clang  10.0.0svn
SemaDeclObjC.cpp
Go to the documentation of this file.
1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for Objective C declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprObjC.h"
22 #include "clang/Sema/DeclSpec.h"
23 #include "clang/Sema/Lookup.h"
24 #include "clang/Sema/Scope.h"
25 #include "clang/Sema/ScopeInfo.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 
30 using namespace clang;
31 
32 /// Check whether the given method, which must be in the 'init'
33 /// family, is a valid member of that family.
34 ///
35 /// \param receiverTypeIfCall - if null, check this as if declaring it;
36 /// if non-null, check this as if making a call to it with the given
37 /// receiver type
38 ///
39 /// \return true to indicate that there was an error and appropriate
40 /// actions were taken
42  QualType receiverTypeIfCall) {
43  if (method->isInvalidDecl()) return true;
44 
45  // This castAs is safe: methods that don't return an object
46  // pointer won't be inferred as inits and will reject an explicit
47  // objc_method_family(init).
48 
49  // We ignore protocols here. Should we? What about Class?
50 
51  const ObjCObjectType *result =
53 
54  if (result->isObjCId()) {
55  return false;
56  } else if (result->isObjCClass()) {
57  // fall through: always an error
58  } else {
59  ObjCInterfaceDecl *resultClass = result->getInterface();
60  assert(resultClass && "unexpected object type!");
61 
62  // It's okay for the result type to still be a forward declaration
63  // if we're checking an interface declaration.
64  if (!resultClass->hasDefinition()) {
65  if (receiverTypeIfCall.isNull() &&
66  !isa<ObjCImplementationDecl>(method->getDeclContext()))
67  return false;
68 
69  // Otherwise, we try to compare class types.
70  } else {
71  // If this method was declared in a protocol, we can't check
72  // anything unless we have a receiver type that's an interface.
73  const ObjCInterfaceDecl *receiverClass = nullptr;
74  if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75  if (receiverTypeIfCall.isNull())
76  return false;
77 
78  receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79  ->getInterfaceDecl();
80 
81  // This can be null for calls to e.g. id<Foo>.
82  if (!receiverClass) return false;
83  } else {
84  receiverClass = method->getClassInterface();
85  assert(receiverClass && "method not associated with a class!");
86  }
87 
88  // If either class is a subclass of the other, it's fine.
89  if (receiverClass->isSuperClassOf(resultClass) ||
90  resultClass->isSuperClassOf(receiverClass))
91  return false;
92  }
93  }
94 
95  SourceLocation loc = method->getLocation();
96 
97  // If we're in a system header, and this is not a call, just make
98  // the method unusable.
99  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100  method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
101  UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
102  return true;
103  }
104 
105  // Otherwise, it's an error.
106  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
107  method->setInvalidDecl();
108  return true;
109 }
110 
111 /// Issue a warning if the parameter of the overridden method is non-escaping
112 /// but the parameter of the overriding method is not.
113 static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
114  Sema &S) {
115  if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
116  S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
117  S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
118  return false;
119  }
120 
121  return true;
122 }
123 
124 /// Produce additional diagnostics if a category conforms to a protocol that
125 /// defines a method taking a non-escaping parameter.
126 static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
127  const ObjCCategoryDecl *CD,
128  const ObjCProtocolDecl *PD, Sema &S) {
129  if (!diagnoseNoescape(NewD, OldD, S))
130  S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
131  << CD->IsClassExtension() << PD
132  << cast<ObjCMethodDecl>(NewD->getDeclContext());
133 }
134 
136  const ObjCMethodDecl *Overridden) {
137  if (Overridden->hasRelatedResultType() &&
138  !NewMethod->hasRelatedResultType()) {
139  // This can only happen when the method follows a naming convention that
140  // implies a related result type, and the original (overridden) method has
141  // a suitable return type, but the new (overriding) method does not have
142  // a suitable return type.
143  QualType ResultType = NewMethod->getReturnType();
144  SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
145 
146  // Figure out which class this method is part of, if any.
147  ObjCInterfaceDecl *CurrentClass
148  = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
149  if (!CurrentClass) {
150  DeclContext *DC = NewMethod->getDeclContext();
151  if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
152  CurrentClass = Cat->getClassInterface();
153  else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
154  CurrentClass = Impl->getClassInterface();
155  else if (ObjCCategoryImplDecl *CatImpl
156  = dyn_cast<ObjCCategoryImplDecl>(DC))
157  CurrentClass = CatImpl->getClassInterface();
158  }
159 
160  if (CurrentClass) {
161  Diag(NewMethod->getLocation(),
162  diag::warn_related_result_type_compatibility_class)
163  << Context.getObjCInterfaceType(CurrentClass)
164  << ResultType
165  << ResultTypeRange;
166  } else {
167  Diag(NewMethod->getLocation(),
168  diag::warn_related_result_type_compatibility_protocol)
169  << ResultType
170  << ResultTypeRange;
171  }
172 
173  if (ObjCMethodFamily Family = Overridden->getMethodFamily())
174  Diag(Overridden->getLocation(),
175  diag::note_related_result_type_family)
176  << /*overridden method*/ 0
177  << Family;
178  else
179  Diag(Overridden->getLocation(),
180  diag::note_related_result_type_overridden);
181  }
182 
183  if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
184  Overridden->hasAttr<NSReturnsRetainedAttr>())) {
185  Diag(NewMethod->getLocation(),
186  getLangOpts().ObjCAutoRefCount
187  ? diag::err_nsreturns_retained_attribute_mismatch
188  : diag::warn_nsreturns_retained_attribute_mismatch)
189  << 1;
190  Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
191  }
192  if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
193  Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
194  Diag(NewMethod->getLocation(),
195  getLangOpts().ObjCAutoRefCount
196  ? diag::err_nsreturns_retained_attribute_mismatch
197  : diag::warn_nsreturns_retained_attribute_mismatch)
198  << 0;
199  Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
200  }
201 
203  oe = Overridden->param_end();
204  for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
205  ne = NewMethod->param_end();
206  ni != ne && oi != oe; ++ni, ++oi) {
207  const ParmVarDecl *oldDecl = (*oi);
208  ParmVarDecl *newDecl = (*ni);
209  if (newDecl->hasAttr<NSConsumedAttr>() !=
210  oldDecl->hasAttr<NSConsumedAttr>()) {
211  Diag(newDecl->getLocation(),
212  getLangOpts().ObjCAutoRefCount
213  ? diag::err_nsconsumed_attribute_mismatch
214  : diag::warn_nsconsumed_attribute_mismatch);
215  Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
216  }
217 
218  diagnoseNoescape(newDecl, oldDecl, *this);
219  }
220 }
221 
222 /// Check a method declaration for compatibility with the Objective-C
223 /// ARC conventions.
225  ObjCMethodFamily family = method->getMethodFamily();
226  switch (family) {
227  case OMF_None:
228  case OMF_finalize:
229  case OMF_retain:
230  case OMF_release:
231  case OMF_autorelease:
232  case OMF_retainCount:
233  case OMF_self:
234  case OMF_initialize:
235  case OMF_performSelector:
236  return false;
237 
238  case OMF_dealloc:
239  if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
240  SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
241  if (ResultTypeRange.isInvalid())
242  Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
243  << method->getReturnType()
244  << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
245  else
246  Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
247  << method->getReturnType()
248  << FixItHint::CreateReplacement(ResultTypeRange, "void");
249  return true;
250  }
251  return false;
252 
253  case OMF_init:
254  // If the method doesn't obey the init rules, don't bother annotating it.
255  if (checkInitMethod(method, QualType()))
256  return true;
257 
258  method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
259 
260  // Don't add a second copy of this attribute, but otherwise don't
261  // let it be suppressed.
262  if (method->hasAttr<NSReturnsRetainedAttr>())
263  return false;
264  break;
265 
266  case OMF_alloc:
267  case OMF_copy:
268  case OMF_mutableCopy:
269  case OMF_new:
270  if (method->hasAttr<NSReturnsRetainedAttr>() ||
271  method->hasAttr<NSReturnsNotRetainedAttr>() ||
272  method->hasAttr<NSReturnsAutoreleasedAttr>())
273  return false;
274  break;
275  }
276 
277  method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
278  return false;
279 }
280 
282  SourceLocation ImplLoc) {
283  if (!ND)
284  return;
285  bool IsCategory = false;
286  StringRef RealizedPlatform;
287  AvailabilityResult Availability = ND->getAvailability(
288  /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
289  &RealizedPlatform);
290  if (Availability != AR_Deprecated) {
291  if (isa<ObjCMethodDecl>(ND)) {
292  if (Availability != AR_Unavailable)
293  return;
294  if (RealizedPlatform.empty())
295  RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
296  // Warn about implementing unavailable methods, unless the unavailable
297  // is for an app extension.
298  if (RealizedPlatform.endswith("_app_extension"))
299  return;
300  S.Diag(ImplLoc, diag::warn_unavailable_def);
301  S.Diag(ND->getLocation(), diag::note_method_declared_at)
302  << ND->getDeclName();
303  return;
304  }
305  if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
306  if (!CD->getClassInterface()->isDeprecated())
307  return;
308  ND = CD->getClassInterface();
309  IsCategory = true;
310  } else
311  return;
312  }
313  S.Diag(ImplLoc, diag::warn_deprecated_def)
314  << (isa<ObjCMethodDecl>(ND)
315  ? /*Method*/ 0
316  : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
317  : /*Class*/ 1);
318  if (isa<ObjCMethodDecl>(ND))
319  S.Diag(ND->getLocation(), diag::note_method_declared_at)
320  << ND->getDeclName();
321  else
322  S.Diag(ND->getLocation(), diag::note_previous_decl)
323  << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
324 }
325 
326 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
327 /// pool.
329  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
330 
331  // If we don't have a valid method decl, simply return.
332  if (!MDecl)
333  return;
334  if (MDecl->isInstanceMethod())
335  AddInstanceMethodToGlobalPool(MDecl, true);
336  else
337  AddFactoryMethodToGlobalPool(MDecl, true);
338 }
339 
340 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
341 /// has explicit ownership attribute; false otherwise.
342 static bool
344  QualType T = Param->getType();
345 
346  if (const PointerType *PT = T->getAs<PointerType>()) {
347  T = PT->getPointeeType();
348  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
349  T = RT->getPointeeType();
350  } else {
351  return true;
352  }
353 
354  // If we have a lifetime qualifier, but it's local, we must have
355  // inferred it. So, it is implicit.
356  return !T.getLocalQualifiers().hasObjCLifetime();
357 }
358 
359 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
360 /// and user declared, in the method definition's AST.
363  assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
364  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
365 
367 
368  // If we don't have a valid method decl, simply return.
369  if (!MDecl)
370  return;
371 
372  QualType ResultType = MDecl->getReturnType();
373  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
374  !MDecl->isInvalidDecl() &&
375  RequireCompleteType(MDecl->getLocation(), ResultType,
376  diag::err_func_def_incomplete_result))
377  MDecl->setInvalidDecl();
378 
379  // Allow all of Sema to see that we are entering a method definition.
380  PushDeclContext(FnBodyScope, MDecl);
382 
383  // Create Decl objects for each parameter, entrring them in the scope for
384  // binding to their use.
385 
386  // Insert the invisible arguments, self and _cmd!
388 
389  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
390  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
391 
392  // The ObjC parser requires parameter names so there's no need to check.
394  /*CheckParameterNames=*/false);
395 
396  // Introduce all of the other parameters into this scope.
397  for (auto *Param : MDecl->parameters()) {
398  if (!Param->isInvalidDecl() &&
399  getLangOpts().ObjCAutoRefCount &&
400  !HasExplicitOwnershipAttr(*this, Param))
401  Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
402  Param->getType();
403 
404  if (Param->getIdentifier())
405  PushOnScopeChains(Param, FnBodyScope);
406  }
407 
408  // In ARC, disallow definition of retain/release/autorelease/retainCount
409  if (getLangOpts().ObjCAutoRefCount) {
410  switch (MDecl->getMethodFamily()) {
411  case OMF_retain:
412  case OMF_retainCount:
413  case OMF_release:
414  case OMF_autorelease:
415  Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
416  << 0 << MDecl->getSelector();
417  break;
418 
419  case OMF_None:
420  case OMF_dealloc:
421  case OMF_finalize:
422  case OMF_alloc:
423  case OMF_init:
424  case OMF_mutableCopy:
425  case OMF_copy:
426  case OMF_new:
427  case OMF_self:
428  case OMF_initialize:
429  case OMF_performSelector:
430  break;
431  }
432  }
433 
434  // Warn on deprecated methods under -Wdeprecated-implementations,
435  // and prepare for warning on missing super calls.
436  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
437  ObjCMethodDecl *IMD =
438  IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
439 
440  if (IMD) {
441  ObjCImplDecl *ImplDeclOfMethodDef =
442  dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
443  ObjCContainerDecl *ContDeclOfMethodDecl =
444  dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
445  ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
446  if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
447  ImplDeclOfMethodDecl = OID->getImplementation();
448  else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
449  if (CD->IsClassExtension()) {
450  if (ObjCInterfaceDecl *OID = CD->getClassInterface())
451  ImplDeclOfMethodDecl = OID->getImplementation();
452  } else
453  ImplDeclOfMethodDecl = CD->getImplementation();
454  }
455  // No need to issue deprecated warning if deprecated mehod in class/category
456  // is being implemented in its own implementation (no overriding is involved).
457  if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
458  DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
459  }
460 
461  if (MDecl->getMethodFamily() == OMF_init) {
465  IC->getSuperClass() != nullptr;
466  } else if (IC->hasDesignatedInitializers()) {
469  }
470  }
471 
472  // If this is "dealloc" or "finalize", set some bit here.
473  // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
474  // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
475  // Only do this if the current class actually has a superclass.
476  if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
477  ObjCMethodFamily Family = MDecl->getMethodFamily();
478  if (Family == OMF_dealloc) {
479  if (!(getLangOpts().ObjCAutoRefCount ||
480  getLangOpts().getGC() == LangOptions::GCOnly))
482 
483  } else if (Family == OMF_finalize) {
484  if (Context.getLangOpts().getGC() != LangOptions::NonGC)
486 
487  } else {
488  const ObjCMethodDecl *SuperMethod =
489  SuperClass->lookupMethod(MDecl->getSelector(),
490  MDecl->isInstanceMethod());
492  (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
493  }
494  }
495  }
496 }
497 
498 namespace {
499 
500 // Callback to only accept typo corrections that are Objective-C classes.
501 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
502 // function will reject corrections to that class.
503 class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
504  public:
505  ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
506  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
507  : CurrentIDecl(IDecl) {}
508 
509  bool ValidateCandidate(const TypoCorrection &candidate) override {
511  return ID && !declaresSameEntity(ID, CurrentIDecl);
512  }
513 
514  std::unique_ptr<CorrectionCandidateCallback> clone() override {
515  return std::make_unique<ObjCInterfaceValidatorCCC>(*this);
516  }
517 
518  private:
519  ObjCInterfaceDecl *CurrentIDecl;
520 };
521 
522 } // end anonymous namespace
523 
524 static void diagnoseUseOfProtocols(Sema &TheSema,
525  ObjCContainerDecl *CD,
526  ObjCProtocolDecl *const *ProtoRefs,
527  unsigned NumProtoRefs,
528  const SourceLocation *ProtoLocs) {
529  assert(ProtoRefs);
530  // Diagnose availability in the context of the ObjC container.
531  Sema::ContextRAII SavedContext(TheSema, CD);
532  for (unsigned i = 0; i < NumProtoRefs; ++i) {
533  (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
534  /*UnknownObjCClass=*/nullptr,
535  /*ObjCPropertyAccess=*/false,
536  /*AvoidPartialAvailabilityChecks=*/true);
537  }
538 }
539 
540 void Sema::
542  SourceLocation AtInterfaceLoc,
543  ObjCInterfaceDecl *IDecl,
544  IdentifierInfo *ClassName,
545  SourceLocation ClassLoc,
546  IdentifierInfo *SuperName,
547  SourceLocation SuperLoc,
548  ArrayRef<ParsedType> SuperTypeArgs,
549  SourceRange SuperTypeArgsRange) {
550  // Check if a different kind of symbol declared in this scope.
551  NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
553 
554  if (!PrevDecl) {
555  // Try to correct for a typo in the superclass name without correcting
556  // to the class we're defining.
557  ObjCInterfaceValidatorCCC CCC(IDecl);
558  if (TypoCorrection Corrected = CorrectTypo(
559  DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName,
560  TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
561  diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
562  << SuperName << ClassName);
563  PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
564  }
565  }
566 
567  if (declaresSameEntity(PrevDecl, IDecl)) {
568  Diag(SuperLoc, diag::err_recursive_superclass)
569  << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
570  IDecl->setEndOfDefinitionLoc(ClassLoc);
571  } else {
572  ObjCInterfaceDecl *SuperClassDecl =
573  dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
574  QualType SuperClassType;
575 
576  // Diagnose classes that inherit from deprecated classes.
577  if (SuperClassDecl) {
578  (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
579  SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
580  }
581 
582  if (PrevDecl && !SuperClassDecl) {
583  // The previous declaration was not a class decl. Check if we have a
584  // typedef. If we do, get the underlying class type.
585  if (const TypedefNameDecl *TDecl =
586  dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
587  QualType T = TDecl->getUnderlyingType();
588  if (T->isObjCObjectType()) {
589  if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
590  SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
591  SuperClassType = Context.getTypeDeclType(TDecl);
592 
593  // This handles the following case:
594  // @interface NewI @end
595  // typedef NewI DeprI __attribute__((deprecated("blah")))
596  // @interface SI : DeprI /* warn here */ @end
597  (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
598  }
599  }
600  }
601 
602  // This handles the following case:
603  //
604  // typedef int SuperClass;
605  // @interface MyClass : SuperClass {} @end
606  //
607  if (!SuperClassDecl) {
608  Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
609  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
610  }
611  }
612 
613  if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
614  if (!SuperClassDecl)
615  Diag(SuperLoc, diag::err_undef_superclass)
616  << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
617  else if (RequireCompleteType(SuperLoc,
618  SuperClassType,
619  diag::err_forward_superclass,
620  SuperClassDecl->getDeclName(),
621  ClassName,
622  SourceRange(AtInterfaceLoc, ClassLoc))) {
623  SuperClassDecl = nullptr;
624  SuperClassType = QualType();
625  }
626  }
627 
628  if (SuperClassType.isNull()) {
629  assert(!SuperClassDecl && "Failed to set SuperClassType?");
630  return;
631  }
632 
633  // Handle type arguments on the superclass.
634  TypeSourceInfo *SuperClassTInfo = nullptr;
635  if (!SuperTypeArgs.empty()) {
637  S,
638  SuperLoc,
639  CreateParsedType(SuperClassType,
640  nullptr),
641  SuperTypeArgsRange.getBegin(),
642  SuperTypeArgs,
643  SuperTypeArgsRange.getEnd(),
644  SourceLocation(),
645  { },
646  { },
647  SourceLocation());
648  if (!fullSuperClassType.isUsable())
649  return;
650 
651  SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
652  &SuperClassTInfo);
653  }
654 
655  if (!SuperClassTInfo) {
656  SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
657  SuperLoc);
658  }
659 
660  IDecl->setSuperClass(SuperClassTInfo);
661  IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
662  }
663 }
664 
666  ObjCTypeParamVariance variance,
667  SourceLocation varianceLoc,
668  unsigned index,
669  IdentifierInfo *paramName,
670  SourceLocation paramLoc,
671  SourceLocation colonLoc,
672  ParsedType parsedTypeBound) {
673  // If there was an explicitly-provided type bound, check it.
674  TypeSourceInfo *typeBoundInfo = nullptr;
675  if (parsedTypeBound) {
676  // The type bound can be any Objective-C pointer type.
677  QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
678  if (typeBound->isObjCObjectPointerType()) {
679  // okay
680  } else if (typeBound->isObjCObjectType()) {
681  // The user forgot the * on an Objective-C pointer type, e.g.,
682  // "T : NSView".
684  typeBoundInfo->getTypeLoc().getEndLoc());
685  Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
686  diag::err_objc_type_param_bound_missing_pointer)
687  << typeBound << paramName
688  << FixItHint::CreateInsertion(starLoc, " *");
689 
690  // Create a new type location builder so we can update the type
691  // location information we have.
692  TypeLocBuilder builder;
693  builder.pushFullCopy(typeBoundInfo->getTypeLoc());
694 
695  // Create the Objective-C pointer type.
696  typeBound = Context.getObjCObjectPointerType(typeBound);
698  = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
699  newT.setStarLoc(starLoc);
700 
701  // Form the new type source information.
702  typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
703  } else {
704  // Not a valid type bound.
705  Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
706  diag::err_objc_type_param_bound_nonobject)
707  << typeBound << paramName;
708 
709  // Forget the bound; we'll default to id later.
710  typeBoundInfo = nullptr;
711  }
712 
713  // Type bounds cannot have qualifiers (even indirectly) or explicit
714  // nullability.
715  if (typeBoundInfo) {
716  QualType typeBound = typeBoundInfo->getType();
717  TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
718  if (qual || typeBound.hasQualifiers()) {
719  bool diagnosed = false;
720  SourceRange rangeToRemove;
721  if (qual) {
722  if (auto attr = qual.getAs<AttributedTypeLoc>()) {
723  rangeToRemove = attr.getLocalSourceRange();
724  if (attr.getTypePtr()->getImmediateNullability()) {
725  Diag(attr.getBeginLoc(),
726  diag::err_objc_type_param_bound_explicit_nullability)
727  << paramName << typeBound
728  << FixItHint::CreateRemoval(rangeToRemove);
729  diagnosed = true;
730  }
731  }
732  }
733 
734  if (!diagnosed) {
735  Diag(qual ? qual.getBeginLoc()
736  : typeBoundInfo->getTypeLoc().getBeginLoc(),
737  diag::err_objc_type_param_bound_qualified)
738  << paramName << typeBound
739  << typeBound.getQualifiers().getAsString()
740  << FixItHint::CreateRemoval(rangeToRemove);
741  }
742 
743  // If the type bound has qualifiers other than CVR, we need to strip
744  // them or we'll probably assert later when trying to apply new
745  // qualifiers.
