clang  9.0.0svn
SemaExprCXX.cpp
Go to the documentation of this file.
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13 
15 #include "TreeTransform.h"
16 #include "TypeLocBuilder.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/DeclSpec.h"
32 #include "clang/Sema/Lookup.h"
34 #include "clang/Sema/Scope.h"
35 #include "clang/Sema/ScopeInfo.h"
36 #include "clang/Sema/SemaLambda.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace sema;
43 
44 /// Handle the result of the special case name lookup for inheriting
45 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
46 /// constructor names in member using declarations, even if 'X' is not the
47 /// name of the corresponding type.
49  SourceLocation NameLoc,
50  IdentifierInfo &Name) {
51  NestedNameSpecifier *NNS = SS.getScopeRep();
52 
53  // Convert the nested-name-specifier into a type.
54  QualType Type;
55  switch (NNS->getKind()) {
58  Type = QualType(NNS->getAsType(), 0);
59  break;
60 
62  // Strip off the last layer of the nested-name-specifier and build a
63  // typename type for it.
64  assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
65  Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
66  NNS->getAsIdentifier());
67  break;
68 
73  llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
74  }
75 
76  // This reference to the type is located entirely at the location of the
77  // final identifier in the qualified-id.
78  return CreateParsedType(Type,
79  Context.getTrivialTypeSourceInfo(Type, NameLoc));
80 }
81 
83  SourceLocation NameLoc,
84  Scope *S, CXXScopeSpec &SS,
85  bool EnteringContext) {
86  CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
87  assert(CurClass && &II == CurClass->getIdentifier() &&
88  "not a constructor name");
89 
90  // When naming a constructor as a member of a dependent context (eg, in a
91  // friend declaration or an inherited constructor declaration), form an
92  // unresolved "typename" type.
93  if (CurClass->isDependentContext() && !EnteringContext) {
94  QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
95  return ParsedType::make(T);
96  }
97 
98  if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
99  return ParsedType();
100 
101  // Find the injected-class-name declaration. Note that we make no attempt to
102  // diagnose cases where the injected-class-name is shadowed: the only
103  // declaration that can validly shadow the injected-class-name is a
104  // non-static data member, and if the class contains both a non-static data
105  // member and a constructor then it is ill-formed (we check that in
106  // CheckCompletedCXXClass).
107  CXXRecordDecl *InjectedClassName = nullptr;
108  for (NamedDecl *ND : CurClass->lookup(&II)) {
109  auto *RD = dyn_cast<CXXRecordDecl>(ND);
110  if (RD && RD->isInjectedClassName()) {
111  InjectedClassName = RD;
112  break;
113  }
114  }
115  if (!InjectedClassName) {
116  if (!CurClass->isInvalidDecl()) {
117  // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
118  // properly. Work around it here for now.
120  diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
121  }
122  return ParsedType();
123  }
124 
125  QualType T = Context.getTypeDeclType(InjectedClassName);
126  DiagnoseUseOfDecl(InjectedClassName, NameLoc);
127  MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
128 
129  return ParsedType::make(T);
130 }
131 
133  IdentifierInfo &II,
134  SourceLocation NameLoc,
135  Scope *S, CXXScopeSpec &SS,
136  ParsedType ObjectTypePtr,
137  bool EnteringContext) {
138  // Determine where to perform name lookup.
139 
140  // FIXME: This area of the standard is very messy, and the current
141  // wording is rather unclear about which scopes we search for the
142  // destructor name; see core issues 399 and 555. Issue 399 in
143  // particular shows where the current description of destructor name
144  // lookup is completely out of line with existing practice, e.g.,
145  // this appears to be ill-formed:
146  //
147  // namespace N {
148  // template <typename T> struct S {
149  // ~S();
150  // };
151  // }
152  //
153  // void f(N::S<int>* s) {
154  // s->N::S<int>::~S();
155  // }
156  //
157  // See also PR6358 and PR6359.
158  // For this reason, we're currently only doing the C++03 version of this
159  // code; the C++0x version has to wait until we get a proper spec.
160  QualType SearchType;
161  DeclContext *LookupCtx = nullptr;
162  bool isDependent = false;
163  bool LookInScope = false;
164 
165  if (SS.isInvalid())
166  return nullptr;
167 
168  // If we have an object type, it's because we are in a
169  // pseudo-destructor-expression or a member access expression, and
170  // we know what type we're looking for.
171  if (ObjectTypePtr)
172  SearchType = GetTypeFromParser(ObjectTypePtr);
173 
174  if (SS.isSet()) {
175  NestedNameSpecifier *NNS = SS.getScopeRep();
176 
177  bool AlreadySearched = false;
178  bool LookAtPrefix = true;
179  // C++11 [basic.lookup.qual]p6:
180  // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
181  // the type-names are looked up as types in the scope designated by the
182  // nested-name-specifier. Similarly, in a qualified-id of the form:
183  //
184  // nested-name-specifier[opt] class-name :: ~ class-name
185  //
186  // the second class-name is looked up in the same scope as the first.
187  //
188  // Here, we determine whether the code below is permitted to look at the
189  // prefix of the nested-name-specifier.
190  DeclContext *DC = computeDeclContext(SS, EnteringContext);
191  if (DC && DC->isFileContext()) {
192  AlreadySearched = true;
193  LookupCtx = DC;
194  isDependent = false;
195  } else if (DC && isa<CXXRecordDecl>(DC)) {
196  LookAtPrefix = false;
197  LookInScope = true;
198  }
199 
200  // The second case from the C++03 rules quoted further above.
201  NestedNameSpecifier *Prefix = nullptr;
202  if (AlreadySearched) {
203  // Nothing left to do.
204  } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
205  CXXScopeSpec PrefixSS;
206  PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
207  LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
208  isDependent = isDependentScopeSpecifier(PrefixSS);
209  } else if (ObjectTypePtr) {
210  LookupCtx = computeDeclContext(SearchType);
211  isDependent = SearchType->isDependentType();
212  } else {
213  LookupCtx = computeDeclContext(SS, EnteringContext);
214  isDependent = LookupCtx && LookupCtx->isDependentContext();
215  }
216  } else if (ObjectTypePtr) {
217  // C++ [basic.lookup.classref]p3:
218  // If the unqualified-id is ~type-name, the type-name is looked up
219  // in the context of the entire postfix-expression. If the type T
220  // of the object expression is of a class type C, the type-name is
221  // also looked up in the scope of class C. At least one of the
222  // lookups shall find a name that refers to (possibly
223  // cv-qualified) T.
224  LookupCtx = computeDeclContext(SearchType);
225  isDependent = SearchType->isDependentType();
226  assert((isDependent || !SearchType->isIncompleteType()) &&
227  "Caller should have completed object type");
228 
229  LookInScope = true;
230  } else {
231  // Perform lookup into the current scope (only).
232  LookInScope = true;
233  }
234 
235  TypeDecl *NonMatchingTypeDecl = nullptr;
236  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
237  for (unsigned Step = 0; Step != 2; ++Step) {
238  // Look for the name first in the computed lookup context (if we
239  // have one) and, if that fails to find a match, in the scope (if
240  // we're allowed to look there).
241  Found.clear();
242  if (Step == 0 && LookupCtx) {
243  if (RequireCompleteDeclContext(SS, LookupCtx))
244  return nullptr;
245  LookupQualifiedName(Found, LookupCtx);
246  } else if (Step == 1 && LookInScope && S) {
247  LookupName(Found, S);
248  } else {
249  continue;
250  }
251 
252  // FIXME: Should we be suppressing ambiguities here?
253  if (Found.isAmbiguous())
254  return nullptr;
255 
256  if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
257  QualType T = Context.getTypeDeclType(Type);
258  MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
259 
260  if (SearchType.isNull() || SearchType->isDependentType() ||
261  Context.hasSameUnqualifiedType(T, SearchType)) {
262  // We found our type!
263 
264  return CreateParsedType(T,
265  Context.getTrivialTypeSourceInfo(T, NameLoc));
266  }
267 
268  if (!SearchType.isNull())
269  NonMatchingTypeDecl = Type;
270  }
271 
272  // If the name that we found is a class template name, and it is
273  // the same name as the template name in the last part of the
274  // nested-name-specifier (if present) or the object type, then
275  // this is the destructor for that class.
276  // FIXME: This is a workaround until we get real drafting for core
277  // issue 399, for which there isn't even an obvious direction.
278  if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
279  QualType MemberOfType;
280  if (SS.isSet()) {
281  if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
282  // Figure out the type of the context, if it has one.
283  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
284  MemberOfType = Context.getTypeDeclType(Record);
285  }
286  }
287  if (MemberOfType.isNull())
288  MemberOfType = SearchType;
289 
290  if (MemberOfType.isNull())
291  continue;
292 
293  // We're referring into a class template specialization. If the
294  // class template we found is the same as the template being
295  // specialized, we found what we are looking for.
296  if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
298  = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
299  if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
300  Template->getCanonicalDecl())
301  return CreateParsedType(
302  MemberOfType,
303  Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
304  }
305 
306  continue;
307  }
308 
309  // We're referring to an unresolved class template
310  // specialization. Determine whether we class template we found
311  // is the same as the template being specialized or, if we don't
312  // know which template is being specialized, that it at least
313  // has the same name.
314  if (const TemplateSpecializationType *SpecType
315  = MemberOfType->getAs<TemplateSpecializationType>()) {
316  TemplateName SpecName = SpecType->getTemplateName();
317 
318  // The class template we found is the same template being
319  // specialized.
320  if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
321  if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
322  return CreateParsedType(
323  MemberOfType,
324  Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
325 
326  continue;
327  }
328 
329  // The class template we found has the same name as the
330  // (dependent) template name being specialized.
331  if (DependentTemplateName *DepTemplate
332  = SpecName.getAsDependentTemplateName()) {
333  if (DepTemplate->isIdentifier() &&
334  DepTemplate->getIdentifier() == Template->getIdentifier())
335  return CreateParsedType(
336  MemberOfType,
337  Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
338 
339  continue;
340  }
341  }
342  }
343  }
344 
345  if (isDependent) {
346  // We didn't find our type, but that's okay: it's dependent
347  // anyway.
348 
349  // FIXME: What if we have no nested-name-specifier?
350  QualType T = CheckTypenameType(ETK_None, SourceLocation(),
351  SS.getWithLocInContext(Context),
352  II, NameLoc);
353  return ParsedType::make(T);
354  }
355 
356  if (NonMatchingTypeDecl) {
357  QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
358  Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
359  << T << SearchType;
360  Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
361  << T;
362  } else if (ObjectTypePtr)
363  Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
364  << &II;
365  else {
366  SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
367  diag::err_destructor_class_name);
368  if (S) {
369  const DeclContext *Ctx = S->getEntity();
370  if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
371  DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
372  Class->getNameAsString());
373  }
374  }
375 
376  return nullptr;
377 }
378 
380  ParsedType ObjectType) {
382  return nullptr;
383 
385  Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
386  return nullptr;
387  }
388 
389  assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
390  "unexpected type in getDestructorType");
391  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
392 
393  // If we know the type of the object, check that the correct destructor
394  // type was named now; we can give better diagnostics this way.
395  QualType SearchType = GetTypeFromParser(ObjectType);
396  if (!SearchType.isNull() && !SearchType->isDependentType() &&
397  !Context.hasSameUnqualifiedType(T, SearchType)) {
398  Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
399  << T << SearchType;
400  return nullptr;
401  }
402 
403  return ParsedType::make(T);
404 }
405 
407  const UnqualifiedId &Name) {
409 
410  if (!SS.isValid())
411  return false;
412 
413  switch (SS.getScopeRep()->getKind()) {
417  // Per C++11 [over.literal]p2, literal operators can only be declared at
418  // namespace scope. Therefore, this unqualified-id cannot name anything.
419  // Reject it early, because we have no AST representation for this in the
420  // case where the scope is dependent.
421  Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
422  << SS.getScopeRep();
423  return true;
424 
429  return false;
430  }
431 
432  llvm_unreachable("unknown nested name specifier kind");
433 }
434 
435 /// Build a C++ typeid expression with a type operand.
437  SourceLocation TypeidLoc,
438  TypeSourceInfo *Operand,
439  SourceLocation RParenLoc) {
440  // C++ [expr.typeid]p4:
441  // The top-level cv-qualifiers of the lvalue expression or the type-id
442  // that is the operand of typeid are always ignored.
443  // If the type of the type-id is a class type or a reference to a class
444  // type, the class shall be completely-defined.
445  Qualifiers Quals;
446  QualType T
447  = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
448  Quals);
449  if (T->getAs<RecordType>() &&
450  RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
451  return ExprError();
452 
453  if (T->isVariablyModifiedType())
454  return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
455 
456  return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
457  SourceRange(TypeidLoc, RParenLoc));
458 }
459 
460 /// Build a C++ typeid expression with an expression operand.
462  SourceLocation TypeidLoc,
463  Expr *E,
464  SourceLocation RParenLoc) {
465  bool WasEvaluated = false;
466  if (E && !E->isTypeDependent()) {
467  if (E->getType()->isPlaceholderType()) {
468  ExprResult result = CheckPlaceholderExpr(E);
469  if (result.isInvalid()) return ExprError();
470  E = result.get();
471  }
472 
473  QualType T = E->getType();
474  if (const RecordType *RecordT = T->getAs<RecordType>()) {
475  CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
476  // C++ [expr.typeid]p3:
477  // [...] If the type of the expression is a class type, the class
478  // shall be completely-defined.
479  if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
480  return ExprError();
481 
482  // C++ [expr.typeid]p3:
483  // When typeid is applied to an expression other than an glvalue of a
484  // polymorphic class type [...] [the] expression is an unevaluated
485  // operand. [...]
486  if (RecordD->isPolymorphic() && E->isGLValue()) {
487  // The subexpression is potentially evaluated; switch the context
488  // and recheck the subexpression.
489  ExprResult Result = TransformToPotentiallyEvaluated(E);
490  if (Result.isInvalid()) return ExprError();
491  E = Result.get();
492 
493  // We require a vtable to query the type at run time.
494  MarkVTableUsed(TypeidLoc, RecordD);
495  WasEvaluated = true;
496  }
497  }
498 
499  // C++ [expr.typeid]p4:
500  // [...] If the type of the type-id is a reference to a possibly
501  // cv-qualified type, the result of the typeid expression refers to a
502  // std::type_info object representing the cv-unqualified referenced
503  // type.
504  Qualifiers Quals;
505  QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
506  if (!Context.hasSameType(T, UnqualT)) {
507  T = UnqualT;
508  E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
509  }
510  }
511 
512  if (E->getType()->isVariablyModifiedType())
513  return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
514  << E->getType());
515  else if (!inTemplateInstantiation() &&
516  E->HasSideEffects(Context, WasEvaluated)) {
517  // The expression operand for typeid is in an unevaluated expression
518  // context, so side effects could result in unintended consequences.
519  Diag(E->getExprLoc(), WasEvaluated
520  ? diag::warn_side_effects_typeid
521  : diag::warn_side_effects_unevaluated_context);
522  }
523 
524  return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
525  SourceRange(TypeidLoc, RParenLoc));
526 }
527 
528 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
531  bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
532  // OpenCL C++ 1.0 s2.9: typeid is not supported.
533  if (getLangOpts().OpenCLCPlusPlus) {
534  return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
535  << "typeid");
536  }
537 
538  // Find the std::type_info type.
539  if (!getStdNamespace())
540  return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
541 
542  if (!CXXTypeInfoDecl) {
543  IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
544  LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
545  LookupQualifiedName(R, getStdNamespace());
546  CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
547  // Microsoft's typeinfo doesn't have type_info in std but in the global
548  // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
549  if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
550  LookupQualifiedName(R, Context.getTranslationUnitDecl());
551  CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
552  }
553  if (!CXXTypeInfoDecl)
554  return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
555  }
556 
557  if (!getLangOpts().RTTI) {
558  return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
559  }
560 
561  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
562 
563  if (isType) {
564  // The operand is a type; handle it as such.
565  TypeSourceInfo *TInfo = nullptr;
566  QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
567  &TInfo);
568  if (T.isNull())
569  return ExprError();
570 
571  if (!TInfo)
572  TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
573 
574  return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
575  }
576 
577  // The operand is an expression.
578  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
579 }
580 
581 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
582 /// a single GUID.
583 static void
586  // Optionally remove one level of pointer, reference or array indirection.
587  const Type *Ty = QT.getTypePtr();
588  if (QT->isPointerType() || QT->isReferenceType())
589  Ty = QT->getPointeeType().getTypePtr();
590  else if (QT->isArrayType())
591  Ty = Ty->getBaseElementTypeUnsafe();
592 
593  const auto *TD = Ty->getAsTagDecl();
594  if (!TD)
595  return;
596 
597  if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
598  UuidAttrs.insert(Uuid);
599  return;
600  }
601 
602  // __uuidof can grab UUIDs from template arguments.
603  if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
604  const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
605  for (const TemplateArgument &TA : TAL.asArray()) {
606  const UuidAttr *UuidForTA = nullptr;
607  if (TA.getKind() == TemplateArgument::Type)
608  getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
609  else if (TA.getKind() == TemplateArgument::Declaration)
610  getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
611 
612  if (UuidForTA)
613  UuidAttrs.insert(UuidForTA);
614  }
615  }
616 }
617 
618 /// Build a Microsoft __uuidof expression with a type operand.
620  SourceLocation TypeidLoc,
621  TypeSourceInfo *Operand,
622  SourceLocation RParenLoc) {
623  StringRef UuidStr;
624  if (!Operand->getType()->isDependentType()) {
626  getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
627  if (UuidAttrs.empty())
628  return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
629  if (UuidAttrs.size() > 1)
630  return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
631  UuidStr = UuidAttrs.back()->getGuid();
632  }
633 
634  return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, UuidStr,
635  SourceRange(TypeidLoc, RParenLoc));
636 }
637 
638 /// Build a Microsoft __uuidof expression with an expression operand.
640  SourceLocation TypeidLoc,
641  Expr *E,
642  SourceLocation RParenLoc) {
643  StringRef UuidStr;
644  if (!E->getType()->isDependentType()) {
646  UuidStr = "00000000-0000-0000-0000-000000000000";
647  } else {
649  getUuidAttrOfType(*this, E->getType(), UuidAttrs);
650  if (UuidAttrs.empty())
651  return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
652  if (UuidAttrs.size() > 1)
653  return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
654  UuidStr = UuidAttrs.back()->getGuid();
655  }
656  }
657 
658  return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, UuidStr,
659  SourceRange(TypeidLoc, RParenLoc));
660 }
661 
662 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
665  bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
666  // If MSVCGuidDecl has not been cached, do the lookup.
667  if (!MSVCGuidDecl) {
668  IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
669  LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
670  LookupQualifiedName(R, Context.getTranslationUnitDecl());
671  MSVCGuidDecl = R.getAsSingle<RecordDecl>();
672  if (!MSVCGuidDecl)
673  return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
674  }
675 
676  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
677 
678  if (isType) {
679  // The operand is a type; handle it as such.
680  TypeSourceInfo *TInfo = nullptr;
681  QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
682  &TInfo);
683  if (T.isNull())
684  return ExprError();
685 
686  if (!TInfo)
687  TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
688 
689  return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
690  }
691 
692  // The operand is an expression.
693  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
694 }
695 
696 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
699  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
700  "Unknown C++ Boolean value!");
701  return new (Context)
702  CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
703 }
704 
705 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
708  return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
709 }
710 
711 /// ActOnCXXThrow - Parse throw expressions.
714  bool IsThrownVarInScope = false;
715  if (Ex) {
716  // C++0x [class.copymove]p31:
717  // When certain criteria are met, an implementation is allowed to omit the
718  // copy/move construction of a class object [...]
719  //
720  // - in a throw-expression, when the operand is the name of a
721  // non-volatile automatic object (other than a function or catch-
722  // clause parameter) whose scope does not extend beyond the end of the
723  // innermost enclosing try-block (if there is one), the copy/move
724  // operation from the operand to the exception object (15.1) can be
725  // omitted by constructing the automatic object directly into the
726  // exception object
727  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
728  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
729  if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
730  for( ; S; S = S->getParent()) {
731  if (S->isDeclScope(Var)) {
732  IsThrownVarInScope = true;
733  break;
734  }
735 
736  if (S->getFlags() &
740  break;
741  }
742  }
743  }
744  }
745 
746  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
747 }
748 
750  bool IsThrownVarInScope) {
751  // Don't report an error if 'throw' is used in system headers.
752  if (!getLangOpts().CXXExceptions &&
753  !getSourceManager().isInSystemHeader(OpLoc)) {
754  // Delay error emission for the OpenMP device code.
755  if (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)
756  diagIfOpenMPDeviceCode(OpLoc, diag::err_exceptions_disabled) << "throw";
757  else
758  Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
759  }
760 
761  // Exceptions aren't allowed in CUDA device code.
