clang  7.0.0svn
SemaDeclObjC.cpp
Go to the documentation of this file.
1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for Objective C declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprObjC.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/Scope.h"
26 #include "clang/Sema/ScopeInfo.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/DenseSet.h"
30 
31 using namespace clang;
32 
33 /// Check whether the given method, which must be in the 'init'
34 /// family, is a valid member of that family.
35 ///
36 /// \param receiverTypeIfCall - if null, check this as if declaring it;
37 /// if non-null, check this as if making a call to it with the given
38 /// receiver type
39 ///
40 /// \return true to indicate that there was an error and appropriate
41 /// actions were taken
43  QualType receiverTypeIfCall) {
44  if (method->isInvalidDecl()) return true;
45 
46  // This castAs is safe: methods that don't return an object
47  // pointer won't be inferred as inits and will reject an explicit
48  // objc_method_family(init).
49 
50  // We ignore protocols here. Should we? What about Class?
51 
52  const ObjCObjectType *result =
54 
55  if (result->isObjCId()) {
56  return false;
57  } else if (result->isObjCClass()) {
58  // fall through: always an error
59  } else {
60  ObjCInterfaceDecl *resultClass = result->getInterface();
61  assert(resultClass && "unexpected object type!");
62 
63  // It's okay for the result type to still be a forward declaration
64  // if we're checking an interface declaration.
65  if (!resultClass->hasDefinition()) {
66  if (receiverTypeIfCall.isNull() &&
67  !isa<ObjCImplementationDecl>(method->getDeclContext()))
68  return false;
69 
70  // Otherwise, we try to compare class types.
71  } else {
72  // If this method was declared in a protocol, we can't check
73  // anything unless we have a receiver type that's an interface.
74  const ObjCInterfaceDecl *receiverClass = nullptr;
75  if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76  if (receiverTypeIfCall.isNull())
77  return false;
78 
79  receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80  ->getInterfaceDecl();
81 
82  // This can be null for calls to e.g. id<Foo>.
83  if (!receiverClass) return false;
84  } else {
85  receiverClass = method->getClassInterface();
86  assert(receiverClass && "method not associated with a class!");
87  }
88 
89  // If either class is a subclass of the other, it's fine.
90  if (receiverClass->isSuperClassOf(resultClass) ||
91  resultClass->isSuperClassOf(receiverClass))
92  return false;
93  }
94  }
95 
96  SourceLocation loc = method->getLocation();
97 
98  // If we're in a system header, and this is not a call, just make
99  // the method unusable.
100  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
101  method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102  UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103  return true;
104  }
105 
106  // Otherwise, it's an error.
107  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108  method->setInvalidDecl();
109  return true;
110 }
111 
113  const ObjCMethodDecl *Overridden) {
114  if (Overridden->hasRelatedResultType() &&
115  !NewMethod->hasRelatedResultType()) {
116  // This can only happen when the method follows a naming convention that
117  // implies a related result type, and the original (overridden) method has
118  // a suitable return type, but the new (overriding) method does not have
119  // a suitable return type.
120  QualType ResultType = NewMethod->getReturnType();
121  SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
122 
123  // Figure out which class this method is part of, if any.
124  ObjCInterfaceDecl *CurrentClass
125  = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
126  if (!CurrentClass) {
127  DeclContext *DC = NewMethod->getDeclContext();
128  if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
129  CurrentClass = Cat->getClassInterface();
130  else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
131  CurrentClass = Impl->getClassInterface();
132  else if (ObjCCategoryImplDecl *CatImpl
133  = dyn_cast<ObjCCategoryImplDecl>(DC))
134  CurrentClass = CatImpl->getClassInterface();
135  }
136 
137  if (CurrentClass) {
138  Diag(NewMethod->getLocation(),
139  diag::warn_related_result_type_compatibility_class)
140  << Context.getObjCInterfaceType(CurrentClass)
141  << ResultType
142  << ResultTypeRange;
143  } else {
144  Diag(NewMethod->getLocation(),
145  diag::warn_related_result_type_compatibility_protocol)
146  << ResultType
147  << ResultTypeRange;
148  }
149 
150  if (ObjCMethodFamily Family = Overridden->getMethodFamily())
151  Diag(Overridden->getLocation(),
152  diag::note_related_result_type_family)
153  << /*overridden method*/ 0
154  << Family;
155  else
156  Diag(Overridden->getLocation(),
157  diag::note_related_result_type_overridden);
158  }
159 
160  if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
161  Overridden->hasAttr<NSReturnsRetainedAttr>())) {
162  Diag(NewMethod->getLocation(),
163  getLangOpts().ObjCAutoRefCount
164  ? diag::err_nsreturns_retained_attribute_mismatch
165  : diag::warn_nsreturns_retained_attribute_mismatch)
166  << 1;
167  Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
168  }
169  if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
170  Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
171  Diag(NewMethod->getLocation(),
172  getLangOpts().ObjCAutoRefCount
173  ? diag::err_nsreturns_retained_attribute_mismatch
174  : diag::warn_nsreturns_retained_attribute_mismatch)
175  << 0;
176  Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
177  }
178 
180  oe = Overridden->param_end();
181  for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
182  ne = NewMethod->param_end();
183  ni != ne && oi != oe; ++ni, ++oi) {
184  const ParmVarDecl *oldDecl = (*oi);
185  ParmVarDecl *newDecl = (*ni);
186  if (newDecl->hasAttr<NSConsumedAttr>() !=
187  oldDecl->hasAttr<NSConsumedAttr>()) {
188  Diag(newDecl->getLocation(),
189  getLangOpts().ObjCAutoRefCount
190  ? diag::err_nsconsumed_attribute_mismatch
191  : diag::warn_nsconsumed_attribute_mismatch);
192  Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
193  }
194 
195  // A parameter of the overriding method should be annotated with noescape
196  // if the corresponding parameter of the overridden method is annotated.
197  if (oldDecl->hasAttr<NoEscapeAttr>() && !newDecl->hasAttr<NoEscapeAttr>()) {
198  Diag(newDecl->getLocation(),
199  diag::warn_overriding_method_missing_noescape);
200  Diag(oldDecl->getLocation(), diag::note_overridden_marked_noescape);
201  }
202  }
203 }
204 
205 /// Check a method declaration for compatibility with the Objective-C
206 /// ARC conventions.
208  ObjCMethodFamily family = method->getMethodFamily();
209  switch (family) {
210  case OMF_None:
211  case OMF_finalize:
212  case OMF_retain:
213  case OMF_release:
214  case OMF_autorelease:
215  case OMF_retainCount:
216  case OMF_self:
217  case OMF_initialize:
218  case OMF_performSelector:
219  return false;
220 
221  case OMF_dealloc:
222  if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
223  SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
224  if (ResultTypeRange.isInvalid())
225  Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
226  << method->getReturnType()
227  << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
228  else
229  Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
230  << method->getReturnType()
231  << FixItHint::CreateReplacement(ResultTypeRange, "void");
232  return true;
233  }
234  return false;
235 
236  case OMF_init:
237  // If the method doesn't obey the init rules, don't bother annotating it.
238  if (checkInitMethod(method, QualType()))
239  return true;
240 
241  method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
242 
243  // Don't add a second copy of this attribute, but otherwise don't
244  // let it be suppressed.
245  if (method->hasAttr<NSReturnsRetainedAttr>())
246  return false;
247  break;
248 
249  case OMF_alloc:
250  case OMF_copy:
251  case OMF_mutableCopy:
252  case OMF_new:
253  if (method->hasAttr<NSReturnsRetainedAttr>() ||
254  method->hasAttr<NSReturnsNotRetainedAttr>() ||
255  method->hasAttr<NSReturnsAutoreleasedAttr>())
256  return false;
257  break;
258  }
259 
260  method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
261  return false;
262 }
263 
265  SourceLocation ImplLoc) {
266  if (!ND)
267  return;
268  bool IsCategory = false;
269  StringRef RealizedPlatform;
270  AvailabilityResult Availability = ND->getAvailability(
271  /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
272  &RealizedPlatform);
273  if (Availability != AR_Deprecated) {
274  if (isa<ObjCMethodDecl>(ND)) {
275  if (Availability != AR_Unavailable)
276  return;
277  if (RealizedPlatform.empty())
278  RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
279  // Warn about implementing unavailable methods, unless the unavailable
280  // is for an app extension.
281  if (RealizedPlatform.endswith("_app_extension"))
282  return;
283  S.Diag(ImplLoc, diag::warn_unavailable_def);
284  S.Diag(ND->getLocation(), diag::note_method_declared_at)
285  << ND->getDeclName();
286  return;
287  }
288  if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
289  if (!CD->getClassInterface()->isDeprecated())
290  return;
291  ND = CD->getClassInterface();
292  IsCategory = true;
293  } else
294  return;
295  }
296  S.Diag(ImplLoc, diag::warn_deprecated_def)
297  << (isa<ObjCMethodDecl>(ND)
298  ? /*Method*/ 0
299  : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
300  : /*Class*/ 1);
301  if (isa<ObjCMethodDecl>(ND))
302  S.Diag(ND->getLocation(), diag::note_method_declared_at)
303  << ND->getDeclName();
304  else
305  S.Diag(ND->getLocation(), diag::note_previous_decl)
306  << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
307 }
308 
309 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
310 /// pool.
312  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
313 
314  // If we don't have a valid method decl, simply return.
315  if (!MDecl)
316  return;
317  if (MDecl->isInstanceMethod())
318  AddInstanceMethodToGlobalPool(MDecl, true);
319  else
320  AddFactoryMethodToGlobalPool(MDecl, true);
321 }
322 
323 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
324 /// has explicit ownership attribute; false otherwise.
325 static bool
327  QualType T = Param->getType();
328 
329  if (const PointerType *PT = T->getAs<PointerType>()) {
330  T = PT->getPointeeType();
331  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
332  T = RT->getPointeeType();
333  } else {
334  return true;
335  }
336 
337  // If we have a lifetime qualifier, but it's local, we must have
338  // inferred it. So, it is implicit.
339  return !T.getLocalQualifiers().hasObjCLifetime();
340 }
341 
342 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
343 /// and user declared, in the method definition's AST.
345  assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
346  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
347 
348  // If we don't have a valid method decl, simply return.
349  if (!MDecl)
350  return;
351 
352  QualType ResultType = MDecl->getReturnType();
353  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
354  !MDecl->isInvalidDecl() &&
355  RequireCompleteType(MDecl->getLocation(), ResultType,
356  diag::err_func_def_incomplete_result))
357  MDecl->setInvalidDecl();
358 
359  // Allow all of Sema to see that we are entering a method definition.
360  PushDeclContext(FnBodyScope, MDecl);
362 
363  // Create Decl objects for each parameter, entrring them in the scope for
364  // binding to their use.
365 
366  // Insert the invisible arguments, self and _cmd!
368 
369  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
370  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
371 
372  // The ObjC parser requires parameter names so there's no need to check.
374  /*CheckParameterNames=*/false);
375 
376  // Introduce all of the other parameters into this scope.
377  for (auto *Param : MDecl->parameters()) {
378  if (!Param->isInvalidDecl() &&
379  getLangOpts().ObjCAutoRefCount &&
380  !HasExplicitOwnershipAttr(*this, Param))
381  Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
382  Param->getType();
383 
384  if (Param->getIdentifier())
385  PushOnScopeChains(Param, FnBodyScope);
386  }
387 
388  // In ARC, disallow definition of retain/release/autorelease/retainCount
389  if (getLangOpts().ObjCAutoRefCount) {
390  switch (MDecl->getMethodFamily()) {
391  case OMF_retain:
392  case OMF_retainCount:
393  case OMF_release:
394  case OMF_autorelease:
395  Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
396  << 0 << MDecl->getSelector();
397  break;
398 
399  case OMF_None:
400  case OMF_dealloc:
401  case OMF_finalize:
402  case OMF_alloc:
403  case OMF_init:
404  case OMF_mutableCopy:
405  case OMF_copy:
406  case OMF_new:
407  case OMF_self:
408  case OMF_initialize:
409  case OMF_performSelector:
410  break;
411  }
412  }
413 
414  // Warn on deprecated methods under -Wdeprecated-implementations,
415  // and prepare for warning on missing super calls.
416  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
417  ObjCMethodDecl *IMD =
418  IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
419 
420  if (IMD) {
421  ObjCImplDecl *ImplDeclOfMethodDef =
422  dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
423  ObjCContainerDecl *ContDeclOfMethodDecl =
424  dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
425  ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
426  if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
427  ImplDeclOfMethodDecl = OID->getImplementation();
428  else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
429  if (CD->IsClassExtension()) {
430  if (ObjCInterfaceDecl *OID = CD->getClassInterface())
431  ImplDeclOfMethodDecl = OID->getImplementation();
432  } else
433  ImplDeclOfMethodDecl = CD->getImplementation();
434  }
435  // No need to issue deprecated warning if deprecated mehod in class/category
436  // is being implemented in its own implementation (no overriding is involved).
437  if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
438  DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
439  }
440 
441  if (MDecl->getMethodFamily() == OMF_init) {
445  IC->getSuperClass() != nullptr;
446  } else if (IC->hasDesignatedInitializers()) {
449  }
450  }
451 
452  // If this is "dealloc" or "finalize", set some bit here.
453  // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
454  // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
455  // Only do this if the current class actually has a superclass.
456  if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
457  ObjCMethodFamily Family = MDecl->getMethodFamily();
458  if (Family == OMF_dealloc) {
459  if (!(getLangOpts().ObjCAutoRefCount ||
460  getLangOpts().getGC() == LangOptions::GCOnly))
462 
463  } else if (Family == OMF_finalize) {
464  if (Context.getLangOpts().getGC() != LangOptions::NonGC)
466 
467  } else {
468  const ObjCMethodDecl *SuperMethod =
469  SuperClass->lookupMethod(MDecl->getSelector(),
470  MDecl->isInstanceMethod());
472  (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
473  }
474  }
475  }
476 }
477 
478 namespace {
479 
480 // Callback to only accept typo corrections that are Objective-C classes.
481 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
482 // function will reject corrections to that class.
483 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
484  public:
485  ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
486  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
487  : CurrentIDecl(IDecl) {}
488 
489  bool ValidateCandidate(const TypoCorrection &candidate) override {
491  return ID && !declaresSameEntity(ID, CurrentIDecl);
492  }
493 
494  private:
495  ObjCInterfaceDecl *CurrentIDecl;
496 };
497 
498 } // end anonymous namespace
499 
500 static void diagnoseUseOfProtocols(Sema &TheSema,
501  ObjCContainerDecl *CD,
502  ObjCProtocolDecl *const *ProtoRefs,
503  unsigned NumProtoRefs,
504  const SourceLocation *ProtoLocs) {
505  assert(ProtoRefs);
506  // Diagnose availability in the context of the ObjC container.
507  Sema::ContextRAII SavedContext(TheSema, CD);
508  for (unsigned i = 0; i < NumProtoRefs; ++i) {
509  (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
510  /*UnknownObjCClass=*/nullptr,
511  /*ObjCPropertyAccess=*/false,
512  /*AvoidPartialAvailabilityChecks=*/true);
513  }
514 }
515 
516 void Sema::
518  SourceLocation AtInterfaceLoc,
519  ObjCInterfaceDecl *IDecl,
520  IdentifierInfo *ClassName,
521  SourceLocation ClassLoc,
522  IdentifierInfo *SuperName,
523  SourceLocation SuperLoc,
524  ArrayRef<ParsedType> SuperTypeArgs,
525  SourceRange SuperTypeArgsRange) {
526  // Check if a different kind of symbol declared in this scope.
527  NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
529 
530  if (!PrevDecl) {
531  // Try to correct for a typo in the superclass name without correcting
532  // to the class we're defining.
533  if (TypoCorrection Corrected = CorrectTypo(
534  DeclarationNameInfo(SuperName, SuperLoc),
536  nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
538  diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
539  << SuperName << ClassName);
540  PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
541  }
542  }
543 
544  if (declaresSameEntity(PrevDecl, IDecl)) {
545  Diag(SuperLoc, diag::err_recursive_superclass)
546  << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
547  IDecl->setEndOfDefinitionLoc(ClassLoc);
548  } else {
549  ObjCInterfaceDecl *SuperClassDecl =
550  dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
551  QualType SuperClassType;
552 
553  // Diagnose classes that inherit from deprecated classes.
554  if (SuperClassDecl) {
555  (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
556  SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
557  }
558 
559  if (PrevDecl && !SuperClassDecl) {
560  // The previous declaration was not a class decl. Check if we have a
561  // typedef. If we do, get the underlying class type.
562  if (const TypedefNameDecl *TDecl =
563  dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
564  QualType T = TDecl->getUnderlyingType();
565  if (T->isObjCObjectType()) {
566  if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
567  SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
568  SuperClassType = Context.getTypeDeclType(TDecl);
569 
570  // This handles the following case:
571  // @interface NewI @end
572  // typedef NewI DeprI __attribute__((deprecated("blah")))
573  // @interface SI : DeprI /* warn here */ @end
574  (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
575  }
576  }
577  }
578 
579  // This handles the following case:
580  //
581  // typedef int SuperClass;
582  // @interface MyClass : SuperClass {} @end
583  //
584  if (!SuperClassDecl) {
585  Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
586  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
587  }
588  }
589 
590  if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
591  if (!SuperClassDecl)
592  Diag(SuperLoc, diag::err_undef_superclass)
593  << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
594  else if (RequireCompleteType(SuperLoc,
595  SuperClassType,
596  diag::err_forward_superclass,
597  SuperClassDecl->getDeclName(),
598  ClassName,
599  SourceRange(AtInterfaceLoc, ClassLoc))) {
600  SuperClassDecl = nullptr;
601  SuperClassType = QualType();
602  }
603  }
604 
605  if (SuperClassType.isNull()) {
606  assert(!SuperClassDecl && "Failed to set SuperClassType?");
607  return;
608  }
609 
610  // Handle type arguments on the superclass.
611  TypeSourceInfo *SuperClassTInfo = nullptr;
612  if (!SuperTypeArgs.empty()) {
614  S,
615  SuperLoc,
616  CreateParsedType(SuperClassType,
617  nullptr),
618  SuperTypeArgsRange.getBegin(),
619  SuperTypeArgs,
620  SuperTypeArgsRange.getEnd(),
621  SourceLocation(),
622  { },
623  { },
624  SourceLocation());
625  if (!fullSuperClassType.isUsable())
626  return;
627 
628  SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
629  &SuperClassTInfo);
630  }
631 
632  if (!SuperClassTInfo) {
633  SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
634  SuperLoc);
635  }
636 
637  IDecl->setSuperClass(SuperClassTInfo);
638  IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getLocEnd());
639  }
640 }
641 
643  ObjCTypeParamVariance variance,
644  SourceLocation varianceLoc,
645  unsigned index,
646  IdentifierInfo *paramName,
647  SourceLocation paramLoc,
648  SourceLocation colonLoc,
649  ParsedType parsedTypeBound) {
650  // If there was an explicitly-provided type bound, check it.
651  TypeSourceInfo *typeBoundInfo = nullptr;
652  if (parsedTypeBound) {
653  // The type bound can be any Objective-C pointer type.
654  QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
655  if (typeBound->isObjCObjectPointerType()) {
656  // okay
657  } else if (typeBound->isObjCObjectType()) {
658  // The user forgot the * on an Objective-C pointer type, e.g.,
659  // "T : NSView".
661  typeBoundInfo->getTypeLoc().getEndLoc());
662  Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
663  diag::err_objc_type_param_bound_missing_pointer)
664  << typeBound << paramName
665  << FixItHint::CreateInsertion(starLoc, " *");
666 
667  // Create a new type location builder so we can update the type
668  // location information we have.
669  TypeLocBuilder builder;
670  builder.pushFullCopy(typeBoundInfo->getTypeLoc());
671 
672  // Create the Objective-C pointer type.
673  typeBound = Context.getObjCObjectPointerType(typeBound);
675  = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
676  newT.setStarLoc(starLoc);
677 
678  // Form the new type source information.
679  typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
680  } else {
681  // Not a valid type bound.
682  Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
683  diag::err_objc_type_param_bound_nonobject)
684  << typeBound << paramName;
685 
686  // Forget the bound; we'll default to id later.
687  typeBoundInfo = nullptr;
688  }
689 
690  // Type bounds cannot have qualifiers (even indirectly) or explicit
691  // nullability.
692  if (typeBoundInfo) {
693  QualType typeBound = typeBoundInfo->getType();
694  TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
695  if (qual || typeBound.hasQualifiers()) {
696  bool diagnosed = false;
697  SourceRange rangeToRemove;
698  if (qual) {
699  if (auto attr = qual.getAs<AttributedTypeLoc>()) {
700  rangeToRemove = attr.getLocalSourceRange();
701  if (attr.getTypePtr()->getImmediateNullability()) {
702  Diag(attr.getLocStart(),
703  diag::err_objc_type_param_bound_explicit_nullability)
704  << paramName << typeBound
705  << FixItHint::CreateRemoval(rangeToRemove);
706  diagnosed = true;
707  }
708  }
709  }
710 
711  if (!diagnosed) {
712  Diag(qual ? qual.getLocStart()
713  : typeBoundInfo->getTypeLoc().getLocStart(),
714  diag::err_objc_type_param_bound_qualified)
715  << paramName << typeBound << typeBound.getQualifiers().getAsString()
716  << FixItHint::CreateRemoval(rangeToRemove);
717  }
718 
719  // If the type bound has qualifiers other than CVR, we need to strip
720  // them or we'll probably assert later when trying to apply new
721  // qualifiers.
722  Qualifiers quals = typeBound.getQualifiers();
723  quals.removeCVRQualifiers();
724  if (!quals.empty()) {
725  typeBoundInfo =
727  }
728  }
729  }
730  }
731 
732  // If there was no explicit type bound (or we removed it due to an error),
733  // use 'id' instead.
