visible.
1408  getLangOpts().ModulesLocalVisibility)
1409  return true;
1410  for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
1411  if (Merged->getTopLevelModuleName() == getLangOpts().CurrentModule)
1412  return true;
1413  return false;
1414 }
1415 
1416 template<typename ParmDecl>
1417 static bool
1418 hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1420  if (!D->hasDefaultArgument())
1421  return false;
1422 
1423  while (D) {
1424  auto &DefaultArg = D->getDefaultArgStorage();
1425  if (!DefaultArg.isInherited() && S.isVisible(D))
1426  return true;
1427 
1428  if (!DefaultArg.isInherited() && Modules) {
1429  auto *NonConstD = const_cast<ParmDecl*>(D);
1430  Modules->push_back(S.getOwningModule(NonConstD));
1431  const auto &Merged = S.Context.getModulesWithMergedDefinition(NonConstD);
1432  Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1433  }
1434 
1435  // If there was a previous default argument, maybe its parameter is visible.
1436  D = DefaultArg.getInheritedFrom();
1437  }
1438  return false;
1439 }
1440 
1443  if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1444  return ::hasVisibleDefaultArgument(*this, P, Modules);
1445  if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1446  return ::hasVisibleDefaultArgument(*this, P, Modules);
1447  return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1448  Modules);
1449 }
1450 
1451 template<typename Filter>
1452 static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1454  Filter F) {
1455  for (auto *Redecl : D->redecls()) {
1456  auto *R = cast<NamedDecl>(Redecl);
1457  if (!F(R))
1458  continue;
1459 
1460  if (S.isVisible(R))
1461  return true;
1462 
1463  if (Modules) {
1464  Modules->push_back(R->getOwningModule());
1465  const auto &Merged = S.Context.getModulesWithMergedDefinition(R);
1466  Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1467  }
1468  }
1469 
1470  return false;
1471 }
1472 
1474  const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1475  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1476  if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1477  return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1478  if (auto *FD = dyn_cast<FunctionDecl>(D))
1479  return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1480  if (auto *VD = dyn_cast<VarDecl>(D))
1481  return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1482  llvm_unreachable("unknown explicit specialization kind");
1483  });
1484 }
1485 
1487  const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1488  assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1489  "not a member specialization");
1490  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1491  // If the specialization is declared at namespace scope, then it's a member
1492  // specialization declaration. If it's lexically inside the class
1493  // definition then it was instantiated.
1494  //
1495  // FIXME: This is a hack. There should be a better way to determine this.
1496  // FIXME: What about MS-style explicit specializations declared within a
1497  // class definition?
1498  return D->getLexicalDeclContext()->isFileContext();
1499  });
1500 
1501  return false;
1502 }
1503 
1504 /// \brief Determine whether a declaration is visible to name lookup.
1505 ///
1506 /// This routine determines whether the declaration D is visible in the current
1507 /// lookup context, taking into account the current template instantiation
1508 /// stack. During template instantiation, a declaration is visible if it is
1509 /// visible from a module containing any entity on the template instantiation
1510 /// path (by instantiating a template, you allow it to see the declarations that
1511 /// your module can see, including those later on in your module).
1512 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1513  assert(D->isHidden() && "should not call this: not in slow case");
1514 
1515  Module *DeclModule = SemaRef.getOwningModule(D);
1516  if (!DeclModule) {
1517  // A module-private declaration with no owning module means this is in the
1518  // global module in the C++ Modules TS. This is visible within the same
1519  // translation unit only.
1520  // FIXME: Don't assume that "same translation unit" means the same thing
1521  // as "not from an AST file".
1522  assert(D->isModulePrivate() && "hidden decl has no module");
1523  if (!D->isFromASTFile() || SemaRef.hasMergedDefinitionInCurrentModule(D))
1524  return true;
1525  } else {
1526  // If the owning module is visible, and the decl is not module private,
1527  // then the decl is visible too. (Module private is ignored within the same
1528  // top-level module.)
1529  if (D->isModulePrivate()
1530  ? DeclModule->getTopLevelModuleName() ==
1531  SemaRef.getLangOpts().CurrentModule ||
1533  : SemaRef.isModuleVisible(DeclModule) ||
1534  SemaRef.hasVisibleMergedDefinition(D))
1535  return true;
1536  }
1537 
1538  // Determine whether a decl context is a file context for the purpose of
1539  // visibility. This looks through some (export and linkage spec) transparent
1540  // contexts, but not others (enums).
1541  auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1542  return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1543  isa<ExportDecl>(DC);
1544  };
1545 
1546  // If this declaration is not at namespace scope
1547  // then it is visible if its lexical parent has a visible definition.
1549  if (DC && !IsEffectivelyFileContext(DC)) {
1550  // For a parameter, check whether our current template declaration's
1551  // lexical context is visible, not whether there's some other visible
1552  // definition of it, because parameters aren't "within" the definition.
1553  //
1554  // In C++ we need to check for a visible definition due to ODR merging,
1555  // and in C we must not because each declaration of a function gets its own
1556  // set of declarations for tags in prototype scope.
1557  bool VisibleWithinParent;
1558  if (D->isTemplateParameter() || isa<ParmVarDecl>(D) ||
1559  (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1560  VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1561  else if (D->isModulePrivate()) {
1562  // A module-private declaration is only visible if an enclosing lexical
1563  // parent was merged with another definition in the current module.
1564  VisibleWithinParent = false;
1565  do {
1566  if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1567  VisibleWithinParent = true;
1568  break;
1569  }
1570  DC = DC->getLexicalParent();
1571  } while (!IsEffectivelyFileContext(DC));
1572  } else {
1573  VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1574  }
1575 
1576  if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1577  // FIXME: Do something better in this case.
1578  !SemaRef.getLangOpts().ModulesLocalVisibility) {
1579  // Cache the fact that this declaration is implicitly visible because
1580  // its parent has a visible definition.
1582  }
1583  return VisibleWithinParent;
1584  }
1585 
1586  // FIXME: All uses of DeclModule below this point should also check merged
1587  // modules.
1588  if (!DeclModule)
1589  return false;
1590 
1591  // Find the extra places where we need to look.
1592  llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
1593  if (LookupModules.empty())
1594  return false;
1595 
1596  // If our lookup set contains the decl's module, it's visible.
1597  if (LookupModules.count(DeclModule))
1598  return true;
1599 
1600  // If the declaration isn't exported, it's not visible in any other module.
1601  if (D->isModulePrivate())
1602  return false;
1603 
1604  // Check whether DeclModule is transitively exported to an import of
1605  // the lookup set.
1606  return std::any_of(LookupModules.begin(), LookupModules.end(),
1607  [&](Module *M) { return M->isModuleVisible(DeclModule); });
1608 }
1609 
1610 bool Sema::isVisibleSlow(const NamedDecl *D) {
1611  return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1612 }
1613 
1614 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1615  // FIXME: If there are both visible and hidden declarations, we need to take
1616  // into account whether redeclaration is possible. Example:
1617  //
1618  // Non-imported module:
1619  // int f(T); // #1
1620  // Some TU:
1621  // static int f(U); // #2, not a redeclaration of #1
1622  // int f(T); // #3, finds both, should link with #1 if T != U, but
1623  // // with #2 if T == U; neither should be ambiguous.
1624  for (auto *D : R) {
1625  if (isVisible(D))
1626  return true;
1627  assert(D->isExternallyDeclarable() &&
1628  "should not have hidden, non-externally-declarable result here");
1629  }
1630 
1631  // This function is called once "New" is essentially complete, but before a
1632  // previous declaration is attached. We can't query the linkage of "New" in
1633  // general, because attaching the previous declaration can change the
1634  // linkage of New to match the previous declaration.
1635  //
1636  // However, because we've just determined that there is no *visible* prior
1637  // declaration, we can compute the linkage here. There are two possibilities:
1638  //
1639  // * This is not a redeclaration; it's safe to compute the linkage now.
1640  //
1641  // * This is a redeclaration of a prior declaration that is externally
1642  // redeclarable. In that case, the linkage of the declaration is not
1643  // changed by attaching the prior declaration, because both are externally
1644  // declarable (and thus ExternalLinkage or VisibleNoLinkage).
1645  //
1646  // FIXME: This is subtle and fragile.
1647  return New->isExternallyDeclarable();
1648 }
1649 
1650 /// \brief Retrieve the visible declaration corresponding to D, if any.
1651 ///
1652 /// This routine determines whether the declaration D is visible in the current
1653 /// module, with the current imports. If not, it checks whether any
1654 /// redeclaration of D is visible, and if so, returns that declaration.
1655 ///
1656 /// \returns D, or a visible previous declaration of D, whichever is more recent
1657 /// and visible. If no declaration of D is visible, returns null.
1659  assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1660 
1661  for (auto RD : D->redecls()) {
1662  // Don't bother with extra checks if we already know this one isn't visible.
1663  if (RD == D)
1664  continue;
1665 
1666  auto ND = cast<NamedDecl>(RD);
1667  // FIXME: This is wrong in the case where the previous declaration is not
1668  // visible in the same scope as D. This needs to be done much more
1669  // carefully.
1670  if (LookupResult::isVisible(SemaRef, ND))
1671  return ND;
1672  }
1673 
1674  return nullptr;
1675 }
1676 
1679  assert(!isVisible(D) && "not in slow case");
1680  return hasVisibleDeclarationImpl(*this, D, Modules,
1681  [](const NamedDecl *) { return true; });
1682 }
1683 
1684 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1685  if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1686  // Namespaces are a bit of a special case: we expect there to be a lot of
1687  // redeclarations of some namespaces, all declarations of a namespace are
1688  // essentially interchangeable, all declarations are found by name lookup
1689  // if any is, and namespaces are never looked up during template
1690  // instantiation. So we benefit from caching the check in this case, and
1691  // it is correct to do so.
1692  auto *Key = ND->getCanonicalDecl();
1693  if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1694  return Acceptable;
1695  auto *Acceptable =
1696  isVisible(getSema(), Key) ? Key : findAcceptableDecl(getSema(), Key);
1697  if (Acceptable)
1698  getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1699  return Acceptable;
1700  }
1701 
1702  return findAcceptableDecl(getSema(), D);
1703 }
1704 
1705 /// @brief Perform unqualified name lookup starting from a given
1706 /// scope.
1707 ///
1708 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1709 /// used to find names within the current scope. For example, 'x' in
1710 /// @code
1711 /// int x;
1712 /// int f() {
1713 /// return x; // unqualified name look finds 'x' in the global scope
1714 /// }
1715 /// @endcode
1716 ///
1717 /// Different lookup criteria can find different names. For example, a
1718 /// particular scope can have both a struct and a function of the same
1719 /// name, and each can be found by certain lookup criteria. For more
1720 /// information about lookup criteria, see the documentation for the
1721 /// class LookupCriteria.
1722 ///
1723 /// @param S The scope from which unqualified name lookup will
1724 /// begin. If the lookup criteria permits, name lookup may also search
1725 /// in the parent scopes.
1726 ///
1727 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1728 /// look up and the lookup kind), and is updated with the results of lookup
1729 /// including zero or more declarations and possibly additional information
1730 /// used to diagnose ambiguities.
1731 ///
1732 /// @returns \c true if lookup succeeded and false otherwise.
1733 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1734  DeclarationName Name = R.getLookupName();
1735  if (!Name) return false;
1736 
1737  LookupNameKind NameKind = R.getLookupKind();
1738 
1739  if (!getLangOpts().CPlusPlus) {
1740  // Unqualified name lookup in C/Objective-C is purely lexical, so
1741  // search in the declarations attached to the name.
1742  if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1743  // Find the nearest non-transparent declaration scope.
1744  while (!(S->getFlags() & Scope::DeclScope) ||
1745  (S->getEntity() && S->getEntity()->isTransparentContext()))
1746  S = S->getParent();
1747  }
1748 
1749  // When performing a scope lookup, we want to find local extern decls.
1750  FindLocalExternScope FindLocals(R);
1751 
1752  // Scan up the scope chain looking for a decl that matches this
1753  // identifier that is in the appropriate namespace. This search
1754  // should not take long, as shadowing of names is uncommon, and
1755  // deep shadowing is extremely uncommon.
1756  bool LeftStartingScope = false;
1757 
1758  for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1759  IEnd = IdResolver.end();
1760  I != IEnd; ++I)
1761  if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1762  if (NameKind == LookupRedeclarationWithLinkage) {
1763  // Determine whether this (or a previous) declaration is
1764  // out-of-scope.
1765  if (!LeftStartingScope && !S->isDeclScope(*I))
1766  LeftStartingScope = true;
1767 
1768  // If we found something outside of our starting scope that
1769  // does not have linkage, skip it.
1770  if (LeftStartingScope && !((*I)->hasLinkage())) {
1771  R.setShadowed();
1772  continue;
1773  }
1774  }
1775  else if (NameKind == LookupObjCImplicitSelfParam &&
1776  !isa<ImplicitParamDecl>(*I))
1777  continue;
1778 
1779  R.addDecl(D);
1780 
1781  // Check whether there are any other declarations with the same name
1782  // and in the same scope.
1783  if (I != IEnd) {
1784  // Find the scope in which this declaration was declared (if it
1785  // actually exists in a Scope).
1786  while (S && !S->isDeclScope(D))
1787  S = S->getParent();
1788 
1789  // If the scope containing the declaration is the translation unit,
1790  // then we'll need to perform our checks based on the matching
1791  // DeclContexts rather than matching scopes.
1793  S = nullptr;
1794 
1795  // Compute the DeclContext, if we need it.
1796  DeclContext *DC = nullptr;
1797  if (!S)
1798  DC = (*I)->getDeclContext()->getRedeclContext();
1799 
1800  IdentifierResolver::iterator LastI = I;
1801  for (++LastI; LastI != IEnd; ++LastI) {
1802  if (S) {
1803  // Match based on scope.
1804  if (!S->isDeclScope(*LastI))
1805  break;
1806  } else {
1807  // Match based on DeclContext.
1808  DeclContext *LastDC
1809  = (*LastI)->getDeclContext()->getRedeclContext();
1810  if (!LastDC->Equals(DC))
1811  break;
1812  }
1813 
1814  // If the declaration is in the right namespace and visible, add it.
1815  if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1816  R.addDecl(LastD);
1817  }
1818 
1819  R.resolveKind();
1820  }
1821 
1822  return true;
1823  }
1824  } else {
1825  // Perform C++ unqualified name lookup.
1826  if (CppLookupName(R, S))
1827  return true;
1828  }
1829 
1830  // If we didn't find a use of this identifier, and if the identifier
1831  // corresponds to a compiler builtin, create the decl object for the builtin
1832  // now, injecting it into translation unit scope, and return it.
1833  if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1834  return true;
1835 
1836  // If we didn't find a use of this identifier, the ExternalSource
1837  // may be able to handle the situation.
1838  // Note: some lookup failures are expected!
1839  // See e.g. R.isForRedeclaration().
1840  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1841 }
1842 
1843 /// @brief Perform qualified name lookup in the namespaces nominated by
1844 /// using directives by the given context.
1845 ///
1846 /// C++98 [namespace.qual]p2:
1847 /// Given X::m (where X is a user-declared namespace), or given \::m
1848 /// (where X is the global namespace), let S be the set of all
1849 /// declarations of m in X and in the transitive closure of all
1850 /// namespaces nominated by using-directives in X and its used
1851 /// namespaces, except that using-directives are ignored in any
1852 /// namespace, including X, directly containing one or more
1853 /// declarations of m. No namespace is searched more than once in
1854 /// the lookup of a name. If S is the empty set, the program is
1855 /// ill-formed. Otherwise, if S has exactly one member, or if the
1856 /// context of the reference is a using-declaration
1857 /// (namespace.udecl), S is the required set of declarations of
1858 /// m. Otherwise if the use of m is not one that allows a unique
1859 /// declaration to be chosen from S, the program is ill-formed.
1860 ///
1861 /// C++98 [namespace.qual]p5:
1862 /// During the lookup of a qualified namespace member name, if the
1863 /// lookup finds more than one declaration of the member, and if one
1864 /// declaration introduces a class name or enumeration name and the
1865 /// other declarations either introduce the same object, the same
1866 /// enumerator or a set of functions, the non-type name hides the
1867 /// class or enumeration name if and only if the declarations are
1868 /// from the same namespace; otherwise (the declarations are from
1869 /// different namespaces), the program is ill-formed.
1871  DeclContext *StartDC) {
1872  assert(StartDC->isFileContext() && "start context is not a file context");
1873 
1874  // We have not yet looked into these namespaces, much less added
1875  // their "using-children" to the queue.
1877 
1878  // We have at least added all these contexts to the queue.
1879  llvm::SmallPtrSet<DeclContext*, 8> Visited;
1880  Visited.insert(StartDC);
1881 
1882  // We have already looked into the initial namespace; seed the queue
1883  // with its using-children.
1884  for (auto *I : StartDC->using_directives()) {
1885  NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1886  if (S.isVisible(I) && Visited.insert(ND).second)
1887  Queue.push_back(ND);
1888  }
1889 
1890  // The easiest way to implement the restriction in [namespace.qual]p5
1891  // is to check whether any of the individual results found a tag
1892  // and, if so, to declare an ambiguity if the final result is not
1893  // a tag.
1894  bool FoundTag = false;
1895  bool FoundNonTag = false;
1896 
1898 
1899  bool Found = false;
1900  while (!Queue.empty()) {
1901  NamespaceDecl *ND = Queue.pop_back_val();
1902 
1903  // We go through some convolutions here to avoid copying results
1904  // between LookupResults.
1905  bool UseLocal = !R.empty();
1906  LookupResult &DirectR = UseLocal ? LocalR : R;
1907  bool FoundDirect = LookupDirect(S, DirectR, ND);
1908 
1909  if (FoundDirect) {
1910  // First do any local hiding.
1911  DirectR.resolveKind();
1912 
1913  // If the local result is a tag, remember that.
1914  if (DirectR.isSingleTagDecl())
1915  FoundTag = true;
1916  else
1917  FoundNonTag = true;
1918 
1919  // Append the local results to the total results if necessary.
1920  if (UseLocal) {
1921  R.addAllDecls(LocalR);
1922  LocalR.clear();
1923  }
1924  }
1925 
1926  // If we find names in this namespace, ignore its using directives.
