clang  7.0.0svn
SemaLookup.cpp
Go to the documentation of this file.
1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements name lookup for C, C++, Objective-C, and
11 // Objective-C++.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclLookups.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/Basic/Builtins.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/ModuleLoader.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/Sema.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/TinyPtrVector.h"
41 #include "llvm/ADT/edit_distance.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include <algorithm>
44 #include <iterator>
45 #include <list>
46 #include <set>
47 #include <utility>
48 #include <vector>
49 
50 using namespace clang;
51 using namespace sema;
52 
53 namespace {
54  class UnqualUsingEntry {
55  const DeclContext *Nominated;
56  const DeclContext *CommonAncestor;
57 
58  public:
59  UnqualUsingEntry(const DeclContext *Nominated,
60  const DeclContext *CommonAncestor)
61  : Nominated(Nominated), CommonAncestor(CommonAncestor) {
62  }
63 
64  const DeclContext *getCommonAncestor() const {
65  return CommonAncestor;
66  }
67 
68  const DeclContext *getNominatedNamespace() const {
69  return Nominated;
70  }
71 
72  // Sort by the pointer value of the common ancestor.
73  struct Comparator {
74  bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
75  return L.getCommonAncestor() < R.getCommonAncestor();
76  }
77 
78  bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
79  return E.getCommonAncestor() < DC;
80  }
81 
82  bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
83  return DC < E.getCommonAncestor();
84  }
85  };
86  };
87 
88  /// A collection of using directives, as used by C++ unqualified
89  /// lookup.
90  class UnqualUsingDirectiveSet {
91  Sema &SemaRef;
92 
93  typedef SmallVector<UnqualUsingEntry, 8> ListTy;
94 
95  ListTy list;
96  llvm::SmallPtrSet<DeclContext*, 8> visited;
97 
98  public:
99  UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
100 
101  void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
102  // C++ [namespace.udir]p1:
103  // During unqualified name lookup, the names appear as if they
104  // were declared in the nearest enclosing namespace which contains
105  // both the using-directive and the nominated namespace.
106  DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
107  assert(InnermostFileDC && InnermostFileDC->isFileContext());
108 
109  for (; S; S = S->getParent()) {
110  // C++ [namespace.udir]p1:
111  // A using-directive shall not appear in class scope, but may
112  // appear in namespace scope or in block scope.
113  DeclContext *Ctx = S->getEntity();
114  if (Ctx && Ctx->isFileContext()) {
115  visit(Ctx, Ctx);
116  } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117  for (auto *I : S->using_directives())
118  if (SemaRef.isVisible(I))
119  visit(I, InnermostFileDC);
120  }
121  }
122  }
123 
124  // Visits a context and collect all of its using directives
125  // recursively. Treats all using directives as if they were
126  // declared in the context.
127  //
128  // A given context is only every visited once, so it is important
129  // that contexts be visited from the inside out in order to get
130  // the effective DCs right.
131  void visit(DeclContext *DC, DeclContext *EffectiveDC) {
132  if (!visited.insert(DC).second)
133  return;
134 
135  addUsingDirectives(DC, EffectiveDC);
136  }
137 
138  // Visits a using directive and collects all of its using
139  // directives recursively. Treats all using directives as if they
140  // were declared in the effective DC.
141  void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
143  if (!visited.insert(NS).second)
144  return;
145 
146  addUsingDirective(UD, EffectiveDC);
147  addUsingDirectives(NS, EffectiveDC);
148  }
149 
150  // Adds all the using directives in a context (and those nominated
151  // by its using directives, transitively) as if they appeared in
152  // the given effective context.
153  void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
155  while (true) {
156  for (auto UD : DC->using_directives()) {
158  if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
159  addUsingDirective(UD, EffectiveDC);
160  queue.push_back(NS);
161  }
162  }
163 
164  if (queue.empty())
165  return;
166 
167  DC = queue.pop_back_val();
168  }
169  }
170 
171  // Add a using directive as if it had been declared in the given
172  // context. This helps implement C++ [namespace.udir]p3:
173  // The using-directive is transitive: if a scope contains a
174  // using-directive that nominates a second namespace that itself
175  // contains using-directives, the effect is as if the
176  // using-directives from the second namespace also appeared in
177  // the first.
178  void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
179  // Find the common ancestor between the effective context and
180  // the nominated namespace.
181  DeclContext *Common = UD->getNominatedNamespace();
182  while (!Common->Encloses(EffectiveDC))
183  Common = Common->getParent();
184  Common = Common->getPrimaryContext();
185 
186  list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
187  }
188 
189  void done() {
190  llvm::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
191  }
192 
193  typedef ListTy::const_iterator const_iterator;
194 
195  const_iterator begin() const { return list.begin(); }
196  const_iterator end() const { return list.end(); }
197 
198  llvm::iterator_range<const_iterator>
199  getNamespacesFor(DeclContext *DC) const {
200  return llvm::make_range(std::equal_range(begin(), end(),
201  DC->getPrimaryContext(),
202  UnqualUsingEntry::Comparator()));
203  }
204  };
205 } // end anonymous namespace
206 
207 // Retrieve the set of identifier namespaces that correspond to a
208 // specific kind of name lookup.
209 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
210  bool CPlusPlus,
211  bool Redeclaration) {
212  unsigned IDNS = 0;
213  switch (NameKind) {
218  IDNS = Decl::IDNS_Ordinary;
219  if (CPlusPlus) {
221  if (Redeclaration)
223  }
224  if (Redeclaration)
225  IDNS |= Decl::IDNS_LocalExtern;
226  break;
227 
229  // Operator lookup is its own crazy thing; it is not the same
230  // as (e.g.) looking up an operator name for redeclaration.
231  assert(!Redeclaration && "cannot do redeclaration operator lookup");
233  break;
234 
235  case Sema::LookupTagName:
236  if (CPlusPlus) {
237  IDNS = Decl::IDNS_Type;
238 
239  // When looking for a redeclaration of a tag name, we add:
240  // 1) TagFriend to find undeclared friend decls
241  // 2) Namespace because they can't "overload" with tag decls.
242  // 3) Tag because it includes class templates, which can't
243  // "overload" with tag decls.
244  if (Redeclaration)
246  } else {
247  IDNS = Decl::IDNS_Tag;
248  }
249  break;
250 
251  case Sema::LookupLabel:
252  IDNS = Decl::IDNS_Label;
253  break;
254 
256  IDNS = Decl::IDNS_Member;
257  if (CPlusPlus)
259  break;
260 
263  break;
264 
266  IDNS = Decl::IDNS_Namespace;
267  break;
268 
270  assert(Redeclaration && "should only be used for redecl lookup");
274  break;
275 
278  break;
279 
282  break;
283 
284  case Sema::LookupAnyName:
287  | Decl::IDNS_Type;
288  break;
289  }
290  return IDNS;
291 }
292 
293 void LookupResult::configure() {
294  IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
295  isForRedeclaration());
296 
297  // If we're looking for one of the allocation or deallocation
298  // operators, make sure that the implicitly-declared new and delete
299  // operators can be found.
300  switch (NameInfo.getName().getCXXOverloadedOperator()) {
301  case OO_New:
302  case OO_Delete:
303  case OO_Array_New:
304  case OO_Array_Delete:
305  getSema().DeclareGlobalNewDelete();
306  break;
307 
308  default:
309  break;
310  }
311 
312  // Compiler builtins are always visible, regardless of where they end
313  // up being declared.
314  if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
315  if (unsigned BuiltinID = Id->getBuiltinID()) {
316  if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
317  AllowHidden = true;
318  }
319  }
320 }
321 
322 bool LookupResult::sanity() const {
323  // This function is never called by NDEBUG builds.
324  assert(ResultKind != NotFound || Decls.size() == 0);
325  assert(ResultKind != Found || Decls.size() == 1);
326  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
327  (Decls.size() == 1 &&
328  isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
329  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
330  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
331  (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
332  Ambiguity == AmbiguousBaseSubobjectTypes)));
333  assert((Paths != nullptr) == (ResultKind == Ambiguous &&
334  (Ambiguity == AmbiguousBaseSubobjectTypes ||
335  Ambiguity == AmbiguousBaseSubobjects)));
336  return true;
337 }
338 
339 // Necessary because CXXBasePaths is not complete in Sema.h
340 void LookupResult::deletePaths(CXXBasePaths *Paths) {
341  delete Paths;
342 }
343 
344 /// Get a representative context for a declaration such that two declarations
345 /// will have the same context if they were found within the same scope.
347  // For function-local declarations, use that function as the context. This
348  // doesn't account for scopes within the function; the caller must deal with
349  // those.
351  if (DC->isFunctionOrMethod())
352  return DC;
353 
354  // Otherwise, look at the semantic context of the declaration. The
355  // declaration must have been found there.
356  return D->getDeclContext()->getRedeclContext();
357 }
358 
359 /// Determine whether \p D is a better lookup result than \p Existing,
360 /// given that they declare the same entity.
362  NamedDecl *D, NamedDecl *Existing) {
363  // When looking up redeclarations of a using declaration, prefer a using
364  // shadow declaration over any other declaration of the same entity.
365  if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
366  !isa<UsingShadowDecl>(Existing))
367  return true;
368 
369  auto *DUnderlying = D->getUnderlyingDecl();
370  auto *EUnderlying = Existing->getUnderlyingDecl();
371 
372  // If they have different underlying declarations, prefer a typedef over the
373  // original type (this happens when two type declarations denote the same
374  // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
375  // might carry additional semantic information, such as an alignment override.
376  // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
377  // declaration over a typedef.
378  if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
379  assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
380  bool HaveTag = isa<TagDecl>(EUnderlying);
381  bool WantTag = Kind == Sema::LookupTagName;
382  return HaveTag != WantTag;
383  }
384 
385  // Pick the function with more default arguments.
386  // FIXME: In the presence of ambiguous default arguments, we should keep both,
387  // so we can diagnose the ambiguity if the default argument is needed.
388  // See C++ [over.match.best]p3.
389  if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
390  auto *EFD = cast<FunctionDecl>(EUnderlying);
391  unsigned DMin = DFD->getMinRequiredArguments();
392  unsigned EMin = EFD->getMinRequiredArguments();
393  // If D has more default arguments, it is preferred.
394  if (DMin != EMin)
395  return DMin < EMin;
396  // FIXME: When we track visibility for default function arguments, check
397  // that we pick the declaration with more visible default arguments.
398  }
399 
400  // Pick the template with more default template arguments.
401  if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
402  auto *ETD = cast<TemplateDecl>(EUnderlying);
403  unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
404  unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
405  // If D has more default arguments, it is preferred. Note that default
406  // arguments (and their visibility) is monotonically increasing across the
407  // redeclaration chain, so this is a quick proxy for "is more recent".
408  if (DMin != EMin)
409  return DMin < EMin;
410  // If D has more *visible* default arguments, it is preferred. Note, an
411  // earlier default argument being visible does not imply that a later
412  // default argument is visible, so we can't just check the first one.
413  for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
414  I != N; ++I) {
416  ETD->getTemplateParameters()->getParam(I)) &&
418  DTD->getTemplateParameters()->getParam(I)))
419  return true;
420  }
421  }
422 
423  // VarDecl can have incomplete array types, prefer the one with more complete
424  // array type.
425  if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
426  VarDecl *EVD = cast<VarDecl>(EUnderlying);
427  if (EVD->getType()->isIncompleteType() &&
428  !DVD->getType()->isIncompleteType()) {
429  // Prefer the decl with a more complete type if visible.
430  return S.isVisible(DVD);
431  }
432  return false; // Avoid picking up a newer decl, just because it was newer.
433  }
434 
435  // For most kinds of declaration, it doesn't really matter which one we pick.
436  if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
437  // If the existing declaration is hidden, prefer the new one. Otherwise,
438  // keep what we've got.
439  return !S.isVisible(Existing);
440  }
441 
442  // Pick the newer declaration; it might have a more precise type.
443  for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
444  Prev = Prev->getPreviousDecl())
445  if (Prev == EUnderlying)
446  return true;
447  return false;
448 }
449 
450 /// Determine whether \p D can hide a tag declaration.
451 static bool canHideTag(NamedDecl *D) {
452  // C++ [basic.scope.declarative]p4:
453  // Given a set of declarations in a single declarative region [...]
454  // exactly one declaration shall declare a class name or enumeration name
455  // that is not a typedef name and the other declarations shall all refer to
456  // the same variable, non-static data member, or enumerator, or all refer
457  // to functions and function templates; in this case the class name or
458  // enumeration name is hidden.
459  // C++ [basic.scope.hiding]p2:
460  // A class name or enumeration name can be hidden by the name of a
461  // variable, data member, function, or enumerator declared in the same
462  // scope.
463  // An UnresolvedUsingValueDecl always instantiates to one of these.
464  D = D->getUnderlyingDecl();
465  return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
466  isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
467  isa<UnresolvedUsingValueDecl>(D);
468 }
469 
470 /// Resolves the result kind of this lookup.
472  unsigned N = Decls.size();
473 
474  // Fast case: no possible ambiguity.
475  if (N == 0) {
476  assert(ResultKind == NotFound ||
477  ResultKind == NotFoundInCurrentInstantiation);
478  return;
479  }
480 
481  // If there's a single decl, we need to examine it to decide what
482  // kind of lookup this is.
483  if (N == 1) {
484  NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
485  if (isa<FunctionTemplateDecl>(D))
486  ResultKind = FoundOverloaded;
487  else if (isa<UnresolvedUsingValueDecl>(D))
488  ResultKind = FoundUnresolvedValue;
489  return;
490  }
491 
492  // Don't do any extra resolution if we've already resolved as ambiguous.
493  if (ResultKind == Ambiguous) return;
494 
495  llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
496  llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
497 
498  bool Ambiguous = false;
499  bool HasTag = false, HasFunction = false;
500  bool HasFunctionTemplate = false, HasUnresolved = false;
501  NamedDecl *HasNonFunction = nullptr;
502 
503  llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
504 
505  unsigned UniqueTagIndex = 0;
506 
507  unsigned I = 0;
508  while (I < N) {
509  NamedDecl *D = Decls[I]->getUnderlyingDecl();
510  D = cast<NamedDecl>(D->getCanonicalDecl());
511 
512  // Ignore an invalid declaration unless it's the only one left.
513  if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
514  Decls[I] = Decls[--N];
515  continue;
516  }
517 
518  llvm::Optional<unsigned> ExistingI;
519 
520  // Redeclarations of types via typedef can occur both within a scope
521  // and, through using declarations and directives, across scopes. There is
522  // no ambiguity if they all refer to the same type, so unique based on the
523  // canonical type.
524  if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
525  QualType T = getSema().Context.getTypeDeclType(TD);
526  auto UniqueResult = UniqueTypes.insert(
527  std::make_pair(getSema().Context.getCanonicalType(T), I));
528  if (!UniqueResult.second) {
529  // The type is not unique.
530  ExistingI = UniqueResult.first->second;
531  }
532  }
533 
534  // For non-type declarations, check for a prior lookup result naming this
535  // canonical declaration.
536  if (!ExistingI) {
537  auto UniqueResult = Unique.insert(std::make_pair(D, I));
538  if (!UniqueResult.second) {
539  // We've seen this entity before.
540  ExistingI = UniqueResult.first->second;
541  }
542  }
543 
544  if (ExistingI) {
545  // This is not a unique lookup result. Pick one of the results and
546  // discard the other.
547  if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
548  Decls[*ExistingI]))
549  Decls[*ExistingI] = Decls[I];
550  Decls[I] = Decls[--N];
551  continue;
552  }
553 
554  // Otherwise, do some decl type analysis and then continue.
555 
556  if (isa<UnresolvedUsingValueDecl>(D)) {
557  HasUnresolved = true;
558  } else if (isa<TagDecl>(D)) {
559  if (HasTag)
560  Ambiguous = true;
561  UniqueTagIndex = I;
562  HasTag = true;
563  } else if (isa<FunctionTemplateDecl>(D)) {
564  HasFunction = true;
565  HasFunctionTemplate = true;
566  } else if (isa<FunctionDecl>(D)) {
567  HasFunction = true;
568  } else {
569  if (HasNonFunction) {
570  // If we're about to create an ambiguity between two declarations that
571  // are equivalent, but one is an internal linkage declaration from one
572  // module and the other is an internal linkage declaration from another
573  // module, just skip it.
574  if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
575  D)) {
576  EquivalentNonFunctions.push_back(D);
577  Decls[I] = Decls[--N];
578  continue;
579  }
580 
581  Ambiguous = true;
582  }
583  HasNonFunction = D;
584  }
585  I++;
586  }
587 
588  // C++ [basic.scope.hiding]p2:
589  // A class name or enumeration name can be hidden by the name of
590  // an object, function, or enumerator declared in the same
591  // scope. If a class or enumeration name and an object, function,
592  // or enumerator are declared in the same scope (in any order)
593  // with the same name, the class or enumeration name is hidden
594  // wherever the object, function, or enumerator name is visible.
595  // But it's still an error if there are distinct tag types found,
596  // even if they're not visible. (ref?)
597  if (N > 1 && HideTags && HasTag && !Ambiguous &&
598  (HasFunction || HasNonFunction || HasUnresolved)) {
599  NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
600  if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
601  getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
602  getContextForScopeMatching(OtherDecl)) &&
603  canHideTag(OtherDecl))
604  Decls[UniqueTagIndex] = Decls[--N];
605  else
606  Ambiguous = true;
607  }
608 
609  // FIXME: This diagnostic should really be delayed until we're done with
610  // the lookup result, in case the ambiguity is resolved by the caller.
611  if (!EquivalentNonFunctions.empty() && !Ambiguous)
612  getSema().diagnoseEquivalentInternalLinkageDeclarations(
613  getNameLoc(), HasNonFunction, EquivalentNonFunctions);
614 
615  Decls.set_size(N);
616 
617  if (HasNonFunction && (HasFunction || HasUnresolved))
618  Ambiguous = true;
619 
620  if (Ambiguous)
621  setAmbiguous(LookupResult::AmbiguousReference);
622  else if (HasUnresolved)
624  else if (N > 1 || HasFunctionTemplate)
625  ResultKind = LookupResult::FoundOverloaded;
626  else
627  ResultKind = LookupResult::Found;
628 }
629 
630 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
632  for (I = P.begin(), E = P.end(); I != E; ++I)
633  for (DeclContext::lookup_iterator DI = I->Decls.begin(),
634  DE = I->Decls.end(); DI != DE; ++DI)
635  addDecl(*DI);
636 }
637 
639  Paths = new CXXBasePaths;
640  Paths->swap(P);
641  addDeclsFromBasePaths(*Paths);
642  resolveKind();
643  setAmbiguous(AmbiguousBaseSubobjects);
644 }
645 
647  Paths = new CXXBasePaths;
648  Paths->swap(P);
649  addDeclsFromBasePaths(*Paths);
650  resolveKind();
651  setAmbiguous(AmbiguousBaseSubobjectTypes);
652 }
653 
654 void LookupResult::print(raw_ostream &Out) {
655  Out << Decls.size() << " result(s)";
656  if (isAmbiguous()) Out << ", ambiguous";
657  if (Paths) Out << ", base paths present";
658 
659  for (iterator I = begin(), E = end(); I != E; ++I) {
660  Out << "\n";
661  (*I)->print(Out, 2);
662  }
663 }
664 
665 LLVM_DUMP_METHOD void LookupResult::dump() {
666  llvm::errs() << "lookup results for " << getLookupName().getAsString()
667  << ":\n";
668  for (NamedDecl *D : *this)
669  D->dump();
670 }
671 
672 /// Lookup a builtin function, when name lookup would otherwise
673 /// fail.
674 static bool LookupBuiltin(Sema &S, LookupResult &R) {
675  Sema::LookupNameKind NameKind = R.getLookupKind();
676 
677  // If we didn't find a use of this identifier, and if the identifier
678  // corresponds to a compiler builtin, create the decl object for the builtin
679  // now, injecting it into translation unit scope, and return it.
680  if (NameKind == Sema::LookupOrdinaryName ||
683  if (II) {
684  if (S.getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
685  if (II == S.getASTContext().getMakeIntegerSeqName()) {
687  return true;
688  } else if (II == S.getASTContext().getTypePackElementName()) {
690  return true;
691  }
692  }
693 
694  // If this is a builtin on this (or all) targets, create the decl.
695  if (unsigned BuiltinID = II->getBuiltinID()) {
696  // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
697  // library functions like 'malloc'. Instead, we'll just error.
698  if ((S.getLangOpts().CPlusPlus || S.getLangOpts().OpenCL) &&
700  return false;
701 
703  BuiltinID, S.TUScope,
704  R.isForRedeclaration(),
705  R.getNameLoc())) {
706  R.addDecl(D);
707  return true;
708  }
709  }
710  }
711  }
712 
713  return false;
714 }
715 
716 /// Determine whether we can declare a special member function within
717 /// the class at this point.
719  // We need to have a definition for the class.
720  if (!Class->getDefinition() || Class->isDependentContext())
721  return false;
722 
723  // We can't be in the middle of defining the class.
724  return !Class->isBeingDefined();
725 }
726 
729  return;
730 
731  // If the default constructor has not yet been declared, do so now.
732  if (Class->needsImplicitDefaultConstructor())
733  DeclareImplicitDefaultConstructor(Class);
734 
735  // If the copy constructor has not yet been declared, do so now.
736  if (Class->needsImplicitCopyConstructor())
737  DeclareImplicitCopyConstructor(Class);
738 
739  // If the copy assignment operator has not yet been declared, do so now.
740  if (Class->needsImplicitCopyAssignment())
741  DeclareImplicitCopyAssignment(Class);
742 
743  if (getLangOpts().CPlusPlus11) {
744  // If the move constructor has not yet been declared, do so now.
745  if (Class->needsImplicitMoveConstructor())
746  DeclareImplicitMoveConstructor(Class);
747 
748  // If the move assignment operator has not yet been declared, do so now.
749  if (Class->needsImplicitMoveAssignment())
750  DeclareImplicitMoveAssignment(Class);
751  }
752 
753  // If the destructor has not yet been declared, do so now.
754  if (Class->needsImplicitDestructor())
755  DeclareImplicitDestructor(Class);
756 }
757 
758 /// Determine whether this is the name of an implicitly-declared
759 /// special member function.
761  switch (Name.getNameKind()) {
764  return true;
765 
767  return Name.getCXXOverloadedOperator() == OO_Equal;
768 
769  default:
770  break;
771  }
772 
773  return false;
774 }
775 
776 /// If there are any implicit member functions with the given name
777 /// that need to be declared in the given declaration context, do so.
779  DeclarationName Name,
780  SourceLocation Loc,
781  const DeclContext *DC) {
782  if (!DC)
783  return;
784 
785  switch (Name.getNameKind()) {
787  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
788  if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
789  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
790  if (Record->needsImplicitDefaultConstructor())
792  if (Record->needsImplicitCopyConstructor())
794  if (S.getLangOpts().CPlusPlus11 &&
795  Record->needsImplicitMoveConstructor())
797  }
798  break;
799 
801  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
802  if (Record->getDefinition() && Record->needsImplicitDestructor() &&
804  S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
805  break;
806 
808  if (Name.getCXXOverloadedOperator() != OO_Equal)
809  break;
810 
811  if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
812  if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
813  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
814  if (Record->needsImplicitCopyAssignment())
816  if (S.getLangOpts().CPlusPlus11 &&
817  Record->needsImplicitMoveAssignment())
819  }
820  }
821  break;
822 
825  break;
826 
827  default:
828  break;
829  }
830 }
831 
832 // Adds all qualifying matches for a name within a decl context to the
833 // given lookup result. Returns true if any matches were found.
834 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
835  bool Found = false;
836 
837  // Lazily declare C++ special member functions.
838  if (S.getLangOpts().CPlusPlus)
840  DC);
841 
842  // Perform lookup into this declaration context.
844  for (NamedDecl *D : DR) {
845  if ((D = R.getAcceptableDecl(D))) {
846  R.addDecl(D);
847  Found = true;
848  }
849  }
850 
851  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
852  return true;
853 
854  if (R.getLookupName().getNameKind()
857  !isa<CXXRecordDecl>(DC))
858  return Found;
859 
860  // C++ [temp.mem]p6:
861  // A specialization of a conversion function template is not found by
862  // name lookup. Instead, any conversion function templates visible in the
863  // context of the use are considered. [...]
864  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
865  if (!Record->isCompleteDefinition())
866  return Found;
867 
868  // For conversion operators, 'operator auto' should only match
869  // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
870  // as a candidate for template substitution.
871  auto *ContainedDeducedType =
873  if (R.getLookupName().getNameKind() ==
875  ContainedDeducedType && ContainedDeducedType->isUndeducedType())
876  return Found;
877 
879  UEnd = Record->conversion_end(); U != UEnd; ++U) {
880  FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
881  if (!ConvTemplate)
882  continue;
883 
884  // When we're performing lookup for the purposes of redeclaration, just
885  // add the conversion function template. When we deduce template
886  // arguments for specializations, we'll end up unifying the return
887  // type of the new declaration with the type of the function template.
888  if (R.isForRedeclaration()) {
889  R.addDecl(ConvTemplate);
890  Found = true;
891  continue;
892  }
893 
894  // C++ [temp.mem]p6:
895  // [...] For each such operator, if argument deduction succeeds
896  // (14.9.2.3), the resulting specialization is used as if found by
897  // name lookup.
898  //
899  // When referencing a conversion function for any purpose other than
900  // a redeclaration (such that we'll be building an expression with the
901  // result), perform template argument deduction and place the
902  // specialization into the result set. We do this to avoid forcing all
903  // callers to perform special deduction for conversion functions.
905  FunctionDecl *Specialization = nullptr;
906 
907  const FunctionProtoType *ConvProto
908  = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
909  assert(ConvProto && "Nonsensical conversion function template type");
910 
911  // Compute the type of the function that we would expect the conversion
912  // function to have, if it were to match the name given.
913  // FIXME: Calling convention!
915  EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
916  EPI.ExceptionSpec = EST_None;
917  QualType ExpectedType
919  None, EPI);
920 
921  // Perform template argument deduction against the type that we would
922  // expect the function to have.
923  if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
924  Specialization, Info)
925  == Sema::TDK_Success) {
926  R.addDecl(Specialization);
927  Found = true;
928  }
929  }
930 
931  return Found;
932 }
933 
934 // Performs C++ unqualified lookup into the given file context.
935 static bool
937  DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
938 
939  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
940 
941  // Perform direct name lookup into the LookupCtx.
942  bool Found = LookupDirect(S, R, NS);
943 
944  // Perform direct name lookup into the namespaces nominated by the
945  // using directives whose common ancestor is this namespace.
946  for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
947  if (LookupDirect(S, R, UUE.getNominatedNamespace()))
948  Found = true;
949 
950  R.resolveKind();
951 
952  return Found;
953 }
954 
956  if (DeclContext *Ctx = S->getEntity())
957  return Ctx->isFileContext();
958  return false;
959 }
960 
961 // Find the next outer declaration context from this scope. This
962 // routine actually returns the semantic outer context, which may
963 // differ from the lexical context (encoded directly in the Scope
964 // stack) when we are parsing a member of a class template. In this
965 // case, the second element of the pair will be true, to indicate that
966 // name lookup should continue searching in this semantic context when
967 // it leaves the current template parameter scope.
968 static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
969  DeclContext *DC = S->getEntity();
970  DeclContext *Lexical = nullptr;
971  for (Scope *OuterS = S->getParent(); OuterS;
972  OuterS = OuterS->getParent()) {
973  if (OuterS->getEntity()) {
974  Lexical = OuterS->getEntity();
975  break;
976  }
977  }
978 
979  // C++ [temp.local]p8:
980  // In the definition of a member of a class template that appears
981  // outside of the namespace containing the class template
982  // definition, the name of a template-parameter hides the name of
983  // a member of this namespace.
984  //
985  // Example:
986  //
987  // namespace N {
988  // class C { };
989  //
990  // template<class T> class B {
991  // void f(T);
992  // };
993  // }
994  //
995  // template<class C> void N::B<C>::f(C) {
996  // C b; // C is the template parameter, not N::C
997  // }
998  //
999  // In this example, the lexical context we return is the
1000  // TranslationUnit, while the semantic context is the namespace N.
1001  if (!Lexical || !DC || !S->getParent() ||
1003  return std::make_pair(Lexical, false);
1004 
1005  // Find the outermost template parameter scope.
1006  // For the example, this is the scope for the template parameters of
1007  // template<class C>.
1008  Scope *OutermostTemplateScope = S->getParent();
1009  while (OutermostTemplateScope->getParent() &&
1010  OutermostTemplateScope->getParent()->isTemplateParamScope())
1011  OutermostTemplateScope = OutermostTemplateScope->getParent();
1012 
1013  // Find the namespace context in which the original scope occurs. In
1014  // the example, this is namespace N.
1015  DeclContext *Semantic = DC;
1016  while (!Semantic->isFileContext())
1017  Semantic = Semantic->getParent();
1018 
1019  // Find the declaration context just outside of the template
1020  // parameter scope. This is the context in which the template is
1021  // being lexically declaration (a namespace context). In the
1022  // example, this is the global scope.
1023  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1024  Lexical->Encloses(Semantic))
1025  return std::make_pair(Semantic, true);
1026 
1027  return std::make_pair(Lexical, false);
1028 }
1029 
1030 namespace {
1031 /// An RAII object to specify that we want to find block scope extern
1032 /// declarations.
1033 struct FindLocalExternScope {
1034  FindLocalExternScope(LookupResult &R)
1035  : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1039  }
1040  void restore() {
1041  R.setFindLocalExtern(OldFindLocalExtern);
1042  }
1043  ~FindLocalExternScope() {
1044  restore();
1045  }
1046  LookupResult &R;
1047  bool OldFindLocalExtern;
1048 };
1049 } // end anonymous namespace
1050 
1051 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1052  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1053 
1054  DeclarationName Name = R.getLookupName();
1055  Sema::LookupNameKind NameKind = R.getLookupKind();
1056 
1057  // If this is the name of an implicitly-declared special member function,
1058  // go through the scope stack to implicitly declare
1060  for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1061  if (DeclContext *DC = PreS->getEntity())
1062  DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1063  }
1064 
1065  // Implicitly declare member functions with the name we're looking for, if in
1066  // fact we are in a scope where it matters.
1067 
1068  Scope *Initial = S;
1070  I = IdResolver.begin(Name),
1071  IEnd = IdResolver.end();
1072 
1073  // First we lookup local scope.
1074  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1075  // ...During unqualified name lookup (3.4.1), the names appear as if
1076  // they were declared in the nearest enclosing namespace which contains
1077  // both the using-directive and the nominated namespace.
1078  // [Note: in this context, "contains" means "contains directly or
1079  // indirectly".
1080  //
1081  // For example:
1082  // namespace A { int i; }
1083  // void foo() {
1084  // int i;
1085  // {
1086  // using namespace A;
1087  // ++i; // finds local 'i', A::i appears at global scope
1088  // }
1089  // }
1090  //
1091  UnqualUsingDirectiveSet UDirs(*this);
1092  bool VisitedUsingDirectives = false;
1093  bool LeftStartingScope = false;
1094  DeclContext *OutsideOfTemplateParamDC = nullptr;
1095 
1096  // When performing a scope lookup, we want to find local extern decls.
1097  FindLocalExternScope FindLocals(R);
1098 
1099  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1100  DeclContext *Ctx = S->getEntity();
1101  bool SearchNamespaceScope = true;
1102  // Check whether the IdResolver has anything in this scope.
1103  for (; I != IEnd && S->isDeclScope(*I); ++I) {
1104  if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1105  if (NameKind == LookupRedeclarationWithLinkage &&
1106  !(*I)->isTemplateParameter()) {
1107  // If it's a template parameter, we still find it, so we can diagnose
1108  // the invalid redeclaration.
1109 
1110  // Determine whether this (or a previous) declaration is
1111  // out-of-scope.
1112  if (!LeftStartingScope && !Initial->isDeclScope(*I))
1113  LeftStartingScope = true;
1114 
1115  // If we found something outside of our starting scope that
1116  // does not have linkage, skip it.
1117  if (LeftStartingScope && !((*I)->hasLinkage())) {
1118  R.setShadowed();
1119  continue;
1120  }
1121  } else {
1122  // We found something in this scope, we should not look at the
1123  // namespace scope
1124  SearchNamespaceScope = false;
1125  }
1126  R.addDecl(ND);
1127  }
1128  }
1129  if (!SearchNamespaceScope) {
1130  R.resolveKind();
1131  if (S->isClassScope())
1132  if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1133  R.setNamingClass(Record);
1134  return true;
1135  }
1136 
1137  if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1138  // C++11 [class.friend]p11:
1139  // If a friend declaration appears in a local class and the name
1140  // specified is an unqualified name, a prior declaration is
1141  // looked up without considering scopes that are outside the
1142  // innermost enclosing non-class scope.
1143  return false;
1144  }
1145 
1146  if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1147  S->getParent() && !S->getParent()->isTemplateParamScope()) {
1148  // We've just searched the last template parameter scope and
1149  // found nothing, so look into the contexts between the
1150  // lexical and semantic declaration contexts returned by
1151  // findOuterContext(). This implements the name lookup behavior
1152  // of C++ [temp.local]p8.
1153  Ctx = OutsideOfTemplateParamDC;
1154  OutsideOfTemplateParamDC = nullptr;
1155  }
1156 
1157  if (Ctx) {
1158  DeclContext *OuterCtx;
1159  bool SearchAfterTemplateScope;
1160  std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1161  if (SearchAfterTemplateScope)
1162  OutsideOfTemplateParamDC = OuterCtx;
1163 
1164  for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1165  // We do not directly look into transparent contexts, since
1166  // those entities will be found in the nearest enclosing
1167  // non-transparent context.
1168  if (Ctx->isTransparentContext())
1169  continue;
1170 
1171  // We do not look directly into function or method contexts,
1172  // since all of the local variables and parameters of the
1173  // function/method are present within the Scope.
1174  if (Ctx->isFunctionOrMethod()) {
1175  // If we have an Objective-C instance method, look for ivars
1176  // in the corresponding interface.
1177  if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1178  if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1179  if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1180  ObjCInterfaceDecl *ClassDeclared;
1181  if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1182  Name.getAsIdentifierInfo(),
1183  ClassDeclared)) {
1184  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1185  R.addDecl(ND);
1186  R.resolveKind();
1187  return true;
1188  }
1189  }
1190  }
1191  }
1192 
1193  continue;
1194  }
1195 
1196  // If this is a file context, we need to perform unqualified name
1197  // lookup considering using directives.
1198  if (Ctx->isFileContext()) {
1199  // If we haven't handled using directives yet, do so now.
1200  if (!VisitedUsingDirectives) {
1201  // Add using directives from this context up to the top level.
1202  for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1203  if (UCtx->isTransparentContext())
1204  continue;
1205 
1206  UDirs.visit(UCtx, UCtx);
1207  }
1208 
1209  // Find the innermost file scope, so we can add using directives
1210  // from local scopes.
1211  Scope *InnermostFileScope = S;
1212  while (InnermostFileScope &&
1213  !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1214  InnermostFileScope = InnermostFileScope->getParent();
1215  UDirs.visitScopeChain(Initial, InnermostFileScope);
1216 
1217  UDirs.done();
1218 
1219  VisitedUsingDirectives = true;
1220  }
1221 
1222  if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1223  R.resolveKind();
1224  return true;
1225  }
1226 
1227  continue;
1228  }
1229 
1230  // Perform qualified name lookup into this context.
1231  // FIXME: In some cases, we know that every name that could be found by
1232  // this qualified name lookup will also be on the identifier chain. For
1233  // example, inside a class without any base classes, we never need to
1234  // perform qualified lookup because all of the members are on top of the
1235  // identifier chain.
1236  if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1237  return true;
1238  }
1239  }
1240  }
1241 
1242  // Stop if we ran out of scopes.
1243  // FIXME: This really, really shouldn't be happening.
1244  if (!S) return false;
1245 
1246  // If we are looking for members, no need to look into global/namespace scope.
1247  if (NameKind == LookupMemberName)
1248  return false;
1249 
1250  // Collect UsingDirectiveDecls in all scopes, and recursively all
1251  // nominated namespaces by those using-directives.
1252  //
1253  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1254  // don't build it for each lookup!
1255  if (!VisitedUsingDirectives) {
1256  UDirs.visitScopeChain(Initial, S);
1257  UDirs.done();
1258  }
1259 
1260  // If we're not performing redeclaration lookup, do not look for local
1261  // extern declarations outside of a function scope.
1262  if (!R.isForRedeclaration())
1263  FindLocals.restore();
1264 
1265  // Lookup namespace scope, and global scope.
1266  // Unqualified name lookup in C++ requires looking into scopes
1267  // that aren't strictly lexical, and therefore we walk through the
1268  // context as well as walking through the scopes.
1269  for (; S; S = S->getParent()) {
1270  // Check whether the IdResolver has anything in this scope.
1271  bool Found = false;
1272  for (; I != IEnd && S->isDeclScope(*I); ++I) {
1273  if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1274  // We found something. Look for anything else in our scope
1275  // with this same name and in an acceptable identifier
1276  // namespace, so that we can construct an overload set if we
1277  // need to.
1278  Found = true;
1279  R.addDecl(ND);
1280  }
1281  }
1282 
1283  if (Found && S->isTemplateParamScope()) {
1284  R.resolveKind();
1285  return true;
1286  }
1287 
1288  DeclContext *Ctx = S->getEntity();
1289  if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1290  S->getParent() && !S->getParent()->isTemplateParamScope()) {
1291  // We've just searched the last template parameter scope and
1292  // found nothing, so look into the contexts between the
1293  // lexical and semantic declaration contexts returned by
1294  // findOuterContext(). This implements the name lookup behavior
1295  // of C++ [temp.local]p8.
1296  Ctx = OutsideOfTemplateParamDC;
1297  OutsideOfTemplateParamDC = nullptr;
1298  }
1299 
1300  if (Ctx) {
1301  DeclContext *OuterCtx;
1302  bool SearchAfterTemplateScope;
1303  std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1304  if (SearchAfterTemplateScope)
1305  OutsideOfTemplateParamDC = OuterCtx;
1306 
1307  for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1308  // We do not directly look into transparent contexts, since
1309  // those entities will be found in the nearest enclosing
1310  // non-transparent context.
1311  if (Ctx->isTransparentContext())
1312  continue;
1313 
1314  // If we have a context, and it's not a context stashed in the
1315  // template parameter scope for an out-of-line definition, also
1316  // look into that context.
1317  if (!(Found && S->isTemplateParamScope())) {
1318  assert(Ctx->isFileContext() &&
1319  "We should have been looking only at file context here already.");
1320 
1321  // Look into context considering using-directives.
1322  if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1323  Found = true;
1324  }
1325 
1326  if (Found) {
1327  R.resolveKind();
1328  return true;
1329  }
1330 
1331  if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1332  return false;
1333  }
1334  }
1335 
1336  if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1337  return false;
1338  }
1339 
1340  return !R.empty();
1341 }
1342 
1344  if (auto *M = getCurrentModule())
1345  Context.mergeDefinitionIntoModule(ND, M);
1346  else
1347  // We're not building a module; just make the definition visible.
1349 
1350  // If ND is a template declaration, make the template parameters
1351  // visible too. They're not (necessarily) within a mergeable DeclContext.
1352  if (auto *TD = dyn_cast<TemplateDecl>(ND))
1353  for (auto *Param : *TD->getTemplateParameters())
1354  makeMergedDefinitionVisible(Param);
1355 }
1356 
1357 /// Find the module in which the given declaration was defined.
1358 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1359  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1360  // If this function was instantiated from a template, the defining module is
1361  // the module containing the pattern.
1362  if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1363  Entity = Pattern;
1364  } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1365  if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1366  Entity = Pattern;
1367  } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1368  if (auto *Pattern = ED->getTemplateInstantiationPattern())
1369  Entity = Pattern;
1370  } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1371  if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1372  Entity = Pattern;
1373  }
1374 
1375  // Walk up to the containing context. That might also have been instantiated
1376  // from a template.
1377  DeclContext *Context = Entity->getLexicalDeclContext();
1378  if (Context->isFileContext())
1379  return S.getOwningModule(Entity);
1380  return getDefiningModule(S, cast<Decl>(Context));
1381 }
1382 
1384  unsigned N = CodeSynthesisContexts.size();
1385  for (unsigned I = CodeSynthesisContextLookupModules.size();
1386  I != N; ++I) {
1387  Module *M = getDefiningModule(*this, CodeSynthesisContexts[I].Entity);
1388  if (M && !LookupModulesCache.insert(M).second)
1389  M = nullptr;
1390  CodeSynthesisContextLookupModules.push_back(M);
1391  }
1392  return LookupModulesCache;
1393 }
1394 
1396  for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
1397  if (isModuleVisible(Merged))
1398  return true;
1399  return false;
1400 }
1401 
1403  // FIXME: When not in local visibility mode, we can't tell the difference
1404  // between a declaration being visible because we merged a local copy of
1405  // the same declaration into it, and it being visible because its owning
1406  // module is visible.
1408  getLangOpts().ModulesLocalVisibility)
1409  return true;
1410  for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
1411  if (Merged->getTopLevelModuleName() == getLangOpts().CurrentModule)
1412  return true;
1413  return false;
1414 }
1415 
1416 template<typename ParmDecl>
1417 static bool
1418 hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1420  if (!D->hasDefaultArgument())
1421  return false;
1422 
1423  while (D) {
1424  auto &DefaultArg = D->getDefaultArgStorage();
1425  if (!DefaultArg.isInherited() && S.isVisible(D))
1426  return true;
1427 
1428  if (!DefaultArg.isInherited() && Modules) {
1429  auto *NonConstD = const_cast<ParmDecl*>(D);
1430  Modules->push_back(S.getOwningModule(NonConstD));
1431  const auto &Merged = S.Context.getModulesWithMergedDefinition(NonConstD);
1432  Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1433  }
1434 
1435  // If there was a previous default argument, maybe its parameter is visible.
1436  D = DefaultArg.getInheritedFrom();
1437  }
1438  return false;
1439 }
1440 
1443  if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1444  return ::hasVisibleDefaultArgument(*this, P, Modules);
1445  if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1446  return ::hasVisibleDefaultArgument(*this, P, Modules);
1447  return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1448  Modules);
1449 }
1450 
1451 template<typename Filter>
1452 static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
1454  Filter F) {
1455  for (auto *Redecl : D->redecls()) {
1456  auto *R = cast<NamedDecl>(Redecl);
1457  if (!F(R))
1458  continue;
1459 
1460  if (S.isVisible(R))
1461  return true;
1462 
1463  if (Modules) {
1464  Modules->push_back(R->getOwningModule());
1465  const auto &Merged = S.Context.getModulesWithMergedDefinition(R);
1466  Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1467  }
1468  }
1469 
1470  return false;
1471 }
1472 
1474  const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1475  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1476  if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1477  return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1478  if (auto *FD = dyn_cast<FunctionDecl>(D))
1479  return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1480  if (auto *VD = dyn_cast<VarDecl>(D))
1481  return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
1482  llvm_unreachable("unknown explicit specialization kind");
1483  });
1484 }
1485 
1487  const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1488  assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1489  "not a member specialization");
1490  return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
1491  // If the specialization is declared at namespace scope, then it's a member
1492  // specialization declaration. If it's lexically inside the class
1493  // definition then it was instantiated.
1494  //
1495  // FIXME: This is a hack. There should be a better way to determine this.
1496  // FIXME: What about MS-style explicit specializations declared within a
1497  // class definition?
1498  return D->getLexicalDeclContext()->isFileContext();
1499  });
1500 
1501  return false;
1502 }
1503 
1504 /// Determine whether a declaration is visible to name lookup.
1505 ///
1506 /// This routine determines whether the declaration D is visible in the current
1507 /// lookup context, taking into account the current template instantiation
1508 /// stack. During template instantiation, a declaration is visible if it is
1509 /// visible from a module containing any entity on the template instantiation
1510 /// path (by instantiating a template, you allow it to see the declarations that
1511 /// your module can see, including those later on in your module).
1512 bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1513  assert(D->isHidden() && "should not call this: not in slow case");
1514 
1515  Module *DeclModule = SemaRef.getOwningModule(D);
1516  if (!DeclModule) {
1517  // A module-private declaration with no owning module means this is in the
1518  // global module in the C++ Modules TS. This is visible within the same
1519  // translation unit only.
1520  // FIXME: Don't assume that "same translation unit" means the same thing
1521  // as "not from an AST file".
1522  assert(D->isModulePrivate() && "hidden decl has no module");
1523  if (!D->isFromASTFile() || SemaRef.hasMergedDefinitionInCurrentModule(D))
1524  return true;
1525  } else {
1526  // If the owning module is visible, and the decl is not module private,
1527  // then the decl is visible too. (Module private is ignored within the same
1528  // top-level module.)
1529  if (D->isModulePrivate()
1530  ? DeclModule->getTopLevelModuleName() ==
1531  SemaRef.getLangOpts().CurrentModule ||
1533  : SemaRef.isModuleVisible(DeclModule) ||
1534  SemaRef.hasVisibleMergedDefinition(D))
1535  return true;
1536  }
1537 
1538  // Determine whether a decl context is a file context for the purpose of
1539  // visibility. This looks through some (export and linkage spec) transparent
1540  // contexts, but not others (enums).
1541  auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1542  return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1543  isa<ExportDecl>(DC);
1544  };
1545 
1546  // If this declaration is not at namespace scope
1547  // then it is visible if its lexical parent has a visible definition.
1549  if (DC && !IsEffectivelyFileContext(DC)) {
1550  // For a parameter, check whether our current template declaration's
1551  // lexical context is visible, not whether there's some other visible
1552  // definition of it, because parameters aren't "within" the definition.
1553  //
1554  // In C++ we need to check for a visible definition due to ODR merging,
1555  // and in C we must not because each declaration of a function gets its own
1556  // set of declarations for tags in prototype scope.
1557  bool VisibleWithinParent;
1558  if (D->isTemplateParameter() || isa<ParmVarDecl>(D) ||
1559  (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1560  VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
1561  else if (D->isModulePrivate()) {
1562  // A module-private declaration is only visible if an enclosing lexical
1563  // parent was merged with another definition in the current module.
1564  VisibleWithinParent = false;
1565  do {
1566  if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1567  VisibleWithinParent = true;
1568  break;
1569  }
1570  DC = DC->getLexicalParent();
1571  } while (!IsEffectivelyFileContext(DC));
1572  } else {
1573  VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
1574  }
1575 
1576  if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1577  // FIXME: Do something better in this case.
1578  !SemaRef.getLangOpts().ModulesLocalVisibility) {
1579  // Cache the fact that this declaration is implicitly visible because
1580  // its parent has a visible definition.
1582  }
1583  return VisibleWithinParent;
1584  }
1585 
1586  // FIXME: All uses of DeclModule below this point should also check merged
1587  // modules.
1588  if (!DeclModule)
1589  return false;
1590 
1591  // Find the extra places where we need to look.
1592  const auto &LookupModules = SemaRef.getLookupModules();
1593  if (LookupModules.empty())
1594  return false;
1595 
1596  // If our lookup set contains the decl's module, it's visible.
1597  if (LookupModules.count(DeclModule))
1598  return true;
1599 
1600  // If the declaration isn't exported, it's not visible in any other module.
1601  if (D->isModulePrivate())
1602  return false;
1603 
1604  // Check whether DeclModule is transitively exported to an import of
1605  // the lookup set.
1606  return std::any_of(LookupModules.begin(), LookupModules.end(),
1607  [&](const Module *M) {
1608  return M->isModuleVisible(DeclModule); });
1609 }
1610 
1611 bool Sema::isVisibleSlow(const NamedDecl *D) {
1612  return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1613 }
1614 
1615 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1616  // FIXME: If there are both visible and hidden declarations, we need to take
1617  // into account whether redeclaration is possible. Example:
1618  //
1619  // Non-imported module:
1620  // int f(T); // #1
1621  // Some TU:
1622  // static int f(U); // #2, not a redeclaration of #1
1623  // int f(T); // #3, finds both, should link with #1 if T != U, but
1624  // // with #2 if T == U; neither should be ambiguous.
1625  for (auto *D : R) {
1626  if (isVisible(D))
1627  return true;
1628  assert(D->isExternallyDeclarable() &&
1629  "should not have hidden, non-externally-declarable result here");
1630  }
1631 
1632  // This function is called once "New" is essentially complete, but before a
1633  // previous declaration is attached. We can't query the linkage of "New" in
1634  // general, because attaching the previous declaration can change the
1635  // linkage of New to match the previous declaration.
1636  //
1637  // However, because we've just determined that there is no *visible* prior
1638  // declaration, we can compute the linkage here. There are two possibilities:
1639  //
1640  // * This is not a redeclaration; it's safe to compute the linkage now.
1641  //
1642  // * This is a redeclaration of a prior declaration that is externally
1643  // redeclarable. In that case, the linkage of the declaration is not
1644  // changed by attaching the prior declaration, because both are externally
1645  // declarable (and thus ExternalLinkage or VisibleNoLinkage).
1646  //
1647  // FIXME: This is subtle and fragile.
1648  return New->isExternallyDeclarable();
1649 }
1650 
1651 /// Retrieve the visible declaration corresponding to D, if any.
1652 ///
1653 /// This routine determines whether the declaration D is visible in the current
1654 /// module, with the current imports. If not, it checks whether any
1655 /// redeclaration of D is visible, and if so, returns that declaration.
1656 ///
1657 /// \returns D, or a visible previous declaration of D, whichever is more recent
1658 /// and visible. If no declaration of D is visible, returns null.
1660  unsigned IDNS) {
1661  assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1662 
1663  for (auto RD : D->redecls()) {
1664  // Don't bother with extra checks if we already know this one isn't visible.
1665  if (RD == D)
1666  continue;
1667 
1668  auto ND = cast<NamedDecl>(RD);
1669  // FIXME: This is wrong in the case where the previous declaration is not
1670  // visible in the same scope as D. This needs to be done much more
1671  // carefully.
1672  if (ND->isInIdentifierNamespace(IDNS) &&
1673  LookupResult::isVisible(SemaRef, ND))
1674  return ND;
1675  }
1676 
1677  return nullptr;
1678 }
1679 
1682  assert(!isVisible(D) && "not in slow case");
1683  return hasVisibleDeclarationImpl(*this, D, Modules,
1684  [](const NamedDecl *) { return true; });
1685 }
1686 
1687 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1688  if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1689  // Namespaces are a bit of a special case: we expect there to be a lot of
1690  // redeclarations of some namespaces, all declarations of a namespace are
1691  // essentially interchangeable, all declarations are found by name lookup
1692  // if any is, and namespaces are never looked up during template
1693  // instantiation. So we benefit from caching the check in this case, and
1694  // it is correct to do so.
1695  auto *Key = ND->getCanonicalDecl();
1696  if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1697  return Acceptable;
1698  auto *Acceptable = isVisible(getSema(), Key)
1699  ? Key
1700  : findAcceptableDecl(getSema(), Key, IDNS);
1701  if (Acceptable)
1702  getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1703  return Acceptable;
1704  }
1705 
1706  return findAcceptableDecl(getSema(), D, IDNS);
1707 }
1708 
1709 /// Perform unqualified name lookup starting from a given
1710 /// scope.
1711 ///
1712 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1713 /// used to find names within the current scope. For example, 'x' in
1714 /// @code
1715 /// int x;
1716 /// int f() {
1717 /// return x; // unqualified name look finds 'x' in the global scope
1718 /// }
1719 /// @endcode
1720 ///
1721 /// Different lookup criteria can find different names. For example, a
1722 /// particular scope can have both a struct and a function of the same
1723 /// name, and each can be found by certain lookup criteria. For more
1724 /// information about lookup criteria, see the documentation for the
1725 /// class LookupCriteria.
1726 ///
1727 /// @param S The scope from which unqualified name lookup will
1728 /// begin. If the lookup criteria permits, name lookup may also search
1729 /// in the parent scopes.
1730 ///
1731 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1732 /// look up and the lookup kind), and is updated with the results of lookup
1733 /// including zero or more declarations and possibly additional information
1734 /// used to diagnose ambiguities.
1735 ///
1736 /// @returns \c true if lookup succeeded and false otherwise.
1737 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1738  DeclarationName Name = R.getLookupName();
1739  if (!Name) return false;
1740 
1741  LookupNameKind NameKind = R.getLookupKind();
1742 
1743  if (!getLangOpts().CPlusPlus) {
1744  // Unqualified name lookup in C/Objective-C is purely lexical, so
1745  // search in the declarations attached to the name.
1746  if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1747  // Find the nearest non-transparent declaration scope.
1748  while (!(S->getFlags() & Scope::DeclScope) ||
1749  (S->getEntity() && S->getEntity()->isTransparentContext()))
1750  S = S->getParent();
1751  }
1752 
1753  // When performing a scope lookup, we want to find local extern decls.
1754  FindLocalExternScope FindLocals(R);
1755 
1756  // Scan up the scope chain looking for a decl that matches this
1757  // identifier that is in the appropriate namespace. This search
1758  // should not take long, as shadowing of names is uncommon, and
1759  // deep shadowing is extremely uncommon.
1760  bool LeftStartingScope = false;
1761 
1762  for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1763  IEnd = IdResolver.end();
1764  I != IEnd; ++I)
1765  if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1766  if (NameKind == LookupRedeclarationWithLinkage) {
1767  // Determine whether this (or a previous) declaration is
1768  // out-of-scope.
1769  if (!LeftStartingScope && !S->isDeclScope(*I))
1770  LeftStartingScope = true;
1771 
1772  // If we found something outside of our starting scope that
1773  // does not have linkage, skip it.
1774  if (LeftStartingScope && !((*I)->hasLinkage())) {
1775  R.setShadowed();
1776  continue;
1777  }
1778  }
1779  else if (NameKind == LookupObjCImplicitSelfParam &&
1780  !isa<ImplicitParamDecl>(*I))
1781  continue;
1782 
1783  R.addDecl(D);
1784 
1785  // Check whether there are any other declarations with the same name
1786  // and in the same scope.
1787  if (I != IEnd) {
1788  // Find the scope in which this declaration was declared (if it
1789  // actually exists in a Scope).
1790  while (S && !S->isDeclScope(D))
1791  S = S->getParent();
1792 
1793  // If the scope containing the declaration is the translation unit,
1794  // then we'll need to perform our checks based on the matching
1795  // DeclContexts rather than matching scopes.
1797  S = nullptr;
1798 
1799  // Compute the DeclContext, if we need it.
1800  DeclContext *DC = nullptr;
1801  if (!S)
1802  DC = (*I)->getDeclContext()->getRedeclContext();
1803 
1804  IdentifierResolver::iterator LastI = I;
1805  for (++LastI; LastI != IEnd; ++LastI) {
1806  if (S) {
1807  // Match based on scope.
1808  if (!S->isDeclScope(*LastI))
1809  break;
1810  } else {
1811  // Match based on DeclContext.
1812  DeclContext *LastDC
1813  = (*LastI)->getDeclContext()->getRedeclContext();
1814  if (!LastDC->Equals(DC))
1815  break;
1816  }
1817 
1818  // If the declaration is in the right namespace and visible, add it.
1819  if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1820  R.addDecl(LastD);
1821  }
1822 
1823  R.resolveKind();
1824  }
1825 
1826  return true;
1827  }
1828  } else {
1829  // Perform C++ unqualified name lookup.
1830  if (CppLookupName(R, S))
1831  return true;
1832  }
1833 
1834  // If we didn't find a use of this identifier, and if the identifier
1835  // corresponds to a compiler builtin, create the decl object for the builtin
1836  // now, injecting it into translation unit scope, and return it.
1837  if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1838  return true;
1839 
1840  // If we didn't find a use of this identifier, the ExternalSource
1841  // may be able to handle the situation.
1842  // Note: some lookup failures are expected!
1843  // See e.g. R.isForRedeclaration().
1844  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1845 }
1846 
1847 /// Perform qualified name lookup in the namespaces nominated by
1848 /// using directives by the given context.
1849 ///
1850 /// C++98 [namespace.qual]p2:
1851 /// Given X::m (where X is a user-declared namespace), or given \::m
1852 /// (where X is the global namespace), let S be the set of all
1853 /// declarations of m in X and in the transitive closure of all
1854 /// namespaces nominated by using-directives in X and its used
1855 /// namespaces, except that using-directives are ignored in any
1856 /// namespace, including X, directly containing one or more
1857 /// declarations of m. No namespace is searched more than once in
1858 /// the lookup of a name. If S is the empty set, the program is
1859 /// ill-formed. Otherwise, if S has exactly one member, or if the
1860 /// context of the reference is a using-declaration
1861 /// (namespace.udecl), S is the required set of declarations of
1862 /// m. Otherwise if the use of m is not one that allows a unique
1863 /// declaration to be chosen from S, the program is ill-formed.
1864 ///
1865 /// C++98 [namespace.qual]p5:
1866 /// During the lookup of a qualified namespace member name, if the
1867 /// lookup finds more than one declaration of the member, and if one
1868 /// declaration introduces a class name or enumeration name and the
1869 /// other declarations either introduce the same object, the same
1870 /// enumerator or a set of functions, the non-type name hides the
1871 /// class or enumeration name if and only if the declarations are
1872 /// from the same namespace; otherwise (the declarations are from
1873 /// different namespaces), the program is ill-formed.
1875  DeclContext *StartDC) {
1876  assert(StartDC->isFileContext() && "start context is not a file context");
1877 
1878  // We have not yet looked into these namespaces, much less added
1879  // their "using-children" to the queue.
1881 
1882  // We have at least added all these contexts to the queue.
1883  llvm::SmallPtrSet<DeclContext*, 8> Visited;
1884  Visited.insert(StartDC);
1885 
1886  // We have already looked into the initial namespace; seed the queue
1887  // with its using-children.
1888  for (auto *I : StartDC->using_directives()) {
1889  NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1890  if (S.isVisible(I) && Visited.insert(ND).second)
1891  Queue.push_back(ND);
1892  }
1893 
1894  // The easiest way to implement the restriction in [namespace.qual]p5
1895  // is to check whether any of the individual results found a tag
1896  // and, if so, to declare an ambiguity if the final result is not
1897  // a tag.
1898  bool FoundTag = false;
1899  bool FoundNonTag = false;
1900 
1902 
1903  bool Found = false;
1904  while (!Queue.empty()) {
1905  NamespaceDecl *ND = Queue.pop_back_val();
1906 
1907  // We go through some convolutions here to avoid copying results
1908  // between LookupResults.
1909  bool UseLocal = !R.empty();
1910  LookupResult &DirectR = UseLocal ? LocalR : R;
1911  bool FoundDirect = LookupDirect(S, DirectR, ND);
1912 
1913  if (FoundDirect) {
1914  // First do any local hiding.
1915  DirectR.resolveKind();
1916 
1917  // If the local result is a tag, remember that.
1918  if (DirectR.isSingleTagDecl())
1919  FoundTag = true;
1920  else
1921  FoundNonTag = true;
1922 
1923  // Append the local results to the total results if necessary.
1924  if (UseLocal) {
1925  R.addAllDecls(LocalR);
1926  LocalR.clear();
1927  }
1928  }
1929 
1930  // If we find names in this namespace, ignore its using directives.
1931  if (FoundDirect) {
1932  Found = true;
1933  continue;
1934  }
1935 
1936  for (auto I : ND->using_directives()) {
1937  NamespaceDecl *Nom = I->getNominatedNamespace();
1938  if (S.isVisible(I) && Visited.insert(Nom).second)
1939  Queue.push_back(Nom);
1940  }
1941  }
1942 
1943  if (Found) {
1944  if (FoundTag && FoundNonTag)
1946  else
1947  R.resolveKind();
1948  }
1949 
1950  return Found;
1951 }
1952 
1953 /// Callback that looks for any member of a class with the given name.
1955  CXXBasePath &Path, DeclarationName Name) {
1956  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1957 
1958  Path.Decls = BaseRecord->lookup(Name);
1959  return !Path.Decls.empty();
1960 }
1961 
1962 /// Determine whether the given set of member declarations contains only
1963 /// static members, nested types, and enumerators.
1964 template<typename InputIterator>
1965 static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1966  Decl *D = (*First)->getUnderlyingDecl();
1967  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1968  return true;
1969 
1970  if (isa<CXXMethodDecl>(D)) {
1971  // Determine whether all of the methods are static.
1972  bool AllMethodsAreStatic = true;
1973  for(; First != Last; ++First) {
1974  D = (*First)->getUnderlyingDecl();
1975 
1976  if (!isa<CXXMethodDecl>(D)) {
1977  assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1978  break;
1979  }
1980 
1981  if (!cast<CXXMethodDecl>(D)->isStatic()) {
1982  AllMethodsAreStatic = false;
1983  break;
1984  }
1985  }
1986 
1987  if (AllMethodsAreStatic)
1988  return true;
1989  }
1990 
1991  return false;
1992 }
1993 
1994 /// Perform qualified name lookup into a given context.
1995 ///
1996 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1997 /// names when the context of those names is explicit specified, e.g.,
1998 /// "std::vector" or "x->member", or as part of unqualified name lookup.
1999 ///
2000 /// Different lookup criteria can find different names. For example, a
2001 /// particular scope can have both a struct and a function of the same
2002 /// name, and each can be found by certain lookup criteria. For more
2003 /// information about lookup criteria, see the documentation for the
2004 /// class LookupCriteria.
2005 ///
2006 /// \param R captures both the lookup criteria and any lookup results found.
2007 ///
2008 /// \param LookupCtx The context in which qualified name lookup will
2009 /// search. If the lookup criteria permits, name lookup may also search
2010 /// in the parent contexts or (for C++ classes) base classes.
2011 ///
2012 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2013 /// occurs as part of unqualified name lookup.
2014 ///
2015 /// \returns true if lookup succeeded, false if it failed.
2017  bool InUnqualifiedLookup) {
2018  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2019 
2020  if (!R.getLookupName())
2021  return false;
2022 
2023  // Make sure that the declaration context is complete.
2024  assert((!isa<TagDecl>(LookupCtx) ||
2025  LookupCtx->isDependentContext() ||
2026  cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2027  cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2028  "Declaration context must already be complete!");
2029 
2030  struct QualifiedLookupInScope {
2031  bool oldVal;
2032  DeclContext *Context;
2033  // Set flag in DeclContext informing debugger that we're looking for qualified name
2034  QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2035  oldVal = ctx->setUseQualifiedLookup();
2036  }
2037  ~QualifiedLookupInScope() {
2038  Context->setUseQualifiedLookup(oldVal);
2039  }
2040  } QL(LookupCtx);
2041 
2042  if (LookupDirect(*this, R, LookupCtx)) {
2043  R.resolveKind();
2044  if (isa<CXXRecordDecl>(LookupCtx))
2045  R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2046  return true;
2047  }
2048 
2049  // Don't descend into implied contexts for redeclarations.
2050  // C++98 [namespace.qual]p6:
2051  // In a declaration for a namespace member in which the
2052  // declarator-id is a qualified-id, given that the qualified-id
2053  // for the namespace member has the form
2054  // nested-name-specifier unqualified-id
2055  // the unqualified-id shall name a member of the namespace
2056  // designated by the nested-name-specifier.
2057  // See also [class.mfct]p5 and [class.static.data]p2.
2058  if (R.isForRedeclaration())
2059  return false;
2060 
2061  // If this is a namespace, look it up in the implied namespaces.
2062  if (LookupCtx->isFileContext())
2063  return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2064 
2065  // If this isn't a C++ class, we aren't allowed to look into base
2066  // classes, we're done.
2067  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2068  if (!LookupRec || !LookupRec->getDefinition())
2069  return false;
2070 
2071  // If we're performing qualified name lookup into a dependent class,
2072  // then we are actually looking into a current instantiation. If we have any
2073  // dependent base classes, then we either have to delay lookup until
2074  // template instantiation time (at which point all bases will be available)
2075  // or we have to fail.
2076  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2077  LookupRec->hasAnyDependentBases()) {
2079  return false;
2080  }
2081 
2082  // Perform lookup into our base classes.
2083  CXXBasePaths Paths;
2084  Paths.setOrigin(LookupRec);
2085 
2086  // Look for this member in our base classes
2087  bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2088  DeclarationName Name) = nullptr;
2089  switch (R.getLookupKind()) {
2090  case LookupObjCImplicitSelfParam:
2091  case LookupOrdinaryName:
2092  case LookupMemberName:
2093  case LookupRedeclarationWithLinkage:
2094  case LookupLocalFriendName:
2095  BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2096  break;
2097 
2098  case LookupTagName:
2099  BaseCallback = &CXXRecordDecl::FindTagMember;
2100  break;
2101 
2102  case LookupAnyName:
2103  BaseCallback = &LookupAnyMember;
2104  break;
2105 
2106  case LookupOMPReductionName:
2107  BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2108  break;
2109 
2110  case LookupUsingDeclName:
2111  // This lookup is for redeclarations only.
2112 
2113  case LookupOperatorName:
2114  case LookupNamespaceName:
2115  case LookupObjCProtocolName:
2116  case LookupLabel:
2117  // These lookups will never find a member in a C++ class (or base class).
2118  return false;
2119 
2120  case LookupNestedNameSpecifierName:
2122  break;
2123  }
2124 
2125  DeclarationName Name = R.getLookupName();
2126  if (!LookupRec->lookupInBases(
2127  [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2128  return BaseCallback(Specifier, Path, Name);
2129  },
2130  Paths))
2131  return false;
2132 
2133  R.setNamingClass(LookupRec);
2134 
2135  // C++ [class.member.lookup]p2:
2136  // [...] If the resulting set of declarations are not all from
2137  // sub-objects of the same type, or the set has a nonstatic member
2138  // and includes members from distinct sub-objects, there is an
2139  // ambiguity and the program is ill-formed. Otherwise that set is
2140  // the result of the lookup.
2141  QualType SubobjectType;
2142  int SubobjectNumber = 0;
2143  AccessSpecifier SubobjectAccess = AS_none;
2144 
2145  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2146  Path != PathEnd; ++Path) {
2147  const CXXBasePathElement &PathElement = Path->back();
2148 
2149  // Pick the best (i.e. most permissive i.e. numerically lowest) access
2150  // across all paths.
2151  SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2152 
2153  // Determine whether we're looking at a distinct sub-object or not.
2154  if (SubobjectType.isNull()) {
2155  // This is the first subobject we've looked at. Record its type.
2156  SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2157  SubobjectNumber = PathElement.SubobjectNumber;
2158  continue;
2159  }
2160 
2161  if (SubobjectType
2162  != Context.getCanonicalType(PathElement.Base->getType())) {
2163  // We found members of the given name in two subobjects of
2164  // different types. If the declaration sets aren't the same, this
2165  // lookup is ambiguous.
2166  if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2167  CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2168  DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2169  DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2170 
2171  while (FirstD != FirstPath->Decls.end() &&
2172  CurrentD != Path->Decls.end()) {
2173  if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
2174  (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
2175  break;
2176 
2177  ++FirstD;
2178  ++CurrentD;
2179  }
2180 
2181  if (FirstD == FirstPath->Decls.end() &&
2182  CurrentD == Path->Decls.end())
2183  continue;
2184  }
2185 
2187  return true;
2188  }
2189 
2190  if (SubobjectNumber != PathElement.SubobjectNumber) {
2191  // We have a different subobject of the same type.
2192 
2193  // C++ [class.member.lookup]p5:
2194  // A static member, a nested type or an enumerator defined in
2195  // a base class T can unambiguously be found even if an object
2196  // has more than one base class subobject of type T.
2197  if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2198  continue;
2199 
2200  // We have found a nonstatic member name in multiple, distinct
2201  // subobjects. Name lookup is ambiguous.
2202  R.setAmbiguousBaseSubobjects(Paths);
2203  return true;
2204  }
2205  }
2206 
2207  // Lookup in a base class succeeded; return these results.
2208 
2209  for (auto *D : Paths.front().Decls) {
2210  AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2211  D->getAccess());
2212  R.addDecl(D, AS);
2213  }
2214  R.resolveKind();
2215  return true;
2216 }
2217 
2218 /// Performs qualified name lookup or special type of lookup for
2219 /// "__super::" scope specifier.
2220 ///
2221 /// This routine is a convenience overload meant to be called from contexts
2222 /// that need to perform a qualified name lookup with an optional C++ scope
2223 /// specifier that might require special kind of lookup.
2224 ///
2225 /// \param R captures both the lookup criteria and any lookup results found.
2226 ///
2227 /// \param LookupCtx The context in which qualified name lookup will
2228 /// search.
2229 ///
2230 /// \param SS An optional C++ scope-specifier.
2231 ///
2232 /// \returns true if lookup succeeded, false if it failed.
2234  CXXScopeSpec &SS) {
2235  auto *NNS = SS.getScopeRep();
2236  if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2237  return LookupInSuper(R, NNS->getAsRecordDecl());
2238  else
2239 
2240  return LookupQualifiedName(R, LookupCtx);
2241 }
2242 
2243 /// Performs name lookup for a name that was parsed in the
2244 /// source code, and may contain a C++ scope specifier.
2245 ///
2246 /// This routine is a convenience routine meant to be called from
2247 /// contexts that receive a name and an optional C++ scope specifier
2248 /// (e.g., "N::M::x"). It will then perform either qualified or
2249 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2250 /// respectively) on the given name and return those results. It will
2251 /// perform a special type of lookup for "__super::" scope specifier.
2252 ///
2253 /// @param S The scope from which unqualified name lookup will
2254 /// begin.
2255 ///
2256 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2257 ///
2258 /// @param EnteringContext Indicates whether we are going to enter the
2259 /// context of the scope-specifier SS (if present).
2260 ///
2261 /// @returns True if any decls were found (but possibly ambiguous)
2263  bool AllowBuiltinCreation, bool EnteringContext) {
2264  if (SS && SS->isInvalid()) {
2265  // When the scope specifier is invalid, don't even look for
2266  // anything.
2267  return false;
2268  }
2269 
2270  if (SS && SS->isSet()) {
2271  NestedNameSpecifier *NNS = SS->getScopeRep();
2272  if (NNS->getKind() == NestedNameSpecifier::Super)
2273  return LookupInSuper(R, NNS->getAsRecordDecl());
2274 
2275  if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2276  // We have resolved the scope specifier to a particular declaration
2277  // contex, and will perform name lookup in that context.
2278  if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2279  return false;
2280 
2281  R.setContextRange(SS->getRange());
2282  return LookupQualifiedName(R, DC);
2283  }
2284 
2285  // We could not resolve the scope specified to a specific declaration
2286  // context, which means that SS refers to an unknown specialization.
2287  // Name lookup can't find anything in this case.
2289  R.setContextRange(SS->getRange());
2290  return false;
2291  }
2292 
2293  // Perform unqualified name lookup starting in the given scope.
2294  return LookupName(R, S, AllowBuiltinCreation);
2295 }
2296 
2297 /// Perform qualified name lookup into all base classes of the given
2298 /// class.
2299 ///
2300 /// \param R captures both the lookup criteria and any lookup results found.
2301 ///
2302 /// \param Class The context in which qualified name lookup will
2303 /// search. Name lookup will search in all base classes merging the results.
2304 ///
2305 /// @returns True if any decls were found (but possibly ambiguous)
2307  // The access-control rules we use here are essentially the rules for
2308  // doing a lookup in Class that just magically skipped the direct
2309  // members of Class itself. That is, the naming class is Class, and the
2310  // access includes the access of the base.
2311  for (const auto &BaseSpec : Class->bases()) {
2312  CXXRecordDecl *RD = cast<CXXRecordDecl>(
2313  BaseSpec.getType()->castAs<RecordType>()->getDecl());
2314  LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2315  Result.setBaseObjectType(Context.getRecordType(Class));
2316  LookupQualifiedName(Result, RD);
2317 
2318  // Copy the lookup results into the target, merging the base's access into
2319  // the path access.
2320  for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2321  R.addDecl(I.getDecl(),
2322  CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2323  I.getAccess()));
2324  }
2325 
2326  Result.suppressDiagnostics();
2327  }
2328 
2329  R.resolveKind();
2330  R.setNamingClass(Class);
2331 
2332  return !R.empty();
2333 }
2334 
2335 /// Produce a diagnostic describing the ambiguity that resulted
2336 /// from name lookup.
2337 ///
2338 /// \param Result The result of the ambiguous lookup to be diagnosed.
2340  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2341 
2342  DeclarationName Name = Result.getLookupName();
2343  SourceLocation NameLoc = Result.getNameLoc();
2344  SourceRange LookupRange = Result.getContextRange();
2345 
2346  switch (Result.getAmbiguityKind()) {
2348  CXXBasePaths *Paths = Result.getBasePaths();
2349  QualType SubobjectType = Paths->front().back().Base->getType();
2350  Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2351  << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2352  << LookupRange;
2353 
2354  DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2355  while (isa<CXXMethodDecl>(*Found) &&
2356  cast<CXXMethodDecl>(*Found)->isStatic())
2357  ++Found;
2358 
2359  Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2360  break;
2361  }
2362 
2364  Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2365  << Name << LookupRange;
2366 
2367  CXXBasePaths *Paths = Result.getBasePaths();
2368  std::set<Decl *> DeclsPrinted;
2369  for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2370  PathEnd = Paths->end();
2371  Path != PathEnd; ++Path) {
2372  Decl *D = Path->Decls.front();
2373  if (DeclsPrinted.insert(D).second)
2374  Diag(D->getLocation(), diag::note_ambiguous_member_found);
2375  }
2376  break;
2377  }
2378 
2380  Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2381 
2382  llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2383 
2384  for (auto *D : Result)
2385  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2386  TagDecls.insert(TD);
2387  Diag(TD->getLocation(), diag::note_hidden_tag);
2388  }
2389 
2390  for (auto *D : Result)
2391  if (!isa<TagDecl>(D))
2392  Diag(D->getLocation(), diag::note_hiding_object);
2393 
2394  // For recovery purposes, go ahead and implement the hiding.
2395  LookupResult::Filter F = Result.makeFilter();
2396  while (F.hasNext()) {
2397  if (TagDecls.count(F.next()))
2398  F.erase();
2399  }
2400  F.done();
2401  break;
2402  }
2403 
2405  Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2406 
2407  for (auto *D : Result)
2408  Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2409  break;
2410  }
2411  }
2412 }
2413 
2414 namespace {
2415  struct AssociatedLookup {
2416  AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2417  Sema::AssociatedNamespaceSet &Namespaces,
2418  Sema::AssociatedClassSet &Classes)
2419  : S(S), Namespaces(Namespaces), Classes(Classes),
2420  InstantiationLoc(InstantiationLoc) {
2421  }
2422 
2423  Sema &S;
2424  Sema::AssociatedNamespaceSet &Namespaces;
2425  Sema::AssociatedClassSet &Classes;
2426  SourceLocation InstantiationLoc;
2427  };
2428 } // end anonymous namespace
2429 
2430 static void
2431 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2432 
2434  DeclContext *Ctx) {
2435  // Add the associated namespace for this class.
2436 
2437  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
2438  // be a locally scoped record.
2439 
2440  // We skip out of inline namespaces. The innermost non-inline namespace
2441  // contains all names of all its nested inline namespaces anyway, so we can
2442  // replace the entire inline namespace tree with its root.
2443  while (Ctx->isRecord() || Ctx->isTransparentContext() ||
2444  Ctx->isInlineNamespace())
2445  Ctx = Ctx->getParent();
2446 
2447  if (Ctx->isFileContext())
2448  Namespaces.insert(Ctx->getPrimaryContext());
2449 }
2450 
2451 // Add the associated classes and namespaces for argument-dependent
2452 // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
2453 static void
2454 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2455  const TemplateArgument &Arg) {
2456  // C++ [basic.lookup.koenig]p2, last bullet:
2457  // -- [...] ;
2458  switch (Arg.getKind()) {
2460  break;
2461 
2463  // [...] the namespaces and classes associated with the types of the
2464  // template arguments provided for template type parameters (excluding
2465  // template template parameters)
2467  break;
2468 
2471  // [...] the namespaces in which any template template arguments are
2472  // defined; and the classes in which any member templates used as
2473  // template template arguments are defined.
2475  if (ClassTemplateDecl *ClassTemplate
2476  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2477  DeclContext *Ctx = ClassTemplate->getDeclContext();
2478  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2479  Result.Classes.insert(EnclosingClass);
2480  // Add the associated namespace for this class.
2481  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2482  }
2483  break;
2484  }
2485 
2490  // [Note: non-type template arguments do not contribute to the set of
2491  // associated namespaces. ]
2492  break;
2493 
2495  for (const auto &P : Arg.pack_elements())
2497  break;
2498  }
2499 }
2500 
2501 // Add the associated classes and namespaces for
2502 // argument-dependent lookup with an argument of class type
2503 // (C++ [basic.lookup.koenig]p2).
2504 static void
2505 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2506  CXXRecordDecl *Class) {
2507 
2508  // Just silently ignore anything whose name is __va_list_tag.
2509  if (Class->getDeclName() == Result.S.VAListTagName)
2510  return;
2511 
2512  // C++ [basic.lookup.koenig]p2:
2513  // [...]
2514  // -- If T is a class type (including unions), its associated
2515  // classes are: the class itself; the class of which it is a
2516  // member, if any; and its direct and indirect base
2517  // classes. Its associated namespaces are the namespaces in
2518  // which its associated classes are defined.
2519 
2520  // Add the class of which it is a member, if any.
2521  DeclContext *Ctx = Class->getDeclContext();
2522  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2523  Result.Classes.insert(EnclosingClass);
2524  // Add the associated namespace for this class.
2525  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2526 
2527  // Add the class itself. If we've already seen this class, we don't
2528  // need to visit base classes.
2529  //
2530  // FIXME: That's not correct, we may have added this class only because it
2531  // was the enclosing class of another class, and in that case we won't have
2532  // added its base classes yet.
2533  if (!Result.Classes.insert(Class))
2534  return;
2535 
2536  // -- If T is a template-id, its associated namespaces and classes are
2537  // the namespace in which the template is defined; for member
2538  // templates, the member template's class; the namespaces and classes
2539  // associated with the types of the template arguments provided for
2540  // template type parameters (excluding template template parameters); the
2541  // namespaces in which any template template arguments are defined; and
2542  // the classes in which any member templates used as template template
2543  // arguments are defined. [Note: non-type template arguments do not
2544  // contribute to the set of associated namespaces. ]
2546  = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2547  DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2548  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2549  Result.Classes.insert(EnclosingClass);
2550  // Add the associated namespace for this class.
2551  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2552 
2553  const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2554  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2555  addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2556  }
2557 
2558  // Only recurse into base classes for complete types.
2559  if (!Result.S.isCompleteType(Result.InstantiationLoc,
2560  Result.S.Context.getRecordType(Class)))
2561  return;
2562 
2563  // Add direct and indirect base classes along with their associated
2564  // namespaces.
2566  Bases.push_back(Class);
2567  while (!Bases.empty()) {
2568  // Pop this class off the stack.
2569  Class = Bases.pop_back_val();
2570 
2571  // Visit the base classes.
2572  for (const auto &Base : Class->bases()) {
2573  const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2574  // In dependent contexts, we do ADL twice, and the first time around,
2575  // the base type might be a dependent TemplateSpecializationType, or a
2576  // TemplateTypeParmType. If that happens, simply ignore it.
2577  // FIXME: If we want to support export, we probably need to add the
2578  // namespace of the template in a TemplateSpecializationType, or even
2579  // the classes and namespaces of known non-dependent arguments.
2580  if (!BaseType)
2581  continue;
2582  CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2583  if (Result.Classes.insert(BaseDecl)) {
2584  // Find the associated namespace for this base class.
2585  DeclContext *BaseCtx = BaseDecl->getDeclContext();
2586  CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2587 
2588  // Make sure we visit the bases of this base class.
2589  if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2590  Bases.push_back(BaseDecl);
2591  }
2592  }
2593  }
2594 }
2595 
2596 // Add the associated classes and namespaces for
2597 // argument-dependent lookup with an argument of type T
2598 // (C++ [basic.lookup.koenig]p2).
2599 static void
2600 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2601  // C++ [basic.lookup.koenig]p2:
2602  //
2603  // For each argument type T in the function call, there is a set
2604  // of zero or more associated namespaces and a set of zero or more
2605  // associated classes to be considered. The sets of namespaces and
2606  // classes is determined entirely by the types of the function
2607  // arguments (and the namespace of any template template
2608  // argument). Typedef names and using-declarations used to specify
2609  // the types do not contribute to this set. The sets of namespaces
2610  // and classes are determined in the following way:
2611 
2613  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2614 
2615  while (true) {
2616  switch (T->getTypeClass()) {
2617 
2618 #define TYPE(Class, Base)
2619 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2620 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2621 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2622 #define ABSTRACT_TYPE(Class, Base)
2623 #include "clang/AST/TypeNodes.def"
2624  // T is canonical. We can also ignore dependent types because
2625  // we don't need to do ADL at the definition point, but if we
2626  // wanted to implement template export (or if we find some other
2627  // use for associated classes and namespaces...) this would be
2628  // wrong.
2629  break;
2630 
2631  // -- If T is a pointer to U or an array of U, its associated
2632  // namespaces and classes are those associated with U.
2633  case Type::Pointer:
2634  T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2635  continue;
2636  case Type::ConstantArray:
2637  case Type::IncompleteArray:
2638  case Type::VariableArray:
2639  T = cast<ArrayType>(T)->getElementType().getTypePtr();
2640  continue;
2641 
2642  // -- If T is a fundamental type, its associated sets of
2643  // namespaces and classes are both empty.
2644  case Type::Builtin:
2645  break;
2646 
2647  // -- If T is a class type (including unions), its associated
2648  // classes are: the class itself; the class of which it is a
2649  // member, if any; and its direct and indirect base
2650  // classes. Its associated namespaces are the namespaces in
2651  // which its associated classes are defined.
2652  case Type::Record: {
2653  CXXRecordDecl *Class =
2654  cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2655  addAssociatedClassesAndNamespaces(Result, Class);
2656  break;
2657  }
2658 
2659  // -- If T is an enumeration type, its associated namespace is
2660  // the namespace in which it is defined. If it is class
2661  // member, its associated class is the member's class; else
2662  // it has no associated class.
2663  case Type::Enum: {
2664  EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2665 
2666  DeclContext *Ctx = Enum->getDeclContext();
2667  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2668  Result.Classes.insert(EnclosingClass);
2669 
2670  // Add the associated namespace for this class.
2671  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2672 
2673  break;
2674  }
2675 
2676  // -- If T is a function type, its associated namespaces and
2677  // classes are those associated with the function parameter
2678  // types and those associated with the return type.
2679  case Type::FunctionProto: {
2680  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2681  for (const auto &Arg : Proto->param_types())
2682  Queue.push_back(Arg.getTypePtr());
2683  // fallthrough
2684  LLVM_FALLTHROUGH;
2685  }
2686  case Type::FunctionNoProto: {
2687  const FunctionType *FnType = cast<FunctionType>(T);
2688  T = FnType->getReturnType().getTypePtr();
2689  continue;
2690  }
2691 
2692  // -- If T is a pointer to a member function of a class X, its
2693  // associated namespaces and classes are those associated
2694  // with the function parameter types and return type,
2695  // together with those associated with X.
2696  //
2697  // -- If T is a pointer to a data member of class X, its
2698  // associated namespaces and classes are those associated
2699  // with the member type together with those associated with
2700  // X.
2701  case Type::MemberPointer: {
2702  const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2703 
2704  // Queue up the class type into which this points.
2705  Queue.push_back(MemberPtr->getClass());
2706 
2707  // And directly continue with the pointee type.
2708  T = MemberPtr->getPointeeType().getTypePtr();
2709  continue;
2710  }
2711 
2712  // As an extension, treat this like a normal pointer.
2713  case Type::BlockPointer:
2714  T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2715  continue;
2716 
2717  // References aren't covered by the standard, but that's such an
2718  // obvious defect that we cover them anyway.
2719  case Type::LValueReference:
2720  case Type::RValueReference:
2721  T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2722  continue;
2723 
2724  // These are fundamental types.
2725  case Type::Vector:
2726  case Type::ExtVector:
2727  case Type::Complex:
2728  break;
2729 
2730  // Non-deduced auto types only get here for error cases.
2731  case Type::Auto:
2732  case Type::DeducedTemplateSpecialization:
2733  break;
2734 
2735  // If T is an Objective-C object or interface type, or a pointer to an
2736  // object or interface type, the associated namespace is the global
2737  // namespace.
2738  case Type::ObjCObject:
2739  case Type::ObjCInterface:
2740  case Type::ObjCObjectPointer:
2741  Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2742  break;
2743 
2744  // Atomic types are just wrappers; use the associations of the
2745  // contained type.
2746  case Type::Atomic:
2747  T = cast<AtomicType>(T)->getValueType().getTypePtr();
2748  continue;
2749  case Type::Pipe:
2750  T = cast<PipeType>(T)->getElementType().getTypePtr();
2751  continue;
2752  }
2753 
2754  if (Queue.empty())
2755  break;
2756  T = Queue.pop_back_val();
2757  }
2758 }
2759 
2760 /// Find the associated classes and namespaces for
2761 /// argument-dependent lookup for a call with the given set of
2762 /// arguments.
2763 ///
2764 /// This routine computes the sets of associated classes and associated
2765 /// namespaces searched by argument-dependent lookup
2766 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
2768  SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2769  AssociatedNamespaceSet &AssociatedNamespaces,
2770  AssociatedClassSet &AssociatedClasses) {
2771  AssociatedNamespaces.clear();
2772  AssociatedClasses.clear();
2773 
2774  AssociatedLookup Result(*this, InstantiationLoc,
2775  AssociatedNamespaces, AssociatedClasses);
2776 
2777  // C++ [basic.lookup.koenig]p2:
2778  // For each argument type T in the function call, there is a set
2779  // of zero or more associated namespaces and a set of zero or more
2780  // associated classes to be considered. The sets of namespaces and
2781  // classes is determined entirely by the types of the function
2782  // arguments (and the namespace of any template template
2783  // argument).
2784  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2785  Expr *Arg = Args[ArgIdx];
2786 
2787  if (Arg->getType() != Context.OverloadTy) {
2789  continue;
2790  }
2791 
2792  // [...] In addition, if the argument is the name or address of a
2793  // set of overloaded functions and/or function templates, its
2794  // associated classes and namespaces are the union of those
2795  // associated with each of the members of the set: the namespace
2796  // in which the function or function template is defined and the
2797  // classes and namespaces associated with its (non-dependent)
2798  // parameter types and return type.
2799  Arg = Arg->IgnoreParens();
2800  if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2801  if (unaryOp->getOpcode() == UO_AddrOf)
2802  Arg = unaryOp->getSubExpr();
2803 
2804  UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2805  if (!ULE) continue;
2806 
2807  for (const auto *D : ULE->decls()) {
2808  // Look through any using declarations to find the underlying function.
2809  const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2810 
2811  // Add the classes and namespaces associated with the parameter
2812  // types and return type of this function.
2813  addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2814  }
2815  }
2816 }
2817 
2819  SourceLocation Loc,
2820  LookupNameKind NameKind,
2821  RedeclarationKind Redecl) {
2822  LookupResult R(*this, Name, Loc, NameKind, Redecl);
2823  LookupName(R, S);
2824  return R.getAsSingle<NamedDecl>();
2825 }
2826 
2827 /// Find the protocol with the given name, if any.
2829  SourceLocation IdLoc,
2830  RedeclarationKind Redecl) {
2831  Decl *D = LookupSingleName(TUScope, II, IdLoc,
2832  LookupObjCProtocolName, Redecl);
2833  return cast_or_null<ObjCProtocolDecl>(D);
2834 }
2835 
2837  QualType T1, QualType T2,
2838  UnresolvedSetImpl &Functions) {
2839  // C++ [over.match.oper]p3:
2840  // -- The set of non-member candidates is the result of the
2841  // unqualified lookup of operator@ in the context of the
2842  // expression according to the usual rules for name lookup in
2843  // unqualified function calls (3.4.2) except that all member
2844  // functions are ignored.
2846  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2847  LookupName(Operators, S);
2848 
2849  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2850  Functions.append(Operators.begin(), Operators.end());
2851 }
2852 
2855  bool ConstArg,
2856  bool VolatileArg,
2857  bool RValueThis,
2858  bool ConstThis,
2859  bool VolatileThis) {
2860  assert(CanDeclareSpecialMemberFunction(RD) &&
2861  "doing special member lookup into record that isn't fully complete");
2862  RD = RD->getDefinition();
2863  if (RValueThis || ConstThis || VolatileThis)
2864  assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2865  "constructors and destructors always have unqualified lvalue this");
2866  if (ConstArg || VolatileArg)
2867  assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2868  "parameter-less special members can't have qualified arguments");
2869 
2870  // FIXME: Get the caller to pass in a location for the lookup.
2871  SourceLocation LookupLoc = RD->getLocation();
2872 
2873  llvm::FoldingSetNodeID ID;
2874  ID.AddPointer(RD);
2875  ID.AddInteger(SM);
2876  ID.AddInteger(ConstArg);
2877  ID.AddInteger(VolatileArg);
2878  ID.AddInteger(RValueThis);
2879  ID.AddInteger(ConstThis);
2880  ID.AddInteger(VolatileThis);
2881 
2882  void *InsertPoint;
2884  SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2885 
2886  // This was already cached
2887  if (Result)
2888  return *Result;
2889 
2890  Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
2891  Result = new (Result) SpecialMemberOverloadResultEntry(ID);
2892  SpecialMemberCache.InsertNode(Result, InsertPoint);
2893 
2894  if (SM == CXXDestructor) {
2895  if (RD->needsImplicitDestructor())
2896  DeclareImplicitDestructor(RD);
2897  CXXDestructorDecl *DD = RD->getDestructor();
2898  assert(DD && "record without a destructor");
2899  Result->setMethod(DD);
2900  Result->setKind(DD->isDeleted() ?
2901  SpecialMemberOverloadResult::NoMemberOrDeleted :
2902  SpecialMemberOverloadResult::Success);
2903  return *Result;
2904  }
2905 
2906  // Prepare for overload resolution. Here we construct a synthetic argument
2907  // if necessary and make sure that implicit functions are declared.
2908  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2909  DeclarationName Name;
2910  Expr *Arg = nullptr;
2911  unsigned NumArgs;
2912 
2913  QualType ArgType = CanTy;
2914  ExprValueKind VK = VK_LValue;
2915 
2916  if (SM == CXXDefaultConstructor) {
2917  Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2918  NumArgs = 0;
2920  DeclareImplicitDefaultConstructor(RD);
2921  } else {
2922  if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2923  Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2924  if (RD->needsImplicitCopyConstructor())
2925  DeclareImplicitCopyConstructor(RD);
2926  if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2927  DeclareImplicitMoveConstructor(RD);
2928  } else {
2929  Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2930  if (RD->needsImplicitCopyAssignment())
2931  DeclareImplicitCopyAssignment(RD);
2932  if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2933  DeclareImplicitMoveAssignment(RD);
2934  }
2935 
2936  if (ConstArg)
2937  ArgType.addConst();
2938  if (VolatileArg)
2939  ArgType.addVolatile();
2940 
2941  // This isn't /really/ specified by the standard, but it's implied
2942  // we should be working from an RValue in the case of move to ensure
2943  // that we prefer to bind to rvalue references, and an LValue in the
2944  // case of copy to ensure we don't bind to rvalue references.
2945  // Possibly an XValue is actually correct in the case of move, but
2946  // there is no semantic difference for class types in this restricted
2947  // case.
2948  if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2949  VK = VK_LValue;
2950  else
2951  VK = VK_RValue;
2952  }
2953 
2954  OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
2955 
2956  if (SM != CXXDefaultConstructor) {
2957  NumArgs = 1;
2958  Arg = &FakeArg;
2959  }
2960 
2961  // Create the object argument
2962  QualType ThisTy = CanTy;
2963  if (ConstThis)
2964  ThisTy.addConst();
2965  if (VolatileThis)
2966  ThisTy.addVolatile();
2967  Expr::Classification Classification =
2968  OpaqueValueExpr(LookupLoc, ThisTy,
2969  RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2970 
2971  // Now we perform lookup on the name we computed earlier and do overload
2972  // resolution. Lookup is only performed directly into the class since there
2973  // will always be a (possibly implicit) declaration to shadow any others.
2975  DeclContext::lookup_result R = RD->lookup(Name);
2976 
2977  if (R.empty()) {
2978  // We might have no default constructor because we have a lambda's closure
2979  // type, rather than because there's some other declared constructor.
2980  // Every class has a copy/move constructor, copy/move assignment, and
2981  // destructor.
2982  assert(SM == CXXDefaultConstructor &&
2983  "lookup for a constructor or assignment operator was empty");
2984  Result->setMethod(nullptr);
2985  Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2986  return *Result;
2987  }
2988 
2989  // Copy the candidates as our processing of them may load new declarations
2990  // from an external source and invalidate lookup_result.
2991  SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
2992 
2993  for (NamedDecl *CandDecl : Candidates) {
2994  if (CandDecl->isInvalidDecl())
2995  continue;
2996 
2997  DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
2998  auto CtorInfo = getConstructorInfo(Cand);
2999  if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3000  if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3001  AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3002  llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3003  else if (CtorInfo)
3004  AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3005  llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3006  else
3007  AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
3008  true);
3009  } else if (FunctionTemplateDecl *Tmpl =
3010  dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3011  if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3012  AddMethodTemplateCandidate(
3013  Tmpl, Cand, RD, nullptr, ThisTy, Classification,
3014  llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3015  else if (CtorInfo)
3016  AddTemplateOverloadCandidate(
3017  CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
3018  llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3019  else
3020  AddTemplateOverloadCandidate(
3021  Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
3022  } else {
3023  assert(isa<UsingDecl>(Cand.getDecl()) &&
3024  "illegal Kind of operator = Decl");
3025  }
3026  }
3027 
3029  switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3030  case OR_Success:
3031  Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3032  Result->setKind(SpecialMemberOverloadResult::Success);
3033  break;
3034 
3035  case OR_Deleted:
3036  Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3037  Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3038  break;
3039 
3040  case OR_Ambiguous:
3041  Result->setMethod(nullptr);
3042  Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3043  break;
3044 
3045  case OR_No_Viable_Function:
3046  Result->setMethod(nullptr);
3047  Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3048  break;
3049  }
3050 
3051  return *Result;
3052 }
3053 
3054 /// Look up the default constructor for the given class.
3057  LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3058  false, false);
3059 
3060  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3061 }
3062 
3063 /// Look up the copying constructor for the given class.
3065  unsigned Quals) {
3066  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3067  "non-const, non-volatile qualifiers for copy ctor arg");
3069  LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3070  Quals & Qualifiers::Volatile, false, false, false);
3071 
3072  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3073 }
3074 
3075 /// Look up the moving constructor for the given class.
3077  unsigned Quals) {
3079  LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3080  Quals & Qualifiers::Volatile, false, false, false);
3081 
3082  return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3083 }
3084 
3085 /// Look up the constructors for the given class.
3087  // If the implicit constructors have not yet been declared, do so now.
3088  if (CanDeclareSpecialMemberFunction(Class)) {
3089  if (Class->needsImplicitDefaultConstructor())
3090  DeclareImplicitDefaultConstructor(Class);
3091  if (Class->needsImplicitCopyConstructor())
3092  DeclareImplicitCopyConstructor(Class);
3093  if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3094  DeclareImplicitMoveConstructor(Class);
3095  }
3096 
3097  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3099  return Class->lookup(Name);
3100 }
3101 
3102 /// Look up the copying assignment operator for the given class.
3104  unsigned Quals, bool RValueThis,
3105  unsigned ThisQuals) {
3106  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3107  "non-const, non-volatile qualifiers for copy assignment arg");
3108  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3109  "non-const, non-volatile qualifiers for copy assignment this");
3111  LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3112  Quals & Qualifiers::Volatile, RValueThis,
3113  ThisQuals & Qualifiers::Const,
3114  ThisQuals & Qualifiers::Volatile);
3115 
3116  return Result.getMethod();
3117 }
3118 
3119 /// Look up the moving assignment operator for the given class.
3121  unsigned Quals,
3122  bool RValueThis,
3123  unsigned ThisQuals) {
3124  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3125  "non-const, non-volatile qualifiers for copy assignment this");
3127  LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3128  Quals & Qualifiers::Volatile, RValueThis,
3129  ThisQuals & Qualifiers::Const,
3130  ThisQuals & Qualifiers::Volatile);
3131 
3132  return Result.getMethod();
3133 }
3134 
3135 /// Look for the destructor of the given class.
3136 ///
3137 /// During semantic analysis, this routine should be used in lieu of
3138 /// CXXRecordDecl::getDestructor().
3139 ///
3140 /// \returns The destructor for this class.
3142  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3143  false, false, false,
3144  false, false).getMethod());
3145 }
3146 
3147 /// LookupLiteralOperator - Determine which literal operator should be used for
3148 /// a user-defined literal, per C++11 [lex.ext].
3149 ///
3150 /// Normal overload resolution is not used to select which literal operator to
3151 /// call for a user-defined literal. Look up the provided literal operator name,
3152 /// and filter the results to the appropriate set for the given argument types.
3155  ArrayRef<QualType> ArgTys,
3156  bool AllowRaw, bool AllowTemplate,
3157  bool AllowStringTemplate, bool DiagnoseMissing) {
3158  LookupName(R, S);
3159  assert(R.getResultKind() != LookupResult::Ambiguous &&
3160  "literal operator lookup can't be ambiguous");
3161 
3162  // Filter the lookup results appropriately.
3164 
3165  bool FoundRaw = false;
3166  bool FoundTemplate = false;
3167  bool FoundStringTemplate = false;
3168  bool FoundExactMatch = false;
3169 
3170  while (F.hasNext()) {
3171  Decl *D = F.next();
3172  if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3173  D = USD->getTargetDecl();
3174 
3175  // If the declaration we found is invalid, skip it.
3176  if (D->isInvalidDecl()) {
3177  F.erase();
3178  continue;
3179  }
3180 
3181  bool IsRaw = false;
3182  bool IsTemplate = false;
3183  bool IsStringTemplate = false;
3184  bool IsExactMatch = false;
3185 
3186  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3187  if (FD->getNumParams() == 1 &&
3188  FD->getParamDecl(0)->getType()->getAs<PointerType>())
3189  IsRaw = true;
3190  else if (FD->getNumParams() == ArgTys.size()) {
3191  IsExactMatch = true;
3192  for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3193  QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3194  if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3195  IsExactMatch = false;
3196  break;
3197  }
3198  }
3199  }
3200  }
3201  if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3202  TemplateParameterList *Params = FD->getTemplateParameters();
3203  if (Params->size() == 1)
3204  IsTemplate = true;
3205  else
3206  IsStringTemplate = true;
3207  }
3208 
3209  if (IsExactMatch) {
3210  FoundExactMatch = true;
3211  AllowRaw = false;
3212  AllowTemplate = false;
3213  AllowStringTemplate = false;
3214  if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3215  // Go through again and remove the raw and template decls we've
3216  // already found.
3217  F.restart();
3218  FoundRaw = FoundTemplate = FoundStringTemplate = false;
3219  }
3220  } else if (AllowRaw && IsRaw) {
3221  FoundRaw = true;
3222  } else if (AllowTemplate && IsTemplate) {
3223  FoundTemplate = true;
3224  } else if (AllowStringTemplate && IsStringTemplate) {
3225  FoundStringTemplate = true;
3226  } else {
3227  F.erase();
3228  }
3229  }
3230 
3231  F.done();
3232 
3233  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3234  // parameter type, that is used in preference to a raw literal operator
3235  // or literal operator template.
3236  if (FoundExactMatch)
3237  return LOLR_Cooked;
3238 
3239  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3240  // operator template, but not both.
3241  if (FoundRaw && FoundTemplate) {
3242  Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3243  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3244  NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3245  return LOLR_Error;
3246  }
3247 
3248  if (FoundRaw)
3249  return LOLR_Raw;
3250 
3251  if (FoundTemplate)
3252  return LOLR_Template;
3253 
3254  if (FoundStringTemplate)
3255  return LOLR_StringTemplate;
3256 
3257  // Didn't find anything we could use.
3258  if (DiagnoseMissing) {
3259  Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3260  << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3261  << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3262  << (AllowTemplate || AllowStringTemplate);
3263  return LOLR_Error;
3264  }
3265 
3266  return LOLR_ErrorNoDiagnostic;
3267 }
3268 
3270  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3271 
3272  // If we haven't yet seen a decl for this key, or the last decl
3273  // was exactly this one, we're done.
3274  if (Old == nullptr || Old == New) {
3275  Old = New;
3276  return;
3277  }
3278 
3279  // Otherwise, decide which is a more recent redeclaration.
3280  FunctionDecl *OldFD = Old->getAsFunction();
3281  FunctionDecl *NewFD = New->getAsFunction();
3282 
3283  FunctionDecl *Cursor = NewFD;
3284  while (true) {
3285  Cursor = Cursor->getPreviousDecl();
3286 
3287  // If we got to the end without finding OldFD, OldFD is the newer
3288  // declaration; leave things as they are.
3289  if (!Cursor) return;
3290 
3291  // If we do find OldFD, then NewFD is newer.
3292  if (Cursor == OldFD) break;
3293 
3294  // Otherwise, keep looking.
3295  }
3296 
3297  Old = New;
3298 }
3299 
3301  ArrayRef<Expr *> Args, ADLResult &Result) {
3302  // Find all of the associated namespaces and classes based on the
3303  // arguments we have.
3304  AssociatedNamespaceSet AssociatedNamespaces;
3305  AssociatedClassSet AssociatedClasses;
3306  FindAssociatedClassesAndNamespaces(Loc, Args,
3307  AssociatedNamespaces,
3308  AssociatedClasses);
3309 
3310  // C++ [basic.lookup.argdep]p3:
3311  // Let X be the lookup set produced by unqualified lookup (3.4.1)
3312  // and let Y be the lookup set produced by argument dependent
3313  // lookup (defined as follows). If X contains [...] then Y is
3314  // empty. Otherwise Y is the set of declarations found in the
3315  // namespaces associated with the argument types as described
3316  // below. The set of declarations found by the lookup of the name
3317  // is the union of X and Y.
3318  //
3319  // Here, we compute Y and add its members to the overloaded
3320  // candidate set.
3321  for (auto *NS : AssociatedNamespaces) {
3322  // When considering an associated namespace, the lookup is the
3323  // same as the lookup performed when the associated namespace is
3324  // used as a qualifier (3.4.3.2) except that:
3325  //
3326  // -- Any using-directives in the associated namespace are
3327  // ignored.
3328  //
3329  // -- Any namespace-scope friend functions declared in
3330  // associated classes are visible within their respective
3331  // namespaces even if they are not visible during an ordinary
3332  // lookup (11.4).
3333  DeclContext::lookup_result R = NS->lookup(Name);
3334  for (auto *D : R) {
3335  auto *Underlying = D;
3336  if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3337  Underlying = USD->getTargetDecl();
3338 
3339  if (!isa<FunctionDecl>(Underlying) &&
3340  !isa<FunctionTemplateDecl>(Underlying))
3341  continue;
3342 
3343  if (!isVisible(D)) {
3344  D = findAcceptableDecl(
3346  if (!D)
3347  continue;
3348  if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3349  Underlying = USD->getTargetDecl();
3350  }
3351 
3352  // If the only declaration here is an ordinary friend, consider
3353  // it only if it was declared in an associated classes.
3354  if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
3355  // If it's neither ordinarily visible nor a friend, we can't find it.
3357  continue;
3358 
3359  bool DeclaredInAssociatedClass = false;
3360  for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
3361  DeclContext *LexDC = DI->getLexicalDeclContext();
3362  if (isa<CXXRecordDecl>(LexDC) &&
3363  AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)) &&
3364  isVisible(cast<NamedDecl>(DI))) {
3365  DeclaredInAssociatedClass = true;
3366  break;
3367  }
3368  }
3369  if (!DeclaredInAssociatedClass)
3370  continue;
3371  }
3372 
3373  // FIXME: Preserve D as the FoundDecl.
3374  Result.insert(Underlying);
3375  }
3376  }
3377 }
3378 
3379 //----------------------------------------------------------------------------
3380 // Search for all visible declarations.
3381 //----------------------------------------------------------------------------
3383 
3384 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3385 
3386 namespace {
3387 
3388 class ShadowContextRAII;
3389 
3390 class VisibleDeclsRecord {
3391 public:
3392  /// An entry in the shadow map, which is optimized to store a
3393  /// single declaration (the common case) but can also store a list
3394  /// of declarations.
3395  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3396 
3397 private:
3398  /// A mapping from declaration names to the declarations that have
3399  /// this name within a particular scope.
3400  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3401 
3402  /// A list of shadow maps, which is used to model name hiding.
3403  std::list<ShadowMap> ShadowMaps;
3404 
3405  /// The declaration contexts we have already visited.
3406  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3407 
3408  friend class ShadowContextRAII;
3409 
3410 public:
3411  /// Determine whether we have already visited this context
3412  /// (and, if not, note that we are going to visit that context now).
3413  bool visitedContext(DeclContext *Ctx) {
3414  return !VisitedContexts.insert(Ctx).second;
3415  }
3416 
3417  bool alreadyVisitedContext(DeclContext *Ctx) {
3418  return VisitedContexts.count(Ctx);
3419  }
3420 
3421  /// Determine whether the given declaration is hidden in the
3422  /// current scope.
3423  ///
3424  /// \returns the declaration that hides the given declaration, or
3425  /// NULL if no such declaration exists.
3426  NamedDecl *checkHidden(NamedDecl *ND);
3427 
3428  /// Add a declaration to the current shadow map.
3429  void add(NamedDecl *ND) {
3430  ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3431  }
3432 };
3433 
3434 /// RAII object that records when we've entered a shadow context.
3435 class ShadowContextRAII {
3436  VisibleDeclsRecord &Visible;
3437 
3438  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3439 
3440 public:
3441  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3442  Visible.ShadowMaps.emplace_back();
3443  }
3444 
3445  ~ShadowContextRAII() {
3446  Visible.ShadowMaps.pop_back();
3447  }
3448 };
3449 
3450 } // end anonymous namespace
3451 
3452 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3453  unsigned IDNS = ND->getIdentifierNamespace();
3454  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3455  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3456  SM != SMEnd; ++SM) {
3457  ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3458  if (Pos == SM->end())
3459  continue;
3460 
3461  for (auto *D : Pos->second) {
3462  // A tag declaration does not hide a non-tag declaration.
3463  if (D->hasTagIdentifierNamespace() &&
3466  continue;
3467 
3468  // Protocols are in distinct namespaces from everything else.
3470  || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3471  D->getIdentifierNamespace() != IDNS)
3472  continue;
3473 
3474  // Functions and function templates in the same scope overload
3475  // rather than hide. FIXME: Look for hiding based on function
3476  // signatures!
3479  SM == ShadowMaps.rbegin())
3480  continue;
3481 
3482  // A shadow declaration that's created by a resolved using declaration
3483  // is not hidden by the same using declaration.
3484  if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3485  cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3486  continue;
3487 
3488  // We've found a declaration that hides this one.
3489  return D;
3490  }
3491  }
3492 
3493  return nullptr;
3494 }
3495 
3496 static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
3497  bool QualifiedNameLookup,
3498  bool InBaseClass,
3499  VisibleDeclConsumer &Consumer,
3500  VisibleDeclsRecord &Visited,
3501  bool IncludeDependentBases,
3502  bool LoadExternal) {
3503  if (!Ctx)
3504  return;
3505 
3506  // Make sure we don't visit the same context twice.
3507  if (Visited.visitedContext(Ctx->getPrimaryContext()))
3508  return;
3509 
3510  Consumer.EnteredContext(Ctx);
3511 
3512  // Outside C++, lookup results for the TU live on identifiers.
3513  if (isa<TranslationUnitDecl>(Ctx) &&
3514  !Result.getSema().getLangOpts().CPlusPlus) {
3515  auto &S = Result.getSema();
3516  auto &Idents = S.Context.Idents;
3517 
3518  // Ensure all external identifiers are in the identifier table.
3519  if (LoadExternal)
3520  if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
3521  std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3522  for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
3523  Idents.get(Name);
3524  }
3525 
3526  // Walk all lookup results in the TU for each identifier.
3527  for (const auto &Ident : Idents) {
3528  for (auto I = S.IdResolver.begin(Ident.getValue()),
3529  E = S.IdResolver.end();
3530  I != E; ++I) {
3531  if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3532  if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3533  Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3534  Visited.add(ND);
3535  }
3536  }
3537  }
3538  }
3539 
3540  return;
3541  }
3542 
3543  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3545 
3546  // We sometimes skip loading namespace-level results (they tend to be huge).
3547  bool Load = LoadExternal ||
3548  !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
3549  // Enumerate all of the results in this context.
3550  for (DeclContextLookupResult R :
3551  Load ? Ctx->lookups()
3552  : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
3553  for (auto *D : R) {
3554  if (auto *ND = Result.getAcceptableDecl(D)) {
3555  Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3556  Visited.add(ND);
3557  }
3558  }
3559  }
3560 
3561  // Traverse using directives for qualified name lookup.
3562  if (QualifiedNameLookup) {
3563  ShadowContextRAII Shadow(Visited);
3564  for (auto I : Ctx->using_directives()) {
3565  if (!Result.getSema().isVisible(I))
3566  continue;
3567  LookupVisibleDecls(I->getNominatedNamespace(), Result,
3568  QualifiedNameLookup, InBaseClass, Consumer, Visited,
3569  IncludeDependentBases, LoadExternal);
3570  }
3571  }
3572 
3573  // Traverse the contexts of inherited C++ classes.
3574  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3575  if (!Record->hasDefinition())
3576  return;
3577 
3578  for (const auto &B : Record->bases()) {
3579  QualType BaseType = B.getType();
3580 
3581  RecordDecl *RD;
3582  if (BaseType->isDependentType()) {
3583  if (!IncludeDependentBases) {
3584  // Don't look into dependent bases, because name lookup can't look
3585  // there anyway.
3586  continue;
3587  }
3588  const auto *TST = BaseType->getAs<TemplateSpecializationType>();
3589  if (!TST)
3590  continue;
3591  TemplateName TN = TST->getTemplateName();
3592  const auto *TD =
3593  dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
3594  if (!TD)
3595  continue;
3596  RD = TD->getTemplatedDecl();
3597  } else {
3598  const auto *Record = BaseType->getAs<RecordType>();
3599  if (!Record)
3600  continue;
3601  RD = Record->getDecl();
3602  }
3603 
3604  // FIXME: It would be nice to be able to determine whether referencing
3605  // a particular member would be ambiguous. For example, given
3606  //
3607  // struct A { int member; };
3608  // struct B { int member; };
3609  // struct C : A, B { };
3610  //
3611  // void f(C *c) { c->### }
3612  //
3613  // accessing 'member' would result in an ambiguity. However, we
3614  // could be smart enough to qualify the member with the base
3615  // class, e.g.,
3616  //
3617  // c->B::member
3618  //
3619  // or
3620  //
3621  // c->A::member
3622 
3623  // Find results in this base class (and its bases).
3624  ShadowContextRAII Shadow(Visited);
3625  LookupVisibleDecls(RD, Result, QualifiedNameLookup, true, Consumer,
3626  Visited, IncludeDependentBases, LoadExternal);
3627  }
3628  }
3629 
3630  // Traverse the contexts of Objective-C classes.
3631  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3632  // Traverse categories.
3633  for (auto *Cat : IFace->visible_categories()) {
3634  ShadowContextRAII Shadow(Visited);
3635  LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false, Consumer,
3636  Visited, IncludeDependentBases, LoadExternal);
3637  }
3638 
3639  // Traverse protocols.
3640  for (auto *I : IFace->all_referenced_protocols()) {
3641  ShadowContextRAII Shadow(Visited);
3642  LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3643  Visited, IncludeDependentBases, LoadExternal);
3644  }
3645 
3646  // Traverse the superclass.
3647  if (IFace->getSuperClass()) {
3648  ShadowContextRAII Shadow(Visited);
3649  LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3650  true, Consumer, Visited, IncludeDependentBases,
3651  LoadExternal);
3652  }
3653 
3654  // If there is an implementation, traverse it. We do this to find
3655  // synthesized ivars.
3656  if (IFace->getImplementation()) {
3657  ShadowContextRAII Shadow(Visited);
3658  LookupVisibleDecls(IFace->getImplementation(), Result,
3659  QualifiedNameLookup, InBaseClass, Consumer, Visited,
3660  IncludeDependentBases, LoadExternal);
3661  }
3662  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3663  for (auto *I : Protocol->protocols()) {
3664  ShadowContextRAII Shadow(Visited);
3665  LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3666  Visited, IncludeDependentBases, LoadExternal);
3667  }
3668  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3669  for (auto *I : Category->protocols()) {
3670  ShadowContextRAII Shadow(Visited);
3671  LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3672  Visited, IncludeDependentBases, LoadExternal);
3673  }
3674 
3675  // If there is an implementation, traverse it.
3676  if (Category->getImplementation()) {
3677  ShadowContextRAII Shadow(Visited);
3678  LookupVisibleDecls(Category->getImplementation(), Result,
3679  QualifiedNameLookup, true, Consumer, Visited,
3680  IncludeDependentBases, LoadExternal);
3681  }
3682  }
3683 }
3684 
3685 static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3686  UnqualUsingDirectiveSet &UDirs,
3687  VisibleDeclConsumer &Consumer,
3688  VisibleDeclsRecord &Visited,
3689  bool LoadExternal) {
3690  if (!S)
3691  return;
3692 
3693  if (!S->getEntity() ||
3694  (!S->getParent() &&
3695  !Visited.alreadyVisitedContext(S->getEntity())) ||
3696  (S->getEntity())->isFunctionOrMethod()) {
3697  FindLocalExternScope FindLocals(Result);
3698  // Walk through the declarations in this Scope. The consumer might add new
3699  // decls to the scope as part of deserialization, so make a copy first.
3700  SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
3701  for (Decl *D : ScopeDecls) {
3702  if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3703  if ((ND = Result.getAcceptableDecl(ND))) {
3704  Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3705  Visited.add(ND);
3706  }
3707  }
3708  }
3709 
3710  // FIXME: C++ [temp.local]p8
3711  DeclContext *Entity = nullptr;
3712  if (S->getEntity()) {
3713  // Look into this scope's declaration context, along with any of its
3714  // parent lookup contexts (e.g., enclosing classes), up to the point
3715  // where we hit the context stored in the next outer scope.
3716  Entity = S->getEntity();
3717  DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3718 
3719  for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3720  Ctx = Ctx->getLookupParent()) {
3721  if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3722  if (Method->isInstanceMethod()) {
3723  // For instance methods, look for ivars in the method's interface.
3724  LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3726  if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3727  LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3728  /*InBaseClass=*/false, Consumer, Visited,
3729  /*IncludeDependentBases=*/false, LoadExternal);
3730  }
3731  }
3732 
3733  // We've already performed all of the name lookup that we need
3734  // to for Objective-C methods; the next context will be the
3735  // outer scope.
3736  break;
3737  }
3738 
3739  if (Ctx->isFunctionOrMethod())
3740  continue;
3741 
3742  LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3743  /*InBaseClass=*/false, Consumer, Visited,
3744  /*IncludeDependentBases=*/false, LoadExternal);
3745  }
3746  } else if (!S->getParent()) {
3747  // Look into the translation unit scope. We walk through the translation
3748  // unit's declaration context, because the Scope itself won't have all of
3749  // the declarations if we loaded a precompiled header.
3750  // FIXME: We would like the translation unit's Scope object to point to the
3751  // translation unit, so we don't need this special "if" branch. However,
3752  // doing so would force the normal C++ name-lookup code to look into the
3753  // translation unit decl when the IdentifierInfo chains would suffice.
3754  // Once we fix that problem (which is part of a more general "don't look
3755  // in DeclContexts unless we have to" optimization), we can eliminate this.
3756  Entity = Result.getSema().Context.getTranslationUnitDecl();
3757  LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3758  /*InBaseClass=*/false, Consumer, Visited,
3759  /*IncludeDependentBases=*/false, LoadExternal);
3760  }
3761 
3762  if (Entity) {
3763  // Lookup visible declarations in any namespaces found by using
3764  // directives.
3765  for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3766  LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
3767  Result, /*QualifiedNameLookup=*/false,
3768  /*InBaseClass=*/false, Consumer, Visited,
3769  /*IncludeDependentBases=*/false, LoadExternal);
3770  }
3771 
3772  // Lookup names in the parent scope.
3773  ShadowContextRAII Shadow(Visited);
3774  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited,
3775  LoadExternal);
3776 }
3777 
3779  VisibleDeclConsumer &Consumer,
3780  bool IncludeGlobalScope, bool LoadExternal) {
3781  // Determine the set of using directives available during
3782  // unqualified name lookup.
3783  Scope *Initial = S;
3784  UnqualUsingDirectiveSet UDirs(*this);
3785  if (getLangOpts().CPlusPlus) {
3786  // Find the first namespace or translation-unit scope.
3787  while (S && !isNamespaceOrTranslationUnitScope(S))
3788  S = S->getParent();
3789 
3790  UDirs.visitScopeChain(Initial, S);
3791  }
3792  UDirs.done();
3793 
3794  // Look for visible declarations.
3795  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3796  Result.setAllowHidden(Consumer.includeHiddenDecls());
3797  VisibleDeclsRecord Visited;
3798  if (!IncludeGlobalScope)
3799  Visited.visitedContext(Context.getTranslationUnitDecl());
3800  ShadowContextRAII Shadow(Visited);
3801  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited, LoadExternal);
3802 }
3803 
3805  VisibleDeclConsumer &Consumer,
3806  bool IncludeGlobalScope,
3807  bool IncludeDependentBases, bool LoadExternal) {
3808  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3809  Result.setAllowHidden(Consumer.includeHiddenDecls());
3810  VisibleDeclsRecord Visited;
3811  if (!IncludeGlobalScope)
3812  Visited.visitedContext(Context.getTranslationUnitDecl());
3813  ShadowContextRAII Shadow(Visited);
3814  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3815  /*InBaseClass=*/false, Consumer, Visited,
3816  IncludeDependentBases, LoadExternal);
3817 }
3818 
3819 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3820 /// If GnuLabelLoc is a valid source location, then this is a definition
3821 /// of an __label__ label name, otherwise it is a normal label definition
3822 /// or use.
3824  SourceLocation GnuLabelLoc) {
3825  // Do a lookup to see if we have a label with this name already.
3826  NamedDecl *Res = nullptr;
3827 
3828  if (GnuLabelLoc.isValid()) {
3829  // Local label definitions always shadow existing labels.
3830  Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3831  Scope *S = CurScope;
3832  PushOnScopeChains(Res, S, true);
3833  return cast<LabelDecl>(Res);
3834  }
3835 
3836  // Not a GNU local label.
3837  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3838  // If we found a label, check to see if it is in the same context as us.
3839  // When in a Block, we don't want to reuse a label in an enclosing function.
3840  if (Res && Res->getDeclContext() != CurContext)
3841  Res = nullptr;
3842  if (!Res) {
3843  // If not forward referenced or defined already, create the backing decl.
3844  Res = LabelDecl::Create(Context, CurContext, Loc, II);
3845  Scope *S = CurScope->getFnParent();
3846  assert(S && "Not in a function?");
3847  PushOnScopeChains(Res, S, true);
3848  }
3849  return cast<LabelDecl>(Res);
3850 }
3851 
3852 //===----------------------------------------------------------------------===//
3853 // Typo correction
3854 //===----------------------------------------------------------------------===//
3855 
3857  TypoCorrection &Candidate) {
3858  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3859  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3860 }
3861 
3862 static void LookupPotentialTypoResult(Sema &SemaRef,
3863  LookupResult &Res,
3864  IdentifierInfo *Name,
3865  Scope *S, CXXScopeSpec *SS,
3867  bool EnteringContext,
3868  bool isObjCIvarLookup,
3869  bool FindHidden);
3870 
3871 /// Check whether the declarations found for a typo correction are
3872 /// visible. Set the correction's RequiresImport flag to true if none of the
3873 /// declarations are visible, false otherwise.
3874 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
3875  TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
3876 
3877  for (/**/; DI != DE; ++DI)
3878  if (!LookupResult::isVisible(SemaRef, *DI))
3879  break;
3880  // No filtering needed if all decls are visible.
3881  if (DI == DE) {
3882  TC.setRequiresImport(false);
3883  return;
3884  }
3885 
3886  llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
3887  bool AnyVisibleDecls = !NewDecls.empty();
3888 
3889  for (/**/; DI != DE; ++DI) {
3890  if (LookupResult::isVisible(SemaRef, *DI)) {
3891  if (!AnyVisibleDecls) {
3892  // Found a visible decl, discard all hidden ones.
3893  AnyVisibleDecls = true;
3894  NewDecls.clear();
3895  }
3896  NewDecls.push_back(*DI);
3897  } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
3898  NewDecls.push_back(*DI);
3899  }
3900 
3901  if (NewDecls.empty())
3902  TC = TypoCorrection();
3903  else {
3904  TC.setCorrectionDecls(NewDecls);
3905  TC.setRequiresImport(!AnyVisibleDecls);
3906  }
3907 }
3908 
3909 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
3910 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3911 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3913  NestedNameSpecifier *NNS,
3915  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3916  getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3917  else
3918  Identifiers.clear();
3919 
3920  const IdentifierInfo *II = nullptr;
3921 
3922  switch (NNS->getKind()) {
3924  II = NNS->getAsIdentifier();
3925  break;
3926 
3928  if (NNS->getAsNamespace()->isAnonymousNamespace())
3929  return;
3930  II = NNS->getAsNamespace()->getIdentifier();
3931  break;
3932 
3934  II = NNS->getAsNamespaceAlias()->getIdentifier();
3935  break;
3936 
3939  II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3940  break;
3941 
3944  return;
3945  }
3946 
3947  if (II)
3948  Identifiers.push_back(II);
3949 }
3950 
3952  DeclContext *Ctx, bool InBaseClass) {
3953  // Don't consider hidden names for typo correction.
3954  if (Hiding)
3955  return;
3956 
3957  // Only consider entities with identifiers for names, ignoring
3958  // special names (constructors, overloaded operators, selectors,
3959  // etc.).
3960  IdentifierInfo *Name = ND->getIdentifier();
3961  if (!Name)
3962  return;
3963 
3964  // Only consider visible declarations and declarations from modules with
3965  // names that exactly match.
3966  if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
3967  return;
3968 
3969  FoundName(Name->getName());
3970 }
3971 
3973  // Compute the edit distance between the typo and the name of this
3974  // entity, and add the identifier to the list of results.
3975  addName(Name, nullptr);
3976 }
3977 
3979  // Compute the edit distance between the typo and this keyword,
3980  // and add the keyword to the list of results.
3981  addName(Keyword, nullptr, nullptr, true);
3982 }
3983 
3984 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
3985  NestedNameSpecifier *NNS, bool isKeyword) {
3986  // Use a simple length-based heuristic to determine the minimum possible
3987  // edit distance. If the minimum isn't good enough, bail out early.
3988  StringRef TypoStr = Typo->getName();
3989  unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
3990  if (MinED && TypoStr.size() / MinED < 3)
3991  return;
3992 
3993  // Compute an upper bound on the allowable edit distance, so that the
3994  // edit-distance algorithm can short-circuit.
3995  unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
3996  unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
3997  if (ED >= UpperBound) return;
3998 
3999  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4000  if (isKeyword) TC.makeKeyword();
4001  TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4002  addCorrection(TC);
4003 }
4004 
4005 static const unsigned MaxTypoDistanceResultSets = 5;
4006 
4008  StringRef TypoStr = Typo->getName();
4009  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4010 
4011  // For very short typos, ignore potential corrections that have a different
4012  // base identifier from the typo or which have a normalized edit distance
4013  // longer than the typo itself.
4014  if (TypoStr.size() < 3 &&
4015  (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4016  return;
4017 
4018  // If the correction is resolved but is not viable, ignore it.
4019  if (Correction.isResolved()) {
4020  checkCorrectionVisibility(SemaRef, Correction);
4021  if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4022  return;
4023  }
4024 
4025  TypoResultList &CList =
4026  CorrectionResults[Correction.getEditDistance(false)][Name];
4027 
4028  if (!CList.empty() && !CList.back().isResolved())
4029  CList.pop_back();
4030  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4031  std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
4032  for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
4033  RI != RIEnd; ++RI) {
4034  // If the Correction refers to a decl already in the result list,
4035  // replace the existing result if the string representation of Correction
4036  // comes before the current result alphabetically, then stop as there is
4037  // nothing more to be done to add Correction to the candidate set.
4038  if (RI->getCorrectionDecl() == NewND) {
4039  if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
4040  *RI = Correction;
4041  return;
4042  }
4043  }
4044  }
4045  if (CList.empty() || Correction.isResolved())
4046  CList.push_back(Correction);
4047 
4048  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4049  CorrectionResults.erase(std::prev(CorrectionResults.end()));
4050 }
4051 
4053  const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4054  SearchNamespaces = true;
4055 
4056  for (auto KNPair : KnownNamespaces)
4057  Namespaces.addNameSpecifier(KNPair.first);
4058 
4059  bool SSIsTemplate = false;
4060  if (NestedNameSpecifier *NNS =
4061  (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4062  if (const Type *T = NNS->getAsType())
4063  SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4064  }
4065  // Do not transform this into an iterator-based loop. The loop body can
4066  // trigger the creation of further types (through lazy deserialization) and
4067  // invalide iterators into this list.
4068  auto &Types = SemaRef.getASTContext().getTypes();
4069  for (unsigned I = 0; I != Types.size(); ++I) {
4070  const auto *TI = Types[I];
4071  if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4072  CD = CD->getCanonicalDecl();
4073  if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4074  !CD->isUnion() && CD->getIdentifier() &&
4075  (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4076  (CD->isBeingDefined() || CD->isCompleteDefinition()))
4077  Namespaces.addNameSpecifier(CD);
4078  }
4079  }
4080 }
4081 
4083  if (++CurrentTCIndex < ValidatedCorrections.size())
4084  return ValidatedCorrections[CurrentTCIndex];
4085 
4086  CurrentTCIndex = ValidatedCorrections.size();
4087  while (!CorrectionResults.empty()) {
4088  auto DI = CorrectionResults.begin();
4089  if (DI->second.empty()) {
4090  CorrectionResults.erase(DI);
4091  continue;
4092  }
4093 
4094  auto RI = DI->second.begin();
4095  if (RI->second.empty()) {
4096  DI->second.erase(RI);
4097  performQualifiedLookups();
4098  continue;
4099  }
4100 
4101  TypoCorrection TC = RI->second.pop_back_val();
4102  if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4103  ValidatedCorrections.push_back(TC);
4104  return ValidatedCorrections[CurrentTCIndex];
4105  }
4106  }
4107  return ValidatedCorrections[0]; // The empty correction.
4108 }
4109 
4110 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4111  IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4112  DeclContext *TempMemberContext = MemberContext;
4113  CXXScopeSpec *TempSS = SS.get();
4114 retry_lookup:
4115  LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4116  EnteringContext,
4117  CorrectionValidator->IsObjCIvarLookup,
4118  Name == Typo && !Candidate.WillReplaceSpecifier());
4119  switch (Result.getResultKind()) {
4123  if (TempSS) {
4124  // Immediately retry the lookup without the given CXXScopeSpec
4125  TempSS = nullptr;
4126  Candidate.WillReplaceSpecifier(true);
4127  goto retry_lookup;
4128  }
4129  if (TempMemberContext) {
4130  if (SS && !TempSS)
4131  TempSS = SS.get();
4132  TempMemberContext = nullptr;
4133  goto retry_lookup;
4134  }
4135  if (SearchNamespaces)
4136  QualifiedResults.push_back(Candidate);
4137  break;
4138 
4140  // We don't deal with ambiguities.
4141  break;
4142 
4143  case LookupResult::Found:
4145  // Store all of the Decls for overloaded symbols
4146  for (auto *TRD : Result)
4147  Candidate.addCorrectionDecl(TRD);
4148  checkCorrectionVisibility(SemaRef, Candidate);
4149  if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4150  if (SearchNamespaces)
4151  QualifiedResults.push_back(Candidate);
4152  break;
4153  }
4154  Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4155  return true;
4156  }
4157  return false;
4158 }
4159 
4160 void TypoCorrectionConsumer::performQualifiedLookups() {
4161  unsigned TypoLen = Typo->getName().size();
4162  for (const TypoCorrection &QR : QualifiedResults) {
4163  for (const auto &NSI : Namespaces) {
4164  DeclContext *Ctx = NSI.DeclCtx;
4165  const Type *NSType = NSI.NameSpecifier->getAsType();
4166 
4167  // If the current NestedNameSpecifier refers to a class and the
4168  // current correction candidate is the name of that class, then skip
4169  // it as it is unlikely a qualified version of the class' constructor
4170  // is an appropriate correction.
4171  if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4172  nullptr) {
4173  if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4174  continue;
4175  }
4176 
4177  TypoCorrection TC(QR);
4178  TC.ClearCorrectionDecls();
4179  TC.setCorrectionSpecifier(NSI.NameSpecifier);
4180  TC.setQualifierDistance(NSI.EditDistance);
4181  TC.setCallbackDistance(0); // Reset the callback distance
4182 
4183  // If the current correction candidate and namespace combination are
4184  // too far away from the original typo based on the normalized edit
4185  // distance, then skip performing a qualified name lookup.
4186  unsigned TmpED = TC.getEditDistance(true);
4187  if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4188  TypoLen / TmpED < 3)
4189  continue;
4190 
4191  Result.clear();
4192  Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4193  if (!SemaRef.LookupQualifiedName(Result, Ctx))
4194  continue;
4195 
4196  // Any corrections added below will be validated in subsequent
4197  // iterations of the main while() loop over the Consumer's contents.
4198  switch (Result.getResultKind()) {
4199  case LookupResult::Found:
4201  if (SS && SS->isValid()) {
4202  std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4203  std::string OldQualified;
4204  llvm::raw_string_ostream OldOStream(OldQualified);
4205  SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4206  OldOStream << Typo->getName();
4207  // If correction candidate would be an identical written qualified
4208  // identifer, then the existing CXXScopeSpec probably included a
4209  // typedef that didn't get accounted for properly.
4210  if (OldOStream.str() == NewQualified)
4211  break;
4212  }
4213  for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4214  TRD != TRDEnd; ++TRD) {
4215  if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4216  NSType ? NSType->getAsCXXRecordDecl()
4217  : nullptr,
4218  TRD.getPair()) == Sema::AR_accessible)
4219  TC.addCorrectionDecl(*TRD);
4220  }
4221  if (TC.isResolved()) {
4222  TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4223  addCorrection(TC);
4224  }
4225  break;
4226  }
4231  break;
4232  }
4233  }
4234  }
4235  QualifiedResults.clear();
4236 }
4237 
4238 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4239  ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4240  : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4241  if (NestedNameSpecifier *NNS =
4242  CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4243  llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4244  NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4245 
4246  getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4247  }
4248  // Build the list of identifiers that would be used for an absolute
4249  // (from the global context) NestedNameSpecifier referring to the current
4250  // context.
4251  for (DeclContext *C : llvm::reverse(CurContextChain)) {
4252  if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4253  CurContextIdentifiers.push_back(ND->getIdentifier());
4254  }
4255 
4256  // Add the global context as a NestedNameSpecifier
4257  SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4259  DistanceMap[1].push_back(SI);
4260 }
4261 
4262 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4263  DeclContext *Start) -> DeclContextList {
4264  assert(Start && "Building a context chain from a null context");
4265  DeclContextList Chain;
4266  for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4267  DC = DC->getLookupParent()) {
4268  NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4269  if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4270  !(ND && ND->isAnonymousNamespace()))
4271  Chain.push_back(DC->getPrimaryContext());
4272  }
4273  return Chain;
4274 }
4275 
4276 unsigned
4277 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4278  DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4279  unsigned NumSpecifiers = 0;
4280  for (DeclContext *C : llvm::reverse(DeclChain)) {
4281  if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4282  NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4283  ++NumSpecifiers;
4284  } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4285  NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4286  RD->getTypeForDecl());
4287  ++NumSpecifiers;
4288  }
4289  }
4290  return NumSpecifiers;
4291 }
4292 
4293 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4294  DeclContext *Ctx) {
4295  NestedNameSpecifier *NNS = nullptr;
4296  unsigned NumSpecifiers = 0;
4297  DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4298  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4299 
4300  // Eliminate common elements from the two DeclContext chains.
4301  for (DeclContext *C : llvm::reverse(CurContextChain)) {
4302  if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4303  break;
4304  NamespaceDeclChain.pop_back();
4305  }
4306 
4307  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4308  NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4309 
4310  // Add an explicit leading '::' specifier if needed.
4311  if (NamespaceDeclChain.empty()) {
4312  // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4313  NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4314  NumSpecifiers =
4315  buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4316  } else if (NamedDecl *ND =
4317  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4318  IdentifierInfo *Name = ND->getIdentifier();
4319  bool SameNameSpecifier = false;
4320  if (std::find(CurNameSpecifierIdentifiers.begin(),
4321  CurNameSpecifierIdentifiers.end(),
4322  Name) != CurNameSpecifierIdentifiers.end()) {
4323  std::string NewNameSpecifier;
4324  llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4325  SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4326  getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4327  NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4328  SpecifierOStream.flush();
4329  SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4330  }
4331  if (SameNameSpecifier ||
4332  std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
4333  Name) != CurContextIdentifiers.end()) {
4334  // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4335  NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4336  NumSpecifiers =
4337  buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4338  }
4339  }
4340 
4341  // If the built NestedNameSpecifier would be replacing an existing
4342  // NestedNameSpecifier, use the number of component identifiers that
4343  // would need to be changed as the edit distance instead of the number
4344  // of components in the built NestedNameSpecifier.
4345  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4346  SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4347  getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4348  NumSpecifiers = llvm::ComputeEditDistance(
4349  llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4350  llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4351  }
4352 
4353  SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4354  DistanceMap[NumSpecifiers].push_back(SI);
4355 }
4356 
4357 /// Perform name lookup for a possible result for typo correction.
4358 static void LookupPotentialTypoResult(Sema &SemaRef,
4359  LookupResult &Res,
4360  IdentifierInfo *Name,
4361  Scope *S, CXXScopeSpec *SS,
4362  DeclContext *MemberContext,
4363  bool EnteringContext,
4364  bool isObjCIvarLookup,
4365  bool FindHidden) {
4366  Res.suppressDiagnostics();
4367  Res.clear();
4368  Res.setLookupName(Name);
4369  Res.setAllowHidden(FindHidden);
4370  if (MemberContext) {
4371  if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4372  if (isObjCIvarLookup) {
4373  if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4374  Res.addDecl(Ivar);
4375  Res.resolveKind();
4376  return;
4377  }
4378  }
4379 
4380  if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4382  Res.addDecl(Prop);
4383  Res.resolveKind();
4384  return;
4385  }
4386  }
4387 
4388  SemaRef.LookupQualifiedName(Res, MemberContext);
4389  return;
4390  }
4391 
4392  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4393  EnteringContext);
4394 
4395  // Fake ivar lookup; this should really be part of
4396  // LookupParsedName.
4397  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4398  if (Method->isInstanceMethod() && Method->getClassInterface() &&
4399  (Res.empty() ||
4400  (Res.isSingleResult() &&
4402  if (ObjCIvarDecl *IV
4403  = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4404  Res.addDecl(IV);
4405  Res.resolveKind();
4406  }
4407  }
4408  }
4409 }
4410 
4411 /// Add keywords to the consumer as possible typo corrections.
4412 static void AddKeywordsToConsumer(Sema &SemaRef,
4413  TypoCorrectionConsumer &Consumer,
4415  bool AfterNestedNameSpecifier) {
4416  if (AfterNestedNameSpecifier) {
4417  // For 'X::', we know exactly which keywords can appear next.
4418  Consumer.addKeywordResult("template");
4419  if (CCC.WantExpressionKeywords)
4420  Consumer.addKeywordResult("operator");
4421  return;
4422  }
4423 
4424  if (CCC.WantObjCSuper)
4425  Consumer.addKeywordResult("super");
4426 
4427  if (CCC.WantTypeSpecifiers) {
4428  // Add type-specifier keywords to the set of results.
4429  static const char *const CTypeSpecs[] = {
4430  "char", "const", "double", "enum", "float", "int", "long", "short",
4431  "signed", "struct", "union", "unsigned", "void", "volatile",
4432  "_Complex", "_Imaginary",
4433  // storage-specifiers as well
4434  "extern", "inline", "static", "typedef"
4435  };
4436 
4437  const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4438  for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4439  Consumer.addKeywordResult(CTypeSpecs[I]);
4440 
4441  if (SemaRef.getLangOpts().C99)
4442  Consumer.addKeywordResult("restrict");
4443  if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4444  Consumer.addKeywordResult("bool");
4445  else if (SemaRef.getLangOpts().C99)
4446  Consumer.addKeywordResult("_Bool");
4447 
4448  if (SemaRef.getLangOpts().CPlusPlus) {
4449  Consumer.addKeywordResult("class");
4450  Consumer.addKeywordResult("typename");
4451  Consumer.addKeywordResult("wchar_t");
4452 
4453  if (SemaRef.getLangOpts().CPlusPlus11) {
4454  Consumer.addKeywordResult("char16_t");
4455  Consumer.addKeywordResult("char32_t");
4456  Consumer.addKeywordResult("constexpr");
4457  Consumer.addKeywordResult("decltype");
4458  Consumer.addKeywordResult("thread_local");
4459  }
4460  }
4461 
4462  if (SemaRef.getLangOpts().GNUMode)
4463  Consumer.addKeywordResult("typeof");
4464  } else if (CCC.WantFunctionLikeCasts) {
4465  static const char *const CastableTypeSpecs[] = {
4466  "char", "double", "float", "int", "long", "short",
4467  "signed", "unsigned", "void"
4468  };
4469  for (auto *kw : CastableTypeSpecs)
4470  Consumer.addKeywordResult(kw);
4471  }
4472 
4473  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4474  Consumer.addKeywordResult("const_cast");
4475  Consumer.addKeywordResult("dynamic_cast");
4476  Consumer.addKeywordResult("reinterpret_cast");
4477  Consumer.addKeywordResult("static_cast");
4478  }
4479 
4480  if (CCC.WantExpressionKeywords) {
4481  Consumer.addKeywordResult("sizeof");
4482  if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4483  Consumer.addKeywordResult("false");
4484  Consumer.addKeywordResult("true");
4485  }
4486 
4487  if (SemaRef.getLangOpts().CPlusPlus) {
4488  static const char *const CXXExprs[] = {
4489  "delete", "new", "operator", "throw", "typeid"
4490  };
4491  const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4492  for (unsigned I = 0; I != NumCXXExprs; ++I)
4493  Consumer.addKeywordResult(CXXExprs[I]);
4494 
4495  if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4496  cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4497  Consumer.addKeywordResult("this");
4498 
4499  if (SemaRef.getLangOpts().CPlusPlus11) {
4500  Consumer.addKeywordResult("alignof");
4501  Consumer.addKeywordResult("nullptr");
4502  }
4503  }
4504 
4505  if (SemaRef.getLangOpts().C11) {
4506  // FIXME: We should not suggest _Alignof if the alignof macro
4507  // is present.
4508  Consumer.addKeywordResult("_Alignof");
4509  }
4510  }
4511 
4512  if (CCC.WantRemainingKeywords) {
4513  if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4514  // Statements.
4515  static const char *const CStmts[] = {
4516  "do", "else", "for", "goto", "if", "return", "switch", "while" };
4517  const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4518  for (unsigned I = 0; I != NumCStmts; ++I)
4519  Consumer.addKeywordResult(CStmts[I]);
4520 
4521  if (SemaRef.getLangOpts().CPlusPlus) {
4522  Consumer.addKeywordResult("catch");
4523  Consumer.addKeywordResult("try");
4524  }
4525 
4526  if (S && S->getBreakParent())
4527  Consumer.addKeywordResult("break");
4528 
4529  if (S && S->getContinueParent())
4530  Consumer.addKeywordResult("continue");
4531 
4532  if (SemaRef.getCurFunction() &&
4533  !SemaRef.getCurFunction()->SwitchStack.empty()) {
4534  Consumer.addKeywordResult("case");
4535  Consumer.addKeywordResult("default");
4536  }
4537  } else {
4538  if (SemaRef.getLangOpts().CPlusPlus) {
4539  Consumer.addKeywordResult("namespace");
4540  Consumer.addKeywordResult("template");
4541  }
4542 
4543  if (S && S->isClassScope()) {
4544  Consumer.addKeywordResult("explicit");
4545  Consumer.addKeywordResult("friend");
4546  Consumer.addKeywordResult("mutable");
4547  Consumer.addKeywordResult("private");
4548  Consumer.addKeywordResult("protected");
4549  Consumer.addKeywordResult("public");
4550  Consumer.addKeywordResult("virtual");
4551  }
4552  }
4553 
4554  if (SemaRef.getLangOpts().CPlusPlus) {
4555  Consumer.addKeywordResult("using");
4556 
4557  if (SemaRef.getLangOpts().CPlusPlus11)
4558  Consumer.addKeywordResult("static_assert");
4559  }
4560  }
4561 }
4562 
4563 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4564  const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4565  Scope *S, CXXScopeSpec *SS,
4566  std::unique_ptr<CorrectionCandidateCallback> CCC,
4567  DeclContext *MemberContext, bool EnteringContext,
4568  const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4569 
4570  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4571  DisableTypoCorrection)
4572  return nullptr;
4573 
4574  // In Microsoft mode, don't perform typo correction in a template member
4575  // function dependent context because it interferes with the "lookup into
4576  // dependent bases of class templates" feature.
4577  if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4578  isa<CXXMethodDecl>(CurContext))
4579  return nullptr;
4580 
4581  // We only attempt to correct typos for identifiers.
4582  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4583  if (!Typo)
4584  return nullptr;
4585 
4586  // If the scope specifier itself was invalid, don't try to correct
4587  // typos.
4588  if (SS && SS->isInvalid())
4589  return nullptr;
4590 
4591  // Never try to correct typos during any kind of code synthesis.
4592  if (!CodeSynthesisContexts.empty())
4593  return nullptr;
4594 
4595  // Don't try to correct 'super'.
4596  if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4597  return nullptr;
4598 
4599  // Abort if typo correction already failed for this specific typo.
4600  IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4601  if (locs != TypoCorrectionFailures.end() &&
4602  locs->second.count(TypoName.getLoc()))
4603  return nullptr;
4604 
4605  // Don't try to correct the identifier "vector" when in AltiVec mode.
4606  // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4607  // remove this workaround.
4608  if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4609  return nullptr;
4610 
4611  // Provide a stop gap for files that are just seriously broken. Trying
4612  // to correct all typos can turn into a HUGE performance penalty, causing
4613  // some files to take minutes to get rejected by the parser.
4614  unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4615  if (Limit && TyposCorrected >= Limit)
4616  return nullptr;
4617  ++TyposCorrected;
4618 
4619  // If we're handling a missing symbol error, using modules, and the
4620  // special search all modules option is used, look for a missing import.
4621  if (ErrorRecovery && getLangOpts().Modules &&
4622  getLangOpts().ModulesSearchAll) {
4623  // The following has the side effect of loading the missing module.
4624  getModuleLoader().lookupMissingImports(Typo->getName(),
4625  TypoName.getLocStart());
4626  }
4627 
4628  CorrectionCandidateCallback &CCCRef = *CCC;
4629  auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
4630  *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4631  EnteringContext);
4632 
4633  // Perform name lookup to find visible, similarly-named entities.
4634  bool IsUnqualifiedLookup = false;
4635  DeclContext *QualifiedDC = MemberContext;
4636  if (MemberContext) {
4637  LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4638 
4639  // Look in qualified interfaces.
4640  if (OPT) {
4641  for (auto *I : OPT->quals())
4642  LookupVisibleDecls(I, LookupKind, *Consumer);
4643  }
4644  } else if (SS && SS->isSet()) {
4645  QualifiedDC = computeDeclContext(*SS, EnteringContext);
4646  if (!QualifiedDC)
4647  return nullptr;
4648 
4649  LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4650  } else {
4651  IsUnqualifiedLookup = true;
4652  }
4653 
4654  // Determine whether we are going to search in the various namespaces for
4655  // corrections.
4656  bool SearchNamespaces
4657  = getLangOpts().CPlusPlus &&
4658  (IsUnqualifiedLookup || (SS && SS->isSet()));
4659 
4660  if (IsUnqualifiedLookup || SearchNamespaces) {
4661  // For unqualified lookup, look through all of the names that we have
4662  // seen in this translation unit.
4663  // FIXME: Re-add the ability to skip very unlikely potential corrections.
4664  for (const auto &I : Context.Idents)
4665  Consumer->FoundName(I.getKey());
4666 
4667  // Walk through identifiers in external identifier sources.
4668  // FIXME: Re-add the ability to skip very unlikely potential corrections.
4669  if (IdentifierInfoLookup *External
4670  = Context.Idents.getExternalIdentifierLookup()) {
4671  std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4672  do {
4673  StringRef Name = Iter->Next();
4674  if (Name.empty())
4675  break;
4676 
4677  Consumer->FoundName(Name);
4678  } while (true);
4679  }
4680  }
4681 
4682  AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
4683 
4684  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4685  // to search those namespaces.
4686  if (SearchNamespaces) {
4687  // Load any externally-known namespaces.
4688  if (ExternalSource && !LoadedExternalKnownNamespaces) {
4689  SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4690  LoadedExternalKnownNamespaces = true;
4691  ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4692  for (auto *N : ExternalKnownNamespaces)
4693  KnownNamespaces[N] = true;
4694  }
4695 
4696  Consumer->addNamespaces(KnownNamespaces);
4697  }
4698 
4699  return Consumer;
4700 }
4701 
4702 /// Try to "correct" a typo in the source code by finding
4703 /// visible declarations whose names are similar to the name that was
4704 /// present in the source code.
4705 ///
4706 /// \param TypoName the \c DeclarationNameInfo structure that contains
4707 /// the name that was present in the source code along with its location.
4708 ///
4709 /// \param LookupKind the name-lookup criteria used to search for the name.
4710 ///
4711 /// \param S the scope in which name lookup occurs.
4712 ///
4713 /// \param SS the nested-name-specifier that precedes the name we're
4714 /// looking for, if present.
4715 ///
4716 /// \param CCC A CorrectionCandidateCallback object that provides further
4717 /// validation of typo correction candidates. It also provides flags for
4718 /// determining the set of keywords permitted.
4719 ///
4720 /// \param MemberContext if non-NULL, the context in which to look for
4721 /// a member access expression.
4722 ///
4723 /// \param EnteringContext whether we're entering the context described by
4724 /// the nested-name-specifier SS.
4725 ///
4726 /// \param OPT when non-NULL, the search for visible declarations will
4727 /// also walk the protocols in the qualified interfaces of \p OPT.
4728 ///
4729 /// \returns a \c TypoCorrection containing the corrected name if the typo
4730 /// along with information such as the \c NamedDecl where the corrected name
4731 /// was declared, and any additional \c NestedNameSpecifier needed to access
4732 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4734  Sema::LookupNameKind LookupKind,
4735  Scope *S, CXXScopeSpec *SS,
4736  std::unique_ptr<CorrectionCandidateCallback> CCC,
4737  CorrectTypoKind Mode,
4738  DeclContext *MemberContext,
4739  bool EnteringContext,
4740  const ObjCObjectPointerType *OPT,
4741  bool RecordFailure) {
4742  assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback");
4743 
4744  // Always let the ExternalSource have the first chance at correction, even
4745  // if we would otherwise have given up.
4746  if (ExternalSource) {
4747  if (TypoCorrection Correction = ExternalSource->CorrectTypo(
4748  TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
4749  return Correction;
4750  }
4751 
4752  // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4753  // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4754  // some instances of CTC_Unknown, while WantRemainingKeywords is true
4755  // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4756  bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
4757 
4758  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4759  auto Consumer = makeTypoCorrectionConsumer(
4760  TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4761  EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4762 
4763  if (!Consumer)
4764  return TypoCorrection();
4765 
4766  // If we haven't found anything, we're done.
4767  if (Consumer->empty())
4768  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4769 
4770  // Make sure the best edit distance (prior to adding any namespace qualifiers)
4771  // is not more that about a third of the length of the typo's identifier.
4772  unsigned ED = Consumer->getBestEditDistance(true);
4773  unsigned TypoLen = Typo->getName().size();
4774  if (ED > 0 && TypoLen / ED < 3)
4775  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4776 
4777  TypoCorrection BestTC = Consumer->getNextCorrection();
4778  TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4779  if (!BestTC)
4780  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4781 
4782  ED = BestTC.getEditDistance();
4783 
4784  if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4785  // If this was an unqualified lookup and we believe the callback
4786  // object wouldn't have filtered out possible corrections, note
4787  // that no correction was found.
4788  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4789  }
4790 
4791  // If only a single name remains, return that result.
4792  if (!SecondBestTC ||
4793  SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4794  const TypoCorrection &Result = BestTC;
4795 
4796  // Don't correct to a keyword that's the same as the typo; the keyword
4797  // wasn't actually in scope.
4798  if (ED == 0 && Result.isKeyword())
4799  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4800 
4801  TypoCorrection TC = Result;
4802  TC.setCorrectionRange(SS, TypoName);
4803  checkCorrectionVisibility(*this, TC);
4804  return TC;
4805  } else if (SecondBestTC && ObjCMessageReceiver) {
4806  // Prefer 'super' when we're completing in a message-receiver
4807  // context.
4808 
4809  if (BestTC.getCorrection().getAsString() != "super") {
4810  if (SecondBestTC.getCorrection().getAsString() == "super")
4811  BestTC = SecondBestTC;
4812  else if ((*Consumer)["super"].front().isKeyword())
4813  BestTC = (*Consumer)["super"].front();
4814  }
4815  // Don't correct to a keyword that's the same as the typo; the keyword
4816  // wasn't actually in scope.
4817  if (BestTC.getEditDistance() == 0 ||
4818  BestTC.getCorrection().getAsString() != "super")
4819  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4820 
4821  BestTC.setCorrectionRange(SS, TypoName);
4822  return BestTC;
4823  }
4824 
4825  // Record the failure's location if needed and return an empty correction. If
4826  // this was an unqualified lookup and we believe the callback object did not
4827  // filter out possible corrections, also cache the failure for the typo.
4828  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
4829 }
4830 
4831 /// Try to "correct" a typo in the source code by finding
4832 /// visible declarations whose names are similar to the name that was
4833 /// present in the source code.
4834 ///
4835 /// \param TypoName the \c DeclarationNameInfo structure that contains
4836 /// the name that was present in the source code along with its location.
4837 ///
4838 /// \param LookupKind the name-lookup criteria used to search for the name.
4839 ///
4840 /// \param S the scope in which name lookup occurs.
4841 ///
4842 /// \param SS the nested-name-specifier that precedes the name we're
4843 /// looking for, if present.
4844 ///
4845 /// \param CCC A CorrectionCandidateCallback object that provides further
4846 /// validation of typo correction candidates. It also provides flags for
4847 /// determining the set of keywords permitted.
4848 ///
4849 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
4850 /// diagnostics when the actual typo correction is attempted.
4851 ///
4852 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
4853 /// Expr from a typo correction candidate.
4854 ///
4855 /// \param MemberContext if non-NULL, the context in which to look for
4856 /// a member access expression.
4857 ///
4858 /// \param EnteringContext whether we're entering the context described by
4859 /// the nested-name-specifier SS.
4860 ///
4861 /// \param OPT when non-NULL, the search for visible declarations will
4862 /// also walk the protocols in the qualified interfaces of \p OPT.
4863 ///
4864 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
4865 /// Expr representing the result of performing typo correction, or nullptr if
4866 /// typo correction is not possible. If nullptr is returned, no diagnostics will
4867 /// be emitted and it is the responsibility of the caller to emit any that are
4868 /// needed.
4870  const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4871  Scope *S, CXXScopeSpec *SS,
4872  std::unique_ptr<CorrectionCandidateCallback> CCC,
4874  DeclContext *MemberContext, bool EnteringContext,
4875  const ObjCObjectPointerType *OPT) {
4876  assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback");
4877 
4878  auto Consumer = makeTypoCorrectionConsumer(
4879  TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4880  EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4881 
4882  // Give the external sema source a chance to correct the typo.
4883  TypoCorrection ExternalTypo;
4884  if (ExternalSource && Consumer) {
4885  ExternalTypo = ExternalSource->CorrectTypo(
4886  TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
4887  MemberContext, EnteringContext, OPT);
4888  if (ExternalTypo)
4889  Consumer->addCorrection(ExternalTypo);
4890  }
4891 
4892  if (!Consumer || Consumer->empty())
4893  return nullptr;
4894 
4895  // Make sure the best edit distance (prior to adding any namespace qualifiers)
4896  // is not more that about a third of the length of the typo's identifier.
4897  unsigned ED = Consumer->getBestEditDistance(true);
4898  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4899  if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
4900  return nullptr;
4901 
4902  ExprEvalContexts.back().NumTypos++;
4903  return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
4904 }
4905 
4907  if (!CDecl) return;
4908 
4909  if (isKeyword())
4910  CorrectionDecls.clear();
4911 
4912  CorrectionDecls.push_back(CDecl);
4913 
4914  if (!CorrectionName)
4915  CorrectionName = CDecl->getDeclName();
4916 }
4917 
4918 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4919  if (CorrectionNameSpec) {
4920  std::string tmpBuffer;
4921  llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4922  CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4923  PrefixOStream << CorrectionName;
4924  return PrefixOStream.str();
4925  }
4926 
4927  return CorrectionName.getAsString();
4928 }
4929 
4931  const TypoCorrection &candidate) {
4932  if (!candidate.isResolved())
4933  return true;
4934 
4935  if (candidate.isKeyword())
4936  return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4937  WantRemainingKeywords || WantObjCSuper;
4938 
4939  bool HasNonType = false;
4940  bool HasStaticMethod = false;
4941  bool HasNonStaticMethod = false;
4942  for (Decl *D : candidate) {
4943  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4944  D = FTD->getTemplatedDecl();
4945  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4946  if (Method->isStatic())
4947  HasStaticMethod = true;
4948  else
4949  HasNonStaticMethod = true;
4950  }
4951  if (!isa<TypeDecl>(D))
4952  HasNonType = true;
4953  }
4954 
4955  if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4956  !candidate.getCorrectionSpecifier())
4957  return false;
4958 
4959  return WantTypeSpecifiers || HasNonType;
4960 }
4961 
4963  bool HasExplicitTemplateArgs,
4964  MemberExpr *ME)
4965  : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4966  CurContext(SemaRef.CurContext), MemberFn(ME) {
4967  WantTypeSpecifiers = false;
4968  WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
4969  WantRemainingKeywords = false;
4970 }
4971 
4973  if (!candidate.getCorrectionDecl())
4974  return candidate.isKeyword();
4975 
4976  for (auto *C : candidate) {
4977  FunctionDecl *FD = nullptr;
4978  NamedDecl *ND = C->getUnderlyingDecl();
4979  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4980  FD = FTD->getTemplatedDecl();
4981  if (!HasExplicitTemplateArgs && !FD) {
4982  if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4983  // If the Decl is neither a function nor a template function,
4984  // determine if it is a pointer or reference to a function. If so,
4985  // check against the number of arguments expected for the pointee.
4986  QualType ValType = cast<ValueDecl>(ND)->getType();
4987  if (ValType->isAnyPointerType() || ValType->isReferenceType())
4988  ValType = ValType->getPointeeType();
4989  if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
4990  if (FPT->getNumParams() == NumArgs)
4991  return true;
4992  }
4993  }
4994 
4995  // Skip the current candidate if it is not a FunctionDecl or does not accept
4996  // the current number of arguments.
4997  if (!FD || !(FD->getNumParams() >= NumArgs &&
4998  FD->getMinRequiredArguments() <= NumArgs))
4999  continue;
5000 
5001  // If the current candidate is a non-static C++ method, skip the candidate
5002  // unless the method being corrected--or the current DeclContext, if the
5003  // function being corrected is not a method--is a method in the same class
5004  // or a descendent class of the candidate's parent class.
5005  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5006  if (MemberFn || !MD->isStatic()) {
5007  CXXMethodDecl *CurMD =
5008  MemberFn
5009  ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5010  : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5011  CXXRecordDecl *CurRD =
5012  CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5013  CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5014  if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5015  continue;
5016  }
5017  }
5018  return true;
5019  }
5020  return false;
5021 }
5022 
5023 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5024  const PartialDiagnostic &TypoDiag,
5025  bool ErrorRecovery) {
5026  diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5027  ErrorRecovery);
5028 }
5029 
5030 /// Find which declaration we should import to provide the definition of
5031 /// the given declaration.
5033  if (VarDecl *VD = dyn_cast<VarDecl>(D))
5034  return VD->getDefinition();
5035  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5036  return FD->getDefinition();
5037  if (TagDecl *TD = dyn_cast<TagDecl>(D))
5038  return TD->getDefinition();
5039  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5040  return ID->getDefinition();
5041  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5042  return PD->getDefinition();
5043  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5044  return getDefinitionToImport(TD->getTemplatedDecl());
5045  return nullptr;
5046 }
5047 
5049  MissingImportKind MIK, bool Recover) {
5050  // Suggest importing a module providing the definition of this entity, if
5051  // possible.
5052  NamedDecl *Def = getDefinitionToImport(Decl);
5053  if (!Def)
5054  Def = Decl;
5055 
5056  Module *Owner = getOwningModule(Decl);
5057  assert(Owner && "definition of hidden declaration is not in a module");
5058 
5059  llvm::SmallVector<Module*, 8> OwningModules;
5060  OwningModules.push_back(Owner);
5061  auto Merged = Context.getModulesWithMergedDefinition(Decl);
5062  OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5063 
5064  diagnoseMissingImport(Loc, Decl, Decl->getLocation(), OwningModules, MIK,
5065  Recover);
5066 }
5067 
5068 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5069 /// suggesting the addition of a #include of the specified file.
5071  const FileEntry *E) {
5072  bool IsSystem;
5073  auto Path =
5075  return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5076 }
5077 
5079  SourceLocation DeclLoc,
5080  ArrayRef<Module *> Modules,
5081  MissingImportKind MIK, bool Recover) {
5082  assert(!Modules.empty());
5083 
5084  // Weed out duplicates from module list.
5085  llvm::SmallVector<Module*, 8> UniqueModules;
5086  llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5087  for (auto *M : Modules)
5088  if (UniqueModuleSet.insert(M).second)
5089  UniqueModules.push_back(M);
5090  Modules = UniqueModules;
5091 
5092  if (Modules.size() > 1) {
5093  std::string ModuleList;
5094  unsigned N = 0;
5095  for (Module *M : Modules) {
5096  ModuleList += "\n ";
5097  if (++N == 5 && N != Modules.size()) {
5098  ModuleList += "[...]";
5099  break;
5100  }
5101  ModuleList += M->getFullModuleName();
5102  }
5103 
5104  Diag(UseLoc, diag::err_module_unimported_use_multiple)
5105  << (int)MIK << Decl << ModuleList;
5106  } else if (const FileEntry *E = PP.getModuleHeaderToIncludeForDiagnostics(
5107  UseLoc, Modules[0], DeclLoc)) {
5108  // The right way to make the declaration visible is to include a header;
5109  // suggest doing so.
5110  //
5111  // FIXME: Find a smart place to suggest inserting a #include, and add
5112  // a FixItHint there.
5113  Diag(UseLoc, diag::err_module_unimported_use_header)
5114  << (int)MIK << Decl << Modules[0]->getFullModuleName()
5115  << getIncludeStringForHeader(PP, E);
5116  } else {
5117  // FIXME: Add a FixItHint that imports the corresponding module.
5118  Diag(UseLoc, diag::err_module_unimported_use)
5119  << (int)MIK << Decl << Modules[0]->getFullModuleName();
5120  }
5121 
5122  unsigned DiagID;
5123  switch (MIK) {
5124  case MissingImportKind::Declaration:
5125  DiagID = diag::note_previous_declaration;
5126  break;
5127  case MissingImportKind::Definition:
5128  DiagID = diag::note_previous_definition;
5129  break;
5130  case MissingImportKind::DefaultArgument:
5131  DiagID = diag::note_default_argument_declared_here;
5132  break;
5133  case MissingImportKind::ExplicitSpecialization:
5134  DiagID = diag::note_explicit_specialization_declared_here;
5135  break;
5136  case MissingImportKind::PartialSpecialization:
5137  DiagID = diag::note_partial_specialization_declared_here;
5138  break;
5139  }
5140  Diag(DeclLoc, DiagID);
5141 
5142  // Try to recover by implicitly importing this module.
5143  if (Recover)
5144  createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5145 }
5146 
5147 /// Diagnose a successfully-corrected typo. Separated from the correction
5148 /// itself to allow external validation of the result, etc.
5149 ///
5150 /// \param Correction The result of performing typo correction.
5151 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5152 /// string added to it (and usually also a fixit).
5153 /// \param PrevNote A note to use when indicating the location of the entity to
5154 /// which we are correcting. Will have the correction string added to it.
5155 /// \param ErrorRecovery If \c true (the default), the caller is going to
5156 /// recover from the typo as if the corrected string had been typed.
5157 /// In this case, \c PDiag must be an error, and we will attach a fixit
5158 /// to it.
5159 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5160  const PartialDiagnostic &TypoDiag,
5161  const PartialDiagnostic &PrevNote,
5162  bool ErrorRecovery) {
5163  std::string CorrectedStr = Correction.getAsString(getLangOpts());
5164  std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5166  Correction.getCorrectionRange(), CorrectedStr);
5167 
5168  // Maybe we're just missing a module import.
5169  if (Correction.requiresImport()) {
5170  NamedDecl *Decl = Correction.getFoundDecl();
5171  assert(Decl && "import required but no declaration to import");
5172 
5173  diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5174  MissingImportKind::Declaration, ErrorRecovery);
5175  return;
5176  }
5177 
5178  Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5179  << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5180 
5181  NamedDecl *ChosenDecl =
5182  Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5183  if (PrevNote.getDiagID() && ChosenDecl)
5184  Diag(ChosenDecl->getLocation(), PrevNote)
5185  << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5186 
5187  // Add any extra diagnostics.
5188  for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5189  Diag(Correction.getCorrectionRange().getBegin(), PD);
5190 }
5191 
5192 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5194  TypoRecoveryCallback TRC) {
5195  assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5196  auto TE = new (Context) TypoExpr(Context.DependentTy);
5197  auto &State = DelayedTypos[TE];
5198  State.Consumer = std::move(TCC);
5199  State.DiagHandler = std::move(TDG);
5200  State.RecoveryHandler = std::move(TRC);
5201  return TE;
5202 }
5203 
5204 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5205  auto Entry = DelayedTypos.find(TE);
5206  assert(Entry != DelayedTypos.end() &&
5207  "Failed to get the state for a TypoExpr!");
5208  return Entry->second;
5209 }
5210 
5212  DelayedTypos.erase(TE);
5213 }
5214 
5216  DeclarationNameInfo Name(II, IILoc);
5217  LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5218  R.suppressDiagnostics();
5219  R.setHideTags(false);
5220  LookupName(R, S);
5221  R.dump();
5222 }
SourceLocation getLoc() const
getLoc - Returns the main location of the declaration name.
Defines the clang::ASTContext interface.
Name lookup results in an ambiguity because multiple definitions of entity that meet the lookup crite...
Definition: Lookup.h:119
Represents a function declaration or definition.
Definition: Decl.h:1714
FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs, MemberExpr *ME=nullptr)
Name lookup found a set of overloaded functions that met the criteria.
Definition: Lookup.h:64
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
bool isForRedeclaration() const
True if this lookup is just looking for an existing declaration.
Definition: Lookup.h:256
SourceRange getCorrectionRange() const
bool isPredefinedLibFunction(unsigned ID) const
Determines whether this builtin is a predefined libc/libm function, such as "malloc", where we know the signature a priori.
Definition: Builtins.h:141
void setOrigin(CXXRecordDecl *Rec)
CXXMethodDecl * getMethod() const
Definition: Sema.h:1041
no exception specification
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2354
A (possibly-)qualified type.
Definition: Type.h:654
Simple class containing the result of Sema::CorrectTypo.
base_class_range bases()
Definition: DeclCXX.h:796
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2520
bool hasVisibleDeclarationSlow(const NamedDecl *D, llvm::SmallVectorImpl< Module *> *Modules)
CorrectTypoKind
Definition: Sema.h:3209
virtual unsigned RankCandidate(const TypoCorrection &candidate)
Method used by Sema::CorrectTypo to assign an "edit distance" rank to a candidate (where a lower valu...
static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result, bool QualifiedNameLookup, bool InBaseClass, VisibleDeclConsumer &Consumer, VisibleDeclsRecord &Visited, bool IncludeDependentBases, bool LoadExternal)
Template argument deduction was successful.
Definition: Sema.h:6902
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc...
Definition: Sema.h:2993
DeclarationName getCXXConstructorName(CanQualType Ty)
getCXXConstructorName - Returns the name of a C++ constructor for the given Type. ...
void setLookupName(DeclarationName Name)
Sets the name to look up.
Definition: Lookup.h:246
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false)
Perform unqualified name lookup starting from a given scope.
AmbiguityKind getAmbiguityKind() const
Definition: Lookup.h:315
Look up the name of an Objective-C protocol.
Definition: Sema.h:3027
Filter makeFilter()
Create a filter for this result set.
Definition: Lookup.h:671
CXXMethodDecl * LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals)
Look up the moving assignment operator for the given class.
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:3127
Provides information about an attempted template argument deduction, whose success or failure was des...
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:460
void addConst()
Add the const type qualifier to this QualType.
Definition: Type.h:816
Microsoft&#39;s &#39;__super&#39; specifier, stored as a CXXRecordDecl* of the class it appeared in...
void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class)
Force the declaration of any implicitly-declared members of this class.
Definition: SemaLookup.cpp:727
The template argument is an expression, and we&#39;ve not resolved it to one of the other forms yet...
Definition: TemplateBase.h:87
unsigned size() const
Retrieve the number of template arguments in this template argument list.
Definition: DeclTemplate.h:270
bool isSingleTagDecl() const
Asks if the result is a single tag decl.
Definition: Lookup.h:519
void erase()
Erase the last element returned from this iterator.
Definition: Lookup.h:643
ConstructorInfo getConstructorInfo(NamedDecl *ND)
Definition: Overload.h:983
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
__DEVICE__ long long abs(long long __n)
A reference to a name which we were able to look up during parsing but could not resolve to a specifi...
Definition: ExprCXX.h:2739
NestedNameSpecifier * getPrefix() const
Return the prefix of this nested name specifier.
SmallVectorImpl< NamedDecl * >::iterator decl_iterator
Name lookup results in an ambiguity because multiple nonstatic entities that meet the lookup criteria...
Definition: Lookup.h:104
Defines the C++ template declaration subclasses.
bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, bool AllowBuiltinCreation=false, bool EnteringContext=false)
Performs name lookup for a name that was parsed in the source code, and may contain a C++ scope speci...
StringRef P
Classification Classify(ASTContext &Ctx) const
Classify - Classify this expression according to the C++11 expression taxonomy.
Definition: Expr.h:377
bool isTemplateParamScope() const
isTemplateParamScope - Return true if this scope is a C++ template parameter scope.
Definition: Scope.h:375
Scope * TUScope
Translation Unit Scope - useful to Objective-C actions that need to lookup file scope declarations in...
Definition: Sema.h:805
void swap(CXXBasePaths &Other)
Swap this data structure&#39;s contents with another CXXBasePaths object.
SmallVector< CodeSynthesisContext, 16 > CodeSynthesisContexts
List of active code synthesis contexts.
Definition: Sema.h:7236
static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D, llvm::SmallVectorImpl< Module *> *Modules, Filter F)
Decl * getPreviousDecl()
Retrieve the previous declaration that declares the same entity as this declaration, or NULL if there is no previous declaration.
Definition: DeclBase.h:958
NamedDecl * getDecl() const
The base class of the type hierarchy.
Definition: Type.h:1420
MissingImportKind
Kinds of missing import.
Definition: Sema.h:2085
bool isDerivedFrom(const CXXRecordDecl *Base) const
Determine whether this class is derived from the class Base.
The template argument is a declaration that was provided for a pointer, reference, or pointer to member non-type template parameter.
Definition: TemplateBase.h:64
Represent a C++ namespace.
Definition: Decl.h:514
RedeclarationKind
Specifies whether (or how) name lookup is being performed for a redeclaration (vs.
Definition: Sema.h:3038
Ambiguous candidates found.
Definition: Overload.h:60
decl_iterator begin()
AccessSpecifier
A C++ access specifier (public, private, protected), plus the special value "none" which means differ...
Definition: Specifiers.h:96
const NestedNameSpecifier * Specifier
Look up of a name that precedes the &#39;::&#39; scope resolution operator in C++.
Definition: Sema.h:3009
void makeKeyword()
Mark this TypoCorrection as being a keyword.
bool needsImplicitMoveAssignment() const
Determine whether this class should get an implicit move assignment operator or if any existing speci...
Definition: DeclCXX.h:1137
Scope * getContinueParent()
getContinueParent - Return the closest scope that a continue statement would be affected by...
Definition: Scope.h:239
void setCorrectionSpecifier(NestedNameSpecifier *NNS)
bool hasNext() const
Definition: Lookup.h:628
Represents a path from a specific derived class (which is not represented as part of the path) to a p...
LiteralOperatorLookupResult
The possible outcomes of name lookup for a literal operator.
Definition: Sema.h:3063
unsigned getIdentifierNamespace() const
Definition: DeclBase.h:797
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2448
bool isCompleteDefinition() const
Return true if this decl has its body fully specified.
Definition: Decl.h:3157
lookups_range noload_lookups(bool PreserveInternalState) const
Definition: DeclLookups.h:90
Look up a namespace name within a C++ using directive or namespace alias definition, ignoring non-namespace names (C++ [basic.lookup.udir]p1).
Definition: Sema.h:3013
CXXMethodDecl * DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl)
Declare the implicit move assignment operator for the given class.
Consumes visible declarations found when searching for all visible names within a given scope or cont...
Definition: Lookup.h:749
An identifier, stored as an IdentifierInfo*.
CXXConstructorDecl * LookupMovingConstructor(CXXRecordDecl *Class, unsigned Quals)
Look up the moving constructor for the given class.
std::list< CXXBasePath >::iterator paths_iterator
DeclContext::lookup_result Decls
The set of declarations found inside this base class subobject.
static bool LookupBuiltin(Sema &S, LookupResult &R)
Lookup a builtin function, when name lookup would otherwise fail.
Definition: SemaLookup.cpp:674
Represents a variable declaration or definition.
Definition: Decl.h:812
NamedDecl * LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, Scope *S, bool ForRedeclaration, SourceLocation Loc)
LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
Definition: SemaDecl.cpp:1947
CXXMethodDecl * LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals, bool RValueThis, unsigned ThisQuals)
Look up the copying assignment operator for the given class.
static NestedNameSpecifier * Create(const ASTContext &Context, NestedNameSpecifier *Prefix, IdentifierInfo *II)
Builds a specifier combining a prefix and an identifier.
SmallVector< SwitchStmt *, 8 > SwitchStack
SwitchStack - This is the current set of active switch statements in the block.
Definition: ScopeInfo.h:180
DeclarationName getLookupName() const
Gets the name to look up.
Definition: Lookup.h:241
QualType getCXXNameType() const
getCXXNameType - If this name is one of the C++ names (of a constructor, destructor, or conversion function), return the type associated with that name.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6397
PrintingPolicy getPrintingPolicy() const
Retrieve a suitable printing policy for diagnostics.
Definition: Sema.h:2118
static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last)
Determine whether the given set of member declarations contains only static members, nested types, and enumerators.
bool isInObjcMethodScope() const
isInObjcMethodScope - Return true if this scope is, or is contained in, an Objective-C method body...
Definition: Scope.h:353
Represents an empty template argument, e.g., one that has not been deduced.
Definition: TemplateBase.h:57
Extra information about a function prototype.
Definition: Type.h:3467
static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class)
Determine whether we can declare a special member function within the class at this point...
Definition: SemaLookup.cpp:718
bool needsImplicitCopyAssignment() const
Determine whether this class needs an implicit copy assignment operator to be lazily declared...
Definition: DeclCXX.h:1088
void setNotFoundInCurrentInstantiation()
Note that while no result was found in the current instantiation, there were dependent base classes t...
Definition: Lookup.h:441
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition: Decl.h:431
bool isAmbiguous() const
Definition: Lookup.h:290
static bool FindOMPReductionMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, DeclarationName Name)
Base-class lookup callback that determines whether there exists an OpenMP declare reduction member wi...
A namespace, stored as a NamespaceDecl*.
bool isInvalidDecl() const
Definition: DeclBase.h:547
Stores a list of template parameters for a TemplateDecl and its derived classes.
Definition: DeclTemplate.h:68
Describes how types, statements, expressions, and declarations should be printed. ...
Definition: PrettyPrinter.h:38
SpecifierKind getKind() const
Determine what kind of nested name specifier is stored.
Look up an ordinary name that is going to be redeclared as a name with linkage.
Definition: Sema.h:3022
Defines the clang::Expr interface and subclasses for C++ expressions.
void addKeywordResult(StringRef Keyword)
void setMethod(CXXMethodDecl *MD)
Definition: Sema.h:1042
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Types, declared with &#39;struct foo&#39;, typedefs, etc.
Definition: DeclBase.h:130
Represents a struct/union/class.
Definition: Decl.h:3548
bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class)
Perform qualified name lookup into all base classes of the given class.
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
bool Encloses(const DeclContext *DC) const
Determine whether this declaration context encloses the declaration context DC.
Definition: DeclBase.cpp:1110
FunctionType::ExtInfo ExtInfo
Definition: Type.h:3468
Represents a class template specialization, which refers to a class template with a given set of temp...
One of these records is kept for each identifier that is lexed.
Name lookup results in an ambiguity; use getAmbiguityKind to figure out what kind of ambiguity we hav...
Definition: Lookup.h:74
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
std::string getQuoted(const LangOptions &LO) const
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:150
DeclarationName getCorrection() const
Gets the DeclarationName of the typo correction.
The results of name lookup within a DeclContext.
Definition: DeclBase.h:1188
LineState State
The template argument is an integral value stored in an llvm::APSInt that was provided for an integra...
Definition: TemplateBase.h:72
TemplateDecl * getAsTemplateDecl() const
Retrieve the underlying template declaration that this template name refers to, if known...
Base class for callback objects used by Sema::CorrectTypo to check the validity of a potential typo c...
sema::BlockScopeInfo * getCurBlock()
Retrieve the current block, if any.
Definition: Sema.cpp:1454
void setAmbiguousBaseSubobjectTypes(CXXBasePaths &P)
Make these results show that the name was found in base classes of different types.
Definition: SemaLookup.cpp:646
const Type * getAsType() const
Retrieve the type stored in this nested name specifier.
void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx, bool InBaseClass) override
Invoked each time Sema::LookupVisibleDecls() finds a declaration visible from the current scope or co...
This declaration is a friend function.
Definition: DeclBase.h:152
void setVisibleDespiteOwningModule()
Set that this declaration is globally visible, even if it came from a module that is not visible...
Definition: DeclBase.h:778
const DeclarationNameInfo & getLookupNameInfo() const
Gets the name info to look up.
Definition: Lookup.h:231
conversion_iterator conversion_end() const
Definition: DeclCXX.h:1242
bool isReferenceType() const
Definition: Type.h:6040
The iterator over UnresolvedSets.
Definition: UnresolvedSet.h:32
void addCorrectionDecl(NamedDecl *CDecl)
Add the given NamedDecl to the list of NamedDecls that are the declarations associated with the Decla...
bool isDefinedOutsideFunctionOrMethod() const
isDefinedOutsideFunctionOrMethod - This predicate returns true if this scoped decl is defined outside...
Definition: DeclBase.h:853
int Category
Definition: Format.cpp:1575
bool Equals(const DeclContext *DC) const
Determine whether this declaration context is equivalent to the declaration context DC...
Definition: DeclBase.h:1461
bool isExternallyDeclarable() const
Determine whether this declaration can be redeclared in a different translation unit.
Definition: Decl.h:385
LookupResultKind getResultKind() const
Definition: Lookup.h:310
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
Scope * getBreakParent()
getBreakParent - Return the closest scope that a break statement would be affected by...
Definition: Scope.h:249
No entity found met the criteria within the current instantiation,, but there were dependent base cla...
Definition: Lookup.h:56
bool requiresImport() const
Returns whether this typo correction is correcting to a declaration that was declared in a module tha...
Describes a module or submodule.
Definition: Module.h:65
IdentifierTable & Idents
Definition: ASTContext.h:538
TemplateDecl * getCXXDeductionGuideTemplate() const
If this name is the name of a C++ deduction guide, return the template associated with that name...
SpecialMemberOverloadResult - The overloading result for a special member function.
Definition: Sema.h:1025
void setCallbackDistance(unsigned ED)
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:108
DeclClass * getAsSingle() const
Definition: Lookup.h:496
bool isModuleVisible(const Module *M)
Definition: Sema.h:1547
CXXBasePaths * getBasePaths() const
Return the base paths structure that&#39;s associated with these results, or null if none is...
Definition: Lookup.h:332
CXXRecordDecl * getAsRecordDecl() const
Retrieve the record declaration stored in this nested name specifier.
Look up implicit &#39;self&#39; parameter of an objective-c method.
Definition: Sema.h:3029
IdentifierInfo * getAsIdentifier() const
Retrieve the identifier stored in this nested name specifier.
void resolveKind()
Resolves the result kind of the lookup, possibly hiding decls.
Definition: SemaLookup.cpp:471
Represents the results of name lookup.
Definition: Lookup.h:47
void setAmbiguousBaseSubobjects(CXXBasePaths &P)
Make these results show that the name was found in distinct base classes of the same type...
Definition: SemaLookup.cpp:638
static DeclAccessPair make(NamedDecl *D, AccessSpecifier AS)
virtual bool includeHiddenDecls() const
Determine whether hidden declarations (from unimported modules) should be given to this consumer...
ObjCMethodDecl * getCurMethodDecl()
getCurMethodDecl - If inside of a method body, this returns a pointer to the method decl for the meth...
Definition: Sema.cpp:1199
Namespaces, declared with &#39;namespace foo {}&#39;.
Definition: DeclBase.h:140
static void LookupPotentialTypoResult(Sema &SemaRef, LookupResult &Res, IdentifierInfo *Name, Scope *S, CXXScopeSpec *SS, DeclContext *MemberContext, bool EnteringContext, bool isObjCIvarLookup, bool FindHidden)
Perform name lookup for a possible result for typo correction.
HeaderSearch & getHeaderSearchInfo() const
Definition: Preprocessor.h:821
void setQualifierDistance(unsigned ED)
bool hasTagIdentifierNamespace() const
Definition: DeclBase.h:807
Succeeded, but refers to a deleted function.
Definition: Overload.h:63
bool ValidateCandidate(const TypoCorrection &candidate) override
Simple predicate used by the default RankCandidate to determine whether to return an edit distance of...
Module * getOwningModule(Decl *Entity)
Get the module owning an entity.
Definition: Sema.h:1541
CXXConstructorDecl * DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl)
Declare the implicit move constructor for the given class.
ModuleOwnershipKind getModuleOwnershipKind() const
Get the kind of module ownership for this declaration.
Definition: DeclBase.h:784
Look up all declarations in a scope with the given name, including resolved using declarations...
Definition: Sema.h:3017
static NamedDecl * getDefinitionToImport(NamedDecl *D)
Find which declaration we should import to provide the definition of the given declaration.
NamespaceAliasDecl * getAsNamespaceAlias() const
Retrieve the namespace alias stored in this nested name specifier.
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:636
IdentifierInfoLookup * getExternalIdentifierLookup() const
Retrieve the external identifier lookup object, if any.
Represents a declaration of a type.
Definition: Decl.h:2816
A set of unresolved declarations.
Definition: UnresolvedSet.h:61
static unsigned getIDNS(Sema::LookupNameKind NameKind, bool CPlusPlus, bool Redeclaration)
Definition: SemaLookup.cpp:209
const Type * getClass() const
Definition: Type.h:2607
Look up the name of an OpenMP user-defined reduction operation.
Definition: Sema.h:3031
std::function< ExprResult(Sema &, TypoExpr *, TypoCorrection)> TypoRecoveryCallback
Definition: Sema.h:3094
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
void DiagnoseAmbiguousLookup(LookupResult &Result)
Produce a diagnostic describing the ambiguity that resulted from name lookup.
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:5804
CXXRecordDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclCXX.h:728
TypoExpr - Internal placeholder for expressions where typo correction still needs to be performed and...
Definition: Expr.h:5271
using_directives_range using_directives()
Definition: Scope.h:464
void append(iterator I, iterator E)
Represents a C++ nested-name-specifier or a global scope specifier.
Definition: DeclSpec.h:63
base_class_iterator bases_begin()
Definition: DeclCXX.h:803
Represents an Objective-C protocol declaration.
Definition: DeclObjC.h:2083
lookups_range lookups() const
Definition: DeclLookups.h:76
DeclContext * getLexicalDeclContext()
getLexicalDeclContext - The declaration context where this Decl was lexically declared (LexicalDC)...
Definition: DeclBase.h:826
LabelDecl * LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc, SourceLocation GnuLabelLoc=SourceLocation())
LookupOrCreateLabel - Do a name lookup of a label with the specified name.
const LangOptions & getLangOpts() const
Definition: Sema.h:1193
Labels, declared with &#39;x:&#39; and referenced with &#39;goto x&#39;.
Definition: DeclBase.h:117
const TypoCorrection & getNextCorrection()
Return the next typo correction that passes all internal filters and is deemed valid by the consumer&#39;...
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:1659
Represents an ObjC class declaration.
Definition: DeclObjC.h:1191
void addDecl(NamedDecl *D)
Add a declaration to these results with its natural access.
Definition: Lookup.h:415
Member name lookup, which finds the names of class/struct/union members.
Definition: Sema.h:3001
NameKind getNameKind() const
getNameKind - Determine what kind of name this is.
Ordinary names.
Definition: DeclBase.h:144
virtual Decl * getCanonicalDecl()
Retrieves the "canonical" declaration of the given declaration.
Definition: DeclBase.h:875
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1539
ExtInfo withCallingConv(CallingConv cc) const
Definition: Type.h:3257
static const unsigned InvalidDistance
CXXSpecialMember
Kinds of C++ special members.
Definition: Sema.h:1129
unsigned getFlags() const
getFlags - Return the flags for this scope.
Definition: Scope.h:217
void LookupVisibleDecls(Scope *S, LookupNameKind Kind, VisibleDeclConsumer &Consumer, bool IncludeGlobalScope=true, bool LoadExternal=true)
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:276
udir_range using_directives() const
Returns iterator range [First, Last) of UsingDirectiveDecls stored within this context.
Definition: DeclBase.cpp:1823
NamedDecl * getFoundDecl() const
Get the correction declaration found by name lookup (before we looked through using shadow declaratio...
void setNamingClass(CXXRecordDecl *Record)
Sets the &#39;naming class&#39; for this lookup.
Definition: Lookup.h:397
ArrayRef< Module * > getModulesWithMergedDefinition(const NamedDecl *Def)
Get the additional modules in which the definition Def has been merged.
Definition: ASTContext.h:972
virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx, bool InBaseClass)=0
Invoked each time Sema::LookupVisibleDecls() finds a declaration visible from the current scope or co...
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1590
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3348
std::string CurrentModule
The name of the current module, of which the main source file is a part.
Definition: LangOptions.h:183
This declaration is a C++ operator declared in a non-class context.
Definition: DeclBase.h:168
Objective C @protocol.
Definition: DeclBase.h:147
virtual void EnteredContext(DeclContext *Ctx)
Callback to inform the client that Sema entered into a new context to find a visible declaration...
Definition: Lookup.h:778
bool hasMergedDefinitionInCurrentModule(NamedDecl *Def)
The return type of classify().
Definition: Expr.h:302
DeclarationNameTable DeclarationNames
Definition: ASTContext.h:541
OverloadedOperatorKind getCXXOverloadedOperator() const
getCXXOverloadedOperator - If this name is the name of an overloadable operator in C++ (e...
Provides lookups to, and iteration over, IdentiferInfo objects.
SourceRange getRange() const
Definition: DeclSpec.h:68
void print(raw_ostream &OS, const PrintingPolicy &Policy) const
Print this nested name specifier to the given output stream.
unsigned getEditDistance(bool Normalized=true) const
Gets the "edit distance" of the typo correction from the typo.
std::function< void(const TypoCorrection &)> TypoDiagnosticGenerator
Definition: Sema.h:3092
This declaration is a friend class.
Definition: DeclBase.h:157
std::string getAsString(const LangOptions &LO) const
static bool LookupAnyMember(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, DeclarationName Name)
Callback that looks for any member of a class with the given name.
virtual bool ValidateCandidate(const TypoCorrection &candidate)
Simple predicate used by the default RankCandidate to determine whether to return an edit distance of...
void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, ArrayRef< Expr *> Args, ADLResult &Functions)
bool isInlineNamespace() const
Definition: DeclBase.cpp:1019
static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, DeclContext *StartDC)
Perform qualified name lookup in the namespaces nominated by using directives by the given context...
DeclContext * getLexicalParent()
getLexicalParent - Returns the containing lexical DeclContext.
Definition: DeclBase.h:1357
NamespaceDecl * getAsNamespace() const
Retrieve the namespace stored in this nested name specifier.
Expr - This represents one expression.
Definition: Expr.h:106
Defines the clang::LangOptions interface.
LookupNameKind
Describes the kind of name lookup to perform.
Definition: Sema.h:2989
ExprValueKind
The categorization of expression values, currently following the C++11 scheme.
Definition: Specifiers.h:105
llvm::StringRef getAsString(SyncScope S)
Definition: