clang  7.0.0svn
SemaDeclObjC.cpp
Go to the documentation of this file.
1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for Objective C declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprObjC.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/Scope.h"
26 #include "clang/Sema/ScopeInfo.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/DenseSet.h"
30 
31 using namespace clang;
32 
33 /// Check whether the given method, which must be in the 'init'
34 /// family, is a valid member of that family.
35 ///
36 /// \param receiverTypeIfCall - if null, check this as if declaring it;
37 /// if non-null, check this as if making a call to it with the given
38 /// receiver type
39 ///
40 /// \return true to indicate that there was an error and appropriate
41 /// actions were taken
43  QualType receiverTypeIfCall) {
44  if (method->isInvalidDecl()) return true;
45 
46  // This castAs is safe: methods that don't return an object
47  // pointer won't be inferred as inits and will reject an explicit
48  // objc_method_family(init).
49 
50  // We ignore protocols here. Should we? What about Class?
51 
52  const ObjCObjectType *result =
54 
55  if (result->isObjCId()) {
56  return false;
57  } else if (result->isObjCClass()) {
58  // fall through: always an error
59  } else {
60  ObjCInterfaceDecl *resultClass = result->getInterface();
61  assert(resultClass && "unexpected object type!");
62 
63  // It's okay for the result type to still be a forward declaration
64  // if we're checking an interface declaration.
65  if (!resultClass->hasDefinition()) {
66  if (receiverTypeIfCall.isNull() &&
67  !isa<ObjCImplementationDecl>(method->getDeclContext()))
68  return false;
69 
70  // Otherwise, we try to compare class types.
71  } else {
72  // If this method was declared in a protocol, we can't check
73  // anything unless we have a receiver type that's an interface.
74  const ObjCInterfaceDecl *receiverClass = nullptr;
75  if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76  if (receiverTypeIfCall.isNull())
77  return false;
78 
79  receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80  ->getInterfaceDecl();
81 
82  // This can be null for calls to e.g. id<Foo>.
83  if (!receiverClass) return false;
84  } else {
85  receiverClass = method->getClassInterface();
86  assert(receiverClass && "method not associated with a class!");
87  }
88 
89  // If either class is a subclass of the other, it's fine.
90  if (receiverClass->isSuperClassOf(resultClass) ||
91  resultClass->isSuperClassOf(receiverClass))
92  return false;
93  }
94  }
95 
96  SourceLocation loc = method->getLocation();
97 
98  // If we're in a system header, and this is not a call, just make
99  // the method unusable.
100  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
101  method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102  UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103  return true;
104  }
105 
106  // Otherwise, it's an error.
107  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108  method->setInvalidDecl();
109  return true;
110 }
111 
113  const ObjCMethodDecl *Overridden) {
114  if (Overridden->hasRelatedResultType() &&
115  !NewMethod->hasRelatedResultType()) {
116  // This can only happen when the method follows a naming convention that
117  // implies a related result type, and the original (overridden) method has
118  // a suitable return type, but the new (overriding) method does not have
119  // a suitable return type.
120  QualType ResultType = NewMethod->getReturnType();
121  SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
122 
123  // Figure out which class this method is part of, if any.
124  ObjCInterfaceDecl *CurrentClass
125  = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
126  if (!CurrentClass) {
127  DeclContext *DC = NewMethod->getDeclContext();
128  if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
129  CurrentClass = Cat->getClassInterface();
130  else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
131  CurrentClass = Impl->getClassInterface();
132  else if (ObjCCategoryImplDecl *CatImpl
133  = dyn_cast<ObjCCategoryImplDecl>(DC))
134  CurrentClass = CatImpl->getClassInterface();
135  }
136 
137  if (CurrentClass) {
138  Diag(NewMethod->getLocation(),
139  diag::warn_related_result_type_compatibility_class)
140  << Context.getObjCInterfaceType(CurrentClass)
141  << ResultType
142  << ResultTypeRange;
143  } else {
144  Diag(NewMethod->getLocation(),
145  diag::warn_related_result_type_compatibility_protocol)
146  << ResultType
147  << ResultTypeRange;
148  }
149 
150  if (ObjCMethodFamily Family = Overridden->getMethodFamily())
151  Diag(Overridden->getLocation(),
152  diag::note_related_result_type_family)
153  << /*overridden method*/ 0
154  << Family;
155  else
156  Diag(Overridden->getLocation(),
157  diag::note_related_result_type_overridden);
158  }
159 
160  if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
161  Overridden->hasAttr<NSReturnsRetainedAttr>())) {
162  Diag(NewMethod->getLocation(),
163  getLangOpts().ObjCAutoRefCount
164  ? diag::err_nsreturns_retained_attribute_mismatch
165  : diag::warn_nsreturns_retained_attribute_mismatch)
166  << 1;
167  Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
168  }
169  if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
170  Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
171  Diag(NewMethod->getLocation(),
172  getLangOpts().ObjCAutoRefCount
173  ? diag::err_nsreturns_retained_attribute_mismatch
174  : diag::warn_nsreturns_retained_attribute_mismatch)
175  << 0;
176  Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
177  }
178 
180  oe = Overridden->param_end();
181  for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
182  ne = NewMethod->param_end();
183  ni != ne && oi != oe; ++ni, ++oi) {
184  const ParmVarDecl *oldDecl = (*oi);
185  ParmVarDecl *newDecl = (*ni);
186  if (newDecl->hasAttr<NSConsumedAttr>() !=
187  oldDecl->hasAttr<NSConsumedAttr>()) {
188  Diag(newDecl->getLocation(),
189  getLangOpts().ObjCAutoRefCount
190  ? diag::err_nsconsumed_attribute_mismatch
191  : diag::warn_nsconsumed_attribute_mismatch);
192  Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
193  }
194 
195  // A parameter of the overriding method should be annotated with noescape
196  // if the corresponding parameter of the overridden method is annotated.
197  if (oldDecl->hasAttr<NoEscapeAttr>() && !newDecl->hasAttr<NoEscapeAttr>()) {
198  Diag(newDecl->getLocation(),
199  diag::warn_overriding_method_missing_noescape);
200  Diag(oldDecl->getLocation(), diag::note_overridden_marked_noescape);
201  }
202  }
203 }
204 
205 /// \brief Check a method declaration for compatibility with the Objective-C
206 /// ARC conventions.
208  ObjCMethodFamily family = method->getMethodFamily();
209  switch (family) {
210  case OMF_None:
211  case OMF_finalize:
212  case OMF_retain:
213  case OMF_release:
214  case OMF_autorelease:
215  case OMF_retainCount:
216  case OMF_self:
217  case OMF_initialize:
218  case OMF_performSelector:
219  return false;
220 
221  case OMF_dealloc:
222  if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
223  SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
224  if (ResultTypeRange.isInvalid())
225  Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
226  << method->getReturnType()
227  << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
228  else
229  Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
230  << method->getReturnType()
231  << FixItHint::CreateReplacement(ResultTypeRange, "void");
232  return true;
233  }
234  return false;
235 
236  case OMF_init:
237  // If the method doesn't obey the init rules, don't bother annotating it.
238  if (checkInitMethod(method, QualType()))
239  return true;
240 
241  method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
242 
243  // Don't add a second copy of this attribute, but otherwise don't
244  // let it be suppressed.
245  if (method->hasAttr<NSReturnsRetainedAttr>())
246  return false;
247  break;
248 
249  case OMF_alloc:
250  case OMF_copy:
251  case OMF_mutableCopy:
252  case OMF_new:
253  if (method->hasAttr<NSReturnsRetainedAttr>() ||
254  method->hasAttr<NSReturnsNotRetainedAttr>() ||
255  method->hasAttr<NSReturnsAutoreleasedAttr>())
256  return false;
257  break;
258  }
259 
260  method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
261  return false;
262 }
263 
265  SourceLocation ImplLoc) {
266  if (!ND)
267  return;
268  bool IsCategory = false;
269  AvailabilityResult Availability = ND->getAvailability();
270  if (Availability != AR_Deprecated) {
271  if (isa<ObjCMethodDecl>(ND)) {
272  if (Availability != AR_Unavailable)
273  return;
274  // Warn about implementing unavailable methods.
275  S.Diag(ImplLoc, diag::warn_unavailable_def);
276  S.Diag(ND->getLocation(), diag::note_method_declared_at)
277  << ND->getDeclName();
278  return;
279  }
280  if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
281  if (!CD->getClassInterface()->isDeprecated())
282  return;
283  ND = CD->getClassInterface();
284  IsCategory = true;
285  } else
286  return;
287  }
288  S.Diag(ImplLoc, diag::warn_deprecated_def)
289  << (isa<ObjCMethodDecl>(ND)
290  ? /*Method*/ 0
291  : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
292  : /*Class*/ 1);
293  if (isa<ObjCMethodDecl>(ND))
294  S.Diag(ND->getLocation(), diag::note_method_declared_at)
295  << ND->getDeclName();
296  else
297  S.Diag(ND->getLocation(), diag::note_previous_decl)
298  << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
299 }
300 
301 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
302 /// pool.
304  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
305 
306  // If we don't have a valid method decl, simply return.
307  if (!MDecl)
308  return;
309  if (MDecl->isInstanceMethod())
310  AddInstanceMethodToGlobalPool(MDecl, true);
311  else
312  AddFactoryMethodToGlobalPool(MDecl, true);
313 }
314 
315 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
316 /// has explicit ownership attribute; false otherwise.
317 static bool
319  QualType T = Param->getType();
320 
321  if (const PointerType *PT = T->getAs<PointerType>()) {
322  T = PT->getPointeeType();
323  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
324  T = RT->getPointeeType();
325  } else {
326  return true;
327  }
328 
329  // If we have a lifetime qualifier, but it's local, we must have
330  // inferred it. So, it is implicit.
331  return !T.getLocalQualifiers().hasObjCLifetime();
332 }
333 
334 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
335 /// and user declared, in the method definition's AST.
337  assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
338  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
339 
340  // If we don't have a valid method decl, simply return.
341  if (!MDecl)
342  return;
343 
344  // Allow all of Sema to see that we are entering a method definition.
345  PushDeclContext(FnBodyScope, MDecl);
347 
348  // Create Decl objects for each parameter, entrring them in the scope for
349  // binding to their use.
350 
351  // Insert the invisible arguments, self and _cmd!
353 
354  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
355  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
356 
357  // The ObjC parser requires parameter names so there's no need to check.
359  /*CheckParameterNames=*/false);
360 
361  // Introduce all of the other parameters into this scope.
362  for (auto *Param : MDecl->parameters()) {
363  if (!Param->isInvalidDecl() &&
364  getLangOpts().ObjCAutoRefCount &&
365  !HasExplicitOwnershipAttr(*this, Param))
366  Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
367  Param->getType();
368 
369  if (Param->getIdentifier())
370  PushOnScopeChains(Param, FnBodyScope);
371  }
372 
373  // In ARC, disallow definition of retain/release/autorelease/retainCount
374  if (getLangOpts().ObjCAutoRefCount) {
375  switch (MDecl->getMethodFamily()) {
376  case OMF_retain:
377  case OMF_retainCount:
378  case OMF_release:
379  case OMF_autorelease:
380  Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
381  << 0 << MDecl->getSelector();
382  break;
383 
384  case OMF_None:
385  case OMF_dealloc:
386  case OMF_finalize:
387  case OMF_alloc:
388  case OMF_init:
389  case OMF_mutableCopy:
390  case OMF_copy:
391  case OMF_new:
392  case OMF_self:
393  case OMF_initialize:
394  case OMF_performSelector:
395  break;
396  }
397  }
398 
399  // Warn on deprecated methods under -Wdeprecated-implementations,
400  // and prepare for warning on missing super calls.
401  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
402  ObjCMethodDecl *IMD =
403  IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
404 
405  if (IMD) {
406  ObjCImplDecl *ImplDeclOfMethodDef =
407  dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
408  ObjCContainerDecl *ContDeclOfMethodDecl =
409  dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
410  ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
411  if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
412  ImplDeclOfMethodDecl = OID->getImplementation();
413  else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
414  if (CD->IsClassExtension()) {
415  if (ObjCInterfaceDecl *OID = CD->getClassInterface())
416  ImplDeclOfMethodDecl = OID->getImplementation();
417  } else
418  ImplDeclOfMethodDecl = CD->getImplementation();
419  }
420  // No need to issue deprecated warning if deprecated mehod in class/category
421  // is being implemented in its own implementation (no overriding is involved).
422  if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
423  DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
424  }
425 
426  if (MDecl->getMethodFamily() == OMF_init) {
430  IC->getSuperClass() != nullptr;
431  } else if (IC->hasDesignatedInitializers()) {
434  }
435  }
436 
437  // If this is "dealloc" or "finalize", set some bit here.
438  // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
439  // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
440  // Only do this if the current class actually has a superclass.
441  if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
442  ObjCMethodFamily Family = MDecl->getMethodFamily();
443  if (Family == OMF_dealloc) {
444  if (!(getLangOpts().ObjCAutoRefCount ||
445  getLangOpts().getGC() == LangOptions::GCOnly))
447 
448  } else if (Family == OMF_finalize) {
449  if (Context.getLangOpts().getGC() != LangOptions::NonGC)
451 
452  } else {
453  const ObjCMethodDecl *SuperMethod =
454  SuperClass->lookupMethod(MDecl->getSelector(),
455  MDecl->isInstanceMethod());
457  (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
458  }
459  }
460  }
461 }
462 
463 namespace {
464 
465 // Callback to only accept typo corrections that are Objective-C classes.
466 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
467 // function will reject corrections to that class.
468 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
469  public:
470  ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
471  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
472  : CurrentIDecl(IDecl) {}
473 
474  bool ValidateCandidate(const TypoCorrection &candidate) override {
476  return ID && !declaresSameEntity(ID, CurrentIDecl);
477  }
478 
479  private:
480  ObjCInterfaceDecl *CurrentIDecl;
481 };
482 
483 } // end anonymous namespace
484 
485 static void diagnoseUseOfProtocols(Sema &TheSema,
486  ObjCContainerDecl *CD,
487  ObjCProtocolDecl *const *ProtoRefs,
488  unsigned NumProtoRefs,
489  const SourceLocation *ProtoLocs) {
490  assert(ProtoRefs);
491  // Diagnose availability in the context of the ObjC container.
492  Sema::ContextRAII SavedContext(TheSema, CD);
493  for (unsigned i = 0; i < NumProtoRefs; ++i) {
494  (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
495  /*UnknownObjCClass=*/nullptr,
496  /*ObjCPropertyAccess=*/false,
497  /*AvoidPartialAvailabilityChecks=*/true);
498  }
499 }
500 
501 void Sema::
503  SourceLocation AtInterfaceLoc,
504  ObjCInterfaceDecl *IDecl,
505  IdentifierInfo *ClassName,
506  SourceLocation ClassLoc,
507  IdentifierInfo *SuperName,
508  SourceLocation SuperLoc,
509  ArrayRef<ParsedType> SuperTypeArgs,
510  SourceRange SuperTypeArgsRange) {
511  // Check if a different kind of symbol declared in this scope.
512  NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
514 
515  if (!PrevDecl) {
516  // Try to correct for a typo in the superclass name without correcting
517  // to the class we're defining.
518  if (TypoCorrection Corrected = CorrectTypo(
519  DeclarationNameInfo(SuperName, SuperLoc),
521  nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
523  diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
524  << SuperName << ClassName);
525  PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
526  }
527  }
528 
529  if (declaresSameEntity(PrevDecl, IDecl)) {
530  Diag(SuperLoc, diag::err_recursive_superclass)
531  << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
532  IDecl->setEndOfDefinitionLoc(ClassLoc);
533  } else {
534  ObjCInterfaceDecl *SuperClassDecl =
535  dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
536  QualType SuperClassType;
537 
538  // Diagnose classes that inherit from deprecated classes.
539  if (SuperClassDecl) {
540  (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
541  SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
542  }
543 
544  if (PrevDecl && !SuperClassDecl) {
545  // The previous declaration was not a class decl. Check if we have a
546  // typedef. If we do, get the underlying class type.
547  if (const TypedefNameDecl *TDecl =
548  dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
549  QualType T = TDecl->getUnderlyingType();
550  if (T->isObjCObjectType()) {
551  if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
552  SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
553  SuperClassType = Context.getTypeDeclType(TDecl);
554 
555  // This handles the following case:
556  // @interface NewI @end
557  // typedef NewI DeprI __attribute__((deprecated("blah")))
558  // @interface SI : DeprI /* warn here */ @end
559  (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
560  }
561  }
562  }
563 
564  // This handles the following case:
565  //
566  // typedef int SuperClass;
567  // @interface MyClass : SuperClass {} @end
568  //
569  if (!SuperClassDecl) {
570  Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
571  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
572  }
573  }
574 
575  if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
576  if (!SuperClassDecl)
577  Diag(SuperLoc, diag::err_undef_superclass)
578  << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
579  else if (RequireCompleteType(SuperLoc,
580  SuperClassType,
581  diag::err_forward_superclass,
582  SuperClassDecl->getDeclName(),
583  ClassName,
584  SourceRange(AtInterfaceLoc, ClassLoc))) {
585  SuperClassDecl = nullptr;
586  SuperClassType = QualType();
587  }
588  }
589 
590  if (SuperClassType.isNull()) {
591  assert(!SuperClassDecl && "Failed to set SuperClassType?");
592  return;
593  }
594 
595  // Handle type arguments on the superclass.
596  TypeSourceInfo *SuperClassTInfo = nullptr;
597  if (!SuperTypeArgs.empty()) {
599  S,
600  SuperLoc,
601  CreateParsedType(SuperClassType,
602  nullptr),
603  SuperTypeArgsRange.getBegin(),
604  SuperTypeArgs,
605  SuperTypeArgsRange.getEnd(),
606  SourceLocation(),
607  { },
608  { },
609  SourceLocation());
610  if (!fullSuperClassType.isUsable())
611  return;
612 
613  SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
614  &SuperClassTInfo);
615  }
616 
617  if (!SuperClassTInfo) {
618  SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
619  SuperLoc);
620  }
621 
622  IDecl->setSuperClass(SuperClassTInfo);
623  IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getLocEnd());
624  }
625 }
626 
628  ObjCTypeParamVariance variance,
629  SourceLocation varianceLoc,
630  unsigned index,
631  IdentifierInfo *paramName,
632  SourceLocation paramLoc,
633  SourceLocation colonLoc,
634  ParsedType parsedTypeBound) {
635  // If there was an explicitly-provided type bound, check it.
636  TypeSourceInfo *typeBoundInfo = nullptr;
637  if (parsedTypeBound) {
638  // The type bound can be any Objective-C pointer type.
639  QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
640  if (typeBound->isObjCObjectPointerType()) {
641  // okay
642  } else if (typeBound->isObjCObjectType()) {
643  // The user forgot the * on an Objective-C pointer type, e.g.,
644  // "T : NSView".
646  typeBoundInfo->getTypeLoc().getEndLoc());
647  Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
648  diag::err_objc_type_param_bound_missing_pointer)
649  << typeBound << paramName
650  << FixItHint::CreateInsertion(starLoc, " *");
651 
652  // Create a new type location builder so we can update the type
653  // location information we have.
654  TypeLocBuilder builder;
655  builder.pushFullCopy(typeBoundInfo->getTypeLoc());
656 
657  // Create the Objective-C pointer type.
658  typeBound = Context.getObjCObjectPointerType(typeBound);
660  = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
661  newT.setStarLoc(starLoc);
662 
663  // Form the new type source information.
664  typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
665  } else {
666  // Not a valid type bound.
667  Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
668  diag::err_objc_type_param_bound_nonobject)
669  << typeBound << paramName;
670 
671  // Forget the bound; we'll default to id later.
672  typeBoundInfo = nullptr;
673  }
674 
675  // Type bounds cannot have qualifiers (even indirectly) or explicit
676  // nullability.
677  if (typeBoundInfo) {
678  QualType typeBound = typeBoundInfo->getType();
679  TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
680  if (qual || typeBound.hasQualifiers()) {
681  bool diagnosed = false;
682  SourceRange rangeToRemove;
683  if (qual) {
684  if (auto attr = qual.getAs<AttributedTypeLoc>()) {
685  rangeToRemove = attr.getLocalSourceRange();
686  if (attr.getTypePtr()->getImmediateNullability()) {
687  Diag(attr.getLocStart(),
688  diag::err_objc_type_param_bound_explicit_nullability)
689  << paramName << typeBound
690  << FixItHint::CreateRemoval(rangeToRemove);
691  diagnosed = true;
692  }
693  }
694  }
695 
696  if (!diagnosed) {
697  Diag(qual ? qual.getLocStart()
698  : typeBoundInfo->getTypeLoc().getLocStart(),
699  diag::err_objc_type_param_bound_qualified)
700  << paramName << typeBound << typeBound.getQualifiers().getAsString()
701  << FixItHint::CreateRemoval(rangeToRemove);
702  }
703 
704  // If the type bound has qualifiers other than CVR, we need to strip
705  // them or we'll probably assert later when trying to apply new
706  // qualifiers.
707  Qualifiers quals = typeBound.getQualifiers();
708  quals.removeCVRQualifiers();
709  if (!quals.empty()) {
710  typeBoundInfo =
712  }
713  }
714  }
715  }
716 
717  // If there was no explicit type bound (or we removed it due to an error),
718  // use 'id' instead.
719  if (!typeBoundInfo) {
720  colonLoc = SourceLocation();
722  }
723 
724  // Create the type parameter.
725  return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
726  index, paramLoc, paramName, colonLoc,
727  typeBoundInfo);
728 }
729 
731  SourceLocation lAngleLoc,
732  ArrayRef<Decl *> typeParamsIn,
733  SourceLocation rAngleLoc) {
734  // We know that the array only contains Objective-C type parameters.
736  typeParams(
737  reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
738  typeParamsIn.size());
739 
740  // Diagnose redeclarations of type parameters.
