clang  10.0.0svn
SemaDeclObjC.cpp
Go to the documentation of this file.
1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for Objective C declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprObjC.h"
22 #include "clang/Sema/DeclSpec.h"
23 #include "clang/Sema/Lookup.h"
24 #include "clang/Sema/Scope.h"
25 #include "clang/Sema/ScopeInfo.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 
30 using namespace clang;
31 
32 /// Check whether the given method, which must be in the 'init'
33 /// family, is a valid member of that family.
34 ///
35 /// \param receiverTypeIfCall - if null, check this as if declaring it;
36 /// if non-null, check this as if making a call to it with the given
37 /// receiver type
38 ///
39 /// \return true to indicate that there was an error and appropriate
40 /// actions were taken
42  QualType receiverTypeIfCall) {
43  if (method->isInvalidDecl()) return true;
44 
45  // This castAs is safe: methods that don't return an object
46  // pointer won't be inferred as inits and will reject an explicit
47  // objc_method_family(init).
48 
49  // We ignore protocols here. Should we? What about Class?
50 
51  const ObjCObjectType *result =
53 
54  if (result->isObjCId()) {
55  return false;
56  } else if (result->isObjCClass()) {
57  // fall through: always an error
58  } else {
59  ObjCInterfaceDecl *resultClass = result->getInterface();
60  assert(resultClass && "unexpected object type!");
61 
62  // It's okay for the result type to still be a forward declaration
63  // if we're checking an interface declaration.
64  if (!resultClass->hasDefinition()) {
65  if (receiverTypeIfCall.isNull() &&
66  !isa<ObjCImplementationDecl>(method->getDeclContext()))
67  return false;
68 
69  // Otherwise, we try to compare class types.
70  } else {
71  // If this method was declared in a protocol, we can't check
72  // anything unless we have a receiver type that's an interface.
73  const ObjCInterfaceDecl *receiverClass = nullptr;
74  if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75  if (receiverTypeIfCall.isNull())
76  return false;
77 
78  receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79  ->getInterfaceDecl();
80 
81  // This can be null for calls to e.g. id<Foo>.
82  if (!receiverClass) return false;
83  } else {
84  receiverClass = method->getClassInterface();
85  assert(receiverClass && "method not associated with a class!");
86  }
87 
88  // If either class is a subclass of the other, it's fine.
89  if (receiverClass->isSuperClassOf(resultClass) ||
90  resultClass->isSuperClassOf(receiverClass))
91  return false;
92  }
93  }
94 
95  SourceLocation loc = method->getLocation();
96 
97  // If we're in a system header, and this is not a call, just make
98  // the method unusable.
99  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100  method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
101  UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
102  return true;
103  }
104 
105  // Otherwise, it's an error.
106  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
107  method->setInvalidDecl();
108  return true;
109 }
110 
111 /// Issue a warning if the parameter of the overridden method is non-escaping
112 /// but the parameter of the overriding method is not.
113 static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
114  Sema &S) {
115  if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
116  S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
117  S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
118  return false;
119  }
120 
121  return true;
122 }
123 
124 /// Produce additional diagnostics if a category conforms to a protocol that
125 /// defines a method taking a non-escaping parameter.
126 static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
127  const ObjCCategoryDecl *CD,
128  const ObjCProtocolDecl *PD, Sema &S) {
129  if (!diagnoseNoescape(NewD, OldD, S))
130  S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
131  << CD->IsClassExtension() << PD
132  << cast<ObjCMethodDecl>(NewD->getDeclContext());
133 }
134 
136  const ObjCMethodDecl *Overridden) {
137  if (Overridden->hasRelatedResultType() &&
138  !NewMethod->hasRelatedResultType()) {
139  // This can only happen when the method follows a naming convention that
140  // implies a related result type, and the original (overridden) method has
141  // a suitable return type, but the new (overriding) method does not have
142  // a suitable return type.
143  QualType ResultType = NewMethod->getReturnType();
144  SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
145 
146  // Figure out which class this method is part of, if any.
147  ObjCInterfaceDecl *CurrentClass
148  = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
149  if (!CurrentClass) {
150  DeclContext *DC = NewMethod->getDeclContext();
151  if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
152  CurrentClass = Cat->getClassInterface();
153  else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
154  CurrentClass = Impl->getClassInterface();
155  else if (ObjCCategoryImplDecl *CatImpl
156  = dyn_cast<ObjCCategoryImplDecl>(DC))
157  CurrentClass = CatImpl->getClassInterface();
158  }
159 
160  if (CurrentClass) {
161  Diag(NewMethod->getLocation(),
162  diag::warn_related_result_type_compatibility_class)
163  << Context.getObjCInterfaceType(CurrentClass)
164  << ResultType
165  << ResultTypeRange;
166  } else {
167  Diag(NewMethod->getLocation(),
168  diag::warn_related_result_type_compatibility_protocol)
169  << ResultType
170  << ResultTypeRange;
171  }
172 
173  if (ObjCMethodFamily Family = Overridden->getMethodFamily())
174  Diag(Overridden->getLocation(),
175  diag::note_related_result_type_family)
176  << /*overridden method*/ 0
177  << Family;
178  else
179  Diag(Overridden->getLocation(),
180  diag::note_related_result_type_overridden);
181  }
182 
183  if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
184  Overridden->hasAttr<NSReturnsRetainedAttr>())) {
185  Diag(NewMethod->getLocation(),
186  getLangOpts().ObjCAutoRefCount
187  ? diag::err_nsreturns_retained_attribute_mismatch
188  : diag::warn_nsreturns_retained_attribute_mismatch)
189  << 1;
190  Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
191  }
192  if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
193  Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
194  Diag(NewMethod->getLocation(),
195  getLangOpts().ObjCAutoRefCount
196  ? diag::err_nsreturns_retained_attribute_mismatch
197  : diag::warn_nsreturns_retained_attribute_mismatch)
198  << 0;
199  Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
200  }
201 
203  oe = Overridden->param_end();
204  for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
205  ne = NewMethod->param_end();
206  ni != ne && oi != oe; ++ni, ++oi) {
207  const ParmVarDecl *oldDecl = (*oi);
208  ParmVarDecl *newDecl = (*ni);
209  if (newDecl->hasAttr<NSConsumedAttr>() !=
210  oldDecl->hasAttr<NSConsumedAttr>()) {
211  Diag(newDecl->getLocation(),
212  getLangOpts().ObjCAutoRefCount
213  ? diag::err_nsconsumed_attribute_mismatch
214  : diag::warn_nsconsumed_attribute_mismatch);
215  Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
216  }
217 
218  diagnoseNoescape(newDecl, oldDecl, *this);
219  }
220 }
221 
222 /// Check a method declaration for compatibility with the Objective-C
223 /// ARC conventions.
225  ObjCMethodFamily family = method->getMethodFamily();
226  switch (family) {
227  case OMF_None:
228  case OMF_finalize:
229  case OMF_retain:
230  case OMF_release:
231  case OMF_autorelease:
232  case OMF_retainCount:
233  case OMF_self:
234  case OMF_initialize:
235  case OMF_performSelector:
236  return false;
237 
238  case OMF_dealloc:
239  if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
240  SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
241  if (ResultTypeRange.isInvalid())
242  Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
243  << method->getReturnType()
244  << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
245  else
246  Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
247  << method->getReturnType()
248  << FixItHint::CreateReplacement(ResultTypeRange, "void");
249  return true;
250  }
251  return false;
252 
253  case OMF_init:
254  // If the method doesn't obey the init rules, don't bother annotating it.
255  if (checkInitMethod(method, QualType()))
256  return true;
257 
258  method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
259 
260  // Don't add a second copy of this attribute, but otherwise don't
261  // let it be suppressed.
262  if (method->hasAttr<NSReturnsRetainedAttr>())
263  return false;
264  break;
265 
266  case OMF_alloc:
267  case OMF_copy:
268  case OMF_mutableCopy:
269  case OMF_new:
270  if (method->hasAttr<NSReturnsRetainedAttr>() ||
271  method->hasAttr<NSReturnsNotRetainedAttr>() ||
272  method->hasAttr<NSReturnsAutoreleasedAttr>())
273  return false;
274  break;
275  }
276 
277  method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
278  return false;
279 }
280 
282  SourceLocation ImplLoc) {
283  if (!ND)
284  return;
285  bool IsCategory = false;
286  StringRef RealizedPlatform;
287  AvailabilityResult Availability = ND->getAvailability(
288  /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
289  &RealizedPlatform);
290  if (Availability != AR_Deprecated) {
291  if (isa<ObjCMethodDecl>(ND)) {
292  if (Availability != AR_Unavailable)
293  return;
294  if (RealizedPlatform.empty())
295  RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
296  // Warn about implementing unavailable methods, unless the unavailable
297  // is for an app extension.
298  if (RealizedPlatform.endswith("_app_extension"))
299  return;
300  S.Diag(ImplLoc, diag::warn_unavailable_def);
301  S.Diag(ND->getLocation(), diag::note_method_declared_at)
302  << ND->getDeclName();
303  return;
304  }
305  if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
306  if (!CD->getClassInterface()->isDeprecated())
307  return;
308  ND = CD->getClassInterface();
309  IsCategory = true;
310  } else
311  return;
312  }
313  S.Diag(ImplLoc, diag::warn_deprecated_def)
314  << (isa<ObjCMethodDecl>(ND)
315  ? /*Method*/ 0
316  : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
317  : /*Class*/ 1);
318  if (isa<ObjCMethodDecl>(ND))
319  S.Diag(ND->getLocation(), diag::note_method_declared_at)
320  << ND->getDeclName();
321  else
322  S.Diag(ND->getLocation(), diag::note_previous_decl)
323  << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
324 }
325 
326 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
327 /// pool.
329  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
330 
331  // If we don't have a valid method decl, simply return.
332  if (!MDecl)
333  return;
334  if (MDecl->isInstanceMethod())
335  AddInstanceMethodToGlobalPool(MDecl, true);
336  else
337  AddFactoryMethodToGlobalPool(MDecl, true);
338 }
339 
340 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
341 /// has explicit ownership attribute; false otherwise.
342 static bool
344  QualType T = Param->getType();
345 
346  if (const PointerType *PT = T->getAs<PointerType>()) {
347  T = PT->getPointeeType();
348  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
349  T = RT->getPointeeType();
350  } else {
351  return true;
352  }
353 
354  // If we have a lifetime qualifier, but it's local, we must have
355  // inferred it. So, it is implicit.
356  return !T.getLocalQualifiers().hasObjCLifetime();
357 }
358 
359 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
360 /// and user declared, in the method definition's AST.
363  assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
364  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
365 
367 
368  // If we don't have a valid method decl, simply return.
369  if (!MDecl)
370  return;
371 
372  QualType ResultType = MDecl->getReturnType();
373  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
374  !MDecl->isInvalidDecl() &&
375  RequireCompleteType(MDecl->getLocation(), ResultType,
376  diag::err_func_def_incomplete_result))
377  MDecl->setInvalidDecl();
378 
379  // Allow all of Sema to see that we are entering a method definition.
380  PushDeclContext(FnBodyScope, MDecl);
382 
383  // Create Decl objects for each parameter, entrring them in the scope for
384  // binding to their use.
385 
386  // Insert the invisible arguments, self and _cmd!
388 
389  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
390  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
391 
392  // The ObjC parser requires parameter names so there's no need to check.
394  /*CheckParameterNames=*/false);
395 
396  // Introduce all of the other parameters into this scope.
397  for (auto *Param : MDecl->parameters()) {
398  if (!Param->isInvalidDecl() &&
399  getLangOpts().ObjCAutoRefCount &&
400  !HasExplicitOwnershipAttr(*this, Param))
401  Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
402  Param->getType();
403 
404  if (Param->getIdentifier())
405  PushOnScopeChains(Param, FnBodyScope);
406  }
407 
408  // In ARC, disallow definition of retain/release/autorelease/retainCount
409  if (getLangOpts().ObjCAutoRefCount) {
410  switch (MDecl->getMethodFamily()) {
411  case OMF_retain:
412  case OMF_retainCount:
413  case OMF_release:
414  case OMF_autorelease:
415  Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
416  << 0 << MDecl->getSelector();
417  break;
418 
419  case OMF_None:
420  case OMF_dealloc:
421  case OMF_finalize:
422  case OMF_alloc:
423  case OMF_init:
424  case OMF_mutableCopy:
425  case OMF_copy:
426  case OMF_new:
427  case OMF_self:
428  case OMF_initialize:
429  case OMF_performSelector:
430  break;
431  }
432  }
433 
434  // Warn on deprecated methods under -Wdeprecated-implementations,
435  // and prepare for warning on missing super calls.
436  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
437  ObjCMethodDecl *IMD =
438  IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
439 
440  if (IMD) {
441  ObjCImplDecl *ImplDeclOfMethodDef =
442  dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
443  ObjCContainerDecl *ContDeclOfMethodDecl =
444  dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
445  ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
446  if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
447  ImplDeclOfMethodDecl = OID->getImplementation();
448  else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
449  if (CD->IsClassExtension()) {
450  if (ObjCInterfaceDecl *OID = CD->getClassInterface())
451  ImplDeclOfMethodDecl = OID->getImplementation();
452  } else
453  ImplDeclOfMethodDecl = CD->getImplementation();
454  }
455  // No need to issue deprecated warning if deprecated mehod in class/category
456  // is being implemented in its own implementation (no overriding is involved).
457  if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
458  DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
459  }
460 
461  if (MDecl->getMethodFamily() == OMF_init) {
465  IC->getSuperClass() != nullptr;
466  } else if (IC->hasDesignatedInitializers()) {
469  }
470  }
471 
472  // If this is "dealloc" or "finalize", set some bit here.
473  // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
474  // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
475  // Only do this if the current class actually has a superclass.
476  if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
477  ObjCMethodFamily Family = MDecl->getMethodFamily();
478  if (Family == OMF_dealloc) {
479  if (!(getLangOpts().ObjCAutoRefCount ||
480  getLangOpts().getGC() == LangOptions::GCOnly))
482 
483  } else if (Family == OMF_finalize) {
484  if (Context.getLangOpts().getGC() != LangOptions::NonGC)
486 
487  } else {
488  const ObjCMethodDecl *SuperMethod =
489  SuperClass->lookupMethod(MDecl->getSelector(),
490  MDecl->isInstanceMethod());
492  (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
493  }
494  }
495  }
496 }
497 
498 namespace {
499 
500 // Callback to only accept typo corrections that are Objective-C classes.
501 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
502 // function will reject corrections to that class.
503 class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
504  public:
505  ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
506  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
507  : CurrentIDecl(IDecl) {}
508 
509  bool ValidateCandidate(const TypoCorrection &candidate) override {
511  return ID && !declaresSameEntity(ID, CurrentIDecl);
512  }
513 
514  std::unique_ptr<CorrectionCandidateCallback> clone() override {
515  return std::make_unique<ObjCInterfaceValidatorCCC>(*this);
516  }
517 
518  private:
519  ObjCInterfaceDecl *CurrentIDecl;
520 };
521 
522 } // end anonymous namespace
523 
524 static void diagnoseUseOfProtocols(Sema &TheSema,
525  ObjCContainerDecl *CD,
526  ObjCProtocolDecl *const *ProtoRefs,
527  unsigned NumProtoRefs,
528  const SourceLocation *ProtoLocs) {
529  assert(ProtoRefs);
530  // Diagnose availability in the context of the ObjC container.
531  Sema::ContextRAII SavedContext(TheSema, CD);
532  for (unsigned i = 0; i < NumProtoRefs; ++i) {
533  (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
534  /*UnknownObjCClass=*/nullptr,
535  /*ObjCPropertyAccess=*/false,
536  /*AvoidPartialAvailabilityChecks=*/true);
537  }
538 }
539 
540 void Sema::
542  SourceLocation AtInterfaceLoc,
543  ObjCInterfaceDecl *IDecl,
544  IdentifierInfo *ClassName,
545  SourceLocation ClassLoc,
546  IdentifierInfo *SuperName,
547  SourceLocation SuperLoc,
548  ArrayRef<ParsedType> SuperTypeArgs,
549  SourceRange SuperTypeArgsRange) {
550  // Check if a different kind of symbol declared in this scope.
551  NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
553 
554  if (!PrevDecl) {
555  // Try to correct for a typo in the superclass name without correcting
556  // to the class we're defining.
557  ObjCInterfaceValidatorCCC CCC(IDecl);
558  if (TypoCorrection Corrected = CorrectTypo(
559  DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName,
560  TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
561  diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
562  << SuperName << ClassName);
563  PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
564  }
565  }
566 
567  if (declaresSameEntity(PrevDecl, IDecl)) {
568  Diag(SuperLoc, diag::err_recursive_superclass)
569  << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
570  IDecl->setEndOfDefinitionLoc(ClassLoc);
571  } else {
572  ObjCInterfaceDecl *SuperClassDecl =
573  dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
574  QualType SuperClassType;
575 
576  // Diagnose classes that inherit from deprecated classes.
577  if (SuperClassDecl) {
578  (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
579  SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
580  }
581 
582  if (PrevDecl && !SuperClassDecl) {
583  // The previous declaration was not a class decl. Check if we have a
584  // typedef. If we do, get the underlying class type.
585  if (const TypedefNameDecl *TDecl =
586  dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
587  QualType T = TDecl->getUnderlyingType();
588  if (T->isObjCObjectType()) {
589  if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
590  SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
591  SuperClassType = Context.getTypeDeclType(TDecl);
592 
593  // This handles the following case:
594  // @interface NewI @end
595  // typedef NewI DeprI __attribute__((deprecated("blah")))
596  // @interface SI : DeprI /* warn here */ @end
597  (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
598  }
599  }
600  }
601 
602  // This handles the following case:
603  //
604  // typedef int SuperClass;
605  // @interface MyClass : SuperClass {} @end
606  //
607  if (!SuperClassDecl) {
608  Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
609  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
610  }
611  }
612 
613  if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
614  if (!SuperClassDecl)
615  Diag(SuperLoc, diag::err_undef_superclass)
616  << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
617  else if (RequireCompleteType(SuperLoc,
618  SuperClassType,
619  diag::err_forward_superclass,
620  SuperClassDecl->getDeclName(),
621  ClassName,
622  SourceRange(AtInterfaceLoc, ClassLoc))) {
623  SuperClassDecl = nullptr;
624  SuperClassType = QualType();
625  }
626  }
627 
628  if (SuperClassType.isNull()) {
629  assert(!SuperClassDecl && "Failed to set SuperClassType?");
630  return;
631  }
632 
633  // Handle type arguments on the superclass.
634  TypeSourceInfo *SuperClassTInfo = nullptr;
635  if (!SuperTypeArgs.empty()) {
637  S,
638  SuperLoc,
639  CreateParsedType(SuperClassType,
640  nullptr),
641  SuperTypeArgsRange.getBegin(),
642  SuperTypeArgs,
643  SuperTypeArgsRange.getEnd(),
644  SourceLocation(),
645  { },
646  { },
647  SourceLocation());
648  if (!fullSuperClassType.isUsable())
649  return;
650 
651  SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
652  &SuperClassTInfo);
653  }
654 
655  if (!SuperClassTInfo) {
656  SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
657  SuperLoc);
658  }
659 
660  IDecl->setSuperClass(SuperClassTInfo);
661  IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
662  }
663 }
664 
666  ObjCTypeParamVariance variance,
667  SourceLocation varianceLoc,
668  unsigned index,
669  IdentifierInfo *paramName,
670  SourceLocation paramLoc,
671  SourceLocation colonLoc,
672  ParsedType parsedTypeBound) {
673  // If there was an explicitly-provided type bound, check it.
674  TypeSourceInfo *typeBoundInfo = nullptr;
675  if (parsedTypeBound) {
676  // The type bound can be any Objective-C pointer type.
677  QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
678  if (typeBound->isObjCObjectPointerType()) {
679  // okay
680  } else if (typeBound->isObjCObjectType()) {
681  // The user forgot the * on an Objective-C pointer type, e.g.,
682  // "T : NSView".
684  typeBoundInfo->getTypeLoc().getEndLoc());
685  Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
686  diag::err_objc_type_param_bound_missing_pointer)
687  << typeBound << paramName
688  << FixItHint::CreateInsertion(starLoc, " *");
689 
690  // Create a new type location builder so we can update the type
691  // location information we have.
692  TypeLocBuilder builder;
693  builder.pushFullCopy(typeBoundInfo->getTypeLoc());
694 
695  // Create the Objective-C pointer type.
696  typeBound = Context.getObjCObjectPointerType(typeBound);
698  = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
699  newT.setStarLoc(starLoc);
700 
701  // Form the new type source information.
702  typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
703  } else {
704  // Not a valid type bound.
705  Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
706  diag::err_objc_type_param_bound_nonobject)
707  << typeBound << paramName;
708 
709  // Forget the bound; we'll default to id later.
710  typeBoundInfo = nullptr;
711  }
712 
713  // Type bounds cannot have qualifiers (even indirectly) or explicit
714  // nullability.
715  if (typeBoundInfo) {
716  QualType typeBound = typeBoundInfo->getType();
717  TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
718  if (qual || typeBound.hasQualifiers()) {
719  bool diagnosed = false;
720  SourceRange rangeToRemove;
721  if (qual) {
722  if (auto attr = qual.getAs<AttributedTypeLoc>()) {
723  rangeToRemove = attr.getLocalSourceRange();
724  if (attr.getTypePtr()->getImmediateNullability()) {
725  Diag(attr.getBeginLoc(),
726  diag::err_objc_type_param_bound_explicit_nullability)
727  << paramName << typeBound
728  << FixItHint::CreateRemoval(rangeToRemove);
729  diagnosed = true;
730  }
731  }
732  }
733 
734  if (!diagnosed) {
735  Diag(qual ? qual.getBeginLoc()
736  : typeBoundInfo->getTypeLoc().getBeginLoc(),
737  diag::err_objc_type_param_bound_qualified)
738  << paramName << typeBound
739  << typeBound.getQualifiers().getAsString()
740  << FixItHint::CreateRemoval(rangeToRemove);
741  }
742 
743  // If the type bound has qualifiers other than CVR, we need to strip
744  // them or we'll probably assert later when trying to apply new
745  // qualifiers.
