clang  6.0.0svn
SemaDeclObjC.cpp
Go to the documentation of this file.
1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for Objective C declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprObjC.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/Scope.h"
26 #include "clang/Sema/ScopeInfo.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/DenseSet.h"
30 
31 using namespace clang;
32 
33 /// Check whether the given method, which must be in the 'init'
34 /// family, is a valid member of that family.
35 ///
36 /// \param receiverTypeIfCall - if null, check this as if declaring it;
37 /// if non-null, check this as if making a call to it with the given
38 /// receiver type
39 ///
40 /// \return true to indicate that there was an error and appropriate
41 /// actions were taken
43  QualType receiverTypeIfCall) {
44  if (method->isInvalidDecl()) return true;
45 
46  // This castAs is safe: methods that don't return an object
47  // pointer won't be inferred as inits and will reject an explicit
48  // objc_method_family(init).
49 
50  // We ignore protocols here. Should we? What about Class?
51 
52  const ObjCObjectType *result =
54 
55  if (result->isObjCId()) {
56  return false;
57  } else if (result->isObjCClass()) {
58  // fall through: always an error
59  } else {
60  ObjCInterfaceDecl *resultClass = result->getInterface();
61  assert(resultClass && "unexpected object type!");
62 
63  // It's okay for the result type to still be a forward declaration
64  // if we're checking an interface declaration.
65  if (!resultClass->hasDefinition()) {
66  if (receiverTypeIfCall.isNull() &&
67  !isa<ObjCImplementationDecl>(method->getDeclContext()))
68  return false;
69 
70  // Otherwise, we try to compare class types.
71  } else {
72  // If this method was declared in a protocol, we can't check
73  // anything unless we have a receiver type that's an interface.
74  const ObjCInterfaceDecl *receiverClass = nullptr;
75  if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76  if (receiverTypeIfCall.isNull())
77  return false;
78 
79  receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80  ->getInterfaceDecl();
81 
82  // This can be null for calls to e.g. id<Foo>.
83  if (!receiverClass) return false;
84  } else {
85  receiverClass = method->getClassInterface();
86  assert(receiverClass && "method not associated with a class!");
87  }
88 
89  // If either class is a subclass of the other, it's fine.
90  if (receiverClass->isSuperClassOf(resultClass) ||
91  resultClass->isSuperClassOf(receiverClass))
92  return false;
93  }
94  }
95 
96  SourceLocation loc = method->getLocation();
97 
98  // If we're in a system header, and this is not a call, just make
99  // the method unusable.
100  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
101  method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102  UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103  return true;
104  }
105 
106  // Otherwise, it's an error.
107  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108  method->setInvalidDecl();
109  return true;
110 }
111 
113  const ObjCMethodDecl *Overridden) {
114  if (Overridden->hasRelatedResultType() &&
115  !NewMethod->hasRelatedResultType()) {
116  // This can only happen when the method follows a naming convention that
117  // implies a related result type, and the original (overridden) method has
118  // a suitable return type, but the new (overriding) method does not have
119  // a suitable return type.
120  QualType ResultType = NewMethod->getReturnType();
121  SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
122 
123  // Figure out which class this method is part of, if any.
124  ObjCInterfaceDecl *CurrentClass
125  = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
126  if (!CurrentClass) {
127  DeclContext *DC = NewMethod->getDeclContext();
128  if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
129  CurrentClass = Cat->getClassInterface();
130  else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
131  CurrentClass = Impl->getClassInterface();
132  else if (ObjCCategoryImplDecl *CatImpl
133  = dyn_cast<ObjCCategoryImplDecl>(DC))
134  CurrentClass = CatImpl->getClassInterface();
135  }
136 
137  if (CurrentClass) {
138  Diag(NewMethod->getLocation(),
139  diag::warn_related_result_type_compatibility_class)
140  << Context.getObjCInterfaceType(CurrentClass)
141  << ResultType
142  << ResultTypeRange;
143  } else {
144  Diag(NewMethod->getLocation(),
145  diag::warn_related_result_type_compatibility_protocol)
146  << ResultType
147  << ResultTypeRange;
148  }
149 
150  if (ObjCMethodFamily Family = Overridden->getMethodFamily())
151  Diag(Overridden->getLocation(),
152  diag::note_related_result_type_family)
153  << /*overridden method*/ 0
154  << Family;
155  else
156  Diag(Overridden->getLocation(),
157  diag::note_related_result_type_overridden);
158  }
159  if (getLangOpts().ObjCAutoRefCount) {
160  Diags.setSeverity(diag::warn_nsreturns_retained_attribute_mismatch,
162  Diags.setSeverity(diag::warn_nsconsumed_attribute_mismatch,
164  }
165 
166  if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
167  Overridden->hasAttr<NSReturnsRetainedAttr>())) {
168  Diag(NewMethod->getLocation(),
169  diag::warn_nsreturns_retained_attribute_mismatch) << 1;
170  Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
171  }
172  if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
173  Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
174  Diag(NewMethod->getLocation(),
175  diag::warn_nsreturns_retained_attribute_mismatch) << 0;
176  Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
177  }
178 
180  oe = Overridden->param_end();
181  for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
182  ne = NewMethod->param_end();
183  ni != ne && oi != oe; ++ni, ++oi) {
184  const ParmVarDecl *oldDecl = (*oi);
185  ParmVarDecl *newDecl = (*ni);
186  if (newDecl->hasAttr<NSConsumedAttr>() !=
187  oldDecl->hasAttr<NSConsumedAttr>()) {
188  Diag(newDecl->getLocation(), diag::warn_nsconsumed_attribute_mismatch);
189  Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
190  }
191 
192  // A parameter of the overriding method should be annotated with noescape
193  // if the corresponding parameter of the overridden method is annotated.
194  if (oldDecl->hasAttr<NoEscapeAttr>() && !newDecl->hasAttr<NoEscapeAttr>()) {
195  Diag(newDecl->getLocation(),
196  diag::warn_overriding_method_missing_noescape);
197  Diag(oldDecl->getLocation(), diag::note_overridden_marked_noescape);
198  }
199  }
200 }
201 
202 /// \brief Check a method declaration for compatibility with the Objective-C
203 /// ARC conventions.
205  ObjCMethodFamily family = method->getMethodFamily();
206  switch (family) {
207  case OMF_None:
208  case OMF_finalize:
209  case OMF_retain:
210  case OMF_release:
211  case OMF_autorelease:
212  case OMF_retainCount:
213  case OMF_self:
214  case OMF_initialize:
215  case OMF_performSelector:
216  return false;
217 
218  case OMF_dealloc:
219  if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
220  SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
221  if (ResultTypeRange.isInvalid())
222  Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
223  << method->getReturnType()
224  << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
225  else
226  Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
227  << method->getReturnType()
228  << FixItHint::CreateReplacement(ResultTypeRange, "void");
229  return true;
230  }
231  return false;
232 
233  case OMF_init:
234  // If the method doesn't obey the init rules, don't bother annotating it.
235  if (checkInitMethod(method, QualType()))
236  return true;
237 
238  method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
239 
240  // Don't add a second copy of this attribute, but otherwise don't
241  // let it be suppressed.
242  if (method->hasAttr<NSReturnsRetainedAttr>())
243  return false;
244  break;
245 
246  case OMF_alloc:
247  case OMF_copy:
248  case OMF_mutableCopy:
249  case OMF_new:
250  if (method->hasAttr<NSReturnsRetainedAttr>() ||
251  method->hasAttr<NSReturnsNotRetainedAttr>() ||
252  method->hasAttr<NSReturnsAutoreleasedAttr>())
253  return false;
254  break;
255  }
256 
257  method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
258  return false;
259 }
260 
262  SourceLocation ImplLoc) {
263  if (!ND)
264  return;
265  bool IsCategory = false;
266  AvailabilityResult Availability = ND->getAvailability();
267  if (Availability != AR_Deprecated) {
268  if (isa<ObjCMethodDecl>(ND)) {
269  if (Availability != AR_Unavailable)
270  return;
271  // Warn about implementing unavailable methods.
272  S.Diag(ImplLoc, diag::warn_unavailable_def);
273  S.Diag(ND->getLocation(), diag::note_method_declared_at)
274  << ND->getDeclName();
275  return;
276  }
277  if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
278  if (!CD->getClassInterface()->isDeprecated())
279  return;
280  ND = CD->getClassInterface();
281  IsCategory = true;
282  } else
283  return;
284  }
285  S.Diag(ImplLoc, diag::warn_deprecated_def)
286  << (isa<ObjCMethodDecl>(ND)
287  ? /*Method*/ 0
288  : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
289  : /*Class*/ 1);
290  if (isa<ObjCMethodDecl>(ND))
291  S.Diag(ND->getLocation(), diag::note_method_declared_at)
292  << ND->getDeclName();
293  else
294  S.Diag(ND->getLocation(), diag::note_previous_decl)
295  << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
296 }
297 
298 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
299 /// pool.
301  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
302 
303  // If we don't have a valid method decl, simply return.
304  if (!MDecl)
305  return;
306  if (MDecl->isInstanceMethod())
307  AddInstanceMethodToGlobalPool(MDecl, true);
308  else
309  AddFactoryMethodToGlobalPool(MDecl, true);
310 }
311 
312 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
313 /// has explicit ownership attribute; false otherwise.
314 static bool
316  QualType T = Param->getType();
317 
318  if (const PointerType *PT = T->getAs<PointerType>()) {
319  T = PT->getPointeeType();
320  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
321  T = RT->getPointeeType();
322  } else {
323  return true;
324  }
325 
326  // If we have a lifetime qualifier, but it's local, we must have
327  // inferred it. So, it is implicit.
328  return !T.getLocalQualifiers().hasObjCLifetime();
329 }
330 
331 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
332 /// and user declared, in the method definition's AST.
334  assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
335  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
336 
337  // If we don't have a valid method decl, simply return.
338  if (!MDecl)
339  return;
340 
341  // Allow all of Sema to see that we are entering a method definition.
342  PushDeclContext(FnBodyScope, MDecl);
344 
345  // Create Decl objects for each parameter, entrring them in the scope for
346  // binding to their use.
347 
348  // Insert the invisible arguments, self and _cmd!
350 
351  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
352  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
353 
354  // The ObjC parser requires parameter names so there's no need to check.
356  /*CheckParameterNames=*/false);
357 
358  // Introduce all of the other parameters into this scope.
359  for (auto *Param : MDecl->parameters()) {
360  if (!Param->isInvalidDecl() &&
361  getLangOpts().ObjCAutoRefCount &&
362  !HasExplicitOwnershipAttr(*this, Param))
363  Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
364  Param->getType();
365 
366  if (Param->getIdentifier())
367  PushOnScopeChains(Param, FnBodyScope);
368  }
369 
370  // In ARC, disallow definition of retain/release/autorelease/retainCount
371  if (getLangOpts().ObjCAutoRefCount) {
372  switch (MDecl->getMethodFamily()) {
373  case OMF_retain:
374  case OMF_retainCount:
375  case OMF_release:
376  case OMF_autorelease:
377  Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
378  << 0 << MDecl->getSelector();
379  break;
380 
381  case OMF_None:
382  case OMF_dealloc:
383  case OMF_finalize:
384  case OMF_alloc:
385  case OMF_init:
386  case OMF_mutableCopy:
387  case OMF_copy:
388  case OMF_new:
389  case OMF_self:
390  case OMF_initialize:
391  case OMF_performSelector:
392  break;
393  }
394  }
395 
396  // Warn on deprecated methods under -Wdeprecated-implementations,
397  // and prepare for warning on missing super calls.
398  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
399  ObjCMethodDecl *IMD =
400  IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
401 
402  if (IMD) {
403  ObjCImplDecl *ImplDeclOfMethodDef =
404  dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
405  ObjCContainerDecl *ContDeclOfMethodDecl =
406  dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
407  ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
408  if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
409  ImplDeclOfMethodDecl = OID->getImplementation();
410  else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
411  if (CD->IsClassExtension()) {
412  if (ObjCInterfaceDecl *OID = CD->getClassInterface())
413  ImplDeclOfMethodDecl = OID->getImplementation();
414  } else
415  ImplDeclOfMethodDecl = CD->getImplementation();
416  }
417  // No need to issue deprecated warning if deprecated mehod in class/category
418  // is being implemented in its own implementation (no overriding is involved).
419  if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
420  DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
421  }
422 
423  if (MDecl->getMethodFamily() == OMF_init) {
427  IC->getSuperClass() != nullptr;
428  } else if (IC->hasDesignatedInitializers()) {
431  }
432  }
433 
434  // If this is "dealloc" or "finalize", set some bit here.
435  // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
436  // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
437  // Only do this if the current class actually has a superclass.
438  if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
439  ObjCMethodFamily Family = MDecl->getMethodFamily();
440  if (Family == OMF_dealloc) {
441  if (!(getLangOpts().ObjCAutoRefCount ||
442  getLangOpts().getGC() == LangOptions::GCOnly))
444 
445  } else if (Family == OMF_finalize) {
446  if (Context.getLangOpts().getGC() != LangOptions::NonGC)
448 
449  } else {
450  const ObjCMethodDecl *SuperMethod =
451  SuperClass->lookupMethod(MDecl->getSelector(),
452  MDecl->isInstanceMethod());
454  (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
455  }
456  }
457  }
458 }
459 
460 namespace {
461 
462 // Callback to only accept typo corrections that are Objective-C classes.
463 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
464 // function will reject corrections to that class.
465 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
466  public:
467  ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
468  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
469  : CurrentIDecl(IDecl) {}
470 
471  bool ValidateCandidate(const TypoCorrection &candidate) override {
473  return ID && !declaresSameEntity(ID, CurrentIDecl);
474  }
475 
476  private:
477  ObjCInterfaceDecl *CurrentIDecl;
478 };
479 
480 } // end anonymous namespace
481 
482 static void diagnoseUseOfProtocols(Sema &TheSema,
483  ObjCContainerDecl *CD,
484  ObjCProtocolDecl *const *ProtoRefs,
485  unsigned NumProtoRefs,
486  const SourceLocation *ProtoLocs) {
487  assert(ProtoRefs);
488  // Diagnose availability in the context of the ObjC container.
489  Sema::ContextRAII SavedContext(TheSema, CD);
490  for (unsigned i = 0; i < NumProtoRefs; ++i) {
491  (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
492  /*UnknownObjCClass=*/nullptr,
493  /*ObjCPropertyAccess=*/false,
494  /*AvoidPartialAvailabilityChecks=*/true);
495  }
496 }
497 
498 void Sema::
500  SourceLocation AtInterfaceLoc,
501  ObjCInterfaceDecl *IDecl,
502  IdentifierInfo *ClassName,
503  SourceLocation ClassLoc,
504  IdentifierInfo *SuperName,
505  SourceLocation SuperLoc,
506  ArrayRef<ParsedType> SuperTypeArgs,
507  SourceRange SuperTypeArgsRange) {
508  // Check if a different kind of symbol declared in this scope.
509  NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
511 
512  if (!PrevDecl) {
513  // Try to correct for a typo in the superclass name without correcting
514  // to the class we're defining.
515  if (TypoCorrection Corrected = CorrectTypo(
516  DeclarationNameInfo(SuperName, SuperLoc),
518  nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
520  diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
521  << SuperName << ClassName);
522  PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
523  }
524  }
525 
526  if (declaresSameEntity(PrevDecl, IDecl)) {
527  Diag(SuperLoc, diag::err_recursive_superclass)
528  << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
529  IDecl->setEndOfDefinitionLoc(ClassLoc);
530  } else {
531  ObjCInterfaceDecl *SuperClassDecl =
532  dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
533  QualType SuperClassType;
534 
535  // Diagnose classes that inherit from deprecated classes.
536  if (SuperClassDecl) {
537  (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
538  SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
539  }
540 
541  if (PrevDecl && !SuperClassDecl) {
542  // The previous declaration was not a class decl. Check if we have a
543  // typedef. If we do, get the underlying class type.
544  if (const TypedefNameDecl *TDecl =
545  dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
546  QualType T = TDecl->getUnderlyingType();
547  if (T->isObjCObjectType()) {
548  if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
549  SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
550  SuperClassType = Context.getTypeDeclType(TDecl);
551 
552  // This handles the following case:
553  // @interface NewI @end
554  // typedef NewI DeprI __attribute__((deprecated("blah")))
555  // @interface SI : DeprI /* warn here */ @end
556  (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
557  }
558  }
559  }
560 
561  // This handles the following case:
562  //
563  // typedef int SuperClass;
564  // @interface MyClass : SuperClass {} @end
565  //
566  if (!SuperClassDecl) {
567  Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
568  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
569  }
570  }
571 
572  if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
573  if (!SuperClassDecl)
574  Diag(SuperLoc, diag::err_undef_superclass)
575  << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
576  else if (RequireCompleteType(SuperLoc,
577  SuperClassType,
578  diag::err_forward_superclass,
579  SuperClassDecl->getDeclName(),
580  ClassName,
581  SourceRange(AtInterfaceLoc, ClassLoc))) {
582  SuperClassDecl = nullptr;
583  SuperClassType = QualType();
584  }
585  }
586 
587  if (SuperClassType.isNull()) {
588  assert(!SuperClassDecl && "Failed to set SuperClassType?");
589  return;
590  }
591 
592  // Handle type arguments on the superclass.
593  TypeSourceInfo *SuperClassTInfo = nullptr;
594  if (!SuperTypeArgs.empty()) {
596  S,
597  SuperLoc,
598  CreateParsedType(SuperClassType,
599  nullptr),
600  SuperTypeArgsRange.getBegin(),
601  SuperTypeArgs,
602  SuperTypeArgsRange.getEnd(),
603  SourceLocation(),
604  { },
605  { },
606  SourceLocation());
607  if (!fullSuperClassType.isUsable())
608  return;
609 
610  SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
611  &SuperClassTInfo);
612  }
613 
614  if (!SuperClassTInfo) {
615  SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
616  SuperLoc);
617  }
618 
619  IDecl->setSuperClass(SuperClassTInfo);
620  IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getLocEnd());
621  }
622 }
623 
625  ObjCTypeParamVariance variance,
626  SourceLocation varianceLoc,
627  unsigned index,
628  IdentifierInfo *paramName,
629  SourceLocation paramLoc,
630  SourceLocation colonLoc,
631  ParsedType parsedTypeBound) {
632  // If there was an explicitly-provided type bound, check it.
633  TypeSourceInfo *typeBoundInfo = nullptr;
634  if (parsedTypeBound) {
635  // The type bound can be any Objective-C pointer type.
636  QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
637  if (typeBound->isObjCObjectPointerType()) {
638  // okay
639  } else if (typeBound->isObjCObjectType()) {
640  // The user forgot the * on an Objective-C pointer type, e.g.,
641  // "T : NSView".
643  typeBoundInfo->getTypeLoc().getEndLoc());
644  Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
645  diag::err_objc_type_param_bound_missing_pointer)
646  << typeBound << paramName
647  << FixItHint::CreateInsertion(starLoc, " *");
648 
649  // Create a new type location builder so we can update the type
650  // location information we have.
651  TypeLocBuilder builder;
652  builder.pushFullCopy(typeBoundInfo->getTypeLoc());
653 
654  // Create the Objective-C pointer type.
655  typeBound = Context.getObjCObjectPointerType(typeBound);
657  = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
658  newT.setStarLoc(starLoc);
659 
660  // Form the new type source information.
661  typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
662  } else {
663  // Not a valid type bound.
664  Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
665  diag::err_objc_type_param_bound_nonobject)
666  << typeBound << paramName;
667 
668  // Forget the bound; we'll default to id later.
669  typeBoundInfo = nullptr;
670  }
671 
672  // Type bounds cannot have qualifiers (even indirectly) or explicit
673  // nullability.
674  if (typeBoundInfo) {
675  QualType typeBound = typeBoundInfo->getType();
676  TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
677  if (qual || typeBound.hasQualifiers()) {
678  bool diagnosed = false;
679  SourceRange rangeToRemove;
680  if (qual) {
681  if (auto attr = qual.getAs<AttributedTypeLoc>()) {
682  rangeToRemove = attr.getLocalSourceRange();
683  if (attr.getTypePtr()->getImmediateNullability()) {
684  Diag(attr.getLocStart(),
685  diag::err_objc_type_param_bound_explicit_nullability)
686  << paramName << typeBound
687  << FixItHint::CreateRemoval(rangeToRemove);
688  diagnosed = true;
689  }
690  }
691  }
692 
693  if (!diagnosed) {
694  Diag(qual ? qual.getLocStart()
695  : typeBoundInfo->getTypeLoc().getLocStart(),
696  diag::err_objc_type_param_bound_qualified)
697  << paramName << typeBound << typeBound.getQualifiers().getAsString()
698  << FixItHint::CreateRemoval(rangeToRemove);
699  }
700 
701  // If the type bound has qualifiers other than CVR, we need to strip
702  // them or we'll probably assert later when trying to apply new
703  // qualifiers.
704  Qualifiers quals = typeBound.getQualifiers();
705  quals.removeCVRQualifiers();
706  if (!quals.empty()) {
707  typeBoundInfo =
709  }
710  }
711  }
712  }
713 
714  // If there was no explicit type bound (or we removed it due to an error),
715  // use 'id' instead.
716  if (!typeBoundInfo) {
717  colonLoc = SourceLocation();
719  }
720 
721  // Create the type parameter.
722  return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
723  index, paramLoc, paramName, colonLoc,
724  typeBoundInfo);
725 }
726 
728  SourceLocation lAngleLoc,
729  ArrayRef<Decl *> typeParamsIn,
730  SourceLocation rAngleLoc) {
731  // We know that the array only contains Objective-C type parameters.
733  typeParams(
734  reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
735  typeParamsIn.size());
736 
737  // Diagnose redeclarations of type parameters.
738  // We do this now because Objective-C type parameters aren't pushed into
739  // scope until later (after the instance variable block), but we want the
740  // diagnostics to occur right after we parse the type parameter list.
741  llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
742  for (auto typeParam : typeParams) {
743  auto known = knownParams.find(typeParam->getIdentifier());
744  if (known != knownParams.end()) {
745  Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
746  << typeParam->getIdentifier()
747  << SourceRange(known->second->getLocation());
748 
749  typeParam->setInvalidDecl();
750  } else {
751  knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
752 
753  // Push the type parameter into scope.
754  PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
755  }
756  }
757 
758  // Create the parameter list.
759  return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
760 }
761 
763  for (auto typeParam : *typeParamList) {
764  if (!typeParam->isInvalidDecl()) {
765  S->RemoveDecl(typeParam);
766  IdResolver.RemoveDecl(typeParam);
767  }
768  }
769 }
770 
771 namespace {
772  /// The context in which an Objective-C type parameter list occurs, for use
773  /// in diagnostics.
774  enum class TypeParamListContext {
775  ForwardDeclaration,
776  Definition,
777  Category,
778  Extension
779  };
780 } // end anonymous namespace
781 
782 /// Check consistency between two Objective-C type parameter lists, e.g.,
783 /// between a category/extension and an \@interface or between an \@class and an
784 /// \@interface.
786  ObjCTypeParamList *prevTypeParams,
787  ObjCTypeParamList *newTypeParams,
788  TypeParamListContext newContext) {
789  // If the sizes don't match, complain about that.
790  if (prevTypeParams->size() != newTypeParams->size()) {
791  SourceLocation diagLoc;
792  if (newTypeParams->size() > prevTypeParams->size()) {
793  diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
794  } else {
795  diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getLocEnd());
796  }
797 
798  S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
799  << static_cast<unsigned>(newContext)
800  << (newTypeParams->size() > prevTypeParams->size())
801  << prevTypeParams->size()
802  << newTypeParams->size();
803 
804  return true;
805  }
806 
807  // Match up the type parameters.
808  for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
809  ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
810  ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
811 
812  // Check for consistency of the variance.
813  if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
814  if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
815  newContext != TypeParamListContext::Definition) {
816  // When the new type parameter is invariant and is not part
817  // of the definition, just propagate the variance.
818  newTypeParam->setVariance(prevTypeParam->getVariance());
819  } else if (prevTypeParam->getVariance()
821  !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
822  cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
823  ->getDefinition() == prevTypeParam->getDeclContext())) {
824  // When the old parameter is invariant and was not part of the
825  // definition, just ignore the difference because it doesn't
826  // matter.
827  } else {
828  {
829  // Diagnose the conflict and update the second declaration.
830  SourceLocation diagLoc = newTypeParam->getVarianceLoc();
831  if (diagLoc.isInvalid())
832  diagLoc = newTypeParam->getLocStart();
833 
834  auto diag = S.Diag(diagLoc,
835  diag::err_objc_type_param_variance_conflict)
836  << static_cast<unsigned>(newTypeParam->getVariance())
837  << newTypeParam->getDeclName()
838  << static_cast<unsigned>(prevTypeParam->getVariance())
839  << prevTypeParam->getDeclName();
840  switch (prevTypeParam->getVariance()) {
842  diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
843  break;
844 
847  StringRef newVarianceStr
848  = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
849  ? "__covariant"
850  : "__contravariant";
851  if (newTypeParam->getVariance()
853  diag << FixItHint::CreateInsertion(newTypeParam->getLocStart(),
854  (newVarianceStr + " ").str());
855  } else {
856  diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
857  newVarianceStr);
858  }
859  }
860  }
861  }
862 
863  S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
864  << prevTypeParam->getDeclName();
865 
866  // Override the variance.
867  newTypeParam->setVariance(prevTypeParam->getVariance());
868  }
869  }
870 
871  // If the bound types match, there's nothing to do.
872  if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
873  newTypeParam->getUnderlyingType()))
874  continue;
875 
876  // If the new type parameter's bound was explicit, complain about it being
877  // different from the original.
878  if (newTypeParam->hasExplicitBound()) {
879  SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
881  S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
882  << newTypeParam->getUnderlyingType()
883  << newTypeParam->getDeclName()
884  << prevTypeParam->hasExplicitBound()
885  << prevTypeParam->getUnderlyingType()
886  << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
887  << prevTypeParam->getDeclName()
889  newBoundRange,
890  prevTypeParam->getUnderlyingType().getAsString(
892 
893  S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
894  << prevTypeParam->getDeclName();
895 
896  // Override the new type parameter's bound type with the previous type,
897  // so that it's consistent.
898  newTypeParam->setTypeSourceInfo(
900  continue;
901  }
902 
903  // The new type parameter got the implicit bound of 'id'. That's okay for
904  // categories and extensions (overwrite it later), but not for forward
905  // declarations and @interfaces, because those must be standalone.
906  if (newContext == TypeParamListContext::ForwardDeclaration ||
907  newContext == TypeParamListContext::Definition) {
908  // Diagnose this problem for forward declarations and definitions.
909  SourceLocation insertionLoc
910  = S.getLocForEndOfToken(newTypeParam->getLocation());
911  std::string newCode
912  = " : " + prevTypeParam->getUnderlyingType().getAsString(
914  S.Diag(newTypeParam->getLocation(),
915  diag::err_objc_type_param_bound_missing)
916  << prevTypeParam->getUnderlyingType()
917  << newTypeParam->getDeclName()
918  << (newContext == TypeParamListContext::ForwardDeclaration)
919  << FixItHint::CreateInsertion(insertionLoc, newCode);
920 
921  S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
922  << prevTypeParam->getDeclName();
923  }
924 
925  // Update the new type parameter's bound to match the previous one.
926  newTypeParam->setTypeSourceInfo(
928  }
929 
930  return false;
931 }
932 
933 Decl *Sema::
935  IdentifierInfo *ClassName, SourceLocation ClassLoc,
936  ObjCTypeParamList *typeParamList,
937  IdentifierInfo *SuperName, SourceLocation SuperLoc,
938  ArrayRef<ParsedType> SuperTypeArgs,
939  SourceRange SuperTypeArgsRange,
940  Decl * const *ProtoRefs, unsigned NumProtoRefs,
941  const SourceLocation *ProtoLocs,
942  SourceLocation EndProtoLoc, AttributeList *AttrList) {
943  assert(ClassName && "Missing class identifier");
944 
945  // Check for another declaration kind with the same name.
946  NamedDecl *PrevDecl =
947  LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
949 
950  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
951  Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
952  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
953  }
954 
955  // Create a declaration to describe this @interface.
956  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
957 
958  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
959  // A previous decl with a different name is because of
960  // @compatibility_alias, for example:
961  // \code
962  // @class NewImage;
963  // @compatibility_alias OldImage NewImage;
964  // \endcode
965  // A lookup for 'OldImage' will return the 'NewImage' decl.
966  //
967  // In such a case use the real declaration name, instead of the alias one,
968  // otherwise we will break IdentifierResolver and redecls-chain invariants.
969  // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
970  // has been aliased.
971  ClassName = PrevIDecl->getIdentifier();
972  }
973 
974  // If there was a forward declaration with type parameters, check
975  // for consistency.
976  if (PrevIDecl) {
977  if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
978  if (typeParamList) {
979  // Both have type parameter lists; check for consistency.
980  if (checkTypeParamListConsistency(*this, prevTypeParamList,
981  typeParamList,
982  TypeParamListContext::Definition)) {
983  typeParamList = nullptr;
984  }
985  } else {
986  Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
987  << ClassName;
988  Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
989  << ClassName;
990 
991  // Clone the type parameter list.
992  SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
993  for (auto typeParam : *prevTypeParamList) {
994  clonedTypeParams.push_back(
996  Context,
997  CurContext,
998  typeParam->getVariance(),
999  SourceLocation(),
1000  typeParam->getIndex(),
1001  SourceLocation(),
1002  typeParam->getIdentifier(),
1003  SourceLocation(),
1004  Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1005  }
1006 
1007  typeParamList = ObjCTypeParamList::create(Context,
1008  SourceLocation(),
1009  clonedTypeParams,
1010  SourceLocation());
1011  }
1012  }
1013  }
1014 
1015  ObjCInterfaceDecl *IDecl
1016  = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1017  typeParamList, PrevIDecl, ClassLoc);
1018  if (PrevIDecl) {
1019  // Class already seen. Was it a definition?
1020  if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1021  Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1022  << PrevIDecl->getDeclName();
1023  Diag(Def->getLocation(), diag::note_previous_definition);
1024  IDecl->setInvalidDecl();
1025  }
1026  }
1027 
1028  if (AttrList)
1029  ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1030  AddPragmaAttributes(TUScope, IDecl);
1031  PushOnScopeChains(IDecl, TUScope);
1032 
1033  // Start the definition of this class. If we're in a redefinition case, there
1034  // may already be a definition, so we'll end up adding to it.
1035  if (!IDecl->hasDefinition())
1036  IDecl->startDefinition();
1037 
1038  if (SuperName) {
1039  // Diagnose availability in the context of the @interface.
1040  ContextRAII SavedContext(*this, IDecl);
1041 
1042  ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1043  ClassName, ClassLoc,
1044  SuperName, SuperLoc, SuperTypeArgs,
1045  SuperTypeArgsRange);
1046  } else { // we have a root class.
1047  IDecl->setEndOfDefinitionLoc(ClassLoc);
1048  }
1049 
1050  // Check then save referenced protocols.
1051  if (NumProtoRefs) {
1052  diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1053  NumProtoRefs, ProtoLocs);
1054  IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1055  ProtoLocs, Context);
1056  IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1057  }
1058 
1059  CheckObjCDeclScope(IDecl);
1060  return ActOnObjCContainerStartDefinition(IDecl);
1061 }
1062 
1063 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
1064 /// typedef'ed use for a qualified super class and adds them to the list
1065 /// of the protocols.
1067  SmallVectorImpl<SourceLocation> &ProtocolLocs,
1068  IdentifierInfo *SuperName,
1069  SourceLocation SuperLoc) {
1070  if (!SuperName)
1071  return;
1072  NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1074  if (!IDecl)
1075  return;
1076 
1077  if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1078  QualType T = TDecl->getUnderlyingType();
1079  if (T->isObjCObjectType())
1080  if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1081  ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1082  // FIXME: Consider whether this should be an invalid loc since the loc
1083  // is not actually pointing to a protocol name reference but to the
1084  // typedef reference. Note that the base class name loc is also pointing
1085  // at the typedef.
1086  ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1087  }
1088  }
1089 }
1090 
1091 /// ActOnCompatibilityAlias - this action is called after complete parsing of
1092 /// a \@compatibility_alias declaration. It sets up the alias relationships.
1094  IdentifierInfo *AliasName,
1095  SourceLocation AliasLocation,
1096  IdentifierInfo *ClassName,
1097  SourceLocation ClassLocation) {
1098  // Look for previous declaration of alias name
1099  NamedDecl *ADecl =
1100  LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1102  if (ADecl) {
1103  Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1104  Diag(ADecl->getLocation(), diag::note_previous_declaration);
1105  return nullptr;
1106  }
1107  // Check for class declaration
1108  NamedDecl *CDeclU =
1109  LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1111  if (const TypedefNameDecl *TDecl =
1112  dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1113  QualType T = TDecl->getUnderlyingType();
1114  if (T->isObjCObjectType()) {
1115  if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1116  ClassName = IDecl->getIdentifier();
1117  CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1120  }
1121  }
1122  }
1123  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1124  if (!CDecl) {
1125  Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1126  if (CDeclU)
1127  Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1128  return nullptr;
1129  }
1130 
1131  // Everything checked out, instantiate a new alias declaration AST.
1132  ObjCCompatibleAliasDecl *AliasDecl =
1133  ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1134 
1135  if (!CheckObjCDeclScope(AliasDecl))
1136  PushOnScopeChains(AliasDecl, TUScope);
1137 
1138  return AliasDecl;
1139 }
1140 
1142  IdentifierInfo *PName,
1143  SourceLocation &Ploc, SourceLocation PrevLoc,
1144  const ObjCList<ObjCProtocolDecl> &PList) {
1145 
1146  bool res = false;
1148  E = PList.end(); I != E; ++I) {
1149  if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1150  Ploc)) {
1151  if (PDecl->getIdentifier() == PName) {
1152  Diag(Ploc, diag::err_protocol_has_circular_dependency);
1153  Diag(PrevLoc, diag::note_previous_definition);
1154  res = true;
1155  }
1156 
1157  if (!PDecl->hasDefinition())
1158  continue;
1159 
1161  PDecl->getLocation(), PDecl->getReferencedProtocols()))
1162  res = true;
1163  }
1164  }
1165  return res;
1166 }
1167 
1168 Decl *
1170  IdentifierInfo *ProtocolName,
1171  SourceLocation ProtocolLoc,
1172  Decl * const *ProtoRefs,
1173  unsigned NumProtoRefs,
1174  const SourceLocation *ProtoLocs,
1175  SourceLocation EndProtoLoc,
1176  AttributeList *AttrList) {
1177  bool err = false;
1178  // FIXME: Deal with AttrList.
1179  assert(ProtocolName && "Missing protocol identifier");
1180  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1182  ObjCProtocolDecl *PDecl = nullptr;
1183  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1184  // If we already have a definition, complain.
1185  Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1186  Diag(Def->getLocation(), diag::note_previous_definition);
1187 
1188  // Create a new protocol that is completely distinct from previous
1189  // declarations, and do not make this protocol available for name lookup.
1190  // That way, we'll end up completely ignoring the duplicate.
1191  // FIXME: Can we turn this into an error?
1192  PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1193  ProtocolLoc, AtProtoInterfaceLoc,
1194  /*PrevDecl=*/nullptr);
1195  PDecl->startDefinition();
1196  } else {
1197  if (PrevDecl) {
1198  // Check for circular dependencies among protocol declarations. This can
1199  // only happen if this protocol was forward-declared.
1201  PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1203  ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1204  }
1205 
1206  // Create the new declaration.
1207  PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1208  ProtocolLoc, AtProtoInterfaceLoc,
1209  /*PrevDecl=*/PrevDecl);
1210 
1211  PushOnScopeChains(PDecl, TUScope);
1212  PDecl->startDefinition();
1213  }
1214 
1215  if (AttrList)
1216  ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1217  AddPragmaAttributes(TUScope, PDecl);
1218 
1219  // Merge attributes from previous declarations.
1220  if (PrevDecl)
1221  mergeDeclAttributes(PDecl, PrevDecl);
1222 
1223  if (!err && NumProtoRefs ) {
1224  /// Check then save referenced protocols.
1225  diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1226  NumProtoRefs, ProtoLocs);
1227  PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1228  ProtoLocs, Context);
1229  }
1230 
1231  CheckObjCDeclScope(PDecl);
1232  return ActOnObjCContainerStartDefinition(PDecl);
1233 }
1234 
1236  ObjCProtocolDecl *&UndefinedProtocol) {
1237  if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1238  UndefinedProtocol = PDecl;
1239  return true;
1240  }
1241 
1242  for (auto *PI : PDecl->protocols())
1243  if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1244  UndefinedProtocol = PI;
1245  return true;
1246  }
1247  return false;
1248 }
1249 
1250 /// FindProtocolDeclaration - This routine looks up protocols and
1251 /// issues an error if they are not declared. It returns list of
1252 /// protocol declarations in its 'Protocols' argument.
1253 void
1254 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1255  ArrayRef<IdentifierLocPair> ProtocolId,
1256  SmallVectorImpl<Decl *> &Protocols) {
1257  for (const IdentifierLocPair &Pair : ProtocolId) {
1258  ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1259  if (!PDecl) {
1260  TypoCorrection Corrected = CorrectTypo(
1261  DeclarationNameInfo(Pair.first, Pair.second),
1262  LookupObjCProtocolName, TUScope, nullptr,
1263  llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
1265  if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1266  diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1267  << Pair.first);
1268  }
1269 
1270  if (!PDecl) {
1271  Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1272  continue;
1273  }
1274  // If this is a forward protocol declaration, get its definition.
1275  if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1276  PDecl = PDecl->getDefinition();
1277 
1278  // For an objc container, delay protocol reference checking until after we
1279  // can set the objc decl as the availability context, otherwise check now.
1280  if (!ForObjCContainer) {
1281  (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1282  }
1283 
1284  // If this is a forward declaration and we are supposed to warn in this
1285  // case, do it.
1286  // FIXME: Recover nicely in the hidden case.
1287  ObjCProtocolDecl *UndefinedProtocol;
1288 
1289  if (WarnOnDeclarations &&
1290  NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1291  Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1292  Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1293  << UndefinedProtocol;
1294  }
1295  Protocols.push_back(PDecl);
1296  }
1297 }
1298 
1299 namespace {
1300 // Callback to only accept typo corrections that are either
1301 // Objective-C protocols or valid Objective-C type arguments.
1302 class ObjCTypeArgOrProtocolValidatorCCC : public CorrectionCandidateCallback {
1304  Sema::LookupNameKind LookupKind;
1305  public:
1306  ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1307  Sema::LookupNameKind lookupKind)
1308  : Context(context), LookupKind(lookupKind) { }
1309 
1310  bool ValidateCandidate(const TypoCorrection &candidate) override {
1311  // If we're allowed to find protocols and we have a protocol, accept it.
1312  if (LookupKind != Sema::LookupOrdinaryName) {
1313  if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1314  return true;
1315  }
1316 
1317  // If we're allowed to find type names and we have one, accept it.
1318  if (LookupKind != Sema::LookupObjCProtocolName) {
1319  // If we have a type declaration, we might accept this result.
1320  if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1321  // If we found a tag declaration outside of C++, skip it. This
1322  // can happy because we look for any name when there is no
1323  // bias to protocol or type names.
1324  if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1325  return false;
1326 
1327  // Make sure the type is something we would accept as a type
1328  // argument.
1329  auto type = Context.getTypeDeclType(typeDecl);
1330  if (type->isObjCObjectPointerType() ||
1331  type->isBlockPointerType() ||
1332  type->isDependentType() ||
1333  type->isObjCObjectType())
1334  return true;
1335 
1336  return false;
1337  }
1338 
1339  // If we have an Objective-C class type, accept it; there will
1340  // be another fix to add the '*'.
1341  if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1342  return true;
1343 
1344  return false;
1345  }
1346 
1347  return false;
1348  }
1349 };
1350 } // end anonymous namespace
1351 
1353  SourceLocation ProtocolLoc,
1354  IdentifierInfo *TypeArgId,
1355  SourceLocation TypeArgLoc,
1356  bool SelectProtocolFirst) {
1357  Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1358  << SelectProtocolFirst << TypeArgId << ProtocolId
1359  << SourceRange(ProtocolLoc);
1360 }
1361 
1363  Scope *S,
1364  ParsedType baseType,
1365  SourceLocation lAngleLoc,
1366  ArrayRef<IdentifierInfo *> identifiers,
1367  ArrayRef<SourceLocation> identifierLocs,
1368  SourceLocation rAngleLoc,
1369  SourceLocation &typeArgsLAngleLoc,
1370  SmallVectorImpl<ParsedType> &typeArgs,
1371  SourceLocation &typeArgsRAngleLoc,
1372  SourceLocation &protocolLAngleLoc,
1373  SmallVectorImpl<Decl *> &protocols,
1374  SourceLocation &protocolRAngleLoc,
1375  bool warnOnIncompleteProtocols) {
1376  // Local function that updates the declaration specifiers with
1377  // protocol information.
1378  unsigned numProtocolsResolved = 0;
1379  auto resolvedAsProtocols = [&] {
1380  assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1381 
1382  // Determine whether the base type is a parameterized class, in
1383  // which case we want to warn about typos such as
1384  // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1385  ObjCInterfaceDecl *baseClass = nullptr;
1386  QualType base = GetTypeFromParser(baseType, nullptr);
1387  bool allAreTypeNames = false;
1388  SourceLocation firstClassNameLoc;
1389  if (!base.isNull()) {
1390  if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1391  baseClass = objcObjectType->getInterface();
1392  if (baseClass) {
1393  if (auto typeParams = baseClass->getTypeParamList()) {
1394  if (typeParams->size() == numProtocolsResolved) {
1395  // Note that we should be looking for type names, too.
1396  allAreTypeNames = true;
1397  }
1398  }
1399  }
1400  }
1401  }
1402 
1403  for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1404  ObjCProtocolDecl *&proto
1405  = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1406  // For an objc container, delay protocol reference checking until after we
1407  // can set the objc decl as the availability context, otherwise check now.
1408  if (!warnOnIncompleteProtocols) {
1409  (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1410  }
1411 
1412  // If this is a forward protocol declaration, get its definition.
1413  if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1414  proto = proto->getDefinition();
1415 
1416  // If this is a forward declaration and we are supposed to warn in this
1417  // case, do it.
1418  // FIXME: Recover nicely in the hidden case.
1419  ObjCProtocolDecl *forwardDecl = nullptr;
1420  if (warnOnIncompleteProtocols &&
1421  NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1422  Diag(identifierLocs[i], diag::warn_undef_protocolref)
1423  << proto->getDeclName();
1424  Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1425  << forwardDecl;
1426  }
1427 
1428  // If everything this far has been a type name (and we care
1429  // about such things), check whether this name refers to a type
1430  // as well.
1431  if (allAreTypeNames) {
1432  if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1433  LookupOrdinaryName)) {
1434  if (isa<ObjCInterfaceDecl>(decl)) {
1435  if (firstClassNameLoc.isInvalid())
1436  firstClassNameLoc = identifierLocs[i];
1437  } else if (!isa<TypeDecl>(decl)) {
1438  // Not a type.
1439  allAreTypeNames = false;
1440  }
1441  } else {
1442  allAreTypeNames = false;
1443  }
1444  }
1445  }
1446 
1447  // All of the protocols listed also have type names, and at least
1448  // one is an Objective-C class name. Check whether all of the
1449  // protocol conformances are declared by the base class itself, in
1450  // which case we warn.
1451  if (allAreTypeNames && firstClassNameLoc.isValid()) {
1452  llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1453  Context.CollectInheritedProtocols(baseClass, knownProtocols);
1454  bool allProtocolsDeclared = true;
1455  for (auto proto : protocols) {
1456  if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1457  allProtocolsDeclared = false;
1458  break;
1459  }
1460  }
1461 
1462  if (allProtocolsDeclared) {
1463  Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1464  << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1465  << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1466  " *");
1467  }
1468  }
1469 
1470  protocolLAngleLoc = lAngleLoc;
1471  protocolRAngleLoc = rAngleLoc;
1472  assert(protocols.size() == identifierLocs.size());
1473  };
1474 
1475  // Attempt to resolve all of the identifiers as protocols.
1476  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1477  ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1478  protocols.push_back(proto);
1479  if (proto)
1480  ++numProtocolsResolved;
1481  }
1482 
1483  // If all of the names were protocols, these were protocol qualifiers.
1484  if (numProtocolsResolved == identifiers.size())
1485  return resolvedAsProtocols();
1486 
1487  // Attempt to resolve all of the identifiers as type names or
1488  // Objective-C class names. The latter is technically ill-formed,
1489  // but is probably something like \c NSArray<NSView *> missing the
1490  // \c*.
1491  typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1493  unsigned numTypeDeclsResolved = 0;
1494  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1495  NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1497  if (!decl) {
1498  typeDecls.push_back(TypeOrClassDecl());
1499  continue;
1500  }
1501 
1502  if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1503  typeDecls.push_back(typeDecl);
1504  ++numTypeDeclsResolved;
1505  continue;
1506  }
1507 
1508  if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1509  typeDecls.push_back(objcClass);
1510  ++numTypeDeclsResolved;
1511  continue;
1512  }
1513 
1514  typeDecls.push_back(TypeOrClassDecl());
1515  }
1516 
1517  AttributeFactory attrFactory;
1518 
1519  // Local function that forms a reference to the given type or
1520  // Objective-C class declaration.
1521  auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1522  -> TypeResult {
1523  // Form declaration specifiers. They simply refer to the type.
1524  DeclSpec DS(attrFactory);
1525  const char* prevSpec; // unused
1526  unsigned diagID; // unused
1527  QualType type;
1528  if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1529  type = Context.getTypeDeclType(actualTypeDecl);
1530  else
1531  type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1532  TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1533  ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1534  DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1535  parsedType, Context.getPrintingPolicy());
1536  // Use the identifier location for the type source range.
1537  DS.SetRangeStart(loc);
1538  DS.SetRangeEnd(loc);
1539 
1540  // Form the declarator.
1542 
1543  // If we have a typedef of an Objective-C class type that is missing a '*',
1544  // add the '*'.
1545  if (type->getAs<ObjCInterfaceType>()) {
1546  SourceLocation starLoc = getLocForEndOfToken(loc);
1547  ParsedAttributes parsedAttrs(attrFactory);
1548  D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
1549  SourceLocation(),
1550  SourceLocation(),
1551  SourceLocation(),
1552  SourceLocation(),
1553  SourceLocation()),
1554  parsedAttrs,
1555  starLoc);
1556 
1557  // Diagnose the missing '*'.
1558  Diag(loc, diag::err_objc_type_arg_missing_star)
1559  << type
1560  << FixItHint::CreateInsertion(starLoc, " *");
1561  }
1562 
1563  // Convert this to a type.
1564  return ActOnTypeName(S, D);
1565  };
1566 
1567  // Local function that updates the declaration specifiers with
1568  // type argument information.
1569  auto resolvedAsTypeDecls = [&] {
1570  // We did not resolve these as protocols.
1571  protocols.clear();
1572 
1573  assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1574  // Map type declarations to type arguments.
1575  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1576  // Map type reference to a type.
1577  TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1578  if (!type.isUsable()) {
1579  typeArgs.clear();
1580  return;
1581  }
1582 
1583  typeArgs.push_back(type.get());
1584  }
1585 
1586  typeArgsLAngleLoc = lAngleLoc;
1587  typeArgsRAngleLoc = rAngleLoc;
1588  };
1589 
1590  // If all of the identifiers can be resolved as type names or
1591  // Objective-C class names, we have type arguments.
1592  if (numTypeDeclsResolved == identifiers.size())
1593  return resolvedAsTypeDecls();
1594 
1595  // Error recovery: some names weren't found, or we have a mix of
1596  // type and protocol names. Go resolve all of the unresolved names
1597  // and complain if we can't find a consistent answer.
1598  LookupNameKind lookupKind = LookupAnyName;
1599  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1600  // If we already have a protocol or type. Check whether it is the
1601  // right thing.
1602  if (protocols[i] || typeDecls[i]) {
1603  // If we haven't figured out whether we want types or protocols
1604  // yet, try to figure it out from this name.
1605  if (lookupKind == LookupAnyName) {
1606  // If this name refers to both a protocol and a type (e.g., \c
1607  // NSObject), don't conclude anything yet.
1608  if (protocols[i] && typeDecls[i])
1609  continue;
1610 
1611  // Otherwise, let this name decide whether we'll be correcting
1612  // toward types or protocols.
1613  lookupKind = protocols[i] ? LookupObjCProtocolName
1615  continue;
1616  }
1617 
1618  // If we want protocols and we have a protocol, there's nothing
1619  // more to do.
1620  if (lookupKind == LookupObjCProtocolName && protocols[i])
1621  continue;
1622 
1623  // If we want types and we have a type declaration, there's
1624  // nothing more to do.
1625  if (lookupKind == LookupOrdinaryName && typeDecls[i])
1626  continue;
1627 
1628  // We have a conflict: some names refer to protocols and others
1629  // refer to types.
1630  DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1631  identifiers[i], identifierLocs[i],
1632  protocols[i] != nullptr);
1633 
1634  protocols.clear();
1635  typeArgs.clear();
1636  return;
1637  }
1638 
1639  // Perform typo correction on the name.
1640  TypoCorrection corrected = CorrectTypo(
1641  DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1642  nullptr,
1643  llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(Context,
1644  lookupKind),
1646  if (corrected) {
1647  // Did we find a protocol?
1648  if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1649  diagnoseTypo(corrected,
1650  PDiag(diag::err_undeclared_protocol_suggest)
1651  << identifiers[i]);
1652  lookupKind = LookupObjCProtocolName;
1653  protocols[i] = proto;
1654  ++numProtocolsResolved;
1655  continue;
1656  }
1657 
1658  // Did we find a type?
1659  if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1660  diagnoseTypo(corrected,
1661  PDiag(diag::err_unknown_typename_suggest)
1662  << identifiers[i]);
1663  lookupKind = LookupOrdinaryName;
1664  typeDecls[i] = typeDecl;
1665  ++numTypeDeclsResolved;
1666  continue;
1667  }
1668 
1669  // Did we find an Objective-C class?
1670  if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1671  diagnoseTypo(corrected,
1672  PDiag(diag::err_unknown_type_or_class_name_suggest)
1673  << identifiers[i] << true);
1674  lookupKind = LookupOrdinaryName;
1675  typeDecls[i] = objcClass;
1676  ++numTypeDeclsResolved;
1677  continue;
1678  }
1679  }
1680 
1681  // We couldn't find anything.
1682  Diag(identifierLocs[i],
1683  (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1684  : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1685  : diag::err_unknown_typename))
1686  << identifiers[i];
1687  protocols.clear();
1688  typeArgs.clear();
1689  return;
1690  }
1691 
1692  // If all of the names were (corrected to) protocols, these were
1693  // protocol qualifiers.
1694  if (numProtocolsResolved == identifiers.size())
1695  return resolvedAsProtocols();
1696 
1697  // Otherwise, all of the names were (corrected to) types.
1698  assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1699  return resolvedAsTypeDecls();
1700 }
1701 
1702 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1703 /// a class method in its extension.
1704 ///
1706  ObjCInterfaceDecl *ID) {
1707  if (!ID)
1708  return; // Possibly due to previous error
1709 
1710  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1711  for (auto *MD : ID->methods())
1712  MethodMap[MD->getSelector()] = MD;
1713 
1714  if (MethodMap.empty())
1715  return;
1716  for (const auto *Method : CAT->methods()) {
1717  const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1718  if (PrevMethod &&
1719  (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1720  !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1721  Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1722  << Method->getDeclName();
1723  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1724  }
1725  }
1726 }
1727 
1728 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1731  ArrayRef<IdentifierLocPair> IdentList,
1732  AttributeList *attrList) {
1733  SmallVector<Decl *, 8> DeclsInGroup;
1734  for (const IdentifierLocPair &IdentPair : IdentList) {
1735  IdentifierInfo *Ident = IdentPair.first;
1736  ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1738  ObjCProtocolDecl *PDecl
1740  IdentPair.second, AtProtocolLoc,
1741  PrevDecl);
1742 
1743  PushOnScopeChains(PDecl, TUScope);
1744  CheckObjCDeclScope(PDecl);
1745 
1746  if (attrList)
1747  ProcessDeclAttributeList(TUScope, PDecl, attrList);
1748  AddPragmaAttributes(TUScope, PDecl);
1749 
1750  if (PrevDecl)
1751  mergeDeclAttributes(PDecl, PrevDecl);
1752 
1753  DeclsInGroup.push_back(PDecl);
1754  }
1755 
1756  return BuildDeclaratorGroup(DeclsInGroup);
1757 }
1758 
1759 Decl *Sema::
1761  IdentifierInfo *ClassName, SourceLocation ClassLoc,
1762  ObjCTypeParamList *typeParamList,
1763  IdentifierInfo *CategoryName,
1764  SourceLocation CategoryLoc,
1765  Decl * const *ProtoRefs,
1766  unsigned NumProtoRefs,
1767  const SourceLocation *ProtoLocs,
1768  SourceLocation EndProtoLoc,
1769  AttributeList *AttrList) {
1770  ObjCCategoryDecl *CDecl;
1771  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1772 
1773  /// Check that class of this category is already completely declared.
1774 
1775  if (!IDecl
1776  || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1777  diag::err_category_forward_interface,
1778  CategoryName == nullptr)) {
1779  // Create an invalid ObjCCategoryDecl to serve as context for
1780  // the enclosing method declarations. We mark the decl invalid
1781  // to make it clear that this isn't a valid AST.
1782  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1783  ClassLoc, CategoryLoc, CategoryName,
1784  IDecl, typeParamList);
1785  CDecl->setInvalidDecl();
1786  CurContext->addDecl(CDecl);
1787 
1788  if (!IDecl)
1789  Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1790  return ActOnObjCContainerStartDefinition(CDecl);
1791  }
1792 
1793  if (!CategoryName && IDecl->getImplementation()) {
1794  Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1795  Diag(IDecl->getImplementation()->getLocation(),
1796  diag::note_implementation_declared);
1797  }
1798 
1799  if (CategoryName) {
1800  /// Check for duplicate interface declaration for this category
1802  = IDecl->FindCategoryDeclaration(CategoryName)) {
1803  // Class extensions can be declared multiple times, categories cannot.
1804  Diag(CategoryLoc, diag::warn_dup_category_def)
1805  << ClassName << CategoryName;
1806  Diag(Previous->getLocation(), diag::note_previous_definition);
1807  }
1808  }
1809 
1810  // If we have a type parameter list, check it.
1811  if (typeParamList) {
1812  if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1813  if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1814  CategoryName
1816  : TypeParamListContext::Extension))
1817  typeParamList = nullptr;
1818  } else {
1819  Diag(typeParamList->getLAngleLoc(),
1820  diag::err_objc_parameterized_category_nonclass)
1821  << (CategoryName != nullptr)
1822  << ClassName
1823  << typeParamList->getSourceRange();
1824 
1825  typeParamList = nullptr;
1826  }
1827  }
1828 
1829  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1830  ClassLoc, CategoryLoc, CategoryName, IDecl,
1831  typeParamList);
1832  // FIXME: PushOnScopeChains?
1833  CurContext->addDecl(CDecl);
1834 
1835  if (NumProtoRefs) {
1836  diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1837  NumProtoRefs, ProtoLocs);
1838  CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1839  ProtoLocs, Context);
1840  // Protocols in the class extension belong to the class.
1841  if (CDecl->IsClassExtension())
1842  IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1843  NumProtoRefs, Context);
1844  }
1845 
1846  if (AttrList)
1847  ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1848  AddPragmaAttributes(TUScope, CDecl);
1849 
1850  CheckObjCDeclScope(CDecl);
1851  return ActOnObjCContainerStartDefinition(CDecl);
1852 }
1853 
1854 /// ActOnStartCategoryImplementation - Perform semantic checks on the
1855 /// category implementation declaration and build an ObjCCategoryImplDecl
1856 /// object.
1858  SourceLocation AtCatImplLoc,
1859  IdentifierInfo *ClassName, SourceLocation ClassLoc,
1860  IdentifierInfo *CatName, SourceLocation CatLoc) {
1861  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1862  ObjCCategoryDecl *CatIDecl = nullptr;
1863  if (IDecl && IDecl->hasDefinition()) {
1864  CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1865  if (!CatIDecl) {
1866  // Category @implementation with no corresponding @interface.
1867  // Create and install one.
1868  CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1869  ClassLoc, CatLoc,
1870  CatName, IDecl,
1871  /*typeParamList=*/nullptr);
1872  CatIDecl->setImplicit();
1873  }
1874  }
1875 
1876  ObjCCategoryImplDecl *CDecl =
1878  ClassLoc, AtCatImplLoc, CatLoc);
1879  /// Check that class of this category is already completely declared.
1880  if (!IDecl) {
1881  Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1882  CDecl->setInvalidDecl();
1883  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1884  diag::err_undef_interface)) {
1885  CDecl->setInvalidDecl();
1886  }
1887 
1888  // FIXME: PushOnScopeChains?
1889  CurContext->addDecl(CDecl);
1890 
1891  // If the interface has the objc_runtime_visible attribute, we
1892  // cannot implement a category for it.
1893  if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1894  Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1895  << IDecl->getDeclName();
1896  }
1897 
1898  /// Check that CatName, category name, is not used in another implementation.
1899  if (CatIDecl) {
1900  if (CatIDecl->getImplementation()) {
1901  Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1902  << CatName;
1903  Diag(CatIDecl->getImplementation()->getLocation(),
1904  diag::note_previous_definition);
1905  CDecl->setInvalidDecl();
1906  } else {
1907  CatIDecl->setImplementation(CDecl);
1908  // Warn on implementating category of deprecated class under
1909  // -Wdeprecated-implementations flag.
1910  DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1911  CDecl->getLocation());
1912  }
1913  }
1914 
1915  CheckObjCDeclScope(CDecl);
1916  return ActOnObjCContainerStartDefinition(CDecl);
1917 }
1918 
1920  SourceLocation AtClassImplLoc,
1921  IdentifierInfo *ClassName, SourceLocation ClassLoc,
1922  IdentifierInfo *SuperClassname,
1923  SourceLocation SuperClassLoc) {
1924  ObjCInterfaceDecl *IDecl = nullptr;
1925  // Check for another declaration kind with the same name.
1926  NamedDecl *PrevDecl
1927  = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1929  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1930  Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1931  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1932  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1933  // FIXME: This will produce an error if the definition of the interface has
1934  // been imported from a module but is not visible.
1936  diag::warn_undef_interface);
1937  } else {
1938  // We did not find anything with the name ClassName; try to correct for
1939  // typos in the class name.
1940  TypoCorrection Corrected = CorrectTypo(
1941  DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
1942  nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
1943  if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1944  // Suggest the (potentially) correct interface name. Don't provide a
1945  // code-modification hint or use the typo name for recovery, because
1946  // this is just a warning. The program may actually be correct.
1947  diagnoseTypo(Corrected,
1948  PDiag(diag::warn_undef_interface_suggest) << ClassName,
1949  /*ErrorRecovery*/false);
1950  } else {
1951  Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1952  }
1953  }
1954 
1955  // Check that super class name is valid class name
1956  ObjCInterfaceDecl *SDecl = nullptr;
1957  if (SuperClassname) {
1958  // Check if a different kind of symbol declared in this scope.
1959  PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1961  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1962  Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1963  << SuperClassname;
1964  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1965  } else {
1966  SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1967  if (SDecl && !SDecl->hasDefinition())
1968  SDecl = nullptr;
1969  if (!SDecl)
1970  Diag(SuperClassLoc, diag::err_undef_superclass)
1971  << SuperClassname << ClassName;
1972  else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1973  // This implementation and its interface do not have the same
1974  // super class.
1975  Diag(SuperClassLoc, diag::err_conflicting_super_class)
1976  << SDecl->getDeclName();
1977  Diag(SDecl->getLocation(), diag::note_previous_definition);
1978  }
1979  }
1980  }
1981 
1982  if (!IDecl) {
1983  // Legacy case of @implementation with no corresponding @interface.
1984  // Build, chain & install the interface decl into the identifier.
1985 
1986  // FIXME: Do we support attributes on the @implementation? If so we should
1987  // copy them over.
1988  IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1989  ClassName, /*typeParamList=*/nullptr,
1990  /*PrevDecl=*/nullptr, ClassLoc,
1991  true);
1992  AddPragmaAttributes(TUScope, IDecl);
1993  IDecl->startDefinition();
1994  if (SDecl) {
1997  SuperClassLoc));
1998  IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1999  } else {
2000  IDecl->setEndOfDefinitionLoc(ClassLoc);
2001  }
2002 
2003  PushOnScopeChains(IDecl, TUScope);
2004  } else {
2005  // Mark the interface as being completed, even if it was just as
2006  // @class ....;
2007  // declaration; the user cannot reopen it.
2008  if (!IDecl->hasDefinition())
2009  IDecl->startDefinition();
2010  }
2011 
2012  ObjCImplementationDecl* IMPDecl =
2014  ClassLoc, AtClassImplLoc, SuperClassLoc);
2015 
2016  if (CheckObjCDeclScope(IMPDecl))
2017  return ActOnObjCContainerStartDefinition(IMPDecl);
2018 
2019  // Check that there is no duplicate implementation of this class.
2020  if (IDecl->getImplementation()) {
2021  // FIXME: Don't leak everything!
2022  Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2023  Diag(IDecl->getImplementation()->getLocation(),
2024  diag::note_previous_definition);
2025  IMPDecl->setInvalidDecl();
2026  } else { // add it to the list.
2027  IDecl->setImplementation(IMPDecl);
2028  PushOnScopeChains(IMPDecl, TUScope);
2029  // Warn on implementating deprecated class under
2030  // -Wdeprecated-implementations flag.
2031  DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2032  }
2033 
2034  // If the superclass has the objc_runtime_visible attribute, we
2035  // cannot implement a subclass of it.
2036  if (IDecl->getSuperClass() &&
2037  IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2038  Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2039  << IDecl->getDeclName()
2040  << IDecl->getSuperClass()->getDeclName();
2041  }
2042 
2043  return ActOnObjCContainerStartDefinition(IMPDecl);
2044 }
2045 
2048  SmallVector<Decl *, 64> DeclsInGroup;
2049  DeclsInGroup.reserve(Decls.size() + 1);
2050 
2051  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2052  Decl *Dcl = Decls[i];
2053  if (!Dcl)
2054  continue;
2055  if (Dcl->getDeclContext()->isFileContext())
2057  DeclsInGroup.push_back(Dcl);
2058  }
2059 
2060  DeclsInGroup.push_back(ObjCImpDecl);
2061 
2062  return BuildDeclaratorGroup(DeclsInGroup);
2063 }
2064 
2066  ObjCIvarDecl **ivars, unsigned numIvars,
2067  SourceLocation RBrace) {
2068  assert(ImpDecl && "missing implementation decl");
2069  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2070  if (!IDecl)
2071  return;
2072  /// Check case of non-existing \@interface decl.
2073  /// (legacy objective-c \@implementation decl without an \@interface decl).
2074  /// Add implementations's ivar to the synthesize class's ivar list.
2075  if (IDecl->isImplicitInterfaceDecl()) {
2076  IDecl->setEndOfDefinitionLoc(RBrace);
2077  // Add ivar's to class's DeclContext.
2078  for (unsigned i = 0, e = numIvars; i != e; ++i) {
2079  ivars[i]->setLexicalDeclContext(ImpDecl);
2080  IDecl->makeDeclVisibleInContext(ivars[i]);
2081  ImpDecl->addDecl(ivars[i]);
2082  }
2083 
2084  return;
2085  }
2086  // If implementation has empty ivar list, just return.
2087  if (numIvars == 0)
2088  return;
2089 
2090  assert(ivars && "missing @implementation ivars");
2092  if (ImpDecl->getSuperClass())
2093  Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2094  for (unsigned i = 0; i < numIvars; i++) {
2095  ObjCIvarDecl* ImplIvar = ivars[i];
2096  if (const ObjCIvarDecl *ClsIvar =
2097  IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2098  Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2099  Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2100  continue;
2101  }
2102  // Check class extensions (unnamed categories) for duplicate ivars.
2103  for (const auto *CDecl : IDecl->visible_extensions()) {
2104  if (const ObjCIvarDecl *ClsExtIvar =
2105  CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2106  Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2107  Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2108  continue;
2109  }
2110  }
2111  // Instance ivar to Implementation's DeclContext.
2112  ImplIvar->setLexicalDeclContext(ImpDecl);
2113  IDecl->makeDeclVisibleInContext(ImplIvar);
2114  ImpDecl->addDecl(ImplIvar);
2115  }
2116  return;
2117  }
2118  // Check interface's Ivar list against those in the implementation.
2119  // names and types must match.
2120  //
2121  unsigned j = 0;
2123  IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2124  for (; numIvars > 0 && IVI != IVE; ++IVI) {
2125  ObjCIvarDecl* ImplIvar = ivars[j++];
2126  ObjCIvarDecl* ClsIvar = *IVI;
2127  assert (ImplIvar && "missing implementation ivar");
2128  assert (ClsIvar && "missing class ivar");
2129 
2130  // First, make sure the types match.
2131  if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2132  Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2133  << ImplIvar->getIdentifier()
2134  << ImplIvar->getType() << ClsIvar->getType();
2135  Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2136  } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2137  ImplIvar->getBitWidthValue(Context) !=
2138  ClsIvar->getBitWidthValue(Context)) {
2139  Diag(ImplIvar->getBitWidth()->getLocStart(),
2140  diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
2141  Diag(ClsIvar->getBitWidth()->getLocStart(),
2142  diag::note_previous_definition);
2143  }
2144  // Make sure the names are identical.
2145  if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2146  Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2147  << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2148  Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2149  }
2150  --numIvars;
2151  }
2152 
2153  if (numIvars > 0)
2154  Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2155  else if (IVI != IVE)
2156  Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2157 }
2158 
2159 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2160  ObjCMethodDecl *method,
2161  bool &IncompleteImpl,
2162  unsigned DiagID,
2163  NamedDecl *NeededFor = nullptr) {
2164  // No point warning no definition of method which is 'unavailable'.
2165  switch (method->getAvailability()) {
2166  case AR_Available:
2167  case AR_Deprecated:
2168  break;
2169 
2170  // Don't warn about unavailable or not-yet-introduced methods.
2171  case AR_NotYetIntroduced:
2172  case AR_Unavailable:
2173  return;
2174  }
2175 
2176  // FIXME: For now ignore 'IncompleteImpl'.
2177  // Previously we grouped all unimplemented methods under a single
2178  // warning, but some users strongly voiced that they would prefer
2179  // separate warnings. We will give that approach a try, as that
2180  // matches what we do with protocols.
2181  {
2182  const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2183  B << method;
2184  if (NeededFor)
2185  B << NeededFor;
2186  }
2187 
2188  // Issue a note to the original declaration.
2189  SourceLocation MethodLoc = method->getLocStart();
2190  if (MethodLoc.isValid())
2191  S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2192 }
2193 
2194 /// Determines if type B can be substituted for type A. Returns true if we can
2195 /// guarantee that anything that the user will do to an object of type A can
2196 /// also be done to an object of type B. This is trivially true if the two
2197 /// types are the same, or if B is a subclass of A. It becomes more complex
2198 /// in cases where protocols are involved.
2199 ///
2200 /// Object types in Objective-C describe the minimum requirements for an
2201 /// object, rather than providing a complete description of a type. For
2202 /// example, if A is a subclass of B, then B* may refer to an instance of A.
2203 /// The principle of substitutability means that we may use an instance of A
2204 /// anywhere that we may use an instance of B - it will implement all of the
2205 /// ivars of B and all of the methods of B.
2206 ///
2207 /// This substitutability is important when type checking methods, because
2208 /// the implementation may have stricter type definitions than the interface.
2209 /// The interface specifies minimum requirements, but the implementation may
2210 /// have more accurate ones. For example, a method may privately accept
2211 /// instances of B, but only publish that it accepts instances of A. Any
2212 /// object passed to it will be type checked against B, and so will implicitly
2213 /// by a valid A*. Similarly, a method may return a subclass of the class that
2214 /// it is declared as returning.
2215 ///
2216 /// This is most important when considering subclassing. A method in a
2217 /// subclass must accept any object as an argument that its superclass's
2218 /// implementation accepts. It may, however, accept a more general type
2219 /// without breaking substitutability (i.e. you can still use the subclass
2220 /// anywhere that you can use the superclass, but not vice versa). The
2221 /// converse requirement applies to return types: the return type for a
2222 /// subclass method must be a valid object of the kind that the superclass
2223 /// advertises, but it may be specified more accurately. This avoids the need
2224 /// for explicit down-casting by callers.
2225 ///
2226 /// Note: This is a stricter requirement than for assignment.
2228  const ObjCObjectPointerType *A,
2229  const ObjCObjectPointerType *B,
2230  bool rejectId) {
2231  // Reject a protocol-unqualified id.
2232  if (rejectId && B->isObjCIdType()) return false;
2233 
2234  // If B is a qualified id, then A must also be a qualified id and it must
2235  // implement all of the protocols in B. It may not be a qualified class.
2236  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2237  // stricter definition so it is not substitutable for id<A>.
2238  if (B->isObjCQualifiedIdType()) {
2239  return A->isObjCQualifiedIdType() &&
2241  QualType(B,0),
2242  false);
2243  }
2244 
2245  /*
2246  // id is a special type that bypasses type checking completely. We want a
2247  // warning when it is used in one place but not another.
2248  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2249 
2250 
2251  // If B is a qualified id, then A must also be a qualified id (which it isn't
2252  // if we've got this far)
2253  if (B->isObjCQualifiedIdType()) return false;
2254  */
2255 
2256  // Now we know that A and B are (potentially-qualified) class types. The
2257  // normal rules for assignment apply.
2258  return Context.canAssignObjCInterfaces(A, B);
2259 }
2260 
2262  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2263 }
2264 
2265 /// Determine whether two set of Objective-C declaration qualifiers conflict.
2268  return (x & ~Decl::OBJC_TQ_CSNullability) !=
2269  (y & ~Decl::OBJC_TQ_CSNullability);
2270 }
2271 
2273  ObjCMethodDecl *MethodImpl,
2274  ObjCMethodDecl *MethodDecl,
2275  bool IsProtocolMethodDecl,
2276  bool IsOverridingMode,
2277  bool Warn) {
2278  if (IsProtocolMethodDecl &&
2280  MethodImpl->getObjCDeclQualifier())) {
2281  if (Warn) {
2282  S.Diag(MethodImpl->getLocation(),
2283  (IsOverridingMode
2284  ? diag::warn_conflicting_overriding_ret_type_modifiers
2285  : diag::warn_conflicting_ret_type_modifiers))
2286  << MethodImpl->getDeclName()
2287  << MethodImpl->getReturnTypeSourceRange();
2288  S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2289  << MethodDecl->getReturnTypeSourceRange();
2290  }
2291  else
2292  return false;
2293  }
2294  if (Warn && IsOverridingMode &&
2295  !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2297  MethodDecl->getReturnType(),
2298  false)) {
2299  auto nullabilityMethodImpl =
2300  *MethodImpl->getReturnType()->getNullability(S.Context);
2301  auto nullabilityMethodDecl =
2302  *MethodDecl->getReturnType()->getNullability(S.Context);
2303  S.Diag(MethodImpl->getLocation(),
2304  diag::warn_conflicting_nullability_attr_overriding_ret_types)
2306  nullabilityMethodImpl,
2308  != 0))
2310  nullabilityMethodDecl,
2312  != 0));
2313  S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2314  }
2315 
2316  if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2317  MethodDecl->getReturnType()))
2318  return true;
2319  if (!Warn)
2320  return false;
2321 
2322  unsigned DiagID =
2323  IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2324  : diag::warn_conflicting_ret_types;
2325 
2326  // Mismatches between ObjC pointers go into a different warning
2327  // category, and sometimes they're even completely whitelisted.
2328  if (const ObjCObjectPointerType *ImplPtrTy =
2329  MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2330  if (const ObjCObjectPointerType *IfacePtrTy =
2331  MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2332  // Allow non-matching return types as long as they don't violate
2333  // the principle of substitutability. Specifically, we permit
2334  // return types that are subclasses of the declared return type,
2335  // or that are more-qualified versions of the declared type.
2336  if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2337  return false;
2338 
2339  DiagID =
2340  IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2341  : diag::warn_non_covariant_ret_types;
2342  }
2343  }
2344 
2345  S.Diag(MethodImpl->getLocation(), DiagID)
2346  << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2347  << MethodImpl->getReturnType()
2348  << MethodImpl->getReturnTypeSourceRange();
2349  S.Diag(MethodDecl->getLocation(), IsOverridingMode
2350  ? diag::note_previous_declaration
2351  : diag::note_previous_definition)
2352  << MethodDecl->getReturnTypeSourceRange();
2353  return false;
2354 }
2355 
2357  ObjCMethodDecl *MethodImpl,
2358  ObjCMethodDecl *MethodDecl,
2359  ParmVarDecl *ImplVar,
2360  ParmVarDecl *IfaceVar,
2361  bool IsProtocolMethodDecl,
2362  bool IsOverridingMode,
2363  bool Warn) {
2364  if (IsProtocolMethodDecl &&
2366  IfaceVar->getObjCDeclQualifier())) {
2367  if (Warn) {
2368  if (IsOverridingMode)
2369  S.Diag(ImplVar->getLocation(),
2370  diag::warn_conflicting_overriding_param_modifiers)
2371  << getTypeRange(ImplVar->getTypeSourceInfo())
2372  << MethodImpl->getDeclName();
2373  else S.Diag(ImplVar->getLocation(),
2374  diag::warn_conflicting_param_modifiers)
2375  << getTypeRange(ImplVar->getTypeSourceInfo())
2376  << MethodImpl->getDeclName();
2377  S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2378  << getTypeRange(IfaceVar->getTypeSourceInfo());
2379  }
2380  else
2381  return false;
2382  }
2383 
2384  QualType ImplTy = ImplVar->getType();
2385  QualType IfaceTy = IfaceVar->getType();
2386  if (Warn && IsOverridingMode &&
2387  !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2388  !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2389  S.Diag(ImplVar->getLocation(),
2390  diag::warn_conflicting_nullability_attr_overriding_param_types)
2392  *ImplTy->getNullability(S.Context),
2394  != 0))
2396  *IfaceTy->getNullability(S.Context),
2398  != 0));
2399  S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2400  }
2401  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2402  return true;
2403 
2404  if (!Warn)
2405  return false;
2406  unsigned DiagID =
2407  IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2408  : diag::warn_conflicting_param_types;
2409 
2410  // Mismatches between ObjC pointers go into a different warning
2411  // category, and sometimes they're even completely whitelisted.
2412  if (const ObjCObjectPointerType *ImplPtrTy =
2413  ImplTy->getAs<ObjCObjectPointerType>()) {
2414  if (const ObjCObjectPointerType *IfacePtrTy =
2415  IfaceTy->getAs<ObjCObjectPointerType>()) {
2416  // Allow non-matching argument types as long as they don't
2417  // violate the principle of substitutability. Specifically, the
2418  // implementation must accept any objects that the superclass
2419  // accepts, however it may also accept others.
2420  if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2421  return false;
2422 
2423  DiagID =
2424  IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2425  : diag::warn_non_contravariant_param_types;
2426  }
2427  }
2428 
2429  S.Diag(ImplVar->getLocation(), DiagID)
2430  << getTypeRange(ImplVar->getTypeSourceInfo())
2431  << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2432  S.Diag(IfaceVar->getLocation(),
2433  (IsOverridingMode ? diag::note_previous_declaration
2434  : diag::note_previous_definition))
2435  << getTypeRange(IfaceVar->getTypeSourceInfo());
2436  return false;
2437 }
2438 
2439 /// In ARC, check whether the conventional meanings of the two methods
2440 /// match. If they don't, it's a hard error.
2442  ObjCMethodDecl *decl) {
2443  ObjCMethodFamily implFamily = impl->getMethodFamily();
2444  ObjCMethodFamily declFamily = decl->getMethodFamily();
2445  if (implFamily == declFamily) return false;
2446 
2447  // Since conventions are sorted by selector, the only possibility is
2448  // that the types differ enough to cause one selector or the other
2449  // to fall out of the family.
2450  assert(implFamily == OMF_None || declFamily == OMF_None);
2451 
2452  // No further diagnostics required on invalid declarations.
2453  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2454 
2455  const ObjCMethodDecl *unmatched = impl;
2456  ObjCMethodFamily family = declFamily;
2457  unsigned errorID = diag::err_arc_lost_method_convention;
2458  unsigned noteID = diag::note_arc_lost_method_convention;
2459  if (declFamily == OMF_None) {
2460  unmatched = decl;
2461  family = implFamily;
2462  errorID = diag::err_arc_gained_method_convention;
2463  noteID = diag::note_arc_gained_method_convention;
2464  }
2465 
2466  // Indexes into a %select clause in the diagnostic.
2467  enum FamilySelector {
2468  F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2469  };
2470  FamilySelector familySelector = FamilySelector();
2471 
2472  switch (family) {
2473  case OMF_None: llvm_unreachable("logic error, no method convention");
2474  case OMF_retain:
2475  case OMF_release:
2476  case OMF_autorelease:
2477  case OMF_dealloc:
2478  case OMF_finalize:
2479  case OMF_retainCount:
2480  case OMF_self:
2481  case OMF_initialize:
2482  case OMF_performSelector:
2483  // Mismatches for these methods don't change ownership
2484  // conventions, so we don't care.
2485  return false;
2486 
2487  case OMF_init: familySelector = F_init; break;
2488  case OMF_alloc: familySelector = F_alloc; break;
2489  case OMF_copy: familySelector = F_copy; break;
2490  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2491  case OMF_new: familySelector = F_new; break;
2492  }
2493 
2494  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2495  ReasonSelector reasonSelector;
2496 
2497  // The only reason these methods don't fall within their families is
2498  // due to unusual result types.
2499  if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2500  reasonSelector = R_UnrelatedReturn;
2501  } else {
2502  reasonSelector = R_NonObjectReturn;
2503  }
2504 
2505  S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2506  S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2507 
2508  return true;
2509 }
2510 
2512  ObjCMethodDecl *MethodDecl,
2513  bool IsProtocolMethodDecl) {
2514  if (getLangOpts().ObjCAutoRefCount &&
2515  checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2516  return;
2517 
2518  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2519  IsProtocolMethodDecl, false,
2520  true);
2521 
2522  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2523  IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2524  EF = MethodDecl->param_end();
2525  IM != EM && IF != EF; ++IM, ++IF) {
2526  CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2527  IsProtocolMethodDecl, false, true);
2528  }
2529 
2530  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2531  Diag(ImpMethodDecl->getLocation(),
2532  diag::warn_conflicting_variadic);
2533  Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2534  }
2535 }
2536 
2538  ObjCMethodDecl *Overridden,
2539  bool IsProtocolMethodDecl) {
2540 
2541  CheckMethodOverrideReturn(*this, Method, Overridden,
2542  IsProtocolMethodDecl, true,
2543  true);
2544 
2545  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2546  IF = Overridden->param_begin(), EM = Method->param_end(),
2547  EF = Overridden->param_end();
2548  IM != EM && IF != EF; ++IM, ++IF) {
2549  CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2550  IsProtocolMethodDecl, true, true);
2551  }
2552 
2553  if (Method->isVariadic() != Overridden->isVariadic()) {
2554  Diag(Method->getLocation(),
2555  diag::warn_conflicting_overriding_variadic);
2556  Diag(Overridden->getLocation(), diag::note_previous_declaration);
2557  }
2558 }
2559 
2560 /// WarnExactTypedMethods - This routine issues a warning if method
2561 /// implementation declaration matches exactly that of its declaration.
2563  ObjCMethodDecl *MethodDecl,
2564  bool IsProtocolMethodDecl) {
2565  // don't issue warning when protocol method is optional because primary
2566  // class is not required to implement it and it is safe for protocol
2567  // to implement it.
2569  return;
2570  // don't issue warning when primary class's method is
2571  // depecated/unavailable.
2572  if (MethodDecl->hasAttr<UnavailableAttr>() ||
2573  MethodDecl->hasAttr<DeprecatedAttr>())
2574  return;
2575 
2576  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2577  IsProtocolMethodDecl, false, false);
2578  if (match)
2579  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2580  IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2581  EF = MethodDecl->param_end();
2582  IM != EM && IF != EF; ++IM, ++IF) {
2583  match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2584  *IM, *IF,
2585  IsProtocolMethodDecl, false, false);
2586  if (!match)
2587  break;
2588  }
2589  if (match)
2590  match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2591  if (match)
2592  match = !(MethodDecl->isClassMethod() &&
2593  MethodDecl->getSelector() == GetNullarySelector("load", Context));
2594 
2595  if (match) {
2596  Diag(ImpMethodDecl->getLocation(),
2597  diag::warn_category_method_impl_match);
2598  Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2599  << MethodDecl->getDeclName();
2600  }
2601 }
2602 
2603 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2604 /// improve the efficiency of selector lookups and type checking by associating
2605 /// with each protocol / interface / category the flattened instance tables. If
2606 /// we used an immutable set to keep the table then it wouldn't add significant
2607 /// memory cost and it would be handy for lookups.
2608 
2610 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2611 
2613  ProtocolNameSet &PNS) {
2614  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2615  PNS.insert(PDecl->getIdentifier());
2616  for (const auto *PI : PDecl->protocols())
2618 }
2619 
2620 /// Recursively populates a set with all conformed protocols in a class
2621 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2622 /// attribute.
2624  ProtocolNameSet &PNS) {
2625  if (!Super)
2626  return;
2627 
2628  for (const auto *I : Super->all_referenced_protocols())
2630 
2632 }
2633 
2634 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
2635 /// Declared in protocol, and those referenced by it.
2637  SourceLocation ImpLoc,
2638  ObjCProtocolDecl *PDecl,
2639  bool& IncompleteImpl,
2640  const Sema::SelectorSet &InsMap,
2641  const Sema::SelectorSet &ClsMap,
2642  ObjCContainerDecl *CDecl,
2643  LazyProtocolNameSet &ProtocolsExplictImpl) {
2644  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2645  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2646  : dyn_cast<ObjCInterfaceDecl>(CDecl);
2647  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2648 
2649  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2650  ObjCInterfaceDecl *NSIDecl = nullptr;
2651 
2652  // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2653  // then we should check if any class in the super class hierarchy also
2654  // conforms to this protocol, either directly or via protocol inheritance.
2655  // If so, we can skip checking this protocol completely because we
2656  // know that a parent class already satisfies this protocol.
2657  //
2658  // Note: we could generalize this logic for all protocols, and merely
2659  // add the limit on looking at the super class chain for just
2660  // specially marked protocols. This may be a good optimization. This
2661  // change is restricted to 'objc_protocol_requires_explicit_implementation'
2662  // protocols for now for controlled evaluation.
2663  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2664  if (!ProtocolsExplictImpl) {
2665  ProtocolsExplictImpl.reset(new ProtocolNameSet);
2666  findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2667  }
2668  if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2669  ProtocolsExplictImpl->end())
2670  return;
2671 
2672  // If no super class conforms to the protocol, we should not search
2673  // for methods in the super class to implicitly satisfy the protocol.
2674  Super = nullptr;
2675  }
2676 
2677  if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2678  // check to see if class implements forwardInvocation method and objects
2679  // of this class are derived from 'NSProxy' so that to forward requests
2680  // from one object to another.
2681  // Under such conditions, which means that every method possible is
2682  // implemented in the class, we should not issue "Method definition not
2683  // found" warnings.
2684  // FIXME: Use a general GetUnarySelector method for this.
2685  IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2686  Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2687  if (InsMap.count(fISelector))
2688  // Is IDecl derived from 'NSProxy'? If so, no instance methods
2689  // need be implemented in the implementation.
2690  NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2691  }
2692 
2693  // If this is a forward protocol declaration, get its definition.
2694  if (!PDecl->isThisDeclarationADefinition() &&
2695  PDecl->getDefinition())
2696  PDecl = PDecl->getDefinition();
2697 
2698  // If a method lookup fails locally we still need to look and see if
2699  // the method was implemented by a base class or an inherited
2700  // protocol. This lookup is slow, but occurs rarely in correct code
2701  // and otherwise would terminate in a warning.
2702 
2703  // check unimplemented instance methods.
2704  if (!NSIDecl)
2705  for (auto *method : PDecl->instance_methods()) {
2706  if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2707  !method->isPropertyAccessor() &&
2708  !InsMap.count(method->getSelector()) &&
2709  (!Super || !Super->lookupMethod(method->getSelector(),
2710  true /* instance */,
2711  false /* shallowCategory */,
2712  true /* followsSuper */,
2713  nullptr /* category */))) {
2714  // If a method is not implemented in the category implementation but
2715  // has been declared in its primary class, superclass,
2716  // or in one of their protocols, no need to issue the warning.
2717  // This is because method will be implemented in the primary class
2718  // or one of its super class implementation.
2719 
2720  // Ugly, but necessary. Method declared in protcol might have
2721  // have been synthesized due to a property declared in the class which
2722  // uses the protocol.
2723  if (ObjCMethodDecl *MethodInClass =
2724  IDecl->lookupMethod(method->getSelector(),
2725  true /* instance */,
2726  true /* shallowCategoryLookup */,
2727  false /* followSuper */))
2728  if (C || MethodInClass->isPropertyAccessor())
2729  continue;
2730  unsigned DIAG = diag::warn_unimplemented_protocol_method;
2731  if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2732  WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2733  PDecl);
2734  }
2735  }
2736  }
2737  // check unimplemented class methods
2738  for (auto *method : PDecl->class_methods()) {
2739  if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2740  !ClsMap.count(method->getSelector()) &&
2741  (!Super || !Super->lookupMethod(method->getSelector(),
2742  false /* class method */,
2743  false /* shallowCategoryLookup */,
2744  true /* followSuper */,
2745  nullptr /* category */))) {
2746  // See above comment for instance method lookups.
2747  if (C && IDecl->lookupMethod(method->getSelector(),
2748  false /* class */,
2749  true /* shallowCategoryLookup */,
2750  false /* followSuper */))
2751  continue;
2752 
2753  unsigned DIAG = diag::warn_unimplemented_protocol_method;
2754  if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2755  WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2756  }
2757  }
2758  }
2759  // Check on this protocols's referenced protocols, recursively.
2760  for (auto *PI : PDecl->protocols())
2761  CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2762  CDecl, ProtocolsExplictImpl);
2763 }
2764 
2765 /// MatchAllMethodDeclarations - Check methods declared in interface
2766 /// or protocol against those declared in their implementations.
2767 ///
2769  const SelectorSet &ClsMap,
2770  SelectorSet &InsMapSeen,
2771  SelectorSet &ClsMapSeen,
2772  ObjCImplDecl* IMPDecl,
2773  ObjCContainerDecl* CDecl,
2774  bool &IncompleteImpl,
2775  bool ImmediateClass,
2776  bool WarnCategoryMethodImpl) {
2777  // Check and see if instance methods in class interface have been
2778  // implemented in the implementation class. If so, their types match.
2779  for (auto *I : CDecl->instance_methods()) {
2780  if (!InsMapSeen.insert(I->getSelector()).second)
2781  continue;
2782  if (!I->isPropertyAccessor() &&
2783  !InsMap.count(I->getSelector())) {
2784  if (ImmediateClass)
2785  WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2786  diag::warn_undef_method_impl);
2787  continue;
2788  } else {
2789  ObjCMethodDecl *ImpMethodDecl =
2790  IMPDecl->getInstanceMethod(I->getSelector());
2791  assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2792  "Expected to find the method through lookup as well");
2793  // ImpMethodDecl may be null as in a @dynamic property.
2794  if (ImpMethodDecl) {
2795  if (!WarnCategoryMethodImpl)
2796  WarnConflictingTypedMethods(ImpMethodDecl, I,
2797  isa<ObjCProtocolDecl>(CDecl));
2798  else if (!I->isPropertyAccessor())
2799  WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2800  }
2801  }
2802  }
2803 
2804  // Check and see if class methods in class interface have been
2805  // implemented in the implementation class. If so, their types match.
2806  for (auto *I : CDecl->class_methods()) {
2807  if (!ClsMapSeen.insert(I->getSelector()).second)
2808  continue;
2809  if (!I->isPropertyAccessor() &&
2810  !ClsMap.count(I->getSelector())) {
2811  if (ImmediateClass)
2812  WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2813  diag::warn_undef_method_impl);
2814  } else {
2815  ObjCMethodDecl *ImpMethodDecl =
2816  IMPDecl->getClassMethod(I->getSelector());
2817  assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2818  "Expected to find the method through lookup as well");
2819  // ImpMethodDecl may be null as in a @dynamic property.
2820  if (ImpMethodDecl) {
2821  if (!WarnCategoryMethodImpl)
2822  WarnConflictingTypedMethods(ImpMethodDecl, I,
2823  isa<ObjCProtocolDecl>(CDecl));
2824  else if (!I->isPropertyAccessor())
2825  WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2826  }
2827  }
2828  }
2829 
2830  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2831  // Also, check for methods declared in protocols inherited by
2832  // this protocol.
2833  for (auto *PI : PD->protocols())
2834  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2835  IMPDecl, PI, IncompleteImpl, false,
2836  WarnCategoryMethodImpl);
2837  }
2838 
2839  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2840  // when checking that methods in implementation match their declaration,
2841  // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2842  // extension; as well as those in categories.
2843  if (!WarnCategoryMethodImpl) {
2844  for (auto *Cat : I->visible_categories())
2845  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2846  IMPDecl, Cat, IncompleteImpl,
2847  ImmediateClass && Cat->IsClassExtension(),
2848  WarnCategoryMethodImpl);
2849  } else {
2850  // Also methods in class extensions need be looked at next.
2851  for (auto *Ext : I->visible_extensions())
2852  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2853  IMPDecl, Ext, IncompleteImpl, false,
2854  WarnCategoryMethodImpl);
2855  }
2856 
2857  // Check for any implementation of a methods declared in protocol.
2858  for (auto *PI : I->all_referenced_protocols())
2859  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2860  IMPDecl, PI, IncompleteImpl, false,
2861  WarnCategoryMethodImpl);
2862 
2863  // FIXME. For now, we are not checking for extact match of methods
2864  // in category implementation and its primary class's super class.
2865  if (!WarnCategoryMethodImpl && I->getSuperClass())
2866  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2867  IMPDecl,
2868  I->getSuperClass(), IncompleteImpl, false);
2869  }
2870 }
2871 
2872 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2873 /// category matches with those implemented in its primary class and
2874 /// warns each time an exact match is found.
2876  ObjCCategoryImplDecl *CatIMPDecl) {
2877  // Get category's primary class.
2878  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2879  if (!CatDecl)
2880  return;
2881  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2882  if (!IDecl)
2883  return;
2884  ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2885  SelectorSet InsMap, ClsMap;
2886 
2887  for (const auto *I : CatIMPDecl->instance_methods()) {
2888  Selector Sel = I->getSelector();
2889  // When checking for methods implemented in the category, skip over
2890  // those declared in category class's super class. This is because
2891  // the super class must implement the method.
2892  if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2893  continue;
2894  InsMap.insert(Sel);
2895  }
2896 
2897  for (const auto *I : CatIMPDecl->class_methods()) {
2898  Selector Sel = I->getSelector();
2899  if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2900  continue;
2901  ClsMap.insert(Sel);
2902  }
2903  if (InsMap.empty() && ClsMap.empty())
2904  return;
2905 
2906  SelectorSet InsMapSeen, ClsMapSeen;
2907  bool IncompleteImpl = false;
2908  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2909  CatIMPDecl, IDecl,
2910  IncompleteImpl, false,
2911  true /*WarnCategoryMethodImpl*/);
2912 }
2913 
2915  ObjCContainerDecl* CDecl,
2916  bool IncompleteImpl) {
2917  SelectorSet InsMap;
2918  // Check and see if instance methods in class interface have been
2919  // implemented in the implementation class.
2920  for (const auto *I : IMPDecl->instance_methods())
2921  InsMap.insert(I->getSelector());
2922 
2923  // Add the selectors for getters/setters of @dynamic properties.
2924  for (const auto *PImpl : IMPDecl->property_impls()) {
2925  // We only care about @dynamic implementations.
2926  if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2927  continue;
2928 
2929  const auto *P = PImpl->getPropertyDecl();
2930  if (!P) continue;
2931 
2932  InsMap.insert(P->getGetterName());
2933  if (!P->getSetterName().isNull())
2934  InsMap.insert(P->getSetterName());
2935  }
2936 
2937  // Check and see if properties declared in the interface have either 1)
2938  // an implementation or 2) there is a @synthesize/@dynamic implementation
2939  // of the property in the @implementation.
2940  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2941  bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2943  !IDecl->isObjCRequiresPropertyDefs();
2944  DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2945  }
2946 
2947  // Diagnose null-resettable synthesized setters.
2949 
2950  SelectorSet ClsMap;
2951  for (const auto *I : IMPDecl->class_methods())
2952  ClsMap.insert(I->getSelector());
2953 
2954  // Check for type conflict of methods declared in a class/protocol and
2955  // its implementation; if any.
2956  SelectorSet InsMapSeen, ClsMapSeen;
2957  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2958  IMPDecl, CDecl,
2959  IncompleteImpl, true);
2960 
2961  // check all methods implemented in category against those declared
2962  // in its primary class.
2963  if (ObjCCategoryImplDecl *CatDecl =
2964  dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
2966 
2967  // Check the protocol list for unimplemented methods in the @implementation
2968  // class.
2969  // Check and see if class methods in class interface have been
2970  // implemented in the implementation class.
2971 
2972  LazyProtocolNameSet ExplicitImplProtocols;
2973 
2974  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2975  for (auto *PI : I->all_referenced_protocols())
2976  CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
2977  InsMap, ClsMap, I, ExplicitImplProtocols);
2978  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2979  // For extended class, unimplemented methods in its protocols will
2980  // be reported in the primary class.
2981  if (!C->IsClassExtension()) {
2982  for (auto *P : C->protocols())
2983  CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
2984  IncompleteImpl, InsMap, ClsMap, CDecl,
2985  ExplicitImplProtocols);
2986  DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
2987  /*SynthesizeProperties=*/false);
2988  }
2989  } else
2990  llvm_unreachable("invalid ObjCContainerDecl type.");
2991 }
2992 
2995  IdentifierInfo **IdentList,
2996  SourceLocation *IdentLocs,
2997  ArrayRef<ObjCTypeParamList *> TypeParamLists,
2998  unsigned NumElts) {
2999  SmallVector<Decl *, 8> DeclsInGroup;
3000  for (unsigned i = 0; i != NumElts; ++i) {
3001  // Check for another declaration kind with the same name.
3002  NamedDecl *PrevDecl
3003  = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3005  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3006  // GCC apparently allows the following idiom:
3007  //
3008  // typedef NSObject < XCElementTogglerP > XCElementToggler;
3009  // @class XCElementToggler;
3010  //
3011  // Here we have chosen to ignore the forward class declaration
3012  // with a warning. Since this is the implied behavior.
3013  TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3014  if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3015  Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3016  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3017  } else {
3018  // a forward class declaration matching a typedef name of a class refers
3019  // to the underlying class. Just ignore the forward class with a warning
3020  // as this will force the intended behavior which is to lookup the
3021  // typedef name.
3022  if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3023  Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3024  << IdentList[i];
3025  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3026  continue;
3027  }
3028  }
3029  }
3030 
3031  // Create a declaration to describe this forward declaration.
3032  ObjCInterfaceDecl *PrevIDecl
3033  = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3034 
3035  IdentifierInfo *ClassName = IdentList[i];
3036  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3037  // A previous decl with a different name is because of
3038  // @compatibility_alias, for example:
3039  // \code
3040  // @class NewImage;
3041  // @compatibility_alias OldImage NewImage;
3042  // \endcode
3043  // A lookup for 'OldImage' will return the 'NewImage' decl.
3044  //
3045  // In such a case use the real declaration name, instead of the alias one,
3046  // otherwise we will break IdentifierResolver and redecls-chain invariants.
3047  // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3048  // has been aliased.
3049  ClassName = PrevIDecl->getIdentifier();
3050  }
3051 
3052  // If this forward declaration has type parameters, compare them with the
3053  // type parameters of the previous declaration.
3054  ObjCTypeParamList *TypeParams = TypeParamLists[i];
3055  if (PrevIDecl && TypeParams) {
3056  if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3057  // Check for consistency with the previous declaration.
3059  *this, PrevTypeParams, TypeParams,
3060  TypeParamListContext::ForwardDeclaration)) {
3061  TypeParams = nullptr;
3062  }
3063  } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3064  // The @interface does not have type parameters. Complain.
3065  Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3066  << ClassName
3067  << TypeParams->getSourceRange();
3068  Diag(Def->getLocation(), diag::note_defined_here)
3069  << ClassName;
3070 
3071  TypeParams = nullptr;
3072  }
3073  }
3074 
3075  ObjCInterfaceDecl *IDecl
3077  ClassName, TypeParams, PrevIDecl,
3078  IdentLocs[i]);
3079  IDecl->setAtEndRange(IdentLocs[i]);
3080 
3081  PushOnScopeChains(IDecl, TUScope);
3082  CheckObjCDeclScope(IDecl);
3083  DeclsInGroup.push_back(IDecl);
3084  }
3085 
3086  return BuildDeclaratorGroup(DeclsInGroup);
3087 }
3088 
3090  Sema::MethodMatchStrategy strategy,
3091  const Type *left, const Type *right);
3092 
3093 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3094  QualType leftQT, QualType rightQT) {
3095  const Type *left =
3096  Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3097  const Type *right =
3098  Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3099 
3100  if (left == right) return true;
3101 
3102  // If we're doing a strict match, the types have to match exactly.
3103  if (strategy == Sema::MMS_strict) return false;
3104 
3105  if (left->isIncompleteType() || right->isIncompleteType()) return false;
3106 
3107  // Otherwise, use this absurdly complicated algorithm to try to
3108  // validate the basic, low-level compatibility of the two types.
3109 
3110  // As a minimum, require the sizes and alignments to match.
3111  TypeInfo LeftTI = Context.getTypeInfo(left);
3112  TypeInfo RightTI = Context.getTypeInfo(right);
3113  if (LeftTI.Width != RightTI.Width)
3114  return false;
3115 
3116  if (LeftTI.Align != RightTI.Align)
3117  return false;
3118 
3119  // Consider all the kinds of non-dependent canonical types:
3120  // - functions and arrays aren't possible as return and parameter types
3121 
3122  // - vector types of equal size can be arbitrarily mixed
3123  if (isa<VectorType>(left)) return isa<VectorType>(right);
3124  if (isa<VectorType>(right)) return false;
3125 
3126  // - references should only match references of identical type
3127  // - structs, unions, and Objective-C objects must match more-or-less
3128  // exactly
3129  // - everything else should be a scalar
3130  if (!left->isScalarType() || !right->isScalarType())
3131  return tryMatchRecordTypes(Context, strategy, left, right);
3132 
3133  // Make scalars agree in kind, except count bools as chars, and group
3134  // all non-member pointers together.
3135  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3136  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3137  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3138  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3139  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3140  leftSK = Type::STK_ObjCObjectPointer;
3141  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3142  rightSK = Type::STK_ObjCObjectPointer;
3143 
3144  // Note that data member pointers and function member pointers don't
3145  // intermix because of the size differences.
3146 
3147  return (leftSK == rightSK);
3148 }
3149 
3150 static bool tryMatchRecordTypes(ASTContext &Context,
3151  Sema::MethodMatchStrategy strategy,
3152  const Type *lt, const Type *rt) {
3153  assert(lt && rt && lt != rt);
3154 
3155  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3156  RecordDecl *left = cast<RecordType>(lt)->getDecl();
3157  RecordDecl *right = cast<RecordType>(rt)->getDecl();
3158 
3159  // Require union-hood to match.
3160  if (left->isUnion() != right->isUnion()) return false;
3161 
3162  // Require an exact match if either is non-POD.
3163  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3164  (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3165  return false;
3166 
3167  // Require size and alignment to match.
3168  TypeInfo LeftTI = Context.getTypeInfo(lt);
3169  TypeInfo RightTI = Context.getTypeInfo(rt);
3170  if (LeftTI.Width != RightTI.Width)
3171  return false;
3172 
3173  if (LeftTI.Align != RightTI.Align)
3174  return false;
3175 
3176  // Require fields to match.
3177  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3178  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3179  for (; li != le && ri != re; ++li, ++ri) {
3180  if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3181  return false;
3182  }
3183  return (li == le && ri == re);
3184 }
3185 
3186 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3187 /// returns true, or false, accordingly.
3188 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3190  const ObjCMethodDecl *right,
3191  MethodMatchStrategy strategy) {
3192  if (!matchTypes(Context, strategy, left->getReturnType(),
3193  right->getReturnType()))
3194  return false;
3195 
3196  // If either is hidden, it is not considered to match.
3197  if (left->isHidden() || right->isHidden())
3198  return false;
3199 
3200  if (getLangOpts().ObjCAutoRefCount &&
3201  (left->hasAttr<NSReturnsRetainedAttr>()
3202  != right->hasAttr<NSReturnsRetainedAttr>() ||
3203  left->hasAttr<NSConsumesSelfAttr>()
3204  != right->hasAttr<NSConsumesSelfAttr>()))
3205  return false;
3206 
3208  li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3209  re = right->param_end();
3210 
3211  for (; li != le && ri != re; ++li, ++ri) {
3212  assert(ri != right->param_end() && "Param mismatch");
3213  const ParmVarDecl *lparm = *li, *rparm = *ri;
3214 
3215  if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3216  return false;
3217 
3218  if (getLangOpts().ObjCAutoRefCount &&
3219  lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3220  return false;
3221  }
3222  return true;
3223 }
3224 
3226  ObjCMethodDecl *MethodInList) {
3227  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3228  auto *MethodInListProtocol =
3229  dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3230  // If this method belongs to a protocol but the method in list does not, or
3231  // vice versa, we say the context is not the same.
3232  if ((MethodProtocol && !MethodInListProtocol) ||
3233  (!MethodProtocol && MethodInListProtocol))
3234  return false;
3235 
3236  if (MethodProtocol && MethodInListProtocol)
3237  return true;
3238 
3239  ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3240  ObjCInterfaceDecl *MethodInListInterface =
3241  MethodInList->getClassInterface();
3242  return MethodInterface == MethodInListInterface;
3243 }
3244 
3246  ObjCMethodDecl *Method) {
3247  // Record at the head of the list whether there were 0, 1, or >= 2 methods
3248  // inside categories.
3249  if (ObjCCategoryDecl *CD =
3250  dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3251  if (!CD->IsClassExtension() && List->getBits() < 2)
3252  List->setBits(List->getBits() + 1);
3253 
3254  // If the list is empty, make it a singleton list.
3255  if (List->getMethod() == nullptr) {
3256  List->setMethod(Method);
3257  List->setNext(nullptr);
3258  return;
3259  }
3260 
3261  // We've seen a method with this name, see if we have already seen this type
3262  // signature.
3263  ObjCMethodList *Previous = List;
3264  ObjCMethodList *ListWithSameDeclaration = nullptr;
3265  for (; List; Previous = List, List = List->getNext()) {
3266  // If we are building a module, keep all of the methods.
3268  continue;
3269 
3270  bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3271  List->getMethod());
3272  // Looking for method with a type bound requires the correct context exists.
3273  // We need to insert a method into the list if the context is different.
3274  // If the method's declaration matches the list
3275  // a> the method belongs to a different context: we need to insert it, in
3276  // order to emit the availability message, we need to prioritize over
3277  // availability among the methods with the same declaration.
3278  // b> the method belongs to the same context: there is no need to insert a
3279  // new entry.
3280  // If the method's declaration does not match the list, we insert it to the
3281  // end.
3282  if (!SameDeclaration ||
3283  !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3284  // Even if two method types do not match, we would like to say
3285  // there is more than one declaration so unavailability/deprecated
3286  // warning is not too noisy.
3287  if (!Method->isDefined())
3288  List->setHasMoreThanOneDecl(true);
3289 
3290  // For methods with the same declaration, the one that is deprecated
3291  // should be put in the front for better diagnostics.
3292  if (Method->isDeprecated() && SameDeclaration &&
3293  !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3294  ListWithSameDeclaration = List;
3295 
3296  if (Method->isUnavailable() && SameDeclaration &&
3297  !ListWithSameDeclaration &&
3299  ListWithSameDeclaration = List;
3300  continue;
3301  }
3302 
3303  ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3304 
3305  // Propagate the 'defined' bit.
3306  if (Method->isDefined())
3307  PrevObjCMethod->setDefined(true);
3308  else {
3309  // Objective-C doesn't allow an @interface for a class after its
3310  // @implementation. So if Method is not defined and there already is
3311  // an entry for this type signature, Method has to be for a different
3312  // class than PrevObjCMethod.
3313  List->setHasMoreThanOneDecl(true);
3314  }
3315 
3316  // If a method is deprecated, push it in the global pool.
3317  // This is used for better diagnostics.
3318  if (Method->isDeprecated()) {
3319  if (!PrevObjCMethod->isDeprecated())
3320  List->setMethod(Method);
3321  }
3322  // If the new method is unavailable, push it into global pool
3323  // unless previous one is deprecated.
3324  if (Method->isUnavailable()) {
3325  if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3326  List->setMethod(Method);
3327  }
3328 
3329  return;
3330  }
3331 
3332  // We have a new signature for an existing method - add it.
3333  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3334  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3335 
3336  // We insert it right before ListWithSameDeclaration.
3337  if (ListWithSameDeclaration) {
3338  auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3339  // FIXME: should we clear the other bits in ListWithSameDeclaration?
3340  ListWithSameDeclaration->setMethod(Method);
3341  ListWithSameDeclaration->setNext(List);
3342  return;
3343  }
3344 
3345  Previous->setNext(new (Mem) ObjCMethodList(Method));
3346 }
3347 
3348 /// \brief Read the contents of the method pool for a given selector from
3349 /// external storage.
3351  assert(ExternalSource && "We need an external AST source");
3352  ExternalSource->ReadMethodPool(Sel);
3353 }
3354 
3356  if (!ExternalSource)
3357  return;
3358  ExternalSource->updateOutOfDateSelector(Sel);
3359 }
3360 
3361 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3362  bool instance) {
3363  // Ignore methods of invalid containers.
3364  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3365  return;
3366 
3367  if (ExternalSource)
3368  ReadMethodPool(Method->getSelector());
3369 
3370  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3371  if (Pos == MethodPool.end())
3372  Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3373  GlobalMethods())).first;
3374 
3375  Method->setDefined(impl);
3376 
3377  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3378  addMethodToGlobalList(&Entry, Method);
3379 }
3380 
3381 /// Determines if this is an "acceptable" loose mismatch in the global
3382 /// method pool. This exists mostly as a hack to get around certain
3383 /// global mismatches which we can't afford to make warnings / errors.
3384 /// Really, what we want is a way to take a method out of the global
3385 /// method pool.
3387  ObjCMethodDecl *other) {
3388  if (!chosen->isInstanceMethod())
3389  return false;
3390 
3391  Selector sel = chosen->getSelector();
3392  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3393  return false;
3394 
3395  // Don't complain about mismatches for -length if the method we
3396  // chose has an integral result type.
3397  return (chosen->getReturnType()->isIntegerType());
3398 }
3399 
3400 /// Return true if the given method is wthin the type bound.
3402  const ObjCObjectType *TypeBound) {
3403  if (!TypeBound)
3404  return true;
3405 
3406  if (TypeBound->isObjCId())
3407  // FIXME: should we handle the case of bounding to id<A, B> differently?
3408  return true;
3409 
3410  auto *BoundInterface = TypeBound->getInterface();
3411  assert(BoundInterface && "unexpected object type!");
3412 
3413  // Check if the Method belongs to a protocol. We should allow any method
3414  // defined in any protocol, because any subclass could adopt the protocol.
3415  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3416  if (MethodProtocol) {
3417  return true;
3418  }
3419 
3420  // If the Method belongs to a class, check if it belongs to the class
3421  // hierarchy of the class bound.
3422  if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3423  // We allow methods declared within classes that are part of the hierarchy
3424  // of the class bound (superclass of, subclass of, or the same as the class
3425  // bound).
3426  return MethodInterface == BoundInterface ||
3427  MethodInterface->isSuperClassOf(BoundInterface) ||
3428  BoundInterface->isSuperClassOf(MethodInterface);
3429  }
3430  llvm_unreachable("unknow method context");
3431 }
3432 
3433 /// We first select the type of the method: Instance or Factory, then collect
3434 /// all methods with that type.
3437  bool InstanceFirst, bool CheckTheOther,
3438  const ObjCObjectType *TypeBound) {
3439  if (ExternalSource)
3440  ReadMethodPool(Sel);
3441 
3442  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3443  if (Pos == MethodPool.end())
3444  return false;
3445 
3446  // Gather the non-hidden methods.
3447  ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3448  Pos->second.second;
3449  for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3450  if (M->getMethod() && !M->getMethod()->isHidden()) {
3451  if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3452  Methods.push_back(M->getMethod());
3453  }
3454 
3455  // Return if we find any method with the desired kind.
3456  if (!Methods.empty())
3457  return Methods.size() > 1;
3458 
3459  if (!CheckTheOther)
3460  return false;
3461 
3462  // Gather the other kind.
3463  ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3464  Pos->second.first;
3465  for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3466  if (M->getMethod() && !M->getMethod()->isHidden()) {
3467  if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3468  Methods.push_back(M->getMethod());
3469  }
3470 
3471  return Methods.size() > 1;
3472 }
3473 
3475  Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3476  bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3477  // Diagnose finding more than one method in global pool.
3478  SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3479  FilteredMethods.push_back(BestMethod);
3480 
3481  for (auto *M : Methods)
3482  if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3483  FilteredMethods.push_back(M);
3484 
3485  if (FilteredMethods.size() > 1)
3486  DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3487  receiverIdOrClass);
3488 
3489  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3490  // Test for no method in the pool which should not trigger any warning by
3491  // caller.
3492  if (Pos == MethodPool.end())
3493  return true;
3494  ObjCMethodList &MethList =
3495  BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3496  return MethList.hasMoreThanOneDecl();
3497 }
3498 
3499 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3500  bool receiverIdOrClass,
3501  bool instance) {
3502  if (ExternalSource)
3503  ReadMethodPool(Sel);
3504 
3505  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3506  if (Pos == MethodPool.end())
3507  return nullptr;
3508 
3509  // Gather the non-hidden methods.
3510  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3512  for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3513  if (M->getMethod() && !M->getMethod()->isHidden())
3514  return M->getMethod();
3515  }
3516  return nullptr;
3517 }
3518 
3520  Selector Sel, SourceRange R,
3521  bool receiverIdOrClass) {
3522  // We found multiple methods, so we may have to complain.
3523  bool issueDiagnostic = false, issueError = false;
3524 
3525  // We support a warning which complains about *any* difference in
3526  // method signature.
3527  bool strictSelectorMatch =
3528  receiverIdOrClass &&
3529  !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3530  if (strictSelectorMatch) {
3531  for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3532  if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3533  issueDiagnostic = true;
3534  break;
3535  }
3536  }
3537  }
3538 
3539  // If we didn't see any strict differences, we won't see any loose
3540  // differences. In ARC, however, we also need to check for loose
3541  // mismatches, because most of them are errors.
3542  if (!strictSelectorMatch ||
3543  (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3544  for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3545  // This checks if the methods differ in type mismatch.
3546  if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3547  !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3548  issueDiagnostic = true;
3549  if (getLangOpts().ObjCAutoRefCount)
3550  issueError = true;
3551  break;
3552  }
3553  }
3554 
3555  if (issueDiagnostic) {
3556  if (issueError)
3557  Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3558  else if (strictSelectorMatch)
3559  Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3560  else
3561  Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3562 
3563  Diag(Methods[0]->getLocStart(),
3564  issueError ? diag::note_possibility : diag::note_using)
3565  << Methods[0]->getSourceRange();
3566  for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3567  Diag(Methods[I]->getLocStart(), diag::note_also_found)
3568  << Methods[I]->getSourceRange();
3569  }
3570  }
3571 }
3572 
3574  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3575  if (Pos == MethodPool.end())
3576  return nullptr;
3577 
3578  GlobalMethods &Methods = Pos->second;
3579  for (const ObjCMethodList *Method = &Methods.first; Method;
3580  Method = Method->getNext())
3581  if (Method->getMethod() &&
3582  (Method->getMethod()->isDefined() ||
3583  Method->getMethod()->isPropertyAccessor()))
3584  return Method->getMethod();
3585 
3586  for (const ObjCMethodList *Method = &Methods.second; Method;
3587  Method = Method->getNext())
3588  if (Method->getMethod() &&
3589  (Method->getMethod()->isDefined() ||
3590  Method->getMethod()->isPropertyAccessor()))
3591  return Method->getMethod();
3592  return nullptr;
3593 }
3594 
3595 static void
3598  StringRef Typo, const ObjCMethodDecl * Method) {
3599  const unsigned MaxEditDistance = 1;
3600  unsigned BestEditDistance = MaxEditDistance + 1;
3601  std::string MethodName = Method->getSelector().getAsString();
3602 
3603  unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3604  if (MinPossibleEditDistance > 0 &&
3605  Typo.size() / MinPossibleEditDistance < 1)
3606  return;
3607  unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3608  if (EditDistance > MaxEditDistance)
3609  return;
3610  if (EditDistance == BestEditDistance)
3611  BestMethod.push_back(Method);
3612  else if (EditDistance < BestEditDistance) {
3613  BestMethod.clear();
3614  BestMethod.push_back(Method);
3615  }
3616 }
3617 
3619  QualType ObjectType) {
3620  if (ObjectType.isNull())
3621  return true;
3622  if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3623  return true;
3624  return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3625  nullptr;
3626 }
3627 
3628 const ObjCMethodDecl *
3630  QualType ObjectType) {
3631  unsigned NumArgs = Sel.getNumArgs();
3633  bool ObjectIsId = true, ObjectIsClass = true;
3634  if (ObjectType.isNull())
3635  ObjectIsId = ObjectIsClass = false;
3636  else if (!ObjectType->isObjCObjectPointerType())
3637  return nullptr;
3638  else if (const ObjCObjectPointerType *ObjCPtr =
3639  ObjectType->getAsObjCInterfacePointerType()) {
3640  ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3641  ObjectIsId = ObjectIsClass = false;
3642  }
3643  else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3644  ObjectIsClass = false;
3645  else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3646  ObjectIsId = false;
3647  else
3648  return nullptr;
3649 
3650  for (GlobalMethodPool::iterator b = MethodPool.begin(),
3651  e = MethodPool.end(); b != e; b++) {
3652  // instance methods
3653  for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3654  if (M->getMethod() &&
3655  (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3656  (M->getMethod()->getSelector() != Sel)) {
3657  if (ObjectIsId)
3658  Methods.push_back(M->getMethod());
3659  else if (!ObjectIsClass &&
3660  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3661  ObjectType))
3662  Methods.push_back(M->getMethod());
3663  }
3664  // class methods
3665  for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3666  if (M->getMethod() &&
3667  (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3668  (M->getMethod()->getSelector() != Sel)) {
3669  if (ObjectIsClass)
3670  Methods.push_back(M->getMethod());
3671  else if (!ObjectIsId &&
3672  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3673  ObjectType))
3674  Methods.push_back(M->getMethod());
3675  }
3676  }
3677 
3679  for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3680  HelperSelectorsForTypoCorrection(SelectedMethods,
3681  Sel.getAsString(), Methods[i]);
3682  }
3683  return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3684 }
3685 
3686 /// DiagnoseDuplicateIvars -
3687 /// Check for duplicate ivars in the entire class at the start of
3688 /// \@implementation. This becomes necesssary because class extension can
3689 /// add ivars to a class in random order which will not be known until
3690 /// class's \@implementation is seen.
3692  ObjCInterfaceDecl *SID) {
3693  for (auto *Ivar : ID->ivars()) {
3694  if (Ivar->isInvalidDecl())
3695  continue;
3696  if (IdentifierInfo *II = Ivar->getIdentifier()) {
3697  ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3698  if (prevIvar) {
3699  Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3700  Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3701  Ivar->setInvalidDecl();
3702  }
3703  }
3704  }
3705 }
3706 
3707 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3709  if (S.getLangOpts().ObjCWeak) return;
3710 
3711  for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3712  ivar; ivar = ivar->getNextIvar()) {
3713  if (ivar->isInvalidDecl()) continue;
3714  if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3715  if (S.getLangOpts().ObjCWeakRuntime) {
3716  S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3717  } else {
3718  S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3719  }
3720  }
3721  }
3722 }
3723 
3724 /// Diagnose attempts to use flexible array member with retainable object type.
3726  ObjCInterfaceDecl *ID) {
3727  if (!S.getLangOpts().ObjCAutoRefCount)
3728  return;
3729 
3730  for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3731  ivar = ivar->getNextIvar()) {
3732  if (ivar->isInvalidDecl())
3733  continue;
3734  QualType IvarTy = ivar->getType();
3735  if (IvarTy->isIncompleteArrayType() &&
3737  IvarTy->isObjCLifetimeType()) {
3738  S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3739  ivar->setInvalidDecl();
3740  }
3741  }
3742 }
3743 
3745  switch (CurContext->getDeclKind()) {
3746  case Decl::ObjCInterface:
3747  return Sema::OCK_Interface;
3748  case Decl::ObjCProtocol:
3749  return Sema::OCK_Protocol;
3750  case Decl::ObjCCategory:
3751  if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3752  return Sema::OCK_ClassExtension;
3753  return Sema::OCK_Category;
3754  case Decl::ObjCImplementation:
3755  return Sema::OCK_Implementation;
3756  case Decl::ObjCCategoryImpl:
3758 
3759  default:
3760  return Sema::OCK_None;
3761  }
3762 }
3763 
3765  if (T->isIncompleteArrayType())
3766  return true;
3767  const auto *RecordTy = T->getAs<RecordType>();
3768  return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3769 }
3770 
3772  ObjCInterfaceDecl *IntfDecl = nullptr;
3773  ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3775  if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3776  Ivars = IntfDecl->ivars();
3777  } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3778  IntfDecl = ImplDecl->getClassInterface();
3779  Ivars = ImplDecl->ivars();
3780  } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3781  if (CategoryDecl->IsClassExtension()) {
3782  IntfDecl = CategoryDecl->getClassInterface();
3783  Ivars = CategoryDecl->ivars();
3784  }
3785  }
3786 
3787  // Check if variable sized ivar is in interface and visible to subclasses.
3788  if (!isa<ObjCInterfaceDecl>(OCD)) {
3789  for (auto ivar : Ivars) {
3790  if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3791  S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3792  << ivar->getDeclName() << ivar->getType();
3793  }
3794  }
3795  }
3796 
3797  // Subsequent checks require interface decl.
3798  if (!IntfDecl)
3799  return;
3800 
3801  // Check if variable sized ivar is followed by another ivar.
3802  for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3803  ivar = ivar->getNextIvar()) {
3804  if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3805  continue;
3806  QualType IvarTy = ivar->getType();
3807  bool IsInvalidIvar = false;
3808  if (IvarTy->isIncompleteArrayType()) {
3809  S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3810  << ivar->getDeclName() << IvarTy
3811  << TTK_Class; // Use "class" for Obj-C.
3812  IsInvalidIvar = true;
3813  } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3814  if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3815  S.Diag(ivar->getLocation(),
3816  diag::err_objc_variable_sized_type_not_at_end)
3817  << ivar->getDeclName() << IvarTy;
3818  IsInvalidIvar = true;
3819  }
3820  }
3821  if (IsInvalidIvar) {
3822  S.Diag(ivar->getNextIvar()->getLocation(),
3823  diag::note_next_ivar_declaration)
3824  << ivar->getNextIvar()->getSynthesize();
3825  ivar->setInvalidDecl();
3826  }
3827  }
3828 
3829  // Check if ObjC container adds ivars after variable sized ivar in superclass.
3830  // Perform the check only if OCD is the first container to declare ivars to
3831  // avoid multiple warnings for the same ivar.
3832  ObjCIvarDecl *FirstIvar =
3833  (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3834  if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3835  const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3836  while (SuperClass && SuperClass->ivar_empty())
3837  SuperClass = SuperClass->getSuperClass();
3838  if (SuperClass) {
3839  auto IvarIter = SuperClass->ivar_begin();
3840  std::advance(IvarIter, SuperClass->ivar_size() - 1);
3841  const ObjCIvarDecl *LastIvar = *IvarIter;
3842  if (IsVariableSizedType(LastIvar->getType())) {
3843  S.Diag(FirstIvar->getLocation(),
3844  diag::warn_superclass_variable_sized_type_not_at_end)
3845  << FirstIvar->getDeclName() << LastIvar->getDeclName()
3846  << LastIvar->getType() << SuperClass->getDeclName();
3847  S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3848  << LastIvar->getDeclName();
3849  }
3850  }
3851  }
3852 }
3853 
3854 // Note: For class/category implementations, allMethods is always null.
3856  ArrayRef<DeclGroupPtrTy> allTUVars) {
3858  return nullptr;
3859 
3860  assert(AtEnd.isValid() && "Invalid location for '@end'");
3861 
3863  Decl *ClassDecl = cast<Decl>(OCD);
3864 
3865  bool isInterfaceDeclKind =
3866  isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3867  || isa<ObjCProtocolDecl>(ClassDecl);
3868  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3869 
3870  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3871  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3872  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3873 
3874  for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3875  ObjCMethodDecl *Method =
3876  cast_or_null<ObjCMethodDecl>(allMethods[i]);
3877 
3878  if (!Method) continue; // Already issued a diagnostic.
3879  if (Method->isInstanceMethod()) {
3880  /// Check for instance method of the same name with incompatible types
3881  const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3882  bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3883  : false;
3884  if ((isInterfaceDeclKind && PrevMethod && !match)
3885  || (checkIdenticalMethods && match)) {
3886  Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3887  << Method->getDeclName();
3888  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3889  Method->setInvalidDecl();
3890  } else {
3891  if (PrevMethod) {
3892  Method->setAsRedeclaration(PrevMethod);
3893  if (!Context.getSourceManager().isInSystemHeader(
3894  Method->getLocation()))
3895  Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3896  << Method->getDeclName();
3897  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3898  }
3899  InsMap[Method->getSelector()] = Method;
3900  /// The following allows us to typecheck messages to "id".
3902  }
3903  } else {
3904  /// Check for class method of the same name with incompatible types
3905  const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3906  bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3907  : false;
3908  if ((isInterfaceDeclKind && PrevMethod && !match)
3909  || (checkIdenticalMethods && match)) {
3910  Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3911  << Method->getDeclName();
3912  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3913  Method->setInvalidDecl();
3914  } else {
3915  if (PrevMethod) {
3916  Method->setAsRedeclaration(PrevMethod);
3917  if (!Context.getSourceManager().isInSystemHeader(
3918  Method->getLocation()))
3919  Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3920  << Method->getDeclName();
3921  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3922  }
3923  ClsMap[Method->getSelector()] = Method;
3925  }
3926  }
3927  }
3928  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3929  // Nothing to do here.
3930  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3931  // Categories are used to extend the class by declaring new methods.
3932  // By the same token, they are also used to add new properties. No
3933  // need to compare the added property to those in the class.
3934 
3935  if (C->IsClassExtension()) {
3936  ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3937  DiagnoseClassExtensionDupMethods(C, CCPrimary);
3938  }
3939  }
3940  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3941  if (CDecl->getIdentifier())
3942  // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3943  // user-defined setter/getter. It also synthesizes setter/getter methods
3944  // and adds them to the DeclContext and global method pools.
3945  for (auto *I : CDecl->properties())
3947  CDecl->setAtEndRange(AtEnd);
3948  }
3949  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3950  IC->setAtEndRange(AtEnd);
3951  if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3952  // Any property declared in a class extension might have user
3953  // declared setter or getter in current class extension or one
3954  // of the other class extensions. Mark them as synthesized as
3955  // property will be synthesized when property with same name is
3956  // seen in the @implementation.
3957  for (const auto *Ext : IDecl->visible_extensions()) {
3958  for (const auto *Property : Ext->instance_properties()) {
3959  // Skip over properties declared @dynamic
3960  if (const ObjCPropertyImplDecl *PIDecl
3961  = IC->FindPropertyImplDecl(Property->getIdentifier(),
3962  Property->getQueryKind()))
3963  if (PIDecl->getPropertyImplementation()
3965  continue;
3966 
3967  for (const auto *Ext : IDecl->visible_extensions()) {
3968  if (ObjCMethodDecl *GetterMethod
3969  = Ext->getInstanceMethod(Property->getGetterName()))
3970  GetterMethod->setPropertyAccessor(true);
3971  if (!Property->isReadOnly())
3972  if (ObjCMethodDecl *SetterMethod
3973  = Ext->getInstanceMethod(Property->getSetterName()))
3974  SetterMethod->setPropertyAccessor(true);
3975  }
3976  }
3977  }
3978  ImplMethodsVsClassMethods(S, IC, IDecl);
3982  if (IDecl->hasDesignatedInitializers())
3984  DiagnoseWeakIvars(*this, IC);
3986 
3987  bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
3988  if (IDecl->getSuperClass() == nullptr) {
3989  // This class has no superclass, so check that it has been marked with
3990  // __attribute((objc_root_class)).
3991  if (!HasRootClassAttr) {
3992  SourceLocation DeclLoc(IDecl->getLocation());
3993  SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
3994  Diag(DeclLoc, diag::warn_objc_root_class_missing)
3995  << IDecl->getIdentifier();
3996  // See if NSObject is in the current scope, and if it is, suggest
3997  // adding " : NSObject " to the class declaration.
3999  NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4000  DeclLoc, LookupOrdinaryName);
4001  ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4002  if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4003  Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4004  << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4005  } else {
4006  Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4007  }
4008  }
4009  } else if (HasRootClassAttr) {
4010  // Complain that only root classes may have this attribute.
4011  Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4012  }
4013 
4014  if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4015  // An interface can subclass another interface with a
4016  // objc_subclassing_restricted attribute when it has that attribute as
4017  // well (because of interfaces imported from Swift). Therefore we have
4018  // to check if we can subclass in the implementation as well.
4019  if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4020  Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4021  Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4022  Diag(Super->getLocation(), diag::note_class_declared);
4023  }
4024  }
4025 
4027  while (IDecl->getSuperClass()) {
4028  DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4029  IDecl = IDecl->getSuperClass();
4030  }
4031  }
4032  }
4033  SetIvarInitializers(IC);
4034  } else if (ObjCCategoryImplDecl* CatImplClass =
4035  dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4036  CatImplClass->setAtEndRange(AtEnd);
4037 
4038  // Find category interface decl and then check that all methods declared
4039  // in this interface are implemented in the category @implementation.
4040  if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4041  if (ObjCCategoryDecl *Cat
4042  = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4043  ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4044  }
4045  }
4046  } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4047  if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4048  if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4049  Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4050  Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4051  Diag(Super->getLocation(), diag::note_class_declared);
4052  }
4053  }
4054  }
4055  DiagnoseVariableSizedIvars(*this, OCD);
4056  if (isInterfaceDeclKind) {
4057  // Reject invalid vardecls.
4058  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4059  DeclGroupRef DG = allTUVars[i].get();
4060  for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4061  if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4062  if (!VDecl->hasExternalStorage())
4063  Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4064  }
4065  }
4066  }
4068 
4069  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4070  DeclGroupRef DG = allTUVars[i].get();
4071  for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4072  (*I)->setTopLevelDeclInObjCContainer();
4074  }
4075 
4076  ActOnDocumentableDecl(ClassDecl);
4077  return ClassDecl;
4078 }
4079 
4080 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4081 /// objective-c's type qualifier from the parser version of the same info.
4084  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4085 }
4086 
4087 /// \brief Check whether the declared result type of the given Objective-C
4088 /// method declaration is compatible with the method's class.
4089 ///
4092  ObjCInterfaceDecl *CurrentClass) {
4093  QualType ResultType = Method->getReturnType();
4094 
4095  // If an Objective-C method inherits its related result type, then its
4096  // declared result type must be compatible with its own class type. The
4097  // declared result type is compatible if:
4098  if (const ObjCObjectPointerType *ResultObjectType
4099  = ResultType->getAs<ObjCObjectPointerType>()) {
4100  // - it is id or qualified id, or
4101  if (ResultObjectType->isObjCIdType() ||
4102  ResultObjectType->isObjCQualifiedIdType())
4103  return Sema::RTC_Compatible;
4104 
4105  if (CurrentClass) {
4106  if (ObjCInterfaceDecl *ResultClass
4107  = ResultObjectType->getInterfaceDecl()) {
4108  // - it is the same as the method's class type, or
4109  if (declaresSameEntity(CurrentClass, ResultClass))
4110  return Sema::RTC_Compatible;
4111 
4112  // - it is a superclass of the method's class type
4113  if (ResultClass->isSuperClassOf(CurrentClass))
4114  return Sema::RTC_Compatible;
4115  }
4116  } else {
4117  // Any Objective-C pointer type might be acceptable for a protocol
4118  // method; we just don't know.
4119  return Sema::RTC_Unknown;
4120  }
4121  }
4122 
4123  return Sema::RTC_Incompatible;
4124 }
4125 
4126 namespace {
4127 /// A helper class for searching for methods which a particular method
4128 /// overrides.
4129 class OverrideSearch {
4130 public:
4131  Sema &S;
4132  ObjCMethodDecl *Method;
4133  llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
4134  bool Recursive;
4135 
4136 public:
4137  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
4138  Selector selector = method->getSelector();
4139 
4140  // Bypass this search if we've never seen an instance/class method
4141  // with this selector before.
4142  Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4143  if (it == S.MethodPool.end()) {
4144  if (!S.getExternalSource()) return;
4145  S.ReadMethodPool(selector);
4146 
4147  it = S.MethodPool.find(selector);
4148  if (it == S.MethodPool.end())
4149  return;
4150  }
4151  ObjCMethodList &list =
4152  method->isInstanceMethod() ? it->second.first : it->second.second;
4153  if (!list.getMethod()) return;
4154 
4155  ObjCContainerDecl *container
4156  = cast<ObjCContainerDecl>(method->getDeclContext());
4157 
4158  // Prevent the search from reaching this container again. This is
4159  // important with categories, which override methods from the
4160  // interface and each other.
4161  if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
4162  searchFromContainer(container);
4163  if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
4164  searchFromContainer(Interface);
4165  } else {
4166  searchFromContainer(container);
4167  }
4168  }
4169 
4170  typedef llvm::SmallPtrSetImpl<ObjCMethodDecl*>::iterator iterator;
4171  iterator begin() const { return Overridden.begin(); }
4172  iterator end() const { return Overridden.end(); }
4173 
4174 private:
4175  void searchFromContainer(ObjCContainerDecl *container) {
4176  if (container->isInvalidDecl()) return;
4177 
4178  switch (container->getDeclKind()) {
4179 #define OBJCCONTAINER(type, base) \
4180  case Decl::type: \
4181  searchFrom(cast<type##Decl>(container)); \
4182  break;
4183 #define ABSTRACT_DECL(expansion)
4184 #define DECL(type, base) \
4185  case Decl::type:
4186 #include "clang/AST/DeclNodes.inc"
4187  llvm_unreachable("not an ObjC container!");
4188  }
4189  }
4190 
4191  void searchFrom(ObjCProtocolDecl *protocol) {
4192  if (!protocol->hasDefinition())
4193  return;
4194 
4195  // A method in a protocol declaration overrides declarations from
4196  // referenced ("parent") protocols.
4197  search(protocol->getReferencedProtocols());
4198  }
4199 
4200  void searchFrom(ObjCCategoryDecl *category) {
4201  // A method in a category declaration overrides declarations from
4202  // the main class and from protocols the category references.
4203  // The main class is handled in the constructor.
4204  search(category->getReferencedProtocols());
4205  }
4206 
4207  void searchFrom(ObjCCategoryImplDecl *impl) {
4208  // A method in a category definition that has a category
4209  // declaration overrides declarations from the category
4210  // declaration.
4211  if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4212  search(category);
4213  if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4214  search(Interface);
4215 
4216  // Otherwise it overrides declarations from the class.
4217  } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
4218  search(Interface);
4219  }
4220  }
4221 
4222  void searchFrom(ObjCInterfaceDecl *iface) {
4223  // A method in a class declaration overrides declarations from
4224  if (!iface->hasDefinition())
4225  return;
4226 
4227  // - categories,
4228  for (auto *Cat : iface->known_categories())
4229  search(Cat);
4230 
4231  // - the super class, and
4232  if (ObjCInterfaceDecl *super = iface->getSuperClass())
4233  search(super);
4234 
4235  // - any referenced protocols.
4236  search(iface->getReferencedProtocols());
4237  }
4238 
4239  void searchFrom(ObjCImplementationDecl *impl) {
4240  // A method in a class implementation overrides declarations from
4241  // the class interface.
4242  if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
4243  search(Interface);
4244  }
4245 
4246  void search(const ObjCProtocolList &protocols) {
4247  for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
4248  i != e; ++i)
4249  search(*i);
4250  }
4251 
4252  void search(ObjCContainerDecl *container) {
4253  // Check for a method in this container which matches this selector.
4254  ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4255  Method->isInstanceMethod(),
4256  /*AllowHidden=*/true);
4257 
4258  // If we find one, record it and bail out.
4259  if (meth) {
4260  Overridden.insert(meth);
4261  return;
4262  }
4263 
4264  // Otherwise, search for methods that a hypothetical method here
4265  // would have overridden.
4266 
4267  // Note that we're now in a recursive case.
4268  Recursive = true;
4269 
4270  searchFromContainer(container);
4271  }
4272 };
4273 } // end anonymous namespace
4274 
4276  ObjCInterfaceDecl *CurrentClass,
4278  // Search for overridden methods and merge information down from them.
4279  OverrideSearch overrides(*this, ObjCMethod);
4280  // Keep track if the method overrides any method in the class's base classes,
4281  // its protocols, or its categories' protocols; we will keep that info
4282  // in the ObjCMethodDecl.
4283  // For this info, a method in an implementation is not considered as
4284  // overriding the same method in the interface or its categories.
4285  bool hasOverriddenMethodsInBaseOrProtocol = false;
4286  for (OverrideSearch::iterator
4287  i = overrides.begin(), e = overrides.end(); i != e; ++i) {
4288  ObjCMethodDecl *overridden = *i;
4289 
4290  if (!hasOverriddenMethodsInBaseOrProtocol) {
4291  if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4292  CurrentClass != overridden->getClassInterface() ||
4293  overridden->isOverriding()) {
4294  hasOverriddenMethodsInBaseOrProtocol = true;
4295 
4296  } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4297  // OverrideSearch will return as "overridden" the same method in the
4298  // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4299  // check whether a category of a base class introduced a method with the
4300  // same selector, after the interface method declaration.
4301  // To avoid unnecessary lookups in the majority of cases, we use the
4302  // extra info bits in GlobalMethodPool to check whether there were any
4303  // category methods with this selector.
4304  GlobalMethodPool::iterator It =
4305  MethodPool.find(ObjCMethod->getSelector());
4306  if (It != MethodPool.end()) {
4307  ObjCMethodList &List =
4308  ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4309  unsigned CategCount = List.getBits();
4310  if (CategCount > 0) {
4311  // If the method is in a category we'll do lookup if there were at
4312  // least 2 category methods recorded, otherwise only one will do.
4313  if (CategCount > 1 ||
4314  !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4315  OverrideSearch overrides(*this, overridden);
4316  for (OverrideSearch::iterator
4317  OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
4318  ObjCMethodDecl *SuperOverridden = *OI;
4319  if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4320  CurrentClass != SuperOverridden->getClassInterface()) {
4321  hasOverriddenMethodsInBaseOrProtocol = true;
4322  overridden->setOverriding(true);
4323  break;
4324  }
4325  }
4326  }
4327  }
4328  }
4329  }
4330  }
4331 
4332  // Propagate down the 'related result type' bit from overridden methods.
4333  if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4334  ObjCMethod->SetRelatedResultType();
4335 
4336  // Then merge the declarations.
4337  mergeObjCMethodDecls(ObjCMethod, overridden);
4338  }
4339 
4340  for (ObjCMethodDecl *overridden : overrides) {
4341  CheckObjCMethodOverride(ObjCMethod, overridden);
4342 
4343  if (ObjCMethod->isImplicit() && overridden->isImplicit())
4344  continue; // Conflicting properties are detected elsewhere.
4345 
4346  // Check for overriding methods
4347  if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4348  isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4349  CheckConflictingOverridingMethod(ObjCMethod, overridden,
4350  isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4351 
4352  if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4353  isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4354  !overridden->isImplicit() /* not meant for properties */) {
4355  ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4356  E = ObjCMethod->param_end();
4357  ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4358  PrevE = overridden->param_end();
4359  for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4360  assert(PrevI != overridden->param_end() && "Param mismatch");
4361  QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4362  QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4363  // If type of argument of method in this class does not match its
4364  // respective argument type in the super class method, issue warning;
4365  if (!Context.typesAreCompatible(T1, T2)) {
4366  Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4367  << T1 << T2;
4368  Diag(overridden->getLocation(), diag::note_previous_declaration);
4369  break;
4370  }
4371  }
4372  }
4373  }
4374 
4375  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4376 }
4377 
4378 /// Merge type nullability from for a redeclaration of the same entity,
4379 /// producing the updated type of the redeclared entity.
4381  QualType type,
4382  bool usesCSKeyword,
4383  SourceLocation prevLoc,
4384  QualType prevType,
4385  bool prevUsesCSKeyword) {
4386  // Determine the nullability of both types.
4387  auto nullability = type->getNullability(S.Context);
4388  auto prevNullability = prevType->getNullability(S.Context);
4389 
4390  // Easy case: both have nullability.
4391  if (nullability.hasValue() == prevNullability.hasValue()) {
4392  // Neither has nullability; continue.
4393  if (!nullability)
4394  return type;
4395 
4396  // The nullabilities are equivalent; do nothing.
4397  if (*nullability == *prevNullability)
4398  return type;
4399 
4400  // Complain about mismatched nullability.
4401  S.Diag(loc, diag::err_nullability_conflicting)
4402  << DiagNullabilityKind(*nullability, usesCSKeyword)
4403  << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4404  return type;
4405  }
4406 
4407  // If it's the redeclaration that has nullability, don't change anything.
4408  if (nullability)
4409  return type;
4410 
4411  // Otherwise, provide the result with the same nullability.
4412  return S.Context.getAttributedType(
4413  AttributedType::getNullabilityAttrKind(*prevNullability),
4414  type, type);
4415 }
4416 
4417 /// Merge information from the declaration of a method in the \@interface
4418 /// (or a category/extension) into the corresponding method in the
4419 /// @implementation (for a class or category).
4421  ObjCMethodDecl *method,
4422  ObjCMethodDecl *prevMethod) {
4423  // Merge the objc_requires_super attribute.
4424  if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4425  !method->hasAttr<ObjCRequiresSuperAttr>()) {
4426  // merge the attribute into implementation.
4427  method->addAttr(
4428  ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4429  method->getLocation()));
4430  }
4431 
4432  // Merge nullability of the result type.
4433  QualType newReturnType
4435  S, method->getReturnTypeSourceRange().getBegin(),
4436  method->getReturnType(),
4438  prevMethod->getReturnTypeSourceRange().getBegin(),
4439  prevMethod->getReturnType(),
4441  method->setReturnType(newReturnType);
4442 
4443  // Handle each of the parameters.
4444  unsigned numParams = method->param_size();
4445  unsigned numPrevParams = prevMethod->param_size();
4446  for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4447  ParmVarDecl *param = method->param_begin()[i];
4448  ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4449 
4450  // Merge nullability.
4451  QualType newParamType
4453  S, param->getLocation(), param->getType(),
4455  prevParam->getLocation(), prevParam->getType(),
4457  param->setType(newParamType);
4458  }
4459 }
4460 
4461 /// Verify that the method parameters/return value have types that are supported
4462 /// by the x86 target.
4464  const ObjCMethodDecl *Method) {
4465  assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4466  llvm::Triple::x86 &&
4467  "x86-specific check invoked for a different target");
4468  SourceLocation Loc;
4469  QualType T;
4470  for (const ParmVarDecl *P : Method->parameters()) {
4471  if (P->getType()->isVectorType()) {
4472  Loc = P->getLocStart();
4473  T = P->getType();
4474  break;
4475  }
4476  }
4477  if (Loc.isInvalid()) {
4478  if (Method->getReturnType()->isVectorType()) {
4479  Loc = Method->getReturnTypeSourceRange().getBegin();
4480  T = Method->getReturnType();
4481  } else
4482  return;
4483  }
4484 
4485  // Vector parameters/return values are not supported by objc_msgSend on x86 in
4486  // iOS < 9 and macOS < 10.11.
4487  const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4488  VersionTuple AcceptedInVersion;
4489  if (Triple.getOS() == llvm::Triple::IOS)
4490  AcceptedInVersion = VersionTuple(/*Major=*/9);
4491  else if (Triple.isMacOSX())
4492  AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4493  else
4494  return;
4496  AcceptedInVersion)
4497  return;
4498  SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4499  << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4500  : /*parameter*/ 0)
4501  << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4502 }
4503 
4505  Scope *S,
4506  SourceLocation MethodLoc, SourceLocation EndLoc,
4507  tok::TokenKind MethodType,
4508  ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4509  ArrayRef<SourceLocation> SelectorLocs,
4510  Selector Sel,
4511  // optional arguments. The number of types/arguments is obtained
4512  // from the Sel.getNumArgs().
4513  ObjCArgInfo *ArgInfo,
4514  DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
4515  AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
4516  bool isVariadic, bool MethodDefinition) {
4517  // Make sure we can establish a context for the method.
4518  if (!CurContext->isObjCContainer()) {
4519  Diag(MethodLoc, diag::err_missing_method_context);
4520  return nullptr;
4521  }
4523  Decl *ClassDecl = cast<Decl>(OCD);
4524  QualType resultDeclType;
4525 
4526  bool HasRelatedResultType = false;
4527  TypeSourceInfo *ReturnTInfo = nullptr;
4528  if (ReturnType) {
4529  resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4530 
4531  if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4532  return nullptr;
4533 
4534  QualType bareResultType = resultDeclType;
4535  (void)AttributedType::stripOuterNullability(bareResultType);
4536  HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4537  } else { // get the type for "id".
4538  resultDeclType = Context.getObjCIdType();
4539  Diag(MethodLoc, diag::warn_missing_method_return_type)
4540  << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4541  }
4542 
4543  ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4544  Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4545  MethodType == tok::minus, isVariadic,
4546  /*isPropertyAccessor=*/false,
4547  /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4548  MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4550  HasRelatedResultType);
4551 
4553 
4554  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4555  QualType ArgType;
4556  TypeSourceInfo *DI;
4557 
4558  if (!ArgInfo[i].Type) {
4559  ArgType = Context.getObjCIdType();
4560  DI = nullptr;
4561  } else {
4562  ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4563  }
4564 
4565  LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4567  LookupName(R, S);
4568  if (R.isSingleResult()) {
4569  NamedDecl *PrevDecl = R.getFoundDecl();
4570  if (S->isDeclScope(PrevDecl)) {
4571  Diag(ArgInfo[i].NameLoc,
4572  (MethodDefinition ? diag::warn_method_param_redefinition
4573  : diag::warn_method_param_declaration))
4574  << ArgInfo[i].Name;
4575  Diag(PrevDecl->getLocation(),
4576  diag::note_previous_declaration);
4577  }
4578  }
4579 
4580  SourceLocation StartLoc = DI
4581  ? DI->getTypeLoc().getBeginLoc()
4582  : ArgInfo[i].NameLoc;
4583 
4584  ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4585  ArgInfo[i].NameLoc, ArgInfo[i].Name,
4586  ArgType, DI, SC_None);
4587 
4588  Param->setObjCMethodScopeInfo(i);
4589 
4590  Param->setObjCDeclQualifier(
4591  CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4592 
4593  // Apply the attributes to the parameter.
4594  ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4595  AddPragmaAttributes(TUScope, Param);
4596 
4597  if (Param->hasAttr<BlocksAttr>()) {
4598  Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4599  Param->setInvalidDecl();
4600  }
4601  S->AddDecl(Param);
4602  IdResolver.AddDecl(Param);
4603 
4604  Params.push_back(Param);
4605  }
4606 
4607  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4608  ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4609  QualType ArgType = Param->getType();
4610  if (ArgType.isNull())
4611  ArgType = Context.getObjCIdType();
4612  else
4613  // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4614  ArgType = Context.getAdjustedParameterType(ArgType);
4615 
4616  Param->setDeclContext(ObjCMethod);
4617  Params.push_back(Param);
4618  }
4619 
4620  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4621  ObjCMethod->setObjCDeclQualifier(
4623 
4624  if (AttrList)
4625  ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4626  AddPragmaAttributes(TUScope, ObjCMethod);
4627 
4628  // Add the method now.
4629  const ObjCMethodDecl *PrevMethod = nullptr;
4630  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4631  if (MethodType == tok::minus) {
4632  PrevMethod = ImpDecl->getInstanceMethod(Sel);
4633  ImpDecl->addInstanceMethod(ObjCMethod);
4634  } else {
4635  PrevMethod = ImpDecl->getClassMethod(Sel);
4636  ImpDecl->addClassMethod(ObjCMethod);
4637  }
4638 
4639  // Merge information from the @interface declaration into the
4640  // @implementation.
4641  if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4642  if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4643  ObjCMethod->isInstanceMethod())) {
4644  mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4645 
4646  // Warn about defining -dealloc in a category.
4647  if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4648  ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4649  Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4650  << ObjCMethod->getDeclName();
4651  }
4652  }
4653  }
4654  } else {
4655  cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4656  }
4657 
4658  if (PrevMethod) {
4659  // You can never have two method definitions with the same name.
4660  Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4661  << ObjCMethod->getDeclName();
4662  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4663  ObjCMethod->setInvalidDecl();
4664  return ObjCMethod;
4665  }
4666 
4667  // If this Objective-C method does not have a related result type, but we
4668  // are allowed to infer related result types, try to do so based on the
4669  // method family.
4670  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4671  if (!CurrentClass) {
4672  if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4673  CurrentClass = Cat->getClassInterface();
4674  else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4675  CurrentClass = Impl->getClassInterface();
4676  else if (ObjCCategoryImplDecl *CatImpl
4677  = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4678  CurrentClass = CatImpl->getClassInterface();
4679  }
4680 
4682  = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4683 
4684  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4685 
4686  bool ARCError = false;
4687  if (getLangOpts().ObjCAutoRefCount)
4688  ARCError = CheckARCMethodDecl(ObjCMethod);
4689 
4690  // Infer the related result type when possible.
4691  if (!ARCError && RTC == Sema::RTC_Compatible &&
4692  !ObjCMethod->hasRelatedResultType() &&
4693  LangOpts.ObjCInferRelatedResultType) {
4694  bool InferRelatedResultType = false;
4695  switch (ObjCMethod->getMethodFamily()) {
4696  case OMF_None:
4697  case OMF_copy:
4698  case OMF_dealloc:
4699  case OMF_finalize:
4700  case OMF_mutableCopy:
4701  case OMF_release:
4702  case OMF_retainCount:
4703  case OMF_initialize:
4704  case OMF_performSelector:
4705  break;
4706 
4707  case OMF_alloc:
4708  case OMF_new:
4709  InferRelatedResultType = ObjCMethod->isClassMethod();
4710  break;
4711 
4712  case OMF_init:
4713  case OMF_autorelease:
4714  case OMF_retain:
4715  case OMF_self:
4716  InferRelatedResultType = ObjCMethod->isInstanceMethod();
4717  break;
4718  }
4719 
4720  if (InferRelatedResultType &&
4721  !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4722  ObjCMethod->SetRelatedResultType();
4723  }
4724 
4725  if (MethodDefinition &&
4726  Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
4727  checkObjCMethodX86VectorTypes(*this, ObjCMethod);
4728 
4729  ActOnDocumentableDecl(ObjCMethod);
4730 
4731  return ObjCMethod;
4732 }
4733 
4735  // Following is also an error. But it is caused by a missing @end
4736  // and diagnostic is issued elsewhere.
4737  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4738  return false;
4739 
4740  // If we switched context to translation unit while we are still lexically in
4741  // an objc container, it means the parser missed emitting an error.
4742  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4743  return false;
4744 
4745  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4746  D->setInvalidDecl();
4747 
4748  return true;
4749 }
4750 
4751 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
4752 /// instance variables of ClassName into Decls.
4753 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4754  IdentifierInfo *ClassName,
4755  SmallVectorImpl<Decl*> &Decls) {
4756  // Check that ClassName is a valid class
4757  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4758  if (!Class) {
4759  Diag(DeclStart, diag::err_undef_interface) << ClassName;
4760  return;
4761  }
4763  Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4764  return;
4765  }
4766 
4767  // Collect the instance variables
4769  Context.DeepCollectObjCIvars(Class, true, Ivars);
4770  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4771  for (unsigned i = 0; i < Ivars.size(); i++) {
4772  const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
4773  RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4774  Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4775  /*FIXME: StartL=*/ID->getLocation(),
4776  ID->getLocation(),
4777  ID->getIdentifier(), ID->getType(),
4778  ID->getBitWidth());
4779  Decls.push_back(FD);
4780  }
4781 
4782  // Introduce all of these fields into the appropriate scope.
4783  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4784  D != Decls.end(); ++D) {
4785  FieldDecl *FD = cast<FieldDecl>(*D);
4786  if (getLangOpts().CPlusPlus)
4787  PushOnScopeChains(cast<FieldDecl>(FD), S);
4788  else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4789  Record->addDecl(FD);
4790  }
4791 }
4792 
4793 /// \brief Build a type-check a new Objective-C exception variable declaration.
4795  SourceLocation StartLoc,
4796  SourceLocation IdLoc,
4797  IdentifierInfo *Id,
4798  bool Invalid) {
4799  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4800  // duration shall not be qualified by an address-space qualifier."
4801  // Since all parameters have automatic store duration, they can not have
4802  // an address space.
4803  if (T.getAddressSpace() != LangAS::Default) {
4804  Diag(IdLoc, diag::err_arg_with_address_space);
4805  Invalid = true;
4806  }
4807 
4808  // An @catch parameter must be an unqualified object pointer type;
4809  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4810  if (Invalid) {
4811  // Don't do any further checking.
4812  } else if (T->isDependentType()) {
4813  // Okay: we don't know what this type will instantiate to.
4814  } else if (!T->isObjCObjectPointerType()) {
4815  Invalid = true;
4816  Diag(IdLoc ,diag::err_catch_param_not_objc_type);
4817  } else if (T->isObjCQualifiedIdType()) {
4818  Invalid = true;
4819  Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4820  }
4821 
4822  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4823  T, TInfo, SC_None);
4824  New->setExceptionVariable(true);
4825 
4826  // In ARC, infer 'retaining' for variables of retainable type.
4827  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4828  Invalid = true;
4829 
4830  if (Invalid)
4831  New->setInvalidDecl();
4832  return New;
4833 }
4834 
4836  const DeclSpec &DS = D.getDeclSpec();
4837 
4838  // We allow the "register" storage class on exception variables because
4839  // GCC did, but we drop it completely. Any other storage class is an error.
4841  Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4843  } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4844  Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4846  }
4847  if (DS.isInlineSpecified())
4848  Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4849  << getLangOpts().CPlusPlus17;
4852  diag::err_invalid_thread)
4853  << DeclSpec::getSpecifierName(TSCS);
4855 
4857 
4858  // Check that there are no default arguments inside the type of this
4859  // exception object (C++ only).
4860  if (getLangOpts().CPlusPlus)
4862 
4863  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4864  QualType ExceptionType = TInfo->getType();
4865 
4866  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4867  D.getSourceRange().getBegin(),
4868  D.getIdentifierLoc(),
4869  D.getIdentifier(),
4870  D.isInvalidType());
4871 
4872  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4873  if (D.getCXXScopeSpec().isSet()) {
4874  Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4875  << D.getCXXScopeSpec().getRange();
4876  New->setInvalidDecl();
4877  }
4878 
4879  // Add the parameter declaration into this scope.
4880  S->AddDecl(New);
4881  if (D.getIdentifier())
4882  IdResolver.AddDecl(New);
4883 
4884  ProcessDeclAttributes(S, New, D);
4885 
4886  if (New->hasAttr<BlocksAttr>())
4887  Diag(New->getLocation(), diag::err_block_on_nonlocal);
4888  return New;
4889 }
4890 
4891 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4892 /// initialization.