741  // We do this now because Objective-C type parameters aren't pushed into
742  // scope until later (after the instance variable block), but we want the
743  // diagnostics to occur right after we parse the type parameter list.
744  llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
745  for (auto typeParam : typeParams) {
746  auto known = knownParams.find(typeParam->getIdentifier());
747  if (known != knownParams.end()) {
748  Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
749  << typeParam->getIdentifier()
750  << SourceRange(known->second->getLocation());
751 
752  typeParam->setInvalidDecl();
753  } else {
754  knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
755 
756  // Push the type parameter into scope.
757  PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
758  }
759  }
760 
761  // Create the parameter list.
762  return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
763 }
764 
766  for (auto typeParam : *typeParamList) {
767  if (!typeParam->isInvalidDecl()) {
768  S->RemoveDecl(typeParam);
769  IdResolver.RemoveDecl(typeParam);
770  }
771  }
772 }
773 
774 namespace {
775  /// The context in which an Objective-C type parameter list occurs, for use
776  /// in diagnostics.
777  enum class TypeParamListContext {
778  ForwardDeclaration,
779  Definition,
780  Category,
781  Extension
782  };
783 } // end anonymous namespace
784 
785 /// Check consistency between two Objective-C type parameter lists, e.g.,
786 /// between a category/extension and an \@interface or between an \@class and an
787 /// \@interface.
789  ObjCTypeParamList *prevTypeParams,
790  ObjCTypeParamList *newTypeParams,
791  TypeParamListContext newContext) {
792  // If the sizes don't match, complain about that.
793  if (prevTypeParams->size() != newTypeParams->size()) {
794  SourceLocation diagLoc;
795  if (newTypeParams->size() > prevTypeParams->size()) {
796  diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
797  } else {
798  diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getLocEnd());
799  }
800 
801  S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
802  << static_cast<unsigned>(newContext)
803  << (newTypeParams->size() > prevTypeParams->size())
804  << prevTypeParams->size()
805  << newTypeParams->size();
806 
807  return true;
808  }
809 
810  // Match up the type parameters.
811  for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
812  ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
813  ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
814 
815  // Check for consistency of the variance.
816  if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
817  if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
818  newContext != TypeParamListContext::Definition) {
819  // When the new type parameter is invariant and is not part
820  // of the definition, just propagate the variance.
821  newTypeParam->setVariance(prevTypeParam->getVariance());
822  } else if (prevTypeParam->getVariance()
824  !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
825  cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
826  ->getDefinition() == prevTypeParam->getDeclContext())) {
827  // When the old parameter is invariant and was not part of the
828  // definition, just ignore the difference because it doesn't
829  // matter.
830  } else {
831  {
832  // Diagnose the conflict and update the second declaration.
833  SourceLocation diagLoc = newTypeParam->getVarianceLoc();
834  if (diagLoc.isInvalid())
835  diagLoc = newTypeParam->getLocStart();
836 
837  auto diag = S.Diag(diagLoc,
838  diag::err_objc_type_param_variance_conflict)
839  << static_cast<unsigned>(newTypeParam->getVariance())
840  << newTypeParam->getDeclName()
841  << static_cast<unsigned>(prevTypeParam->getVariance())
842  << prevTypeParam->getDeclName();
843  switch (prevTypeParam->getVariance()) {
845  diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
846  break;
847 
850  StringRef newVarianceStr
851  = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
852  ? "__covariant"
853  : "__contravariant";
854  if (newTypeParam->getVariance()
856  diag << FixItHint::CreateInsertion(newTypeParam->getLocStart(),
857  (newVarianceStr + " ").str());
858  } else {
859  diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
860  newVarianceStr);
861  }
862  }
863  }
864  }
865 
866  S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
867  << prevTypeParam->getDeclName();
868 
869  // Override the variance.
870  newTypeParam->setVariance(prevTypeParam->getVariance());
871  }
872  }
873 
874  // If the bound types match, there's nothing to do.
875  if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
876  newTypeParam->getUnderlyingType()))
877  continue;
878 
879  // If the new type parameter's bound was explicit, complain about it being
880  // different from the original.
881  if (newTypeParam->hasExplicitBound()) {
882  SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
884  S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
885  << newTypeParam->getUnderlyingType()
886  << newTypeParam->getDeclName()
887  << prevTypeParam->hasExplicitBound()
888  << prevTypeParam->getUnderlyingType()
889  << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
890  << prevTypeParam->getDeclName()
892  newBoundRange,
893  prevTypeParam->getUnderlyingType().getAsString(
895 
896  S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
897  << prevTypeParam->getDeclName();
898 
899  // Override the new type parameter's bound type with the previous type,
900  // so that it's consistent.
901  newTypeParam->setTypeSourceInfo(
903  continue;
904  }
905 
906  // The new type parameter got the implicit bound of 'id'. That's okay for
907  // categories and extensions (overwrite it later), but not for forward
908  // declarations and @interfaces, because those must be standalone.
909  if (newContext == TypeParamListContext::ForwardDeclaration ||
910  newContext == TypeParamListContext::Definition) {
911  // Diagnose this problem for forward declarations and definitions.
912  SourceLocation insertionLoc
913  = S.getLocForEndOfToken(newTypeParam->getLocation());
914  std::string newCode
915  = " : " + prevTypeParam->getUnderlyingType().getAsString(
917  S.Diag(newTypeParam->getLocation(),
918  diag::err_objc_type_param_bound_missing)
919  << prevTypeParam->getUnderlyingType()
920  << newTypeParam->getDeclName()
921  << (newContext == TypeParamListContext::ForwardDeclaration)
922  << FixItHint::CreateInsertion(insertionLoc, newCode);
923 
924  S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
925  << prevTypeParam->getDeclName();
926  }
927 
928  // Update the new type parameter's bound to match the previous one.
929  newTypeParam->setTypeSourceInfo(
931  }
932 
933  return false;
934 }
935 
936 Decl *Sema::
938  IdentifierInfo *ClassName, SourceLocation ClassLoc,
939  ObjCTypeParamList *typeParamList,
940  IdentifierInfo *SuperName, SourceLocation SuperLoc,
941  ArrayRef<ParsedType> SuperTypeArgs,
942  SourceRange SuperTypeArgsRange,
943  Decl * const *ProtoRefs, unsigned NumProtoRefs,
944  const SourceLocation *ProtoLocs,
945  SourceLocation EndProtoLoc, AttributeList *AttrList) {
946  assert(ClassName && "Missing class identifier");
947 
948  // Check for another declaration kind with the same name.
949  NamedDecl *PrevDecl =
950  LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
952 
953  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
954  Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
955  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
956  }
957 
958  // Create a declaration to describe this @interface.
959  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
960 
961  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
962  // A previous decl with a different name is because of
963  // @compatibility_alias, for example:
964  // \code
965  // @class NewImage;
966  // @compatibility_alias OldImage NewImage;
967  // \endcode
968  // A lookup for 'OldImage' will return the 'NewImage' decl.
969  //
970  // In such a case use the real declaration name, instead of the alias one,
971  // otherwise we will break IdentifierResolver and redecls-chain invariants.
972  // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
973  // has been aliased.
974  ClassName = PrevIDecl->getIdentifier();
975  }
976 
977  // If there was a forward declaration with type parameters, check
978  // for consistency.
979  if (PrevIDecl) {
980  if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
981  if (typeParamList) {
982  // Both have type parameter lists; check for consistency.
983  if (checkTypeParamListConsistency(*this, prevTypeParamList,
984  typeParamList,
985  TypeParamListContext::Definition)) {
986  typeParamList = nullptr;
987  }
988  } else {
989  Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
990  << ClassName;
991  Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
992  << ClassName;
993 
994  // Clone the type parameter list.
995  SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
996  for (auto typeParam : *prevTypeParamList) {
997  clonedTypeParams.push_back(
999  Context,
1000  CurContext,
1001  typeParam->getVariance(),
1002  SourceLocation(),
1003  typeParam->getIndex(),
1004  SourceLocation(),
1005  typeParam->getIdentifier(),
1006  SourceLocation(),
1007  Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1008  }
1009 
1010  typeParamList = ObjCTypeParamList::create(Context,
1011  SourceLocation(),
1012  clonedTypeParams,
1013  SourceLocation());
1014  }
1015  }
1016  }
1017 
1018  ObjCInterfaceDecl *IDecl
1019  = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1020  typeParamList, PrevIDecl, ClassLoc);
1021  if (PrevIDecl) {
1022  // Class already seen. Was it a definition?
1023  if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1024  Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1025  << PrevIDecl->getDeclName();
1026  Diag(Def->getLocation(), diag::note_previous_definition);
1027  IDecl->setInvalidDecl();
1028  }
1029  }
1030 
1031  if (AttrList)
1032  ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1033  AddPragmaAttributes(TUScope, IDecl);
1034  PushOnScopeChains(IDecl, TUScope);
1035 
1036  // Start the definition of this class. If we're in a redefinition case, there
1037  // may already be a definition, so we'll end up adding to it.
1038  if (!IDecl->hasDefinition())
1039  IDecl->startDefinition();
1040 
1041  if (SuperName) {
1042  // Diagnose availability in the context of the @interface.
1043  ContextRAII SavedContext(*this, IDecl);
1044 
1045  ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1046  ClassName, ClassLoc,
1047  SuperName, SuperLoc, SuperTypeArgs,
1048  SuperTypeArgsRange);
1049  } else { // we have a root class.
1050  IDecl->setEndOfDefinitionLoc(ClassLoc);
1051  }
1052 
1053  // Check then save referenced protocols.
1054  if (NumProtoRefs) {
1055  diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1056  NumProtoRefs, ProtoLocs);
1057  IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1058  ProtoLocs, Context);
1059  IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1060  }
1061 
1062  CheckObjCDeclScope(IDecl);
1063  return ActOnObjCContainerStartDefinition(IDecl);
1064 }
1065 
1066 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
1067 /// typedef'ed use for a qualified super class and adds them to the list
1068 /// of the protocols.
1070  SmallVectorImpl<SourceLocation> &ProtocolLocs,
1071  IdentifierInfo *SuperName,
1072  SourceLocation SuperLoc) {
1073  if (!SuperName)
1074  return;
1075  NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1077  if (!IDecl)
1078  return;
1079 
1080  if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1081  QualType T = TDecl->getUnderlyingType();
1082  if (T->isObjCObjectType())
1083  if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1084  ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1085  // FIXME: Consider whether this should be an invalid loc since the loc
1086  // is not actually pointing to a protocol name reference but to the
1087  // typedef reference. Note that the base class name loc is also pointing
1088  // at the typedef.
1089  ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1090  }
1091  }
1092 }
1093 
1094 /// ActOnCompatibilityAlias - this action is called after complete parsing of
1095 /// a \@compatibility_alias declaration. It sets up the alias relationships.
1097  IdentifierInfo *AliasName,
1098  SourceLocation AliasLocation,
1099  IdentifierInfo *ClassName,
1100  SourceLocation ClassLocation) {
1101  // Look for previous declaration of alias name
1102  NamedDecl *ADecl =
1103  LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1105  if (ADecl) {
1106  Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1107  Diag(ADecl->getLocation(), diag::note_previous_declaration);
1108  return nullptr;
1109  }
1110  // Check for class declaration
1111  NamedDecl *CDeclU =
1112  LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1114  if (const TypedefNameDecl *TDecl =
1115  dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1116  QualType T = TDecl->getUnderlyingType();
1117  if (T->isObjCObjectType()) {
1118  if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1119  ClassName = IDecl->getIdentifier();
1120  CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1123  }
1124  }
1125  }
1126  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1127  if (!CDecl) {
1128  Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1129  if (CDeclU)
1130  Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1131  return nullptr;
1132  }
1133 
1134  // Everything checked out, instantiate a new alias declaration AST.
1135  ObjCCompatibleAliasDecl *AliasDecl =
1136  ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1137 
1138  if (!CheckObjCDeclScope(AliasDecl))
1139  PushOnScopeChains(AliasDecl, TUScope);
1140 
1141  return AliasDecl;
1142 }
1143 
1145  IdentifierInfo *PName,
1146  SourceLocation &Ploc, SourceLocation PrevLoc,
1147  const ObjCList<ObjCProtocolDecl> &PList) {
1148 
1149  bool res = false;
1151  E = PList.end(); I != E; ++I) {
1152  if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1153  Ploc)) {
1154  if (PDecl->getIdentifier() == PName) {
1155  Diag(Ploc, diag::err_protocol_has_circular_dependency);
1156  Diag(PrevLoc, diag::note_previous_definition);
1157  res = true;
1158  }
1159 
1160  if (!PDecl->hasDefinition())
1161  continue;
1162 
1164  PDecl->getLocation(), PDecl->getReferencedProtocols()))
1165  res = true;
1166  }
1167  }
1168  return res;
1169 }
1170 
1171 Decl *
1173  IdentifierInfo *ProtocolName,
1174  SourceLocation ProtocolLoc,
1175  Decl * const *ProtoRefs,
1176  unsigned NumProtoRefs,
1177  const SourceLocation *ProtoLocs,
1178  SourceLocation EndProtoLoc,
1179  AttributeList *AttrList) {
1180  bool err = false;
1181  // FIXME: Deal with AttrList.
1182  assert(ProtocolName && "Missing protocol identifier");
1183  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1185  ObjCProtocolDecl *PDecl = nullptr;
1186  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1187  // If we already have a definition, complain.
1188  Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1189  Diag(Def->getLocation(), diag::note_previous_definition);
1190 
1191  // Create a new protocol that is completely distinct from previous
1192  // declarations, and do not make this protocol available for name lookup.
1193  // That way, we'll end up completely ignoring the duplicate.
1194  // FIXME: Can we turn this into an error?
1195  PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1196  ProtocolLoc, AtProtoInterfaceLoc,
1197  /*PrevDecl=*/nullptr);
1198  PDecl->startDefinition();
1199  } else {
1200  if (PrevDecl) {
1201  // Check for circular dependencies among protocol declarations. This can
1202  // only happen if this protocol was forward-declared.
1204  PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1206  ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1207  }
1208 
1209  // Create the new declaration.
1210  PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1211  ProtocolLoc, AtProtoInterfaceLoc,
1212  /*PrevDecl=*/PrevDecl);
1213 
1214  PushOnScopeChains(PDecl, TUScope);
1215  PDecl->startDefinition();
1216  }
1217 
1218  if (AttrList)
1219  ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1220  AddPragmaAttributes(TUScope, PDecl);
1221 
1222  // Merge attributes from previous declarations.
1223  if (PrevDecl)
1224  mergeDeclAttributes(PDecl, PrevDecl);
1225 
1226  if (!err && NumProtoRefs ) {
1227  /// Check then save referenced protocols.
1228  diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1229  NumProtoRefs, ProtoLocs);
1230  PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1231  ProtoLocs, Context);
1232  }
1233 
1234  CheckObjCDeclScope(PDecl);
1235  return ActOnObjCContainerStartDefinition(PDecl);
1236 }
1237 
1239  ObjCProtocolDecl *&UndefinedProtocol) {
1240  if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1241  UndefinedProtocol = PDecl;
1242  return true;
1243  }
1244 
1245  for (auto *PI : PDecl->protocols())
1246  if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1247  UndefinedProtocol = PI;
1248  return true;
1249  }
1250  return false;
1251 }
1252 
1253 /// FindProtocolDeclaration - This routine looks up protocols and
1254 /// issues an error if they are not declared. It returns list of
1255 /// protocol declarations in its 'Protocols' argument.
1256 void
1257 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1258  ArrayRef<IdentifierLocPair> ProtocolId,
1259  SmallVectorImpl<Decl *> &Protocols) {
1260  for (const IdentifierLocPair &Pair : ProtocolId) {
1261  ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1262  if (!PDecl) {
1263  TypoCorrection Corrected = CorrectTypo(
1264  DeclarationNameInfo(Pair.first, Pair.second),
1265  LookupObjCProtocolName, TUScope, nullptr,
1266  llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
1268  if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1269  diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1270  << Pair.first);
1271  }
1272 
1273  if (!PDecl) {
1274  Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1275  continue;
1276  }
1277  // If this is a forward protocol declaration, get its definition.
1278  if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1279  PDecl = PDecl->getDefinition();
1280 
1281  // For an objc container, delay protocol reference checking until after we
1282  // can set the objc decl as the availability context, otherwise check now.
1283  if (!ForObjCContainer) {
1284  (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1285  }
1286 
1287  // If this is a forward declaration and we are supposed to warn in this
1288  // case, do it.
1289  // FIXME: Recover nicely in the hidden case.
1290  ObjCProtocolDecl *UndefinedProtocol;
1291 
1292  if (WarnOnDeclarations &&
1293  NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1294  Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1295  Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1296  << UndefinedProtocol;
1297  }
1298  Protocols.push_back(PDecl);
1299  }
1300 }
1301 
1302 namespace {
1303 // Callback to only accept typo corrections that are either
1304 // Objective-C protocols or valid Objective-C type arguments.
1305 class ObjCTypeArgOrProtocolValidatorCCC : public CorrectionCandidateCallback {
1307  Sema::LookupNameKind LookupKind;
1308  public:
1309  ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1310  Sema::LookupNameKind lookupKind)
1311  : Context(context), LookupKind(lookupKind) { }
1312 
1313  bool ValidateCandidate(const TypoCorrection &candidate) override {
1314  // If we're allowed to find protocols and we have a protocol, accept it.
1315  if (LookupKind != Sema::LookupOrdinaryName) {
1316  if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1317  return true;
1318  }
1319 
1320  // If we're allowed to find type names and we have one, accept it.
1321  if (LookupKind != Sema::LookupObjCProtocolName) {
1322  // If we have a type declaration, we might accept this result.
1323  if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1324  // If we found a tag declaration outside of C++, skip it. This
1325  // can happy because we look for any name when there is no
1326  // bias to protocol or type names.
1327  if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1328  return false;
1329 
1330  // Make sure the type is something we would accept as a type
1331  // argument.
1332  auto type = Context.getTypeDeclType(typeDecl);
1333  if (type->isObjCObjectPointerType() ||
1334  type->isBlockPointerType() ||
1335  type->isDependentType() ||
1336  type->isObjCObjectType())
1337  return true;
1338 
1339  return false;
1340  }
1341 
1342  // If we have an Objective-C class type, accept it; there will
1343  // be another fix to add the '*'.
1344  if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1345  return true;
1346 
1347  return false;
1348  }
1349 
1350  return false;
1351  }
1352 };
1353 } // end anonymous namespace
1354 
1356  SourceLocation ProtocolLoc,
1357  IdentifierInfo *TypeArgId,
1358  SourceLocation TypeArgLoc,
1359  bool SelectProtocolFirst) {
1360  Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1361  << SelectProtocolFirst << TypeArgId << ProtocolId
1362  << SourceRange(ProtocolLoc);
1363 }
1364 
1366  Scope *S,
1367  ParsedType baseType,
1368  SourceLocation lAngleLoc,
1369  ArrayRef<IdentifierInfo *> identifiers,
1370  ArrayRef<SourceLocation> identifierLocs,
1371  SourceLocation rAngleLoc,
1372  SourceLocation &typeArgsLAngleLoc,
1373  SmallVectorImpl<ParsedType> &typeArgs,
1374  SourceLocation &typeArgsRAngleLoc,
1375  SourceLocation &protocolLAngleLoc,
1376  SmallVectorImpl<Decl *> &protocols,
1377  SourceLocation &protocolRAngleLoc,
1378  bool warnOnIncompleteProtocols) {
1379  // Local function that updates the declaration specifiers with
1380  // protocol information.
1381  unsigned numProtocolsResolved = 0;
1382  auto resolvedAsProtocols = [&] {
1383  assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1384 
1385  // Determine whether the base type is a parameterized class, in
1386  // which case we want to warn about typos such as
1387  // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1388  ObjCInterfaceDecl *baseClass = nullptr;
1389  QualType base = GetTypeFromParser(baseType, nullptr);
1390  bool allAreTypeNames = false;
1391  SourceLocation firstClassNameLoc;
1392  if (!base.isNull()) {
1393  if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1394  baseClass = objcObjectType->getInterface();
1395  if (baseClass) {
1396  if (auto typeParams = baseClass->getTypeParamList()) {
1397  if (typeParams->size() == numProtocolsResolved) {
1398  // Note that we should be looking for type names, too.
1399  allAreTypeNames = true;
1400  }
1401  }
1402  }
1403  }
1404  }
1405 
1406  for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1407  ObjCProtocolDecl *&proto
1408  = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1409  // For an objc container, delay protocol reference checking until after we
1410  // can set the objc decl as the availability context, otherwise check now.
1411  if (!warnOnIncompleteProtocols) {
1412  (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1413  }
1414 
1415  // If this is a forward protocol declaration, get its definition.
1416  if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1417  proto = proto->getDefinition();
1418 
1419  // If this is a forward declaration and we are supposed to warn in this
1420  // case, do it.
1421  // FIXME: Recover nicely in the hidden case.
1422  ObjCProtocolDecl *forwardDecl = nullptr;
1423  if (warnOnIncompleteProtocols &&
1424  NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1425  Diag(identifierLocs[i], diag::warn_undef_protocolref)
1426  << proto->getDeclName();
1427  Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1428  << forwardDecl;
1429  }
1430 
1431  // If everything this far has been a type name (and we care
1432  // about such things), check whether this name refers to a type
1433  // as well.
1434  if (allAreTypeNames) {
1435  if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1436  LookupOrdinaryName)) {
1437  if (isa<ObjCInterfaceDecl>(decl)) {
1438  if (firstClassNameLoc.isInvalid())
1439  firstClassNameLoc = identifierLocs[i];
1440  } else if (!isa<TypeDecl>(decl)) {
1441  // Not a type.
1442  allAreTypeNames = false;
1443  }
1444  } else {
1445  allAreTypeNames = false;
1446  }
1447  }
1448  }
1449 
1450  // All of the protocols listed also have type names, and at least
1451  // one is an Objective-C class name. Check whether all of the
1452  // protocol conformances are declared by the base class itself, in
1453  // which case we warn.
1454  if (allAreTypeNames && firstClassNameLoc.isValid()) {
1455  llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1456  Context.CollectInheritedProtocols(baseClass, knownProtocols);
1457  bool allProtocolsDeclared = true;
1458  for (auto proto : protocols) {
1459  if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1460  allProtocolsDeclared = false;
1461  break;
1462  }
1463  }
1464 
1465  if (allProtocolsDeclared) {
1466  Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1467  << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1468  << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1469  " *");
1470  }
1471  }
1472 
1473  protocolLAngleLoc = lAngleLoc;
1474  protocolRAngleLoc = rAngleLoc;
1475  assert(protocols.size() == identifierLocs.size());
1476  };
1477 
1478  // Attempt to resolve all of the identifiers as protocols.
1479  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1480  ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1481  protocols.push_back(proto);
1482  if (proto)
1483  ++numProtocolsResolved;
1484  }
1485 
1486  // If all of the names were protocols, these were protocol qualifiers.
1487  if (numProtocolsResolved == identifiers.size())
1488  return resolvedAsProtocols();
1489 
1490  // Attempt to resolve all of the identifiers as type names or
1491  // Objective-C class names. The latter is technically ill-formed,
1492  // but is probably something like \c NSArray<NSView *> missing the
1493  // \c*.
1494  typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1496  unsigned numTypeDeclsResolved = 0;
1497  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1498  NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1500  if (!decl) {
1501  typeDecls.push_back(TypeOrClassDecl());
1502  continue;
1503  }
1504 
1505  if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1506  typeDecls.push_back(typeDecl);
1507  ++numTypeDeclsResolved;
1508  continue;
1509  }
1510 
1511  if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1512  typeDecls.push_back(objcClass);
1513  ++numTypeDeclsResolved;
1514  continue;
1515  }
1516 
1517  typeDecls.push_back(TypeOrClassDecl());
1518  }
1519 
1520  AttributeFactory attrFactory;
1521 
1522  // Local function that forms a reference to the given type or
1523  // Objective-C class declaration.
1524  auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1525  -> TypeResult {
1526  // Form declaration specifiers. They simply refer to the type.
1527  DeclSpec DS(attrFactory);
1528  const char* prevSpec; // unused
1529  unsigned diagID; // unused
1530  QualType type;
1531  if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1532  type = Context.getTypeDeclType(actualTypeDecl);
1533  else
1534  type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1535  TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1536  ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1537  DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1538  parsedType, Context.getPrintingPolicy());
1539  // Use the identifier location for the type source range.
1540  DS.SetRangeStart(loc);
1541  DS.SetRangeEnd(loc);
1542 
1543  // Form the declarator.
1545 
1546  // If we have a typedef of an Objective-C class type that is missing a '*',
1547  // add the '*'.
1548  if (type->getAs<ObjCInterfaceType>()) {
1549  SourceLocation starLoc = getLocForEndOfToken(loc);
1550  ParsedAttributes parsedAttrs(attrFactory);
1551  D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
1552  SourceLocation(),
1553  SourceLocation(),
1554  SourceLocation(),
1555  SourceLocation(),
1556  SourceLocation()),
1557  parsedAttrs,
1558  starLoc);
1559 
1560  // Diagnose the missing '*'.
1561  Diag(loc, diag::err_objc_type_arg_missing_star)
1562  << type
1563  << FixItHint::CreateInsertion(starLoc, " *");
1564  }
1565 
1566  // Convert this to a type.
1567  return ActOnTypeName(S, D);
1568  };
1569 
1570  // Local function that updates the declaration specifiers with
1571  // type argument information.
1572  auto resolvedAsTypeDecls = [&] {
1573  // We did not resolve these as protocols.
1574  protocols.clear();
1575 
1576  assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1577  // Map type declarations to type arguments.
1578  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1579  // Map type reference to a type.
1580  TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1581  if (!type.isUsable()) {
1582  typeArgs.clear();
1583  return;
1584  }
1585 
1586  typeArgs.push_back(type.get());
1587  }
1588 
1589  typeArgsLAngleLoc = lAngleLoc;
1590  typeArgsRAngleLoc = rAngleLoc;
1591  };
1592 
1593  // If all of the identifiers can be resolved as type names or
1594  // Objective-C class names, we have type arguments.
1595  if (numTypeDeclsResolved == identifiers.size())
1596  return resolvedAsTypeDecls();
1597 
1598  // Error recovery: some names weren't found, or we have a mix of
1599  // type and protocol names. Go resolve all of the unresolved names
1600  // and complain if we can't find a consistent answer.
1601  LookupNameKind lookupKind = LookupAnyName;
1602  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1603  // If we already have a protocol or type. Check whether it is the
1604  // right thing.
1605  if (protocols[i] || typeDecls[i]) {
1606  // If we haven't figured out whether we want types or protocols
1607  // yet, try to figure it out from this name.
1608  if (lookupKind == LookupAnyName) {
1609  // If this name refers to both a protocol and a type (e.g., \c
1610  // NSObject), don't conclude anything yet.
1611  if (protocols[i] && typeDecls[i])
1612  continue;
1613 
1614  // Otherwise, let this name decide whether we'll be correcting
1615  // toward types or protocols.
1616  lookupKind = protocols[i] ? LookupObjCProtocolName
1618  continue;
1619  }
1620 
1621  // If we want protocols and we have a protocol, there's nothing
1622  // more to do.
1623  if (lookupKind == LookupObjCProtocolName && protocols[i])
1624  continue;
1625 
1626  // If we want types and we have a type declaration, there's
1627  // nothing more to do.
1628  if (lookupKind == LookupOrdinaryName && typeDecls[i])
1629  continue;
1630 
1631  // We have a conflict: some names refer to protocols and others
1632  // refer to types.
1633  DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1634  identifiers[i], identifierLocs[i],
1635  protocols[i] != nullptr);
1636 
1637  protocols.clear();
1638  typeArgs.clear();
1639  return;
1640  }
1641 
1642  // Perform typo correction on the name.
1643  TypoCorrection corrected = CorrectTypo(
1644  DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1645  nullptr,
1646  llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(Context,
1647  lookupKind),
1649  if (corrected) {
1650  // Did we find a protocol?
1651  if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1652  diagnoseTypo(corrected,
1653  PDiag(diag::err_undeclared_protocol_suggest)
1654  << identifiers[i]);
1655  lookupKind = LookupObjCProtocolName;
1656  protocols[i] = proto;
1657  ++numProtocolsResolved;
1658  continue;
1659  }
1660 
1661  // Did we find a type?
1662  if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1663  diagnoseTypo(corrected,
1664  PDiag(diag::err_unknown_typename_suggest)
1665  << identifiers[i]);
1666  lookupKind = LookupOrdinaryName;
1667  typeDecls[i] = typeDecl;
1668  ++numTypeDeclsResolved;
1669  continue;
1670  }
1671 
1672  // Did we find an Objective-C class?
1673  if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1674  diagnoseTypo(corrected,
1675  PDiag(diag::err_unknown_type_or_class_name_suggest)
1676  << identifiers[i] << true);
1677  lookupKind = LookupOrdinaryName;
1678  typeDecls[i] = objcClass;
1679  ++numTypeDeclsResolved;
1680  continue;
1681  }
1682  }
1683 
1684  // We couldn't find anything.
1685  Diag(identifierLocs[i],
1686  (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1687  : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1688  : diag::err_unknown_typename))
1689  << identifiers[i];
1690  protocols.clear();
1691  typeArgs.clear();
1692  return;
1693  }
1694 
1695  // If all of the names were (corrected to) protocols, these were
1696  // protocol qualifiers.
1697  if (numProtocolsResolved == identifiers.size())
1698  return resolvedAsProtocols();
1699 
1700  // Otherwise, all of the names were (corrected to) types.
1701  assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1702  return resolvedAsTypeDecls();
1703 }
1704 
1705 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1706 /// a class method in its extension.
1707 ///
1709  ObjCInterfaceDecl *ID) {
1710  if (!ID)
1711  return; // Possibly due to previous error
1712 
1713  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1714  for (auto *MD : ID->methods())
1715  MethodMap[MD->getSelector()] = MD;
1716 
1717  if (MethodMap.empty())
1718  return;
1719  for (const auto *Method : CAT->methods()) {
1720  const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1721  if (PrevMethod &&
1722  (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1723  !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1724  Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1725  << Method->getDeclName();
1726  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1727  }
1728  }
1729 }
1730 
1731 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1734  ArrayRef<IdentifierLocPair> IdentList,
1735  AttributeList *attrList) {
1736  SmallVector<Decl *, 8> DeclsInGroup;
1737  for (const IdentifierLocPair &IdentPair : IdentList) {
1738  IdentifierInfo *Ident = IdentPair.first;
1739  ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1741  ObjCProtocolDecl *PDecl
1743  IdentPair.second, AtProtocolLoc,
1744  PrevDecl);
1745 
1746  PushOnScopeChains(PDecl, TUScope);
1747  CheckObjCDeclScope(PDecl);
1748 
1749  if (attrList)
1750  ProcessDeclAttributeList(TUScope, PDecl, attrList);
1751  AddPragmaAttributes(TUScope, PDecl);
1752 
1753  if (PrevDecl)
1754  mergeDeclAttributes(PDecl, PrevDecl);
1755 
1756  DeclsInGroup.push_back(PDecl);
1757  }
1758 
1759  return BuildDeclaratorGroup(DeclsInGroup);
1760 }
1761 
1762 Decl *Sema::
1764  IdentifierInfo *ClassName, SourceLocation ClassLoc,
1765  ObjCTypeParamList *typeParamList,
1766  IdentifierInfo *CategoryName,
1767  SourceLocation CategoryLoc,
1768  Decl * const *ProtoRefs,
1769  unsigned NumProtoRefs,
1770  const SourceLocation *ProtoLocs,
1771  SourceLocation EndProtoLoc,
1772  AttributeList *AttrList) {
1773  ObjCCategoryDecl *CDecl;
1774  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1775 
1776  /// Check that class of this category is already completely declared.
1777 
1778  if (!IDecl
1779  || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1780  diag::err_category_forward_interface,
1781  CategoryName == nullptr)) {
1782  // Create an invalid ObjCCategoryDecl to serve as context for
1783  // the enclosing method declarations. We mark the decl invalid
1784  // to make it clear that this isn't a valid AST.
1785  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1786  ClassLoc, CategoryLoc, CategoryName,
1787  IDecl, typeParamList);
1788  CDecl->setInvalidDecl();
1789  CurContext->addDecl(CDecl);
1790 
1791  if (!IDecl)
1792  Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1793  return ActOnObjCContainerStartDefinition(CDecl);
1794  }
1795 
1796  if (!CategoryName && IDecl->getImplementation()) {
1797  Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1798  Diag(IDecl->getImplementation()->getLocation(),
1799  diag::note_implementation_declared);
1800  }
1801 
1802  if (CategoryName) {
1803  /// Check for duplicate interface declaration for this category
1805  = IDecl->FindCategoryDeclaration(CategoryName)) {
1806  // Class extensions can be declared multiple times, categories cannot.
1807  Diag(CategoryLoc, diag::warn_dup_category_def)
1808  << ClassName << CategoryName;
1809  Diag(Previous->getLocation(), diag::note_previous_definition);
1810  }
1811  }
1812 
1813  // If we have a type parameter list, check it.
1814  if (typeParamList) {
1815  if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1816  if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1817  CategoryName
1819  : TypeParamListContext::Extension))
1820  typeParamList = nullptr;
1821  } else {
1822  Diag(typeParamList->getLAngleLoc(),
1823  diag::err_objc_parameterized_category_nonclass)
1824  << (CategoryName != nullptr)
1825  << ClassName
1826  << typeParamList->getSourceRange();
1827 
1828  typeParamList = nullptr;
1829  }
1830  }
1831 
1832  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1833  ClassLoc, CategoryLoc, CategoryName, IDecl,
1834  typeParamList);
1835  // FIXME: PushOnScopeChains?
1836  CurContext->addDecl(CDecl);
1837 
1838  if (NumProtoRefs) {
1839  diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1840  NumProtoRefs, ProtoLocs);
1841  CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1842  ProtoLocs, Context);
1843  // Protocols in the class extension belong to the class.
1844  if (CDecl->IsClassExtension())
1845  IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1846  NumProtoRefs, Context);
1847  }
1848 
1849  if (AttrList)
1850  ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1851  AddPragmaAttributes(TUScope, CDecl);
1852 
1853  CheckObjCDeclScope(CDecl);
1854  return ActOnObjCContainerStartDefinition(CDecl);
1855 }
1856 
1857 /// ActOnStartCategoryImplementation - Perform semantic checks on the
1858 /// category implementation declaration and build an ObjCCategoryImplDecl
1859 /// object.
1861  SourceLocation AtCatImplLoc,
1862  IdentifierInfo *ClassName, SourceLocation ClassLoc,
1863  IdentifierInfo *CatName, SourceLocation CatLoc) {
1864  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1865  ObjCCategoryDecl *CatIDecl = nullptr;
1866  if (IDecl && IDecl->hasDefinition()) {
1867  CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1868  if (!CatIDecl) {
1869  // Category @implementation with no corresponding @interface.
1870  // Create and install one.
1871  CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1872  ClassLoc, CatLoc,
1873  CatName, IDecl,
1874  /*typeParamList=*/nullptr);
1875  CatIDecl->setImplicit();
1876  }
1877  }
1878 
1879  ObjCCategoryImplDecl *CDecl =
1881  ClassLoc, AtCatImplLoc, CatLoc);
1882  /// Check that class of this category is already completely declared.
1883  if (!IDecl) {
1884  Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1885  CDecl->setInvalidDecl();
1886  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1887  diag::err_undef_interface)) {
1888  CDecl->setInvalidDecl();
1889  }
1890 
1891  // FIXME: PushOnScopeChains?
1892  CurContext->addDecl(CDecl);
1893 
1894  // If the interface has the objc_runtime_visible attribute, we
1895  // cannot implement a category for it.
1896  if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1897  Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1898  << IDecl->getDeclName();
1899  }
1900 
1901  /// Check that CatName, category name, is not used in another implementation.
1902  if (CatIDecl) {
1903  if (CatIDecl->getImplementation()) {
1904  Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1905  << CatName;
1906  Diag(CatIDecl->getImplementation()->getLocation(),
1907  diag::note_previous_definition);
1908  CDecl->setInvalidDecl();
1909  } else {
1910  CatIDecl->setImplementation(CDecl);
1911  // Warn on implementating category of deprecated class under
1912  // -Wdeprecated-implementations flag.
1913  DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1914  CDecl->getLocation());
1915  }
1916  }
1917 
1918  CheckObjCDeclScope(CDecl);
1919  return ActOnObjCContainerStartDefinition(CDecl);
1920 }
1921 
1923  SourceLocation AtClassImplLoc,
1924  IdentifierInfo *ClassName, SourceLocation ClassLoc,
1925  IdentifierInfo *SuperClassname,
1926  SourceLocation SuperClassLoc) {
1927  ObjCInterfaceDecl *IDecl = nullptr;
1928  // Check for another declaration kind with the same name.
1929  NamedDecl *PrevDecl
1930  = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1932  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1933  Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1934  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1935  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1936  // FIXME: This will produce an error if the definition of the interface has
1937  // been imported from a module but is not visible.
1939  diag::warn_undef_interface);
1940  } else {
1941  // We did not find anything with the name ClassName; try to correct for
1942  // typos in the class name.
1943  TypoCorrection Corrected = CorrectTypo(
1944  DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
1945  nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
1946  if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1947  // Suggest the (potentially) correct interface name. Don't provide a
1948  // code-modification hint or use the typo name for recovery, because
1949  // this is just a warning. The program may actually be correct.
1950  diagnoseTypo(Corrected,
1951  PDiag(diag::warn_undef_interface_suggest) << ClassName,
1952  /*ErrorRecovery*/false);
1953  } else {
1954  Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1955  }
1956  }
1957 
1958  // Check that super class name is valid class name
1959  ObjCInterfaceDecl *SDecl = nullptr;
1960  if (SuperClassname) {
1961  // Check if a different kind of symbol declared in this scope.
1962  PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1964  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1965  Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1966  << SuperClassname;
1967  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1968  } else {
1969  SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1970  if (SDecl && !SDecl->hasDefinition())
1971  SDecl = nullptr;
1972  if (!SDecl)
1973  Diag(SuperClassLoc, diag::err_undef_superclass)
1974  << SuperClassname << ClassName;
1975  else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1976  // This implementation and its interface do not have the same
1977  // super class.
1978  Diag(SuperClassLoc, diag::err_conflicting_super_class)
1979  << SDecl->getDeclName();
1980  Diag(SDecl->getLocation(), diag::note_previous_definition);
1981  }
1982  }
1983  }
1984 
1985  if (!IDecl) {
1986  // Legacy case of @implementation with no corresponding @interface.
1987  // Build, chain & install the interface decl into the identifier.
1988 
1989  // FIXME: Do we support attributes on the @implementation? If so we should
1990  // copy them over.
1991  IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1992  ClassName, /*typeParamList=*/nullptr,
1993  /*PrevDecl=*/nullptr, ClassLoc,
1994  true);
1995  AddPragmaAttributes(TUScope, IDecl);
1996  IDecl->startDefinition();
1997  if (SDecl) {
2000  SuperClassLoc));
2001  IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2002  } else {
2003  IDecl->setEndOfDefinitionLoc(ClassLoc);
2004  }
2005 
2006  PushOnScopeChains(IDecl, TUScope);
2007  } else {
2008  // Mark the interface as being completed, even if it was just as
2009  // @class ....;
2010  // declaration; the user cannot reopen it.
2011  if (!IDecl->hasDefinition())
2012  IDecl->startDefinition();
2013  }
2014 
2015  ObjCImplementationDecl* IMPDecl =
2017  ClassLoc, AtClassImplLoc, SuperClassLoc);
2018 
2019  if (CheckObjCDeclScope(IMPDecl))
2020  return ActOnObjCContainerStartDefinition(IMPDecl);
2021 
2022  // Check that there is no duplicate implementation of this class.
2023  if (IDecl->getImplementation()) {
2024  // FIXME: Don't leak everything!
2025  Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2026  Diag(IDecl->getImplementation()->getLocation(),
2027  diag::note_previous_definition);
2028  IMPDecl->setInvalidDecl();
2029  } else { // add it to the list.
2030  IDecl->setImplementation(IMPDecl);
2031  PushOnScopeChains(IMPDecl, TUScope);
2032  // Warn on implementating deprecated class under
2033  // -Wdeprecated-implementations flag.
2034  DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2035  }
2036 
2037  // If the superclass has the objc_runtime_visible attribute, we
2038  // cannot implement a subclass of it.
2039  if (IDecl->getSuperClass() &&
2040  IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2041  Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2042  << IDecl->getDeclName()
2043  << IDecl->getSuperClass()->getDeclName();
2044  }
2045 
2046  return ActOnObjCContainerStartDefinition(IMPDecl);
2047 }
2048 
2051  SmallVector<Decl *, 64> DeclsInGroup;
2052  DeclsInGroup.reserve(Decls.size() + 1);
2053 
2054  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2055  Decl *Dcl = Decls[i];
2056  if (!Dcl)
2057  continue;
2058  if (Dcl->getDeclContext()->isFileContext())
2060  DeclsInGroup.push_back(Dcl);
2061  }
2062 
2063  DeclsInGroup.push_back(ObjCImpDecl);
2064 
2065  return BuildDeclaratorGroup(DeclsInGroup);
2066 }
2067 
2069  ObjCIvarDecl **ivars, unsigned numIvars,
2070  SourceLocation RBrace) {
2071  assert(ImpDecl && "missing implementation decl");
2072  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2073  if (!IDecl)
2074  return;
2075  /// Check case of non-existing \@interface decl.
2076  /// (legacy objective-c \@implementation decl without an \@interface decl).
2077  /// Add implementations's ivar to the synthesize class's ivar list.
2078  if (IDecl->isImplicitInterfaceDecl()) {
2079  IDecl->setEndOfDefinitionLoc(RBrace);
2080  // Add ivar's to class's DeclContext.
2081  for (unsigned i = 0, e = numIvars; i != e; ++i) {
2082  ivars[i]->setLexicalDeclContext(ImpDecl);
2083  IDecl->makeDeclVisibleInContext(ivars[i]);
2084  ImpDecl->addDecl(ivars[i]);
2085  }
2086 
2087  return;
2088  }
2089  // If implementation has empty ivar list, just return.
2090  if (numIvars == 0)
2091  return;
2092 
2093  assert(ivars && "missing @implementation ivars");
2095  if (ImpDecl->getSuperClass())
2096  Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2097  for (unsigned i = 0; i < numIvars; i++) {
2098  ObjCIvarDecl* ImplIvar = ivars[i];
2099  if (const ObjCIvarDecl *ClsIvar =
2100  IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2101  Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2102  Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2103  continue;
2104  }
2105  // Check class extensions (unnamed categories) for duplicate ivars.
2106  for (const auto *CDecl : IDecl->visible_extensions()) {
2107  if (const ObjCIvarDecl *ClsExtIvar =
2108  CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2109  Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2110  Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2111  continue;
2112  }
2113  }
2114  // Instance ivar to Implementation's DeclContext.
2115  ImplIvar->setLexicalDeclContext(ImpDecl);
2116  IDecl->makeDeclVisibleInContext(ImplIvar);
2117  ImpDecl->addDecl(ImplIvar);
2118  }
2119  return;
2120  }
2121  // Check interface's Ivar list against those in the implementation.
2122  // names and types must match.
2123  //
2124  unsigned j = 0;
2126  IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2127  for (; numIvars > 0 && IVI != IVE; ++IVI) {
2128  ObjCIvarDecl* ImplIvar = ivars[j++];
2129  ObjCIvarDecl* ClsIvar = *IVI;
2130  assert (ImplIvar && "missing implementation ivar");
2131  assert (ClsIvar && "missing class ivar");
2132 
2133  // First, make sure the types match.
2134  if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2135  Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2136  << ImplIvar->getIdentifier()
2137  << ImplIvar->getType() << ClsIvar->getType();
2138  Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2139  } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2140  ImplIvar->getBitWidthValue(Context) !=
2141  ClsIvar->getBitWidthValue(Context)) {
2142  Diag(ImplIvar->getBitWidth()->getLocStart(),
2143  diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
2144  Diag(ClsIvar->getBitWidth()->getLocStart(),
2145  diag::note_previous_definition);
2146  }
2147  // Make sure the names are identical.
2148  if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2149  Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2150  << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2151  Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2152  }
2153  --numIvars;
2154  }
2155 
2156  if (numIvars > 0)
2157  Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2158  else if (IVI != IVE)
2159  Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2160 }
2161 
2162 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2163  ObjCMethodDecl *method,
2164  bool &IncompleteImpl,
2165  unsigned DiagID,
2166  NamedDecl *NeededFor = nullptr) {
2167  // No point warning no definition of method which is 'unavailable'.
2168  switch (method->getAvailability()) {
2169  case AR_Available:
2170  case AR_Deprecated:
2171  break;
2172 
2173  // Don't warn about unavailable or not-yet-introduced methods.
2174  case AR_NotYetIntroduced:
2175  case AR_Unavailable:
2176  return;
2177  }
2178 
2179  // FIXME: For now ignore 'IncompleteImpl'.
2180  // Previously we grouped all unimplemented methods under a single
2181  // warning, but some users strongly voiced that they would prefer
2182  // separate warnings. We will give that approach a try, as that
2183  // matches what we do with protocols.
2184  {
2185  const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2186  B << method;
2187  if (NeededFor)
2188  B << NeededFor;
2189  }
2190 
2191  // Issue a note to the original declaration.
2192  SourceLocation MethodLoc = method->getLocStart();
2193  if (MethodLoc.isValid())
2194  S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2195 }
2196 
2197 /// Determines if type B can be substituted for type A. Returns true if we can
2198 /// guarantee that anything that the user will do to an object of type A can
2199 /// also be done to an object of type B. This is trivially true if the two
2200 /// types are the same, or if B is a subclass of A. It becomes more complex
2201 /// in cases where protocols are involved.
2202 ///
2203 /// Object types in Objective-C describe the minimum requirements for an
2204 /// object, rather than providing a complete description of a type. For
2205 /// example, if A is a subclass of B, then B* may refer to an instance of A.
2206 /// The principle of substitutability means that we may use an instance of A
2207 /// anywhere that we may use an instance of B - it will implement all of the
2208 /// ivars of B and all of the methods of B.
2209 ///
2210 /// This substitutability is important when type checking methods, because
2211 /// the implementation may have stricter type definitions than the interface.
2212 /// The interface specifies minimum requirements, but the implementation may
2213 /// have more accurate ones. For example, a method may privately accept
2214 /// instances of B, but only publish that it accepts instances of A. Any
2215 /// object passed to it will be type checked against B, and so will implicitly
2216 /// by a valid A*. Similarly, a method may return a subclass of the class that
2217 /// it is declared as returning.
2218 ///
2219 /// This is most important when considering subclassing. A method in a
2220 /// subclass must accept any object as an argument that its superclass's
2221 /// implementation accepts. It may, however, accept a more general type
2222 /// without breaking substitutability (i.e. you can still use the subclass
2223 /// anywhere that you can use the superclass, but not vice versa). The
2224 /// converse requirement applies to return types: the return type for a
2225 /// subclass method must be a valid object of the kind that the superclass
2226 /// advertises, but it may be specified more accurately. This avoids the need
2227 /// for explicit down-casting by callers.
2228 ///
2229 /// Note: This is a stricter requirement than for assignment.
2231  const ObjCObjectPointerType *A,
2232  const ObjCObjectPointerType *B,
2233  bool rejectId) {
2234  // Reject a protocol-unqualified id.
2235  if (rejectId && B->isObjCIdType()) return false;
2236 
2237  // If B is a qualified id, then A must also be a qualified id and it must
2238  // implement all of the protocols in B. It may not be a qualified class.
2239  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2240  // stricter definition so it is not substitutable for id<A>.
2241  if (B->isObjCQualifiedIdType()) {
2242  return A->isObjCQualifiedIdType() &&
2244  QualType(B,0),
2245  false);
2246  }
2247 
2248  /*
2249  // id is a special type that bypasses type checking completely. We want a
2250  // warning when it is used in one place but not another.
2251  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2252 
2253 
2254  // If B is a qualified id, then A must also be a qualified id (which it isn't
2255  // if we've got this far)
2256  if (B->isObjCQualifiedIdType()) return false;
2257  */
2258 
2259  // Now we know that A and B are (potentially-qualified) class types. The
2260  // normal rules for assignment apply.
2261  return Context.canAssignObjCInterfaces(A, B);
2262 }
2263 
2265  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2266 }
2267 
2268 /// Determine whether two set of Objective-C declaration qualifiers conflict.
2271  return (x & ~Decl::OBJC_TQ_CSNullability) !=
2272  (y & ~Decl::OBJC_TQ_CSNullability);
2273 }
2274 
2276  ObjCMethodDecl *MethodImpl,
2277  ObjCMethodDecl *MethodDecl,
2278  bool IsProtocolMethodDecl,
2279  bool IsOverridingMode,
2280  bool Warn) {
2281  if (IsProtocolMethodDecl &&
2283  MethodImpl->getObjCDeclQualifier())) {
2284  if (Warn) {
2285  S.Diag(MethodImpl->getLocation(),
2286  (IsOverridingMode
2287  ? diag::warn_conflicting_overriding_ret_type_modifiers
2288  : diag::warn_conflicting_ret_type_modifiers))
2289  << MethodImpl->getDeclName()
2290  << MethodImpl->getReturnTypeSourceRange();
2291  S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2292  << MethodDecl->getReturnTypeSourceRange();
2293  }
2294  else
2295  return false;
2296  }
2297  if (Warn && IsOverridingMode &&
2298  !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2300  MethodDecl->getReturnType(),
2301  false)) {
2302  auto nullabilityMethodImpl =
2303  *MethodImpl->getReturnType()->getNullability(S.Context);
2304  auto nullabilityMethodDecl =
2305  *MethodDecl->getReturnType()->getNullability(S.Context);
2306  S.Diag(MethodImpl->getLocation(),
2307  diag::warn_conflicting_nullability_attr_overriding_ret_types)
2309  nullabilityMethodImpl,
2311  != 0))
2313  nullabilityMethodDecl,
2315  != 0));
2316  S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2317  }
2318 
2319  if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2320  MethodDecl->getReturnType()))
2321  return true;
2322  if (!Warn)
2323  return false;
2324 
2325  unsigned DiagID =
2326  IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2327  : diag::warn_conflicting_ret_types;
2328 
2329  // Mismatches between ObjC pointers go into a different warning
2330  // category, and sometimes they're even completely whitelisted.
2331  if (const ObjCObjectPointerType *ImplPtrTy =
2332  MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2333  if (const ObjCObjectPointerType *IfacePtrTy =
2334  MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2335  // Allow non-matching return types as long as they don't violate
2336  // the principle of substitutability. Specifically, we permit
2337  // return types that are subclasses of the declared return type,
2338  // or that are more-qualified versions of the declared type.
2339  if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2340  return false;
2341 
2342  DiagID =
2343  IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2344  : diag::warn_non_covariant_ret_types;
2345  }
2346  }
2347 
2348  S.Diag(MethodImpl->getLocation(), DiagID)
2349  << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2350  << MethodImpl->getReturnType()
2351  << MethodImpl->getReturnTypeSourceRange();
2352  S.Diag(MethodDecl->getLocation(), IsOverridingMode
2353  ? diag::note_previous_declaration
2354  : diag::note_previous_definition)
2355  << MethodDecl->getReturnTypeSourceRange();
2356  return false;
2357 }
2358 
2360  ObjCMethodDecl *MethodImpl,
2361  ObjCMethodDecl *MethodDecl,
2362  ParmVarDecl *ImplVar,
2363  ParmVarDecl *IfaceVar,
2364  bool IsProtocolMethodDecl,
2365  bool IsOverridingMode,
2366  bool Warn) {
2367  if (IsProtocolMethodDecl &&
2369  IfaceVar->getObjCDeclQualifier())) {
2370  if (Warn) {
2371  if (IsOverridingMode)
2372  S.Diag(ImplVar->getLocation(),
2373  diag::warn_conflicting_overriding_param_modifiers)
2374  << getTypeRange(ImplVar->getTypeSourceInfo())
2375  << MethodImpl->getDeclName();
2376  else S.Diag(ImplVar->getLocation(),
2377  diag::warn_conflicting_param_modifiers)
2378  << getTypeRange(ImplVar->getTypeSourceInfo())
2379  << MethodImpl->getDeclName();
2380  S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2381  << getTypeRange(IfaceVar->getTypeSourceInfo());
2382  }
2383  else
2384  return false;
2385  }
2386 
2387  QualType ImplTy = ImplVar->getType();
2388  QualType IfaceTy = IfaceVar->getType();
2389  if (Warn && IsOverridingMode &&
2390  !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2391  !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2392  S.Diag(ImplVar->getLocation(),
2393  diag::warn_conflicting_nullability_attr_overriding_param_types)
2395  *ImplTy->getNullability(S.Context),
2397  != 0))
2399  *IfaceTy->getNullability(S.Context),
2401  != 0));
2402  S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2403  }
2404  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2405  return true;
2406 
2407  if (!Warn)
2408  return false;
2409  unsigned DiagID =
2410  IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2411  : diag::warn_conflicting_param_types;
2412 
2413  // Mismatches between ObjC pointers go into a different warning
2414  // category, and sometimes they're even completely whitelisted.
2415  if (const ObjCObjectPointerType *ImplPtrTy =
2416  ImplTy->getAs<ObjCObjectPointerType>()) {
2417  if (const ObjCObjectPointerType *IfacePtrTy =
2418  IfaceTy->getAs<ObjCObjectPointerType>()) {
2419  // Allow non-matching argument types as long as they don't
2420  // violate the principle of substitutability. Specifically, the
2421  // implementation must accept any objects that the superclass
2422  // accepts, however it may also accept others.
2423  if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2424  return false;
2425 
2426  DiagID =
2427  IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2428  : diag::warn_non_contravariant_param_types;
2429  }
2430  }
2431 
2432  S.Diag(ImplVar->getLocation(), DiagID)
2433  << getTypeRange(ImplVar->getTypeSourceInfo())
2434  << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2435  S.Diag(IfaceVar->getLocation(),
2436  (IsOverridingMode ? diag::note_previous_declaration
2437  : diag::note_previous_definition))
2438  << getTypeRange(IfaceVar->getTypeSourceInfo());
2439  return false;
2440 }
2441 
2442 /// In ARC, check whether the conventional meanings of the two methods
2443 /// match. If they don't, it's a hard error.
2445  ObjCMethodDecl *decl) {
2446  ObjCMethodFamily implFamily = impl->getMethodFamily();
2447  ObjCMethodFamily declFamily = decl->getMethodFamily();
2448  if (implFamily == declFamily) return false;
2449 
2450  // Since conventions are sorted by selector, the only possibility is
2451  // that the types differ enough to cause one selector or the other
2452  // to fall out of the family.
2453  assert(implFamily == OMF_None || declFamily == OMF_None);
2454 
2455  // No further diagnostics required on invalid declarations.
2456  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2457 
2458  const ObjCMethodDecl *unmatched = impl;
2459  ObjCMethodFamily family = declFamily;
2460  unsigned errorID = diag::err_arc_lost_method_convention;
2461  unsigned noteID = diag::note_arc_lost_method_convention;
2462  if (declFamily == OMF_None) {
2463  unmatched = decl;
2464  family = implFamily;
2465  errorID = diag::err_arc_gained_method_convention;
2466  noteID = diag::note_arc_gained_method_convention;
2467  }
2468 
2469  // Indexes into a %select clause in the diagnostic.
2470  enum FamilySelector {
2471  F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2472  };
2473  FamilySelector familySelector = FamilySelector();
2474 
2475  switch (family) {
2476  case OMF_None: llvm_unreachable("logic error, no method convention");
2477  case OMF_retain:
2478  case OMF_release:
2479  case OMF_autorelease:
2480  case OMF_dealloc:
2481  case OMF_finalize:
2482  case OMF_retainCount:
2483  case OMF_self:
2484  case OMF_initialize:
2485  case OMF_performSelector:
2486  // Mismatches for these methods don't change ownership
2487  // conventions, so we don't care.
2488  return false;
2489 
2490  case OMF_init: familySelector = F_init; break;
2491  case OMF_alloc: familySelector = F_alloc; break;
2492  case OMF_copy: familySelector = F_copy; break;
2493  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2494  case OMF_new: familySelector = F_new; break;
2495  }
2496 
2497  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2498  ReasonSelector reasonSelector;
2499 
2500  // The only reason these methods don't fall within their families is
2501  // due to unusual result types.
2502  if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2503  reasonSelector = R_UnrelatedReturn;
2504  } else {
2505  reasonSelector = R_NonObjectReturn;
2506  }
2507 
2508  S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2509  S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2510 
2511  return true;
2512 }
2513 
2515  ObjCMethodDecl *MethodDecl,
2516  bool IsProtocolMethodDecl) {
2517  if (getLangOpts().ObjCAutoRefCount &&
2518  checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2519  return;
2520 
2521  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2522  IsProtocolMethodDecl, false,
2523  true);
2524 
2525  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2526  IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2527  EF = MethodDecl->param_end();
2528  IM != EM && IF != EF; ++IM, ++IF) {
2529  CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2530  IsProtocolMethodDecl, false, true);
2531  }
2532 
2533  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2534  Diag(ImpMethodDecl->getLocation(),
2535  diag::warn_conflicting_variadic);
2536  Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2537  }
2538 }
2539 
2541  ObjCMethodDecl *Overridden,
2542  bool IsProtocolMethodDecl) {
2543 
2544  CheckMethodOverrideReturn(*this, Method, Overridden,
2545  IsProtocolMethodDecl, true,
2546  true);
2547 
2548  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2549  IF = Overridden->param_begin(), EM = Method->param_end(),
2550  EF = Overridden->param_end();
2551  IM != EM && IF != EF; ++IM, ++IF) {
2552  CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2553  IsProtocolMethodDecl, true, true);
2554  }
2555 
2556  if (Method->isVariadic() != Overridden->isVariadic()) {
2557  Diag(Method->getLocation(),
2558  diag::warn_conflicting_overriding_variadic);
2559  Diag(Overridden->getLocation(), diag::note_previous_declaration);
2560  }
2561 }
2562 
2563 /// WarnExactTypedMethods - This routine issues a warning if method
2564 /// implementation declaration matches exactly that of its declaration.
2566  ObjCMethodDecl *MethodDecl,
2567  bool IsProtocolMethodDecl) {
2568  // don't issue warning when protocol method is optional because primary
2569  // class is not required to implement it and it is safe for protocol
2570  // to implement it.
2572  return;
2573  // don't issue warning when primary class's method is
2574  // depecated/unavailable.
2575  if (MethodDecl->hasAttr<UnavailableAttr>() ||
2576  MethodDecl->hasAttr<DeprecatedAttr>())
2577  return;
2578 
2579  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2580  IsProtocolMethodDecl, false, false);
2581  if (match)
2582  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2583  IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2584  EF = MethodDecl->param_end();
2585  IM != EM && IF != EF; ++IM, ++IF) {
2586  match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2587  *IM, *IF,
2588  IsProtocolMethodDecl, false, false);
2589  if (!match)
2590  break;
2591  }
2592  if (match)
2593  match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2594  if (match)
2595  match = !(MethodDecl->isClassMethod() &&
2596  MethodDecl->getSelector() == GetNullarySelector("load", Context));
2597 
2598  if (match) {
2599  Diag(ImpMethodDecl->getLocation(),
2600  diag::warn_category_method_impl_match);
2601  Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2602  << MethodDecl->getDeclName();
2603  }
2604 }
2605 
2606 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2607 /// improve the efficiency of selector lookups and type checking by associating
2608 /// with each protocol / interface / category the flattened instance tables. If
2609 /// we used an immutable set to keep the table then it wouldn't add significant
2610 /// memory cost and it would be handy for lookups.
2611 
2613 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2614 
2616  ProtocolNameSet &PNS) {
2617  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2618  PNS.insert(PDecl->getIdentifier());
2619  for (const auto *PI : PDecl->protocols())
2621 }
2622 
2623 /// Recursively populates a set with all conformed protocols in a class
2624 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2625 /// attribute.
2627  ProtocolNameSet &PNS) {
2628  if (!Super)
2629  return;
2630 
2631  for (const auto *I : Super->all_referenced_protocols())
2633 
2635 }
2636 
2637 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
2638 /// Declared in protocol, and those referenced by it.
2640  SourceLocation ImpLoc,
2641  ObjCProtocolDecl *PDecl,
2642  bool& IncompleteImpl,
2643  const Sema::SelectorSet &InsMap,
2644  const Sema::SelectorSet &ClsMap,
2645  ObjCContainerDecl *CDecl,
2646  LazyProtocolNameSet &ProtocolsExplictImpl) {
2647  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2648  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2649  : dyn_cast<ObjCInterfaceDecl>(CDecl);
2650  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2651 
2652  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2653  ObjCInterfaceDecl *NSIDecl = nullptr;
2654 
2655  // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2656  // then we should check if any class in the super class hierarchy also
2657  // conforms to this protocol, either directly or via protocol inheritance.
2658  // If so, we can skip checking this protocol completely because we
2659  // know that a parent class already satisfies this protocol.
2660  //
2661  // Note: we could generalize this logic for all protocols, and merely
2662  // add the limit on looking at the super class chain for just
2663  // specially marked protocols. This may be a good optimization. This
2664  // change is restricted to 'objc_protocol_requires_explicit_implementation'
2665  // protocols for now for controlled evaluation.
2666  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2667  if (!ProtocolsExplictImpl) {
2668  ProtocolsExplictImpl.reset(new ProtocolNameSet);
2669  findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2670  }
2671  if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2672  ProtocolsExplictImpl->end())
2673  return;
2674 
2675  // If no super class conforms to the protocol, we should not search
2676  // for methods in the super class to implicitly satisfy the protocol.
2677  Super = nullptr;
2678  }
2679 
2680  if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2681  // check to see if class implements forwardInvocation method and objects
2682  // of this class are derived from 'NSProxy' so that to forward requests
2683  // from one object to another.
2684  // Under such conditions, which means that every method possible is
2685  // implemented in the class, we should not issue "Method definition not
2686  // found" warnings.
2687  // FIXME: Use a general GetUnarySelector method for this.
2688  IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2689  Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2690  if (InsMap.count(fISelector))
2691  // Is IDecl derived from 'NSProxy'? If so, no instance methods
2692  // need be implemented in the implementation.
2693  NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2694  }
2695 
2696  // If this is a forward protocol declaration, get its definition.
2697  if (!PDecl->isThisDeclarationADefinition() &&
2698  PDecl->getDefinition())
2699  PDecl = PDecl->getDefinition();
2700 
2701  // If a method lookup fails locally we still need to look and see if
2702  // the method was implemented by a base class or an inherited
2703  // protocol. This lookup is slow, but occurs rarely in correct code
2704  // and otherwise would terminate in a warning.
2705 
2706  // check unimplemented instance methods.
2707  if (!NSIDecl)
2708  for (auto *method : PDecl->instance_methods()) {
2709  if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2710  !method->isPropertyAccessor() &&
2711  !InsMap.count(method->getSelector()) &&
2712  (!Super || !Super->lookupMethod(method->getSelector(),
2713  true /* instance */,
2714  false /* shallowCategory */,
2715  true /* followsSuper */,
2716  nullptr /* category */))) {
2717  // If a method is not implemented in the category implementation but
2718  // has been declared in its primary class, superclass,
2719  // or in one of their protocols, no need to issue the warning.
2720  // This is because method will be implemented in the primary class
2721  // or one of its super class implementation.
2722 
2723  // Ugly, but necessary. Method declared in protcol might have
2724  // have been synthesized due to a property declared in the class which
2725  // uses the protocol.
2726  if (ObjCMethodDecl *MethodInClass =
2727  IDecl->lookupMethod(method->getSelector(),
2728  true /* instance */,
2729  true /* shallowCategoryLookup */,
2730  false /* followSuper */))
2731  if (C || MethodInClass->isPropertyAccessor())
2732  continue;
2733  unsigned DIAG = diag::warn_unimplemented_protocol_method;
2734  if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2735  WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2736  PDecl);
2737  }
2738  }
2739  }
2740  // check unimplemented class methods
2741  for (auto *method : PDecl->class_methods()) {
2742  if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2743  !ClsMap.count(method->getSelector()) &&
2744  (!Super || !Super->lookupMethod(method->getSelector(),
2745  false /* class method */,
2746  false /* shallowCategoryLookup */,
2747  true /* followSuper */,
2748  nullptr /* category */))) {
2749  // See above comment for instance method lookups.
2750  if (C && IDecl->lookupMethod(method->getSelector(),
2751  false /* class */,
2752  true /* shallowCategoryLookup */,
2753  false /* followSuper */))
2754  continue;
2755 
2756  unsigned DIAG = diag::warn_unimplemented_protocol_method;
2757  if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2758  WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2759  }
2760  }
2761  }
2762  // Check on this protocols's referenced protocols, recursively.
2763  for (auto *PI : PDecl->protocols())
2764  CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2765  CDecl, ProtocolsExplictImpl);
2766 }
2767 
2768 /// MatchAllMethodDeclarations - Check methods declared in interface
2769 /// or protocol against those declared in their implementations.
2770 ///
2772  const SelectorSet &ClsMap,
2773  SelectorSet &InsMapSeen,
2774  SelectorSet &ClsMapSeen,
2775  ObjCImplDecl* IMPDecl,
2776  ObjCContainerDecl* CDecl,
2777  bool &IncompleteImpl,
2778  bool ImmediateClass,
2779  bool WarnCategoryMethodImpl) {
2780  // Check and see if instance methods in class interface have been
2781  // implemented in the implementation class. If so, their types match.