746  Qualifiers quals = typeBound.getQualifiers();
747  quals.removeCVRQualifiers();
748  if (!quals.empty()) {
749  typeBoundInfo =
751  }
752  }
753  }
754  }
755 
756  // If there was no explicit type bound (or we removed it due to an error),
757  // use 'id' instead.
758  if (!typeBoundInfo) {
759  colonLoc = SourceLocation();
761  }
762 
763  // Create the type parameter.
764  return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
765  index, paramLoc, paramName, colonLoc,
766  typeBoundInfo);
767 }
768 
770  SourceLocation lAngleLoc,
771  ArrayRef<Decl *> typeParamsIn,
772  SourceLocation rAngleLoc) {
773  // We know that the array only contains Objective-C type parameters.
775  typeParams(
776  reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
777  typeParamsIn.size());
778 
779  // Diagnose redeclarations of type parameters.
780  // We do this now because Objective-C type parameters aren't pushed into
781  // scope until later (after the instance variable block), but we want the
782  // diagnostics to occur right after we parse the type parameter list.
783  llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
784  for (auto typeParam : typeParams) {
785  auto known = knownParams.find(typeParam->getIdentifier());
786  if (known != knownParams.end()) {
787  Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
788  << typeParam->getIdentifier()
789  << SourceRange(known->second->getLocation());
790 
791  typeParam->setInvalidDecl();
792  } else {
793  knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
794 
795  // Push the type parameter into scope.
796  PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
797  }
798  }
799 
800  // Create the parameter list.
801  return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
802 }
803 
805  for (auto typeParam : *typeParamList) {
806  if (!typeParam->isInvalidDecl()) {
807  S->RemoveDecl(typeParam);
808  IdResolver.RemoveDecl(typeParam);
809  }
810  }
811 }
812 
813 namespace {
814  /// The context in which an Objective-C type parameter list occurs, for use
815  /// in diagnostics.
816  enum class TypeParamListContext {
817  ForwardDeclaration,
818  Definition,
819  Category,
820  Extension
821  };
822 } // end anonymous namespace
823 
824 /// Check consistency between two Objective-C type parameter lists, e.g.,
825 /// between a category/extension and an \@interface or between an \@class and an
826 /// \@interface.
828  ObjCTypeParamList *prevTypeParams,
829  ObjCTypeParamList *newTypeParams,
830  TypeParamListContext newContext) {
831  // If the sizes don't match, complain about that.
832  if (prevTypeParams->size() != newTypeParams->size()) {
833  SourceLocation diagLoc;
834  if (newTypeParams->size() > prevTypeParams->size()) {
835  diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
836  } else {
837  diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
838  }
839 
840  S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
841  << static_cast<unsigned>(newContext)
842  << (newTypeParams->size() > prevTypeParams->size())
843  << prevTypeParams->size()
844  << newTypeParams->size();
845 
846  return true;
847  }
848 
849  // Match up the type parameters.
850  for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
851  ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
852  ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
853 
854  // Check for consistency of the variance.
855  if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
856  if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
857  newContext != TypeParamListContext::Definition) {
858  // When the new type parameter is invariant and is not part
859  // of the definition, just propagate the variance.
860  newTypeParam->setVariance(prevTypeParam->getVariance());
861  } else if (prevTypeParam->getVariance()
863  !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
864  cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
865  ->getDefinition() == prevTypeParam->getDeclContext())) {
866  // When the old parameter is invariant and was not part of the
867  // definition, just ignore the difference because it doesn't
868  // matter.
869  } else {
870  {
871  // Diagnose the conflict and update the second declaration.
872  SourceLocation diagLoc = newTypeParam->getVarianceLoc();
873  if (diagLoc.isInvalid())
874  diagLoc = newTypeParam->getBeginLoc();
875 
876  auto diag = S.Diag(diagLoc,
877  diag::err_objc_type_param_variance_conflict)
878  << static_cast<unsigned>(newTypeParam->getVariance())
879  << newTypeParam->getDeclName()
880  << static_cast<unsigned>(prevTypeParam->getVariance())
881  << prevTypeParam->getDeclName();
882  switch (prevTypeParam->getVariance()) {
884  diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
885  break;
886 
889  StringRef newVarianceStr
890  = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
891  ? "__covariant"
892  : "__contravariant";
893  if (newTypeParam->getVariance()
895  diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
896  (newVarianceStr + " ").str());
897  } else {
898  diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
899  newVarianceStr);
900  }
901  }
902  }
903  }
904 
905  S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
906  << prevTypeParam->getDeclName();
907 
908  // Override the variance.
909  newTypeParam->setVariance(prevTypeParam->getVariance());
910  }
911  }
912 
913  // If the bound types match, there's nothing to do.
914  if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
915  newTypeParam->getUnderlyingType()))
916  continue;
917 
918  // If the new type parameter's bound was explicit, complain about it being
919  // different from the original.
920  if (newTypeParam->hasExplicitBound()) {
921  SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
923  S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
924  << newTypeParam->getUnderlyingType()
925  << newTypeParam->getDeclName()
926  << prevTypeParam->hasExplicitBound()
927  << prevTypeParam->getUnderlyingType()
928  << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
929  << prevTypeParam->getDeclName()
931  newBoundRange,
932  prevTypeParam->getUnderlyingType().getAsString(
934 
935  S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
936  << prevTypeParam->getDeclName();
937 
938  // Override the new type parameter's bound type with the previous type,
939  // so that it's consistent.
940  newTypeParam->setTypeSourceInfo(
942  continue;
943  }
944 
945  // The new type parameter got the implicit bound of 'id'. That's okay for
946  // categories and extensions (overwrite it later), but not for forward
947  // declarations and @interfaces, because those must be standalone.
948  if (newContext == TypeParamListContext::ForwardDeclaration ||
949  newContext == TypeParamListContext::Definition) {
950  // Diagnose this problem for forward declarations and definitions.
951  SourceLocation insertionLoc
952  = S.getLocForEndOfToken(newTypeParam->getLocation());
953  std::string newCode
954  = " : " + prevTypeParam->getUnderlyingType().getAsString(
956  S.Diag(newTypeParam->getLocation(),
957  diag::err_objc_type_param_bound_missing)
958  << prevTypeParam->getUnderlyingType()
959  << newTypeParam->getDeclName()
960  << (newContext == TypeParamListContext::ForwardDeclaration)
961  << FixItHint::CreateInsertion(insertionLoc, newCode);
962 
963  S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
964  << prevTypeParam->getDeclName();
965  }
966 
967  // Update the new type parameter's bound to match the previous one.
968  newTypeParam->setTypeSourceInfo(
970  }
971 
972  return false;
973 }
974 
976  Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
977  SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
978  IdentifierInfo *SuperName, SourceLocation SuperLoc,
979  ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
980  Decl *const *ProtoRefs, unsigned NumProtoRefs,
981  const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
982  const ParsedAttributesView &AttrList) {
983  assert(ClassName && "Missing class identifier");
984 
985  // Check for another declaration kind with the same name.
986  NamedDecl *PrevDecl =
987  LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
989 
990  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
991  Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
992  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
993  }
994 
995  // Create a declaration to describe this @interface.
996  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
997 
998  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
999  // A previous decl with a different name is because of
1000  // @compatibility_alias, for example:
1001  // \code
1002  // @class NewImage;
1003  // @compatibility_alias OldImage NewImage;
1004  // \endcode
1005  // A lookup for 'OldImage' will return the 'NewImage' decl.
1006  //
1007  // In such a case use the real declaration name, instead of the alias one,
1008  // otherwise we will break IdentifierResolver and redecls-chain invariants.
1009  // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1010  // has been aliased.
1011  ClassName = PrevIDecl->getIdentifier();
1012  }
1013 
1014  // If there was a forward declaration with type parameters, check
1015  // for consistency.
1016  if (PrevIDecl) {
1017  if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1018  if (typeParamList) {
1019  // Both have type parameter lists; check for consistency.
1020  if (checkTypeParamListConsistency(*this, prevTypeParamList,
1021  typeParamList,
1022  TypeParamListContext::Definition)) {
1023  typeParamList = nullptr;
1024  }
1025  } else {
1026  Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1027  << ClassName;
1028  Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1029  << ClassName;
1030 
1031  // Clone the type parameter list.
1032  SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1033  for (auto typeParam : *prevTypeParamList) {
1034  clonedTypeParams.push_back(
1036  Context,
1037  CurContext,
1038  typeParam->getVariance(),
1039  SourceLocation(),
1040  typeParam->getIndex(),
1041  SourceLocation(),
1042  typeParam->getIdentifier(),
1043  SourceLocation(),
1044  Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1045  }
1046 
1047  typeParamList = ObjCTypeParamList::create(Context,
1048  SourceLocation(),
1049  clonedTypeParams,
1050  SourceLocation());
1051  }
1052  }
1053  }
1054 
1055  ObjCInterfaceDecl *IDecl
1056  = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1057  typeParamList, PrevIDecl, ClassLoc);
1058  if (PrevIDecl) {
1059  // Class already seen. Was it a definition?
1060  if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1061  Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1062  << PrevIDecl->getDeclName();
1063  Diag(Def->getLocation(), diag::note_previous_definition);
1064  IDecl->setInvalidDecl();
1065  }
1066  }
1067 
1068  ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1069  AddPragmaAttributes(TUScope, IDecl);
1070  PushOnScopeChains(IDecl, TUScope);
1071 
1072  // Start the definition of this class. If we're in a redefinition case, there
1073  // may already be a definition, so we'll end up adding to it.
1074  if (!IDecl->hasDefinition())
1075  IDecl->startDefinition();
1076 
1077  if (SuperName) {
1078  // Diagnose availability in the context of the @interface.
1079  ContextRAII SavedContext(*this, IDecl);
1080 
1081  ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1082  ClassName, ClassLoc,
1083  SuperName, SuperLoc, SuperTypeArgs,
1084  SuperTypeArgsRange);
1085  } else { // we have a root class.
1086  IDecl->setEndOfDefinitionLoc(ClassLoc);
1087  }
1088 
1089  // Check then save referenced protocols.
1090  if (NumProtoRefs) {
1091  diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1092  NumProtoRefs, ProtoLocs);
1093  IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1094  ProtoLocs, Context);
1095  IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1096  }
1097 
1098  CheckObjCDeclScope(IDecl);
1099  return ActOnObjCContainerStartDefinition(IDecl);
1100 }
1101 
1102 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
1103 /// typedef'ed use for a qualified super class and adds them to the list
1104 /// of the protocols.
1106  SmallVectorImpl<SourceLocation> &ProtocolLocs,
1107  IdentifierInfo *SuperName,
1108  SourceLocation SuperLoc) {
1109  if (!SuperName)
1110  return;
1111  NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1113  if (!IDecl)
1114  return;
1115 
1116  if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1117  QualType T = TDecl->getUnderlyingType();
1118  if (T->isObjCObjectType())
1119  if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1120  ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1121  // FIXME: Consider whether this should be an invalid loc since the loc
1122  // is not actually pointing to a protocol name reference but to the
1123  // typedef reference. Note that the base class name loc is also pointing
1124  // at the typedef.
1125  ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1126  }
1127  }
1128 }
1129 
1130 /// ActOnCompatibilityAlias - this action is called after complete parsing of
1131 /// a \@compatibility_alias declaration. It sets up the alias relationships.
1133  IdentifierInfo *AliasName,
1134  SourceLocation AliasLocation,
1135  IdentifierInfo *ClassName,
1136  SourceLocation ClassLocation) {
1137  // Look for previous declaration of alias name
1138  NamedDecl *ADecl =
1139  LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1141  if (ADecl) {
1142  Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1143  Diag(ADecl->getLocation(), diag::note_previous_declaration);
1144  return nullptr;
1145  }
1146  // Check for class declaration
1147  NamedDecl *CDeclU =
1148  LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1150  if (const TypedefNameDecl *TDecl =
1151  dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1152  QualType T = TDecl->getUnderlyingType();
1153  if (T->isObjCObjectType()) {
1154  if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1155  ClassName = IDecl->getIdentifier();
1156  CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1159  }
1160  }
1161  }
1162  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1163  if (!CDecl) {
1164  Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1165  if (CDeclU)
1166  Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1167  return nullptr;
1168  }
1169 
1170  // Everything checked out, instantiate a new alias declaration AST.
1171  ObjCCompatibleAliasDecl *AliasDecl =
1172  ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1173 
1174  if (!CheckObjCDeclScope(AliasDecl))
1175  PushOnScopeChains(AliasDecl, TUScope);
1176 
1177  return AliasDecl;
1178 }
1179 
1181  IdentifierInfo *PName,
1182  SourceLocation &Ploc, SourceLocation PrevLoc,
1183  const ObjCList<ObjCProtocolDecl> &PList) {
1184 
1185  bool res = false;
1187  E = PList.end(); I != E; ++I) {
1188  if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1189  Ploc)) {
1190  if (PDecl->getIdentifier() == PName) {
1191  Diag(Ploc, diag::err_protocol_has_circular_dependency);
1192  Diag(PrevLoc, diag::note_previous_definition);
1193  res = true;
1194  }
1195 
1196  if (!PDecl->hasDefinition())
1197  continue;
1198 
1200  PDecl->getLocation(), PDecl->getReferencedProtocols()))
1201  res = true;
1202  }
1203  }
1204  return res;
1205 }
1206 
1208  SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1209  SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1210  const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1211  const ParsedAttributesView &AttrList) {
1212  bool err = false;
1213  // FIXME: Deal with AttrList.
1214  assert(ProtocolName && "Missing protocol identifier");
1215  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1217  ObjCProtocolDecl *PDecl = nullptr;
1218  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1219  // If we already have a definition, complain.
1220  Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1221  Diag(Def->getLocation(), diag::note_previous_definition);
1222 
1223  // Create a new protocol that is completely distinct from previous
1224  // declarations, and do not make this protocol available for name lookup.
1225  // That way, we'll end up completely ignoring the duplicate.
1226  // FIXME: Can we turn this into an error?
1227  PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1228  ProtocolLoc, AtProtoInterfaceLoc,
1229  /*PrevDecl=*/nullptr);
1230 
1231  // If we are using modules, add the decl to the context in order to
1232  // serialize something meaningful.
1233  if (getLangOpts().Modules)
1234  PushOnScopeChains(PDecl, TUScope);
1235  PDecl->startDefinition();
1236  } else {
1237  if (PrevDecl) {
1238  // Check for circular dependencies among protocol declarations. This can
1239  // only happen if this protocol was forward-declared.
1241  PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1243  ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1244  }
1245 
1246  // Create the new declaration.
1247  PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1248  ProtocolLoc, AtProtoInterfaceLoc,
1249  /*PrevDecl=*/PrevDecl);
1250 
1251  PushOnScopeChains(PDecl, TUScope);
1252  PDecl->startDefinition();
1253  }
1254 
1255  ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1256  AddPragmaAttributes(TUScope, PDecl);
1257 
1258  // Merge attributes from previous declarations.
1259  if (PrevDecl)
1260  mergeDeclAttributes(PDecl, PrevDecl);
1261 
1262  if (!err && NumProtoRefs ) {
1263  /// Check then save referenced protocols.
1264  diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1265  NumProtoRefs, ProtoLocs);
1266  PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1267  ProtoLocs, Context);
1268  }
1269 
1270  CheckObjCDeclScope(PDecl);
1271  return ActOnObjCContainerStartDefinition(PDecl);
1272 }
1273 
1275  ObjCProtocolDecl *&UndefinedProtocol) {
1276  if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1277  UndefinedProtocol = PDecl;
1278  return true;
1279  }
1280 
1281  for (auto *PI : PDecl->protocols())
1282  if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1283  UndefinedProtocol = PI;
1284  return true;
1285  }
1286  return false;
1287 }
1288 
1289 /// FindProtocolDeclaration - This routine looks up protocols and
1290 /// issues an error if they are not declared. It returns list of
1291 /// protocol declarations in its 'Protocols' argument.
1292 void
1293 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1294  ArrayRef<IdentifierLocPair> ProtocolId,
1295  SmallVectorImpl<Decl *> &Protocols) {
1296  for (const IdentifierLocPair &Pair : ProtocolId) {
1297  ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1298  if (!PDecl) {
1300  TypoCorrection Corrected = CorrectTypo(
1301  DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName,
1302  TUScope, nullptr, CCC, CTK_ErrorRecovery);
1303  if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1304  diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1305  << Pair.first);
1306  }
1307 
1308  if (!PDecl) {
1309  Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1310  continue;
1311  }
1312  // If this is a forward protocol declaration, get its definition.
1313  if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1314  PDecl = PDecl->getDefinition();
1315 
1316  // For an objc container, delay protocol reference checking until after we
1317  // can set the objc decl as the availability context, otherwise check now.
1318  if (!ForObjCContainer) {
1319  (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1320  }
1321 
1322  // If this is a forward declaration and we are supposed to warn in this
1323  // case, do it.
1324  // FIXME: Recover nicely in the hidden case.
1325  ObjCProtocolDecl *UndefinedProtocol;
1326 
1327  if (WarnOnDeclarations &&
1328  NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1329  Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1330  Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1331  << UndefinedProtocol;
1332  }
1333  Protocols.push_back(PDecl);
1334  }
1335 }
1336 
1337 namespace {
1338 // Callback to only accept typo corrections that are either
1339 // Objective-C protocols or valid Objective-C type arguments.
1340 class ObjCTypeArgOrProtocolValidatorCCC final
1341  : public CorrectionCandidateCallback {
1343  Sema::LookupNameKind LookupKind;
1344  public:
1345  ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1346  Sema::LookupNameKind lookupKind)
1347  : Context(context), LookupKind(lookupKind) { }
1348 
1349  bool ValidateCandidate(const TypoCorrection &candidate) override {
1350  // If we're allowed to find protocols and we have a protocol, accept it.
1351  if (LookupKind != Sema::LookupOrdinaryName) {
1352  if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1353  return true;
1354  }
1355 
1356  // If we're allowed to find type names and we have one, accept it.
1357  if (LookupKind != Sema::LookupObjCProtocolName) {
1358  // If we have a type declaration, we might accept this result.
1359  if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1360  // If we found a tag declaration outside of C++, skip it. This
1361  // can happy because we look for any name when there is no
1362  // bias to protocol or type names.
1363  if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1364  return false;
1365 
1366  // Make sure the type is something we would accept as a type
1367  // argument.
1368  auto type = Context.getTypeDeclType(typeDecl);
1369  if (type->isObjCObjectPointerType() ||
1370  type->isBlockPointerType() ||
1371  type->isDependentType() ||
1372  type->isObjCObjectType())
1373  return true;
1374 
1375  return false;
1376  }
1377 
1378  // If we have an Objective-C class type, accept it; there will
1379  // be another fix to add the '*'.
1380  if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1381  return true;
1382 
1383  return false;
1384  }
1385 
1386  return false;
1387  }
1388 
1389  std::unique_ptr<CorrectionCandidateCallback> clone() override {
1390  return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
1391  }
1392 };
1393 } // end anonymous namespace
1394 
1396  SourceLocation ProtocolLoc,
1397  IdentifierInfo *TypeArgId,
1398  SourceLocation TypeArgLoc,
1399  bool SelectProtocolFirst) {
1400  Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1401  << SelectProtocolFirst << TypeArgId << ProtocolId
1402  << SourceRange(ProtocolLoc);
1403 }
1404 
1406  Scope *S,
1407  ParsedType baseType,
1408  SourceLocation lAngleLoc,
1409  ArrayRef<IdentifierInfo *> identifiers,
1410  ArrayRef<SourceLocation> identifierLocs,
1411  SourceLocation rAngleLoc,
1412  SourceLocation &typeArgsLAngleLoc,
1413  SmallVectorImpl<ParsedType> &typeArgs,
1414  SourceLocation &typeArgsRAngleLoc,
1415  SourceLocation &protocolLAngleLoc,
1416  SmallVectorImpl<Decl *> &protocols,
1417  SourceLocation &protocolRAngleLoc,
1418  bool warnOnIncompleteProtocols) {
1419  // Local function that updates the declaration specifiers with
1420  // protocol information.
1421  unsigned numProtocolsResolved = 0;
1422  auto resolvedAsProtocols = [&] {
1423  assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1424 
1425  // Determine whether the base type is a parameterized class, in
1426  // which case we want to warn about typos such as
1427  // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1428  ObjCInterfaceDecl *baseClass = nullptr;
1429  QualType base = GetTypeFromParser(baseType, nullptr);
1430  bool allAreTypeNames = false;
1431  SourceLocation firstClassNameLoc;
1432  if (!base.isNull()) {
1433  if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1434  baseClass = objcObjectType->getInterface();
1435  if (baseClass) {
1436  if (auto typeParams = baseClass->getTypeParamList()) {
1437  if (typeParams->size() == numProtocolsResolved) {
1438  // Note that we should be looking for type names, too.
1439  allAreTypeNames = true;
1440  }
1441  }
1442  }
1443  }
1444  }
1445 
1446  for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1447  ObjCProtocolDecl *&proto
1448  = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1449  // For an objc container, delay protocol reference checking until after we
1450  // can set the objc decl as the availability context, otherwise check now.
1451  if (!warnOnIncompleteProtocols) {
1452  (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1453  }
1454 
1455  // If this is a forward protocol declaration, get its definition.
1456  if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1457  proto = proto->getDefinition();
1458 
1459  // If this is a forward declaration and we are supposed to warn in this
1460  // case, do it.