1927  if (FoundDirect) {
1928  Found = true;
1929  continue;
1930  }
1931 
1932  for (auto I : ND->using_directives()) {
1933  NamespaceDecl *Nom = I->getNominatedNamespace();
1934  if (S.isVisible(I) && Visited.insert(Nom).second)
1935  Queue.push_back(Nom);
1936  }
1937  }
1938 
1939  if (Found) {
1940  if (FoundTag && FoundNonTag)
1942  else
1943  R.resolveKind();
1944  }
1945 
1946  return Found;
1947 }
1948 
1949 /// \brief Callback that looks for any member of a class with the given name.
1951  CXXBasePath &Path, DeclarationName Name) {
1952  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1953 
1954  Path.Decls = BaseRecord->lookup(Name);
1955  return !Path.Decls.empty();
1956 }
1957 
1958 /// \brief Determine whether the given set of member declarations contains only
1959 /// static members, nested types, and enumerators.
1960 template<typename InputIterator>
1961 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1962  Decl *D = (*First)->getUnderlyingDecl();
1963  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1964  return true;
1965 
1966  if (isa<CXXMethodDecl>(D)) {
1967  // Determine whether all of the methods are static.
1968  bool AllMethodsAreStatic = true;
1969  for(; First != Last; ++First) {
1970  D = (*First)->getUnderlyingDecl();
1971 
1972  if (!isa<CXXMethodDecl>(D)) {
1973  assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1974  break;
1975  }
1976 
1977  if (!cast<CXXMethodDecl>(D)->isStatic()) {
1978  AllMethodsAreStatic = false;
1979  break;
1980  }
1981  }
1982 
1983  if (AllMethodsAreStatic)
1984  return true;
1985  }
1986 
1987  return false;
1988 }
1989 
1990 /// \brief Perform qualified name lookup into a given context.
1991 ///
1992 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1993 /// names when the context of those names is explicit specified, e.g.,
1994 /// "std::vector" or "x->member", or as part of unqualified name lookup.
1995 ///
1996 /// Different lookup criteria can find different names. For example, a
1997 /// particular scope can have both a struct and a function of the same
1998 /// name, and each can be found by certain lookup criteria. For more
1999 /// information about lookup criteria, see the documentation for the
2000 /// class LookupCriteria.
2001 ///
2002 /// \param R captures both the lookup criteria and any lookup results found.
2003 ///
2004 /// \param LookupCtx The context in which qualified name lookup will
2005 /// search. If the lookup criteria permits, name lookup may also search
2006 /// in the parent contexts or (for C++ classes) base classes.
2007 ///
2008 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2009 /// occurs as part of unqualified name lookup.
2010 ///
2011 /// \returns true if lookup succeeded, false if it failed.
2013  bool InUnqualifiedLookup) {
2014  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2015 
2016  if (!R.getLookupName())
2017  return false;
2018 
2019  // Make sure that the declaration context is complete.
2020  assert((!isa<TagDecl>(LookupCtx) ||
2021  LookupCtx->isDependentContext() ||
2022  cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2023  cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2024  "Declaration context must already be complete!");
2025 
2026  struct QualifiedLookupInScope {
2027  bool oldVal;
2028  DeclContext *Context;
2029  // Set flag in DeclContext informing debugger that we're looking for qualified name
2030  QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2031  oldVal = ctx->setUseQualifiedLookup();
2032  }
2033  ~QualifiedLookupInScope() {
2034  Context->setUseQualifiedLookup(oldVal);
2035  }
2036  } QL(LookupCtx);
2037 
2038  if (LookupDirect(*this, R, LookupCtx)) {
2039  R.resolveKind();
2040  if (isa<CXXRecordDecl>(LookupCtx))
2041  R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2042  return true;
2043  }
2044 
2045  // Don't descend into implied contexts for redeclarations.
2046  // C++98 [namespace.qual]p6:
2047  // In a declaration for a namespace member in which the
2048  // declarator-id is a qualified-id, given that the qualified-id
2049  // for the namespace member has the form
2050  // nested-name-specifier unqualified-id
2051  // the unqualified-id shall name a member of the namespace
2052  // designated by the nested-name-specifier.
2053  // See also [class.mfct]p5 and [class.static.data]p2.
2054  if (R.isForRedeclaration())
2055  return false;
2056 
2057  // If this is a namespace, look it up in the implied namespaces.
2058  if (LookupCtx->isFileContext())
2059  return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2060 
2061  // If this isn't a C++ class, we aren't allowed to look into base
2062  // classes, we're done.
2063  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2064  if (!LookupRec || !LookupRec->getDefinition())
2065  return false;
2066 
2067  // If we're performing qualified name lookup into a dependent class,
2068  // then we are actually looking into a current instantiation. If we have any
2069  // dependent base classes, then we either have to delay lookup until
2070  // template instantiation time (at which point all bases will be available)
2071  // or we have to fail.
2072  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2073  LookupRec->hasAnyDependentBases()) {
2075  return false;
2076  }
2077 
2078  // Perform lookup into our base classes.
2079  CXXBasePaths Paths;
2080  Paths.setOrigin(LookupRec);
2081 
2082  // Look for this member in our base classes
2083  bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2084  DeclarationName Name) = nullptr;
2085  switch (R.getLookupKind()) {
2086  case LookupObjCImplicitSelfParam:
2087  case LookupOrdinaryName:
2088  case LookupMemberName:
2089  case LookupRedeclarationWithLinkage:
2090  case LookupLocalFriendName:
2091  BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2092  break;
2093 
2094  case LookupTagName:
2095  BaseCallback = &CXXRecordDecl::FindTagMember;
2096  break;
2097 
2098  case LookupAnyName:
2099  BaseCallback = &LookupAnyMember;
2100  break;
2101 
2102  case LookupOMPReductionName:
2103  BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2104  break;
2105 
2106  case LookupUsingDeclName:
2107  // This lookup is for redeclarations only.
2108 
2109  case LookupOperatorName:
2110  case LookupNamespaceName:
2111  case LookupObjCProtocolName:
2112  case LookupLabel:
2113  // These lookups will never find a member in a C++ class (or base class).
2114  return false;
2115 
2116  case LookupNestedNameSpecifierName:
2118  break;
2119  }
2120 
2121  DeclarationName Name = R.getLookupName();
2122  if (!LookupRec->lookupInBases(
2123  [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2124  return BaseCallback(Specifier, Path, Name);
2125  },
2126  Paths))
2127  return false;
2128 
2129  R.setNamingClass(LookupRec);
2130 
2131  // C++ [class.member.lookup]p2:
2132  // [...] If the resulting set of declarations are not all from
2133  // sub-objects of the same type, or the set has a nonstatic member
2134  // and includes members from distinct sub-objects, there is an
2135  // ambiguity and the program is ill-formed. Otherwise that set is
2136  // the result of the lookup.
2137  QualType SubobjectType;
2138  int SubobjectNumber = 0;
2139  AccessSpecifier SubobjectAccess = AS_none;
2140 
2141  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2142  Path != PathEnd; ++Path) {
2143  const CXXBasePathElement &PathElement = Path->back();
2144 
2145  // Pick the best (i.e. most permissive i.e. numerically lowest) access
2146  // across all paths.
2147  SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2148 
2149  // Determine whether we're looking at a distinct sub-object or not.
2150  if (SubobjectType.isNull()) {
2151  // This is the first subobject we've looked at. Record its type.
2152  SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2153  SubobjectNumber = PathElement.SubobjectNumber;
2154  continue;
2155  }
2156 
2157  if (SubobjectType
2158  != Context.getCanonicalType(PathElement.Base->getType())) {
2159  // We found members of the given name in two subobjects of
2160  // different types. If the declaration sets aren't the same, this
2161  // lookup is ambiguous.
2162  if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2163  CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2164  DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2165  DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2166 
2167  while (FirstD != FirstPath->Decls.end() &&
2168  CurrentD != Path->Decls.end()) {
2169  if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
2170  (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
2171  break;
2172 
2173  ++FirstD;
2174  ++CurrentD;
2175  }
2176 
2177  if (FirstD == FirstPath->Decls.end() &&
2178  CurrentD == Path->Decls.end())
2179  continue;
2180  }
2181 
2183  return true;
2184  }
2185 
2186  if (SubobjectNumber != PathElement.SubobjectNumber) {
2187  // We have a different subobject of the same type.
2188 
2189  // C++ [class.member.lookup]p5:
2190  // A static member, a nested type or an enumerator defined in
2191  // a base class T can unambiguously be found even if an object
2192  // has more than one base class subobject of type T.
2193  if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2194  continue;
2195 
2196  // We have found a nonstatic member name in multiple, distinct
2197  // subobjects. Name lookup is ambiguous.
2198  R.setAmbiguousBaseSubobjects(Paths);
2199  return true;
2200  }
2201  }
2202 
2203  // Lookup in a base class succeeded; return these results.
2204 
2205  for (auto *D : Paths.front().Decls) {
2206  AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2207  D->getAccess());
2208  R.addDecl(D, AS);
2209  }
2210  R.resolveKind();
2211  return true;
2212 }
2213 
2214 /// \brief Performs qualified name lookup or special type of lookup for
2215 /// "__super::" scope specifier.
2216 ///
2217 /// This routine is a convenience overload meant to be called from contexts
2218 /// that need to perform a qualified name lookup with an optional C++ scope
2219 /// specifier that might require special kind of lookup.
2220 ///
2221 /// \param R captures both the lookup criteria and any lookup results found.
2222 ///
2223 /// \param LookupCtx The context in which qualified name lookup will
2224 /// search.
2225 ///
2226 /// \param SS An optional C++ scope-specifier.
2227 ///
2228 /// \returns true if lookup succeeded, false if it failed.
2230  CXXScopeSpec &SS) {
2231  auto *NNS = SS.getScopeRep();
2232  if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2233  return LookupInSuper(R, NNS->getAsRecordDecl());
2234  else
2235 
2236  return LookupQualifiedName(R, LookupCtx);
2237 }
2238 
2239 /// @brief Performs name lookup for a name that was parsed in the
2240 /// source code, and may contain a C++ scope specifier.
2241 ///
2242 /// This routine is a convenience routine meant to be called from
2243 /// contexts that receive a name and an optional C++ scope specifier
2244 /// (e.g., "N::M::x"). It will then perform either qualified or
2245 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2246 /// respectively) on the given name and return those results. It will
2247 /// perform a special type of lookup for "__super::" scope specifier.
2248 ///
2249 /// @param S The scope from which unqualified name lookup will
2250 /// begin.
2251 ///
2252 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2253 ///
2254 /// @param EnteringContext Indicates whether we are going to enter the
2255 /// context of the scope-specifier SS (if present).
2256 ///
2257 /// @returns True if any decls were found (but possibly ambiguous)
2259  bool AllowBuiltinCreation, bool EnteringContext) {
2260  if (SS && SS->isInvalid()) {
2261  // When the scope specifier is invalid, don't even look for
2262  // anything.
2263  return false;
2264  }
2265 
2266  if (SS && SS->isSet()) {
2267  NestedNameSpecifier *NNS = SS->getScopeRep();
2268  if (NNS->getKind() == NestedNameSpecifier::Super)
2269  return LookupInSuper(R, NNS->getAsRecordDecl());
2270 
2271  if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2272  // We have resolved the scope specifier to a particular declaration
2273  // contex, and will perform name lookup in that context.
2274  if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2275  return false;
2276 
2277  R.setContextRange(SS->getRange());
2278  return LookupQualifiedName(R, DC);
2279  }
2280 
2281  // We could not resolve the scope specified to a specific declaration
2282  // context, which means that SS refers to an unknown specialization.
2283  // Name lookup can't find anything in this case.
2285  R.setContextRange(SS->getRange());
2286  return false;
2287  }
2288 
2289  // Perform unqualified name lookup starting in the given scope.
2290  return LookupName(R, S, AllowBuiltinCreation);
2291 }
2292 
2293 /// \brief Perform qualified name lookup into all base classes of the given
2294 /// class.
2295 ///
2296 /// \param R captures both the lookup criteria and any lookup results found.
2297 ///
2298 /// \param Class The context in which qualified name lookup will
2299 /// search. Name lookup will search in all base classes merging the results.
2300 ///
2301 /// @returns True if any decls were found (but possibly ambiguous)
2303  // The access-control rules we use here are essentially the rules for
2304  // doing a lookup in Class that just magically skipped the direct
2305  // members of Class itself. That is, the naming class is Class, and the
2306  // access includes the access of the base.
2307  for (const auto &BaseSpec : Class->bases()) {
2308  CXXRecordDecl *RD = cast<CXXRecordDecl>(
2309  BaseSpec.getType()->castAs<RecordType>()->getDecl());
2310  LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2311  Result.setBaseObjectType(Context.getRecordType(Class));
2312  LookupQualifiedName(Result, RD);
2313 
2314  // Copy the lookup results into the target, merging the base's access into
2315  // the path access.
2316  for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2317  R.addDecl(I.getDecl(),
2318  CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2319  I.getAccess()));
2320  }
2321 
2322  Result.suppressDiagnostics();
2323  }
2324 
2325  R.resolveKind();
2326  R.setNamingClass(Class);
2327 
2328  return !R.empty();
2329 }
2330 
2331 /// \brief Produce a diagnostic describing the ambiguity that resulted
2332 /// from name lookup.
2333 ///
2334 /// \param Result The result of the ambiguous lookup to be diagnosed.
2336  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2337 
2338  DeclarationName Name = Result.getLookupName();
2339  SourceLocation NameLoc = Result.getNameLoc();
2340  SourceRange LookupRange = Result.getContextRange();
2341 
2342  switch (Result.getAmbiguityKind()) {
2344  CXXBasePaths *Paths = Result.getBasePaths();
2345  QualType SubobjectType = Paths->front().back().Base->getType();
2346  Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2347  << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2348  << LookupRange;
2349 
2350  DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2351  while (isa<CXXMethodDecl>(*Found) &&
2352  cast<CXXMethodDecl>(*Found)->isStatic())
2353  ++Found;
2354 
2355  Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2356  break;
2357  }
2358 
2360  Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2361  << Name << LookupRange;
2362 
2363  CXXBasePaths *Paths = Result.getBasePaths();
2364  std::set<Decl *> DeclsPrinted;
2365  for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2366  PathEnd = Paths->end();
2367  Path != PathEnd; ++Path) {
2368  Decl *D = Path->Decls.front();
2369  if (DeclsPrinted.insert(D).second)
2370  Diag(D->getLocation(), diag::note_ambiguous_member_found);
2371  }
2372  break;
2373  }
2374 
2376  Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2377 
2378  llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2379 
2380  for (auto *D : Result)
2381  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2382  TagDecls.insert(TD);
2383  Diag(TD->getLocation(), diag::note_hidden_tag);
2384  }
2385 
2386  for (auto *D : Result)
2387  if (!isa<TagDecl>(D))
2388  Diag(D->getLocation(), diag::note_hiding_object);
2389 
2390  // For recovery purposes, go ahead and implement the hiding.
2391  LookupResult::Filter F = Result.makeFilter();
2392  while (F.hasNext()) {
2393  if (TagDecls.count(F.next()))
2394  F.erase();
2395  }
2396  F.done();
2397  break;
2398  }
2399 
2401  Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2402 
2403  for (auto *D : Result)
2404  Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2405  break;
2406  }
2407  }
2408 }
2409 
2410 namespace {
2411  struct AssociatedLookup {
2412  AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2413  Sema::AssociatedNamespaceSet &Namespaces,
2414  Sema::AssociatedClassSet &Classes)
2415  : S(S), Namespaces(Namespaces), Classes(Classes),
2416  InstantiationLoc(InstantiationLoc) {
2417  }
2418 
2419  Sema &S;
2420  Sema::AssociatedNamespaceSet &Namespaces;
2421  Sema::AssociatedClassSet &Classes;
2422  SourceLocation InstantiationLoc;
2423  };
2424 } // end anonymous namespace
2425 
2426 static void
2427 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2428 
2430  DeclContext *Ctx) {
2431  // Add the associated namespace for this class.
2432 
2433  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
2434  // be a locally scoped record.
2435 
2436  // We skip out of inline namespaces. The innermost non-inline namespace
2437  // contains all names of all its nested inline namespaces anyway, so we can
2438  // replace the entire inline namespace tree with its root.
2439  while (Ctx->isRecord() || Ctx->isTransparentContext() ||
2440  Ctx->isInlineNamespace())
2441  Ctx = Ctx->getParent();
2442 
2443  if (Ctx->isFileContext())
2444  Namespaces.insert(Ctx->getPrimaryContext());
2445 }
2446 
2447 // \brief Add the associated classes and namespaces for argument-dependent
2448 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
2449 static void
2450 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2451  const TemplateArgument &Arg) {
2452  // C++ [basic.lookup.koenig]p2, last bullet:
2453  // -- [...] ;
2454  switch (Arg.getKind()) {
2456  break;
2457 
2459  // [...] the namespaces and classes associated with the types of the
2460  // template arguments provided for template type parameters (excluding
2461  // template template parameters)
2463  break;
2464 
2467  // [...] the namespaces in which any template template arguments are
2468  // defined; and the classes in which any member templates used as
2469  // template template arguments are defined.
2471  if (ClassTemplateDecl *ClassTemplate
2472  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2473  DeclContext *Ctx = ClassTemplate->getDeclContext();
2474  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2475  Result.Classes.insert(EnclosingClass);
2476  // Add the associated namespace for this class.
2477  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2478  }
2479  break;
2480  }
2481 
2486  // [Note: non-type template arguments do not contribute to the set of
2487  // associated namespaces. ]
2488  break;
2489 
2491  for (const auto &P : Arg.pack_elements())
2493  break;
2494  }
2495 }
2496 
2497 // \brief Add the associated classes and namespaces for
2498 // argument-dependent lookup with an argument of class type
2499 // (C++ [basic.lookup.koenig]p2).
2500 static void
2501 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2502  CXXRecordDecl *Class) {
2503 
2504  // Just silently ignore anything whose name is __va_list_tag.
2505  if (Class->getDeclName() == Result.S.VAListTagName)
2506  return;
2507 
2508  // C++ [basic.lookup.koenig]p2:
2509  // [...]