734  if (!typeBoundInfo) {
735  colonLoc = SourceLocation();
737  }
738 
739  // Create the type parameter.
740  return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
741  index, paramLoc, paramName, colonLoc,
742  typeBoundInfo);
743 }
744 
746  SourceLocation lAngleLoc,
747  ArrayRef<Decl *> typeParamsIn,
748  SourceLocation rAngleLoc) {
749  // We know that the array only contains Objective-C type parameters.
751  typeParams(
752  reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
753  typeParamsIn.size());
754 
755  // Diagnose redeclarations of type parameters.
756  // We do this now because Objective-C type parameters aren't pushed into
757  // scope until later (after the instance variable block), but we want the
758  // diagnostics to occur right after we parse the type parameter list.
759  llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
760  for (auto typeParam : typeParams) {
761  auto known = knownParams.find(typeParam->getIdentifier());
762  if (known != knownParams.end()) {
763  Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
764  << typeParam->getIdentifier()
765  << SourceRange(known->second->getLocation());
766 
767  typeParam->setInvalidDecl();
768  } else {
769  knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
770 
771  // Push the type parameter into scope.
772  PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
773  }
774  }
775 
776  // Create the parameter list.
777  return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
778 }
779 
781  for (auto typeParam : *typeParamList) {
782  if (!typeParam->isInvalidDecl()) {
783  S->RemoveDecl(typeParam);
784  IdResolver.RemoveDecl(typeParam);
785  }
786  }
787 }
788 
789 namespace {
790  /// The context in which an Objective-C type parameter list occurs, for use
791  /// in diagnostics.
792  enum class TypeParamListContext {
793  ForwardDeclaration,
794  Definition,
795  Category,
796  Extension
797  };
798 } // end anonymous namespace
799 
800 /// Check consistency between two Objective-C type parameter lists, e.g.,
801 /// between a category/extension and an \@interface or between an \@class and an
802 /// \@interface.
804  ObjCTypeParamList *prevTypeParams,
805  ObjCTypeParamList *newTypeParams,
806  TypeParamListContext newContext) {
807  // If the sizes don't match, complain about that.
808  if (prevTypeParams->size() != newTypeParams->size()) {
809  SourceLocation diagLoc;
810  if (newTypeParams->size() > prevTypeParams->size()) {
811  diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
812  } else {
813  diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getLocEnd());
814  }
815 
816  S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
817  << static_cast<unsigned>(newContext)
818  << (newTypeParams->size() > prevTypeParams->size())
819  << prevTypeParams->size()
820  << newTypeParams->size();
821 
822  return true;
823  }
824 
825  // Match up the type parameters.
826  for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
827  ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
828  ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
829 
830  // Check for consistency of the variance.
831  if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
832  if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
833  newContext != TypeParamListContext::Definition) {
834  // When the new type parameter is invariant and is not part
835  // of the definition, just propagate the variance.
836  newTypeParam->setVariance(prevTypeParam->getVariance());
837  } else if (prevTypeParam->getVariance()
839  !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
840  cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
841  ->getDefinition() == prevTypeParam->getDeclContext())) {
842  // When the old parameter is invariant and was not part of the
843  // definition, just ignore the difference because it doesn't
844  // matter.
845  } else {
846  {
847  // Diagnose the conflict and update the second declaration.
848  SourceLocation diagLoc = newTypeParam->getVarianceLoc();
849  if (diagLoc.isInvalid())
850  diagLoc = newTypeParam->getLocStart();
851 
852  auto diag = S.Diag(diagLoc,
853  diag::err_objc_type_param_variance_conflict)
854  << static_cast<unsigned>(newTypeParam->getVariance())
855  << newTypeParam->getDeclName()
856  << static_cast<unsigned>(prevTypeParam->getVariance())
857  << prevTypeParam->getDeclName();
858  switch (prevTypeParam->getVariance()) {
860  diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
861  break;
862 
865  StringRef newVarianceStr
866  = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
867  ? "__covariant"
868  : "__contravariant";
869  if (newTypeParam->getVariance()
871  diag << FixItHint::CreateInsertion(newTypeParam->getLocStart(),
872  (newVarianceStr + " ").str());
873  } else {
874  diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
875  newVarianceStr);
876  }
877  }
878  }
879  }
880 
881  S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
882  << prevTypeParam->getDeclName();
883 
884  // Override the variance.
885  newTypeParam->setVariance(prevTypeParam->getVariance());
886  }
887  }
888 
889  // If the bound types match, there's nothing to do.
890  if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
891  newTypeParam->getUnderlyingType()))
892  continue;
893 
894  // If the new type parameter's bound was explicit, complain about it being
895  // different from the original.
896  if (newTypeParam->hasExplicitBound()) {
897  SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
899  S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
900  << newTypeParam->getUnderlyingType()
901  << newTypeParam->getDeclName()
902  << prevTypeParam->hasExplicitBound()
903  << prevTypeParam->getUnderlyingType()
904  << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
905  << prevTypeParam->getDeclName()
907  newBoundRange,
908  prevTypeParam->getUnderlyingType().getAsString(
910 
911  S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
912  << prevTypeParam->getDeclName();
913 
914  // Override the new type parameter's bound type with the previous type,
915  // so that it's consistent.
916  newTypeParam->setTypeSourceInfo(
918  continue;
919  }
920 
921  // The new type parameter got the implicit bound of 'id'. That's okay for
922  // categories and extensions (overwrite it later), but not for forward
923  // declarations and @interfaces, because those must be standalone.
924  if (newContext == TypeParamListContext::ForwardDeclaration ||
925  newContext == TypeParamListContext::Definition) {
926  // Diagnose this problem for forward declarations and definitions.
927  SourceLocation insertionLoc
928  = S.getLocForEndOfToken(newTypeParam->getLocation());
929  std::string newCode
930  = " : " + prevTypeParam->getUnderlyingType().getAsString(
932  S.Diag(newTypeParam->getLocation(),
933  diag::err_objc_type_param_bound_missing)
934  << prevTypeParam->getUnderlyingType()
935  << newTypeParam->getDeclName()
936  << (newContext == TypeParamListContext::ForwardDeclaration)
937  << FixItHint::CreateInsertion(insertionLoc, newCode);
938 
939  S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
940  << prevTypeParam->getDeclName();
941  }
942 
943  // Update the new type parameter's bound to match the previous one.
944  newTypeParam->setTypeSourceInfo(
946  }
947 
948  return false;
949 }
950 
952  Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
953  SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
954  IdentifierInfo *SuperName, SourceLocation SuperLoc,
955  ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
956  Decl *const *ProtoRefs, unsigned NumProtoRefs,
957  const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
958  const ParsedAttributesView &AttrList) {
959  assert(ClassName && "Missing class identifier");
960 
961  // Check for another declaration kind with the same name.
962  NamedDecl *PrevDecl =
963  LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
965 
966  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
967  Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
968  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
969  }
970 
971  // Create a declaration to describe this @interface.
972  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
973 
974  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
975  // A previous decl with a different name is because of
976  // @compatibility_alias, for example:
977  // \code
978  // @class NewImage;
979  // @compatibility_alias OldImage NewImage;
980  // \endcode
981  // A lookup for 'OldImage' will return the 'NewImage' decl.
982  //
983  // In such a case use the real declaration name, instead of the alias one,
984  // otherwise we will break IdentifierResolver and redecls-chain invariants.
985  // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
986  // has been aliased.
987  ClassName = PrevIDecl->getIdentifier();
988  }
989 
990  // If there was a forward declaration with type parameters, check
991  // for consistency.
992  if (PrevIDecl) {
993  if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
994  if (typeParamList) {
995  // Both have type parameter lists; check for consistency.
996  if (checkTypeParamListConsistency(*this, prevTypeParamList,
997  typeParamList,
998  TypeParamListContext::Definition)) {
999  typeParamList = nullptr;
1000  }
1001  } else {
1002  Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1003  << ClassName;
1004  Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1005  << ClassName;
1006 
1007  // Clone the type parameter list.
1008  SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1009  for (auto typeParam : *prevTypeParamList) {
1010  clonedTypeParams.push_back(
1012  Context,
1013  CurContext,
1014  typeParam->getVariance(),
1015  SourceLocation(),
1016  typeParam->getIndex(),
1017  SourceLocation(),
1018  typeParam->getIdentifier(),
1019  SourceLocation(),
1020  Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1021  }
1022 
1023  typeParamList = ObjCTypeParamList::create(Context,
1024  SourceLocation(),
1025  clonedTypeParams,
1026  SourceLocation());
1027  }
1028  }
1029  }
1030 
1031  ObjCInterfaceDecl *IDecl
1032  = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1033  typeParamList, PrevIDecl, ClassLoc);
1034  if (PrevIDecl) {
1035  // Class already seen. Was it a definition?
1036  if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1037  Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1038  << PrevIDecl->getDeclName();
1039  Diag(Def->getLocation(), diag::note_previous_definition);
1040  IDecl->setInvalidDecl();
1041  }
1042  }
1043 
1044  ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1045  AddPragmaAttributes(TUScope, IDecl);
1046  PushOnScopeChains(IDecl, TUScope);
1047 
1048  // Start the definition of this class. If we're in a redefinition case, there
1049  // may already be a definition, so we'll end up adding to it.
1050  if (!IDecl->hasDefinition())
1051  IDecl->startDefinition();
1052 
1053  if (SuperName) {
1054  // Diagnose availability in the context of the @interface.
1055  ContextRAII SavedContext(*this, IDecl);
1056 
1057  ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1058  ClassName, ClassLoc,
1059  SuperName, SuperLoc, SuperTypeArgs,
1060  SuperTypeArgsRange);
1061  } else { // we have a root class.
1062  IDecl->setEndOfDefinitionLoc(ClassLoc);
1063  }
1064 
1065  // Check then save referenced protocols.
1066  if (NumProtoRefs) {
1067  diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1068  NumProtoRefs, ProtoLocs);
1069  IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1070  ProtoLocs, Context);
1071  IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1072  }
1073 
1074  CheckObjCDeclScope(IDecl);
1075  return ActOnObjCContainerStartDefinition(IDecl);
1076 }
1077 
1078 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
1079 /// typedef'ed use for a qualified super class and adds them to the list
1080 /// of the protocols.
1082  SmallVectorImpl<SourceLocation> &ProtocolLocs,
1083  IdentifierInfo *SuperName,
1084  SourceLocation SuperLoc) {
1085  if (!SuperName)
1086  return;
1087  NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1089  if (!IDecl)
1090  return;
1091 
1092  if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1093  QualType T = TDecl->getUnderlyingType();
1094  if (T->isObjCObjectType())
1095  if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1096  ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1097  // FIXME: Consider whether this should be an invalid loc since the loc
1098  // is not actually pointing to a protocol name reference but to the
1099  // typedef reference. Note that the base class name loc is also pointing
1100  // at the typedef.
1101  ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1102  }
1103  }
1104 }
1105 
1106 /// ActOnCompatibilityAlias - this action is called after complete parsing of
1107 /// a \@compatibility_alias declaration. It sets up the alias relationships.
1109  IdentifierInfo *AliasName,
1110  SourceLocation AliasLocation,
1111  IdentifierInfo *ClassName,
1112  SourceLocation ClassLocation) {
1113  // Look for previous declaration of alias name
1114  NamedDecl *ADecl =
1115  LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1117  if (ADecl) {
1118  Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1119  Diag(ADecl->getLocation(), diag::note_previous_declaration);
1120  return nullptr;
1121  }
1122  // Check for class declaration
1123  NamedDecl *CDeclU =
1124  LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1126  if (const TypedefNameDecl *TDecl =
1127  dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1128  QualType T = TDecl->getUnderlyingType();
1129  if (T->isObjCObjectType()) {
1130  if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1131  ClassName = IDecl->getIdentifier();
1132  CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1135  }
1136  }
1137  }
1138  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1139  if (!CDecl) {
1140  Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1141  if (CDeclU)
1142  Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1143  return nullptr;
1144  }
1145 
1146  // Everything checked out, instantiate a new alias declaration AST.
1147  ObjCCompatibleAliasDecl *AliasDecl =
1148  ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1149 
1150  if (!CheckObjCDeclScope(AliasDecl))
1151  PushOnScopeChains(AliasDecl, TUScope);
1152 
1153  return AliasDecl;
1154 }
1155 
1157  IdentifierInfo *PName,
1158  SourceLocation &Ploc, SourceLocation PrevLoc,
1159  const ObjCList<ObjCProtocolDecl> &PList) {
1160 
1161  bool res = false;
1163  E = PList.end(); I != E; ++I) {
1164  if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1165  Ploc)) {
1166  if (PDecl->getIdentifier() == PName) {
1167  Diag(Ploc, diag::err_protocol_has_circular_dependency);
1168  Diag(PrevLoc, diag::note_previous_definition);
1169  res = true;
1170  }
1171 
1172  if (!PDecl->hasDefinition())
1173  continue;
1174 
1176  PDecl->getLocation(), PDecl->getReferencedProtocols()))
1177  res = true;
1178  }
1179  }
1180  return res;
1181 }
1182 
1184  SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1185  SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1186  const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1187  const ParsedAttributesView &AttrList) {
1188  bool err = false;
1189  // FIXME: Deal with AttrList.
1190  assert(ProtocolName && "Missing protocol identifier");
1191  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1193  ObjCProtocolDecl *PDecl = nullptr;
1194  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1195  // If we already have a definition, complain.
1196  Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1197  Diag(Def->getLocation(), diag::note_previous_definition);
1198 
1199  // Create a new protocol that is completely distinct from previous
1200  // declarations, and do not make this protocol available for name lookup.
1201  // That way, we'll end up completely ignoring the duplicate.
1202  // FIXME: Can we turn this into an error?
1203  PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1204  ProtocolLoc, AtProtoInterfaceLoc,
1205  /*PrevDecl=*/nullptr);
1206 
1207  // If we are using modules, add the decl to the context in order to
1208  // serialize something meaningful.
1209  if (getLangOpts().Modules)
1210  PushOnScopeChains(PDecl, TUScope);
1211  PDecl->startDefinition();
1212  } else {
1213  if (PrevDecl) {
1214  // Check for circular dependencies among protocol declarations. This can
1215  // only happen if this protocol was forward-declared.
1217  PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1219  ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1220  }
1221 
1222  // Create the new declaration.
1223  PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1224  ProtocolLoc, AtProtoInterfaceLoc,
1225  /*PrevDecl=*/PrevDecl);
1226 
1227  PushOnScopeChains(PDecl, TUScope);
1228  PDecl->startDefinition();
1229  }
1230 
1231  ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1232  AddPragmaAttributes(TUScope, PDecl);
1233 
1234  // Merge attributes from previous declarations.
1235  if (PrevDecl)
1236  mergeDeclAttributes(PDecl, PrevDecl);
1237 
1238  if (!err && NumProtoRefs ) {
1239  /// Check then save referenced protocols.
1240  diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1241  NumProtoRefs, ProtoLocs);
1242  PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1243  ProtoLocs, Context);
1244  }
1245 
1246  CheckObjCDeclScope(PDecl);
1247  return ActOnObjCContainerStartDefinition(PDecl);
1248 }
1249 
1251  ObjCProtocolDecl *&UndefinedProtocol) {
1252  if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1253  UndefinedProtocol = PDecl;
1254  return true;
1255  }
1256 
1257  for (auto *PI : PDecl->protocols())
1258  if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1259  UndefinedProtocol = PI;
1260  return true;
1261  }
1262  return false;
1263 }
1264 
1265 /// FindProtocolDeclaration - This routine looks up protocols and
1266 /// issues an error if they are not declared. It returns list of
1267 /// protocol declarations in its 'Protocols' argument.
1268 void
1269 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1270  ArrayRef<IdentifierLocPair> ProtocolId,
1271  SmallVectorImpl<Decl *> &Protocols) {
1272  for (const IdentifierLocPair &Pair : ProtocolId) {
1273  ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1274  if (!PDecl) {
1275  TypoCorrection Corrected = CorrectTypo(
1276  DeclarationNameInfo(Pair.first, Pair.second),
1277  LookupObjCProtocolName, TUScope, nullptr,
1278  llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
1280  if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1281  diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1282  << Pair.first);
1283  }
1284 
1285  if (!PDecl) {
1286  Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1287  continue;
1288  }
1289  // If this is a forward protocol declaration, get its definition.
1290  if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1291  PDecl = PDecl->getDefinition();
1292 
1293  // For an objc container, delay protocol reference checking until after we
1294  // can set the objc decl as the availability context, otherwise check now.
1295  if (!ForObjCContainer) {
1296  (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1297  }
1298 
1299  // If this is a forward declaration and we are supposed to warn in this
1300  // case, do it.
1301  // FIXME: Recover nicely in the hidden case.
1302  ObjCProtocolDecl *UndefinedProtocol;
1303 
1304  if (WarnOnDeclarations &&
1305  NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1306  Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1307  Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1308  << UndefinedProtocol;
1309  }
1310  Protocols.push_back(PDecl);
1311  }
1312 }
1313 
1314 namespace {
1315 // Callback to only accept typo corrections that are either
1316 // Objective-C protocols or valid Objective-C type arguments.
1317 class ObjCTypeArgOrProtocolValidatorCCC : public CorrectionCandidateCallback {
1319  Sema::LookupNameKind LookupKind;
1320  public:
1321  ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1322  Sema::LookupNameKind lookupKind)
1323  : Context(context), LookupKind(lookupKind) { }
1324 
1325  bool ValidateCandidate(const TypoCorrection &candidate) override {
1326  // If we're allowed to find protocols and we have a protocol, accept it.
1327  if (LookupKind != Sema::LookupOrdinaryName) {
1328  if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1329  return true;
1330  }
1331 
1332  // If we're allowed to find type names and we have one, accept it.
1333  if (LookupKind != Sema::LookupObjCProtocolName) {
1334  // If we have a type declaration, we might accept this result.
1335  if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1336  // If we found a tag declaration outside of C++, skip it. This
1337  // can happy because we look for any name when there is no
1338  // bias to protocol or type names.
1339  if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1340  return false;
1341 
1342  // Make sure the type is something we would accept as a type
1343  // argument.
1344  auto type = Context.getTypeDeclType(typeDecl);
1345  if (type->isObjCObjectPointerType() ||
1346  type->isBlockPointerType() ||
1347  type->isDependentType() ||
1348  type->isObjCObjectType())
1349  return true;
1350 
1351  return false;
1352  }
1353 
1354  // If we have an Objective-C class type, accept it; there will
1355  // be another fix to add the '*'.
1356  if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1357  return true;
1358 
1359  return false;
1360  }
1361 
1362  return false;
1363  }
1364 };
1365 } // end anonymous namespace
1366 
1368  SourceLocation ProtocolLoc,
1369  IdentifierInfo *TypeArgId,
1370  SourceLocation TypeArgLoc,
1371  bool SelectProtocolFirst) {
1372  Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1373  << SelectProtocolFirst << TypeArgId << ProtocolId
1374  << SourceRange(ProtocolLoc);
1375 }
1376 
1378  Scope *S,
1379  ParsedType baseType,
1380  SourceLocation lAngleLoc,
1381  ArrayRef<IdentifierInfo *> identifiers,
1382  ArrayRef<SourceLocation> identifierLocs,
1383  SourceLocation rAngleLoc,
1384  SourceLocation &typeArgsLAngleLoc,
1385  SmallVectorImpl<ParsedType> &typeArgs,
1386  SourceLocation &typeArgsRAngleLoc,
1387  SourceLocation &protocolLAngleLoc,
1388  SmallVectorImpl<Decl *> &protocols,
1389  SourceLocation &protocolRAngleLoc,
1390  bool warnOnIncompleteProtocols) {
1391  // Local function that updates the declaration specifiers with
1392  // protocol information.
1393  unsigned numProtocolsResolved = 0;
1394  auto resolvedAsProtocols = [&] {
1395  assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1396 
1397  // Determine whether the base type is a parameterized class, in
1398  // which case we want to warn about typos such as
1399  // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1400  ObjCInterfaceDecl *baseClass = nullptr;
1401  QualType base = GetTypeFromParser(baseType, nullptr);
1402  bool allAreTypeNames = false;
1403  SourceLocation firstClassNameLoc;
1404  if (!base.isNull()) {
1405  if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1406  baseClass = objcObjectType->getInterface();
1407  if (baseClass) {
1408  if (auto typeParams = baseClass->getTypeParamList()) {
1409  if (typeParams->size() == numProtocolsResolved) {
1410  // Note that we should be looking for type names, too.
1411  allAreTypeNames = true;
1412  }
1413  }
1414  }
1415  }
1416  }
1417 
1418  for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1419  ObjCProtocolDecl *&proto
1420  = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1421  // For an objc container, delay protocol reference checking until after we
1422  // can set the objc decl as the availability context, otherwise check now.
1423  if (!warnOnIncompleteProtocols) {
1424  (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1425  }
1426 
1427  // If this is a forward protocol declaration, get its definition.
1428  if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1429  proto = proto->getDefinition();
1430 
1431  // If this is a forward declaration and we are supposed to warn in this
1432  // case, do it.
1433  // FIXME: Recover nicely in the hidden case.
1434  ObjCProtocolDecl *forwardDecl = nullptr;
1435  if (warnOnIncompleteProtocols &&
1436  NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1437  Diag(identifierLocs[i], diag::warn_undef_protocolref)
1438  << proto->getDeclName();
1439  Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1440  << forwardDecl;
1441  }
1442 
1443  // If everything this far has been a type name (and we care
1444  // about such things), check whether this name refers to a type
1445  // as well.
1446  if (allAreTypeNames) {
1447  if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1448  LookupOrdinaryName)) {
1449  if (isa<ObjCInterfaceDecl>(decl)) {
1450  if (firstClassNameLoc.isInvalid())
1451  firstClassNameLoc = identifierLocs[i];
1452  } else if (!isa<TypeDecl>(decl)) {
1453  // Not a type.