1461  // FIXME: Recover nicely in the hidden case.
1462  ObjCProtocolDecl *forwardDecl = nullptr;
1463  if (warnOnIncompleteProtocols &&
1464  NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1465  Diag(identifierLocs[i], diag::warn_undef_protocolref)
1466  << proto->getDeclName();
1467  Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1468  << forwardDecl;
1469  }
1470 
1471  // If everything this far has been a type name (and we care
1472  // about such things), check whether this name refers to a type
1473  // as well.
1474  if (allAreTypeNames) {
1475  if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1476  LookupOrdinaryName)) {
1477  if (isa<ObjCInterfaceDecl>(decl)) {
1478  if (firstClassNameLoc.isInvalid())
1479  firstClassNameLoc = identifierLocs[i];
1480  } else if (!isa<TypeDecl>(decl)) {
1481  // Not a type.
1482  allAreTypeNames = false;
1483  }
1484  } else {
1485  allAreTypeNames = false;
1486  }
1487  }
1488  }
1489 
1490  // All of the protocols listed also have type names, and at least
1491  // one is an Objective-C class name. Check whether all of the
1492  // protocol conformances are declared by the base class itself, in
1493  // which case we warn.
1494  if (allAreTypeNames && firstClassNameLoc.isValid()) {
1495  llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1496  Context.CollectInheritedProtocols(baseClass, knownProtocols);
1497  bool allProtocolsDeclared = true;
1498  for (auto proto : protocols) {
1499  if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1500  allProtocolsDeclared = false;
1501  break;
1502  }
1503  }
1504 
1505  if (allProtocolsDeclared) {
1506  Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1507  << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1508  << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1509  " *");
1510  }
1511  }
1512 
1513  protocolLAngleLoc = lAngleLoc;
1514  protocolRAngleLoc = rAngleLoc;
1515  assert(protocols.size() == identifierLocs.size());
1516  };
1517 
1518  // Attempt to resolve all of the identifiers as protocols.
1519  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1520  ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1521  protocols.push_back(proto);
1522  if (proto)
1523  ++numProtocolsResolved;
1524  }
1525 
1526  // If all of the names were protocols, these were protocol qualifiers.
1527  if (numProtocolsResolved == identifiers.size())
1528  return resolvedAsProtocols();
1529 
1530  // Attempt to resolve all of the identifiers as type names or
1531  // Objective-C class names. The latter is technically ill-formed,
1532  // but is probably something like \c NSArray<NSView *> missing the
1533  // \c*.
1534  typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1536  unsigned numTypeDeclsResolved = 0;
1537  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1538  NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1540  if (!decl) {
1541  typeDecls.push_back(TypeOrClassDecl());
1542  continue;
1543  }
1544 
1545  if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1546  typeDecls.push_back(typeDecl);
1547  ++numTypeDeclsResolved;
1548  continue;
1549  }
1550 
1551  if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1552  typeDecls.push_back(objcClass);
1553  ++numTypeDeclsResolved;
1554  continue;
1555  }
1556 
1557  typeDecls.push_back(TypeOrClassDecl());
1558  }
1559 
1560  AttributeFactory attrFactory;
1561 
1562  // Local function that forms a reference to the given type or
1563  // Objective-C class declaration.
1564  auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1565  -> TypeResult {
1566  // Form declaration specifiers. They simply refer to the type.
1567  DeclSpec DS(attrFactory);
1568  const char* prevSpec; // unused
1569  unsigned diagID; // unused
1570  QualType type;
1571  if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1572  type = Context.getTypeDeclType(actualTypeDecl);
1573  else
1574  type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1575  TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1576  ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1577  DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1578  parsedType, Context.getPrintingPolicy());
1579  // Use the identifier location for the type source range.
1580  DS.SetRangeStart(loc);
1581  DS.SetRangeEnd(loc);
1582 
1583  // Form the declarator.
1585 
1586  // If we have a typedef of an Objective-C class type that is missing a '*',
1587  // add the '*'.
1588  if (type->getAs<ObjCInterfaceType>()) {
1589  SourceLocation starLoc = getLocForEndOfToken(loc);
1590  D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc,
1591  SourceLocation(),
1592  SourceLocation(),
1593  SourceLocation(),
1594  SourceLocation(),
1595  SourceLocation()),
1596  starLoc);
1597 
1598  // Diagnose the missing '*'.
1599  Diag(loc, diag::err_objc_type_arg_missing_star)
1600  << type
1601  << FixItHint::CreateInsertion(starLoc, " *");
1602  }
1603 
1604  // Convert this to a type.
1605  return ActOnTypeName(S, D);
1606  };
1607 
1608  // Local function that updates the declaration specifiers with
1609  // type argument information.
1610  auto resolvedAsTypeDecls = [&] {
1611  // We did not resolve these as protocols.
1612  protocols.clear();
1613 
1614  assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1615  // Map type declarations to type arguments.
1616  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1617  // Map type reference to a type.
1618  TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1619  if (!type.isUsable()) {
1620  typeArgs.clear();
1621  return;
1622  }
1623 
1624  typeArgs.push_back(type.get());
1625  }
1626 
1627  typeArgsLAngleLoc = lAngleLoc;
1628  typeArgsRAngleLoc = rAngleLoc;
1629  };
1630 
1631  // If all of the identifiers can be resolved as type names or
1632  // Objective-C class names, we have type arguments.
1633  if (numTypeDeclsResolved == identifiers.size())
1634  return resolvedAsTypeDecls();
1635 
1636  // Error recovery: some names weren't found, or we have a mix of
1637  // type and protocol names. Go resolve all of the unresolved names
1638  // and complain if we can't find a consistent answer.
1639  LookupNameKind lookupKind = LookupAnyName;
1640  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1641  // If we already have a protocol or type. Check whether it is the
1642  // right thing.
1643  if (protocols[i] || typeDecls[i]) {
1644  // If we haven't figured out whether we want types or protocols
1645  // yet, try to figure it out from this name.
1646  if (lookupKind == LookupAnyName) {
1647  // If this name refers to both a protocol and a type (e.g., \c
1648  // NSObject), don't conclude anything yet.
1649  if (protocols[i] && typeDecls[i])
1650  continue;
1651 
1652  // Otherwise, let this name decide whether we'll be correcting
1653  // toward types or protocols.
1654  lookupKind = protocols[i] ? LookupObjCProtocolName
1656  continue;
1657  }
1658 
1659  // If we want protocols and we have a protocol, there's nothing
1660  // more to do.
1661  if (lookupKind == LookupObjCProtocolName && protocols[i])
1662  continue;
1663 
1664  // If we want types and we have a type declaration, there's
1665  // nothing more to do.
1666  if (lookupKind == LookupOrdinaryName && typeDecls[i])
1667  continue;
1668 
1669  // We have a conflict: some names refer to protocols and others
1670  // refer to types.
1671  DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1672  identifiers[i], identifierLocs[i],
1673  protocols[i] != nullptr);
1674 
1675  protocols.clear();
1676  typeArgs.clear();
1677  return;
1678  }
1679 
1680  // Perform typo correction on the name.
1681  ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1682  TypoCorrection corrected =
1683  CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]),
1684  lookupKind, S, nullptr, CCC, CTK_ErrorRecovery);
1685  if (corrected) {
1686  // Did we find a protocol?
1687  if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1688  diagnoseTypo(corrected,
1689  PDiag(diag::err_undeclared_protocol_suggest)
1690  << identifiers[i]);
1691  lookupKind = LookupObjCProtocolName;
1692  protocols[i] = proto;
1693  ++numProtocolsResolved;
1694  continue;
1695  }
1696 
1697  // Did we find a type?
1698  if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1699  diagnoseTypo(corrected,
1700  PDiag(diag::err_unknown_typename_suggest)
1701  << identifiers[i]);
1702  lookupKind = LookupOrdinaryName;
1703  typeDecls[i] = typeDecl;
1704  ++numTypeDeclsResolved;
1705  continue;
1706  }
1707 
1708  // Did we find an Objective-C class?
1709  if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1710  diagnoseTypo(corrected,
1711  PDiag(diag::err_unknown_type_or_class_name_suggest)
1712  << identifiers[i] << true);
1713  lookupKind = LookupOrdinaryName;
1714  typeDecls[i] = objcClass;
1715  ++numTypeDeclsResolved;
1716  continue;
1717  }
1718  }
1719 
1720  // We couldn't find anything.
1721  Diag(identifierLocs[i],
1722  (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1723  : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1724  : diag::err_unknown_typename))
1725  << identifiers[i];
1726  protocols.clear();
1727  typeArgs.clear();
1728  return;
1729  }
1730 
1731  // If all of the names were (corrected to) protocols, these were
1732  // protocol qualifiers.
1733  if (numProtocolsResolved == identifiers.size())
1734  return resolvedAsProtocols();
1735 
1736  // Otherwise, all of the names were (corrected to) types.
1737  assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1738  return resolvedAsTypeDecls();
1739 }
1740 
1741 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1742 /// a class method in its extension.
1743 ///
1745  ObjCInterfaceDecl *ID) {
1746  if (!ID)
1747  return; // Possibly due to previous error
1748 
1749  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1750  for (auto *MD : ID->methods())
1751  MethodMap[MD->getSelector()] = MD;
1752 
1753  if (MethodMap.empty())
1754  return;
1755  for (const auto *Method : CAT->methods()) {
1756  const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1757  if (PrevMethod &&
1758  (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1759  !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1760  Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1761  << Method->getDeclName();
1762  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1763  }
1764  }
1765 }
1766 
1767 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1770  ArrayRef<IdentifierLocPair> IdentList,
1771  const ParsedAttributesView &attrList) {
1772  SmallVector<Decl *, 8> DeclsInGroup;
1773  for (const IdentifierLocPair &IdentPair : IdentList) {
1774  IdentifierInfo *Ident = IdentPair.first;
1775  ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1777  ObjCProtocolDecl *PDecl
1779  IdentPair.second, AtProtocolLoc,
1780  PrevDecl);
1781 
1782  PushOnScopeChains(PDecl, TUScope);
1783  CheckObjCDeclScope(PDecl);
1784 
1785  ProcessDeclAttributeList(TUScope, PDecl, attrList);
1786  AddPragmaAttributes(TUScope, PDecl);
1787 
1788  if (PrevDecl)
1789  mergeDeclAttributes(PDecl, PrevDecl);
1790 
1791  DeclsInGroup.push_back(PDecl);
1792  }
1793 
1794  return BuildDeclaratorGroup(DeclsInGroup);
1795 }
1796 
1798  SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1799  SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1800  IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1801  Decl *const *ProtoRefs, unsigned NumProtoRefs,
1802  const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1803  const ParsedAttributesView &AttrList) {
1804  ObjCCategoryDecl *CDecl;
1805  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1806 
1807  /// Check that class of this category is already completely declared.
1808 
1809  if (!IDecl
1810  || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1811  diag::err_category_forward_interface,
1812  CategoryName == nullptr)) {
1813  // Create an invalid ObjCCategoryDecl to serve as context for
1814  // the enclosing method declarations. We mark the decl invalid
1815  // to make it clear that this isn't a valid AST.
1816  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1817  ClassLoc, CategoryLoc, CategoryName,
1818  IDecl, typeParamList);
1819  CDecl->setInvalidDecl();
1820  CurContext->addDecl(CDecl);
1821 
1822  if (!IDecl)
1823  Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1824  return ActOnObjCContainerStartDefinition(CDecl);
1825  }
1826 
1827  if (!CategoryName && IDecl->getImplementation()) {
1828  Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1829  Diag(IDecl->getImplementation()->getLocation(),
1830  diag::note_implementation_declared);
1831  }
1832 
1833  if (CategoryName) {
1834  /// Check for duplicate interface declaration for this category
1836  = IDecl->FindCategoryDeclaration(CategoryName)) {
1837  // Class extensions can be declared multiple times, categories cannot.
1838  Diag(CategoryLoc, diag::warn_dup_category_def)
1839  << ClassName << CategoryName;
1840  Diag(Previous->getLocation(), diag::note_previous_definition);
1841  }
1842  }
1843 
1844  // If we have a type parameter list, check it.
1845  if (typeParamList) {
1846  if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1847  if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1848  CategoryName
1850  : TypeParamListContext::Extension))
1851  typeParamList = nullptr;
1852  } else {
1853  Diag(typeParamList->getLAngleLoc(),
1854  diag::err_objc_parameterized_category_nonclass)
1855  << (CategoryName != nullptr)
1856  << ClassName
1857  << typeParamList->getSourceRange();
1858 
1859  typeParamList = nullptr;
1860  }
1861  }
1862 
1863  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1864  ClassLoc, CategoryLoc, CategoryName, IDecl,
1865  typeParamList);
1866  // FIXME: PushOnScopeChains?
1867  CurContext->addDecl(CDecl);
1868 
1869  // Process the attributes before looking at protocols to ensure that the
1870  // availability attribute is attached to the category to provide availability
1871  // checking for protocol uses.
1872  ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1873  AddPragmaAttributes(TUScope, CDecl);
1874 
1875  if (NumProtoRefs) {
1876  diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1877  NumProtoRefs, ProtoLocs);
1878  CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1879  ProtoLocs, Context);
1880  // Protocols in the class extension belong to the class.
1881  if (CDecl->IsClassExtension())
1882  IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1883  NumProtoRefs, Context);
1884  }
1885 
1886  CheckObjCDeclScope(CDecl);
1887  return ActOnObjCContainerStartDefinition(CDecl);
1888 }
1889 
1890 /// ActOnStartCategoryImplementation - Perform semantic checks on the
1891 /// category implementation declaration and build an ObjCCategoryImplDecl
1892 /// object.
1894  SourceLocation AtCatImplLoc,
1895  IdentifierInfo *ClassName, SourceLocation ClassLoc,
1896  IdentifierInfo *CatName, SourceLocation CatLoc,
1897  const ParsedAttributesView &Attrs) {
1898  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1899  ObjCCategoryDecl *CatIDecl = nullptr;
1900  if (IDecl && IDecl->hasDefinition()) {
1901  CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1902  if (!CatIDecl) {
1903  // Category @implementation with no corresponding @interface.
1904  // Create and install one.
1905  CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1906  ClassLoc, CatLoc,
1907  CatName, IDecl,
1908  /*typeParamList=*/nullptr);
1909  CatIDecl->setImplicit();
1910  }
1911  }
1912 
1913  ObjCCategoryImplDecl *CDecl =
1915  ClassLoc, AtCatImplLoc, CatLoc);
1916  /// Check that class of this category is already completely declared.
1917  if (!IDecl) {
1918  Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1919  CDecl->setInvalidDecl();
1920  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1921  diag::err_undef_interface)) {
1922  CDecl->setInvalidDecl();
1923  }
1924 
1925  ProcessDeclAttributeList(TUScope, CDecl, Attrs);
1926  AddPragmaAttributes(TUScope, CDecl);
1927 
1928  // FIXME: PushOnScopeChains?
1929  CurContext->addDecl(CDecl);
1930 
1931  // If the interface has the objc_runtime_visible attribute, we
1932  // cannot implement a category for it.
1933  if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1934  Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1935  << IDecl->getDeclName();
1936  }
1937 
1938  /// Check that CatName, category name, is not used in another implementation.
1939  if (CatIDecl) {
1940  if (CatIDecl->getImplementation()) {
1941  Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1942  << CatName;
1943  Diag(CatIDecl->getImplementation()->getLocation(),
1944  diag::note_previous_definition);
1945  CDecl->setInvalidDecl();
1946  } else {
1947  CatIDecl->setImplementation(CDecl);
1948  // Warn on implementating category of deprecated class under
1949  // -Wdeprecated-implementations flag.
1950  DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1951  CDecl->getLocation());
1952  }
1953  }
1954 
1955  CheckObjCDeclScope(CDecl);
1956  return ActOnObjCContainerStartDefinition(CDecl);
1957 }
1958 
1960  SourceLocation AtClassImplLoc,
1961  IdentifierInfo *ClassName, SourceLocation ClassLoc,
1962  IdentifierInfo *SuperClassname,
1963  SourceLocation SuperClassLoc,
1964  const ParsedAttributesView &Attrs) {
1965  ObjCInterfaceDecl *IDecl = nullptr;
1966  // Check for another declaration kind with the same name.
1967  NamedDecl *PrevDecl
1968  = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1970  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1971  Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1972  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1973  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1974  // FIXME: This will produce an error if the definition of the interface has
1975  // been imported from a module but is not visible.
1977  diag::warn_undef_interface);
1978  } else {
1979  // We did not find anything with the name ClassName; try to correct for
1980  // typos in the class name.
1981  ObjCInterfaceValidatorCCC CCC{};
1982  TypoCorrection Corrected =
1983  CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc),
1984  LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError);
1985  if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1986  // Suggest the (potentially) correct interface name. Don't provide a
1987  // code-modification hint or use the typo name for recovery, because
1988  // this is just a warning. The program may actually be correct.
1989  diagnoseTypo(Corrected,
1990  PDiag(diag::warn_undef_interface_suggest) << ClassName,
1991  /*ErrorRecovery*/false);
1992  } else {
1993  Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1994  }
1995  }
1996 
1997  // Check that super class name is valid class name
1998  ObjCInterfaceDecl *SDecl = nullptr;
1999  if (SuperClassname) {
2000  // Check if a different kind of symbol declared in this scope.
2001  PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
2003  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2004  Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2005  << SuperClassname;
2006  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2007  } else {
2008  SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2009  if (SDecl && !SDecl->hasDefinition())
2010  SDecl = nullptr;
2011  if (!SDecl)
2012  Diag(SuperClassLoc, diag::err_undef_superclass)
2013  << SuperClassname << ClassName;
2014  else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2015  // This implementation and its interface do not have the same
2016  // super class.
2017  Diag(SuperClassLoc, diag::err_conflicting_super_class)
2018  << SDecl->getDeclName();
2019  Diag(SDecl->getLocation(), diag::note_previous_definition);
2020  }
2021  }
2022  }
2023 
2024  if (!IDecl) {
2025  // Legacy case of @implementation with no corresponding @interface.
2026  // Build, chain & install the interface decl into the identifier.
2027 
2028  // FIXME: Do we support attributes on the @implementation? If so we should
2029  // copy them over.
2030  IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
2031  ClassName, /*typeParamList=*/nullptr,
2032  /*PrevDecl=*/nullptr, ClassLoc,
2033  true);
2034  AddPragmaAttributes(TUScope, IDecl);
2035  IDecl->startDefinition();
2036  if (SDecl) {
2039  SuperClassLoc));
2040  IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2041  } else {
2042  IDecl->setEndOfDefinitionLoc(ClassLoc);
2043  }
2044 
2045  PushOnScopeChains(IDecl, TUScope);
2046  } else {
2047  // Mark the interface as being completed, even if it was just as
2048  // @class ....;
2049  // declaration; the user cannot reopen it.
2050  if (!IDecl->hasDefinition())
2051  IDecl->startDefinition();
2052  }
2053 
2054  ObjCImplementationDecl* IMPDecl =
2056  ClassLoc, AtClassImplLoc, SuperClassLoc);
2057 
2058  ProcessDeclAttributeList(TUScope, IMPDecl, Attrs);
2059  AddPragmaAttributes(TUScope, IMPDecl);
2060 
2061  if (CheckObjCDeclScope(IMPDecl))
2062  return ActOnObjCContainerStartDefinition(IMPDecl);
2063 
2064  // Check that there is no duplicate implementation of this class.
2065  if (IDecl->getImplementation()) {
2066  // FIXME: Don't leak everything!
2067  Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2068  Diag(IDecl->getImplementation()->getLocation(),
2069  diag::note_previous_definition);
2070  IMPDecl->setInvalidDecl();
2071  } else { // add it to the list.
2072  IDecl->setImplementation(IMPDecl);
2073  PushOnScopeChains(IMPDecl, TUScope);
2074  // Warn on implementating deprecated class under
2075  // -Wdeprecated-implementations flag.
2076  DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2077  }
2078 
2079  // If the superclass has the objc_runtime_visible attribute, we
2080  // cannot implement a subclass of it.
2081  if (IDecl->getSuperClass() &&
2082  IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2083  Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2084  << IDecl->getDeclName()
2085  << IDecl->getSuperClass()->getDeclName();
2086  }
2087 
2088  return ActOnObjCContainerStartDefinition(IMPDecl);
2089 }
2090 
2093  SmallVector<Decl *, 64> DeclsInGroup;
2094  DeclsInGroup.reserve(Decls.size() + 1);
2095 
2096  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2097  Decl *Dcl = Decls[i];
2098  if (!Dcl)
2099  continue;
2100  if (Dcl->getDeclContext()->isFileContext())
2102  DeclsInGroup.push_back(Dcl);
2103  }
2104 
2105  DeclsInGroup.push_back(ObjCImpDecl);
2106 
2107  return BuildDeclaratorGroup(DeclsInGroup);
2108 }
2109 
2111  ObjCIvarDecl **ivars, unsigned numIvars,
2112  SourceLocation RBrace) {
2113  assert(ImpDecl && "missing implementation decl");
2114  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2115  if (!IDecl)
2116  return;
2117  /// Check case of non-existing \@interface decl.
2118  /// (legacy objective-c \@implementation decl without an \@interface decl).
2119  /// Add implementations's ivar to the synthesize class's ivar list.
2120  if (IDecl->isImplicitInterfaceDecl()) {
2121  IDecl->setEndOfDefinitionLoc(RBrace);
2122  // Add ivar's to class's DeclContext.
2123  for (unsigned i = 0, e = numIvars; i != e; ++i) {
2124  ivars[i]->setLexicalDeclContext(ImpDecl);
2125  IDecl->makeDeclVisibleInContext(ivars[i]);
2126  ImpDecl->addDecl(ivars[i]);
2127  }
2128 
2129  return;
2130  }
2131  // If implementation has empty ivar list, just return.