2510  // -- If T is a class type (including unions), its associated
2511  // classes are: the class itself; the class of which it is a
2512  // member, if any; and its direct and indirect base
2513  // classes. Its associated namespaces are the namespaces in
2514  // which its associated classes are defined.
2515 
2516  // Add the class of which it is a member, if any.
2517  DeclContext *Ctx = Class->getDeclContext();
2518  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2519  Result.Classes.insert(EnclosingClass);
2520  // Add the associated namespace for this class.
2521  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2522 
2523  // Add the class itself. If we've already seen this class, we don't
2524  // need to visit base classes.
2525  //
2526  // FIXME: That's not correct, we may have added this class only because it
2527  // was the enclosing class of another class, and in that case we won't have
2528  // added its base classes yet.
2529  if (!Result.Classes.insert(Class))
2530  return;
2531 
2532  // -- If T is a template-id, its associated namespaces and classes are
2533  // the namespace in which the template is defined; for member
2534  // templates, the member template's class; the namespaces and classes
2535  // associated with the types of the template arguments provided for
2536  // template type parameters (excluding template template parameters); the
2537  // namespaces in which any template template arguments are defined; and
2538  // the classes in which any member templates used as template template
2539  // arguments are defined. [Note: non-type template arguments do not
2540  // contribute to the set of associated namespaces. ]
2542  = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2543  DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2544  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2545  Result.Classes.insert(EnclosingClass);
2546  // Add the associated namespace for this class.
2547  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2548 
2549  const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2550  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2551  addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2552  }
2553 
2554  // Only recurse into base classes for complete types.
2555  if (!Result.S.isCompleteType(Result.InstantiationLoc,
2556  Result.S.Context.getRecordType(Class)))
2557  return;
2558 
2559  // Add direct and indirect base classes along with their associated
2560  // namespaces.
2562  Bases.push_back(Class);
2563  while (!Bases.empty()) {
2564  // Pop this class off the stack.
2565  Class = Bases.pop_back_val();
2566 
2567  // Visit the base classes.
2568  for (const auto &Base : Class->bases()) {
2569  const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2570  // In dependent contexts, we do ADL twice, and the first time around,
2571  // the base type might be a dependent TemplateSpecializationType, or a
2572  // TemplateTypeParmType. If that happens, simply ignore it.
2573  // FIXME: If we want to support export, we probably need to add the
2574  // namespace of the template in a TemplateSpecializationType, or even
2575  // the classes and namespaces of known non-dependent arguments.
2576  if (!BaseType)
2577  continue;
2578  CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2579  if (Result.Classes.insert(BaseDecl)) {
2580  // Find the associated namespace for this base class.
2581  DeclContext *BaseCtx = BaseDecl->getDeclContext();
2582  CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2583 
2584  // Make sure we visit the bases of this base class.
2585  if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2586  Bases.push_back(BaseDecl);
2587  }
2588  }
2589  }
2590 }
2591 
2592 // \brief Add the associated classes and namespaces for
2593 // argument-dependent lookup with an argument of type T
2594 // (C++ [basic.lookup.koenig]p2).
2595 static void
2596 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2597  // C++ [basic.lookup.koenig]p2:
2598  //
2599  // For each argument type T in the function call, there is a set
2600  // of zero or more associated namespaces and a set of zero or more
2601  // associated classes to be considered. The sets of namespaces and
2602  // classes is determined entirely by the types of the function
2603  // arguments (and the namespace of any template template
2604  // argument). Typedef names and using-declarations used to specify
2605  // the types do not contribute to this set. The sets of namespaces
2606  // and classes are determined in the following way:
2607 
2609  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2610 
2611  while (true) {
2612  switch (T->getTypeClass()) {
2613 
2614 #define TYPE(Class, Base)
2615 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2616 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2617 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2618 #define ABSTRACT_TYPE(Class, Base)
2619 #include "clang/AST/TypeNodes.def"
2620  // T is canonical. We can also ignore dependent types because
2621  // we don't need to do ADL at the definition point, but if we
2622  // wanted to implement template export (or if we find some other
2623  // use for associated classes and namespaces...) this would be
2624  // wrong.
2625  break;
2626 
2627  // -- If T is a pointer to U or an array of U, its associated
2628  // namespaces and classes are those associated with U.
2629  case Type::Pointer:
2630  T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2631  continue;
2632  case Type::ConstantArray:
2633  case Type::IncompleteArray:
2634  case Type::VariableArray:
2635  T = cast<ArrayType>(T)->getElementType().getTypePtr();
2636  continue;
2637 
2638  // -- If T is a fundamental type, its associated sets of
2639  // namespaces and classes are both empty.
2640  case Type::Builtin:
2641  break;
2642 
2643  // -- If T is a class type (including unions), its associated
2644  // classes are: the class itself; the class of which it is a
2645  // member, if any; and its direct and indirect base
2646  // classes. Its associated namespaces are the namespaces in
2647  // which its associated classes are defined.
2648  case Type::Record: {
2649  CXXRecordDecl *Class =
2650  cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2651  addAssociatedClassesAndNamespaces(Result, Class);
2652  break;
2653  }
2654 
2655  // -- If T is an enumeration type, its associated namespace is
2656  // the namespace in which it is defined. If it is class
2657  // member, its associated class is the member's class; else
2658  // it has no associated class.
2659  case Type::Enum: {
2660  EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2661 
2662  DeclContext *Ctx = Enum->getDeclContext();
2663  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2664  Result.Classes.insert(EnclosingClass);
2665 
2666  // Add the associated namespace for this class.
2667  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2668 
2669  break;
2670  }
2671 
2672  // -- If T is a function type, its associated namespaces and
2673  // classes are those associated with the function parameter
2674  // types and those associated with the return type.
2675  case Type::FunctionProto: {
2676  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2677  for (const auto &Arg : Proto->param_types())
2678  Queue.push_back(Arg.getTypePtr());
2679  // fallthrough
2680  LLVM_FALLTHROUGH;
2681  }
2682  case Type::FunctionNoProto: {
2683  const FunctionType *FnType = cast<FunctionType>(T);
2684  T = FnType->getReturnType().getTypePtr();
2685  continue;
2686  }
2687 
2688  // -- If T is a pointer to a member function of a class X, its
2689  // associated namespaces and classes are those associated
2690  // with the function parameter types and return type,
2691  // together with those associated with X.
2692  //
2693  // -- If T is a pointer to a data member of class X, its
2694  // associated namespaces and classes are those associated
2695  // with the member type together with those associated with
2696  // X.
2697  case Type::MemberPointer: {
2698  const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2699 
2700  // Queue up the class type into which this points.
2701  Queue.push_back(MemberPtr->getClass());
2702 
2703  // And directly continue with the pointee type.
2704  T = MemberPtr->getPointeeType().getTypePtr();
2705  continue;
2706  }
2707 
2708  // As an extension, treat this like a normal pointer.
2709  case Type::BlockPointer:
2710  T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2711  continue;
2712 
2713  // References aren't covered by the standard, but that's such an
2714  // obvious defect that we cover them anyway.
2715  case Type::LValueReference:
2716  case Type::RValueReference:
2717  T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2718  continue;
2719 
2720  // These are fundamental types.
2721  case Type::Vector:
2722  case Type::ExtVector:
2723  case Type::Complex:
2724  break;
2725 
2726  // Non-deduced auto types only get here for error cases.
2727  case Type::Auto:
2728  case Type::DeducedTemplateSpecialization:
2729  break;
2730 
2731  // If T is an Objective-C object or interface type, or a pointer to an
2732  // object or interface type, the associated namespace is the global
2733  // namespace.
2734  case Type::ObjCObject:
2735  case Type::ObjCInterface:
2736  case Type::ObjCObjectPointer:
2737  Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2738  break;
2739 
2740  // Atomic types are just wrappers; use the associations of the
2741  // contained type.
2742  case Type::Atomic:
2743  T = cast<AtomicType>(T)->getValueType().getTypePtr();
2744  continue;
2745  case Type::Pipe:
2746  T = cast<PipeType>(T)->getElementType().getTypePtr();
2747  continue;
2748  }
2749 
2750  if (Queue.empty())
2751  break;
2752  T = Queue.pop_back_val();
2753  }
2754 }
2755 
2756 /// \brief Find the associated classes and namespaces for
2757 /// argument-dependent lookup for a call with the given set of
2758 /// arguments.
2759 ///
2760 /// This routine computes the sets of associated classes and associated
2761 /// namespaces searched by argument-dependent lookup
2762 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
2764  SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2765  AssociatedNamespaceSet &AssociatedNamespaces,
2766  AssociatedClassSet &AssociatedClasses) {
2767  AssociatedNamespaces.clear();
2768  AssociatedClasses.clear();
2769 
2770  AssociatedLookup Result(*this, InstantiationLoc,
2771  AssociatedNamespaces, AssociatedClasses);
2772 
2773  // C++ [basic.lookup.koenig]p2:
2774  // For each argument type T in the function call, there is a set
2775  // of zero or more associated namespaces and a set of zero or more
2776  // associated classes to be considered. The sets of namespaces and
2777  // classes is determined entirely by the types of the function
2778  // arguments (and the namespace of any template template
2779  // argument).
2780  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2781  Expr *Arg = Args[ArgIdx];
2782 
2783  if (Arg->getType() != Context.OverloadTy) {
2785  continue;
2786  }
2787 
2788  // [...] In addition, if the argument is the name or address of a
2789  // set of overloaded functions and/or function templates, its
2790  // associated classes and namespaces are the union of those
2791  // associated with each of the members of the set: the namespace
2792  // in which the function or function template is defined and the
2793  // classes and namespaces associated with its (non-dependent)
2794  // parameter types and return type.
2795  Arg = Arg->IgnoreParens();
2796  if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2797  if (unaryOp->getOpcode() == UO_AddrOf)
2798  Arg = unaryOp->getSubExpr();
2799 
2800  UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2801  if (!ULE) continue;
2802 
2803  for (const auto *D : ULE->decls()) {
2804  // Look through any using declarations to find the underlying function.
2805  const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2806 
2807  // Add the classes and namespaces associated with the parameter
2808  // types and return type of this function.
2809  addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2810  }
2811  }
2812 }
2813 
2815  SourceLocation Loc,
2816  LookupNameKind NameKind,
2817  RedeclarationKind Redecl) {
2818  LookupResult R(*this, Name, Loc, NameKind, Redecl);
2819  LookupName(R, S);
2820  return R.getAsSingle<NamedDecl>();
2821 }
2822 
2823 /// \brief Find the protocol with the given name, if any.
2825  SourceLocation IdLoc,
2826  RedeclarationKind Redecl) {
2827  Decl *D = LookupSingleName(TUScope, II, IdLoc,
2828  LookupObjCProtocolName, Redecl);
2829  return cast_or_null<ObjCProtocolDecl>(D);
2830 }
2831 
2833  QualType T1, QualType T2,
2834  UnresolvedSetImpl &Functions) {
2835  // C++ [over.match.oper]p3:
2836  // -- The set of non-member candidates is the result of the
2837  // unqualified lookup of operator@ in the context of the
2838  // expression according to the usual rules for name lookup in
2839  // unqualified function calls (3.4.2) except that all member
2840  // functions are ignored.
2842  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2843  LookupName(Operators, S);
2844 
2845  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2846  Functions.append(Operators.begin(), Operators.end());
2847 }
2848 
2851  bool ConstArg,
2852  bool VolatileArg,
2853  bool RValueThis,
2854  bool ConstThis,
2855  bool VolatileThis) {
2856  assert(CanDeclareSpecialMemberFunction(RD) &&
2857  "doing special member lookup into record that isn't fully complete");
2858  RD = RD->getDefinition();
2859  if (RValueThis || ConstThis || VolatileThis)
2860  assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2861  "constructors and destructors always have unqualified lvalue this");
2862  if (ConstArg || VolatileArg)
2863  assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2864  "parameter-less special members can't have qualified arguments");
2865 
2866  // FIXME: Get the caller to pass in a location for the lookup.
2867  SourceLocation LookupLoc = RD->getLocation();
2868 
2869  llvm::FoldingSetNodeID ID;
2870  ID.AddPointer(RD);
2871  ID.AddInteger(SM);
2872  ID.AddInteger(ConstArg);
2873  ID.AddInteger(VolatileArg);
2874  ID.AddInteger(RValueThis);
2875  ID.AddInteger(ConstThis);
2876  ID.AddInteger(VolatileThis);
2877 
2878  void *InsertPoint;
2880  SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2881 
2882  // This was already cached
2883  if (Result)
2884  return *Result;
2885 
2886  Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
2887  Result = new (Result) SpecialMemberOverloadResultEntry(ID);
2888  SpecialMemberCache.InsertNode(Result, InsertPoint);
2889 
2890  if (SM == CXXDestructor) {
2891  if (RD->needsImplicitDestructor())
2892  DeclareImplicitDestructor(RD);
2893  CXXDestructorDecl *DD = RD->getDestructor();
2894  assert(DD && "record without a destructor");
2895  Result->setMethod(DD);
2896  Result->setKind(DD->isDeleted() ?
2897  SpecialMemberOverloadResult::NoMemberOrDeleted :
2898  SpecialMemberOverloadResult::Success);
2899  return *Result;
2900  }
2901 
2902  // Prepare for overload resolution. Here we construct a synthetic argument
2903  // if necessary and make sure that implicit functions are declared.
2904  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2905  DeclarationName Name;
2906  Expr *Arg = nullptr;
2907  unsigned NumArgs;
2908 
2909  QualType ArgType = CanTy;
2910  ExprValueKind VK = VK_LValue;
2911 
2912  if (SM == CXXDefaultConstructor) {
2913  Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2914  NumArgs = 0;
2916  DeclareImplicitDefaultConstructor(RD);
2917  } else {
2918  if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2919  Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2920  if (RD->needsImplicitCopyConstructor())
2921  DeclareImplicitCopyConstructor(RD);
2922  if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2923  DeclareImplicitMoveConstructor(RD);
2924  } else {
2925  Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2926  if (RD->needsImplicitCopyAssignment())
2927  DeclareImplicitCopyAssignment(RD);
2928  if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2929  DeclareImplicitMoveAssignment(RD);
2930  }
2931 
2932  if (ConstArg)
2933  ArgType.addConst();
2934  if (VolatileArg)
2935  ArgType.addVolatile();
2936 
2937  // This isn't /really/ specified by the standard, but it's implied
2938  // we should be working from an RValue in the case of move to ensure
2939  // that we prefer to bind to rvalue references, and an LValue in the
2940  // case of copy to ensure we don't bind to rvalue references.
2941  // Possibly an XValue is actually correct in the case of move, but
2942  // there is no semantic difference for class types in this restricted
2943  // case.
2944  if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2945  VK = VK_LValue;
2946  else
2947  VK = VK_RValue;
2948  }
2949 
2950  OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
2951 
2952  if (SM != CXXDefaultConstructor) {
2953  NumArgs = 1;
2954  Arg = &FakeArg;
2955  }
2956 
2957  // Create the object argument
2958  QualType ThisTy = CanTy;
2959  if (ConstThis)
2960  ThisTy.addConst();
2961  if (VolatileThis)
2962  ThisTy.addVolatile();
2963  Expr::Classification Classification =
2964  OpaqueValueExpr(LookupLoc, ThisTy,
2965  RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2966 
2967  // Now we perform lookup on the name we computed earlier and do overload
2968  // resolution. Lookup is only performed directly into the class since there
2969  // will always be a (possibly implicit) declaration to shadow any others.
2971  DeclContext::lookup_result R = RD->lookup(Name);
2972 
2973  if (R.empty()) {
2974  // We might have no default constructor because we have a lambda's closure
2975  // type, rather than because there's some other declared constructor.
2976  // Every class has a copy/move constructor, copy/move assignment, and
2977  // destructor.
2978  assert(SM == CXXDefaultConstructor &&
2979  "lookup for a constructor or assignment operator was empty");
2980  Result->setMethod(nullptr);
2981  Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2982  return *Result;
2983  }
2984 
2985  // Copy the candidates as our processing of them may load new declarations
2986  // from an external source and invalidate lookup_result.
2987  SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
2988 
2989  for (NamedDecl *CandDecl : Candidates) {
2990  if (CandDecl->isInvalidDecl())
2991  continue;
2992 
2993  DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
2994  auto CtorInfo = getConstructorInfo(Cand);
2995  if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
2996  if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2997  AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
2998  llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2999  else if (CtorInfo)
3000  AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3001  llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3002  else
3003  AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3004  true);
3005  } else if (FunctionTemplateDecl *Tmpl =
3006  dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3007  if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3008  AddMethodTemplateCandidate(
3009  Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3010  llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3011  else if (CtorInfo)
3012  AddTemplateOverloadCandidate(
3013  CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3014  llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3015  else
3016  AddTemplateOverloadCandidate(
3017  Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3018  } else {
3019  assert(isa<UsingDecl>(Cand.getDecl()) &&
3020  "illegal Kind of operator = Decl");
3021  }
3022  }
3023 
3025  switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3026  case OR_Success:
3027  Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3028  Result->setKind(SpecialMemberOverloadResult::Success);
3029  break;
3030 
3031  case OR_Deleted:
3032  Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3033  Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3034  break;
3035 
3036  case OR_Ambiguous:
3037  Result->setMethod(nullptr);
3038  Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3039  break;
3040 
3041  case OR_No_Viable_Function:
3042  Result->setMethod(nullptr);
3043  Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3044  break;
3045  }
3046 
3047  return *Result;
3048 }
3049 
3050 /// \brief Look up the default constructor for the given class.
3053  LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3054  false, false);
3055 
3056  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3057 }
3058 
3059 /// \brief Look up the copying constructor for the given class.
3061  unsigned Quals) {
3062  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3063  "non-const, non-volatile qualifiers for copy ctor arg");
3065  LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3066  Quals & Qualifiers::Volatile, false, false, false);
3067 
3068  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3069 }
3070 
3071 /// \brief Look up the moving constructor for the given class.
3073  unsigned Quals) {
3075  LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3076  Quals & Qualifiers::Volatile, false, false, false);
3077 
3078  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3079 }
3080 
3081 /// \brief Look up the constructors for the given class.
3083  // If the implicit constructors have not yet been declared, do so now.