1454  allAreTypeNames = false;
1455  }
1456  } else {
1457  allAreTypeNames = false;
1458  }
1459  }
1460  }
1461 
1462  // All of the protocols listed also have type names, and at least
1463  // one is an Objective-C class name. Check whether all of the
1464  // protocol conformances are declared by the base class itself, in
1465  // which case we warn.
1466  if (allAreTypeNames && firstClassNameLoc.isValid()) {
1467  llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1468  Context.CollectInheritedProtocols(baseClass, knownProtocols);
1469  bool allProtocolsDeclared = true;
1470  for (auto proto : protocols) {
1471  if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1472  allProtocolsDeclared = false;
1473  break;
1474  }
1475  }
1476 
1477  if (allProtocolsDeclared) {
1478  Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1479  << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1480  << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1481  " *");
1482  }
1483  }
1484 
1485  protocolLAngleLoc = lAngleLoc;
1486  protocolRAngleLoc = rAngleLoc;
1487  assert(protocols.size() == identifierLocs.size());
1488  };
1489 
1490  // Attempt to resolve all of the identifiers as protocols.
1491  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1492  ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1493  protocols.push_back(proto);
1494  if (proto)
1495  ++numProtocolsResolved;
1496  }
1497 
1498  // If all of the names were protocols, these were protocol qualifiers.
1499  if (numProtocolsResolved == identifiers.size())
1500  return resolvedAsProtocols();
1501 
1502  // Attempt to resolve all of the identifiers as type names or
1503  // Objective-C class names. The latter is technically ill-formed,
1504  // but is probably something like \c NSArray<NSView *> missing the
1505  // \c*.
1506  typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1508  unsigned numTypeDeclsResolved = 0;
1509  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1510  NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1512  if (!decl) {
1513  typeDecls.push_back(TypeOrClassDecl());
1514  continue;
1515  }
1516 
1517  if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1518  typeDecls.push_back(typeDecl);
1519  ++numTypeDeclsResolved;
1520  continue;
1521  }
1522 
1523  if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1524  typeDecls.push_back(objcClass);
1525  ++numTypeDeclsResolved;
1526  continue;
1527  }
1528 
1529  typeDecls.push_back(TypeOrClassDecl());
1530  }
1531 
1532  AttributeFactory attrFactory;
1533 
1534  // Local function that forms a reference to the given type or
1535  // Objective-C class declaration.
1536  auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1537  -> TypeResult {
1538  // Form declaration specifiers. They simply refer to the type.
1539  DeclSpec DS(attrFactory);
1540  const char* prevSpec; // unused
1541  unsigned diagID; // unused
1542  QualType type;
1543  if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1544  type = Context.getTypeDeclType(actualTypeDecl);
1545  else
1546  type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1547  TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1548  ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1549  DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1550  parsedType, Context.getPrintingPolicy());
1551  // Use the identifier location for the type source range.
1552  DS.SetRangeStart(loc);
1553  DS.SetRangeEnd(loc);
1554 
1555  // Form the declarator.
1557 
1558  // If we have a typedef of an Objective-C class type that is missing a '*',
1559  // add the '*'.
1560  if (type->getAs<ObjCInterfaceType>()) {
1561  SourceLocation starLoc = getLocForEndOfToken(loc);
1562  D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
1563  SourceLocation(),
1564  SourceLocation(),
1565  SourceLocation(),
1566  SourceLocation(),
1567  SourceLocation()),
1568  starLoc);
1569 
1570  // Diagnose the missing '*'.
1571  Diag(loc, diag::err_objc_type_arg_missing_star)
1572  << type
1573  << FixItHint::CreateInsertion(starLoc, " *");
1574  }
1575 
1576  // Convert this to a type.
1577  return ActOnTypeName(S, D);
1578  };
1579 
1580  // Local function that updates the declaration specifiers with
1581  // type argument information.
1582  auto resolvedAsTypeDecls = [&] {
1583  // We did not resolve these as protocols.
1584  protocols.clear();
1585 
1586  assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1587  // Map type declarations to type arguments.
1588  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1589  // Map type reference to a type.
1590  TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1591  if (!type.isUsable()) {
1592  typeArgs.clear();
1593  return;
1594  }
1595 
1596  typeArgs.push_back(type.get());
1597  }
1598 
1599  typeArgsLAngleLoc = lAngleLoc;
1600  typeArgsRAngleLoc = rAngleLoc;
1601  };
1602 
1603  // If all of the identifiers can be resolved as type names or
1604  // Objective-C class names, we have type arguments.
1605  if (numTypeDeclsResolved == identifiers.size())
1606  return resolvedAsTypeDecls();
1607 
1608  // Error recovery: some names weren't found, or we have a mix of
1609  // type and protocol names. Go resolve all of the unresolved names
1610  // and complain if we can't find a consistent answer.
1611  LookupNameKind lookupKind = LookupAnyName;
1612  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1613  // If we already have a protocol or type. Check whether it is the
1614  // right thing.
1615  if (protocols[i] || typeDecls[i]) {
1616  // If we haven't figured out whether we want types or protocols
1617  // yet, try to figure it out from this name.
1618  if (lookupKind == LookupAnyName) {
1619  // If this name refers to both a protocol and a type (e.g., \c
1620  // NSObject), don't conclude anything yet.
1621  if (protocols[i] && typeDecls[i])
1622  continue;
1623 
1624  // Otherwise, let this name decide whether we'll be correcting
1625  // toward types or protocols.
1626  lookupKind = protocols[i] ? LookupObjCProtocolName
1628  continue;
1629  }
1630 
1631  // If we want protocols and we have a protocol, there's nothing
1632  // more to do.
1633  if (lookupKind == LookupObjCProtocolName && protocols[i])
1634  continue;
1635 
1636  // If we want types and we have a type declaration, there's
1637  // nothing more to do.
1638  if (lookupKind == LookupOrdinaryName && typeDecls[i])
1639  continue;
1640 
1641  // We have a conflict: some names refer to protocols and others
1642  // refer to types.
1643  DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1644  identifiers[i], identifierLocs[i],
1645  protocols[i] != nullptr);
1646 
1647  protocols.clear();
1648  typeArgs.clear();
1649  return;
1650  }
1651 
1652  // Perform typo correction on the name.
1653  TypoCorrection corrected = CorrectTypo(
1654  DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1655  nullptr,
1656  llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(Context,
1657  lookupKind),
1659  if (corrected) {
1660  // Did we find a protocol?
1661  if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1662  diagnoseTypo(corrected,
1663  PDiag(diag::err_undeclared_protocol_suggest)
1664  << identifiers[i]);
1665  lookupKind = LookupObjCProtocolName;
1666  protocols[i] = proto;
1667  ++numProtocolsResolved;
1668  continue;
1669  }
1670 
1671  // Did we find a type?
1672  if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1673  diagnoseTypo(corrected,
1674  PDiag(diag::err_unknown_typename_suggest)
1675  << identifiers[i]);
1676  lookupKind = LookupOrdinaryName;
1677  typeDecls[i] = typeDecl;
1678  ++numTypeDeclsResolved;
1679  continue;
1680  }
1681 
1682  // Did we find an Objective-C class?
1683  if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1684  diagnoseTypo(corrected,
1685  PDiag(diag::err_unknown_type_or_class_name_suggest)
1686  << identifiers[i] << true);
1687  lookupKind = LookupOrdinaryName;
1688  typeDecls[i] = objcClass;
1689  ++numTypeDeclsResolved;
1690  continue;
1691  }
1692  }
1693 
1694  // We couldn't find anything.
1695  Diag(identifierLocs[i],
1696  (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1697  : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1698  : diag::err_unknown_typename))
1699  << identifiers[i];
1700  protocols.clear();
1701  typeArgs.clear();
1702  return;
1703  }
1704 
1705  // If all of the names were (corrected to) protocols, these were
1706  // protocol qualifiers.
1707  if (numProtocolsResolved == identifiers.size())
1708  return resolvedAsProtocols();
1709 
1710  // Otherwise, all of the names were (corrected to) types.
1711  assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1712  return resolvedAsTypeDecls();
1713 }
1714 
1715 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1716 /// a class method in its extension.
1717 ///
1719  ObjCInterfaceDecl *ID) {
1720  if (!ID)
1721  return; // Possibly due to previous error
1722 
1723  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1724  for (auto *MD : ID->methods())
1725  MethodMap[MD->getSelector()] = MD;
1726 
1727  if (MethodMap.empty())
1728  return;
1729  for (const auto *Method : CAT->methods()) {
1730  const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1731  if (PrevMethod &&
1732  (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1733  !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1734  Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1735  << Method->getDeclName();
1736  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1737  }
1738  }
1739 }
1740 
1741 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1744  ArrayRef<IdentifierLocPair> IdentList,
1745  const ParsedAttributesView &attrList) {
1746  SmallVector<Decl *, 8> DeclsInGroup;
1747  for (const IdentifierLocPair &IdentPair : IdentList) {
1748  IdentifierInfo *Ident = IdentPair.first;
1749  ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1751  ObjCProtocolDecl *PDecl
1753  IdentPair.second, AtProtocolLoc,
1754  PrevDecl);
1755 
1756  PushOnScopeChains(PDecl, TUScope);
1757  CheckObjCDeclScope(PDecl);
1758 
1759  ProcessDeclAttributeList(TUScope, PDecl, attrList);
1760  AddPragmaAttributes(TUScope, PDecl);
1761 
1762  if (PrevDecl)
1763  mergeDeclAttributes(PDecl, PrevDecl);
1764 
1765  DeclsInGroup.push_back(PDecl);
1766  }
1767 
1768  return BuildDeclaratorGroup(DeclsInGroup);
1769 }
1770 
1772  SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1773  SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1774  IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1775  Decl *const *ProtoRefs, unsigned NumProtoRefs,
1776  const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1777  const ParsedAttributesView &AttrList) {
1778  ObjCCategoryDecl *CDecl;
1779  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1780 
1781  /// Check that class of this category is already completely declared.
1782 
1783  if (!IDecl
1784  || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1785  diag::err_category_forward_interface,
1786  CategoryName == nullptr)) {
1787  // Create an invalid ObjCCategoryDecl to serve as context for
1788  // the enclosing method declarations. We mark the decl invalid
1789  // to make it clear that this isn't a valid AST.
1790  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1791  ClassLoc, CategoryLoc, CategoryName,
1792  IDecl, typeParamList);
1793  CDecl->setInvalidDecl();
1794  CurContext->addDecl(CDecl);
1795 
1796  if (!IDecl)
1797  Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1798  return ActOnObjCContainerStartDefinition(CDecl);
1799  }
1800 
1801  if (!CategoryName && IDecl->getImplementation()) {
1802  Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1803  Diag(IDecl->getImplementation()->getLocation(),
1804  diag::note_implementation_declared);
1805  }
1806 
1807  if (CategoryName) {
1808  /// Check for duplicate interface declaration for this category
1810  = IDecl->FindCategoryDeclaration(CategoryName)) {
1811  // Class extensions can be declared multiple times, categories cannot.
1812  Diag(CategoryLoc, diag::warn_dup_category_def)
1813  << ClassName << CategoryName;
1814  Diag(Previous->getLocation(), diag::note_previous_definition);
1815  }
1816  }
1817 
1818  // If we have a type parameter list, check it.
1819  if (typeParamList) {
1820  if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1821  if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1822  CategoryName
1824  : TypeParamListContext::Extension))
1825  typeParamList = nullptr;
1826  } else {
1827  Diag(typeParamList->getLAngleLoc(),
1828  diag::err_objc_parameterized_category_nonclass)
1829  << (CategoryName != nullptr)
1830  << ClassName
1831  << typeParamList->getSourceRange();
1832 
1833  typeParamList = nullptr;
1834  }
1835  }
1836 
1837  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1838  ClassLoc, CategoryLoc, CategoryName, IDecl,
1839  typeParamList);
1840  // FIXME: PushOnScopeChains?
1841  CurContext->addDecl(CDecl);
1842 
1843  // Process the attributes before looking at protocols to ensure that the
1844  // availability attribute is attached to the category to provide availability
1845  // checking for protocol uses.
1846  ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1847  AddPragmaAttributes(TUScope, CDecl);
1848 
1849  if (NumProtoRefs) {
1850  diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1851  NumProtoRefs, ProtoLocs);
1852  CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1853  ProtoLocs, Context);
1854  // Protocols in the class extension belong to the class.
1855  if (CDecl->IsClassExtension())
1856  IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1857  NumProtoRefs, Context);
1858  }
1859 
1860  CheckObjCDeclScope(CDecl);
1861  return ActOnObjCContainerStartDefinition(CDecl);
1862 }
1863 
1864 /// ActOnStartCategoryImplementation - Perform semantic checks on the
1865 /// category implementation declaration and build an ObjCCategoryImplDecl
1866 /// object.
1868  SourceLocation AtCatImplLoc,
1869  IdentifierInfo *ClassName, SourceLocation ClassLoc,
1870  IdentifierInfo *CatName, SourceLocation CatLoc) {
1871  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1872  ObjCCategoryDecl *CatIDecl = nullptr;
1873  if (IDecl && IDecl->hasDefinition()) {
1874  CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1875  if (!CatIDecl) {
1876  // Category @implementation with no corresponding @interface.
1877  // Create and install one.
1878  CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1879  ClassLoc, CatLoc,
1880  CatName, IDecl,
1881  /*typeParamList=*/nullptr);
1882  CatIDecl->setImplicit();
1883  }
1884  }
1885 
1886  ObjCCategoryImplDecl *CDecl =
1888  ClassLoc, AtCatImplLoc, CatLoc);
1889  /// Check that class of this category is already completely declared.
1890  if (!IDecl) {
1891  Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1892  CDecl->setInvalidDecl();
1893  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1894  diag::err_undef_interface)) {
1895  CDecl->setInvalidDecl();
1896  }
1897 
1898  // FIXME: PushOnScopeChains?
1899  CurContext->addDecl(CDecl);
1900 
1901  // If the interface has the objc_runtime_visible attribute, we
1902  // cannot implement a category for it.
1903  if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1904  Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1905  << IDecl->getDeclName();
1906  }
1907 
1908  /// Check that CatName, category name, is not used in another implementation.
1909  if (CatIDecl) {
1910  if (CatIDecl->getImplementation()) {
1911  Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1912  << CatName;
1913  Diag(CatIDecl->getImplementation()->getLocation(),
1914  diag::note_previous_definition);
1915  CDecl->setInvalidDecl();
1916  } else {
1917  CatIDecl->setImplementation(CDecl);
1918  // Warn on implementating category of deprecated class under
1919  // -Wdeprecated-implementations flag.
1920  DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1921  CDecl->getLocation());
1922  }
1923  }
1924 
1925  CheckObjCDeclScope(CDecl);
1926  return ActOnObjCContainerStartDefinition(CDecl);
1927 }
1928 
1930  SourceLocation AtClassImplLoc,
1931  IdentifierInfo *ClassName, SourceLocation ClassLoc,
1932  IdentifierInfo *SuperClassname,
1933  SourceLocation SuperClassLoc) {
1934  ObjCInterfaceDecl *IDecl = nullptr;
1935  // Check for another declaration kind with the same name.
1936  NamedDecl *PrevDecl
1937  = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1939  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1940  Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1941  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1942  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1943  // FIXME: This will produce an error if the definition of the interface has
1944  // been imported from a module but is not visible.
1946  diag::warn_undef_interface);
1947  } else {
1948  // We did not find anything with the name ClassName; try to correct for
1949  // typos in the class name.
1950  TypoCorrection Corrected = CorrectTypo(
1951  DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
1952  nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
1953  if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1954  // Suggest the (potentially) correct interface name. Don't provide a
1955  // code-modification hint or use the typo name for recovery, because
1956  // this is just a warning. The program may actually be correct.
1957  diagnoseTypo(Corrected,
1958  PDiag(diag::warn_undef_interface_suggest) << ClassName,
1959  /*ErrorRecovery*/false);
1960  } else {
1961  Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1962  }
1963  }
1964 
1965  // Check that super class name is valid class name
1966  ObjCInterfaceDecl *SDecl = nullptr;
1967  if (SuperClassname) {
1968  // Check if a different kind of symbol declared in this scope.
1969  PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1971  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1972  Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1973  << SuperClassname;
1974  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1975  } else {
1976  SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1977  if (SDecl && !SDecl->hasDefinition())
1978  SDecl = nullptr;
1979  if (!SDecl)
1980  Diag(SuperClassLoc, diag::err_undef_superclass)
1981  << SuperClassname << ClassName;
1982  else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1983  // This implementation and its interface do not have the same
1984  // super class.
1985  Diag(SuperClassLoc, diag::err_conflicting_super_class)
1986  << SDecl->getDeclName();
1987  Diag(SDecl->getLocation(), diag::note_previous_definition);
1988  }
1989  }
1990  }
1991 
1992  if (!IDecl) {
1993  // Legacy case of @implementation with no corresponding @interface.
1994  // Build, chain & install the interface decl into the identifier.
1995 
1996  // FIXME: Do we support attributes on the @implementation? If so we should
1997  // copy them over.
1998  IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1999  ClassName, /*typeParamList=*/nullptr,
2000  /*PrevDecl=*/nullptr, ClassLoc,
2001  true);
2002  AddPragmaAttributes(TUScope, IDecl);
2003  IDecl->startDefinition();
2004  if (SDecl) {
2007  SuperClassLoc));
2008  IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2009  } else {
2010  IDecl->setEndOfDefinitionLoc(ClassLoc);
2011  }
2012 
2013  PushOnScopeChains(IDecl, TUScope);
2014  } else {
2015  // Mark the interface as being completed, even if it was just as
2016  // @class ....;
2017  // declaration; the user cannot reopen it.
2018  if (!IDecl->hasDefinition())
2019  IDecl->startDefinition();
2020  }
2021 
2022  ObjCImplementationDecl* IMPDecl =
2024  ClassLoc, AtClassImplLoc, SuperClassLoc);
2025 
2026  if (CheckObjCDeclScope(IMPDecl))
2027  return ActOnObjCContainerStartDefinition(IMPDecl);
2028 
2029  // Check that there is no duplicate implementation of this class.
2030  if (IDecl->getImplementation()) {
2031  // FIXME: Don't leak everything!
2032  Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2033  Diag(IDecl->getImplementation()->getLocation(),
2034  diag::note_previous_definition);
2035  IMPDecl->setInvalidDecl();
2036  } else { // add it to the list.
2037  IDecl->setImplementation(IMPDecl);
2038  PushOnScopeChains(IMPDecl, TUScope);
2039  // Warn on implementating deprecated class under
2040  // -Wdeprecated-implementations flag.
2041  DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2042  }
2043 
2044  // If the superclass has the objc_runtime_visible attribute, we
2045  // cannot implement a subclass of it.
2046  if (IDecl->getSuperClass() &&
2047  IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2048  Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2049  << IDecl->getDeclName()
2050  << IDecl->getSuperClass()->getDeclName();
2051  }
2052 
2053  return ActOnObjCContainerStartDefinition(IMPDecl);
2054 }
2055 
2058  SmallVector<Decl *, 64> DeclsInGroup;
2059  DeclsInGroup.reserve(Decls.size() + 1);
2060 
2061  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2062  Decl *Dcl = Decls[i];
2063  if (!Dcl)
2064  continue;
2065  if (Dcl->getDeclContext()->isFileContext())
2067  DeclsInGroup.push_back(Dcl);
2068  }
2069 
2070  DeclsInGroup.push_back(ObjCImpDecl);
2071 
2072  return BuildDeclaratorGroup(DeclsInGroup);
2073 }
2074 
2076  ObjCIvarDecl **ivars, unsigned numIvars,
2077  SourceLocation RBrace) {
2078  assert(ImpDecl && "missing implementation decl");
2079  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2080  if (!IDecl)
2081  return;
2082  /// Check case of non-existing \@interface decl.
2083  /// (legacy objective-c \@implementation decl without an \@interface decl).
2084  /// Add implementations's ivar to the synthesize class's ivar list.
2085  if (IDecl->isImplicitInterfaceDecl()) {
2086  IDecl->setEndOfDefinitionLoc(RBrace);
2087  // Add ivar's to class's DeclContext.
2088  for (unsigned i = 0, e = numIvars; i != e; ++i) {
2089  ivars[i]->setLexicalDeclContext(ImpDecl);
2090  IDecl->makeDeclVisibleInContext(ivars[i]);
2091  ImpDecl->addDecl(ivars[i]);
2092  }
2093 
2094  return;
2095  }
2096  // If implementation has empty ivar list, just return.
2097  if (numIvars == 0)
2098  return;
2099 
2100  assert(ivars && "missing @implementation ivars");
2102  if (ImpDecl->getSuperClass())
2103  Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2104  for (unsigned i = 0; i < numIvars; i++) {
2105  ObjCIvarDecl* ImplIvar = ivars[i];
2106  if (const ObjCIvarDecl *ClsIvar =
2107  IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2108  Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2109  Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2110  continue;
2111  }
2112  // Check class extensions (unnamed categories) for duplicate ivars.
2113  for (const auto *CDecl : IDecl->visible_extensions()) {
2114  if (const ObjCIvarDecl *ClsExtIvar =
2115  CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2116  Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2117  Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2118  continue;
2119  }
2120  }
2121  // Instance ivar to Implementation's DeclContext.
2122  ImplIvar->setLexicalDeclContext(ImpDecl);
2123  IDecl->makeDeclVisibleInContext(ImplIvar);
2124  ImpDecl->addDecl(ImplIvar);
2125  }
2126  return;
2127  }
2128  // Check interface's Ivar list against those in the implementation.
2129  // names and types must match.
2130  //
2131  unsigned j = 0;
2133  IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2134  for (; numIvars > 0 && IVI != IVE; ++IVI) {
2135  ObjCIvarDecl* ImplIvar = ivars[j++];
2136  ObjCIvarDecl* ClsIvar = *IVI;
2137  assert (ImplIvar && "missing implementation ivar");
2138  assert (ClsIvar && "missing class ivar");
2139 
2140  // First, make sure the types match.