2132  if (numIvars == 0)
2133  return;
2134 
2135  assert(ivars && "missing @implementation ivars");
2137  if (ImpDecl->getSuperClass())
2138  Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2139  for (unsigned i = 0; i < numIvars; i++) {
2140  ObjCIvarDecl* ImplIvar = ivars[i];
2141  if (const ObjCIvarDecl *ClsIvar =
2142  IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2143  Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2144  Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2145  continue;
2146  }
2147  // Check class extensions (unnamed categories) for duplicate ivars.
2148  for (const auto *CDecl : IDecl->visible_extensions()) {
2149  if (const ObjCIvarDecl *ClsExtIvar =
2150  CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2151  Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2152  Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2153  continue;
2154  }
2155  }
2156  // Instance ivar to Implementation's DeclContext.
2157  ImplIvar->setLexicalDeclContext(ImpDecl);
2158  IDecl->makeDeclVisibleInContext(ImplIvar);
2159  ImpDecl->addDecl(ImplIvar);
2160  }
2161  return;
2162  }
2163  // Check interface's Ivar list against those in the implementation.
2164  // names and types must match.
2165  //
2166  unsigned j = 0;
2168  IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2169  for (; numIvars > 0 && IVI != IVE; ++IVI) {
2170  ObjCIvarDecl* ImplIvar = ivars[j++];
2171  ObjCIvarDecl* ClsIvar = *IVI;
2172  assert (ImplIvar && "missing implementation ivar");
2173  assert (ClsIvar && "missing class ivar");
2174 
2175  // First, make sure the types match.
2176  if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2177  Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2178  << ImplIvar->getIdentifier()
2179  << ImplIvar->getType() << ClsIvar->getType();
2180  Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2181  } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2182  ImplIvar->getBitWidthValue(Context) !=
2183  ClsIvar->getBitWidthValue(Context)) {
2184  Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2185  diag::err_conflicting_ivar_bitwidth)
2186  << ImplIvar->getIdentifier();
2187  Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2188  diag::note_previous_definition);
2189  }
2190  // Make sure the names are identical.
2191  if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2192  Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2193  << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2194  Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2195  }
2196  --numIvars;
2197  }
2198 
2199  if (numIvars > 0)
2200  Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2201  else if (IVI != IVE)
2202  Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2203 }
2204 
2205 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2206  ObjCMethodDecl *method,
2207  bool &IncompleteImpl,
2208  unsigned DiagID,
2209  NamedDecl *NeededFor = nullptr) {
2210  // No point warning no definition of method which is 'unavailable'.
2211  if (method->getAvailability() == AR_Unavailable)
2212  return;
2213 
2214  // FIXME: For now ignore 'IncompleteImpl'.
2215  // Previously we grouped all unimplemented methods under a single
2216  // warning, but some users strongly voiced that they would prefer
2217  // separate warnings. We will give that approach a try, as that
2218  // matches what we do with protocols.
2219  {
2220  const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2221  B << method;
2222  if (NeededFor)
2223  B << NeededFor;
2224  }
2225 
2226  // Issue a note to the original declaration.
2227  SourceLocation MethodLoc = method->getBeginLoc();
2228  if (MethodLoc.isValid())
2229  S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2230 }
2231 
2232 /// Determines if type B can be substituted for type A. Returns true if we can
2233 /// guarantee that anything that the user will do to an object of type A can
2234 /// also be done to an object of type B. This is trivially true if the two
2235 /// types are the same, or if B is a subclass of A. It becomes more complex
2236 /// in cases where protocols are involved.
2237 ///
2238 /// Object types in Objective-C describe the minimum requirements for an
2239 /// object, rather than providing a complete description of a type. For
2240 /// example, if A is a subclass of B, then B* may refer to an instance of A.
2241 /// The principle of substitutability means that we may use an instance of A
2242 /// anywhere that we may use an instance of B - it will implement all of the
2243 /// ivars of B and all of the methods of B.
2244 ///
2245 /// This substitutability is important when type checking methods, because
2246 /// the implementation may have stricter type definitions than the interface.
2247 /// The interface specifies minimum requirements, but the implementation may
2248 /// have more accurate ones. For example, a method may privately accept
2249 /// instances of B, but only publish that it accepts instances of A. Any
2250 /// object passed to it will be type checked against B, and so will implicitly
2251 /// by a valid A*. Similarly, a method may return a subclass of the class that
2252 /// it is declared as returning.
2253 ///
2254 /// This is most important when considering subclassing. A method in a
2255 /// subclass must accept any object as an argument that its superclass's
2256 /// implementation accepts. It may, however, accept a more general type
2257 /// without breaking substitutability (i.e. you can still use the subclass
2258 /// anywhere that you can use the superclass, but not vice versa). The
2259 /// converse requirement applies to return types: the return type for a
2260 /// subclass method must be a valid object of the kind that the superclass
2261 /// advertises, but it may be specified more accurately. This avoids the need
2262 /// for explicit down-casting by callers.
2263 ///
2264 /// Note: This is a stricter requirement than for assignment.
2266  const ObjCObjectPointerType *A,
2267  const ObjCObjectPointerType *B,
2268  bool rejectId) {
2269  // Reject a protocol-unqualified id.
2270  if (rejectId && B->isObjCIdType()) return false;
2271 
2272  // If B is a qualified id, then A must also be a qualified id and it must
2273  // implement all of the protocols in B. It may not be a qualified class.
2274  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2275  // stricter definition so it is not substitutable for id<A>.
2276  if (B->isObjCQualifiedIdType()) {
2277  return A->isObjCQualifiedIdType() &&
2278  Context.ObjCQualifiedIdTypesAreCompatible(A, B, false);
2279  }
2280 
2281  /*
2282  // id is a special type that bypasses type checking completely. We want a
2283  // warning when it is used in one place but not another.
2284  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2285 
2286 
2287  // If B is a qualified id, then A must also be a qualified id (which it isn't
2288  // if we've got this far)
2289  if (B->isObjCQualifiedIdType()) return false;
2290  */
2291 
2292  // Now we know that A and B are (potentially-qualified) class types. The
2293  // normal rules for assignment apply.
2294  return Context.canAssignObjCInterfaces(A, B);
2295 }
2296 
2298  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2299 }
2300 
2301 /// Determine whether two set of Objective-C declaration qualifiers conflict.
2304  return (x & ~Decl::OBJC_TQ_CSNullability) !=
2305  (y & ~Decl::OBJC_TQ_CSNullability);
2306 }
2307 
2309  ObjCMethodDecl *MethodImpl,
2310  ObjCMethodDecl *MethodDecl,
2311  bool IsProtocolMethodDecl,
2312  bool IsOverridingMode,
2313  bool Warn) {
2314  if (IsProtocolMethodDecl &&
2316  MethodImpl->getObjCDeclQualifier())) {
2317  if (Warn) {
2318  S.Diag(MethodImpl->getLocation(),
2319  (IsOverridingMode
2320  ? diag::warn_conflicting_overriding_ret_type_modifiers
2321  : diag::warn_conflicting_ret_type_modifiers))
2322  << MethodImpl->getDeclName()
2323  << MethodImpl->getReturnTypeSourceRange();
2324  S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2325  << MethodDecl->getReturnTypeSourceRange();
2326  }
2327  else
2328  return false;
2329  }
2330  if (Warn && IsOverridingMode &&
2331  !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2333  MethodDecl->getReturnType(),
2334  false)) {
2335  auto nullabilityMethodImpl =
2336  *MethodImpl->getReturnType()->getNullability(S.Context);
2337  auto nullabilityMethodDecl =
2338  *MethodDecl->getReturnType()->getNullability(S.Context);
2339  S.Diag(MethodImpl->getLocation(),
2340  diag::warn_conflicting_nullability_attr_overriding_ret_types)
2342  nullabilityMethodImpl,
2344  != 0))
2346  nullabilityMethodDecl,
2348  != 0));
2349  S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2350  }
2351 
2352  if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2353  MethodDecl->getReturnType()))
2354  return true;
2355  if (!Warn)
2356  return false;
2357 
2358  unsigned DiagID =
2359  IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2360  : diag::warn_conflicting_ret_types;
2361 
2362  // Mismatches between ObjC pointers go into a different warning
2363  // category, and sometimes they're even completely whitelisted.
2364  if (const ObjCObjectPointerType *ImplPtrTy =
2365  MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2366  if (const ObjCObjectPointerType *IfacePtrTy =
2367  MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2368  // Allow non-matching return types as long as they don't violate
2369  // the principle of substitutability. Specifically, we permit
2370  // return types that are subclasses of the declared return type,
2371  // or that are more-qualified versions of the declared type.
2372  if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2373  return false;
2374 
2375  DiagID =
2376  IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2377  : diag::warn_non_covariant_ret_types;
2378  }
2379  }
2380 
2381  S.Diag(MethodImpl->getLocation(), DiagID)
2382  << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2383  << MethodImpl->getReturnType()
2384  << MethodImpl->getReturnTypeSourceRange();
2385  S.Diag(MethodDecl->getLocation(), IsOverridingMode
2386  ? diag::note_previous_declaration
2387  : diag::note_previous_definition)
2388  << MethodDecl->getReturnTypeSourceRange();
2389  return false;
2390 }
2391 
2393  ObjCMethodDecl *MethodImpl,
2394  ObjCMethodDecl *MethodDecl,
2395  ParmVarDecl *ImplVar,
2396  ParmVarDecl *IfaceVar,
2397  bool IsProtocolMethodDecl,
2398  bool IsOverridingMode,
2399  bool Warn) {
2400  if (IsProtocolMethodDecl &&
2402  IfaceVar->getObjCDeclQualifier())) {
2403  if (Warn) {
2404  if (IsOverridingMode)
2405  S.Diag(ImplVar->getLocation(),
2406  diag::warn_conflicting_overriding_param_modifiers)
2407  << getTypeRange(ImplVar->getTypeSourceInfo())
2408  << MethodImpl->getDeclName();
2409  else S.Diag(ImplVar->getLocation(),
2410  diag::warn_conflicting_param_modifiers)
2411  << getTypeRange(ImplVar->getTypeSourceInfo())
2412  << MethodImpl->getDeclName();
2413  S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2414  << getTypeRange(IfaceVar->getTypeSourceInfo());
2415  }
2416  else
2417  return false;
2418  }
2419 
2420  QualType ImplTy = ImplVar->getType();
2421  QualType IfaceTy = IfaceVar->getType();
2422  if (Warn && IsOverridingMode &&
2423  !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2424  !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2425  S.Diag(ImplVar->getLocation(),
2426  diag::warn_conflicting_nullability_attr_overriding_param_types)
2428  *ImplTy->getNullability(S.Context),
2430  != 0))
2432  *IfaceTy->getNullability(S.Context),
2434  != 0));
2435  S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2436  }
2437  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2438  return true;
2439 
2440  if (!Warn)
2441  return false;
2442  unsigned DiagID =
2443  IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2444  : diag::warn_conflicting_param_types;
2445 
2446  // Mismatches between ObjC pointers go into a different warning
2447  // category, and sometimes they're even completely whitelisted.
2448  if (const ObjCObjectPointerType *ImplPtrTy =
2449  ImplTy->getAs<ObjCObjectPointerType>()) {
2450  if (const ObjCObjectPointerType *IfacePtrTy =
2451  IfaceTy->getAs<ObjCObjectPointerType>()) {
2452  // Allow non-matching argument types as long as they don't
2453  // violate the principle of substitutability. Specifically, the
2454  // implementation must accept any objects that the superclass
2455  // accepts, however it may also accept others.
2456  if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2457  return false;
2458 
2459  DiagID =
2460  IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2461  : diag::warn_non_contravariant_param_types;
2462  }
2463  }
2464 
2465  S.Diag(ImplVar->getLocation(), DiagID)
2466  << getTypeRange(ImplVar->getTypeSourceInfo())
2467  << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2468  S.Diag(IfaceVar->getLocation(),
2469  (IsOverridingMode ? diag::note_previous_declaration
2470  : diag::note_previous_definition))
2471  << getTypeRange(IfaceVar->getTypeSourceInfo());
2472  return false;
2473 }
2474 
2475 /// In ARC, check whether the conventional meanings of the two methods
2476 /// match. If they don't, it's a hard error.
2478  ObjCMethodDecl *decl) {
2479  ObjCMethodFamily implFamily = impl->getMethodFamily();
2480  ObjCMethodFamily declFamily = decl->getMethodFamily();
2481  if (implFamily == declFamily) return false;
2482 
2483  // Since conventions are sorted by selector, the only possibility is
2484  // that the types differ enough to cause one selector or the other
2485  // to fall out of the family.
2486  assert(implFamily == OMF_None || declFamily == OMF_None);
2487 
2488  // No further diagnostics required on invalid declarations.
2489  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2490 
2491  const ObjCMethodDecl *unmatched = impl;
2492  ObjCMethodFamily family = declFamily;
2493  unsigned errorID = diag::err_arc_lost_method_convention;
2494  unsigned noteID = diag::note_arc_lost_method_convention;
2495  if (declFamily == OMF_None) {
2496  unmatched = decl;
2497  family = implFamily;
2498  errorID = diag::err_arc_gained_method_convention;
2499  noteID = diag::note_arc_gained_method_convention;
2500  }
2501 
2502  // Indexes into a %select clause in the diagnostic.
2503  enum FamilySelector {
2504  F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2505  };
2506  FamilySelector familySelector = FamilySelector();
2507 
2508  switch (family) {
2509  case OMF_None: llvm_unreachable("logic error, no method convention");
2510  case OMF_retain:
2511  case OMF_release:
2512  case OMF_autorelease:
2513  case OMF_dealloc:
2514  case OMF_finalize:
2515  case OMF_retainCount:
2516  case OMF_self:
2517  case OMF_initialize:
2518  case OMF_performSelector:
2519  // Mismatches for these methods don't change ownership
2520  // conventions, so we don't care.
2521  return false;
2522 
2523  case OMF_init: familySelector = F_init; break;
2524  case OMF_alloc: familySelector = F_alloc; break;
2525  case OMF_copy: familySelector = F_copy; break;
2526  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2527  case OMF_new: familySelector = F_new; break;
2528  }
2529 
2530  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2531  ReasonSelector reasonSelector;
2532 
2533  // The only reason these methods don't fall within their families is
2534  // due to unusual result types.
2535  if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2536  reasonSelector = R_UnrelatedReturn;
2537  } else {
2538  reasonSelector = R_NonObjectReturn;
2539  }
2540 
2541  S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2542  S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2543 
2544  return true;
2545 }
2546 
2548  ObjCMethodDecl *MethodDecl,
2549  bool IsProtocolMethodDecl) {
2550  if (getLangOpts().ObjCAutoRefCount &&
2551  checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2552  return;
2553 
2554  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2555  IsProtocolMethodDecl, false,
2556  true);
2557 
2558  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2559  IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2560  EF = MethodDecl->param_end();
2561  IM != EM && IF != EF; ++IM, ++IF) {
2562  CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2563  IsProtocolMethodDecl, false, true);
2564  }
2565 
2566  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2567  Diag(ImpMethodDecl->getLocation(),
2568  diag::warn_conflicting_variadic);
2569  Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2570  }
2571 }
2572 
2574  ObjCMethodDecl *Overridden,
2575  bool IsProtocolMethodDecl) {
2576 
2577  CheckMethodOverrideReturn(*this, Method, Overridden,
2578  IsProtocolMethodDecl, true,
2579  true);
2580 
2581  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2582  IF = Overridden->param_begin(), EM = Method->param_end(),
2583  EF = Overridden->param_end();
2584  IM != EM && IF != EF; ++IM, ++IF) {
2585  CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2586  IsProtocolMethodDecl, true, true);
2587  }
2588 
2589  if (Method->isVariadic() != Overridden->isVariadic()) {
2590  Diag(Method->getLocation(),
2591  diag::warn_conflicting_overriding_variadic);
2592  Diag(Overridden->getLocation(), diag::note_previous_declaration);
2593  }
2594 }
2595 
2596 /// WarnExactTypedMethods - This routine issues a warning if method
2597 /// implementation declaration matches exactly that of its declaration.
2599  ObjCMethodDecl *MethodDecl,
2600  bool IsProtocolMethodDecl) {
2601  // don't issue warning when protocol method is optional because primary
2602  // class is not required to implement it and it is safe for protocol
2603  // to implement it.
2605  return;
2606  // don't issue warning when primary class's method is
2607  // depecated/unavailable.
2608  if (MethodDecl->hasAttr<UnavailableAttr>() ||
2609  MethodDecl->hasAttr<DeprecatedAttr>())
2610  return;
2611 
2612  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2613  IsProtocolMethodDecl, false, false);
2614  if (match)
2615  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2616  IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2617  EF = MethodDecl->param_end();
2618  IM != EM && IF != EF; ++IM, ++IF) {
2619  match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2620  *IM, *IF,
2621  IsProtocolMethodDecl, false, false);
2622  if (!match)
2623  break;
2624  }
2625  if (match)
2626  match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2627  if (match)
2628  match = !(MethodDecl->isClassMethod() &&
2629  MethodDecl->getSelector() == GetNullarySelector("load", Context));
2630 
2631  if (match) {
2632  Diag(ImpMethodDecl->getLocation(),
2633  diag::warn_category_method_impl_match);
2634  Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2635  << MethodDecl->getDeclName();
2636  }
2637 }
2638 
2639 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2640 /// improve the efficiency of selector lookups and type checking by associating
2641 /// with each protocol / interface / category the flattened instance tables. If
2642 /// we used an immutable set to keep the table then it wouldn't add significant
2643 /// memory cost and it would be handy for lookups.
2644 
2646 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2647 
2649  ProtocolNameSet &PNS) {
2650  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2651  PNS.insert(PDecl->getIdentifier());
2652  for (const auto *PI : PDecl->protocols())
2654 }
2655 
2656 /// Recursively populates a set with all conformed protocols in a class
2657 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2658 /// attribute.
2660  ProtocolNameSet &PNS) {
2661  if (!Super)
2662  return;
2663 
2664  for (const auto *I : Super->all_referenced_protocols())
2666 
2668 }
2669 
2670 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
2671 /// Declared in protocol, and those referenced by it.
2673  SourceLocation ImpLoc,
2674  ObjCProtocolDecl *PDecl,
2675  bool& IncompleteImpl,
2676  const Sema::SelectorSet &InsMap,
2677  const Sema::SelectorSet &ClsMap,
2678  ObjCContainerDecl *CDecl,
2679  LazyProtocolNameSet &ProtocolsExplictImpl) {
2680  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2681  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2682  : dyn_cast<ObjCInterfaceDecl>(CDecl);
2683  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2684 
2685  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2686  ObjCInterfaceDecl *NSIDecl = nullptr;
2687 
2688  // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2689  // then we should check if any class in the super class hierarchy also
2690  // conforms to this protocol, either directly or via protocol inheritance.
2691  // If so, we can skip checking this protocol completely because we
2692  // know that a parent class already satisfies this protocol.
2693  //
2694  // Note: we could generalize this logic for all protocols, and merely
2695  // add the limit on looking at the super class chain for just
2696  // specially marked protocols. This may be a good optimization. This
2697  // change is restricted to 'objc_protocol_requires_explicit_implementation'
2698  // protocols for now for controlled evaluation.
2699  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2700  if (!ProtocolsExplictImpl) {
2701  ProtocolsExplictImpl.reset(new ProtocolNameSet);
2702  findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2703  }
2704  if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2705  ProtocolsExplictImpl->end())
2706  return;
2707 
2708  // If no super class conforms to the protocol, we should not search
2709  // for methods in the super class to implicitly satisfy the protocol.
2710  Super = nullptr;
2711  }
2712 
2713  if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2714  // check to see if class implements forwardInvocation method and objects
2715  // of this class are derived from 'NSProxy' so that to forward requests
2716  // from one object to another.
2717  // Under such conditions, which means that every method possible is
2718  // implemented in the class, we should not issue "Method definition not
2719  // found" warnings.
2720  // FIXME: Use a general GetUnarySelector method for this.
2721  IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2722  Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2723  if (InsMap.count(fISelector))
2724  // Is IDecl derived from 'NSProxy'? If so, no instance methods
2725  // need be implemented in the implementation.
2726  NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2727  }
2728 
2729  // If this is a forward protocol declaration, get its definition.
2730  if (!PDecl->isThisDeclarationADefinition() &&
2731  PDecl->getDefinition())
2732  PDecl = PDecl->getDefinition();
2733 
2734  // If a method lookup fails locally we still need to look and see if
2735  // the method was implemented by a base class or an inherited
2736  // protocol. This lookup is slow, but occurs rarely in correct code
2737  // and otherwise would terminate in a warning.
2738 
2739  // check unimplemented instance methods.
2740  if (!NSIDecl)
2741  for (auto *method : PDecl->instance_methods()) {
2742  if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2743  !method->isPropertyAccessor() &&
2744  !InsMap.count(method->getSelector()) &&
2745  (!Super || !Super->lookupMethod(method->getSelector(),
2746  true /* instance */,
2747  false /* shallowCategory */,
2748  true /* followsSuper */,
2749  nullptr /* category */))) {
2750  // If a method is not implemented in the category implementation but
2751  // has been declared in its primary class, superclass,
2752  // or in one of their protocols, no need to issue the warning.
2753  // This is because method will be implemented in the primary class
2754  // or one of its super class implementation.
2755 
2756  // Ugly, but necessary. Method declared in protocol might have
2757  // have been synthesized due to a property declared in the class which
2758  // uses the protocol.