762  if (getLangOpts().CUDA)
763  CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
764  << "throw" << CurrentCUDATarget();
765 
766  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
767  Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
768 
769  if (Ex && !Ex->isTypeDependent()) {
770  QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
771  if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
772  return ExprError();
773 
774  // Initialize the exception result. This implicitly weeds out
775  // abstract types or types with inaccessible copy constructors.
776 
777  // C++0x [class.copymove]p31:
778  // When certain criteria are met, an implementation is allowed to omit the
779  // copy/move construction of a class object [...]
780  //
781  // - in a throw-expression, when the operand is the name of a
782  // non-volatile automatic object (other than a function or
783  // catch-clause
784  // parameter) whose scope does not extend beyond the end of the
785  // innermost enclosing try-block (if there is one), the copy/move
786  // operation from the operand to the exception object (15.1) can be
787  // omitted by constructing the automatic object directly into the
788  // exception object
789  const VarDecl *NRVOVariable = nullptr;
790  if (IsThrownVarInScope)
791  NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict);
792 
794  OpLoc, ExceptionObjectTy,
795  /*NRVO=*/NRVOVariable != nullptr);
796  ExprResult Res = PerformMoveOrCopyInitialization(
797  Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
798  if (Res.isInvalid())
799  return ExprError();
800  Ex = Res.get();
801  }
802 
803  return new (Context)
804  CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
805 }
806 
807 static void
809  llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
810  llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
811  llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
812  bool ParentIsPublic) {
813  for (const CXXBaseSpecifier &BS : RD->bases()) {
814  CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
815  bool NewSubobject;
816  // Virtual bases constitute the same subobject. Non-virtual bases are
817  // always distinct subobjects.
818  if (BS.isVirtual())
819  NewSubobject = VBases.insert(BaseDecl).second;
820  else
821  NewSubobject = true;
822 
823  if (NewSubobject)
824  ++SubobjectsSeen[BaseDecl];
825 
826  // Only add subobjects which have public access throughout the entire chain.
827  bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
828  if (PublicPath)
829  PublicSubobjectsSeen.insert(BaseDecl);
830 
831  // Recurse on to each base subobject.
832  collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
833  PublicPath);
834  }
835 }
836 
839  llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
840  llvm::SmallSet<CXXRecordDecl *, 2> VBases;
841  llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
842  SubobjectsSeen[RD] = 1;
843  PublicSubobjectsSeen.insert(RD);
844  collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
845  /*ParentIsPublic=*/true);
846 
847  for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
848  // Skip ambiguous objects.
849  if (SubobjectsSeen[PublicSubobject] > 1)
850  continue;
851 
852  Objects.push_back(PublicSubobject);
853  }
854 }
855 
856 /// CheckCXXThrowOperand - Validate the operand of a throw.
858  QualType ExceptionObjectTy, Expr *E) {
859  // If the type of the exception would be an incomplete type or a pointer
860  // to an incomplete type other than (cv) void the program is ill-formed.
861  QualType Ty = ExceptionObjectTy;
862  bool isPointer = false;
863  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
864  Ty = Ptr->getPointeeType();
865  isPointer = true;
866  }
867  if (!isPointer || !Ty->isVoidType()) {
868  if (RequireCompleteType(ThrowLoc, Ty,
869  isPointer ? diag::err_throw_incomplete_ptr
870  : diag::err_throw_incomplete,
871  E->getSourceRange()))
872  return true;
873 
874  if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
875  diag::err_throw_abstract_type, E))
876  return true;
877  }
878 
879  // If the exception has class type, we need additional handling.
880  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
881  if (!RD)
882  return false;
883 
884  // If we are throwing a polymorphic class type or pointer thereof,
885  // exception handling will make use of the vtable.
886  MarkVTableUsed(ThrowLoc, RD);
887 
888  // If a pointer is thrown, the referenced object will not be destroyed.
889  if (isPointer)
890  return false;
891 
892  // If the class has a destructor, we must be able to call it.
893  if (!RD->hasIrrelevantDestructor()) {
894  if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
895  MarkFunctionReferenced(E->getExprLoc(), Destructor);
896  CheckDestructorAccess(E->getExprLoc(), Destructor,
897  PDiag(diag::err_access_dtor_exception) << Ty);
898  if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
899  return true;
900  }
901  }
902 
903  // The MSVC ABI creates a list of all types which can catch the exception
904  // object. This list also references the appropriate copy constructor to call
905  // if the object is caught by value and has a non-trivial copy constructor.
906  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
907  // We are only interested in the public, unambiguous bases contained within
908  // the exception object. Bases which are ambiguous or otherwise
909  // inaccessible are not catchable types.
910  llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
911  getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
912 
913  for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
914  // Attempt to lookup the copy constructor. Various pieces of machinery
915  // will spring into action, like template instantiation, which means this
916  // cannot be a simple walk of the class's decls. Instead, we must perform
917  // lookup and overload resolution.
918  CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
919  if (!CD)
920  continue;
921 
922  // Mark the constructor referenced as it is used by this throw expression.
923  MarkFunctionReferenced(E->getExprLoc(), CD);
924 
925  // Skip this copy constructor if it is trivial, we don't need to record it
926  // in the catchable type data.
927  if (CD->isTrivial())
928  continue;
929 
930  // The copy constructor is non-trivial, create a mapping from this class
931  // type to this constructor.
932  // N.B. The selection of copy constructor is not sensitive to this
933  // particular throw-site. Lookup will be performed at the catch-site to
934  // ensure that the copy constructor is, in fact, accessible (via
935  // friendship or any other means).
936  Context.addCopyConstructorForExceptionObject(Subobject, CD);
937 
938  // We don't keep the instantiated default argument expressions around so
939  // we must rebuild them here.
940  for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
941  if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
942  return true;
943  }
944  }
945  }
946 
947  return false;
948 }
949 
951  ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
952  DeclContext *CurSemaContext, ASTContext &ASTCtx) {
953 
954  QualType ClassType = ThisTy->getPointeeType();
955  LambdaScopeInfo *CurLSI = nullptr;
956  DeclContext *CurDC = CurSemaContext;
957 
958  // Iterate through the stack of lambdas starting from the innermost lambda to
959  // the outermost lambda, checking if '*this' is ever captured by copy - since
960  // that could change the cv-qualifiers of the '*this' object.
961  // The object referred to by '*this' starts out with the cv-qualifiers of its
962  // member function. We then start with the innermost lambda and iterate
963  // outward checking to see if any lambda performs a by-copy capture of '*this'
964  // - and if so, any nested lambda must respect the 'constness' of that
965  // capturing lamdbda's call operator.
966  //
967 
968  // Since the FunctionScopeInfo stack is representative of the lexical
969  // nesting of the lambda expressions during initial parsing (and is the best
970  // place for querying information about captures about lambdas that are
971  // partially processed) and perhaps during instantiation of function templates
972  // that contain lambda expressions that need to be transformed BUT not
973  // necessarily during instantiation of a nested generic lambda's function call
974  // operator (which might even be instantiated at the end of the TU) - at which
975  // time the DeclContext tree is mature enough to query capture information
976  // reliably - we use a two pronged approach to walk through all the lexically
977  // enclosing lambda expressions:
978  //
979  // 1) Climb down the FunctionScopeInfo stack as long as each item represents
980  // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
981  // enclosed by the call-operator of the LSI below it on the stack (while
982  // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
983  // the stack represents the innermost lambda.
984  //
985  // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
986  // represents a lambda's call operator. If it does, we must be instantiating
987  // a generic lambda's call operator (represented by the Current LSI, and
988  // should be the only scenario where an inconsistency between the LSI and the
989  // DeclContext should occur), so climb out the DeclContexts if they
990  // represent lambdas, while querying the corresponding closure types
991  // regarding capture information.
992 
993  // 1) Climb down the function scope info stack.
994  for (int I = FunctionScopes.size();
995  I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
996  (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
997  cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
998  CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
999  CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1000 
1001  if (!CurLSI->isCXXThisCaptured())
1002  continue;
1003 
1004  auto C = CurLSI->getCXXThisCapture();
1005 
1006  if (C.isCopyCapture()) {
1008  if (CurLSI->CallOperator->isConst())
1009  ClassType.addConst();
1010  return ASTCtx.getPointerType(ClassType);
1011  }
1012  }
1013 
1014  // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
1015  // happen during instantiation of its nested generic lambda call operator)
1016  if (isLambdaCallOperator(CurDC)) {
1017  assert(CurLSI && "While computing 'this' capture-type for a generic "
1018  "lambda, we must have a corresponding LambdaScopeInfo");
1020  "While computing 'this' capture-type for a generic lambda, when we "
1021  "run out of enclosing LSI's, yet the enclosing DC is a "
1022  "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1023  "lambda call oeprator");
1024  assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1025 
1026  auto IsThisCaptured =
1027  [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1028  IsConst = false;
1029  IsByCopy = false;
1030  for (auto &&C : Closure->captures()) {
1031  if (C.capturesThis()) {
1032  if (C.getCaptureKind() == LCK_StarThis)
1033  IsByCopy = true;
1034  if (Closure->getLambdaCallOperator()->isConst())
1035  IsConst = true;
1036  return true;
1037  }
1038  }
1039  return false;
1040  };
1041 
1042  bool IsByCopyCapture = false;
1043  bool IsConstCapture = false;
1044  CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1045  while (Closure &&
1046  IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1047  if (IsByCopyCapture) {
1049  if (IsConstCapture)
1050  ClassType.addConst();
1051  return ASTCtx.getPointerType(ClassType);
1052  }
1053  Closure = isLambdaCallOperator(Closure->getParent())
1054  ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1055  : nullptr;
1056  }
1057  }
1058  return ASTCtx.getPointerType(ClassType);
1059 }
1060 
1062  DeclContext *DC = getFunctionLevelDeclContext();
1063  QualType ThisTy = CXXThisTypeOverride;
1064 
1065  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1066  if (method && method->isInstance())
1067  ThisTy = method->getThisType();
1068  }
1069 
1070  if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1071  inTemplateInstantiation()) {
1072 
1073  assert(isa<CXXRecordDecl>(DC) &&
1074  "Trying to get 'this' type from static method?");
1075 
1076  // This is a lambda call operator that is being instantiated as a default
1077  // initializer. DC must point to the enclosing class type, so we can recover
1078  // the 'this' type from it.
1079 
1080  QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1081  // There are no cv-qualifiers for 'this' within default initializers,
1082  // per [expr.prim.general]p4.
1083  ThisTy = Context.getPointerType(ClassTy);
1084  }
1085 
1086  // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1087  // might need to be adjusted if the lambda or any of its enclosing lambda's
1088  // captures '*this' by copy.
1089  if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1090  return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1091  CurContext, Context);
1092  return ThisTy;
1093 }
1094 
1096  Decl *ContextDecl,
1097  Qualifiers CXXThisTypeQuals,
1098  bool Enabled)
1099  : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1100 {
1101  if (!Enabled || !ContextDecl)
1102  return;
1103 
1104  CXXRecordDecl *Record = nullptr;
1105  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1106  Record = Template->getTemplatedDecl();
1107  else
1108  Record = cast<CXXRecordDecl>(ContextDecl);
1109 
1110  QualType T = S.Context.getRecordType(Record);
1111  T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1112 
1114 
1115  this->Enabled = true;
1116 }
1117 
1118 
1120  if (Enabled) {
1121  S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1122  }
1123 }
1124 
1126  QualType ThisTy, SourceLocation Loc,
1127  const bool ByCopy) {
1128 
1129  QualType AdjustedThisTy = ThisTy;
1130  // The type of the corresponding data member (not a 'this' pointer if 'by
1131  // copy').
1132  QualType CaptureThisFieldTy = ThisTy;
1133  if (ByCopy) {
1134  // If we are capturing the object referred to by '*this' by copy, ignore any
1135  // cv qualifiers inherited from the type of the member function for the type
1136  // of the closure-type's corresponding data member and any use of 'this'.
1137  CaptureThisFieldTy = ThisTy->getPointeeType();
1138  CaptureThisFieldTy.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1139  AdjustedThisTy = Context.getPointerType(CaptureThisFieldTy);
1140  }
1141 
1142  FieldDecl *Field = FieldDecl::Create(
1143  Context, RD, Loc, Loc, nullptr, CaptureThisFieldTy,
1144  Context.getTrivialTypeSourceInfo(CaptureThisFieldTy, Loc), nullptr, false,
1145  ICIS_NoInit);
1146 
1147  Field->setImplicit(true);
1148  Field->setAccess(AS_private);
1149  RD->addDecl(Field);
1150  Expr *This =
1151  new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/ true);
1152  if (ByCopy) {
1153  Expr *StarThis = S.CreateBuiltinUnaryOp(Loc,
1154  UO_Deref,
1155  This).get();
1157  nullptr, CaptureThisFieldTy, Loc);
1158  InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
1159  InitializationSequence Init(S, Entity, InitKind, StarThis);
1160  ExprResult ER = Init.Perform(S, Entity, InitKind, StarThis);
1161  if (ER.isInvalid()) return nullptr;
1162  return ER.get();
1163  }
1164  return This;
1165 }
1166 
1167 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1168  bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1169  const bool ByCopy) {
1170  // We don't need to capture this in an unevaluated context.
1171  if (isUnevaluatedContext() && !Explicit)
1172  return true;
1173 
1174  assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1175 
1176  const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1177  ? *FunctionScopeIndexToStopAt
1178  : FunctionScopes.size() - 1;
1179 
1180  // Check that we can capture the *enclosing object* (referred to by '*this')
1181  // by the capturing-entity/closure (lambda/block/etc) at
1182  // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1183 
1184  // Note: The *enclosing object* can only be captured by-value by a
1185  // closure that is a lambda, using the explicit notation:
1186  // [*this] { ... }.
1187  // Every other capture of the *enclosing object* results in its by-reference
1188  // capture.
1189 
1190  // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1191  // stack), we can capture the *enclosing object* only if:
1192  // - 'L' has an explicit byref or byval capture of the *enclosing object*
1193  // - or, 'L' has an implicit capture.
1194  // AND
1195  // -- there is no enclosing closure
1196  // -- or, there is some enclosing closure 'E' that has already captured the
1197  // *enclosing object*, and every intervening closure (if any) between 'E'
1198  // and 'L' can implicitly capture the *enclosing object*.
1199  // -- or, every enclosing closure can implicitly capture the
1200  // *enclosing object*
1201 
1202 
1203  unsigned NumCapturingClosures = 0;
1204  for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1205  if (CapturingScopeInfo *CSI =
1206  dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1207  if (CSI->CXXThisCaptureIndex != 0) {
1208  // 'this' is already being captured; there isn't anything more to do.
1209  CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1210  break;
1211  }
1212  LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1214  // This context can't implicitly capture 'this'; fail out.
1215  if (BuildAndDiagnose)
1216  Diag(Loc, diag::err_this_capture)
1217  << (Explicit && idx == MaxFunctionScopesIndex);
1218  return true;
1219  }
1220  if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1221  CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1222  CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1223  CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1224  (Explicit && idx == MaxFunctionScopesIndex)) {
1225  // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1226  // iteration through can be an explicit capture, all enclosing closures,
1227  // if any, must perform implicit captures.
1228 
1229  // This closure can capture 'this'; continue looking upwards.
1230  NumCapturingClosures++;
1231  continue;
1232  }
1233  // This context can't implicitly capture 'this'; fail out.
1234  if (BuildAndDiagnose)
1235  Diag(Loc, diag::err_this_capture)
1236  << (Explicit && idx == MaxFunctionScopesIndex);
1237  return true;
1238  }
1239  break;
1240  }
1241  if (!BuildAndDiagnose) return false;
1242 
1243  // If we got here, then the closure at MaxFunctionScopesIndex on the
1244  // FunctionScopes stack, can capture the *enclosing object*, so capture it
1245  // (including implicit by-reference captures in any enclosing closures).
1246 
1247  // In the loop below, respect the ByCopy flag only for the closure requesting
1248  // the capture (i.e. first iteration through the loop below). Ignore it for
1249  // all enclosing closure's up to NumCapturingClosures (since they must be
1250  // implicitly capturing the *enclosing object* by reference (see loop
1251  // above)).
1252  assert((!ByCopy ||
1253  dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1254  "Only a lambda can capture the enclosing object (referred to by "
1255  "*this) by copy");
1256  // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
1257  // contexts.
1258  QualType ThisTy = getCurrentThisType();
1259  for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1260  --idx, --NumCapturingClosures) {
1261  CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1262  Expr *ThisExpr = nullptr;
1263 
1264  if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
1265  // For lambda expressions, build a field and an initializing expression,
1266  // and capture the *enclosing object* by copy only if this is the first
1267  // iteration.
1268  ThisExpr = captureThis(*this, Context, LSI->Lambda, ThisTy, Loc,
1269  ByCopy && idx == MaxFunctionScopesIndex);
1270 
1271  } else if (CapturedRegionScopeInfo *RSI
1272  = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
1273  ThisExpr =
1274  captureThis(*this, Context, RSI->TheRecordDecl, ThisTy, Loc,
1275  false/*ByCopy*/);
1276 
1277  bool isNested = NumCapturingClosures > 1;
1278  CSI->addThisCapture(isNested, Loc, ThisExpr, ByCopy);
1279  }
1280  return false;
1281 }
1282 
1284  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1285  /// is a non-lvalue expression whose value is the address of the object for
1286  /// which the function is called.
1287 
1288  QualType ThisTy = getCurrentThisType();
1289  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
1290 
1291  CheckCXXThisCapture(Loc);
1292  return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
1293 }
1294 
1296  // If we're outside the body of a member function, then we'll have a specified
1297  // type for 'this'.
1299  return false;
1300 
1301  // Determine whether we're looking into a class that's currently being
1302  // defined.
1303  CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1304  return Class && Class->isBeingDefined();
1305 }
1306 
1307 /// Parse construction of a specified type.
1308 /// Can be interpreted either as function-style casting ("int(x)")
1309 /// or class type construction ("ClassType(x,y,z)")
1310 /// or creation of a value-initialized type ("int()").
1311 ExprResult
1313  SourceLocation LParenOrBraceLoc,
1314  MultiExprArg exprs,
1315  SourceLocation RParenOrBraceLoc,
1316  bool ListInitialization) {
1317  if (!TypeRep)
1318  return ExprError();
1319 
1320  TypeSourceInfo *TInfo;
1321  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1322  if (!TInfo)
1324 
1325  auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1326  RParenOrBraceLoc, ListInitialization);
1327  // Avoid creating a non-type-dependent expression that contains typos.
1328  // Non-type-dependent expressions are liable to be discarded without
1329  // checking for embedded typos.
1330  if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1331  !Result.get()->isTypeDependent())
1333  return Result;
1334 }
1335 
1336 ExprResult
1338  SourceLocation LParenOrBraceLoc,
1339  MultiExprArg Exprs,
1340  SourceLocation RParenOrBraceLoc,
1341  bool ListInitialization) {
1342  QualType Ty = TInfo->getType();
1343  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1344 
1346  // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1347  // directly. We work around this by dropping the locations of the braces.
1348  SourceRange Locs = ListInitialization
1349  ? SourceRange()
1350  : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1351  return CXXUnresolvedConstructExpr::Create(Context, TInfo, Locs.getBegin(),
1352  Exprs, Locs.getEnd());
1353  }
1354 
1355  assert((!ListInitialization ||
1356  (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&
1357  "List initialization must have initializer list as expression.");
1358  SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1359 
1362  Exprs.size()
1363  ? ListInitialization
1365  TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1366  : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1367  RParenOrBraceLoc)
1368  : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1369  RParenOrBraceLoc);
1370 
1371  // C++1z [expr.type.conv]p1:
1372  // If the type is a placeholder for a deduced class type, [...perform class
1373  // template argument deduction...]
1374  DeducedType *Deduced = Ty->getContainedDeducedType();
1375  if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1377  Kind, Exprs);
1378  if (Ty.isNull())
1379  return ExprError();
1380  Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1381  }
1382 
1383  // C++ [expr.type.conv]p1:
1384  // If the expression list is a parenthesized single expression, the type
1385  // conversion expression is equivalent (in definedness, and if defined in
1386  // meaning) to the corresponding cast expression.
1387  if (Exprs.size() == 1 && !ListInitialization &&
1388  !isa<InitListExpr>(Exprs[0])) {
1389  Expr *Arg = Exprs[0];
1390  return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1391  RParenOrBraceLoc);
1392  }
1393 
1394  // For an expression of the form T(), T shall not be an array type.
1395  QualType ElemTy = Ty;
1396  if (Ty->isArrayType()) {
1397  if (!ListInitialization)
1398  return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1399  << FullRange);
1400  ElemTy = Context.getBaseElementType(Ty);
1401  }
1402 
1403  // There doesn't seem to be an explicit rule against this but sanity demands
1404  // we only construct objects with object types.
1405  if (Ty->isFunctionType())
1406  return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1407  << Ty << FullRange);
1408 
1409  // C++17 [expr.type.conv]p2:
1410  // If the type is cv void and the initializer is (), the expression is a
1411  // prvalue of the specified type that performs no initialization.