3084  if (CanDeclareSpecialMemberFunction(Class)) {
3085  if (Class->needsImplicitDefaultConstructor())
3086  DeclareImplicitDefaultConstructor(Class);
3087  if (Class->needsImplicitCopyConstructor())
3088  DeclareImplicitCopyConstructor(Class);
3089  if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3090  DeclareImplicitMoveConstructor(Class);
3091  }
3092 
3093  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3095  return Class->lookup(Name);
3096 }
3097 
3098 /// \brief Look up the copying assignment operator for the given class.
3100  unsigned Quals, bool RValueThis,
3101  unsigned ThisQuals) {
3102  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3103  "non-const, non-volatile qualifiers for copy assignment arg");
3104  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3105  "non-const, non-volatile qualifiers for copy assignment this");
3107  LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3108  Quals & Qualifiers::Volatile, RValueThis,
3109  ThisQuals & Qualifiers::Const,
3110  ThisQuals & Qualifiers::Volatile);
3111 
3112  return Result.getMethod();
3113 }
3114 
3115 /// \brief Look up the moving assignment operator for the given class.
3117  unsigned Quals,
3118  bool RValueThis,
3119  unsigned ThisQuals) {
3120  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3121  "non-const, non-volatile qualifiers for copy assignment this");
3123  LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3124  Quals & Qualifiers::Volatile, RValueThis,
3125  ThisQuals & Qualifiers::Const,
3126  ThisQuals & Qualifiers::Volatile);
3127 
3128  return Result.getMethod();
3129 }
3130 
3131 /// \brief Look for the destructor of the given class.
3132 ///
3133 /// During semantic analysis, this routine should be used in lieu of
3134 /// CXXRecordDecl::getDestructor().
3135 ///
3136 /// \returns The destructor for this class.
3138  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3139  false, false, false,
3140  false, false).getMethod());
3141 }
3142 
3143 /// LookupLiteralOperator - Determine which literal operator should be used for
3144 /// a user-defined literal, per C++11 [lex.ext].
3145 ///
3146 /// Normal overload resolution is not used to select which literal operator to
3147 /// call for a user-defined literal. Look up the provided literal operator name,
3148 /// and filter the results to the appropriate set for the given argument types.
3151  ArrayRef<QualType> ArgTys,
3152  bool AllowRaw, bool AllowTemplate,
3153  bool AllowStringTemplate, bool DiagnoseMissing) {
3154  LookupName(R, S);
3155  assert(R.getResultKind() != LookupResult::Ambiguous &&
3156  "literal operator lookup can't be ambiguous");
3157 
3158  // Filter the lookup results appropriately.
3160 
3161  bool FoundRaw = false;
3162  bool FoundTemplate = false;
3163  bool FoundStringTemplate = false;
3164  bool FoundExactMatch = false;
3165 
3166  while (F.hasNext()) {
3167  Decl *D = F.next();
3168  if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3169  D = USD->getTargetDecl();
3170 
3171  // If the declaration we found is invalid, skip it.
3172  if (D->isInvalidDecl()) {
3173  F.erase();
3174  continue;
3175  }
3176 
3177  bool IsRaw = false;
3178  bool IsTemplate = false;
3179  bool IsStringTemplate = false;
3180  bool IsExactMatch = false;
3181 
3182  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3183  if (FD->getNumParams() == 1 &&
3184  FD->getParamDecl(0)->getType()->getAs<PointerType>())
3185  IsRaw = true;
3186  else if (FD->getNumParams() == ArgTys.size()) {
3187  IsExactMatch = true;
3188  for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3189  QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3190  if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3191  IsExactMatch = false;
3192  break;
3193  }
3194  }
3195  }
3196  }
3197  if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3198  TemplateParameterList *Params = FD->getTemplateParameters();
3199  if (Params->size() == 1)
3200  IsTemplate = true;
3201  else
3202  IsStringTemplate = true;
3203  }
3204 
3205  if (IsExactMatch) {
3206  FoundExactMatch = true;
3207  AllowRaw = false;
3208  AllowTemplate = false;
3209  AllowStringTemplate = false;
3210  if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3211  // Go through again and remove the raw and template decls we've
3212  // already found.
3213  F.restart();
3214  FoundRaw = FoundTemplate = FoundStringTemplate = false;
3215  }
3216  } else if (AllowRaw && IsRaw) {
3217  FoundRaw = true;
3218  } else if (AllowTemplate && IsTemplate) {
3219  FoundTemplate = true;
3220  } else if (AllowStringTemplate && IsStringTemplate) {
3221  FoundStringTemplate = true;
3222  } else {
3223  F.erase();
3224  }
3225  }
3226 
3227  F.done();
3228 
3229  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3230  // parameter type, that is used in preference to a raw literal operator
3231  // or literal operator template.
3232  if (FoundExactMatch)
3233  return LOLR_Cooked;
3234 
3235  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3236  // operator template, but not both.
3237  if (FoundRaw && FoundTemplate) {
3238  Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3239  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3240  NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3241  return LOLR_Error;
3242  }
3243 
3244  if (FoundRaw)
3245  return LOLR_Raw;
3246 
3247  if (FoundTemplate)
3248  return LOLR_Template;
3249 
3250  if (FoundStringTemplate)
3251  return LOLR_StringTemplate;
3252 
3253  // Didn't find anything we could use.
3254  if (DiagnoseMissing) {
3255  Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3256  << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3257  << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3258  << (AllowTemplate || AllowStringTemplate);
3259  return LOLR_Error;
3260  }
3261 
3262  return LOLR_ErrorNoDiagnostic;
3263 }
3264 
3266  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3267 
3268  // If we haven't yet seen a decl for this key, or the last decl
3269  // was exactly this one, we're done.
3270  if (Old == nullptr || Old == New) {
3271  Old = New;
3272  return;
3273  }
3274 
3275  // Otherwise, decide which is a more recent redeclaration.
3276  FunctionDecl *OldFD = Old->getAsFunction();
3277  FunctionDecl *NewFD = New->getAsFunction();
3278 
3279  FunctionDecl *Cursor = NewFD;
3280  while (true) {
3281  Cursor = Cursor->getPreviousDecl();
3282 
3283  // If we got to the end without finding OldFD, OldFD is the newer
3284  // declaration; leave things as they are.
3285  if (!Cursor) return;
3286 
3287  // If we do find OldFD, then NewFD is newer.
3288  if (Cursor == OldFD) break;
3289 
3290  // Otherwise, keep looking.
3291  }
3292 
3293  Old = New;
3294 }
3295 
3297  ArrayRef<Expr *> Args, ADLResult &Result) {
3298  // Find all of the associated namespaces and classes based on the
3299  // arguments we have.
3300  AssociatedNamespaceSet AssociatedNamespaces;
3301  AssociatedClassSet AssociatedClasses;
3302  FindAssociatedClassesAndNamespaces(Loc, Args,
3303  AssociatedNamespaces,
3304  AssociatedClasses);
3305 
3306  // C++ [basic.lookup.argdep]p3:
3307  // Let X be the lookup set produced by unqualified lookup (3.4.1)
3308  // and let Y be the lookup set produced by argument dependent
3309  // lookup (defined as follows). If X contains [...] then Y is
3310  // empty. Otherwise Y is the set of declarations found in the
3311  // namespaces associated with the argument types as described
3312  // below. The set of declarations found by the lookup of the name
3313  // is the union of X and Y.
3314  //
3315  // Here, we compute Y and add its members to the overloaded
3316  // candidate set.
3317  for (auto *NS : AssociatedNamespaces) {
3318  // When considering an associated namespace, the lookup is the
3319  // same as the lookup performed when the associated namespace is
3320  // used as a qualifier (3.4.3.2) except that:
3321  //
3322  // -- Any using-directives in the associated namespace are
3323  // ignored.
3324  //
3325  // -- Any namespace-scope friend functions declared in
3326  // associated classes are visible within their respective
3327  // namespaces even if they are not visible during an ordinary
3328  // lookup (11.4).
3329  DeclContext::lookup_result R = NS->lookup(Name);
3330  for (auto *D : R) {
3331  // If the only declaration here is an ordinary friend, consider
3332  // it only if it was declared in an associated classes.
3333  if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
3334  // If it's neither ordinarily visible nor a friend, we can't find it.
3336  continue;
3337 
3338  bool DeclaredInAssociatedClass = false;
3339  for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
3340  DeclContext *LexDC = DI->getLexicalDeclContext();
3341  if (isa<CXXRecordDecl>(LexDC) &&
3342  AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)) &&
3343  isVisible(cast<NamedDecl>(DI))) {
3344  DeclaredInAssociatedClass = true;
3345  break;
3346  }
3347  }
3348  if (!DeclaredInAssociatedClass)
3349  continue;
3350  }
3351 
3352  auto *Underlying = D;
3353  if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3354  Underlying = USD->getTargetDecl();
3355 
3356  if (!isa<FunctionDecl>(Underlying) &&
3357  !isa<FunctionTemplateDecl>(Underlying))
3358  continue;
3359 
3360  if (!isVisible(D)) {
3361  D = findAcceptableDecl(*this, D);
3362  if (!D)
3363  continue;
3364  if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3365  Underlying = USD->getTargetDecl();
3366  }
3367 
3368  // FIXME: Preserve D as the FoundDecl.
3369  Result.insert(Underlying);
3370  }
3371  }
3372 }
3373 
3374 //----------------------------------------------------------------------------
3375 // Search for all visible declarations.
3376 //----------------------------------------------------------------------------
3378 
3379 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3380 
3381 namespace {
3382 
3383 class ShadowContextRAII;
3384 
3385 class VisibleDeclsRecord {
3386 public:
3387  /// \brief An entry in the shadow map, which is optimized to store a
3388  /// single declaration (the common case) but can also store a list
3389  /// of declarations.
3390  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3391 
3392 private:
3393  /// \brief A mapping from declaration names to the declarations that have
3394  /// this name within a particular scope.
3395  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3396 
3397  /// \brief A list of shadow maps, which is used to model name hiding.
3398  std::list<ShadowMap> ShadowMaps;
3399 
3400  /// \brief The declaration contexts we have already visited.
3401  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3402 
3403  friend class ShadowContextRAII;
3404 
3405 public:
3406  /// \brief Determine whether we have already visited this context
3407  /// (and, if not, note that we are going to visit that context now).
3408  bool visitedContext(DeclContext *Ctx) {
3409  return !VisitedContexts.insert(Ctx).second;
3410  }
3411 
3412  bool alreadyVisitedContext(DeclContext *Ctx) {
3413  return VisitedContexts.count(Ctx);
3414  }
3415 
3416  /// \brief Determine whether the given declaration is hidden in the
3417  /// current scope.
3418  ///
3419  /// \returns the declaration that hides the given declaration, or
3420  /// NULL if no such declaration exists.
3421  NamedDecl *checkHidden(NamedDecl *ND);
3422 
3423  /// \brief Add a declaration to the current shadow map.
3424  void add(NamedDecl *ND) {
3425  ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3426  }
3427 };
3428 
3429 /// \brief RAII object that records when we've entered a shadow context.
3430 class ShadowContextRAII {
3431  VisibleDeclsRecord &Visible;
3432 
3433  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3434 
3435 public:
3436  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3437  Visible.ShadowMaps.emplace_back();
3438  }
3439 
3440  ~ShadowContextRAII() {
3441  Visible.ShadowMaps.pop_back();
3442  }
3443 };
3444 
3445 } // end anonymous namespace
3446 
3447 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3448  unsigned IDNS = ND->getIdentifierNamespace();
3449  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3450  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3451  SM != SMEnd; ++SM) {
3452  ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3453  if (Pos == SM->end())
3454  continue;
3455 
3456  for (auto *D : Pos->second) {
3457  // A tag declaration does not hide a non-tag declaration.
3458  if (D->hasTagIdentifierNamespace() &&
3461  continue;
3462 
3463  // Protocols are in distinct namespaces from everything else.
3465  || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3466  D->getIdentifierNamespace() != IDNS)
3467  continue;
3468 
3469  // Functions and function templates in the same scope overload
3470  // rather than hide. FIXME: Look for hiding based on function
3471  // signatures!
3474  SM == ShadowMaps.rbegin())
3475  continue;
3476 
3477  // A shadow declaration that's created by a resolved using declaration
3478  // is not hidden by the same using declaration.
3479  if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3480  cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3481  continue;
3482 
3483  // We've found a declaration that hides this one.
3484  return D;
3485  }
3486  }
3487 
3488  return nullptr;
3489 }
3490 
3491 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
3492  bool QualifiedNameLookup,
3493  bool InBaseClass,
3494  VisibleDeclConsumer &Consumer,
3495  VisibleDeclsRecord &Visited,
3496  bool IncludeDependentBases = false) {
3497  if (!Ctx)
3498  return;
3499 
3500  // Make sure we don't visit the same context twice.
3501  if (Visited.visitedContext(Ctx->getPrimaryContext()))
3502  return;
3503 
3504  // Outside C++, lookup results for the TU live on identifiers.
3505  if (isa<TranslationUnitDecl>(Ctx) &&
3506  !Result.getSema().getLangOpts().CPlusPlus) {
3507  auto &S = Result.getSema();
3508  auto &Idents = S.Context.Idents;
3509 
3510  // Ensure all external identifiers are in the identifier table.
3511  if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
3512  std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3513  for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
3514  Idents.get(Name);
3515  }
3516 
3517  // Walk all lookup results in the TU for each identifier.
3518  for (const auto &Ident : Idents) {
3519  for (auto I = S.IdResolver.begin(Ident.getValue()),
3520  E = S.IdResolver.end();
3521  I != E; ++I) {
3522  if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3523  if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3524  Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3525  Visited.add(ND);
3526  }
3527  }
3528  }
3529  }
3530 
3531  return;
3532  }
3533 
3534  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3536 
3537  // Enumerate all of the results in this context.
3538  for (DeclContextLookupResult R : Ctx->lookups()) {
3539  for (auto *D : R) {
3540  if (auto *ND = Result.getAcceptableDecl(D)) {
3541  Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3542  Visited.add(ND);
3543  }
3544  }
3545  }
3546 
3547  // Traverse using directives for qualified name lookup.
3548  if (QualifiedNameLookup) {
3549  ShadowContextRAII Shadow(Visited);
3550  for (auto I : Ctx->using_directives()) {
3551  if (!Result.getSema().isVisible(I))
3552  continue;
3553  LookupVisibleDecls(I->getNominatedNamespace(), Result,
3554  QualifiedNameLookup, InBaseClass, Consumer, Visited,
3555  IncludeDependentBases);
3556  }
3557  }
3558 
3559  // Traverse the contexts of inherited C++ classes.
3560  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3561  if (!Record->hasDefinition())
3562  return;
3563 
3564  for (const auto &B : Record->bases()) {
3565  QualType BaseType = B.getType();
3566 
3567  RecordDecl *RD;
3568  if (BaseType->isDependentType()) {
3569  if (!IncludeDependentBases) {
3570  // Don't look into dependent bases, because name lookup can't look
3571  // there anyway.
3572  continue;
3573  }
3574  const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3575  if (!TST)
3576  continue;
3577  TemplateName TN = TST->getTemplateName();
3578  const auto *TD =
3579  dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3580  if (!TD)
3581  continue;
3582  RD = TD->getTemplatedDecl();
3583  } else {
3584  const auto *Record = BaseType->getAs<RecordType>();
3585  if (!Record)
3586  continue;
3587  RD = Record->getDecl();
3588  }
3589 
3590  // FIXME: It would be nice to be able to determine whether referencing
3591  // a particular member would be ambiguous. For example, given
3592  //
3593  // struct A { int member; };
3594  // struct B { int member; };
3595  // struct C : A, B { };
3596  //
3597  // void f(C *c) { c->### }
3598  //
3599  // accessing 'member' would result in an ambiguity. However, we
3600  // could be smart enough to qualify the member with the base
3601  // class, e.g.,
3602  //
3603  // c->B::member
3604  //
3605  // or
3606  //
3607  // c->A::member
3608 
3609  // Find results in this base class (and its bases).
3610  ShadowContextRAII Shadow(Visited);
3611  LookupVisibleDecls(RD, Result, QualifiedNameLookup, true, Consumer,
3612  Visited, IncludeDependentBases);
3613  }
3614  }
3615 
3616  // Traverse the contexts of Objective-C classes.
3617  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3618  // Traverse categories.
3619  for (auto *Cat : IFace->visible_categories()) {
3620  ShadowContextRAII Shadow(Visited);
3621  LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
3622  Consumer, Visited);
3623  }
3624 
3625  // Traverse protocols.
3626  for (auto *I : IFace->all_referenced_protocols()) {
3627  ShadowContextRAII Shadow(Visited);
3628  LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3629  Visited);
3630  }
3631 
3632  // Traverse the superclass.
3633  if (IFace->getSuperClass()) {
3634  ShadowContextRAII Shadow(Visited);
3635  LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3636  true, Consumer, Visited);
3637  }
3638 
3639  // If there is an implementation, traverse it. We do this to find
3640  // synthesized ivars.
3641  if (IFace->getImplementation()) {
3642  ShadowContextRAII Shadow(Visited);
3643  LookupVisibleDecls(IFace->getImplementation(), Result,
3644  QualifiedNameLookup, InBaseClass, Consumer, Visited);
3645  }
3646  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3647  for (auto *I : Protocol->protocols()) {
3648  ShadowContextRAII Shadow(Visited);
3649  LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3650  Visited);
3651  }
3652  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3653  for (auto *I : Category->protocols()) {
3654  ShadowContextRAII Shadow(Visited);
3655  LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3656  Visited);
3657  }
3658 
3659  // If there is an implementation, traverse it.
3660  if (Category->getImplementation()) {
3661  ShadowContextRAII Shadow(Visited);
3662  LookupVisibleDecls(Category->getImplementation(), Result,
3663  QualifiedNameLookup, true, Consumer, Visited);
3664  }
3665  }
3666 }
3667 
3668 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3669  UnqualUsingDirectiveSet &UDirs,
3670  VisibleDeclConsumer &Consumer,
3671  VisibleDeclsRecord &Visited) {
3672  if (!S)
3673  return;
3674 
3675  if (!S->getEntity() ||
3676  (!S->getParent() &&
3677  !Visited.alreadyVisitedContext(S->getEntity())) ||
3678  (S->getEntity())->isFunctionOrMethod()) {
3679  FindLocalExternScope FindLocals(Result);
3680  // Walk through the declarations in this Scope. The consumer might add new
3681  // decls to the scope as part of deserialization, so make a copy first.