2759  if (ObjCMethodDecl *MethodInClass =
2760  IDecl->lookupMethod(method->getSelector(),
2761  true /* instance */,
2762  true /* shallowCategoryLookup */,
2763  false /* followSuper */))
2764  if (C || MethodInClass->isPropertyAccessor())
2765  continue;
2766  unsigned DIAG = diag::warn_unimplemented_protocol_method;
2767  if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2768  WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2769  PDecl);
2770  }
2771  }
2772  }
2773  // check unimplemented class methods
2774  for (auto *method : PDecl->class_methods()) {
2775  if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2776  !ClsMap.count(method->getSelector()) &&
2777  (!Super || !Super->lookupMethod(method->getSelector(),
2778  false /* class method */,
2779  false /* shallowCategoryLookup */,
2780  true /* followSuper */,
2781  nullptr /* category */))) {
2782  // See above comment for instance method lookups.
2783  if (C && IDecl->lookupMethod(method->getSelector(),
2784  false /* class */,
2785  true /* shallowCategoryLookup */,
2786  false /* followSuper */))
2787  continue;
2788 
2789  unsigned DIAG = diag::warn_unimplemented_protocol_method;
2790  if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2791  WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2792  }
2793  }
2794  }
2795  // Check on this protocols's referenced protocols, recursively.
2796  for (auto *PI : PDecl->protocols())
2797  CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2798  CDecl, ProtocolsExplictImpl);
2799 }
2800 
2801 /// MatchAllMethodDeclarations - Check methods declared in interface
2802 /// or protocol against those declared in their implementations.
2803 ///
2805  const SelectorSet &ClsMap,
2806  SelectorSet &InsMapSeen,
2807  SelectorSet &ClsMapSeen,
2808  ObjCImplDecl* IMPDecl,
2809  ObjCContainerDecl* CDecl,
2810  bool &IncompleteImpl,
2811  bool ImmediateClass,
2812  bool WarnCategoryMethodImpl) {
2813  // Check and see if instance methods in class interface have been
2814  // implemented in the implementation class. If so, their types match.
2815  for (auto *I : CDecl->instance_methods()) {
2816  if (!InsMapSeen.insert(I->getSelector()).second)
2817  continue;
2818  if (!I->isPropertyAccessor() &&
2819  !InsMap.count(I->getSelector())) {
2820  if (ImmediateClass)
2821  WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2822  diag::warn_undef_method_impl);
2823  continue;
2824  } else {
2825  ObjCMethodDecl *ImpMethodDecl =
2826  IMPDecl->getInstanceMethod(I->getSelector());
2827  assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2828  "Expected to find the method through lookup as well");
2829  // ImpMethodDecl may be null as in a @dynamic property.
2830  if (ImpMethodDecl) {
2831  if (!WarnCategoryMethodImpl)
2832  WarnConflictingTypedMethods(ImpMethodDecl, I,
2833  isa<ObjCProtocolDecl>(CDecl));
2834  else if (!I->isPropertyAccessor())
2835  WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2836  }
2837  }
2838  }
2839 
2840  // Check and see if class methods in class interface have been
2841  // implemented in the implementation class. If so, their types match.
2842  for (auto *I : CDecl->class_methods()) {
2843  if (!ClsMapSeen.insert(I->getSelector()).second)
2844  continue;
2845  if (!I->isPropertyAccessor() &&
2846  !ClsMap.count(I->getSelector())) {
2847  if (ImmediateClass)
2848  WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2849  diag::warn_undef_method_impl);
2850  } else {
2851  ObjCMethodDecl *ImpMethodDecl =
2852  IMPDecl->getClassMethod(I->getSelector());
2853  assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2854  "Expected to find the method through lookup as well");
2855  // ImpMethodDecl may be null as in a @dynamic property.
2856  if (ImpMethodDecl) {
2857  if (!WarnCategoryMethodImpl)
2858  WarnConflictingTypedMethods(ImpMethodDecl, I,
2859  isa<ObjCProtocolDecl>(CDecl));
2860  else if (!I->isPropertyAccessor())
2861  WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2862  }
2863  }
2864  }
2865 
2866  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2867  // Also, check for methods declared in protocols inherited by
2868  // this protocol.
2869  for (auto *PI : PD->protocols())
2870  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2871  IMPDecl, PI, IncompleteImpl, false,
2872  WarnCategoryMethodImpl);
2873  }
2874 
2875  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2876  // when checking that methods in implementation match their declaration,
2877  // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2878  // extension; as well as those in categories.
2879  if (!WarnCategoryMethodImpl) {
2880  for (auto *Cat : I->visible_categories())
2881  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2882  IMPDecl, Cat, IncompleteImpl,
2883  ImmediateClass && Cat->IsClassExtension(),
2884  WarnCategoryMethodImpl);
2885  } else {
2886  // Also methods in class extensions need be looked at next.
2887  for (auto *Ext : I->visible_extensions())
2888  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2889  IMPDecl, Ext, IncompleteImpl, false,
2890  WarnCategoryMethodImpl);
2891  }
2892 
2893  // Check for any implementation of a methods declared in protocol.
2894  for (auto *PI : I->all_referenced_protocols())
2895  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2896  IMPDecl, PI, IncompleteImpl, false,
2897  WarnCategoryMethodImpl);
2898 
2899  // FIXME. For now, we are not checking for exact match of methods
2900  // in category implementation and its primary class's super class.
2901  if (!WarnCategoryMethodImpl && I->getSuperClass())
2902  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2903  IMPDecl,
2904  I->getSuperClass(), IncompleteImpl, false);
2905  }
2906 }
2907 
2908 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2909 /// category matches with those implemented in its primary class and
2910 /// warns each time an exact match is found.
2912  ObjCCategoryImplDecl *CatIMPDecl) {
2913  // Get category's primary class.
2914  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2915  if (!CatDecl)
2916  return;
2917  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2918  if (!IDecl)
2919  return;
2920  ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2921  SelectorSet InsMap, ClsMap;
2922 
2923  for (const auto *I : CatIMPDecl->instance_methods()) {
2924  Selector Sel = I->getSelector();
2925  // When checking for methods implemented in the category, skip over
2926  // those declared in category class's super class. This is because
2927  // the super class must implement the method.
2928  if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2929  continue;
2930  InsMap.insert(Sel);
2931  }
2932 
2933  for (const auto *I : CatIMPDecl->class_methods()) {
2934  Selector Sel = I->getSelector();
2935  if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2936  continue;
2937  ClsMap.insert(Sel);
2938  }
2939  if (InsMap.empty() && ClsMap.empty())
2940  return;
2941 
2942  SelectorSet InsMapSeen, ClsMapSeen;
2943  bool IncompleteImpl = false;
2944  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2945  CatIMPDecl, IDecl,
2946  IncompleteImpl, false,
2947  true /*WarnCategoryMethodImpl*/);
2948 }
2949 
2951  ObjCContainerDecl* CDecl,
2952  bool IncompleteImpl) {
2953  SelectorSet InsMap;
2954  // Check and see if instance methods in class interface have been
2955  // implemented in the implementation class.
2956  for (const auto *I : IMPDecl->instance_methods())
2957  InsMap.insert(I->getSelector());
2958 
2959  // Add the selectors for getters/setters of @dynamic properties.
2960  for (const auto *PImpl : IMPDecl->property_impls()) {
2961  // We only care about @dynamic implementations.
2962  if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2963  continue;
2964 
2965  const auto *P = PImpl->getPropertyDecl();
2966  if (!P) continue;
2967 
2968  InsMap.insert(P->getGetterName());
2969  if (!P->getSetterName().isNull())
2970  InsMap.insert(P->getSetterName());
2971  }
2972 
2973  // Check and see if properties declared in the interface have either 1)
2974  // an implementation or 2) there is a @synthesize/@dynamic implementation
2975  // of the property in the @implementation.
2976  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2977  bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2979  !IDecl->isObjCRequiresPropertyDefs();
2980  DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2981  }
2982 
2983  // Diagnose null-resettable synthesized setters.
2985 
2986  SelectorSet ClsMap;
2987  for (const auto *I : IMPDecl->class_methods())
2988  ClsMap.insert(I->getSelector());
2989 
2990  // Check for type conflict of methods declared in a class/protocol and
2991  // its implementation; if any.
2992  SelectorSet InsMapSeen, ClsMapSeen;
2993  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2994  IMPDecl, CDecl,
2995  IncompleteImpl, true);
2996 
2997  // check all methods implemented in category against those declared
2998  // in its primary class.
2999  if (ObjCCategoryImplDecl *CatDecl =
3000  dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
3002 
3003  // Check the protocol list for unimplemented methods in the @implementation
3004  // class.
3005  // Check and see if class methods in class interface have been
3006  // implemented in the implementation class.
3007 
3008  LazyProtocolNameSet ExplicitImplProtocols;
3009 
3010  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
3011  for (auto *PI : I->all_referenced_protocols())
3012  CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
3013  InsMap, ClsMap, I, ExplicitImplProtocols);
3014  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3015  // For extended class, unimplemented methods in its protocols will
3016  // be reported in the primary class.
3017  if (!C->IsClassExtension()) {
3018  for (auto *P : C->protocols())
3019  CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
3020  IncompleteImpl, InsMap, ClsMap, CDecl,
3021  ExplicitImplProtocols);
3022  DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3023  /*SynthesizeProperties=*/false);
3024  }
3025  } else
3026  llvm_unreachable("invalid ObjCContainerDecl type.");
3027 }
3028 
3031  IdentifierInfo **IdentList,
3032  SourceLocation *IdentLocs,
3033  ArrayRef<ObjCTypeParamList *> TypeParamLists,
3034  unsigned NumElts) {
3035  SmallVector<Decl *, 8> DeclsInGroup;
3036  for (unsigned i = 0; i != NumElts; ++i) {
3037  // Check for another declaration kind with the same name.
3038  NamedDecl *PrevDecl
3039  = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3041  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3042  // GCC apparently allows the following idiom:
3043  //
3044  // typedef NSObject < XCElementTogglerP > XCElementToggler;
3045  // @class XCElementToggler;
3046  //
3047  // Here we have chosen to ignore the forward class declaration
3048  // with a warning. Since this is the implied behavior.
3049  TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3050  if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3051  Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3052  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3053  } else {
3054  // a forward class declaration matching a typedef name of a class refers
3055  // to the underlying class. Just ignore the forward class with a warning
3056  // as this will force the intended behavior which is to lookup the
3057  // typedef name.
3058  if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3059  Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3060  << IdentList[i];
3061  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3062  continue;
3063  }
3064  }
3065  }
3066 
3067  // Create a declaration to describe this forward declaration.
3068  ObjCInterfaceDecl *PrevIDecl
3069  = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3070 
3071  IdentifierInfo *ClassName = IdentList[i];
3072  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3073  // A previous decl with a different name is because of
3074  // @compatibility_alias, for example:
3075  // \code
3076  // @class NewImage;
3077  // @compatibility_alias OldImage NewImage;
3078  // \endcode
3079  // A lookup for 'OldImage' will return the 'NewImage' decl.
3080  //
3081  // In such a case use the real declaration name, instead of the alias one,
3082  // otherwise we will break IdentifierResolver and redecls-chain invariants.
3083  // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3084  // has been aliased.
3085  ClassName = PrevIDecl->getIdentifier();
3086  }
3087 
3088  // If this forward declaration has type parameters, compare them with the
3089  // type parameters of the previous declaration.
3090  ObjCTypeParamList *TypeParams = TypeParamLists[i];
3091  if (PrevIDecl && TypeParams) {
3092  if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3093  // Check for consistency with the previous declaration.
3095  *this, PrevTypeParams, TypeParams,
3096  TypeParamListContext::ForwardDeclaration)) {
3097  TypeParams = nullptr;
3098  }
3099  } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3100  // The @interface does not have type parameters. Complain.
3101  Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3102  << ClassName
3103  << TypeParams->getSourceRange();
3104  Diag(Def->getLocation(), diag::note_defined_here)
3105  << ClassName;
3106 
3107  TypeParams = nullptr;
3108  }
3109  }
3110 
3111  ObjCInterfaceDecl *IDecl
3113  ClassName, TypeParams, PrevIDecl,
3114  IdentLocs[i]);
3115  IDecl->setAtEndRange(IdentLocs[i]);
3116 
3117  PushOnScopeChains(IDecl, TUScope);
3118  CheckObjCDeclScope(IDecl);
3119  DeclsInGroup.push_back(IDecl);
3120  }
3121 
3122  return BuildDeclaratorGroup(DeclsInGroup);
3123 }
3124 
3126  Sema::MethodMatchStrategy strategy,
3127  const Type *left, const Type *right);
3128 
3129 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3130  QualType leftQT, QualType rightQT) {
3131  const Type *left =
3132  Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3133  const Type *right =
3134  Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3135 
3136  if (left == right) return true;
3137 
3138  // If we're doing a strict match, the types have to match exactly.
3139  if (strategy == Sema::MMS_strict) return false;
3140 
3141  if (left->isIncompleteType() || right->isIncompleteType()) return false;
3142 
3143  // Otherwise, use this absurdly complicated algorithm to try to
3144  // validate the basic, low-level compatibility of the two types.
3145 
3146  // As a minimum, require the sizes and alignments to match.
3147  TypeInfo LeftTI = Context.getTypeInfo(left);
3148  TypeInfo RightTI = Context.getTypeInfo(right);
3149  if (LeftTI.Width != RightTI.Width)
3150  return false;
3151 
3152  if (LeftTI.Align != RightTI.Align)
3153  return false;
3154 
3155  // Consider all the kinds of non-dependent canonical types:
3156  // - functions and arrays aren't possible as return and parameter types
3157 
3158  // - vector types of equal size can be arbitrarily mixed
3159  if (isa<VectorType>(left)) return isa<VectorType>(right);
3160  if (isa<VectorType>(right)) return false;
3161 
3162  // - references should only match references of identical type
3163  // - structs, unions, and Objective-C objects must match more-or-less
3164  // exactly
3165  // - everything else should be a scalar
3166  if (!left->isScalarType() || !right->isScalarType())
3167  return tryMatchRecordTypes(Context, strategy, left, right);
3168 
3169  // Make scalars agree in kind, except count bools as chars, and group
3170  // all non-member pointers together.
3171  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3172  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3173  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3174  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3175  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3176  leftSK = Type::STK_ObjCObjectPointer;
3177  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3178  rightSK = Type::STK_ObjCObjectPointer;
3179 
3180  // Note that data member pointers and function member pointers don't
3181  // intermix because of the size differences.
3182 
3183  return (leftSK == rightSK);
3184 }
3185 
3186 static bool tryMatchRecordTypes(ASTContext &Context,
3187  Sema::MethodMatchStrategy strategy,
3188  const Type *lt, const Type *rt) {
3189  assert(lt && rt && lt != rt);
3190 
3191  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3192  RecordDecl *left = cast<RecordType>(lt)->getDecl();
3193  RecordDecl *right = cast<RecordType>(rt)->getDecl();
3194 
3195  // Require union-hood to match.
3196  if (left->isUnion() != right->isUnion()) return false;
3197 
3198  // Require an exact match if either is non-POD.
3199  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3200  (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3201  return false;
3202 
3203  // Require size and alignment to match.
3204  TypeInfo LeftTI = Context.getTypeInfo(lt);
3205  TypeInfo RightTI = Context.getTypeInfo(rt);
3206  if (LeftTI.Width != RightTI.Width)
3207  return false;
3208 
3209  if (LeftTI.Align != RightTI.Align)
3210  return false;
3211 
3212  // Require fields to match.
3213  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3214  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3215  for (; li != le && ri != re; ++li, ++ri) {
3216  if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3217  return false;
3218  }
3219  return (li == le && ri == re);
3220 }
3221 
3222 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3223 /// returns true, or false, accordingly.
3224 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3226  const ObjCMethodDecl *right,
3227  MethodMatchStrategy strategy) {
3228  if (!matchTypes(Context, strategy, left->getReturnType(),
3229  right->getReturnType()))
3230  return false;
3231 
3232  // If either is hidden, it is not considered to match.
3233  if (left->isHidden() || right->isHidden())
3234  return false;
3235 
3236  if (getLangOpts().ObjCAutoRefCount &&
3237  (left->hasAttr<NSReturnsRetainedAttr>()
3238  != right->hasAttr<NSReturnsRetainedAttr>() ||
3239  left->hasAttr<NSConsumesSelfAttr>()
3240  != right->hasAttr<NSConsumesSelfAttr>()))
3241  return false;
3242 
3244  li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3245  re = right->param_end();
3246 
3247  for (; li != le && ri != re; ++li, ++ri) {
3248  assert(ri != right->param_end() && "Param mismatch");
3249  const ParmVarDecl *lparm = *li, *rparm = *ri;
3250 
3251  if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3252  return false;
3253 
3254  if (getLangOpts().ObjCAutoRefCount &&
3255  lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3256  return false;
3257  }
3258  return true;
3259 }
3260 
3262  ObjCMethodDecl *MethodInList) {
3263  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3264  auto *MethodInListProtocol =
3265  dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3266  // If this method belongs to a protocol but the method in list does not, or
3267  // vice versa, we say the context is not the same.
3268  if ((MethodProtocol && !MethodInListProtocol) ||
3269  (!MethodProtocol && MethodInListProtocol))
3270  return false;
3271 
3272  if (MethodProtocol && MethodInListProtocol)
3273  return true;
3274 
3275  ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3276  ObjCInterfaceDecl *MethodInListInterface =
3277  MethodInList->getClassInterface();
3278  return MethodInterface == MethodInListInterface;
3279 }
3280 
3282  ObjCMethodDecl *Method) {
3283  // Record at the head of the list whether there were 0, 1, or >= 2 methods
3284  // inside categories.
3285  if (ObjCCategoryDecl *CD =
3286  dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3287  if (!CD->IsClassExtension() && List->getBits() < 2)
3288  List->setBits(List->getBits() + 1);
3289 
3290  // If the list is empty, make it a singleton list.
3291  if (List->getMethod() == nullptr) {
3292  List->setMethod(Method);
3293  List->setNext(nullptr);
3294  return;
3295  }
3296 
3297  // We've seen a method with this name, see if we have already seen this type
3298  // signature.
3299  ObjCMethodList *Previous = List;
3300  ObjCMethodList *ListWithSameDeclaration = nullptr;
3301  for (; List; Previous = List, List = List->getNext()) {
3302  // If we are building a module, keep all of the methods.
3304  continue;
3305 
3306  bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3307  List->getMethod());
3308  // Looking for method with a type bound requires the correct context exists.
3309  // We need to insert a method into the list if the context is different.
3310  // If the method's declaration matches the list
3311  // a> the method belongs to a different context: we need to insert it, in
3312  // order to emit the availability message, we need to prioritize over
3313  // availability among the methods with the same declaration.
3314  // b> the method belongs to the same context: there is no need to insert a
3315  // new entry.
3316  // If the method's declaration does not match the list, we insert it to the
3317  // end.
3318  if (!SameDeclaration ||
3319  !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3320  // Even if two method types do not match, we would like to say
3321  // there is more than one declaration so unavailability/deprecated
3322  // warning is not too noisy.
3323  if (!Method->isDefined())
3324  List->setHasMoreThanOneDecl(true);
3325 
3326  // For methods with the same declaration, the one that is deprecated
3327  // should be put in the front for better diagnostics.
3328  if (Method->isDeprecated() && SameDeclaration &&
3329  !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3330  ListWithSameDeclaration = List;
3331 
3332  if (Method->isUnavailable() && SameDeclaration &&
3333  !ListWithSameDeclaration &&
3335  ListWithSameDeclaration = List;
3336  continue;
3337  }
3338 
3339  ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3340 
3341  // Propagate the 'defined' bit.
3342  if (Method->isDefined())
3343  PrevObjCMethod->setDefined(true);
3344  else {
3345  // Objective-C doesn't allow an @interface for a class after its
3346  // @implementation. So if Method is not defined and there already is
3347  // an entry for this type signature, Method has to be for a different
3348  // class than PrevObjCMethod.
3349  List->setHasMoreThanOneDecl(true);
3350  }
3351 
3352  // If a method is deprecated, push it in the global pool.
3353  // This is used for better diagnostics.
3354  if (Method->isDeprecated()) {
3355  if (!PrevObjCMethod->isDeprecated())
3356  List->setMethod(Method);
3357  }
3358  // If the new method is unavailable, push it into global pool
3359  // unless previous one is deprecated.
3360  if (Method->isUnavailable()) {
3361  if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3362  List->setMethod(Method);
3363  }
3364 
3365  return;
3366  }
3367 
3368  // We have a new signature for an existing method - add it.
3369  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3370  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3371 
3372  // We insert it right before ListWithSameDeclaration.
3373  if (ListWithSameDeclaration) {
3374  auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3375  // FIXME: should we clear the other bits in ListWithSameDeclaration?
3376  ListWithSameDeclaration->setMethod(Method);
3377  ListWithSameDeclaration->setNext(List);
3378  return;
3379  }
3380 
3381  Previous->setNext(new (Mem) ObjCMethodList(Method));
3382 }
3383 
3384 /// Read the contents of the method pool for a given selector from
3385 /// external storage.
3387  assert(ExternalSource && "We need an external AST source");
3388  ExternalSource->ReadMethodPool(Sel);
3389 }
3390 
3392  if (!ExternalSource)
3393  return;
3394  ExternalSource->updateOutOfDateSelector(Sel);
3395 }
3396 
3397 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3398  bool instance) {
3399  // Ignore methods of invalid containers.
3400  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3401  return;
3402 
3403  if (ExternalSource)
3404  ReadMethodPool(Method->getSelector());
3405 
3406  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3407  if (Pos == MethodPool.end())
3408  Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3409  GlobalMethods())).first;
3410 
3411  Method->setDefined(impl);
3412 
3413  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3414  addMethodToGlobalList(&Entry, Method);
3415 }
3416 
3417 /// Determines if this is an "acceptable" loose mismatch in the global
3418 /// method pool. This exists mostly as a hack to get around certain
3419 /// global mismatches which we can't afford to make warnings / errors.
3420 /// Really, what we want is a way to take a method out of the global
3421 /// method pool.
3423  ObjCMethodDecl *other) {
3424  if (!chosen->isInstanceMethod())
3425  return false;
3426 
3427  Selector sel = chosen->getSelector();
3428  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3429  return false;
3430 
3431  // Don't complain about mismatches for -length if the method we
3432  // chose has an integral result type.
3433  return (chosen->getReturnType()->isIntegerType());
3434 }
3435 
3436 /// Return true if the given method is wthin the type bound.
3438  const ObjCObjectType *TypeBound) {
3439  if (!TypeBound)
3440  return true;
3441 
3442  if (TypeBound->isObjCId())
3443  // FIXME: should we handle the case of bounding to id<A, B> differently?
3444  return true;
3445 
3446  auto *BoundInterface = TypeBound->getInterface();
3447  assert(BoundInterface && "unexpected object type!");
3448 
3449  // Check if the Method belongs to a protocol. We should allow any method
3450  // defined in any protocol, because any subclass could adopt the protocol.
3451  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3452  if (MethodProtocol) {
3453  return true;
3454  }
3455 
3456  // If the Method belongs to a class, check if it belongs to the class
3457  // hierarchy of the class bound.
3458  if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3459  // We allow methods declared within classes that are part of the hierarchy
3460  // of the class bound (superclass of, subclass of, or the same as the class
3461  // bound).
3462  return MethodInterface == BoundInterface ||
3463  MethodInterface->isSuperClassOf(BoundInterface) ||
3464  BoundInterface->isSuperClassOf(MethodInterface);
3465  }
3466  llvm_unreachable("unknown method context");
3467 }
3468 
3469 /// We first select the type of the method: Instance or Factory, then collect
3470 /// all methods with that type.
3473  bool InstanceFirst, bool CheckTheOther,
3474  const ObjCObjectType *TypeBound) {
3475  if (ExternalSource)
3476  ReadMethodPool(Sel);
3477 
3478  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3479  if (Pos == MethodPool.end())
3480  return false;
3481 
3482  // Gather the non-hidden methods.
3483  ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3484  Pos->second.second;
3485  for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3486  if (M->getMethod() && !M->getMethod()->isHidden()) {
3487  if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3488  Methods.push_back(M->getMethod());
3489  }
3490 
3491  // Return if we find any method with the desired kind.
3492  if (!Methods.empty())
3493  return Methods.size() > 1;
3494 
3495  if (!CheckTheOther)
3496  return false;
3497 
3498  // Gather the other kind.
3499  ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3500  Pos->second.first;
3501  for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3502  if (M->getMethod() && !M->getMethod()->isHidden()) {
3503  if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3504  Methods.push_back(M->getMethod());
3505  }
3506 
3507  return Methods.size() > 1;
3508 }
3509 
3511  Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3512  bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3513  // Diagnose finding more than one method in global pool.
3514  SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3515  FilteredMethods.push_back(BestMethod);
3516 
3517  for (auto *M : Methods)
3518  if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3519  FilteredMethods.push_back(M);
3520 
3521  if (FilteredMethods.size() > 1)
3522  DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3523  receiverIdOrClass);
3524 
3525  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3526  // Test for no method in the pool which should not trigger any warning by
3527  // caller.
3528  if (Pos == MethodPool.end())
3529  return true;
3530  ObjCMethodList &MethList =
3531  BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3532  return MethList.hasMoreThanOneDecl();
3533 }
3534 
3535 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3536  bool receiverIdOrClass,
3537  bool instance) {
3538  if (ExternalSource)
3539  ReadMethodPool(Sel);
3540 
3541  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3542  if (Pos == MethodPool.end())
3543  return nullptr;
3544 
3545  // Gather the non-hidden methods.
3546  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3548  for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3549  if (M->getMethod() && !M->getMethod()->isHidden())
3550  return M->getMethod();
3551  }
3552  return nullptr;
3553 }
3554 
3556  Selector Sel, SourceRange R,
3557  bool receiverIdOrClass) {
3558  // We found multiple methods, so we may have to complain.
3559  bool issueDiagnostic = false, issueError = false;
3560 
3561  // We support a warning which complains about *any* difference in
3562  // method signature.
3563  bool strictSelectorMatch =
3564  receiverIdOrClass &&
3565  !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3566  if (strictSelectorMatch) {
3567  for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3568  if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3569  issueDiagnostic = true;
3570  break;
3571  }
3572  }
3573  }
3574 
3575  // If we didn't see any strict differences, we won't see any loose
3576  // differences. In ARC, however, we also need to check for loose
3577  // mismatches, because most of them are errors.
3578  if (!strictSelectorMatch ||
3579  (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3580  for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3581  // This checks if the methods differ in type mismatch.
3582  if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3583  !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3584  issueDiagnostic = true;
3585  if (getLangOpts().ObjCAutoRefCount)
3586  issueError = true;
3587  break;
3588  }
3589  }
3590 
3591  if (issueDiagnostic) {
3592  if (issueError)
3593  Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3594  else if (strictSelectorMatch)
3595  Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3596  else
3597  Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3598 
3599  Diag(Methods[0]->getBeginLoc(),
3600  issueError ? diag::note_possibility : diag::note_using)
3601  << Methods[0]->getSourceRange();
3602  for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3603  Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3604  << Methods[I]->getSourceRange();
3605  }
3606  }
3607 }
3608 
3610  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3611  if (Pos == MethodPool.end())
3612  return nullptr;
3613 
3614  GlobalMethods &Methods = Pos->second;
3615  for (const ObjCMethodList *Method = &Methods.first; Method;
3616  Method = Method->getNext())
3617  if (Method->getMethod() &&
3618  (Method->getMethod()->isDefined() ||
3619  Method->getMethod()->isPropertyAccessor()))
3620  return Method->getMethod();
3621 
3622  for (const ObjCMethodList *Method = &Methods.second; Method;
3623  Method = Method->getNext())
3624  if (Method->getMethod() &&
3625  (Method->getMethod()->isDefined() ||
3626  Method->getMethod()->isPropertyAccessor()))
3627  return Method->getMethod();
3628  return nullptr;
3629 }
3630 
3631 static void
3634  StringRef Typo, const ObjCMethodDecl * Method) {
3635  const unsigned MaxEditDistance = 1;
3636  unsigned BestEditDistance = MaxEditDistance + 1;
3637  std::string MethodName = Method->getSelector().getAsString();
3638 
3639  unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3640  if (MinPossibleEditDistance > 0 &&
3641  Typo.size() / MinPossibleEditDistance < 1)
3642  return;
3643  unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3644  if (EditDistance > MaxEditDistance)
3645  return;
3646  if (EditDistance == BestEditDistance)
3647  BestMethod.push_back(Method);
3648  else if (EditDistance < BestEditDistance) {
3649  BestMethod.clear();
3650  BestMethod.push_back(Method);
3651  }
3652 }
3653 
3655  QualType ObjectType) {
3656  if (ObjectType.isNull())
3657  return true;
3658  if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3659  return true;
3660  return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3661  nullptr;
3662 }
3663 
3664 const ObjCMethodDecl *
3666  QualType ObjectType) {
3667  unsigned NumArgs = Sel.getNumArgs();
3669  bool ObjectIsId = true, ObjectIsClass = true;
3670  if (ObjectType.isNull())
3671  ObjectIsId = ObjectIsClass = false;
3672  else if (!ObjectType->isObjCObjectPointerType())
3673  return nullptr;
3674  else if (const ObjCObjectPointerType *ObjCPtr =
3675  ObjectType->getAsObjCInterfacePointerType()) {
3676  ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3677  ObjectIsId = ObjectIsClass = false;
3678  }
3679  else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3680  ObjectIsClass = false;
3681  else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3682  ObjectIsId = false;
3683  else
3684  return nullptr;
3685 
3686  for (GlobalMethodPool::iterator b = MethodPool.begin(),
3687  e = MethodPool.end(); b != e; b++) {
3688  // instance methods
3689  for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3690  if (M->getMethod() &&
3691  (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3692  (M->getMethod()->getSelector() != Sel)) {
3693  if (ObjectIsId)
3694  Methods.push_back(M->getMethod());
3695  else if (!ObjectIsClass &&
3696  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3697  ObjectType))
3698  Methods.push_back(M->getMethod());
3699  }
3700  // class methods
3701  for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3702  if (M->getMethod() &&
3703  (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3704  (M->getMethod()->getSelector() != Sel)) {
3705  if (ObjectIsClass)
3706  Methods.push_back(M->getMethod());
3707  else if (!ObjectIsId &&
3708  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3709  ObjectType))
3710  Methods.push_back(M->getMethod());
3711  }
3712  }
3713 
3715  for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3716  HelperSelectorsForTypoCorrection(SelectedMethods,
3717  Sel.getAsString(), Methods[i]);
3718  }
3719  return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3720 }
3721 
3722 /// DiagnoseDuplicateIvars -
3723 /// Check for duplicate ivars in the entire class at the start of
3724 /// \@implementation. This becomes necesssary because class extension can
3725 /// add ivars to a class in random order which will not be known until
3726 /// class's \@implementation is seen.
3728  ObjCInterfaceDecl *SID) {
3729  for (auto *Ivar : ID->ivars()) {
3730  if (Ivar->isInvalidDecl())
3731  continue;
3732  if (IdentifierInfo *II = Ivar->getIdentifier()) {
3733  ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3734  if (prevIvar) {
3735  Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3736  Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3737  Ivar->setInvalidDecl();
3738  }
3739  }
3740  }
3741 }
3742 
3743 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3745  if (S.getLangOpts().ObjCWeak) return;
3746 
3747  for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3748  ivar; ivar = ivar->getNextIvar()) {
3749  if (ivar->isInvalidDecl()) continue;
3750  if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3751  if (S.getLangOpts().ObjCWeakRuntime) {
3752  S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3753  } else {
3754  S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3755  }
3756  }
3757  }
3758 }
3759 
3760 /// Diagnose attempts to use flexible array member with retainable object type.
3762  ObjCInterfaceDecl *ID) {
3763  if (!S.getLangOpts().ObjCAutoRefCount)
3764  return;
3765 
3766  for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3767  ivar = ivar->getNextIvar()) {
3768  if (ivar->isInvalidDecl())
3769  continue;
3770  QualType IvarTy = ivar->getType();
3771  if (IvarTy->isIncompleteArrayType() &&
3773  IvarTy->isObjCLifetimeType()) {
3774  S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3775  ivar->setInvalidDecl();
3776  }
3777  }
3778 }
3779 
3781  switch (CurContext->getDeclKind()) {
3782  case Decl::ObjCInterface:
3783  return Sema::OCK_Interface;
3784  case Decl::ObjCProtocol:
3785  return Sema::OCK_Protocol;
3786  case Decl::ObjCCategory:
3787  if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3788  return Sema::OCK_ClassExtension;
3789  return Sema::OCK_Category;
3790  case Decl::ObjCImplementation:
3791  return Sema::OCK_Implementation;
3792  case Decl::ObjCCategoryImpl:
3794 
3795  default:
3796  return Sema::OCK_None;
3797  }
3798 }
3799 
3801  if (T->isIncompleteArrayType())
3802  return true;
3803  const auto *RecordTy = T->getAs<RecordType>();
3804  return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3805 }
3806 
3808  ObjCInterfaceDecl *IntfDecl = nullptr;
3809  ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3811  if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3812  Ivars = IntfDecl->ivars();
3813  } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3814  IntfDecl = ImplDecl->getClassInterface();
3815  Ivars = ImplDecl->ivars();
3816  } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3817  if (CategoryDecl->IsClassExtension()) {
3818  IntfDecl = CategoryDecl->getClassInterface();
3819  Ivars = CategoryDecl->ivars();
3820  }
3821  }
3822 
3823  // Check if variable sized ivar is in interface and visible to subclasses.
3824  if (!isa<ObjCInterfaceDecl>(OCD)) {
3825  for (auto ivar : Ivars) {
3826  if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3827  S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3828  << ivar->getDeclName() << ivar->getType();
3829  }
3830  }
3831  }
3832 
3833  // Subsequent checks require interface decl.
3834  if (!IntfDecl)
3835  return;
3836 
3837  // Check if variable sized ivar is followed by another ivar.
3838  for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3839  ivar = ivar->getNextIvar()) {
3840  if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3841  continue;
3842  QualType IvarTy = ivar->getType();
3843  bool IsInvalidIvar = false;
3844  if (IvarTy->isIncompleteArrayType()) {
3845  S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3846  << ivar->getDeclName() << IvarTy
3847  << TTK_Class; // Use "class" for Obj-C.
3848  IsInvalidIvar = true;
3849  } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3850  if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3851  S.Diag(ivar->getLocation(),
3852  diag::err_objc_variable_sized_type_not_at_end)
3853  << ivar->getDeclName() << IvarTy;
3854  IsInvalidIvar = true;
3855  }
3856  }
3857  if (IsInvalidIvar) {
3858  S.Diag(ivar->getNextIvar()->getLocation(),
3859  diag::note_next_ivar_declaration)
3860  << ivar->getNextIvar()->getSynthesize();
3861  ivar->setInvalidDecl();
3862  }
3863  }
3864 
3865  // Check if ObjC container adds ivars after variable sized ivar in superclass.
3866  // Perform the check only if OCD is the first container to declare ivars to
3867  // avoid multiple warnings for the same ivar.
3868  ObjCIvarDecl *FirstIvar =
3869  (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3870  if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3871  const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3872  while (SuperClass && SuperClass->ivar_empty())
3873  SuperClass = SuperClass->getSuperClass();
3874  if (SuperClass) {
3875  auto IvarIter = SuperClass->ivar_begin();
3876  std::advance(IvarIter, SuperClass->ivar_size() - 1);
3877  const ObjCIvarDecl *LastIvar = *IvarIter;
3878  if (IsVariableSizedType(LastIvar->getType())) {
3879  S.Diag(FirstIvar->getLocation(),
3880  diag::warn_superclass_variable_sized_type_not_at_end)
3881  << FirstIvar->getDeclName() << LastIvar->getDeclName()
3882  << LastIvar->getType() << SuperClass->getDeclName();
3883  S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3884  << LastIvar->getDeclName();
3885  }
3886  }
3887  }
3888 }
3889 
3890 // Note: For class/category implementations, allMethods is always null.
3892  ArrayRef<DeclGroupPtrTy> allTUVars) {
3894  return nullptr;
3895 
3896  assert(AtEnd.isValid() && "Invalid location for '@end'");
3897 
3898  auto *OCD = cast<ObjCContainerDecl>(CurContext);
3899  Decl *ClassDecl = OCD;
3900 
3901  bool isInterfaceDeclKind =
3902  isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3903  || isa<ObjCProtocolDecl>(ClassDecl);
3904  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3905 
3906  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3907  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3908  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3909 
3910  for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3911  ObjCMethodDecl *Method =
3912  cast_or_null<ObjCMethodDecl>(allMethods[i]);
3913 
3914  if (!Method) continue; // Already issued a diagnostic.
3915  if (Method->isInstanceMethod()) {
3916  /// Check for instance method of the same name with incompatible types
3917  const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3918  bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3919  : false;
3920  if ((isInterfaceDeclKind && PrevMethod && !match)
3921  || (checkIdenticalMethods && match)) {
3922  Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3923  << Method->getDeclName();
3924  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3925  Method->setInvalidDecl();
3926  } else {
3927  if (PrevMethod) {
3928  Method->setAsRedeclaration(PrevMethod);
3929  if (!Context.getSourceManager().isInSystemHeader(
3930  Method->getLocation()))
3931  Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3932  << Method->getDeclName();
3933  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3934  }
3935  InsMap[Method->getSelector()] = Method;
3936  /// The following allows us to typecheck messages to "id".
3938  }
3939  } else {
3940  /// Check for class method of the same name with incompatible types
3941  const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3942  bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3943  : false;
3944  if ((isInterfaceDeclKind && PrevMethod && !match)
3945  || (checkIdenticalMethods && match)) {
3946  Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3947  << Method->getDeclName();
3948  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3949  Method->setInvalidDecl();
3950  } else {
3951  if (PrevMethod) {
3952  Method->setAsRedeclaration(PrevMethod);
3953  if (!Context.getSourceManager().isInSystemHeader(
3954  Method->getLocation()))
3955  Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3956  << Method->getDeclName();
3957  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3958  }
3959  ClsMap[Method->getSelector()] = Method;
3961  }
3962  }
3963  }
3964  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3965  // Nothing to do here.
3966  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3967  // Categories are used to extend the class by declaring new methods.
3968  // By the same token, they are also used to add new properties. No
3969  // need to compare the added property to those in the class.
3970 
3971  if (C->IsClassExtension()) {
3972  ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3973  DiagnoseClassExtensionDupMethods(C, CCPrimary);
3974  }
3975  }
3976  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3977  if (CDecl->getIdentifier())
3978  // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3979  // user-defined setter/getter. It also synthesizes setter/getter methods
3980  // and adds them to the DeclContext and global method pools.
3981  for (auto *I : CDecl->properties())
3983  CDecl->setAtEndRange(AtEnd);
3984  }
3985  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3986  IC->setAtEndRange(AtEnd);
3987  if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3988  // Any property declared in a class extension might have user
3989  // declared setter or getter in current class extension or one
3990  // of the other class extensions. Mark them as synthesized as
3991  // property will be synthesized when property with same name is
3992  // seen in the @implementation.
3993  for (const auto *Ext : IDecl->visible_extensions()) {
3994  for (const auto *Property : Ext->instance_properties()) {
3995  // Skip over properties declared @dynamic
3996  if (const ObjCPropertyImplDecl *PIDecl
3997  = IC->FindPropertyImplDecl(Property->getIdentifier(),
3998  Property->getQueryKind()))
3999  if (PIDecl->getPropertyImplementation()
4001  continue;
4002 
4003  for (const auto *Ext : IDecl->visible_extensions()) {
4004  if (ObjCMethodDecl *GetterMethod
4005  = Ext->getInstanceMethod(Property->getGetterName()))
4006  GetterMethod->setPropertyAccessor(true);
4007  if (!Property->isReadOnly())
4008  if (ObjCMethodDecl *SetterMethod
4009  = Ext->getInstanceMethod(Property->getSetterName()))
4010  SetterMethod->setPropertyAccessor(true);
4011  }
4012  }
4013  }
4014  ImplMethodsVsClassMethods(S, IC, IDecl);
4018  if (IDecl->hasDesignatedInitializers())
4020  DiagnoseWeakIvars(*this, IC);
4022 
4023  bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4024  if (IDecl->getSuperClass() == nullptr) {
4025  // This class has no superclass, so check that it has been marked with
4026  // __attribute((objc_root_class)).
4027  if (!HasRootClassAttr) {
4028  SourceLocation DeclLoc(IDecl->getLocation());
4029  SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
4030  Diag(DeclLoc, diag::warn_objc_root_class_missing)
4031  << IDecl->getIdentifier();
4032  // See if NSObject is in the current scope, and if it is, suggest
4033  // adding " : NSObject " to the class declaration.
4035  NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4036  DeclLoc, LookupOrdinaryName);
4037  ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4038  if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4039  Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4040  << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4041  } else {
4042  Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4043  }
4044  }
4045  } else if (HasRootClassAttr) {
4046  // Complain that only root classes may have this attribute.
4047  Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4048  }
4049 
4050  if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4051  // An interface can subclass another interface with a
4052  // objc_subclassing_restricted attribute when it has that attribute as
4053  // well (because of interfaces imported from Swift). Therefore we have
4054  // to check if we can subclass in the implementation as well.
4055  if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4056  Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4057  Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4058  Diag(Super->getLocation(), diag::note_class_declared);
4059  }
4060  }
4061 
4062  if (IDecl->hasAttr<ObjCClassStubAttr>())
4063  Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4064 
4066  while (IDecl->getSuperClass()) {
4067  DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4068  IDecl = IDecl->getSuperClass();
4069  }
4070  }
4071  }
4072  SetIvarInitializers(IC);
4073  } else if (ObjCCategoryImplDecl* CatImplClass =
4074  dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4075  CatImplClass->setAtEndRange(AtEnd);
4076 
4077  // Find category interface decl and then check that all methods declared
4078  // in this interface are implemented in the category @implementation.
4079  if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4080  if (ObjCCategoryDecl *Cat
4081  = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4082  ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4083  }
4084  }
4085  } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4086  if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4087  if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4088  Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4089  Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4090  Diag(Super->getLocation(), diag::note_class_declared);
4091  }
4092  }
4093 
4094  if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4095  !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4096  Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4097  }
4098  DiagnoseVariableSizedIvars(*this, OCD);
4099  if (isInterfaceDeclKind) {
4100  // Reject invalid vardecls.
4101  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4102  DeclGroupRef DG = allTUVars[i].get();
4103  for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4104  if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4105  if (!VDecl->hasExternalStorage())
4106  Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4107  }
4108  }
4109  }
4111 
4112  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4113  DeclGroupRef DG = allTUVars[i].get();
4114  for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4115  (*I)->setTopLevelDeclInObjCContainer();
4117  }
4118 
4119  ActOnDocumentableDecl(ClassDecl);
4120  return ClassDecl;
4121 }
4122 
4123 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4124 /// objective-c's type qualifier from the parser version of the same info.
4127  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4128 }
4129 
4130 /// Check whether the declared result type of the given Objective-C
4131 /// method declaration is compatible with the method's class.