746  Qualifiers quals = typeBound.getQualifiers();
747  quals.removeCVRQualifiers();
748  if (!quals.empty()) {
749  typeBoundInfo =
751  }
752  }
753  }
754  }
755 
756  // If there was no explicit type bound (or we removed it due to an error),
757  // use 'id' instead.
758  if (!typeBoundInfo) {
759  colonLoc = SourceLocation();
761  }
762 
763  // Create the type parameter.
764  return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
765  index, paramLoc, paramName, colonLoc,
766  typeBoundInfo);
767 }
768 
770  SourceLocation lAngleLoc,
771  ArrayRef<Decl *> typeParamsIn,
772  SourceLocation rAngleLoc) {
773  // We know that the array only contains Objective-C type parameters.
775  typeParams(
776  reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
777  typeParamsIn.size());
778 
779  // Diagnose redeclarations of type parameters.
780  // We do this now because Objective-C type parameters aren't pushed into
781  // scope until later (after the instance variable block), but we want the
782  // diagnostics to occur right after we parse the type parameter list.
783  llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
784  for (auto typeParam : typeParams) {
785  auto known = knownParams.find(typeParam->getIdentifier());
786  if (known != knownParams.end()) {
787  Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
788  << typeParam->getIdentifier()
789  << SourceRange(known->second->getLocation());
790 
791  typeParam->setInvalidDecl();
792  } else {
793  knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
794 
795  // Push the type parameter into scope.
796  PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
797  }
798  }
799 
800  // Create the parameter list.
801  return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
802 }
803 
805  for (auto typeParam : *typeParamList) {
806  if (!typeParam->isInvalidDecl()) {
807  S->RemoveDecl(typeParam);
808  IdResolver.RemoveDecl(typeParam);
809  }
810  }
811 }
812 
813 namespace {
814  /// The context in which an Objective-C type parameter list occurs, for use
815  /// in diagnostics.
816  enum class TypeParamListContext {
817  ForwardDeclaration,
818  Definition,
819  Category,
820  Extension
821  };
822 } // end anonymous namespace
823 
824 /// Check consistency between two Objective-C type parameter lists, e.g.,
825 /// between a category/extension and an \@interface or between an \@class and an
826 /// \@interface.
828  ObjCTypeParamList *prevTypeParams,
829  ObjCTypeParamList *newTypeParams,
830  TypeParamListContext newContext) {
831  // If the sizes don't match, complain about that.
832  if (prevTypeParams->size() != newTypeParams->size()) {
833  SourceLocation diagLoc;
834  if (newTypeParams->size() > prevTypeParams->size()) {
835  diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
836  } else {
837  diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
838  }
839 
840  S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
841  << static_cast<unsigned>(newContext)
842  << (newTypeParams->size() > prevTypeParams->size())
843  << prevTypeParams->size()
844  << newTypeParams->size();
845 
846  return true;
847  }
848 
849  // Match up the type parameters.
850  for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
851  ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
852  ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
853 
854  // Check for consistency of the variance.
855  if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
856  if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
857  newContext != TypeParamListContext::Definition) {
858  // When the new type parameter is invariant and is not part
859  // of the definition, just propagate the variance.
860  newTypeParam->setVariance(prevTypeParam->getVariance());
861  } else if (prevTypeParam->getVariance()
863  !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
864  cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
865  ->getDefinition() == prevTypeParam->getDeclContext())) {
866  // When the old parameter is invariant and was not part of the
867  // definition, just ignore the difference because it doesn't
868  // matter.
869  } else {
870  {
871  // Diagnose the conflict and update the second declaration.
872  SourceLocation diagLoc = newTypeParam->getVarianceLoc();
873  if (diagLoc.isInvalid())
874  diagLoc = newTypeParam->getBeginLoc();
875 
876  auto diag = S.Diag(diagLoc,
877  diag::err_objc_type_param_variance_conflict)
878  << static_cast<unsigned>(newTypeParam->getVariance())
879  << newTypeParam->getDeclName()
880  << static_cast<unsigned>(prevTypeParam->getVariance())
881  << prevTypeParam->getDeclName();
882  switch (prevTypeParam->getVariance()) {
884  diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
885  break;
886 
889  StringRef newVarianceStr
890  = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
891  ? "__covariant"
892  : "__contravariant";
893  if (newTypeParam->getVariance()
895  diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
896  (newVarianceStr + " ").str());
897  } else {
898  diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
899  newVarianceStr);
900  }
901  }
902  }
903  }
904 
905  S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
906  << prevTypeParam->getDeclName();
907 
908  // Override the variance.
909  newTypeParam->setVariance(prevTypeParam->getVariance());
910  }
911  }
912 
913  // If the bound types match, there's nothing to do.
914  if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
915  newTypeParam->getUnderlyingType()))
916  continue;
917 
918  // If the new type parameter's bound was explicit, complain about it being
919  // different from the original.
920  if (newTypeParam->hasExplicitBound()) {
921  SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
923  S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
924  << newTypeParam->getUnderlyingType()
925  << newTypeParam->getDeclName()
926  << prevTypeParam->hasExplicitBound()
927  << prevTypeParam->getUnderlyingType()
928  << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
929  << prevTypeParam->getDeclName()
931  newBoundRange,
932  prevTypeParam->getUnderlyingType().getAsString(
934 
935  S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
936  << prevTypeParam->getDeclName();
937 
938  // Override the new type parameter's bound type with the previous type,
939  // so that it's consistent.
940  newTypeParam->setTypeSourceInfo(
942  continue;
943  }
944 
945  // The new type parameter got the implicit bound of 'id'. That's okay for
946  // categories and extensions (overwrite it later), but not for forward
947  // declarations and @interfaces, because those must be standalone.
948  if (newContext == TypeParamListContext::ForwardDeclaration ||
949  newContext == TypeParamListContext::Definition) {
950  // Diagnose this problem for forward declarations and definitions.
951  SourceLocation insertionLoc
952  = S.getLocForEndOfToken(newTypeParam->getLocation());
953  std::string newCode
954  = " : " + prevTypeParam->getUnderlyingType().getAsString(
956  S.Diag(newTypeParam->getLocation(),
957  diag::err_objc_type_param_bound_missing)
958  << prevTypeParam->getUnderlyingType()
959  << newTypeParam->getDeclName()
960  << (newContext == TypeParamListContext::ForwardDeclaration)
961  << FixItHint::CreateInsertion(insertionLoc, newCode);
962 
963  S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
964  << prevTypeParam->getDeclName();
965  }
966 
967  // Update the new type parameter's bound to match the previous one.
968  newTypeParam->setTypeSourceInfo(
970  }
971 
972  return false;
973 }
974 
976  Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
977  SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
978  IdentifierInfo *SuperName, SourceLocation SuperLoc,
979  ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
980  Decl *const *ProtoRefs, unsigned NumProtoRefs,
981  const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
982  const ParsedAttributesView &AttrList) {
983  assert(ClassName && "Missing class identifier");
984 
985  // Check for another declaration kind with the same name.
986  NamedDecl *PrevDecl =
987  LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
989 
990  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
991  Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
992  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
993  }
994 
995  // Create a declaration to describe this @interface.
996  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
997 
998  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
999  // A previous decl with a different name is because of
1000  // @compatibility_alias, for example:
1001  // \code
1002  // @class NewImage;
1003  // @compatibility_alias OldImage NewImage;
1004  // \endcode
1005  // A lookup for 'OldImage' will return the 'NewImage' decl.
1006  //
1007  // In such a case use the real declaration name, instead of the alias one,
1008  // otherwise we will break IdentifierResolver and redecls-chain invariants.
1009  // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1010  // has been aliased.
1011  ClassName = PrevIDecl->getIdentifier();
1012  }
1013 
1014  // If there was a forward declaration with type parameters, check
1015  // for consistency.
1016  if (PrevIDecl) {
1017  if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1018  if (typeParamList) {
1019  // Both have type parameter lists; check for consistency.
1020  if (checkTypeParamListConsistency(*this, prevTypeParamList,
1021  typeParamList,
1022  TypeParamListContext::Definition)) {
1023  typeParamList = nullptr;
1024  }
1025  } else {
1026  Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1027  << ClassName;
1028  Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1029  << ClassName;
1030 
1031  // Clone the type parameter list.
1032  SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1033  for (auto typeParam : *prevTypeParamList) {
1034  clonedTypeParams.push_back(
1036  Context,
1037  CurContext,
1038  typeParam->getVariance(),
1039  SourceLocation(),
1040  typeParam->getIndex(),
1041  SourceLocation(),
1042  typeParam->getIdentifier(),
1043  SourceLocation(),
1044  Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1045  }
1046 
1047  typeParamList = ObjCTypeParamList::create(Context,
1048  SourceLocation(),
1049  clonedTypeParams,
1050  SourceLocation());
1051  }
1052  }
1053  }
1054 
1055  ObjCInterfaceDecl *IDecl
1056  = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1057  typeParamList, PrevIDecl, ClassLoc);
1058  if (PrevIDecl) {
1059  // Class already seen. Was it a definition?
1060  if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1061  Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1062  << PrevIDecl->getDeclName();
1063  Diag(Def->getLocation(), diag::note_previous_definition);
1064  IDecl->setInvalidDecl();
1065  }
1066  }
1067 
1068  ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1069  AddPragmaAttributes(TUScope, IDecl);
1070  PushOnScopeChains(IDecl, TUScope);
1071 
1072  // Start the definition of this class. If we're in a redefinition case, there
1073  // may already be a definition, so we'll end up adding to it.
1074  if (!IDecl->hasDefinition())
1075  IDecl->startDefinition();
1076 
1077  if (SuperName) {
1078  // Diagnose availability in the context of the @interface.
1079  ContextRAII SavedContext(*this, IDecl);
1080 
1081  ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1082  ClassName, ClassLoc,
1083  SuperName, SuperLoc, SuperTypeArgs,
1084  SuperTypeArgsRange);
1085  } else { // we have a root class.
1086  IDecl->setEndOfDefinitionLoc(ClassLoc);
1087  }
1088 
1089  // Check then save referenced protocols.
1090  if (NumProtoRefs) {
1091  diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1092  NumProtoRefs, ProtoLocs);
1093  IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1094  ProtoLocs, Context);
1095  IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1096  }
1097 
1098  CheckObjCDeclScope(IDecl);
1099  return ActOnObjCContainerStartDefinition(IDecl);
1100 }
1101 
1102 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
1103 /// typedef'ed use for a qualified super class and adds them to the list
1104 /// of the protocols.
1106  SmallVectorImpl<SourceLocation> &ProtocolLocs,
1107  IdentifierInfo *SuperName,
1108  SourceLocation SuperLoc) {
1109  if (!SuperName)
1110  return;
1111  NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1113  if (!IDecl)
1114  return;
1115 
1116  if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1117  QualType T = TDecl->getUnderlyingType();
1118  if (T->isObjCObjectType())
1119  if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1120  ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1121  // FIXME: Consider whether this should be an invalid loc since the loc
1122  // is not actually pointing to a protocol name reference but to the
1123  // typedef reference. Note that the base class name loc is also pointing
1124  // at the typedef.
1125  ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1126  }
1127  }
1128 }
1129 
1130 /// ActOnCompatibilityAlias - this action is called after complete parsing of
1131 /// a \@compatibility_alias declaration. It sets up the alias relationships.
1133  IdentifierInfo *AliasName,
1134  SourceLocation AliasLocation,
1135  IdentifierInfo *ClassName,
1136  SourceLocation ClassLocation) {
1137  // Look for previous declaration of alias name
1138  NamedDecl *ADecl =
1139  LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1141  if (ADecl) {
1142  Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1143  Diag(ADecl->getLocation(), diag::note_previous_declaration);
1144  return nullptr;
1145  }
1146  // Check for class declaration
1147  NamedDecl *CDeclU =
1148  LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1150  if (const TypedefNameDecl *TDecl =
1151  dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1152  QualType T = TDecl->getUnderlyingType();
1153  if (T->isObjCObjectType()) {
1154  if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1155  ClassName = IDecl->getIdentifier();
1156  CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1159  }
1160  }
1161  }
1162  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1163  if (!CDecl) {
1164  Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1165  if (CDeclU)
1166  Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1167  return nullptr;
1168  }
1169 
1170  // Everything checked out, instantiate a new alias declaration AST.
1171  ObjCCompatibleAliasDecl *AliasDecl =
1172  ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1173 
1174  if (!CheckObjCDeclScope(AliasDecl))
1175  PushOnScopeChains(AliasDecl, TUScope);
1176 
1177  return AliasDecl;
1178 }
1179 
1181  IdentifierInfo *PName,
1182  SourceLocation &Ploc, SourceLocation PrevLoc,
1183  const ObjCList<ObjCProtocolDecl> &PList) {
1184 
1185  bool res = false;
1187  E = PList.end(); I != E; ++I) {
1188  if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1189  Ploc)) {
1190  if (PDecl->getIdentifier() == PName) {
1191  Diag(Ploc, diag::err_protocol_has_circular_dependency);
1192  Diag(PrevLoc, diag::note_previous_definition);
1193  res = true;
1194  }
1195 
1196  if (!PDecl->hasDefinition())
1197  continue;
1198 
1200  PDecl->getLocation(), PDecl->getReferencedProtocols()))
1201  res = true;
1202  }
1203  }
1204  return res;
1205 }
1206 
1208  SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1209  SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1210  const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1211  const ParsedAttributesView &AttrList) {
1212  bool err = false;
1213  // FIXME: Deal with AttrList.
1214  assert(ProtocolName && "Missing protocol identifier");
1215  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1217  ObjCProtocolDecl *PDecl = nullptr;
1218  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1219  // If we already have a definition, complain.
1220  Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1221  Diag(Def->getLocation(), diag::note_previous_definition);
1222 
1223  // Create a new protocol that is completely distinct from previous
1224  // declarations, and do not make this protocol available for name lookup.
1225  // That way, we'll end up completely ignoring the duplicate.
1226  // FIXME: Can we turn this into an error?
1227  PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1228  ProtocolLoc, AtProtoInterfaceLoc,
1229  /*PrevDecl=*/nullptr);
1230 
1231  // If we are using modules, add the decl to the context in order to
1232  // serialize something meaningful.
1233  if (getLangOpts().Modules)
1234  PushOnScopeChains(PDecl, TUScope);
1235  PDecl->startDefinition();
1236  } else {
1237  if (PrevDecl) {
1238  // Check for circular dependencies among protocol declarations. This can
1239  // only happen if this protocol was forward-declared.
1241  PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1243  ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1244  }
1245 
1246  // Create the new declaration.
1247  PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1248  ProtocolLoc, AtProtoInterfaceLoc,
1249  /*PrevDecl=*/PrevDecl);
1250 
1251  PushOnScopeChains(PDecl, TUScope);
1252  PDecl->startDefinition();
1253  }
1254 
1255  ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1256  AddPragmaAttributes(TUScope, PDecl);
1257 
1258  // Merge attributes from previous declarations.
1259  if (PrevDecl)
1260  mergeDeclAttributes(PDecl, PrevDecl);
1261 
1262  if (!err && NumProtoRefs ) {
1263  /// Check then save referenced protocols.
1264  diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1265  NumProtoRefs, ProtoLocs);
1266  PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1267  ProtoLocs, Context);
1268  }
1269 
1270  CheckObjCDeclScope(PDecl);
1271  return ActOnObjCContainerStartDefinition(PDecl);
1272 }
1273 
1275  ObjCProtocolDecl *&UndefinedProtocol) {
1276  if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1277  UndefinedProtocol = PDecl;
1278  return true;
1279  }
1280 
1281  for (auto *PI : PDecl->protocols())
1282  if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1283  UndefinedProtocol = PI;
1284  return true;
1285  }
1286  return false;
1287 }
1288 
1289 /// FindProtocolDeclaration - This routine looks up protocols and
1290 /// issues an error if they are not declared. It returns list of
1291 /// protocol declarations in its 'Protocols' argument.
1292 void
1293 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1294  ArrayRef<IdentifierLocPair> ProtocolId,
1295  SmallVectorImpl<Decl *> &Protocols) {
1296  for (const IdentifierLocPair &Pair : ProtocolId) {
1297  ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1298  if (!PDecl) {
1300  TypoCorrection Corrected = CorrectTypo(
1301  DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName,
1302  TUScope, nullptr, CCC, CTK_ErrorRecovery);
1303  if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1304  diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1305  << Pair.first);
1306  }
1307 
1308  if (!PDecl) {
1309  Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1310  continue;
1311  }
1312  // If this is a forward protocol declaration, get its definition.
1313  if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1314  PDecl = PDecl->getDefinition();
1315 
1316  // For an objc container, delay protocol reference checking until after we
1317  // can set the objc decl as the availability context, otherwise check now.
1318  if (!ForObjCContainer) {
1319  (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1320  }
1321 
1322  // If this is a forward declaration and we are supposed to warn in this
1323  // case, do it.
1324  // FIXME: Recover nicely in the hidden case.
1325  ObjCProtocolDecl *UndefinedProtocol;
1326 
1327  if (WarnOnDeclarations &&
1328  NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1329  Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1330  Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1331  << UndefinedProtocol;
1332  }
1333  Protocols.push_back(PDecl);
1334  }
1335 }
1336 
1337 namespace {
1338 // Callback to only accept typo corrections that are either
1339 // Objective-C protocols or valid Objective-C type arguments.
1340 class ObjCTypeArgOrProtocolValidatorCCC final
1341  : public CorrectionCandidateCallback {
1343  Sema::LookupNameKind LookupKind;
1344  public:
1345  ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1346  Sema::LookupNameKind lookupKind)
1347  : Context(context), LookupKind(lookupKind) { }
1348 
1349  bool ValidateCandidate(const TypoCorrection &candidate) override {
1350  // If we're allowed to find protocols and we have a protocol, accept it.
1351  if (LookupKind != Sema::LookupOrdinaryName) {
1352  if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1353  return true;
1354  }
1355 
1356  // If we're allowed to find type names and we have one, accept it.
1357  if (LookupKind != Sema::LookupObjCProtocolName) {
1358  // If we have a type declaration, we might accept this result.
1359  if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1360  // If we found a tag declaration outside of C++, skip it. This
1361  // can happy because we look for any name when there is no
1362  // bias to protocol or type names.
1363  if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1364  return false;
1365 
1366  // Make sure the type is something we would accept as a type
1367  // argument.
1368  auto type = Context.getTypeDeclType(typeDecl);
1369  if (type->isObjCObjectPointerType() ||
1370  type->isBlockPointerType() ||
1371  type->isDependentType() ||
1372  type->isObjCObjectType())
1373  return true;
1374 
1375  return false;
1376  }
1377 
1378  // If we have an Objective-C class type, accept it; there will
1379  // be another fix to add the '*'.
1380  if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1381  return true;
1382 
1383  return false;
1384  }
1385 
1386  return false;
1387  }
1388 
1389  std::unique_ptr<CorrectionCandidateCallback> clone() override {
1390  return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
1391  }
1392 };
1393 } // end anonymous namespace
1394 
1396  SourceLocation ProtocolLoc,
1397  IdentifierInfo *TypeArgId,
1398  SourceLocation TypeArgLoc,
1399  bool SelectProtocolFirst) {
1400  Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1401  << SelectProtocolFirst << TypeArgId << ProtocolId
1402  << SourceRange(ProtocolLoc);
1403 }
1404 
1406  Scope *S,
1407  ParsedType baseType,
1408  SourceLocation lAngleLoc,
1409  ArrayRef<IdentifierInfo *> identifiers,
1410  ArrayRef<SourceLocation> identifierLocs,
1411  SourceLocation rAngleLoc,
1412  SourceLocation &typeArgsLAngleLoc,
1413  SmallVectorImpl<ParsedType> &typeArgs,
1414  SourceLocation &typeArgsRAngleLoc,
1415  SourceLocation &protocolLAngleLoc,
1416  SmallVectorImpl<Decl *> &protocols,
1417  SourceLocation &protocolRAngleLoc,
1418  bool warnOnIncompleteProtocols) {
1419  // Local function that updates the declaration specifiers with
1420  // protocol information.
1421  unsigned numProtocolsResolved = 0;
1422  auto resolvedAsProtocols = [&] {
1423  assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1424 
1425  // Determine whether the base type is a parameterized class, in
1426  // which case we want to warn about typos such as
1427  // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1428  ObjCInterfaceDecl *baseClass = nullptr;
1429  QualType base = GetTypeFromParser(baseType, nullptr);
1430  bool allAreTypeNames = false;
1431  SourceLocation firstClassNameLoc;
1432  if (!base.isNull()) {
1433  if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1434  baseClass = objcObjectType->getInterface();
1435  if (baseClass) {
1436  if (auto typeParams = baseClass->getTypeParamList()) {
1437  if (typeParams->size() == numProtocolsResolved) {
1438  // Note that we should be looking for type names, too.
1439  allAreTypeNames = true;
1440  }
1441  }
1442  }
1443  }
1444  }
1445 
1446  for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1447  ObjCProtocolDecl *&proto
1448  = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1449  // For an objc container, delay protocol reference checking until after we
1450  // can set the objc decl as the availability context, otherwise check now.
1451  if (!warnOnIncompleteProtocols) {
1452  (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1453  }
1454 
1455  // If this is a forward protocol declaration, get its definition.
1456  if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1457  proto = proto->getDefinition();
1458 
1459  // If this is a forward declaration and we are supposed to warn in this
1460  // case, do it.
1461  // FIXME: Recover nicely in the hidden case.
1462  ObjCProtocolDecl *forwardDecl = nullptr;
1463  if (warnOnIncompleteProtocols &&
1464  NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1465  Diag(identifierLocs[i], diag::warn_undef_protocolref)
1466  << proto->getDeclName();
1467  Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1468  << forwardDecl;
1469  }
1470 
1471  // If everything this far has been a type name (and we care
1472  // about such things), check whether this name refers to a type
1473  // as well.
1474  if (allAreTypeNames) {
1475  if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1476  LookupOrdinaryName)) {
1477  if (isa<ObjCInterfaceDecl>(decl)) {
1478  if (firstClassNameLoc.isInvalid())
1479  firstClassNameLoc = identifierLocs[i];
1480  } else if (!isa<TypeDecl>(decl)) {
1481  // Not a type.
1482  allAreTypeNames = false;
1483  }
1484  } else {
1485  allAreTypeNames = false;
1486  }
1487  }
1488  }
1489 
1490  // All of the protocols listed also have type names, and at least
1491  // one is an Objective-C class name. Check whether all of the
1492  // protocol conformances are declared by the base class itself, in
1493  // which case we warn.
1494  if (allAreTypeNames && firstClassNameLoc.isValid()) {
1495  llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1496  Context.CollectInheritedProtocols(baseClass, knownProtocols);
1497  bool allProtocolsDeclared = true;
1498  for (auto proto : protocols) {
1499  if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1500  allProtocolsDeclared = false;
1501  break;
1502  }
1503  }
1504 
1505  if (allProtocolsDeclared) {
1506  Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1507  << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1508  << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1509  " *");
1510  }
1511  }
1512 
1513  protocolLAngleLoc = lAngleLoc;
1514  protocolRAngleLoc = rAngleLoc;
1515  assert(protocols.size() == identifierLocs.size());
1516  };
1517 
1518  // Attempt to resolve all of the identifiers as protocols.
1519  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1520  ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1521  protocols.push_back(proto);
1522  if (proto)
1523  ++numProtocolsResolved;
1524  }
1525 
1526  // If all of the names were protocols, these were protocol qualifiers.
1527  if (numProtocolsResolved == identifiers.size())
1528  return resolvedAsProtocols();
1529 
1530  // Attempt to resolve all of the identifiers as type names or
1531  // Objective-C class names. The latter is technically ill-formed,
1532  // but is probably something like \c NSArray<NSView *> missing the
1533  // \c*.
1534  typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1536  unsigned numTypeDeclsResolved = 0;
1537  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1538  NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1540  if (!decl) {
1541  typeDecls.push_back(TypeOrClassDecl());
1542  continue;
1543  }
1544 
1545  if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1546  typeDecls.push_back(typeDecl);
1547  ++numTypeDeclsResolved;
1548  continue;
1549  }
1550 
1551  if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1552  typeDecls.push_back(objcClass);
1553  ++numTypeDeclsResolved;
1554  continue;
1555  }
1556 
1557  typeDecls.push_back(TypeOrClassDecl());
1558  }
1559 
1560  AttributeFactory attrFactory;
1561 
1562  // Local function that forms a reference to the given type or
1563  // Objective-C class declaration.
1564  auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1565  -> TypeResult {
1566  // Form declaration specifiers. They simply refer to the type.
1567  DeclSpec DS(attrFactory);
1568  const char* prevSpec; // unused
1569  unsigned diagID; // unused
1570  QualType type;
1571  if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1572  type = Context.getTypeDeclType(actualTypeDecl);
1573  else
1574  type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1575  TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1576  ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1577  DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1578  parsedType, Context.getPrintingPolicy());
1579  // Use the identifier location for the type source range.
1580  DS.SetRangeStart(loc);
1581  DS.SetRangeEnd(loc);
1582 
1583  // Form the declarator.
1585 
1586  // If we have a typedef of an Objective-C class type that is missing a '*',
1587  // add the '*'.
1588  if (type->getAs<ObjCInterfaceType>()) {
1589  SourceLocation starLoc = getLocForEndOfToken(loc);
1590  D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc,
1591  SourceLocation(),
1592  SourceLocation(),
1593  SourceLocation(),
1594  SourceLocation(),
1595  SourceLocation()),
1596  starLoc);
1597 
1598  // Diagnose the missing '*'.
1599  Diag(loc, diag::err_objc_type_arg_missing_star)
1600  << type
1601  << FixItHint::CreateInsertion(starLoc, " *");
1602  }
1603 
1604  // Convert this to a type.
1605  return ActOnTypeName(S, D);
1606  };
1607 
1608  // Local function that updates the declaration specifiers with
1609  // type argument information.
1610  auto resolvedAsTypeDecls = [&] {
1611  // We did not resolve these as protocols.
1612  protocols.clear();
1613 
1614  assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1615  // Map type declarations to type arguments.
1616  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1617  // Map type reference to a type.
1618  TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1619  if (!type.isUsable()) {
1620  typeArgs.clear();
1621  return;
1622  }
1623 
1624  typeArgs.push_back(type.get());
1625  }
1626 
1627  typeArgsLAngleLoc = lAngleLoc;
1628  typeArgsRAngleLoc = rAngleLoc;
1629  };
1630 
1631  // If all of the identifiers can be resolved as type names or
1632  // Objective-C class names, we have type arguments.
1633  if (numTypeDeclsResolved == identifiers.size())
1634  return resolvedAsTypeDecls();
1635 
1636  // Error recovery: some names weren't found, or we have a mix of
1637  // type and protocol names. Go resolve all of the unresolved names
1638  // and complain if we can't find a consistent answer.
1639  LookupNameKind lookupKind = LookupAnyName;
1640  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1641  // If we already have a protocol or type. Check whether it is the
1642  // right thing.
1643  if (protocols[i] || typeDecls[i]) {
1644  // If we haven't figured out whether we want types or protocols
1645  // yet, try to figure it out from this name.
1646  if (lookupKind == LookupAnyName) {
1647  // If this name refers to both a protocol and a type (e.g., \c
1648  // NSObject), don't conclude anything yet.
1649  if (protocols[i] && typeDecls[i])
1650  continue;
1651 
1652  // Otherwise, let this name decide whether we'll be correcting
1653  // toward types or protocols.
1654  lookupKind = protocols[i] ? LookupObjCProtocolName
1656  continue;
1657  }
1658 
1659  // If we want protocols and we have a protocol, there's nothing
1660  // more to do.
1661  if (lookupKind == LookupObjCProtocolName && protocols[i])
1662  continue;
1663 
1664  // If we want types and we have a type declaration, there's
1665  // nothing more to do.
1666  if (lookupKind == LookupOrdinaryName && typeDecls[i])
1667  continue;
1668 
1669  // We have a conflict: some names refer to protocols and others
1670  // refer to types.
1671  DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1672  identifiers[i], identifierLocs[i],
1673  protocols[i] != nullptr);
1674 
1675  protocols.clear();
1676  typeArgs.clear();
1677  return;
1678  }
1679 
1680  // Perform typo correction on the name.
1681  ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1682  TypoCorrection corrected =
1683  CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]),
1684  lookupKind, S, nullptr, CCC, CTK_ErrorRecovery);
1685  if (corrected) {
1686  // Did we find a protocol?
1687  if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1688  diagnoseTypo(corrected,
1689  PDiag(diag::err_undeclared_protocol_suggest)
1690  << identifiers[i]);
1691  lookupKind = LookupObjCProtocolName;
1692  protocols[i] = proto;
1693  ++numProtocolsResolved;
1694  continue;
1695  }
1696 
1697  // Did we find a type?
1698  if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1699  diagnoseTypo(corrected,
1700  PDiag(diag::err_unknown_typename_suggest)
1701  << identifiers[i]);
1702  lookupKind = LookupOrdinaryName;
1703  typeDecls[i] = typeDecl;
1704  ++numTypeDeclsResolved;
1705  continue;
1706  }
1707 
1708  // Did we find an Objective-C class?
1709  if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1710  diagnoseTypo(corrected,
1711  PDiag(diag::err_unknown_type_or_class_name_suggest)
1712  << identifiers[i] << true);
1713  lookupKind = LookupOrdinaryName;
1714  typeDecls[i] = objcClass;
1715  ++numTypeDeclsResolved;
1716  continue;
1717  }
1718  }
1719 
1720  // We couldn't find anything.
1721  Diag(identifierLocs[i],
1722  (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1723  : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1724  : diag::err_unknown_typename))
1725  << identifiers[i];
1726  protocols.clear();
1727  typeArgs.clear();
1728  return;
1729  }
1730 
1731  // If all of the names were (corrected to) protocols, these were
1732  // protocol qualifiers.
1733  if (numProtocolsResolved == identifiers.size())
1734  return resolvedAsProtocols();
1735 
1736  // Otherwise, all of the names were (corrected to) types.
1737  assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1738  return resolvedAsTypeDecls();
1739 }
1740 
1741 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1742 /// a class method in its extension.
1743 ///
1745  ObjCInterfaceDecl *ID) {
1746  if (!ID)
1747  return; // Possibly due to previous error
1748 
1749  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1750  for (auto *MD : ID->methods())
1751  MethodMap[MD->getSelector()] = MD;
1752 
1753  if (MethodMap.empty())
1754  return;
1755  for (const auto *Method : CAT->methods()) {
1756  const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1757  if (PrevMethod &&
1758  (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1759  !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1760  Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1761  << Method->getDeclName();
1762  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1763  }
1764  }
1765 }
1766 
1767 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1770  ArrayRef<IdentifierLocPair> IdentList,
1771  const ParsedAttributesView &attrList) {
1772  SmallVector<Decl *, 8> DeclsInGroup;
1773  for (const IdentifierLocPair &IdentPair : IdentList) {
1774  IdentifierInfo *Ident = IdentPair.first;
1775  ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1777  ObjCProtocolDecl *PDecl
1779  IdentPair.second, AtProtocolLoc,
1780  PrevDecl);
1781 
1782  PushOnScopeChains(PDecl, TUScope);
1783  CheckObjCDeclScope(PDecl);
1784 
1785  ProcessDeclAttributeList(TUScope, PDecl, attrList);
1786  AddPragmaAttributes(TUScope, PDecl);
1787 
1788  if (PrevDecl)
1789  mergeDeclAttributes(PDecl, PrevDecl);
1790 
1791  DeclsInGroup.push_back(PDecl);
1792  }
1793 
1794  return BuildDeclaratorGroup(DeclsInGroup);
1795 }
1796 
1798  SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1799  SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1800  IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1801  Decl *const *ProtoRefs, unsigned NumProtoRefs,
1802  const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1803  const ParsedAttributesView &AttrList) {
1804  ObjCCategoryDecl *CDecl;
1805  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1806 
1807  /// Check that class of this category is already completely declared.
1808 
1809  if (!IDecl
1810  || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1811  diag::err_category_forward_interface,
1812  CategoryName == nullptr)) {
1813  // Create an invalid ObjCCategoryDecl to serve as context for
1814  // the enclosing method declarations. We mark the decl invalid
1815  // to make it clear that this isn't a valid AST.
1816  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1817  ClassLoc, CategoryLoc, CategoryName,
1818  IDecl, typeParamList);
1819  CDecl->setInvalidDecl();
1820  CurContext->addDecl(CDecl);
1821 
1822  if (!IDecl)
1823  Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1824  return ActOnObjCContainerStartDefinition(CDecl);
1825  }
1826 
1827  if (!CategoryName && IDecl->getImplementation()) {
1828  Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1829  Diag(IDecl->getImplementation()->getLocation(),
1830  diag::note_implementation_declared);
1831  }
1832 
1833  if (CategoryName) {
1834  /// Check for duplicate interface declaration for this category
1836  = IDecl->FindCategoryDeclaration(CategoryName)) {
1837  // Class extensions can be declared multiple times, categories cannot.
1838  Diag(CategoryLoc, diag::warn_dup_category_def)
1839  << ClassName << CategoryName;
1840  Diag(Previous->getLocation(), diag::note_previous_definition);
1841  }
1842  }
1843 
1844  // If we have a type parameter list, check it.
1845  if (typeParamList) {
1846  if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1847  if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1848  CategoryName
1850  : TypeParamListContext::Extension))
1851  typeParamList = nullptr;
1852  } else {
1853  Diag(typeParamList->getLAngleLoc(),
1854  diag::err_objc_parameterized_category_nonclass)
1855  << (CategoryName != nullptr)
1856  << ClassName
1857  << typeParamList->getSourceRange();
1858 
1859  typeParamList = nullptr;
1860  }
1861  }
1862 
1863  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1864  ClassLoc, CategoryLoc, CategoryName, IDecl,
1865  typeParamList);
1866  // FIXME: PushOnScopeChains?
1867  CurContext->addDecl(CDecl);
1868 
1869  // Process the attributes before looking at protocols to ensure that the
1870  // availability attribute is attached to the category to provide availability
1871  // checking for protocol uses.
1872  ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1873  AddPragmaAttributes(TUScope, CDecl);
1874 
1875  if (NumProtoRefs) {
1876  diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1877  NumProtoRefs, ProtoLocs);
1878  CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1879  ProtoLocs, Context);
1880  // Protocols in the class extension belong to the class.
1881  if (CDecl->IsClassExtension())
1882  IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1883  NumProtoRefs, Context);
1884  }
1885 
1886  CheckObjCDeclScope(CDecl);
1887  return ActOnObjCContainerStartDefinition(CDecl);
1888 }
1889 
1890 /// ActOnStartCategoryImplementation - Perform semantic checks on the
1891 /// category implementation declaration and build an ObjCCategoryImplDecl
1892 /// object.
1894  SourceLocation AtCatImplLoc,
1895  IdentifierInfo *ClassName, SourceLocation ClassLoc,
1896  IdentifierInfo *CatName, SourceLocation CatLoc,
1897  const ParsedAttributesView &Attrs) {
1898  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1899  ObjCCategoryDecl *CatIDecl = nullptr;
1900  if (IDecl && IDecl->hasDefinition()) {
1901  CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1902  if (!CatIDecl) {
1903  // Category @implementation with no corresponding @interface.
1904  // Create and install one.
1905  CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1906  ClassLoc, CatLoc,
1907  CatName, IDecl,
1908  /*typeParamList=*/nullptr);
1909  CatIDecl->setImplicit();
1910  }
1911  }
1912 
1913  ObjCCategoryImplDecl *CDecl =
1915  ClassLoc, AtCatImplLoc, CatLoc);
1916  /// Check that class of this category is already completely declared.
1917  if (!IDecl) {
1918  Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1919  CDecl->setInvalidDecl();
1920  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1921  diag::err_undef_interface)) {
1922  CDecl->setInvalidDecl();
1923  }
1924 
1925  ProcessDeclAttributeList(TUScope, CDecl, Attrs);
1926  AddPragmaAttributes(TUScope, CDecl);
1927 
1928  // FIXME: PushOnScopeChains?
1929  CurContext->addDecl(CDecl);
1930 
1931  // If the interface has the objc_runtime_visible attribute, we
1932  // cannot implement a category for it.
1933  if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1934  Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1935  << IDecl->getDeclName();
1936  }
1937 
1938  /// Check that CatName, category name, is not used in another implementation.
1939  if (CatIDecl) {
1940  if (CatIDecl->getImplementation()) {
1941  Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1942  << CatName;
1943  Diag(CatIDecl->getImplementation()->getLocation(),
1944  diag::note_previous_definition);
1945  CDecl->setInvalidDecl();
1946  } else {
1947  CatIDecl->setImplementation(CDecl);
1948  // Warn on implementating category of deprecated class under
1949  // -Wdeprecated-implementations flag.
1950  DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1951  CDecl->getLocation());
1952  }
1953  }
1954 
1955  CheckObjCDeclScope(CDecl);
1956  return ActOnObjCContainerStartDefinition(CDecl);
1957 }
1958 
1960  SourceLocation AtClassImplLoc,
1961  IdentifierInfo *ClassName, SourceLocation ClassLoc,
1962  IdentifierInfo *SuperClassname,
1963  SourceLocation SuperClassLoc,
1964  const ParsedAttributesView &Attrs) {
1965  ObjCInterfaceDecl *IDecl = nullptr;
1966  // Check for another declaration kind with the same name.
1967  NamedDecl *PrevDecl
1968  = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1970  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1971  Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1972  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1973  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1974  // FIXME: This will produce an error if the definition of the interface has
1975  // been imported from a module but is not visible.
1977  diag::warn_undef_interface);
1978  } else {
1979  // We did not find anything with the name ClassName; try to correct for
1980  // typos in the class name.
1981  ObjCInterfaceValidatorCCC CCC{};
1982  TypoCorrection Corrected =
1983  CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc),
1984  LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError);
1985  if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1986  // Suggest the (potentially) correct interface name. Don't provide a
1987  // code-modification hint or use the typo name for recovery, because
1988  // this is just a warning. The program may actually be correct.
1989  diagnoseTypo(Corrected,
1990  PDiag(diag::warn_undef_interface_suggest) << ClassName,
1991  /*ErrorRecovery*/false);
1992  } else {
1993  Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1994  }
1995  }
1996 
1997  // Check that super class name is valid class name
1998  ObjCInterfaceDecl *SDecl = nullptr;
1999  if (SuperClassname) {
2000  // Check if a different kind of symbol declared in this scope.
2001  PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
2003  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2004  Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2005  << SuperClassname;
2006  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2007  } else {
2008  SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2009  if (SDecl && !SDecl->hasDefinition())
2010  SDecl = nullptr;
2011  if (!SDecl)
2012  Diag(SuperClassLoc, diag::err_undef_superclass)
2013  << SuperClassname << ClassName;
2014  else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2015  // This implementation and its interface do not have the same
2016  // super class.
2017  Diag(SuperClassLoc, diag::err_conflicting_super_class)
2018  << SDecl->getDeclName();
2019  Diag(SDecl->getLocation(), diag::note_previous_definition);
2020  }
2021  }
2022  }
2023 
2024  if (!IDecl) {
2025  // Legacy case of @implementation with no corresponding @interface.
2026  // Build, chain & install the interface decl into the identifier.
2027 
2028  // FIXME: Do we support attributes on the @implementation? If so we should
2029  // copy them over.
2030  IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
2031  ClassName, /*typeParamList=*/nullptr,
2032  /*PrevDecl=*/nullptr, ClassLoc,
2033  true);
2034  AddPragmaAttributes(TUScope, IDecl);
2035  IDecl->startDefinition();
2036  if (SDecl) {
2039  SuperClassLoc));
2040  IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2041  } else {
2042  IDecl->setEndOfDefinitionLoc(ClassLoc);
2043  }
2044 
2045  PushOnScopeChains(IDecl, TUScope);
2046  } else {
2047  // Mark the interface as being completed, even if it was just as
2048  // @class ....;
2049  // declaration; the user cannot reopen it.
2050  if (!IDecl->hasDefinition())
2051  IDecl->startDefinition();
2052  }
2053 
2054  ObjCImplementationDecl* IMPDecl =
2056  ClassLoc, AtClassImplLoc, SuperClassLoc);
2057 
2058  ProcessDeclAttributeList(TUScope, IMPDecl, Attrs);
2059  AddPragmaAttributes(TUScope, IMPDecl);
2060 
2061  if (CheckObjCDeclScope(IMPDecl))
2062  return ActOnObjCContainerStartDefinition(IMPDecl);
2063 
2064  // Check that there is no duplicate implementation of this class.
2065  if (IDecl->getImplementation()) {
2066  // FIXME: Don't leak everything!
2067  Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2068  Diag(IDecl->getImplementation()->getLocation(),
2069  diag::note_previous_definition);
2070  IMPDecl->setInvalidDecl();
2071  } else { // add it to the list.
2072  IDecl->setImplementation(IMPDecl);
2073  PushOnScopeChains(IMPDecl, TUScope);
2074  // Warn on implementating deprecated class under
2075  // -Wdeprecated-implementations flag.
2076  DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2077  }
2078 
2079  // If the superclass has the objc_runtime_visible attribute, we
2080  // cannot implement a subclass of it.
2081  if (IDecl->getSuperClass() &&
2082  IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2083  Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2084  << IDecl->getDeclName()
2085  << IDecl->getSuperClass()->getDeclName();
2086  }
2087 
2088  return ActOnObjCContainerStartDefinition(IMPDecl);
2089 }
2090 
2093  SmallVector<Decl *, 64> DeclsInGroup;
2094  DeclsInGroup.reserve(Decls.size() + 1);
2095 
2096  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2097  Decl *Dcl = Decls[i];
2098  if (!Dcl)
2099  continue;
2100  if (Dcl->getDeclContext()->isFileContext())
2102  DeclsInGroup.push_back(Dcl);
2103  }
2104 
2105  DeclsInGroup.push_back(ObjCImpDecl);
2106 
2107  return BuildDeclaratorGroup(DeclsInGroup);
2108 }
2109 
2111  ObjCIvarDecl **ivars, unsigned numIvars,
2112  SourceLocation RBrace) {
2113  assert(ImpDecl && "missing implementation decl");
2114  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2115  if (!IDecl)
2116  return;
2117  /// Check case of non-existing \@interface decl.
2118  /// (legacy objective-c \@implementation decl without an \@interface decl).
2119  /// Add implementations's ivar to the synthesize class's ivar list.
2120  if (IDecl->isImplicitInterfaceDecl()) {
2121  IDecl->setEndOfDefinitionLoc(RBrace);
2122  // Add ivar's to class's DeclContext.
2123  for (unsigned i = 0, e = numIvars; i != e; ++i) {
2124  ivars[i]->setLexicalDeclContext(ImpDecl);
2125  IDecl->makeDeclVisibleInContext(ivars[i]);
2126  ImpDecl->addDecl(ivars[i]);
2127  }
2128 
2129  return;
2130  }
2131  // If implementation has empty ivar list, just return.
2132  if (numIvars == 0)
2133  return;
2134 
2135  assert(ivars && "missing @implementation ivars");
2137  if (ImpDecl->getSuperClass())
2138  Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2139  for (unsigned i = 0; i < numIvars; i++) {
2140  ObjCIvarDecl* ImplIvar = ivars[i];
2141  if (const ObjCIvarDecl *ClsIvar =
2142  IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2143  Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2144  Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2145  continue;
2146  }
2147  // Check class extensions (unnamed categories) for duplicate ivars.
2148  for (const auto *CDecl : IDecl->visible_extensions()) {
2149  if (const ObjCIvarDecl *ClsExtIvar =
2150  CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2151  Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2152  Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2153  continue;
2154  }
2155  }
2156  // Instance ivar to Implementation's DeclContext.
2157  ImplIvar->setLexicalDeclContext(ImpDecl);
2158  IDecl->makeDeclVisibleInContext(ImplIvar);
2159  ImpDecl->addDecl(ImplIvar);
2160  }
2161  return;
2162  }
2163  // Check interface's Ivar list against those in the implementation.
2164  // names and types must match.
2165  //
2166  unsigned j = 0;
2168  IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2169  for (; numIvars > 0 && IVI != IVE; ++IVI) {
2170  ObjCIvarDecl* ImplIvar = ivars[j++];
2171  ObjCIvarDecl* ClsIvar = *IVI;
2172  assert (ImplIvar && "missing implementation ivar");
2173  assert (ClsIvar && "missing class ivar");
2174 
2175  // First, make sure the types match.
2176  if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2177  Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2178  << ImplIvar->getIdentifier()
2179  << ImplIvar->getType() << ClsIvar->getType();
2180  Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2181  } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2182  ImplIvar->getBitWidthValue(Context) !=
2183  ClsIvar->getBitWidthValue(Context)) {
2184  Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2185  diag::err_conflicting_ivar_bitwidth)
2186  << ImplIvar->getIdentifier();
2187  Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2188  diag::note_previous_definition);
2189  }
2190  // Make sure the names are identical.
2191  if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2192  Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2193  << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2194  Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2195  }
2196  --numIvars;
2197  }
2198 
2199  if (numIvars > 0)
2200  Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2201  else if (IVI != IVE)
2202  Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2203 }
2204 
2205 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2206  ObjCMethodDecl *method,
2207  bool &IncompleteImpl,
2208  unsigned DiagID,
2209  NamedDecl *NeededFor = nullptr) {
2210  // No point warning no definition of method which is 'unavailable'.
2211  if (method->getAvailability() == AR_Unavailable)
2212  return;
2213 
2214  // FIXME: For now ignore 'IncompleteImpl'.
2215  // Previously we grouped all unimplemented methods under a single
2216  // warning, but some users strongly voiced that they would prefer
2217  // separate warnings. We will give that approach a try, as that
2218  // matches what we do with protocols.
2219  {
2220  const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2221  B << method;
2222  if (NeededFor)
2223  B << NeededFor;
2224  }
2225 
2226  // Issue a note to the original declaration.
2227  SourceLocation MethodLoc = method->getBeginLoc();
2228  if (MethodLoc.isValid())
2229  S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2230 }
2231 
2232 /// Determines if type B can be substituted for type A. Returns true if we can
2233 /// guarantee that anything that the user will do to an object of type A can
2234 /// also be done to an object of type B. This is trivially true if the two
2235 /// types are the same, or if B is a subclass of A. It becomes more complex
2236 /// in cases where protocols are involved.
2237 ///
2238 /// Object types in Objective-C describe the minimum requirements for an
2239 /// object, rather than providing a complete description of a type. For
2240 /// example, if A is a subclass of B, then B* may refer to an instance of A.
2241 /// The principle of substitutability means that we may use an instance of A
2242 /// anywhere that we may use an instance of B - it will implement all of the
2243 /// ivars of B and all of the methods of B.
2244 ///
2245 /// This substitutability is important when type checking methods, because
2246 /// the implementation may have stricter type definitions than the interface.
2247 /// The interface specifies minimum requirements, but the implementation may
2248 /// have more accurate ones. For example, a method may privately accept
2249 /// instances of B, but only publish that it accepts instances of A. Any
2250 /// object passed to it will be type checked against B, and so will implicitly
2251 /// by a valid A*. Similarly, a method may return a subclass of the class that
2252 /// it is declared as returning.
2253 ///
2254 /// This is most important when considering subclassing. A method in a
2255 /// subclass must accept any object as an argument that its superclass's
2256 /// implementation accepts. It may, however, accept a more general type
2257 /// without breaking substitutability (i.e. you can still use the subclass
2258 /// anywhere that you can use the superclass, but not vice versa). The
2259 /// converse requirement applies to return types: the return type for a
2260 /// subclass method must be a valid object of the kind that the superclass
2261 /// advertises, but it may be specified more accurately. This avoids the need
2262 /// for explicit down-casting by callers.
2263 ///
2264 /// Note: This is a stricter requirement than for assignment.
2266  const ObjCObjectPointerType *A,
2267  const ObjCObjectPointerType *B,
2268  bool rejectId) {
2269  // Reject a protocol-unqualified id.
2270  if (rejectId && B->isObjCIdType()) return false;
2271 
2272  // If B is a qualified id, then A must also be a qualified id and it must
2273  // implement all of the protocols in B. It may not be a qualified class.
2274  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2275  // stricter definition so it is not substitutable for id<A>.
2276  if (B->isObjCQualifiedIdType()) {
2277  return A->isObjCQualifiedIdType() &&
2279  QualType(B,0),
2280  false);
2281  }
2282 
2283  /*
2284  // id is a special type that bypasses type checking completely. We want a
2285  // warning when it is used in one place but not another.
2286  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2287 
2288 
2289  // If B is a qualified id, then A must also be a qualified id (which it isn't
2290  // if we've got this far)
2291  if (B->isObjCQualifiedIdType()) return false;
2292  */
2293 
2294  // Now we know that A and B are (potentially-qualified) class types. The
2295  // normal rules for assignment apply.
2296  return Context.canAssignObjCInterfaces(A, B);
2297 }
2298 
2300  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2301 }
2302 
2303 /// Determine whether two set of Objective-C declaration qualifiers conflict.
2306  return (x & ~Decl::OBJC_TQ_CSNullability) !=
2307  (y & ~Decl::OBJC_TQ_CSNullability);
2308 }
2309 
2311  ObjCMethodDecl *MethodImpl,
2312  ObjCMethodDecl *MethodDecl,
2313  bool IsProtocolMethodDecl,
2314  bool IsOverridingMode,
2315  bool Warn) {
2316  if (IsProtocolMethodDecl &&
2318  MethodImpl->getObjCDeclQualifier())) {
2319  if (Warn) {
2320  S.Diag(MethodImpl->getLocation(),
2321  (IsOverridingMode
2322  ? diag::warn_conflicting_overriding_ret_type_modifiers
2323  : diag::warn_conflicting_ret_type_modifiers))
2324  << MethodImpl->getDeclName()
2325  << MethodImpl->getReturnTypeSourceRange();
2326  S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2327  << MethodDecl->getReturnTypeSourceRange();
2328  }
2329  else
2330  return false;
2331  }
2332  if (Warn && IsOverridingMode &&
2333  !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2335  MethodDecl->getReturnType(),
2336  false)) {
2337  auto nullabilityMethodImpl =
2338  *MethodImpl->getReturnType()->getNullability(S.Context);
2339  auto nullabilityMethodDecl =
2340  *MethodDecl->getReturnType()->getNullability(S.Context);
2341  S.Diag(MethodImpl->getLocation(),
2342  diag::warn_conflicting_nullability_attr_overriding_ret_types)
2344  nullabilityMethodImpl,
2346  != 0))
2348  nullabilityMethodDecl,
2350  != 0));
2351  S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2352  }
2353 
2354  if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2355  MethodDecl->getReturnType()))
2356  return true;
2357  if (!Warn)
2358  return false;
2359 
2360  unsigned DiagID =
2361  IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2362  : diag::warn_conflicting_ret_types;
2363 
2364  // Mismatches between ObjC pointers go into a different warning
2365  // category, and sometimes they're even completely whitelisted.
2366  if (const ObjCObjectPointerType *ImplPtrTy =
2367  MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2368  if (const ObjCObjectPointerType *IfacePtrTy =
2369  MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2370  // Allow non-matching return types as long as they don't violate
2371  // the principle of substitutability. Specifically, we permit
2372  // return types that are subclasses of the declared return type,
2373  // or that are more-qualified versions of the declared type.
2374  if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2375  return false;
2376 
2377  DiagID =
2378  IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2379  : diag::warn_non_covariant_ret_types;
2380  }
2381  }
2382 
2383  S.Diag(MethodImpl->getLocation(), DiagID)
2384  << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2385  << MethodImpl->getReturnType()
2386  << MethodImpl->getReturnTypeSourceRange();
2387  S.Diag(MethodDecl->getLocation(), IsOverridingMode
2388  ? diag::note_previous_declaration
2389  : diag::note_previous_definition)
2390  << MethodDecl->getReturnTypeSourceRange();
2391  return false;
2392 }
2393 
2395  ObjCMethodDecl *MethodImpl,
2396  ObjCMethodDecl *MethodDecl,
2397  ParmVarDecl *ImplVar,
2398  ParmVarDecl *IfaceVar,
2399  bool IsProtocolMethodDecl,
2400  bool IsOverridingMode,
2401  bool Warn) {
2402  if (IsProtocolMethodDecl &&
2404  IfaceVar->getObjCDeclQualifier())) {
2405  if (Warn) {
2406  if (IsOverridingMode)
2407  S.Diag(ImplVar->getLocation(),
2408  diag::warn_conflicting_overriding_param_modifiers)
2409  << getTypeRange(ImplVar->getTypeSourceInfo())
2410  << MethodImpl->getDeclName();
2411  else S.Diag(ImplVar->getLocation(),
2412  diag::warn_conflicting_param_modifiers)
2413  << getTypeRange(ImplVar->getTypeSourceInfo())
2414  << MethodImpl->getDeclName();
2415  S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2416  << getTypeRange(IfaceVar->getTypeSourceInfo());
2417  }
2418  else
2419  return false;
2420  }
2421 
2422  QualType ImplTy = ImplVar->getType();
2423  QualType IfaceTy = IfaceVar->getType();
2424  if (Warn && IsOverridingMode &&
2425  !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2426  !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2427  S.Diag(ImplVar->getLocation(),
2428  diag::warn_conflicting_nullability_attr_overriding_param_types)
2430  *ImplTy->getNullability(S.Context),
2432  != 0))
2434  *IfaceTy->getNullability(S.Context),
2436  != 0));
2437  S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2438  }
2439  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2440  return true;
2441 
2442  if (!Warn)
2443  return false;
2444  unsigned DiagID =
2445  IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2446  : diag::warn_conflicting_param_types;
2447 
2448  // Mismatches between ObjC pointers go into a different warning
2449  // category, and sometimes they're even completely whitelisted.
2450  if (const ObjCObjectPointerType *ImplPtrTy =
2451  ImplTy->getAs<ObjCObjectPointerType>()) {
2452  if (const ObjCObjectPointerType *IfacePtrTy =
2453  IfaceTy->getAs<ObjCObjectPointerType>()) {
2454  // Allow non-matching argument types as long as they don't
2455  // violate the principle of substitutability. Specifically, the
2456  // implementation must accept any objects that the superclass
2457  // accepts, however it may also accept others.
2458  if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2459  return false;
2460 
2461  DiagID =
2462  IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2463  : diag::warn_non_contravariant_param_types;
2464  }
2465  }
2466 
2467  S.Diag(ImplVar->getLocation(), DiagID)
2468  << getTypeRange(ImplVar->getTypeSourceInfo())
2469  << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2470  S.Diag(IfaceVar->getLocation(),
2471  (IsOverridingMode ? diag::note_previous_declaration
2472  : diag::note_previous_definition))
2473  << getTypeRange(IfaceVar->getTypeSourceInfo());
2474  return false;
2475 }
2476 
2477 /// In ARC, check whether the conventional meanings of the two methods
2478 /// match. If they don't, it's a hard error.
2480  ObjCMethodDecl *decl) {
2481  ObjCMethodFamily implFamily = impl->getMethodFamily();
2482  ObjCMethodFamily declFamily = decl->getMethodFamily();
2483  if (implFamily == declFamily) return false;
2484 
2485  // Since conventions are sorted by selector, the only possibility is
2486  // that the types differ enough to cause one selector or the other
2487  // to fall out of the family.
2488  assert(implFamily == OMF_None || declFamily == OMF_None);
2489 
2490  // No further diagnostics required on invalid declarations.
2491  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2492 
2493  const ObjCMethodDecl *unmatched = impl;
2494  ObjCMethodFamily family = declFamily;
2495  unsigned errorID = diag::err_arc_lost_method_convention;
2496  unsigned noteID = diag::note_arc_lost_method_convention;
2497  if (declFamily == OMF_None) {
2498  unmatched = decl;
2499  family = implFamily;
2500  errorID = diag::err_arc_gained_method_convention;
2501  noteID = diag::note_arc_gained_method_convention;
2502  }
2503 
2504  // Indexes into a %select clause in the diagnostic.
2505  enum FamilySelector {
2506  F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2507  };
2508  FamilySelector familySelector = FamilySelector();
2509 
2510  switch (family) {
2511  case OMF_None: llvm_unreachable("logic error, no method convention");
2512  case OMF_retain:
2513  case OMF_release:
2514  case OMF_autorelease:
2515  case OMF_dealloc:
2516  case OMF_finalize:
2517  case OMF_retainCount:
2518  case OMF_self:
2519  case OMF_initialize:
2520  case OMF_performSelector:
2521  // Mismatches for these methods don't change ownership
2522  // conventions, so we don't care.
2523  return false;
2524 
2525  case OMF_init: familySelector = F_init; break;
2526  case OMF_alloc: familySelector = F_alloc; break;
2527  case OMF_copy: familySelector = F_copy; break;
2528  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2529  case OMF_new: familySelector = F_new; break;
2530  }
2531 
2532  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2533  ReasonSelector reasonSelector;
2534 
2535  // The only reason these methods don't fall within their families is
2536  // due to unusual result types.
2537  if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2538  reasonSelector = R_UnrelatedReturn;
2539  } else {
2540  reasonSelector = R_NonObjectReturn;
2541  }
2542 
2543  S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2544  S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2545 
2546  return true;
2547 }
2548 
2550  ObjCMethodDecl *MethodDecl,
2551  bool IsProtocolMethodDecl) {
2552  if (getLangOpts().ObjCAutoRefCount &&
2553  checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2554  return;
2555 
2556  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2557  IsProtocolMethodDecl, false,
2558  true);
2559 
2560  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2561  IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2562  EF = MethodDecl->param_end();
2563  IM != EM && IF != EF; ++IM, ++IF) {
2564  CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2565  IsProtocolMethodDecl, false, true);
2566  }
2567 
2568  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2569  Diag(ImpMethodDecl->getLocation(),
2570  diag::warn_conflicting_variadic);
2571  Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2572  }
2573 }
2574 
2576  ObjCMethodDecl *Overridden,
2577  bool IsProtocolMethodDecl) {
2578 
2579  CheckMethodOverrideReturn(*this, Method, Overridden,
2580  IsProtocolMethodDecl, true,
2581  true);
2582 
2583  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2584  IF = Overridden->param_begin(), EM = Method->param_end(),
2585  EF = Overridden->param_end();
2586  IM != EM && IF != EF; ++IM, ++IF) {
2587  CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2588  IsProtocolMethodDecl, true, true);
2589  }
2590 
2591  if (Method->isVariadic() != Overridden->isVariadic()) {
2592  Diag(Method->getLocation(),
2593  diag::warn_conflicting_overriding_variadic);
2594  Diag(Overridden->getLocation(), diag::note_previous_declaration);
2595  }
2596 }
2597 
2598 /// WarnExactTypedMethods - This routine issues a warning if method
2599 /// implementation declaration matches exactly that of its declaration.
2601  ObjCMethodDecl *MethodDecl,
2602  bool IsProtocolMethodDecl) {
2603  // don't issue warning when protocol method is optional because primary
2604  // class is not required to implement it and it is safe for protocol
2605  // to implement it.
2607  return;
2608  // don't issue warning when primary class's method is
2609  // depecated/unavailable.
2610  if (MethodDecl->hasAttr<UnavailableAttr>() ||
2611  MethodDecl->hasAttr<DeprecatedAttr>())
2612  return;
2613 
2614  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2615  IsProtocolMethodDecl, false, false);
2616  if (match)
2617  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2618  IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2619  EF = MethodDecl->param_end();
2620  IM != EM && IF != EF; ++IM, ++IF) {
2621  match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2622  *IM, *IF,
2623  IsProtocolMethodDecl, false, false);
2624  if (!match)
2625  break;
2626  }
2627  if (match)
2628  match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2629  if (match)
2630  match = !(MethodDecl->isClassMethod() &&
2631  MethodDecl->getSelector() == GetNullarySelector("load", Context));
2632 
2633  if (match) {
2634  Diag(ImpMethodDecl->getLocation(),
2635  diag::warn_category_method_impl_match);
2636  Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2637  << MethodDecl->getDeclName();
2638  }
2639 }
2640 
2641 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2642 /// improve the efficiency of selector lookups and type checking by associating
2643 /// with each protocol / interface / category the flattened instance tables. If
2644 /// we used an immutable set to keep the table then it wouldn't add significant
2645 /// memory cost and it would be handy for lookups.
2646 
2648 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2649 
2651  ProtocolNameSet &PNS) {
2652  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2653  PNS.insert(PDecl->getIdentifier());
2654  for (const auto *PI : PDecl->protocols())
2656 }
2657 
2658 /// Recursively populates a set with all conformed protocols in a class
2659 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2660 /// attribute.
2662  ProtocolNameSet &PNS) {
2663  if (!Super)
2664  return;
2665 
2666  for (const auto *I : Super->all_referenced_protocols())
2668 
2670 }
2671 
2672 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
2673 /// Declared in protocol, and those referenced by it.
2675  SourceLocation ImpLoc,
2676  ObjCProtocolDecl *PDecl,
2677  bool& IncompleteImpl,
2678  const Sema::SelectorSet &InsMap,
2679  const Sema::SelectorSet &ClsMap,
2680  ObjCContainerDecl *CDecl,
2681  LazyProtocolNameSet &ProtocolsExplictImpl) {
2682  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2683  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2684  : dyn_cast<ObjCInterfaceDecl>(CDecl);
2685  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2686 
2687  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2688  ObjCInterfaceDecl *NSIDecl = nullptr;
2689 
2690  // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2691  // then we should check if any class in the super class hierarchy also
2692  // conforms to this protocol, either directly or via protocol inheritance.
2693  // If so, we can skip checking this protocol completely because we
2694  // know that a parent class already satisfies this protocol.
2695  //
2696  // Note: we could generalize this logic for all protocols, and merely
2697  // add the limit on looking at the super class chain for just
2698  // specially marked protocols. This may be a good optimization. This
2699  // change is restricted to 'objc_protocol_requires_explicit_implementation'
2700  // protocols for now for controlled evaluation.
2701  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2702  if (!ProtocolsExplictImpl) {
2703  ProtocolsExplictImpl.reset(new ProtocolNameSet);
2704  findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2705  }
2706  if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2707  ProtocolsExplictImpl->end())
2708  return;
2709 
2710  // If no super class conforms to the protocol, we should not search
2711  // for methods in the super class to implicitly satisfy the protocol.
2712  Super = nullptr;
2713  }
2714 
2715  if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2716  // check to see if class implements forwardInvocation method and objects
2717  // of this class are derived from 'NSProxy' so that to forward requests
2718  // from one object to another.
2719  // Under such conditions, which means that every method possible is
2720  // implemented in the class, we should not issue "Method definition not
2721  // found" warnings.
2722  // FIXME: Use a general GetUnarySelector method for this.
2723  IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2724  Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2725  if (InsMap.count(fISelector))
2726  // Is IDecl derived from 'NSProxy'? If so, no instance methods
2727  // need be implemented in the implementation.
2728  NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2729  }
2730 
2731  // If this is a forward protocol declaration, get its definition.
2732  if (!PDecl->isThisDeclarationADefinition() &&
2733  PDecl->getDefinition())
2734  PDecl = PDecl->getDefinition();
2735 
2736  // If a method lookup fails locally we still need to look and see if
2737  // the method was implemented by a base class or an inherited
2738  // protocol. This lookup is slow, but occurs rarely in correct code
2739  // and otherwise would terminate in a warning.
2740 
2741  // check unimplemented instance methods.
2742  if (!NSIDecl)
2743  for (auto *method : PDecl->instance_methods()) {
2744  if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2745  !method->isPropertyAccessor() &&
2746  !InsMap.count(method->getSelector()) &&
2747  (!Super || !Super->lookupMethod(method->getSelector(),
2748  true /* instance */,
2749  false /* shallowCategory */,
2750  true /* followsSuper */,
2751  nullptr /* category */))) {
2752  // If a method is not implemented in the category implementation but
2753  // has been declared in its primary class, superclass,
2754  // or in one of their protocols, no need to issue the warning.
2755  // This is because method will be implemented in the primary class
2756  // or one of its super class implementation.
2757 
2758  // Ugly, but necessary. Method declared in protocol might have
2759  // have been synthesized due to a property declared in the class which
2760  // uses the protocol.
2761  if (ObjCMethodDecl *MethodInClass =
2762  IDecl->lookupMethod(method->getSelector(),
2763  true /* instance */,
2764  true /* shallowCategoryLookup */,
2765  false /* followSuper */))
2766  if (C || MethodInClass->isPropertyAccessor())
2767  continue;
2768  unsigned DIAG = diag::warn_unimplemented_protocol_method;
2769  if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2770  WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2771  PDecl);
2772  }
2773  }
2774  }
2775  // check unimplemented class methods
2776  for (auto *method : PDecl->class_methods()) {
2777  if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2778  !ClsMap.count(method->getSelector()) &&
2779  (!Super || !Super->lookupMethod(method->getSelector(),
2780  false /* class method */,
2781  false /* shallowCategoryLookup */,
2782  true /* followSuper */,
2783  nullptr /* category */))) {
2784  // See above comment for instance method lookups.
2785  if (C && IDecl->lookupMethod(method->getSelector(),
2786  false /* class */,
2787  true /* shallowCategoryLookup */,
2788  false /* followSuper */))
2789  continue;
2790 
2791  unsigned DIAG = diag::warn_unimplemented_protocol_method;
2792  if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2793  WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2794  }
2795  }
2796  }
2797  // Check on this protocols's referenced protocols, recursively.
2798  for (auto *PI : PDecl->protocols())
2799  CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2800  CDecl, ProtocolsExplictImpl);
2801 }
2802 
2803 /// MatchAllMethodDeclarations - Check methods declared in interface
2804 /// or protocol against those declared in their implementations.
2805 ///
2807  const SelectorSet &ClsMap,
2808  SelectorSet &InsMapSeen,
2809  SelectorSet &ClsMapSeen,
2810  ObjCImplDecl* IMPDecl,
2811  ObjCContainerDecl* CDecl,
2812  bool &IncompleteImpl,
2813  bool ImmediateClass,
2814  bool WarnCategoryMethodImpl) {
2815  // Check and see if instance methods in class interface have been
2816  // implemented in the implementation class. If so, their types match.
2817  for (auto *I : CDecl->instance_methods()) {
2818  if (!InsMapSeen.insert(I->getSelector()).second)
2819  continue;
2820  if (!I->isPropertyAccessor() &&
2821  !InsMap.count(I->getSelector())) {
2822  if (ImmediateClass)
2823  WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2824  diag::warn_undef_method_impl);
2825  continue;
2826  } else {
2827  ObjCMethodDecl *ImpMethodDecl =
2828  IMPDecl->getInstanceMethod(I->getSelector());
2829  assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2830  "Expected to find the method through lookup as well");
2831  // ImpMethodDecl may be null as in a @dynamic property.
2832  if (ImpMethodDecl) {
2833  if (!WarnCategoryMethodImpl)
2834  WarnConflictingTypedMethods(ImpMethodDecl, I,
2835  isa<ObjCProtocolDecl>(CDecl));
2836  else if (!I->isPropertyAccessor())
2837  WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2838  }
2839  }
2840  }
2841 
2842  // Check and see if class methods in class interface have been
2843  // implemented in the implementation class. If so, their types match.
2844  for (auto *I : CDecl->class_methods()) {
2845  if (!ClsMapSeen.insert(I->getSelector()).second)
2846  continue;
2847  if (!I->isPropertyAccessor() &&
2848  !ClsMap.count(I->getSelector())) {
2849  if (ImmediateClass)
2850  WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2851  diag::warn_undef_method_impl);
2852  } else {
2853  ObjCMethodDecl *ImpMethodDecl =
2854  IMPDecl->getClassMethod(I->getSelector());
2855  assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2856  "Expected to find the method through lookup as well");
2857  // ImpMethodDecl may be null as in a @dynamic property.
2858  if (ImpMethodDecl) {
2859  if (!WarnCategoryMethodImpl)
2860  WarnConflictingTypedMethods(ImpMethodDecl, I,
2861  isa<ObjCProtocolDecl>(CDecl));
2862  else if (!I->isPropertyAccessor())
2863  WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2864  }
2865  }
2866  }
2867 
2868  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2869  // Also, check for methods declared in protocols inherited by
2870  // this protocol.
2871  for (auto *PI : PD->protocols())
2872  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2873  IMPDecl, PI, IncompleteImpl, false,
2874  WarnCategoryMethodImpl);
2875  }
2876 
2877  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2878  // when checking that methods in implementation match their declaration,
2879  // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2880  // extension; as well as those in categories.
2881  if (!WarnCategoryMethodImpl) {
2882  for (auto *Cat : I->visible_categories())
2883  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2884  IMPDecl, Cat, IncompleteImpl,
2885  ImmediateClass && Cat->IsClassExtension(),
2886  WarnCategoryMethodImpl);
2887  } else {
2888  // Also methods in class extensions need be looked at next.
2889  for (auto *Ext : I->visible_extensions())
2890  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2891  IMPDecl, Ext, IncompleteImpl, false,
2892  WarnCategoryMethodImpl);
2893  }
2894 
2895  // Check for any implementation of a methods declared in protocol.
2896  for (auto *PI : I->all_referenced_protocols())
2897  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2898  IMPDecl, PI, IncompleteImpl, false,
2899  WarnCategoryMethodImpl);
2900 
2901  // FIXME. For now, we are not checking for exact match of methods
2902  // in category implementation and its primary class's super class.
2903  if (!WarnCategoryMethodImpl && I->getSuperClass())
2904  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2905  IMPDecl,
2906  I->getSuperClass(), IncompleteImpl, false);
2907  }
2908 }
2909 
2910 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2911 /// category matches with those implemented in its primary class and
2912 /// warns each time an exact match is found.
2914  ObjCCategoryImplDecl *CatIMPDecl) {
2915  // Get category's primary class.
2916  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2917  if (!CatDecl)
2918  return;
2919  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2920  if (!IDecl)
2921  return;
2922  ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2923  SelectorSet InsMap, ClsMap;
2924 
2925  for (const auto *I : CatIMPDecl->instance_methods()) {
2926  Selector Sel = I->getSelector();
2927  // When checking for methods implemented in the category, skip over
2928  // those declared in category class's super class. This is because
2929  // the super class must implement the method.
2930  if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2931  continue;
2932  InsMap.insert(Sel);
2933  }
2934 
2935  for (const auto *I : CatIMPDecl->class_methods()) {
2936  Selector Sel = I->getSelector();
2937  if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2938  continue;
2939  ClsMap.insert(Sel);
2940  }
2941  if (InsMap.empty() && ClsMap.empty())
2942  return;
2943 
2944  SelectorSet InsMapSeen, ClsMapSeen;
2945  bool IncompleteImpl = false;
2946  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2947  CatIMPDecl, IDecl,
2948  IncompleteImpl, false,
2949  true /*WarnCategoryMethodImpl*/);
2950 }
2951 
2953  ObjCContainerDecl* CDecl,
2954  bool IncompleteImpl) {
2955  SelectorSet InsMap;
2956  // Check and see if instance methods in class interface have been
2957  // implemented in the implementation class.
2958  for (const auto *I : IMPDecl->instance_methods())
2959  InsMap.insert(I->getSelector());
2960 
2961  // Add the selectors for getters/setters of @dynamic properties.
2962  for (const auto *PImpl : IMPDecl->property_impls()) {
2963  // We only care about @dynamic implementations.
2964  if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2965  continue;
2966 
2967  const auto *P = PImpl->getPropertyDecl();
2968  if (!P) continue;
2969 
2970  InsMap.insert(P->getGetterName());
2971  if (!P->getSetterName().isNull())
2972  InsMap.insert(P->getSetterName());
2973  }
2974 
2975  // Check and see if properties declared in the interface have either 1)
2976  // an implementation or 2) there is a @synthesize/@dynamic implementation
2977  // of the property in the @implementation.
2978  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2979  bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2981  !IDecl->isObjCRequiresPropertyDefs();
2982  DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2983  }
2984 
2985  // Diagnose null-resettable synthesized setters.
2987 
2988  SelectorSet ClsMap;
2989  for (const auto *I : IMPDecl->class_methods())
2990  ClsMap.insert(I->getSelector());
2991 
2992  // Check for type conflict of methods declared in a class/protocol and
2993  // its implementation; if any.
2994  SelectorSet InsMapSeen, ClsMapSeen;
2995  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2996  IMPDecl, CDecl,
2997  IncompleteImpl, true);
2998 
2999  // check all methods implemented in category against those declared
3000  // in its primary class.
3001  if (ObjCCategoryImplDecl *CatDecl =
3002  dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
3004 
3005  // Check the protocol list for unimplemented methods in the @implementation
3006  // class.
3007  // Check and see if class methods in class interface have been
3008  // implemented in the implementation class.
3009 
3010  LazyProtocolNameSet ExplicitImplProtocols;
3011 
3012  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
3013  for (auto *PI : I->all_referenced_protocols())
3014  CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
3015  InsMap, ClsMap, I, ExplicitImplProtocols);
3016  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3017  // For extended class, unimplemented methods in its protocols will
3018  // be reported in the primary class.
3019  if (!C->IsClassExtension()) {
3020  for (auto *P : C->protocols())
3021  CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
3022  IncompleteImpl, InsMap, ClsMap, CDecl,
3023  ExplicitImplProtocols);
3024  DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3025  /*SynthesizeProperties=*/false);
3026  }
3027  } else
3028  llvm_unreachable("invalid ObjCContainerDecl type.");
3029 }
3030 
3033  IdentifierInfo **IdentList,
3034  SourceLocation *IdentLocs,
3035  ArrayRef<ObjCTypeParamList *> TypeParamLists,
3036  unsigned NumElts) {
3037  SmallVector<Decl *, 8> DeclsInGroup;
3038  for (unsigned i = 0; i != NumElts; ++i) {
3039  // Check for another declaration kind with the same name.
3040  NamedDecl *PrevDecl
3041  = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3043  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3044  // GCC apparently allows the following idiom:
3045  //
3046  // typedef NSObject < XCElementTogglerP > XCElementToggler;
3047  // @class XCElementToggler;
3048  //
3049  // Here we have chosen to ignore the forward class declaration
3050  // with a warning. Since this is the implied behavior.
3051  TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3052  if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3053  Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3054  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3055  } else {
3056  // a forward class declaration matching a typedef name of a class refers
3057  // to the underlying class. Just ignore the forward class with a warning
3058  // as this will force the intended behavior which is to lookup the
3059  // typedef name.
3060  if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3061  Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3062  << IdentList[i];
3063  Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3064  continue;
3065  }
3066  }
3067  }
3068 
3069  // Create a declaration to describe this forward declaration.
3070  ObjCInterfaceDecl *PrevIDecl
3071  = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3072 
3073  IdentifierInfo *ClassName = IdentList[i];
3074  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3075  // A previous decl with a different name is because of
3076  // @compatibility_alias, for example:
3077  // \code
3078  // @class NewImage;
3079  // @compatibility_alias OldImage NewImage;
3080  // \endcode
3081  // A lookup for 'OldImage' will return the 'NewImage' decl.
3082  //
3083  // In such a case use the real declaration name, instead of the alias one,
3084  // otherwise we will break IdentifierResolver and redecls-chain invariants.
3085  // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3086  // has been aliased.
3087  ClassName = PrevIDecl->getIdentifier();
3088  }
3089 
3090  // If this forward declaration has type parameters, compare them with the
3091  // type parameters of the previous declaration.
3092  ObjCTypeParamList *TypeParams = TypeParamLists[i];
3093  if (PrevIDecl && TypeParams) {
3094  if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3095  // Check for consistency with the previous declaration.
3097  *this, PrevTypeParams, TypeParams,
3098  TypeParamListContext::ForwardDeclaration)) {
3099  TypeParams = nullptr;
3100  }
3101  } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3102  // The @interface does not have type parameters. Complain.
3103  Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3104  << ClassName
3105  << TypeParams->getSourceRange();
3106  Diag(Def->getLocation(), diag::note_defined_here)
3107  << ClassName;
3108 
3109  TypeParams = nullptr;
3110  }
3111  }
3112 
3113  ObjCInterfaceDecl *IDecl
3115  ClassName, TypeParams, PrevIDecl,
3116  IdentLocs[i]);
3117  IDecl->setAtEndRange(IdentLocs[i]);
3118 
3119  PushOnScopeChains(IDecl, TUScope);
3120  CheckObjCDeclScope(IDecl);
3121  DeclsInGroup.push_back(IDecl);
3122  }
3123 
3124  return BuildDeclaratorGroup(DeclsInGroup);
3125 }
3126 
3128  Sema::MethodMatchStrategy strategy,
3129  const Type *left, const Type *right);
3130 
3131 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3132  QualType leftQT, QualType rightQT) {
3133  const Type *left =
3134  Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3135  const Type *right =
3136  Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3137 
3138  if (left == right) return true;
3139 
3140  // If we're doing a strict match, the types have to match exactly.
3141  if (strategy == Sema::MMS_strict) return false;
3142 
3143  if (left->isIncompleteType() || right->isIncompleteType()) return false;
3144 
3145  // Otherwise, use this absurdly complicated algorithm to try to
3146  // validate the basic, low-level compatibility of the two types.
3147 
3148  // As a minimum, require the sizes and alignments to match.
3149  TypeInfo LeftTI = Context.getTypeInfo(left);
3150  TypeInfo RightTI = Context.getTypeInfo(right);
3151  if (LeftTI.Width != RightTI.Width)
3152  return false;
3153 
3154  if (LeftTI.Align != RightTI.Align)
3155  return false;
3156 
3157  // Consider all the kinds of non-dependent canonical types:
3158  // - functions and arrays aren't possible as return and parameter types
3159 
3160  // - vector types of equal size can be arbitrarily mixed
3161  if (isa<VectorType>(left)) return isa<VectorType>(right);
3162  if (isa<VectorType>(right)) return false;
3163 
3164  // - references should only match references of identical type
3165  // - structs, unions, and Objective-C objects must match more-or-less
3166  // exactly
3167  // - everything else should be a scalar
3168  if (!left->isScalarType() || !right->isScalarType())
3169  return tryMatchRecordTypes(Context, strategy, left, right);
3170 
3171  // Make scalars agree in kind, except count bools as chars, and group
3172  // all non-member pointers together.
3173  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3174  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3175  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3176  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3177  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3178  leftSK = Type::STK_ObjCObjectPointer;
3179  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3180  rightSK = Type::STK_ObjCObjectPointer;
3181 
3182  // Note that data member pointers and function member pointers don't
3183  // intermix because of the size differences.
3184 
3185  return (leftSK == rightSK);
3186 }
3187 
3188 static bool tryMatchRecordTypes(ASTContext &Context,
3189  Sema::MethodMatchStrategy strategy,
3190  const Type *lt, const Type *rt) {
3191  assert(lt && rt && lt != rt);
3192 
3193  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3194  RecordDecl *left = cast<RecordType>(lt)->getDecl();
3195  RecordDecl *right = cast<RecordType>(rt)->getDecl();
3196 
3197  // Require union-hood to match.
3198  if (left->isUnion() != right->isUnion()) return false;
3199 
3200  // Require an exact match if either is non-POD.
3201  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3202  (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3203  return false;
3204 
3205  // Require size and alignment to match.
3206  TypeInfo LeftTI = Context.getTypeInfo(lt);
3207  TypeInfo RightTI = Context.getTypeInfo(rt);
3208  if (LeftTI.Width != RightTI.Width)
3209  return false;
3210 
3211  if (LeftTI.Align != RightTI.Align)
3212  return false;
3213 
3214  // Require fields to match.
3215  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3216  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3217  for (; li != le && ri != re; ++li, ++ri) {
3218  if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3219  return false;
3220  }
3221  return (li == le && ri == re);
3222 }
3223 
3224 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3225 /// returns true, or false, accordingly.
3226 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3228  const ObjCMethodDecl *right,
3229  MethodMatchStrategy strategy) {
3230  if (!matchTypes(Context, strategy, left->getReturnType(),
3231  right->getReturnType()))
3232  return false;
3233 
3234  // If either is hidden, it is not considered to match.
3235  if (left->isHidden() || right->isHidden())
3236  return false;
3237 
3238  if (getLangOpts().ObjCAutoRefCount &&
3239  (left->hasAttr<NSReturnsRetainedAttr>()
3240  != right->hasAttr<NSReturnsRetainedAttr>() ||
3241  left->hasAttr<NSConsumesSelfAttr>()
3242  != right->hasAttr<NSConsumesSelfAttr>()))
3243  return false;
3244 
3246  li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3247  re = right->param_end();
3248 
3249  for (; li != le && ri != re; ++li, ++ri) {
3250  assert(ri != right->param_end() && "Param mismatch");
3251  const ParmVarDecl *lparm = *li, *rparm = *ri;
3252 
3253  if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3254  return false;
3255 
3256  if (getLangOpts().ObjCAutoRefCount &&
3257  lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3258  return false;
3259  }
3260  return true;
3261 }
3262 
3264  ObjCMethodDecl *MethodInList) {
3265  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3266  auto *MethodInListProtocol =
3267  dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3268  // If this method belongs to a protocol but the method in list does not, or
3269  // vice versa, we say the context is not the same.
3270  if ((MethodProtocol && !MethodInListProtocol) ||
3271  (!MethodProtocol && MethodInListProtocol))
3272  return false;
3273 
3274  if (MethodProtocol && MethodInListProtocol)
3275  return true;
3276 
3277  ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3278  ObjCInterfaceDecl *MethodInListInterface =
3279  MethodInList->getClassInterface();
3280  return MethodInterface == MethodInListInterface;
3281 }
3282 
3284  ObjCMethodDecl *Method) {
3285  // Record at the head of the list whether there were 0, 1, or >= 2 methods
3286  // inside categories.
3287  if (ObjCCategoryDecl *CD =
3288  dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3289  if (!CD->IsClassExtension() && List->getBits() < 2)
3290  List->setBits(List->getBits() + 1);
3291 
3292  // If the list is empty, make it a singleton list.
3293  if (List->getMethod() == nullptr) {
3294  List->setMethod(Method);
3295  List->setNext(nullptr);
3296  return;
3297  }
3298 
3299  // We've seen a method with this name, see if we have already seen this type
3300  // signature.
3301  ObjCMethodList *Previous = List;
3302  ObjCMethodList *ListWithSameDeclaration = nullptr;
3303  for (; List; Previous = List, List = List->getNext()) {
3304  // If we are building a module, keep all of the methods.
3306  continue;
3307 
3308  bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3309  List->getMethod());
3310  // Looking for method with a type bound requires the correct context exists.
3311  // We need to insert a method into the list if the context is different.
3312  // If the method's declaration matches the list
3313  // a> the method belongs to a different context: we need to insert it, in
3314  // order to emit the availability message, we need to prioritize over
3315  // availability among the methods with the same declaration.
3316  // b> the method belongs to the same context: there is no need to insert a
3317  // new entry.
3318  // If the method's declaration does not match the list, we insert it to the
3319  // end.
3320  if (!SameDeclaration ||
3321  !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3322  // Even if two method types do not match, we would like to say
3323  // there is more than one declaration so unavailability/deprecated
3324  // warning is not too noisy.
3325  if (!Method->isDefined())
3326  List->setHasMoreThanOneDecl(true);
3327 
3328  // For methods with the same declaration, the one that is deprecated
3329  // should be put in the front for better diagnostics.
3330  if (Method->isDeprecated() && SameDeclaration &&
3331  !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3332  ListWithSameDeclaration = List;
3333 
3334  if (Method->isUnavailable() && SameDeclaration &&
3335  !ListWithSameDeclaration &&
3337  ListWithSameDeclaration = List;
3338  continue;
3339  }
3340 
3341  ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3342 
3343  // Propagate the 'defined' bit.
3344  if (Method->isDefined())
3345  PrevObjCMethod->setDefined(true);
3346  else {
3347  // Objective-C doesn't allow an @interface for a class after its
3348  // @implementation. So if Method is not defined and there already is
3349  // an entry for this type signature, Method has to be for a different
3350  // class than PrevObjCMethod.
3351  List->setHasMoreThanOneDecl(true);
3352  }
3353 
3354  // If a method is deprecated, push it in the global pool.
3355  // This is used for better diagnostics.
3356  if (Method->isDeprecated()) {
3357  if (!PrevObjCMethod->isDeprecated())
3358  List->setMethod(Method);
3359  }
3360  // If the new method is unavailable, push it into global pool
3361  // unless previous one is deprecated.
3362  if (Method->isUnavailable()) {
3363  if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3364  List->setMethod(Method);
3365  }
3366 
3367  return;
3368  }
3369 
3370  // We have a new signature for an existing method - add it.
3371  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3372  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3373 
3374  // We insert it right before ListWithSameDeclaration.
3375  if (ListWithSameDeclaration) {
3376  auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3377  // FIXME: should we clear the other bits in ListWithSameDeclaration?
3378  ListWithSameDeclaration->setMethod(Method);
3379  ListWithSameDeclaration->setNext(List);
3380  return;
3381  }
3382 
3383  Previous->setNext(new (Mem) ObjCMethodList(Method));
3384 }
3385 
3386 /// Read the contents of the method pool for a given selector from
3387 /// external storage.
3389  assert(ExternalSource && "We need an external AST source");
3390  ExternalSource->ReadMethodPool(Sel);
3391 }
3392 
3394  if (!ExternalSource)
3395  return;
3396  ExternalSource->updateOutOfDateSelector(Sel);
3397 }
3398 
3399 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3400  bool instance) {
3401  // Ignore methods of invalid containers.
3402  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3403  return;
3404 
3405  if (ExternalSource)
3406  ReadMethodPool(Method->getSelector());
3407 
3408  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3409  if (Pos == MethodPool.end())
3410  Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3411  GlobalMethods())).first;
3412 
3413  Method->setDefined(impl);
3414 
3415  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3416  addMethodToGlobalList(&Entry, Method);
3417 }
3418 
3419 /// Determines if this is an "acceptable" loose mismatch in the global
3420 /// method pool. This exists mostly as a hack to get around certain
3421 /// global mismatches which we can't afford to make warnings / errors.
3422 /// Really, what we want is a way to take a method out of the global
3423 /// method pool.
3425  ObjCMethodDecl *other) {
3426  if (!chosen->isInstanceMethod())
3427  return false;
3428 
3429  Selector sel = chosen->getSelector();
3430  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3431  return false;
3432 
3433  // Don't complain about mismatches for -length if the method we
3434  // chose has an integral result type.
3435  return (chosen->getReturnType()->isIntegerType());
3436 }
3437 
3438 /// Return true if the given method is wthin the type bound.
3440  const ObjCObjectType *TypeBound) {
3441  if (!TypeBound)
3442  return true;
3443 
3444  if (TypeBound->isObjCId())
3445  // FIXME: should we handle the case of bounding to id<A, B> differently?
3446  return true;
3447 
3448  auto *BoundInterface = TypeBound->getInterface();
3449  assert(BoundInterface && "unexpected object type!");
3450 
3451  // Check if the Method belongs to a protocol. We should allow any method
3452  // defined in any protocol, because any subclass could adopt the protocol.
3453  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3454  if (MethodProtocol) {
3455  return true;
3456  }
3457 
3458  // If the Method belongs to a class, check if it belongs to the class
3459  // hierarchy of the class bound.
3460  if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3461  // We allow methods declared within classes that are part of the hierarchy
3462  // of the class bound (superclass of, subclass of, or the same as the class
3463  // bound).
3464  return MethodInterface == BoundInterface ||
3465  MethodInterface->isSuperClassOf(BoundInterface) ||
3466  BoundInterface->isSuperClassOf(MethodInterface);
3467  }
3468  llvm_unreachable("unknown method context");
3469 }
3470 
3471 /// We first select the type of the method: Instance or Factory, then collect
3472 /// all methods with that type.
3475  bool InstanceFirst, bool CheckTheOther,
3476  const ObjCObjectType *TypeBound) {
3477  if (ExternalSource)
3478  ReadMethodPool(Sel);
3479 
3480  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3481  if (Pos == MethodPool.end())
3482  return false;
3483 
3484  // Gather the non-hidden methods.
3485  ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3486  Pos->second.second;
3487  for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3488  if (M->getMethod() && !M->getMethod()->isHidden()) {
3489  if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3490  Methods.push_back(M->getMethod());
3491  }
3492 
3493  // Return if we find any method with the desired kind.
3494  if (!Methods.empty())
3495  return Methods.size() > 1;
3496 
3497  if (!CheckTheOther)
3498  return false;
3499 
3500  // Gather the other kind.
3501  ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3502  Pos->second.first;
3503  for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3504  if (M->getMethod() && !M->getMethod()->isHidden()) {
3505  if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3506  Methods.push_back(M->getMethod());
3507  }
3508 
3509  return Methods.size() > 1;
3510 }
3511 
3513  Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3514  bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3515  // Diagnose finding more than one method in global pool.
3516  SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3517  FilteredMethods.push_back(BestMethod);
3518 
3519  for (auto *M : Methods)
3520  if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3521  FilteredMethods.push_back(M);
3522 
3523  if (FilteredMethods.size() > 1)
3524  DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3525  receiverIdOrClass);
3526 
3527  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3528  // Test for no method in the pool which should not trigger any warning by
3529  // caller.
3530  if (Pos == MethodPool.end())
3531  return true;
3532  ObjCMethodList &MethList =
3533  BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3534  return MethList.hasMoreThanOneDecl();
3535 }
3536 
3537 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3538  bool receiverIdOrClass,
3539  bool instance) {
3540  if (ExternalSource)
3541  ReadMethodPool(Sel);
3542 
3543  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3544  if (Pos == MethodPool.end())
3545  return nullptr;
3546 
3547  // Gather the non-hidden methods.
3548  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3550  for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3551  if (M->getMethod() && !M->getMethod()->isHidden())
3552  return M->getMethod();
3553  }
3554  return nullptr;
3555 }
3556 
3558  Selector Sel, SourceRange R,
3559  bool receiverIdOrClass) {
3560  // We found multiple methods, so we may have to complain.
3561  bool issueDiagnostic = false, issueError = false;
3562 
3563  // We support a warning which complains about *any* difference in
3564  // method signature.
3565  bool strictSelectorMatch =
3566  receiverIdOrClass &&
3567  !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3568  if (strictSelectorMatch) {
3569  for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3570  if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3571  issueDiagnostic = true;
3572  break;
3573  }
3574  }
3575  }
3576 
3577  // If we didn't see any strict differences, we won't see any loose
3578  // differences. In ARC, however, we also need to check for loose
3579  // mismatches, because most of them are errors.
3580  if (!strictSelectorMatch ||
3581  (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3582  for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3583  // This checks if the methods differ in type mismatch.
3584  if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3585  !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3586  issueDiagnostic = true;
3587  if (getLangOpts().ObjCAutoRefCount)
3588  issueError = true;
3589  break;
3590  }
3591  }
3592 
3593  if (issueDiagnostic) {
3594  if (issueError)
3595  Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3596  else if (strictSelectorMatch)
3597  Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3598  else
3599  Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3600 
3601  Diag(Methods[0]->getBeginLoc(),
3602  issueError ? diag::note_possibility : diag::note_using)
3603  << Methods[0]->getSourceRange();
3604  for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3605  Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3606  << Methods[I]->getSourceRange();
3607  }
3608  }
3609 }
3610 
3612  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3613  if (Pos == MethodPool.end())
3614  return nullptr;
3615 
3616  GlobalMethods &Methods = Pos->second;
3617  for (const ObjCMethodList *Method = &Methods.first; Method;
3618  Method = Method->getNext())
3619  if (Method->getMethod() &&
3620  (Method->getMethod()->isDefined() ||
3621  Method->getMethod()->isPropertyAccessor()))
3622  return Method->getMethod();
3623 
3624  for (const ObjCMethodList *Method = &Methods.second; Method;
3625  Method = Method->getNext())
3626  if (Method->getMethod() &&
3627  (Method->getMethod()->isDefined() ||
3628  Method->getMethod()->isPropertyAccessor()))
3629  return Method->getMethod();
3630  return nullptr;
3631 }
3632 
3633 static void
3636  StringRef Typo, const ObjCMethodDecl * Method) {
3637  const unsigned MaxEditDistance = 1;
3638  unsigned BestEditDistance = MaxEditDistance + 1;
3639  std::string MethodName = Method->getSelector().getAsString();
3640 
3641  unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3642  if (MinPossibleEditDistance > 0 &&
3643  Typo.size() / MinPossibleEditDistance < 1)
3644  return;
3645  unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3646  if (EditDistance > MaxEditDistance)
3647  return;
3648  if (EditDistance == BestEditDistance)
3649  BestMethod.push_back(Method);
3650  else if (EditDistance < BestEditDistance) {
3651  BestMethod.clear();
3652  BestMethod.push_back(Method);
3653  }
3654 }
3655 
3657  QualType ObjectType) {
3658  if (ObjectType.isNull())
3659  return true;
3660  if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3661  return true;
3662  return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3663  nullptr;
3664 }
3665 
3666 const ObjCMethodDecl *
3668  QualType ObjectType) {
3669  unsigned NumArgs = Sel.getNumArgs();
3671  bool ObjectIsId = true, ObjectIsClass = true;
3672  if (ObjectType.isNull())
3673  ObjectIsId = ObjectIsClass = false;
3674  else if (!ObjectType->isObjCObjectPointerType())
3675  return nullptr;
3676  else if (const ObjCObjectPointerType *ObjCPtr =
3677  ObjectType->getAsObjCInterfacePointerType()) {
3678  ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3679  ObjectIsId = ObjectIsClass = false;
3680  }
3681  else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3682  ObjectIsClass = false;
3683  else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3684  ObjectIsId = false;
3685  else
3686  return nullptr;
3687 
3688  for (GlobalMethodPool::iterator b = MethodPool.begin(),
3689  e = MethodPool.end(); b != e; b++) {
3690  // instance methods
3691  for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3692  if (M->getMethod() &&
3693  (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3694  (M->getMethod()->getSelector() != Sel)) {
3695  if (ObjectIsId)
3696  Methods.push_back(M->getMethod());
3697  else if (!ObjectIsClass &&
3698  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3699  ObjectType))
3700  Methods.push_back(M->getMethod());
3701  }
3702  // class methods
3703  for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3704  if (M->getMethod() &&
3705  (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3706  (M->getMethod()->getSelector() != Sel)) {
3707  if (ObjectIsClass)
3708  Methods.push_back(M->getMethod());
3709  else if (!ObjectIsId &&
3710  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3711  ObjectType))
3712  Methods.push_back(M->getMethod());
3713  }
3714  }
3715 
3717  for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3718  HelperSelectorsForTypoCorrection(SelectedMethods,
3719  Sel.getAsString(), Methods[i]);
3720  }
3721  return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3722 }
3723 
3724 /// DiagnoseDuplicateIvars -
3725 /// Check for duplicate ivars in the entire class at the start of
3726 /// \@implementation. This becomes necesssary because class extension can
3727 /// add ivars to a class in random order which will not be known until
3728 /// class's \@implementation is seen.
3730  ObjCInterfaceDecl *SID) {
3731  for (auto *Ivar : ID->ivars()) {
3732  if (Ivar->isInvalidDecl())
3733  continue;
3734  if (IdentifierInfo *II = Ivar->getIdentifier()) {
3735  ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3736  if (prevIvar) {
3737  Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3738  Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3739  Ivar->setInvalidDecl();
3740  }
3741  }
3742  }
3743 }
3744 
3745 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3747  if (S.getLangOpts().ObjCWeak) return;
3748 
3749  for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3750  ivar; ivar = ivar->getNextIvar()) {
3751  if (ivar->isInvalidDecl()) continue;
3752  if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3753  if (S.getLangOpts().ObjCWeakRuntime) {
3754  S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3755  } else {
3756  S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3757  }
3758  }
3759  }
3760 }
3761 
3762 /// Diagnose attempts to use flexible array member with retainable object type.
3764  ObjCInterfaceDecl *ID) {
3765  if (!S.getLangOpts().ObjCAutoRefCount)
3766  return;
3767 
3768  for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3769  ivar = ivar->getNextIvar()) {
3770  if (ivar->isInvalidDecl())
3771  continue;
3772  QualType IvarTy = ivar->getType();
3773  if (IvarTy->isIncompleteArrayType() &&
3775  IvarTy->isObjCLifetimeType()) {
3776  S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3777  ivar->setInvalidDecl();
3778  }
3779  }
3780 }
3781 
3783  switch (CurContext->getDeclKind()) {
3784  case Decl::ObjCInterface:
3785  return Sema::OCK_Interface;
3786  case Decl::ObjCProtocol:
3787  return Sema::OCK_Protocol;
3788  case Decl::ObjCCategory:
3789  if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3790  return Sema::OCK_ClassExtension;
3791  return Sema::OCK_Category;
3792  case Decl::ObjCImplementation:
3793  return Sema::OCK_Implementation;
3794  case Decl::ObjCCategoryImpl:
3796 
3797  default:
3798  return Sema::OCK_None;
3799  }
3800 }
3801 
3803  if (T->isIncompleteArrayType())
3804  return true;
3805  const auto *RecordTy = T->getAs<RecordType>();
3806  return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3807 }
3808 
3810  ObjCInterfaceDecl *IntfDecl = nullptr;
3811  ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3813  if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3814  Ivars = IntfDecl->ivars();
3815  } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3816  IntfDecl = ImplDecl->getClassInterface();
3817  Ivars = ImplDecl->ivars();
3818  } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3819  if (CategoryDecl->IsClassExtension()) {
3820  IntfDecl = CategoryDecl->getClassInterface();
3821  Ivars = CategoryDecl->ivars();
3822  }
3823  }
3824 
3825  // Check if variable sized ivar is in interface and visible to subclasses.
3826  if (!isa<ObjCInterfaceDecl>(OCD)) {
3827  for (auto ivar : Ivars) {
3828  if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3829  S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3830  << ivar->getDeclName() << ivar->getType();
3831  }
3832  }
3833  }
3834 
3835  // Subsequent checks require interface decl.
3836  if (!IntfDecl)
3837  return;
3838 
3839  // Check if variable sized ivar is followed by another ivar.
3840  for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3841  ivar = ivar->getNextIvar()) {
3842  if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3843  continue;
3844  QualType IvarTy = ivar->getType();
3845  bool IsInvalidIvar = false;
3846  if (IvarTy->isIncompleteArrayType()) {
3847  S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3848  << ivar->getDeclName() << IvarTy
3849  << TTK_Class; // Use "class" for Obj-C.
3850  IsInvalidIvar = true;
3851  } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3852  if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3853  S.Diag(ivar->getLocation(),
3854  diag::err_objc_variable_sized_type_not_at_end)
3855  << ivar->getDeclName() << IvarTy;
3856  IsInvalidIvar = true;
3857  }
3858  }
3859  if (IsInvalidIvar) {
3860  S.Diag(ivar->getNextIvar()->getLocation(),
3861  diag::note_next_ivar_declaration)
3862  << ivar->getNextIvar()->getSynthesize();
3863  ivar->setInvalidDecl();
3864  }
3865  }
3866 
3867  // Check if ObjC container adds ivars after variable sized ivar in superclass.
3868  // Perform the check only if OCD is the first container to declare ivars to
3869  // avoid multiple warnings for the same ivar.
3870  ObjCIvarDecl *FirstIvar =
3871  (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3872  if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3873  const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3874  while (SuperClass && SuperClass->ivar_empty())
3875  SuperClass = SuperClass->getSuperClass();
3876  if (SuperClass) {
3877  auto IvarIter = SuperClass->ivar_begin();
3878  std::advance(IvarIter, SuperClass->ivar_size() - 1);
3879  const ObjCIvarDecl *LastIvar = *IvarIter;
3880  if (IsVariableSizedType(LastIvar->getType())) {
3881  S.Diag(FirstIvar->getLocation(),
3882  diag::warn_superclass_variable_sized_type_not_at_end)
3883  << FirstIvar->getDeclName() << LastIvar->getDeclName()
3884  << LastIvar->getType() << SuperClass->getDeclName();
3885  S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3886  << LastIvar->getDeclName();
3887  }
3888  }
3889  }
3890 }
3891 
3892 // Note: For class/category implementations, allMethods is always null.
3894  ArrayRef<DeclGroupPtrTy> allTUVars) {
3896  return nullptr;
3897 
3898  assert(AtEnd.isValid() && "Invalid location for '@end'");
3899 
3900  auto *OCD = cast<ObjCContainerDecl>(CurContext);
3901  Decl *ClassDecl = OCD;
3902 
3903  bool isInterfaceDeclKind =
3904  isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3905  || isa<ObjCProtocolDecl>(ClassDecl);
3906  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3907 
3908  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3909  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3910  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3911 
3912  for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3913  ObjCMethodDecl *Method =
3914  cast_or_null<ObjCMethodDecl>(allMethods[i]);
3915 
3916  if (!Method) continue; // Already issued a diagnostic.
3917  if (Method->isInstanceMethod()) {
3918  /// Check for instance method of the same name with incompatible types
3919  const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3920  bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3921  : false;
3922  if ((isInterfaceDeclKind && PrevMethod && !match)
3923  || (checkIdenticalMethods && match)) {
3924  Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3925  << Method->getDeclName();
3926  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3927  Method->setInvalidDecl();
3928  } else {
3929  if (PrevMethod) {
3930  Method->setAsRedeclaration(PrevMethod);
3931  if (!Context.getSourceManager().isInSystemHeader(
3932  Method->getLocation()))
3933  Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3934  << Method->getDeclName();
3935  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3936  }
3937  InsMap[Method->getSelector()] = Method;
3938  /// The following allows us to typecheck messages to "id".
3940  }
3941  } else {
3942  /// Check for class method of the same name with incompatible types
3943  const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3944  bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3945  : false;
3946  if ((isInterfaceDeclKind && PrevMethod && !match)
3947  || (checkIdenticalMethods && match)) {
3948  Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3949  << Method->getDeclName();
3950  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3951  Method->setInvalidDecl();
3952  } else {
3953  if (PrevMethod) {
3954  Method->setAsRedeclaration(PrevMethod);
3955  if (!Context.getSourceManager().isInSystemHeader(
3956  Method->getLocation()))
3957  Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3958  << Method->getDeclName();
3959  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3960  }
3961  ClsMap[Method->getSelector()] = Method;
3963  }
3964  }
3965  }
3966  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3967  // Nothing to do here.
3968  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3969  // Categories are used to extend the class by declaring new methods.
3970  // By the same token, they are also used to add new properties. No
3971  // need to compare the added property to those in the class.
3972 
3973  if (C->IsClassExtension()) {
3974  ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3975  DiagnoseClassExtensionDupMethods(C, CCPrimary);
3976  }
3977  }
3978  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3979  if (CDecl->getIdentifier())
3980  // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3981  // user-defined setter/getter. It also synthesizes setter/getter methods
3982  // and adds them to the DeclContext and global method pools.
3983  for (auto *I : CDecl->properties())
3985  CDecl->setAtEndRange(AtEnd);
3986  }
3987  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3988  IC->setAtEndRange(AtEnd);
3989  if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3990  // Any property declared in a class extension might have user
3991  // declared setter or getter in current class extension or one
3992  // of the other class extensions. Mark them as synthesized as
3993  // property will be synthesized when property with same name is
3994  // seen in the @implementation.
3995  for (const auto *Ext : IDecl->visible_extensions()) {
3996  for (const auto *Property : Ext->instance_properties()) {
3997  // Skip over properties declared @dynamic
3998  if (const ObjCPropertyImplDecl *PIDecl
3999  = IC->FindPropertyImplDecl(Property->getIdentifier(),
4000  Property->getQueryKind()))
4001  if (PIDecl->getPropertyImplementation()
4003  continue;
4004 
4005  for (const auto *Ext : IDecl->visible_extensions()) {
4006  if (ObjCMethodDecl *GetterMethod
4007  = Ext->getInstanceMethod(Property->getGetterName()))
4008  GetterMethod->setPropertyAccessor(true);
4009  if (!Property->isReadOnly())
4010  if (ObjCMethodDecl *SetterMethod
4011  = Ext->getInstanceMethod(Property->getSetterName()))
4012  SetterMethod->setPropertyAccessor(true);
4013  }
4014  }
4015  }
4016  ImplMethodsVsClassMethods(S, IC, IDecl);
4020  if (IDecl->hasDesignatedInitializers())
4022  DiagnoseWeakIvars(*this, IC);
4024 
4025  bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4026  if (IDecl->getSuperClass() == nullptr) {
4027  // This class has no superclass, so check that it has been marked with
4028  // __attribute((objc_root_class)).
4029  if (!HasRootClassAttr) {
4030  SourceLocation DeclLoc(IDecl->getLocation());
4031  SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
4032  Diag(DeclLoc, diag::warn_objc_root_class_missing)
4033  << IDecl->getIdentifier();
4034  // See if NSObject is in the current scope, and if it is, suggest
4035  // adding " : NSObject " to the class declaration.
4037  NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4038  DeclLoc, LookupOrdinaryName);
4039  ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4040  if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4041  Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4042  << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4043  } else {
4044  Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4045  }
4046  }
4047  } else if (HasRootClassAttr) {
4048  // Complain that only root classes may have this attribute.
4049  Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4050  }
4051 
4052  if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4053  // An interface can subclass another interface with a
4054  // objc_subclassing_restricted attribute when it has that attribute as
4055  // well (because of interfaces imported from Swift). Therefore we have
4056  // to check if we can subclass in the implementation as well.
4057  if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4058  Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4059  Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4060  Diag(Super->getLocation(), diag::note_class_declared);
4061  }
4062  }
4063 
4064  if (IDecl->hasAttr<ObjCClassStubAttr>())
4065  Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4066 
4068  while (IDecl->getSuperClass()) {
4069  DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4070  IDecl = IDecl->getSuperClass();
4071  }
4072  }
4073  }
4074  SetIvarInitializers(IC);
4075  } else if (ObjCCategoryImplDecl* CatImplClass =
4076  dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4077  CatImplClass->setAtEndRange(AtEnd);
4078 
4079  // Find category interface decl and then check that all methods declared
4080  // in this interface are implemented in the category @implementation.
4081  if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4082  if (ObjCCategoryDecl *Cat
4083  = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4084  ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4085  }
4086  }
4087  } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4088  if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4089  if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4090  Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4091  Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4092  Diag(Super->getLocation(), diag::note_class_declared);
4093  }
4094  }
4095 
4096  if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4097  !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4098  Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4099  }
4100  DiagnoseVariableSizedIvars(*this, OCD);
4101  if (isInterfaceDeclKind) {
4102  // Reject invalid vardecls.
4103  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4104  DeclGroupRef DG = allTUVars[i].get();
4105  for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4106  if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4107  if (!VDecl->hasExternalStorage())
4108  Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4109  }
4110  }
4111  }
4113 
4114  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4115  DeclGroupRef DG = allTUVars[i].get();
4116  for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4117  (*I)->setTopLevelDeclInObjCContainer();
4119  }
4120 
4121  ActOnDocumentableDecl(ClassDecl);
4122  return ClassDecl;
4123 }
4124 
4125 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4126 /// objective-c's type qualifier from the parser version of the same info.
4129  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4130 }
4131 
4132 /// Check whether the declared result type of the given Objective-C
4133 /// method declaration is compatible with the method's class.
4134 ///
4137  ObjCInterfaceDecl *CurrentClass) {
4138  QualType ResultType = Method->getReturnType();
4139 
4140  // If an Objective-C method inherits its related result type, then its
4141  // declared result type must be compatible with its own class type. The
4142  // declared result type is compatible if:
4143  if (const ObjCObjectPointerType *ResultObjectType
4144  = ResultType->getAs<ObjCObjectPointerType>()) {
4145  // - it is id or qualified id, or
4146  if (ResultObjectType->isObjCIdType() ||
4147  ResultObjectType->isObjCQualifiedIdType())
4148  return Sema::RTC_Compatible;
4149 
4150  if (CurrentClass) {
4151  if (ObjCInterfaceDecl *ResultClass
4152  = ResultObjectType->getInterfaceDecl()) {
4153  // - it is the same as the method's class type, or
4154  if (declaresSameEntity(CurrentClass, ResultClass))
4155  return Sema::RTC_Compatible;
4156 
4157  // - it is a superclass of the method's class type
4158  if (ResultClass->isSuperClassOf(CurrentClass))
4159  return Sema::RTC_Compatible;
4160  }
4161  } else {
4162  // Any Objective-C pointer type might be acceptable for a protocol
4163  // method; we just don't know.
4164  return Sema::RTC_Unknown;
4165  }
4166  }
4167 
4168  return Sema::RTC_Incompatible;
4169 }
4170 
4171 namespace {
4172 /// A helper class for searching for methods which a particular method
4173 /// overrides.
4174 class OverrideSearch {
4175 public:
4176  const ObjCMethodDecl *Method;
4178  bool Recursive;
4179 
4180 public:
4181  OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4182  Selector selector = method->getSelector();
4183 
4184  // Bypass this search if we've never seen an instance/class method
4185  // with this selector before.
4186  Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4187  if (it == S.MethodPool.end()) {
4188  if (!S.getExternalSource()) return;
4189  S.ReadMethodPool(selector);
4190 
4191  it = S.MethodPool.find(selector);
4192  if (it == S.MethodPool.end())
4193  return;
4194  }
4195  const ObjCMethodList &list =
4196  method->isInstanceMethod() ? it->second.first : it->second.second;
4197  if (!list.getMethod()) return;
4198 
4199  const ObjCContainerDecl *container
4200  = cast<ObjCContainerDecl>(method->getDeclContext());
4201 
4202  // Prevent the search from reaching this container again. This is
4203  // important with categories, which override methods from the
4204  // interface and each other.
4205  if (const ObjCCategoryDecl *Category =
4206  dyn_cast<ObjCCategoryDecl>(container)) {
4207  searchFromContainer(container);
4208  if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4209  searchFromContainer(Interface);
4210  } else {
4211  searchFromContainer(container);
4212  }
4213  }
4214 
4215  typedef decltype(Overridden)::iterator iterator;
4216  iterator begin() const { return Overridden.begin(); }
4217  iterator end() const { return Overridden.end(); }
4218 
4219 private:
4220  void searchFromContainer(const ObjCContainerDecl *container) {
4221  if (container->isInvalidDecl()) return;
4222 
4223  switch (container->getDeclKind()) {
4224 #define OBJCCONTAINER(type, base) \
4225  case Decl::type: \
4226  searchFrom(cast<type##Decl>(container)); \
4227  break;
4228 #define ABSTRACT_DECL(expansion)
4229 #define DECL(type, base) \
4230  case Decl::type:
4231 #include "clang/AST/DeclNodes.inc"
4232  llvm_unreachable("not an ObjC container!");
4233  }
4234  }
4235 
4236  void searchFrom(const ObjCProtocolDecl *protocol) {
4237  if (!protocol->hasDefinition())
4238  return;
4239 
4240  // A method in a protocol declaration overrides declarations from
4241  // referenced ("parent") protocols.
4242  search(protocol->getReferencedProtocols());
4243  }
4244 
4245  void searchFrom(const ObjCCategoryDecl *category) {
4246  // A method in a category declaration overrides declarations from
4247  // the main class and from protocols the category references.
4248  // The main class is handled in the constructor.
4249  search(category->getReferencedProtocols());
4250  }
4251 
4252  void searchFrom(const ObjCCategoryImplDecl *impl) {
4253  // A method in a category definition that has a category
4254  // declaration overrides declarations from the category
4255  // declaration.
4256  if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4257  search(category);
4258  if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4259  search(Interface);
4260 
4261  // Otherwise it overrides declarations from the class.
4262  } else if (const auto *Interface = impl->getClassInterface()) {
4263  search(Interface);
4264  }
4265  }
4266 
4267  void searchFrom(const ObjCInterfaceDecl *iface) {
4268  // A method in a class declaration overrides declarations from
4269  if (!iface->hasDefinition())
4270  return;
4271 
4272  // - categories,
4273  for (auto *Cat : iface->known_categories())
4274  search(Cat);
4275 
4276  // - the super class, and
4277  if (ObjCInterfaceDecl *super = iface->getSuperClass())
4278  search(super);
4279 
4280  // - any referenced protocols.
4281  search(iface->getReferencedProtocols());
4282  }
4283 
4284  void searchFrom(const ObjCImplementationDecl *impl) {
4285  // A method in a class implementation overrides declarations from
4286  // the class interface.
4287  if (const auto *Interface = impl->getClassInterface())
4288  search(Interface);
4289  }
4290 
4291  void search(const ObjCProtocolList &protocols) {
4292  for (const auto *Proto : protocols)
4293  search(Proto);
4294  }
4295 
4296  void search(const ObjCContainerDecl *container) {
4297  // Check for a method in this container which matches this selector.
4298  ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4299  Method->isInstanceMethod(),
4300  /*AllowHidden=*/true);
4301 
4302  // If we find one, record it and bail out.
4303  if (meth) {
4304  Overridden.insert(meth);
4305  return;
4306  }
4307 
4308  // Otherwise, search for methods that a hypothetical method here
4309  // would have overridden.
4310 
4311  // Note that we're now in a recursive case.
4312  Recursive = true;
4313 
4314  searchFromContainer(container);
4315  }
4316 };
4317 } // end anonymous namespace
4318 
4320  ObjCInterfaceDecl *CurrentClass,
4322  if (!ObjCMethod)
4323  return;
4324  // Search for overridden methods and merge information down from them.
4325  OverrideSearch overrides(*this, ObjCMethod);
4326  // Keep track if the method overrides any method in the class's base classes,
4327  // its protocols, or its categories' protocols; we will keep that info
4328  // in the ObjCMethodDecl.
4329  // For this info, a method in an implementation is not considered as
4330  // overriding the same method in the interface or its categories.
4331  bool hasOverriddenMethodsInBaseOrProtocol = false;
4332  for (ObjCMethodDecl *overridden : overrides) {
4333  if (!hasOverriddenMethodsInBaseOrProtocol) {
4334  if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4335  CurrentClass != overridden->getClassInterface() ||
4336  overridden->isOverriding()) {
4337  hasOverriddenMethodsInBaseOrProtocol = true;
4338 
4339  } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4340  // OverrideSearch will return as "overridden" the same method in the
4341  // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4342  // check whether a category of a base class introduced a method with the
4343  // same selector, after the interface method declaration.
4344  // To avoid unnecessary lookups in the majority of cases, we use the
4345  // extra info bits in GlobalMethodPool to check whether there were any
4346  // category methods with this selector.
4347  GlobalMethodPool::iterator It =
4348  MethodPool.find(ObjCMethod->getSelector());
4349  if (It != MethodPool.end()) {
4350  ObjCMethodList &List =
4351  ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4352  unsigned CategCount = List.getBits();
4353  if (CategCount > 0) {
4354  // If the method is in a category we'll do lookup if there were at
4355  // least 2 category methods recorded, otherwise only one will do.
4356  if (CategCount > 1 ||
4357  !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4358  OverrideSearch overrides(*this, overridden);
4359  for (ObjCMethodDecl *SuperOverridden : overrides) {
4360  if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4361  CurrentClass != SuperOverridden->getClassInterface()) {
4362  hasOverriddenMethodsInBaseOrProtocol = true;
4363  overridden->setOverriding(true);
4364  break;
4365  }
4366  }
4367  }
4368  }
4369  }
4370  }
4371  }
4372 
4373  // Propagate down the 'related result type' bit from overridden methods.
4374  if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4375  ObjCMethod->setRelatedResultType();
4376 
4377  // Then merge the declarations.
4378  mergeObjCMethodDecls(ObjCMethod, overridden);
4379 
4380  if (ObjCMethod->isImplicit() && overridden->isImplicit())
4381  continue; // Conflicting properties are detected elsewhere.
4382 
4383  // Check for overriding methods
4384  if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4385  isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4386  CheckConflictingOverridingMethod(ObjCMethod, overridden,
4387  isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4388 
4389  if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4390  isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4391  !overridden->isImplicit() /* not meant for properties */) {
4392  ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4393  E = ObjCMethod->param_end();
4394  ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4395  PrevE = overridden->param_end();
4396  for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4397  assert(PrevI != overridden->param_end() && "Param mismatch");
4398  QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4399  QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4400  // If type of argument of method in this class does not match its
4401  // respective argument type in the super class method, issue warning;
4402  if (!Context.typesAreCompatible(T1, T2)) {
4403  Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4404  << T1 << T2;
4405  Diag(overridden->getLocation(), diag::note_previous_declaration);
4406  break;
4407  }
4408  }
4409  }
4410  }
4411 
4412  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4413 }
4414 
4415 /// Merge type nullability from for a redeclaration of the same entity,
4416 /// producing the updated type of the redeclared entity.
4418  QualType type,
4419  bool usesCSKeyword,
4420  SourceLocation prevLoc,
4421  QualType prevType,
4422  bool prevUsesCSKeyword) {
4423  // Determine the nullability of both types.
4424  auto nullability = type->getNullability(S.Context);
4425  auto prevNullability = prevType->getNullability(S.Context);
4426 
4427  // Easy case: both have nullability.
4428  if (nullability.hasValue() == prevNullability.hasValue()) {
4429  // Neither has nullability; continue.
4430  if (!nullability)
4431  return type;
4432 
4433  // The nullabilities are equivalent; do nothing.
4434  if (*nullability == *prevNullability)
4435  return type;
4436 
4437  // Complain about mismatched nullability.
4438  S.Diag(loc, diag::err_nullability_conflicting)
4439  << DiagNullabilityKind(*nullability, usesCSKeyword)
4440  << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4441  return type;
4442  }
4443 
4444  // If it's the redeclaration that has nullability, don't change anything.
4445  if (nullability)
4446  return type;
4447 
4448  // Otherwise, provide the result with the same nullability.
4449  return S.Context.getAttributedType(
4450  AttributedType::getNullabilityAttrKind(*prevNullability),
4451  type, type);
4452 }
4453 
4454 /// Merge information from the declaration of a method in the \@interface
4455 /// (or a category/extension) into the corresponding method in the
4456 /// @implementation (for a class or category).
4458  ObjCMethodDecl *method,
4459  ObjCMethodDecl *prevMethod) {
4460  // Merge the objc_requires_super attribute.
4461  if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4462  !method->hasAttr<ObjCRequiresSuperAttr>()) {
4463  // merge the attribute into implementation.
4464  method->addAttr(
4465  ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4466  method->getLocation()));
4467  }
4468 
4469  // Merge nullability of the result type.
4470  QualType newReturnType
4472  S, method->getReturnTypeSourceRange().getBegin(),
4473  method->getReturnType(),
4475  prevMethod->getReturnTypeSourceRange().getBegin(),
4476  prevMethod->getReturnType(),
4478  method->setReturnType(newReturnType);
4479 
4480  // Handle each of the parameters.
4481  unsigned numParams = method->param_size();
4482  unsigned numPrevParams = prevMethod->param_size();
4483  for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4484  ParmVarDecl *param = method->param_begin()[i];
4485  ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4486 
4487  // Merge nullability.
4488  QualType newParamType
4490  S, param->getLocation(), param->getType(),
4492  prevParam->getLocation(), prevParam->getType(),
4494  param->setType(newParamType);
4495  }
4496 }
4497 
4498 /// Verify that the method parameters/return value have types that are supported
4499 /// by the x86 target.
4501  const ObjCMethodDecl *Method) {
4502  assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4503  llvm::Triple::x86 &&
4504  "x86-specific check invoked for a different target");
4505  SourceLocation Loc;
4506  QualType T;
4507  for (const ParmVarDecl *P : Method->parameters()) {
4508  if (P->getType()->isVectorType()) {
4509  Loc = P->getBeginLoc();
4510  T = P->getType();
4511  break;
4512  }
4513  }
4514  if (Loc.isInvalid()) {
4515  if (Method->getReturnType()->isVectorType()) {
4516  Loc = Method->getReturnTypeSourceRange().getBegin();
4517  T = Method->getReturnType();
4518  } else
4519  return;
4520  }
4521 
4522  // Vector parameters/return values are not supported by objc_msgSend on x86 in
4523  // iOS < 9 and macOS < 10.11.
4524  const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4525  VersionTuple AcceptedInVersion;
4526  if (Triple.getOS() == llvm::Triple::IOS)
4527  AcceptedInVersion = VersionTuple(/*Major=*/9);
4528  else if (Triple.isMacOSX())
4529  AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4530  else
4531  return;
4533  AcceptedInVersion)
4534  return;
4535  SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4536  << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4537  : /*parameter*/ 0)
4538  << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4539 }
4540 
4542  Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4543  tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4544  ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4545  // optional arguments. The number of types/arguments is obtained
4546  // from the Sel.getNumArgs().
4547  ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4548  unsigned CNumArgs, // c-style args
4549  const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4550  bool isVariadic, bool MethodDefinition) {
4551  // Make sure we can establish a context for the method.
4552  if (!CurContext->isObjCContainer()) {
4553  Diag(MethodLoc, diag::err_missing_method_context);
4554  return nullptr;
4555  }
4556  Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4557  QualType resultDeclType;
4558 
4559  bool HasRelatedResultType = false;
4560  TypeSourceInfo *ReturnTInfo = nullptr;
4561  if (ReturnType) {
4562  resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4563 
4564  if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4565  return nullptr;
4566 
4567  QualType bareResultType = resultDeclType;
4568  (void)AttributedType::stripOuterNullability(bareResultType);
4569  HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4570  } else { // get the type for "id".
4571  resultDeclType = Context.getObjCIdType();
4572  Diag(MethodLoc, diag::warn_missing_method_return_type)
4573  << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4574  }
4575 
4576  ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4577  Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4578  MethodType == tok::minus, isVariadic,
4579  /*isPropertyAccessor=*/false,
4580  /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4581  MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4583  HasRelatedResultType);
4584 
4586 
4587  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4588  QualType ArgType;
4589  TypeSourceInfo *DI;
4590 
4591  if (!ArgInfo[i].Type) {
4592  ArgType = Context.getObjCIdType();
4593  DI = nullptr;
4594  } else {
4595  ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4596  }
4597 
4598  LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4600  LookupName(R, S);
4601  if (R.isSingleResult()) {
4602  NamedDecl *PrevDecl = R.getFoundDecl();
4603  if (S->isDeclScope(PrevDecl)) {
4604  Diag(ArgInfo[i].NameLoc,
4605  (MethodDefinition ? diag::warn_method_param_redefinition
4606  : diag::warn_method_param_declaration))
4607  << ArgInfo[i].Name;
4608  Diag(PrevDecl->getLocation(),
4609  diag::note_previous_declaration);
4610  }
4611  }
4612 
4613  SourceLocation StartLoc = DI
4614  ? DI->getTypeLoc().getBeginLoc()
4615  : ArgInfo[i].NameLoc;
4616 
4617  ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4618  ArgInfo[i].NameLoc, ArgInfo[i].Name,
4619  ArgType, DI, SC_None);
4620 
4621  Param->setObjCMethodScopeInfo(i);
4622 
4623  Param->setObjCDeclQualifier(
4624  CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4625 
4626  // Apply the attributes to the parameter.
4627  ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4628  AddPragmaAttributes(TUScope, Param);
4629 
4630  if (Param->hasAttr<BlocksAttr>()) {
4631  Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4632  Param->setInvalidDecl();
4633  }
4634  S->AddDecl(Param);
4635  IdResolver.AddDecl(Param);
4636 
4637  Params.push_back(Param);
4638  }
4639 
4640  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4641  ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4642  QualType ArgType = Param->getType();
4643  if (ArgType.isNull())
4644  ArgType = Context.getObjCIdType();
4645  else
4646  // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4647  ArgType = Context.getAdjustedParameterType(ArgType);
4648 
4649  Param->setDeclContext(ObjCMethod);
4650  Params.push_back(Param);
4651  }
4652 
4653  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4654  ObjCMethod->setObjCDeclQualifier(
4656 
4657  ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4658  AddPragmaAttributes(TUScope, ObjCMethod);
4659 
4660  // Add the method now.
4661  const ObjCMethodDecl *PrevMethod = nullptr;
4662  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4663  if (MethodType == tok::minus) {
4664  PrevMethod = ImpDecl->getInstanceMethod(Sel);
4665  ImpDecl->addInstanceMethod(ObjCMethod);
4666  } else {
4667  PrevMethod = ImpDecl->getClassMethod(Sel);
4668  ImpDecl->addClassMethod(ObjCMethod);
4669  }
4670 
4671  // Merge information from the @interface declaration into the
4672  // @implementation.
4673  if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4674  if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4675  ObjCMethod->isInstanceMethod())) {
4676  mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4677 
4678  // Warn about defining -dealloc in a category.
4679  if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4680  ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4681  Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4682  << ObjCMethod->getDeclName();
4683  }
4684  }
4685 
4686  // Warn if a method declared in a protocol to which a category or
4687  // extension conforms is non-escaping and the implementation's method is
4688  // escaping.
4689  for (auto *C : IDecl->visible_categories())
4690  for (auto &P : C->protocols())
4691  if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4692  ObjCMethod->isInstanceMethod())) {
4693  assert(ObjCMethod->parameters().size() ==
4694  IMD->parameters().size() &&
4695  "Methods have different number of parameters");
4696  auto OI = IMD->param_begin(), OE = IMD->param_end();
4697  auto NI = ObjCMethod->param_begin();
4698  for (; OI != OE; ++OI, ++NI)
4699  diagnoseNoescape(*NI, *OI, C, P, *this);
4700  }
4701  }
4702  } else {
4703  cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4704  }
4705 
4706  if (PrevMethod) {
4707  // You can never have two method definitions with the same name.
4708  Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4709  << ObjCMethod->getDeclName();
4710  Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4711  ObjCMethod->setInvalidDecl();
4712  return ObjCMethod;
4713  }
4714 
4715  // If this Objective-C method does not have a related result type, but we
4716  // are allowed to infer related result types, try to do so based on the
4717  // method family.
4718  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4719  if (!CurrentClass) {
4720  if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4721  CurrentClass = Cat->getClassInterface();
4722  else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4723  CurrentClass = Impl->getClassInterface();
4724  else if (ObjCCategoryImplDecl *CatImpl
4725  = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4726  CurrentClass = CatImpl->getClassInterface();
4727  }
4728 
4730  = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4731 
4732  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4733 
4734  bool ARCError = false;
4735  if (getLangOpts().ObjCAutoRefCount)
4736  ARCError = CheckARCMethodDecl(ObjCMethod);
4737 
4738  // Infer the related result type when possible.
4739  if (!ARCError && RTC == Sema::RTC_Compatible &&
4740  !ObjCMethod->hasRelatedResultType() &&
4741  LangOpts.ObjCInferRelatedResultType) {
4742  bool InferRelatedResultType = false;
4743  switch (ObjCMethod->getMethodFamily()) {
4744  case OMF_None:
4745  case OMF_copy:
4746  case OMF_dealloc:
4747  case OMF_finalize:
4748  case OMF_mutableCopy:
4749  case OMF_release:
4750  case OMF_retainCount:
4751  case OMF_initialize:
4752  case OMF_performSelector:
4753  break;
4754 
4755  case OMF_alloc:
4756  case OMF_new:
4757  InferRelatedResultType = ObjCMethod->isClassMethod();
4758  break;
4759 
4760  case OMF_init:
4761  case OMF_autorelease:
4762  case OMF_retain:
4763  case OMF_self:
4764  InferRelatedResultType = ObjCMethod->isInstanceMethod();
4765  break;
4766  }
4767 
4768  if (InferRelatedResultType &&
4769  !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4770  ObjCMethod->setRelatedResultType();
4771  }
4772 
4773  if (MethodDefinition &&
4774  Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
4775  checkObjCMethodX86VectorTypes(*this, ObjCMethod);
4776 
4777  // + load method cannot have availability attributes. It get called on
4778  // startup, so it has to have the availability of the deployment target.
4779  if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
4780  if (ObjCMethod->isClassMethod() &&
4781  ObjCMethod->getSelector().getAsString() == "load") {
4782  Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
4783  << 0;
4784  ObjCMethod->dropAttr<AvailabilityAttr>();
4785  }
4786  }
4787 
4788  ActOnDocumentableDecl(ObjCMethod);
4789 
4790  return ObjCMethod;
4791 }
4792 
4794  // Following is also an error. But it is caused by a missing @end
4795  // and diagnostic is issued elsewhere.
4796  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4797  return false;
4798 
4799  // If we switched context to translation unit while we are still lexically in
4800  // an objc container, it means the parser missed emitting an error.
4801  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4802  return false;
4803 
4804  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4805  D->setInvalidDecl();
4806 
4807  return true;
4808 }
4809 
4810 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
4811 /// instance variables of ClassName into Decls.
4812 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4813  IdentifierInfo *ClassName,
4814  SmallVectorImpl<Decl*> &Decls) {
4815  // Check that ClassName is a valid class
4816  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4817  if (!Class) {
4818  Diag(DeclStart, diag::err_undef_interface) << ClassName;
4819  return;
4820  }
4822  Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4823  return;
4824  }
4825 
4826  // Collect the instance variables
4828  Context.DeepCollectObjCIvars(Class, true, Ivars);
4829  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4830  for (unsigned i = 0; i < Ivars.size(); i++) {
4831  const FieldDecl* ID = Ivars[i];
4832  RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4833  Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4834  /*FIXME: StartL=*/ID->getLocation(),
4835  ID->getLocation(),
4836  ID->getIdentifier(), ID->getType(),
4837  ID->getBitWidth());
4838  Decls.push_back(FD);
4839  }
4840 
4841  // Introduce all of these fields into the appropriate scope.
4842  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4843  D != Decls.end(); ++D) {
4844  FieldDecl *FD = cast<FieldDecl>(*D);
4845  if (getLangOpts().CPlusPlus)
4846  PushOnScopeChains(FD, S);
4847  else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4848  Record->addDecl(FD);
4849  }
4850 }
4851 
4852 /// Build a type-check a new Objective-C exception variable declaration.
4854  SourceLocation StartLoc,
4855  SourceLocation IdLoc,
4856  IdentifierInfo *Id,
4857  bool Invalid) {
4858  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4859  // duration shall not be qualified by an address-space qualifier."
4860  // Since all parameters have automatic store duration, they can not have
4861  // an address space.
4862  if (T.getAddressSpace() != LangAS::Default) {
4863  Diag(IdLoc, diag::err_arg_with_address_space);
4864  Invalid = true;
4865  }
4866 
4867  // An @catch parameter must be an unqualified object pointer type;
4868  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4869  if (Invalid) {
4870  // Don't do any further checking.
4871  } else if (T->isDependentType()) {
4872  // Okay: we don't know what this type will instantiate to.
4873  } else if (T->isObjCQualifiedIdType()) {
4874  Invalid = true;
4875  Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4876  } else if (T->isObjCIdType()) {
4877  // Okay: we don't know what this type will instantiate to.
4878  } else if (!T->isObjCObjectPointerType()) {
4879  Invalid = true;
4880  Diag(IdLoc, diag::err_catch_param_not_objc_type);
4881  } else if (!T->getAs<ObjCObjectPointerType>()->getInterfaceType()) {
4882  Invalid = true;
4883  Diag(IdLoc, diag::err_catch_param_not_objc_type);
4884  }
4885 
4886  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4887  T, TInfo, SC_None);
4888  New->setExceptionVariable(true);
4889 
4890  // In ARC, infer 'retaining' for variables of retainable type.
4891  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4892  Invalid = true;
4893 
4894  if (Invalid)
4895  New->setInvalidDecl();
4896  return New;
4897 }
4898 
4900  const DeclSpec &DS = D.getDeclSpec();
4901 
4902  // We allow the "register" storage class on exception variables because
4903  // GCC did, but we drop it completely. Any other storage class is an error.
4905  Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4907  } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4908  Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4910  }
4911  if (DS.isInlineSpecified())
4912  Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4913  << getLangOpts().CPlusPlus17;
4916  diag::err_invalid_thread)
4917  << DeclSpec::getSpecifierName(TSCS);
4919 
4921 
4922  // Check that there are no default arguments inside the type of this
4923  // exception object (C++ only).
4924  if (getLangOpts().CPlusPlus)
4926 
4927  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4928  QualType ExceptionType = TInfo->getType();
4929 
4930  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4931  D.getSourceRange().getBegin(),
4932  D.getIdentifierLoc(),
4933  D.getIdentifier(),
4934  D.isInvalidType());
4935 
4936  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4937  if (D.getCXXScopeSpec().isSet()) {
4938  Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4939  << D.getCXXScopeSpec().getRange();
4940  New->setInvalidDecl();
4941  }
4942 
4943  // Add the parameter declaration into this scope.
4944  S->AddDecl(New);
4945  if (D.getIdentifier())
4946  IdResolver.AddDecl(New);
4947 
4948  ProcessDeclAttributes(S, New, D);
4949 
4950  if (New->hasAttr<BlocksAttr>())
4951  Diag(New->getLocation(), diag::err_block_on_nonlocal);
4952  return New;
4953 }
4954 
4955 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4956 /// initialization.
4959  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4960  Iv= Iv->getNextIvar()) {
4961  QualType QT = Context.getBaseElementType(Iv->getType());
4962  if (QT->isRecordType())
4963  Ivars.push_back(Iv);
4964  }
4965 }
4966 
4968  // Load referenced selectors from the external source.
4969  if (ExternalSource) {
4971  ExternalSource->ReadReferencedSelectors(Sels);
4972  for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4973  ReferencedSelectors[Sels[I].first] = Sels[I].second;
4974  }
4975 
4976  // Warning will be issued only when selector table is
4977  // generated (which means there is at lease one implementation
4978  // in the TU). This is to match gcc's behavior.
4979  if (ReferencedSelectors.empty() ||
4980  !Context.AnyObjCImplementation())
4981  return;
4982  for (auto &SelectorAndLocation : ReferencedSelectors) {
4983  Selector Sel = SelectorAndLocation.first;
4984  SourceLocation Loc = SelectorAndLocation.second;
4986  Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4987  }
4988 }
4989 
4990 ObjCIvarDecl *
4992  const ObjCPropertyDecl *&PDecl) const {
4993  if (Method->isClassMethod())
4994  return nullptr;
4995  const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4996  if (!IDecl)
4997  return nullptr;
4998  Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4999  /*shallowCategoryLookup=*/false,
5000  /*followSuper=*/false);
5001  if (!Method || !Method->isPropertyAccessor())
5002  return nullptr;
5003  if ((PDecl = Method->findPropertyDecl()))
5004  if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5005  // property backing ivar must belong to property's class
5006  // or be a private ivar in class's implementation.
5007  // FIXME. fix the const-ness issue.
5008  IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5009  IV->getIdentifier());
5010  return IV;
5011  }
5012  return nullptr;
5013 }
5014 
5015 namespace {
5016  /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
5017  /// accessor references the backing ivar.
5018  class UnusedBackingIvarChecker :
5019  public RecursiveASTVisitor<UnusedBackingIvarChecker> {
5020  public:
5021  Sema &S;
5022  const ObjCMethodDecl *Method;
5023  const ObjCIvarDecl *IvarD;
5024  bool AccessedIvar;
5025  bool InvokedSelfMethod;
5026 
5027  UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5028  const ObjCIvarDecl *IvarD)
5029  : S(S), Method(Method), IvarD(IvarD),
5030  AccessedIvar(false), InvokedSelfMethod(false) {
5031  assert(IvarD);
5032  }
5033 
5034  bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5035  if (E->getDecl() == IvarD) {
5036  AccessedIvar = true;
5037  return false;
5038  }
5039  return true;
5040  }
5041 
5042  bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5044  S.isSelfExpr(E->getInstanceReceiver(), Method)) {
5045  InvokedSelfMethod = true;
5046  }
5047  return true;
5048  }
5049  };
5050 } // end anonymous namespace
5051 
5053  const ObjCImplementationDecl *ImplD) {
5055  return;
5056 
5057  for (const auto *CurMethod : ImplD->instance_methods()) {
5058  unsigned DIAG = diag::warn_unused_property_backing_ivar;
5059  SourceLocation Loc = CurMethod->getLocation();
5060  if (Diags.isIgnored(DIAG, Loc))
5061  continue;
5062 
5063  const ObjCPropertyDecl *PDecl;
5064  const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5065  if (!IV)
5066  continue;
5067 
5068  UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5069  Checker.TraverseStmt(CurMethod->getBody());
5070  if (Checker.AccessedIvar)
5071  continue;
5072 
5073  // Do not issue this warning if backing ivar is used somewhere and accessor
5074  // implementation makes a self call. This is to prevent false positive in
5075  // cases where the ivar is accessed by another method that the accessor
5076  // delegates to.
5077  if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5078  Diag(Loc, DIAG) << IV;
5079  Diag(PDecl->getLocation(), diag::note_property_declare);
5080  }
5081  }
5082 }
Decl * ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef< Decl *> allMethods=None, ArrayRef< DeclGroupPtrTy > allTUVars=None)
const ObjCInterfaceType * getInterfaceType() const
If this pointer points to an Objective C @interface type, gets the type for that interface.
Definition: Type.cpp:1553
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Defines the clang::ASTContext interface.
bool hasDefinition() const
Determine whether this class has been defined.
Definition: DeclObjC.h:1534
static bool tryMatchRecordTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy, const Type *left, const Type *right)
ObjCIvarDecl * GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, const ObjCPropertyDecl *&PDecl) const
GetIvarBackingPropertyAccessor - If method is a property setter/getter and it property has a backing ...
void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, ObjCInterfaceDecl *ID)
DiagnoseClassExtensionDupMethods - Check for duplicate declaration of a class method in its extension...
bool isClassMethod() const
Definition: DeclObjC.h:429
Decl * ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, IdentifierInfo *CategoryName, SourceLocation CategoryLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs, const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList)
void setImplicit(bool I=true)
Definition: DeclBase.h:559
ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo)
Package the given type and TSI into a ParsedType.
Definition: SemaType.cpp:5791
bool isSelfExpr(Expr *RExpr)
Private Helper predicate to check for &#39;self&#39;.
The receiver is an object instance.
Definition: ExprObjC.h:1101
void setEndOfDefinitionLoc(SourceLocation LE)
Definition: DeclObjC.h:1884
VersionTuple getPlatformMinVersion() const
Retrieve the minimum desired version of the platform, to which the program should be compiled...
Definition: TargetInfo.h:1253
ExternalSemaSource * getExternalSource() const
Definition: Sema.h:1295
bool isObjCQualifiedIdType() const
True if this is equivalent to &#39;id.
Definition: Type.h:5931
Smart pointer class that efficiently represents Objective-C method names.
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:1845
unsigned getBits() const
QualType getAdjustedParameterType(QualType T) const
Perform adjustment on the parameter type of a function.
void PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl=nullptr, ExpressionEvaluationContextRecord::ExpressionKind Type=ExpressionEvaluationContextRecord::EK_Other)
Definition: SemaExpr.cpp:14748
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2557
A (possibly-)qualified type.
Definition: Type.h:643
ASTConsumer & Consumer
Definition: Sema.h:375
Simple class containing the result of Sema::CorrectTypo.
void setStarLoc(SourceLocation Loc)
Definition: TypeLoc.h:1313
unsigned param_size() const
Definition: DeclObjC.h:340
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.h:2324
all_protocol_range all_referenced_protocols() const
Definition: DeclObjC.h:1423
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.cpp:1143
void startDefinition()
Starts the definition of this Objective-C class, taking it from a forward declaration (@class) to a d...
Definition: DeclObjC.cpp:610
bool AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, bool receiverIdOrClass, SmallVectorImpl< ObjCMethodDecl *> &Methods)
ObjCDeclQualifier getObjCDeclQualifier() const
Definition: DeclSpec.h:843
static QualType getObjectType(APValue::LValueBase B)
Retrieves the "underlying object type" of the given expression, as used by __builtin_object_size.
iterator begin() const
Definition: DeclObjC.h:90
llvm::DenseSet< IdentifierInfo * > ProtocolNameSet
FIXME: Type hierarchies in Objective-C can be deep.
Ordinary name lookup, which finds ordinary names (functions, variables, typedefs, etc...
Definition: Sema.h:3190
bool LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation=false)
Perform unqualified name lookup starting from a given scope.
Look up the name of an Objective-C protocol.
Definition: Sema.h:3224
const ObjCProtocolList & getReferencedProtocols() const
Definition: DeclObjC.h:2348
Expr * getBitWidth() const
Definition: Decl.h:2696
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:991
ObjCMethodDecl * LookupMethodInObjectType(Selector Sel, QualType Ty, bool IsInstance)
LookupMethodInType - Look up a method in an ObjCObjectType.
static bool CheckMethodOverrideParam(Sema &S, ObjCMethodDecl *MethodImpl, ObjCMethodDecl *MethodDecl, ParmVarDecl *ImplVar, ParmVarDecl *IfaceVar, bool IsProtocolMethodDecl, bool IsOverridingMode, bool Warn)
Defines the SourceManager interface.
void ActOnDocumentableDecl(Decl *D)
Should be called on all declarations that might have attached documentation comments.
Definition: SemaDecl.cpp:12439
bool isRecordType() const
Definition: Type.h:6434
iterator end()
Definition: DeclGroup.h:105
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID)
Emit a diagnostic.
Definition: Sema.h:1362
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
void DiagnoseMissingDesignatedInitOverrides(const ObjCImplementationDecl *ImplD, const ObjCInterfaceDecl *IFD)
__DEVICE__ long long abs(long long __n)
void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AL, bool IncludeCXX11Attributes=true)
Captures information about "declaration specifiers" specific to Objective-C.
Definition: DeclSpec.h:799
ObjCTypeParamList * actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc, ArrayRef< Decl *> typeParams, SourceLocation rAngleLoc)
void DiagnoseFunctionSpecifiers(const DeclSpec &DS)
Diagnose function specifiers on a declaration of an identifier that does not identify a function...
Definition: SemaDecl.cpp:5743
StringRef P
ivar_range ivars() const
Definition: DeclObjC.h:1457
Scope * TUScope
Translation Unit Scope - useful to Objective-C actions that need to lookup file scope declarations in...
Definition: Sema.h:877
static ObjCProtocolDecl * Create(ASTContext &C, DeclContext *DC, IdentifierInfo *Id, SourceLocation nameLoc, SourceLocation atStartLoc, ObjCProtocolDecl *PrevDecl)
Definition: DeclObjC.cpp:1855
static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, ObjCProtocolDecl *&UndefinedProtocol)
known_categories_range known_categories() const
Definition: DeclObjC.h:1686
ObjCTypeParamList * getTypeParamList() const
Retrieve the type parameters of this class.
Definition: DeclObjC.cpp:307
void AddDecl(Decl *D)
Definition: Scope.h:289
bool CheckForwardProtocolDeclarationForCircularDependency(IdentifierInfo *PName, SourceLocation &PLoc, SourceLocation PrevLoc, const ObjCList< ObjCProtocolDecl > &PList)
The base class of the type hierarchy.
Definition: Type.h:1418
void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false)
AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
Definition: Sema.h:3763
The parameter is covariant, e.g., X<T> is a subtype of X<U> when the type parameter is covariant and ...
CanQual< T > getUnqualifiedType() const
Retrieve the unqualified form of this type.
bool isCompilingModule() const
Are we compiling a module interface (.cppm or module map)?
Definition: LangOptions.h:263
bool isObjCContainer() const
Definition: DeclBase.h:1811
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset=0)
Calls Lexer::getLocForEndOfToken()
Definition: Sema.cpp:47
const ObjCObjectPointerType * getAsObjCInterfacePointerType() const
Definition: Type.cpp:1613
static const char * getSpecifierName(DeclSpec::TST T, const PrintingPolicy &Policy)
Turn a type-specifier-type into a string like "_Bool" or "union".
Definition: DeclSpec.cpp:520
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclBase.h:425
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:693
A container of type source information.
Definition: Decl.h:86
void ProcessPropertyDecl(ObjCPropertyDecl *property)
Process the specified property declaration and create decls for the setters and getters as needed...
ObjCMethodDecl * getMethod() const
TSCS getThreadStorageClassSpec() const
Definition: DeclSpec.h:442
void ActOnTypedefedProtocols(SmallVectorImpl< Decl *> &ProtocolRefs, SmallVectorImpl< SourceLocation > &ProtocolLocs, IdentifierInfo *SuperName, SourceLocation SuperLoc)
ActOnTypedefedProtocols - this action finds protocol list as part of the typedef&#39;ed use for a qualifi...
param_const_iterator param_end() const
Definition: DeclObjC.h:351
SourceLocation getEndLoc() const
Get the end source location.
Definition: TypeLoc.cpp:226
void createImplicitParams(ASTContext &Context, const ObjCInterfaceDecl *ID)
createImplicitParams - Used to lazily create the self and cmd implict parameters. ...
Definition: DeclObjC.cpp:1122
Represents a variable declaration or definition.
Definition: Decl.h:812
void setImplementation(ObjCCategoryImplDecl *ImplD)
Definition: DeclObjC.cpp:2024
PartialDiagnostic PDiag(unsigned DiagID=0)
Build a partial diagnostic.
Definition: SemaInternal.h:24
Information about one declarator, including the parsed type information and the identifier.
Definition: DeclSpec.h:1775
DiagnosticsEngine & Diags
Definition: Sema.h:376
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6821
ObjCCategoryImplDecl * getImplementation() const
Definition: DeclObjC.cpp:2019
static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc, ObjCMethodDecl *method, bool &IncompleteImpl, unsigned DiagID, NamedDecl *NeededFor=nullptr)
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:138
DeclClass * getCorrectionDeclAs() const
bool isInvalidDecl() const
Definition: DeclBase.h:553
classmeth_range class_methods() const
Definition: DeclObjC.h:1070
llvm::MapVector< Selector, SourceLocation > ReferencedSelectors
Method selectors used in a @selector expression.
Definition: Sema.h:1213
protocol_range protocols() const
Definition: DeclObjC.h:2128
static const NamedDecl * getDefinition(const Decl *D)
Definition: SemaDecl.cpp:2556
Represents a parameter to a function.
Definition: Decl.h:1564
The collection of all-type qualifiers we support.
Definition: Type.h:137
iterator end() const
Definition: DeclObjC.h:91
MethodMatchStrategy
Definition: Sema.h:3673
const ObjCInterfaceDecl * getSuperClass() const
Definition: DeclObjC.h:2688
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:269
Base wrapper for a particular "section" of type source info.
Definition: TypeLoc.h:56
Represents a struct/union/class.
Definition: Decl.h:3626
SourceLocation getVarianceLoc() const
Retrieve the location of the variance keyword.
Definition: DeclObjC.h:611
DeclarationName getDeclName() const
Get the actual, stored name of the declaration, which may be a special name.
Definition: Decl.h:297
One of these records is kept for each identifier that is lexed.
std::unique_ptr< NSAPI > NSAPIObj
Caches identifiers/selectors for NSFoundation APIs.
Definition: Sema.h:909
static void checkObjCMethodX86VectorTypes(Sema &SemaRef, const ObjCMethodDecl *Method)
Verify that the method parameters/return value have types that are supported by the x86 target...
const ObjCProtocolList & getReferencedProtocols() const
Definition: DeclObjC.h:2120
Represents a class type in Objective C.
Definition: Type.h:5596
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
ObjCMethodDecl * getClassMethod(Selector Sel, bool AllowHidden=false) const
Definition: DeclObjC.h:1091
const ParmVarDecl *const * param_const_iterator
Definition: DeclObjC.h:342
bool isObjCLifetimeType() const
Returns true if objects of this type have lifetime semantics under ARC.
Definition: Type.cpp:4055
ObjCMethodFamily
A family of Objective-C methods.
The parameter is contravariant, e.g., X<T> is a subtype of X<U> when the type parameter is covariant ...
Base class for callback objects used by Sema::CorrectTypo to check the validity of a potential typo c...
void set(T *const *InList, unsigned Elts, ASTContext &Ctx)
Definition: DeclObjC.h:84
TypeSourceInfo * getTypeSourceInfo(ASTContext &Context, QualType T)
Creates a TypeSourceInfo for the given type.
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:263
bool isObjCIdType() const
Definition: Type.h:6487
Represents a member of a struct/union/class.
Definition: Decl.h:2607
SourceRange getReturnTypeSourceRange() const
Definition: DeclObjC.cpp:1155
instmeth_range instance_methods() const
Definition: DeclObjC.h:1053
bool isDefined() const
Definition: DeclObjC.h:439
void setSuperClass(TypeSourceInfo *superClass)
Definition: DeclObjC.h:1587
method_range methods() const
Definition: DeclObjC.h:1036
SourceRange getSourceRange() const
Definition: DeclObjC.h:707
DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc, IdentifierInfo **IdentList, SourceLocation *IdentLocs, ArrayRef< ObjCTypeParamList *> TypeParamLists, unsigned NumElts)
int Category
Definition: Format.cpp:1729
void ClearStorageClassSpecs()
Definition: DeclSpec.h:455
void setReturnType(QualType T)
Definition: DeclObjC.h:323
static DeclaratorChunk getPointer(unsigned TypeQuals, SourceLocation Loc, SourceLocation ConstQualLoc, SourceLocation VolatileQualLoc, SourceLocation RestrictQualLoc, SourceLocation AtomicQualLoc, SourceLocation UnalignedQualLoc)
Return a DeclaratorChunk for a pointer.
Definition: DeclSpec.h:1555
static bool checkTypeParamListConsistency(Sema &S, ObjCTypeParamList *prevTypeParams, ObjCTypeParamList *newTypeParams, TypeParamListContext newContext)
Check consistency between two Objective-C type parameter lists, e.g., between a category/extension an...
bool isObjCQualifiedClassType() const
Definition: Type.h:6481
static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method, const ObjCObjectType *TypeBound)
Return true if the given method is wthin the type bound.
void CheckExtraCXXDefaultArguments(Declarator &D)
CheckExtraCXXDefaultArguments - Check for any extra default arguments in the declarator, which is not a function declaration or definition and therefore is not permitted to have default arguments.
llvm::BumpPtrAllocator BumpAlloc
Definition: Sema.h:1161
IdentifierTable & Idents
Definition: ASTContext.h:569
Qualifiers getLocalQualifiers() const
Retrieve the set of qualifiers local to this particular QualType instance, not including any qualifie...
Definition: Type.h:6149
bool isInvalidType() const
Definition: DeclSpec.h:2453
bool isUnarySelector() const
bool isDeprecated(std::string *Message=nullptr) const
Determine whether this declaration is marked &#39;deprecated&#39;.
Definition: DeclBase.h:671
ObjCMethodFamily getMethodFamily() const
Determines the family of this method.
Definition: DeclObjC.cpp:985
void MatchAllMethodDeclarations(const SelectorSet &InsMap, const SelectorSet &ClsMap, SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl *IMPDecl, ObjCContainerDecl *IDecl, bool &IncompleteImpl, bool ImmediateClass, bool WarnCategoryMethodImpl=false)
MatchAllMethodDeclarations - Check methods declaraed in interface or or protocol against those declar...
bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall)
Check whether the given method, which must be in the &#39;init&#39; family, is a valid member of that family...
void setMethod(ObjCMethodDecl *M)
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:2685
bool isNonFragile() const
Does this runtime follow the set of implied behaviors for a "non-fragile" ABI?
Definition: ObjCRuntime.h:81
Represents the results of name lookup.
Definition: Lookup.h:46
PtrTy get() const
Definition: Ownership.h:170