2141  if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2142  Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2143  << ImplIvar->getIdentifier()
2144  << ImplIvar->getType() << ClsIvar->getType();
2145  Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2146  } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2147  ImplIvar->getBitWidthValue(Context) !=
2148  ClsIvar->getBitWidthValue(Context)) {
2149  Diag(ImplIvar->getBitWidth()->getLocStart(),
2150  diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
2151  Diag(ClsIvar->getBitWidth()->getLocStart(),
2152  diag::note_previous_definition);
2153  }
2154  // Make sure the names are identical.
2155  if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2156  Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2157  << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2158  Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2159  }
2160  --numIvars;
2161  }
2162 
2163  if (numIvars > 0)
2164  Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2165  else if (IVI != IVE)
2166  Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2167 }
2168 
2169 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2170  ObjCMethodDecl *method,
2171  bool &IncompleteImpl,
2172  unsigned DiagID,
2173  NamedDecl *NeededFor = nullptr) {
2174  // No point warning no definition of method which is 'unavailable'.
2175  if (method->getAvailability() == AR_Unavailable)
2176  return;
2177 
2178  // FIXME: For now ignore 'IncompleteImpl'.
2179  // Previously we grouped all unimplemented methods under a single
2180  // warning, but some users strongly voiced that they would prefer
2181  // separate warnings. We will give that approach a try, as that
2182  // matches what we do with protocols.
2183  {
2184  const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2185  B << method;
2186  if (NeededFor)
2187  B << NeededFor;
2188  }
2189 
2190  // Issue a note to the original declaration.
2191  SourceLocation MethodLoc = method->getLocStart();
2192  if (MethodLoc.isValid())
2193  S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2194 }
2195 
2196 /// Determines if type B can be substituted for type A. Returns true if we can
2197 /// guarantee that anything that the user will do to an object of type A can
2198 /// also be done to an object of type B. This is trivially true if the two
2199 /// types are the same, or if B is a subclass of A. It becomes more complex
2200 /// in cases where protocols are involved.
2201 ///
2202 /// Object types in Objective-C describe the minimum requirements for an
2203 /// object, rather than providing a complete description of a type. For
2204 /// example, if A is a subclass of B, then B* may refer to an instance of A.
2205 /// The principle of substitutability means that we may use an instance of A
2206 /// anywhere that we may use an instance of B - it will implement all of the
2207 /// ivars of B and all of the methods of B.
2208 ///
2209 /// This substitutability is important when type checking methods, because
2210 /// the implementation may have stricter type definitions than the interface.
2211 /// The interface specifies minimum requirements, but the implementation may
2212 /// have more accurate ones. For example, a method may privately accept
2213 /// instances of B, but only publish that it accepts instances of A. Any
2214 /// object passed to it will be type checked against B, and so will implicitly
2215 /// by a valid A*. Similarly, a method may return a subclass of the class that
2216 /// it is declared as returning.
2217 ///
2218 /// This is most important when considering subclassing. A method in a
2219 /// subclass must accept any object as an argument that its superclass's
2220 /// implementation accepts. It may, however, accept a more general type
2221 /// without breaking substitutability (i.e. you can still use the subclass
2222 /// anywhere that you can use the superclass, but not vice versa). The
2223 /// converse requirement applies to return types: the return type for a
2224 /// subclass method must be a valid object of the kind that the superclass
2225 /// advertises, but it may be specified more accurately. This avoids the need
2226 /// for explicit down-casting by callers.
2227 ///
2228 /// Note: This is a stricter requirement than for assignment.
2230  const ObjCObjectPointerType *A,
2231  const ObjCObjectPointerType *B,
2232  bool rejectId) {
2233  // Reject a protocol-unqualified id.
2234  if (rejectId && B->isObjCIdType()) return false;
2235 
2236  // If B is a qualified id, then A must also be a qualified id and it must
2237  // implement all of the protocols in B. It may not be a qualified class.
2238  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2239  // stricter definition so it is not substitutable for id<A>.
2240  if (B->isObjCQualifiedIdType()) {
2241  return A->isObjCQualifiedIdType() &&
2243  QualType(B,0),
2244  false);
2245  }
2246 
2247  /*
2248  // id is a special type that bypasses type checking completely. We want a
2249  // warning when it is used in one place but not another.
2250  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2251 
2252 
2253  // If B is a qualified id, then A must also be a qualified id (which it isn't
2254  // if we've got this far)
2255  if (B->isObjCQualifiedIdType()) return false;
2256  */
2257 
2258  // Now we know that A and B are (potentially-qualified) class types. The
2259  // normal rules for assignment apply.
2260  return Context.canAssignObjCInterfaces(A, B);
2261 }
2262 
2264  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2265 }
2266 
2267 /// Determine whether two set of Objective-C declaration qualifiers conflict.
2270  return (x & ~Decl::OBJC_TQ_CSNullability) !=
2271  (y & ~Decl::OBJC_TQ_CSNullability);
2272 }
2273 
2275  ObjCMethodDecl *MethodImpl,
2276  ObjCMethodDecl *MethodDecl,
2277  bool IsProtocolMethodDecl,
2278  bool IsOverridingMode,
2279  bool Warn) {
2280  if (IsProtocolMethodDecl &&
2282  MethodImpl->getObjCDeclQualifier())) {
2283  if (Warn) {
2284  S.Diag(MethodImpl->getLocation(),
2285  (IsOverridingMode
2286  ? diag::warn_conflicting_overriding_ret_type_modifiers
2287  : diag::warn_conflicting_ret_type_modifiers))
2288  << MethodImpl->getDeclName()
2289  << MethodImpl->getReturnTypeSourceRange();
2290  S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2291  << MethodDecl->getReturnTypeSourceRange();
2292  }
2293  else
2294  return false;
2295  }
2296  if (Warn && IsOverridingMode &&
2297  !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2299  MethodDecl->getReturnType(),
2300  false)) {
2301  auto nullabilityMethodImpl =
2302  *MethodImpl->getReturnType()->getNullability(S.Context);
2303  auto nullabilityMethodDecl =
2304  *MethodDecl->getReturnType()->getNullability(S.Context);
2305  S.Diag(MethodImpl->getLocation(),
2306  diag::warn_conflicting_nullability_attr_overriding_ret_types)
2308  nullabilityMethodImpl,
2310  != 0))
2312  nullabilityMethodDecl,
2314  != 0));
2315  S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2316  }
2317 
2318  if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2319  MethodDecl->getReturnType()))
2320  return true;
2321  if (!Warn)
2322  return false;
2323 
2324  unsigned DiagID =
2325  IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2326  : diag::warn_conflicting_ret_types;
2327 
2328  // Mismatches between ObjC pointers go into a different warning
2329  // category, and sometimes they're even completely whitelisted.
2330  if (const ObjCObjectPointerType *ImplPtrTy =
2331  MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2332  if (const ObjCObjectPointerType *IfacePtrTy =
2333  MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2334  // Allow non-matching return types as long as they don't violate
2335  // the principle of substitutability. Specifically, we permit
2336  // return types that are subclasses of the declared return type,
2337  // or that are more-qualified versions of the declared type.
2338  if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2339  return false;
2340 
2341  DiagID =
2342  IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2343  : diag::warn_non_covariant_ret_types;
2344  }
2345  }
2346 
2347  S.Diag(MethodImpl->getLocation(), DiagID)
2348  << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2349  << MethodImpl->getReturnType()
2350  << MethodImpl->getReturnTypeSourceRange();
2351  S.Diag(MethodDecl->getLocation(), IsOverridingMode
2352  ? diag::note_previous_declaration
2353  : diag::note_previous_definition)
2354  << MethodDecl->getReturnTypeSourceRange();
2355  return false;
2356 }
2357 
2359  ObjCMethodDecl *MethodImpl,
2360  ObjCMethodDecl *MethodDecl,
2361  ParmVarDecl *ImplVar,
2362  ParmVarDecl *IfaceVar,
2363  bool IsProtocolMethodDecl,
2364  bool IsOverridingMode,
2365  bool Warn) {
2366  if (IsProtocolMethodDecl &&
2368  IfaceVar->getObjCDeclQualifier())) {
2369  if (Warn) {
2370  if (IsOverridingMode)
2371  S.Diag(ImplVar->getLocation(),
2372  diag::warn_conflicting_overriding_param_modifiers)
2373  << getTypeRange(ImplVar->getTypeSourceInfo())
2374  << MethodImpl->getDeclName();
2375  else S.Diag(ImplVar->getLocation(),
2376  diag::warn_conflicting_param_modifiers)
2377  << getTypeRange(ImplVar->getTypeSourceInfo())
2378  << MethodImpl->getDeclName();
2379  S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2380  << getTypeRange(IfaceVar->getTypeSourceInfo());
2381  }
2382  else
2383  return false;
2384  }
2385 
2386  QualType ImplTy = ImplVar->getType();
2387  QualType IfaceTy = IfaceVar->getType();
2388  if (Warn && IsOverridingMode &&
2389  !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2390  !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2391  S.Diag(ImplVar->getLocation(),
2392  diag::warn_conflicting_nullability_attr_overriding_param_types)
2394  *ImplTy->getNullability(S.Context),
2396  != 0))
2398  *IfaceTy->getNullability(S.Context),
2400  != 0));
2401  S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2402  }
2403  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2404  return true;
2405 
2406  if (!Warn)
2407  return false;
2408  unsigned DiagID =
2409  IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2410  : diag::warn_conflicting_param_types;
2411 
2412  // Mismatches between ObjC pointers go into a different warning
2413  // category, and sometimes they're even completely whitelisted.
2414  if (const ObjCObjectPointerType *ImplPtrTy =
2415  ImplTy->getAs<ObjCObjectPointerType>()) {
2416  if (const ObjCObjectPointerType *IfacePtrTy =
2417  IfaceTy->getAs<ObjCObjectPointerType>()) {
2418  // Allow non-matching argument types as long as they don't
2419  // violate the principle of substitutability. Specifically, the
2420  // implementation must accept any objects that the superclass
2421  // accepts, however it may also accept others.
2422  if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2423  return false;
2424 
2425  DiagID =
2426  IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2427  : diag::warn_non_contravariant_param_types;
2428  }
2429  }
2430 
2431  S.Diag(ImplVar->getLocation(), DiagID)
2432  << getTypeRange(ImplVar->getTypeSourceInfo())
2433  << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2434  S.Diag(IfaceVar->getLocation(),
2435  (IsOverridingMode ? diag::note_previous_declaration
2436  : diag::note_previous_definition))
2437  << getTypeRange(IfaceVar->getTypeSourceInfo());
2438  return false;
2439 }
2440 
2441 /// In ARC, check whether the conventional meanings of the two methods
2442 /// match. If they don't, it's a hard error.
2444  ObjCMethodDecl *decl) {
2445  ObjCMethodFamily implFamily = impl->getMethodFamily();
2446  ObjCMethodFamily declFamily = decl->getMethodFamily();
2447  if (implFamily == declFamily) return false;
2448 
2449  // Since conventions are sorted by selector, the only possibility is
2450  // that the types differ enough to cause one selector or the other
2451  // to fall out of the family.
2452  assert(implFamily == OMF_None || declFamily == OMF_None);
2453 
2454  // No further diagnostics required on invalid declarations.
2455  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2456 
2457  const ObjCMethodDecl *unmatched = impl;
2458  ObjCMethodFamily family = declFamily;
2459  unsigned errorID = diag::err_arc_lost_method_convention;
2460  unsigned noteID = diag::note_arc_lost_method_convention;
2461  if (declFamily == OMF_None) {
2462  unmatched = decl;
2463  family = implFamily;
2464  errorID = diag::err_arc_gained_method_convention;
2465  noteID = diag::note_arc_gained_method_convention;
2466  }
2467 
2468  // Indexes into a %select clause in the diagnostic.
2469  enum FamilySelector {
2470  F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2471  };
2472  FamilySelector familySelector = FamilySelector();
2473 
2474  switch (family) {
2475  case OMF_None: llvm_unreachable("logic error, no method convention");
2476  case OMF_retain:
2477  case OMF_release:
2478  case OMF_autorelease:
2479  case OMF_dealloc:
2480  case OMF_finalize:
2481  case OMF_retainCount:
2482  case OMF_self:
2483  case OMF_initialize:
2484  case OMF_performSelector:
2485  // Mismatches for these methods don't change ownership
2486  // conventions, so we don't care.
2487  return false;
2488 
2489  case OMF_init: familySelector = F_init; break;
2490  case OMF_alloc: familySelector = F_alloc; break;
2491  case OMF_copy: familySelector = F_copy; break;
2492  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2493  case OMF_new: familySelector = F_new; break;
2494  }
2495 
2496  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2497  ReasonSelector reasonSelector;
2498 
2499  // The only reason these methods don't fall within their families is
2500  // due to unusual result types.
2501  if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2502  reasonSelector = R_UnrelatedReturn;
2503  } else {
2504  reasonSelector = R_NonObjectReturn;
2505  }
2506 
2507  S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2508  S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2509 
2510  return true;
2511 }
2512 
2514  ObjCMethodDecl *MethodDecl,
2515  bool IsProtocolMethodDecl) {
2516  if (getLangOpts().ObjCAutoRefCount &&
2517  checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2518  return;
2519 
2520  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2521  IsProtocolMethodDecl, false,
2522  true);
2523 
2524  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2525  IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2526  EF = MethodDecl->param_end();
2527  IM != EM && IF != EF; ++IM, ++IF) {
2528  CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2529  IsProtocolMethodDecl, false, true);
2530  }
2531 
2532  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2533  Diag(ImpMethodDecl->getLocation(),
2534  diag::warn_conflicting_variadic);
2535  Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2536  }
2537 }
2538 
2540  ObjCMethodDecl *Overridden,
2541  bool IsProtocolMethodDecl) {
2542 
2543  CheckMethodOverrideReturn(*this, Method, Overridden,
2544  IsProtocolMethodDecl, true,
2545  true);
2546 
2547  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2548  IF = Overridden->param_begin(), EM = Method->param_end(),
2549  EF = Overridden->param_end();
2550  IM != EM && IF != EF; ++IM, ++IF) {
2551  CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2552  IsProtocolMethodDecl, true, true);
2553  }
2554 
2555  if (Method->isVariadic() != Overridden->isVariadic()) {
2556  Diag(Method->getLocation(),
2557  diag::warn_conflicting_overriding_variadic);
2558  Diag(Overridden->getLocation(), diag::note_previous_declaration);
2559  }
2560 }
2561 
2562 /// WarnExactTypedMethods - This routine issues a warning if method
2563 /// implementation declaration matches exactly that of its declaration.
2565  ObjCMethodDecl *MethodDecl,
2566  bool IsProtocolMethodDecl) {
2567  // don't issue warning when protocol method is optional because primary
2568  // class is not required to implement it and it is safe for protocol
2569  // to implement it.
2571  return;
2572  // don't issue warning when primary class's method is
2573  // depecated/unavailable.
2574  if (MethodDecl->hasAttr<UnavailableAttr>() ||
2575  MethodDecl->hasAttr<DeprecatedAttr>())
2576  return;
2577 
2578  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2579  IsProtocolMethodDecl, false, false);
2580  if (match)
2581  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2582  IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2583  EF = MethodDecl->param_end();
2584  IM != EM && IF != EF; ++IM, ++IF) {
2585  match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2586  *IM, *IF,
2587  IsProtocolMethodDecl, false, false);
2588  if (!match)
2589  break;
2590  }
2591  if (match)
2592  match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2593  if (match)
2594  match = !(MethodDecl->isClassMethod() &&
2595  MethodDecl->getSelector() == GetNullarySelector("load", Context));
2596 
2597  if (match) {
2598  Diag(ImpMethodDecl->getLocation(),
2599  diag::warn_category_method_impl_match);
2600  Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2601  << MethodDecl->getDeclName();
2602  }
2603 }
2604 
2605 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2606 /// improve the efficiency of selector lookups and type checking by associating
2607 /// with each protocol / interface / category the flattened instance tables. If
2608 /// we used an immutable set to keep the table then it wouldn't add significant
2609 /// memory cost and it would be handy for lookups.
2610 
2612 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2613 
2615  ProtocolNameSet &PNS) {
2616  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2617  PNS.insert(PDecl->getIdentifier());
2618  for (const auto *PI : PDecl->protocols())
2620 }
2621 
2622 /// Recursively populates a set with all conformed protocols in a class
2623 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2624 /// attribute.
2626  ProtocolNameSet &PNS) {
2627  if (!Super)
2628  return;
2629 
2630  for (const auto *I : Super->all_referenced_protocols())
2632 
2634 }
2635 
2636 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
2637 /// Declared in protocol, and those referenced by it.
2639  SourceLocation ImpLoc,
2640  ObjCProtocolDecl *PDecl,
2641  bool& IncompleteImpl,
2642  const Sema::SelectorSet &InsMap,
2643  const Sema::SelectorSet &ClsMap,
2644  ObjCContainerDecl *CDecl,
2645  LazyProtocolNameSet &ProtocolsExplictImpl) {
2646  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2647  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2648  : dyn_cast<ObjCInterfaceDecl>(CDecl);
2649  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2650 
2651  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2652  ObjCInterfaceDecl *NSIDecl = nullptr;
2653 
2654  // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2655  // then we should check if any class in the super class hierarchy also
2656  // conforms to this protocol, either directly or via protocol inheritance.
2657  // If so, we can skip checking this protocol completely because we
2658  // know that a parent class already satisfies this protocol.
2659  //
2660  // Note: we could generalize this logic for all protocols, and merely
2661  // add the limit on looking at the super class chain for just
2662  // specially marked protocols. This may be a good optimization. This
2663  // change is restricted to 'objc_protocol_requires_explicit_implementation'
2664  // protocols for now for controlled evaluation.
2665  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2666  if (!ProtocolsExplictImpl) {
2667  ProtocolsExplictImpl.reset(new ProtocolNameSet);
2668  findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2669  }
2670  if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2671  ProtocolsExplictImpl->end())
2672  return;
2673 
2674  // If no super class conforms to the protocol, we should not search
2675  // for methods in the super class to implicitly satisfy the protocol.
2676  Super = nullptr;
2677  }
2678 
2679  if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2680  // check to see if class implements forwardInvocation method and objects
2681  // of this class are derived from 'NSProxy' so that to forward requests
2682  // from one object to another.
2683  // Under such conditions, which means that every method possible is
2684  // implemented in the class, we should not issue "Method definition not
2685  // found" warnings.
2686  // FIXME: Use a general GetUnarySelector method for this.
2687  IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2688  Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2689  if (InsMap.count(fISelector))
2690  // Is IDecl derived from 'NSProxy'? If so, no instance methods
2691  // need be implemented in the implementation.
2692  NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2693  }
2694 
2695  // If this is a forward protocol declaration, get its definition.
2696  if (!PDecl->isThisDeclarationADefinition() &&
2697  PDecl->getDefinition())
2698  PDecl = PDecl->getDefinition();
2699 
2700  // If a method lookup fails locally we still need to look and see if
2701  // the method was implemented by a base class or an inherited
2702  // protocol. This lookup is slow, but occurs rarely in correct code
2703  // and otherwise would terminate in a warning.
2704 
2705  // check unimplemented instance methods.
2706  if (!NSIDecl)
2707  for (auto *method : PDecl->instance_methods()) {
2708  if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2709  !method->isPropertyAccessor() &&
2710  !InsMap.count(method->getSelector()) &&
2711  (!Super || !Super->lookupMethod(method->getSelector(),
2712  true /* instance */,
2713  false /* shallowCategory */,
2714  true /* followsSuper */,
2715  nullptr /* category */))) {
2716  // If a method is not implemented in the category implementation but
2717  // has been declared in its primary class, superclass,
2718  // or in one of their protocols, no need to issue the warning.
2719  // This is because method will be implemented in the primary class
2720  // or one of its super class implementation.
2721 
2722  // Ugly, but necessary. Method declared in protocol might have
2723  // have been synthesized due to a property declared in the class which
2724  // uses the protocol.
2725  if (ObjCMethodDecl *MethodInClass =
2726  IDecl->lookupMethod(method->getSelector(),
2727  true /* instance */,
2728  true /* shallowCategoryLookup */,
2729  false /* followSuper */))
2730  if (C || MethodInClass->isPropertyAccessor())
2731  continue;
2732  unsigned DIAG = diag::warn_unimplemented_protocol_method;
2733  if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2734  WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2735  PDecl);
2736  }
2737  }
2738  }
2739  // check unimplemented class methods
2740  for (auto *method : PDecl->class_methods()) {
2741  if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2742  !ClsMap.count(method->getSelector()) &&
2743  (!Super || !Super->lookupMethod(method->getSelector(),
2744  false /* class method */,
2745  false /* shallowCategoryLookup */,
2746  true /* followSuper */,
2747  nullptr /* category */))) {
2748  // See above comment for instance method lookups.
2749  if (C && IDecl->lookupMethod(method->getSelector(),
2750  false /* class */,
2751  true /* shallowCategoryLookup */,
2752  false /* followSuper */))
2753  continue;
2754 
2755  unsigned DIAG = diag::warn_unimplemented_protocol_method;
2756  if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2757  WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2758  }
2759  }
2760  }
2761  // Check on this protocols's referenced protocols, recursively.
2762  for (auto *PI : PDecl->protocols())
2763  CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2764  CDecl, ProtocolsExplictImpl);
2765 }
2766 
2767 /// MatchAllMethodDeclarations - Check methods declared in interface
2768 /// or protocol against those declared in their implementations.
2769 ///
2771  const SelectorSet &ClsMap,
2772  SelectorSet &InsMapSeen,
2773  SelectorSet &ClsMapSeen,
2774  ObjCImplDecl* IMPDecl,
2775  ObjCContainerDecl* CDecl,
2776  bool &IncompleteImpl,
2777  bool ImmediateClass,
2778  bool WarnCategoryMethodImpl) {
2779  // Check and see if instance methods in class interface have been
2780  // implemented in the implementation class. If so, their types match.