4132 ///
4135  ObjCInterfaceDecl *CurrentClass) {
4136  QualType ResultType = Method->getReturnType();
4137 
4138  // If an Objective-C method inherits its related result type, then its
4139  // declared result type must be compatible with its own class type. The
4140  // declared result type is compatible if:
4141  if (const ObjCObjectPointerType *ResultObjectType
4142  = ResultType->getAs<ObjCObjectPointerType>()) {
4143  // - it is id or qualified id, or
4144  if (ResultObjectType->isObjCIdType() ||
4145  ResultObjectType->isObjCQualifiedIdType())
4146  return Sema::RTC_Compatible;
4147 
4148  if (CurrentClass) {
4149  if (ObjCInterfaceDecl *ResultClass
4150  = ResultObjectType->getInterfaceDecl()) {
4151  // - it is the same as the method's class type, or
4152  if (declaresSameEntity(CurrentClass, ResultClass))
4153  return Sema::RTC_Compatible;
4154 
4155  // - it is a superclass of the method's class type
4156  if (ResultClass->isSuperClassOf(CurrentClass))
4157  return Sema::RTC_Compatible;
4158  }
4159  } else {
4160  // Any Objective-C pointer type might be acceptable for a protocol
4161  // method; we just don't know.
4162  return Sema::RTC_Unknown;
4163  }
4164  }
4165 
4166  return Sema::RTC_Incompatible;
4167 }
4168 
4169 namespace {
4170 /// A helper class for searching for methods which a particular method
4171 /// overrides.
4172 class OverrideSearch {
4173 public:
4174  const ObjCMethodDecl *Method;
4176  bool Recursive;
4177 
4178 public:
4179  OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4180  Selector selector = method->getSelector();
4181 
4182  // Bypass this search if we've never seen an instance/class method
4183  // with this selector before.
4184  Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4185  if (it == S.MethodPool.end()) {
4186  if (!S.getExternalSource()) return;
4187  S.ReadMethodPool(selector);
4188 
4189  it = S.MethodPool.find(selector);
4190  if (it == S.MethodPool.end())
4191  return;
4192  }
4193  const ObjCMethodList &list =
4194  method->isInstanceMethod() ? it->second.first : it->second.second;
4195  if (!list.getMethod()) return;
4196 
4197  const ObjCContainerDecl *container
4198  = cast<ObjCContainerDecl>(method->getDeclContext());
4199 
4200  // Prevent the search from reaching this container again. This is
4201  // important with categories, which override methods from the
4202  // interface and each other.
4203  if (const ObjCCategoryDecl *Category =
4204  dyn_cast<ObjCCategoryDecl>(container)) {
4205  searchFromContainer(container);
4206  if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4207  searchFromContainer(Interface);
4208  } else {
4209  searchFromContainer(container);
4210  }
4211  }
4212 
4213  typedef decltype(Overridden)::iterator iterator;
4214  iterator begin() const { return Overridden.begin(); }
4215  iterator end() const { return Overridden.end(); }
4216 
4217 private:
4218  void searchFromContainer(const ObjCContainerDecl *container) {
4219  if (container->isInvalidDecl()) return;
4220 
4221  switch (container->getDeclKind()) {
4222 #define OBJCCONTAINER(type, base) \
4223  case Decl::type: \
4224  searchFrom(cast<type##Decl>(container)); \
4225  break;
4226 #define ABSTRACT_DECL(expansion)
4227 #define DECL(type, base) \
4228  case Decl::type:
4229 #include "clang/AST/DeclNodes.inc"
4230  llvm_unreachable("not an ObjC container!");
4231  }
4232  }
4233 
4234  void searchFrom(const ObjCProtocolDecl *protocol) {
4235  if (!protocol->hasDefinition())
4236  return;
4237 
4238  // A method in a protocol declaration overrides declarations from
4239  // referenced ("parent") protocols.
4240  search(protocol->getReferencedProtocols());
4241  }
4242 
4243  void searchFrom(const ObjCCategoryDecl *category) {
4244  // A method in a category declaration overrides declarations from
4245  // the main class and from protocols the category references.
4246  // The main class is handled in the constructor.
4247  search(category->getReferencedProtocols());
4248  }
4249 
4250  void searchFrom(const ObjCCategoryImplDecl *impl) {
4251  // A method in a category definition that has a category
4252  // declaration overrides declarations from the category
4253  // declaration.
4254  if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4255  search(category);
4256  if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4257  search(Interface);
4258 
4259  // Otherwise it overrides declarations from the class.
4260  } else if (const auto *Interface = impl->getClassInterface()) {
4261  search(Interface);
4262  }
4263  }
4264 
4265  void searchFrom(const ObjCInterfaceDecl *iface) {
4266  // A method in a class declaration overrides declarations from
4267  if (!iface->hasDefinition())
4268  return;
4269 
4270  // - categories,
4271  for (auto *Cat : iface->known_categories())
4272  search(Cat);
4273 
4274  // - the super class, and
4275  if (ObjCInterfaceDecl *super = iface->getSuperClass())
4276  search(super);
4277 
4278  // - any referenced protocols.
4279  search(iface->getReferencedProtocols());
4280  }
4281 
4282  void searchFrom(const ObjCImplementationDecl *impl) {
4283  // A method in a class implementation overrides declarations from
4284  // the class interface.
4285  if (const auto *Interface = impl->getClassInterface())
4286  search(Interface);
4287  }
4288 
4289  void search(const ObjCProtocolList &protocols) {
4290  for (const auto *Proto : protocols)
4291  search(Proto);
4292  }
4293 
4294  void search(const ObjCContainerDecl *container) {
4295  // Check for a method in this container which matches this selector.
4296  ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4297  Method->isInstanceMethod(),
4298  /*AllowHidden=*/true);
4299 
4300  // If we find one, record it and bail out.
4301  if (meth) {
4302  Overridden.insert(meth);
4303  return;
4304  }
4305 
4306  // Otherwise, search for methods that a hypothetical method here
4307  // would have overridden.
4308 
4309  // Note that we're now in a recursive case.
4310  Recursive = true;
4311 
4312  searchFromContainer(container);
4313  }
4314 };
4315 } // end anonymous namespace
4316 
4318  ObjCInterfaceDecl *CurrentClass,
4320  if (!ObjCMethod)
4321  return;
4322  // Search for overridden methods and merge information down from them.
4323  OverrideSearch overrides(*this, ObjCMethod);
4324  // Keep track if the method overrides any method in the class's base classes,
4325  // its protocols, or its categories' protocols; we will keep that info
4326  // in the ObjCMethodDecl.
4327  // For this info, a method in an implementation is not considered as
4328  // overriding the same method in the interface or its categories.
4329  bool hasOverriddenMethodsInBaseOrProtocol = false;
4330  for (ObjCMethodDecl *overridden : overrides) {
4331  if (!hasOverriddenMethodsInBaseOrProtocol) {
4332  if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4333  CurrentClass != overridden->getClassInterface() ||
4334  overridden->isOverriding()) {
4335  hasOverriddenMethodsInBaseOrProtocol = true;
4336 
4337  } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4338  // OverrideSearch will return as "overridden" the same method in the
4339  // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4340  // check whether a category of a base class introduced a method with the
4341  // same selector, after the interface method declaration.
4342  // To avoid unnecessary lookups in the majority of cases, we use the
4343  // extra info bits in GlobalMethodPool to check whether there were any
4344  // category methods with this selector.
4345  GlobalMethodPool::iterator It =
4346  MethodPool.find(ObjCMethod->getSelector());
4347  if (It != MethodPool.end()) {
4348  ObjCMethodList &List =
4349  ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4350  unsigned CategCount = List.getBits();
4351  if (CategCount > 0) {
4352  // If the method is in a category we'll do lookup if there were at
4353  // least 2 category methods recorded, otherwise only one will do.
4354  if (CategCount > 1 ||
4355  !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4356  OverrideSearch overrides(*this, overridden);
4357  for (ObjCMethodDecl *SuperOverridden : overrides) {
4358  if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4359  CurrentClass != SuperOverridden->getClassInterface()) {
4360  hasOverriddenMethodsInBaseOrProtocol = true;
4361  overridden->setOverriding(true);
4362  break;
4363  }
4364  }
4365  }
4366  }
4367  }
4368  }
4369  }
4370 
4371  // Propagate down the 'related result type' bit from overridden methods.
4372  if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4373  ObjCMethod->setRelatedResultType();
4374 
4375  // Then merge the declarations.
4376  mergeObjCMethodDecls(ObjCMethod, overridden);
4377 
4378  if (ObjCMethod->isImplicit() && overridden->isImplicit())
4379  continue; // Conflicting properties are detected elsewhere.
4380 
4381  // Check for overriding methods
4382  if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4383  isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4384  CheckConflictingOverridingMethod(ObjCMethod, overridden,
4385  isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4386 
4387  if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4388  isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4389  !overridden->isImplicit() /* not meant for properties */) {
4390  ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4391  E = ObjCMethod->param_end();
4392  ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4393  PrevE = overridden->param_end();
4394  for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4395  assert(PrevI != overridden->param_end() && "Param mismatch");
4396  QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4397  QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4398  // If type of argument of method in this class does not match its
4399  // respective argument type in the super class method, issue warning;
4400  if (!Context.typesAreCompatible(T1, T2)) {
4401  Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4402  << T1 << T2;
4403  Diag(overridden->getLocation(), diag::note_previous_declaration);
4404  break;
4405  }
4406  }
4407  }
4408  }
4409 
4410  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4411 }
4412 
4413 /// Merge type nullability from for a redeclaration of the same entity,
4414 /// producing the updated type of the redeclared entity.
4416  QualType type,
4417  bool usesCSKeyword,
4418  SourceLocation prevLoc,
4419  QualType prevType,
4420  bool prevUsesCSKeyword) {
4421  // Determine the nullability of both types.
4422  auto nullability = type->getNullability(S.Context);
4423  auto prevNullability = prevType->getNullability(S.Context);
4424 
4425  // Easy case: both have nullability.
4426  if (nullability.hasValue() == prevNullability.hasValue()) {
4427  // Neither has nullability; continue.
4428  if (!nullability)
4429  return type;
4430 
4431  // The nullabilities are equivalent; do nothing.
4432  if (*nullability == *prevNullability)
4433  return type;
4434 
4435  // Complain about mismatched nullability.
4436  S.Diag(loc, diag::err_nullability_conflicting)
4437  << DiagNullabilityKind(*nullability, usesCSKeyword)
4438  << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4439  return type;
4440  }
4441 
4442  // If it's the redeclaration that has nullability, don't change anything.
4443  if (nullability)
4444  return type;
4445 
4446  // Otherwise, provide the result with the same nullability.
4447  return S.Context.getAttributedType(
4448  AttributedType::getNullabilityAttrKind(*prevNullability),
4449  type, type);
4450 }
4451 
4452 /// Merge information from the declaration of a method in the \@interface
4453 /// (or a category/extension) into the corresponding method in the
4454 /// @implementation (for a class or category).
4456  ObjCMethodDecl *method,
4457  ObjCMethodDecl *prevMethod) {
4458  // Merge the objc_requires_super attribute.
4459  if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4460  !method->hasAttr<ObjCRequiresSuperAttr>()) {
4461  // merge the attribute into implementation.
4462  method->addAttr(
4463  ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4464  method->getLocation()));
4465  }
4466 
4467  // Merge nullability of the result type.
4468  QualType newReturnType
4470  S, method->getReturnTypeSourceRange().getBegin(),
4471  method->getReturnType(),
4473  prevMethod->getReturnTypeSourceRange().getBegin(),
4474  prevMethod->getReturnType(),
4476  method->setReturnType(newReturnType);
4477 
4478  // Handle each of the parameters.
4479  unsigned numParams = method->param_size();
4480  unsigned numPrevParams = prevMethod->param_size();
4481  for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4482  ParmVarDecl *param = method->param_begin()[i];
4483  ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4484 
4485  // Merge nullability.
4486  QualType newParamType
4488  S, param->getLocation(), param->getType(),
4490  prevParam->getLocation(), prevParam->getType(),
4492  param->setType(newParamType);
4493  }
4494 }
4495 
4496 /// Verify that the method parameters/return value have types that are supported
4497 /// by the x86 target.
4499  const ObjCMethodDecl *Method) {
4500  assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4501  llvm::Triple::x86 &&
4502  "x86-specific check invoked for a different target");
4503  SourceLocation Loc;
4504  QualType T;
4505  for (const ParmVarDecl *P : Method->parameters()) {
4506  if (P->getType()->isVectorType()) {
4507  Loc = P->getBeginLoc();
4508  T = P->getType();
4509  break;
4510  }
4511  }
4512  if (Loc.isInvalid()) {
4513  if (Method->getReturnType()->isVectorType()) {
4514  Loc = Method->getReturnTypeSourceRange().getBegin();
4515  T = Method->getReturnType();
4516  } else
4517  return;
4518  }
4519 
4520  // Vector parameters/return values are not supported by objc_msgSend on x86 in
4521  // iOS < 9 and macOS < 10.11.
4522  const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4523  VersionTuple AcceptedInVersion;
4524  if (Triple.getOS() == llvm::Triple::IOS)
4525  AcceptedInVersion = VersionTuple(/*Major=*/9);
4526  else if (Triple.isMacOSX())
4527  AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4528  else
4529  return;
4531  AcceptedInVersion)
4532  return;
4533  SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4534  << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4535  : /*parameter*/ 0)
4536  << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4537 }
4538 
4540  Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4541  tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4542  ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4543  // optional arguments. The number of types/arguments is obtained
4544  // from the Sel.getNumArgs().
4545  ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4546  unsigned CNumArgs, // c-style args
4547  const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4548  bool isVariadic, bool MethodDefinition) {
4549  // Make sure we can establish a context for the method.
4550  if (!CurContext->isObjCContainer()) {
4551  Diag(MethodLoc, diag::err_missing_method_context);
4552  return nullptr;
4553  }
4554  Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4555  QualType resultDeclType;
4556 
4557  bool HasRelatedResultType = false;
4558  TypeSourceInfo *ReturnTInfo = nullptr;
4559  if (ReturnType) {
4560  resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4561 
4562  if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4563  return nullptr;
4564 
4565  QualType bareResultType = resultDeclType;
4566  (void)AttributedType::stripOuterNullability(bareResultType);
4567  HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4568  } else { // get the type for "id".
4569  resultDeclType = Context.getObjCIdType();
4570  Diag(MethodLoc, diag::warn_missing_method_return_type)
4571  << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4572  }
4573 
4574  ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4575  Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4576  MethodType == tok::minus, isVariadic,
4577  /*isPropertyAccessor=*/false,
4578  /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4579  MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4581  HasRelatedResultType);
4582 
4584 
4585  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4586  QualType ArgType;
4587  TypeSourceInfo *DI;
4588 
4589  if (!ArgInfo[i].Type) {
4590  ArgType = Context.getObjCIdType();
4591  DI = nullptr;
4592  } else {
4593  ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4594  }
4595 
4596  LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4598  LookupName(R, S);
4599  if (R.isSingleResult()) {
4600  NamedDecl *PrevDecl = R.getFoundDecl();
4601  if (S->isDeclScope(PrevDecl)) {
4602  Diag(ArgInfo[i].NameLoc,
4603  (MethodDefinition ? diag::warn_method_param_redefinition
4604  : diag::warn_method_param_declaration))
4605  << ArgInfo[i].Name;
4606  Diag(PrevDecl->getLocation(),
4607  diag::note_previous_declaration);
4608  }
4609  }
4610 
4611  SourceLocation StartLoc = DI
4612  ? DI->getTypeLoc().getBeginLoc()
4613  : ArgInfo[i].NameLoc;
4614 
4615  ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4616  ArgInfo[i].NameLoc, ArgInfo[i].Name,
4617  ArgType, DI, SC_None);
4618 
4619  Param->setObjCMethodScopeInfo(i);
4620 
4621  Param->setObjCDeclQualifier(
4622  CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4623 
4624  // Apply the attributes to the parameter.
4625  ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4626  AddPragmaAttributes(TUScope, Param);
4627 
4628  if (Param->hasAttr<BlocksAttr>()) {
4629  Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4630  Param->setInvalidDecl();
4631  }
4632  S->AddDecl(Param);
4633  IdResolver.AddDecl(Param);
4634 
4635  Params.push_back(Param);
4636  }
4637 
4638  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4639  ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4640  QualType ArgType = Param->getType();
4641  if (ArgType.isNull())
4642  ArgType = Context.getObjCIdType();
4643  else
4644  // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4645  ArgType = Context.getAdjustedParameterType(ArgType);
4646 
4647  Param->setDeclContext(ObjCMethod);
4648  Params.push_back(Param);
4649  }
4650 
4651  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4652  ObjCMethod->setObjCDeclQualifier(
4654 
4655  ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4656  AddPragmaAttributes(TUScope, ObjCMethod);
4657 
4658  // Add the method now.
4659  const ObjCMethodDecl *PrevMethod = nullptr;
4660  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4661  if (MethodType == tok::minus) {
4662  PrevMethod = ImpDecl->getInstanceMethod(Sel);
4663  ImpDecl->addInstanceMethod(ObjCMethod);
4664  } else {
4665  PrevMethod = ImpDecl->getClassMethod(Sel);
4666  ImpDecl->addClassMethod(ObjCMethod);
4667  }
4668 
4669  // Merge information from the @interface declaration into the
4670  // @implementation.
4671  if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4672  if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4673  ObjCMethod->isInstanceMethod())) {
4674  mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4675 
4676  // Warn about defining -dealloc in a category.
4677  if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4678  ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4679  Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4680  << ObjCMethod->getDeclName();
4681  }
4682  }
4683 
4684  // Warn if a method declared in a protocol to which a category or
4685  // extension conforms is non-escaping and the implementation's method is
4686  // escaping.
4687  for (auto *C : IDecl->visible_categories())
4688  for (auto &P : C->protocols())
4689  if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4690  ObjCMethod->isInstanceMethod())) {
4691  assert(ObjCMethod->parameters().size() ==
4692  IMD->parameters().size() &&
4693  "Methods have different number of parameters");
4694  auto OI = IMD->param_begin(), OE = IMD->param_end();
4695  auto NI = ObjCMethod->param_begin();
4696  for (; OI != OE; ++OI, ++NI)
4697  diagnoseNoescape(*NI, *OI, C, P, *this);
4698  }
4699  }
4700  } else {
4701  cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4702  }
4703 
4704  if (PrevMethod) {
4705  // You can never have two method definitions with the same name.
4706  Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4707  << ObjCMethod->getDeclName();
4708  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4709  ObjCMethod->setInvalidDecl();
4710  return ObjCMethod;
4711  }
4712 
4713  // If this Objective-C method does not have a related result type, but we
4714  // are allowed to infer related result types, try to do so based on the
4715  // method family.
4716  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4717  if (!CurrentClass) {
4718  if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4719  CurrentClass = Cat->getClassInterface();
4720  else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4721  CurrentClass = Impl->getClassInterface();
4722  else if (ObjCCategoryImplDecl *CatImpl
4723  = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4724  CurrentClass = CatImpl->getClassInterface();
4725  }
4726 
4728  = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4729 
4730  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4731 
4732  bool ARCError = false;
4733  if (getLangOpts().ObjCAutoRefCount)
4734  ARCError = CheckARCMethodDecl(ObjCMethod);
4735 
4736  // Infer the related result type when possible.
4737  if (!ARCError && RTC == Sema::RTC_Compatible &&
4738  !ObjCMethod->hasRelatedResultType() &&
4739  LangOpts.ObjCInferRelatedResultType) {
4740  bool InferRelatedResultType = false;
4741  switch (ObjCMethod->getMethodFamily()) {
4742  case OMF_None:
4743  case OMF_copy:
4744  case OMF_dealloc:
4745  case OMF_finalize:
4746  case OMF_mutableCopy:
4747  case OMF_release:
4748  case OMF_retainCount:
4749  case OMF_initialize:
4750  case OMF_performSelector:
4751  break;
4752 
4753  case OMF_alloc:
4754  case OMF_new:
4755  InferRelatedResultType = ObjCMethod->isClassMethod();
4756  break;
4757 
4758  case OMF_init:
4759  case OMF_autorelease:
4760  case OMF_retain:
4761  case OMF_self:
4762  InferRelatedResultType = ObjCMethod->isInstanceMethod();
4763  break;
4764  }
4765 
4766  if (InferRelatedResultType &&
4767  !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4768  ObjCMethod->setRelatedResultType();
4769  }
4770 
4771  if (MethodDefinition &&
4772  Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
4773  checkObjCMethodX86VectorTypes(*this, ObjCMethod);
4774 
4775  // + load method cannot have availability attributes. It get called on
4776  // startup, so it has to have the availability of the deployment target.
4777  if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
4778  if (ObjCMethod->isClassMethod() &&
4779  ObjCMethod->getSelector().getAsString() == "load") {
4780  Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
4781  << 0;
4782  ObjCMethod->dropAttr<AvailabilityAttr>();
4783  }
4784  }
4785 
4786  ActOnDocumentableDecl(ObjCMethod);
4787 
4788  return ObjCMethod;
4789 }
4790 
4792  // Following is also an error. But it is caused by a missing @end
4793  // and diagnostic is issued elsewhere.
4794  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4795  return false;
4796 
4797  // If we switched context to translation unit while we are still lexically in
4798  // an objc container, it means the parser missed emitting an error.
4799  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4800  return false;
4801 
4802  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4803  D->setInvalidDecl();
4804 
4805  return true;
4806 }
4807 
4808 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
4809 /// instance variables of ClassName into Decls.
4810 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4811  IdentifierInfo *ClassName,
4812  SmallVectorImpl<Decl*> &Decls) {
4813  // Check that ClassName is a valid class
4814  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4815  if (!Class) {
4816  Diag(DeclStart, diag::err_undef_interface) << ClassName;
4817  return;
4818  }
4820  Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4821  return;
4822  }
4823 
4824  // Collect the instance variables
4826  Context.DeepCollectObjCIvars(Class, true, Ivars);
4827  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4828  for (unsigned i = 0; i < Ivars.size(); i++) {
4829  const FieldDecl* ID = Ivars[i];
4830  RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4831  Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4832  /*FIXME: StartL=*/ID->getLocation(),
4833  ID->getLocation(),
4834  ID->getIdentifier(), ID->getType(),
4835  ID->getBitWidth());
4836  Decls.push_back(FD);
4837  }
4838 
4839  // Introduce all of these fields into the appropriate scope.
4840  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4841  D != Decls.end(); ++D) {
4842  FieldDecl *FD = cast<FieldDecl>(*D);
4843  if (getLangOpts().CPlusPlus)
4844  PushOnScopeChains(FD, S);
4845  else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4846  Record->addDecl(FD);
4847  }
4848 }
4849 
4850 /// Build a type-check a new Objective-C exception variable declaration.
4852  SourceLocation StartLoc,
4853  SourceLocation IdLoc,
4854  IdentifierInfo *Id,
4855  bool Invalid) {
4856  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4857  // duration shall not be qualified by an address-space qualifier."
4858  // Since all parameters have automatic store duration, they can not have
4859  // an address space.
4860  if (T.getAddressSpace() != LangAS::Default) {
4861  Diag(IdLoc, diag::err_arg_with_address_space);
4862  Invalid = true;
4863  }
4864 
4865  // An @catch parameter must be an unqualified object pointer type;
4866  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4867  if (Invalid) {
4868  // Don't do any further checking.
4869  } else if (T->isDependentType()) {
4870  // Okay: we don't know what this type will instantiate to.
4871  } else if (T->isObjCQualifiedIdType()) {
4872  Invalid = true;
4873  Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4874  } else if (T->isObjCIdType()) {
4875  // Okay: we don't know what this type will instantiate to.
4876  } else if (!T->isObjCObjectPointerType()) {
4877  Invalid = true;
4878  Diag(IdLoc, diag::err_catch_param_not_objc_type);
4879  } else if (!T->getAs<ObjCObjectPointerType>()->getInterfaceType()) {
4880  Invalid = true;
4881  Diag(IdLoc, diag::err_catch_param_not_objc_type);
4882  }
4883 
4884  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4885  T, TInfo, SC_None);
4886  New->setExceptionVariable(true);
4887 
4888  // In ARC, infer 'retaining' for variables of retainable type.
4889  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4890  Invalid = true;
4891 
4892  if (Invalid)
4893  New->setInvalidDecl();
4894  return New;
4895 }
4896 
4898  const DeclSpec &DS = D.getDeclSpec();
4899 
4900  // We allow the "register" storage class on exception variables because
4901  // GCC did, but we drop it completely. Any other storage class is an error.
4903  Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4905  } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4906  Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4908  }
4909  if (DS.isInlineSpecified())
4910  Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4911  << getLangOpts().CPlusPlus17;
4914  diag::err_invalid_thread)
4915  << DeclSpec::getSpecifierName(TSCS);
4917 
4919 
4920  // Check that there are no default arguments inside the type of this
4921  // exception object (C++ only).
4922  if (getLangOpts().CPlusPlus)
4924 
4925  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4926  QualType ExceptionType = TInfo->getType();
4927 
4928  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4929  D.getSourceRange().getBegin(),
4930  D.getIdentifierLoc(),
4931  D.getIdentifier(),
4932  D.isInvalidType());
4933 
4934  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4935  if (D.getCXXScopeSpec().isSet()) {
4936  Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4937  << D.getCXXScopeSpec().getRange();
4938  New->setInvalidDecl();
4939  }
4940 
4941  // Add the parameter declaration into this scope.
4942  S->AddDecl(New);
4943  if (D.getIdentifier())
4944  IdResolver.AddDecl(New);
4945 
4946  ProcessDeclAttributes(S, New, D);
4947 
4948  if (New->hasAttr<BlocksAttr>())
4949  Diag(New->getLocation(), diag::err_block_on_nonlocal);
4950  return New;
4951 }
4952 
4953 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4954 /// initialization.
4957  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4958  Iv= Iv->getNextIvar()) {
4959  QualType QT = Context.getBaseElementType(Iv->getType());
4960  if (QT->isRecordType())
4961  Ivars.push_back(Iv);
4962  }
4963 }
4964 
4966  // Load referenced selectors from the external source.
4967  if (ExternalSource) {
4969  ExternalSource->ReadReferencedSelectors(Sels);
4970  for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4971  ReferencedSelectors[Sels[I].first] = Sels[I].second;
4972  }
4973 
4974  // Warning will be issued only when selector table is
4975  // generated (which means there is at lease one implementation
4976  // in the TU). This is to match gcc's behavior.
4977  if (ReferencedSelectors.empty() ||
4978  !Context.AnyObjCImplementation())
4979  return;
4980  for (auto &SelectorAndLocation : ReferencedSelectors) {
4981  Selector Sel = SelectorAndLocation.first;
4982  SourceLocation Loc = SelectorAndLocation.second;
4984  Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4985  }
4986 }
4987 
4988 ObjCIvarDecl *
4990  const ObjCPropertyDecl *&PDecl) const {
4991  if (Method->isClassMethod())
4992  return nullptr;
4993  const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4994  if (!IDecl)
4995  return nullptr;
4996  Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4997  /*shallowCategoryLookup=*/false,
4998  /*followSuper=*/false);
4999  if (!Method || !Method->isPropertyAccessor())
5000  return nullptr;
5001  if ((PDecl = Method->findPropertyDecl()))
5002  if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5003  // property backing ivar must belong to property's class
5004  // or be a private ivar in class's implementation.
5005  // FIXME. fix the const-ness issue.
5006  IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5007  IV->getIdentifier());
5008  return IV;
5009  }
5010  return nullptr;
5011 }
5012 
5013 namespace {
5014  /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
5015  /// accessor references the backing ivar.
5016  class UnusedBackingIvarChecker :
5017  public RecursiveASTVisitor<UnusedBackingIvarChecker> {
5018  public:
5019  Sema &S;
5020  const ObjCMethodDecl *Method;
5021  const ObjCIvarDecl *IvarD;
5022  bool AccessedIvar;
5023  bool InvokedSelfMethod;
5024 
5025  UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5026  const ObjCIvarDecl *IvarD)
5027  : S(S), Method(Method), IvarD(IvarD),
5028  AccessedIvar(false), InvokedSelfMethod(false) {
5029  assert(IvarD);
5030  }
5031 
5032  bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5033  if (E->getDecl() == IvarD) {
5034  AccessedIvar = true;
5035  return false;
5036  }
5037  return true;
5038  }
5039 
5040  bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5042  S.isSelfExpr(E->getInstanceReceiver(), Method)) {
5043  InvokedSelfMethod = true;
5044  }
5045  return true;
5046  }
5047  };
5048 } // end anonymous namespace
5049 
5051  const ObjCImplementationDecl *ImplD) {
5053  return;
5054 
5055  for (const auto *CurMethod : ImplD->instance_methods()) {
5056  unsigned DIAG = diag::warn_unused_property_backing_ivar;
5057  SourceLocation Loc = CurMethod->getLocation();
5058  if (Diags.isIgnored(DIAG, Loc))
5059  continue;
5060 
5061  const ObjCPropertyDecl *PDecl;
5062  const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5063  if (!IV)
5064  continue;
5065 
5066  UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5067  Checker.TraverseStmt(CurMethod->getBody());
5068  if (Checker.AccessedIvar)
5069  continue;
5070 
5071  // Do not issue this warning if backing ivar is used somewhere and accessor
5072  // implementation makes a self call. This is to prevent false positive in
5073  // cases where the ivar is accessed by another method that the accessor
5074  // delegates to.
5075  if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5076  Diag(Loc, DIAG) << IV;
5077  Diag(PDecl->getLocation(), diag::note_property_declare);
5078  }
5079  }
5080 }
Decl * ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef< Decl *> allMethods=None, ArrayRef< DeclGroupPtrTy > allTUVars=None)
const ObjCInterfaceType * getInterfaceType() const
If this pointer points to an Objective C @interface type, gets the type for that interface.
Definition: Type.cpp:1609
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Defines the clang::ASTContext interface.
bool hasDefinition() const
Determine whether this class has been defined.
Definition: DeclObjC.h:1534
static bool tryMatchRecordTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, const Type *left, const Type *right)
ObjCIvarDecl * GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, const ObjCPropertyDecl *&PDecl) const
GetIvarBackingPropertyAccessor - If method is a property setter/getter and it property has a backing ...
void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, ObjCInterfaceDecl *ID)
DiagnoseClassExtensionDupMethods - Check for duplicate declaration of a class method in its extension...
bool isClassMethod() const
Definition: DeclObjC.h:429
Decl * ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, IdentifierInfo *CategoryName, SourceLocation CategoryLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList)
void setImplicit(bool I=true)
Definition: DeclBase.h:559
ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo)
Package the given type and TSI into a ParsedType.
Definition: SemaType.cpp:5831
bool isSelfExpr(Expr *RExpr)
Private Helper predicate to check for &#39;self&#39;.
The receiver is an object instance.
Definition: ExprObjC.h:1101
void setEndOfDefinitionLoc(SourceLocation LE)
Definition: DeclObjC.h:1884
VersionTuple getPlatformMinVersion() const
Retrieve the minimum desired version of the platform, to which the program should be compiled...
Definition: TargetInfo.h:1253
ExternalSemaSource * getExternalSource() const
Definition: Sema.h:1296
bool isObjCQualifiedIdType() const
True if this is equivalent to &#39;id.
Definition: Type.h:5949
Smart pointer class that efficiently represents Objective-C method names.
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:1858
unsigned getBits() const
QualType getAdjustedParameterType(QualType T) const
Perform adjustment on the parameter type of a function.
void PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl=nullptr, ExpressionEvaluationContextRecord::ExpressionKind Type=ExpressionEvaluationContextRecord::EK_Other)
Definition: SemaExpr.cpp:15054
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2585
A (possibly-)qualified type.
Definition: Type.h:643
ASTConsumer & Consumer
Definition: Sema.h:376
Simple class containing the result of Sema::CorrectTypo.
void setStarLoc(SourceLocation Loc)
Definition: TypeLoc.h:1313
unsigned param_size() const
Definition: DeclObjC.h:340
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.h:2324
all_protocol_range all_referenced_protocols() const
Definition: DeclObjC.h:1423
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.cpp:1143
void startDefinition()
Starts the definition of this Objective-C class, taking it from a forward declaration (@class) to a d...
Definition: DeclObjC.cpp:610
bool AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, bool receiverIdOrClass, SmallVectorImpl< ObjCMethodDecl *> &Methods)
ObjCDeclQualifier getObjCDeclQualifier() const
Definition: DeclSpec.h:843
static QualType getObjectType(APValue::LValueBase B)
Retrieves the "underlying object type" of the given expression, as used by __builtin_object_size.
iterator begin() const
Definition: DeclObjC.h:90
llvm::DenseSet< IdentifierInfo * > ProtocolNameSet
FIXME: Type hierarchies in Objective-C can be deep.
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc...
Definition: Sema.h:3305
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false)
Perform unqualified name lookup starting from a given scope.
Look up the name of an Objective-C protocol.
Definition: Sema.h:3339
const ObjCProtocolList & getReferencedProtocols() const
Definition: DeclObjC.h:2348
Expr * getBitWidth() const
Definition: Decl.h:2732
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:557
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:991
ObjCMethodDecl * LookupMethodInObjectType(Selector Sel, QualType Ty, bool IsInstance)
LookupMethodInType - Look up a method in an ObjCObjectType.
static bool CheckMethodOverrideParam(Sema &S, ObjCMethodDecl *MethodImpl, ObjCMethodDecl *MethodDecl, ParmVarDecl *ImplVar, ParmVarDecl *IfaceVar, bool IsProtocolMethodDecl, bool IsOverridingMode, bool Warn)
Defines the SourceManager interface.
void ActOnDocumentableDecl(Decl *D)
Should be called on all declarations that might have attached documentation comments.
Definition: SemaDecl.cpp:12931
bool isRecordType() const
Definition: Type.h:6471
iterator end()
Definition: DeclGroup.h:105
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
Definition: Sema.h:1373
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
void DiagnoseMissingDesignatedInitOverrides(const ObjCImplementationDecl *ImplD, const ObjCInterfaceDecl *IFD)
__DEVICE__ long long abs(long long __n)
void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AL, bool IncludeCXX11Attributes=true)
Captures information about "declaration specifiers" specific to Objective-C.
Definition: DeclSpec.h:799
ObjCTypeParamList * actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc, ArrayRef< Decl *> typeParams, SourceLocation rAngleLoc)
void DiagnoseFunctionSpecifiers(const DeclSpec &DS)
Diagnose function specifiers on a declaration of an identifier that does not identify a function...
Definition: SemaDecl.cpp:5892
StringRef P
ivar_range ivars() const
Definition: DeclObjC.h:1457
Scope * TUScope
Translation Unit Scope - useful to Objective-C actions that need to lookup file scope declarations in...
Definition: Sema.h:886
static ObjCProtocolDecl * Create(ASTContext &C, DeclContext *DC, IdentifierInfo *Id, SourceLocation nameLoc, SourceLocation atStartLoc, ObjCProtocolDecl *PrevDecl)
Definition: DeclObjC.cpp:1855
static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, ObjCProtocolDecl *&UndefinedProtocol)
known_categories_range known_categories() const
Definition: DeclObjC.h:1686
ObjCTypeParamList * getTypeParamList() const
Retrieve the type parameters of this class.
Definition: DeclObjC.cpp:307
void AddDecl(Decl *D)
Definition: Scope.h:289
bool CheckForwardProtocolDeclarationForCircularDependency(IdentifierInfo *PName, SourceLocation &PLoc, SourceLocation PrevLoc, const ObjCList< ObjCProtocolDecl > &PList)
The base class of the type hierarchy.
Definition: Type.h:1436
void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false)
AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
Definition: Sema.h:3892
The parameter is covariant, e.g., X<T> is a subtype of X<U> when the type parameter is covariant and ...
CanQual< T > getUnqualifiedType() const
Retrieve the unqualified form of this type.
bool isCompilingModule() const
Are we compiling a module interface (.cppm or module map)?
Definition: LangOptions.h:279
bool isObjCContainer() const
Definition: DeclBase.h:1818
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset=0)
Calls Lexer::getLocForEndOfToken()
Definition: Sema.cpp:49
const ObjCObjectPointerType * getAsObjCInterfacePointerType() const
Definition: Type.cpp:1669
static const char * getSpecifierName(DeclSpec::TST T, const PrintingPolicy &Policy)
Turn a type-specifier-type into a string like "_Bool" or "union".
Definition: DeclSpec.cpp:520
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclBase.h:425
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:706
A container of type source information.
Definition: Decl.h:86
void ProcessPropertyDecl(ObjCPropertyDecl *property)
Process the specified property declaration and create decls for the setters and getters as needed...
ObjCMethodDecl * getMethod() const
TSCS getThreadStorageClassSpec() const
Definition: DeclSpec.h:442
void ActOnTypedefedProtocols(SmallVectorImpl< Decl *> &ProtocolRefs, SmallVectorImpl< SourceLocation > &ProtocolLocs, IdentifierInfo *SuperName, SourceLocation SuperLoc)
ActOnTypedefedProtocols - this action finds protocol list as part of the typedef&#39;ed use for a qualifi...
param_const_iterator param_end() const
Definition: DeclObjC.h:351
SourceLocation getEndLoc() const
Get the end source location.
Definition: TypeLoc.cpp:226
void createImplicitParams(ASTContext &Context, const ObjCInterfaceDecl *ID)
createImplicitParams - Used to lazily create the self and cmd implict parameters. ...
Definition: DeclObjC.cpp:1122
Represents a variable declaration or definition.
Definition: Decl.h:827
void setImplementation(ObjCCategoryImplDecl *ImplD)
Definition: DeclObjC.cpp:2024
PartialDiagnostic PDiag(unsigned DiagID=0)
Build a partial diagnostic.
Definition: SemaInternal.h:24
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1775
DiagnosticsEngine & Diags
Definition: Sema.h:377
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6858
ObjCCategoryImplDecl * getImplementation() const
Definition: DeclObjC.cpp:2019
static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc, ObjCMethodDecl *method, bool &IncompleteImpl, unsigned DiagID, NamedDecl *NeededFor=nullptr)
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:138
DeclClass * getCorrectionDeclAs() const
bool isInvalidDecl() const
Definition: DeclBase.h:553
classmeth_range class_methods() const
Definition: DeclObjC.h:1070
llvm::MapVector< Selector, SourceLocation > ReferencedSelectors
Method selectors used in a @selector expression.
Definition: Sema.h:1212
protocol_range protocols() const
Definition: DeclObjC.h:2128
static const NamedDecl * getDefinition(const Decl *D)
Definition: SemaDecl.cpp:2598
Represents a parameter to a function.
Definition: Decl.h:1600
The collection of all-type qualifiers we support.
Definition: Type.h:137
iterator end() const
Definition: DeclObjC.h:91
MethodMatchStrategy
Definition: Sema.h:3802
const ObjCInterfaceDecl * getSuperClass() const
Definition: DeclObjC.h:2688
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:56
Represents a struct/union/class.
Definition: Decl.h:3662
SourceLocation getVarianceLoc() const
Retrieve the location of the variance keyword.
Definition: DeclObjC.h:611
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
One of these records is kept for each identifier that is lexed.
std::unique_ptr< NSAPI > NSAPIObj
Caches identifiers/selectors for NSFoundation APIs.
Definition: Sema.h:918
static void checkObjCMethodX86VectorTypes(Sema &SemaRef, const ObjCMethodDecl *Method)
Verify that the method parameters/return value have types that are supported by the x86 target...
const ObjCProtocolList & getReferencedProtocols() const
Definition: DeclObjC.h:2120
Represents a class type in Objective C.
Definition: Type.h:5614
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:160
ObjCMethodDecl * getClassMethod(Selector Sel, bool AllowHidden=false) const
Definition: DeclObjC.h:1091
const ParmVarDecl *const * param_const_iterator
Definition: DeclObjC.h:342
bool isObjCLifetimeType() const
Returns true if objects of this type have lifetime semantics under ARC.
Definition: Type.cpp:4077
ObjCMethodFamily
A family of Objective-C methods.
The parameter is contravariant, e.g., X<T> is a subtype of X<U> when the type parameter is covariant ...
Base class for callback objects used by Sema::CorrectTypo to check the validity of a potential typo c...
void set(T *const *InList, unsigned Elts, ASTContext &Ctx)
Definition: DeclObjC.h:84
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:274
bool isObjCIdType() const
Definition: Type.h:6524
Represents a member of a struct/union/class.
Definition: Decl.h:2643
SourceRange getReturnTypeSourceRange() const
Definition: DeclObjC.cpp:1155
instmeth_range instance_methods() const
Definition: DeclObjC.h:1053
bool isDefined() const
Definition: DeclObjC.h:439
void setSuperClass(TypeSourceInfo *superClass)
Definition: DeclObjC.h:1587
method_range methods() const
Definition: DeclObjC.h:1036
SourceRange getSourceRange() const
Definition: DeclObjC.h:707
bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS, const ObjCObjectPointerType *RHS, bool ForCompare)
ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an ObjCQualifiedIDType.
DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc, IdentifierInfo **IdentList, SourceLocation *IdentLocs, ArrayRef< ObjCTypeParamList *> TypeParamLists, unsigned NumElts)
int Category
Definition: Format.cpp:1810
void ClearStorageClassSpecs()
Definition: DeclSpec.h:455
void setReturnType(QualType T)
Definition: DeclObjC.h:323
static DeclaratorChunk getPointer(unsigned TypeQuals, SourceLocation Loc, SourceLocation ConstQualLoc, SourceLocation VolatileQualLoc, SourceLocation RestrictQualLoc, SourceLocation AtomicQualLoc, SourceLocation UnalignedQualLoc)
Return a DeclaratorChunk for a pointer.
Definition: DeclSpec.h:1555
static bool checkTypeParamListConsistency(Sema &S, ObjCTypeParamList *prevTypeParams, ObjCTypeParamList *newTypeParams, TypeParamListContext newContext)
Check consistency between two Objective-C type parameter lists, e.g., between a category/extension an...
bool isObjCQualifiedClassType() const
Definition: Type.h:6518
static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method, const ObjCObjectType *TypeBound)
Return true if the given method is wthin the type bound.
void CheckExtraCXXDefaultArguments(Declarator &D)
CheckExtraCXXDefaultArguments - Check for any extra default arguments in the declarator, which is not a function declaration or definition and therefore is not permitted to have default arguments.
llvm::BumpPtrAllocator BumpAlloc
Definition: Sema.h:1160
IdentifierTable & Idents
Definition: ASTContext.h:579
Qualifiers getLocalQualifiers() const
Retrieve the set of qualifiers local to this particular QualType instance, not including any qualifie...
Definition: Type.h:6167
bool isInvalidType() const
Definition: DeclSpec.h:2453
bool isUnarySelector() const
bool isDeprecated(std::string *Message=nullptr) const
Determine whether this declaration is marked &#39;deprecated&#39;.
Definition: DeclBase.h:671
ObjCMethodFamily getMethodFamily() const
Determines the family of this method.
Definition: DeclObjC.cpp:985
void MatchAllMethodDeclarations(const SelectorSet &InsMap, const SelectorSet &ClsMap, SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl *IMPDecl, ObjCContainerDecl *IDecl, bool &IncompleteImpl, bool ImmediateClass, bool WarnCategoryMethodImpl=false)
MatchAllMethodDeclarations - Check methods declaraed in interface or or protocol against those declar...
bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall)
Check whether the given method, which must be in the &#39;init&#39; family, is a valid member of that family...
void setMethod(ObjCMethodDecl *M)
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:2721
bool isNonFragile() const
Does this runtime follow the set of implied behaviors for a "non-fragile" ABI?
Definition: ObjCRuntime.h:81
Represents the results of name lookup.
Definition: Lookup.h:46
PtrTy get() const
Definition: Ownership.h:170<