clang  9.0.0svn
SemaLookup.cpp
Go to the documentation of this file.
1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements name lookup for C, C++, Objective-C, and
10 // Objective-C++.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
25 #include "clang/Lex/HeaderSearch.h"
26 #include "clang/Lex/ModuleLoader.h"
27 #include "clang/Lex/Preprocessor.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/Lookup.h"
30 #include "clang/Sema/Overload.h"
31 #include "clang/Sema/Scope.h"
32 #include "clang/Sema/ScopeInfo.h"
33 #include "clang/Sema/Sema.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/TinyPtrVector.h"
40 #include "llvm/ADT/edit_distance.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <algorithm>
43 #include <iterator>
44 #include <list>
45 #include <set>
46 #include <utility>
47 #include <vector>
48 
49 using namespace clang;
50 using namespace sema;
51 
52 namespace {
53  class UnqualUsingEntry {
54  const DeclContext *Nominated;
55  const DeclContext *CommonAncestor;
56 
57  public:
58  UnqualUsingEntry(const DeclContext *Nominated,
59  const DeclContext *CommonAncestor)
60  : Nominated(Nominated), CommonAncestor(CommonAncestor) {
61  }
62 
63  const DeclContext *getCommonAncestor() const {
64  return CommonAncestor;
65  }
66 
67  const DeclContext *getNominatedNamespace() const {
68  return Nominated;
69  }
70 
71  // Sort by the pointer value of the common ancestor.
72  struct Comparator {
73  bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
74  return L.getCommonAncestor() < R.getCommonAncestor();
75  }
76 
77  bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
78  return E.getCommonAncestor() < DC;
79  }
80 
81  bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
82  return DC < E.getCommonAncestor();
83  }
84  };
85  };
86 
87  /// A collection of using directives, as used by C++ unqualified
88  /// lookup.
89  class UnqualUsingDirectiveSet {
90  Sema &SemaRef;
91 
92  typedef SmallVector<UnqualUsingEntry, 8> ListTy;
93 
94  ListTy list;
95  llvm::SmallPtrSet<DeclContext*, 8> visited;
96 
97  public:
98  UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
99 
100  void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
101  // C++ [namespace.udir]p1:
102  // During unqualified name lookup, the names appear as if they
103  // were declared in the nearest enclosing namespace which contains
104  // both the using-directive and the nominated namespace.
105  DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
106  assert(InnermostFileDC && InnermostFileDC->isFileContext());
107 
108  for (; S; S = S->getParent()) {
109  // C++ [namespace.udir]p1:
110  // A using-directive shall not appear in class scope, but may
111  // appear in namespace scope or in block scope.
112  DeclContext *Ctx = S->getEntity();
113  if (Ctx && Ctx->isFileContext()) {
114  visit(Ctx, Ctx);
115  } else if (!Ctx || Ctx->isFunctionOrMethod()) {
116  for (auto *I : S->using_directives())
117  if (SemaRef.isVisible(I))
118  visit(I, InnermostFileDC);
119  }
120  }
121  }
122 
123  // Visits a context and collect all of its using directives
124  // recursively. Treats all using directives as if they were
125  // declared in the context.
126  //
127  // A given context is only every visited once, so it is important
128  // that contexts be visited from the inside out in order to get
129  // the effective DCs right.
130  void visit(DeclContext *DC, DeclContext *EffectiveDC) {
131  if (!visited.insert(DC).second)
132  return;
133 
134  addUsingDirectives(DC, EffectiveDC);
135  }
136 
137  // Visits a using directive and collects all of its using
138  // directives recursively. Treats all using directives as if they
139  // were declared in the effective DC.
140  void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
142  if (!visited.insert(NS).second)
143  return;
144 
145  addUsingDirective(UD, EffectiveDC);
146  addUsingDirectives(NS, EffectiveDC);
147  }
148 
149  // Adds all the using directives in a context (and those nominated
150  // by its using directives, transitively) as if they appeared in
151  // the given effective context.
152  void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
154  while (true) {
155  for (auto UD : DC->using_directives()) {
157  if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
158  addUsingDirective(UD, EffectiveDC);
159  queue.push_back(NS);
160  }
161  }
162 
163  if (queue.empty())
164  return;
165 
166  DC = queue.pop_back_val();
167  }
168  }
169 
170  // Add a using directive as if it had been declared in the given
171  // context. This helps implement C++ [namespace.udir]p3:
172  // The using-directive is transitive: if a scope contains a
173  // using-directive that nominates a second namespace that itself
174  // contains using-directives, the effect is as if the
175  // using-directives from the second namespace also appeared in
176  // the first.
177  void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
178  // Find the common ancestor between the effective context and
179  // the nominated namespace.
180  DeclContext *Common = UD->getNominatedNamespace();
181  while (!Common->Encloses(EffectiveDC))
182  Common = Common->getParent();
183  Common = Common->getPrimaryContext();
184 
185  list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
186  }
187 
188  void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
189 
190  typedef ListTy::const_iterator const_iterator;
191 
192  const_iterator begin() const { return list.begin(); }
193  const_iterator end() const { return list.end(); }
194 
195  llvm::iterator_range<const_iterator>
196  getNamespacesFor(DeclContext *DC) const {
197  return llvm::make_range(std::equal_range(begin(), end(),
198  DC->getPrimaryContext(),
199  UnqualUsingEntry::Comparator()));
200  }
201  };
202 } // end anonymous namespace
203 
204 // Retrieve the set of identifier namespaces that correspond to a
205 // specific kind of name lookup.
206 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
207  bool CPlusPlus,
208  bool Redeclaration) {
209  unsigned IDNS = 0;
210  switch (NameKind) {
215  IDNS = Decl::IDNS_Ordinary;
216  if (CPlusPlus) {
218  if (Redeclaration)
220  }
221  if (Redeclaration)
222  IDNS |= Decl::IDNS_LocalExtern;
223  break;
224 
226  // Operator lookup is its own crazy thing; it is not the same
227  // as (e.g.) looking up an operator name for redeclaration.
228  assert(!Redeclaration && "cannot do redeclaration operator lookup");
230  break;
231 
232  case Sema::LookupTagName:
233  if (CPlusPlus) {
234  IDNS = Decl::IDNS_Type;
235 
236  // When looking for a redeclaration of a tag name, we add:
237  // 1) TagFriend to find undeclared friend decls
238  // 2) Namespace because they can't "overload" with tag decls.
239  // 3) Tag because it includes class templates, which can't
240  // "overload" with tag decls.
241  if (Redeclaration)
243  } else {
244  IDNS = Decl::IDNS_Tag;
245  }
246  break;
247 
248  case Sema::LookupLabel:
249  IDNS = Decl::IDNS_Label;
250  break;
251 
253  IDNS = Decl::IDNS_Member;
254  if (CPlusPlus)
256  break;
257 
260  break;
261 
263  IDNS = Decl::IDNS_Namespace;
264  break;
265 
267  assert(Redeclaration && "should only be used for redecl lookup");
271  break;
272 
275  break;
276 
279  break;
280 
282  IDNS = Decl::IDNS_OMPMapper;
283  break;
284 
285  case Sema::LookupAnyName:
288  | Decl::IDNS_Type;
289  break;
290  }
291  return IDNS;
292 }
293 
294 void LookupResult::configure() {
295  IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
296  isForRedeclaration());
297 
298  // If we're looking for one of the allocation or deallocation
299  // operators, make sure that the implicitly-declared new and delete
300  // operators can be found.
301  switch (NameInfo.getName().getCXXOverloadedOperator()) {
302  case OO_New:
303  case OO_Delete:
304  case OO_Array_New:
305  case OO_Array_Delete:
306  getSema().DeclareGlobalNewDelete();
307  break;
308 
309  default:
310  break;
311  }
312 
313  // Compiler builtins are always visible, regardless of where they end
314  // up being declared.
315  if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
316  if (unsigned BuiltinID = Id->getBuiltinID()) {
317  if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
318  AllowHidden = true;
319  }
320  }
321 }
322 
323 bool LookupResult::sanity() const {
324  // This function is never called by NDEBUG builds.
325  assert(ResultKind != NotFound || Decls.size() == 0);
326  assert(ResultKind != Found || Decls.size() == 1);
327  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
328  (Decls.size() == 1 &&
329  isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
330  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
331  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
332  (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
333  Ambiguity == AmbiguousBaseSubobjectTypes)));
334  assert((Paths != nullptr) == (ResultKind == Ambiguous &&
335  (Ambiguity == AmbiguousBaseSubobjectTypes ||
336  Ambiguity == AmbiguousBaseSubobjects)));
337  return true;
338 }
339 
340 // Necessary because CXXBasePaths is not complete in Sema.h
341 void LookupResult::deletePaths(CXXBasePaths *Paths) {
342  delete Paths;
343 }
344 
345 /// Get a representative context for a declaration such that two declarations
346 /// will have the same context if they were found within the same scope.
348  // For function-local declarations, use that function as the context. This
349  // doesn't account for scopes within the function; the caller must deal with
350  // those.
352  if (DC->isFunctionOrMethod())
353  return DC;
354 
355  // Otherwise, look at the semantic context of the declaration. The
356  // declaration must have been found there.
357  return D->getDeclContext()->getRedeclContext();
358 }
359 
360 /// Determine whether \p D is a better lookup result than \p Existing,
361 /// given that they declare the same entity.
363  NamedDecl *D, NamedDecl *Existing) {
364  // When looking up redeclarations of a using declaration, prefer a using
365  // shadow declaration over any other declaration of the same entity.
366  if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
367  !isa<UsingShadowDecl>(Existing))
368  return true;
369 
370  auto *DUnderlying = D->getUnderlyingDecl();
371  auto *EUnderlying = Existing->getUnderlyingDecl();
372 
373  // If they have different underlying declarations, prefer a typedef over the
374  // original type (this happens when two type declarations denote the same
375  // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
376  // might carry additional semantic information, such as an alignment override.
377  // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
378  // declaration over a typedef.
379  if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
380  assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
381  bool HaveTag = isa<TagDecl>(EUnderlying);
382  bool WantTag = Kind == Sema::LookupTagName;
383  return HaveTag != WantTag;
384  }
385 
386  // Pick the function with more default arguments.
387  // FIXME: In the presence of ambiguous default arguments, we should keep both,
388  // so we can diagnose the ambiguity if the default argument is needed.
389  // See C++ [over.match.best]p3.
390  if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
391  auto *EFD = cast<FunctionDecl>(EUnderlying);
392  unsigned DMin = DFD->getMinRequiredArguments();
393  unsigned EMin = EFD->getMinRequiredArguments();
394  // If D has more default arguments, it is preferred.
395  if (DMin != EMin)
396  return DMin < EMin;
397  // FIXME: When we track visibility for default function arguments, check
398  // that we pick the declaration with more visible default arguments.
399  }
400 
401  // Pick the template with more default template arguments.
402  if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
403  auto *ETD = cast<TemplateDecl>(EUnderlying);
404  unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
405  unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
406  // If D has more default arguments, it is preferred. Note that default
407  // arguments (and their visibility) is monotonically increasing across the
408  // redeclaration chain, so this is a quick proxy for "is more recent".
409  if (DMin != EMin)
410  return DMin < EMin;
411  // If D has more *visible* default arguments, it is preferred. Note, an
412  // earlier default argument being visible does not imply that a later
413  // default argument is visible, so we can't just check the first one.
414  for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
415  I != N; ++I) {
417  ETD->getTemplateParameters()->getParam(I)) &&
419  DTD->getTemplateParameters()->getParam(I)))
420  return true;
421  }
422  }
423 
424  // VarDecl can have incomplete array types, prefer the one with more complete
425  // array type.
426  if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
427  VarDecl *EVD = cast<VarDecl>(EUnderlying);
428  if (EVD->getType()->isIncompleteType() &&
429  !DVD->getType()->isIncompleteType()) {
430  // Prefer the decl with a more complete type if visible.
431  return S.isVisible(DVD);
432  }
433  return false; // Avoid picking up a newer decl, just because it was newer.
434  }
435 
436  // For most kinds of declaration, it doesn't really matter which one we pick.
437  if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
438  // If the existing declaration is hidden, prefer the new one. Otherwise,
439  // keep what we've got.
440  return !S.isVisible(Existing);
441  }
442 
443  // Pick the newer declaration; it might have a more precise type.
444  for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
445  Prev = Prev->getPreviousDecl())
446  if (Prev == EUnderlying)
447  return true;
448  return false;
449 }
450 
451 /// Determine whether \p D can hide a tag declaration.
452 static bool canHideTag(NamedDecl *D) {
453  // C++ [basic.scope.declarative]p4:
454  // Given a set of declarations in a single declarative region [...]
455  // exactly one declaration shall declare a class name or enumeration name
456  // that is not a typedef name and the other declarations shall all refer to
457  // the same variable, non-static data member, or enumerator, or all refer
458  // to functions and function templates; in this case the class name or
459  // enumeration name is hidden.
460  // C++ [basic.scope.hiding]p2:
461  // A class name or enumeration name can be hidden by the name of a
462  // variable, data member, function, or enumerator declared in the same
463  // scope.
464  // An UnresolvedUsingValueDecl always instantiates to one of these.
465  D = D->getUnderlyingDecl();
466  return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
467  isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
468  isa<UnresolvedUsingValueDecl>(D);
469 }
470 
471 /// Resolves the result kind of this lookup.
473  unsigned N = Decls.size();
474 
475  // Fast case: no possible ambiguity.
476  if (N == 0) {
477  assert(ResultKind == NotFound ||
478  ResultKind == NotFoundInCurrentInstantiation);
479  return;
480  }
481 
482  // If there's a single decl, we need to examine it to decide what
483  // kind of lookup this is.
484  if (N == 1) {
485  NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
486  if (isa<FunctionTemplateDecl>(D))
487  ResultKind = FoundOverloaded;
488  else if (isa<UnresolvedUsingValueDecl>(D))
489  ResultKind = FoundUnresolvedValue;
490  return;
491  }
492 
493  // Don't do any extra resolution if we've already resolved as ambiguous.
494  if (ResultKind == Ambiguous) return;
495 
496  llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
497  llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
498 
499  bool Ambiguous = false;
500  bool HasTag = false, HasFunction = false;
501  bool HasFunctionTemplate = false, HasUnresolved = false;
502  NamedDecl *HasNonFunction = nullptr;
503 
504  llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
505 
506  unsigned UniqueTagIndex = 0;
507 
508  unsigned I = 0;
509  while (I < N) {
510  NamedDecl *D = Decls[I]->getUnderlyingDecl();
511  D = cast<NamedDecl>(D->getCanonicalDecl());
512 
513  // Ignore an invalid declaration unless it's the only one left.
514  if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
515  Decls[I] = Decls[--N];
516  continue;
517  }
518 
519  llvm::Optional<unsigned> ExistingI;
520 
521  // Redeclarations of types via typedef can occur both within a scope
522  // and, through using declarations and directives, across scopes. There is
523  // no ambiguity if they all refer to the same type, so unique based on the
524  // canonical type.
525  if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
526  QualType T = getSema().Context.getTypeDeclType(TD);
527  auto UniqueResult = UniqueTypes.insert(
528  std::make_pair(getSema().Context.getCanonicalType(T), I));
529  if (!UniqueResult.second) {
530  // The type is not unique.
531  ExistingI = UniqueResult.first->second;
532  }
533  }
534 
535  // For non-type declarations, check for a prior lookup result naming this
536  // canonical declaration.
537  if (!ExistingI) {
538  auto UniqueResult = Unique.insert(std::make_pair(D, I));
539  if (!UniqueResult.second) {
540  // We've seen this entity before.
541  ExistingI = UniqueResult.first->second;
542  }
543  }
544 
545  if (ExistingI) {
546  // This is not a unique lookup result. Pick one of the results and
547  // discard the other.
548  if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
549  Decls[*ExistingI]))
550  Decls[*ExistingI] = Decls[I];
551  Decls[I] = Decls[--N];
552  continue;
553  }
554 
555  // Otherwise, do some decl type analysis and then continue.
556 
557  if (isa<UnresolvedUsingValueDecl>(D)) {
558  HasUnresolved = true;
559  } else if (isa<TagDecl>(D)) {
560  if (HasTag)
561  Ambiguous = true;
562  UniqueTagIndex = I;
563  HasTag = true;
564  } else if (isa<FunctionTemplateDecl>(D)) {
565  HasFunction = true;
566  HasFunctionTemplate = true;
567  } else if (isa<FunctionDecl>(D)) {
568  HasFunction = true;
569  } else {
570  if (HasNonFunction) {
571  // If we're about to create an ambiguity between two declarations that
572  // are equivalent, but one is an internal linkage declaration from one
573  // module and the other is an internal linkage declaration from another
574  // module, just skip it.
575  if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
576  D)) {
577  EquivalentNonFunctions.push_back(D);
578  Decls[I] = Decls[--N];
579  continue;
580  }
581 
582  Ambiguous = true;
583  }
584  HasNonFunction = D;
585  }
586  I++;
587  }
588 
589  // C++ [basic.scope.hiding]p2:
590  // A class name or enumeration name can be hidden by the name of
591  // an object, function, or enumerator declared in the same
592  // scope. If a class or enumeration name and an object, function,
593  // or enumerator are declared in the same scope (in any order)
594  // with the same name, the class or enumeration name is hidden
595  // wherever the object, function, or enumerator name is visible.
596  // But it's still an error if there are distinct tag types found,
597  // even if they're not visible. (ref?)
598  if (N > 1 && HideTags && HasTag && !Ambiguous &&
599  (HasFunction || HasNonFunction || HasUnresolved)) {
600  NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
601  if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
602  getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
603  getContextForScopeMatching(OtherDecl)) &&
604  canHideTag(OtherDecl))
605  Decls[UniqueTagIndex] = Decls[--N];
606  else
607  Ambiguous = true;
608  }
609 
610  // FIXME: This diagnostic should really be delayed until we're done with
611  // the lookup result, in case the ambiguity is resolved by the caller.
612  if (!EquivalentNonFunctions.empty() && !Ambiguous)
613  getSema().diagnoseEquivalentInternalLinkageDeclarations(
614  getNameLoc(), HasNonFunction, EquivalentNonFunctions);
615 
616  Decls.set_size(N);
617 
618  if (HasNonFunction && (HasFunction || HasUnresolved))
619  Ambiguous = true;
620 
621  if (Ambiguous)
622  setAmbiguous(LookupResult::AmbiguousReference);
623  else if (HasUnresolved)
625  else if (N > 1 || HasFunctionTemplate)
626  ResultKind = LookupResult::FoundOverloaded;
627  else
628  ResultKind = LookupResult::Found;
629 }
630 
631 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
633  for (I = P.begin(), E = P.end(); I != E; ++I)
634  for (DeclContext::lookup_iterator DI = I->Decls.begin(),
635  DE = I->Decls.end(); DI != DE; ++DI)
636  addDecl(*DI);
637 }
638 
640  Paths = new CXXBasePaths;
641  Paths->swap(P);
642  addDeclsFromBasePaths(*Paths);
643  resolveKind();
644  setAmbiguous(AmbiguousBaseSubobjects);
645 }
646 
648  Paths = new CXXBasePaths;
649  Paths->swap(P);
650  addDeclsFromBasePaths(*Paths);
651  resolveKind();
652  setAmbiguous(AmbiguousBaseSubobjectTypes);
653 }
654 
655 void LookupResult::print(raw_ostream &Out) {
656  Out << Decls.size() << " result(s)";
657  if (isAmbiguous()) Out << ", ambiguous";
658  if (Paths) Out << ", base paths present";
659 
660  for (iterator I = begin(), E = end(); I != E; ++I) {
661  Out << "\n";
662  (*I)->print(Out, 2);
663  }
664 }
665 
666 LLVM_DUMP_METHOD void LookupResult::dump() {
667  llvm::errs() << "lookup results for " << getLookupName().getAsString()
668  << ":\n";
669  for (NamedDecl *D : *this)
670  D->dump();
671 }
672 
673 /// Lookup a builtin function, when name lookup would otherwise
674 /// fail.
675 static bool LookupBuiltin(Sema &S, LookupResult &R) {
676  Sema::LookupNameKind NameKind = R.getLookupKind();
677 
678  // If we didn't find a use of this identifier, and if the identifier
679  // corresponds to a compiler builtin, create the decl object for the builtin
680  // now, injecting it into translation unit scope, and return it.
681  if (NameKind == Sema::LookupOrdinaryName ||
684  if (II) {
685  if (S.getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
686  if (II == S.getASTContext().getMakeIntegerSeqName()) {
688  return true;
689  } else if (II == S.getASTContext().getTypePackElementName()) {
691  return true;
692  }
693  }
694 
695  // If this is a builtin on this (or all) targets, create the decl.
696  if (unsigned BuiltinID = II->getBuiltinID()) {
697  // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
698  // library functions like 'malloc'. Instead, we'll just error.
699  if ((S.getLangOpts().CPlusPlus || S.getLangOpts().OpenCL) &&
701  return false;
702 
704  BuiltinID, S.TUScope,
705  R.isForRedeclaration(),
706  R.getNameLoc())) {
707  R.addDecl(D);
708  return true;
709  }
710  }
711  }
712  }
713 
714  return false;
715 }
716 
717 /// Determine whether we can declare a special member function within
718 /// the class at this point.
720  // We need to have a definition for the class.
721  if (!Class->getDefinition() || Class->isDependentContext())
722  return false;
723 
724  // We can't be in the middle of defining the class.
725  return !Class->isBeingDefined();
726 }
727 
730  return;
731 
732  // If the default constructor has not yet been declared, do so now.
733  if (Class->needsImplicitDefaultConstructor())
734  DeclareImplicitDefaultConstructor(Class);
735 
736  // If the copy constructor has not yet been declared, do so now.
737  if (Class->needsImplicitCopyConstructor())
738  DeclareImplicitCopyConstructor(Class);
739 
740  // If the copy assignment operator has not yet been declared, do so now.
741  if (Class->needsImplicitCopyAssignment())
742  DeclareImplicitCopyAssignment(Class);
743 
744  if (getLangOpts().CPlusPlus11) {
745  // If the move constructor has not yet been declared, do so now.
746  if (Class->needsImplicitMoveConstructor())
747  DeclareImplicitMoveConstructor(Class);
748 
749  // If the move assignment operator has not yet been declared, do so now.
750  if (Class->needsImplicitMoveAssignment())
751  DeclareImplicitMoveAssignment(Class);
752  }
753 
754  // If the destructor has not yet been declared, do so now.
755  if (Class->needsImplicitDestructor())
756  DeclareImplicitDestructor(Class);
757 }
758 
759 /// Determine whether this is the name of an implicitly-declared
760 /// special member function.
762  switch (Name.getNameKind()) {
765  return true;
766 
768  return Name.getCXXOverloadedOperator() == OO_Equal;
769 
770  default:
771  break;
772  }
773 
774  return false;
775 }
776 
777 /// If there are any implicit member functions with the given name
778 /// that need to be declared in the given declaration context, do so.
780  DeclarationName Name,
781  SourceLocation Loc,
782  const DeclContext *DC) {
783  if (!DC)
784  return;
785 
786  switch (Name.getNameKind()) {
788  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
789  if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
790  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
791  if (Record->needsImplicitDefaultConstructor())
793  if (Record->needsImplicitCopyConstructor())
795  if (S.getLangOpts().CPlusPlus11 &&
796  Record->needsImplicitMoveConstructor())
798  }
799  break;
800 
802  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
803  if (Record->getDefinition() && Record->needsImplicitDestructor() &&
805  S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
806  break;
807 
809  if (Name.getCXXOverloadedOperator() != OO_Equal)
810  break;
811 
812  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
813  if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
814  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
815  if (Record->needsImplicitCopyAssignment())
817  if (S.getLangOpts().CPlusPlus11 &&
818  Record->needsImplicitMoveAssignment())
820  }
821  }
822  break;
823 
826  break;
827 
828  default:
829  break;
830  }
831 }
832 
833 // Adds all qualifying matches for a name within a decl context to the
834 // given lookup result. Returns true if any matches were found.
835 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
836  bool Found = false;
837 
838  // Lazily declare C++ special member functions.
839  if (S.getLangOpts().CPlusPlus)
841  DC);
842 
843  // Perform lookup into this declaration context.
845  for (NamedDecl *D : DR) {
846  if ((D = R.getAcceptableDecl(D))) {
847  R.addDecl(D);
848  Found = true;
849  }
850  }
851 
852  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
853  return true;
854 
855  if (R.getLookupName().getNameKind()
858  !isa<CXXRecordDecl>(DC))
859  return Found;
860 
861  // C++ [temp.mem]p6:
862  // A specialization of a conversion function template is not found by
863  // name lookup. Instead, any conversion function templates visible in the
864  // context of the use are considered. [...]
865  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
866  if (!Record->isCompleteDefinition())
867  return Found;
868 
869  // For conversion operators, 'operator auto' should only match
870  // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
871  // as a candidate for template substitution.
872  auto *ContainedDeducedType =
874  if (R.getLookupName().getNameKind() ==
876  ContainedDeducedType && ContainedDeducedType->isUndeducedType())
877  return Found;
878 
880  UEnd = Record->conversion_end(); U != UEnd; ++U) {
881  FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
882  if (!ConvTemplate)
883  continue;
884 
885  // When we're performing lookup for the purposes of redeclaration, just
886  // add the conversion function template. When we deduce template
887  // arguments for specializations, we'll end up unifying the return
888  // type of the new declaration with the type of the function template.
889  if (R.isForRedeclaration()) {
890  R.addDecl(ConvTemplate);
891  Found = true;
892  continue;
893  }
894 
895  // C++ [temp.mem]p6:
896  // [...] For each such operator, if argument deduction succeeds
897  // (14.9.2.3), the resulting specialization is used as if found by
898  // name lookup.
899  //
900  // When referencing a conversion function for any purpose other than
901  // a redeclaration (such that we'll be building an expression with the
902  // result), perform template argument deduction and place the
903  // specialization into the result set. We do this to avoid forcing all
904  // callers to perform special deduction for conversion functions.
906  FunctionDecl *Specialization = nullptr;
907 
908  const FunctionProtoType *ConvProto
909  = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
910  assert(ConvProto && "Nonsensical conversion function template type");
911 
912  // Compute the type of the function that we would expect the conversion
913  // function to have, if it were to match the name given.
914  // FIXME: Calling convention!
916  EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
917  EPI.ExceptionSpec = EST_None;
920  None, EPI);
921 
922  // Perform template argument deduction against the type that we would
923  // expect the function to have.
924  if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
925  Specialization, Info)
926  == Sema::TDK_Success) {
927  R.addDecl(Specialization);
928  Found = true;
929  }
930  }
931 
932  return Found;
933 }
934 
935 // Performs C++ unqualified lookup into the given file context.
936 static bool
938  DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
939 
940  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
941 
942  // Perform direct name lookup into the LookupCtx.
943  bool Found = LookupDirect(S, R, NS);
944 
945  // Perform direct name lookup into the namespaces nominated by the
946  // using directives whose common ancestor is this namespace.
947  for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
948  if (LookupDirect(S, R, UUE.getNominatedNamespace()))
949  Found = true;
950 
951  R.resolveKind();
952 
953  return Found;
954 }
955 
957  if (DeclContext *Ctx = S->getEntity())
958  return Ctx->isFileContext();
959  return false;
960 }
961 
962 // Find the next outer declaration context from this scope. This
963 // routine actually returns the semantic outer context, which may
964 // differ from the lexical context (encoded directly in the Scope
965 // stack) when we are parsing a member of a class template. In this
966 // case, the second element of the pair will be true, to indicate that
967 // name lookup should continue searching in this semantic context when
968 // it leaves the current template parameter scope.
969 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
970  DeclContext *DC = S->getEntity();
971  DeclContext *Lexical = nullptr;
972  for (Scope *OuterS = S->getParent(); OuterS;
973  OuterS = OuterS->getParent()) {
974  if (OuterS->getEntity()) {
975  Lexical = OuterS->getEntity();
976  break;
977  }
978  }
979 
980  // C++ [temp.local]p8:
981  // In the definition of a member of a class template that appears
982  // outside of the namespace containing the class template
983  // definition, the name of a template-parameter hides the name of
984  // a member of this namespace.
985  //
986  // Example:
987  //
988  // namespace N {
989  // class C { };
990  //
991  // template<class T> class B {
992  // void f(T);
993  // };
994  // }
995  //
996  // template<class C> void N::B<C>::f(C) {
997  // C b; // C is the template parameter, not N::C
998  // }
999  //
1000  // In this example, the lexical context we return is the
1001  // TranslationUnit, while the semantic context is the namespace N.
1002  if (!Lexical || !DC || !S->getParent() ||
1004  return std::make_pair(Lexical, false);
1005 
1006  // Find the outermost template parameter scope.
1007  // For the example, this is the scope for the template parameters of
1008  // template<class C>.
1009  Scope *OutermostTemplateScope = S->getParent();
1010  while (OutermostTemplateScope->getParent() &&
1011  OutermostTemplateScope->getParent()->isTemplateParamScope())
1012  OutermostTemplateScope = OutermostTemplateScope->getParent();
1013 
1014  // Find the namespace context in which the original scope occurs. In
1015  // the example, this is namespace N.
1016  DeclContext *Semantic = DC;
1017  while (!Semantic->isFileContext())
1018  Semantic = Semantic->getParent();
1019 
1020  // Find the declaration context just outside of the template
1021  // parameter scope. This is the context in which the template is
1022  // being lexically declaration (a namespace context). In the
1023  // example, this is the global scope.
1024  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1025  Lexical->Encloses(Semantic))
1026  return std::make_pair(Semantic, true);
1027 
1028  return std::make_pair(Lexical, false);
1029 }
1030 
1031 namespace {
1032 /// An RAII object to specify that we want to find block scope extern
1033 /// declarations.
1034 struct FindLocalExternScope {
1035  FindLocalExternScope(LookupResult &R)
1036  : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1040  }
1041  void restore() {
1042  R.setFindLocalExtern(OldFindLocalExtern);
1043  }
1044  ~FindLocalExternScope() {
1045  restore();
1046  }
1047  LookupResult &R;
1048  bool OldFindLocalExtern;
1049 };
1050 } // end anonymous namespace
1051 
1052 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1053  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1054 
1055  DeclarationName Name = R.getLookupName();
1056  Sema::LookupNameKind NameKind = R.getLookupKind();
1057 
1058  // If this is the name of an implicitly-declared special member function,
1059  // go through the scope stack to implicitly declare
1061  for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1062  if (DeclContext *DC = PreS->getEntity())
1063  DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1064  }
1065 
1066  // Implicitly declare member functions with the name we're looking for, if in
1067  // fact we are in a scope where it matters.
1068 
1069  Scope *Initial = S;
1071  I = IdResolver.begin(Name),
1072  IEnd = IdResolver.end();
1073 
1074  // First we lookup local scope.
1075  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1076  // ...During unqualified name lookup (3.4.1), the names appear as if
1077  // they were declared in the nearest enclosing namespace which contains
1078  // both the using-directive and the nominated namespace.
1079  // [Note: in this context, "contains" means "contains directly or
1080  // indirectly".
1081  //
1082  // For example:
1083  // namespace A { int i; }
1084  // void foo() {
1085  // int i;
1086  // {
1087  // using namespace A;
1088  // ++i; // finds local 'i', A::i appears at global scope
1089  // }
1090  // }
1091  //
1092  UnqualUsingDirectiveSet UDirs(*this);
1093  bool VisitedUsingDirectives = false;
1094  bool LeftStartingScope = false;
1095  DeclContext *OutsideOfTemplateParamDC = nullptr;
1096 
1097  // When performing a scope lookup, we want to find local extern decls.
1098  FindLocalExternScope FindLocals(R);
1099 
1100  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1101  DeclContext *Ctx = S->getEntity();
1102  bool SearchNamespaceScope = true;
1103  // Check whether the IdResolver has anything in this scope.
1104  for (; I != IEnd && S->isDeclScope(*I); ++I) {
1105  if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1106  if (NameKind == LookupRedeclarationWithLinkage &&
1107  !(*I)->isTemplateParameter()) {
1108  // If it's a template parameter, we still find it, so we can diagnose
1109  // the invalid redeclaration.
1110 
1111  // Determine whether this (or a previous) declaration is
1112  // out-of-scope.
1113  if (!LeftStartingScope && !Initial->isDeclScope(*I))
1114  LeftStartingScope = true;
1115 
1116  // If we found something outside of our starting scope that
1117  // does not have linkage, skip it.
1118  if (LeftStartingScope && !((*I)->hasLinkage())) {
1119  R.setShadowed();
1120  continue;
1121  }
1122  } else {
1123  // We found something in this scope, we should not look at the
1124  // namespace scope
1125  SearchNamespaceScope = false;
1126  }
1127  R.addDecl(ND);
1128  }
1129  }
1130  if (!SearchNamespaceScope) {
1131  R.resolveKind();
1132  if (S->isClassScope())
1133  if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1134  R.setNamingClass(Record);
1135  return true;
1136  }
1137 
1138  if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1139  // C++11 [class.friend]p11:
1140  // If a friend declaration appears in a local class and the name
1141  // specified is an unqualified name, a prior declaration is
1142  // looked up without considering scopes that are outside the
1143  // innermost enclosing non-class scope.
1144  return false;
1145  }
1146 
1147  if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1148  S->getParent() && !S->getParent()->isTemplateParamScope()) {
1149  // We've just searched the last template parameter scope and
1150  // found nothing, so look into the contexts between the
1151  // lexical and semantic declaration contexts returned by
1152  // findOuterContext(). This implements the name lookup behavior
1153  // of C++ [temp.local]p8.
1154  Ctx = OutsideOfTemplateParamDC;
1155  OutsideOfTemplateParamDC = nullptr;
1156  }
1157 
1158  if (Ctx) {
1159  DeclContext *OuterCtx;
1160  bool SearchAfterTemplateScope;
1161  std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1162  if (SearchAfterTemplateScope)
1163  OutsideOfTemplateParamDC = OuterCtx;
1164 
1165  for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1166  // We do not directly look into transparent contexts, since
1167  // those entities will be found in the nearest enclosing
1168  // non-transparent context.
1169  if (Ctx->isTransparentContext())
1170  continue;
1171 
1172  // We do not look directly into function or method contexts,
1173  // since all of the local variables and parameters of the
1174  // function/method are present within the Scope.
1175  if (Ctx->isFunctionOrMethod()) {
1176  // If we have an Objective-C instance method, look for ivars
1177  // in the corresponding interface.
1178  if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1179  if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1180  if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1181  ObjCInterfaceDecl *ClassDeclared;
1182  if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1183  Name.getAsIdentifierInfo(),
1184  ClassDeclared)) {
1185  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1186  R.addDecl(ND);
1187  R.resolveKind();
1188  return true;
1189  }
1190  }
1191  }
1192  }
1193 
1194  continue;
1195  }
1196 
1197  // If this is a file context, we need to perform unqualified name
1198  // lookup considering using directives.
1199  if (Ctx->isFileContext()) {
1200  // If we haven't handled using directives yet, do so now.
1201  if (!VisitedUsingDirectives) {
1202  // Add using directives from this context up to the top level.
1203  for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1204  if (UCtx->isTransparentContext())
1205  continue;
1206 
1207  UDirs.visit(UCtx, UCtx);
1208  }
1209 
1210  // Find the innermost file scope, so we can add using directives
1211  // from local scopes.
1212  Scope *InnermostFileScope = S;
1213  while (InnermostFileScope &&
1214  !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1215  InnermostFileScope = InnermostFileScope->getParent();
1216  UDirs.visitScopeChain(Initial, InnermostFileScope);
1217 
1218  UDirs.done();
1219 
1220  VisitedUsingDirectives = true;
1221  }
1222 
1223  if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1224  R.resolveKind();
1225  return true;
1226  }
1227 
1228  continue;
1229  }
1230 
1231  // Perform qualified name lookup into this context.
1232  // FIXME: In some cases, we know that every name that could be found by
1233  // this qualified name lookup will also be on the identifier chain. For
1234  // example, inside a class without any base classes, we never need to
1235  // perform qualified lookup because all of the members are on top of the
1236  // identifier chain.
1237  if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1238  return true;
1239  }
1240  }
1241  }
1242 
1243  // Stop if we ran out of scopes.
1244  // FIXME: This really, really shouldn't be happening.
1245  if (!S) return false;
1246 
1247  // If we are looking for members, no need to look into global/namespace scope.
1248  if (NameKind == LookupMemberName)
1249  return false;
1250 
1251  // Collect UsingDirectiveDecls in all scopes, and recursively all
1252  // nominated namespaces by those using-directives.
1253  //
1254  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1255  // don't build it for each lookup!
1256  if (!VisitedUsingDirectives) {
1257  UDirs.visitScopeChain(Initial, S);
1258  UDirs.done();
1259  }
1260 
1261  // If we're not performing redeclaration lookup, do not look for local
1262  // extern declarations outside of a function scope.
1263  if (!R.isForRedeclaration())
1264  FindLocals.restore();
1265 
1266  // Lookup namespace scope, and global scope.
1267  // Unqualified name lookup in C++ requires looking into scopes
1268  // that aren't strictly lexical, and therefore we walk through the
1269  // context as well as walking through the scopes.
1270  for (; S; S = S->getParent()) {
1271  // Check whether the IdResolver has anything in this scope.
1272  bool Found = false;
1273  for (; I != IEnd && S->isDeclScope(*I); ++I) {
1274  if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1275  // We found something. Look for anything else in our scope
1276  // with this same name and in an acceptable identifier
1277  // namespace, so that we can construct an overload set if we
1278  // need to.
1279  Found = true;
1280  R.addDecl(ND);
1281  }
1282  }
1283 
1284  if (Found && S->isTemplateParamScope()) {
1285  R.resolveKind();
1286  return true;
1287  }
1288 
1289  DeclContext *Ctx = S->getEntity();
1290  if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1291  S->getParent() && !S->getParent()->isTemplateParamScope()) {
1292  // We've just searched the last template parameter scope and
1293  // found nothing, so look into the contexts between the
1294  // lexical and semantic declaration contexts returned by
1295  // findOuterContext(). This implements the name lookup behavior
1296  // of C++ [temp.local]p8.
1297  Ctx = OutsideOfTemplateParamDC;
1298  OutsideOfTemplateParamDC = nullptr;
1299  }
1300 
1301  if (Ctx) {
1302  DeclContext *OuterCtx;
1303  bool SearchAfterTemplateScope;
1304  std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1305  if (SearchAfterTemplateScope)
1306  OutsideOfTemplateParamDC = OuterCtx;
1307 
1308  for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1309  // We do not directly look into transparent contexts, since
1310  // those entities will be found in the nearest enclosing
1311  // non-transparent context.
1312  if (Ctx->isTransparentContext())
1313  continue;
1314 
1315  // If we have a context, and it's not a context stashed in the
1316  // template parameter scope for an out-of-line definition, also
1317  // look into that context.
1318  if (!(Found && S->isTemplateParamScope())) {
1319  assert(Ctx->isFileContext() &&
1320  "We should have been looking only at file context here already.");
1321 
1322  // Look into context considering using-directives.
1323  if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1324  Found = true;
1325  }
1326 
1327  if (Found) {
1328  R.resolveKind();
1329  return true;
1330  }
1331 
1332  if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1333  return false;
1334  }
1335  }
1336 
1337  if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1338  return false;
1339  }
1340 
1341  return !R.empty();
1342 }
1343 
1345  if (auto *M = getCurrentModule())
1346  Context.mergeDefinitionIntoModule(ND, M);
1347  else
1348  // We're not building a module; just make the definition visible.
1350 
1351  // If ND is a template declaration, make the template parameters
1352  // visible too. They're not (necessarily) within a mergeable DeclContext.
1353  if (auto *TD = dyn_cast<TemplateDecl>(ND))
1354  for (auto *Param : *TD->getTemplateParameters())
1355  makeMergedDefinitionVisible(Param);
1356 }
1357 
1358 /// Find the module in which the given declaration was defined.
1359 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1360  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1361  // If this function was instantiated from a template, the defining module is
1362  // the module containing the pattern.
1363  if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1364  Entity = Pattern;
1365  } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1366  if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1367  Entity = Pattern;
1368  } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1369  if (auto *Pattern = ED->getTemplateInstantiationPattern())
1370  Entity = Pattern;
1371  } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1372  if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1373  Entity = Pattern;
1374  }
1375 
1376  // Walk up to the containing context. That might also have been instantiated
1377  // from a template.
1378  DeclContext *Context = Entity->getLexicalDeclContext();
1379  if (Context->isFileContext())
1380  return S.getOwningModule(Entity);
1381  return getDefiningModule(S, cast<Decl>(Context));
1382 }
1383 
1385  unsigned N = CodeSynthesisContexts.size();
1386  for (unsigned I = CodeSynthesisContextLookupModules.size();
1387  I != N; ++I) {
1388  Module *M = getDefiningModule(*this, CodeSynthesisContexts[I].Entity);
1389  if (M && !LookupModulesCache.insert(M).second)
1390  M = nullptr;
1391  CodeSynthesisContextLookupModules.push_back(M);
1392  }
1393  return LookupModulesCache;
1394 }
1395 
1396 /// Determine whether the module M is part of the current module from the
1397 /// perspective of a module-private visibility check.
1398 static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
1399  // If M is the global module fragment of a module that we've not yet finished
1400  // parsing, then it must be part of the current module.
1401  return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
1402  (M->Kind == Module::GlobalModuleFragment && !M->Parent);
1403 }
1404 
1406  for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1407  if (isModuleVisible(Merged))
1408  return true;
1409  return false;
1410 }
1411 
1413  for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1414  if (isInCurrentModule(Merged, getLangOpts()))
1415  return true;
1416  return false;
1417 }
1418 
1419 template<typename ParmDecl>
1420 static bool
1421 hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1423  if (!D->hasDefaultArgument())
1424  return false;
1425 
1426  while (D) {
1427  auto &DefaultArg = D->getDefaultArgStorage();
1428  if (!DefaultArg.isInherited() && S.isVisible(D))
1429  return true;
1430 
1431  if (!DefaultArg.isInherited() && Modules) {
1432  auto *NonConstD = const_cast<ParmDecl*>(D);
1433  Modules->push_back(S.getOwningModule(NonConstD));
1434  }
1435 
1436  // If there was a previous default argument, maybe its parameter is visible.
1437  D = DefaultArg.getInheritedFrom();
1438  }
1439  return false;
1440 }
1441 
1444  if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1445  return ::hasVisibleDefaultArgument(*this, P, Modules);
1446  if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1447  return ::hasVisibleDefaultArgument(*this, P, Modules);
1448  return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1449  Modules);
1450 }
1451 
1452 template<typename Filter>
1453 static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1455  Filter F) {
1456  bool HasFilteredRedecls = false;
1457 
1458  for (auto *Redecl : D->redecls()) {
1459  auto *R = cast<NamedDecl>(Redecl);
1460  if (!F(R))
1461  continue;
1462 
1463  if (S.isVisible(R))
1464  return true;
1465 
1466  HasFilteredRedecls = true;
1467 
1468  if (Modules)
1469  Modules->push_back(R->getOwningModule());
1470  }
1471 
1472  // Only return false if there is at least one redecl that is not filtered out.
1473  if (HasFilteredRedecls)
1474  return false;
1475 
1476  return true;
1477 }
1478 
1480  const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1481  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1482  if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1483  return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1484  if (auto *FD = dyn_cast<FunctionDecl>(D))
1485  return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1486  if (auto *VD = dyn_cast<VarDecl>(D))
1487  return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1488  llvm_unreachable("unknown explicit specialization kind");
1489  });
1490 }
1491 
1493  const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1494  assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1495  "not a member specialization");
1496  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1497  // If the specialization is declared at namespace scope, then it's a member
1498  // specialization declaration. If it's lexically inside the class
1499  // definition then it was instantiated.
1500  //
1501  // FIXME: This is a hack. There should be a better way to determine this.
1502  // FIXME: What about MS-style explicit specializations declared within a
1503  // class definition?
1504  return D->getLexicalDeclContext()->isFileContext();
1505  });
1506 }
1507 
1508 /// Determine whether a declaration is visible to name lookup.
1509 ///
1510 /// This routine determines whether the declaration D is visible in the current
1511 /// lookup context, taking into account the current template instantiation
1512 /// stack. During template instantiation, a declaration is visible if it is
1513 /// visible from a module containing any entity on the template instantiation
1514 /// path (by instantiating a template, you allow it to see the declarations that
1515 /// your module can see, including those later on in your module).
1516 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1517  assert(D->isHidden() && "should not call this: not in slow case");
1518 
1519  Module *DeclModule = SemaRef.getOwningModule(D);
1520  assert(DeclModule && "hidden decl has no owning module");
1521 
1522  // If the owning module is visible, the decl is visible.
1523  if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
1524  return true;
1525 
1526  // Determine whether a decl context is a file context for the purpose of
1527  // visibility. This looks through some (export and linkage spec) transparent
1528  // contexts, but not others (enums).
1529  auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1530  return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1531  isa<ExportDecl>(DC);
1532  };
1533 
1534  // If this declaration is not at namespace scope
1535  // then it is visible if its lexical parent has a visible definition.
1537  if (DC && !IsEffectivelyFileContext(DC)) {
1538  // For a parameter, check whether our current template declaration's
1539  // lexical context is visible, not whether there's some other visible
1540  // definition of it, because parameters aren't "within" the definition.
1541  //
1542  // In C++ we need to check for a visible definition due to ODR merging,
1543  // and in C we must not because each declaration of a function gets its own
1544  // set of declarations for tags in prototype scope.
1545  bool VisibleWithinParent;
1546  if (D->isTemplateParameter() || isa<ParmVarDecl>(D) ||
1547  (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1548  VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1549  else if (D->isModulePrivate()) {
1550  // A module-private declaration is only visible if an enclosing lexical
1551  // parent was merged with another definition in the current module.
1552  VisibleWithinParent = false;
1553  do {
1554  if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1555  VisibleWithinParent = true;
1556  break;
1557  }
1558  DC = DC->getLexicalParent();
1559  } while (!IsEffectivelyFileContext(DC));
1560  } else {
1561  VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1562  }
1563 
1564  if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1565  // FIXME: Do something better in this case.
1566  !SemaRef.getLangOpts().ModulesLocalVisibility) {
1567  // Cache the fact that this declaration is implicitly visible because
1568  // its parent has a visible definition.
1570  }
1571  return VisibleWithinParent;
1572  }
1573 
1574  return false;
1575 }
1576 
1577 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1578  // The module might be ordinarily visible. For a module-private query, that
1579  // means it is part of the current module. For any other query, that means it
1580  // is in our visible module set.
1581  if (ModulePrivate) {
1582  if (isInCurrentModule(M, getLangOpts()))
1583  return true;
1584  } else {
1585  if (VisibleModules.isVisible(M))
1586  return true;
1587  }
1588 
1589  // Otherwise, it might be visible by virtue of the query being within a
1590  // template instantiation or similar that is permitted to look inside M.
1591 
1592  // Find the extra places where we need to look.
1593  const auto &LookupModules = getLookupModules();
1594  if (LookupModules.empty())
1595  return false;
1596 
1597  // If our lookup set contains the module, it's visible.
1598  if (LookupModules.count(M))
1599  return true;
1600 
1601  // For a module-private query, that's everywhere we get to look.
1602  if (ModulePrivate)
1603  return false;
1604 
1605  // Check whether M is transitively exported to an import of the lookup set.
1606  return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1607  return LookupM->isModuleVisible(M);
1608  });
1609 }
1610 
1611 bool Sema::isVisibleSlow(const NamedDecl *D) {
1612  return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1613 }
1614 
1615 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1616  // FIXME: If there are both visible and hidden declarations, we need to take
1617  // into account whether redeclaration is possible. Example:
1618  //
1619  // Non-imported module:
1620  // int f(T); // #1
1621  // Some TU:
1622  // static int f(U); // #2, not a redeclaration of #1
1623  // int f(T); // #3, finds both, should link with #1 if T != U, but
1624  // // with #2 if T == U; neither should be ambiguous.
1625  for (auto *D : R) {
1626  if (isVisible(D))
1627  return true;
1628  assert(D->isExternallyDeclarable() &&
1629  "should not have hidden, non-externally-declarable result here");
1630  }
1631 
1632  // This function is called once "New" is essentially complete, but before a
1633  // previous declaration is attached. We can't query the linkage of "New" in
1634  // general, because attaching the previous declaration can change the
1635  // linkage of New to match the previous declaration.
1636  //
1637  // However, because we've just determined that there is no *visible* prior
1638  // declaration, we can compute the linkage here. There are two possibilities:
1639  //
1640  // * This is not a redeclaration; it's safe to compute the linkage now.
1641  //
1642  // * This is a redeclaration of a prior declaration that is externally
1643  // redeclarable. In that case, the linkage of the declaration is not
1644  // changed by attaching the prior declaration, because both are externally
1645  // declarable (and thus ExternalLinkage or VisibleNoLinkage).
1646  //
1647  // FIXME: This is subtle and fragile.
1648  return New->isExternallyDeclarable();
1649 }
1650 
1651 /// Retrieve the visible declaration corresponding to D, if any.
1652 ///
1653 /// This routine determines whether the declaration D is visible in the current
1654 /// module, with the current imports. If not, it checks whether any
1655 /// redeclaration of D is visible, and if so, returns that declaration.
1656 ///
1657 /// \returns D, or a visible previous declaration of D, whichever is more recent
1658 /// and visible. If no declaration of D is visible, returns null.
1660  unsigned IDNS) {
1661  assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1662 
1663  for (auto RD : D->redecls()) {
1664  // Don't bother with extra checks if we already know this one isn't visible.
1665  if (RD == D)
1666  continue;
1667 
1668  auto ND = cast<NamedDecl>(RD);
1669  // FIXME: This is wrong in the case where the previous declaration is not
1670  // visible in the same scope as D. This needs to be done much more
1671  // carefully.
1672  if (ND->isInIdentifierNamespace(IDNS) &&
1673  LookupResult::isVisible(SemaRef, ND))
1674  return ND;
1675  }
1676 
1677  return nullptr;
1678 }
1679 
1682  assert(!isVisible(D) && "not in slow case");
1683  return hasVisibleDeclarationImpl(*this, D, Modules,
1684  [](const NamedDecl *) { return true; });
1685 }
1686 
1687 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1688  if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1689  // Namespaces are a bit of a special case: we expect there to be a lot of
1690  // redeclarations of some namespaces, all declarations of a namespace are
1691  // essentially interchangeable, all declarations are found by name lookup
1692  // if any is, and namespaces are never looked up during template
1693  // instantiation. So we benefit from caching the check in this case, and
1694  // it is correct to do so.
1695  auto *Key = ND->getCanonicalDecl();
1696  if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1697  return Acceptable;
1698  auto *Acceptable = isVisible(getSema(), Key)
1699  ? Key
1700  : findAcceptableDecl(getSema(), Key, IDNS);
1701  if (Acceptable)
1702  getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1703  return Acceptable;
1704  }
1705 
1706  return findAcceptableDecl(getSema(), D, IDNS);
1707 }
1708 
1709 /// Perform unqualified name lookup starting from a given
1710 /// scope.
1711 ///
1712 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1713 /// used to find names within the current scope. For example, 'x' in
1714 /// @code
1715 /// int x;
1716 /// int f() {
1717 /// return x; // unqualified name look finds 'x' in the global scope
1718 /// }
1719 /// @endcode
1720 ///
1721 /// Different lookup criteria can find different names. For example, a
1722 /// particular scope can have both a struct and a function of the same
1723 /// name, and each can be found by certain lookup criteria. For more
1724 /// information about lookup criteria, see the documentation for the
1725 /// class LookupCriteria.
1726 ///
1727 /// @param S The scope from which unqualified name lookup will
1728 /// begin. If the lookup criteria permits, name lookup may also search
1729 /// in the parent scopes.
1730 ///
1731 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1732 /// look up and the lookup kind), and is updated with the results of lookup
1733 /// including zero or more declarations and possibly additional information
1734 /// used to diagnose ambiguities.
1735 ///
1736 /// @returns \c true if lookup succeeded and false otherwise.
1737 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1738  DeclarationName Name = R.getLookupName();
1739  if (!Name) return false;
1740 
1741  LookupNameKind NameKind = R.getLookupKind();
1742 
1743  if (!getLangOpts().CPlusPlus) {
1744  // Unqualified name lookup in C/Objective-C is purely lexical, so
1745  // search in the declarations attached to the name.
1746  if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1747  // Find the nearest non-transparent declaration scope.
1748  while (!(S->getFlags() & Scope::DeclScope) ||
1749  (S->getEntity() && S->getEntity()->isTransparentContext()))
1750  S = S->getParent();
1751  }
1752 
1753  // When performing a scope lookup, we want to find local extern decls.
1754  FindLocalExternScope FindLocals(R);
1755 
1756  // Scan up the scope chain looking for a decl that matches this
1757  // identifier that is in the appropriate namespace. This search
1758  // should not take long, as shadowing of names is uncommon, and
1759  // deep shadowing is extremely uncommon.
1760  bool LeftStartingScope = false;
1761 
1762  for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1763  IEnd = IdResolver.end();
1764  I != IEnd; ++I)
1765  if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1766  if (NameKind == LookupRedeclarationWithLinkage) {
1767  // Determine whether this (or a previous) declaration is
1768  // out-of-scope.
1769  if (!LeftStartingScope && !S->isDeclScope(*I))
1770  LeftStartingScope = true;
1771 
1772  // If we found something outside of our starting scope that
1773  // does not have linkage, skip it.
1774  if (LeftStartingScope && !((*I)->hasLinkage())) {
1775  R.setShadowed();
1776  continue;
1777  }
1778  }
1779  else if (NameKind == LookupObjCImplicitSelfParam &&
1780  !isa<ImplicitParamDecl>(*I))
1781  continue;
1782 
1783  R.addDecl(D);
1784 
1785  // Check whether there are any other declarations with the same name
1786  // and in the same scope.
1787  if (I != IEnd) {
1788  // Find the scope in which this declaration was declared (if it
1789  // actually exists in a Scope).
1790  while (S && !S->isDeclScope(D))
1791  S = S->getParent();
1792 
1793  // If the scope containing the declaration is the translation unit,
1794  // then we'll need to perform our checks based on the matching
1795  // DeclContexts rather than matching scopes.
1797  S = nullptr;
1798 
1799  // Compute the DeclContext, if we need it.
1800  DeclContext *DC = nullptr;
1801  if (!S)
1802  DC = (*I)->getDeclContext()->getRedeclContext();
1803 
1804  IdentifierResolver::iterator LastI = I;
1805  for (++LastI; LastI != IEnd; ++LastI) {
1806  if (S) {
1807  // Match based on scope.
1808  if (!S->isDeclScope(*LastI))
1809  break;
1810  } else {
1811  // Match based on DeclContext.
1812  DeclContext *LastDC
1813  = (*LastI)->getDeclContext()->getRedeclContext();
1814  if (!LastDC->Equals(DC))
1815  break;
1816  }
1817 
1818  // If the declaration is in the right namespace and visible, add it.
1819  if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1820  R.addDecl(LastD);
1821  }
1822 
1823  R.resolveKind();
1824  }
1825 
1826  return true;
1827  }
1828  } else {
1829  // Perform C++ unqualified name lookup.
1830  if (CppLookupName(R, S))
1831  return true;
1832  }
1833 
1834  // If we didn't find a use of this identifier, and if the identifier
1835  // corresponds to a compiler builtin, create the decl object for the builtin
1836  // now, injecting it into translation unit scope, and return it.
1837  if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1838  return true;
1839 
1840  // If we didn't find a use of this identifier, the ExternalSource
1841  // may be able to handle the situation.
1842  // Note: some lookup failures are expected!
1843  // See e.g. R.isForRedeclaration().
1844  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1845 }
1846 
1847 /// Perform qualified name lookup in the namespaces nominated by
1848 /// using directives by the given context.
1849 ///
1850 /// C++98 [namespace.qual]p2:
1851 /// Given X::m (where X is a user-declared namespace), or given \::m
1852 /// (where X is the global namespace), let S be the set of all
1853 /// declarations of m in X and in the transitive closure of all
1854 /// namespaces nominated by using-directives in X and its used
1855 /// namespaces, except that using-directives are ignored in any
1856 /// namespace, including X, directly containing one or more
1857 /// declarations of m. No namespace is searched more than once in
1858 /// the lookup of a name. If S is the empty set, the program is
1859 /// ill-formed. Otherwise, if S has exactly one member, or if the
1860 /// context of the reference is a using-declaration
1861 /// (namespace.udecl), S is the required set of declarations of
1862 /// m. Otherwise if the use of m is not one that allows a unique
1863 /// declaration to be chosen from S, the program is ill-formed.
1864 ///
1865 /// C++98 [namespace.qual]p5:
1866 /// During the lookup of a qualified namespace member name, if the
1867 /// lookup finds more than one declaration of the member, and if one
1868 /// declaration introduces a class name or enumeration name and the
1869 /// other declarations either introduce the same object, the same
1870 /// enumerator or a set of functions, the non-type name hides the
1871 /// class or enumeration name if and only if the declarations are
1872 /// from the same namespace; otherwise (the declarations are from
1873 /// different namespaces), the program is ill-formed.
1875  DeclContext *StartDC) {
1876  assert(StartDC->isFileContext() && "start context is not a file context");
1877 
1878  // We have not yet looked into these namespaces, much less added
1879  // their "using-children" to the queue.
1881 
1882  // We have at least added all these contexts to the queue.
1883  llvm::SmallPtrSet<DeclContext*, 8> Visited;
1884  Visited.insert(StartDC);
1885 
1886  // We have already looked into the initial namespace; seed the queue
1887  // with its using-children.
1888  for (auto *I : StartDC->using_directives()) {
1889  NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1890  if (S.isVisible(I) && Visited.insert(ND).second)
1891  Queue.push_back(ND);
1892  }
1893 
1894  // The easiest way to implement the restriction in [namespace.qual]p5
1895  // is to check whether any of the individual results found a tag
1896  // and, if so, to declare an ambiguity if the final result is not
1897  // a tag.
1898  bool FoundTag = false;
1899  bool FoundNonTag = false;
1900 
1902 
1903  bool Found = false;
1904  while (!Queue.empty()) {
1905  NamespaceDecl *ND = Queue.pop_back_val();
1906 
1907  // We go through some convolutions here to avoid copying results
1908  // between LookupResults.
1909  bool UseLocal = !R.empty();
1910  LookupResult &DirectR = UseLocal ? LocalR : R;
1911  bool FoundDirect = LookupDirect(S, DirectR, ND);
1912 
1913  if (FoundDirect) {
1914  // First do any local hiding.
1915  DirectR.resolveKind();
1916 
1917  // If the local result is a tag, remember that.
1918  if (DirectR.isSingleTagDecl())
1919  FoundTag = true;
1920  else
1921  FoundNonTag = true;
1922 
1923  // Append the local results to the total results if necessary.
1924  if (UseLocal) {
1925  R.addAllDecls(LocalR);
1926  LocalR.clear();
1927  }
1928  }
1929 
1930  // If we find names in this namespace, ignore its using directives.
1931  if (FoundDirect) {
1932  Found = true;
1933  continue;
1934  }
1935 
1936  for (auto I : ND->using_directives()) {
1937  NamespaceDecl *Nom = I->getNominatedNamespace();
1938  if (S.isVisible(I) && Visited.insert(Nom).second)
1939  Queue.push_back(Nom);
1940  }
1941  }
1942 
1943  if (Found) {
1944  if (FoundTag && FoundNonTag)
1946  else
1947  R.resolveKind();
1948  }
1949 
1950  return Found;
1951 }
1952 
1953 /// Callback that looks for any member of a class with the given name.
1955  CXXBasePath &Path, DeclarationName Name) {
1956  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1957 
1958  Path.Decls = BaseRecord->lookup(Name);
1959  return !Path.Decls.empty();
1960 }
1961 
1962 /// Determine whether the given set of member declarations contains only
1963 /// static members, nested types, and enumerators.
1964 template<typename InputIterator>
1965 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1966  Decl *D = (*First)->getUnderlyingDecl();
1967  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1968  return true;
1969 
1970  if (isa<CXXMethodDecl>(D)) {
1971  // Determine whether all of the methods are static.
1972  bool AllMethodsAreStatic = true;
1973  for(; First != Last; ++First) {
1974  D = (*First)->getUnderlyingDecl();
1975 
1976  if (!isa<CXXMethodDecl>(D)) {
1977  assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1978  break;
1979  }
1980 
1981  if (!cast<CXXMethodDecl>(D)->isStatic()) {
1982  AllMethodsAreStatic = false;
1983  break;
1984  }
1985  }
1986 
1987  if (AllMethodsAreStatic)
1988  return true;
1989  }
1990 
1991  return false;
1992 }
1993 
1994 /// Perform qualified name lookup into a given context.
1995 ///
1996 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1997 /// names when the context of those names is explicit specified, e.g.,
1998 /// "std::vector" or "x->member", or as part of unqualified name lookup.
1999 ///
2000 /// Different lookup criteria can find different names. For example, a
2001 /// particular scope can have both a struct and a function of the same
2002 /// name, and each can be found by certain lookup criteria. For more
2003 /// information about lookup criteria, see the documentation for the
2004 /// class LookupCriteria.
2005 ///
2006 /// \param R captures both the lookup criteria and any lookup results found.
2007 ///
2008 /// \param LookupCtx The context in which qualified name lookup will
2009 /// search. If the lookup criteria permits, name lookup may also search
2010 /// in the parent contexts or (for C++ classes) base classes.
2011 ///
2012 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2013 /// occurs as part of unqualified name lookup.
2014 ///
2015 /// \returns true if lookup succeeded, false if it failed.
2017  bool InUnqualifiedLookup) {
2018  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2019 
2020  if (!R.getLookupName())
2021  return false;
2022 
2023  // Make sure that the declaration context is complete.
2024  assert((!isa<TagDecl>(LookupCtx) ||
2025  LookupCtx->isDependentContext() ||
2026  cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2027  cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2028  "Declaration context must already be complete!");
2029 
2030  struct QualifiedLookupInScope {
2031  bool oldVal;
2032  DeclContext *Context;
2033  // Set flag in DeclContext informing debugger that we're looking for qualified name
2034  QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2035  oldVal = ctx->setUseQualifiedLookup();
2036  }
2037  ~QualifiedLookupInScope() {
2038  Context->setUseQualifiedLookup(oldVal);
2039  }
2040  } QL(LookupCtx);
2041 
2042  if (LookupDirect(*this, R, LookupCtx)) {
2043  R.resolveKind();
2044  if (isa<CXXRecordDecl>(LookupCtx))
2045  R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2046  return true;
2047  }
2048 
2049  // Don't descend into implied contexts for redeclarations.
2050  // C++98 [namespace.qual]p6:
2051  // In a declaration for a namespace member in which the
2052  // declarator-id is a qualified-id, given that the qualified-id
2053  // for the namespace member has the form
2054  // nested-name-specifier unqualified-id
2055  // the unqualified-id shall name a member of the namespace
2056  // designated by the nested-name-specifier.
2057  // See also [class.mfct]p5 and [class.static.data]p2.
2058  if (R.isForRedeclaration())
2059  return false;
2060 
2061  // If this is a namespace, look it up in the implied namespaces.
2062  if (LookupCtx->isFileContext())
2063  return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2064 
2065  // If this isn't a C++ class, we aren't allowed to look into base
2066  // classes, we're done.
2067  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2068  if (!LookupRec || !LookupRec->getDefinition())
2069  return false;
2070 
2071  // If we're performing qualified name lookup into a dependent class,
2072  // then we are actually looking into a current instantiation. If we have any
2073  // dependent base classes, then we either have to delay lookup until
2074  // template instantiation time (at which point all bases will be available)
2075  // or we have to fail.
2076  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2077  LookupRec->hasAnyDependentBases()) {
2079  return false;
2080  }
2081 
2082  // Perform lookup into our base classes.
2083  CXXBasePaths Paths;
2084  Paths.setOrigin(LookupRec);
2085 
2086  // Look for this member in our base classes
2087  bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2088  DeclarationName Name) = nullptr;
2089  switch (R.getLookupKind()) {
2090  case LookupObjCImplicitSelfParam:
2091  case LookupOrdinaryName:
2092  case LookupMemberName:
2093  case LookupRedeclarationWithLinkage:
2094  case LookupLocalFriendName:
2095  BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2096  break;
2097 
2098  case LookupTagName:
2099  BaseCallback = &CXXRecordDecl::FindTagMember;
2100  break;
2101 
2102  case LookupAnyName:
2103  BaseCallback = &LookupAnyMember;
2104  break;
2105 
2106  case LookupOMPReductionName:
2107  BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2108  break;
2109 
2110  case LookupOMPMapperName:
2111  BaseCallback = &CXXRecordDecl::FindOMPMapperMember;
2112  break;
2113 
2114  case LookupUsingDeclName:
2115  // This lookup is for redeclarations only.
2116 
2117  case LookupOperatorName:
2118  case LookupNamespaceName:
2119  case LookupObjCProtocolName:
2120  case LookupLabel:
2121  // These lookups will never find a member in a C++ class (or base class).
2122  return false;
2123 
2124  case LookupNestedNameSpecifierName:
2126  break;
2127  }
2128 
2129  DeclarationName Name = R.getLookupName();
2130  if (!LookupRec->lookupInBases(
2131  [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2132  return BaseCallback(Specifier, Path, Name);
2133  },
2134  Paths))
2135  return false;
2136 
2137  R.setNamingClass(LookupRec);
2138 
2139  // C++ [class.member.lookup]p2:
2140  // [...] If the resulting set of declarations are not all from
2141  // sub-objects of the same type, or the set has a nonstatic member
2142  // and includes members from distinct sub-objects, there is an
2143  // ambiguity and the program is ill-formed. Otherwise that set is
2144  // the result of the lookup.
2145  QualType SubobjectType;
2146  int SubobjectNumber = 0;
2147  AccessSpecifier SubobjectAccess = AS_none;
2148 
2149  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2150  Path != PathEnd; ++Path) {
2151  const CXXBasePathElement &PathElement = Path->back();
2152 
2153  // Pick the best (i.e. most permissive i.e. numerically lowest) access
2154  // across all paths.
2155  SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2156 
2157  // Determine whether we're looking at a distinct sub-object or not.
2158  if (SubobjectType.isNull()) {
2159  // This is the first subobject we've looked at. Record its type.
2160  SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2161  SubobjectNumber = PathElement.SubobjectNumber;
2162  continue;
2163  }
2164 
2165  if (SubobjectType
2166  != Context.getCanonicalType(PathElement.Base->getType())) {
2167  // We found members of the given name in two subobjects of
2168  // different types. If the declaration sets aren't the same, this
2169  // lookup is ambiguous.
2170  if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2171  CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2172  DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2173  DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2174 
2175  // Get the decl that we should use for deduplicating this lookup.
2176  auto GetRepresentativeDecl = [&](NamedDecl *D) -> Decl * {
2177  // C++ [temp.local]p3:
2178  // A lookup that finds an injected-class-name (10.2) can result in
2179  // an ambiguity in certain cases (for example, if it is found in
2180  // more than one base class). If all of the injected-class-names
2181  // that are found refer to specializations of the same class
2182  // template, and if the name is used as a template-name, the
2183  // reference refers to the class template itself and not a
2184  // specialization thereof, and is not ambiguous.
2185  if (R.isTemplateNameLookup())
2186  if (auto *TD = getAsTemplateNameDecl(D))
2187  D = TD;
2188  return D->getUnderlyingDecl()->getCanonicalDecl();
2189  };
2190 
2191  while (FirstD != FirstPath->Decls.end() &&
2192  CurrentD != Path->Decls.end()) {
2193  if (GetRepresentativeDecl(*FirstD) !=
2194  GetRepresentativeDecl(*CurrentD))
2195  break;
2196 
2197  ++FirstD;
2198  ++CurrentD;
2199  }
2200 
2201  if (FirstD == FirstPath->Decls.end() &&
2202  CurrentD == Path->Decls.end())
2203  continue;
2204  }
2205 
2207  return true;
2208  }
2209 
2210  if (SubobjectNumber != PathElement.SubobjectNumber) {
2211  // We have a different subobject of the same type.
2212 
2213  // C++ [class.member.lookup]p5:
2214  // A static member, a nested type or an enumerator defined in
2215  // a base class T can unambiguously be found even if an object
2216  // has more than one base class subobject of type T.
2217  if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2218  continue;
2219 
2220  // We have found a nonstatic member name in multiple, distinct
2221  // subobjects. Name lookup is ambiguous.
2222  R.setAmbiguousBaseSubobjects(Paths);
2223  return true;
2224  }
2225  }
2226 
2227  // Lookup in a base class succeeded; return these results.
2228 
2229  for (auto *D : Paths.front().Decls) {
2230  AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2231  D->getAccess());
2232  R.addDecl(D, AS);
2233  }
2234  R.resolveKind();
2235  return true;
2236 }
2237 
2238 /// Performs qualified name lookup or special type of lookup for
2239 /// "__super::" scope specifier.
2240 ///
2241 /// This routine is a convenience overload meant to be called from contexts
2242 /// that need to perform a qualified name lookup with an optional C++ scope
2243 /// specifier that might require special kind of lookup.
2244 ///
2245 /// \param R captures both the lookup criteria and any lookup results found.
2246 ///
2247 /// \param LookupCtx The context in which qualified name lookup will
2248 /// search.
2249 ///
2250 /// \param SS An optional C++ scope-specifier.
2251 ///
2252 /// \returns true if lookup succeeded, false if it failed.
2254  CXXScopeSpec &SS) {
2255  auto *NNS = SS.getScopeRep();
2256  if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2257  return LookupInSuper(R, NNS->getAsRecordDecl());
2258  else
2259 
2260  return LookupQualifiedName(R, LookupCtx);
2261 }
2262 
2263 /// Performs name lookup for a name that was parsed in the
2264 /// source code, and may contain a C++ scope specifier.
2265 ///
2266 /// This routine is a convenience routine meant to be called from
2267 /// contexts that receive a name and an optional C++ scope specifier
2268 /// (e.g., "N::M::x"). It will then perform either qualified or
2269 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2270 /// respectively) on the given name and return those results. It will
2271 /// perform a special type of lookup for "__super::" scope specifier.
2272 ///
2273 /// @param S The scope from which unqualified name lookup will
2274 /// begin.
2275 ///
2276 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2277 ///
2278 /// @param EnteringContext Indicates whether we are going to enter the
2279 /// context of the scope-specifier SS (if present).
2280 ///
2281 /// @returns True if any decls were found (but possibly ambiguous)
2283  bool AllowBuiltinCreation, bool EnteringContext) {
2284  if (SS && SS->isInvalid()) {
2285  // When the scope specifier is invalid, don't even look for
2286  // anything.
2287  return false;
2288  }
2289 
2290  if (SS && SS->isSet()) {
2291  NestedNameSpecifier *NNS = SS->getScopeRep();
2292  if (NNS->getKind() == NestedNameSpecifier::Super)
2293  return LookupInSuper(R, NNS->getAsRecordDecl());
2294 
2295  if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2296  // We have resolved the scope specifier to a particular declaration
2297  // contex, and will perform name lookup in that context.
2298  if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2299  return false;
2300 
2301  R.setContextRange(SS->getRange());
2302  return LookupQualifiedName(R, DC);
2303  }
2304 
2305  // We could not resolve the scope specified to a specific declaration
2306  // context, which means that SS refers to an unknown specialization.
2307  // Name lookup can't find anything in this case.
2309  R.setContextRange(SS->getRange());
2310  return false;
2311  }
2312 
2313  // Perform unqualified name lookup starting in the given scope.
2314  return LookupName(R, S, AllowBuiltinCreation);
2315 }
2316 
2317 /// Perform qualified name lookup into all base classes of the given
2318 /// class.
2319 ///
2320 /// \param R captures both the lookup criteria and any lookup results found.
2321 ///
2322 /// \param Class The context in which qualified name lookup will
2323 /// search. Name lookup will search in all base classes merging the results.
2324 ///
2325 /// @returns True if any decls were found (but possibly ambiguous)
2327  // The access-control rules we use here are essentially the rules for
2328  // doing a lookup in Class that just magically skipped the direct
2329  // members of Class itself. That is, the naming class is Class, and the
2330  // access includes the access of the base.
2331  for (const auto &BaseSpec : Class->bases()) {
2332  CXXRecordDecl *RD = cast<CXXRecordDecl>(
2333  BaseSpec.getType()->castAs<RecordType>()->getDecl());
2334  LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2335  Result.setBaseObjectType(Context.getRecordType(Class));
2336  LookupQualifiedName(Result, RD);
2337 
2338  // Copy the lookup results into the target, merging the base's access into
2339  // the path access.
2340  for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2341  R.addDecl(I.getDecl(),
2342  CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2343  I.getAccess()));
2344  }
2345 
2346  Result.suppressDiagnostics();
2347  }
2348 
2349  R.resolveKind();
2350  R.setNamingClass(Class);
2351 
2352  return !R.empty();
2353 }
2354 
2355 /// Produce a diagnostic describing the ambiguity that resulted
2356 /// from name lookup.
2357 ///
2358 /// \param Result The result of the ambiguous lookup to be diagnosed.
2360  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2361 
2362  DeclarationName Name = Result.getLookupName();
2363  SourceLocation NameLoc = Result.getNameLoc();
2364  SourceRange LookupRange = Result.getContextRange();
2365 
2366  switch (Result.getAmbiguityKind()) {
2368  CXXBasePaths *Paths = Result.getBasePaths();
2369  QualType SubobjectType = Paths->front().back().Base->getType();
2370  Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2371  << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2372  << LookupRange;
2373 
2374  DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2375  while (isa<CXXMethodDecl>(*Found) &&
2376  cast<CXXMethodDecl>(*Found)->isStatic())
2377  ++Found;
2378 
2379  Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2380  break;
2381  }
2382 
2384  Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2385  << Name << LookupRange;
2386 
2387  CXXBasePaths *Paths = Result.getBasePaths();
2388  std::set<Decl *> DeclsPrinted;
2389  for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2390  PathEnd = Paths->end();
2391  Path != PathEnd; ++Path) {
2392  Decl *D = Path->Decls.front();
2393  if (DeclsPrinted.insert(D).second)
2394  Diag(D->getLocation(), diag::note_ambiguous_member_found);
2395  }
2396  break;
2397  }
2398 
2400  Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2401 
2402  llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2403 
2404  for (auto *D : Result)
2405  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2406  TagDecls.insert(TD);
2407  Diag(TD->getLocation(), diag::note_hidden_tag);
2408  }
2409 
2410  for (auto *D : Result)
2411  if (!isa<TagDecl>(D))
2412  Diag(D->getLocation(), diag::note_hiding_object);
2413 
2414  // For recovery purposes, go ahead and implement the hiding.
2415  LookupResult::Filter F = Result.makeFilter();
2416  while (F.hasNext()) {
2417  if (TagDecls.count(F.next()))
2418  F.erase();
2419  }
2420  F.done();
2421  break;
2422  }
2423 
2425  Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2426 
2427  for (auto *D : Result)
2428  Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2429  break;
2430  }
2431  }
2432 }
2433 
2434 namespace {
2435  struct AssociatedLookup {
2436  AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2437  Sema::AssociatedNamespaceSet &Namespaces,
2438  Sema::AssociatedClassSet &Classes)
2439  : S(S), Namespaces(Namespaces), Classes(Classes),
2440  InstantiationLoc(InstantiationLoc) {
2441  }
2442 
2443  bool addClassTransitive(CXXRecordDecl *RD) {
2444  Classes.insert(RD);
2445  return ClassesTransitive.insert(RD);
2446  }
2447 
2448  Sema &S;
2449  Sema::AssociatedNamespaceSet &Namespaces;
2450  Sema::AssociatedClassSet &Classes;
2451  SourceLocation InstantiationLoc;
2452 
2453  private:
2454  Sema::AssociatedClassSet ClassesTransitive;
2455  };
2456 } // end anonymous namespace
2457 
2458 static void
2459 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2460 
2462  DeclContext *Ctx) {
2463  // Add the associated namespace for this class.
2464 
2465  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
2466  // be a locally scoped record.
2467 
2468  // We skip out of inline namespaces. The innermost non-inline namespace
2469  // contains all names of all its nested inline namespaces anyway, so we can
2470  // replace the entire inline namespace tree with its root.
2471  while (Ctx->isRecord() || Ctx->isTransparentContext() ||
2472  Ctx->isInlineNamespace())
2473  Ctx = Ctx->getParent();
2474 
2475  if (Ctx->isFileContext())
2476  Namespaces.insert(Ctx->getPrimaryContext());
2477 }
2478 
2479 // Add the associated classes and namespaces for argument-dependent
2480 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
2481 static void
2482 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2483  const TemplateArgument &Arg) {
2484  // C++ [basic.lookup.koenig]p2, last bullet:
2485  // -- [...] ;
2486  switch (Arg.getKind()) {
2488  break;
2489 
2491  // [...] the namespaces and classes associated with the types of the
2492  // template arguments provided for template type parameters (excluding
2493  // template template parameters)
2495  break;
2496 
2499  // [...] the namespaces in which any template template arguments are
2500  // defined; and the classes in which any member templates used as
2501  // template template arguments are defined.
2503  if (ClassTemplateDecl *ClassTemplate
2504  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2505  DeclContext *Ctx = ClassTemplate->getDeclContext();
2506  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2507  Result.Classes.insert(EnclosingClass);
2508  // Add the associated namespace for this class.
2509  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2510  }
2511  break;
2512  }
2513 
2518  // [Note: non-type template arguments do not contribute to the set of
2519  // associated namespaces. ]
2520  break;
2521 
2523  for (const auto &P : Arg.pack_elements())
2525  break;
2526  }
2527 }
2528 
2529 // Add the associated classes and namespaces for
2530 // argument-dependent lookup with an argument of class type
2531 // (C++ [basic.lookup.koenig]p2).
2532 static void
2533 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2534  CXXRecordDecl *Class) {
2535 
2536  // Just silently ignore anything whose name is __va_list_tag.
2537  if (Class->getDeclName() == Result.S.VAListTagName)
2538  return;
2539 
2540  // C++ [basic.lookup.koenig]p2:
2541  // [...]
2542  // -- If T is a class type (including unions), its associated
2543  // classes are: the class itself; the class of which it is a
2544  // member, if any; and its direct and indirect base
2545  // classes. Its associated namespaces are the namespaces in
2546  // which its associated classes are defined.
2547 
2548  // Add the class of which it is a member, if any.
2549  DeclContext *Ctx = Class->getDeclContext();
2550  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2551  Result.Classes.insert(EnclosingClass);
2552  // Add the associated namespace for this class.
2553  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2554 
2555  // -- If T is a template-id, its associated namespaces and classes are
2556  // the namespace in which the template is defined; for member
2557  // templates, the member template's class; the namespaces and classes
2558  // associated with the types of the template arguments provided for
2559  // template type parameters (excluding template template parameters); the
2560  // namespaces in which any template template arguments are defined; and
2561  // the classes in which any member templates used as template template
2562  // arguments are defined. [Note: non-type template arguments do not
2563  // contribute to the set of associated namespaces. ]
2565  = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2566  DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2567  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2568  Result.Classes.insert(EnclosingClass);
2569  // Add the associated namespace for this class.
2570  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2571 
2572  const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2573  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2574  addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2575  }
2576 
2577  // Add the class itself. If we've already transitively visited this class,
2578  // we don't need to visit base classes.
2579  if (!Result.addClassTransitive(Class))
2580  return;
2581 
2582  // Only recurse into base classes for complete types.
2583  if (!Result.S.isCompleteType(Result.InstantiationLoc,
2584  Result.S.Context.getRecordType(Class)))
2585  return;
2586 
2587  // Add direct and indirect base classes along with their associated
2588  // namespaces.
2590  Bases.push_back(Class);
2591  while (!Bases.empty()) {
2592  // Pop this class off the stack.
2593  Class = Bases.pop_back_val();
2594 
2595  // Visit the base classes.
2596  for (const auto &Base : Class->bases()) {
2597  const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2598  // In dependent contexts, we do ADL twice, and the first time around,
2599  // the base type might be a dependent TemplateSpecializationType, or a
2600  // TemplateTypeParmType. If that happens, simply ignore it.
2601  // FIXME: If we want to support export, we probably need to add the
2602  // namespace of the template in a TemplateSpecializationType, or even
2603  // the classes and namespaces of known non-dependent arguments.
2604  if (!BaseType)
2605  continue;
2606  CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2607  if (Result.addClassTransitive(BaseDecl)) {
2608  // Find the associated namespace for this base class.
2609  DeclContext *BaseCtx = BaseDecl->getDeclContext();
2610  CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2611 
2612  // Make sure we visit the bases of this base class.
2613  if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2614  Bases.push_back(BaseDecl);
2615  }
2616  }
2617  }
2618 }
2619 
2620 // Add the associated classes and namespaces for
2621 // argument-dependent lookup with an argument of type T
2622 // (C++ [basic.lookup.koenig]p2).
2623 static void
2624 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2625  // C++ [basic.lookup.koenig]p2:
2626  //
2627  // For each argument type T in the function call, there is a set
2628  // of zero or more associated namespaces and a set of zero or more
2629  // associated classes to be considered. The sets of namespaces and
2630  // classes is determined entirely by the types of the function
2631  // arguments (and the namespace of any template template
2632  // argument). Typedef names and using-declarations used to specify
2633  // the types do not contribute to this set. The sets of namespaces
2634  // and classes are determined in the following way:
2635 
2637  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2638 
2639  while (true) {
2640  switch (T->getTypeClass()) {
2641 
2642 #define TYPE(Class, Base)
2643 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2644 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2645 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2646 #define ABSTRACT_TYPE(Class, Base)
2647 #include "clang/AST/TypeNodes.def"
2648  // T is canonical. We can also ignore dependent types because
2649  // we don't need to do ADL at the definition point, but if we
2650  // wanted to implement template export (or if we find some other
2651  // use for associated classes and namespaces...) this would be
2652  // wrong.
2653  break;
2654 
2655  // -- If T is a pointer to U or an array of U, its associated
2656  // namespaces and classes are those associated with U.
2657  case Type::Pointer:
2658  T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2659  continue;
2660  case Type::ConstantArray:
2661  case Type::IncompleteArray:
2662  case Type::VariableArray:
2663  T = cast<ArrayType>(T)->getElementType().getTypePtr();
2664  continue;
2665 
2666  // -- If T is a fundamental type, its associated sets of
2667  // namespaces and classes are both empty.
2668  case Type::Builtin:
2669  break;
2670 
2671  // -- If T is a class type (including unions), its associated
2672  // classes are: the class itself; the class of which it is a
2673  // member, if any; and its direct and indirect base
2674  // classes. Its associated namespaces are the namespaces in
2675  // which its associated classes are defined.
2676  case Type::Record: {
2677  CXXRecordDecl *Class =
2678  cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2679  addAssociatedClassesAndNamespaces(Result, Class);
2680  break;
2681  }
2682 
2683  // -- If T is an enumeration type, its associated namespace is
2684  // the namespace in which it is defined. If it is class
2685  // member, its associated class is the member's class; else
2686  // it has no associated class.
2687  case Type::Enum: {
2688  EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2689 
2690  DeclContext *Ctx = Enum->getDeclContext();
2691  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2692  Result.Classes.insert(EnclosingClass);
2693 
2694  // Add the associated namespace for this class.
2695  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2696 
2697  break;
2698  }
2699 
2700  // -- If T is a function type, its associated namespaces and
2701  // classes are those associated with the function parameter
2702  // types and those associated with the return type.
2703  case Type::FunctionProto: {
2704  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2705  for (const auto &Arg : Proto->param_types())
2706  Queue.push_back(Arg.getTypePtr());
2707  // fallthrough
2708  LLVM_FALLTHROUGH;
2709  }
2710  case Type::FunctionNoProto: {
2711  const FunctionType *FnType = cast<FunctionType>(T);
2712  T = FnType->getReturnType().getTypePtr();
2713  continue;
2714  }
2715 
2716  // -- If T is a pointer to a member function of a class X, its
2717  // associated namespaces and classes are those associated
2718  // with the function parameter types and return type,
2719  // together with those associated with X.
2720  //
2721  // -- If T is a pointer to a data member of class X, its
2722  // associated namespaces and classes are those associated
2723  // with the member type together with those associated with
2724  // X.
2725  case Type::MemberPointer: {
2726  const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2727 
2728  // Queue up the class type into which this points.
2729  Queue.push_back(MemberPtr->getClass());
2730 
2731  // And directly continue with the pointee type.
2732  T = MemberPtr->getPointeeType().getTypePtr();
2733  continue;
2734  }
2735 
2736  // As an extension, treat this like a normal pointer.
2737  case Type::BlockPointer:
2738  T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2739  continue;
2740 
2741  // References aren't covered by the standard, but that's such an
2742  // obvious defect that we cover them anyway.
2743  case Type::LValueReference:
2744  case Type::RValueReference:
2745  T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2746  continue;
2747 
2748  // These are fundamental types.
2749  case Type::Vector:
2750  case Type::ExtVector:
2751  case Type::Complex:
2752  break;
2753 
2754  // Non-deduced auto types only get here for error cases.
2755  case Type::Auto:
2756  case Type::DeducedTemplateSpecialization:
2757  break;
2758 
2759  // If T is an Objective-C object or interface type, or a pointer to an
2760  // object or interface type, the associated namespace is the global
2761  // namespace.
2762  case Type::ObjCObject:
2763  case Type::ObjCInterface:
2764  case Type::ObjCObjectPointer:
2765  Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2766  break;
2767 
2768  // Atomic types are just wrappers; use the associations of the
2769  // contained type.
2770  case Type::Atomic:
2771  T = cast<AtomicType>(T)->getValueType().getTypePtr();
2772  continue;
2773  case Type::Pipe:
2774  T = cast<PipeType>(T)->getElementType().getTypePtr();
2775  continue;
2776  }
2777 
2778  if (Queue.empty())
2779  break;
2780  T = Queue.pop_back_val();
2781  }
2782 }
2783 
2784 /// Find the associated classes and namespaces for
2785 /// argument-dependent lookup for a call with the given set of
2786 /// arguments.
2787 ///
2788 /// This routine computes the sets of associated classes and associated
2789 /// namespaces searched by argument-dependent lookup
2790 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
2792  SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2793  AssociatedNamespaceSet &AssociatedNamespaces,
2794  AssociatedClassSet &AssociatedClasses) {
2795  AssociatedNamespaces.clear();
2796  AssociatedClasses.clear();
2797 
2798  AssociatedLookup Result(*this, InstantiationLoc,
2799  AssociatedNamespaces, AssociatedClasses);
2800 
2801  // C++ [basic.lookup.koenig]p2:
2802  // For each argument type T in the function call, there is a set
2803  // of zero or more associated namespaces and a set of zero or more
2804  // associated classes to be considered. The sets of namespaces and
2805  // classes is determined entirely by the types of the function
2806  // arguments (and the namespace of any template template
2807  // argument).
2808  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2809  Expr *Arg = Args[ArgIdx];
2810 
2811  if (Arg->getType() != Context.OverloadTy) {
2813  continue;
2814  }
2815 
2816  // [...] In addition, if the argument is the name or address of a
2817  // set of overloaded functions and/or function templates, its
2818  // associated classes and namespaces are the union of those
2819  // associated with each of the members of the set: the namespace
2820  // in which the function or function template is defined and the
2821  // classes and namespaces associated with its (non-dependent)
2822  // parameter types and return type.
2824 
2825  for (const NamedDecl *D : OE->decls()) {
2826  // Look through any using declarations to find the underlying function.
2827  const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2828 
2829  // Add the classes and namespaces associated with the parameter
2830  // types and return type of this function.
2831  addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2832  }
2833  }
2834 }
2835 
2837  SourceLocation Loc,
2838  LookupNameKind NameKind,
2839  RedeclarationKind Redecl) {
2840  LookupResult R(*this, Name, Loc, NameKind, Redecl);
2841  LookupName(R, S);
2842  return R.getAsSingle<NamedDecl>();
2843 }
2844 
2845 /// Find the protocol with the given name, if any.
2847  SourceLocation IdLoc,
2848  RedeclarationKind Redecl) {
2849  Decl *D = LookupSingleName(TUScope, II, IdLoc,
2850  LookupObjCProtocolName, Redecl);
2851  return cast_or_null<ObjCProtocolDecl>(D);
2852 }
2853 
2855  QualType T1, QualType T2,
2856  UnresolvedSetImpl &Functions) {
2857  // C++ [over.match.oper]p3:
2858  // -- The set of non-member candidates is the result of the
2859  // unqualified lookup of operator@ in the context of the
2860  // expression according to the usual rules for name lookup in
2861  // unqualified function calls (3.4.2) except that all member
2862  // functions are ignored.
2864  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2865  LookupName(Operators, S);
2866 
2867  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2868  Functions.append(Operators.begin(), Operators.end());
2869 }
2870 
2873  bool ConstArg,
2874  bool VolatileArg,
2875  bool RValueThis,
2876  bool ConstThis,
2877  bool VolatileThis) {
2878  assert(CanDeclareSpecialMemberFunction(RD) &&
2879  "doing special member lookup into record that isn't fully complete");
2880  RD = RD->getDefinition();
2881  if (RValueThis || ConstThis || VolatileThis)
2882  assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2883  "constructors and destructors always have unqualified lvalue this");
2884  if (ConstArg || VolatileArg)
2885  assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2886  "parameter-less special members can't have qualified arguments");
2887 
2888  // FIXME: Get the caller to pass in a location for the lookup.
2889  SourceLocation LookupLoc = RD->getLocation();
2890 
2891  llvm::FoldingSetNodeID ID;
2892  ID.AddPointer(RD);
2893  ID.AddInteger(SM);
2894  ID.AddInteger(ConstArg);
2895  ID.AddInteger(VolatileArg);
2896  ID.AddInteger(RValueThis);
2897  ID.AddInteger(ConstThis);
2898  ID.AddInteger(VolatileThis);
2899 
2900  void *InsertPoint;
2902  SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2903 
2904  // This was already cached
2905  if (Result)
2906  return *Result;
2907 
2908  Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
2909  Result = new (Result) SpecialMemberOverloadResultEntry(ID);
2910  SpecialMemberCache.InsertNode(Result, InsertPoint);
2911 
2912  if (SM == CXXDestructor) {
2913  if (RD->needsImplicitDestructor())
2914  DeclareImplicitDestructor(RD);
2915  CXXDestructorDecl *DD = RD->getDestructor();
2916  assert(DD && "record without a destructor");
2917  Result->setMethod(DD);
2918  Result->setKind(DD->isDeleted() ?
2919  SpecialMemberOverloadResult::NoMemberOrDeleted :
2920  SpecialMemberOverloadResult::Success);
2921  return *Result;
2922  }
2923 
2924  // Prepare for overload resolution. Here we construct a synthetic argument
2925  // if necessary and make sure that implicit functions are declared.
2926  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2927  DeclarationName Name;
2928  Expr *Arg = nullptr;
2929  unsigned NumArgs;
2930 
2931  QualType ArgType = CanTy;
2932  ExprValueKind VK = VK_LValue;
2933 
2934  if (SM == CXXDefaultConstructor) {
2935  Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2936  NumArgs = 0;
2938  DeclareImplicitDefaultConstructor(RD);
2939  } else {
2940  if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2941  Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2942  if (RD->needsImplicitCopyConstructor())
2943  DeclareImplicitCopyConstructor(RD);
2944  if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2945  DeclareImplicitMoveConstructor(RD);
2946  } else {
2947  Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2948  if (RD->needsImplicitCopyAssignment())
2949  DeclareImplicitCopyAssignment(RD);
2950  if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2951  DeclareImplicitMoveAssignment(RD);
2952  }
2953 
2954  if (ConstArg)
2955  ArgType.addConst();
2956  if (VolatileArg)
2957  ArgType.addVolatile();
2958 
2959  // This isn't /really/ specified by the standard, but it's implied
2960  // we should be working from an RValue in the case of move to ensure
2961  // that we prefer to bind to rvalue references, and an LValue in the
2962  // case of copy to ensure we don't bind to rvalue references.
2963  // Possibly an XValue is actually correct in the case of move, but
2964  // there is no semantic difference for class types in this restricted
2965  // case.
2966  if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2967  VK = VK_LValue;
2968  else
2969  VK = VK_RValue;
2970  }
2971 
2972  OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
2973 
2974  if (SM != CXXDefaultConstructor) {
2975  NumArgs = 1;
2976  Arg = &FakeArg;
2977  }
2978 
2979  // Create the object argument
2980  QualType ThisTy = CanTy;
2981  if (ConstThis)
2982  ThisTy.addConst();
2983  if (VolatileThis)
2984  ThisTy.addVolatile();
2985  Expr::Classification Classification =
2986  OpaqueValueExpr(LookupLoc, ThisTy,
2987  RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2988 
2989  // Now we perform lookup on the name we computed earlier and do overload
2990  // resolution. Lookup is only performed directly into the class since there
2991  // will always be a (possibly implicit) declaration to shadow any others.
2993  DeclContext::lookup_result R = RD->lookup(Name);
2994 
2995  if (R.empty()) {
2996  // We might have no default constructor because we have a lambda's closure
2997  // type, rather than because there's some other declared constructor.
2998  // Every class has a copy/move constructor, copy/move assignment, and
2999  // destructor.
3000  assert(SM == CXXDefaultConstructor &&
3001  "lookup for a constructor or assignment operator was empty");
3002  Result->setMethod(nullptr);
3003  Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3004  return *Result;
3005  }
3006 
3007  // Copy the candidates as our processing of them may load new declarations
3008  // from an external source and invalidate lookup_result.
3009  SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3010 
3011  for (NamedDecl *CandDecl : Candidates) {
3012  if (CandDecl->isInvalidDecl())
3013  continue;
3014 
3015  DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3016  auto CtorInfo = getConstructorInfo(Cand);
3017  if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3018  if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3019  AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3020  llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3021  else if (CtorInfo)
3022  AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3023  llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3024  else
3025  AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3026  true);
3027  } else if (FunctionTemplateDecl *Tmpl =
3028  dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3029  if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3030  AddMethodTemplateCandidate(
3031  Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3032  llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3033  else if (CtorInfo)
3034  AddTemplateOverloadCandidate(
3035  CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3036  llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3037  else
3038  AddTemplateOverloadCandidate(
3039  Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3040  } else {
3041  assert(isa<UsingDecl>(Cand.getDecl()) &&
3042  "illegal Kind of operator = Decl");
3043  }
3044  }
3045 
3047  switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3048  case OR_Success:
3049  Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3050  Result->setKind(SpecialMemberOverloadResult::Success);
3051  break;
3052 
3053  case OR_Deleted:
3054  Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3055  Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3056  break;
3057 
3058  case OR_Ambiguous:
3059  Result->setMethod(nullptr);
3060  Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3061  break;
3062 
3063  case OR_No_Viable_Function:
3064  Result->setMethod(nullptr);
3065  Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3066  break;
3067  }
3068 
3069  return *Result;
3070 }
3071 
3072 /// Look up the default constructor for the given class.
3075  LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3076  false, false);
3077 
3078  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3079 }
3080 
3081 /// Look up the copying constructor for the given class.
3083  unsigned Quals) {
3084  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3085  "non-const, non-volatile qualifiers for copy ctor arg");
3087  LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3088  Quals & Qualifiers::Volatile, false, false, false);
3089 
3090  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3091 }
3092 
3093 /// Look up the moving constructor for the given class.
3095  unsigned Quals) {
3097  LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3098  Quals & Qualifiers::Volatile, false, false, false);
3099 
3100  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3101 }
3102 
3103 /// Look up the constructors for the given class.
3105  // If the implicit constructors have not yet been declared, do so now.
3106  if (CanDeclareSpecialMemberFunction(Class)) {
3107  if (Class->needsImplicitDefaultConstructor())
3108  DeclareImplicitDefaultConstructor(Class);
3109  if (Class->needsImplicitCopyConstructor())
3110  DeclareImplicitCopyConstructor(Class);
3111  if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3112  DeclareImplicitMoveConstructor(Class);
3113  }
3114 
3115  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3117  return Class->lookup(Name);
3118 }
3119 
3120 /// Look up the copying assignment operator for the given class.
3122  unsigned Quals, bool RValueThis,
3123  unsigned ThisQuals) {
3124  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3125  "non-const, non-volatile qualifiers for copy assignment arg");
3126  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3127  "non-const, non-volatile qualifiers for copy assignment this");
3129  LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3130  Quals & Qualifiers::Volatile, RValueThis,
3131  ThisQuals & Qualifiers::Const,
3132  ThisQuals & Qualifiers::Volatile);
3133 
3134  return Result.getMethod();
3135 }
3136 
3137 /// Look up the moving assignment operator for the given class.
3139  unsigned Quals,
3140  bool RValueThis,
3141  unsigned ThisQuals) {
3142  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3143  "non-const, non-volatile qualifiers for copy assignment this");
3145  LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3146  Quals & Qualifiers::Volatile, RValueThis,
3147  ThisQuals & Qualifiers::Const,
3148  ThisQuals & Qualifiers::Volatile);
3149 
3150  return Result.getMethod();
3151 }
3152 
3153 /// Look for the destructor of the given class.
3154 ///
3155 /// During semantic analysis, this routine should be used in lieu of
3156 /// CXXRecordDecl::getDestructor().
3157 ///
3158 /// \returns The destructor for this class.
3160  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3161  false, false, false,
3162  false, false).getMethod());
3163 }
3164 
3165 /// LookupLiteralOperator - Determine which literal operator should be used for
3166 /// a user-defined literal, per C++11 [lex.ext].
3167 ///
3168 /// Normal overload resolution is not used to select which literal operator to
3169 /// call for a user-defined literal. Look up the provided literal operator name,
3170 /// and filter the results to the appropriate set for the given argument types.
3173  ArrayRef<QualType> ArgTys,
3174  bool AllowRaw, bool AllowTemplate,
3175  bool AllowStringTemplate, bool DiagnoseMissing) {
3176  LookupName(R, S);
3177  assert(R.getResultKind() != LookupResult::Ambiguous &&
3178  "literal operator lookup can't be ambiguous");
3179 
3180  // Filter the lookup results appropriately.
3182 
3183  bool FoundRaw = false;
3184  bool FoundTemplate = false;
3185  bool FoundStringTemplate = false;
3186  bool FoundExactMatch = false;
3187 
3188  while (F.hasNext()) {
3189  Decl *D = F.next();
3190  if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3191  D = USD->getTargetDecl();
3192 
3193  // If the declaration we found is invalid, skip it.
3194  if (D->isInvalidDecl()) {
3195  F.erase();
3196  continue;
3197  }
3198 
3199  bool IsRaw = false;
3200  bool IsTemplate = false;
3201  bool IsStringTemplate = false;
3202  bool IsExactMatch = false;
3203 
3204  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3205  if (FD->getNumParams() == 1 &&
3206  FD->getParamDecl(0)->getType()->getAs<PointerType>())
3207  IsRaw = true;
3208  else if (FD->getNumParams() == ArgTys.size()) {
3209  IsExactMatch = true;
3210  for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3211  QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3212  if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3213  IsExactMatch = false;
3214  break;
3215  }
3216  }
3217  }
3218  }
3219  if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3220  TemplateParameterList *Params = FD->getTemplateParameters();
3221  if (Params->size() == 1)
3222  IsTemplate = true;
3223  else
3224  IsStringTemplate = true;
3225  }
3226 
3227  if (IsExactMatch) {
3228  FoundExactMatch = true;
3229  AllowRaw = false;
3230  AllowTemplate = false;
3231  AllowStringTemplate = false;
3232  if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3233  // Go through again and remove the raw and template decls we've
3234  // already found.
3235  F.restart();
3236  FoundRaw = FoundTemplate = FoundStringTemplate = false;
3237  }
3238  } else if (AllowRaw && IsRaw) {
3239  FoundRaw = true;
3240  } else if (AllowTemplate && IsTemplate) {
3241  FoundTemplate = true;
3242  } else if (AllowStringTemplate && IsStringTemplate) {
3243  FoundStringTemplate = true;
3244  } else {
3245  F.erase();
3246  }
3247  }
3248 
3249  F.done();
3250 
3251  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3252  // parameter type, that is used in preference to a raw literal operator
3253  // or literal operator template.
3254  if (FoundExactMatch)
3255  return LOLR_Cooked;
3256 
3257  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3258  // operator template, but not both.
3259  if (FoundRaw && FoundTemplate) {
3260  Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3261  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3262  NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3263  return LOLR_Error;
3264  }
3265 
3266  if (FoundRaw)
3267  return LOLR_Raw;
3268 
3269  if (FoundTemplate)
3270  return LOLR_Template;
3271 
3272  if (FoundStringTemplate)
3273  return LOLR_StringTemplate;
3274 
3275  // Didn't find anything we could use.
3276  if (DiagnoseMissing) {
3277  Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3278  << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3279  << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3280  << (AllowTemplate || AllowStringTemplate);
3281  return LOLR_Error;
3282  }
3283 
3284  return LOLR_ErrorNoDiagnostic;
3285 }
3286 
3288  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3289 
3290  // If we haven't yet seen a decl for this key, or the last decl
3291  // was exactly this one, we're done.
3292  if (Old == nullptr || Old == New) {
3293  Old = New;
3294  return;
3295  }
3296 
3297  // Otherwise, decide which is a more recent redeclaration.
3298  FunctionDecl *OldFD = Old->getAsFunction();
3299  FunctionDecl *NewFD = New->getAsFunction();
3300 
3301  FunctionDecl *Cursor = NewFD;
3302  while (true) {
3303  Cursor = Cursor->getPreviousDecl();
3304 
3305  // If we got to the end without finding OldFD, OldFD is the newer
3306  // declaration; leave things as they are.
3307  if (!Cursor) return;
3308 
3309  // If we do find OldFD, then NewFD is newer.
3310  if (Cursor == OldFD) break;
3311 
3312  // Otherwise, keep looking.
3313  }
3314 
3315  Old = New;
3316 }
3317 
3319  ArrayRef<Expr *> Args, ADLResult &Result) {
3320  // Find all of the associated namespaces and classes based on the
3321  // arguments we have.
3322  AssociatedNamespaceSet AssociatedNamespaces;
3323  AssociatedClassSet AssociatedClasses;
3324  FindAssociatedClassesAndNamespaces(Loc, Args,
3325  AssociatedNamespaces,
3326  AssociatedClasses);
3327 
3328  // C++ [basic.lookup.argdep]p3:
3329  // Let X be the lookup set produced by unqualified lookup (3.4.1)
3330  // and let Y be the lookup set produced by argument dependent
3331  // lookup (defined as follows). If X contains [...] then Y is
3332  // empty. Otherwise Y is the set of declarations found in the
3333  // namespaces associated with the argument types as described
3334  // below. The set of declarations found by the lookup of the name
3335  // is the union of X and Y.
3336  //
3337  // Here, we compute Y and add its members to the overloaded
3338  // candidate set.
3339  for (auto *NS : AssociatedNamespaces) {
3340  // When considering an associated namespace, the lookup is the
3341  // same as the lookup performed when the associated namespace is
3342  // used as a qualifier (3.4.3.2) except that:
3343  //
3344  // -- Any using-directives in the associated namespace are
3345  // ignored.
3346  //
3347  // -- Any namespace-scope friend functions declared in
3348  // associated classes are visible within their respective
3349  // namespaces even if they are not visible during an ordinary
3350  // lookup (11.4).
3351  DeclContext::lookup_result R = NS->lookup(Name);
3352  for (auto *D : R) {
3353  auto *Underlying = D;
3354  if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3355  Underlying = USD->getTargetDecl();
3356 
3357  if (!isa<FunctionDecl>(Underlying) &&
3358  !isa<FunctionTemplateDecl>(Underlying))
3359  continue;
3360 
3361  // The declaration is visible to argument-dependent lookup if either
3362  // it's ordinarily visible or declared as a friend in an associated
3363  // class.
3364  bool Visible = false;
3365  for (D = D->getMostRecentDecl(); D;
3366  D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3368  if (isVisible(D)) {
3369  Visible = true;
3370  break;
3371  }
3372  } else if (D->getFriendObjectKind()) {
3373  auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3374  if (AssociatedClasses.count(RD) && isVisible(D)) {
3375  Visible = true;
3376  break;
3377  }
3378  }
3379  }
3380 
3381  // FIXME: Preserve D as the FoundDecl.
3382  if (Visible)
3383  Result.insert(Underlying);
3384  }
3385  }
3386 }
3387 
3388 //----------------------------------------------------------------------------
3389 // Search for all visible declarations.
3390 //----------------------------------------------------------------------------
3392 
3393 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3394 
3395 namespace {
3396 
3397 class ShadowContextRAII;
3398 
3399 class VisibleDeclsRecord {
3400 public:
3401  /// An entry in the shadow map, which is optimized to store a
3402  /// single declaration (the common case) but can also store a list
3403  /// of declarations.
3404  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3405 
3406 private:
3407  /// A mapping from declaration names to the declarations that have
3408  /// this name within a particular scope.
3409  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3410 
3411  /// A list of shadow maps, which is used to model name hiding.
3412  std::list<ShadowMap> ShadowMaps;
3413 
3414  /// The declaration contexts we have already visited.
3415  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3416 
3417  friend class ShadowContextRAII;
3418 
3419 public:
3420  /// Determine whether we have already visited this context
3421  /// (and, if not, note that we are going to visit that context now).
3422  bool visitedContext(DeclContext *Ctx) {
3423  return !VisitedContexts.insert(Ctx).second;
3424  }
3425 
3426  bool alreadyVisitedContext(DeclContext *Ctx) {
3427  return VisitedContexts.count(Ctx);
3428  }
3429 
3430  /// Determine whether the given declaration is hidden in the
3431  /// current scope.
3432  ///
3433  /// \returns the declaration that hides the given declaration, or
3434  /// NULL if no such declaration exists.
3435  NamedDecl *checkHidden(NamedDecl *ND);
3436 
3437  /// Add a declaration to the current shadow map.
3438  void add(NamedDecl *ND) {
3439  ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3440  }
3441 };
3442 
3443 /// RAII object that records when we've entered a shadow context.
3444 class ShadowContextRAII {
3445  VisibleDeclsRecord &Visible;
3446 
3447  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3448 
3449 public:
3450  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3451  Visible.ShadowMaps.emplace_back();
3452  }
3453 
3454  ~ShadowContextRAII() {
3455  Visible.ShadowMaps.pop_back();
3456  }
3457 };
3458 
3459 } // end anonymous namespace
3460 
3461 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3462  unsigned IDNS = ND->getIdentifierNamespace();
3463  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3464  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3465  SM != SMEnd; ++SM) {
3466  ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3467  if (Pos == SM->end())
3468  continue;
3469 
3470  for (auto *D : Pos->second) {
3471  // A tag declaration does not hide a non-tag declaration.
3472  if (D->hasTagIdentifierNamespace() &&
3475  continue;
3476 
3477  // Protocols are in distinct namespaces from everything else.
3479  || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3480  D->getIdentifierNamespace() != IDNS)
3481  continue;
3482 
3483  // Functions and function templates in the same scope overload
3484  // rather than hide. FIXME: Look for hiding based on function
3485  // signatures!
3488  SM == ShadowMaps.rbegin())
3489  continue;
3490 
3491  // A shadow declaration that's created by a resolved using declaration
3492  // is not hidden by the same using declaration.
3493  if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3494  cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3495  continue;
3496 
3497  // We've found a declaration that hides this one.
3498  return D;
3499  }
3500  }
3501 
3502  return nullptr;
3503 }
3504 
3505 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
3506  bool QualifiedNameLookup,
3507  bool InBaseClass,
3508  VisibleDeclConsumer &Consumer,
3509  VisibleDeclsRecord &Visited,
3510  bool IncludeDependentBases,
3511  bool LoadExternal) {
3512  if (!Ctx)
3513  return;
3514 
3515  // Make sure we don't visit the same context twice.
3516  if (Visited.visitedContext(Ctx->getPrimaryContext()))
3517  return;
3518 
3519  Consumer.EnteredContext(Ctx);
3520 
3521  // Outside C++, lookup results for the TU live on identifiers.
3522  if (isa<TranslationUnitDecl>(Ctx) &&
3523  !Result.getSema().getLangOpts().CPlusPlus) {
3524  auto &S = Result.getSema();
3525  auto &Idents = S.Context.Idents;
3526 
3527  // Ensure all external identifiers are in the identifier table.
3528  if (LoadExternal)
3529  if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
3530  std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3531  for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
3532  Idents.get(Name);
3533  }
3534 
3535  // Walk all lookup results in the TU for each identifier.
3536  for (const auto &Ident : Idents) {
3537  for (auto I = S.IdResolver.begin(Ident.getValue()),
3538  E = S.IdResolver.end();
3539  I != E; ++I) {
3540  if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3541  if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3542  Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3543  Visited.add(ND);
3544  }
3545  }
3546  }
3547  }
3548 
3549  return;
3550  }
3551 
3552  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3554 
3555  // We sometimes skip loading namespace-level results (they tend to be huge).
3556  bool Load = LoadExternal ||
3557  !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3558  // Enumerate all of the results in this context.
3559  for (DeclContextLookupResult R :
3560  Load ? Ctx->lookups()
3561  : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3562  for (auto *D : R) {
3563  if (auto *ND = Result.getAcceptableDecl(D)) {
3564  Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3565  Visited.add(ND);
3566  }
3567  }
3568  }
3569 
3570  // Traverse using directives for qualified name lookup.
3571  if (QualifiedNameLookup) {
3572  ShadowContextRAII Shadow(Visited);
3573  for (auto I : Ctx->using_directives()) {
3574  if (!Result.getSema().isVisible(I))
3575  continue;
3576  LookupVisibleDecls(I->getNominatedNamespace(), Result,
3577  QualifiedNameLookup, InBaseClass, Consumer, Visited,
3578  IncludeDependentBases, LoadExternal);
3579  }
3580  }
3581 
3582  // Traverse the contexts of inherited C++ classes.
3583  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3584  if (!Record->hasDefinition())
3585  return;
3586 
3587  for (const auto &B : Record->bases()) {
3588  QualType BaseType = B.getType();
3589 
3590  RecordDecl *RD;
3591  if (BaseType->isDependentType()) {
3592  if (!IncludeDependentBases) {
3593  // Don't look into dependent bases, because name lookup can't look
3594  // there anyway.
3595  continue;
3596  }
3597  const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3598  if (!TST)
3599  continue;
3600  TemplateName TN = TST->getTemplateName();
3601  const auto *TD =
3602  dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3603  if (!TD)
3604  continue;
3605  RD = TD->getTemplatedDecl();
3606  } else {
3607  const auto *Record = BaseType->getAs<RecordType>();
3608  if (!Record)
3609  continue;
3610  RD = Record->getDecl();
3611  }
3612 
3613  // FIXME: It would be nice to be able to determine whether referencing
3614  // a particular member would be ambiguous. For example, given
3615  //
3616  // struct A { int member; };
3617  // struct B { int member; };
3618  // struct C : A, B { };
3619  //
3620  // void f(C *c) { c->### }
3621  //
3622  // accessing 'member' would result in an ambiguity. However, we
3623  // could be smart enough to qualify the member with the base
3624  // class, e.g.,
3625  //
3626  // c->B::member
3627  //
3628  // or
3629  //
3630  // c->A::member
3631 
3632  // Find results in this base class (and its bases).
3633  ShadowContextRAII Shadow(Visited);
3634  LookupVisibleDecls(RD, Result, QualifiedNameLookup, /*InBaseClass=*/true,
3635  Consumer, Visited, IncludeDependentBases,
3636  LoadExternal);
3637  }
3638  }
3639 
3640  // Traverse the contexts of Objective-C classes.
3641  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3642  // Traverse categories.
3643  for (auto *Cat : IFace->visible_categories()) {
3644  ShadowContextRAII Shadow(Visited);
3645  LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false, Consumer,
3646  Visited, IncludeDependentBases, LoadExternal);
3647  }
3648 
3649  // Traverse protocols.
3650  for (auto *I : IFace->all_referenced_protocols()) {
3651  ShadowContextRAII Shadow(Visited);
3652  LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3653  Visited, IncludeDependentBases, LoadExternal);
3654  }
3655 
3656  // Traverse the superclass.
3657  if (IFace->getSuperClass()) {
3658  ShadowContextRAII Shadow(Visited);
3659  LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3660  true, Consumer, Visited, IncludeDependentBases,
3661  LoadExternal);
3662  }
3663 
3664  // If there is an implementation, traverse it. We do this to find
3665  // synthesized ivars.
3666  if (IFace->getImplementation()) {
3667  ShadowContextRAII Shadow(Visited);
3668  LookupVisibleDecls(IFace->getImplementation(), Result,
3669  QualifiedNameLookup, InBaseClass, Consumer, Visited,
3670  IncludeDependentBases, LoadExternal);
3671  }
3672  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3673  for (auto *I : Protocol->protocols()) {
3674  ShadowContextRAII Shadow(Visited);
3675  LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3676  Visited, IncludeDependentBases, LoadExternal);
3677  }
3678  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3679  for (auto *I : Category->protocols()) {
3680  ShadowContextRAII Shadow(Visited);
3681  LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3682  Visited, IncludeDependentBases, LoadExternal);
3683  }
3684 
3685  // If there is an implementation, traverse it.
3686  if (Category->getImplementation()) {
3687  ShadowContextRAII Shadow(Visited);
3688  LookupVisibleDecls(Category->getImplementation(), Result,
3689  QualifiedNameLookup, true, Consumer, Visited,
3690  IncludeDependentBases, LoadExternal);
3691  }
3692  }
3693 }
3694 
3695 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3696  UnqualUsingDirectiveSet &UDirs,
3697  VisibleDeclConsumer &Consumer,
3698  VisibleDeclsRecord &Visited,
3699  bool LoadExternal) {
3700  if (!S)
3701  return;
3702 
3703  if (!S->getEntity() ||
3704  (!S->getParent() &&
3705  !Visited.alreadyVisitedContext(S->getEntity())) ||
3706  (S->getEntity())->isFunctionOrMethod()) {
3707  FindLocalExternScope FindLocals(Result);
3708  // Walk through the declarations in this Scope. The consumer might add new
3709  // decls to the scope as part of deserialization, so make a copy first.
3710  SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3711  for (Decl *D : ScopeDecls) {
3712  if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3713  if ((ND = Result.getAcceptableDecl(ND))) {
3714  Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3715  Visited.add(ND);
3716  }
3717  }
3718  }
3719 
3720  // FIXME: C++ [temp.local]p8
3721  DeclContext *Entity = nullptr;
3722  if (S->getEntity()) {
3723  // Look into this scope's declaration context, along with any of its
3724  // parent lookup contexts (e.g., enclosing classes), up to the point
3725  // where we hit the context stored in the next outer scope.
3726  Entity = S->getEntity();
3727  DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3728 
3729  for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3730  Ctx = Ctx->getLookupParent()) {
3731  if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3732  if (Method->isInstanceMethod()) {
3733  // For instance methods, look for ivars in the method's interface.
3734  LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3736  if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3737  LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3738  /*InBaseClass=*/false, Consumer, Visited,
3739  /*IncludeDependentBases=*/false, LoadExternal);
3740  }
3741  }
3742 
3743  // We've already performed all of the name lookup that we need
3744  // to for Objective-C methods; the next context will be the
3745  // outer scope.
3746  break;
3747  }
3748 
3749  if (Ctx->isFunctionOrMethod())
3750  continue;
3751 
3752  LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3753  /*InBaseClass=*/false, Consumer, Visited,
3754  /*IncludeDependentBases=*/false, LoadExternal);
3755  }
3756  } else if (!S->getParent()) {
3757  // Look into the translation unit scope. We walk through the translation
3758  // unit's declaration context, because the Scope itself won't have all of
3759  // the declarations if we loaded a precompiled header.
3760  // FIXME: We would like the translation unit's Scope object to point to the
3761  // translation unit, so we don't need this special "if" branch. However,
3762  // doing so would force the normal C++ name-lookup code to look into the
3763  // translation unit decl when the IdentifierInfo chains would suffice.
3764  // Once we fix that problem (which is part of a more general "don't look
3765  // in DeclContexts unless we have to" optimization), we can eliminate this.
3766  Entity = Result.getSema().Context.getTranslationUnitDecl();
3767  LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3768  /*InBaseClass=*/false, Consumer, Visited,
3769  /*IncludeDependentBases=*/false, LoadExternal);
3770  }
3771 
3772  if (Entity) {
3773  // Lookup visible declarations in any namespaces found by using
3774  // directives.
3775  for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3776  LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
3777  Result, /*QualifiedNameLookup=*/false,
3778  /*InBaseClass=*/false, Consumer, Visited,
3779  /*IncludeDependentBases=*/false, LoadExternal);
3780  }
3781 
3782  // Lookup names in the parent scope.
3783  ShadowContextRAII Shadow(Visited);
3784  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited,
3785  LoadExternal);
3786 }
3787 
3789  VisibleDeclConsumer &Consumer,
3790  bool IncludeGlobalScope, bool LoadExternal) {
3791  // Determine the set of using directives available during
3792  // unqualified name lookup.
3793  Scope *Initial = S;
3794  UnqualUsingDirectiveSet UDirs(*this);
3795  if (getLangOpts().CPlusPlus) {
3796  // Find the first namespace or translation-unit scope.
3797  while (S && !isNamespaceOrTranslationUnitScope(S))
3798  S = S->getParent();
3799 
3800  UDirs.visitScopeChain(Initial, S);
3801  }
3802  UDirs.done();
3803 
3804  // Look for visible declarations.
3805  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3806  Result.setAllowHidden(Consumer.includeHiddenDecls());
3807  VisibleDeclsRecord Visited;
3808  if (!IncludeGlobalScope)
3809  Visited.visitedContext(Context.getTranslationUnitDecl());
3810  ShadowContextRAII Shadow(Visited);
3811  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited, LoadExternal);
3812 }
3813 
3815  VisibleDeclConsumer &Consumer,
3816  bool IncludeGlobalScope,
3817  bool IncludeDependentBases, bool LoadExternal) {
3818  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3819  Result.setAllowHidden(Consumer.includeHiddenDecls());
3820  VisibleDeclsRecord Visited;
3821  if (!IncludeGlobalScope)
3822  Visited.visitedContext(Context.getTranslationUnitDecl());
3823  ShadowContextRAII Shadow(Visited);
3824  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3825  /*InBaseClass=*/false, Consumer, Visited,
3826  IncludeDependentBases, LoadExternal);
3827 }
3828 
3829 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3830 /// If GnuLabelLoc is a valid source location, then this is a definition
3831 /// of an __label__ label name, otherwise it is a normal label definition
3832 /// or use.
3834  SourceLocation GnuLabelLoc) {
3835  // Do a lookup to see if we have a label with this name already.
3836  NamedDecl *Res = nullptr;
3837 
3838  if (GnuLabelLoc.isValid()) {
3839  // Local label definitions always shadow existing labels.
3840  Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3841  Scope *S = CurScope;
3842  PushOnScopeChains(Res, S, true);
3843  return cast<LabelDecl>(Res);
3844  }
3845 
3846  // Not a GNU local label.
3847  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3848  // If we found a label, check to see if it is in the same context as us.
3849  // When in a Block, we don't want to reuse a label in an enclosing function.
3850  if (Res && Res->getDeclContext() != CurContext)
3851  Res = nullptr;
3852  if (!Res) {
3853  // If not forward referenced or defined already, create the backing decl.
3854  Res = LabelDecl::Create(Context, CurContext, Loc, II);
3855  Scope *S = CurScope->getFnParent();
3856  assert(S && "Not in a function?");
3857  PushOnScopeChains(Res, S, true);
3858  }
3859  return cast<LabelDecl>(Res);
3860 }
3861 
3862 //===----------------------------------------------------------------------===//
3863 // Typo correction
3864 //===----------------------------------------------------------------------===//
3865 
3867  TypoCorrection &Candidate) {
3868  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3869  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3870 }
3871 
3872 static void LookupPotentialTypoResult(Sema &SemaRef,
3873  LookupResult &Res,
3874  IdentifierInfo *Name,
3875  Scope *S, CXXScopeSpec *SS,
3877  bool EnteringContext,
3878  bool isObjCIvarLookup,
3879  bool FindHidden);
3880 
3881 /// Check whether the declarations found for a typo correction are
3882 /// visible. Set the correction's RequiresImport flag to true if none of the
3883 /// declarations are visible, false otherwise.
3884 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
3885  TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
3886 
3887  for (/**/; DI != DE; ++DI)
3888  if (!LookupResult::isVisible(SemaRef, *DI))
3889  break;
3890  // No filtering needed if all decls are visible.
3891  if (DI == DE) {
3892  TC.setRequiresImport(false);
3893  return;
3894  }
3895 
3896  llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
3897  bool AnyVisibleDecls = !NewDecls.empty();
3898 
3899  for (/**/; DI != DE; ++DI) {
3900  if (LookupResult::isVisible(SemaRef, *DI)) {
3901  if (!AnyVisibleDecls) {
3902  // Found a visible decl, discard all hidden ones.
3903  AnyVisibleDecls = true;
3904  NewDecls.clear();
3905  }
3906  NewDecls.push_back(*DI);
3907  } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
3908  NewDecls.push_back(*DI);
3909  }
3910 
3911  if (NewDecls.empty())
3912  TC = TypoCorrection();
3913  else {
3914  TC.setCorrectionDecls(NewDecls);
3915  TC.setRequiresImport(!AnyVisibleDecls);
3916  }
3917 }
3918 
3919 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
3920 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3921 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3923  NestedNameSpecifier *NNS,
3925  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3926  getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3927  else
3928  Identifiers.clear();
3929 
3930  const IdentifierInfo *II = nullptr;
3931 
3932  switch (NNS->getKind()) {
3934  II = NNS->getAsIdentifier();
3935  break;
3936 
3938  if (NNS->getAsNamespace()->isAnonymousNamespace())
3939  return;
3940  II = NNS->getAsNamespace()->getIdentifier();
3941  break;
3942 
3944  II = NNS->getAsNamespaceAlias()->getIdentifier();
3945  break;
3946 
3949  II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3950  break;
3951 
3954  return;
3955  }
3956 
3957  if (II)
3958  Identifiers.push_back(II);
3959 }
3960 
3962  DeclContext *Ctx, bool InBaseClass) {
3963  // Don't consider hidden names for typo correction.
3964  if (Hiding)
3965  return;
3966 
3967  // Only consider entities with identifiers for names, ignoring
3968  // special names (constructors, overloaded operators, selectors,
3969  // etc.).
3970  IdentifierInfo *Name = ND->getIdentifier();
3971  if (!Name)
3972  return;
3973 
3974  // Only consider visible declarations and declarations from modules with
3975  // names that exactly match.
3976  if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
3977  return;
3978 
3979  FoundName(Name->getName());
3980 }
3981 
3983  // Compute the edit distance between the typo and the name of this
3984  // entity, and add the identifier to the list of results.
3985  addName(Name, nullptr);
3986 }
3987 
3989  // Compute the edit distance between the typo and this keyword,
3990  // and add the keyword to the list of results.
3991  addName(Keyword, nullptr, nullptr, true);
3992 }
3993 
3994 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
3995  NestedNameSpecifier *NNS, bool isKeyword) {
3996  // Use a simple length-based heuristic to determine the minimum possible
3997  // edit distance. If the minimum isn't good enough, bail out early.
3998  StringRef TypoStr = Typo->getName();
3999  unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4000  if (MinED && TypoStr.size() / MinED < 3)
4001  return;
4002 
4003  // Compute an upper bound on the allowable edit distance, so that the
4004  // edit-distance algorithm can short-circuit.
4005  unsigned UpperBound = (TypoStr.size() + 2) / 3;
4006  unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4007  if (ED > UpperBound) return;
4008 
4009  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4010  if (isKeyword) TC.makeKeyword();
4011  TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4012  addCorrection(TC);
4013 }
4014 
4015 static const unsigned MaxTypoDistanceResultSets = 5;
4016 
4018  StringRef TypoStr = Typo->getName();
4019  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4020 
4021  // For very short typos, ignore potential corrections that have a different
4022  // base identifier from the typo or which have a normalized edit distance
4023  // longer than the typo itself.
4024  if (TypoStr.size() < 3 &&
4025  (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4026  return;
4027 
4028  // If the correction is resolved but is not viable, ignore it.
4029  if (Correction.isResolved()) {
4030  checkCorrectionVisibility(SemaRef, Correction);
4031  if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4032  return;
4033  }
4034 
4035  TypoResultList &CList =
4036  CorrectionResults[Correction.getEditDistance(false)][Name];
4037 
4038  if (!CList.empty() && !CList.back().isResolved())
4039  CList.pop_back();
4040  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4041  std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4042  for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4043  RI != RIEnd; ++RI) {
4044  // If the Correction refers to a decl already in the result list,
4045  // replace the existing result if the string representation of Correction
4046  // comes before the current result alphabetically, then stop as there is
4047  // nothing more to be done to add Correction to the candidate set.
4048  if (RI->getCorrectionDecl() == NewND) {
4049  if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4050  *RI = Correction;
4051  return;
4052  }
4053  }
4054  }
4055  if (CList.empty() || Correction.isResolved())
4056  CList.push_back(Correction);
4057 
4058  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4059  CorrectionResults.erase(std::prev(CorrectionResults.end()));
4060 }
4061 
4063  const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4064  SearchNamespaces = true;
4065 
4066  for (auto KNPair : KnownNamespaces)
4067  Namespaces.addNameSpecifier(KNPair.first);
4068 
4069  bool SSIsTemplate = false;
4070  if (NestedNameSpecifier *NNS =
4071  (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4072  if (const Type *T = NNS->getAsType())
4073  SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4074  }
4075  // Do not transform this into an iterator-based loop. The loop body can
4076  // trigger the creation of further types (through lazy deserialization) and
4077  // invalid iterators into this list.
4078  auto &Types = SemaRef.getASTContext().getTypes();
4079  for (unsigned I = 0; I != Types.size(); ++I) {
4080  const auto *TI = Types[I];
4081  if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4082  CD = CD->getCanonicalDecl();
4083  if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4084  !CD->isUnion() && CD->getIdentifier() &&
4085  (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4086  (CD->isBeingDefined() || CD->isCompleteDefinition()))
4087  Namespaces.addNameSpecifier(CD);
4088  }
4089  }
4090 }
4091 
4093  if (++CurrentTCIndex < ValidatedCorrections.size())
4094  return ValidatedCorrections[CurrentTCIndex];
4095 
4096  CurrentTCIndex = ValidatedCorrections.size();
4097  while (!CorrectionResults.empty()) {
4098  auto DI = CorrectionResults.begin();
4099  if (DI->second.empty()) {
4100  CorrectionResults.erase(DI);
4101  continue;
4102  }
4103 
4104  auto RI = DI->second.begin();
4105  if (RI->second.empty()) {
4106  DI->second.erase(RI);
4107  performQualifiedLookups();
4108  continue;
4109  }
4110 
4111  TypoCorrection TC = RI->second.pop_back_val();
4112  if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4113  ValidatedCorrections.push_back(TC);
4114  return ValidatedCorrections[CurrentTCIndex];
4115  }
4116  }
4117  return ValidatedCorrections[0]; // The empty correction.
4118 }
4119 
4120 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4121  IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4122  DeclContext *TempMemberContext = MemberContext;
4123  CXXScopeSpec *TempSS = SS.get();
4124 retry_lookup:
4125  LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4126  EnteringContext,
4127  CorrectionValidator->IsObjCIvarLookup,
4128  Name == Typo && !Candidate.WillReplaceSpecifier());
4129  switch (Result.getResultKind()) {
4133  if (TempSS) {
4134  // Immediately retry the lookup without the given CXXScopeSpec
4135  TempSS = nullptr;
4136  Candidate.WillReplaceSpecifier(true);
4137  goto retry_lookup;
4138  }
4139  if (TempMemberContext) {
4140  if (SS && !TempSS)
4141  TempSS = SS.get();
4142  TempMemberContext = nullptr;
4143  goto retry_lookup;
4144  }
4145  if (SearchNamespaces)
4146  QualifiedResults.push_back(Candidate);
4147  break;
4148 
4150  // We don't deal with ambiguities.
4151  break;
4152 
4153  case LookupResult::Found:
4155  // Store all of the Decls for overloaded symbols
4156  for (auto *TRD : Result)
4157  Candidate.addCorrectionDecl(TRD);
4158  checkCorrectionVisibility(SemaRef, Candidate);
4159  if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4160  if (SearchNamespaces)
4161  QualifiedResults.push_back(Candidate);
4162  break;
4163  }
4164  Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4165  return true;
4166  }
4167  return false;
4168 }
4169 
4170 void TypoCorrectionConsumer::performQualifiedLookups() {
4171  unsigned TypoLen = Typo->getName().size();
4172  for (const TypoCorrection &QR : QualifiedResults) {
4173  for (const auto &NSI : Namespaces) {
4174  DeclContext *Ctx = NSI.DeclCtx;
4175  const Type *NSType = NSI.NameSpecifier->getAsType();
4176 
4177  // If the current NestedNameSpecifier refers to a class and the
4178  // current correction candidate is the name of that class, then skip
4179  // it as it is unlikely a qualified version of the class' constructor
4180  // is an appropriate correction.
4181  if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4182  nullptr) {
4183  if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4184  continue;
4185  }
4186 
4187  TypoCorrection TC(QR);
4188  TC.ClearCorrectionDecls();
4189  TC.setCorrectionSpecifier(NSI.NameSpecifier);
4190  TC.setQualifierDistance(NSI.EditDistance);
4191  TC.setCallbackDistance(0); // Reset the callback distance
4192 
4193  // If the current correction candidate and namespace combination are
4194  // too far away from the original typo based on the normalized edit
4195  // distance, then skip performing a qualified name lookup.
4196  unsigned TmpED = TC.getEditDistance(true);
4197  if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4198  TypoLen / TmpED < 3)
4199  continue;
4200 
4201  Result.clear();
4202  Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4203  if (!SemaRef.LookupQualifiedName(Result, Ctx))
4204  continue;
4205 
4206  // Any corrections added below will be validated in subsequent
4207  // iterations of the main while() loop over the Consumer's contents.
4208  switch (Result.getResultKind()) {
4209  case LookupResult::Found:
4211  if (SS && SS->isValid()) {
4212  std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4213  std::string OldQualified;
4214  llvm::raw_string_ostream OldOStream(OldQualified);
4215  SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4216  OldOStream << Typo->getName();
4217  // If correction candidate would be an identical written qualified
4218  // identifier, then the existing CXXScopeSpec probably included a
4219  // typedef that didn't get accounted for properly.
4220  if (OldOStream.str() == NewQualified)
4221  break;
4222  }
4223  for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4224  TRD != TRDEnd; ++TRD) {
4225  if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4226  NSType ? NSType->getAsCXXRecordDecl()
4227  : nullptr,
4228  TRD.getPair()) == Sema::AR_accessible)
4229  TC.addCorrectionDecl(*TRD);
4230  }
4231  if (TC.isResolved()) {
4232  TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4233  addCorrection(TC);
4234  }
4235  break;
4236  }
4241  break;
4242  }
4243  }
4244  }
4245  QualifiedResults.clear();
4246 }
4247 
4248 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4249  ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4250  : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4251  if (NestedNameSpecifier *NNS =
4252  CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4253  llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4254  NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4255 
4256  getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4257  }
4258  // Build the list of identifiers that would be used for an absolute
4259  // (from the global context) NestedNameSpecifier referring to the current
4260  // context.
4261  for (DeclContext *C : llvm::reverse(CurContextChain)) {
4262  if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4263  CurContextIdentifiers.push_back(ND->getIdentifier());
4264  }
4265 
4266  // Add the global context as a NestedNameSpecifier
4267  SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4269  DistanceMap[1].push_back(SI);
4270 }
4271 
4272 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4273  DeclContext *Start) -> DeclContextList {
4274  assert(Start && "Building a context chain from a null context");
4275  DeclContextList Chain;
4276  for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4277  DC = DC->getLookupParent()) {
4278  NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4279  if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4280  !(ND && ND->isAnonymousNamespace()))
4281  Chain.push_back(DC->getPrimaryContext());
4282  }
4283  return Chain;
4284 }
4285 
4286 unsigned
4287 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4288  DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4289  unsigned NumSpecifiers = 0;
4290  for (DeclContext *C : llvm::reverse(DeclChain)) {
4291  if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4292  NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4293  ++NumSpecifiers;
4294  } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4295  NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4296  RD->getTypeForDecl());
4297  ++NumSpecifiers;
4298  }
4299  }
4300  return NumSpecifiers;
4301 }
4302 
4303 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4304  DeclContext *Ctx) {
4305  NestedNameSpecifier *NNS = nullptr;
4306  unsigned NumSpecifiers = 0;
4307  DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4308  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4309 
4310  // Eliminate common elements from the two DeclContext chains.
4311  for (DeclContext *C : llvm::reverse(CurContextChain)) {
4312  if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4313  break;
4314  NamespaceDeclChain.pop_back();
4315  }
4316 
4317  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4318  NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4319 
4320  // Add an explicit leading '::' specifier if needed.
4321  if (NamespaceDeclChain.empty()) {
4322  // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4323  NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4324  NumSpecifiers =
4325  buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4326  } else if (NamedDecl *ND =
4327  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4328  IdentifierInfo *Name = ND->getIdentifier();
4329  bool SameNameSpecifier = false;
4330  if (std::find(CurNameSpecifierIdentifiers.begin(),
4331  CurNameSpecifierIdentifiers.end(),
4332  Name) != CurNameSpecifierIdentifiers.end()) {
4333  std::string NewNameSpecifier;
4334  llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4335  SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4336  getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4337  NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4338  SpecifierOStream.flush();
4339  SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4340  }
4341  if (SameNameSpecifier ||
4342  std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
4343  Name) != CurContextIdentifiers.end()) {
4344  // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4345  NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4346  NumSpecifiers =
4347  buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4348  }
4349  }
4350 
4351  // If the built NestedNameSpecifier would be replacing an existing
4352  // NestedNameSpecifier, use the number of component identifiers that
4353  // would need to be changed as the edit distance instead of the number
4354  // of components in the built NestedNameSpecifier.
4355  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4356  SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4357  getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4358  NumSpecifiers = llvm::ComputeEditDistance(
4359  llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4360  llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4361  }
4362 
4363  SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4364  DistanceMap[NumSpecifiers].push_back(SI);
4365 }
4366 
4367 /// Perform name lookup for a possible result for typo correction.
4368 static void LookupPotentialTypoResult(Sema &SemaRef,
4369  LookupResult &Res,
4370  IdentifierInfo *Name,
4371  Scope *S, CXXScopeSpec *SS,
4372  DeclContext *MemberContext,
4373  bool EnteringContext,
4374  bool isObjCIvarLookup,
4375  bool FindHidden) {
4376  Res.suppressDiagnostics();
4377  Res.clear();
4378  Res.setLookupName(Name);
4379  Res.setAllowHidden(FindHidden);
4380  if (MemberContext) {
4381  if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4382  if (isObjCIvarLookup) {
4383  if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4384  Res.addDecl(Ivar);
4385  Res.resolveKind();
4386  return;
4387  }
4388  }
4389 
4390  if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4392  Res.addDecl(Prop);
4393  Res.resolveKind();
4394  return;
4395  }
4396  }
4397 
4398  SemaRef.LookupQualifiedName(Res, MemberContext);
4399  return;
4400  }
4401 
4402  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4403  EnteringContext);
4404 
4405  // Fake ivar lookup; this should really be part of
4406  // LookupParsedName.
4407  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4408  if (Method->isInstanceMethod() && Method->getClassInterface() &&
4409  (Res.empty() ||
4410  (Res.isSingleResult() &&
4412  if (ObjCIvarDecl *IV
4413  = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4414  Res.addDecl(IV);
4415  Res.resolveKind();
4416  }
4417  }
4418  }
4419 }
4420 
4421 /// Add keywords to the consumer as possible typo corrections.
4422 static void AddKeywordsToConsumer(Sema &SemaRef,
4423  TypoCorrectionConsumer &Consumer,
4425  bool AfterNestedNameSpecifier) {
4426  if (AfterNestedNameSpecifier) {
4427  // For 'X::', we know exactly which keywords can appear next.
4428  Consumer.addKeywordResult("template");
4429  if (CCC.WantExpressionKeywords)
4430  Consumer.addKeywordResult("operator");
4431  return;
4432  }
4433 
4434  if (CCC.WantObjCSuper)
4435  Consumer.addKeywordResult("super");
4436 
4437  if (CCC.WantTypeSpecifiers) {
4438  // Add type-specifier keywords to the set of results.
4439  static const char *const CTypeSpecs[] = {
4440  "char", "const", "double", "enum", "float", "int", "long", "short",
4441  "signed", "struct", "union", "unsigned", "void", "volatile",
4442  "_Complex", "_Imaginary",
4443  // storage-specifiers as well
4444  "extern", "inline", "static", "typedef"
4445  };
4446 
4447  const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4448  for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4449  Consumer.addKeywordResult(CTypeSpecs[I]);
4450 
4451  if (SemaRef.getLangOpts().C99)
4452  Consumer.addKeywordResult("restrict");
4453  if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4454  Consumer.addKeywordResult("bool");
4455  else if (SemaRef.getLangOpts().C99)
4456  Consumer.addKeywordResult("_Bool");
4457 
4458  if (SemaRef.getLangOpts().CPlusPlus) {
4459  Consumer.addKeywordResult("class");
4460  Consumer.addKeywordResult("typename");
4461  Consumer.addKeywordResult("wchar_t");
4462 
4463  if (SemaRef.getLangOpts().CPlusPlus11) {
4464  Consumer.addKeywordResult("char16_t");
4465  Consumer.addKeywordResult("char32_t");
4466  Consumer.addKeywordResult("constexpr");
4467  Consumer.addKeywordResult("decltype");
4468  Consumer.addKeywordResult("thread_local");
4469  }
4470  }
4471 
4472  if (SemaRef.getLangOpts().GNUKeywords)
4473  Consumer.addKeywordResult("typeof");
4474  } else if (CCC.WantFunctionLikeCasts) {
4475  static const char *const CastableTypeSpecs[] = {
4476  "char", "double", "float", "int", "long", "short",
4477  "signed", "unsigned", "void"
4478  };
4479  for (auto *kw : CastableTypeSpecs)
4480  Consumer.addKeywordResult(kw);
4481  }
4482 
4483  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4484  Consumer.addKeywordResult("const_cast");
4485  Consumer.addKeywordResult("dynamic_cast");
4486  Consumer.addKeywordResult("reinterpret_cast");
4487  Consumer.addKeywordResult("static_cast");
4488  }
4489 
4490  if (CCC.WantExpressionKeywords) {
4491  Consumer.addKeywordResult("sizeof");
4492  if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4493  Consumer.addKeywordResult("false");
4494  Consumer.addKeywordResult("true");
4495  }
4496 
4497  if (SemaRef.getLangOpts().CPlusPlus) {
4498  static const char *const CXXExprs[] = {
4499  "delete", "new", "operator", "throw", "typeid"
4500  };
4501  const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4502  for (unsigned I = 0; I != NumCXXExprs; ++I)
4503  Consumer.addKeywordResult(CXXExprs[I]);
4504 
4505  if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4506  cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4507  Consumer.addKeywordResult("this");
4508 
4509  if (SemaRef.getLangOpts().CPlusPlus11) {
4510  Consumer.addKeywordResult("alignof");
4511  Consumer.addKeywordResult("nullptr");
4512  }
4513  }
4514 
4515  if (SemaRef.getLangOpts().C11) {
4516  // FIXME: We should not suggest _Alignof if the alignof macro
4517  // is present.
4518  Consumer.addKeywordResult("_Alignof");
4519  }
4520  }
4521 
4522  if (CCC.WantRemainingKeywords) {
4523  if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4524  // Statements.
4525  static const char *const CStmts[] = {
4526  "do", "else", "for", "goto", "if", "return", "switch", "while" };
4527  const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4528  for (unsigned I = 0; I != NumCStmts; ++I)
4529  Consumer.addKeywordResult(CStmts[I]);
4530 
4531  if (SemaRef.getLangOpts().CPlusPlus) {
4532  Consumer.addKeywordResult("catch");
4533  Consumer.addKeywordResult("try");
4534  }
4535 
4536  if (S && S->getBreakParent())
4537  Consumer.addKeywordResult("break");
4538 
4539  if (S && S->getContinueParent())
4540  Consumer.addKeywordResult("continue");
4541 
4542  if (SemaRef.getCurFunction() &&
4543  !SemaRef.getCurFunction()->SwitchStack.empty()) {
4544  Consumer.addKeywordResult("case");
4545  Consumer.addKeywordResult("default");
4546  }
4547  } else {
4548  if (SemaRef.getLangOpts().CPlusPlus) {
4549  Consumer.addKeywordResult("namespace");
4550  Consumer.addKeywordResult("template");
4551  }
4552 
4553  if (S && S->isClassScope()) {
4554  Consumer.addKeywordResult("explicit");
4555  Consumer.addKeywordResult("friend");
4556  Consumer.addKeywordResult("mutable");
4557  Consumer.addKeywordResult("private");
4558  Consumer.addKeywordResult("protected");
4559  Consumer.addKeywordResult("public");
4560  Consumer.addKeywordResult("virtual");
4561  }
4562  }
4563 
4564  if (SemaRef.getLangOpts().CPlusPlus) {
4565  Consumer.addKeywordResult("using");
4566 
4567  if (SemaRef.getLangOpts().CPlusPlus11)
4568  Consumer.addKeywordResult("static_assert");
4569  }
4570  }
4571 }
4572 
4573 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4574  const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4575  Scope *S, CXXScopeSpec *SS,
4576  std::unique_ptr<CorrectionCandidateCallback> CCC,
4577  DeclContext *MemberContext, bool EnteringContext,
4578  const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4579 
4580  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4581  DisableTypoCorrection)
4582  return nullptr;
4583 
4584  // In Microsoft mode, don't perform typo correction in a template member
4585  // function dependent context because it interferes with the "lookup into
4586  // dependent bases of class templates" feature.
4587  if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4588  isa<CXXMethodDecl>(CurContext))
4589  return nullptr;
4590 
4591  // We only attempt to correct typos for identifiers.
4592  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4593  if (!Typo)
4594  return nullptr;
4595 
4596  // If the scope specifier itself was invalid, don't try to correct
4597  // typos.
4598  if (SS && SS->isInvalid())
4599  return nullptr;
4600 
4601  // Never try to correct typos during any kind of code synthesis.
4602  if (!CodeSynthesisContexts.empty())
4603  return nullptr;
4604 
4605  // Don't try to correct 'super'.
4606  if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4607  return nullptr;
4608 
4609  // Abort if typo correction already failed for this specific typo.
4610  IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4611  if (locs != TypoCorrectionFailures.end() &&
4612  locs->second.count(TypoName.getLoc()))
4613  return nullptr;
4614 
4615  // Don't try to correct the identifier "vector" when in AltiVec mode.
4616  // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4617  // remove this workaround.
4618  if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4619  return nullptr;
4620 
4621  // Provide a stop gap for files that are just seriously broken. Trying
4622  // to correct all typos can turn into a HUGE performance penalty, causing
4623  // some files to take minutes to get rejected by the parser.
4624  unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4625  if (Limit && TyposCorrected >= Limit)
4626  return nullptr;
4627  ++TyposCorrected;
4628 
4629  // If we're handling a missing symbol error, using modules, and the
4630  // special search all modules option is used, look for a missing import.
4631  if (ErrorRecovery && getLangOpts().Modules &&
4632  getLangOpts().ModulesSearchAll) {
4633  // The following has the side effect of loading the missing module.
4634  getModuleLoader().lookupMissingImports(Typo->getName(),
4635  TypoName.getBeginLoc());
4636  }
4637 
4638  CorrectionCandidateCallback &CCCRef = *CCC;
4639  auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
4640  *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4641  EnteringContext);
4642 
4643  // Perform name lookup to find visible, similarly-named entities.
4644  bool IsUnqualifiedLookup = false;
4645  DeclContext *QualifiedDC = MemberContext;
4646  if (MemberContext) {
4647  LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4648 
4649  // Look in qualified interfaces.
4650  if (OPT) {
4651  for (auto *I : OPT->quals())
4652  LookupVisibleDecls(I, LookupKind, *Consumer);
4653  }
4654  } else if (SS && SS->isSet()) {
4655  QualifiedDC = computeDeclContext(*SS, EnteringContext);
4656  if (!QualifiedDC)
4657  return nullptr;
4658 
4659  LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4660  } else {
4661  IsUnqualifiedLookup = true;
4662  }
4663 
4664  // Determine whether we are going to search in the various namespaces for
4665  // corrections.
4666  bool SearchNamespaces
4667  = getLangOpts().CPlusPlus &&
4668  (IsUnqualifiedLookup || (SS && SS->isSet()));
4669 
4670  if (IsUnqualifiedLookup || SearchNamespaces) {
4671  // For unqualified lookup, look through all of the names that we have
4672  // seen in this translation unit.
4673  // FIXME: Re-add the ability to skip very unlikely potential corrections.
4674  for (const auto &I : Context.Idents)
4675  Consumer->FoundName(I.getKey());
4676 
4677  // Walk through identifiers in external identifier sources.
4678  // FIXME: Re-add the ability to skip very unlikely potential corrections.
4679  if (IdentifierInfoLookup *External
4680  = Context.Idents.getExternalIdentifierLookup()) {
4681  std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4682  do {
4683  StringRef Name = Iter->Next();
4684  if (Name.empty())
4685  break;
4686 
4687  Consumer->FoundName(Name);
4688  } while (true);
4689  }
4690  }
4691 
4692  AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
4693 
4694  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4695  // to search those namespaces.
4696  if (SearchNamespaces) {
4697  // Load any externally-known namespaces.
4698  if (ExternalSource && !LoadedExternalKnownNamespaces) {
4699  SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4700  LoadedExternalKnownNamespaces = true;
4701  ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4702  for (auto *N : ExternalKnownNamespaces)
4703  KnownNamespaces[N] = true;
4704  }
4705 
4706  Consumer->addNamespaces(KnownNamespaces);
4707  }
4708 
4709  return Consumer;
4710 }
4711 
4712 /// Try to "correct" a typo in the source code by finding
4713 /// visible declarations whose names are similar to the name that was
4714 /// present in the source code.
4715 ///
4716 /// \param TypoName the \c DeclarationNameInfo structure that contains
4717 /// the name that was present in the source code along with its location.
4718 ///
4719 /// \param LookupKind the name-lookup criteria used to search for the name.
4720 ///
4721 /// \param S the scope in which name lookup occurs.
4722 ///
4723 /// \param SS the nested-name-specifier that precedes the name we're
4724 /// looking for, if present.
4725 ///
4726 /// \param CCC A CorrectionCandidateCallback object that provides further
4727 /// validation of typo correction candidates. It also provides flags for
4728 /// determining the set of keywords permitted.
4729 ///
4730 /// \param MemberContext if non-NULL, the context in which to look for
4731 /// a member access expression.
4732 ///
4733 /// \param EnteringContext whether we're entering the context described by
4734 /// the nested-name-specifier SS.
4735 ///
4736 /// \param OPT when non-NULL, the search for visible declarations will
4737 /// also walk the protocols in the qualified interfaces of \p OPT.
4738 ///
4739 /// \returns a \c TypoCorrection containing the corrected name if the typo
4740 /// along with information such as the \c NamedDecl where the corrected name
4741 /// was declared, and any additional \c NestedNameSpecifier needed to access
4742 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4744  Sema::LookupNameKind LookupKind,
4745  Scope *S, CXXScopeSpec *SS,
4746  std::unique_ptr<CorrectionCandidateCallback> CCC,
4747  CorrectTypoKind Mode,
4748  DeclContext *MemberContext,
4749  bool EnteringContext,
4750  const ObjCObjectPointerType *OPT,
4751  bool RecordFailure) {
4752  assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback");
4753 
4754  // Always let the ExternalSource have the first chance at correction, even
4755  // if we would otherwise have given up.
4756  if (ExternalSource) {
4757  if (TypoCorrection Correction = ExternalSource->CorrectTypo(
4758  TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
4759  return Correction;
4760  }
4761 
4762  // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4763  // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4764  // some instances of CTC_Unknown, while WantRemainingKeywords is true
4765  // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4766  bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
4767 
4768  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4769  auto Consumer = makeTypoCorrectionConsumer(
4770  TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4771  EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4772 
4773  if (!Consumer)
4774  return TypoCorrection();
4775 
4776  // If we haven't found anything, we're done.
4777  if (Consumer->empty())
4778  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4779 
4780  // Make sure the best edit distance (prior to adding any namespace qualifiers)
4781  // is not more that about a third of the length of the typo's identifier.
4782  unsigned ED = Consumer->getBestEditDistance(true);
4783  unsigned TypoLen = Typo->getName().size();
4784  if (ED > 0 && TypoLen / ED < 3)
4785  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4786 
4787  TypoCorrection BestTC = Consumer->getNextCorrection();
4788  TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4789  if (!BestTC)
4790  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4791 
4792  ED = BestTC.getEditDistance();
4793 
4794  if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4795  // If this was an unqualified lookup and we believe the callback
4796  // object wouldn't have filtered out possible corrections, note
4797  // that no correction was found.
4798  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4799  }
4800 
4801  // If only a single name remains, return that result.
4802  if (!SecondBestTC ||
4803  SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4804  const TypoCorrection &Result = BestTC;
4805 
4806  // Don't correct to a keyword that's the same as the typo; the keyword
4807  // wasn't actually in scope.
4808  if (ED == 0 && Result.isKeyword())
4809  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4810 
4811  TypoCorrection TC = Result;
4812  TC.setCorrectionRange(SS, TypoName);
4813  checkCorrectionVisibility(*this, TC);
4814  return TC;
4815  } else if (SecondBestTC && ObjCMessageReceiver) {
4816  // Prefer 'super' when we're completing in a message-receiver
4817  // context.
4818 
4819  if (BestTC.getCorrection().getAsString() != "super") {
4820  if (SecondBestTC.getCorrection().getAsString() == "super")
4821  BestTC = SecondBestTC;
4822  else if ((*Consumer)["super"].front().isKeyword())
4823  BestTC = (*Consumer)["super"].front();
4824  }
4825  // Don't correct to a keyword that's the same as the typo; the keyword
4826  // wasn't actually in scope.
4827  if (BestTC.getEditDistance() == 0 ||
4828  BestTC.getCorrection().getAsString() != "super")
4829  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4830 
4831  BestTC.setCorrectionRange(SS, TypoName);
4832  return BestTC;
4833  }
4834 
4835  // Record the failure's location if needed and return an empty correction. If
4836  // this was an unqualified lookup and we believe the callback object did not
4837  // filter out possible corrections, also cache the failure for the typo.
4838  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
4839 }
4840 
4841 /// Try to "correct" a typo in the source code by finding
4842 /// visible declarations whose names are similar to the name that was
4843 /// present in the source code.
4844 ///
4845 /// \param TypoName the \c DeclarationNameInfo structure that contains
4846 /// the name that was present in the source code along with its location.
4847 ///
4848 /// \param LookupKind the name-lookup criteria used to search for the name.
4849 ///
4850 /// \param S the scope in which name lookup occurs.
4851 ///
4852 /// \param SS the nested-name-specifier that precedes the name we're
4853 /// looking for, if present.
4854 ///
4855 /// \param CCC A CorrectionCandidateCallback object that provides further
4856 /// validation of typo correction candidates. It also provides flags for
4857 /// determining the set of keywords permitted.
4858 ///
4859 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
4860 /// diagnostics when the actual typo correction is attempted.
4861 ///
4862 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
4863 /// Expr from a typo correction candidate.
4864 ///
4865 /// \param MemberContext if non-NULL, the context in which to look for
4866 /// a member access expression.
4867 ///
4868 /// \param EnteringContext whether we're entering the context described by
4869 /// the nested-name-specifier SS.
4870 ///
4871 /// \param OPT when non-NULL, the search for visible declarations will
4872 /// also walk the protocols in the qualified interfaces of \p OPT.
4873 ///
4874 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
4875 /// Expr representing the result of performing typo correction, or nullptr if
4876 /// typo correction is not possible. If nullptr is returned, no diagnostics will
4877 /// be emitted and it is the responsibility of the caller to emit any that are
4878 /// needed.
4880  const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4881  Scope *S, CXXScopeSpec *SS,
4882  std::unique_ptr<CorrectionCandidateCallback> CCC,
4884  DeclContext *MemberContext, bool EnteringContext,
4885  const ObjCObjectPointerType *OPT) {
4886  assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback");
4887 
4888  auto Consumer = makeTypoCorrectionConsumer(
4889  TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4890  EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4891 
4892  // Give the external sema source a chance to correct the typo.
4893  TypoCorrection ExternalTypo;
4894  if (ExternalSource && Consumer) {
4895  ExternalTypo = ExternalSource->CorrectTypo(
4896  TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
4897  MemberContext, EnteringContext, OPT);
4898  if (ExternalTypo)
4899  Consumer->addCorrection(ExternalTypo);
4900  }
4901 
4902  if (!Consumer || Consumer->empty())
4903  return nullptr;
4904 
4905  // Make sure the best edit distance (prior to adding any namespace qualifiers)
4906  // is not more that about a third of the length of the typo's identifier.
4907  unsigned ED = Consumer->getBestEditDistance(true);
4908  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4909  if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
4910  return nullptr;
4911 
4912  ExprEvalContexts.back().NumTypos++;
4913  return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
4914 }
4915 
4917  if (!CDecl) return;
4918 
4919  if (isKeyword())
4920  CorrectionDecls.clear();
4921 
4922  CorrectionDecls.push_back(CDecl);
4923 
4924  if (!CorrectionName)
4925  CorrectionName = CDecl->getDeclName();
4926 }
4927 
4928 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4929  if (CorrectionNameSpec) {
4930  std::string tmpBuffer;
4931  llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4932  CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4933  PrefixOStream << CorrectionName;
4934  return PrefixOStream.str();
4935  }
4936 
4937  return CorrectionName.getAsString();
4938 }
4939 
4941  const TypoCorrection &candidate) {
4942  if (!candidate.isResolved())
4943  return true;
4944 
4945  if (candidate.isKeyword())
4946  return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4947  WantRemainingKeywords || WantObjCSuper;
4948 
4949  bool HasNonType = false;
4950  bool HasStaticMethod = false;
4951  bool HasNonStaticMethod = false;
4952  for (Decl *D : candidate) {
4953  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4954  D = FTD->getTemplatedDecl();
4955  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4956  if (Method->isStatic())
4957  HasStaticMethod = true;
4958  else
4959  HasNonStaticMethod = true;
4960  }
4961  if (!isa<TypeDecl>(D))
4962  HasNonType = true;
4963  }
4964 
4965  if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4966  !candidate.getCorrectionSpecifier())
4967  return false;
4968 
4969  return WantTypeSpecifiers || HasNonType;
4970 }
4971 
4973  bool HasExplicitTemplateArgs,
4974  MemberExpr *ME)
4975  : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4976  CurContext(SemaRef.CurContext), MemberFn(ME) {
4977  WantTypeSpecifiers = false;
4978  WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
4979  WantRemainingKeywords = false;
4980 }
4981 
4983  if (!candidate.getCorrectionDecl())
4984  return candidate.isKeyword();
4985 
4986  for (auto *C : candidate) {
4987  FunctionDecl *FD = nullptr;
4988  NamedDecl *ND = C->getUnderlyingDecl();
4989  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4990  FD = FTD->getTemplatedDecl();
4991  if (!HasExplicitTemplateArgs && !FD) {
4992  if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4993  // If the Decl is neither a function nor a template function,
4994  // determine if it is a pointer or reference to a function. If so,
4995  // check against the number of arguments expected for the pointee.
4996  QualType ValType = cast<ValueDecl>(ND)->getType();
4997  if (ValType.isNull())
4998  continue;
4999  if (ValType->isAnyPointerType() || ValType->isReferenceType())
5000  ValType = ValType->getPointeeType();
5001  if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5002  if (FPT->getNumParams() == NumArgs)
5003  return true;
5004  }
5005  }
5006 
5007  // Skip the current candidate if it is not a FunctionDecl or does not accept
5008  // the current number of arguments.
5009  if (!FD || !(FD->getNumParams() >= NumArgs &&
5010  FD->getMinRequiredArguments() <= NumArgs))
5011  continue;
5012 
5013  // If the current candidate is a non-static C++ method, skip the candidate
5014  // unless the method being corrected--or the current DeclContext, if the
5015  // function being corrected is not a method--is a method in the same class
5016  // or a descendent class of the candidate's parent class.
5017  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5018  if (MemberFn || !MD->isStatic()) {
5019  CXXMethodDecl *CurMD =
5020  MemberFn
5021  ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5022  : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5023  CXXRecordDecl *CurRD =
5024  CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5025  CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5026  if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5027  continue;
5028  }
5029  }
5030  return true;
5031  }
5032  return false;
5033 }
5034 
5035 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5036  const PartialDiagnostic &TypoDiag,
5037  bool ErrorRecovery) {
5038  diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5039  ErrorRecovery);
5040 }
5041 
5042 /// Find which declaration we should import to provide the definition of
5043 /// the given declaration.
5045  if (VarDecl *VD = dyn_cast<VarDecl>(D))
5046  return VD->getDefinition();
5047  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5048  return FD->getDefinition();
5049  if (TagDecl *TD = dyn_cast<TagDecl>(D))
5050  return TD->getDefinition();
5051  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5052  return ID->getDefinition();
5053  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5054  return PD->getDefinition();
5055  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5056  return getDefinitionToImport(TD->getTemplatedDecl());
5057  return nullptr;
5058 }
5059 
5061  MissingImportKind MIK, bool Recover) {
5062  // Suggest importing a module providing the definition of this entity, if
5063  // possible.
5064  NamedDecl *Def = getDefinitionToImport(Decl);
5065  if (!Def)
5066  Def = Decl;
5067 
5068  Module *Owner = getOwningModule(Def);
5069  assert(Owner && "definition of hidden declaration is not in a module");
5070 
5071  llvm::SmallVector<Module*, 8> OwningModules;
5072  OwningModules.push_back(Owner);
5073  auto Merged = Context.getModulesWithMergedDefinition(Def);
5074  OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5075 
5076  diagnoseMissingImport(Loc, Decl, Decl->getLocation(), OwningModules, MIK,
5077  Recover);
5078 }
5079 
5080 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5081 /// suggesting the addition of a #include of the specified file.
5083  const FileEntry *E) {
5084  bool IsSystem;
5085  auto Path =
5087  return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5088 }
5089 
5091  SourceLocation DeclLoc,
5092  ArrayRef<Module *> Modules,
5093  MissingImportKind MIK, bool Recover) {
5094  assert(!Modules.empty());
5095 
5096  // Weed out duplicates from module list.
5097  llvm::SmallVector<Module*, 8> UniqueModules;
5098  llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5099  for (auto *M : Modules)
5100  if (UniqueModuleSet.insert(M).second)
5101  UniqueModules.push_back(M);
5102  Modules = UniqueModules;
5103 
5104  if (Modules.size() > 1) {
5105  std::string ModuleList;
5106  unsigned N = 0;
5107  for (Module *M : Modules) {
5108  ModuleList += "\n ";
5109  if (++N == 5 && N != Modules.size()) {
5110  ModuleList += "[...]";
5111  break;
5112  }
5113  ModuleList += M->getFullModuleName();
5114  }
5115 
5116  Diag(UseLoc, diag::err_module_unimported_use_multiple)
5117  << (int)MIK << Decl << ModuleList;
5118  } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics(
5119  UseLoc, Modules[0], DeclLoc)) {
5120  // The right way to make the declaration visible is to include a header;
5121  // suggest doing so.
5122  //
5123  // FIXME: Find a smart place to suggest inserting a #include, and add
5124  // a FixItHint there.
5125  Diag(UseLoc, diag::err_module_unimported_use_header)
5126  << (int)MIK << Decl << Modules[0]->getFullModuleName()
5127  << getIncludeStringForHeader(PP, E);
5128  } else {
5129  // FIXME: Add a FixItHint that imports the corresponding module.
5130  Diag(UseLoc, diag::err_module_unimported_use)
5131  << (int)MIK << Decl << Modules[0]->getFullModuleName();
5132  }
5133 
5134  unsigned DiagID;
5135  switch (MIK) {
5136  case MissingImportKind::Declaration:
5137  DiagID = diag::note_previous_declaration;
5138  break;
5139  case MissingImportKind::Definition:
5140  DiagID = diag::note_previous_definition;
5141  break;
5142  case MissingImportKind::DefaultArgument:
5143  DiagID = diag::note_default_argument_declared_here;
5144  break;
5145  case MissingImportKind::ExplicitSpecialization:
5146  DiagID = diag::note_explicit_specialization_declared_here;
5147  break;
5148  case MissingImportKind::PartialSpecialization:
5149  DiagID = diag::note_partial_specialization_declared_here;
5150  break;
5151  }
5152  Diag(DeclLoc, DiagID);
5153 
5154  // Try to recover by implicitly importing this module.
5155  if (Recover)
5156  createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5157 }
5158 
5159 /// Diagnose a successfully-corrected typo. Separated from the correction
5160 /// itself to allow external validation of the result, etc.
5161 ///
5162 /// \param Correction The result of performing typo correction.
5163 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5164 /// string added to it (and usually also a fixit).
5165 /// \param PrevNote A note to use when indicating the location of the entity to
5166 /// which we are correcting. Will have the correction string added to it.
5167 /// \param ErrorRecovery If \c true (the default), the caller is going to
5168 /// recover from the typo as if the corrected string had been typed.
5169 /// In this case, \c PDiag must be an error, and we will attach a fixit
5170 /// to it.
5171 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5172  const PartialDiagnostic &TypoDiag,
5173  const PartialDiagnostic &PrevNote,
5174  bool ErrorRecovery) {
5175  std::string CorrectedStr = Correction.getAsString(getLangOpts());
5176  std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5178  Correction.getCorrectionRange(), CorrectedStr);
5179 
5180  // Maybe we're just missing a module import.
5181  if (Correction.requiresImport()) {
5182  NamedDecl *Decl = Correction.getFoundDecl();
5183  assert(Decl && "import required but no declaration to import");
5184 
5185  diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5186  MissingImportKind::Declaration, ErrorRecovery);
5187  return;
5188  }
5189 
5190  Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5191  << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5192 
5193  NamedDecl *ChosenDecl =
5194  Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5195  if (PrevNote.getDiagID() && ChosenDecl)
5196  Diag(ChosenDecl->getLocation(), PrevNote)
5197  << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5198 
5199  // Add any extra diagnostics.
5200  for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5201  Diag(Correction.getCorrectionRange().getBegin(), PD);
5202 }
5203 
5204 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5206  TypoRecoveryCallback TRC) {
5207  assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5208  auto TE = new (Context) TypoExpr(Context.DependentTy);
5209  auto &State = DelayedTypos[TE];
5210  State.Consumer = std::move(TCC);
5211  State.DiagHandler = std::move(TDG);
5212  State.RecoveryHandler = std::move(TRC);
5213  return TE;
5214 }
5215 
5216 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5217  auto Entry = DelayedTypos.find(TE);
5218  assert(Entry != DelayedTypos.end() &&
5219  "Failed to get the state for a TypoExpr!");
5220  return Entry->second;
5221 }
5222 
5224  DelayedTypos.erase(TE);
5225 }
5226 
5228  DeclarationNameInfo Name(II, IILoc);
5229  LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5230  R.suppressDiagnostics();
5231  R.setHideTags(false);
5232  LookupName(R, S);
5233  R.dump();
5234 }
SourceLocation getLoc() const
getLoc - Returns the main location of the declaration name.
Defines the clang::ASTContext interface.
Name lookup results in an ambiguity because multiple definitions of entity that meet the lookup crite...
Definition: Lookup.h:118
Represents a function declaration or definition.
Definition: Decl.h:1737
FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs, MemberExpr *ME=nullptr)
Name lookup found a set of overloaded functions that met the criteria.
Definition: Lookup.h:63
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
bool isForRedeclaration() const
True if this lookup is just looking for an existing declaration.
Definition: Lookup.h:258
SourceRange getCorrectionRange() const
bool isPredefinedLibFunction(unsigned ID) const
Determines whether this builtin is a predefined libc/libm function, such as "malloc", where we know the signature a priori.
Definition: Builtins.h:140
void setOrigin(CXXRecordDecl *Rec)
CXXMethodDecl * getMethod() const
Definition: Sema.h:1114
no exception specification
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2542
A (possibly-)qualified type.
Definition: Type.h:634
Simple class containing the result of Sema::CorrectTypo.
base_class_range bases()
Definition: DeclCXX.h:822
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2811
bool hasVisibleDeclarationSlow(const NamedDecl *D, llvm::SmallVectorImpl< Module *> *Modules)
CorrectTypoKind
Definition: Sema.h:3337
virtual unsigned RankCandidate(const TypoCorrection &candidate)
Method used by Sema::CorrectTypo to assign an "edit distance" rank to a candidate (where a lower valu...
static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result, bool QualifiedNameLookup, bool InBaseClass, VisibleDeclConsumer &Consumer, VisibleDeclsRecord &Visited, bool IncludeDependentBases, bool LoadExternal)
Template argument deduction was successful.
Definition: Sema.h:7025
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc...
Definition: Sema.h:3119
DeclarationName getCXXConstructorName(CanQualType Ty)
Returns the name of a C++ constructor for the given Type.
void setLookupName(DeclarationName Name)
Sets the name to look up.
Definition: Lookup.h:248
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false)
Perform unqualified name lookup starting from a given scope.
AmbiguityKind getAmbiguityKind() const
Definition: Lookup.h:326
Look up the name of an Objective-C protocol.
Definition: Sema.h:3153
Filter makeFilter()
Create a filter for this result set.
Definition: Lookup.h:682
CXXMethodDecl * LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals)
Look up the moving assignment operator for the given class.
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3360
Provides information about an attempted template argument deduction, whose success or failure was des...
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
void addConst()
Add the const type qualifier to this QualType.
Definition: Type.h:803
Microsoft&#39;s &#39;__super&#39; specifier, stored as a CXXRecordDecl* of the class it appeared in...
void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class)
Force the declaration of any implicitly-declared members of this class.
Definition: SemaLookup.cpp:728
The template argument is an expression, and we&#39;ve not resolved it to one of the other forms yet...
Definition: TemplateBase.h:86
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:269
bool isSingleTagDecl() const
Asks if the result is a single tag decl.
Definition: Lookup.h:530
void erase()
Erase the last element returned from this iterator.
Definition: Lookup.h:654
ConstructorInfo getConstructorInfo(NamedDecl *ND)
Definition: Overload.h:989
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
__DEVICE__ long long abs(long long __n)
bool isModuleVisible(const Module *M, bool ModulePrivate=false)
NestedNameSpecifier * getPrefix() const
Return the prefix of this nested name specifier.
SmallVectorImpl< NamedDecl * >::iterator decl_iterator
Name lookup results in an ambiguity because multiple nonstatic entities that meet the lookup criteria...
Definition: Lookup.h:103
Defines the C++ template declaration subclasses.
bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, bool AllowBuiltinCreation=false, bool EnteringContext=false)
Performs name lookup for a name that was parsed in the source code, and may contain a C++ scope speci...
StringRef P
Classification Classify(ASTContext &Ctx) const
Classify - Classify this expression according to the C++11 expression taxonomy.
Definition: Expr.h:379
OverloadedOperatorKind getCXXOverloadedOperator() const
If this name is the name of an overloadable operator in C++ (e.g., operator+), retrieve the kind of o...
bool isTemplateParamScope() const
isTemplateParamScope - Return true if this scope is a C++ template parameter scope.
Definition: Scope.h:375
Scope * TUScope
Translation Unit Scope - useful to Objective-C actions that need to lookup file scope declarations in...
Definition: Sema.h:863
void swap(CXXBasePaths &Other)
Swap this data structure&#39;s contents with another CXXBasePaths object.
SmallVector< CodeSynthesisContext, 16 > CodeSynthesisContexts
List of active code synthesis contexts.
Definition: Sema.h:7366
static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D, llvm::SmallVectorImpl< Module *> *Modules, Filter F)
Decl * getPreviousDecl()
Retrieve the previous declaration that declares the same entity as this declaration, or NULL if there is no previous declaration.
Definition: DeclBase.h:955
NamedDecl * getDecl() const
The base class of the type hierarchy.
Definition: Type.h:1409
SourceLocation getBeginLoc() const
getBeginLoc - Retrieve the location of the first token.
MissingImportKind
Kinds of missing import.
Definition: Sema.h:2183
bool isDerivedFrom(const CXXRecordDecl *Base) const
Determine whether this class is derived from the class Base.
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:63
Represent a C++ namespace.
Definition: Decl.h:514
RedeclarationKind
Specifies whether (or how) name lookup is being performed for a redeclaration (vs.
Definition: Sema.h:3166
Ambiguous candidates found.
Definition: Overload.h:59
decl_iterator begin()
AccessSpecifier
A C++ access specifier (public, private, protected), plus the special value "none" which means differ...
Definition: Specifiers.h:97
const NestedNameSpecifier * Specifier
Look up of a name that precedes the &#39;::&#39; scope resolution operator in C++.
Definition: Sema.h:3135
void makeKeyword()
Mark this TypoCorrection as being a keyword.
bool needsImplicitMoveAssignment() const
Determine whether this class should get an implicit move assignment operator or if any existing speci...
Definition: DeclCXX.h:1160
Scope * getContinueParent()
getContinueParent - Return the closest scope that a continue statement would be affected by...
Definition: Scope.h:239
void setCorrectionSpecifier(NestedNameSpecifier *NNS)
bool hasNext() const
Definition: Lookup.h:639
Represents a path from a specific derived class (which is not represented as part of the path) to a p...
LiteralOperatorLookupResult
The possible outcomes of name lookup for a literal operator.
Definition: Sema.h:3191
unsigned getIdentifierNamespace() const
Definition: DeclBase.h:794
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2491
LLVM_ATTRIBUTE_REINITIALIZES void clear()
Clears out any current state.
Definition: Lookup.h:554
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3168
lookups_range noload_lookups(bool PreserveInternalState) const
Definition: DeclLookups.h:89
Look up a namespace name within a C++ using directive or namespace alias definition, ignoring non-namespace names (C++ [basic.lookup.udir]p1).
Definition: Sema.h:3139
CXXMethodDecl * DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl)
Declare the implicit move assignment operator for the given class.
Consumes visible declarations found when searching for all visible names within a given scope or cont...
Definition: Lookup.h:765
An identifier, stored as an IdentifierInfo*.
CXXConstructorDecl * LookupMovingConstructor(CXXRecordDecl *Class, unsigned Quals)
Look up the moving constructor for the given class.
std::list< CXXBasePath >::iterator paths_iterator
DeclContext::lookup_result Decls
The set of declarations found inside this base class subobject.
static bool LookupBuiltin(Sema &S, LookupResult &R)
Lookup a builtin function, when name lookup would otherwise fail.
Definition: SemaLookup.cpp:675
Represents a variable declaration or definition.
Definition: Decl.h:812
NamedDecl * LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, Scope *S, bool ForRedeclaration, SourceLocation Loc)
LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
Definition: SemaDecl.cpp:1954
CXXMethodDecl * LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals)
Look up the copying assignment operator for the given class.
static NestedNameSpecifier * Create(const ASTContext &Context, NestedNameSpecifier *Prefix, IdentifierInfo *II)
Builds a specifier combining a prefix and an identifier.
DeclarationName getLookupName() const
Gets the name to look up.
Definition: Lookup.h:243
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6761
PrintingPolicy getPrintingPolicy() const
Retrieve a suitable printing policy for diagnostics.
Definition: Sema.h:2216
static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last)
Determine whether the given set of member declarations contains only static members, nested types, and enumerators.
bool isInObjcMethodScope() const
isInObjcMethodScope - Return true if this scope is, or is contained in, an Objective-C method body...
Definition: Scope.h:353
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:56
Extra information about a function prototype.
Definition: Type.h:3772
static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class)
Determine whether we can declare a special member function within the class at this point...
Definition: SemaLookup.cpp:719
bool needsImplicitCopyAssignment() const
Determine whether this class needs an implicit copy assignment operator to be lazily declared...
Definition: DeclCXX.h:1111
void setNotFoundInCurrentInstantiation()
Note that while no result was found in the current instantiation, there were dependent base classes t...
Definition: Lookup.h:452
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:138
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition: Decl.h:431
bool isAmbiguous() const
Definition: Lookup.h:301
static bool FindOMPReductionMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, DeclarationName Name)
Base-class lookup callback that determines whether there exists an OpenMP declare reduction member wi...
A namespace, stored as a NamespaceDecl*.
bool isInvalidDecl() const
Definition: DeclBase.h:544
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:67
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:37
SpecifierKind getKind() const
Determine what kind of nested name specifier is stored.
Look up an ordinary name that is going to be redeclared as a name with linkage.
Definition: Sema.h:3148
Defines the clang::Expr interface and subclasses for C++ expressions.
void addKeywordResult(StringRef Keyword)
void setMethod(CXXMethodDecl *MD)
Definition: Sema.h:1115
ModuleKind Kind
The kind of this module.
Definition: Module.h:86
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Types, declared with &#39;struct foo&#39;, typedefs, etc.
Definition: DeclBase.h:130
Represents a struct/union/class.
Definition: Decl.h:3592
bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class)
Perform qualified name lookup into all base classes of the given class.
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
bool Encloses(const DeclContext *DC) const
Determine whether this declaration context encloses the declaration context DC.
Definition: DeclBase.cpp:1150
FunctionType::ExtInfo ExtInfo
Definition: Type.h:3773
Represents a class template specialization, which refers to a class template with a given set of temp...
One of these records is kept for each identifier that is lexed.
Name lookup results in an ambiguity; use getAmbiguityKind to figure out what kind of ambiguity we hav...
Definition: Lookup.h:73
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
std::string getQuoted(const LangOptions &LO) const
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
DeclarationName getCorrection() const
Gets the DeclarationName of the typo correction.
The results of name lookup within a DeclContext.
Definition: DeclBase.h:1189
LineState State
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:71
TemplateDecl * getAsTemplateDecl() const
Retrieve the underlying template declaration that this template name refers to, if known...
Base class for callback objects used by Sema::CorrectTypo to check the validity of a potential typo c...
sema::BlockScopeInfo * getCurBlock()
Retrieve the current block, if any.
Definition: Sema.cpp:1707
void setAmbiguousBaseSubobjectTypes(CXXBasePaths &P)
Make these results show that the name was found in base classes of different types.
Definition: SemaLookup.cpp:647
NameKind getNameKind() const
Determine what kind of name this is.
const Type * getAsType() const
Retrieve the type stored in this nested name specifier.
void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx, bool InBaseClass) override
Invoked each time Sema::LookupVisibleDecls() finds a declaration visible from the current scope or co...
This declaration is a friend function.
Definition: DeclBase.h:152
void setVisibleDespiteOwningModule()
Set that this declaration is globally visible, even if it came from a module that is not visible...
Definition: DeclBase.h:775
const DeclarationNameInfo & getLookupNameInfo() const
Gets the name info to look up.
Definition: Lookup.h:233
conversion_iterator conversion_end() const
Definition: DeclCXX.h:1266
bool isReferenceType() const
Definition: Type.h:6313
The iterator over UnresolvedSets.
Definition: UnresolvedSet.h:31
void addCorrectionDecl(NamedDecl *CDecl)
Add the given NamedDecl to the list of NamedDecls that are the declarations associated with the Decla...
bool isDefinedOutsideFunctionOrMethod() const
isDefinedOutsideFunctionOrMethod - This predicate returns true if this scoped decl is defined outside...
Definition: DeclBase.h:850
int Category
Definition: Format.cpp:1631
bool Equals(const DeclContext *DC) const
Determine whether this declaration context is equivalent to the declaration context DC...
Definition: DeclBase.h:1875
bool isExternallyDeclarable() const
Determine whether this declaration can be redeclared in a different translation unit.
Definition: Decl.h:385
LookupResultKind getResultKind() const
Definition: Lookup.h:321
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:49
Scope * getBreakParent()
getBreakParent - Return the closest scope that a break statement would be affected by...
Definition: Scope.h:249
No entity found met the criteria within the current instantiation,, but there were dependent base cla...
Definition: Lookup.h:55
bool requiresImport() const
Returns whether this typo correction is correcting to a declaration that was declared in a module tha...
Describes a module or submodule.
Definition: Module.h:64
IdentifierTable & Idents
Definition: ASTContext.h:565
SpecialMemberOverloadResult - The overloading result for a special member function.
Definition: Sema.h:1098
void setCallbackDistance(unsigned ED)
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:109
DeclClass * getAsSingle() const
Definition: Lookup.h:507
StringRef getTopLevelModuleName() const
Retrieve the name of the top-level module.
Definition: Module.h:460
CXXBasePaths * getBasePaths() const
Return the base paths structure that&#39;s associated with these results, or null if none is...
Definition: Lookup.h:343
bool isTemplateNameLookup() const
Definition: Lookup.h:299
CXXRecordDecl * getAsRecordDecl() const
Retrieve the record declaration stored in this nested name specifier.
Look up implicit &#39;self&#39; parameter of an objective-c method.
Definition: Sema.h:3155
IdentifierInfo * getAsIdentifier() const
Retrieve the identifier stored in this nested name specifier.
void resolveKind()
Resolves the result kind of the lookup, possibly hiding decls.
Definition: SemaLookup.cpp:472
Represents the results of name lookup.
Definition: Lookup.h:46
void setAmbiguousBaseSubobjects(CXXBasePaths &P)
Make these results show that the name was found in distinct base classes of the same type...
Definition: SemaLookup.cpp:639
static DeclAccessPair make(NamedDecl *D, AccessSpecifier AS)
virtual bool includeHiddenDecls() const
Determine whether hidden declarations (from unimported modules) should be given to this consumer...
ObjCMethodDecl * getCurMethodDecl()
getCurMethodDecl - If inside of a method body, this returns a pointer to the method decl for the meth...
Definition: Sema.cpp:1208
Namespaces, declared with &#39;namespace foo {}&#39;.
Definition: DeclBase.h:140
static void LookupPotentialTypoResult(Sema &SemaRef, LookupResult &Res, IdentifierInfo *Name, Scope *S, CXXScopeSpec *SS, DeclContext *MemberContext, bool EnteringContext, bool isObjCIvarLookup, bool FindHidden)
Perform name lookup for a possible result for typo correction.
HeaderSearch & getHeaderSearchInfo() const
Definition: Preprocessor.h:823
void setQualifierDistance(unsigned ED)
bool hasTagIdentifierNamespace() const
Definition: DeclBase.h:804
Succeeded, but refers to a deleted function.
Definition: Overload.h:62
bool ValidateCandidate(const TypoCorrection &candidate) override
Simple predicate used by the default RankCandidate to determine whether to return an edit distance of...
Module * getOwningModule(Decl *Entity)
Get the module owning an entity.
Definition: Sema.h:1628
CXXConstructorDecl * DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl)
Declare the implicit move constructor for the given class.
Look up all declarations in a scope with the given name, including resolved using declarations...
Definition: Sema.h:3143
static NamedDecl * getDefinitionToImport(NamedDecl *D)
Find which declaration we should import to provide the definition of the given declaration.
NamespaceAliasDecl * getAsNamespaceAlias() const
Retrieve the namespace alias stored in this nested name specifier.
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:653
IdentifierInfoLookup * getExternalIdentifierLookup() const
Retrieve the external identifier lookup object, if any.
Represents a declaration of a type.
Definition: Decl.h:2873
A set of unresolved declarations.
Definition: UnresolvedSet.h:60
static unsigned getIDNS(Sema::LookupNameKind NameKind, bool CPlusPlus, bool Redeclaration)
Definition: SemaLookup.cpp:206
Module * Parent
The parent of this module.
Definition: Module.h:90
const Type * getClass() const
Definition: Type.h:2795
Look up the name of an OpenMP user-defined reduction operation.
Definition: Sema.h:3157
std::function< ExprResult(Sema &, TypoExpr *, TypoCorrection)> TypoRecoveryCallback
Definition: Sema.h:3222
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
void DiagnoseAmbiguousLookup(LookupResult &Result)
Produce a diagnostic describing the ambiguity that resulted from name lookup.
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:6077
CXXRecordDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclCXX.h:727
TypoExpr - Internal placeholder for expressions where typo correction still needs to be performed and...
Definition: Expr.h:5766
using_directives_range using_directives()
Definition: Scope.h:464
void append(iterator I, iterator E)
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:62
base_class_iterator bases_begin()
Definition: DeclCXX.h:829
Represents an Objective-C protocol declaration.
Definition: DeclObjC.h:2063
lookups_range lookups() const
Definition: DeclLookups.h:75
DeclContext * getLexicalDeclContext()
getLexicalDeclContext - The declaration context where this Decl was lexically declared (LexicalDC)...
Definition: DeclBase.h:823
LabelDecl * LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc, SourceLocation GnuLabelLoc=SourceLocation())
LookupOrCreateLabel - Do a name lookup of a label with the specified name.
const LangOptions & getLangOpts() const
Definition: Sema.h:1266
Labels, declared with &#39;x:&#39; and referenced with &#39;goto x&#39;.
Definition: DeclBase.h:117
const TypoCorrection & getNextCorrection()
Return the next typo correction that passes all internal filters and is deemed valid by the consumer&#39;...
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:1707
Represents an ObjC class declaration.
Definition: DeclObjC.h:1171
void addDecl(NamedDecl *D)
Add a declaration to these results with its natural access.
Definition: Lookup.h:426
Member name lookup, which finds the names of class/struct/union members.
Definition: Sema.h:3127
void print(raw_ostream &OS, const PrintingPolicy &Policy, bool ResolveTemplateArguments=false) const
Print this nested name specifier to the given output stream.
Ordinary names.
Definition: DeclBase.h:144
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:872
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1598
ExtInfo withCallingConv(CallingConv cc) const
Definition: Type.h:3576
static const unsigned InvalidDistance
CXXSpecialMember
Kinds of C++ special members.
Definition: Sema.h:1202
unsigned getFlags() const
getFlags - Return the flags for this scope.
Definition: Scope.h:217
void LookupVisibleDecls(Scope *S, LookupNameKind Kind, VisibleDeclConsumer &Consumer, bool IncludeGlobalScope=true, bool LoadExternal=true)
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:313
udir_range using_directives() const
Returns iterator range [First, Last) of UsingDirectiveDecls stored within this context.
Definition: DeclBase.cpp:1897
NamedDecl * getFoundDecl() const
Get the correction declaration found by name lookup (before we looked through using shadow declaratio...
void setNamingClass(CXXRecordDecl *Record)
Sets the &#39;naming class&#39; for this lookup.
Definition: Lookup.h:408
ArrayRef< Module * > getModulesWithMergedDefinition(const NamedDecl *Def)
Get the additional modules in which the definition Def has been merged.
Definition: ASTContext.h:989
virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx, bool InBaseClass)=0
Invoked each time Sema::LookupVisibleDecls() finds a declaration visible from the current scope or co...
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1635
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3692
std::string CurrentModule
The name of the current module, of which the main source file is a part.
Definition: LangOptions.h:226
This declaration is a C++ operator declared in a non-class context.
Definition: DeclBase.h:168
Objective C @protocol.
Definition: DeclBase.h:147
virtual void EnteredContext(DeclContext *Ctx)
Callback to inform the client that Sema entered into a new context to find a visible declaration...
Definition: Lookup.h:794
bool hasMergedDefinitionInCurrentModule(NamedDecl *Def)
The return type of classify().
Definition: Expr.h:304
DeclarationNameTable DeclarationNames
Definition: ASTContext.h:568
Provides lookups to, and iteration over, IdentiferInfo objects.
SourceRange getRange() const
Definition: DeclSpec.h:67
unsigned getEditDistance(bool Normalized=true) const
Gets the "edit distance" of the typo correction from the typo.
std::function< void(const TypoCorrection &)> TypoDiagnosticGenerator
Definition: Sema.h:3220
This declaration is a friend class.
Definition: DeclBase.h:157
std::string getAsString(const LangOptions &LO) const
static bool LookupAnyMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, DeclarationName Name)
Callback that looks for any member of a class with the given name.
virtual bool ValidateCandidate(const TypoCorrection &candidate)
Simple predicate used by the default RankCandidate to determine whether to return an edit distance of...
void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, ArrayRef< Expr *> Args, ADLResult &Functions)
bool isInlineNamespace() const
Definition: DeclBase.cpp:1059
static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, DeclContext *StartDC)
Perform qualified name lookup in the namespaces nominated by using directives by the given context...
DeclContext * getLexicalParent()
getLexicalParent - Returns the containing lexical DeclContext.
Definition: DeclBase.h:1771
QualType getCXXNameType() const
If this name is one of the C++ names (of a constructor, destructor, or conversion function)...