2782  for (auto *I : CDecl->instance_methods()) {
2783  if (!InsMapSeen.insert(I->getSelector()).second)
2784  continue;
2785  if (!I->isPropertyAccessor() &&
2786  !InsMap.count(I->getSelector())) {
2787  if (ImmediateClass)
2788  WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2789  diag::warn_undef_method_impl);
2790  continue;
2791  } else {
2792  ObjCMethodDecl *ImpMethodDecl =
2793  IMPDecl->getInstanceMethod(I->getSelector());
2794  assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2795  "Expected to find the method through lookup as well");
2796  // ImpMethodDecl may be null as in a @dynamic property.
2797  if (ImpMethodDecl) {
2798  if (!WarnCategoryMethodImpl)
2799  WarnConflictingTypedMethods(ImpMethodDecl, I,
2800  isa<ObjCProtocolDecl>(CDecl));
2801  else if (!I->isPropertyAccessor())
2802  WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2803  }
2804  }
2805  }
2806 
2807  // Check and see if class methods in class interface have been
2808  // implemented in the implementation class. If so, their types match.
2809  for (auto *I : CDecl->class_methods()) {
2810  if (!ClsMapSeen.insert(I->getSelector()).second)
2811  continue;
2812  if (!I->isPropertyAccessor() &&
2813  !ClsMap.count(I->getSelector())) {
2814  if (ImmediateClass)
2815  WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2816  diag::warn_undef_method_impl);
2817  } else {
2818  ObjCMethodDecl *ImpMethodDecl =
2819  IMPDecl->getClassMethod(I->getSelector());
2820  assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2821  "Expected to find the method through lookup as well");
2822  // ImpMethodDecl may be null as in a @dynamic property.
2823  if (ImpMethodDecl) {
2824  if (!WarnCategoryMethodImpl)
2825  WarnConflictingTypedMethods(ImpMethodDecl, I,
2826  isa<ObjCProtocolDecl>(CDecl));
2827  else if (!I->isPropertyAccessor())
2828  WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2829  }
2830  }
2831  }
2832 
2833  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2834  // Also, check for methods declared in protocols inherited by
2835  // this protocol.
2836  for (auto *PI : PD->protocols())
2837  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2838  IMPDecl, PI, IncompleteImpl, false,
2839  WarnCategoryMethodImpl);
2840  }
2841 
2842  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2843  // when checking that methods in implementation match their declaration,
2844  // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2845  // extension; as well as those in categories.
2846  if (!WarnCategoryMethodImpl) {
2847  for (auto *Cat : I->visible_categories())
2848  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2849  IMPDecl, Cat, IncompleteImpl,
2850  ImmediateClass && Cat->IsClassExtension(),
2851  WarnCategoryMethodImpl);
2852  } else {
2853  // Also methods in class extensions need be looked at next.
2854  for (auto *Ext : I->visible_extensions())
2855  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2856  IMPDecl, Ext, IncompleteImpl, false,
2857  WarnCategoryMethodImpl);
2858  }
2859 
2860  // Check for any implementation of a methods declared in protocol.
2861  for (auto *PI : I->all_referenced_protocols())
2862  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2863  IMPDecl, PI, IncompleteImpl, false,
2864  WarnCategoryMethodImpl);
2865 
2866  // FIXME. For now, we are not checking for extact match of methods
2867  // in category implementation and its primary class's super class.
2868  if (!WarnCategoryMethodImpl && I->getSuperClass())
2869  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2870  IMPDecl,
2871  I->getSuperClass(), IncompleteImpl, false);
2872  }
2873 }
2874 
2875 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2876 /// category matches with those implemented in its primary class and
2877 /// warns each time an exact match is found.
2879  ObjCCategoryImplDecl *CatIMPDecl) {
2880  // Get category's primary class.
2881  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2882  if (!CatDecl)
2883  return;
2884  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2885  if (!IDecl)
2886  return;
2887  ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2888  SelectorSet InsMap, ClsMap;
2889 
2890  for (const auto *I : CatIMPDecl->instance_methods()) {
2891  Selector Sel = I->getSelector();
2892  // When checking for methods implemented in the category, skip over
2893  // those declared in category class's super class. This is because
2894  // the super class must implement the method.
2895  if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2896  continue;
2897  InsMap.insert(Sel);
2898  }
2899 
2900  for (const auto *I : CatIMPDecl->class_methods()) {
2901  Selector Sel = I->getSelector();
2902  if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2903  continue;
2904  ClsMap.insert(Sel);
2905  }
2906  if (InsMap.empty() && ClsMap.empty())
2907  return;
2908 
2909  SelectorSet InsMapSeen, ClsMapSeen;
2910  bool IncompleteImpl = false;
2911  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2912  CatIMPDecl, IDecl,
2913  IncompleteImpl, false,
2914  true /*WarnCategoryMethodImpl*/);
2915 }
2916 
2918  ObjCContainerDecl* CDecl,
2919  bool IncompleteImpl) {
2920  SelectorSet InsMap;
2921  // Check and see if instance methods in class interface have been
2922  // implemented in the implementation class.
2923  for (const auto *I : IMPDecl->instance_methods())
2924  InsMap.insert(I->getSelector());
2925 
2926  // Add the selectors for getters/setters of @dynamic properties.
2927  for (const auto *PImpl : IMPDecl->property_impls()) {
2928  // We only care about @dynamic implementations.
2929  if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2930  continue;
2931 
2932  const auto *P = PImpl->getPropertyDecl();
2933  if (!P) continue;
2934 
2935  InsMap.insert(P->getGetterName());
2936  if (!P->getSetterName().isNull())
2937  InsMap.insert(P->getSetterName());
2938  }
2939 
2940  // Check and see if properties declared in the interface have either 1)
2941  // an implementation or 2) there is a @synthesize/@dynamic implementation
2942  // of the property in the @implementation.
2943  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2944  bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2946  !IDecl->isObjCRequiresPropertyDefs();
2947  DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2948  }
2949 
2950  // Diagnose null-resettable synthesized setters.
2952 
2953  SelectorSet ClsMap;
2954  for (const auto *I : IMPDecl->class_methods())
2955  ClsMap.insert(I->getSelector());
2956 
2957  // Check for type conflict of methods declared in a class/protocol and
2958  // its implementation; if any.
2959  SelectorSet InsMapSeen, ClsMapSeen;
2960  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2961  IMPDecl, CDecl,
2962  IncompleteImpl, true);
2963 
2964  // check all methods implemented in category against those declared
2965  // in its primary class.
2966  if (ObjCCategoryImplDecl *CatDecl =
2967  dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
2969 
2970  // Check the protocol list for unimplemented methods in the @implementation
2971  // class.
2972  // Check and see if class methods in class interface have been
2973  // implemented in the implementation class.
2974 
2975  LazyProtocolNameSet ExplicitImplProtocols;
2976 
2977  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2978  for (auto *PI : I->all_referenced_protocols())
2979  CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
2980  InsMap, ClsMap, I, ExplicitImplProtocols);
2981  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2982  // For extended class, unimplemented methods in its protocols will
2983  // be reported in the primary class.
2984  if (!C->IsClassExtension()) {
2985  for (auto *P : C->protocols())
2986  CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
2987  IncompleteImpl, InsMap, ClsMap, CDecl,
2988  ExplicitImplProtocols);
2989  DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
2990  /*SynthesizeProperties=*/false);
2991  }
2992  } else
2993  llvm_unreachable("invalid ObjCContainerDecl type.");
2994 }
2995 
2998  IdentifierInfo **IdentList,
2999  SourceLocation *IdentLocs,
3000  ArrayRef<ObjCTypeParamList *> TypeParamLists,
3001  unsigned NumElts) {
3002  SmallVector<Decl *, 8> DeclsInGroup;
3003  for (unsigned i = 0; i != NumElts; ++i) {
3004  // Check for another declaration kind with the same name.
3005  NamedDecl *PrevDecl
3006  = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3008  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3009  // GCC apparently allows the following idiom:
3010  //
3011  // typedef NSObject < XCElementTogglerP > XCElementToggler;
3012  // @class XCElementToggler;
3013  //
3014  // Here we have chosen to ignore the forward class declaration
3015  // with a warning. Since this is the implied behavior.
3016  TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3017  if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3018  Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3019  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3020  } else {
3021  // a forward class declaration matching a typedef name of a class refers
3022  // to the underlying class. Just ignore the forward class with a warning
3023  // as this will force the intended behavior which is to lookup the
3024  // typedef name.
3025  if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3026  Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3027  << IdentList[i];
3028  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3029  continue;
3030  }
3031  }
3032  }
3033 
3034  // Create a declaration to describe this forward declaration.
3035  ObjCInterfaceDecl *PrevIDecl
3036  = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3037 
3038  IdentifierInfo *ClassName = IdentList[i];
3039  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3040  // A previous decl with a different name is because of
3041  // @compatibility_alias, for example:
3042  // \code
3043  // @class NewImage;
3044  // @compatibility_alias OldImage NewImage;
3045  // \endcode
3046  // A lookup for 'OldImage' will return the 'NewImage' decl.
3047  //
3048  // In such a case use the real declaration name, instead of the alias one,
3049  // otherwise we will break IdentifierResolver and redecls-chain invariants.
3050  // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3051  // has been aliased.
3052  ClassName = PrevIDecl->getIdentifier();
3053  }
3054 
3055  // If this forward declaration has type parameters, compare them with the
3056  // type parameters of the previous declaration.
3057  ObjCTypeParamList *TypeParams = TypeParamLists[i];
3058  if (PrevIDecl && TypeParams) {
3059  if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3060  // Check for consistency with the previous declaration.
3062  *this, PrevTypeParams, TypeParams,
3063  TypeParamListContext::ForwardDeclaration)) {
3064  TypeParams = nullptr;
3065  }
3066  } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3067  // The @interface does not have type parameters. Complain.
3068  Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3069  << ClassName
3070  << TypeParams->getSourceRange();
3071  Diag(Def->getLocation(), diag::note_defined_here)
3072  << ClassName;
3073 
3074  TypeParams = nullptr;
3075  }
3076  }
3077 
3078  ObjCInterfaceDecl *IDecl
3080  ClassName, TypeParams, PrevIDecl,
3081  IdentLocs[i]);
3082  IDecl->setAtEndRange(IdentLocs[i]);
3083 
3084  PushOnScopeChains(IDecl, TUScope);
3085  CheckObjCDeclScope(IDecl);
3086  DeclsInGroup.push_back(IDecl);
3087  }
3088 
3089  return BuildDeclaratorGroup(DeclsInGroup);
3090 }
3091 
3093  Sema::MethodMatchStrategy strategy,
3094  const Type *left, const Type *right);
3095 
3096 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3097  QualType leftQT, QualType rightQT) {
3098  const Type *left =
3099  Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3100  const Type *right =
3101  Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3102 
3103  if (left == right) return true;
3104 
3105  // If we're doing a strict match, the types have to match exactly.
3106  if (strategy == Sema::MMS_strict) return false;
3107 
3108  if (left->isIncompleteType() || right->isIncompleteType()) return false;
3109 
3110  // Otherwise, use this absurdly complicated algorithm to try to
3111  // validate the basic, low-level compatibility of the two types.
3112 
3113  // As a minimum, require the sizes and alignments to match.
3114  TypeInfo LeftTI = Context.getTypeInfo(left);
3115  TypeInfo RightTI = Context.getTypeInfo(right);
3116  if (LeftTI.Width != RightTI.Width)
3117  return false;
3118 
3119  if (LeftTI.Align != RightTI.Align)
3120  return false;
3121 
3122  // Consider all the kinds of non-dependent canonical types:
3123  // - functions and arrays aren't possible as return and parameter types
3124 
3125  // - vector types of equal size can be arbitrarily mixed
3126  if (isa<VectorType>(left)) return isa<VectorType>(right);
3127  if (isa<VectorType>(right)) return false;
3128 
3129  // - references should only match references of identical type
3130  // - structs, unions, and Objective-C objects must match more-or-less
3131  // exactly
3132  // - everything else should be a scalar
3133  if (!left->isScalarType() || !right->isScalarType())
3134  return tryMatchRecordTypes(Context, strategy, left, right);
3135 
3136  // Make scalars agree in kind, except count bools as chars, and group
3137  // all non-member pointers together.
3138  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3139  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3140  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3141  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3142  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3143  leftSK = Type::STK_ObjCObjectPointer;
3144  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3145  rightSK = Type::STK_ObjCObjectPointer;
3146 
3147  // Note that data member pointers and function member pointers don't
3148  // intermix because of the size differences.
3149 
3150  return (leftSK == rightSK);
3151 }
3152 
3153 static bool tryMatchRecordTypes(ASTContext &Context,
3154  Sema::MethodMatchStrategy strategy,
3155  const Type *lt, const Type *rt) {
3156  assert(lt && rt && lt != rt);
3157 
3158  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3159  RecordDecl *left = cast<RecordType>(lt)->getDecl();
3160  RecordDecl *right = cast<RecordType>(rt)->getDecl();
3161 
3162  // Require union-hood to match.
3163  if (left->isUnion() != right->isUnion()) return false;
3164 
3165  // Require an exact match if either is non-POD.
3166  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3167  (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3168  return false;
3169 
3170  // Require size and alignment to match.
3171  TypeInfo LeftTI = Context.getTypeInfo(lt);
3172  TypeInfo RightTI = Context.getTypeInfo(rt);
3173  if (LeftTI.Width != RightTI.Width)
3174  return false;
3175 
3176  if (LeftTI.Align != RightTI.Align)
3177  return false;
3178 
3179  // Require fields to match.
3180  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3181  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3182  for (; li != le && ri != re; ++li, ++ri) {
3183  if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3184  return false;
3185  }
3186  return (li == le && ri == re);
3187 }
3188 
3189 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3190 /// returns true, or false, accordingly.
3191 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3193  const ObjCMethodDecl *right,
3194  MethodMatchStrategy strategy) {
3195  if (!matchTypes(Context, strategy, left->getReturnType(),
3196  right->getReturnType()))
3197  return false;
3198 
3199  // If either is hidden, it is not considered to match.
3200  if (left->isHidden() || right->isHidden())
3201  return false;
3202 
3203  if (getLangOpts().ObjCAutoRefCount &&
3204  (left->hasAttr<NSReturnsRetainedAttr>()
3205  != right->hasAttr<NSReturnsRetainedAttr>() ||
3206  left->hasAttr<NSConsumesSelfAttr>()
3207  != right->hasAttr<NSConsumesSelfAttr>()))
3208  return false;
3209 
3211  li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3212  re = right->param_end();
3213 
3214  for (; li != le && ri != re; ++li, ++ri) {
3215  assert(ri != right->param_end() && "Param mismatch");
3216  const ParmVarDecl *lparm = *li, *rparm = *ri;
3217 
3218  if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3219  return false;
3220 
3221  if (getLangOpts().ObjCAutoRefCount &&
3222  lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3223  return false;
3224  }
3225  return true;
3226 }
3227 
3229  ObjCMethodDecl *MethodInList) {
3230  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3231  auto *MethodInListProtocol =
3232  dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3233  // If this method belongs to a protocol but the method in list does not, or
3234  // vice versa, we say the context is not the same.
3235  if ((MethodProtocol && !MethodInListProtocol) ||
3236  (!MethodProtocol && MethodInListProtocol))
3237  return false;
3238 
3239  if (MethodProtocol && MethodInListProtocol)
3240  return true;
3241 
3242  ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3243  ObjCInterfaceDecl *MethodInListInterface =
3244  MethodInList->getClassInterface();
3245  return MethodInterface == MethodInListInterface;
3246 }
3247 
3249  ObjCMethodDecl *Method) {
3250  // Record at the head of the list whether there were 0, 1, or >= 2 methods
3251  // inside categories.
3252  if (ObjCCategoryDecl *CD =
3253  dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3254  if (!CD->IsClassExtension() && List->getBits() < 2)
3255  List->setBits(List->getBits() + 1);
3256 
3257  // If the list is empty, make it a singleton list.
3258  if (List->getMethod() == nullptr) {
3259  List->setMethod(Method);
3260  List->setNext(nullptr);
3261  return;
3262  }
3263 
3264  // We've seen a method with this name, see if we have already seen this type
3265  // signature.
3266  ObjCMethodList *Previous = List;
3267  ObjCMethodList *ListWithSameDeclaration = nullptr;
3268  for (; List; Previous = List, List = List->getNext()) {
3269  // If we are building a module, keep all of the methods.
3271  continue;
3272 
3273  bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3274  List->getMethod());
3275  // Looking for method with a type bound requires the correct context exists.
3276  // We need to insert a method into the list if the context is different.
3277  // If the method's declaration matches the list
3278  // a> the method belongs to a different context: we need to insert it, in
3279  // order to emit the availability message, we need to prioritize over
3280  // availability among the methods with the same declaration.
3281  // b> the method belongs to the same context: there is no need to insert a
3282  // new entry.
3283  // If the method's declaration does not match the list, we insert it to the
3284  // end.
3285  if (!SameDeclaration ||
3286  !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3287  // Even if two method types do not match, we would like to say
3288  // there is more than one declaration so unavailability/deprecated
3289  // warning is not too noisy.
3290  if (!Method->isDefined())
3291  List->setHasMoreThanOneDecl(true);
3292 
3293  // For methods with the same declaration, the one that is deprecated
3294  // should be put in the front for better diagnostics.
3295  if (Method->isDeprecated() && SameDeclaration &&
3296  !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3297  ListWithSameDeclaration = List;
3298 
3299  if (Method->isUnavailable() && SameDeclaration &&
3300  !ListWithSameDeclaration &&
3302  ListWithSameDeclaration = List;
3303  continue;
3304  }
3305 
3306  ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3307 
3308  // Propagate the 'defined' bit.
3309  if (Method->isDefined())
3310  PrevObjCMethod->setDefined(true);
3311  else {
3312  // Objective-C doesn't allow an @interface for a class after its
3313  // @implementation. So if Method is not defined and there already is
3314  // an entry for this type signature, Method has to be for a different
3315  // class than PrevObjCMethod.
3316  List->setHasMoreThanOneDecl(true);
3317  }
3318 
3319  // If a method is deprecated, push it in the global pool.
3320  // This is used for better diagnostics.
3321  if (Method->isDeprecated()) {
3322  if (!PrevObjCMethod->isDeprecated())
3323  List->setMethod(Method);
3324  }
3325  // If the new method is unavailable, push it into global pool
3326  // unless previous one is deprecated.
3327  if (Method->isUnavailable()) {
3328  if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3329  List->setMethod(Method);
3330  }
3331 
3332  return;
3333  }
3334 
3335  // We have a new signature for an existing method - add it.
3336  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3337  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3338 
3339  // We insert it right before ListWithSameDeclaration.
3340  if (ListWithSameDeclaration) {
3341  auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3342  // FIXME: should we clear the other bits in ListWithSameDeclaration?
3343  ListWithSameDeclaration->setMethod(Method);
3344  ListWithSameDeclaration->setNext(List);
3345  return;
3346  }
3347 
3348  Previous->setNext(new (Mem) ObjCMethodList(Method));
3349 }
3350 
3351 /// \brief Read the contents of the method pool for a given selector from
3352 /// external storage.
3354  assert(ExternalSource && "We need an external AST source");
3355  ExternalSource->ReadMethodPool(Sel);
3356 }
3357 
3359  if (!ExternalSource)
3360  return;
3361  ExternalSource->updateOutOfDateSelector(Sel);
3362 }
3363 
3364 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3365  bool instance) {
3366  // Ignore methods of invalid containers.
3367  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3368  return;
3369 
3370  if (ExternalSource)
3371  ReadMethodPool(Method->getSelector());
3372 
3373  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3374  if (Pos == MethodPool.end())
3375  Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3376  GlobalMethods())).first;
3377 
3378  Method->setDefined(impl);
3379 
3380  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3381  addMethodToGlobalList(&Entry, Method);
3382 }
3383 
3384 /// Determines if this is an "acceptable" loose mismatch in the global
3385 /// method pool. This exists mostly as a hack to get around certain
3386 /// global mismatches which we can't afford to make warnings / errors.
3387 /// Really, what we want is a way to take a method out of the global
3388 /// method pool.
3390  ObjCMethodDecl *other) {
3391  if (!chosen->isInstanceMethod())
3392  return false;
3393 
3394  Selector sel = chosen->getSelector();
3395  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3396  return false;
3397 
3398  // Don't complain about mismatches for -length if the method we
3399  // chose has an integral result type.
3400  return (chosen->getReturnType()->isIntegerType());
3401 }
3402 
3403 /// Return true if the given method is wthin the type bound.
3405  const ObjCObjectType *TypeBound) {
3406  if (!TypeBound)
3407  return true;
3408 
3409  if (TypeBound->isObjCId())
3410  // FIXME: should we handle the case of bounding to id<A, B> differently?
3411  return true;
3412 
3413  auto *BoundInterface = TypeBound->getInterface();
3414  assert(BoundInterface && "unexpected object type!");
3415 
3416  // Check if the Method belongs to a protocol. We should allow any method
3417  // defined in any protocol, because any subclass could adopt the protocol.
3418  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3419  if (MethodProtocol) {
3420  return true;
3421  }
3422 
3423  // If the Method belongs to a class, check if it belongs to the class
3424  // hierarchy of the class bound.
3425  if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3426  // We allow methods declared within classes that are part of the hierarchy
3427  // of the class bound (superclass of, subclass of, or the same as the class
3428  // bound).
3429  return MethodInterface == BoundInterface ||
3430  MethodInterface->isSuperClassOf(BoundInterface) ||
3431  BoundInterface->isSuperClassOf(MethodInterface);
3432  }
3433  llvm_unreachable("unknow method context");
3434 }
3435 
3436 /// We first select the type of the method: Instance or Factory, then collect
3437 /// all methods with that type.
3440  bool InstanceFirst, bool CheckTheOther,
3441  const ObjCObjectType *TypeBound) {
3442  if (ExternalSource)
3443  ReadMethodPool(Sel);
3444 
3445  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3446  if (Pos == MethodPool.end())
3447  return false;
3448 
3449  // Gather the non-hidden methods.
3450  ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3451  Pos->second.second;
3452  for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3453  if (M->getMethod() && !M->getMethod()->isHidden()) {
3454  if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3455  Methods.push_back(M->getMethod());
3456  }
3457 
3458  // Return if we find any method with the desired kind.
3459  if (!Methods.empty())
3460  return Methods.size() > 1;
3461 
3462  if (!CheckTheOther)
3463  return false;
3464 
3465  // Gather the other kind.
3466  ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3467  Pos->second.first;
3468  for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3469  if (M->getMethod() && !M->getMethod()->isHidden()) {
3470  if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3471  Methods.push_back(M->getMethod());
3472  }
3473 
3474  return Methods.size() > 1;
3475 }
3476 
3478  Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3479  bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3480  // Diagnose finding more than one method in global pool.
3481  SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3482  FilteredMethods.push_back(BestMethod);
3483 
3484  for (auto *M : Methods)
3485  if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3486  FilteredMethods.push_back(M);
3487 
3488  if (FilteredMethods.size() > 1)
3489  DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3490  receiverIdOrClass);
3491 
3492  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3493  // Test for no method in the pool which should not trigger any warning by
3494  // caller.
3495  if (Pos == MethodPool.end())
3496  return true;
3497  ObjCMethodList &MethList =
3498  BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3499  return MethList.hasMoreThanOneDecl();
3500 }
3501 
3502 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3503  bool receiverIdOrClass,
3504  bool instance) {
3505  if (ExternalSource)
3506  ReadMethodPool(Sel);
3507 
3508  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3509  if (Pos == MethodPool.end())
3510  return nullptr;
3511 
3512  // Gather the non-hidden methods.
3513  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3515  for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3516  if (M->getMethod() && !M->getMethod()->isHidden())
3517  return M->getMethod();
3518  }
3519  return nullptr;
3520 }
3521 
3523  Selector Sel, SourceRange R,
3524  bool receiverIdOrClass) {
3525  // We found multiple methods, so we may have to complain.
3526  bool issueDiagnostic = false, issueError = false;
3527 
3528  // We support a warning which complains about *any* difference in
3529  // method signature.
3530  bool strictSelectorMatch =
3531  receiverIdOrClass &&
3532  !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3533  if (strictSelectorMatch) {
3534  for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3535  if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3536  issueDiagnostic = true;
3537  break;
3538  }
3539  }
3540  }
3541 
3542  // If we didn't see any strict differences, we won't see any loose
3543  // differences. In ARC, however, we also need to check for loose
3544  // mismatches, because most of them are errors.
3545  if (!strictSelectorMatch ||
3546  (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3547  for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3548  // This checks if the methods differ in type mismatch.
3549  if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3550  !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3551  issueDiagnostic = true;
3552  if (getLangOpts().ObjCAutoRefCount)
3553  issueError = true;
3554  break;
3555  }
3556  }
3557 
3558  if (issueDiagnostic) {
3559  if (issueError)
3560  Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3561  else if (strictSelectorMatch)
3562  Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3563  else
3564  Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3565 
3566  Diag(Methods[0]->getLocStart(),
3567  issueError ? diag::note_possibility : diag::note_using)
3568  << Methods[0]->getSourceRange();
3569  for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3570  Diag(Methods[I]->getLocStart(), diag::note_also_found)
3571  << Methods[I]->getSourceRange();
3572  }
3573  }
3574 }
3575 
3577  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3578  if (Pos == MethodPool.end())
3579  return nullptr;
3580 
3581  GlobalMethods &Methods = Pos->second;
3582  for (const ObjCMethodList *Method = &Methods.first; Method;
3583  Method = Method->getNext())
3584  if (Method->getMethod() &&
3585  (Method->getMethod()->isDefined() ||
3586  Method->getMethod()->isPropertyAccessor()))
3587  return Method->getMethod();
3588 
3589  for (const ObjCMethodList *Method = &Methods.second; Method;
3590  Method = Method->getNext())
3591  if (Method->getMethod() &&
3592  (Method->getMethod()->isDefined() ||
3593  Method->getMethod()->isPropertyAccessor()))
3594  return Method->getMethod();
3595  return nullptr;
3596 }
3597 
3598 static void
3601  StringRef Typo, const ObjCMethodDecl * Method) {
3602  const unsigned MaxEditDistance = 1;
3603  unsigned BestEditDistance = MaxEditDistance + 1;
3604  std::string MethodName = Method->getSelector().getAsString();
3605 
3606  unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3607  if (MinPossibleEditDistance > 0 &&
3608  Typo.size() / MinPossibleEditDistance < 1)
3609  return;
3610  unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3611  if (EditDistance > MaxEditDistance)
3612  return;
3613  if (EditDistance == BestEditDistance)
3614  BestMethod.push_back(Method);
3615  else if (EditDistance < BestEditDistance) {
3616  BestMethod.clear();
3617  BestMethod.push_back(Method);
3618  }
3619 }
3620 
3622  QualType ObjectType) {
3623  if (ObjectType.isNull())
3624  return true;
3625  if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3626  return true;
3627  return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3628  nullptr;
3629 }
3630 
3631 const ObjCMethodDecl *
3633  QualType ObjectType) {
3634  unsigned NumArgs = Sel.getNumArgs();
3636  bool ObjectIsId = true, ObjectIsClass = true;
3637  if (ObjectType.isNull())
3638  ObjectIsId = ObjectIsClass = false;
3639  else if (!ObjectType->isObjCObjectPointerType())
3640  return nullptr;
3641  else if (const ObjCObjectPointerType *ObjCPtr =
3642  ObjectType->getAsObjCInterfacePointerType()) {
3643  ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3644  ObjectIsId = ObjectIsClass = false;
3645  }
3646  else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3647  ObjectIsClass = false;
3648  else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3649  ObjectIsId = false;
3650  else
3651  return nullptr;
3652 
3653  for (GlobalMethodPool::iterator b = MethodPool.begin(),
3654  e = MethodPool.end(); b != e; b++) {
3655  // instance methods
3656  for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3657  if (M->getMethod() &&
3658  (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3659  (M->getMethod()->getSelector() != Sel)) {
3660  if (ObjectIsId)
3661  Methods.push_back(M->getMethod());
3662  else if (!ObjectIsClass &&
3663  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3664  ObjectType))
3665  Methods.push_back(M->getMethod());
3666  }
3667  // class methods
3668  for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3669  if (M->getMethod() &&
3670  (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3671  (M->getMethod()->getSelector() != Sel)) {
3672  if (ObjectIsClass)
3673  Methods.push_back(M->getMethod());
3674  else if (!ObjectIsId &&
3675  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3676  ObjectType))
3677  Methods.push_back(M->getMethod());
3678  }
3679  }
3680 
3682  for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3683  HelperSelectorsForTypoCorrection(SelectedMethods,
3684  Sel.getAsString(), Methods[i]);
3685  }
3686  return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3687 }
3688 
3689 /// DiagnoseDuplicateIvars -
3690 /// Check for duplicate ivars in the entire class at the start of
3691 /// \@implementation. This becomes necesssary because class extension can
3692 /// add ivars to a class in random order which will not be known until
3693 /// class's \@implementation is seen.
3695  ObjCInterfaceDecl *SID) {
3696  for (auto *Ivar : ID->ivars()) {
3697  if (Ivar->isInvalidDecl())
3698  continue;
3699  if (IdentifierInfo *II = Ivar->getIdentifier()) {
3700  ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3701  if (prevIvar) {
3702  Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3703  Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3704  Ivar->setInvalidDecl();
3705  }
3706  }
3707  }
3708 }
3709 
3710 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3712  if (S.getLangOpts().ObjCWeak) return;
3713 
3714  for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3715  ivar; ivar = ivar->getNextIvar()) {
3716  if (ivar->isInvalidDecl()) continue;
3717  if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3718  if (S.getLangOpts().ObjCWeakRuntime) {
3719  S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3720  } else {
3721  S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3722  }
3723  }
3724  }
3725 }
3726 
3727 /// Diagnose attempts to use flexible array member with retainable object type.
3729  ObjCInterfaceDecl *ID) {
3730  if (!S.getLangOpts().ObjCAutoRefCount)
3731  return;
3732 
3733  for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3734  ivar = ivar->getNextIvar()) {
3735  if (ivar->isInvalidDecl())
3736  continue;
3737  QualType IvarTy = ivar->getType();
3738  if (IvarTy->isIncompleteArrayType() &&
3740  IvarTy->isObjCLifetimeType()) {
3741  S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3742  ivar->setInvalidDecl();
3743  }
3744  }
3745 }
3746 
3748  switch (CurContext->getDeclKind()) {
3749  case Decl::ObjCInterface:
3750  return Sema::OCK_Interface;
3751  case Decl::ObjCProtocol:
3752  return Sema::OCK_Protocol;
3753  case Decl::ObjCCategory:
3754  if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3755  return Sema::OCK_ClassExtension;
3756  return Sema::OCK_Category;
3757  case Decl::ObjCImplementation:
3758  return Sema::OCK_Implementation;
3759  case Decl::ObjCCategoryImpl:
3761 
3762  default:
3763  return Sema::OCK_None;
3764  }
3765 }
3766 
3768  if (T->isIncompleteArrayType())
3769  return true;
3770  const auto *RecordTy = T->getAs<RecordType>();
3771  return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3772 }
3773 
3775  ObjCInterfaceDecl *IntfDecl = nullptr;
3776  ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3778  if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3779  Ivars = IntfDecl->ivars();
3780  } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3781  IntfDecl = ImplDecl->getClassInterface();
3782  Ivars = ImplDecl->ivars();
3783  } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3784  if (CategoryDecl->IsClassExtension()) {
3785  IntfDecl = CategoryDecl->getClassInterface();
3786  Ivars = CategoryDecl->ivars();
3787  }
3788  }
3789 
3790  // Check if variable sized ivar is in interface and visible to subclasses.
3791  if (!isa<ObjCInterfaceDecl>(OCD)) {
3792  for (auto ivar : Ivars) {
3793  if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3794  S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3795  << ivar->getDeclName() << ivar->getType();
3796  }
3797  }
3798  }
3799 
3800  // Subsequent checks require interface decl.
3801  if (!IntfDecl)
3802  return;
3803 
3804  // Check if variable sized ivar is followed by another ivar.
3805  for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3806  ivar = ivar->getNextIvar()) {
3807  if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3808  continue;
3809  QualType IvarTy = ivar->getType();
3810  bool IsInvalidIvar = false;
3811  if (IvarTy->isIncompleteArrayType()) {
3812  S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3813  << ivar->getDeclName() << IvarTy
3814  << TTK_Class; // Use "class" for Obj-C.
3815  IsInvalidIvar = true;
3816  } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3817  if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3818  S.Diag(ivar->getLocation(),
3819  diag::err_objc_variable_sized_type_not_at_end)
3820  << ivar->getDeclName() << IvarTy;
3821  IsInvalidIvar = true;
3822  }
3823  }
3824  if (IsInvalidIvar) {
3825  S.Diag(ivar->getNextIvar()->getLocation(),
3826  diag::note_next_ivar_declaration)
3827  << ivar->getNextIvar()->getSynthesize();
3828  ivar->setInvalidDecl();
3829  }
3830  }
3831 
3832  // Check if ObjC container adds ivars after variable sized ivar in superclass.
3833  // Perform the check only if OCD is the first container to declare ivars to
3834  // avoid multiple warnings for the same ivar.
3835  ObjCIvarDecl *FirstIvar =
3836  (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3837  if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3838  const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3839  while (SuperClass && SuperClass->ivar_empty())
3840  SuperClass = SuperClass->getSuperClass();
3841  if (SuperClass) {
3842  auto IvarIter = SuperClass->ivar_begin();
3843  std::advance(IvarIter, SuperClass->ivar_size() - 1);
3844  const ObjCIvarDecl *LastIvar = *IvarIter;
3845  if (IsVariableSizedType(LastIvar->getType())) {
3846  S.Diag(FirstIvar->getLocation(),
3847  diag::warn_superclass_variable_sized_type_not_at_end)
3848  << FirstIvar->getDeclName() << LastIvar->getDeclName()
3849  << LastIvar->getType() << SuperClass->getDeclName();
3850  S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3851  << LastIvar->getDeclName();
3852  }
3853  }
3854  }
3855 }
3856 
3857 // Note: For class/category implementations, allMethods is always null.
3859  ArrayRef<DeclGroupPtrTy> allTUVars) {
3861  return nullptr;
3862 
3863  assert(AtEnd.isValid() && "Invalid location for '@end'");
3864 
3866  Decl *ClassDecl = cast<Decl>(OCD);
3867 
3868  bool isInterfaceDeclKind =
3869  isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3870  || isa<ObjCProtocolDecl>(ClassDecl);
3871  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3872 
3873  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3874  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3875  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3876 
3877  for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3878  ObjCMethodDecl *Method =
3879  cast_or_null<ObjCMethodDecl>(allMethods[i]);
3880 
3881  if (!Method) continue; // Already issued a diagnostic.
3882  if (Method->isInstanceMethod()) {
3883  /// Check for instance method of the same name with incompatible types
3884  const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3885  bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3886  : false;
3887  if ((isInterfaceDeclKind && PrevMethod && !match)
3888  || (checkIdenticalMethods && match)) {
3889  Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3890  << Method->getDeclName();
3891  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3892  Method->setInvalidDecl();
3893  } else {
3894  if (PrevMethod) {
3895  Method->setAsRedeclaration(PrevMethod);
3896  if (!Context.getSourceManager().isInSystemHeader(
3897  Method->getLocation()))
3898  Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3899  << Method->getDeclName();
3900  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3901  }
3902  InsMap[Method->getSelector()] = Method;
3903  /// The following allows us to typecheck messages to "id".
3905  }
3906  } else {
3907  /// Check for class method of the same name with incompatible types
3908  const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3909  bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3910  : false;
3911  if ((isInterfaceDeclKind && PrevMethod && !match)
3912  || (checkIdenticalMethods && match)) {
3913  Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3914  << Method->getDeclName();
3915  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3916  Method->setInvalidDecl();
3917  } else {
3918  if (PrevMethod) {
3919  Method->setAsRedeclaration(PrevMethod);
3920  if (!Context.getSourceManager().isInSystemHeader(
3921  Method->getLocation()))
3922  Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3923  << Method->getDeclName();
3924  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3925  }
3926  ClsMap[Method->getSelector()] = Method;
3928  }
3929  }
3930  }
3931  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3932  // Nothing to do here.
3933  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3934  // Categories are used to extend the class by declaring new methods.
3935  // By the same token, they are also used to add new properties. No
3936  // need to compare the added property to those in the class.
3937 
3938  if (C->IsClassExtension()) {
3939  ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3940  DiagnoseClassExtensionDupMethods(C, CCPrimary);
3941  }
3942  }
3943  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3944  if (CDecl->getIdentifier())
3945  // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3946  // user-defined setter/getter. It also synthesizes setter/getter methods
3947  // and adds them to the DeclContext and global method pools.
3948  for (auto *I : CDecl->properties())
3950  CDecl->setAtEndRange(AtEnd);
3951  }
3952  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3953  IC->setAtEndRange(AtEnd);
3954  if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3955  // Any property declared in a class extension might have user
3956  // declared setter or getter in current class extension or one
3957  // of the other class extensions. Mark them as synthesized as
3958  // property will be synthesized when property with same name is
3959  // seen in the @implementation.
3960  for (const auto *Ext : IDecl->visible_extensions()) {
3961  for (const auto *Property : Ext->instance_properties()) {
3962  // Skip over properties declared @dynamic
3963  if (const ObjCPropertyImplDecl *PIDecl
3964  = IC->FindPropertyImplDecl(Property->getIdentifier(),
3965  Property->getQueryKind()))
3966  if (PIDecl->getPropertyImplementation()
3968  continue;
3969 
3970  for (const auto *Ext : IDecl->visible_extensions()) {
3971  if (ObjCMethodDecl *GetterMethod
3972  = Ext->getInstanceMethod(Property->getGetterName()))
3973  GetterMethod->setPropertyAccessor(true);
3974  if (!Property->isReadOnly())
3975  if (ObjCMethodDecl *SetterMethod
3976  = Ext->getInstanceMethod(Property->getSetterName()))
3977  SetterMethod->setPropertyAccessor(true);
3978  }
3979  }
3980  }
3981  ImplMethodsVsClassMethods(S, IC, IDecl);
3985  if (IDecl->hasDesignatedInitializers())
3987  DiagnoseWeakIvars(*this, IC);
3989 
3990  bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
3991  if (IDecl->getSuperClass() == nullptr) {
3992  // This class has no superclass, so check that it has been marked with
3993  // __attribute((objc_root_class)).
3994  if (!HasRootClassAttr) {
3995  SourceLocation DeclLoc(IDecl->getLocation());
3996  SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
3997  Diag(DeclLoc, diag::warn_objc_root_class_missing)
3998  << IDecl->getIdentifier();
3999  // See if NSObject is in the current scope, and if it is, suggest
4000  // adding " : NSObject " to the class declaration.
4002  NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4003  DeclLoc, LookupOrdinaryName);
4004  ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4005  if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4006  Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4007  << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4008  } else {
4009  Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4010  }
4011  }
4012  } else if (HasRootClassAttr) {
4013  // Complain that only root classes may have this attribute.
4014  Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4015  }
4016 
4017  if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4018  // An interface can subclass another interface with a
4019  // objc_subclassing_restricted attribute when it has that attribute as
4020  // well (because of interfaces imported from Swift). Therefore we have
4021  // to check if we can subclass in the implementation as well.
4022  if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4023  Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4024  Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4025  Diag(Super->getLocation(), diag::note_class_declared);
4026  }
4027  }
4028 
4030  while (IDecl->getSuperClass()) {
4031  DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4032  IDecl = IDecl->getSuperClass();
4033  }
4034  }
4035  }
4036  SetIvarInitializers(IC);
4037  } else if (ObjCCategoryImplDecl* CatImplClass =
4038  dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4039  CatImplClass->setAtEndRange(AtEnd);
4040 
4041  // Find category interface decl and then check that all methods declared
4042  // in this interface are implemented in the category @implementation.
4043  if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4044  if (ObjCCategoryDecl *Cat
4045  = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4046  ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4047  }
4048  }
4049  } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4050  if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4051  if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4052  Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4053  Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4054  Diag(Super->getLocation(), diag::note_class_declared);
4055  }
4056  }
4057  }
4058  DiagnoseVariableSizedIvars(*this, OCD);
4059  if (isInterfaceDeclKind) {
4060  // Reject invalid vardecls.
4061  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4062  DeclGroupRef DG = allTUVars[i].get();
4063  for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4064  if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4065  if (!VDecl->hasExternalStorage())
4066  Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4067  }
4068  }
4069  }
4071 
4072  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4073  DeclGroupRef DG = allTUVars[i].get();
4074  for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4075  (*I)->setTopLevelDeclInObjCContainer();
4077  }
4078 
4079  ActOnDocumentableDecl(ClassDecl);
4080  return ClassDecl;
4081 }
4082 
4083 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4084 /// objective-c's type qualifier from the parser version of the same info.
4087  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4088 }
4089 
4090 /// \brief Check whether the declared result type of the given Objective-C
4091 /// method declaration is compatible with the method's class.
4092 ///
4095  ObjCInterfaceDecl *CurrentClass) {
4096  QualType ResultType = Method->getReturnType();
4097 
4098  // If an Objective-C method inherits its related result type, then its
4099  // declared result type must be compatible with its own class type. The
4100  // declared result type is compatible if:
4101  if (const ObjCObjectPointerType *ResultObjectType
4102  = ResultType->getAs<ObjCObjectPointerType>()) {
4103  // - it is id or qualified id, or
4104  if (ResultObjectType->isObjCIdType() ||
4105  ResultObjectType->isObjCQualifiedIdType())
4106  return Sema::RTC_Compatible;
4107 
4108  if (CurrentClass) {
4109  if (ObjCInterfaceDecl *ResultClass
4110  = ResultObjectType->getInterfaceDecl()) {
4111  // - it is the same as the method's class type, or
4112  if (declaresSameEntity(CurrentClass, ResultClass))
4113  return Sema::RTC_Compatible;
4114 
4115  // - it is a superclass of the method's class type
4116  if (ResultClass->isSuperClassOf(CurrentClass))
4117  return Sema::RTC_Compatible;
4118  }
4119  } else {
4120  // Any Objective-C pointer type might be acceptable for a protocol
4121  // method; we just don't know.
4122  return Sema::RTC_Unknown;
4123  }
4124  }
4125 
4126  return Sema::RTC_Incompatible;
4127 }
4128 
4129 namespace {
4130 /// A helper class for searching for methods which a particular method
4131 /// overrides.
4132 class OverrideSearch {
4133 public:
4134  Sema &S;
4135  ObjCMethodDecl *Method;
4137  bool Recursive;
4138 
4139 public:
4140  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
4141  Selector selector = method->getSelector();
4142 
4143  // Bypass this search if we've never seen an instance/class method
4144  // with this selector before.
4145  Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4146  if (it == S.MethodPool.end()) {
4147  if (!S.getExternalSource()) return;
4148  S.ReadMethodPool(selector);
4149 
4150  it = S.MethodPool.find(selector);
4151  if (it == S.MethodPool.end())
4152  return;
4153  }
4154  ObjCMethodList &list =
4155  method->isInstanceMethod() ? it->second.first : it->second.second;
4156  if (!list.getMethod()) return;
4157 
4158  ObjCContainerDecl *container
4159  = cast<ObjCContainerDecl>(method->getDeclContext());
4160 
4161  // Prevent the search from reaching this container again. This is
4162  // important with categories, which override methods from the
4163  // interface and each other.
4164  if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
4165  searchFromContainer(container);
4166  if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
4167  searchFromContainer(Interface);
4168  } else {
4169  searchFromContainer(container);
4170  }
4171  }
4172 
4173  typedef decltype(Overridden)::iterator iterator;
4174  iterator begin() const { return Overridden.begin(); }
4175  iterator end() const { return Overridden.end(); }
4176 
4177 private:
4178  void searchFromContainer(ObjCContainerDecl *container) {
4179  if (container->isInvalidDecl()) return;
4180 
4181  switch (container->getDeclKind()) {
4182 #define OBJCCONTAINER(type, base) \
4183  case Decl::type: \
4184  searchFrom(cast<type##Decl>(container)); \
4185  break;
4186 #define ABSTRACT_DECL(expansion)
4187 #define DECL(type, base) \
4188  case Decl::type:
4189 #include "clang/AST/DeclNodes.inc"
4190  llvm_unreachable("not an ObjC container!");
4191  }
4192  }
4193 
4194  void searchFrom(ObjCProtocolDecl *protocol) {
4195  if (!protocol->hasDefinition())
4196  return;
4197 
4198  // A method in a protocol declaration overrides declarations from
4199  // referenced ("parent") protocols.
4200  search(protocol->getReferencedProtocols());
4201  }
4202 
4203  void searchFrom(ObjCCategoryDecl *category) {
4204  // A method in a category declaration overrides declarations from
4205  // the main class and from protocols the category references.
4206  // The main class is handled in the constructor.
4207  search(category->getReferencedProtocols());
4208  }
4209 
4210  void searchFrom(ObjCCategoryImplDecl *impl) {
4211  // A method in a category definition that has a category
4212  // declaration overrides declarations from the category
4213  // declaration.
4214  if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4215  search(category);
4216  if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4217  search(Interface);
4218 
4219  // Otherwise it overrides declarations from the class.
4220  } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
4221  search(Interface);
4222  }
4223  }
4224 
4225  void searchFrom(ObjCInterfaceDecl *iface) {
4226  // A method in a class declaration overrides declarations from
4227  if (!iface->hasDefinition())
4228  return;
4229 
4230  // - categories,
4231  for (auto *Cat : iface->known_categories())
4232  search(Cat);
4233 
4234  // - the super class, and
4235  if (ObjCInterfaceDecl *super = iface->getSuperClass())
4236  search(super);
4237 
4238  // - any referenced protocols.
4239  search(iface->getReferencedProtocols());
4240  }
4241 
4242  void searchFrom(ObjCImplementationDecl *impl) {
4243  // A method in a class implementation overrides declarations from
4244  // the class interface.
4245  if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
4246  search(Interface);
4247  }
4248 
4249  void search(const ObjCProtocolList &protocols) {
4250  for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
4251  i != e; ++i)
4252  search(*i);
4253  }
4254 
4255  void search(ObjCContainerDecl *container) {
4256  // Check for a method in this container which matches this selector.
4257  ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4258  Method->isInstanceMethod(),
4259  /*AllowHidden=*/true);
4260 
4261  // If we find one, record it and bail out.
4262  if (meth) {
4263  Overridden.insert(meth);
4264  return;
4265  }
4266 
4267  // Otherwise, search for methods that a hypothetical method here
4268  // would have overridden.
4269 
4270  // Note that we're now in a recursive case.
4271  Recursive = true;
4272 
4273  searchFromContainer(container);
4274  }
4275 };
4276 } // end anonymous namespace
4277 
4279  ObjCInterfaceDecl *CurrentClass,
4281  // Search for overridden methods and merge information down from them.
4282  OverrideSearch overrides(*this, ObjCMethod);
4283  // Keep track if the method overrides any method in the class's base classes,
4284  // its protocols, or its categories' protocols; we will keep that info
4285  // in the ObjCMethodDecl.
4286  // For this info, a method in an implementation is not considered as
4287  // overriding the same method in the interface or its categories.
4288  bool hasOverriddenMethodsInBaseOrProtocol = false;
4289  for (OverrideSearch::iterator
4290  i = overrides.begin(), e = overrides.end(); i != e; ++i) {
4291  ObjCMethodDecl *overridden = *i;
4292 
4293  if (!hasOverriddenMethodsInBaseOrProtocol) {
4294  if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4295  CurrentClass != overridden->getClassInterface() ||
4296  overridden->isOverriding()) {
4297  hasOverriddenMethodsInBaseOrProtocol = true;
4298 
4299  } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4300  // OverrideSearch will return as "overridden" the same method in the
4301  // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4302  // check whether a category of a base class introduced a method with the
4303  // same selector, after the interface method declaration.
4304  // To avoid unnecessary lookups in the majority of cases, we use the
4305  // extra info bits in GlobalMethodPool to check whether there were any
4306  // category methods with this selector.
4307  GlobalMethodPool::iterator It =
4308  MethodPool.find(ObjCMethod->getSelector());
4309  if (It != MethodPool.end()) {
4310  ObjCMethodList &List =
4311  ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4312  unsigned CategCount = List.getBits();
4313  if (CategCount > 0) {
4314  // If the method is in a category we'll do lookup if there were at
4315  // least 2 category methods recorded, otherwise only one will do.
4316  if (CategCount > 1 ||
4317  !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4318  OverrideSearch overrides(*this, overridden);
4319  for (OverrideSearch::iterator
4320  OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
4321  ObjCMethodDecl *SuperOverridden = *OI;
4322  if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4323  CurrentClass != SuperOverridden->getClassInterface()) {
4324  hasOverriddenMethodsInBaseOrProtocol = true;
4325  overridden->setOverriding(true);
4326  break;
4327  }
4328  }
4329  }
4330  }
4331  }
4332  }
4333  }
4334 
4335  // Propagate down the 'related result type' bit from overridden methods.
4336  if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4337  ObjCMethod->SetRelatedResultType();
4338 
4339  // Then merge the declarations.
4340  mergeObjCMethodDecls(ObjCMethod, overridden);
4341 
4342  if (ObjCMethod->isImplicit() && overridden->isImplicit())
4343  continue; // Conflicting properties are detected elsewhere.
4344 
4345  // Check for overriding methods
4346  if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4347  isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4348  CheckConflictingOverridingMethod(ObjCMethod, overridden,
4349  isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4350 
4351  if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4352  isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4353  !overridden->isImplicit() /* not meant for properties */) {
4354  ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4355  E = ObjCMethod->param_end();
4356  ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4357  PrevE = overridden->param_end();
4358  for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4359  assert(PrevI != overridden->param_end() && "Param mismatch");
4360  QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4361  QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4362  // If type of argument of method in this class does not match its
4363  // respective argument type in the super class method, issue warning;
4364  if (!Context.typesAreCompatible(T1, T2)) {
4365  Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4366  << T1 << T2;
4367  Diag(overridden->getLocation(), diag::note_previous_declaration);
4368  break;
4369  }
4370  }
4371  }
4372  }
4373 
4374  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4375 }
4376 
4377 /// Merge type nullability from for a redeclaration of the same entity,
4378 /// producing the updated type of the redeclared entity.
4380  QualType type,
4381  bool usesCSKeyword,
4382  SourceLocation prevLoc,
4383  QualType prevType,
4384  bool prevUsesCSKeyword) {
4385  // Determine the nullability of both types.
4386  auto nullability = type->getNullability(S.Context);
4387  auto prevNullability = prevType->getNullability(S.Context);
4388 
4389  // Easy case: both have nullability.
4390  if (nullability.hasValue() == prevNullability.hasValue()) {
4391  // Neither has nullability; continue.
4392  if (!nullability)
4393  return type;
4394 
4395  // The nullabilities are equivalent; do nothing.
4396  if (*nullability == *prevNullability)
4397  return type;
4398 
4399  // Complain about mismatched nullability.
4400  S.Diag(loc, diag::err_nullability_conflicting)
4401  << DiagNullabilityKind(*nullability, usesCSKeyword)
4402  << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4403  return type;
4404  }
4405 
4406  // If it's the redeclaration that has nullability, don't change anything.
4407  if (nullability)
4408  return type;
4409 
4410  // Otherwise, provide the result with the same nullability.
4411  return S.Context.getAttributedType(
4412  AttributedType::getNullabilityAttrKind(*prevNullability),
4413  type, type);
4414 }
4415 
4416 /// Merge information from the declaration of a method in the \@interface
4417 /// (or a category/extension) into the corresponding method in the
4418 /// @implementation (for a class or category).
4420  ObjCMethodDecl *method,
4421  ObjCMethodDecl *prevMethod) {
4422  // Merge the objc_requires_super attribute.
4423  if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4424  !method->hasAttr<ObjCRequiresSuperAttr>()) {
4425  // merge the attribute into implementation.
4426  method->addAttr(
4427  ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4428  method->getLocation()));
4429  }
4430 
4431  // Merge nullability of the result type.
4432  QualType newReturnType
4434  S, method->getReturnTypeSourceRange().getBegin(),
4435  method->getReturnType(),
4437  prevMethod->getReturnTypeSourceRange().getBegin(),
4438  prevMethod->getReturnType(),
4440  method->setReturnType(newReturnType);
4441 
4442  // Handle each of the parameters.
4443  unsigned numParams = method->param_size();
4444  unsigned numPrevParams = prevMethod->param_size();
4445  for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4446  ParmVarDecl *param = method->param_begin()[i];
4447  ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4448 
4449  // Merge nullability.
4450  QualType newParamType
4452  S, param->getLocation(), param->getType(),
4454  prevParam->getLocation(), prevParam->getType(),
4456  param->setType(newParamType);
4457  }
4458 }
4459 
4460 /// Verify that the method parameters/return value have types that are supported
4461 /// by the x86 target.
4463  const ObjCMethodDecl *Method) {
4464  assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4465  llvm::Triple::x86 &&
4466  "x86-specific check invoked for a different target");
4467  SourceLocation Loc;
4468  QualType T;
4469  for (const ParmVarDecl *P : Method->parameters()) {
4470  if (P->getType()->isVectorType()) {
4471  Loc = P->getLocStart();
4472  T = P->getType();
4473  break;
4474  }
4475  }
4476  if (Loc.isInvalid()) {
4477  if (Method->getReturnType()->isVectorType()) {
4478  Loc = Method->getReturnTypeSourceRange().getBegin();
4479  T = Method->getReturnType();
4480  } else
4481  return;
4482  }
4483 
4484  // Vector parameters/return values are not supported by objc_msgSend on x86 in
4485  // iOS < 9 and macOS < 10.11.
4486  const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4487  VersionTuple AcceptedInVersion;
4488  if (Triple.getOS() == llvm::Triple::IOS)
4489  AcceptedInVersion = VersionTuple(/*Major=*/9);
4490  else if (Triple.isMacOSX())
4491  AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4492  else
4493  return;
4495  AcceptedInVersion)
4496  return;
4497  SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4498  << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4499  : /*parameter*/ 0)
4500  << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4501 }
4502 
4504  Scope *S,
4505  SourceLocation MethodLoc, SourceLocation EndLoc,
4506  tok::TokenKind MethodType,
4507  ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4508  ArrayRef<SourceLocation> SelectorLocs,
4509  Selector Sel,
4510  // optional arguments. The number of types/arguments is obtained
4511  // from the Sel.getNumArgs().
4512  ObjCArgInfo *ArgInfo,
4513  DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
4514  AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
4515  bool isVariadic, bool MethodDefinition) {
4516  // Make sure we can establish a context for the method.
4517  if (!CurContext->isObjCContainer()) {
4518  Diag(MethodLoc, diag::err_missing_method_context);
4519  return nullptr;
4520  }
4522  Decl *ClassDecl = cast<Decl>(OCD);
4523  QualType resultDeclType;
4524 
4525  bool HasRelatedResultType = false;
4526  TypeSourceInfo *ReturnTInfo = nullptr;
4527  if (ReturnType) {
4528  resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4529 
4530  if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4531  return nullptr;
4532 
4533  QualType bareResultType = resultDeclType;
4534  (void)AttributedType::stripOuterNullability(bareResultType);
4535  HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4536  } else { // get the type for "id".
4537  resultDeclType = Context.getObjCIdType();
4538  Diag(MethodLoc, diag::warn_missing_method_return_type)
4539  << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4540  }
4541 
4542  ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4543  Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4544  MethodType == tok::minus, isVariadic,
4545  /*isPropertyAccessor=*/false,
4546  /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4547  MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4549  HasRelatedResultType);
4550 
4552 
4553  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4554  QualType ArgType;
4555  TypeSourceInfo *DI;
4556 
4557  if (!ArgInfo[i].Type) {
4558  ArgType = Context.getObjCIdType();
4559  DI = nullptr;
4560  } else {
4561  ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4562  }
4563 
4564  LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4566  LookupName(R, S);
4567  if (R.isSingleResult()) {
4568  NamedDecl *PrevDecl = R.getFoundDecl();
4569  if (S->isDeclScope(PrevDecl)) {
4570  Diag(ArgInfo[i].NameLoc,
4571  (MethodDefinition ? diag::warn_method_param_redefinition
4572  : diag::warn_method_param_declaration))
4573  << ArgInfo[i].Name;
4574  Diag(PrevDecl->getLocation(),
4575  diag::note_previous_declaration);
4576  }
4577  }
4578 
4579  SourceLocation StartLoc = DI
4580  ? DI->getTypeLoc().getBeginLoc()
4581  : ArgInfo[i].NameLoc;
4582 
4583  ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4584  ArgInfo[i].NameLoc, ArgInfo[i].Name,
4585  ArgType, DI, SC_None);
4586 
4587  Param->setObjCMethodScopeInfo(i);
4588 
4589  Param->setObjCDeclQualifier(
4590  CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4591 
4592  // Apply the attributes to the parameter.
4593  ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4594  AddPragmaAttributes(TUScope, Param);
4595 
4596  if (Param->hasAttr<BlocksAttr>()) {
4597  Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4598  Param->setInvalidDecl();
4599  }
4600  S->AddDecl(Param);
4601  IdResolver.AddDecl(Param);
4602 
4603  Params.push_back(Param);
4604  }
4605 
4606  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4607  ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4608  QualType ArgType = Param->getType();
4609  if (ArgType.isNull())
4610  ArgType = Context.getObjCIdType();
4611  else
4612  // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4613  ArgType = Context.getAdjustedParameterType(ArgType);
4614 
4615  Param->setDeclContext(ObjCMethod);
4616  Params.push_back(Param);
4617  }
4618 
4619  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4620  ObjCMethod->setObjCDeclQualifier(
4622 
4623  if (AttrList)
4624  ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4625  AddPragmaAttributes(TUScope, ObjCMethod);
4626 
4627  // Add the method now.
4628  const ObjCMethodDecl *PrevMethod = nullptr;
4629  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4630  if (MethodType == tok::minus) {
4631  PrevMethod = ImpDecl->getInstanceMethod(Sel);
4632  ImpDecl->addInstanceMethod(ObjCMethod);
4633  } else {
4634  PrevMethod = ImpDecl->getClassMethod(Sel);
4635  ImpDecl->addClassMethod(ObjCMethod);
4636  }
4637 
4638  // Merge information from the @interface declaration into the
4639  // @implementation.
4640  if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4641  if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4642  ObjCMethod->isInstanceMethod())) {
4643  mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4644 
4645  // Warn about defining -dealloc in a category.
4646  if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4647  ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4648  Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4649  << ObjCMethod->getDeclName();
4650  }
4651  }
4652  }
4653  } else {
4654  cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4655  }
4656 
4657  if (PrevMethod) {
4658  // You can never have two method definitions with the same name.
4659  Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4660  << ObjCMethod->getDeclName();
4661  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4662  ObjCMethod->setInvalidDecl();
4663  return ObjCMethod;
4664  }
4665 
4666  // If this Objective-C method does not have a related result type, but we
4667  // are allowed to infer related result types, try to do so based on the
4668  // method family.
4669  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4670  if (!CurrentClass) {
4671  if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4672  CurrentClass = Cat->getClassInterface();
4673  else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4674  CurrentClass = Impl->getClassInterface();
4675  else if (ObjCCategoryImplDecl *CatImpl
4676  = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4677  CurrentClass = CatImpl->getClassInterface();
4678  }
4679 
4681  = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4682 
4683  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4684 
4685  bool ARCError = false;
4686  if (getLangOpts().ObjCAutoRefCount)
4687  ARCError = CheckARCMethodDecl(ObjCMethod);
4688 
4689  // Infer the related result type when possible.
4690  if (!ARCError && RTC == Sema::RTC_Compatible &&
4691  !ObjCMethod->hasRelatedResultType() &&
4692  LangOpts.ObjCInferRelatedResultType) {
4693  bool InferRelatedResultType = false;
4694  switch (ObjCMethod->getMethodFamily()) {
4695  case OMF_None:
4696  case OMF_copy:
4697  case OMF_dealloc:
4698  case OMF_finalize:
4699  case OMF_mutableCopy:
4700  case OMF_release:
4701  case OMF_retainCount:
4702  case OMF_initialize:
4703  case OMF_performSelector:
4704  break;
4705 
4706  case OMF_alloc:
4707  case OMF_new:
4708  InferRelatedResultType = ObjCMethod->isClassMethod();
4709  break;
4710 
4711  case OMF_init:
4712  case OMF_autorelease:
4713  case OMF_retain:
4714  case OMF_self:
4715  InferRelatedResultType = ObjCMethod->isInstanceMethod();
4716  break;
4717  }
4718 
4719  if (InferRelatedResultType &&
4720  !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4721  ObjCMethod->SetRelatedResultType();
4722  }
4723 
4724  if (MethodDefinition &&
4725  Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
4726  checkObjCMethodX86VectorTypes(*this, ObjCMethod);
4727 
4728  ActOnDocumentableDecl(ObjCMethod);
4729 
4730  return ObjCMethod;
4731 }
4732 
4734  // Following is also an error. But it is caused by a missing @end
4735  // and diagnostic is issued elsewhere.
4736  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4737  return false;
4738 
4739  // If we switched context to translation unit while we are still lexically in
4740  // an objc container, it means the parser missed emitting an error.
4741  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4742  return false;
4743 
4744  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4745  D->setInvalidDecl();
4746 
4747  return true;
4748 }
4749 
4750 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
4751 /// instance variables of ClassName into Decls.
4752 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4753  IdentifierInfo *ClassName,
4754  SmallVectorImpl<Decl*> &Decls) {
4755  // Check that ClassName is a valid class
4756  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4757  if (!Class) {
4758  Diag(DeclStart, diag::err_undef_interface) << ClassName;
4759  return;
4760  }
4762  Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4763  return;
4764  }
4765 
4766  // Collect the instance variables
4768  Context.DeepCollectObjCIvars(Class, true, Ivars);
4769  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4770  for (unsigned i = 0; i < Ivars.size(); i++) {
4771  const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
4772  RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4773  Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4774  /*FIXME: StartL=*/ID->getLocation(),
4775  ID->getLocation(),
4776  ID->getIdentifier(), ID->getType(),
4777  ID->getBitWidth());
4778  Decls.push_back(FD);
4779  }
4780 
4781  // Introduce all of these fields into the appropriate scope.
4782  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4783  D != Decls.end(); ++D) {
4784  FieldDecl *FD = cast<FieldDecl>(*D);
4785  if (getLangOpts().CPlusPlus)
4786  PushOnScopeChains(cast<FieldDecl>(FD), S);
4787  else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4788  Record->addDecl(FD);
4789  }
4790 }
4791 
4792 /// \brief Build a type-check a new Objective-C exception variable declaration.
4794  SourceLocation StartLoc,
4795  SourceLocation IdLoc,
4796  IdentifierInfo *Id,
4797  bool Invalid) {
4798  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4799  // duration shall not be qualified by an address-space qualifier."
4800  // Since all parameters have automatic store duration, they can not have
4801  // an address space.
4802  if (T.getAddressSpace() != LangAS::Default) {
4803  Diag(IdLoc, diag::err_arg_with_address_space);
4804  Invalid = true;
4805  }
4806 
4807  // An @catch parameter must be an unqualified object pointer type;
4808  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4809  if (Invalid) {
4810  // Don't do any further checking.
4811  } else if (T->isDependentType()) {
4812  // Okay: we don't know what this type will instantiate to.
4813  } else if (!T->isObjCObjectPointerType()) {
4814  Invalid = true;
4815  Diag(IdLoc ,diag::err_catch_param_not_objc_type);
4816  } else if (T->isObjCQualifiedIdType()) {
4817  Invalid = true;
4818  Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4819  }
4820 
4821  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4822  T, TInfo, SC_None);
4823  New->setExceptionVariable(true);
4824 
4825  // In ARC, infer 'retaining' for variables of retainable type.
4826  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4827  Invalid = true;
4828 
4829  if (Invalid)
4830  New->setInvalidDecl();
4831  return New;
4832 }
4833 
4835  const DeclSpec &DS = D.getDeclSpec();
4836 
4837  // We allow the "register" storage class on exception variables because
4838  // GCC did, but we drop it completely. Any other storage class is an error.
4840  Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4842  } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4843  Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4845  }
4846  if (DS.isInlineSpecified())
4847  Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4848  << getLangOpts().CPlusPlus17;
4851  diag::err_invalid_thread)
4852  << DeclSpec::getSpecifierName(TSCS);
4854 
4856 
4857  // Check that there are no default arguments inside the type of this
4858  // exception object (C++ only).
4859  if (getLangOpts().CPlusPlus)
4861 
4862  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4863  QualType ExceptionType = TInfo->getType();
4864 
4865  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4866  D.getSourceRange().getBegin(),
4867  D.getIdentifierLoc(),
4868  D.getIdentifier(),
4869  D.isInvalidType());
4870 
4871  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4872  if (D.getCXXScopeSpec().isSet()) {
4873  Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4874  << D.getCXXScopeSpec().getRange();
4875  New->setInvalidDecl();
4876  }
4877 
4878  // Add the parameter declaration into this scope.
4879  S->AddDecl(New);
4880  if (D.getIdentifier())
4881  IdResolver.AddDecl(New);
4882 
4883  ProcessDeclAttributes(S, New, D);
4884 
4885  if (New->hasAttr<BlocksAttr>())
4886  Diag(New->getLocation(), diag::err_block_on_nonlocal);
4887  return New;
4888 }
4889 
4890 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4891 /// initialization.
4894  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4895  Iv= Iv->getNextIvar()) {
4896  QualType QT = Context.getBaseElementType(Iv->getType());
4897  if (QT->isRecordType())
4898  Ivars.push_back(Iv);
4899  }
4900 }
4901 
4903  // Load referenced selectors from the external source.
4904  if (ExternalSource) {
4906  ExternalSource->ReadReferencedSelectors(Sels);
4907  for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4908  ReferencedSelectors[Sels[I].first] = Sels[I].second;
4909  }
4910 
4911  // Warning will be issued only when selector table is
4912  // generated (which means there is at lease one implementation
4913  // in the TU). This is to match gcc's behavior.
4914  if (ReferencedSelectors.empty() ||
4915  !Context.AnyObjCImplementation())
4916  return;
4917  for (auto &SelectorAndLocation : ReferencedSelectors) {
4918  Selector Sel = SelectorAndLocation.first;
4919  SourceLocation Loc = SelectorAndLocation.second;
4921  Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4922  }
4923 }
4924 
4925 ObjCIvarDecl *
4927  const ObjCPropertyDecl *&PDecl) const {
4928  if (Method->isClassMethod())
4929  return nullptr;
4930  const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4931  if (!IDecl)
4932  return nullptr;
4933  Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4934  /*shallowCategoryLookup=*/false,
4935  /*followSuper=*/false);
4936  if (!Method || !Method->isPropertyAccessor())
4937  return nullptr;
4938  if ((PDecl = Method->findPropertyDecl()))
4939  if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
4940  // property backing ivar must belong to property's class
4941  // or be a private ivar in class's implementation.
4942  // FIXME. fix the const-ness issue.
4943  IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
4944  IV->getIdentifier());
4945  return IV;
4946  }
4947  return nullptr;
4948 }
4949 
4950 namespace {
4951  /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
4952  /// accessor references the backing ivar.
4953  class UnusedBackingIvarChecker :
4954  public RecursiveASTVisitor<UnusedBackingIvarChecker> {
4955  public:
4956  Sema &S;
4957  const ObjCMethodDecl *Method;
4958  const ObjCIvarDecl *IvarD;
4959  bool AccessedIvar;
4960  bool InvokedSelfMethod;
4961 
4962  UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
4963  const ObjCIvarDecl *IvarD)
4964  : S(S), Method(Method), IvarD(IvarD),
4965  AccessedIvar(false), InvokedSelfMethod(false) {
4966  assert(IvarD);
4967  }
4968 
4969  bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
4970  if (E->getDecl() == IvarD) {
4971  AccessedIvar = true;
4972  return false;
4973  }
4974  return true;
4975  }
4976 
4977  bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
4979  S.isSelfExpr(E->getInstanceReceiver(), Method)) {
4980  InvokedSelfMethod = true;
4981  }
4982  return true;
4983  }
4984  };
4985 } // end anonymous namespace
4986 
4988  const ObjCImplementationDecl *ImplD) {
4990  return;
4991 
4992  for (const auto *CurMethod : ImplD->instance_methods()) {
4993  unsigned DIAG = diag::warn_unused_property_backing_ivar;
4994  SourceLocation Loc = CurMethod->getLocation();
4995  if (Diags.isIgnored(DIAG, Loc))
4996  continue;
4997 
4998  const ObjCPropertyDecl *PDecl;
4999  const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5000  if (!IV)
5001  continue;
5002 
5003  UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5004  Checker.TraverseStmt(CurMethod->getBody());
5005  if (Checker.AccessedIvar)
5006  continue;
5007 
5008  // Do not issue this warning if backing ivar is used somewhere and accessor
5009  // implementation makes a self call. This is to prevent false positive in
5010  // cases where the ivar is accessed by another method that the accessor
5011  // delegates to.
5012  if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5013  Diag(Loc, DIAG) << IV;
5014  Diag(PDecl->getLocation(), diag::note_property_declare);
5015  }
5016  }
5017 }
Decl * ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef< Decl *> allMethods=None, ArrayRef< DeclGroupPtrTy > allTUVars=None)
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Defines the clang::ASTContext interface.
bool hasDefinition() const
Determine whether this class has been defined.
Definition: DeclObjC.h:1554
static bool tryMatchRecordTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, const Type *left, const Type *right)
ObjCIvarDecl * GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, const ObjCPropertyDecl *&PDecl) const
GetIvarBackingPropertyAccessor - If method is a property setter/getter and it property has a backing ...
void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, ObjCInterfaceDecl *ID)
DiagnoseClassExtensionDupMethods - Check for duplicate declaration of a class method in its extension...
bool isClassMethod() const
Definition: DeclObjC.h:457
void setImplicit(bool I=true)
Definition: DeclBase.h:552
ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo)
Package the given type and TSI into a ParsedType.
Definition: SemaType.cpp:5616
bool isSelfExpr(Expr *RExpr)
Private Helper predicate to check for &#39;self&#39;.
The receiver is an object instance.
Definition: ExprObjC.h:1054
void setEndOfDefinitionLoc(SourceLocation LE)
Definition: DeclObjC.h:1904
VersionTuple getPlatformMinVersion() const
Retrieve the minimum desired version of the platform, to which the program should be compiled...
Definition: TargetInfo.h:1012
ExternalSemaSource * getExternalSource() const
Definition: Sema.h:1204
bool isObjCQualifiedIdType() const
True if this is equivalent to &#39;id.
Definition: Type.h:5525
Smart pointer class that efficiently represents Objective-C method names.
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:1811
unsigned getBits() const
QualType getAdjustedParameterType(QualType T) const
Perform adjustment on the parameter type of a function.
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2289
A (possibly-)qualified type.
Definition: Type.h:653
ASTConsumer & Consumer
Definition: Sema.h:318
Simple class containing the result of Sema::CorrectTypo.
void setStarLoc(SourceLocation Loc)
Definition: TypeLoc.h:1347
Represents a version number in the form major[.minor[.subminor[.build]]].
Definition: VersionTuple.h:26
unsigned param_size() const
Definition: DeclObjC.h:379
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.h:2344
all_protocol_range all_referenced_protocols() const
Definition: DeclObjC.h:1443
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.cpp:1101
void setOverriding(bool isOverriding)
Definition: DeclObjC.h:473
void startDefinition()
Starts the definition of this Objective-C class, taking it from a forward declaration (@class) to a d...
Definition: DeclObjC.cpp:603
bool AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, bool receiverIdOrClass, SmallVectorImpl< ObjCMethodDecl *> &Methods)
ObjCDeclQualifier getObjCDeclQualifier() const
Definition: DeclSpec.h:809
static QualType getObjectType(APValue::LValueBase B)
Retrieves the "underlying object type" of the given expression, as used by __builtin_object_size.
iterator begin() const
Definition: DeclObjC.h:91
llvm::DenseSet< IdentifierInfo * > ProtocolNameSet
FIXME: Type hierarchies in Objective-C can be deep.
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc...
Definition: Sema.h:3005
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false)
Perform unqualified name lookup starting from a given scope.
Look up the name of an Objective-C protocol.
Definition: Sema.h:3039
const ObjCProtocolList & getReferencedProtocols() const
Definition: DeclObjC.h:2368
Expr * getBitWidth() const
Definition: Decl.h:2577
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:456
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:790
ObjCMethodDecl * LookupMethodInObjectType(Selector Sel, QualType Ty, bool IsInstance)
LookupMethodInType - Look up a method in an ObjCObjectType.
static bool CheckMethodOverrideParam(Sema &S, ObjCMethodDecl *MethodImpl, ObjCMethodDecl *MethodDecl, ParmVarDecl *ImplVar, ParmVarDecl *IfaceVar, bool IsProtocolMethodDecl, bool IsOverridingMode, bool Warn)
Defines the SourceManager interface.
void ActOnDocumentableDecl(Decl *D)
Should be called on all declarations that might have attached documentation comments.
Definition: SemaDecl.cpp:11875
bool isRecordType() const
Definition: Type.h:6021
iterator end()
Definition: DeclGroup.h:106
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
Definition: Sema.h:1271
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
void DiagnoseMissingDesignatedInitOverrides(const ObjCImplementationDecl *ImplD, const ObjCInterfaceDecl *IFD)
__DEVICE__ long long abs(long long __n)
Captures information about "declaration specifiers" specific to Objective-C.
Definition: DeclSpec.h:765
ObjCTypeParamList * actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc, ArrayRef< Decl *> typeParams, SourceLocation rAngleLoc)
void DiagnoseFunctionSpecifiers(const DeclSpec &DS)
Diagnose function specifiers on a declaration of an identifier that does not identify a function...
Definition: SemaDecl.cpp:5680
StringRef P
ivar_range ivars() const
Definition: DeclObjC.h:1477
Scope * TUScope
Translation Unit Scope - useful to Objective-C actions that need to lookup file scope declarations in...
Definition: Sema.h:806
static ObjCProtocolDecl * Create(ASTContext &C, DeclContext *DC, IdentifierInfo *Id, SourceLocation nameLoc, SourceLocation atStartLoc, ObjCProtocolDecl *PrevDecl)
Definition: DeclObjC.cpp:1820
static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, ObjCProtocolDecl *&UndefinedProtocol)
known_categories_range known_categories() const
Definition: DeclObjC.h:1706
ObjCTypeParamList * getTypeParamList() const
Retrieve the type parameters of this class.
Definition: DeclObjC.cpp:301
void AddDecl(Decl *D)
Definition: Scope.h:286
bool CheckForwardProtocolDeclarationForCircularDependency(IdentifierInfo *PName, SourceLocation &PLoc, SourceLocation PrevLoc, const ObjCList< ObjCProtocolDecl > &PList)
DeclGroupPtrTy ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc, ArrayRef< IdentifierLocPair > IdentList, AttributeList *attrList)
ActOnForwardProtocolDeclaration - Handle @protocol foo;.
The base class of the type hierarchy.
Definition: Type.h:1356
void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false)
AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
Definition: Sema.h:3598
The parameter is covariant, e.g., X<T> is a subtype of X<U> when the type parameter is covariant and ...
CanQual< T > getUnqualifiedType() const
Retrieve the unqualified form of this type.
bool isCompilingModule() const
Are we compiling a module interface (.cppm or module map)?
Definition: LangOptions.h:184
bool isObjCContainer() const
Definition: DeclBase.h:1372
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset=0)
Calls Lexer::getLocForEndOfToken()
Definition: Sema.cpp:46
const ObjCObjectPointerType * getAsObjCInterfacePointerType() const
Definition: Type.cpp:1567
static const char * getSpecifierName(DeclSpec::TST T, const PrintingPolicy &Policy)
Turn a type-specifier-type into a string like "_Bool" or "union".
Definition: DeclSpec.cpp:495
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:671
A container of type source information.
Definition: Decl.h:86
void ProcessPropertyDecl(ObjCPropertyDecl *property)
Process the specified property declaration and create decls for the setters and getters as needed...
ObjCMethodDecl * getMethod() const
TSCS getThreadStorageClassSpec() const
Definition: DeclSpec.h:446
SourceLocation getLocEnd() const LLVM_READONLY
Definition: DeclBase.h:412
void ActOnTypedefedProtocols(SmallVectorImpl< Decl *> &ProtocolRefs, SmallVectorImpl< SourceLocation > &ProtocolLocs, IdentifierInfo *SuperName, SourceLocation SuperLoc)
ActOnTypedefedProtocols - this action finds protocol list as part of the typedef&#39;ed use for a qualifi...
param_const_iterator param_end() const
Definition: DeclObjC.h:390
bool isOverriding() const
Whether this method overrides any other in the class hierarchy.
Definition: DeclObjC.h:472
SourceLocation getEndLoc() const
Get the end source location.
Definition: TypeLoc.cpp:227
void createImplicitParams(ASTContext &Context, const ObjCInterfaceDecl *ID)
createImplicitParams - Used to lazily create the self and cmd implict parameters. ...
Definition: DeclObjC.cpp:1080
Represents a variable declaration or definition.
Definition: Decl.h:812
void setImplementation(ObjCCategoryImplDecl *ImplD)
Definition: DeclObjC.cpp:1989
PartialDiagnostic PDiag(unsigned DiagID=0)
Build a partial diagnostic.
Definition: SemaInternal.h:25
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1753
DiagnosticsEngine & Diags
Definition: Sema.h:319
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6317
ObjCCategoryImplDecl * getImplementation() const
Definition: DeclObjC.cpp:1984
SourceLocation getLocStart() const LLVM_READONLY
Definition: DeclObjC.h:321
static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc, ObjCMethodDecl *method, bool &IncompleteImpl, unsigned DiagID, NamedDecl *NeededFor=nullptr)
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
DeclClass * getCorrectionDeclAs() const
bool isInvalidDecl() const
Definition: DeclBase.h:546
classmeth_range class_methods() const
Definition: DeclObjC.h:1089
llvm::MapVector< Selector, SourceLocation > ReferencedSelectors
Method selectors used in a @selector expression.
Definition: Sema.h:1127
protocol_range protocols() const
Definition: DeclObjC.h:2148
static const NamedDecl * getDefinition(const Decl *D)
Definition: SemaDecl.cpp:2512
Represents a parameter to a function.
Definition: Decl.h:1515
The collection of all-type qualifiers we support.
Definition: Type.h:152
iterator end() const
Definition: DeclObjC.h:92
MethodMatchStrategy
Definition: Sema.h:3508
const ObjCInterfaceDecl * getSuperClass() const
Definition: DeclObjC.h:2708
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:56
Represents a struct/union/class.
Definition: Decl.h:3510
SourceLocation getVarianceLoc() const
Retrieve the location of the variance keyword.
Definition: DeclObjC.h:629
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
One of these records is kept for each identifier that is lexed.
std::unique_ptr< NSAPI > NSAPIObj
Caches identifiers/selectors for NSFoundation APIs.
Definition: Sema.h:834
static void checkObjCMethodX86VectorTypes(Sema &SemaRef, const ObjCMethodDecl *Method)
Verify that the method parameters/return value have types that are supported by the x86 target...
const ObjCProtocolList & getReferencedProtocols() const
Definition: DeclObjC.h:2140
Represents a class type in Objective C.
Definition: Type.h:5190
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:149
void AddTypeInfo(const DeclaratorChunk &TI, ParsedAttributes &attrs, SourceLocation EndLoc)
AddTypeInfo - Add a chunk to this declarator.
Definition: DeclSpec.h:2132
ObjCMethodDecl * getClassMethod(Selector Sel, bool AllowHidden=false) const
Definition: DeclObjC.h:1110
const ParmVarDecl *const * param_const_iterator
Definition: DeclObjC.h:381
bool isObjCLifetimeType() const
Returns true if objects of this type have lifetime semantics under ARC.
Definition: Type.cpp:3845
ObjCMethodFamily
A family of Objective-C methods.
The parameter is contravariant, e.g., X<T> is a subtype of X<U> when the type parameter is covariant ...
Base class for callback objects used by Sema::CorrectTypo to check the validity of a potential typo c...
void set(T *const *InList, unsigned Elts, ASTContext &Ctx)
Definition: DeclObjC.h:85
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
bool isObjCIdType() const
Definition: Type.h:6074
Represents a member of a struct/union/class.
Definition: Decl.h:2488
SourceRange getReturnTypeSourceRange() const
Definition: DeclObjC.cpp:1113
instmeth_range instance_methods() const
Definition: DeclObjC.h:1072
bool isDefined() const
Definition: DeclObjC.h:462
void setSuperClass(TypeSourceInfo *superClass)
Definition: DeclObjC.h:1607
method_range methods() const
Definition: DeclObjC.h:1055
SourceRange getSourceRange() const
Definition: DeclObjC.h:725
DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc, IdentifierInfo **IdentList, SourceLocation *IdentLocs, ArrayRef< ObjCTypeParamList *> TypeParamLists, unsigned NumElts)
int Category
Definition: Format.cpp:1525
void ClearStorageClassSpecs()
Definition: DeclSpec.h:459
void setReturnType(QualType T)
Definition: DeclObjC.h:362
static DeclaratorChunk getPointer(unsigned TypeQuals, SourceLocation Loc, SourceLocation ConstQualLoc, SourceLocation VolatileQualLoc, SourceLocation RestrictQualLoc, SourceLocation AtomicQualLoc, SourceLocation UnalignedQualLoc)
Return a DeclaratorChunk for a pointer.
Definition: DeclSpec.h:1524
static bool checkTypeParamListConsistency(Sema &S, ObjCTypeParamList *prevTypeParams, ObjCTypeParamList *newTypeParams, TypeParamListContext newContext)
Check consistency between two Objective-C type parameter lists, e.g., between a category/extension an...
bool isObjCQualifiedClassType() const
Definition: Type.h:6068
static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method, const ObjCObjectType *TypeBound)
Return true if the given method is wthin the type bound.
void CheckExtraCXXDefaultArguments(Declarator &D)
CheckExtraCXXDefaultArguments - Check for any extra default arguments in the declarator, which is not a function declaration or definition and therefore is not permitted to have default arguments.
llvm::BumpPtrAllocator BumpAlloc
Definition: Sema.h:1075
IdentifierTable & Idents
Definition: ASTContext.h:537
Qualifiers getLocalQualifiers() const
Retrieve the set of qualifiers local to this particular QualType instance, not including any qualifie...
Definition: Type.h:5743
bool isInvalidType() const
Definition: DeclSpec.h:2419
bool isUnarySelector() const
bool isDeprecated(std::string *Message=nullptr) const
Determine whether this declaration is marked &#39;deprecated&#39;.
Definition: DeclBase.h:663
ObjCMethodFamily getMethodFamily() const
Determines the family of this method.
Definition: DeclObjC.cpp:943
void MatchAllMethodDeclarations(const SelectorSet &InsMap, const SelectorSet &ClsMap, SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl *IMPDecl, ObjCContainerDecl *IDecl, bool &IncompleteImpl, bool ImmediateClass, bool WarnCategoryMethodImpl=false)
MatchAllMethodDeclarations - Check methods declaraed in interface or or protocol against those declar...
bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall)
Check whether the given method, which must be in the &#39;init&#39; family, is a valid member of that family...
void setMethod(ObjCMethodDecl *M)
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:2566
bool isNonFragile() const
Does this runtime follow the set of implied behaviors for a "non-fragile" ABI?
Definition: ObjCRuntime.h:80
Represents the results of name lookup.
Definition: Lookup.h:47
PtrTy get() const
Definition: Ownership.h:174
ObjCMethodDecl * LookupImplementedMethodInGlobalPool(Selector Sel)
LookupImplementedMethodInGlobalPool - Returns the method which has an implementation.
bool isNeXTFamily() const
Is this runtime basically of the NeXT family of runtimes?
Definition: ObjCRuntime.h:133
void mergeDeclAttributes(NamedDecl *New, Decl *Old, AvailabilityMergeKind AMK=AMK_Redeclaration)
mergeDeclAttributes - Copy attributes from the Old decl to the New one.
Definition: SemaDecl.cpp:2621
static ObjCInterfaceDecl * Create(const ASTContext &C, DeclContext *DC, SourceLocation atLoc, IdentifierInfo *Id, ObjCTypeParamList *typeParamList, ObjCInterfaceDecl *PrevDecl, SourceLocation ClassLoc=SourceLocation(), bool isInternal=false)
Definition: DeclObjC.cpp:1417
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:986
ObjCMethodDecl * getCurMethodDecl()
getCurMethodDecl - If inside of a method body, this returns a pointer to the method decl for the meth...
Definition: Sema.cpp:1172
bool isReferenced() const
Whether any declaration of this entity was referenced.
Definition: DeclBase.cpp:424
static ObjCCategoryDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation AtLoc, SourceLocation ClassNameLoc, SourceLocation CategoryNameLoc, IdentifierInfo *Id, ObjCInterfaceDecl *IDecl, ObjCTypeParamList *typeParamList, SourceLocation IvarLBraceLoc=SourceLocation(), SourceLocation IvarRBraceLoc=SourceLocation())
Definition: DeclObjC.cpp:1951
SCS
storage-class-specifier
Definition: DeclSpec.h:232
void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI, SmallVectorImpl< ObjCIvarDecl *> &Ivars)
CollectIvarsToConstructOrDestruct - Collect those ivars which require initialization.
DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef< Decl *> Group)
BuildDeclaratorGroup - convert a list of declarations into a declaration group, performing any necess...
Definition: SemaDecl.cpp:11837
Decl * ActOnObjCContainerStartDefinition(Decl *IDecl)
Definition: SemaDecl.cpp:14438
ObjCContainerKind
Definition: Sema.h:7848
void RemoveDecl(NamedDecl *D)
RemoveDecl - Unlink the decl from its shadowed decl chain.
void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, IdentifierInfo *ClassName, SmallVectorImpl< Decl *> &Decls)
Called whenever @defs(ClassName) is encountered in the source.
const clang::PrintingPolicy & getPrintingPolicy() const
Definition: ASTContext.h:635
Selector GetNullarySelector(StringRef name, ASTContext &Ctx)
Utility function for constructing a nullary selector.
Definition: ASTContext.h:2862
GlobalMethodPool MethodPool
Method Pool - allows efficient lookup when typechecking messages to "id".
Definition: Sema.h:1123
Represents a declaration of a type.
Definition: Decl.h:2778
static ObjCAtDefsFieldDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, Expr *BW)
Definition: DeclObjC.cpp:1790
iterator begin()
Definition: DeclGroup.h:100
void setExceptionVariable(bool EV)
Definition: Decl.h:1304
void FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer, ArrayRef< IdentifierLocPair > ProtocolId, SmallVectorImpl< Decl *> &Protocols)
FindProtocolDeclaration - This routine looks up protoc