3682  SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3683  for (Decl *D : ScopeDecls) {
3684  if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3685  if ((ND = Result.getAcceptableDecl(ND))) {
3686  Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3687  Visited.add(ND);
3688  }
3689  }
3690  }
3691 
3692  // FIXME: C++ [temp.local]p8
3693  DeclContext *Entity = nullptr;
3694  if (S->getEntity()) {
3695  // Look into this scope's declaration context, along with any of its
3696  // parent lookup contexts (e.g., enclosing classes), up to the point
3697  // where we hit the context stored in the next outer scope.
3698  Entity = S->getEntity();
3699  DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3700 
3701  for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3702  Ctx = Ctx->getLookupParent()) {
3703  if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3704  if (Method->isInstanceMethod()) {
3705  // For instance methods, look for ivars in the method's interface.
3706  LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3708  if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3709  LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3710  /*InBaseClass=*/false, Consumer, Visited);
3711  }
3712  }
3713 
3714  // We've already performed all of the name lookup that we need
3715  // to for Objective-C methods; the next context will be the
3716  // outer scope.
3717  break;
3718  }
3719 
3720  if (Ctx->isFunctionOrMethod())
3721  continue;
3722 
3723  LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3724  /*InBaseClass=*/false, Consumer, Visited);
3725  }
3726  } else if (!S->getParent()) {
3727  // Look into the translation unit scope. We walk through the translation
3728  // unit's declaration context, because the Scope itself won't have all of
3729  // the declarations if we loaded a precompiled header.
3730  // FIXME: We would like the translation unit's Scope object to point to the
3731  // translation unit, so we don't need this special "if" branch. However,
3732  // doing so would force the normal C++ name-lookup code to look into the
3733  // translation unit decl when the IdentifierInfo chains would suffice.
3734  // Once we fix that problem (which is part of a more general "don't look
3735  // in DeclContexts unless we have to" optimization), we can eliminate this.
3736  Entity = Result.getSema().Context.getTranslationUnitDecl();
3737  LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3738  /*InBaseClass=*/false, Consumer, Visited);
3739  }
3740 
3741  if (Entity) {
3742  // Lookup visible declarations in any namespaces found by using
3743  // directives.
3744  for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3745  LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
3746  Result, /*QualifiedNameLookup=*/false,
3747  /*InBaseClass=*/false, Consumer, Visited);
3748  }
3749 
3750  // Lookup names in the parent scope.
3751  ShadowContextRAII Shadow(Visited);
3752  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3753 }
3754 
3756  VisibleDeclConsumer &Consumer,
3757  bool IncludeGlobalScope) {
3758  // Determine the set of using directives available during
3759  // unqualified name lookup.
3760  Scope *Initial = S;
3761  UnqualUsingDirectiveSet UDirs(*this);
3762  if (getLangOpts().CPlusPlus) {
3763  // Find the first namespace or translation-unit scope.
3764  while (S && !isNamespaceOrTranslationUnitScope(S))
3765  S = S->getParent();
3766 
3767  UDirs.visitScopeChain(Initial, S);
3768  }
3769  UDirs.done();
3770 
3771  // Look for visible declarations.
3772  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3773  Result.setAllowHidden(Consumer.includeHiddenDecls());
3774  VisibleDeclsRecord Visited;
3775  if (!IncludeGlobalScope)
3776  Visited.visitedContext(Context.getTranslationUnitDecl());
3777  ShadowContextRAII Shadow(Visited);
3778  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3779 }
3780 
3782  VisibleDeclConsumer &Consumer,
3783  bool IncludeGlobalScope,
3784  bool IncludeDependentBases) {
3785  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3786  Result.setAllowHidden(Consumer.includeHiddenDecls());
3787  VisibleDeclsRecord Visited;
3788  if (!IncludeGlobalScope)
3789  Visited.visitedContext(Context.getTranslationUnitDecl());
3790  ShadowContextRAII Shadow(Visited);
3791  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3792  /*InBaseClass=*/false, Consumer, Visited,
3793  IncludeDependentBases);
3794 }
3795 
3796 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3797 /// If GnuLabelLoc is a valid source location, then this is a definition
3798 /// of an __label__ label name, otherwise it is a normal label definition
3799 /// or use.
3801  SourceLocation GnuLabelLoc) {
3802  // Do a lookup to see if we have a label with this name already.
3803  NamedDecl *Res = nullptr;
3804 
3805  if (GnuLabelLoc.isValid()) {
3806  // Local label definitions always shadow existing labels.
3807  Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3808  Scope *S = CurScope;
3809  PushOnScopeChains(Res, S, true);
3810  return cast<LabelDecl>(Res);
3811  }
3812 
3813  // Not a GNU local label.
3814  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3815  // If we found a label, check to see if it is in the same context as us.
3816  // When in a Block, we don't want to reuse a label in an enclosing function.
3817  if (Res && Res->getDeclContext() != CurContext)
3818  Res = nullptr;
3819  if (!Res) {
3820  // If not forward referenced or defined already, create the backing decl.
3821  Res = LabelDecl::Create(Context, CurContext, Loc, II);
3822  Scope *S = CurScope->getFnParent();
3823  assert(S && "Not in a function?");
3824  PushOnScopeChains(Res, S, true);
3825  }
3826  return cast<LabelDecl>(Res);
3827 }
3828 
3829 //===----------------------------------------------------------------------===//
3830 // Typo correction
3831 //===----------------------------------------------------------------------===//
3832 
3834  TypoCorrection &Candidate) {
3835  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3836  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3837 }
3838 
3839 static void LookupPotentialTypoResult(Sema &SemaRef,
3840  LookupResult &Res,
3841  IdentifierInfo *Name,
3842  Scope *S, CXXScopeSpec *SS,
3843  DeclContext *MemberContext,
3844  bool EnteringContext,
3845  bool isObjCIvarLookup,
3846  bool FindHidden);
3847 
3848 /// \brief Check whether the declarations found for a typo correction are
3849 /// visible. Set the correction's RequiresImport flag to true if none of the
3850 /// declarations are visible, false otherwise.
3851 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
3852  TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
3853 
3854  for (/**/; DI != DE; ++DI)
3855  if (!LookupResult::isVisible(SemaRef, *DI))
3856  break;
3857  // No filtering needed if all decls are visible.
3858  if (DI == DE) {
3859  TC.setRequiresImport(false);
3860  return;
3861  }
3862 
3863  llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
3864  bool AnyVisibleDecls = !NewDecls.empty();
3865 
3866  for (/**/; DI != DE; ++DI) {
3867  NamedDecl *VisibleDecl = *DI;
3868  if (!LookupResult::isVisible(SemaRef, *DI))
3869  VisibleDecl = findAcceptableDecl(SemaRef, *DI);
3870 
3871  if (VisibleDecl) {
3872  if (!AnyVisibleDecls) {
3873  // Found a visible decl, discard all hidden ones.
3874  AnyVisibleDecls = true;
3875  NewDecls.clear();
3876  }
3877  NewDecls.push_back(VisibleDecl);
3878  } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
3879  NewDecls.push_back(*DI);
3880  }
3881 
3882  if (NewDecls.empty())
3883  TC = TypoCorrection();
3884  else {
3885  TC.setCorrectionDecls(NewDecls);
3886  TC.setRequiresImport(!AnyVisibleDecls);
3887  }
3888 }
3889 
3890 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
3891 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3892 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3894  NestedNameSpecifier *NNS,
3896  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3897  getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3898  else
3899  Identifiers.clear();
3900 
3901  const IdentifierInfo *II = nullptr;
3902 
3903  switch (NNS->getKind()) {
3905  II = NNS->getAsIdentifier();
3906  break;
3907 
3909  if (NNS->getAsNamespace()->isAnonymousNamespace())
3910  return;
3911  II = NNS->getAsNamespace()->getIdentifier();
3912  break;
3913 
3915  II = NNS->getAsNamespaceAlias()->getIdentifier();
3916  break;
3917 
3920  II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3921  break;
3922 
3925  return;
3926  }
3927 
3928  if (II)
3929  Identifiers.push_back(II);
3930 }
3931 
3933  DeclContext *Ctx, bool InBaseClass) {
3934  // Don't consider hidden names for typo correction.
3935  if (Hiding)
3936  return;
3937 
3938  // Only consider entities with identifiers for names, ignoring
3939  // special names (constructors, overloaded operators, selectors,
3940  // etc.).
3941  IdentifierInfo *Name = ND->getIdentifier();
3942  if (!Name)
3943  return;
3944 
3945  // Only consider visible declarations and declarations from modules with
3946  // names that exactly match.
3947  if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
3948  !findAcceptableDecl(SemaRef, ND))
3949  return;
3950 
3951  FoundName(Name->getName());
3952 }
3953 
3955  // Compute the edit distance between the typo and the name of this
3956  // entity, and add the identifier to the list of results.
3957  addName(Name, nullptr);
3958 }
3959 
3961  // Compute the edit distance between the typo and this keyword,
3962  // and add the keyword to the list of results.
3963  addName(Keyword, nullptr, nullptr, true);
3964 }
3965 
3966 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
3967  NestedNameSpecifier *NNS, bool isKeyword) {
3968  // Use a simple length-based heuristic to determine the minimum possible
3969  // edit distance. If the minimum isn't good enough, bail out early.
3970  StringRef TypoStr = Typo->getName();
3971  unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
3972  if (MinED && TypoStr.size() / MinED < 3)
3973  return;
3974 
3975  // Compute an upper bound on the allowable edit distance, so that the
3976  // edit-distance algorithm can short-circuit.
3977  unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
3978  unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
3979  if (ED >= UpperBound) return;
3980 
3981  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
3982  if (isKeyword) TC.makeKeyword();
3983  TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
3984  addCorrection(TC);
3985 }
3986 
3987 static const unsigned MaxTypoDistanceResultSets = 5;
3988 
3990  StringRef TypoStr = Typo->getName();
3991  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3992 
3993  // For very short typos, ignore potential corrections that have a different
3994  // base identifier from the typo or which have a normalized edit distance
3995  // longer than the typo itself.
3996  if (TypoStr.size() < 3 &&
3997  (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
3998  return;
3999 
4000  // If the correction is resolved but is not viable, ignore it.
4001  if (Correction.isResolved()) {
4002  checkCorrectionVisibility(SemaRef, Correction);
4003  if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4004  return;
4005  }
4006 
4007  TypoResultList &CList =
4008  CorrectionResults[Correction.getEditDistance(false)][Name];
4009 
4010  if (!CList.empty() && !CList.back().isResolved())
4011  CList.pop_back();
4012  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4013  std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4014  for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4015  RI != RIEnd; ++RI) {
4016  // If the Correction refers to a decl already in the result list,
4017  // replace the existing result if the string representation of Correction
4018  // comes before the current result alphabetically, then stop as there is
4019  // nothing more to be done to add Correction to the candidate set.
4020  if (RI->getCorrectionDecl() == NewND) {
4021  if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4022  *RI = Correction;
4023  return;
4024  }
4025  }
4026  }
4027  if (CList.empty() || Correction.isResolved())
4028  CList.push_back(Correction);
4029 
4030  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4031  CorrectionResults.erase(std::prev(CorrectionResults.end()));
4032 }
4033 
4035  const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4036  SearchNamespaces = true;
4037 
4038  for (auto KNPair : KnownNamespaces)
4039  Namespaces.addNameSpecifier(KNPair.first);
4040 
4041  bool SSIsTemplate = false;
4042  if (NestedNameSpecifier *NNS =
4043  (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4044  if (const Type *T = NNS->getAsType())
4045  SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4046  }
4047  // Do not transform this into an iterator-based loop. The loop body can
4048  // trigger the creation of further types (through lazy deserialization) and
4049  // invalide iterators into this list.
4050  auto &Types = SemaRef.getASTContext().getTypes();
4051  for (unsigned I = 0; I != Types.size(); ++I) {
4052  const auto *TI = Types[I];
4053  if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4054  CD = CD->getCanonicalDecl();
4055  if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4056  !CD->isUnion() && CD->getIdentifier() &&
4057  (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4058  (CD->isBeingDefined() || CD->isCompleteDefinition()))
4059  Namespaces.addNameSpecifier(CD);
4060  }
4061  }
4062 }
4063 
4065  if (++CurrentTCIndex < ValidatedCorrections.size())
4066  return ValidatedCorrections[CurrentTCIndex];
4067 
4068  CurrentTCIndex = ValidatedCorrections.size();
4069  while (!CorrectionResults.empty()) {
4070  auto DI = CorrectionResults.begin();
4071  if (DI->second.empty()) {
4072  CorrectionResults.erase(DI);
4073  continue;
4074  }
4075 
4076  auto RI = DI->second.begin();
4077  if (RI->second.empty()) {
4078  DI->second.erase(RI);
4079  performQualifiedLookups();
4080  continue;
4081  }
4082 
4083  TypoCorrection TC = RI->second.pop_back_val();
4084  if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4085  ValidatedCorrections.push_back(TC);
4086  return ValidatedCorrections[CurrentTCIndex];
4087  }
4088  }
4089  return ValidatedCorrections[0]; // The empty correction.
4090 }
4091 
4092 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4093  IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4094  DeclContext *TempMemberContext = MemberContext;
4095  CXXScopeSpec *TempSS = SS.get();
4096 retry_lookup:
4097  LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4098  EnteringContext,
4099  CorrectionValidator->IsObjCIvarLookup,
4100  Name == Typo && !Candidate.WillReplaceSpecifier());
4101  switch (Result.getResultKind()) {
4105  if (TempSS) {
4106  // Immediately retry the lookup without the given CXXScopeSpec
4107  TempSS = nullptr;
4108  Candidate.WillReplaceSpecifier(true);
4109  goto retry_lookup;
4110  }
4111  if (TempMemberContext) {
4112  if (SS && !TempSS)
4113  TempSS = SS.get();
4114  TempMemberContext = nullptr;
4115  goto retry_lookup;
4116  }
4117  if (SearchNamespaces)
4118  QualifiedResults.push_back(Candidate);
4119  break;
4120 
4122  // We don't deal with ambiguities.
4123  break;
4124 
4125  case LookupResult::Found:
4127  // Store all of the Decls for overloaded symbols
4128  for (auto *TRD : Result)
4129  Candidate.addCorrectionDecl(TRD);
4130  checkCorrectionVisibility(SemaRef, Candidate);
4131  if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4132  if (SearchNamespaces)
4133  QualifiedResults.push_back(Candidate);
4134  break;
4135  }
4136  Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4137  return true;
4138  }
4139  return false;
4140 }
4141 
4142 void TypoCorrectionConsumer::performQualifiedLookups() {
4143  unsigned TypoLen = Typo->getName().size();
4144  for (const TypoCorrection &QR : QualifiedResults) {
4145  for (const auto &NSI : Namespaces) {
4146  DeclContext *Ctx = NSI.DeclCtx;
4147  const Type *NSType = NSI.NameSpecifier->getAsType();
4148 
4149  // If the current NestedNameSpecifier refers to a class and the
4150  // current correction candidate is the name of that class, then skip
4151  // it as it is unlikely a qualified version of the class' constructor
4152  // is an appropriate correction.
4153  if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4154  nullptr) {
4155  if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4156  continue;
4157  }
4158 
4159  TypoCorrection TC(QR);
4160  TC.ClearCorrectionDecls();
4161  TC.setCorrectionSpecifier(NSI.NameSpecifier);
4162  TC.setQualifierDistance(NSI.EditDistance);
4163  TC.setCallbackDistance(0); // Reset the callback distance
4164 
4165  // If the current correction candidate and namespace combination are
4166  // too far away from the original typo based on the normalized edit
4167  // distance, then skip performing a qualified name lookup.
4168  unsigned TmpED = TC.getEditDistance(true);
4169  if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4170  TypoLen / TmpED < 3)
4171  continue;
4172 
4173  Result.clear();
4174  Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4175  if (!SemaRef.LookupQualifiedName(Result, Ctx))
4176  continue;
4177 
4178  // Any corrections added below will be validated in subsequent
4179  // iterations of the main while() loop over the Consumer's contents.
4180  switch (Result.getResultKind()) {
4181  case LookupResult::Found:
4183  if (SS && SS->isValid()) {
4184  std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4185  std::string OldQualified;
4186  llvm::raw_string_ostream OldOStream(OldQualified);
4187  SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4188  OldOStream << Typo->getName();
4189  // If correction candidate would be an identical written qualified
4190  // identifer, then the existing CXXScopeSpec probably included a
4191  // typedef that didn't get accounted for properly.
4192  if (OldOStream.str() == NewQualified)
4193  break;
4194  }
4195  for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4196  TRD != TRDEnd; ++TRD) {
4197  if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4198  NSType ? NSType->getAsCXXRecordDecl()
4199  : nullptr,
4200  TRD.getPair()) == Sema::AR_accessible)
4201  TC.addCorrectionDecl(*TRD);
4202  }
4203  if (TC.isResolved()) {
4204  TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4205  addCorrection(TC);
4206  }
4207  break;
4208  }
4213  break;
4214  }
4215  }
4216  }
4217  QualifiedResults.clear();
4218 }
4219 
4220 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4221  ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4222  : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4223  if (NestedNameSpecifier *NNS =
4224  CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4225  llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4226  NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4227 
4228  getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4229  }
4230  // Build the list of identifiers that would be used for an absolute
4231  // (from the global context) NestedNameSpecifier referring to the current
4232  // context.
4233  for (DeclContext *C : llvm::reverse(CurContextChain)) {
4234  if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4235  CurContextIdentifiers.push_back(ND->getIdentifier());
4236  }
4237 
4238  // Add the global context as a NestedNameSpecifier
4239  SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4241  DistanceMap[1].push_back(SI);
4242 }
4243 
4244 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4245  DeclContext *Start) -> DeclContextList {
4246  assert(Start && "Building a context chain from a null context");
4247  DeclContextList Chain;
4248  for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4249  DC = DC->getLookupParent()) {
4250  NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4251  if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4252  !(ND && ND->isAnonymousNamespace()))
4253  Chain.push_back(DC->getPrimaryContext());
4254  }
4255  return Chain;
4256 }
4257 
4258 unsigned
4259 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4260  DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4261  unsigned NumSpecifiers = 0;
4262  for (DeclContext *C : llvm::reverse(DeclChain)) {
4263  if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4264  NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4265  ++NumSpecifiers;
4266  } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4267  NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4268  RD->getTypeForDecl());
4269  ++NumSpecifiers;
4270  }
4271  }
4272  return NumSpecifiers;
4273 }
4274 
4275 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4276  DeclContext *Ctx) {
4277  NestedNameSpecifier *NNS = nullptr;
4278  unsigned NumSpecifiers = 0;
4279  DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4280  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4281 
4282  // Eliminate common elements from the two DeclContext chains.
4283  for (DeclContext *C : llvm::reverse(CurContextChain)) {
4284  if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4285  break;
4286  NamespaceDeclChain.pop_back();
4287  }
4288 
4289  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4290  NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4291 
4292  // Add an explicit leading '::' specifier if needed.
4293  if (NamespaceDeclChain.empty()) {
4294  // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4295  NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4296  NumSpecifiers =
4297  buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4298  } else if (NamedDecl *ND =
4299  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4300  IdentifierInfo *Name = ND->getIdentifier();
4301  bool SameNameSpecifier = false;
4302  if (std::find(CurNameSpecifierIdentifiers.begin(),
4303  CurNameSpecifierIdentifiers.end(),
4304  Name) != CurNameSpecifierIdentifiers.end()) {
4305  std::string NewNameSpecifier;
4306  llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4307  SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4308  getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4309  NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4310  SpecifierOStream.flush();
4311  SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4312  }
4313  if (SameNameSpecifier ||
4314  std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
4315  Name) != CurContextIdentifiers.end()) {
4316  // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4317  NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4318  NumSpecifiers =
4319  buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4320  }
4321  }
4322 
4323  // If the built NestedNameSpecifier would be replacing an existing
4324  // NestedNameSpecifier, use the number of component identifiers that
4325  // would need to be changed as the edit distance instead of the number
4326  // of components in the built NestedNameSpecifier.
4327  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4328  SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4329  getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4330  NumSpecifiers = llvm::ComputeEditDistance(
4331  llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4332  llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4333  }
4334 
4335  SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4336  DistanceMap[NumSpecifiers].push_back(SI);
4337 }
4338 
4339 /// \brief Perform name lookup for a possible result for typo correction.
4340 static void LookupPotentialTypoResult(Sema &SemaRef,
4341  LookupResult &Res,
4342  IdentifierInfo *Name,
4343  Scope *S, CXXScopeSpec *SS,
4344  DeclContext *MemberContext,
4345  bool EnteringContext,
4346  bool isObjCIvarLookup,
4347  bool FindHidden) {
4348  Res.suppressDiagnostics();
4349  Res.clear();
4350  Res.setLookupName(Name);
4351  Res.setAllowHidden(FindHidden);
4352  if (MemberContext) {
4353  if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4354  if (isObjCIvarLookup) {
4355  if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4356  Res.addDecl(Ivar);
4357  Res.resolveKind();
4358  return;
4359  }
4360  }
4361 
4362  if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4364  Res.addDecl(Prop);
4365  Res.resolveKind();
4366  return;
4367  }
4368  }
4369 
4370  SemaRef.LookupQualifiedName(Res, MemberContext);
4371  return;
4372  }
4373 
4374  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4375  EnteringContext);
4376 
4377  // Fake ivar lookup; this should really be part of
4378  // LookupParsedName.
4379  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4380  if (Method->isInstanceMethod() && Method->getClassInterface() &&
4381  (Res.empty() ||
4382  (Res.isSingleResult() &&
4384  if (ObjCIvarDecl *IV
4385  = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4386  Res.addDecl(IV);
4387  Res.resolveKind();
4388  }
4389  }
4390  }
4391 }
4392 
4393 /// \brief Add keywords to the consumer as possible typo corrections.
4394 static void AddKeywordsToConsumer(Sema &SemaRef,
4395  TypoCorrectionConsumer &Consumer,
4397  bool AfterNestedNameSpecifier) {
4398  if (AfterNestedNameSpecifier) {
4399  // For 'X::', we know exactly which keywords can appear next.
4400  Consumer.addKeywordResult("template");
4401  if (CCC.WantExpressionKeywords)
4402  Consumer.addKeywordResult("operator");
4403  return;
4404  }
4405 
4406  if (CCC.WantObjCSuper)
4407  Consumer.addKeywordResult("super");
4408 
4409  if (CCC.WantTypeSpecifiers) {
4410  // Add type-specifier keywords to the set of results.
4411  static const char *const CTypeSpecs[] = {
4412  "char", "const", "double", "enum", "float", "int", "long", "short",
4413  "signed", "struct", "union", "unsigned", "void", "volatile",
4414  "_Complex", "_Imaginary",
4415  // storage-specifiers as well
4416  "extern", "inline", "static", "typedef"
4417  };
4418 
4419  const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4420  for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4421  Consumer.addKeywordResult(CTypeSpecs[I]);
4422 
4423  if (SemaRef.getLangOpts().C99)
4424  Consumer.addKeywordResult("restrict");
4425  if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4426  Consumer.addKeywordResult("bool");
4427  else if (SemaRef.getLangOpts().C99)
4428  Consumer.addKeywordResult("_Bool");
4429 
4430  if (SemaRef.getLangOpts().CPlusPlus) {
4431  Consumer.addKeywordResult("class");
4432  Consumer.addKeywordResult("typename");
4433  Consumer.addKeywordResult("wchar_t");
4434 
4435  if (SemaRef.getLangOpts().CPlusPlus11) {
4436  Consumer.addKeywordResult("char16_t");
4437  Consumer.addKeywordResult("char32_t");
4438  Consumer.addKeywordResult("constexpr");
4439  Consumer.addKeywordResult("decltype");
4440  Consumer.addKeywordResult("thread_local");
4441  }
4442  }
4443 
4444  if (SemaRef.getLangOpts().GNUMode)
4445  Consumer.addKeywordResult("typeof");
4446  } else if (CCC.WantFunctionLikeCasts) {
4447  static const char *const CastableTypeSpecs[] = {
4448  "char", "double", "float", "int", "long", "short",
4449  "signed", "unsigned", "void"
4450  };
4451  for (auto *kw : CastableTypeSpecs)
4452  Consumer.addKeywordResult(kw);
4453  }
4454 
4455  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4456  Consumer.addKeywordResult("const_cast");
4457  Consumer.addKeywordResult("dynamic_cast");
4458  Consumer.addKeywordResult("reinterpret_cast");
4459  Consumer.addKeywordResult("static_cast");
4460  }
4461 
4462  if (CCC.WantExpressionKeywords) {
4463  Consumer.addKeywordResult("sizeof");
4464  if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4465  Consumer.addKeywordResult("false");
4466  Consumer.addKeywordResult("true");
4467  }
4468 
4469  if (SemaRef.getLangOpts().CPlusPlus) {
4470  static const char *const CXXExprs[] = {
4471  "delete", "new", "operator", "throw", "typeid"
4472  };
4473  const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4474  for (unsigned I = 0; I != NumCXXExprs; ++I)
4475  Consumer.addKeywordResult(CXXExprs[I]);
4476 
4477  if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4478  cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4479  Consumer.addKeywordResult("this");
4480 
4481  if (SemaRef.getLangOpts().CPlusPlus11) {
4482  Consumer.addKeywordResult("alignof");
4483  Consumer.addKeywordResult("nullptr");
4484  }
4485  }
4486 
4487  if (SemaRef.getLangOpts().C11) {
4488  // FIXME: We should not suggest _Alignof if the alignof macro
4489  // is present.
4490  Consumer.addKeywordResult("_Alignof");
4491  }
4492  }
4493 
4494  if (CCC.WantRemainingKeywords) {
4495  if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4496  // Statements.
4497  static const char *const CStmts[] = {
4498  "do", "else", "for", "goto", "if", "return", "switch", "while" };
4499  const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4500  for (unsigned I = 0; I != NumCStmts; ++I)
4501  Consumer.addKeywordResult(CStmts[I]);
4502 
4503  if (SemaRef.getLangOpts().CPlusPlus) {
4504  Consumer.addKeywordResult("catch");
4505  Consumer.addKeywordResult("try");
4506  }
4507 
4508  if (S && S->getBreakParent())
4509  Consumer.addKeywordResult("break");
4510 
4511  if (S && S->getContinueParent())
4512  Consumer.addKeywordResult("continue");
4513 
4514  if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
4515  Consumer.addKeywordResult("case");
4516  Consumer.addKeywordResult("default");
4517  }
4518  } else {
4519  if (SemaRef.getLangOpts().CPlusPlus) {
4520  Consumer.addKeywordResult("namespace");
4521  Consumer.addKeywordResult("template");
4522  }
4523 
4524  if (S && S->isClassScope()) {
4525  Consumer.addKeywordResult("explicit");
4526  Consumer.addKeywordResult("friend");
4527  Consumer.addKeywordResult("mutable");
4528  Consumer.addKeywordResult("private");
4529  Consumer.addKeywordResult("protected");
4530  Consumer.addKeywordResult("public");
4531  Consumer.addKeywordResult("virtual");
4532  }
4533  }
4534 
4535  if (SemaRef.getLangOpts().CPlusPlus) {
4536  Consumer.addKeywordResult("using");
4537 
4538  if (SemaRef.getLangOpts().CPlusPlus11)
4539  Consumer.addKeywordResult("static_assert");
4540  }
4541  }
4542 }
4543 
4544 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4545  const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4546  Scope *S, CXXScopeSpec *SS,
4547  std::unique_ptr<CorrectionCandidateCallback> CCC,
4548  DeclContext *MemberContext, bool EnteringContext,
4549  const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4550 
4551  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4552  DisableTypoCorrection)
4553  return nullptr;
4554 
4555  // In Microsoft mode, don't perform typo correction in a template member
4556  // function dependent context because it interferes with the "lookup into
4557  // dependent bases of class templates" feature.
4558  if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4559  isa<CXXMethodDecl>(CurContext))
4560  return nullptr;
4561 
4562  // We only attempt to correct typos for identifiers.
4563  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4564  if (!Typo)
4565  return nullptr;
4566 
4567  // If the scope specifier itself was invalid, don't try to correct
4568  // typos.
4569  if (SS && SS->isInvalid())
4570  return nullptr;
4571 
4572  // Never try to correct typos during any kind of code synthesis.
4573  if (!CodeSynthesisContexts.empty())
4574  return nullptr;
4575 
4576  // Don't try to correct 'super'.
4577  if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4578  return nullptr;
4579 
4580  // Abort if typo correction already failed for this specific typo.
4581  IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4582  if (locs != TypoCorrectionFailures.end() &&
4583  locs->second.count(TypoName.getLoc()))
4584  return nullptr;
4585 
4586  // Don't try to correct the identifier "vector" when in AltiVec mode.
4587  // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4588  // remove this workaround.
4589  if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4590  return nullptr;
4591 
4592  // Provide a stop gap for files that are just seriously broken. Trying
4593  // to correct all typos can turn into a HUGE performance penalty, causing
4594  // some files to take minutes to get rejected by the parser.
4595  unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4596  if (Limit && TyposCorrected >= Limit)
4597  return nullptr;
4598  ++TyposCorrected;
4599 
4600  // If we're handling a missing symbol error, using modules, and the
4601  // special search all modules option is used, look for a missing import.
4602  if (ErrorRecovery && getLangOpts().Modules &&
4603  getLangOpts().ModulesSearchAll) {
4604  // The following has the side effect of loading the missing module.
4605  getModuleLoader().lookupMissingImports(Typo->getName(),
4606  TypoName.getLocStart());
4607  }
4608 
4609  CorrectionCandidateCallback &CCCRef = *CCC;
4610  auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
4611  *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4612  EnteringContext);
4613 
4614  // Perform name lookup to find visible, similarly-named entities.
4615  bool IsUnqualifiedLookup = false;
4616  DeclContext *QualifiedDC = MemberContext;
4617  if (MemberContext) {
4618  LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4619 
4620  // Look in qualified interfaces.
4621  if (OPT) {
4622  for (auto *I : OPT->quals())
4623  LookupVisibleDecls(I, LookupKind, *Consumer);
4624  }
4625  } else if (SS && SS->isSet()) {
4626  QualifiedDC = computeDeclContext(*SS, EnteringContext);
4627  if (!QualifiedDC)
4628  return nullptr;
4629 
4630  LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4631  } else {
4632  IsUnqualifiedLookup = true;
4633  }
4634 
4635  // Determine whether we are going to search in the various namespaces for
4636  // corrections.
4637  bool SearchNamespaces
4638  = getLangOpts().CPlusPlus &&
4639  (IsUnqualifiedLookup || (SS && SS->isSet()));
4640 
4641  if (IsUnqualifiedLookup || SearchNamespaces) {
4642  // For unqualified lookup, look through all of the names that we have
4643  // seen in this translation unit.
4644  // FIXME: Re-add the ability to skip very unlikely potential corrections.
4645  for (const auto &I : Context.Idents)
4646  Consumer->FoundName(I.getKey());
4647 
4648  // Walk through identifiers in external identifier sources.
4649  // FIXME: Re-add the ability to skip very unlikely potential corrections.
4650  if (IdentifierInfoLookup *External
4651  = Context.Idents.getExternalIdentifierLookup()) {
4652  std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4653  do {
4654  StringRef Name = Iter->Next();
4655  if (Name.empty())
4656  break;
4657 
4658  Consumer->FoundName(Name);
4659  } while (true);
4660  }
4661  }
4662 
4663  AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
4664 
4665  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4666  // to search those namespaces.
4667  if (SearchNamespaces) {
4668  // Load any externally-known namespaces.
4669  if (ExternalSource && !LoadedExternalKnownNamespaces) {
4670  SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4671  LoadedExternalKnownNamespaces = true;
4672  ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4673  for (auto *N : ExternalKnownNamespaces)
4674  KnownNamespaces[N] = true;
4675  }
4676 
4677  Consumer->addNamespaces(KnownNamespaces);
4678  }
4679 
4680  return Consumer;
4681 }
4682 
4683 /// \brief Try to "correct" a typo in the source code by finding
4684 /// visible declarations whose names are similar to the name that was
4685 /// present in the source code.
4686 ///
4687 /// \param TypoName the \c DeclarationNameInfo structure that contains
4688 /// the name that was present in the source code along with its location.
4689 ///
4690 /// \param LookupKind the name-lookup criteria used to search for the name.
4691 ///
4692 /// \param S the scope in which name lookup occurs.
4693 ///
4694 /// \param SS the nested-name-specifier that precedes the name we're
4695 /// looking for, if present.
4696 ///
4697 /// \param CCC A CorrectionCandidateCallback object that provides further
4698 /// validation of typo correction candidates. It also provides flags for
4699 /// determining the set of keywords permitted.
4700 ///
4701 /// \param MemberContext if non-NULL, the context in which to look for
4702 /// a member access expression.
4703 ///
4704 /// \param EnteringContext whether we're entering the context described by
4705 /// the nested-name-specifier SS.
4706 ///
4707 /// \param OPT when non-NULL, the search for visible declarations will
4708 /// also walk the protocols in the qualified interfaces of \p OPT.
4709 ///
4710 /// \returns a \c TypoCorrection containing the corrected name if the typo
4711 /// along with information such as the \c NamedDecl where the corrected name
4712 /// was declared, and any additional \c NestedNameSpecifier needed to access
4713 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4715  Sema::LookupNameKind LookupKind,
4716  Scope *S, CXXScopeSpec *SS,
4717  std::unique_ptr<CorrectionCandidateCallback> CCC,
4718  CorrectTypoKind Mode,
4719  DeclContext *MemberContext,
4720  bool EnteringContext,
4721  const ObjCObjectPointerType *OPT,
4722  bool RecordFailure) {
4723  assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback");
4724 
4725  // Always let the ExternalSource have the first chance at correction, even
4726  // if we would otherwise have given up.
4727  if (ExternalSource) {
4728  if (TypoCorrection Correction = ExternalSource->CorrectTypo(
4729  TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
4730  return Correction;
4731  }
4732 
4733  // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4734  // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4735  // some instances of CTC_Unknown, while WantRemainingKeywords is true
4736  // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4737  bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
4738 
4739  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4740  auto Consumer = makeTypoCorrectionConsumer(
4741  TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4742  EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4743 
4744  if (!Consumer)
4745  return TypoCorrection();
4746 
4747  // If we haven't found anything, we're done.
4748  if (Consumer->empty())
4749  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4750 
4751  // Make sure the best edit distance (prior to adding any namespace qualifiers)
4752  // is not more that about a third of the length of the typo's identifier.
4753  unsigned ED = Consumer->getBestEditDistance(true);
4754  unsigned TypoLen = Typo->getName().size();
4755  if (ED > 0 && TypoLen / ED < 3)
4756  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4757 
4758  TypoCorrection BestTC = Consumer->getNextCorrection();
4759  TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4760  if (!BestTC)
4761  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4762 
4763  ED = BestTC.getEditDistance();
4764 
4765  if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4766  // If this was an unqualified lookup and we believe the callback
4767  // object wouldn't have filtered out possible corrections, note
4768  // that no correction was found.
4769  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4770  }
4771 
4772  // If only a single name remains, return that result.
4773  if (!SecondBestTC ||
4774  SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4775  const TypoCorrection &Result = BestTC;
4776 
4777  // Don't correct to a keyword that's the same as the typo; the keyword
4778  // wasn't actually in scope.
4779  if (ED == 0 && Result.isKeyword())
4780  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4781 
4782  TypoCorrection TC = Result;
4783  TC.setCorrectionRange(SS, TypoName);
4784  checkCorrectionVisibility(*this, TC);
4785  return TC;
4786  } else if (SecondBestTC && ObjCMessageReceiver) {
4787  // Prefer 'super' when we're completing in a message-receiver
4788  // context.
4789 
4790  if (BestTC.getCorrection().getAsString() != "super") {
4791  if (SecondBestTC.getCorrection().getAsString() == "super")
4792  BestTC = SecondBestTC;
4793  else if ((*Consumer)["super"].front().isKeyword())
4794  BestTC = (*Consumer)["super"].front();
4795  }
4796  // Don't correct to a keyword that's the same as the typo; the keyword
4797  // wasn't actually in scope.