2781  for (auto *I : CDecl->instance_methods()) {
2782  if (!InsMapSeen.insert(I->getSelector()).second)
2783  continue;
2784  if (!I->isPropertyAccessor() &&
2785  !InsMap.count(I->getSelector())) {
2786  if (ImmediateClass)
2787  WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2788  diag::warn_undef_method_impl);
2789  continue;
2790  } else {
2791  ObjCMethodDecl *ImpMethodDecl =
2792  IMPDecl->getInstanceMethod(I->getSelector());
2793  assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2794  "Expected to find the method through lookup as well");
2795  // ImpMethodDecl may be null as in a @dynamic property.
2796  if (ImpMethodDecl) {
2797  if (!WarnCategoryMethodImpl)
2798  WarnConflictingTypedMethods(ImpMethodDecl, I,
2799  isa<ObjCProtocolDecl>(CDecl));
2800  else if (!I->isPropertyAccessor())
2801  WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2802  }
2803  }
2804  }
2805 
2806  // Check and see if class methods in class interface have been
2807  // implemented in the implementation class. If so, their types match.
2808  for (auto *I : CDecl->class_methods()) {
2809  if (!ClsMapSeen.insert(I->getSelector()).second)
2810  continue;
2811  if (!I->isPropertyAccessor() &&
2812  !ClsMap.count(I->getSelector())) {
2813  if (ImmediateClass)
2814  WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2815  diag::warn_undef_method_impl);
2816  } else {
2817  ObjCMethodDecl *ImpMethodDecl =
2818  IMPDecl->getClassMethod(I->getSelector());
2819  assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2820  "Expected to find the method through lookup as well");
2821  // ImpMethodDecl may be null as in a @dynamic property.
2822  if (ImpMethodDecl) {
2823  if (!WarnCategoryMethodImpl)
2824  WarnConflictingTypedMethods(ImpMethodDecl, I,
2825  isa<ObjCProtocolDecl>(CDecl));
2826  else if (!I->isPropertyAccessor())
2827  WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2828  }
2829  }
2830  }
2831 
2832  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2833  // Also, check for methods declared in protocols inherited by
2834  // this protocol.
2835  for (auto *PI : PD->protocols())
2836  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2837  IMPDecl, PI, IncompleteImpl, false,
2838  WarnCategoryMethodImpl);
2839  }
2840 
2841  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2842  // when checking that methods in implementation match their declaration,
2843  // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2844  // extension; as well as those in categories.
2845  if (!WarnCategoryMethodImpl) {
2846  for (auto *Cat : I->visible_categories())
2847  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2848  IMPDecl, Cat, IncompleteImpl,
2849  ImmediateClass && Cat->IsClassExtension(),
2850  WarnCategoryMethodImpl);
2851  } else {
2852  // Also methods in class extensions need be looked at next.
2853  for (auto *Ext : I->visible_extensions())
2854  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2855  IMPDecl, Ext, IncompleteImpl, false,
2856  WarnCategoryMethodImpl);
2857  }
2858 
2859  // Check for any implementation of a methods declared in protocol.
2860  for (auto *PI : I->all_referenced_protocols())
2861  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2862  IMPDecl, PI, IncompleteImpl, false,
2863  WarnCategoryMethodImpl);
2864 
2865  // FIXME. For now, we are not checking for extact match of methods
2866  // in category implementation and its primary class's super class.
2867  if (!WarnCategoryMethodImpl && I->getSuperClass())
2868  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2869  IMPDecl,
2870  I->getSuperClass(), IncompleteImpl, false);
2871  }
2872 }
2873 
2874 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2875 /// category matches with those implemented in its primary class and
2876 /// warns each time an exact match is found.
2878  ObjCCategoryImplDecl *CatIMPDecl) {
2879  // Get category's primary class.
2880  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2881  if (!CatDecl)
2882  return;
2883  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2884  if (!IDecl)
2885  return;
2886  ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2887  SelectorSet InsMap, ClsMap;
2888 
2889  for (const auto *I : CatIMPDecl->instance_methods()) {
2890  Selector Sel = I->getSelector();
2891  // When checking for methods implemented in the category, skip over
2892  // those declared in category class's super class. This is because
2893  // the super class must implement the method.
2894  if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2895  continue;
2896  InsMap.insert(Sel);
2897  }
2898 
2899  for (const auto *I : CatIMPDecl->class_methods()) {
2900  Selector Sel = I->getSelector();
2901  if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2902  continue;
2903  ClsMap.insert(Sel);
2904  }
2905  if (InsMap.empty() && ClsMap.empty())
2906  return;
2907 
2908  SelectorSet InsMapSeen, ClsMapSeen;
2909  bool IncompleteImpl = false;
2910  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2911  CatIMPDecl, IDecl,
2912  IncompleteImpl, false,
2913  true /*WarnCategoryMethodImpl*/);
2914 }
2915 
2917  ObjCContainerDecl* CDecl,
2918  bool IncompleteImpl) {
2919  SelectorSet InsMap;
2920  // Check and see if instance methods in class interface have been
2921  // implemented in the implementation class.
2922  for (const auto *I : IMPDecl->instance_methods())
2923  InsMap.insert(I->getSelector());
2924 
2925  // Add the selectors for getters/setters of @dynamic properties.
2926  for (const auto *PImpl : IMPDecl->property_impls()) {
2927  // We only care about @dynamic implementations.
2928  if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2929  continue;
2930 
2931  const auto *P = PImpl->getPropertyDecl();
2932  if (!P) continue;
2933 
2934  InsMap.insert(P->getGetterName());
2935  if (!P->getSetterName().isNull())
2936  InsMap.insert(P->getSetterName());
2937  }
2938 
2939  // Check and see if properties declared in the interface have either 1)
2940  // an implementation or 2) there is a @synthesize/@dynamic implementation
2941  // of the property in the @implementation.
2942  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2943  bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2945  !IDecl->isObjCRequiresPropertyDefs();
2946  DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2947  }
2948 
2949  // Diagnose null-resettable synthesized setters.
2951 
2952  SelectorSet ClsMap;
2953  for (const auto *I : IMPDecl->class_methods())
2954  ClsMap.insert(I->getSelector());
2955 
2956  // Check for type conflict of methods declared in a class/protocol and
2957  // its implementation; if any.
2958  SelectorSet InsMapSeen, ClsMapSeen;
2959  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2960  IMPDecl, CDecl,
2961  IncompleteImpl, true);
2962 
2963  // check all methods implemented in category against those declared
2964  // in its primary class.
2965  if (ObjCCategoryImplDecl *CatDecl =
2966  dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
2968 
2969  // Check the protocol list for unimplemented methods in the @implementation
2970  // class.
2971  // Check and see if class methods in class interface have been
2972  // implemented in the implementation class.
2973 
2974  LazyProtocolNameSet ExplicitImplProtocols;
2975 
2976  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2977  for (auto *PI : I->all_referenced_protocols())
2978  CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
2979  InsMap, ClsMap, I, ExplicitImplProtocols);
2980  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2981  // For extended class, unimplemented methods in its protocols will
2982  // be reported in the primary class.
2983  if (!C->IsClassExtension()) {
2984  for (auto *P : C->protocols())
2985  CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
2986  IncompleteImpl, InsMap, ClsMap, CDecl,
2987  ExplicitImplProtocols);
2988  DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
2989  /*SynthesizeProperties=*/false);
2990  }
2991  } else
2992  llvm_unreachable("invalid ObjCContainerDecl type.");
2993 }
2994 
2997  IdentifierInfo **IdentList,
2998  SourceLocation *IdentLocs,
2999  ArrayRef<ObjCTypeParamList *> TypeParamLists,
3000  unsigned NumElts) {
3001  SmallVector<Decl *, 8> DeclsInGroup;
3002  for (unsigned i = 0; i != NumElts; ++i) {
3003  // Check for another declaration kind with the same name.
3004  NamedDecl *PrevDecl
3005  = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3007  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3008  // GCC apparently allows the following idiom:
3009  //
3010  // typedef NSObject < XCElementTogglerP > XCElementToggler;
3011  // @class XCElementToggler;
3012  //
3013  // Here we have chosen to ignore the forward class declaration
3014  // with a warning. Since this is the implied behavior.
3015  TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3016  if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3017  Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3018  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3019  } else {
3020  // a forward class declaration matching a typedef name of a class refers
3021  // to the underlying class. Just ignore the forward class with a warning
3022  // as this will force the intended behavior which is to lookup the
3023  // typedef name.
3024  if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3025  Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3026  << IdentList[i];
3027  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3028  continue;
3029  }
3030  }
3031  }
3032 
3033  // Create a declaration to describe this forward declaration.
3034  ObjCInterfaceDecl *PrevIDecl
3035  = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3036 
3037  IdentifierInfo *ClassName = IdentList[i];
3038  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3039  // A previous decl with a different name is because of
3040  // @compatibility_alias, for example:
3041  // \code
3042  // @class NewImage;
3043  // @compatibility_alias OldImage NewImage;
3044  // \endcode
3045  // A lookup for 'OldImage' will return the 'NewImage' decl.
3046  //
3047  // In such a case use the real declaration name, instead of the alias one,
3048  // otherwise we will break IdentifierResolver and redecls-chain invariants.
3049  // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3050  // has been aliased.
3051  ClassName = PrevIDecl->getIdentifier();
3052  }
3053 
3054  // If this forward declaration has type parameters, compare them with the
3055  // type parameters of the previous declaration.
3056  ObjCTypeParamList *TypeParams = TypeParamLists[i];
3057  if (PrevIDecl && TypeParams) {
3058  if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3059  // Check for consistency with the previous declaration.
3061  *this, PrevTypeParams, TypeParams,
3062  TypeParamListContext::ForwardDeclaration)) {
3063  TypeParams = nullptr;
3064  }
3065  } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3066  // The @interface does not have type parameters. Complain.
3067  Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3068  << ClassName
3069  << TypeParams->getSourceRange();
3070  Diag(Def->getLocation(), diag::note_defined_here)
3071  << ClassName;
3072 
3073  TypeParams = nullptr;
3074  }
3075  }
3076 
3077  ObjCInterfaceDecl *IDecl
3079  ClassName, TypeParams, PrevIDecl,
3080  IdentLocs[i]);
3081  IDecl->setAtEndRange(IdentLocs[i]);
3082 
3083  PushOnScopeChains(IDecl, TUScope);
3084  CheckObjCDeclScope(IDecl);
3085  DeclsInGroup.push_back(IDecl);
3086  }
3087 
3088  return BuildDeclaratorGroup(DeclsInGroup);
3089 }
3090 
3092  Sema::MethodMatchStrategy strategy,
3093  const Type *left, const Type *right);
3094 
3095 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3096  QualType leftQT, QualType rightQT) {
3097  const Type *left =
3098  Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3099  const Type *right =
3100  Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3101 
3102  if (left == right) return true;
3103 
3104  // If we're doing a strict match, the types have to match exactly.
3105  if (strategy == Sema::MMS_strict) return false;
3106 
3107  if (left->isIncompleteType() || right->isIncompleteType()) return false;
3108 
3109  // Otherwise, use this absurdly complicated algorithm to try to
3110  // validate the basic, low-level compatibility of the two types.
3111 
3112  // As a minimum, require the sizes and alignments to match.
3113  TypeInfo LeftTI = Context.getTypeInfo(left);
3114  TypeInfo RightTI = Context.getTypeInfo(right);
3115  if (LeftTI.Width != RightTI.Width)
3116  return false;
3117 
3118  if (LeftTI.Align != RightTI.Align)
3119  return false;
3120 
3121  // Consider all the kinds of non-dependent canonical types:
3122  // - functions and arrays aren't possible as return and parameter types
3123 
3124  // - vector types of equal size can be arbitrarily mixed
3125  if (isa<VectorType>(left)) return isa<VectorType>(right);
3126  if (isa<VectorType>(right)) return false;
3127 
3128  // - references should only match references of identical type
3129  // - structs, unions, and Objective-C objects must match more-or-less
3130  // exactly
3131  // - everything else should be a scalar
3132  if (!left->isScalarType() || !right->isScalarType())
3133  return tryMatchRecordTypes(Context, strategy, left, right);
3134 
3135  // Make scalars agree in kind, except count bools as chars, and group
3136  // all non-member pointers together.
3137  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3138  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3139  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3140  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3141  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3142  leftSK = Type::STK_ObjCObjectPointer;
3143  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3144  rightSK = Type::STK_ObjCObjectPointer;
3145 
3146  // Note that data member pointers and function member pointers don't
3147  // intermix because of the size differences.
3148 
3149  return (leftSK == rightSK);
3150 }
3151 
3152 static bool tryMatchRecordTypes(ASTContext &Context,
3153  Sema::MethodMatchStrategy strategy,
3154  const Type *lt, const Type *rt) {
3155  assert(lt && rt && lt != rt);
3156 
3157  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3158  RecordDecl *left = cast<RecordType>(lt)->getDecl();
3159  RecordDecl *right = cast<RecordType>(rt)->getDecl();
3160 
3161  // Require union-hood to match.
3162  if (left->isUnion() != right->isUnion()) return false;
3163 
3164  // Require an exact match if either is non-POD.
3165  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3166  (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3167  return false;
3168 
3169  // Require size and alignment to match.
3170  TypeInfo LeftTI = Context.getTypeInfo(lt);
3171  TypeInfo RightTI = Context.getTypeInfo(rt);
3172  if (LeftTI.Width != RightTI.Width)
3173  return false;
3174 
3175  if (LeftTI.Align != RightTI.Align)
3176  return false;
3177 
3178  // Require fields to match.
3179  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3180  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3181  for (; li != le && ri != re; ++li, ++ri) {
3182  if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3183  return false;
3184  }
3185  return (li == le && ri == re);
3186 }
3187 
3188 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3189 /// returns true, or false, accordingly.
3190 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3192  const ObjCMethodDecl *right,
3193  MethodMatchStrategy strategy) {
3194  if (!matchTypes(Context, strategy, left->getReturnType(),
3195  right->getReturnType()))
3196  return false;
3197 
3198  // If either is hidden, it is not considered to match.
3199  if (left->isHidden() || right->isHidden())
3200  return false;
3201 
3202  if (getLangOpts().ObjCAutoRefCount &&
3203  (left->hasAttr<NSReturnsRetainedAttr>()
3204  != right->hasAttr<NSReturnsRetainedAttr>() ||
3205  left->hasAttr<NSConsumesSelfAttr>()
3206  != right->hasAttr<NSConsumesSelfAttr>()))
3207  return false;
3208 
3210  li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3211  re = right->param_end();
3212 
3213  for (; li != le && ri != re; ++li, ++ri) {
3214  assert(ri != right->param_end() && "Param mismatch");
3215  const ParmVarDecl *lparm = *li, *rparm = *ri;
3216 
3217  if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3218  return false;
3219 
3220  if (getLangOpts().ObjCAutoRefCount &&
3221  lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3222  return false;
3223  }
3224  return true;
3225 }
3226 
3228  ObjCMethodDecl *MethodInList) {
3229  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3230  auto *MethodInListProtocol =
3231  dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3232  // If this method belongs to a protocol but the method in list does not, or
3233  // vice versa, we say the context is not the same.
3234  if ((MethodProtocol && !MethodInListProtocol) ||
3235  (!MethodProtocol && MethodInListProtocol))
3236  return false;
3237 
3238  if (MethodProtocol && MethodInListProtocol)
3239  return true;
3240 
3241  ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3242  ObjCInterfaceDecl *MethodInListInterface =
3243  MethodInList->getClassInterface();
3244  return MethodInterface == MethodInListInterface;
3245 }
3246 
3248  ObjCMethodDecl *Method) {
3249  // Record at the head of the list whether there were 0, 1, or >= 2 methods
3250  // inside categories.
3251  if (ObjCCategoryDecl *CD =
3252  dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3253  if (!CD->IsClassExtension() && List->getBits() < 2)
3254  List->setBits(List->getBits() + 1);
3255 
3256  // If the list is empty, make it a singleton list.
3257  if (List->getMethod() == nullptr) {
3258  List->setMethod(Method);
3259  List->setNext(nullptr);
3260  return;
3261  }
3262 
3263  // We've seen a method with this name, see if we have already seen this type
3264  // signature.
3265  ObjCMethodList *Previous = List;
3266  ObjCMethodList *ListWithSameDeclaration = nullptr;
3267  for (; List; Previous = List, List = List->getNext()) {
3268  // If we are building a module, keep all of the methods.
3270  continue;
3271 
3272  bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3273  List->getMethod());
3274  // Looking for method with a type bound requires the correct context exists.
3275  // We need to insert a method into the list if the context is different.
3276  // If the method's declaration matches the list
3277  // a> the method belongs to a different context: we need to insert it, in
3278  // order to emit the availability message, we need to prioritize over
3279  // availability among the methods with the same declaration.
3280  // b> the method belongs to the same context: there is no need to insert a
3281  // new entry.
3282  // If the method's declaration does not match the list, we insert it to the
3283  // end.
3284  if (!SameDeclaration ||
3285  !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3286  // Even if two method types do not match, we would like to say
3287  // there is more than one declaration so unavailability/deprecated
3288  // warning is not too noisy.
3289  if (!Method->isDefined())
3290  List->setHasMoreThanOneDecl(true);
3291 
3292  // For methods with the same declaration, the one that is deprecated
3293  // should be put in the front for better diagnostics.
3294  if (Method->isDeprecated() && SameDeclaration &&
3295  !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3296  ListWithSameDeclaration = List;
3297 
3298  if (Method->isUnavailable() && SameDeclaration &&
3299  !ListWithSameDeclaration &&
3301  ListWithSameDeclaration = List;
3302  continue;
3303  }
3304 
3305  ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3306 
3307  // Propagate the 'defined' bit.
3308  if (Method->isDefined())
3309  PrevObjCMethod->setDefined(true);
3310  else {
3311  // Objective-C doesn't allow an @interface for a class after its
3312  // @implementation. So if Method is not defined and there already is
3313  // an entry for this type signature, Method has to be for a different
3314  // class than PrevObjCMethod.
3315  List->setHasMoreThanOneDecl(true);
3316  }
3317 
3318  // If a method is deprecated, push it in the global pool.
3319  // This is used for better diagnostics.
3320  if (Method->isDeprecated()) {
3321  if (!PrevObjCMethod->isDeprecated())
3322  List->setMethod(Method);
3323  }
3324  // If the new method is unavailable, push it into global pool
3325  // unless previous one is deprecated.
3326  if (Method->isUnavailable()) {
3327  if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3328  List->setMethod(Method);
3329  }
3330 
3331  return;
3332  }
3333 
3334  // We have a new signature for an existing method - add it.
3335  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3336  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3337 
3338  // We insert it right before ListWithSameDeclaration.
3339  if (ListWithSameDeclaration) {
3340  auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3341  // FIXME: should we clear the other bits in ListWithSameDeclaration?
3342  ListWithSameDeclaration->setMethod(Method);
3343  ListWithSameDeclaration->setNext(List);
3344  return;
3345  }
3346 
3347  Previous->setNext(new (Mem) ObjCMethodList(Method));
3348 }
3349 
3350 /// Read the contents of the method pool for a given selector from
3351 /// external storage.
3353  assert(ExternalSource && "We need an external AST source");
3354  ExternalSource->ReadMethodPool(Sel);
3355 }
3356 
3358  if (!ExternalSource)
3359  return;
3360  ExternalSource->updateOutOfDateSelector(Sel);
3361 }
3362 
3363 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3364  bool instance) {
3365  // Ignore methods of invalid containers.
3366  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3367  return;
3368 
3369  if (ExternalSource)
3370  ReadMethodPool(Method->getSelector());
3371 
3372  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3373  if (Pos == MethodPool.end())
3374  Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3375  GlobalMethods())).first;
3376 
3377  Method->setDefined(impl);
3378 
3379  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3380  addMethodToGlobalList(&Entry, Method);
3381 }
3382 
3383 /// Determines if this is an "acceptable" loose mismatch in the global
3384 /// method pool. This exists mostly as a hack to get around certain
3385 /// global mismatches which we can't afford to make warnings / errors.
3386 /// Really, what we want is a way to take a method out of the global
3387 /// method pool.
3389  ObjCMethodDecl *other) {
3390  if (!chosen->isInstanceMethod())
3391  return false;
3392 
3393  Selector sel = chosen->getSelector();
3394  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3395  return false;
3396 
3397  // Don't complain about mismatches for -length if the method we
3398  // chose has an integral result type.
3399  return (chosen->getReturnType()->isIntegerType());
3400 }
3401 
3402 /// Return true if the given method is wthin the type bound.
3404  const ObjCObjectType *TypeBound) {
3405  if (!TypeBound)
3406  return true;
3407 
3408  if (TypeBound->isObjCId())
3409  // FIXME: should we handle the case of bounding to id<A, B> differently?
3410  return true;
3411 
3412  auto *BoundInterface = TypeBound->getInterface();
3413  assert(BoundInterface && "unexpected object type!");
3414 
3415  // Check if the Method belongs to a protocol. We should allow any method
3416  // defined in any protocol, because any subclass could adopt the protocol.
3417  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3418  if (MethodProtocol) {
3419  return true;
3420  }
3421 
3422  // If the Method belongs to a class, check if it belongs to the class
3423  // hierarchy of the class bound.
3424  if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3425  // We allow methods declared within classes that are part of the hierarchy
3426  // of the class bound (superclass of, subclass of, or the same as the class
3427  // bound).
3428  return MethodInterface == BoundInterface ||
3429  MethodInterface->isSuperClassOf(BoundInterface) ||
3430  BoundInterface->isSuperClassOf(MethodInterface);
3431  }
3432  llvm_unreachable("unknown method context");
3433 }
3434 
3435 /// We first select the type of the method: Instance or Factory, then collect
3436 /// all methods with that type.