4895  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4896  Iv= Iv->getNextIvar()) {
4897  QualType QT = Context.getBaseElementType(Iv->getType());
4898  if (QT->isRecordType())
4899  Ivars.push_back(Iv);
4900  }
4901 }
4902 
4904  // Load referenced selectors from the external source.
4905  if (ExternalSource) {
4907  ExternalSource->ReadReferencedSelectors(Sels);
4908  for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4909  ReferencedSelectors[Sels[I].first] = Sels[I].second;
4910  }
4911 
4912  // Warning will be issued only when selector table is
4913  // generated (which means there is at lease one implementation
4914  // in the TU). This is to match gcc's behavior.
4915  if (ReferencedSelectors.empty() ||
4916  !Context.AnyObjCImplementation())
4917  return;
4918  for (auto &SelectorAndLocation : ReferencedSelectors) {
4919  Selector Sel = SelectorAndLocation.first;
4920  SourceLocation Loc = SelectorAndLocation.second;
4922  Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4923  }
4924 }
4925 
4926 ObjCIvarDecl *
4928  const ObjCPropertyDecl *&PDecl) const {
4929  if (Method->isClassMethod())
4930  return nullptr;
4931  const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4932  if (!IDecl)
4933  return nullptr;
4934  Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4935  /*shallowCategoryLookup=*/false,
4936  /*followSuper=*/false);
4937  if (!Method || !Method->isPropertyAccessor())
4938  return nullptr;
4939  if ((PDecl = Method->findPropertyDecl()))
4940  if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
4941  // property backing ivar must belong to property's class
4942  // or be a private ivar in class's implementation.
4943  // FIXME. fix the const-ness issue.
4944  IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
4945  IV->getIdentifier());
4946  return IV;
4947  }
4948  return nullptr;
4949 }
4950 
4951 namespace {
4952  /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
4953  /// accessor references the backing ivar.
4954  class UnusedBackingIvarChecker :
4955  public RecursiveASTVisitor<UnusedBackingIvarChecker> {
4956  public:
4957  Sema &S;
4958  const ObjCMethodDecl *Method;
4959  const ObjCIvarDecl *IvarD;
4960  bool AccessedIvar;
4961  bool InvokedSelfMethod;
4962 
4963  UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
4964  const ObjCIvarDecl *IvarD)
4965  : S(S), Method(Method), IvarD(IvarD),
4966  AccessedIvar(false), InvokedSelfMethod(false) {
4967  assert(IvarD);
4968  }
4969 
4970  bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
4971  if (E->getDecl() == IvarD) {
4972  AccessedIvar = true;
4973  return false;
4974  }
4975  return true;
4976  }
4977 
4978  bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
4980  S.isSelfExpr(E->getInstanceReceiver(), Method)) {
4981  InvokedSelfMethod = true;
4982  }
4983  return true;
4984  }
4985  };
4986 } // end anonymous namespace
4987 
4989  const ObjCImplementationDecl *ImplD) {
4991  return;
4992 
4993  for (const auto *CurMethod : ImplD->instance_methods()) {
4994  unsigned DIAG = diag::warn_unused_property_backing_ivar;
4995  SourceLocation Loc = CurMethod->getLocation();
4996  if (Diags.isIgnored(DIAG, Loc))
4997  continue;
4998 
4999  const ObjCPropertyDecl *PDecl;
5000  const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5001  if (!IV)
5002  continue;
5003 
5004  UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5005  Checker.TraverseStmt(CurMethod->getBody());
5006  if (Checker.AccessedIvar)
5007  continue;
5008 
5009  // Do not issue this warning if backing ivar is used somewhere and accessor
5010  // implementation makes a self call. This is to prevent false positive in
5011  // cases where the ivar is accessed by another method that the accessor
5012  // delegates to.
5013  if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5014  Diag(Loc, DIAG) << IV;
5015  Diag(PDecl->getLocation(), diag::note_property_declare);
5016  }
5017  }
5018 }
Decl * ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef< Decl *> allMethods=None, ArrayRef< DeclGroupPtrTy > allTUVars=None)
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Defines the clang::ASTContext interface.
bool hasDefinition() const
Determine whether this class has been defined.
Definition: DeclObjC.h:1554
static bool tryMatchRecordTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, const Type *left, const Type *right)
ObjCIvarDecl * GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, const ObjCPropertyDecl *&PDecl) const
GetIvarBackingPropertyAccessor - If method is a property setter/getter and it property has a backing ...
void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, ObjCInterfaceDecl *ID)
DiagnoseClassExtensionDupMethods - Check for duplicate declaration of a class method in its extension...
bool isClassMethod() const
Definition: DeclObjC.h:457
void setImplicit(bool I=true)
Definition: DeclBase.h:552
ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo)
Package the given type and TSI into a ParsedType.
Definition: SemaType.cpp:5581
bool isSelfExpr(Expr *RExpr)
Private Helper predicate to check for &#39;self&#39;.
The receiver is an object instance.
Definition: ExprObjC.h:1054
void setEndOfDefinitionLoc(SourceLocation LE)
Definition: DeclObjC.h:1904
VersionTuple getPlatformMinVersion() const
Retrieve the minimum desired version of the platform, to which the program should be compiled...
Definition: TargetInfo.h:999
ExternalSemaSource * getExternalSource() const
Definition: Sema.h:1203
bool isObjCQualifiedIdType() const
True if this is equivalent to &#39;id.
Definition: Type.h:5521
Smart pointer class that efficiently represents Objective-C method names.
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:1800
unsigned getBits() const
QualType getAdjustedParameterType(QualType T) const
Perform adjustment on the parameter type of a function.
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2285
A (possibly-)qualified type.
Definition: Type.h:653
ASTConsumer & Consumer
Definition: Sema.h:317
Simple class containing the result of Sema::CorrectTypo.
void setStarLoc(SourceLocation Loc)
Definition: TypeLoc.h:1347
Represents a version number in the form major[.minor[.subminor[.build]]].
Definition: VersionTuple.h:26
unsigned param_size() const
Definition: DeclObjC.h:379
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.h:2344
all_protocol_range all_referenced_protocols() const
Definition: DeclObjC.h:1443
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.cpp:1101
void setOverriding(bool isOverriding)
Definition: DeclObjC.h:473
void startDefinition()
Starts the definition of this Objective-C class, taking it from a forward declaration (@class) to a d...
Definition: DeclObjC.cpp:603
bool AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, bool receiverIdOrClass, SmallVectorImpl< ObjCMethodDecl *> &Methods)
ObjCDeclQualifier getObjCDeclQualifier() const
Definition: DeclSpec.h:809
static QualType getObjectType(APValue::LValueBase B)
Retrieves the "underlying object type" of the given expression, as used by __builtin_object_size.
iterator begin() const
Definition: DeclObjC.h:91
llvm::DenseSet< IdentifierInfo * > ProtocolNameSet
FIXME: Type hierarchies in Objective-C can be deep.
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc...
Definition: Sema.h:2994
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false)
Perform unqualified name lookup starting from a given scope.
Look up the name of an Objective-C protocol.
Definition: Sema.h:3028
const ObjCProtocolList & getReferencedProtocols() const
Definition: DeclObjC.h:2368
Expr * getBitWidth() const
Definition: Decl.h:2550
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:456
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:790
ObjCMethodDecl * LookupMethodInObjectType(Selector Sel, QualType Ty, bool IsInstance)
LookupMethodInType - Look up a method in an ObjCObjectType.
static bool CheckMethodOverrideParam(Sema &S, ObjCMethodDecl *MethodImpl, ObjCMethodDecl *MethodDecl, ParmVarDecl *ImplVar, ParmVarDecl *IfaceVar, bool IsProtocolMethodDecl, bool IsOverridingMode, bool Warn)
Defines the SourceManager interface.
void ActOnDocumentableDecl(Decl *D)
Should be called on all declarations that might have attached documentation comments.
Definition: SemaDecl.cpp:11490
bool isRecordType() const
Definition: Type.h:6017
iterator end()
Definition: DeclGroup.h:106
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
Definition: Sema.h:1270
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
void DiagnoseMissingDesignatedInitOverrides(const ObjCImplementationDecl *ImplD, const ObjCInterfaceDecl *IFD)
__DEVICE__ long long abs(long long __n)
Captures information about "declaration specifiers" specific to Objective-C.
Definition: DeclSpec.h:765
ObjCTypeParamList * actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc, ArrayRef< Decl *> typeParams, SourceLocation rAngleLoc)
void DiagnoseFunctionSpecifiers(const DeclSpec &DS)
Diagnose function specifiers on a declaration of an identifier that does not identify a function...
Definition: SemaDecl.cpp:5635
StringRef P
ivar_range ivars() const
Definition: DeclObjC.h:1477
Scope * TUScope
Translation Unit Scope - useful to Objective-C actions that need to lookup file scope declarations in...
Definition: Sema.h:805
static ObjCProtocolDecl * Create(ASTContext &C, DeclContext *DC, IdentifierInfo *Id, SourceLocation nameLoc, SourceLocation atStartLoc, ObjCProtocolDecl *PrevDecl)
Definition: DeclObjC.cpp:1820
static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, ObjCProtocolDecl *&UndefinedProtocol)
known_categories_range known_categories() const
Definition: DeclObjC.h:1706
ObjCTypeParamList * getTypeParamList() const
Retrieve the type parameters of this class.
Definition: DeclObjC.cpp:301
void AddDecl(Decl *D)
Definition: Scope.h:281
bool CheckForwardProtocolDeclarationForCircularDependency(IdentifierInfo *PName, SourceLocation &PLoc, SourceLocation PrevLoc, const ObjCList< ObjCProtocolDecl > &PList)
DeclGroupPtrTy ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc, ArrayRef< IdentifierLocPair > IdentList, AttributeList *attrList)
ActOnForwardProtocolDeclaration - Handle @protocol foo;.
The base class of the type hierarchy.
Definition: Type.h:1353
void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false)
AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
Definition: Sema.h:3585
The parameter is covariant, e.g., X<T> is a subtype of X<U> when the type parameter is covariant and ...
CanQual< T > getUnqualifiedType() const
Retrieve the unqualified form of this type.
bool isCompilingModule() const
Are we compiling a module interface (.cppm or module map)?
Definition: LangOptions.h:167
bool isObjCContainer() const
Definition: DeclBase.h:1368
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset=0)
Calls Lexer::getLocForEndOfToken()
Definition: Sema.cpp:45
const ObjCObjectPointerType * getAsObjCInterfacePointerType() const
Definition: Type.cpp:1567
static const char * getSpecifierName(DeclSpec::TST T, const PrintingPolicy &Policy)
Turn a type-specifier-type into a string like "_Bool" or "union".
Definition: DeclSpec.cpp:495
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:671
A container of type source information.
Definition: Decl.h:86
void ProcessPropertyDecl(ObjCPropertyDecl *property)
Process the specified property declaration and create decls for the setters and getters as needed...
ObjCMethodDecl * getMethod() const
TSCS getThreadStorageClassSpec() const
Definition: DeclSpec.h:446
SourceLocation getLocEnd() const LLVM_READONLY
Definition: DeclBase.h:412
void ActOnTypedefedProtocols(SmallVectorImpl< Decl *> &ProtocolRefs, SmallVectorImpl< SourceLocation > &ProtocolLocs, IdentifierInfo *SuperName, SourceLocation SuperLoc)
ActOnTypedefedProtocols - this action finds protocol list as part of the typedef&#39;ed use for a qualifi...
param_const_iterator param_end() const
Definition: DeclObjC.h:390
bool isOverriding() const
Whether this method overrides any other in the class hierarchy.
Definition: DeclObjC.h:472
SourceLocation getEndLoc() const
Get the end source location.
Definition: TypeLoc.cpp:227
void createImplicitParams(ASTContext &Context, const ObjCInterfaceDecl *ID)
createImplicitParams - Used to lazily create the self and cmd implict parameters. ...
Definition: DeclObjC.cpp:1080
VarDecl - An instance of this class is created to represent a variable declaration or definition...
Definition: Decl.h:807
void setImplementation(ObjCCategoryImplDecl *ImplD)
Definition: DeclObjC.cpp:1989
PartialDiagnostic PDiag(unsigned DiagID=0)
Build a partial diagnostic.
Definition: SemaInternal.h:25
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1720
DiagnosticsEngine & Diags
Definition: Sema.h:318
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6307
ObjCCategoryImplDecl * getImplementation() const
Definition: DeclObjC.cpp:1984
SourceLocation getLocStart() const LLVM_READONLY
Definition: DeclObjC.h:321
static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc, ObjCMethodDecl *method, bool &IncompleteImpl, unsigned DiagID, NamedDecl *NeededFor=nullptr)
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
DeclClass * getCorrectionDeclAs() const
bool isInvalidDecl() const
Definition: DeclBase.h:546
classmeth_range class_methods() const
Definition: DeclObjC.h:1089
llvm::MapVector< Selector, SourceLocation > ReferencedSelectors
Method selectors used in a @selector expression.
Definition: Sema.h:1126
protocol_range protocols() const
Definition: DeclObjC.h:2148
static const NamedDecl * getDefinition(const Decl *D)
Definition: SemaDecl.cpp:2512
ParmVarDecl - Represents a parameter to a function.
Definition: Decl.h:1514
The collection of all-type qualifiers we support.
Definition: Type.h:152
iterator end() const
Definition: DeclObjC.h:92
MethodMatchStrategy
Definition: Sema.h:3495
const ObjCInterfaceDecl * getSuperClass() const
Definition: DeclObjC.h:2708
IdentifierInfo * getIdentifier() const
getIdentifier - Get the identifier that names this declaration, if there is one.
Definition: Decl.h:265
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:56
RecordDecl - Represents a struct/union/class.
Definition: Decl.h:3482
SourceLocation getVarianceLoc() const
Retrieve the location of the variance keyword.
Definition: DeclObjC.h:629
DeclarationName getDeclName() const
getDeclName - Get the actual, stored name of the declaration, which may be a special name...
Definition: Decl.h:291
One of these records is kept for each identifier that is lexed.
std::unique_ptr< NSAPI > NSAPIObj
Caches identifiers/selectors for NSFoundation APIs.
Definition: Sema.h:833
static void checkObjCMethodX86VectorTypes(Sema &SemaRef, const ObjCMethodDecl *Method)
Verify that the method parameters/return value have types that are supported by the x86 target...
const ObjCProtocolList & getReferencedProtocols() const
Definition: DeclObjC.h:2140
Represents a class type in Objective C.
Definition: Type.h:5186
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:149
void AddTypeInfo(const DeclaratorChunk &TI, ParsedAttributes &attrs, SourceLocation EndLoc)
AddTypeInfo - Add a chunk to this declarator.
Definition: DeclSpec.h:2122
ObjCMethodDecl * getClassMethod(Selector Sel, bool AllowHidden=false) const
Definition: DeclObjC.h:1110
const ParmVarDecl *const * param_const_iterator
Definition: DeclObjC.h:381
bool isObjCLifetimeType() const
Returns true if objects of this type have lifetime semantics under ARC.
Definition: Type.cpp:3844
ObjCMethodFamily
A family of Objective-C methods.
The parameter is contravariant, e.g., X<T> is a subtype of X<U> when the type parameter is covariant ...
Base class for callback objects used by Sema::CorrectTypo to check the validity of a potential typo c...
void set(T *const *InList, unsigned Elts, ASTContext &Ctx)
Definition: DeclObjC.h:85
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
bool isObjCIdType() const
Definition: Type.h:6070
FieldDecl - An instance of this class is created by Sema::ActOnField to represent a member of a struc...
Definition: Decl.h:2461
SourceRange getReturnTypeSourceRange() const
Definition: DeclObjC.cpp:1113
instmeth_range instance_methods() const
Definition: DeclObjC.h:1072
bool isDefined() const
Definition: DeclObjC.h:462
void setSuperClass(TypeSourceInfo *superClass)
Definition: DeclObjC.h:1607
method_range methods() const
Definition: DeclObjC.h:1055
SourceRange getSourceRange() const
Definition: DeclObjC.h:725
DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc, IdentifierInfo **IdentList, SourceLocation *IdentLocs, ArrayRef< ObjCTypeParamList *> TypeParamLists, unsigned NumElts)
int Category
Definition: Format.cpp:1348
void ClearStorageClassSpecs()
Definition: DeclSpec.h:459
void setReturnType(QualType T)
Definition: DeclObjC.h:362
static DeclaratorChunk getPointer(unsigned TypeQuals, SourceLocation Loc, SourceLocation ConstQualLoc, SourceLocation VolatileQualLoc, SourceLocation RestrictQualLoc, SourceLocation AtomicQualLoc, SourceLocation UnalignedQualLoc)
Return a DeclaratorChunk for a pointer.
Definition: DeclSpec.h:1520
static bool checkTypeParamListConsistency(Sema &S, ObjCTypeParamList *prevTypeParams, ObjCTypeParamList *newTypeParams, TypeParamListContext newContext)
Check consistency between two Objective-C type parameter lists, e.g., between a category/extension an...
bool isObjCQualifiedClassType() const
Definition: Type.h:6064
static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method, const ObjCObjectType *TypeBound)
Return true if the given method is wthin the type bound.
void CheckExtraCXXDefaultArguments(Declarator &D)
CheckExtraCXXDefaultArguments - Check for any extra default arguments in the declarator, which is not a function declaration or definition and therefore is not permitted to have default arguments.
std::pair< NullabilityKind, bool > DiagNullabilityKind
A nullability kind paired with a bit indicating whether it used a context-sensitive keyword...
Definition: Diagnostic.h:1202
llvm::BumpPtrAllocator BumpAlloc
Definition: Sema.h:1074
IdentifierTable & Idents
Definition: ASTContext.h:537
Qualifiers getLocalQualifiers() const
Retrieve the set of qualifiers local to this particular QualType instance, not including any qualifie...
Definition: Type.h:5739
bool isInvalidType() const
Definition: DeclSpec.h:2404
bool isUnarySelector() const
bool isDeprecated(std::string *Message=nullptr) const
Determine whether this declaration is marked &#39;deprecated&#39;.
Definition: DeclBase.h:663
ObjCMethodFamily getMethodFamily() const
Determines the family of this method.
Definition: DeclObjC.cpp:943
void MatchAllMethodDeclarations(const SelectorSet &InsMap, const SelectorSet &ClsMap, SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl *IMPDecl, ObjCContainerDecl *IDecl, bool &IncompleteImpl, bool ImmediateClass, bool WarnCategoryMethodImpl=false)
MatchAllMethodDeclarations - Check methods declaraed in interface or or protocol against those declar...
bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall)
Check whether the given method, which must be in the &#39;init&#39; family, is a valid member of that family...
void setMethod(ObjCMethodDecl *M)
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:2539
bool isNonFragile() const
Does this runtime follow the set of implied behaviors for a "non-fragile" ABI?
Definition: ObjCRuntime.h:80
Represents the results of name lookup.
Definition: Lookup.h:32
PtrTy get() const
Definition: Ownership.h:162
ObjCMethodDecl * LookupImplementedMethodInGlobalPool(Selector Sel)
LookupImplementedMethodInGlobalPool - Returns the method which has an implementation.
bool isNeXTFamily() const
Is this runtime basically of the NeXT family of runtimes?
Definition: ObjCRuntime.h:133
void mergeDeclAttributes(NamedDecl *New, Decl *Old, AvailabilityMergeKind AMK=AMK_Redeclaration)
mergeDeclAttributes - Copy attributes from the Old decl to the New one.
Definition: SemaDecl.cpp:2621
static ObjCInterfaceDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation atLoc, IdentifierInfo *Id, ObjCTypeParamList *typeParamList, ObjCInterfaceDecl *PrevDecl, SourceLocation ClassLoc=SourceLocation(), bool isInternal=false)
Definition: DeclObjC.cpp:1417
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:986
ObjCMethodDecl * getCurMethodDecl()
getCurMethodDecl - If inside of a method body, this returns a pointer to the method decl for the meth...
Definition: Sema.cpp:1171
bool isReferenced() const
Whether any declaration of this entity was referenced.
Definition: DeclBase.cpp:411
static ObjCCategoryDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation AtLoc, SourceLocation ClassNameLoc, SourceLocation CategoryNameLoc, IdentifierInfo *Id, ObjCInterfaceDecl *IDecl, ObjCTypeParamList *typeParamList, SourceLocation IvarLBraceLoc=SourceLocation(), SourceLocation IvarRBraceLoc=SourceLocation())
Definition: DeclObjC.cpp:1951
SCS
storage-class-specifier
Definition: DeclSpec.h:232
void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, SmallVectorImpl< ObjCIvarDecl *> &Ivars)
CollectIvarsToConstructOrDestruct - Collect those ivars which require initialization.
DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef< Decl *> Group)
BuildDeclaratorGroup - convert a list of declarations into a declaration group, performing any necess...
Definition: SemaDecl.cpp:11452
Decl * ActOnObjCContainerStartDefinition(Decl *IDecl)
Definition: SemaDecl.cpp:14047
ObjCContainerKind
Definition: Sema.h:7805
void RemoveDecl(NamedDecl *D)
RemoveDecl - Unlink the decl from its shadowed decl chain.
void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, IdentifierInfo *ClassName, SmallVectorImpl< Decl *> &Decls)
Called whenever @defs(ClassName) is encountered in the source.
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:635
Selector GetNullarySelector(StringRef name, ASTContext &Ctx)
Utility function for constructing a nullary selector.
Definition: ASTContext.h:2845
GlobalMethodPool MethodPool
Method Pool - allows efficient lookup when typechecking messages to "id".
Definition: Sema.h:1122
TypeDecl - Represents a declaration of a type.
Definition: Decl.h:2754
static ObjCAtDefsFieldDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, Expr *BW)
Definition: DeclObjC.cpp:1790
iterator begin()
Definition: DeclGroup.h:100