4798  if (BestTC.getEditDistance() == 0 ||
4799  BestTC.getCorrection().getAsString() != "super")
4800  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4801 
4802  BestTC.setCorrectionRange(SS, TypoName);
4803  return BestTC;
4804  }
4805 
4806  // Record the failure's location if needed and return an empty correction. If
4807  // this was an unqualified lookup and we believe the callback object did not
4808  // filter out possible corrections, also cache the failure for the typo.
4809  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
4810 }
4811 
4812 /// \brief Try to "correct" a typo in the source code by finding
4813 /// visible declarations whose names are similar to the name that was
4814 /// present in the source code.
4815 ///
4816 /// \param TypoName the \c DeclarationNameInfo structure that contains
4817 /// the name that was present in the source code along with its location.
4818 ///
4819 /// \param LookupKind the name-lookup criteria used to search for the name.
4820 ///
4821 /// \param S the scope in which name lookup occurs.
4822 ///
4823 /// \param SS the nested-name-specifier that precedes the name we're
4824 /// looking for, if present.
4825 ///
4826 /// \param CCC A CorrectionCandidateCallback object that provides further
4827 /// validation of typo correction candidates. It also provides flags for
4828 /// determining the set of keywords permitted.
4829 ///
4830 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
4831 /// diagnostics when the actual typo correction is attempted.
4832 ///
4833 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
4834 /// Expr from a typo correction candidate.
4835 ///
4836 /// \param MemberContext if non-NULL, the context in which to look for
4837 /// a member access expression.
4838 ///
4839 /// \param EnteringContext whether we're entering the context described by
4840 /// the nested-name-specifier SS.
4841 ///
4842 /// \param OPT when non-NULL, the search for visible declarations will
4843 /// also walk the protocols in the qualified interfaces of \p OPT.
4844 ///
4845 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
4846 /// Expr representing the result of performing typo correction, or nullptr if
4847 /// typo correction is not possible. If nullptr is returned, no diagnostics will
4848 /// be emitted and it is the responsibility of the caller to emit any that are
4849 /// needed.
4851  const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4852  Scope *S, CXXScopeSpec *SS,
4853  std::unique_ptr<CorrectionCandidateCallback> CCC,
4855  DeclContext *MemberContext, bool EnteringContext,
4856  const ObjCObjectPointerType *OPT) {
4857  assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback");
4858 
4859  auto Consumer = makeTypoCorrectionConsumer(
4860  TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4861  EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4862 
4863  // Give the external sema source a chance to correct the typo.
4864  TypoCorrection ExternalTypo;
4865  if (ExternalSource && Consumer) {
4866  ExternalTypo = ExternalSource->CorrectTypo(
4867  TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
4868  MemberContext, EnteringContext, OPT);
4869  if (ExternalTypo)
4870  Consumer->addCorrection(ExternalTypo);
4871  }
4872 
4873  if (!Consumer || Consumer->empty())
4874  return nullptr;
4875 
4876  // Make sure the best edit distance (prior to adding any namespace qualifiers)
4877  // is not more that about a third of the length of the typo's identifier.
4878  unsigned ED = Consumer->getBestEditDistance(true);
4879  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4880  if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
4881  return nullptr;
4882 
4883  ExprEvalContexts.back().NumTypos++;
4884  return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
4885 }
4886 
4888  if (!CDecl) return;
4889 
4890  if (isKeyword())
4891  CorrectionDecls.clear();
4892 
4893  CorrectionDecls.push_back(CDecl);
4894 
4895  if (!CorrectionName)
4896  CorrectionName = CDecl->getDeclName();
4897 }
4898 
4899 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4900  if (CorrectionNameSpec) {
4901  std::string tmpBuffer;
4902  llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4903  CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4904  PrefixOStream << CorrectionName;
4905  return PrefixOStream.str();
4906  }
4907 
4908  return CorrectionName.getAsString();
4909 }
4910 
4912  const TypoCorrection &candidate) {
4913  if (!candidate.isResolved())
4914  return true;
4915 
4916  if (candidate.isKeyword())
4917  return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4918  WantRemainingKeywords || WantObjCSuper;
4919 
4920  bool HasNonType = false;
4921  bool HasStaticMethod = false;
4922  bool HasNonStaticMethod = false;
4923  for (Decl *D : candidate) {
4924  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4925  D = FTD->getTemplatedDecl();
4926  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4927  if (Method->isStatic())
4928  HasStaticMethod = true;
4929  else
4930  HasNonStaticMethod = true;
4931  }
4932  if (!isa<TypeDecl>(D))
4933  HasNonType = true;
4934  }
4935 
4936  if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4937  !candidate.getCorrectionSpecifier())
4938  return false;
4939 
4940  return WantTypeSpecifiers || HasNonType;
4941 }
4942 
4944  bool HasExplicitTemplateArgs,
4945  MemberExpr *ME)
4946  : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4947  CurContext(SemaRef.CurContext), MemberFn(ME) {
4948  WantTypeSpecifiers = false;
4949  WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
4950  WantRemainingKeywords = false;
4951 }
4952 
4954  if (!candidate.getCorrectionDecl())
4955  return candidate.isKeyword();
4956 
4957  for (auto *C : candidate) {
4958  FunctionDecl *FD = nullptr;
4959  NamedDecl *ND = C->getUnderlyingDecl();
4960  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4961  FD = FTD->getTemplatedDecl();
4962  if (!HasExplicitTemplateArgs && !FD) {
4963  if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4964  // If the Decl is neither a function nor a template function,
4965  // determine if it is a pointer or reference to a function. If so,
4966  // check against the number of arguments expected for the pointee.
4967  QualType ValType = cast<ValueDecl>(ND)->getType();
4968  if (ValType->isAnyPointerType() || ValType->isReferenceType())
4969  ValType = ValType->getPointeeType();
4970  if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
4971  if (FPT->getNumParams() == NumArgs)
4972  return true;
4973  }
4974  }
4975 
4976  // Skip the current candidate if it is not a FunctionDecl or does not accept
4977  // the current number of arguments.
4978  if (!FD || !(FD->getNumParams() >= NumArgs &&
4979  FD->getMinRequiredArguments() <= NumArgs))
4980  continue;
4981 
4982  // If the current candidate is a non-static C++ method, skip the candidate
4983  // unless the method being corrected--or the current DeclContext, if the
4984  // function being corrected is not a method--is a method in the same class
4985  // or a descendent class of the candidate's parent class.
4986  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4987  if (MemberFn || !MD->isStatic()) {
4988  CXXMethodDecl *CurMD =
4989  MemberFn
4990  ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
4991  : dyn_cast_or_null<CXXMethodDecl>(CurContext);
4992  CXXRecordDecl *CurRD =
4993  CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
4994  CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
4995  if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
4996  continue;
4997  }
4998  }
4999  return true;
5000  }
5001  return false;
5002 }
5003 
5004 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5005  const PartialDiagnostic &TypoDiag,
5006  bool ErrorRecovery) {
5007  diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5008  ErrorRecovery);
5009 }
5010 
5011 /// Find which declaration we should import to provide the definition of
5012 /// the given declaration.
5014  if (VarDecl *VD = dyn_cast<VarDecl>(D))
5015  return VD->getDefinition();
5016  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5017  return FD->getDefinition();
5018  if (TagDecl *TD = dyn_cast<TagDecl>(D))
5019  return TD->getDefinition();
5020  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5021  return ID->getDefinition();
5022  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5023  return PD->getDefinition();
5024  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5025  return getDefinitionToImport(TD->getTemplatedDecl());
5026  return nullptr;
5027 }
5028 
5030  MissingImportKind MIK, bool Recover) {
5031  // Suggest importing a module providing the definition of this entity, if
5032  // possible.
5033  NamedDecl *Def = getDefinitionToImport(Decl);
5034  if (!Def)
5035  Def = Decl;
5036 
5037  Module *Owner = getOwningModule(Decl);
5038  assert(Owner && "definition of hidden declaration is not in a module");
5039 
5040  llvm::SmallVector<Module*, 8> OwningModules;
5041  OwningModules.push_back(Owner);
5042  auto Merged = Context.getModulesWithMergedDefinition(Decl);
5043  OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5044 
5045  diagnoseMissingImport(Loc, Decl, Decl->getLocation(), OwningModules, MIK,
5046  Recover);
5047 }
5048 
5049 /// \brief Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5050 /// suggesting the addition of a #include of the specified file.
5052  const FileEntry *E) {
5053  bool IsSystem;
5054  auto Path =
5056  return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5057 }
5058 
5060  SourceLocation DeclLoc,
5061  ArrayRef<Module *> Modules,
5062  MissingImportKind MIK, bool Recover) {
5063  assert(!Modules.empty());
5064 
5065  // Weed out duplicates from module list.
5066  llvm::SmallVector<Module*, 8> UniqueModules;
5067  llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5068  for (auto *M : Modules)
5069  if (UniqueModuleSet.insert(M).second)
5070  UniqueModules.push_back(M);
5071  Modules = UniqueModules;
5072 
5073  if (Modules.size() > 1) {
5074  std::string ModuleList;
5075  unsigned N = 0;
5076  for (Module *M : Modules) {
5077  ModuleList += "\n ";
5078  if (++N == 5 && N != Modules.size()) {
5079  ModuleList += "[...]";
5080  break;
5081  }
5082  ModuleList += M->getFullModuleName();
5083  }
5084 
5085  Diag(UseLoc, diag::err_module_unimported_use_multiple)
5086  << (int)MIK << Decl << ModuleList;
5087  } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics(
5088  UseLoc, Modules[0], DeclLoc)) {
5089  // The right way to make the declaration visible is to include a header;
5090  // suggest doing so.
5091  //
5092  // FIXME: Find a smart place to suggest inserting a #include, and add
5093  // a FixItHint there.
5094  Diag(UseLoc, diag::err_module_unimported_use_header)
5095  << (int)MIK << Decl << Modules[0]->getFullModuleName()
5096  << getIncludeStringForHeader(PP, E);
5097  } else {
5098  // FIXME: Add a FixItHint that imports the corresponding module.
5099  Diag(UseLoc, diag::err_module_unimported_use)
5100  << (int)MIK << Decl << Modules[0]->getFullModuleName();
5101  }
5102 
5103  unsigned DiagID;
5104  switch (MIK) {
5105  case MissingImportKind::Declaration:
5106  DiagID = diag::note_previous_declaration;
5107  break;
5108  case MissingImportKind::Definition:
5109  DiagID = diag::note_previous_definition;
5110  break;
5111  case MissingImportKind::DefaultArgument:
5112  DiagID = diag::note_default_argument_declared_here;
5113  break;
5114  case MissingImportKind::ExplicitSpecialization:
5115  DiagID = diag::note_explicit_specialization_declared_here;
5116  break;
5117  case MissingImportKind::PartialSpecialization:
5118  DiagID = diag::note_partial_specialization_declared_here;
5119  break;
5120  }
5121  Diag(DeclLoc, DiagID);
5122 
5123  // Try to recover by implicitly importing this module.
5124  if (Recover)
5125  createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5126 }
5127 
5128 /// \brief Diagnose a successfully-corrected typo. Separated from the correction
5129 /// itself to allow external validation of the result, etc.
5130 ///
5131 /// \param Correction The result of performing typo correction.
5132 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5133 /// string added to it (and usually also a fixit).
5134 /// \param PrevNote A note to use when indicating the location of the entity to
5135 /// which we are correcting. Will have the correction string added to it.
5136 /// \param ErrorRecovery If \c true (the default), the caller is going to
5137 /// recover from the typo as if the corrected string had been typed.
5138 /// In this case, \c PDiag must be an error, and we will attach a fixit
5139 /// to it.
5140 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5141  const PartialDiagnostic &TypoDiag,
5142  const PartialDiagnostic &PrevNote,
5143  bool ErrorRecovery) {
5144  std::string CorrectedStr = Correction.getAsString(getLangOpts());
5145  std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5147  Correction.getCorrectionRange(), CorrectedStr);
5148 
5149  // Maybe we're just missing a module import.
5150  if (Correction.requiresImport()) {
5151  NamedDecl *Decl = Correction.getFoundDecl();
5152  assert(Decl && "import required but no declaration to import");
5153 
5154  diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5155  MissingImportKind::Declaration, ErrorRecovery);
5156  return;
5157  }
5158 
5159  Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5160  << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5161 
5162  NamedDecl *ChosenDecl =
5163  Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5164  if (PrevNote.getDiagID() && ChosenDecl)
5165  Diag(ChosenDecl->getLocation(), PrevNote)
5166  << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5167 
5168  // Add any extra diagnostics.
5169  for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5170  Diag(Correction.getCorrectionRange().getBegin(), PD);
5171 }
5172 
5173 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5175  TypoRecoveryCallback TRC) {
5176  assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5177  auto TE = new (Context) TypoExpr(Context.DependentTy);
5178  auto &State = DelayedTypos[TE];
5179  State.Consumer = std::move(TCC);
5180  State.DiagHandler = std::move(TDG);
5181  State.RecoveryHandler = std::move(TRC);
5182  return TE;
5183 }
5184 
5185 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5186  auto Entry = DelayedTypos.find(TE);
5187  assert(Entry != DelayedTypos.end() &&
5188  "Failed to get the state for a TypoExpr!");
5189  return Entry->second;
5190 }
5191 
5193  DelayedTypos.erase(TE);
5194 }
5195 
5197  DeclarationNameInfo Name(II, IILoc);
5198  LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5199  R.suppressDiagnostics();
5200  R.setHideTags(false);
5201  LookupName(R, S);
5202  R.dump();
5203 }
SourceLocation getLoc() const
getLoc - Returns the main location of the declaration name.
Defines the clang::ASTContext interface.
Name lookup results in an ambiguity because multiple definitions of entity that meet the lookup crite...
Definition: Lookup.h:104
FunctionDecl - An instance of this class is created to represent a function declaration or definition...
Definition: Decl.h:1698
FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs, MemberExpr *ME=nullptr)
Name lookup found a set of overloaded functions that met the criteria.
Definition: Lookup.h:49
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
bool isForRedeclaration() const
True if this lookup is just looking for an existing declaration.
Definition: Lookup.h:270
SourceRange getCorrectionRange() const
bool isPredefinedLibFunction(unsigned ID) const
Determines whether this builtin is a predefined libc/libm function, such as "malloc", where we know the signature a priori.
Definition: Builtins.h:141
void setOrigin(CXXRecordDecl *Rec)
CXXMethodDecl * getMethod() const
Definition: Sema.h:1041
no exception specification
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2285
A (possibly-)qualified type.
Definition: Type.h:653
Simple class containing the result of Sema::CorrectTypo.
base_class_range bases()
Definition: DeclCXX.h:773
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2483
bool hasVisibleDeclarationSlow(const NamedDecl *D, llvm::SmallVectorImpl< Module *> *Modules)
CorrectTypoKind
Definition: Sema.h:3208
virtual unsigned RankCandidate(const TypoCorrection &candidate)
Method used by Sema::CorrectTypo to assign an "edit distance" rank to a candidate (where a lower valu...
Template argument deduction was successful.
Definition: Sema.h:6834
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc...
Definition: Sema.h:2994
DeclarationName getCXXConstructorName(CanQualType Ty)
getCXXConstructorName - Returns the name of a C++ constructor for the given Type. ...
void setLookupName(DeclarationName Name)
Sets the name to look up.
Definition: Lookup.h:260
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false)
Perform unqualified name lookup starting from a given scope.
AmbiguityKind getAmbiguityKind() const
Definition: Lookup.h:329
Look up the name of an Objective-C protocol.
Definition: Sema.h:3028
Filter makeFilter()
Create a filter for this result set.
Definition: Lookup.h:685
CXXMethodDecl * LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals)
Look up the moving assignment operator for the given class.
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3058
Provides information about an attempted template argument deduction, whose success or failure was des...
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:456
void addConst()
Add the const type qualifier to this QualType.
Definition: Type.h:815
Microsoft&#39;s &#39;__super&#39; specifier, stored as a CXXRecordDecl* of the class it appeared in...
void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class)
Force the declaration of any implicitly-declared members of this class.
Definition: SemaLookup.cpp:727
The template argument is an expression, and we&#39;ve not resolved it to one of the other forms yet...
Definition: TemplateBase.h:87
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:270
bool isSingleTagDecl() const
Asks if the result is a single tag decl.
Definition: Lookup.h:533
void erase()
Erase the last element returned from this iterator.
Definition: Lookup.h:657
ConstructorInfo getConstructorInfo(NamedDecl *ND)
Definition: Overload.h:872
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
__DEVICE__ long long abs(long long __n)
A reference to a name which we were able to look up during parsing but could not resolve to a specifi...
Definition: ExprCXX.h:2736
NestedNameSpecifier * getPrefix() const
Return the prefix of this nested name specifier.
Name lookup results in an ambiguity because multiple nonstatic entities that meet the lookup criteria...
Definition: Lookup.h:89
Defines the C++ template declaration subclasses.
bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, bool AllowBuiltinCreation=false, bool EnteringContext=false)
Performs name lookup for a name that was parsed in the source code, and may contain a C++ scope speci...
StringRef P
Classification Classify(ASTContext &Ctx) const
Classify - Classify this expression according to the C++11 expression taxonomy.
Definition: Expr.h:377
bool isTemplateParamScope() const
isTemplateParamScope - Return true if this scope is a C++ template parameter scope.
Definition: Scope.h:371
Scope * TUScope
Translation Unit Scope - useful to Objective-C actions that need to lookup file scope declarations in...
Definition: Sema.h:805
void swap(CXXBasePaths &Other)
Swap this data structure&#39;s contents with another CXXBasePaths object.
SmallVector< CodeSynthesisContext, 16 > CodeSynthesisContexts
List of active code synthesis contexts.
Definition: Sema.h:7162
static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D, llvm::SmallVectorImpl< Module *> *Modules, Filter F)
Decl * getPreviousDecl()
Retrieve the previous declaration that declares the same entity as this declaration, or NULL if there is no previous declaration.
Definition: DeclBase.h:948
NamedDecl * getDecl() const
The base class of the type hierarchy.
Definition: Type.h:1353
MissingImportKind
Kinds of missing import.
Definition: Sema.h:2095
bool isDerivedFrom(const CXXRecordDecl *Base) const
Determine whether this class is derived from the class Base.
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:64
NamespaceDecl - Represent a C++ namespace.
Definition: Decl.h:506
RedeclarationKind
Specifies whether (or how) name lookup is being performed for a redeclaration (vs.
Definition: Sema.h:3039
Ambiguous candidates found.
Definition: Overload.h:43
decl_iterator begin()
AccessSpecifier
A C++ access specifier (public, private, protected), plus the special value "none" which means differ...
Definition: Specifiers.h:95
const NestedNameSpecifier * Specifier
Look up of a name that precedes the &#39;::&#39; scope resolution operator in C++.
Definition: Sema.h:3010
void makeKeyword()
Mark this TypoCorrection as being a keyword.
bool needsImplicitMoveAssignment() const
Determine whether this class should get an implicit move assignment operator or if any existing speci...
Definition: DeclCXX.h:1114
Scope * getContinueParent()
getContinueParent - Return the closest scope that a continue statement would be affected by...
Definition: Scope.h:239
void setCorrectionSpecifier(NestedNameSpecifier *NNS)
bool hasNext() const
Definition: Lookup.h:642
Represents a path from a specific derived class (which is not represented as part of the path) to a p...
LiteralOperatorLookupResult
The possible outcomes of name lookup for a literal operator.
Definition: Sema.h:3064
unsigned getIdentifierNamespace() const
Definition: DeclBase.h:791
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2397
bool isCompleteDefinition() const
isCompleteDefinition - Return true if this decl has its body fully specified.
Definition: Decl.h:3091
Look up a namespace name within a C++ using directive or namespace alias definition, ignoring non-namespace names (C++ [basic.lookup.udir]p1).
Definition: Sema.h:3014
CXXMethodDecl * DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl)
Declare the implicit move assignment operator for the given class.
Consumes visible declarations found when searching for all visible names within a given scope or cont...
Definition: Lookup.h:763
An identifier, stored as an IdentifierInfo*.
CXXConstructorDecl * LookupMovingConstructor(CXXRecordDecl *Class, unsigned Quals)
Look up the moving constructor for the given class.
std::list< CXXBasePath >::iterator paths_iterator
DeclContext::lookup_result Decls
The set of declarations found inside this base class subobject.
static bool LookupBuiltin(Sema &S, LookupResult &R)
Lookup a builtin function, when name lookup would otherwise fail.
Definition: SemaLookup.cpp:674
VarDecl - An instance of this class is created to represent a variable declaration or definition...
Definition: Decl.h:807
NamedDecl * LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, Scope *S, bool ForRedeclaration, SourceLocation Loc)
LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
Definition: SemaDecl.cpp:1952
CXXMethodDecl * LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals)
Look up the copying assignment operator for the given class.
static NestedNameSpecifier * Create(const ASTContext &Context, NestedNameSpecifier *Prefix, IdentifierInfo *II)
Builds a specifier combining a prefix and an identifier.
SmallVector< SwitchStmt *, 8 > SwitchStack
SwitchStack - This is the current set of active switch statements in the block.
Definition: ScopeInfo.h:165
DeclarationName getLookupName() const
Gets the name to look up.
Definition: Lookup.h:255
QualType getCXXNameType() const
getCXXNameType - If this name is one of the C++ names (of a constructor, destructor, or conversion function), return the type associated with that name.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6307
PrintingPolicy getPrintingPolicy() const
Retrieve a suitable printing policy.
Definition: Sema.h:2128
static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last)
Determine whether the given set of member declarations contains only static members, nested types, and enumerators.
bool isInObjcMethodScope() const
isInObjcMethodScope - Return true if this scope is, or is contained in, an Objective-C method body...
Definition: Scope.h:348
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:57
Extra information about a function prototype.
Definition: Type.h:3389
static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class)
Determine whether we can declare a special member function within the class at this point...
Definition: SemaLookup.cpp:718
bool needsImplicitCopyAssignment() const
Determine whether this class needs an implicit copy assignment operator to be lazily declared...
Definition: DeclCXX.h:1065
void setNotFoundInCurrentInstantiation()
Note that while no result was found in the current instantiation, there were dependent base classes t...
Definition: Lookup.h:455
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition: Decl.h:423
bool isAmbiguous() const
Definition: Lookup.h:304
static bool FindOMPReductionMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, DeclarationName Name)
Base-class lookup callback that determines whether there exists an OpenMP declare reduction member wi...
A namespace, stored as a NamespaceDecl*.
bool isInvalidDecl() const
Definition: DeclBase.h:546
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:68
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:38
SpecifierKind getKind() const
Determine what kind of nested name specifier is stored.
Look up an ordinary name that is going to be redeclared as a name with linkage.
Definition: Sema.h:3023
Defines the clang::Expr interface and subclasses for C++ expressions.
void addKeywordResult(StringRef Keyword)
void setMethod(CXXMethodDecl *MD)
Definition: Sema.h:1042
IdentifierInfo * getIdentifier() const
getIdentifier - Get the identifier that names this declaration, if there is one.
Definition: Decl.h:265
Types, declared with &#39;struct foo&#39;, typedefs, etc.
Definition: DeclBase.h:130
RecordDecl - Represents a struct/union/class.
Definition: Decl.h:3482
bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class)
Perform qualified name lookup into all base classes of the given class.
DeclarationName getDeclName() const
getDeclName - Get the actual, stored name of the declaration, which may be a special name...
Definition: Decl.h:291
bool Encloses(const DeclContext *DC) const
Determine whether this declaration context encloses the declaration context DC.
Definition: DeclBase.cpp:1096
FunctionType::ExtInfo ExtInfo
Definition: Type.h:3390
Represents a class template specialization, which refers to a class template with a given set of temp...
One of these records is kept for each identifier that is lexed.
Name lookup results in an ambiguity; use getAmbiguityKind to figure out what kind of ambiguity we hav...
Definition: Lookup.h:59
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
std::string getQuoted(const LangOptions &LO) const
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:149
DeclarationName getCorrection() const
Gets the DeclarationName of the typo correction.
The results of name lookup within a DeclContext.
Definition: DeclBase.h:1178
LineState State
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:72
TemplateDecl * getAsTemplateDecl() const
Retrieve the underlying template declaration that this template name refers to, if known...
Base class for callback objects used by Sema::CorrectTypo to check the validity of a potential typo c...
sema::BlockScopeInfo * getCurBlock()
Retrieve the current block, if any.
Definition: Sema.cpp:1413
void setAmbiguousBaseSubobjectTypes(CXXBasePaths &P)
Make these results show that the name was found in base classes of different types.
Definition: SemaLookup.cpp:646
const Type * getAsType() const
Retrieve the type stored in this nested name specifier.
void LookupVisibleDecls(Scope *S, LookupNameKind Kind, VisibleDeclConsumer &Consumer, bool IncludeGlobalScope=true)
void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx, bool InBaseClass) override
Invoked each time Sema::LookupVisibleDecls() finds a declaration visible from the current scope or co...
This declaration is a friend function.
Definition: DeclBase.h:152
void setVisibleDespiteOwningModule()
Set that this declaration is globally visible, even if it came from a module that is not visible...
Definition: DeclBase.h:772
const DeclarationNameInfo & getLookupNameInfo() const
Gets the name info to look up.
Definition: Lookup.h:245
conversion_iterator conversion_end() const
Definition: DeclCXX.h:1219
bool isReferenceType() const
Definition: Type.h:5956
The iterator over UnresolvedSets.
Definition: UnresolvedSet.h:32
void addCorrectionDecl(NamedDecl *CDecl)
Add the given NamedDecl to the list of NamedDecls that are the declarations associated with the Decla...
bool isDefinedOutsideFunctionOrMethod() const
isDefinedOutsideFunctionOrMethod - This predicate returns true if this scoped decl is defined outside...
Definition: DeclBase.h:843
int Category
Definition: Format.cpp:1348
bool Equals(const DeclContext *DC) const
Determine whether this declaration context is equivalent to the declaration context DC...
Definition: DeclBase.h:1451
bool isExternallyDeclarable() const
Determine whether this declaration can be redeclared in a different translation unit.
Definition: Decl.h:377
LookupResultKind getResultKind() const
Definition: Lookup.h:324
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:48
Scope * getBreakParent()
getBreakParent - Return the closest scope that a break statement would be affected by...
Definition: Scope.h:249
No entity found met the criteria within the current instantiation,, but there were dependent base cla...
Definition: Lookup.h:41
bool requiresImport() const
Returns whether this typo correction is correcting to a declaration that was declared in a module tha...
Describes a module or submodule.
Definition: Module.h:65
IdentifierTable & Idents
Definition: ASTContext.h:537
TemplateDecl * getCXXDeductionGuideTemplate() const
If this name is the name of a C++ deduction guide, return the template associated with that name...
SpecialMemberOverloadResult - The overloading result for a special member function.
Definition: Sema.h:1025
void setCallbackDistance(unsigned ED)
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:107
DeclClass * getAsSingle() const
Definition: Lookup.h:510
bool isModuleVisible(const Module *M)
Definition: Sema.h:1558
CXXBasePaths * getBasePaths() const
Return the base paths structure that&#39;s associated with these results, or null if none is...
Definition: Lookup.h:346
CXXRecordDecl * getAsRecordDecl() const
Retrieve the record declaration stored in this nested name specifier.
Look up implicit &#39;self&#39; parameter of an objective-c method.
Definition: Sema.h:3030
IdentifierInfo * getAsIdentifier() const
Retrieve the identifier stored in this nested name specifier.
void resolveKind()
Resolves the result kind of the lookup, possibly hiding decls.
Definition: SemaLookup.cpp:471
Represents the results of name lookup.
Definition: Lookup.h:32
void setAmbiguousBaseSubobjects(CXXBasePaths &P)
Make these results show that the name was found in distinct base classes of the same type...
Definition: SemaLookup.cpp:638
static DeclAccessPair make(NamedDecl *D, AccessSpecifier AS)
virtual bool includeHiddenDecls() const
Determine whether hidden declarations (from unimported modules) should be given to this consumer...
ObjCMethodDecl * getCurMethodDecl()
getCurMethodDecl - If inside of a method body, this returns a pointer to the method decl for the meth...
Definition: Sema.cpp:1171
Namespaces, declared with &#39;namespace foo {}&#39;.
Definition: DeclBase.h:140
static void LookupPotentialTypoResult(Sema &SemaRef, LookupResult &Res, IdentifierInfo *Name, Scope *S, CXXScopeSpec *SS, DeclContext *MemberContext, bool EnteringContext, bool isObjCIvarLookup, bool FindHidden)
Perform name lookup for a possible result for typo correction.
HeaderSearch & getHeaderSearchInfo() const
Definition: Preprocessor.h:817
void setQualifierDistance(unsigned ED)
bool hasTagIdentifierNamespace() const
Definition: DeclBase.h:801
Succeeded, but refers to a deleted function.
Definition: Overload.h:44
bool ValidateCandidate(const TypoCorrection &candidate) override
Simple predicate used by the default RankCandidate to determine whether to return an edit distance of...
Module * getOwningModule(Decl *Entity)
Get the module owning an entity.
Definition: Sema.h:1552
CXXConstructorDecl * DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl)
Declare the implicit move constructor for the given class.
ModuleOwnershipKind getModuleOwnershipKind() const
Get the kind of module ownership for this declaration.
Definition: DeclBase.h:778
Look up all declarations in a scope with the given name, including resolved using declarations...
Definition: Sema.h:3018
static NamedDecl * getDefinitionToImport(NamedDecl *D)
Find which declaration we should import to provide the definition of the given declaration.
NamespaceAliasDecl * getAsNamespaceAlias() const
Retrieve the namespace alias stored in this nested name specifier.
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:635
IdentifierInfoLookup * getExternalIdentifierLookup() const
Retrieve the external identifier lookup object, if any.
TypeDecl - Represents a declaration of a type.
Definition: Decl.h:2754
A set of unresolved declarations.
Definition: UnresolvedSet.h:61
static unsigned getIDNS(Sema::LookupNameKind NameKind, bool CPlusPlus, bool Redeclaration)
Definition: SemaLookup.cpp:209
const Type * getClass() const
Definition: Type.h:2538
Look up the name of an OpenMP user-defined reduction operation.
Definition: Sema.h:3032
std::function< ExprResult(Sema &, TypoExpr *, TypoCorrection)> TypoRecoveryCallback
Definition: Sema.h:3095
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:39
void DiagnoseAmbiguousLookup(LookupResult &Result)
Produce a diagnostic describing the ambiguity that resulted from name lookup.
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:5720
CXXRecordDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclCXX.h:705
TypoExpr - Internal placeholder for expressions where typo correction still needs to be performed and...
Definition: Expr.h:5232
using_directives_range using_directives()
Definition: Scope.h:460
void append(iterator I, iterator E)
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
base_class_iterator bases_begin()
Definition: DeclCXX.h:780
Represents an Objective-C protocol declaration.
Definition: DeclObjC.h:2083
lookups_range lookups() const
Definition: DeclLookups.h:76
DeclContext * getLexicalDeclContext()
getLexicalDeclContext - The declaration context where this Decl was lexically declared (LexicalDC)...
Definition: DeclBase.h:820
LabelDecl * LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc, SourceLocation GnuLabelLoc=SourceLocation())
LookupOrCreateLabel - Do a name lookup of a label with the specified name.
const LangOptions & getLangOpts() const
Definition: Sema.h:1193
Labels, declared with &#39;x:&#39; and referenced with &#39;goto x&#39;.
Definition: DeclBase.h:117
const TypoCorrection & getNextCorrection()
Return the next typo correction that passes all internal filters and is deemed valid by the consumer&#39;...
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:1458
Represents an ObjC class declaration.
Definition: DeclObjC.h:1191
void addDecl(NamedDecl *D)
Add a declaration to these results with its natural access.
Definition: Lookup.h:429
Member name lookup, which finds the names of class/struct/union members.
Definition: Sema.h:3002
NameKind getNameKind() const
getNameKind - Determine what kind of name this is.
Ordinary names.
Definition: DeclBase.h:144
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:865
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1521
ExtInfo withCallingConv(CallingConv cc) const
Definition: Type.h:3179
static const unsigned InvalidDistance
CXXSpecialMember
Kinds of C++ special members.
Definition: Sema.h:1129
unsigned getFlags() const
getFlags - Return the flags for this scope.
Definition: Scope.h:216
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:274
udir_range using_directives() const
Returns iterator range [First, Last) of UsingDirectiveDecls stored within this context.
Definition: DeclBase.cpp:1802
NamedDecl * getFoundDecl() const
Get the correction declaration found by name lookup (before we looked through using shadow declaratio...
void setNamingClass(CXXRecordDecl *Record)
Sets the &#39;naming class&#39; for this lookup.
Definition: Lookup.h:411
ArrayRef< Module * > getModulesWithMergedDefinition(const NamedDecl *Def)
Get the additional modules in which the definition Def has been merged.
Definition: ASTContext.h:971
virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx, bool InBaseClass)=0
Invoked each time Sema::LookupVisibleDecls() finds a declaration visible from the current scope or co...
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1590
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3270
std::string CurrentModule
The name of the current module, of which the main source file is a part.
Definition: LangOptions.h:131
This declaration is a C++ operator declared in a non-class context.
Definition: DeclBase.h:168
Objective C @protocol.
Definition: DeclBase.h:147
bool hasMergedDefinitionInCurrentModule(NamedDecl *Def)
The return type of classify().
Definition: Expr.h:302
DeclarationNameTable DeclarationNames
Definition: ASTContext.h:540
OverloadedOperatorKind getCXXOverloadedOperator() const
getCXXOverloadedOperator - If this name is the name of an overloadable operator in C++ (e...
Provides lookups to, and iteration over, IdentiferInfo objects.
SourceRange getRange() const
Definition: DeclSpec.h:68
void print(raw_ostream &OS, const PrintingPolicy &Policy) const
Print this nested name specifier to the given output stream.
unsigned getEditDistance(bool Normalized=true) const
Gets the "edit distance" of the typo correction from the typo.
std::function< void(const TypoCorrection &)> TypoDiagnosticGenerator
Definition: Sema.h:3093
This declaration is a friend class.
Definition: DeclBase.h:157
std::string getAsString(const LangOptions &LO) const
static bool LookupAnyMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, DeclarationName Name)
Callback that looks for any member of a class with the given name.
virtual bool ValidateCandidate(const TypoCorrection &candidate)
Simple predicate used by the default RankCandidate to determine whether to return an edit distance of...
void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, ArrayRef< Expr *> Args, ADLResult &Functions)
bool isInlineNamespace() const
Definition: DeclBase.cpp:1005
static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, DeclContext *StartDC)
Perform qualified name lookup in the namespaces nominated by using directives by the given context...
DeclContext * getLexicalParent()
getLexicalParent - Returns the containing lexical DeclContext.
Definition: DeclBase.h:1347
NamespaceDecl * getAsNamespace() const
Retrieve the namespace stored in this nested name specifier.
Expr - This represents one expression.
Definition: Expr.h:106
Defines the clang::LangOptions interface.
LookupNameKind
Describes the kind of name lookup to perform.
Definition: Sema.h:2990
ExprValueKind
The categorization of expression values, currently following the C++11 scheme.
Definition: Specifiers.h:104
llvm::StringRef getAsString(SyncScope S)
Definition: SyncScope.h:51
bool isDeclScope(Decl *D)
isDeclScope - Return true if this is the scope that the specified decl is declared in...
Definition: Scope.h:315
int Id
Definition: ASTDiff.cpp:191
const FunctionProtoType * T
int SubobjectNumber
Identifies which base class subobject (of type Base->getType()) this base path element refers to...
DeclContext * getEntity() const
Definition: Scope.h:319
void makeMergedDefinitionVisible(NamedDecl *ND)
Make a merged definition of an existing hidden definition ND visible at the specified location...
void setHideTags(bool Hide)
Sets whether tag declarations should be hidden by non-tag declarations during resolution.
Definition: Lookup.h:300
This file defines the classes used to store parsed information about declaration-specifiers and decla...
The template argument is a null pointer or null pointer to member that was provided for a non-type te...
Definition: TemplateBase.h:68
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2620
std::string getAsString() const
getNameAsString - Retrieve the human-readable string for this name.
This declaration is an OpenMP user defined reduction construction.
Definition: DeclBase.h:178
bool isAnonymousNamespace() const
Returns true if this is an anonymous namespace declaration.
Definiti