3439  bool InstanceFirst, bool CheckTheOther,
3440  const ObjCObjectType *TypeBound) {
3441  if (ExternalSource)
3442  ReadMethodPool(Sel);
3443 
3444  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3445  if (Pos == MethodPool.end())
3446  return false;
3447 
3448  // Gather the non-hidden methods.
3449  ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3450  Pos->second.second;
3451  for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3452  if (M->getMethod() && !M->getMethod()->isHidden()) {
3453  if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3454  Methods.push_back(M->getMethod());
3455  }
3456 
3457  // Return if we find any method with the desired kind.
3458  if (!Methods.empty())
3459  return Methods.size() > 1;
3460 
3461  if (!CheckTheOther)
3462  return false;
3463 
3464  // Gather the other kind.
3465  ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3466  Pos->second.first;
3467  for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3468  if (M->getMethod() && !M->getMethod()->isHidden()) {
3469  if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3470  Methods.push_back(M->getMethod());
3471  }
3472 
3473  return Methods.size() > 1;
3474 }
3475 
3477  Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3478  bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3479  // Diagnose finding more than one method in global pool.
3480  SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3481  FilteredMethods.push_back(BestMethod);
3482 
3483  for (auto *M : Methods)
3484  if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3485  FilteredMethods.push_back(M);
3486 
3487  if (FilteredMethods.size() > 1)
3488  DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3489  receiverIdOrClass);
3490 
3491  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3492  // Test for no method in the pool which should not trigger any warning by
3493  // caller.
3494  if (Pos == MethodPool.end())
3495  return true;
3496  ObjCMethodList &MethList =
3497  BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3498  return MethList.hasMoreThanOneDecl();
3499 }
3500 
3501 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3502  bool receiverIdOrClass,
3503  bool instance) {
3504  if (ExternalSource)
3505  ReadMethodPool(Sel);
3506 
3507  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3508  if (Pos == MethodPool.end())
3509  return nullptr;
3510 
3511  // Gather the non-hidden methods.
3512  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3514  for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3515  if (M->getMethod() && !M->getMethod()->isHidden())
3516  return M->getMethod();
3517  }
3518  return nullptr;
3519 }
3520 
3522  Selector Sel, SourceRange R,
3523  bool receiverIdOrClass) {
3524  // We found multiple methods, so we may have to complain.
3525  bool issueDiagnostic = false, issueError = false;
3526 
3527  // We support a warning which complains about *any* difference in
3528  // method signature.
3529  bool strictSelectorMatch =
3530  receiverIdOrClass &&
3531  !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3532  if (strictSelectorMatch) {
3533  for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3534  if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3535  issueDiagnostic = true;
3536  break;
3537  }
3538  }
3539  }
3540 
3541  // If we didn't see any strict differences, we won't see any loose
3542  // differences. In ARC, however, we also need to check for loose
3543  // mismatches, because most of them are errors.
3544  if (!strictSelectorMatch ||
3545  (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3546  for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3547  // This checks if the methods differ in type mismatch.
3548  if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3549  !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3550  issueDiagnostic = true;
3551  if (getLangOpts().ObjCAutoRefCount)
3552  issueError = true;
3553  break;
3554  }
3555  }
3556 
3557  if (issueDiagnostic) {
3558  if (issueError)
3559  Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3560  else if (strictSelectorMatch)
3561  Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3562  else
3563  Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3564 
3565  Diag(Methods[0]->getLocStart(),
3566  issueError ? diag::note_possibility : diag::note_using)
3567  << Methods[0]->getSourceRange();
3568  for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3569  Diag(Methods[I]->getLocStart(), diag::note_also_found)
3570  << Methods[I]->getSourceRange();
3571  }
3572  }
3573 }
3574 
3576  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3577  if (Pos == MethodPool.end())
3578  return nullptr;
3579 
3580  GlobalMethods &Methods = Pos->second;
3581  for (const ObjCMethodList *Method = &Methods.first; Method;
3582  Method = Method->getNext())
3583  if (Method->getMethod() &&
3584  (Method->getMethod()->isDefined() ||
3585  Method->getMethod()->isPropertyAccessor()))
3586  return Method->getMethod();
3587 
3588  for (const ObjCMethodList *Method = &Methods.second; Method;
3589  Method = Method->getNext())
3590  if (Method->getMethod() &&
3591  (Method->getMethod()->isDefined() ||
3592  Method->getMethod()->isPropertyAccessor()))
3593  return Method->getMethod();
3594  return nullptr;
3595 }
3596 
3597 static void
3600  StringRef Typo, const ObjCMethodDecl * Method) {
3601  const unsigned MaxEditDistance = 1;
3602  unsigned BestEditDistance = MaxEditDistance + 1;
3603  std::string MethodName = Method->getSelector().getAsString();
3604 
3605  unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3606  if (MinPossibleEditDistance > 0 &&
3607  Typo.size() / MinPossibleEditDistance < 1)
3608  return;
3609  unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3610  if (EditDistance > MaxEditDistance)
3611  return;
3612  if (EditDistance == BestEditDistance)
3613  BestMethod.push_back(Method);
3614  else if (EditDistance < BestEditDistance) {
3615  BestMethod.clear();
3616  BestMethod.push_back(Method);
3617  }
3618 }
3619 
3621  QualType ObjectType) {
3622  if (ObjectType.isNull())
3623  return true;
3624  if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3625  return true;
3626  return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3627  nullptr;
3628 }
3629 
3630 const ObjCMethodDecl *
3632  QualType ObjectType) {
3633  unsigned NumArgs = Sel.getNumArgs();
3635  bool ObjectIsId = true, ObjectIsClass = true;
3636  if (ObjectType.isNull())
3637  ObjectIsId = ObjectIsClass = false;
3638  else if (!ObjectType->isObjCObjectPointerType())
3639  return nullptr;
3640  else if (const ObjCObjectPointerType *ObjCPtr =
3641  ObjectType->getAsObjCInterfacePointerType()) {
3642  ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3643  ObjectIsId = ObjectIsClass = false;
3644  }
3645  else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3646  ObjectIsClass = false;
3647  else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3648  ObjectIsId = false;
3649  else
3650  return nullptr;
3651 
3652  for (GlobalMethodPool::iterator b = MethodPool.begin(),
3653  e = MethodPool.end(); b != e; b++) {
3654  // instance methods
3655  for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3656  if (M->getMethod() &&
3657  (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3658  (M->getMethod()->getSelector() != Sel)) {
3659  if (ObjectIsId)
3660  Methods.push_back(M->getMethod());
3661  else if (!ObjectIsClass &&
3662  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3663  ObjectType))
3664  Methods.push_back(M->getMethod());
3665  }
3666  // class methods
3667  for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3668  if (M->getMethod() &&
3669  (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3670  (M->getMethod()->getSelector() != Sel)) {
3671  if (ObjectIsClass)
3672  Methods.push_back(M->getMethod());
3673  else if (!ObjectIsId &&
3674  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3675  ObjectType))
3676  Methods.push_back(M->getMethod());
3677  }
3678  }
3679 
3681  for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3682  HelperSelectorsForTypoCorrection(SelectedMethods,
3683  Sel.getAsString(), Methods[i]);
3684  }
3685  return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3686 }
3687 
3688 /// DiagnoseDuplicateIvars -
3689 /// Check for duplicate ivars in the entire class at the start of
3690 /// \@implementation. This becomes necesssary because class extension can
3691 /// add ivars to a class in random order which will not be known until
3692 /// class's \@implementation is seen.
3694  ObjCInterfaceDecl *SID) {
3695  for (auto *Ivar : ID->ivars()) {
3696  if (Ivar->isInvalidDecl())
3697  continue;
3698  if (IdentifierInfo *II = Ivar->getIdentifier()) {
3699  ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3700  if (prevIvar) {
3701  Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3702  Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3703  Ivar->setInvalidDecl();
3704  }
3705  }
3706  }
3707 }
3708 
3709 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3711  if (S.getLangOpts().ObjCWeak) return;
3712 
3713  for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3714  ivar; ivar = ivar->getNextIvar()) {
3715  if (ivar->isInvalidDecl()) continue;
3716  if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3717  if (S.getLangOpts().ObjCWeakRuntime) {
3718  S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3719  } else {
3720  S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3721  }
3722  }
3723  }
3724 }
3725 
3726 /// Diagnose attempts to use flexible array member with retainable object type.
3728  ObjCInterfaceDecl *ID) {
3729  if (!S.getLangOpts().ObjCAutoRefCount)
3730  return;
3731 
3732  for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3733  ivar = ivar->getNextIvar()) {
3734  if (ivar->isInvalidDecl())
3735  continue;
3736  QualType IvarTy = ivar->getType();
3737  if (IvarTy->isIncompleteArrayType() &&
3739  IvarTy->isObjCLifetimeType()) {
3740  S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3741  ivar->setInvalidDecl();
3742  }
3743  }
3744 }
3745 
3747  switch (CurContext->getDeclKind()) {
3748  case Decl::ObjCInterface:
3749  return Sema::OCK_Interface;
3750  case Decl::ObjCProtocol:
3751  return Sema::OCK_Protocol;
3752  case Decl::ObjCCategory:
3753  if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3754  return Sema::OCK_ClassExtension;
3755  return Sema::OCK_Category;
3756  case Decl::ObjCImplementation:
3757  return Sema::OCK_Implementation;
3758  case Decl::ObjCCategoryImpl:
3760 
3761  default:
3762  return Sema::OCK_None;
3763  }
3764 }
3765 
3767  if (T->isIncompleteArrayType())
3768  return true;
3769  const auto *RecordTy = T->getAs<RecordType>();
3770  return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3771 }
3772 
3774  ObjCInterfaceDecl *IntfDecl = nullptr;
3775  ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3777  if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3778  Ivars = IntfDecl->ivars();
3779  } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3780  IntfDecl = ImplDecl->getClassInterface();
3781  Ivars = ImplDecl->ivars();
3782  } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3783  if (CategoryDecl->IsClassExtension()) {
3784  IntfDecl = CategoryDecl->getClassInterface();
3785  Ivars = CategoryDecl->ivars();
3786  }
3787  }
3788 
3789  // Check if variable sized ivar is in interface and visible to subclasses.
3790  if (!isa<ObjCInterfaceDecl>(OCD)) {
3791  for (auto ivar : Ivars) {
3792  if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3793  S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3794  << ivar->getDeclName() << ivar->getType();
3795  }
3796  }
3797  }
3798 
3799  // Subsequent checks require interface decl.
3800  if (!IntfDecl)
3801  return;
3802 
3803  // Check if variable sized ivar is followed by another ivar.
3804  for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3805  ivar = ivar->getNextIvar()) {
3806  if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3807  continue;
3808  QualType IvarTy = ivar->getType();
3809  bool IsInvalidIvar = false;
3810  if (IvarTy->isIncompleteArrayType()) {
3811  S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3812  << ivar->getDeclName() << IvarTy
3813  << TTK_Class; // Use "class" for Obj-C.
3814  IsInvalidIvar = true;
3815  } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3816  if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3817  S.Diag(ivar->getLocation(),
3818  diag::err_objc_variable_sized_type_not_at_end)
3819  << ivar->getDeclName() << IvarTy;
3820  IsInvalidIvar = true;
3821  }
3822  }
3823  if (IsInvalidIvar) {
3824  S.Diag(ivar->getNextIvar()->getLocation(),
3825  diag::note_next_ivar_declaration)
3826  << ivar->getNextIvar()->getSynthesize();
3827  ivar->setInvalidDecl();
3828  }
3829  }
3830 
3831  // Check if ObjC container adds ivars after variable sized ivar in superclass.
3832  // Perform the check only if OCD is the first container to declare ivars to
3833  // avoid multiple warnings for the same ivar.
3834  ObjCIvarDecl *FirstIvar =
3835  (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3836  if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3837  const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3838  while (SuperClass && SuperClass->ivar_empty())
3839  SuperClass = SuperClass->getSuperClass();
3840  if (SuperClass) {
3841  auto IvarIter = SuperClass->ivar_begin();
3842  std::advance(IvarIter, SuperClass->ivar_size() - 1);
3843  const ObjCIvarDecl *LastIvar = *IvarIter;
3844  if (IsVariableSizedType(LastIvar->getType())) {
3845  S.Diag(FirstIvar->getLocation(),
3846  diag::warn_superclass_variable_sized_type_not_at_end)
3847  << FirstIvar->getDeclName() << LastIvar->getDeclName()
3848  << LastIvar->getType() << SuperClass->getDeclName();
3849  S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3850  << LastIvar->getDeclName();
3851  }
3852  }
3853  }
3854 }
3855 
3856 // Note: For class/category implementations, allMethods is always null.
3858  ArrayRef<DeclGroupPtrTy> allTUVars) {
3860  return nullptr;
3861 
3862  assert(AtEnd.isValid() && "Invalid location for '@end'");
3863 
3864  auto *OCD = cast<ObjCContainerDecl>(CurContext);
3865  Decl *ClassDecl = OCD;
3866 
3867  bool isInterfaceDeclKind =
3868  isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3869  || isa<ObjCProtocolDecl>(ClassDecl);
3870  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3871 
3872  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3873  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3874  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3875 
3876  for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3877  ObjCMethodDecl *Method =
3878  cast_or_null<ObjCMethodDecl>(allMethods[i]);
3879 
3880  if (!Method) continue; // Already issued a diagnostic.
3881  if (Method->isInstanceMethod()) {
3882  /// Check for instance method of the same name with incompatible types
3883  const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3884  bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3885  : false;
3886  if ((isInterfaceDeclKind && PrevMethod && !match)
3887  || (checkIdenticalMethods && match)) {
3888  Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3889  << Method->getDeclName();
3890  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3891  Method->setInvalidDecl();
3892  } else {
3893  if (PrevMethod) {
3894  Method->setAsRedeclaration(PrevMethod);
3895  if (!Context.getSourceManager().isInSystemHeader(
3896  Method->getLocation()))
3897  Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3898  << Method->getDeclName();
3899  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3900  }
3901  InsMap[Method->getSelector()] = Method;
3902  /// The following allows us to typecheck messages to "id".
3904  }
3905  } else {
3906  /// Check for class method of the same name with incompatible types
3907  const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3908  bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3909  : false;
3910  if ((isInterfaceDeclKind && PrevMethod && !match)
3911  || (checkIdenticalMethods && match)) {
3912  Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3913  << Method->getDeclName();
3914  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3915  Method->setInvalidDecl();
3916  } else {
3917  if (PrevMethod) {
3918  Method->setAsRedeclaration(PrevMethod);
3919  if (!Context.getSourceManager().isInSystemHeader(
3920  Method->getLocation()))
3921  Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3922  << Method->getDeclName();
3923  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3924  }
3925  ClsMap[Method->getSelector()] = Method;
3927  }
3928  }
3929  }
3930  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3931  // Nothing to do here.
3932  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3933  // Categories are used to extend the class by declaring new methods.
3934  // By the same token, they are also used to add new properties. No
3935  // need to compare the added property to those in the class.
3936 
3937  if (C->IsClassExtension()) {
3938  ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3939  DiagnoseClassExtensionDupMethods(C, CCPrimary);
3940  }
3941  }
3942  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3943  if (CDecl->getIdentifier())
3944  // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3945  // user-defined setter/getter. It also synthesizes setter/getter methods
3946  // and adds them to the DeclContext and global method pools.
3947  for (auto *I : CDecl->properties())
3949  CDecl->setAtEndRange(AtEnd);
3950  }
3951  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3952  IC->setAtEndRange(AtEnd);
3953  if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3954  // Any property declared in a class extension might have user
3955  // declared setter or getter in current class extension or one
3956  // of the other class extensions. Mark them as synthesized as
3957  // property will be synthesized when property with same name is
3958  // seen in the @implementation.
3959  for (const auto *Ext : IDecl->visible_extensions()) {
3960  for (const auto *Property : Ext->instance_properties()) {
3961  // Skip over properties declared @dynamic
3962  if (const ObjCPropertyImplDecl *PIDecl
3963  = IC->FindPropertyImplDecl(Property->getIdentifier(),
3964  Property->getQueryKind()))
3965  if (PIDecl->getPropertyImplementation()
3967  continue;
3968 
3969  for (const auto *Ext : IDecl->visible_extensions()) {
3970  if (ObjCMethodDecl *GetterMethod
3971  = Ext->getInstanceMethod(Property->getGetterName()))
3972  GetterMethod->setPropertyAccessor(true);
3973  if (!Property->isReadOnly())
3974  if (ObjCMethodDecl *SetterMethod
3975  = Ext->getInstanceMethod(Property->getSetterName()))
3976  SetterMethod->setPropertyAccessor(true);
3977  }
3978  }
3979  }
3980  ImplMethodsVsClassMethods(S, IC, IDecl);
3984  if (IDecl->hasDesignatedInitializers())
3986  DiagnoseWeakIvars(*this, IC);
3988 
3989  bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
3990  if (IDecl->getSuperClass() == nullptr) {
3991  // This class has no superclass, so check that it has been marked with
3992  // __attribute((objc_root_class)).
3993  if (!HasRootClassAttr) {
3994  SourceLocation DeclLoc(IDecl->getLocation());
3995  SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
3996  Diag(DeclLoc, diag::warn_objc_root_class_missing)
3997  << IDecl->getIdentifier();
3998  // See if NSObject is in the current scope, and if it is, suggest
3999  // adding " : NSObject " to the class declaration.
4001  NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4002  DeclLoc, LookupOrdinaryName);
4003  ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4004  if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4005  Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4006  << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4007  } else {
4008  Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4009  }
4010  }
4011  } else if (HasRootClassAttr) {
4012  // Complain that only root classes may have this attribute.
4013  Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4014  }
4015 
4016  if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4017  // An interface can subclass another interface with a
4018  // objc_subclassing_restricted attribute when it has that attribute as
4019  // well (because of interfaces imported from Swift). Therefore we have
4020  // to check if we can subclass in the implementation as well.
4021  if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4022  Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4023  Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4024  Diag(Super->getLocation(), diag::note_class_declared);
4025  }
4026  }
4027 
4029  while (IDecl->getSuperClass()) {
4030  DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4031  IDecl = IDecl->getSuperClass();
4032  }
4033  }
4034  }
4035  SetIvarInitializers(IC);
4036  } else if (ObjCCategoryImplDecl* CatImplClass =
4037  dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4038  CatImplClass->setAtEndRange(AtEnd);
4039 
4040  // Find category interface decl and then check that all methods declared
4041  // in this interface are implemented in the category @implementation.
4042  if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4043  if (ObjCCategoryDecl *Cat
4044  = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4045  ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4046  }
4047  }
4048  } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4049  if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4050  if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4051  Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4052  Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4053  Diag(Super->getLocation(), diag::note_class_declared);
4054  }
4055  }
4056  }
4057  DiagnoseVariableSizedIvars(*this, OCD);
4058  if (isInterfaceDeclKind) {
4059  // Reject invalid vardecls.
4060  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4061  DeclGroupRef DG = allTUVars[i].get();
4062  for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4063  if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4064  if (!VDecl->hasExternalStorage())
4065  Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4066  }
4067  }
4068  }
4070 
4071  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4072  DeclGroupRef DG = allTUVars[i].get();
4073  for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4074  (*I)->setTopLevelDeclInObjCContainer();
4076  }
4077 
4078  ActOnDocumentableDecl(ClassDecl);
4079  return ClassDecl;
4080 }
4081 
4082 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4083 /// objective-c's type qualifier from the parser version of the same info.
4086  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4087 }
4088 
4089 /// Check whether the declared result type of the given Objective-C
4090 /// method declaration is compatible with the method's class.
4091 ///
4094  ObjCInterfaceDecl *CurrentClass) {
4095  QualType ResultType = Method->getReturnType();
4096 
4097  // If an Objective-C method inherits its related result type, then its
4098  // declared result type must be compatible with its own class type. The
4099  // declared result type is compatible if:
4100  if (const ObjCObjectPointerType *ResultObjectType
4101  = ResultType->getAs<ObjCObjectPointerType>()) {
4102  // - it is id or qualified id, or
4103  if (ResultObjectType->isObjCIdType() ||
4104  ResultObjectType->isObjCQualifiedIdType())
4105  return Sema::RTC_Compatible;
4106 
4107  if (CurrentClass) {
4108  if (ObjCInterfaceDecl *ResultClass
4109  = ResultObjectType->getInterfaceDecl()) {
4110  // - it is the same as the method's class type, or
4111  if (declaresSameEntity(CurrentClass, ResultClass))
4112  return Sema::RTC_Compatible;
4113 
4114  // - it is a superclass of the method's class type
4115  if (ResultClass->isSuperClassOf(CurrentClass))
4116  return Sema::RTC_Compatible;
4117  }
4118  } else {
4119  // Any Objective-C pointer type might be acceptable for a protocol
4120  // method; we just don't know.
4121  return Sema::RTC_Unknown;
4122  }
4123  }
4124 
4125  return Sema::RTC_Incompatible;
4126 }
4127 
4128 namespace {
4129 /// A helper class for searching for methods which a particular method
4130 /// overrides.
4131 class OverrideSearch {
4132 public:
4133  Sema &S;
4134  ObjCMethodDecl *Method;
4136  bool Recursive;
4137 
4138 public:
4139  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
4140  Selector selector = method->getSelector();
4141 
4142  // Bypass this search if we've never seen an instance/class method
4143  // with this selector before.
4144  Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4145  if (it == S.MethodPool.end()) {
4146  if (!S.getExternalSource()) return;
4147  S.ReadMethodPool(selector);
4148 
4149  it = S.MethodPool.find(selector);
4150  if (it == S.MethodPool.end())
4151  return;
4152  }
4153  ObjCMethodList &list =
4154  method->isInstanceMethod() ? it->second.first : it->second.second;
4155  if (!list.getMethod()) return;
4156 
4157  ObjCContainerDecl *container
4158  = cast<ObjCContainerDecl>(method->getDeclContext());
4159 
4160  // Prevent the search from reaching this container again. This is
4161  // important with categories, which override methods from the
4162  // interface and each other.