1412  if (!Ty->isVoidType() &&
1413  RequireCompleteType(TyBeginLoc, ElemTy,
1414  diag::err_invalid_incomplete_type_use, FullRange))
1415  return ExprError();
1416 
1417  // Otherwise, the expression is a prvalue of the specified type whose
1418  // result object is direct-initialized (11.6) with the initializer.
1419  InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1420  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1421 
1422  if (Result.isInvalid())
1423  return Result;
1424 
1425  Expr *Inner = Result.get();
1426  if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1427  Inner = BTE->getSubExpr();
1428  if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1429  !isa<CXXScalarValueInitExpr>(Inner)) {
1430  // If we created a CXXTemporaryObjectExpr, that node also represents the
1431  // functional cast. Otherwise, create an explicit cast to represent
1432  // the syntactic form of a functional-style cast that was used here.
1433  //
1434  // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1435  // would give a more consistent AST representation than using a
1436  // CXXTemporaryObjectExpr. It's also weird that the functional cast
1437  // is sometimes handled by initialization and sometimes not.
1438  QualType ResultType = Result.get()->getType();
1439  SourceRange Locs = ListInitialization
1440  ? SourceRange()
1441  : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1443  Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1444  Result.get(), /*Path=*/nullptr, Locs.getBegin(), Locs.getEnd());
1445  }
1446 
1447  return Result;
1448 }
1449 
1451  // [CUDA] Ignore this function, if we can't call it.
1452  const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1453  if (getLangOpts().CUDA &&
1454  IdentifyCUDAPreference(Caller, Method) <= CFP_WrongSide)
1455  return false;
1456 
1458  bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1459 
1460  if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1461  return Result;
1462 
1463  // In case of CUDA, return true if none of the 1-argument deallocator
1464  // functions are actually callable.
1465  return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1466  assert(FD->getNumParams() == 1 &&
1467  "Only single-operand functions should be in PreventedBy");
1468  return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1469  });
1470 }
1471 
1472 /// Determine whether the given function is a non-placement
1473 /// deallocation function.
1475  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1476  return S.isUsualDeallocationFunction(Method);
1477 
1478  if (FD->getOverloadedOperator() != OO_Delete &&
1479  FD->getOverloadedOperator() != OO_Array_Delete)
1480  return false;
1481 
1482  unsigned UsualParams = 1;
1483 
1484  if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1486  FD->getParamDecl(UsualParams)->getType(),
1487  S.Context.getSizeType()))
1488  ++UsualParams;
1489 
1490  if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1492  FD->getParamDecl(UsualParams)->getType(),
1494  ++UsualParams;
1495 
1496  return UsualParams == FD->getNumParams();
1497 }
1498 
1499 namespace {
1500  struct UsualDeallocFnInfo {
1501  UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1502  UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1503  : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1504  Destroying(false), HasSizeT(false), HasAlignValT(false),
1505  CUDAPref(Sema::CFP_Native) {
1506  // A function template declaration is never a usual deallocation function.
1507  if (!FD)
1508  return;
1509  unsigned NumBaseParams = 1;
1510  if (FD->isDestroyingOperatorDelete()) {
1511  Destroying = true;
1512  ++NumBaseParams;
1513  }
1514 
1515  if (NumBaseParams < FD->getNumParams() &&
1517  FD->getParamDecl(NumBaseParams)->getType(),
1518  S.Context.getSizeType())) {
1519  ++NumBaseParams;
1520  HasSizeT = true;
1521  }
1522 
1523  if (NumBaseParams < FD->getNumParams() &&
1524  FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1525  ++NumBaseParams;
1526  HasAlignValT = true;
1527  }
1528 
1529  // In CUDA, determine how much we'd like / dislike to call this.
1530  if (S.getLangOpts().CUDA)
1531  if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1532  CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1533  }
1534 
1535  explicit operator bool() const { return FD; }
1536 
1537  bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1538  bool WantAlign) const {
1539  // C++ P0722:
1540  // A destroying operator delete is preferred over a non-destroying
1541  // operator delete.
1542  if (Destroying != Other.Destroying)
1543  return Destroying;
1544 
1545  // C++17 [expr.delete]p10:
1546  // If the type has new-extended alignment, a function with a parameter
1547  // of type std::align_val_t is preferred; otherwise a function without
1548  // such a parameter is preferred
1549  if (HasAlignValT != Other.HasAlignValT)
1550  return HasAlignValT == WantAlign;
1551 
1552  if (HasSizeT != Other.HasSizeT)
1553  return HasSizeT == WantSize;
1554 
1555  // Use CUDA call preference as a tiebreaker.
1556  return CUDAPref > Other.CUDAPref;
1557  }
1558 
1559  DeclAccessPair Found;
1560  FunctionDecl *FD;
1561  bool Destroying, HasSizeT, HasAlignValT;
1563  };
1564 }
1565 
1566 /// Determine whether a type has new-extended alignment. This may be called when
1567 /// the type is incomplete (for a delete-expression with an incomplete pointee
1568 /// type), in which case it will conservatively return false if the alignment is
1569 /// not known.
1570 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1571  return S.getLangOpts().AlignedAllocation &&
1572  S.getASTContext().getTypeAlignIfKnown(AllocType) >
1574 }
1575 
1576 /// Select the correct "usual" deallocation function to use from a selection of
1577 /// deallocation functions (either global or class-scope).
1578 static UsualDeallocFnInfo resolveDeallocationOverload(
1579  Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1580  llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1581  UsualDeallocFnInfo Best;
1582 
1583  for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1584  UsualDeallocFnInfo Info(S, I.getPair());
1585  if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1586  Info.CUDAPref == Sema::CFP_Never)
1587  continue;
1588 
1589  if (!Best) {
1590  Best = Info;
1591  if (BestFns)
1592  BestFns->push_back(Info);
1593  continue;
1594  }
1595 
1596  if (Best.isBetterThan(Info, WantSize, WantAlign))
1597  continue;
1598 
1599  // If more than one preferred function is found, all non-preferred
1600  // functions are eliminated from further consideration.
1601  if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1602  BestFns->clear();
1603 
1604  Best = Info;
1605  if (BestFns)
1606  BestFns->push_back(Info);
1607  }
1608 
1609  return Best;
1610 }
1611 
1612 /// Determine whether a given type is a class for which 'delete[]' would call
1613 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1614 /// we need to store the array size (even if the type is
1615 /// trivially-destructible).
1617  QualType allocType) {
1618  const RecordType *record =
1619  allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1620  if (!record) return false;
1621 
1622  // Try to find an operator delete[] in class scope.
1623 
1624  DeclarationName deleteName =
1625  S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1626  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1627  S.LookupQualifiedName(ops, record->getDecl());
1628 
1629  // We're just doing this for information.
1630  ops.suppressDiagnostics();
1631 
1632  // Very likely: there's no operator delete[].
1633  if (ops.empty()) return false;
1634 
1635  // If it's ambiguous, it should be illegal to call operator delete[]
1636  // on this thing, so it doesn't matter if we allocate extra space or not.
1637  if (ops.isAmbiguous()) return false;
1638 
1639  // C++17 [expr.delete]p10:
1640  // If the deallocation functions have class scope, the one without a
1641  // parameter of type std::size_t is selected.
1642  auto Best = resolveDeallocationOverload(
1643  S, ops, /*WantSize*/false,
1644  /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1645  return Best && Best.HasSizeT;
1646 }
1647 
1648 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1649 ///
1650 /// E.g.:
1651 /// @code new (memory) int[size][4] @endcode
1652 /// or
1653 /// @code ::new Foo(23, "hello") @endcode
1654 ///
1655 /// \param StartLoc The first location of the expression.
1656 /// \param UseGlobal True if 'new' was prefixed with '::'.
1657 /// \param PlacementLParen Opening paren of the placement arguments.
1658 /// \param PlacementArgs Placement new arguments.
1659 /// \param PlacementRParen Closing paren of the placement arguments.
1660 /// \param TypeIdParens If the type is in parens, the source range.
1661 /// \param D The type to be allocated, as well as array dimensions.
1662 /// \param Initializer The initializing expression or initializer-list, or null
1663 /// if there is none.
1664 ExprResult
1665 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1666  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1667  SourceLocation PlacementRParen, SourceRange TypeIdParens,
1668  Declarator &D, Expr *Initializer) {
1669  Expr *ArraySize = nullptr;
1670  // If the specified type is an array, unwrap it and save the expression.
1671  if (D.getNumTypeObjects() > 0 &&
1673  DeclaratorChunk &Chunk = D.getTypeObject(0);
1674  if (D.getDeclSpec().hasAutoTypeSpec())
1675  return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1676  << D.getSourceRange());
1677  if (Chunk.Arr.hasStatic)
1678  return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1679  << D.getSourceRange());
1680  if (!Chunk.Arr.NumElts)
1681  return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1682  << D.getSourceRange());
1683 
1684  ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1685  D.DropFirstTypeObject();
1686  }
1687 
1688  // Every dimension shall be of constant size.
1689  if (ArraySize) {
1690  for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1692  break;
1693 
1695  if (Expr *NumElts = (Expr *)Array.NumElts) {
1696  if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1697  if (getLangOpts().CPlusPlus14) {
1698  // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1699  // shall be a converted constant expression (5.19) of type std::size_t
1700  // and shall evaluate to a strictly positive value.
1701  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1702  assert(IntWidth && "Builtin type of size 0?");
1703  llvm::APSInt Value(IntWidth);
1704  Array.NumElts
1706  CCEK_NewExpr)
1707  .get();
1708  } else {
1709  Array.NumElts
1710  = VerifyIntegerConstantExpression(NumElts, nullptr,
1711  diag::err_new_array_nonconst)
1712  .get();
1713  }
1714  if (!Array.NumElts)
1715  return ExprError();
1716  }
1717  }
1718  }
1719  }
1720 
1721  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1722  QualType AllocType = TInfo->getType();
1723  if (D.isInvalidType())
1724  return ExprError();
1725 
1726  SourceRange DirectInitRange;
1727  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1728  DirectInitRange = List->getSourceRange();
1729 
1730  return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1731  PlacementLParen, PlacementArgs, PlacementRParen,
1732  TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1733  Initializer);
1734 }
1735 
1737  Expr *Init) {
1738  if (!Init)
1739  return true;
1740  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1741  return PLE->getNumExprs() == 0;
1742  if (isa<ImplicitValueInitExpr>(Init))
1743  return true;
1744  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1745  return !CCE->isListInitialization() &&
1746  CCE->getConstructor()->isDefaultConstructor();
1747  else if (Style == CXXNewExpr::ListInit) {
1748  assert(isa<InitListExpr>(Init) &&
1749  "Shouldn't create list CXXConstructExprs for arrays.");
1750  return true;
1751  }
1752  return false;
1753 }
1754 
1755 bool
1757  if (!getLangOpts().AlignedAllocationUnavailable)
1758  return false;
1759  if (FD.isDefined())
1760  return false;
1761  bool IsAligned = false;
1762  if (FD.isReplaceableGlobalAllocationFunction(&IsAligned) && IsAligned)
1763  return true;
1764  return false;
1765 }
1766 
1767 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1768 // implemented in the standard library is selected.
1770  SourceLocation Loc) {
1772  const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1773  StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1774  getASTContext().getTargetInfo().getPlatformName());
1775 
1777  bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1778  Diag(Loc, diag::err_aligned_allocation_unavailable)
1779  << IsDelete << FD.getType().getAsString() << OSName
1780  << alignedAllocMinVersion(T.getOS()).getAsString();
1781  Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1782  }
1783 }
1784 
1785 ExprResult
1786 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1787  SourceLocation PlacementLParen,
1788  MultiExprArg PlacementArgs,
1789  SourceLocation PlacementRParen,
1790  SourceRange TypeIdParens,
1791  QualType AllocType,
1792  TypeSourceInfo *AllocTypeInfo,
1793  Expr *ArraySize,
1794  SourceRange DirectInitRange,
1795  Expr *Initializer) {
1796  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1797  SourceLocation StartLoc = Range.getBegin();
1798 
1800  if (DirectInitRange.isValid()) {
1801  assert(Initializer && "Have parens but no initializer.");
1802  initStyle = CXXNewExpr::CallInit;
1803  } else if (Initializer && isa<InitListExpr>(Initializer))
1804  initStyle = CXXNewExpr::ListInit;
1805  else {
1806  assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1807  isa<CXXConstructExpr>(Initializer)) &&
1808  "Initializer expression that cannot have been implicitly created.");
1809  initStyle = CXXNewExpr::NoInit;
1810  }
1811 
1812  Expr **Inits = &Initializer;
1813  unsigned NumInits = Initializer ? 1 : 0;
1814  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1815  assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1816  Inits = List->getExprs();
1817  NumInits = List->getNumExprs();
1818  }
1819 
1820  // C++11 [expr.new]p15:
1821  // A new-expression that creates an object of type T initializes that
1822  // object as follows:
1824  // - If the new-initializer is omitted, the object is default-
1825  // initialized (8.5); if no initialization is performed,
1826  // the object has indeterminate value
1827  = initStyle == CXXNewExpr::NoInit
1829  // - Otherwise, the new-initializer is interpreted according to
1830  // the
1831  // initialization rules of 8.5 for direct-initialization.
1832  : initStyle == CXXNewExpr::ListInit
1834  TypeRange.getBegin(), Initializer->getBeginLoc(),
1835  Initializer->getEndLoc())
1837  DirectInitRange.getBegin(),
1838  DirectInitRange.getEnd());
1839 
1840  // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1841  auto *Deduced = AllocType->getContainedDeducedType();
1842  if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1843  if (ArraySize)
1844  return ExprError(Diag(ArraySize->getExprLoc(),
1845  diag::err_deduced_class_template_compound_type)
1846  << /*array*/ 2 << ArraySize->getSourceRange());
1847 
1848  InitializedEntity Entity
1849  = InitializedEntity::InitializeNew(StartLoc, AllocType);
1851  AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1852  if (AllocType.isNull())
1853  return ExprError();
1854  } else if (Deduced) {
1855  bool Braced = (initStyle == CXXNewExpr::ListInit);
1856  if (NumInits == 1) {
1857  if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1858  Inits = p->getInits();
1859  NumInits = p->getNumInits();
1860  Braced = true;
1861  }
1862  }
1863 
1864  if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1865  return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1866  << AllocType << TypeRange);
1867  if (NumInits > 1) {
1868  Expr *FirstBad = Inits[1];
1869  return ExprError(Diag(FirstBad->getBeginLoc(),
1870  diag::err_auto_new_ctor_multiple_expressions)
1871  << AllocType << TypeRange);
1872  }
1873  if (Braced && !getLangOpts().CPlusPlus17)
1874  Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
1875  << AllocType << TypeRange;
1877  if (DeduceAutoType(AllocTypeInfo, Inits[0], DeducedType) == DAR_Failed)
1878  return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1879  << AllocType << Inits[0]->getType()
1880  << TypeRange << Inits[0]->getSourceRange());
1881  if (DeducedType.isNull())
1882  return ExprError();
1883  AllocType = DeducedType;
1884  }
1885 
1886  // Per C++0x [expr.new]p5, the type being constructed may be a
1887  // typedef of an array type.
1888  if (!ArraySize) {
1889  if (const ConstantArrayType *Array
1890  = Context.getAsConstantArrayType(AllocType)) {
1891  ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1892  Context.getSizeType(),
1893  TypeRange.getEnd());
1894  AllocType = Array->getElementType();
1895  }
1896  }
1897 
1898  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1899  return ExprError();
1900 
1901  // In ARC, infer 'retaining' for the allocated
1902  if (getLangOpts().ObjCAutoRefCount &&
1903  AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1904  AllocType->isObjCLifetimeType()) {
1905  AllocType = Context.getLifetimeQualifiedType(AllocType,
1906  AllocType->getObjCARCImplicitLifetime());
1907  }
1908 
1909  QualType ResultType = Context.getPointerType(AllocType);
1910 
1911  if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1912  ExprResult result = CheckPlaceholderExpr(ArraySize);
1913  if (result.isInvalid()) return ExprError();
1914  ArraySize = result.get();
1915  }
1916  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1917  // integral or enumeration type with a non-negative value."
1918  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1919  // enumeration type, or a class type for which a single non-explicit
1920  // conversion function to integral or unscoped enumeration type exists.
1921  // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1922  // std::size_t.
1923  llvm::Optional<uint64_t> KnownArraySize;
1924  if (ArraySize && !ArraySize->isTypeDependent()) {
1925  ExprResult ConvertedSize;
1926  if (getLangOpts().CPlusPlus14) {
1927  assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
1928 
1929  ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1930  AA_Converting);
1931 
1932  if (!ConvertedSize.isInvalid() &&
1933  ArraySize->getType()->getAs<RecordType>())
1934  // Diagnose the compatibility of this conversion.
1935  Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1936  << ArraySize->getType() << 0 << "'size_t'";
1937  } else {
1938  class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1939  protected:
1940  Expr *ArraySize;
1941 
1942  public:
1943  SizeConvertDiagnoser(Expr *ArraySize)
1944  : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1945  ArraySize(ArraySize) {}
1946 
1947  SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1948  QualType T) override {
1949  return S.Diag(Loc, diag::err_array_size_not_integral)
1950  << S.getLangOpts().CPlusPlus11 << T;
1951  }
1952 
1953  SemaDiagnosticBuilder diagnoseIncomplete(
1954  Sema &S, SourceLocation Loc, QualType T) override {
1955  return S.Diag(Loc, diag::err_array_size_incomplete_type)
1956  << T << ArraySize->getSourceRange();
1957  }
1958 
1959  SemaDiagnosticBuilder diagnoseExplicitConv(
1960  Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1961  return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1962  }
1963 
1964  SemaDiagnosticBuilder noteExplicitConv(
1965  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1966  return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1967  << ConvTy->isEnumeralType() << ConvTy;
1968  }
1969 
1970  SemaDiagnosticBuilder diagnoseAmbiguous(
1971  Sema &S, SourceLocation Loc, QualType T) override {
1972  return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1973  }
1974 
1975  SemaDiagnosticBuilder noteAmbiguous(
1976  Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1977  return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1978  << ConvTy->isEnumeralType() << ConvTy;
1979  }
1980 
1981  SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1982  QualType T,
1983  QualType ConvTy) override {
1984  return S.Diag(Loc,
1985  S.getLangOpts().CPlusPlus11
1986  ? diag::warn_cxx98_compat_array_size_conversion
1987  : diag::ext_array_size_conversion)
1988  << T << ConvTy->isEnumeralType() << ConvTy;
1989  }
1990  } SizeDiagnoser(ArraySize);
1991 
1992  ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1993  SizeDiagnoser);
1994  }
1995  if (ConvertedSize.isInvalid())
1996  return ExprError();
1997 
1998  ArraySize = ConvertedSize.get();
1999  QualType SizeType = ArraySize->getType();
2000 
2001  if (!SizeType->isIntegralOrUnscopedEnumerationType())
2002  return ExprError();
2003 
2004  // C++98 [expr.new]p7:
2005  // The expression in a direct-new-declarator shall have integral type
2006  // with a non-negative value.
2007  //
2008  // Let's see if this is a constant < 0. If so, we reject it out of hand,
2009  // per CWG1464. Otherwise, if it's not a constant, we must have an
2010  // unparenthesized array type.
2011  if (!ArraySize->isValueDependent()) {
2012  llvm::APSInt Value;
2013  // We've already performed any required implicit conversion to integer or
2014  // unscoped enumeration type.
2015  // FIXME: Per CWG1464, we are required to check the value prior to
2016  // converting to size_t. This will never find a negative array size in
2017  // C++14 onwards, because Value is always unsigned here!
2018  if (ArraySize->isIntegerConstantExpr(Value, Context)) {
2019  if (Value.isSigned() && Value.isNegative()) {
2020  return ExprError(Diag(ArraySize->getBeginLoc(),
2021  diag::err_typecheck_negative_array_size)
2022  << ArraySize->getSourceRange());
2023  }
2024 
2025  if (!AllocType->isDependentType()) {
2026  unsigned ActiveSizeBits =
2028  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2029  return ExprError(
2030  Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2031  << Value.toString(10) << ArraySize->getSourceRange());
2032  }
2033 
2034  KnownArraySize = Value.getZExtValue();
2035  } else if (TypeIdParens.isValid()) {
2036  // Can't have dynamic array size when the type-id is in parentheses.
2037  Diag(ArraySize->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2038  << ArraySize->getSourceRange()
2039  << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2040  << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2041 
2042  TypeIdParens = SourceRange();
2043  }
2044  }
2045 
2046  // Note that we do *not* convert the argument in any way. It can
2047  // be signed, larger than size_t, whatever.
2048  }
2049 
2050  FunctionDecl *OperatorNew = nullptr;
2051  FunctionDecl *OperatorDelete = nullptr;
2052  unsigned Alignment =
2053  AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2054  unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2055  bool PassAlignment = getLangOpts().AlignedAllocation &&
2056  Alignment > NewAlignment;
2057 
2059  if (!AllocType->isDependentType() &&
2060  !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2061  FindAllocationFunctions(StartLoc,
2062  SourceRange(PlacementLParen, PlacementRParen),
2063  Scope, Scope, AllocType, ArraySize, PassAlignment,
2064  PlacementArgs, OperatorNew, OperatorDelete))
2065  return ExprError();
2066 
2067  // If this is an array allocation, compute whether the usual array
2068  // deallocation function for the type has a size_t parameter.
2069  bool UsualArrayDeleteWantsSize = false;
2070  if (ArraySize && !AllocType->isDependentType())
2071  UsualArrayDeleteWantsSize =
2072  doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2073 
2074  SmallVector<Expr *, 8> AllPlaceArgs;
2075  if (OperatorNew) {
2076  const FunctionProtoType *Proto =
2077  OperatorNew->getType()->getAs<FunctionProtoType>();
2078  VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2080 
2081  // We've already converted the placement args, just fill in any default
2082  // arguments. Skip the first parameter because we don't have a corresponding
2083  // argument. Skip the second parameter too if we're passing in the
2084  // alignment; we've already filled it in.
2085  if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2086  PassAlignment ? 2 : 1, PlacementArgs,
2087  AllPlaceArgs, CallType))
2088  return ExprError();
2089 
2090  if (!AllPlaceArgs.empty())
2091  PlacementArgs = AllPlaceArgs;
2092 
2093  // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
2094  DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
2095 
2096  // FIXME: Missing call to CheckFunctionCall or equivalent
2097 
2098  // Warn if the type is over-aligned and is being allocated by (unaligned)
2099  // global operator new.
2100  if (PlacementArgs.empty() && !PassAlignment &&
2101  (OperatorNew->isImplicit() ||
2102  (OperatorNew->getBeginLoc().isValid() &&
2103  getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2104  if (Alignment > NewAlignment)
2105  Diag(StartLoc, diag::warn_overaligned_type)
2106  << AllocType
2107  << unsigned(Alignment / Context.getCharWidth())
2108  << unsigned(NewAlignment / Context.getCharWidth());
2109  }
2110  }
2111 
2112  // Array 'new' can't have any initializers except empty parentheses.
2113  // Initializer lists are also allowed, in C++11. Rely on the parser for the
2114  // dialect distinction.
2115  if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2116  SourceRange InitRange(Inits[0]->getBeginLoc(),
2117  Inits[NumInits - 1]->getEndLoc());
2118  Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2119  return ExprError();
2120  }
2121 
2122  // If we can perform the initialization, and we've not already done so,
2123  // do it now.
2124  if (!AllocType->isDependentType() &&
2126  llvm::makeArrayRef(Inits, NumInits))) {
2127  // The type we initialize is the complete type, including the array bound.
2128  QualType InitType;
2129  if (KnownArraySize)
2130  InitType = Context.getConstantArrayType(
2131  AllocType, llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2132  *KnownArraySize),
2133  ArrayType::Normal, 0);
2134  else if (ArraySize)
2135  InitType =
2137  else
2138  InitType = AllocType;
2139 
2140  InitializedEntity Entity
2141  = InitializedEntity::InitializeNew(StartLoc, InitType);
2142  InitializationSequence InitSeq(*this, Entity, Kind,
2143  MultiExprArg(Inits, NumInits));
2144  ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2145  MultiExprArg(Inits, NumInits));
2146  if (FullInit.isInvalid())
2147  return ExprError();
2148 
2149  // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2150  // we don't want the initialized object to be destructed.
2151  // FIXME: We should not create these in the first place.
2152  if (CXXBindTemporaryExpr *Binder =
2153  dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2154  FullInit = Binder->getSubExpr();
2155 
2156  Initializer = FullInit.get();
2157  }
2158 
2159  // Mark the new and delete operators as referenced.
2160  if (OperatorNew) {
2161  if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2162  return ExprError();
2163  MarkFunctionReferenced(StartLoc, OperatorNew);
2164  }
2165  if (OperatorDelete) {
2166  if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2167  return ExprError();
2168  MarkFunctionReferenced(StartLoc, OperatorDelete);
2169  }
2170 
2171  // C++0x [expr.new]p17:
2172  // If the new expression creates an array of objects of class type,
2173  // access and ambiguity control are done for the destructor.
2174  QualType BaseAllocType = Context.getBaseElementType(AllocType);
2175  if (ArraySize && !BaseAllocType->isDependentType()) {
2176  if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
2177  if (CXXDestructorDecl *dtor = LookupDestructor(
2178  cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
2179  MarkFunctionReferenced(StartLoc, dtor);
2180  CheckDestructorAccess(StartLoc, dtor,
2181  PDiag(diag::err_access_dtor)
2182  << BaseAllocType);
2183  if (DiagnoseUseOfDecl(dtor, StartLoc))
2184  return ExprError();
2185  }
2186  }
2187  }
2188 
2189  return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2190  PassAlignment, UsualArrayDeleteWantsSize,
2191  PlacementArgs, TypeIdParens, ArraySize, initStyle,
2192  Initializer, ResultType, AllocTypeInfo, Range,
2193  DirectInitRange);
2194 }
2195 
2196 /// Checks that a type is suitable as the allocated type
2197 /// in a new-expression.
2199  SourceRange R) {
2200  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2201  // abstract class type or array thereof.
2202  if (AllocType->isFunctionType())
2203  return Diag(Loc, diag::err_bad_new_type)
2204  << AllocType << 0 << R;
2205  else if (AllocType->isReferenceType())
2206  return Diag(Loc, diag::err_bad_new_type)
2207  << AllocType << 1 << R;
2208  else if (!AllocType->isDependentType() &&
2209  RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
2210  return true;
2211  else if (RequireNonAbstractType(Loc, AllocType,
2212  diag::err_allocation_of_abstract_type))
2213  return true;
2214  else if (AllocType->isVariablyModifiedType())
2215  return Diag(Loc, diag::err_variably_modified_new_type)
2216  << AllocType;
2217  else if (AllocType.getAddressSpace() != LangAS::Default &&
2218  !getLangOpts().OpenCLCPlusPlus)
2219  return Diag(Loc, diag::err_address_space_qualified_new)
2220  << AllocType.getUnqualifiedType()
2222  else if (getLangOpts().ObjCAutoRefCount) {
2223  if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2224  QualType BaseAllocType = Context.getBaseElementType(AT);
2225  if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2226  BaseAllocType->isObjCLifetimeType())
2227  return Diag(Loc, diag::err_arc_new_array_without_ownership)
2228  << BaseAllocType;
2229  }
2230  }
2231 
2232  return false;
2233 }
2234 
2237  bool &PassAlignment, FunctionDecl *&Operator,
2238  OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2239  OverloadCandidateSet Candidates(R.getNameLoc(),
2241  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2242  Alloc != AllocEnd; ++Alloc) {
2243  // Even member operator new/delete are implicitly treated as
2244  // static, so don't use AddMemberCandidate.
2245  NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2246 
2247  if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2248  S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2249  /*ExplicitTemplateArgs=*/nullptr, Args,
2250  Candidates,
2251  /*SuppressUserConversions=*/false);
2252  continue;
2253  }
2254 
2255  FunctionDecl *Fn = cast<FunctionDecl>(D);
2256  S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2257  /*SuppressUserConversions=*/false);
2258  }
2259 
2260  // Do the resolution.
2262  switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2263  case OR_Success: {
2264  // Got one!
2265  FunctionDecl *FnDecl = Best->Function;
2266  if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2267  Best->FoundDecl) == Sema::AR_inaccessible)
2268  return true;
2269 
2270  Operator = FnDecl;
2271  return false;
2272  }
2273 
2274  case OR_No_Viable_Function:
2275  // C++17 [expr.new]p13:
2276  // If no matching function is found and the allocated object type has
2277  // new-extended alignment, the alignment argument is removed from the
2278  // argument list, and overload resolution is performed again.
2279  if (PassAlignment) {
2280  PassAlignment = false;
2281  AlignArg = Args[1];
2282  Args.erase(Args.begin() + 1);
2283  return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2284  Operator, &Candidates, AlignArg,
2285  Diagnose);
2286  }
2287 
2288  // MSVC will fall back on trying to find a matching global operator new
2289  // if operator new[] cannot be found. Also, MSVC will leak by not
2290  // generating a call to operator delete or operator delete[], but we
2291  // will not replicate that bug.
2292  // FIXME: Find out how this interacts with the std::align_val_t fallback
2293  // once MSVC implements it.
2294  if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2295  S.Context.getLangOpts().MSVCCompat) {
2296  R.clear();
2299  // FIXME: This will give bad diagnostics pointing at the wrong functions.
2300  return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2301  Operator, /*Candidates=*/nullptr,
2302  /*AlignArg=*/nullptr, Diagnose);
2303  }
2304 
2305  if (Diagnose) {
2306  S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2307  << R.getLookupName() << Range;
2308 
2309  // If we have aligned candidates, only note the align_val_t candidates
2310  // from AlignedCandidates and the non-align_val_t candidates from
2311  // Candidates.
2312  if (AlignedCandidates) {
2313  auto IsAligned = [](OverloadCandidate &C) {
2314  return C.Function->getNumParams() > 1 &&
2315  C.Function->getParamDecl(1)->getType()->isAlignValT();
2316  };
2317  auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2318 
2319  // This was an overaligned allocation, so list the aligned candidates
2320  // first.
2321  Args.insert(Args.begin() + 1, AlignArg);
2322  AlignedCandidates->NoteCandidates(S, OCD_AllCandidates, Args, "",
2323  R.getNameLoc(), IsAligned);
2324  Args.erase(Args.begin() + 1);
2325  Candidates.NoteCandidates(S, OCD_AllCandidates, Args, "", R.getNameLoc(),
2326  IsUnaligned);
2327  } else {
2328  Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
2329  }
2330  }
2331  return true;
2332 
2333  case OR_Ambiguous:
2334  if (Diagnose) {
2335  S.Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call)
2336  << R.getLookupName() << Range;
2337  Candidates.NoteCandidates(S, OCD_ViableCandidates, Args);
2338  }
2339  return true;
2340 
2341  case OR_Deleted: {
2342  if (Diagnose) {
2343  S.Diag(R.getNameLoc(), diag::err_ovl_deleted_call)
2344  << Best->Function->isDeleted() << R.getLookupName()
2345  << S.getDeletedOrUnavailableSuffix(Best->Function) << Range;
2346  Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
2347  }
2348  return true;
2349  }
2350  }
2351  llvm_unreachable("Unreachable, bad result from BestViableFunction");
2352 }
2353 
2355  AllocationFunctionScope NewScope,
2356  AllocationFunctionScope DeleteScope,
2357  QualType AllocType, bool IsArray,
2358  bool &PassAlignment, MultiExprArg PlaceArgs,
2359  FunctionDecl *&OperatorNew,
2360  FunctionDecl *&OperatorDelete,
2361  bool Diagnose) {
2362  // --- Choosing an allocation function ---
2363  // C++ 5.3.4p8 - 14 & 18
2364  // 1) If looking in AFS_Global scope for allocation functions, only look in
2365  // the global scope. Else, if AFS_Class, only look in the scope of the
2366  // allocated class. If AFS_Both, look in both.
2367  // 2) If an array size is given, look for operator new[], else look for
2368  // operator new.
2369  // 3) The first argument is always size_t. Append the arguments from the
2370  // placement form.
2371 
2372  SmallVector<Expr*, 8> AllocArgs;
2373  AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2374 
2375  // We don't care about the actual value of these arguments.
2376  // FIXME: Should the Sema create the expression and embed it in the syntax
2377  // tree? Or should the consumer just recalculate the value?
2378  // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2379  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
2381  Context.getSizeType(),
2382  SourceLocation());
2383  AllocArgs.push_back(&Size);
2384 
2385  QualType AlignValT = Context.VoidTy;
2386  if (PassAlignment) {
2388  AlignValT = Context.getTypeDeclType(getStdAlignValT());
2389  }
2390  CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2391  if (PassAlignment)
2392  AllocArgs.push_back(&Align);
2393 
2394  AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2395 
2396  // C++ [expr.new]p8:
2397  // If the allocated type is a non-array type, the allocation
2398  // function's name is operator new and the deallocation function's
2399  // name is operator delete. If the allocated type is an array
2400  // type, the allocation function's name is operator new[] and the
2401  // deallocation function's name is operator delete[].
2403  IsArray ? OO_Array_New : OO_New);
2404 
2405  QualType AllocElemType = Context.getBaseElementType(AllocType);
2406 
2407  // Find the allocation function.
2408  {
2409  LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2410 
2411  // C++1z [expr.new]p9:
2412  // If the new-expression begins with a unary :: operator, the allocation
2413  // function's name is looked up in the global scope. Otherwise, if the
2414  // allocated type is a class type T or array thereof, the allocation
2415  // function's name is looked up in the scope of T.
2416  if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2417  LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2418 
2419  // We can see ambiguity here if the allocation function is found in
2420  // multiple base classes.
2421  if (R.isAmbiguous())
2422  return true;
2423 
2424  // If this lookup fails to find the name, or if the allocated type is not
2425  // a class type, the allocation function's name is looked up in the
2426  // global scope.
2427  if (R.empty()) {
2428  if (NewScope == AFS_Class)
2429  return true;
2430 
2432  }
2433 
2434  if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2435  Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2436  return true;
2437  }
2438 
2439  assert(!R.empty() && "implicitly declared allocation functions not found");
2440  assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2441 
2442  // We do our own custom access checks below.
2443  R.suppressDiagnostics();
2444 
2445  if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2446  OperatorNew, /*Candidates=*/nullptr,
2447  /*AlignArg=*/nullptr, Diagnose))
2448  return true;
2449  }
2450 
2451  // We don't need an operator delete if we're running under -fno-exceptions.
2452  if (!getLangOpts().Exceptions) {
2453  OperatorDelete = nullptr;
2454  return false;
2455  }
2456 
2457  // Note, the name of OperatorNew might have been changed from array to
2458  // non-array by resolveAllocationOverload.
2460  OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2461  ? OO_Array_Delete
2462  : OO_Delete);
2463 
2464  // C++ [expr.new]p19:
2465  //
2466  // If the new-expression begins with a unary :: operator, the
2467  // deallocation function's name is looked up in the global
2468  // scope. Otherwise, if the allocated type is a class type T or an
2469  // array thereof, the deallocation function's name is looked up in
2470  // the scope of T. If this lookup fails to find the name, or if
2471  // the allocated type is not a class type or array thereof, the
2472  // deallocation function's name is looked up in the global scope.
2473  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2474  if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2475  CXXRecordDecl *RD
2476  = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
2477  LookupQualifiedName(FoundDelete, RD);
2478  }
2479  if (FoundDelete.isAmbiguous())
2480  return true; // FIXME: clean up expressions?
2481 
2482  bool FoundGlobalDelete = FoundDelete.empty();
2483  if (FoundDelete.empty()) {
2484  if (DeleteScope == AFS_Class)
2485  return true;
2486 
2489  }
2490 
2491  FoundDelete.suppressDiagnostics();
2492 
2494 
2495  // Whether we're looking for a placement operator delete is dictated
2496  // by whether we selected a placement operator new, not by whether
2497  // we had explicit placement arguments. This matters for things like
2498  // struct A { void *operator new(size_t, int = 0); ... };
2499  // A *a = new A()
2500  //
2501  // We don't have any definition for what a "placement allocation function"
2502  // is, but we assume it's any allocation function whose
2503  // parameter-declaration-clause is anything other than (size_t).
2504  //
2505  // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2506  // This affects whether an exception from the constructor of an overaligned
2507  // type uses the sized or non-sized form of aligned operator delete.
2508  bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2509  OperatorNew->isVariadic();
2510 
2511  if (isPlacementNew) {
2512  // C++ [expr.new]p20:
2513  // A declaration of a placement deallocation function matches the
2514  // declaration of a placement allocation function if it has the
2515  // same number of parameters and, after parameter transformations
2516  // (8.3.5), all parameter types except the first are
2517  // identical. [...]
2518  //
2519  // To perform this comparison, we compute the function type that
2520  // the deallocation function should have, and use that type both
2521  // for template argument deduction and for comparison purposes.
2522  QualType ExpectedFunctionType;
2523  {
2524  const FunctionProtoType *Proto
2525  = OperatorNew->getType()->getAs<FunctionProtoType>();
2526 
2527  SmallVector<QualType, 4> ArgTypes;
2528  ArgTypes.push_back(Context.VoidPtrTy);
2529  for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2530  ArgTypes.push_back(Proto->getParamType(I));
2531 
2533  // FIXME: This is not part of the standard's rule.
2534  EPI.Variadic = Proto->isVariadic();
2535 
2536  ExpectedFunctionType
2537  = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2538  }
2539 
2540  for (LookupResult::iterator D = FoundDelete.begin(),
2541  DEnd = FoundDelete.end();
2542  D != DEnd; ++D) {
2543  FunctionDecl *Fn = nullptr;
2544  if (FunctionTemplateDecl *FnTmpl =
2545  dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2546  // Perform template argument deduction to try to match the
2547  // expected function type.
2548  TemplateDeductionInfo Info(StartLoc);
2549  if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2550  Info))
2551  continue;
2552  } else
2553  Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2554 
2556  ExpectedFunctionType,
2557  /*AdjustExcpetionSpec*/true),
2558  ExpectedFunctionType))
2559  Matches.push_back(std::make_pair(D.getPair(), Fn));
2560  }
2561 
2562  if (getLangOpts().CUDA)
2563  EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2564  } else {
2565  // C++1y [expr.new]p22:
2566  // For a non-placement allocation function, the normal deallocation
2567  // function lookup is used
2568  //
2569  // Per [expr.delete]p10, this lookup prefers a member operator delete
2570  // without a size_t argument, but prefers a non-member operator delete
2571  // with a size_t where possible (which it always is in this case).
2573  UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2574  *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2575  /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2576  &BestDeallocFns);
2577  if (Selected)
2578  Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2579  else {
2580  // If we failed to select an operator, all remaining functions are viable
2581  // but ambiguous.
2582  for (auto Fn : BestDeallocFns)
2583  Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2584  }
2585  }
2586 
2587  // C++ [expr.new]p20:
2588  // [...] If the lookup finds a single matching deallocation
2589  // function, that function will be called; otherwise, no
2590  // deallocation function will be called.
2591  if (Matches.size() == 1) {
2592  OperatorDelete = Matches[0].second;
2593 
2594  // C++1z [expr.new]p23:
2595  // If the lookup finds a usual deallocation function (3.7.4.2)
2596  // with a parameter of type std::size_t and that function, considered
2597  // as a placement deallocation function, would have been
2598  // selected as a match for the allocation function, the program
2599  // is ill-formed.
2600  if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2601  isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2602  UsualDeallocFnInfo Info(*this,
2603  DeclAccessPair::make(OperatorDelete, AS_public));
2604  // Core issue, per mail to core reflector, 2016-10-09:
2605  // If this is a member operator delete, and there is a corresponding
2606  // non-sized member operator delete, this isn't /really/ a sized
2607  // deallocation function, it just happens to have a size_t parameter.
2608  bool IsSizedDelete = Info.HasSizeT;
2609  if (IsSizedDelete && !FoundGlobalDelete) {
2610  auto NonSizedDelete =
2611  resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2612  /*WantAlign*/Info.HasAlignValT);
2613  if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2614  NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2615  IsSizedDelete = false;
2616  }
2617 
2618  if (IsSizedDelete) {
2619  SourceRange R = PlaceArgs.empty()
2620  ? SourceRange()
2621  : SourceRange(PlaceArgs.front()->getBeginLoc(),
2622  PlaceArgs.back()->getEndLoc());
2623  Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2624  if (!OperatorDelete->isImplicit())
2625  Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2626  << DeleteName;
2627  }
2628  }
2629 
2630  CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2631  Matches[0].first);
2632  } else if (!Matches.empty()) {
2633  // We found multiple suitable operators. Per [expr.new]p20, that means we
2634  // call no 'operator delete' function, but we should at least warn the user.
2635  // FIXME: Suppress this warning if the construction cannot throw.
2636  Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2637  << DeleteName << AllocElemType;
2638 
2639  for (auto &Match : Matches)
2640  Diag(Match.second->getLocation(),
2641  diag::note_member_declared_here) << DeleteName;
2642  }
2643 
2644  return false;
2645 }
2646 
2647 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2648 /// delete. These are:
2649 /// @code
2650 /// // C++03:
2651 /// void* operator new(std::size_t) throw(std::bad_alloc);
2652 /// void* operator new[](std::size_t) throw(std::bad_alloc);
2653 /// void operator delete(void *) throw();
2654 /// void operator delete[](void *) throw();
2655 /// // C++11:
2656 /// void* operator new(std::size_t);
2657 /// void* operator new[](std::size_t);
2658 /// void operator delete(void *) noexcept;
2659 /// void operator delete[](void *) noexcept;
2660 /// // C++1y:
2661 /// void* operator new(std::size_t);
2662 /// void* operator new[](std::size_t);
2663 /// void operator delete(void *) noexcept;
2664 /// void operator delete[](void *) noexcept;
2665 /// void operator delete(void *, std::size_t) noexcept;
2666 /// void operator delete[](void *, std::size_t) noexcept;
2667 /// @endcode
2668 /// Note that the placement and nothrow forms of new are *not* implicitly
2669 /// declared. Their use requires including <new>.
2672  return;
2673 
2674  // OpenCL C++ 1.0 s2.9: the implicitly declared new and delete operators
2675  // are not supported.
2676  if (getLangOpts().OpenCLCPlusPlus)
2677  return;
2678 
2679  // C++ [basic.std.dynamic]p2:
2680  // [...] The following allocation and deallocation functions (18.4) are
2681  // implicitly declared in global scope in each translation unit of a
2682  // program
2683  //
2684  // C++03:
2685  // void* operator new(std::size_t) throw(std::bad_alloc);
2686  // void* operator new[](std::size_t) throw(std::bad_alloc);
2687  // void operator delete(void*) throw();
2688  // void operator delete[](void*) throw();
2689  // C++11:
2690  // void* operator new(std::size_t);
2691  // void* operator new[](std::size_t);
2692  // void operator delete(void*) noexcept;
2693  // void operator delete[](void*) noexcept;
2694  // C++1y:
2695  // void* operator new(std::size_t);
2696  // void* operator new[](std::size_t);
2697  // void operator delete(void*) noexcept;
2698  // void operator delete[](void*) noexcept;
2699  // void operator delete(void*, std::size_t) noexcept;
2700  // void operator delete[](void*, std::size_t) noexcept;
2701  //
2702  // These implicit declarations introduce only the function names operator
2703  // new, operator new[], operator delete, operator delete[].
2704  //
2705  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2706  // "std" or "bad_alloc" as necessary to form the exception specification.
2707  // However, we do not make these implicit declarations visible to name
2708  // lookup.
2709  if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2710  // The "std::bad_alloc" class has not yet been declared, so build it
2711  // implicitly.
2715  &PP.getIdentifierTable().get("bad_alloc"),
2716  nullptr);
2717  getStdBadAlloc()->setImplicit(true);
2718  }
2719  if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2720  // The "std::align_val_t" enum class has not yet been declared, so build it
2721  // implicitly.
2722  auto *AlignValT = EnumDecl::Create(
2724  &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2725  AlignValT->setIntegerType(Context.getSizeType());
2726  AlignValT->setPromotionType(Context.getSizeType());
2727  AlignValT->setImplicit(true);
2728  StdAlignValT = AlignValT;
2729  }
2730 
2731  GlobalNewDeleteDeclared = true;
2732 
2734  QualType SizeT = Context.getSizeType();
2735 
2736  auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2737  QualType Return, QualType Param) {
2739  Params.push_back(Param);
2740 
2741  // Create up to four variants of the function (sized/aligned).
2742  bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2743  (Kind == OO_Delete || Kind == OO_Array_Delete);
2744  bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2745 
2746  int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2747  int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2748  for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2749  if (Sized)
2750  Params.push_back(SizeT);
2751 
2752  for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2753  if (Aligned)
2754  Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2755 
2757  Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2758 
2759  if (Aligned)
2760  Params.pop_back();
2761  }
2762  }
2763  };
2764 
2765  DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
2766  DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
2767  DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
2768  DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
2769 }
2770 
2771 /// DeclareGlobalAllocationFunction - Declares a single implicit global
2772 /// allocation function if it doesn't already exist.
2774  QualType Return,
2775  ArrayRef<QualType> Params) {
2777 
2778  // Check if this function is already declared.
2779  DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2780  for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2781  Alloc != AllocEnd; ++Alloc) {
2782  // Only look at non-template functions, as it is the predefined,
2783  // non-templated allocation function we are trying to declare here.
2784  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2785  if (Func->getNumParams() == Params.size()) {
2786  llvm::SmallVector<QualType, 3> FuncParams;
2787  for (auto *P : Func->parameters())
2788  FuncParams.push_back(
2789  Context.getCanonicalType(P->getType().getUnqualifiedType()));
2790  if (llvm::makeArrayRef(FuncParams) == Params) {
2791  // Make the function visible to name lookup, even if we found it in
2792  // an unimported module. It either is an implicitly-declared global
2793  // allocation function, or is suppressing that function.
2794  Func->setVisibleDespiteOwningModule();
2795  return;
2796  }
2797  }
2798  }
2799  }
2800 
2802 
2803  QualType BadAllocType;
2804  bool HasBadAllocExceptionSpec
2805  = (Name.getCXXOverloadedOperator() == OO_New ||
2806  Name.getCXXOverloadedOperator() == OO_Array_New);
2807  if (HasBadAllocExceptionSpec) {
2808  if (!getLangOpts().CPlusPlus11) {
2809  BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2810  assert(StdBadAlloc && "Must have std::bad_alloc declared");
2812  EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2813  }
2814  } else {
2815  EPI.ExceptionSpec =
2816  getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2817  }
2818 
2819  auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
2820  QualType FnType = Context.getFunctionType(Return, Params, EPI);
2822  Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
2823  FnType, /*TInfo=*/nullptr, SC_None, false, true);
2824  Alloc->setImplicit();
2825  // Global allocation functions should always be visible.
2827 
2828  Alloc->addAttr(VisibilityAttr::CreateImplicit(
2829  Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
2830  ? VisibilityAttr::Hidden
2832 
2834  for (QualType T : Params) {
2835  ParamDecls.push_back(ParmVarDecl::Create(
2836  Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
2837  /*TInfo=*/nullptr, SC_None, nullptr));
2838  ParamDecls.back()->setImplicit();
2839  }
2840  Alloc->setParams(ParamDecls);
2841  if (ExtraAttr)
2842  Alloc->addAttr(ExtraAttr);
2844  IdResolver.tryAddTopLevelDecl(Alloc, Name);
2845  };
2846 
2847  if (!LangOpts.CUDA)
2848  CreateAllocationFunctionDecl(nullptr);
2849  else {
2850  // Host and device get their own declaration so each can be
2851  // defined or re-declared independently.
2852  CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
2853  CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
2854  }
2855 }
2856 
2858  bool CanProvideSize,
2859  bool Overaligned,
2860  DeclarationName Name) {
2862 
2863  LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2865 
2866  // FIXME: It's possible for this to result in ambiguity, through a
2867  // user-declared variadic operator delete or the enable_if attribute. We
2868  // should probably not consider those cases to be usual deallocation
2869  // functions. But for now we just make an arbitrary choice in that case.
2870  auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
2871  Overaligned);
2872  assert(Result.FD && "operator delete missing from global scope?");
2873  return Result.FD;
2874 }
2875 
2877  CXXRecordDecl *RD) {
2879 
2880  FunctionDecl *OperatorDelete = nullptr;
2881  if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2882  return nullptr;
2883  if (OperatorDelete)
2884  return OperatorDelete;
2885 
2886  // If there's no class-specific operator delete, look up the global
2887  // non-array delete.
2889  Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
2890  Name);
2891 }
2892 
2894  DeclarationName Name,
2895  FunctionDecl *&Operator, bool Diagnose) {
2896  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2897  // Try to find operator delete/operator delete[] in class scope.
2898  LookupQualifiedName(Found, RD);
2899 
2900  if (Found.isAmbiguous())
2901  return true;
2902 
2903  Found.suppressDiagnostics();
2904 
2905  bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
2906 
2907  // C++17 [expr.delete]p10:
2908  // If the deallocation functions have class scope, the one without a
2909  // parameter of type std::size_t is selected.
2911  resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
2912  /*WantAlign*/ Overaligned, &Matches);
2913 
2914  // If we could find an overload, use it.
2915  if (Matches.size() == 1) {
2916  Operator = cast<CXXMethodDecl>(Matches[0].FD);
2917 
2918  // FIXME: DiagnoseUseOfDecl?
2919  if (Operator->isDeleted()) {
2920  if (Diagnose) {
2921  Diag(StartLoc, diag::err_deleted_function_use);
2922  NoteDeletedFunction(Operator);
2923  }
2924  return true;
2925  }
2926 
2927  if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2928  Matches[0].Found, Diagnose) == AR_inaccessible)
2929  return true;
2930 
2931  return false;
2932  }
2933 
2934  // We found multiple suitable operators; complain about the ambiguity.
2935  // FIXME: The standard doesn't say to do this; it appears that the intent
2936  // is that this should never happen.
2937  if (!Matches.empty()) {
2938  if (Diagnose) {
2939  Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2940  << Name << RD;
2941  for (auto &Match : Matches)
2942  Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
2943  }
2944  return true;
2945  }
2946 
2947  // We did find operator delete/operator delete[] declarations, but
2948  // none of them were suitable.
2949  if (!Found.empty()) {
2950  if (Diagnose) {
2951  Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2952  << Name << RD;
2953 
2954  for (NamedDecl *D : Found)
2955  Diag(D->getUnderlyingDecl()->getLocation(),
2956  diag::note_member_declared_here) << Name;
2957  }
2958  return true;
2959  }
2960 
2961  Operator = nullptr;
2962  return false;
2963 }
2964 
2965 namespace {
2966 /// Checks whether delete-expression, and new-expression used for
2967 /// initializing deletee have the same array form.
2968 class MismatchingNewDeleteDetector {
2969 public:
2970  enum MismatchResult {
2971  /// Indicates that there is no mismatch or a mismatch cannot be proven.
2972  NoMismatch,
2973  /// Indicates that variable is initialized with mismatching form of \a new.
2974  VarInitMismatches,
2975  /// Indicates that member is initialized with mismatching form of \a new.
2976  MemberInitMismatches,
2977  /// Indicates that 1 or more constructors' definitions could not been
2978  /// analyzed, and they will be checked again at the end of translation unit.
2979  AnalyzeLater
2980  };
2981 
2982  /// \param EndOfTU True, if this is the final analysis at the end of
2983  /// translation unit. False, if this is the initial analysis at the point
2984  /// delete-expression was encountered.
2985  explicit MismatchingNewDeleteDetector(bool EndOfTU)
2986  : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
2987  HasUndefinedConstructors(false) {}
2988 
2989  /// Checks whether pointee of a delete-expression is initialized with
2990  /// matching form of new-expression.
2991  ///
2992  /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
2993  /// point where delete-expression is encountered, then a warning will be
2994  /// issued immediately. If return value is \c AnalyzeLater at the point where
2995  /// delete-expression is seen, then member will be analyzed at the end of
2996  /// translation unit. \c AnalyzeLater is returned iff at least one constructor
2997  /// couldn't be analyzed. If at least one constructor initializes the member
2998  /// with matching type of new, the return value is \c NoMismatch.
2999  MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3000  /// Analyzes a class member.
3001  /// \param Field Class member to analyze.
3002  /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3003  /// for deleting the \p Field.
3004  MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3005  FieldDecl *Field;
3006  /// List of mismatching new-expressions used for initialization of the pointee
3008  /// Indicates whether delete-expression was in array form.
3009  bool IsArrayForm;
3010 
3011 private:
3012  const bool EndOfTU;
3013  /// Indicates that there is at least one constructor without body.
3014  bool HasUndefinedConstructors;
3015  /// Returns \c CXXNewExpr from given initialization expression.
3016  /// \param E Expression used for initializing pointee in delete-expression.
3017  /// E can be a single-element \c InitListExpr consisting of new-expression.
3018  const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3019  /// Returns whether member is initialized with mismatching form of
3020  /// \c new either by the member initializer or in-class initialization.
3021  ///
3022  /// If bodies of all constructors are not visible at the end of translation
3023  /// unit or at least one constructor initializes member with the matching
3024  /// form of \c new, mismatch cannot be proven, and this function will return
3025  /// \c NoMismatch.
3026  MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3027  /// Returns whether variable is initialized with mismatching form of
3028  /// \c new.
3029  ///
3030  /// If variable is initialized with matching form of \c new or variable is not
3031  /// initialized with a \c new expression, this function will return true.
3032  /// If variable is initialized with mismatching form of \c new, returns false.
3033  /// \param D Variable to analyze.
3034  bool hasMatchingVarInit(const DeclRefExpr *D);
3035  /// Checks whether the constructor initializes pointee with mismatching
3036  /// form of \c new.
3037  ///
3038  /// Returns true, if member is initialized with matching form of \c new in
3039  /// member initializer list. Returns false, if member is initialized with the
3040  /// matching form of \c new in this constructor's initializer or given
3041  /// constructor isn't defined at the point where delete-expression is seen, or
3042  /// member isn't initialized by the constructor.
3043  bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3044  /// Checks whether member is initialized with matching form of
3045  /// \c new in member initializer list.
3046  bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3047  /// Checks whether member is initialized with mismatching form of \c new by
3048  /// in-class initializer.
3049  MismatchResult analyzeInClassInitializer();
3050 };
3051 }
3052 
3053 MismatchingNewDeleteDetector::MismatchResult
3054 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3055  NewExprs.clear();
3056  assert(DE && "Expected delete-expression");
3057  IsArrayForm = DE->isArrayForm();
3058  const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3059  if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3060  return analyzeMemberExpr(ME);
3061  } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3062  if (!hasMatchingVarInit(D))
3063  return VarInitMismatches;
3064  }
3065  return NoMismatch;
3066 }
3067 
3068 const CXXNewExpr *
3069 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3070  assert(E != nullptr && "Expected a valid initializer expression");
3071  E = E->IgnoreParenImpCasts();
3072  if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3073  if (ILE->getNumInits() == 1)
3074  E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3075  }
3076 
3077  return dyn_cast_or_null<const CXXNewExpr>(E);
3078 }
3079 
3080 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3081  const CXXCtorInitializer *CI) {
3082  const CXXNewExpr *NE = nullptr;
3083  if (Field == CI->getMember() &&
3084  (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3085  if (NE->isArray() == IsArrayForm)
3086  return true;
3087  else
3088  NewExprs.push_back(NE);
3089  }
3090  return false;
3091 }
3092 
3093 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3094  const CXXConstructorDecl *CD) {
3095  if (CD->isImplicit())
3096  return false;
3097  const FunctionDecl *Definition = CD;
3098  if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3099  HasUndefinedConstructors = true;
3100  return EndOfTU;
3101  }
3102  for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3103  if (hasMatchingNewInCtorInit(CI))
3104  return true;
3105  }
3106  return false;
3107 }
3108 
3109 MismatchingNewDeleteDetector::MismatchResult
3110 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3111  assert(Field != nullptr && "This should be called only for members");
3112  const Expr *InitExpr = Field->getInClassInitializer();
3113  if (!InitExpr)
3114  return EndOfTU ? NoMismatch : AnalyzeLater;
3115  if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3116  if (NE->isArray() != IsArrayForm) {
3117  NewExprs.push_back(NE);
3118  return MemberInitMismatches;
3119  }
3120  }
3121  return NoMismatch;
3122 }
3123 
3124 MismatchingNewDeleteDetector::MismatchResult
3125 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3126  bool DeleteWasArrayForm) {
3127  assert(Field != nullptr && "Analysis requires a valid class member.");
3128  this->Field = Field;
3129  IsArrayForm = DeleteWasArrayForm;
3130  const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3131  for (const auto *CD : RD->ctors()) {
3132  if (hasMatchingNewInCtor(CD))
3133  return NoMismatch;
3134  }
3135  if (HasUndefinedConstructors)
3136  return EndOfTU ? NoMismatch : AnalyzeLater;
3137  if (!NewExprs.empty())
3138  return MemberInitMismatches;
3139  return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3140  : NoMismatch;
3141 }
3142 
3143 MismatchingNewDeleteDetector::MismatchResult
3144 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3145  assert(ME != nullptr && "Expected a member expression");
3146  if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3147  return analyzeField(F, IsArrayForm);
3148  return NoMismatch;
3149 }
3150 
3151 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3152  const CXXNewExpr *NE = nullptr;
3153  if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3154  if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3155  NE->isArray() != IsArrayForm) {
3156  NewExprs.push_back(NE);
3157  }
3158  }
3159  return NewExprs.empty();
3160 }
3161 
3162 static void
3164  const MismatchingNewDeleteDetector &Detector) {
3165  SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3166  FixItHint H;
3167  if (!Detector.IsArrayForm)
3168  H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3169  else {
3171  DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3172  SemaRef.getLangOpts(), true);
3173  if (RSquare.isValid())
3174  H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3175  }
3176  SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3177  << Detector.IsArrayForm << H;
3178 
3179  for (const auto *NE : Detector.NewExprs)
3180  SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3181  << Detector.IsArrayForm;
3182 }
3183 
3184 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3185  if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3186  return;
3187  MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3188  switch (Detector.analyzeDeleteExpr(DE)) {
3189  case MismatchingNewDeleteDetector::VarInitMismatches:
3190  case MismatchingNewDeleteDetector::MemberInitMismatches: {
3191  DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3192  break;
3193  }
3194  case MismatchingNewDeleteDetector::AnalyzeLater: {
3195  DeleteExprs[Detector.Field].push_back(
3196  std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3197  break;
3198  }
3199  case MismatchingNewDeleteDetector::NoMismatch:
3200  break;
3201  }
3202 }
3203 
3204 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3205  bool DeleteWasArrayForm) {
3206  MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3207  switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3208  case MismatchingNewDeleteDetector::VarInitMismatches:
3209  llvm_unreachable("This analysis should have been done for class members.");
3210  case MismatchingNewDeleteDetector::AnalyzeLater:
3211  llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3212  "translation unit.");
3213  case MismatchingNewDeleteDetector::MemberInitMismatches:
3214  DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3215  break;
3216  case MismatchingNewDeleteDetector::NoMismatch:
3217  break;
3218  }
3219 }
3220 
3221 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3222 /// @code ::delete ptr; @endcode
3223 /// or
3224 /// @code delete [] ptr; @endcode
3225 ExprResult
3226 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3227  bool ArrayForm, Expr *ExE) {
3228  // C++ [expr.delete]p1:
3229  // The operand shall have a pointer type, or a class type having a single
3230  // non-explicit conversion function to a pointer type. The result has type
3231  // void.
3232  //
3233  // DR599 amends "pointer type" to "pointer to object type" in both cases.
3234 
3235  ExprResult Ex = ExE;
3236  FunctionDecl *OperatorDelete = nullptr;
3237  bool ArrayFormAsWritten = ArrayForm;
3238  bool UsualArrayDeleteWantsSize = false;
3239 
3240  if (!Ex.get()->isTypeDependent()) {
3241  // Perform lvalue-to-rvalue cast, if needed.
3242  Ex = DefaultLvalueConversion(Ex.get());
3243  if (Ex.isInvalid())
3244  return ExprError();
3245 
3246  QualType Type = Ex.get()->getType();
3247 
3248  class DeleteConverter : public ContextualImplicitConverter {
3249  public:
3250  DeleteConverter() : ContextualImplicitConverter(false, true) {}
3251 
3252  bool match(QualType ConvType) override {
3253  // FIXME: If we have an operator T* and an operator void*, we must pick
3254  // the operator T*.
3255  if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3256  if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3257  return true;
3258  return false;
3259  }
3260 
3261  SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3262  QualType T) override {
3263  return S.Diag(Loc, diag::err_delete_operand) << T;
3264  }
3265 
3266  SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3267  QualType T) override {
3268  return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3269  }
3270 
3271  SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3272  QualType T,
3273  QualType ConvTy) override {
3274  return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3275  }
3276 
3277  SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3278  QualType ConvTy) override {
3279  return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3280  << ConvTy;
3281  }
3282 
3283  SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3284  QualType T) override {
3285  return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3286  }
3287 
3288  SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3289  QualType ConvTy) override {
3290  return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3291  << ConvTy;
3292  }
3293 
3294  SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3295  QualType T,
3296  QualType ConvTy) override {
3297  llvm_unreachable("conversion functions are permitted");
3298  }
3299  } Converter;
3300 
3301  Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3302  if (Ex.isInvalid())
3303  return ExprError();
3304  Type = Ex.get()->getType();
3305  if (!Converter.match(Type))
3306  // FIXME: PerformContextualImplicitConversion should return ExprError
3307  // itself in this case.
3308  return ExprError();
3309 
3310  QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
3311  QualType PointeeElem = Context.getBaseElementType(Pointee);
3312 
3313  if (Pointee.getAddressSpace() != LangAS::Default &&
3314  !getLangOpts().OpenCLCPlusPlus)
3315  return Diag(Ex.get()->getBeginLoc(),
3316  diag::err_address_space_qualified_delete)
3317  << Pointee.getUnqualifiedType()
3319 
3320  CXXRecordDecl *PointeeRD = nullptr;
3321  if (Pointee->isVoidType() && !isSFINAEContext()) {
3322  // The C++ standard bans deleting a pointer to a non-object type, which
3323  // effectively bans deletion of "void*". However, most compilers support
3324  // this, so we treat it as a warning unless we're in a SFINAE context.
3325  Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3326  << Type << Ex.get()->getSourceRange();
3327  } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
3328  return ExprError(Diag(StartLoc, diag::err_delete_operand)
3329  << Type << Ex.get()->getSourceRange());
3330  } else if (!Pointee->isDependentType()) {
3331  // FIXME: This can result in errors if the definition was imported from a
3332  // module but is hidden.
3333  if (!RequireCompleteType(StartLoc, Pointee,
3334  diag::warn_delete_incomplete, Ex.get())) {
3335  if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3336  PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3337  }
3338  }
3339 
3340  if (Pointee->isArrayType() && !ArrayForm) {
3341  Diag(StartLoc, diag::warn_delete_array_type)
3342  << Type << Ex.get()->getSourceRange()
3343  << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3344  ArrayForm = true;
3345  }
3346 
3348  ArrayForm ? OO_Array_Delete : OO_Delete);
3349 
3350  if (PointeeRD) {
3351  if (!UseGlobal &&
3352  FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3353  OperatorDelete))
3354  return ExprError();
3355 
3356  // If we're allocating an array of records, check whether the
3357  // usual operator delete[] has a size_t parameter.
3358  if (ArrayForm) {
3359  // If the user specifically asked to use the global allocator,
3360  // we'll need to do the lookup into the class.
3361  if (UseGlobal)
3362  UsualArrayDeleteWantsSize =
3363  doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3364 
3365  // Otherwise, the usual operator delete[] should be the
3366  // function we just found.
3367  else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3368  UsualArrayDeleteWantsSize =
3369  UsualDeallocFnInfo(*this,
3370  DeclAccessPair::make(OperatorDelete, AS_public))
3371  .HasSizeT;
3372  }
3373 
3374  if (!PointeeRD->hasIrrelevantDestructor())
3375  if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3376  MarkFunctionReferenced(StartLoc,
3377  const_cast<CXXDestructorDecl*>(Dtor));
3378  if (DiagnoseUseOfDecl(Dtor, StartLoc))
3379  return ExprError();
3380  }
3381 
3382  CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3383  /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3384  /*WarnOnNonAbstractTypes=*/!ArrayForm,
3385  SourceLocation());
3386  }
3387 
3388  if (!OperatorDelete) {
3389  if (getLangOpts().OpenCLCPlusPlus) {
3390  Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3391  return ExprError();
3392  }
3393 
3394  bool IsComplete = isCompleteType(StartLoc, Pointee);
3395  bool CanProvideSize =
3396  IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3397  Pointee.isDestructedType());
3398  bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3399 
3400  // Look for a global declaration.
3401  OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3402  Overaligned, DeleteName);
3403  }
3404 
3405  MarkFunctionReferenced(StartLoc, OperatorDelete);
3406 
3407  // Check access and ambiguity of destructor if we're going to call it.
3408  // Note that this is required even for a virtual delete.
3409  bool IsVirtualDelete = false;
3410  if (PointeeRD) {
3411  if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3412  CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3413  PDiag(diag::err_access_dtor) << PointeeElem);
3414  IsVirtualDelete = Dtor->isVirtual();
3415  }
3416  }
3417 
3418  DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3419 
3420  // Convert the operand to the type of the first parameter of operator
3421  // delete. This is only necessary if we selected a destroying operator
3422  // delete that we are going to call (non-virtually); converting to void*
3423  // is trivial and left to AST consumers to handle.
3424  QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3425  if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3426  Qualifiers Qs = Pointee.getQualifiers();
3427  if (Qs.hasCVRQualifiers()) {
3428  // Qualifiers are irrelevant to this conversion; we're only looking
3429  // for access and ambiguity.
3430  Qs.removeCVRQualifiers();
3431  QualType Unqual = Context.getPointerType(
3433  Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3434  }
3435  Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3436  if (Ex.isInvalid())
3437  return ExprError();
3438  }
3439  }
3440 
3442  Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3443  UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3444  AnalyzeDeleteExprMismatch(Result);
3445  return Result;
3446 }
3447 
3449  bool IsDelete,
3450  FunctionDecl *&Operator) {
3451 
3453  IsDelete ? OO_Delete : OO_New);
3454 
3455  LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3457  assert(!R.empty() && "implicitly declared allocation functions not found");
3458  assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3459 
3460  // We do our own custom access checks below.
3461  R.suppressDiagnostics();
3462 
3463  SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3464  OverloadCandidateSet Candidates(R.getNameLoc(),
3466  for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3467  FnOvl != FnOvlEnd; ++FnOvl) {
3468  // Even member operator new/delete are implicitly treated as
3469  // static, so don't use AddMemberCandidate.
3470  NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3471 
3472  if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3473  S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3474  /*ExplicitTemplateArgs=*/nullptr, Args,
3475  Candidates,
3476  /*SuppressUserConversions=*/false);
3477  continue;
3478  }
3479 
3480  FunctionDecl *Fn = cast<FunctionDecl>(D);
3481  S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3482  /*SuppressUserConversions=*/false);
3483  }
3484 
3485  SourceRange Range = TheCall->getSourceRange();
3486 
3487  // Do the resolution.
3489  switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3490  case OR_Success: {
3491  // Got one!
3492  FunctionDecl *FnDecl = Best->Function;
3493  assert(R.getNamingClass() == nullptr &&
3494  "class members should not be considered");
3495 
3496  if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3497  S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3498  << (IsDelete ? 1 : 0) << Range;
3499  S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3500  << R.getLookupName() << FnDecl->getSourceRange();
3501  return true;
3502  }
3503 
3504  Operator = FnDecl;
3505  return false;
3506  }
3507 
3508  case OR_No_Viable_Function:
3509  S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
3510  << R.getLookupName() << Range;
3511  Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
3512  return true;
3513 
3514  case OR_Ambiguous:
3515  S.Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call)
3516  << R.getLookupName() << Range;
3517  Candidates.NoteCandidates(S, OCD_ViableCandidates, Args);
3518  return true;
3519 
3520  case OR_Deleted: {
3521  S.Diag(R.getNameLoc(), diag::err_ovl_deleted_call)
3522  << Best->Function->isDeleted() << R.getLookupName()
3523  << S.getDeletedOrUnavailableSuffix(Best->Function) << Range;
3524  Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
3525  return true;
3526  }
3527  }
3528  llvm_unreachable("Unreachable, bad result from BestViableFunction");
3529 }
3530 
3531 ExprResult
3532 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3533  bool IsDelete) {
3534  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3535  if (!getLangOpts().CPlusPlus) {
3536  Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3537  << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3538  << "C++";
3539  return ExprError();
3540  }
3541  // CodeGen assumes it can find the global new and delete to call,
3542  // so ensure that they are declared.
3544 
3545  FunctionDecl *OperatorNewOrDelete = nullptr;
3546  if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3547  OperatorNewOrDelete))
3548  return ExprError();
3549  assert(OperatorNewOrDelete && "should be found");
3550 
3551  DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3552  MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3553 
3554  TheCall->setType(OperatorNewOrDelete->getReturnType());
3555  for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3556  QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3557  InitializedEntity Entity =
3560  Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3561  if (Arg.isInvalid())
3562  return ExprError();
3563  TheCall->setArg(i, Arg.get());
3564  }
3565  auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3566  assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3567  "Callee expected to be implicit cast to a builtin function pointer");
3568  Callee->setType(OperatorNewOrDelete->getType());
3569 
3570  return TheCallResult;
3571 }
3572 
3574  bool IsDelete, bool CallCanBeVirtual,
3575  bool WarnOnNonAbstractTypes,
3576  SourceLocation DtorLoc) {
3577  if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3578  return;
3579 
3580  // C++ [expr.delete]p3:
3581  // In the first alternative (delete object), if the static type of the
3582  // object to be deleted is different from its dynamic type, the static
3583  // type shall be a base class of the dynamic type of the object to be
3584  // deleted and the static type shall have a virtual destructor or the
3585  // behavior is undefined.
3586  //
3587  const CXXRecordDecl *PointeeRD = dtor->getParent();
3588  // Note: a final class cannot be derived from, no issue there
3589  if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3590  return;
3591 
3592  // If the superclass is in a system header, there's nothing that can be done.
3593  // The `delete` (where we emit the warning) can be in a system header,
3594  // what matters for this warning is where the deleted type is defined.
3595  if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3596  return;
3597 
3598  QualType ClassType = dtor->getThisType()->getPointeeType();
3599  if (PointeeRD->isAbstract()) {
3600  // If the class is abstract, we warn by default, because we're
3601  // sure the code has undefined behavior.
3602  Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3603  << ClassType;
3604  } else if (WarnOnNonAbstractTypes) {
3605  // Otherwise, if this is not an array delete, it's a bit suspect,
3606  // but not necessarily wrong.
3607  Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3608  << ClassType;
3609  }
3610  if (!IsDelete) {
3611  std::string TypeStr;
3612  ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3613  Diag(DtorLoc, diag::note_delete_non_virtual)
3614  << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3615  }
3616 }
3617 
3619  SourceLocation StmtLoc,
3620  ConditionKind CK) {
3621  ExprResult E =
3622  CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3623  if (E.isInvalid())
3624  return ConditionError();
3625  return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3627 }
3628 
3629 /// Check the use of the given variable as a C++ condition in an if,
3630 /// while, do-while, or switch statement.
3632  SourceLocation StmtLoc,
3633  ConditionKind CK) {
3634  if (ConditionVar->isInvalidDecl())
3635  return ExprError();
3636 
3637  QualType T = ConditionVar->getType();
3638 
3639  // C++ [stmt.select]p2:
3640  // The declarator shall not specify a function or an array.
3641  if (T->isFunctionType())
3642  return ExprError(Diag(ConditionVar->getLocation(),
3643  diag::err_invalid_use_of_function_type)
3644  << ConditionVar->getSourceRange());
3645  else if (T->isArrayType())
3646  return ExprError(Diag(ConditionVar->getLocation(),
3647  diag::err_invalid_use_of_array_type)
3648  << ConditionVar->getSourceRange());
3649 
3650  ExprResult Condition = DeclRefExpr::Create(
3651  Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
3652  /*enclosing*/ false, ConditionVar->getLocation(),
3653  ConditionVar->getType().getNonReferenceType(), VK_LValue);
3654 
3655  MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
3656 
3657  switch (CK) {
3659  return CheckBooleanCondition(StmtLoc, Condition.get());
3660 
3662  return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3663 
3664  case ConditionKind::Switch:
3665  return CheckSwitchCondition(StmtLoc, Condition.get());
3666  }
3667 
3668  llvm_unreachable("unexpected condition kind");
3669 }
3670 
3671 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3672 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3673  // C++ 6.4p4:
3674  // The value of a condition that is an initialized declaration in a statement
3675  // other than a switch statement is the value of the declared variable
3676  // implicitly converted to type bool. If that conversion is ill-formed, the
3677  // program is ill-formed.
3678  // The value of a condition that is an expression is the value of the
3679  // expression, implicitly converted to bool.
3680  //
3681  // FIXME: Return this value to the caller so they don't need to recompute it.
3682  llvm::APSInt Value(/*BitWidth*/1);
3683  return (IsConstexpr && !CondExpr->isValueDependent())
3684  ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value,
3687 }
3688 
3689 /// Helper function to determine whether this is the (deprecated) C++
3690 /// conversion from a string literal to a pointer to non-const char or
3691 /// non-const wchar_t (for narrow and wide string literals,
3692 /// respectively).
3693 bool
3695  // Look inside the implicit cast, if it exists.
3696  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3697  From = Cast->getSubExpr();
3698 
3699  // A string literal (2.13.4) that is not a wide string literal can
3700  // be converted to an rvalue of type "pointer to char"; a wide
3701  // string literal can be converted to an rvalue of type "pointer
3702  // to wchar_t" (C++ 4.2p2).
3703  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3704  if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3705  if (const BuiltinType *ToPointeeType
3706  = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3707  // This conversion is considered only when there is an
3708  // explicit appropriate pointer target type (C++ 4.2p2).
3709  if (!ToPtrType->getPointeeType().hasQualifiers()) {
3710  switch (StrLit->getKind()) {
3711  case StringLiteral::UTF8:
3712  case StringLiteral::UTF16:
3713  case StringLiteral::UTF32:
3714  // We don't allow UTF literals to be implicitly converted
3715  break;
3716  case StringLiteral::Ascii:
3717  return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3718  ToPointeeType->getKind() == BuiltinType::Char_S);
3719  case StringLiteral::Wide:
3721  QualType(ToPointeeType, 0));
3722  }
3723  }
3724  }
3725 
3726  return false;
3727 }
3728 
3730  SourceLocation CastLoc,
3731  QualType Ty,
3732  CastKind Kind,
3733  CXXMethodDecl *Method,
3734  DeclAccessPair FoundDecl,
3735  bool HadMultipleCandidates,
3736  Expr *From) {
3737  switch (Kind) {
3738  default: llvm_unreachable("Unhandled cast kind!");
3739  case CK_ConstructorConversion: {
3740  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3741  SmallVector<Expr*, 8> ConstructorArgs;
3742 
3743  if (S.RequireNonAbstractType(CastLoc, Ty,
3744  diag::err_allocation_of_abstract_type))
3745  return ExprError();
3746 
3747  if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
3748  return ExprError();
3749 
3750  S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
3752  if (S.DiagnoseUseOfDecl(Method, CastLoc))
3753  return ExprError();
3754 
3756  CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
3757  ConstructorArgs, HadMultipleCandidates,
3758  /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3760  if (Result.isInvalid())
3761  return ExprError();
3762 
3763  return S.MaybeBindToTemporary(Result.getAs<Expr>());
3764  }
3765 
3766  case CK_UserDefinedConversion: {
3767  assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
3768 
3769  S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
3770  if (S.DiagnoseUseOfDecl(Method, CastLoc))
3771  return ExprError();
3772 
3773  // Create an implicit call expr that calls it.
3774  CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
3775  ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
3776  HadMultipleCandidates);
3777  if (Result.isInvalid())
3778  return ExprError();
3779  // Record usage of conversion in an implicit cast.
3780  Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
3781  CK_UserDefinedConversion, Result.get(),
3782  nullptr, Result.get()->getValueKind());
3783 
3784  return S.MaybeBindToTemporary(Result.get());
3785  }
3786  }
3787 }
3788 
3789 /// PerformImplicitConversion - Perform an implicit conversion of the
3790 /// expression From to the type ToType using the pre-computed implicit
3791 /// conversion sequence ICS. Returns the converted
3792 /// expression. Action is the kind of conversion we're performing,
3793 /// used in the error message.
3794 ExprResult
3796  const ImplicitConversionSequence &ICS,
3797  AssignmentAction Action,
3798  CheckedConversionKind CCK) {
3799  // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
3800  if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
3801  return From;
3802 
3803  switch (ICS.getKind()) {
3805  ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
3806  Action, CCK);
3807  if (Res.isInvalid())
3808  return ExprError();
3809  From = Res.get();
3810  break;
3811  }
3812 
3814 
3817  QualType BeforeToType;
3818  assert(FD && "no conversion function for user-defined conversion seq");
3819  if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
3820  CastKind = CK_UserDefinedConversion;
3821 
3822  // If the user-defined conversion is specified by a conversion function,
3823  // the initial standard conversion sequence converts the source type to
3824  // the implicit object parameter of the conversion function.
3825  BeforeToType = Context.getTagDeclType(Conv->getParent());
3826  } else {
3827  const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
3828  CastKind = CK_ConstructorConversion;
3829  // Do no conversion if dealing with ... for the first conversion.
3830  if (!ICS.UserDefined.EllipsisConversion) {
3831  // If the user-defined conversion is specified by a constructor, the
3832  // initial standard conversion sequence converts the source type to
3833  // the type required by the argument of the constructor
3834  BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
3835  }
3836  }
3837  // Watch out for ellipsis conversion.
3838  if (!ICS.UserDefined.EllipsisConversion) {
3839  ExprResult Res =
3840  PerformImplicitConversion(From, BeforeToType,
3842  CCK);
3843  if (Res.isInvalid())
3844  return ExprError();
3845  From = Res.get();
3846  }
3847 
3848  ExprResult CastArg = BuildCXXCastArgument(
3849  *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
3850  cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
3852 
3853  if (CastArg.isInvalid())
3854  return ExprError();
3855 
3856  From = CastArg.get();
3857 
3858  // C++ [over.match.oper]p7:
3859  // [...] the second standard conversion sequence of a user-defined
3860  // conversion sequence is not applied.
3861  if (CCK == CCK_ForBuiltinOverloadedOp)
3862  return From;
3863 
3864  return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
3865  AA_Converting, CCK);
3866  }
3867 
3869  ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
3870  PDiag(diag::err_typecheck_ambiguous_condition)
3871  << From->getSourceRange());
3872  return ExprError();
3873 
3875  llvm_unreachable("Cannot perform an ellipsis conversion");
3876 
3878  bool Diagnosed =
3880  From->getType(), From, Action);
3881  assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
3882  return ExprError();
3883  }
3884 
3885  // Everything went well.
3886  return From;
3887 }
3888 
3889 /// PerformImplicitConversion - Perform an implicit conversion of the
3890 /// expression From to the type ToType by following the standard
3891 /// conversion sequence SCS. Returns the converted
3892 /// expression. Flavor is the context in which we're performing this
3893 /// conversion, for use in error messages.
3894 ExprResult
3896  const StandardConversionSequence& SCS,
3897  AssignmentAction Action,
3898  CheckedConversionKind CCK) {
3899  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
3900 
3901  // Overall FIXME: we are recomputing too many types here and doing far too
3902  // much extra work. What this means is that we need to keep track of more
3903  // information that is computed when we try the implicit conversion initially,
3904  // so that we don't need to recompute anything here.
3905  QualType FromType = From->getType();
3906 
3907  if (SCS.CopyConstructor) {
3908  // FIXME: When can ToType be a reference type?
3909  assert(!ToType->isReferenceType());
3910  if (SCS.Second == ICK_Derived_To_Base) {
3911  SmallVector<Expr*, 8> ConstructorArgs;
3912  if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
3913  From, /*FIXME:ConstructLoc*/SourceLocation(),
3914  ConstructorArgs))
3915  return ExprError();
3916  return BuildCXXConstructExpr(
3917  /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3919  ConstructorArgs, /*HadMultipleCandidates*/ false,
3920  /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3922  }
3923  return BuildCXXConstructExpr(
3924  /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3926  From, /*HadMultipleCandidates*/ false,
3927  /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3929  }
3930 
3931  // Resolve overloaded function references.
3932  if (Context.hasSameType(FromType, Context.OverloadTy)) {
3933  DeclAccessPair Found;
3935  true, Found);
3936  if (!Fn)
3937  return ExprError();
3938 
3939  if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
3940  return ExprError();
3941 
3942  From = FixOverloadedFunctionReference(From, Found, Fn);
3943  FromType = From->getType();
3944  }
3945 
3946  // If we're converting to an atomic type, first convert to the corresponding
3947  // non-atomic type.
3948  QualType ToAtomicType;
3949  if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
3950  ToAtomicType = ToType;
3951  ToType = ToAtomic->getValueType();
3952  }
3953 
3954  QualType InitialFromType = FromType;
3955  // Perform the first implicit conversion.
3956  switch (SCS.First) {
3957  case ICK_Identity:
3958  if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
3959  FromType = FromAtomic->getValueType().getUnqualifiedType();
3960  From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
3961  From, /*BasePath=*/nullptr, VK_RValue);
3962  }
3963  break;
3964 
3965  case ICK_Lvalue_To_Rvalue: {
3966  assert(From->getObjectKind() != OK_ObjCProperty);
3967  ExprResult FromRes = DefaultLvalueConversion(From);
3968  assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
3969  From = FromRes.get();
3970  FromType = From->getType();
3971  break;
3972  }
3973 
3974  case ICK_Array_To_Pointer:
3975  FromType = Context.getArrayDecayedType(FromType);
3976  From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
3977  VK_RValue, /*BasePath=*/nullptr, CCK).get();
3978  break;
3979 
3981  FromType = Context.getPointerType(FromType);
3982  From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
3983  VK_RValue, /*BasePath=*/nullptr, CCK).get();
3984  break;
3985 
3986  default:
3987  llvm_unreachable("Improper first standard conversion");
3988  }
3989 
3990  // Perform the second implicit conversion
3991  switch (SCS.Second) {
3992  case ICK_Identity:
3993  // C++ [except.spec]p5:
3994  // [For] assignment to and initialization of pointers to functions,
3995  // pointers to member functions, and references to functions: the
3996  // target entity shall allow at least the exceptions allowed by the
3997  // source value in the assignment or initialization.
3998  switch (Action) {
3999  case AA_Assigning:
4000  case AA_Initializing:
4001  // Note, function argument passing and returning are initialization.
4002  case AA_Passing:
4003  case AA_Returning:
4004  case AA_Sending:
4005  case AA_Passing_CFAudited:
4006  if (CheckExceptionSpecCompatibility(From, ToType))
4007  return ExprError();
4008  break;
4009 
4010  case AA_Casting:
4011  case AA_Converting:
4012  // Casts and implicit conversions are not initialization, so are not
4013  // checked for exception specification mismatches.
4014  break;
4015  }
4016  // Nothing else to do.
4017  break;
4018 
4021  if (ToType->isBooleanType()) {
4022  assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4023  SCS.Second == ICK_Integral_Promotion &&
4024  "only enums with fixed underlying type can promote to bool");
4025  From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
4026  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4027  } else {
4028  From = ImpCastExprToType(From, ToType, CK_IntegralCast,
4029  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4030  }
4031  break;
4032 
4035  From = ImpCastExprToType(From, ToType, CK_FloatingCast,
4036  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4037  break;
4038 
4039  case ICK_Complex_Promotion:
4040  case ICK_Complex_Conversion: {
4041  QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
4042  QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
4043  CastKind CK;
4044  if (FromEl->isRealFloatingType()) {
4045  if (ToEl->isRealFloatingType())
4046  CK = CK_FloatingComplexCast;
4047  else
4048  CK = CK_FloatingComplexToIntegralComplex;
4049  } else if (ToEl->isRealFloatingType()) {
4050  CK = CK_IntegralComplexToFloatingComplex;
4051  } else {
4052  CK = CK_IntegralComplexCast;
4053  }
4054  From = ImpCastExprToType(From, ToType, CK,
4055  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4056  break;
4057  }
4058 
4059  case ICK_Floating_Integral:
4060  if (ToType->isRealFloatingType())
4061  From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
4062  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4063  else
4064  From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
4065  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4066  break;
4067 
4069  From = ImpCastExprToType(From, ToType, CK_NoOp,
4070  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4071  break;
4072 
4074  case ICK_Pointer_Conversion: {
4075  if (SCS.IncompatibleObjC && Action != AA_Casting) {
4076  // Diagnose incompatible Objective-C conversions
4077  if (Action == AA_Initializing || Action == AA_Assigning)
4078  Diag(From->getBeginLoc(),
4079  diag::ext_typecheck_convert_incompatible_pointer)
4080  << ToType << From->getType() << Action << From->getSourceRange()
4081  << 0;
4082  else
4083  Diag(From->getBeginLoc(),
4084  diag::ext_typecheck_convert_incompatible_pointer)
4085  << From->getType() << ToType << Action << From->getSourceRange()
4086  << 0;
4087 
4088  if (From->getType()->isObjCObjectPointerType() &&
4089  ToType->isObjCObjectPointerType())
4093  From->getType())) {
4094  if (Action == AA_Initializing)
4095  Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4096  else
4097  Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4098  << (Action == AA_Casting) << From->getType() << ToType
4099  << From->getSourceRange();
4100  }
4101 
4102  CastKind Kind;
4103  CXXCastPath BasePath;
4104  if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
4105  return ExprError();
4106 
4107  // Make sure we extend blocks if necessary.
4108  // FIXME: doing this here is really ugly.
4109  if (Kind == CK_BlockPointerToObjCPointerCast) {
4110  ExprResult E = From;
4112  From = E.get();
4113  }
4114  if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4115  CheckObjCConversion(SourceRange(), ToType, From, CCK);
4116  From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4117  .get();
4118  break;
4119  }
4120 
4121  case ICK_Pointer_Member: {
4122  CastKind Kind;
4123  CXXCastPath BasePath;
4124  if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4125  return ExprError();
4126  if (CheckExceptionSpecCompatibility(From, ToType))
4127  return ExprError();
4128 
4129  // We may not have been able to figure out what this member pointer resolved
4130  // to up until this exact point. Attempt to lock-in it's inheritance model.
4132  (void)isCompleteType(From->getExprLoc(), From->getType());
4133  (void)isCompleteType(From->getExprLoc(), ToType);
4134  }
4135 
4136  From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4137  .get();
4138  break;
4139  }
4140 
4142  // Perform half-to-boolean conversion via float.
4143  if (From->getType()->isHalfType()) {
4144  From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4145  FromType = Context.FloatTy;
4146  }
4147 
4148  From = ImpCastExprToType(From, Context.BoolTy,
4149  ScalarTypeToBooleanCastKind(FromType),
4150  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4151  break;
4152 
4153  case ICK_Derived_To_Base: {
4154  CXXCastPath BasePath;
4156  From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4157  From->getSourceRange(), &BasePath, CStyle))
4158  return ExprError();
4159 
4160  From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4161  CK_DerivedToBase, From->getValueKind(),
4162  &BasePath, CCK).get();
4163  break;
4164  }
4165 
4166  case ICK_Vector_Conversion:
4167  From = ImpCastExprToType(From, ToType, CK_BitCast,
4168  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4169  break;
4170 
4171  case ICK_Vector_Splat: {
4172  // Vector splat from any arithmetic type to a vector.
4173  Expr *Elem = prepareVectorSplat(ToType, From).get();
4174  From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue,
4175  /*BasePath=*/nullptr, CCK).get();
4176  break;
4177  }
4178 
4179  case ICK_Complex_Real:
4180  // Case 1. x -> _Complex y
4181  if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4182  QualType ElType = ToComplex->getElementType();
4183  bool isFloatingComplex = ElType->isRealFloatingType();
4184 
4185  // x -> y
4186  if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4187  // do nothing
4188  } else if (From->getType()->isRealFloatingType()) {
4189  From = ImpCastExprToType(From, ElType,
4190  isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4191  } else {
4192  assert(From->getType()->isIntegerType());
4193  From = ImpCastExprToType(From, ElType,
4194  isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4195  }
4196  // y -> _Complex y
4197  From = ImpCastExprToType(From, ToType,
4198  isFloatingComplex ? CK_FloatingRealToComplex
4199  : CK_IntegralRealToComplex).get();
4200 
4201  // Case 2. _Complex x -> y
4202  } else {
4203  const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
4204  assert(FromComplex);
4205 
4206  QualType ElType = FromComplex->getElementType();
4207  bool isFloatingComplex = ElType->isRealFloatingType();
4208 
4209  // _Complex x -> x
4210  From = ImpCastExprToType(From, ElType,
4211  isFloatingComplex ? CK_FloatingComplexToReal
4212  : CK_IntegralComplexToReal,
4213  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4214 
4215  // x -> y
4216  if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4217  // do nothing
4218  } else if (ToType->isRealFloatingType()) {
4219  From = ImpCastExprToType(From, ToType,
4220  isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
4221  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4222  } else {
4223  assert(ToType->isIntegerType());
4224  From = ImpCastExprToType(From, ToType,
4225  isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
4226  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4227  }
4228  }
4229  break;
4230 
4232  From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
4233  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4234  break;
4235  }
4236 
4238  ExprResult FromRes = From;
4239  Sema::AssignConvertType ConvTy =
4241  if (FromRes.isInvalid())
4242  return ExprError();
4243  From = FromRes.get();
4244  assert ((ConvTy == Sema::Compatible) &&
4245  "Improper transparent union conversion");
4246  (void)ConvTy;
4247  break;
4248  }
4249 
4252  From = ImpCastExprToType(From, ToType,
4253  CK_ZeroToOCLOpaqueType,
4254  From->getValueKind()).get();
4255  break;
4256 
4257  case ICK_Lvalue_To_Rvalue:
4258  case ICK_Array_To_Pointer:
4261  case ICK_Qualification:
4263  case ICK_C_Only_Conversion:
4265  llvm_unreachable("Improper second standard conversion");
4266  }
4267 
4268  switch (SCS.Third) {
4269  case ICK_Identity:
4270  // Nothing to do.
4271  break;
4272 
4274  // If both sides are functions (or pointers/references to them), there could
4275  // be incompatible exception declarations.
4276  if (CheckExceptionSpecCompatibility(From, ToType))
4277  return ExprError();
4278 
4279  From = ImpCastExprToType(From, ToType, CK_NoOp,
4280  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4281  break;
4282 
4283  case ICK_Qualification: {
4284  // The qualification keeps the category of the inner expression, unless the
4285  // target type isn't a reference.
4286  ExprValueKind VK =
4287  ToType->isReferenceType() ? From->getValueKind() : VK_RValue;
4288 
4289  CastKind CK = CK_NoOp;
4290 
4291  if (ToType->isReferenceType() &&
4292  ToType->getPointeeType().getAddressSpace() !=
4293  From->getType().getAddressSpace())
4294  CK = CK_AddressSpaceConversion;
4295 
4296  if (ToType->isPointerType() &&
4297  ToType->getPointeeType().getAddressSpace() !=
4298  From->getType()->getPointeeType().getAddressSpace())
4299  CK = CK_AddressSpaceConversion;
4300 
4301  From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4302  /*BasePath=*/nullptr, CCK)
4303  .get();
4304 
4306  !getLangOpts().WritableStrings) {
4307  Diag(From->getBeginLoc(),
4308  getLangOpts().CPlusPlus11
4309  ? diag::ext_deprecated_string_literal_conversion
4310  : diag::warn_deprecated_string_literal_conversion)
4311  << ToType.getNonReferenceType();
4312  }
4313 
4314  break;
4315  }
4316 
4317  default:
4318  llvm_unreachable("Improper third standard conversion");
4319  }
4320 
4321  // If this conversion sequence involved a scalar -> atomic conversion, perform
4322  // that conversion now.
4323  if (!ToAtomicType.isNull()) {
4324  assert(Context.hasSameType(
4325  ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4326  From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4327  VK_RValue, nullptr, CCK).get();
4328  }
4329 
4330  // If this conversion sequence succeeded and involved implicitly converting a
4331  // _Nullable type to a _Nonnull one, complain.
4332  if (!isCast(CCK))
4333  diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4334  From->getBeginLoc());
4335 
4336  return From;
4337 }
4338 
4339 /// Check the completeness of a type in a unary type trait.
4340 ///
4341 /// If the particular type trait requires a complete type, tries to complete
4342 /// it. If completing the type fails, a diagnostic is emitted and false
4343 /// returned. If completing the type succeeds or no completion was required,
4344 /// returns true.
4346  SourceLocation Loc,
4347  QualType ArgTy) {
4348  // C++0x [meta.unary.prop]p3:
4349  // For all of the class templates X declared in this Clause, instantiating
4350  // that template with a template argument that is a class template
4351  // specialization may result in the implicit instantiation of the template
4352  // argument if and only if the semantics of X require that the argument
4353  // must be a complete type.
4354  // We apply this rule to all the type trait expressions used to implement
4355  // these class templates. We also try to follow any GCC documented behavior
4356  // in these expressions to ensure portability of standard libraries.
4357  switch (UTT) {
4358  default: llvm_unreachable("not a UTT");
4359  // is_complete_type somewhat obviously cannot require a complete type.
4360  case UTT_IsCompleteType:
4361  // Fall-through
4362 
4363  // These traits are modeled on the type predicates in C++0x
4364  // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4365  // requiring a complete type, as whether or not they return true cannot be
4366  // impacted by the completeness of the type.
4367  case UTT_IsVoid:
4368  case UTT_IsIntegral:
4369  case UTT_IsFloatingPoint:
4370  case UTT_IsArray:
4371  case UTT_IsPointer:
4372  case UTT_IsLvalueReference:
4373  case UTT_IsRvalueReference:
4376  case UTT_IsEnum:
4377  case UTT_IsUnion:
4378  case UTT_IsClass:
4379  case UTT_IsFunction:
4380  case UTT_IsReference:
4381  case UTT_IsArithmetic:
4382  case UTT_IsFundamental:
4383  case UTT_IsObject:
4384  case UTT_IsScalar:
4385  case UTT_IsCompound:
4386  case UTT_IsMemberPointer:
4387  // Fall-through
4388 
4389  // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4390  // which requires some of its traits to have the complete type. However,
4391  // the completeness of the type cannot impact these traits' semantics, and
4392  // so they don't require it. This matches the comments on these traits in
4393  // Table 49.
4394  case UTT_IsConst:
4395  case UTT_IsVolatile:
4396  case UTT_IsSigned:
4397  case UTT_IsUnsigned:
4398 
4399  // This type trait always returns false, checking the type is moot.
4400  case UTT_IsInterfaceClass:
4401  return true;
4402 
4403  // C++14 [meta.unary.prop]:
4404  // If T is a non-union class type, T shall be a complete type.
4405  case UTT_IsEmpty:
4406  case UTT_IsPolymorphic:
4407  case UTT_IsAbstract:
4408  if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4409  if (!RD->isUnion())
4410  return !S.RequireCompleteType(
4411  Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4412  return true;
4413 
4414  // C++14 [meta.unary.prop]:
4415  // If T is a class type, T shall be a complete type.
4416  case UTT_IsFinal:
4417  case UTT_IsSealed:
4418  if (ArgTy->getAsCXXRecordDecl())
4419  return !S.RequireCompleteType(
4420  Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4421  return true;
4422 
4423  // C++1z [meta.unary.prop]:
4424  // remove_all_extents_t<T> shall be a complete type or cv void.
4425  case UTT_IsAggregate:
4426  case UTT_IsTrivial:
4428  case UTT_IsStandardLayout:
4429  case UTT_IsPOD:
4430  case UTT_IsLiteral:
4431  // Per the GCC type traits documentation, T shall be a complete type, cv void,
4432  // or an array of unknown bound. But GCC actually imposes the same constraints
4433  // as above.
4434  case UTT_HasNothrowAssign:
4437  case UTT_HasNothrowCopy:
4438  case UTT_HasTrivialAssign:
4442  case UTT_HasTrivialCopy:
4445  ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4446  LLVM_FALLTHROUGH;
4447 
4448  // C++1z [meta.unary.prop]:
4449  // T shall be a complete type, cv void, or an array of unknown bound.
4450  case UTT_IsDestructible:
4454  if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4455  return true;
4456 
4457  return !S.RequireCompleteType(
4458  Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4459  }
4460 }
4461 
4463  Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4464  bool (CXXRecordDecl::*HasTrivial)() const,
4465  bool (CXXRecordDecl::*HasNonTrivial)() const,
4466  bool (CXXMethodDecl::*IsDesiredOp)() const)
4467 {
4468  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4469  if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4470  return true;
4471 
4473  DeclarationNameInfo NameInfo(Name, KeyLoc);
4474  LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4475  if (Self.LookupQualifiedName(Res, RD)) {
4476  bool FoundOperator = false;
4477  Res.suppressDiagnostics();
4478  for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4479  Op != OpEnd; ++Op) {
4480  if (isa<FunctionTemplateDecl>(*Op))
4481  continue;
4482 
4483  CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4484  if((Operator->*IsDesiredOp)()) {
4485  FoundOperator = true;
4486  const FunctionProtoType *CPT =
4487  Operator->getType()->getAs<FunctionProtoType>();
4488  CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4489  if (!CPT || !CPT->isNothrow())
4490  return false;
4491  }
4492  }
4493  return FoundOperator;
4494  }
4495  return false;
4496 }
4497 
4498 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4499  SourceLocation KeyLoc, QualType T) {
4500  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4501 
4502  ASTContext &C = Self.Context;
4503  switch(UTT) {
4504  default: llvm_unreachable("not a UTT");
4505  // Type trait expressions corresponding to the primary type category
4506  // predicates in C++0x [meta.unary.cat].
4507  case UTT_IsVoid:
4508  return T->isVoidType();
4509  case UTT_IsIntegral:
4510  return T->isIntegralType(C);
4511  case UTT_IsFloatingPoint:
4512  return T->isFloatingType();
4513  case UTT_IsArray:
4514  return T->isArrayType();
4515  case UTT_IsPointer:
4516  return T->isPointerType();
4517  case UTT_IsLvalueReference:
4518  return T->isLValueReferenceType();
4519  case UTT_IsRvalueReference:
4520  return T->isRValueReferenceType();
4522  return T->isMemberFunctionPointerType();
4524  return T->isMemberDataPointerType();
4525  case UTT_IsEnum:
4526  return T->isEnumeralType();
4527  case UTT_IsUnion:
4528  return T->isUnionType();
4529  case UTT_IsClass:
4530  return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4531  case UTT_IsFunction:
4532  return T->isFunctionType();
4533 
4534  // Type trait expressions which correspond to the convenient composition
4535  // predicates in C++0x [meta.unary.comp].
4536  case UTT_IsReference:
4537  return T->isReferenceType();
4538  case UTT_IsArithmetic:
4539  return T->isArithmeticType() && !T->isEnumeralType();
4540  case UTT_IsFundamental:
4541  return T->isFundamentalType();
4542  case UTT_IsObject:
4543  return T->isObjectType();
4544  case UTT_IsScalar:
4545  // Note: semantic analysis depends on Objective-C lifetime types to be
4546  // considered scalar types. However, such types do not actually behave
4547  // like scalar types at run time (since they may require retain/release
4548  // operations), so we report them as non-scalar.
4549  if (T->isObjCLifetimeType()) {
4550  switch (T.getObjCLifetime()) {
4551  case Qualifiers::OCL_None:
4553  return true;
4554 
4556  case Qualifiers::OCL_Weak:
4558  return false;
4559  }
4560  }
4561 
4562  return T->isScalarType();
4563  case UTT_IsCompound:
4564  return T->isCompoundType();
4565  case UTT_IsMemberPointer:
4566  return T->isMemberPointerType();
4567 
4568  // Type trait expressions which correspond to the type property predicates
4569  // in C++0x [meta.unary.prop].
4570  case UTT_IsConst:
4571  return T.isConstQualified();
4572  case UTT_IsVolatile:
4573  return T.isVolatileQualified();
4574  case UTT_IsTrivial:
4575  return T.isTrivialType(C);
4577  return T.isTriviallyCopyableType(C);
4578  case UTT_IsStandardLayout:
4579  return T->isStandardLayoutType();
4580  case UTT_IsPOD:
4581  return T.isPODType(C);
4582  case UTT_IsLiteral:
4583  return T->isLiteralType(C);
4584  case UTT_IsEmpty:
4585  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4586  return !RD->isUnion() && RD->isEmpty();
4587  return false;
4588  case UTT_IsPolymorphic:
4589  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4590  return !RD->isUnion() && RD->isPolymorphic();
4591  return false;
4592  case UTT_IsAbstract:
4593  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4594  return !RD->isUnion() && RD->isAbstract();
4595  return false;
4596  case UTT_IsAggregate:
4597  // Report vector extensions and complex types as aggregates because they
4598  // support aggregate initialization. GCC mirrors this behavior for vectors
4599  // but not _Complex.
4600  return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4601  T->isAnyComplexType();
4602  // __is_interface_class only returns true when CL is invoked in /CLR mode and
4603  // even then only when it is used with the 'interface struct ...' syntax
4604  // Clang doesn't support /CLR which makes this type trait moot.
4605  case UTT_IsInterfaceClass:
4606  return false;
4607  case UTT_IsFinal:
4608  case UTT_IsSealed:
4609  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4610  return RD->hasAttr<FinalAttr>();
4611  return false;
4612  case UTT_IsSigned:
4613  return T->isSignedIntegerType();
4614  case UTT_IsUnsigned:
4615  return T->isUnsignedIntegerType();
4616 
4617  // Type trait expressions which query classes regarding their construction,
4618  // destruction, and copying. Rather than being based directly on the
4619  // related type predicates in the standard, they are specified by both
4620  // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4621  // specifications.
4622  //
4623  // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4624  // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4625  //
4626  // Note that these builtins do not behave as documented in g++: if a class
4627  // has both a trivial and a non-trivial special member of a particular kind,
4628  // they return false! For now, we emulate this behavior.
4629  // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4630  // does not correctly compute triviality in the presence of multiple special
4631  // members of the same kind. Revisit this once the g++ bug is fixed.
4633  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4634  // If __is_pod (type) is true then the trait is true, else if type is
4635  // a cv class or union type (or array thereof) with a trivial default
4636  // constructor ([class.ctor]) then the trait is true, else it is false.
4637  if (T.isPODType(C))
4638  return true;
4639  if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4640  return RD->hasTrivialDefaultConstructor() &&
4641  !RD->hasNonTrivialDefaultConstructor();
4642  return false;
4644  // This trait is implemented by MSVC 2012 and needed to parse the
4645  // standard library headers. Specifically this is used as the logic
4646  // behind std::is_trivially_move_constructible (20.9.4.3).
4647  if (T.isPODType(C))
4648  return true;
4649  if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4650  return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4651  return false;
4652  case UTT_HasTrivialCopy:
4653  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4654  // If __is_pod (type) is true or type is a reference type then
4655  // the trait is true, else if type is a cv class or union type
4656  // with a trivial copy constructor ([class.copy]) then the trait
4657  // is true, else it is false.
4658  if (T.isPODType(C) || T->isReferenceType())
4659  return true;
4660  if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4661  return RD->hasTrivialCopyConstructor() &&
4662  !RD->hasNonTrivialCopyConstructor();
4663  return false;
4665  // This trait is implemented by MSVC 2012 and needed to parse the
4666  // standard library headers. Specifically it is used as the logic
4667  // behind std::is_trivially_move_assignable (20.9.4.3)
4668  if (T.isPODType(C))
4669  return true;
4670  if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4671  return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4672  return false;
4673  case UTT_HasTrivialAssign:
4674  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4675  // If type is const qualified or is a reference type then the
4676  // trait is false. Otherwise if __is_pod (type) is true then the
4677  // trait is true, else if type is a cv class or union type with
4678  // a trivial copy assignment ([class.copy]) then the trait is
4679  // true, else it is false.
4680  // Note: the const and reference restrictions are interesting,
4681  // given that const and reference members don't prevent a class
4682  // from having a trivial copy assignment operator (but do cause
4683  // errors if the copy assignment operator is actually used, q.v.
4684  // [class.copy]p12).
4685 
4686  if (T.isConstQualified())
4687  return false;
4688  if (T.isPODType(C))
4689  return true;
4690  if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4691  return RD->hasTrivialCopyAssignment() &&
4692  !RD->hasNonTrivialCopyAssignment();
4693  return false;
4694  case UTT_IsDestructible:
4697  // C++14 [meta.unary.prop]:
4698  // For reference types, is_destructible<T>::value is true.
4699  if (T->isReferenceType())
4700  return true;
4701 
4702  // Objective-C++ ARC: autorelease types don't require destruction.
4703  if (T->isObjCLifetimeType() &&
4705  return true;
4706 
4707  // C++14 [meta.unary.prop]:
4708  // For incomplete types and function types, is_destructible<T>::value is
4709  // false.
4710  if (T->isIncompleteType() || T->isFunctionType())
4711  return false;
4712 
4713  // A type that requires destruction (via a non-trivial destructor or ARC
4714  // lifetime semantics) is not trivially-destructible.
4716  return false;
4717 
4718  // C++14 [meta.unary.prop]:
4719  // For object types and given U equal to remove_all_extents_t<T>, if the
4720  // expression std::declval<U&>().~U() is well-formed when treated as an
4721  // unevaluated operand (Clause 5), then is_destructible<T>::value is true
4722  if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4723  CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
4724  if (!Destructor)
4725  return false;
4726  // C++14 [dcl.fct.def.delete]p2:
4727  // A program that refers to a deleted function implicitly or
4728  // explicitly, other than to declare it, is ill-formed.
4729  if (Destructor->isDeleted())
4730  return false;
4731  if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
4732  return false;
4733  if (UTT == UTT_IsNothrowDestructible) {
4734  const FunctionProtoType *CPT =
4735  Destructor->getType()->getAs<FunctionProtoType>();
4736  CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4737  if (!CPT || !CPT->isNothrow())
4738  return false;
4739  }
4740  }
4741  return true;
4742 
4744  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4745  // If __is_pod (type) is true or type is a reference type
4746  // then the trait is true, else if type is a cv class or union
4747  // type (or array thereof) with a trivial destructor
4748  // ([class.dtor]) then the trait is true, else it is
4749  // false.
4750  if (T.isPODType(C) || T->isReferenceType())
4751  return true;
4752 
4753  // Objective-C++ ARC: autorelease types don't require destruction.
4754  if (T->isObjCLifetimeType() &&
4756  return true;
4757 
4758  if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4759  return RD->hasTrivialDestructor();
4760  return false;
4761  // TODO: Propagate nothrowness for implicitly declared special members.
4762  case UTT_HasNothrowAssign:
4763  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4764  // If type is const qualified or is a reference type then the
4765  // trait is false. Otherwise if __has_trivial_assign (type)
4766  // is true then the trait is true, else if type is a cv class
4767  // or union type with copy assignment operators that are known
4768  // not to throw an exception then the trait is true, else it is
4769  // false.
4770  if (C.getBaseElementType(T).isConstQualified())
4771  return false;
4772  if (T->isReferenceType())
4773  return false;
4774  if (T.isPODType(C) || T->isObjCLifetimeType())
4775  return true;
4776 
4777  if (const RecordType *RT = T->getAs<RecordType>())
4778  return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4782  return false;
4784  // This trait is implemented by MSVC 2012 and needed to parse the
4785  // standard library headers. Specifically this is used as the logic
4786  // behind std::is_nothrow_move_assignable (20.9.4.3).
4787  if (T.isPODType(C))
4788  return true;
4789 
4790  if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
4791  return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4795  return false;
4796  case UTT_HasNothrowCopy:
4797  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4798  // If __has_trivial_copy (type) is true then the trait is true, else
4799  // if type is a cv class or union type with copy constructors that are
4800  // known not to throw an exception then the trait is true, else it is
4801  // false.
4802  if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
4803  return true;
4804  if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
4805  if (RD->hasTrivialCopyConstructor() &&
4806  !RD->hasNonTrivialCopyConstructor())
4807  return true;
4808 
4809  bool FoundConstructor = false;
4810  unsigned FoundTQs;
4811  for (const auto *ND : Self.LookupConstructors(RD)) {
4812  // A template constructor is never a copy constructor.
4813  // FIXME: However, it may actually be selected at the actual overload
4814  // resolution point.
4815  if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4816  continue;
4817  // UsingDecl itself is not a constructor
4818  if (isa<UsingDecl>(ND))
4819  continue;
4820  auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4821  if (Constructor->isCopyConstructor(FoundTQs)) {
4822  FoundConstructor = true;
4823  const FunctionProtoType *CPT
4824  = Constructor->getType()->getAs<FunctionProtoType>();
4825  CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4826  if (!CPT)
4827  return false;
4828  // TODO: check whether evaluating default arguments can throw.
4829  // For now, we'll be conservative and assume that they can throw.
4830  if (!CPT->isNothrow() || CPT->getNumParams() > 1)
4831  return false;
4832  }
4833  }
4834 
4835  return FoundConstructor;
4836  }
4837  return false;
4839  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4840  // If __has_trivial_constructor (type) is true then the trait is
4841  // true, else if type is a cv class or union type (or array
4842  // thereof) with a default constructor that is known not to
4843  // throw an exception then the trait is true, else it is false.
4844  if (T.isPODType(C) || T->isObjCLifetimeType())
4845  return true;
4846  if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4847  if (RD->hasTrivialDefaultConstructor() &&
4848  !RD->hasNonTrivialDefaultConstructor())
4849  return true;
4850 
4851  bool FoundConstructor = false;
4852  for (const auto *ND : Self.LookupConstructors(RD)) {
4853  // FIXME: In C++0x, a constructor template can be a default constructor.
4854  if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4855  continue;
4856  // UsingDecl itself is not a constructor
4857  if (isa<UsingDecl>(ND))
4858  continue;
4859  auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4860  if (Constructor->isDefaultConstructor()) {
4861  FoundConstructor = true;
4862  const FunctionProtoType *CPT
4863  = Constructor->getType()->getAs<FunctionProtoType>();
4864  CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4865  if (!CPT)
4866  return false;
4867  // FIXME: check whether evaluating default arguments can throw.
4868  // For now, we'll be conservative and assume that they can throw.
4869  if (!CPT->isNothrow() || CPT->getNumParams() > 0)
4870  return false;
4871  }
4872  }
4873  return FoundConstructor;
4874  }
4875  return false;
4877  // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4878  // If type is a class type with a virtual destructor ([class.dtor])
4879  // then the trait is true, else it is false.
4880  if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4881  if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
4882  return Destructor->isVirtual();
4883  return false;
4884 
4885  // These type trait expressions are modeled on the specifications for the
4886  // Embarcadero C++0x type trait functions:
4887  // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4888  case UTT_IsCompleteType:
4889  // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
4890  // Returns True if and only if T is a complete type at the point of the
4891  // function call.
4892  return !T->isIncompleteType();
4894  return C.hasUniqueObjectRepresentations(T);
4895  }
4896 }
4897 
4898 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4899  QualType RhsT, SourceLocation KeyLoc);
4900 
4903  SourceLocation RParenLoc) {
4904  if (Kind <= UTT_Last)
4905  return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
4906 
4907  // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
4908  // traits to avoid duplication.
4909  if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
4910  return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
4911  Args[1]->getType(), RParenLoc);
4912 
4913  switch (Kind) {
4918  // C++11 [meta.unary.prop]:
4919  // is_trivially_constructible is defined as:
4920  //
4921  // is_constructible<T, Args...>::value is true and the variable
4922  // definition for is_constructible, as defined below, is known to call
4923  // no operation that is not trivial.
4924  //
4925  // The predicate condition for a template specialization
4926  // is_constructible<T, Args...> shall be satisfied if and only if the
4927  // following variable definition would be well-formed for some invented
4928  // variable t:
4929  //
4930  // T t(create<Args>()...);
4931  assert(!Args.empty());
4932 
4933  // Precondition: T and all types in the parameter pack Args shall be
4934  // complete types, (possibly cv-qualified) void, or arrays of
4935  // unknown bound.
4936  for (const auto *TSI : Args) {
4937  QualType ArgTy = TSI->getType();
4938  if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
4939  continue;
4940 
4941  if (S.RequireCompleteType(KWLoc, ArgTy,
4942  diag::err_incomplete_type_used_in_type_trait_expr))
4943  return false;
4944  }
4945 
4946  // Make sure the first argument is not incomplete nor a function type.
4947  QualType T = Args[0]->getType();
4948  if (T->isIncompleteType() || T->isFunctionType())
4949  return false;
4950 
4951  // Make sure the first argument is not an abstract type.
4952  CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4953  if (RD && RD->isAbstract())
4954  return false;
4955 
4956  SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
4957  SmallVector<Expr *, 2> ArgExprs;
4958  ArgExprs.reserve(Args.size() - 1);
4959  for (unsigned I = 1, N = Args.size(); I != N; ++I) {
4960  QualType ArgTy = Args[I]->getType();
4961  if (ArgTy->isObjectType() || ArgTy->isFunctionType())
4962  ArgTy = S.Context.getRValueReferenceType(ArgTy);
4963  OpaqueArgExprs.push_back(
4964  OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
4965  ArgTy.getNonLValueExprType(S.Context),
4966  Expr::getValueKindForType(ArgTy)));
4967  }
4968  for (Expr &E : OpaqueArgExprs)
4969  ArgExprs.push_back(&E);
4970 
4971  // Perform the initialization in an unevaluated context within a SFINAE
4972  // trap at translation unit scope.
4975  Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
4979  RParenLoc));
4980  InitializationSequence Init(S, To, InitKind, ArgExprs);
4981  if (Init.Failed())
4982  return false;
4983 
4984  ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
4985  if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4986  return false;
4987 
4988  if (Kind == clang::TT_IsConstructible)
4989  return true;
4990 
4992  if (!T->isReferenceType())
4993  return false;
4994 
4995  return !Init.isDirectReferenceBinding();
4996  }
4997 
4999  return S.canThrow(Result.get()) == CT_Cannot;
5000 
5001  if (Kind == clang::TT_IsTriviallyConstructible) {
5002  // Under Objective-C ARC and Weak, if the destination has non-trivial
5003  // Objective-C lifetime, this is a non-trivial construction.
5005  return false;
5006 
5007  // The initialization succeeded; now make sure there are no non-trivial
5008  // calls.
5009  return !Result.get()->hasNonTrivialCall(S.Context);
5010  }
5011 
5012  llvm_unreachable("unhandled type trait");
5013  return false;
5014  }
5015  default: llvm_unreachable("not a TT");
5016  }
5017 
5018  return false;
5019 }
5020 
5023  SourceLocation RParenLoc) {
5024  QualType ResultType = Context.getLogicalOperationType();
5025 
5027  *this, Kind, KWLoc, Args[0]->getType()))
5028  return ExprError();
5029 
5030  bool Dependent = false;
5031  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5032  if (Args[I]->getType()->isDependentType()) {
5033  Dependent = true;
5034  break;
5035  }
5036  }
5037 
5038  bool Result = false;
5039  if (!Dependent)
5040  Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5041 
5042  return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5043  RParenLoc, Result);
5044 }
5045 
5047  ArrayRef<ParsedType> Args,
5048  SourceLocation RParenLoc) {
5049  SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5050  ConvertedArgs.reserve(Args.size());
5051 
5052  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5053  TypeSourceInfo *TInfo;
5054  QualType T = GetTypeFromParser(Args[I], &TInfo);
5055  if (!TInfo)
5056  TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5057 
5058  ConvertedArgs.push_back(TInfo);
5059  }
5060 
5061  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5062 }
5063 
5064 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5065  QualType RhsT, SourceLocation KeyLoc) {
5066  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5067  "Cannot evaluate traits of dependent types");
5068 
5069  switch(BTT) {
5070  case BTT_IsBaseOf: {
5071  // C++0x [meta.rel]p2
5072  // Base is a base class of Derived without regard to cv-qualifiers or
5073  // Base and Derived are not unions and name the same class type without
5074  // regard to cv-qualifiers.
5075 
5076  const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5077  const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5078  if (!rhsRecord || !lhsRecord) {
5079  const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5080  const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5081  if (!LHSObjTy || !RHSObjTy)
5082  return false;
5083 
5084  ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5085  ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5086  if (!BaseInterface || !DerivedInterface)
5087  return false;
5088 
5089  if (Self.RequireCompleteType(
5090  KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5091  return false;
5092 
5093  return BaseInterface->isSuperClassOf(DerivedInterface);
5094  }
5095 
5096  assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5097  == (lhsRecord == rhsRecord));
5098 
5099  if (lhsRecord == rhsRecord)
5100  return !lhsRecord->getDecl()->isUnion();
5101 
5102  // C++0x [meta.rel]p2:
5103  // If Base and Derived are class types and are different types
5104  // (ignoring possible cv-qualifiers) then Derived shall be a
5105  // complete type.
5106  if (Self.RequireCompleteType(KeyLoc, RhsT,
5107  diag::err_incomplete_type_used_in_type_trait_expr))
5108  return false;
5109 
5110  return cast<CXXRecordDecl>(rhsRecord->getDecl())
5111  ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5112  }
5113  case BTT_IsSame:
5114  return Self.Context.hasSameType(LhsT, RhsT);
5115  case BTT_TypeCompatible: {
5116  // GCC ignores cv-qualifiers on arrays for this builtin.
5117  Qualifiers LhsQuals, RhsQuals;
5118  QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5119  QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5120  return Self.Context.typesAreCompatible(Lhs, Rhs);
5121  }
5122  case BTT_IsConvertible:
5123  case BTT_IsConvertibleTo: {
5124  // C++0x [meta.rel]p4:
5125  // Given the following function prototype:
5126  //
5127  // template <class T>
5128  // typename add_rvalue_reference<T>::type create();
5129  //
5130  // the predicate condition for a template specialization
5131  // is_convertible<From, To> shall be satisfied if and only if
5132  // the return expression in the following code would be
5133  // well-formed, including any implicit conversions to the return
5134  // type of the function:
5135  //
5136  // To test() {
5137  // return create<From>();
5138  // }
5139  //
5140  // Access checking is performed as if in a context unrelated to To and
5141  // From. Only the validity of the immediate context of the expression
5142  // of the return-statement (including conversions to the return type)
5143  // is considered.
5144  //
5145  // We model the initialization as a copy-initialization of a temporary
5146  // of the appropriate type, which for this expression is identical to the
5147  // return statement (since NRVO doesn't apply).
5148 
5149  // Functions aren't allowed to return function or array types.
5150  if (RhsT->isFunctionType() || RhsT->isArrayType())
5151  return false;
5152 
5153  // A return statement in a void function must have void type.
5154  if (RhsT->isVoidType())
5155  return LhsT->isVoidType();
5156 
5157  // A function definition requires a complete, non-abstract return type.
5158  if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5159  return false;
5160 
5161  // Compute the result of add_rvalue_reference.
5162  if (LhsT->isObjectType() || LhsT->isFunctionType())
5163  LhsT = Self.Context.getRValueReferenceType(LhsT);
5164 
5165  // Build a fake source and destination for initialization.
5167  OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5169  Expr *FromPtr = &From;
5171  SourceLocation()));
5172 
5173  // Perform the initialization in an unevaluated context within a SFINAE
5174  // trap at translation unit scope.
5177  Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5178  Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5179  InitializationSequence Init(Self, To, Kind, FromPtr);
5180  if (Init.Failed())
5181  return false;
5182 
5183  ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5184  return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5185  }
5186 
5187  case BTT_IsAssignable:
5190  // C++11 [meta.unary.prop]p3:
5191  // is_trivially_assignable is defined as:
5192  // is_assignable<T, U>::value is true and the assignment, as defined by
5193  // is_assignable, is known to call no operation that is not trivial
5194  //
5195  // is_assignable is defined as:
5196  // The expression declval<T>() = declval<U>() is well-formed when
5197  // treated as an unevaluated operand (Clause 5).
5198  //
5199  // For both, T and U shall be complete types, (possibly cv-qualified)
5200  // void, or arrays of unknown bound.
5201  if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5202  Self.RequireCompleteType(KeyLoc, LhsT,
5203  diag::err_incomplete_type_used_in_type_trait_expr))
5204  return false;
5205  if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5206  Self.RequireCompleteType(KeyLoc, RhsT,
5207  diag::err_incomplete_type_used_in_type_trait_expr))
5208  return false;
5209 
5210  // cv void is never assignable.
5211  if (LhsT->isVoidType() || RhsT->isVoidType())
5212  return false;
5213 
5214  // Build expressions that emulate the effect of declval<T>() and
5215  // declval<U>().
5216  if (LhsT->isObjectType() || LhsT->isFunctionType())
5217  LhsT = Self.Context.getRValueReferenceType(LhsT);
5218  if (RhsT->isObjectType() || RhsT->isFunctionType())
5219  RhsT = Self.Context.getRValueReferenceType(RhsT);
5220  OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5222  OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5224 
5225  // Attempt the assignment in an unevaluated context within a SFINAE
5226  // trap at translation unit scope.
5229  Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5230  Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5231  ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5232  &Rhs);
5233  if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5234  return false;
5235 
5236  if (BTT == BTT_IsAssignable)
5237  return true;
5238 
5239  if (BTT == BTT_IsNothrowAssignable)
5240  return Self.canThrow(Result.get()) == CT_Cannot;
5241 
5242  if (BTT == BTT_IsTriviallyAssignable) {
5243  // Under Objective-C ARC and Weak, if the destination has non-trivial
5244  // Objective-C lifetime, this is a non-trivial assignment.
5246  return false;
5247 
5248  return !Result.get()->hasNonTrivialCall(Self.Context);
5249  }
5250 
5251  llvm_unreachable("unhandled type trait");
5252  return false;
5253  }
5254  default: llvm_unreachable("not a BTT");
5255  }
5256  llvm_unreachable("Unknown type trait or not implemented");
5257 }
5258 
5260  SourceLocation KWLoc,
5261  ParsedType Ty,
5262  Expr* DimExpr,
5263  SourceLocation RParen) {
5264  TypeSourceInfo *TSInfo;
5265  QualType T = GetTypeFromParser(Ty, &TSInfo);
5266  if (!TSInfo)
5267  TSInfo = Context.getTrivialTypeSourceInfo(T);
5268 
5269  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5270 }
5271 
5272 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5273  QualType T, Expr *DimExpr,
5274  SourceLocation KeyLoc) {
5275  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5276 
5277  switch(ATT) {
5278  case ATT_ArrayRank:
5279  if (T->isArrayType()) {
5280  unsigned Dim = 0;
5281  while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5282  ++Dim;
5283  T = AT->getElementType();
5284  }
5285  return Dim;
5286  }
5287  return 0;
5288 
5289  case ATT_ArrayExtent: {
5290  llvm::APSInt Value;
5291  uint64_t Dim;
5292  if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
5293  diag::err_dimension_expr_not_constant_integer,
5294  false).isInvalid())
5295  return 0;
5296  if (Value.isSigned() && Value.isNegative()) {
5297  Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5298  << DimExpr->getSourceRange();
5299  return 0;
5300  }
5301  Dim = Value.getLimitedValue();
5302 
5303  if (T->isArrayType()) {
5304  unsigned D = 0;
5305  bool Matched = false;
5306  while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5307  if (Dim == D) {
5308  Matched = true;
5309  break;
5310  }
5311  ++D;
5312  T = AT->getElementType();
5313  }
5314 
5315  if (Matched && T->isArrayType()) {
5316  if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5317  return CAT->getSize().getLimitedValue();
5318  }
5319  }
5320  return 0;
5321  }
5322  }
5323  llvm_unreachable("Unknown type trait or not implemented");
5324 }
5325 
5327  SourceLocation KWLoc,
5328  TypeSourceInfo *TSInfo,
5329  Expr* DimExpr,
5330  SourceLocation RParen) {
5331  QualType T = TSInfo->getType();
5332 
5333  // FIXME: This should likely be tracked as an APInt to remove any host
5334  // assumptions about the width of size_t on the target.
5335  uint64_t Value = 0;
5336  if (!T->isDependentType())
5337  Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5338 
5339  // While the specification for these traits from the Embarcadero C++
5340  // compiler's documentation says the return type is 'unsigned int', Clang
5341  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5342  // compiler, there is no difference. On several other platforms this is an
5343  // important distinction.
5344  return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5345  RParen, Context.getSizeType());
5346 }
5347 
5349  SourceLocation KWLoc,
5350  Expr *Queried,
5351  SourceLocation RParen) {
5352  // If error parsing the expression, ignore.
5353  if (!Queried)
5354  return ExprError();
5355 
5356  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5357 
5358  return Result;
5359 }
5360 
5362  switch (ET) {
5363  case