4163  if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
4164  searchFromContainer(container);
4165  if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
4166  searchFromContainer(Interface);
4167  } else {
4168  searchFromContainer(container);
4169  }
4170  }
4171 
4172  typedef decltype(Overridden)::iterator iterator;
4173  iterator begin() const { return Overridden.begin(); }
4174  iterator end() const { return Overridden.end(); }
4175 
4176 private:
4177  void searchFromContainer(ObjCContainerDecl *container) {
4178  if (container->isInvalidDecl()) return;
4179 
4180  switch (container->getDeclKind()) {
4181 #define OBJCCONTAINER(type, base) \
4182  case Decl::type: \
4183  searchFrom(cast<type##Decl>(container)); \
4184  break;
4185 #define ABSTRACT_DECL(expansion)
4186 #define DECL(type, base) \
4187  case Decl::type:
4188 #include "clang/AST/DeclNodes.inc"
4189  llvm_unreachable("not an ObjC container!");
4190  }
4191  }
4192 
4193  void searchFrom(ObjCProtocolDecl *protocol) {
4194  if (!protocol->hasDefinition())
4195  return;
4196 
4197  // A method in a protocol declaration overrides declarations from
4198  // referenced ("parent") protocols.
4199  search(protocol->getReferencedProtocols());
4200  }
4201 
4202  void searchFrom(ObjCCategoryDecl *category) {
4203  // A method in a category declaration overrides declarations from
4204  // the main class and from protocols the category references.
4205  // The main class is handled in the constructor.
4206  search(category->getReferencedProtocols());
4207  }
4208 
4209  void searchFrom(ObjCCategoryImplDecl *impl) {
4210  // A method in a category definition that has a category
4211  // declaration overrides declarations from the category
4212  // declaration.
4213  if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4214  search(category);
4215  if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4216  search(Interface);
4217 
4218  // Otherwise it overrides declarations from the class.
4219  } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
4220  search(Interface);
4221  }
4222  }
4223 
4224  void searchFrom(ObjCInterfaceDecl *iface) {
4225  // A method in a class declaration overrides declarations from
4226  if (!iface->hasDefinition())
4227  return;
4228 
4229  // - categories,
4230  for (auto *Cat : iface->known_categories())
4231  search(Cat);
4232 
4233  // - the super class, and
4234  if (ObjCInterfaceDecl *super = iface->getSuperClass())
4235  search(super);
4236 
4237  // - any referenced protocols.
4238  search(iface->getReferencedProtocols());
4239  }
4240 
4241  void searchFrom(ObjCImplementationDecl *impl) {
4242  // A method in a class implementation overrides declarations from
4243  // the class interface.
4244  if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
4245  search(Interface);
4246  }
4247 
4248  void search(const ObjCProtocolList &protocols) {
4249  for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
4250  i != e; ++i)
4251  search(*i);
4252  }
4253 
4254  void search(ObjCContainerDecl *container) {
4255  // Check for a method in this container which matches this selector.
4256  ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4257  Method->isInstanceMethod(),
4258  /*AllowHidden=*/true);
4259 
4260  // If we find one, record it and bail out.
4261  if (meth) {
4262  Overridden.insert(meth);
4263  return;
4264  }
4265 
4266  // Otherwise, search for methods that a hypothetical method here
4267  // would have overridden.
4268 
4269  // Note that we're now in a recursive case.
4270  Recursive = true;
4271 
4272  searchFromContainer(container);
4273  }
4274 };
4275 } // end anonymous namespace
4276 
4278  ObjCInterfaceDecl *CurrentClass,
4280  // Search for overridden methods and merge information down from them.
4281  OverrideSearch overrides(*this, ObjCMethod);
4282  // Keep track if the method overrides any method in the class's base classes,
4283  // its protocols, or its categories' protocols; we will keep that info
4284  // in the ObjCMethodDecl.
4285  // For this info, a method in an implementation is not considered as
4286  // overriding the same method in the interface or its categories.
4287  bool hasOverriddenMethodsInBaseOrProtocol = false;
4288  for (OverrideSearch::iterator
4289  i = overrides.begin(), e = overrides.end(); i != e; ++i) {
4290  ObjCMethodDecl *overridden = *i;
4291 
4292  if (!hasOverriddenMethodsInBaseOrProtocol) {
4293  if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4294  CurrentClass != overridden->getClassInterface() ||
4295  overridden->isOverriding()) {
4296  hasOverriddenMethodsInBaseOrProtocol = true;
4297 
4298  } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4299  // OverrideSearch will return as "overridden" the same method in the
4300  // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4301  // check whether a category of a base class introduced a method with the
4302  // same selector, after the interface method declaration.
4303  // To avoid unnecessary lookups in the majority of cases, we use the
4304  // extra info bits in GlobalMethodPool to check whether there were any
4305  // category methods with this selector.
4306  GlobalMethodPool::iterator It =
4307  MethodPool.find(ObjCMethod->getSelector());
4308  if (It != MethodPool.end()) {
4309  ObjCMethodList &List =
4310  ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4311  unsigned CategCount = List.getBits();
4312  if (CategCount > 0) {
4313  // If the method is in a category we'll do lookup if there were at
4314  // least 2 category methods recorded, otherwise only one will do.
4315  if (CategCount > 1 ||
4316  !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4317  OverrideSearch overrides(*this, overridden);
4318  for (OverrideSearch::iterator
4319  OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
4320  ObjCMethodDecl *SuperOverridden = *OI;
4321  if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4322  CurrentClass != SuperOverridden->getClassInterface()) {
4323  hasOverriddenMethodsInBaseOrProtocol = true;
4324  overridden->setOverriding(true);
4325  break;
4326  }
4327  }
4328  }
4329  }
4330  }
4331  }
4332  }
4333 
4334  // Propagate down the 'related result type' bit from overridden methods.
4335  if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4336  ObjCMethod->SetRelatedResultType();
4337 
4338  // Then merge the declarations.
4339  mergeObjCMethodDecls(ObjCMethod, overridden);
4340 
4341  if (ObjCMethod->isImplicit() && overridden->isImplicit())
4342  continue; // Conflicting properties are detected elsewhere.
4343 
4344  // Check for overriding methods
4345  if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4346  isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4347  CheckConflictingOverridingMethod(ObjCMethod, overridden,
4348  isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4349 
4350  if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4351  isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4352  !overridden->isImplicit() /* not meant for properties */) {
4353  ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4354  E = ObjCMethod->param_end();
4355  ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4356  PrevE = overridden->param_end();
4357  for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4358  assert(PrevI != overridden->param_end() && "Param mismatch");
4359  QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4360  QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4361  // If type of argument of method in this class does not match its
4362  // respective argument type in the super class method, issue warning;
4363  if (!Context.typesAreCompatible(T1, T2)) {
4364  Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4365  << T1 << T2;
4366  Diag(overridden->getLocation(), diag::note_previous_declaration);
4367  break;
4368  }
4369  }
4370  }
4371  }
4372 
4373  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4374 }
4375 
4376 /// Merge type nullability from for a redeclaration of the same entity,
4377 /// producing the updated type of the redeclared entity.
4379  QualType type,
4380  bool usesCSKeyword,
4381  SourceLocation prevLoc,
4382  QualType prevType,
4383  bool prevUsesCSKeyword) {
4384  // Determine the nullability of both types.
4385  auto nullability = type->getNullability(S.Context);
4386  auto prevNullability = prevType->getNullability(S.Context);
4387 
4388  // Easy case: both have nullability.
4389  if (nullability.hasValue() == prevNullability.hasValue()) {
4390  // Neither has nullability; continue.
4391  if (!nullability)
4392  return type;
4393 
4394  // The nullabilities are equivalent; do nothing.
4395  if (*nullability == *prevNullability)
4396  return type;
4397 
4398  // Complain about mismatched nullability.
4399  S.Diag(loc, diag::err_nullability_conflicting)
4400  << DiagNullabilityKind(*nullability, usesCSKeyword)
4401  << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4402  return type;
4403  }
4404 
4405  // If it's the redeclaration that has nullability, don't change anything.
4406  if (nullability)
4407  return type;
4408 
4409  // Otherwise, provide the result with the same nullability.
4410  return S.Context.getAttributedType(
4411  AttributedType::getNullabilityAttrKind(*prevNullability),
4412  type, type);
4413 }
4414 
4415 /// Merge information from the declaration of a method in the \@interface
4416 /// (or a category/extension) into the corresponding method in the
4417 /// @implementation (for a class or category).
4419  ObjCMethodDecl *method,
4420  ObjCMethodDecl *prevMethod) {
4421  // Merge the objc_requires_super attribute.
4422  if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4423  !method->hasAttr<ObjCRequiresSuperAttr>()) {
4424  // merge the attribute into implementation.
4425  method->addAttr(
4426  ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4427  method->getLocation()));
4428  }
4429 
4430  // Merge nullability of the result type.
4431  QualType newReturnType
4433  S, method->getReturnTypeSourceRange().getBegin(),
4434  method->getReturnType(),
4436  prevMethod->getReturnTypeSourceRange().getBegin(),
4437  prevMethod->getReturnType(),
4439  method->setReturnType(newReturnType);
4440 
4441  // Handle each of the parameters.
4442  unsigned numParams = method->param_size();
4443  unsigned numPrevParams = prevMethod->param_size();
4444  for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4445  ParmVarDecl *param = method->param_begin()[i];
4446  ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4447 
4448  // Merge nullability.
4449  QualType newParamType
4451  S, param->getLocation(), param->getType(),
4453  prevParam->getLocation(), prevParam->getType(),
4455  param->setType(newParamType);
4456  }
4457 }
4458 
4459 /// Verify that the method parameters/return value have types that are supported
4460 /// by the x86 target.
4462  const ObjCMethodDecl *Method) {
4463  assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4464  llvm::Triple::x86 &&
4465  "x86-specific check invoked for a different target");
4466  SourceLocation Loc;
4467  QualType T;
4468  for (const ParmVarDecl *P : Method->parameters()) {
4469  if (P->getType()->isVectorType()) {
4470  Loc = P->getLocStart();
4471  T = P->getType();
4472  break;
4473  }
4474  }
4475  if (Loc.isInvalid()) {
4476  if (Method->getReturnType()->isVectorType()) {
4477  Loc = Method->getReturnTypeSourceRange().getBegin();
4478  T = Method->getReturnType();
4479  } else
4480  return;
4481  }
4482 
4483  // Vector parameters/return values are not supported by objc_msgSend on x86 in
4484  // iOS < 9 and macOS < 10.11.
4485  const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4486  VersionTuple AcceptedInVersion;
4487  if (Triple.getOS() == llvm::Triple::IOS)
4488  AcceptedInVersion = VersionTuple(/*Major=*/9);
4489  else if (Triple.isMacOSX())
4490  AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4491  else
4492  return;
4494  AcceptedInVersion)
4495  return;
4496  SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4497  << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4498  : /*parameter*/ 0)
4499  << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4500 }
4501 
4503  Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4504  tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4505  ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4506  // optional arguments. The number of types/arguments is obtained
4507  // from the Sel.getNumArgs().
4508  ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4509  unsigned CNumArgs, // c-style args
4510  const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4511  bool isVariadic, bool MethodDefinition) {
4512  // Make sure we can establish a context for the method.
4513  if (!CurContext->isObjCContainer()) {
4514  Diag(MethodLoc, diag::err_missing_method_context);
4515  return nullptr;
4516  }
4517  Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4518  QualType resultDeclType;
4519 
4520  bool HasRelatedResultType = false;
4521  TypeSourceInfo *ReturnTInfo = nullptr;
4522  if (ReturnType) {
4523  resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4524 
4525  if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4526  return nullptr;
4527 
4528  QualType bareResultType = resultDeclType;
4529  (void)AttributedType::stripOuterNullability(bareResultType);
4530  HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4531  } else { // get the type for "id".
4532  resultDeclType = Context.getObjCIdType();
4533  Diag(MethodLoc, diag::warn_missing_method_return_type)
4534  << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4535  }
4536 
4537  ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4538  Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4539  MethodType == tok::minus, isVariadic,
4540  /*isPropertyAccessor=*/false,
4541  /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4542  MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4544  HasRelatedResultType);
4545 
4547 
4548  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4549  QualType ArgType;
4550  TypeSourceInfo *DI;
4551 
4552  if (!ArgInfo[i].Type) {
4553  ArgType = Context.getObjCIdType();
4554  DI = nullptr;
4555  } else {
4556  ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4557  }
4558 
4559  LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4561  LookupName(R, S);
4562  if (R.isSingleResult()) {
4563  NamedDecl *PrevDecl = R.getFoundDecl();
4564  if (S->isDeclScope(PrevDecl)) {
4565  Diag(ArgInfo[i].NameLoc,
4566  (MethodDefinition ? diag::warn_method_param_redefinition
4567  : diag::warn_method_param_declaration))
4568  << ArgInfo[i].Name;
4569  Diag(PrevDecl->getLocation(),
4570  diag::note_previous_declaration);
4571  }
4572  }
4573 
4574  SourceLocation StartLoc = DI
4575  ? DI->getTypeLoc().getBeginLoc()
4576  : ArgInfo[i].NameLoc;
4577 
4578  ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4579  ArgInfo[i].NameLoc, ArgInfo[i].Name,
4580  ArgType, DI, SC_None);
4581 
4582  Param->setObjCMethodScopeInfo(i);
4583 
4584  Param->setObjCDeclQualifier(
4585  CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4586 
4587  // Apply the attributes to the parameter.
4588  ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4589  AddPragmaAttributes(TUScope, Param);
4590 
4591  if (Param->hasAttr<BlocksAttr>()) {
4592  Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4593  Param->setInvalidDecl();
4594  }
4595  S->AddDecl(Param);
4596  IdResolver.AddDecl(Param);
4597 
4598  Params.push_back(Param);
4599  }
4600 
4601  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4602  ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4603  QualType ArgType = Param->getType();
4604  if (ArgType.isNull())
4605  ArgType = Context.getObjCIdType();
4606  else
4607  // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4608  ArgType = Context.getAdjustedParameterType(ArgType);
4609 
4610  Param->setDeclContext(ObjCMethod);
4611  Params.push_back(Param);
4612  }
4613 
4614  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4615  ObjCMethod->setObjCDeclQualifier(
4617 
4618  ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4619  AddPragmaAttributes(TUScope, ObjCMethod);
4620 
4621  // Add the method now.
4622  const ObjCMethodDecl *PrevMethod = nullptr;
4623  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4624  if (MethodType == tok::minus) {
4625  PrevMethod = ImpDecl->getInstanceMethod(Sel);
4626  ImpDecl->addInstanceMethod(ObjCMethod);
4627  } else {
4628  PrevMethod = ImpDecl->getClassMethod(Sel);
4629  ImpDecl->addClassMethod(ObjCMethod);
4630  }
4631 
4632  // Merge information from the @interface declaration into the
4633  // @implementation.
4634  if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4635  if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4636  ObjCMethod->isInstanceMethod())) {
4637  mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4638 
4639  // Warn about defining -dealloc in a category.
4640  if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4641  ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4642  Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4643  << ObjCMethod->getDeclName();
4644  }
4645  }
4646  }
4647  } else {
4648  cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4649  }
4650 
4651  if (PrevMethod) {
4652  // You can never have two method definitions with the same name.
4653  Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4654  << ObjCMethod->getDeclName();
4655  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4656  ObjCMethod->setInvalidDecl();
4657  return ObjCMethod;
4658  }
4659 
4660  // If this Objective-C method does not have a related result type, but we
4661  // are allowed to infer related result types, try to do so based on the
4662  // method family.
4663  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4664  if (!CurrentClass) {
4665  if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4666  CurrentClass = Cat->getClassInterface();
4667  else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4668  CurrentClass = Impl->getClassInterface();
4669  else if (ObjCCategoryImplDecl *CatImpl
4670  = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4671  CurrentClass = CatImpl->getClassInterface();
4672  }
4673 
4675  = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4676 
4677  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4678 
4679  bool ARCError = false;
4680  if (getLangOpts().ObjCAutoRefCount)
4681  ARCError = CheckARCMethodDecl(ObjCMethod);
4682 
4683  // Infer the related result type when possible.
4684  if (!ARCError && RTC == Sema::RTC_Compatible &&
4685  !ObjCMethod->hasRelatedResultType() &&
4686  LangOpts.ObjCInferRelatedResultType) {
4687  bool InferRelatedResultType = false;
4688  switch (ObjCMethod->getMethodFamily()) {
4689  case OMF_None:
4690  case OMF_copy:
4691  case OMF_dealloc:
4692  case OMF_finalize:
4693  case OMF_mutableCopy:
4694  case OMF_release:
4695  case OMF_retainCount:
4696  case OMF_initialize:
4697  case OMF_performSelector:
4698  break;
4699 
4700  case OMF_alloc:
4701  case OMF_new:
4702  InferRelatedResultType = ObjCMethod->isClassMethod();
4703  break;
4704 
4705  case OMF_init:
4706  case OMF_autorelease:
4707  case OMF_retain:
4708  case OMF_self:
4709  InferRelatedResultType = ObjCMethod->isInstanceMethod();
4710  break;
4711  }
4712 
4713  if (InferRelatedResultType &&
4714  !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4715  ObjCMethod->SetRelatedResultType();
4716  }
4717 
4718  if (MethodDefinition &&
4719  Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
4720  checkObjCMethodX86VectorTypes(*this, ObjCMethod);
4721 
4722  // + load method cannot have availability attributes. It get called on
4723  // startup, so it has to have the availability of the deployment target.
4724  if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
4725  if (ObjCMethod->isClassMethod() &&
4726  ObjCMethod->getSelector().getAsString() == "load") {
4727  Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
4728  << 0;
4729  ObjCMethod->dropAttr<AvailabilityAttr>();
4730  }
4731  }
4732 
4733  ActOnDocumentableDecl(ObjCMethod);
4734 
4735  return ObjCMethod;
4736 }
4737 
4739  // Following is also an error. But it is caused by a missing @end
4740  // and diagnostic is issued elsewhere.
4741  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4742  return false;
4743 
4744  // If we switched context to translation unit while we are still lexically in
4745  // an objc container, it means the parser missed emitting an error.
4746  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4747  return false;
4748 
4749  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4750  D->setInvalidDecl();
4751 
4752  return true;
4753 }
4754 
4755 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
4756 /// instance variables of ClassName into Decls.
4757 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4758  IdentifierInfo *ClassName,
4759  SmallVectorImpl<Decl*> &Decls) {
4760  // Check that ClassName is a valid class
4761  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4762  if (!Class) {
4763  Diag(DeclStart, diag::err_undef_interface) << ClassName;
4764  return;
4765  }
4767  Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4768  return;
4769  }
4770 
4771  // Collect the instance variables
4773  Context.DeepCollectObjCIvars(Class, true, Ivars);
4774  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4775  for (unsigned i = 0; i < Ivars.size(); i++) {
4776  const FieldDecl* ID = Ivars[i];
4777  RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4778  Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4779  /*FIXME: StartL=*/ID->getLocation(),
4780  ID->getLocation(),
4781  ID->getIdentifier(), ID->getType(),
4782  ID->getBitWidth());
4783  Decls.push_back(FD);
4784  }
4785 
4786  // Introduce all of these fields into the appropriate scope.
4787  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4788  D != Decls.end(); ++D) {
4789  FieldDecl *FD = cast<FieldDecl>(*D);
4790  if (getLangOpts().CPlusPlus)
4791  PushOnScopeChains(FD, S);
4792  else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4793  Record->addDecl(FD);
4794  }
4795 }
4796 
4797 /// Build a type-check a new Objective-C exception variable declaration.
4799  SourceLocation StartLoc,
4800  SourceLocation IdLoc,
4801  IdentifierInfo *Id,
4802  bool Invalid) {
4803  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4804  // duration shall not be qualified by an address-space qualifier."
4805  // Since all parameters have automatic store duration, they can not have
4806  // an address space.
4807  if (T.getAddressSpace() != LangAS::Default) {
4808  Diag(IdLoc, diag::err_arg_with_address_space);
4809  Invalid = true;
4810  }
4811 
4812  // An @catch parameter must be an unqualified object pointer type;
4813  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4814  if (Invalid) {
4815  // Don't do any further checking.
4816  } else if (T->isDependentType()) {
4817  // Okay: we don't know what this type will instantiate to.
4818  } else if (T->isObjCQualifiedIdType()) {
4819  Invalid = true;
4820  Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4821  } else if (T->isObjCIdType()) {
4822  // Okay: we don't know what this type will instantiate to.
4823  } else if (!T->isObjCObjectPointerType()) {
4824  Invalid = true;
4825  Diag(IdLoc, diag::err_catch_param_not_objc_type);
4826  } else if (!T->getAs<ObjCObjectPointerType>()->getInterfaceType()) {
4827  Invalid = true;
4828  Diag(IdLoc, diag::err_catch_param_not_objc_type);
4829  }
4830 
4831  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4832  T, TInfo, SC_None);
4833  New->setExceptionVariable(true);
4834 
4835  // In ARC, infer 'retaining' for variables of retainable type.
4836  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4837  Invalid = true;
4838 
4839  if (Invalid)
4840  New->setInvalidDecl();
4841  return New;
4842 }
4843 
4845  const DeclSpec &DS = D.getDeclSpec();
4846 
4847  // We allow the "register" storage class on exception variables because
4848  // GCC did, but we drop it completely. Any other storage class is an error.
4850  Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4852  } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4853  Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4855  }
4856  if (DS.isInlineSpecified())
4857  Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4858  << getLangOpts().CPlusPlus17;
4861  diag::err_invalid_thread)
4862  << DeclSpec::getSpecifierName(TSCS);
4864 
4866 
4867  // Check that there are no default arguments inside the type of this
4868  // exception object (C++ only).
4869  if (getLangOpts().CPlusPlus)
4871 
4872  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4873  QualType ExceptionType = TInfo->getType();
4874 
4875  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4876  D.getSourceRange().getBegin(),
4877  D.getIdentifierLoc(),
4878  D.getIdentifier(),
4879  D.isInvalidType());
4880 
4881  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4882  if (D.getCXXScopeSpec().isSet()) {
4883  Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4884  << D.getCXXScopeSpec().getRange();
4885  New->setInvalidDecl();
4886  }
4887 
4888  // Add the parameter declaration into this scope.
4889  S->AddDecl(New);
4890  if (D.getIdentifier())
4891  IdResolver.AddDecl(New);
4892 
4893  ProcessDeclAttributes(S, New, D);
4894 
4895  if (New->hasAttr<BlocksAttr>())
4896  Diag(New->getLocation(), diag::err_block_on_nonlocal);
4897  return New;
4898 }
4899 
4900 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4901 /// initialization.
4904  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4905  Iv= Iv->getNextIvar()) {
4906  QualType QT = Context.getBaseElementType(Iv->getType());
4907  if (QT->isRecordType())
4908  Ivars.push_back(Iv);
4909  }
4910 }
4911 
4913  // Load referenced selectors from the external source.
4914  if (ExternalSource) {
4916  ExternalSource->ReadReferencedSelectors(Sels);
4917  for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4918  ReferencedSelectors[Sels[I].first] = Sels[I].second;
4919  }
4920 
4921  // Warning will be issued only when selector table is
4922  // generated (which means there is at lease one implementation
4923  // in the TU). This is to match gcc's behavior.
4924  if (ReferencedSelectors.empty() ||
4925  !Context.AnyObjCImplementation())
4926  return;
4927  for (auto &SelectorAndLocation : ReferencedSelectors) {
4928  Selector Sel = SelectorAndLocation.first;
4929  SourceLocation Loc = SelectorAndLocation.second;
4931  Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4932  }
4933 }
4934 
4935 ObjCIvarDecl *
4937  const ObjCPropertyDecl *&PDecl) const {
4938  if (Method->isClassMethod())
4939  return nullptr;
4940  const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4941  if (!IDecl)
4942  return nullptr;
4943  Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4944  /*shallowCategoryLookup=*/false,
4945  /*followSuper=*/false);
4946  if (!Method || !Method->isPropertyAccessor())
4947  return nullptr;
4948  if ((PDecl = Method->findPropertyDecl()))
4949  if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
4950  // property backing ivar must belong to property's class
4951  // or be a private ivar in class's implementation.
4952  // FIXME. fix the const-ness issue.
4953  IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
4954  IV->getIdentifier());
4955  return IV;
4956  }
4957  return nullptr;
4958 }
4959 
4960 namespace {
4961  /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
4962  /// accessor references the backing ivar.
4963  class UnusedBackingIvarChecker :
4964  public RecursiveASTVisitor<UnusedBackingIvarChecker> {
4965  public:
4966  Sema &S;
4967  const ObjCMethodDecl *Method;
4968  const ObjCIvarDecl *IvarD;
4969  bool AccessedIvar;
4970  bool InvokedSelfMethod;
4971 
4972  UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
4973  const ObjCIvarDecl *IvarD)
4974  : S(S), Method(Method), IvarD(IvarD),
4975  AccessedIvar(false), InvokedSelfMethod(false) {
4976  assert(IvarD);
4977  }
4978 
4979  bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
4980  if (E->getDecl() == IvarD) {
4981  AccessedIvar = true;
4982  return false;
4983  }
4984  return true;
4985  }
4986 
4987  bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
4989  S.isSelfExpr(E->getInstanceReceiver(), Method)) {
4990  InvokedSelfMethod = true;
4991  }
4992  return true;
4993  }
4994  };
4995 } // end anonymous namespace
4996 
4998  const ObjCImplementationDecl *ImplD) {
5000  return;
5001 
5002  for (const auto *CurMethod : ImplD->instance_methods()) {
5003  unsigned DIAG = diag::warn_unused_property_backing_ivar;
5004  SourceLocation Loc = CurMethod->getLocation();
5005  if (Diags.isIgnored(DIAG, Loc))
5006  continue;
5007 
5008  const ObjCPropertyDecl *PDecl;
5009  const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5010  if (!IV)
5011  continue;
5012 
5013  UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5014  Checker.TraverseStmt(CurMethod->getBody());
5015  if (Checker.AccessedIvar)
5016  continue;
5017 
5018  // Do not issue this warning if backing ivar is used somewhere and accessor
5019  // implementation makes a self call. This is to prevent false positive in
5020  // cases where the ivar is accessed by another method that the accessor
5021  // delegates to.
5022  if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5023  Diag(Loc, DIAG) << IV;
5024  Diag(PDecl->getLocation(), diag::note_property_declare);
5025  }
5026  }
5027 }
Decl * ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef< Decl *> allMethods=None, ArrayRef< DeclGroupPtrTy > allTUVars=None)
const ObjCInterfaceType * getInterfaceType() const
If this pointer points to an Objective C @interface type, gets the type for that interface.
Definition: Type.cpp:1538
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Defines the clang::ASTContext interface.
bool hasDefinition() const
Determine whether this class has been defined.
Definition: DeclObjC.h:1554
static bool tryMatchRecordTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, const Type *left, const Type *right)
ObjCIvarDecl * GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, const ObjCPropertyDecl *&PDecl) const
GetIvarBackingPropertyAccessor - If method is a property setter/getter and it property has a backing ...
void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, ObjCInterfaceDecl *ID)
DiagnoseClassExtensionDupMethods - Check for duplicate declaration of a class method in its extension...
bool isClassMethod() const
Definition: DeclObjC.h:457
Decl * ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, IdentifierInfo *CategoryName, SourceLocation CategoryLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList)
void setImplicit(bool I=true)
Definition: DeclBase.h:553
ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo)
Package the given type and TSI into a ParsedType.
Definition: SemaType.cpp:5672
bool isSelfExpr(Expr *RExpr)
Private Helper predicate to check for &#39;self&#39;.
The receiver is an object instance.
Definition: ExprObjC.h:1054
void setEndOfDefinitionLoc(SourceLocation LE)
Definition: DeclObjC.h:1904
VersionTuple getPlatformMinVersion() const
Retrieve the minimum desired version of the platform, to which the program should be compiled...
Definition: TargetInfo.h:1163
ExternalSemaSource * getExternalSource() const
Definition: Sema.h:1214
bool isObjCQualifiedIdType() const
True if this is equivalent to &#39;id.
Definition: Type.h:5683
Smart pointer class that efficiently represents Objective-C method names.
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:1828
unsigned getBits() const
QualType getAdjustedParameterType(QualType T) const
Perform adjustment on the parameter type of a function.
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2387
A (possibly-)qualified type.
Definition: Type.h:655
ASTConsumer & Consumer
Definition: Sema.h:320
Simple class containing the result of Sema::CorrectTypo.
void setStarLoc(SourceLocation Loc)
Definition: TypeLoc.h:1347
unsigned param_size() const
Definition: DeclObjC.h:379
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.h:2344
all_protocol_range all_referenced_protocols() const
Definition: DeclObjC.h:1443
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.cpp:1098
void setOverriding(bool isOverriding)
Definition: DeclObjC.h:473
void startDefinition()
Starts the definition of this Objective-C class, taking it from a forward declaration (@class) to a d...
Definition: DeclObjC.cpp:604
bool AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, bool receiverIdOrClass, SmallVectorImpl< ObjCMethodDecl *> &Methods)
ObjCDeclQualifier getObjCDeclQualifier() const
Definition: DeclSpec.h:819
static QualType getObjectType(APValue::LValueBase B)
Retrieves the "underlying object type" of the given expression, as used by __builtin_object_size.
iterator begin() const
Definition: DeclObjC.h:91
static ClassTemplateDecl * getDefinition(ClassTemplateDecl *D)
llvm::DenseSet< IdentifierInfo * > ProtocolNameSet
FIXME: Type hierarchies in Objective-C can be deep.
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc...
Definition: Sema.h:3008
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false)
Perform unqualified name lookup starting from a given scope.
Look up the name of an Objective-C protocol.
Definition: Sema.h:3042
const ObjCProtocolList & getReferencedProtocols() const
Definition: DeclObjC.h:2368
Expr * getBitWidth() const
Definition: Decl.h:2614
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:491
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:941
ObjCMethodDecl * LookupMethodInObjectType(Selector Sel, QualType Ty, bool IsInstance)
LookupMethodInType - Look up a method in an ObjCObjectType.
static bool CheckMethodOverrideParam(Sema &S, ObjCMethodDecl *MethodImpl, ObjCMethodDecl *MethodDecl, ParmVarDecl *ImplVar, ParmVarDecl *IfaceVar, bool IsProtocolMethodDecl, bool IsOverridingMode, bool Warn)
Defines the SourceManager interface.
void ActOnDocumentableDecl(Decl *D)
Should be called on all declarations that might have attached documentation comments.
Definition: SemaDecl.cpp:11877
bool isRecordType() const
Definition: Type.h:6179
iterator end()
Definition: DeclGroup.h:106
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
Definition: Sema.h:1281
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
void DiagnoseMissingDesignatedInitOverrides(const ObjCImplementationDecl *ImplD, const ObjCInterfaceDecl *IFD)
__DEVICE__ long long abs(long long __n)
Captures information about "declaration specifiers" specific to Objective-C.
Definition: DeclSpec.h:775
ObjCTypeParamList * actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc, ArrayRef< Decl *> typeParams, SourceLocation rAngleLoc)
void DiagnoseFunctionSpecifiers(const DeclSpec &DS)
Diagnose function specifiers on a declaration of an identifier that does not identify a function...
Definition: SemaDecl.cpp:5690
StringRef P
ivar_range ivars() const
Definition: DeclObjC.h:1477
Scope * TUScope
Translation Unit Scope - useful to Objective-C actions that need to lookup file scope declarations in...
Definition: Sema.h:806
static ObjCProtocolDecl * Create(ASTContext &C, DeclContext *DC, IdentifierInfo *Id, SourceLocation nameLoc, SourceLocation atStartLoc, ObjCProtocolDecl *PrevDecl)
Definition: DeclObjC.cpp:1810
static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, ObjCProtocolDecl *&UndefinedProtocol)
known_categories_range known_categories() const
Definition: DeclObjC.h:1706
ObjCTypeParamList * getTypeParamList() const
Retrieve the type parameters of this class.
Definition: DeclObjC.cpp:301
void AddDecl(Decl *D)
Definition: Scope.h:286
bool CheckForwardProtocolDeclarationForCircularDependency(IdentifierInfo *PName, SourceLocation &PLoc, SourceLocation PrevLoc, const ObjCList< ObjCProtocolDecl > &PList)
The base class of the type hierarchy.
Definition: Type.h:1428
void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false)
AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
Definition: Sema.h:3603
The parameter is covariant, e.g., X<T> is a subtype of X<U> when the type parameter is covariant and ...
CanQual< T > getUnqualifiedType() const
Retrieve the unqualified form of this type.
bool isCompilingModule() const
Are we compiling a module interface (.cppm or module map)?
Definition: LangOptions.h:219
bool isObjCContainer() const
Definition: DeclBase.h:1378
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset=0)
Calls Lexer::getLocForEndOfToken()
Definition: Sema.cpp:46
const ObjCObjectPointerType * getAsObjCInterfacePointerType() const
Definition: Type.cpp:1598
static const char * getSpecifierName(DeclSpec::TST T, const PrintingPolicy &Policy)
Turn a type-specifier-type into a string like "_Bool" or "union".
Definition: DeclSpec.cpp:499
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:673
A container of type source information.
Definition: Decl.h:86
void ProcessPropertyDecl(ObjCPropertyDecl *property)
Process the specified property declaration and create decls for the setters and getters as needed...
ObjCMethodDecl * getMethod() const
TSCS getThreadStorageClassSpec() const
Definition: DeclSpec.h:452
SourceLocation getLocEnd() const LLVM_READONLY
Definition: DeclBase.h:413
void ActOnTypedefedProtocols(SmallVectorImpl< Decl *> &ProtocolRefs, SmallVectorImpl< SourceLocation > &ProtocolLocs, IdentifierInfo *SuperName, SourceLocation SuperLoc)
ActOnTypedefedProtocols - this action finds protocol list as part of the typedef&#39;ed use for a qualifi...
param_const_iterator param_end() const
Definition: DeclObjC.h:390
bool isOverriding() const
Whether this method overrides any other in the class hierarchy.
Definition: DeclObjC.h:472
SourceLocation getEndLoc() const
Get the end source location.
Definition: TypeLoc.cpp:227
void createImplicitParams(ASTContext &Context, const ObjCInterfaceDecl *ID)
createImplicitParams - Used to lazily create the self and cmd implict parameters. ...
Definition: DeclObjC.cpp:1077
Represents a variable declaration or definition.
Definition: Decl.h:812
void setImplementation(ObjCCategoryImplDecl *ImplD)
Definition: DeclObjC.cpp:1979
PartialDiagnostic PDiag(unsigned DiagID=0)
Build a partial diagnostic.
Definition: SemaInternal.h:25
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1749
DiagnosticsEngine & Diags
Definition: Sema.h:321
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6519
ObjCCategoryImplDecl * getImplementation() const
Definition: DeclObjC.cpp:1974
SourceLocation getLocStart() const LLVM_READONLY
Definition: DeclObjC.h:321
static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc, ObjCMethodDecl *method, bool &IncompleteImpl, unsigned DiagID, NamedDecl *NeededFor=nullptr)
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
DeclClass * getCorrectionDeclAs() const
bool isInvalidDecl() const
Definition: DeclBase.h:547
classmeth_range class_methods() const
Definition: DeclObjC.h:1089
llvm::MapVector< Selector, SourceLocation > ReferencedSelectors
Method selectors used in a @selector expression.
Definition: Sema.h:1137
protocol_range protocols() const
Definition: DeclObjC.h:2148
Represents a parameter to a function.
Definition: Decl.h:1533
The collection of all-type qualifiers we support.
Definition: Type.h:154
iterator end() const
Definition: DeclObjC.h:92
MethodMatchStrategy
Definition: Sema.h:3513
const ObjCInterfaceDecl * getSuperClass() const
Definition: DeclObjC.h:2708
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:56
Represents a struct/union/class.
Definition: Decl.h:3552
SourceLocation getVarianceLoc() const
Retrieve the location of the variance keyword.
Definition: DeclObjC.h:629
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
One of these records is kept for each identifier that is lexed.
std::unique_ptr< NSAPI > NSAPIObj
Caches identifiers/selectors for NSFoundation APIs.
Definition: Sema.h:838
static void checkObjCMethodX86VectorTypes(Sema &SemaRef, const ObjCMethodDecl *Method)
Verify that the method parameters/return value have types that are supported by the x86 target...
const ObjCProtocolList & getReferencedProtocols() const
Definition: DeclObjC.h:2140
Represents a class type in Objective C.
Definition: Type.h:5348
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:150
ObjCMethodDecl * getClassMethod(Selector Sel, bool AllowHidden=false) const
Definition: DeclObjC.h:1110
const ParmVarDecl *const * param_const_iterator
Definition: DeclObjC.h:381
bool isObjCLifetimeType() const
Returns true if objects of this type have lifetime semantics under ARC.
Definition: Type.cpp:3946
ObjCMethodFamily
A family of Objective-C methods.
The parameter is contravariant, e.g., X<T> is a subtype of X<U> when the type parameter is covariant ...
Base class for callback objects used by Sema::CorrectTypo to check the validity of a potential typo c...
void set(T *const *InList, unsigned Elts, ASTContext &Ctx)
Definition: DeclObjC.h:85
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
bool isObjCIdType() const
Definition: Type.h:6232
Represents a member of a struct/union/class.
Definition: Decl.h:2525
SourceRange getReturnTypeSourceRange() const
Definition: DeclObjC.cpp:1110
instmeth_range instance_methods() const
Definition: DeclObjC.h:1072
bool isDefined() const
Definition: DeclObjC.h:462
void setSuperClass(TypeSourceInfo *superClass)
Definition: DeclObjC.h:1607
method_range methods() const
Definition: DeclObjC.h:1055
SourceRange getSourceRange() const
Definition: DeclObjC.h:725
DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc, IdentifierInfo **IdentList, SourceLocation *IdentLocs, ArrayRef< ObjCTypeParamList *> TypeParamLists, unsigned NumElts)
int Category
Definition: Format.cpp:1607
void ClearStorageClassSpecs()
Definition: DeclSpec.h:465
void setReturnType(QualType T)
Definition: DeclObjC.h:362
static DeclaratorChunk getPointer(unsigned TypeQuals, SourceLocation Loc, SourceLocation ConstQualLoc, SourceLocation VolatileQualLoc, SourceLocation RestrictQualLoc, SourceLocation AtomicQualLoc, SourceLocation UnalignedQualLoc)
Return a DeclaratorChunk for a pointer.
Definition: DeclSpec.h:1526
static bool checkTypeParamListConsistency(Sema &S, ObjCTypeParamList *prevTypeParams, ObjCTypeParamList *newTypeParams, TypeParamListContext newContext)
Check consistency between two Objective-C type parameter lists, e.g., between a category/extension an...
bool isObjCQualifiedClassType() const
Definition: Type.h:6226
static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method, const ObjCObjectType *TypeBound)
Return true if the given method is wthin the type bound.
void CheckExtraCXXDefaultArguments(Declarator &D)
CheckExtraCXXDefaultArguments - Check for any extra default arguments in the declarator, which is not a function declaration or definition and therefore is not permitted to have default arguments.
llvm::BumpPtrAllocator BumpAlloc
Definition: Sema.h:1085
IdentifierTable & Idents
Definition: ASTContext.h:539
Qualifiers getLocalQualifiers() const
Retrieve the set of qualifiers local to this particular QualType instance, not including any qualifie...
Definition: Type.h:5901
bool isInvalidType() const
Definition: DeclSpec.h:2427
bool isUnarySelector() const
bool isDeprecated(std::string *Message=nullptr) const
Determine whether this declaration is marked &#39;deprecated&#39;.
Definition: DeclBase.h:669
ObjCMethodFamily getMethodFamily() const
Determines the family of this method.
Definition: DeclObjC.cpp:940
void MatchAllMethodDeclarations(const SelectorSet &InsMap, const SelectorSet &ClsMap, SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl *IMPDecl, ObjCContainerDecl *IDecl, bool &IncompleteImpl, bool ImmediateClass, bool WarnCategoryMethodImpl=false)
MatchAllMethodDeclarations - Check methods declaraed in interface or or protocol against those declar...
bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall)
Check whether the given method, which must be in the &#39;init&#39; family, is a valid member of that family...
void setMethod(ObjCMethodDecl *M)
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:2603
bool isNonFragile() const
Does this runtime follow the set of implied behaviors for a "non-fragile" ABI?
Definition: ObjCRuntime.h:82
Represents the results of name lookup.
Definition: Lookup.h:47
PtrTy get() const
Definition: Ownership.h:174
ObjCMethodDecl * LookupImplementedMethodInGlobalPool(Selector Sel)
LookupImplementedMethodInGlobalPool - Returns the method which has an implementation.
bool isNeXTFamily() const
Is this runtime basically of the NeXT family of runtimes?
Definition: ObjCRuntime.h:135
void mergeDeclAttributes(NamedDecl *New, Decl *Old, AvailabilityMergeKind AMK=AMK_Redeclaration)
mergeDeclAttributes - Copy attributes from the Old decl to the New one.
Definition: SemaDecl.cpp:2616
static ObjCInterfaceDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation atLoc, IdentifierInfo *Id, ObjCTypeParamList *typeParamList, ObjCInterfaceDecl *PrevDecl, SourceLocation ClassLoc=SourceLocation(), bool isInternal=false)
Definition: DeclObjC.cpp:1410
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:986
ObjCMethodDecl * getCurMethodDecl()
getCurMethodDecl - If inside of a method body, this returns a pointer to the method decl for the meth...
Definition: Sema.cpp:1198
bool isReferenced() const
Whether any declaration of this entity was referenced.
Definition: DeclBase.cpp:422
static ObjCCategoryDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation AtLoc, SourceLocation ClassNameLoc, SourceLocation CategoryNameLoc, IdentifierInfo *Id, ObjCInterfaceDecl *IDecl, ObjCTypeParamList *typeParamList, SourceLocation IvarLBraceLoc=SourceLocation(), SourceLocation IvarRBraceLoc=SourceLocation())
Definition: DeclObjC.cpp:1941
SCS
storage-class-specifier
Definition: DeclSpec.h:232
void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, SmallVectorImpl< ObjCIvarDecl *> &Ivars)
CollectIvarsToConstructOrDestruct - Collect those ivars which require initialization.
DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef< Decl *> Group)
BuildDeclaratorGroup - convert a list of declarations into a declaration group, performing any necess...
Definition: SemaDecl.cpp:11839
Decl * ActOnObjCContainerStartDefinition(Decl *IDecl)
Definition: SemaDecl.cpp:14471
ObjCContainerKind
Definition: Sema.h:7890
void RemoveDecl(NamedDecl *D)
RemoveDecl - Unlink the decl from its shadowed decl chain.
void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, IdentifierInfo *ClassName, SmallVectorImpl< Decl *> &Decls)
Called whenever @defs(ClassName) is encountered in the source.
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:637
Selector GetNullarySelector(StringRef name, ASTContext &Ctx)
Utility function for constructing a nullary selector.
Definition: ASTContext.h:2909
GlobalMethodPool MethodPool
Method Pool - allows efficient lookup when typechecking messages to "id".
Definition: Sema.h:1133
Represents a declaration of a type.
Definition: Decl.h:2820
static ObjCAtDefsFieldDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc