clang-tools 18.0.0git
InlayHints.cpp
Go to the documentation of this file.
1//===--- InlayHints.cpp ------------------------------------------*- C++-*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8#include "InlayHints.h"
9#include "AST.h"
10#include "Config.h"
11#include "HeuristicResolver.h"
12#include "ParsedAST.h"
13#include "SourceCode.h"
14#include "clang/AST/ASTDiagnostic.h"
15#include "clang/AST/Decl.h"
16#include "clang/AST/DeclarationName.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/RecursiveASTVisitor.h"
20#include "clang/AST/Stmt.h"
21#include "clang/AST/StmtVisitor.h"
22#include "clang/AST/Type.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/OperatorKinds.h"
25#include "clang/Basic/SourceManager.h"
26#include "llvm/ADT/DenseSet.h"
27#include "llvm/ADT/ScopeExit.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/ADT/Twine.h"
31#include "llvm/Support/Casting.h"
32#include "llvm/Support/SaveAndRestore.h"
33#include "llvm/Support/ScopedPrinter.h"
34#include "llvm/Support/raw_ostream.h"
35#include <optional>
36#include <string>
37
38namespace clang {
39namespace clangd {
40namespace {
41
42// For now, inlay hints are always anchored at the left or right of their range.
43enum class HintSide { Left, Right };
44
45// Helper class to iterate over the designator names of an aggregate type.
46//
47// For an array type, yields [0], [1], [2]...
48// For aggregate classes, yields null for each base, then .field1, .field2, ...
49class AggregateDesignatorNames {
50public:
51 AggregateDesignatorNames(QualType T) {
52 if (!T.isNull()) {
53 T = T.getCanonicalType();
54 if (T->isArrayType()) {
55 IsArray = true;
56 Valid = true;
57 return;
58 }
59 if (const RecordDecl *RD = T->getAsRecordDecl()) {
60 Valid = true;
61 FieldsIt = RD->field_begin();
62 FieldsEnd = RD->field_end();
63 if (const auto *CRD = llvm::dyn_cast<CXXRecordDecl>(RD)) {
64 BasesIt = CRD->bases_begin();
65 BasesEnd = CRD->bases_end();
66 Valid = CRD->isAggregate();
67 }
68 OneField = Valid && BasesIt == BasesEnd && FieldsIt != FieldsEnd &&
69 std::next(FieldsIt) == FieldsEnd;
70 }
71 }
72 }
73 // Returns false if the type was not an aggregate.
74 operator bool() { return Valid; }
75 // Advance to the next element in the aggregate.
76 void next() {
77 if (IsArray)
78 ++Index;
79 else if (BasesIt != BasesEnd)
80 ++BasesIt;
81 else if (FieldsIt != FieldsEnd)
82 ++FieldsIt;
83 }
84 // Print the designator to Out.
85 // Returns false if we could not produce a designator for this element.
86 bool append(std::string &Out, bool ForSubobject) {
87 if (IsArray) {
88 Out.push_back('[');
89 Out.append(std::to_string(Index));
90 Out.push_back(']');
91 return true;
92 }
93 if (BasesIt != BasesEnd)
94 return false; // Bases can't be designated. Should we make one up?
95 if (FieldsIt != FieldsEnd) {
96 llvm::StringRef FieldName;
97 if (const IdentifierInfo *II = FieldsIt->getIdentifier())
98 FieldName = II->getName();
99
100 // For certain objects, their subobjects may be named directly.
101 if (ForSubobject &&
102 (FieldsIt->isAnonymousStructOrUnion() ||
103 // std::array<int,3> x = {1,2,3}. Designators not strictly valid!
104 (OneField && isReservedName(FieldName))))
105 return true;
106
107 if (!FieldName.empty() && !isReservedName(FieldName)) {
108 Out.push_back('.');
109 Out.append(FieldName.begin(), FieldName.end());
110 return true;
111 }
112 return false;
113 }
114 return false;
115 }
116
117private:
118 bool Valid = false;
119 bool IsArray = false;
120 bool OneField = false; // e.g. std::array { T __elements[N]; }
121 unsigned Index = 0;
122 CXXRecordDecl::base_class_const_iterator BasesIt;
123 CXXRecordDecl::base_class_const_iterator BasesEnd;
124 RecordDecl::field_iterator FieldsIt;
125 RecordDecl::field_iterator FieldsEnd;
126};
127
128// Collect designator labels describing the elements of an init list.
129//
130// This function contributes the designators of some (sub)object, which is
131// represented by the semantic InitListExpr Sem.
132// This includes any nested subobjects, but *only* if they are part of the same
133// original syntactic init list (due to brace elision).
134// In other words, it may descend into subobjects but not written init-lists.
135//
136// For example: struct Outer { Inner a,b; }; struct Inner { int x, y; }
137// Outer o{{1, 2}, 3};
138// This function will be called with Sem = { {1, 2}, {3, ImplicitValue} }
139// It should generate designators '.a:' and '.b.x:'.
140// '.a:' is produced directly without recursing into the written sublist.
141// (The written sublist will have a separate collectDesignators() call later).
142// Recursion with Prefix='.b' and Sem = {3, ImplicitValue} produces '.b.x:'.
143void collectDesignators(const InitListExpr *Sem,
144 llvm::DenseMap<SourceLocation, std::string> &Out,
145 const llvm::DenseSet<SourceLocation> &NestedBraces,
146 std::string &Prefix) {
147 if (!Sem || Sem->isTransparent())
148 return;
149 assert(Sem->isSemanticForm());
150
151 // The elements of the semantic form all correspond to direct subobjects of
152 // the aggregate type. `Fields` iterates over these subobject names.
153 AggregateDesignatorNames Fields(Sem->getType());
154 if (!Fields)
155 return;
156 for (const Expr *Init : Sem->inits()) {
157 auto Next = llvm::make_scope_exit([&, Size(Prefix.size())] {
158 Fields.next(); // Always advance to the next subobject name.
159 Prefix.resize(Size); // Erase any designator we appended.
160 });
161 // Skip for a broken initializer or if it is a "hole" in a subobject that
162 // was not explicitly initialized.
163 if (!Init || llvm::isa<ImplicitValueInitExpr>(Init))
164 continue;
165
166 const auto *BraceElidedSubobject = llvm::dyn_cast<InitListExpr>(Init);
167 if (BraceElidedSubobject &&
168 NestedBraces.contains(BraceElidedSubobject->getLBraceLoc()))
169 BraceElidedSubobject = nullptr; // there were braces!
170
171 if (!Fields.append(Prefix, BraceElidedSubobject != nullptr))
172 continue; // no designator available for this subobject
173 if (BraceElidedSubobject) {
174 // If the braces were elided, this aggregate subobject is initialized
175 // inline in the same syntactic list.
176 // Descend into the semantic list describing the subobject.
177 // (NestedBraces are still correct, they're from the same syntactic list).
178 collectDesignators(BraceElidedSubobject, Out, NestedBraces, Prefix);
179 continue;
180 }
181 Out.try_emplace(Init->getBeginLoc(), Prefix);
182 }
183}
184
185// Get designators describing the elements of a (syntactic) init list.
186// This does not produce designators for any explicitly-written nested lists.
187llvm::DenseMap<SourceLocation, std::string>
188getDesignators(const InitListExpr *Syn) {
189 assert(Syn->isSyntacticForm());
190
191 // collectDesignators needs to know which InitListExprs in the semantic tree
192 // were actually written, but InitListExpr::isExplicit() lies.
193 // Instead, record where braces of sub-init-lists occur in the syntactic form.
194 llvm::DenseSet<SourceLocation> NestedBraces;
195 for (const Expr *Init : Syn->inits())
196 if (auto *Nested = llvm::dyn_cast<InitListExpr>(Init))
197 NestedBraces.insert(Nested->getLBraceLoc());
198
199 // Traverse the semantic form to find the designators.
200 // We use their SourceLocation to correlate with the syntactic form later.
201 llvm::DenseMap<SourceLocation, std::string> Designators;
202 std::string EmptyPrefix;
203 collectDesignators(Syn->isSemanticForm() ? Syn : Syn->getSemanticForm(),
204 Designators, NestedBraces, EmptyPrefix);
205 return Designators;
206}
207
208void stripLeadingUnderscores(StringRef &Name) { Name = Name.ltrim('_'); }
209
210// getDeclForType() returns the decl responsible for Type's spelling.
211// This is the inverse of ASTContext::getTypeDeclType().
212template <typename Ty, typename = decltype(((Ty *)nullptr)->getDecl())>
213const NamedDecl *getDeclForTypeImpl(const Ty *T) {
214 return T->getDecl();
215}
216const NamedDecl *getDeclForTypeImpl(const void *T) { return nullptr; }
217const NamedDecl *getDeclForType(const Type *T) {
218 switch (T->getTypeClass()) {
219#define ABSTRACT_TYPE(TY, BASE)
220#define TYPE(TY, BASE) \
221 case Type::TY: \
222 return getDeclForTypeImpl(llvm::cast<TY##Type>(T));
223#include "clang/AST/TypeNodes.inc"
224 }
225 llvm_unreachable("Unknown TypeClass enum");
226}
227
228// getSimpleName() returns the plain identifier for an entity, if any.
229llvm::StringRef getSimpleName(const DeclarationName &DN) {
230 if (IdentifierInfo *Ident = DN.getAsIdentifierInfo())
231 return Ident->getName();
232 return "";
233}
234llvm::StringRef getSimpleName(const NamedDecl &D) {
235 return getSimpleName(D.getDeclName());
236}
237llvm::StringRef getSimpleName(QualType T) {
238 if (const auto *ET = llvm::dyn_cast<ElaboratedType>(T))
239 return getSimpleName(ET->getNamedType());
240 if (const auto *BT = llvm::dyn_cast<BuiltinType>(T)) {
241 PrintingPolicy PP(LangOptions{});
242 PP.adjustForCPlusPlus();
243 return BT->getName(PP);
244 }
245 if (const auto *D = getDeclForType(T.getTypePtr()))
246 return getSimpleName(D->getDeclName());
247 return "";
248}
249
250// Returns a very abbreviated form of an expression, or "" if it's too complex.
251// For example: `foo->bar()` would produce "bar".
252// This is used to summarize e.g. the condition of a while loop.
253std::string summarizeExpr(const Expr *E) {
254 struct Namer : ConstStmtVisitor<Namer, std::string> {
255 std::string Visit(const Expr *E) {
256 if (E == nullptr)
257 return "";
258 return ConstStmtVisitor::Visit(E->IgnoreImplicit());
259 }
260
261 // Any sort of decl reference, we just use the unqualified name.
262 std::string VisitMemberExpr(const MemberExpr *E) {
263 return getSimpleName(*E->getMemberDecl()).str();
264 }
265 std::string VisitDeclRefExpr(const DeclRefExpr *E) {
266 return getSimpleName(*E->getFoundDecl()).str();
267 }
268 std::string VisitCallExpr(const CallExpr *E) {
269 return Visit(E->getCallee());
270 }
271 std::string
272 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
273 return getSimpleName(E->getMember()).str();
274 }
275 std::string
276 VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
277 return getSimpleName(E->getDeclName()).str();
278 }
279 std::string VisitCXXFunctionalCastExpr(const CXXFunctionalCastExpr *E) {
280 return getSimpleName(E->getType()).str();
281 }
282 std::string VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *E) {
283 return getSimpleName(E->getType()).str();
284 }
285
286 // Step through implicit nodes that clang doesn't classify as such.
287 std::string VisitCXXMemberCallExpr(const CXXMemberCallExpr *E) {
288 // Call to operator bool() inside if (X): dispatch to X.
289 if (E->getNumArgs() == 0 &&
290 E->getMethodDecl()->getDeclName().getNameKind() ==
291 DeclarationName::CXXConversionFunctionName &&
292 E->getSourceRange() ==
293 E->getImplicitObjectArgument()->getSourceRange())
294 return Visit(E->getImplicitObjectArgument());
295 return ConstStmtVisitor::VisitCXXMemberCallExpr(E);
296 }
297 std::string VisitCXXConstructExpr(const CXXConstructExpr *E) {
298 if (E->getNumArgs() == 1)
299 return Visit(E->getArg(0));
300 return "";
301 }
302
303 // Literals are just printed
304 std::string VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
305 return E->getValue() ? "true" : "false";
306 }
307 std::string VisitIntegerLiteral(const IntegerLiteral *E) {
308 return llvm::to_string(E->getValue());
309 }
310 std::string VisitFloatingLiteral(const FloatingLiteral *E) {
311 std::string Result;
312 llvm::raw_string_ostream OS(Result);
313 E->getValue().print(OS);
314 // Printer adds newlines?!
315 Result.resize(llvm::StringRef(Result).rtrim().size());
316 return Result;
317 }
318 std::string VisitStringLiteral(const StringLiteral *E) {
319 std::string Result = "\"";
320 if (E->containsNonAscii()) {
321 Result += "...";
322 } else if (E->getLength() > 10) {
323 Result += E->getString().take_front(7);
324 Result += "...";
325 } else {
326 llvm::raw_string_ostream OS(Result);
327 llvm::printEscapedString(E->getString(), OS);
328 }
329 Result.push_back('"');
330 return Result;
331 }
332
333 // Simple operators. Motivating cases are `!x` and `I < Length`.
334 std::string printUnary(llvm::StringRef Spelling, const Expr *Operand,
335 bool Prefix) {
336 std::string Sub = Visit(Operand);
337 if (Sub.empty())
338 return "";
339 if (Prefix)
340 return (Spelling + Sub).str();
341 Sub += Spelling;
342 return Sub;
343 }
344 bool InsideBinary = false; // No recursing into binary expressions.
345 std::string printBinary(llvm::StringRef Spelling, const Expr *LHSOp,
346 const Expr *RHSOp) {
347 if (InsideBinary)
348 return "";
349 llvm::SaveAndRestore InBinary(InsideBinary, true);
350
351 std::string LHS = Visit(LHSOp);
352 std::string RHS = Visit(RHSOp);
353 if (LHS.empty() && RHS.empty())
354 return "";
355
356 if (LHS.empty())
357 LHS = "...";
358 LHS.push_back(' ');
359 LHS += Spelling;
360 LHS.push_back(' ');
361 if (RHS.empty())
362 LHS += "...";
363 else
364 LHS += RHS;
365 return LHS;
366 }
367 std::string VisitUnaryOperator(const UnaryOperator *E) {
368 return printUnary(E->getOpcodeStr(E->getOpcode()), E->getSubExpr(),
369 !E->isPostfix());
370 }
371 std::string VisitBinaryOperator(const BinaryOperator *E) {
372 return printBinary(E->getOpcodeStr(E->getOpcode()), E->getLHS(),
373 E->getRHS());
374 }
375 std::string VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *E) {
376 const char *Spelling = getOperatorSpelling(E->getOperator());
377 // Handle weird unary-that-look-like-binary postfix operators.
378 if ((E->getOperator() == OO_PlusPlus ||
379 E->getOperator() == OO_MinusMinus) &&
380 E->getNumArgs() == 2)
381 return printUnary(Spelling, E->getArg(0), false);
382 if (E->isInfixBinaryOp())
383 return printBinary(Spelling, E->getArg(0), E->getArg(1));
384 if (E->getNumArgs() == 1) {
385 switch (E->getOperator()) {
386 case OO_Plus:
387 case OO_Minus:
388 case OO_Star:
389 case OO_Amp:
390 case OO_Tilde:
391 case OO_Exclaim:
392 case OO_PlusPlus:
393 case OO_MinusMinus:
394 return printUnary(Spelling, E->getArg(0), true);
395 default:
396 break;
397 }
398 }
399 return "";
400 }
401 };
402 return Namer{}.Visit(E);
403}
404
405// Determines if any intermediate type in desugaring QualType QT is of
406// substituted template parameter type. Ignore pointer or reference wrappers.
407bool isSugaredTemplateParameter(QualType QT) {
408 static auto PeelWrapper = [](QualType QT) {
409 // Neither `PointerType` nor `ReferenceType` is considered as sugared
410 // type. Peel it.
411 QualType Peeled = QT->getPointeeType();
412 return Peeled.isNull() ? QT : Peeled;
413 };
414
415 // This is a bit tricky: we traverse the type structure and find whether or
416 // not a type in the desugaring process is of SubstTemplateTypeParmType.
417 // During the process, we may encounter pointer or reference types that are
418 // not marked as sugared; therefore, the desugar function won't apply. To
419 // move forward the traversal, we retrieve the pointees using
420 // QualType::getPointeeType().
421 //
422 // However, getPointeeType could leap over our interests: The QT::getAs<T>()
423 // invoked would implicitly desugar the type. Consequently, if the
424 // SubstTemplateTypeParmType is encompassed within a TypedefType, we may lose
425 // the chance to visit it.
426 // For example, given a QT that represents `std::vector<int *>::value_type`:
427 // `-ElaboratedType 'value_type' sugar
428 // `-TypedefType 'vector<int *>::value_type' sugar
429 // |-Typedef 'value_type'
430 // `-SubstTemplateTypeParmType 'int *' sugar class depth 0 index 0 T
431 // |-ClassTemplateSpecialization 'vector'
432 // `-PointerType 'int *'
433 // `-BuiltinType 'int'
434 // Applying `getPointeeType` to QT results in 'int', a child of our target
435 // node SubstTemplateTypeParmType.
436 //
437 // As such, we always prefer the desugared over the pointee for next type
438 // in the iteration. It could avoid the getPointeeType's implicit desugaring.
439 while (true) {
440 if (QT->getAs<SubstTemplateTypeParmType>())
441 return true;
442 QualType Desugared = QT->getLocallyUnqualifiedSingleStepDesugaredType();
443 if (Desugared != QT)
444 QT = Desugared;
445 else if (auto Peeled = PeelWrapper(Desugared); Peeled != QT)
446 QT = Peeled;
447 else
448 break;
449 }
450 return false;
451}
452
453// A simple wrapper for `clang::desugarForDiagnostic` that provides optional
454// semantic.
455std::optional<QualType> desugar(ASTContext &AST, QualType QT) {
456 bool ShouldAKA = false;
457 auto Desugared = clang::desugarForDiagnostic(AST, QT, ShouldAKA);
458 if (!ShouldAKA)
459 return std::nullopt;
460 return Desugared;
461}
462
463// Apply a series of heuristic methods to determine whether or not a QualType QT
464// is suitable for desugaring (e.g. getting the real name behind the using-alias
465// name). If so, return the desugared type. Otherwise, return the unchanged
466// parameter QT.
467//
468// This could be refined further. See
469// https://github.com/clangd/clangd/issues/1298.
470QualType maybeDesugar(ASTContext &AST, QualType QT) {
471 // Prefer desugared type for name that aliases the template parameters.
472 // This can prevent things like printing opaque `: type` when accessing std
473 // containers.
474 if (isSugaredTemplateParameter(QT))
475 return desugar(AST, QT).value_or(QT);
476
477 // Prefer desugared type for `decltype(expr)` specifiers.
478 if (QT->isDecltypeType())
479 return QT.getCanonicalType();
480 if (const AutoType *AT = QT->getContainedAutoType())
481 if (!AT->getDeducedType().isNull() &&
482 AT->getDeducedType()->isDecltypeType())
483 return QT.getCanonicalType();
484
485 return QT;
486}
487
488// Given a callee expression `Fn`, if the call is through a function pointer,
489// try to find the declaration of the corresponding function pointer type,
490// so that we can recover argument names from it.
491// FIXME: This function is mostly duplicated in SemaCodeComplete.cpp; unify.
492static FunctionProtoTypeLoc getPrototypeLoc(Expr *Fn) {
493 TypeLoc Target;
494 Expr *NakedFn = Fn->IgnoreParenCasts();
495 if (const auto *T = NakedFn->getType().getTypePtr()->getAs<TypedefType>()) {
496 Target = T->getDecl()->getTypeSourceInfo()->getTypeLoc();
497 } else if (const auto *DR = dyn_cast<DeclRefExpr>(NakedFn)) {
498 const auto *D = DR->getDecl();
499 if (const auto *const VD = dyn_cast<VarDecl>(D)) {
500 Target = VD->getTypeSourceInfo()->getTypeLoc();
501 }
502 }
503
504 if (!Target)
505 return {};
506
507 // Unwrap types that may be wrapping the function type
508 while (true) {
509 if (auto P = Target.getAs<PointerTypeLoc>()) {
510 Target = P.getPointeeLoc();
511 continue;
512 }
513 if (auto A = Target.getAs<AttributedTypeLoc>()) {
514 Target = A.getModifiedLoc();
515 continue;
516 }
517 if (auto P = Target.getAs<ParenTypeLoc>()) {
518 Target = P.getInnerLoc();
519 continue;
520 }
521 break;
522 }
523
524 if (auto F = Target.getAs<FunctionProtoTypeLoc>()) {
525 return F;
526 }
527
528 return {};
529}
530
531struct Callee {
532 // Only one of Decl or Loc is set.
533 // Loc is for calls through function pointers.
534 const FunctionDecl *Decl = nullptr;
535 FunctionProtoTypeLoc Loc;
536};
537
538class InlayHintVisitor : public RecursiveASTVisitor<InlayHintVisitor> {
539public:
540 InlayHintVisitor(std::vector<InlayHint> &Results, ParsedAST &AST,
541 const Config &Cfg, std::optional<Range> RestrictRange)
542 : Results(Results), AST(AST.getASTContext()), Tokens(AST.getTokens()),
543 Cfg(Cfg), RestrictRange(std::move(RestrictRange)),
544 MainFileID(AST.getSourceManager().getMainFileID()),
545 Resolver(AST.getHeuristicResolver()),
546 TypeHintPolicy(this->AST.getPrintingPolicy()) {
547 bool Invalid = false;
548 llvm::StringRef Buf =
549 AST.getSourceManager().getBufferData(MainFileID, &Invalid);
550 MainFileBuf = Invalid ? StringRef{} : Buf;
551
552 TypeHintPolicy.SuppressScope = true; // keep type names short
553 TypeHintPolicy.AnonymousTagLocations =
554 false; // do not print lambda locations
555
556 // Not setting PrintCanonicalTypes for "auto" allows
557 // SuppressDefaultTemplateArgs (set by default) to have an effect.
558 }
559
560 bool VisitTypeLoc(TypeLoc TL) {
561 if (const auto *DT = llvm::dyn_cast<DecltypeType>(TL.getType()))
562 if (QualType UT = DT->getUnderlyingType(); !UT->isDependentType())
563 addTypeHint(TL.getSourceRange(), UT, ": ");
564 return true;
565 }
566
567 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
568 // Weed out constructor calls that don't look like a function call with
569 // an argument list, by checking the validity of getParenOrBraceRange().
570 // Also weed out std::initializer_list constructors as there are no names
571 // for the individual arguments.
572 if (!E->getParenOrBraceRange().isValid() ||
573 E->isStdInitListInitialization()) {
574 return true;
575 }
576
577 Callee Callee;
578 Callee.Decl = E->getConstructor();
579 if (!Callee.Decl)
580 return true;
581 processCall(Callee, {E->getArgs(), E->getNumArgs()});
582 return true;
583 }
584
585 bool VisitCallExpr(CallExpr *E) {
586 if (!Cfg.InlayHints.Parameters)
587 return true;
588
589 bool IsFunctor = isFunctionObjectCallExpr(E);
590 // Do not show parameter hints for user-defined literals or
591 // operator calls except for operator(). (Among other reasons, the resulting
592 // hints can look awkward, e.g. the expression can itself be a function
593 // argument and then we'd get two hints side by side).
594 if ((isa<CXXOperatorCallExpr>(E) && !IsFunctor) ||
595 isa<UserDefinedLiteral>(E))
596 return true;
597
598 auto CalleeDecls = Resolver->resolveCalleeOfCallExpr(E);
599 if (CalleeDecls.size() != 1)
600 return true;
601
602 Callee Callee;
603 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecls[0]))
604 Callee.Decl = FD;
605 else if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(CalleeDecls[0]))
606 Callee.Decl = FTD->getTemplatedDecl();
607 else if (FunctionProtoTypeLoc Loc = getPrototypeLoc(E->getCallee()))
608 Callee.Loc = Loc;
609 else
610 return true;
611
612 // N4868 [over.call.object]p3 says,
613 // The argument list submitted to overload resolution consists of the
614 // argument expressions present in the function call syntax preceded by the
615 // implied object argument (E).
616 //
617 // However, we don't have the implied object argument for static
618 // operator() per clang::Sema::BuildCallToObjectOfClassType.
619 llvm::ArrayRef<const Expr *> Args = {E->getArgs(), E->getNumArgs()};
620 if (IsFunctor)
621 // We don't have the implied object argument through
622 // a function pointer either.
623 if (const CXXMethodDecl *Method =
624 dyn_cast_or_null<CXXMethodDecl>(Callee.Decl);
625 Method && Method->isInstance())
626 Args = Args.drop_front(1);
627 processCall(Callee, Args);
628 return true;
629 }
630
631 bool VisitFunctionDecl(FunctionDecl *D) {
632 if (auto *FPT =
633 llvm::dyn_cast<FunctionProtoType>(D->getType().getTypePtr())) {
634 if (!FPT->hasTrailingReturn()) {
635 if (auto FTL = D->getFunctionTypeLoc())
636 addReturnTypeHint(D, FTL.getRParenLoc());
637 }
638 }
639 if (Cfg.InlayHints.BlockEnd && D->isThisDeclarationADefinition()) {
640 // We use `printName` here to properly print name of ctor/dtor/operator
641 // overload.
642 if (const Stmt *Body = D->getBody())
643 addBlockEndHint(Body->getSourceRange(), "", printName(AST, *D), "");
644 }
645 return true;
646 }
647
648 bool VisitForStmt(ForStmt *S) {
649 if (Cfg.InlayHints.BlockEnd) {
650 std::string Name;
651 // Common case: for (int I = 0; I < N; I++). Use "I" as the name.
652 if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S->getInit());
653 DS && DS->isSingleDecl())
654 Name = getSimpleName(llvm::cast<NamedDecl>(*DS->getSingleDecl()));
655 else
656 Name = summarizeExpr(S->getCond());
657 markBlockEnd(S->getBody(), "for", Name);
658 }
659 return true;
660 }
661
662 bool VisitCXXForRangeStmt(CXXForRangeStmt *S) {
663 if (Cfg.InlayHints.BlockEnd)
664 markBlockEnd(S->getBody(), "for", getSimpleName(*S->getLoopVariable()));
665 return true;
666 }
667
668 bool VisitWhileStmt(WhileStmt *S) {
669 if (Cfg.InlayHints.BlockEnd)
670 markBlockEnd(S->getBody(), "while", summarizeExpr(S->getCond()));
671 return true;
672 }
673
674 bool VisitSwitchStmt(SwitchStmt *S) {
675 if (Cfg.InlayHints.BlockEnd)
676 markBlockEnd(S->getBody(), "switch", summarizeExpr(S->getCond()));
677 return true;
678 }
679
680 // If/else chains are tricky.
681 // if (cond1) {
682 // } else if (cond2) {
683 // } // mark as "cond1" or "cond2"?
684 // For now, the answer is neither, just mark as "if".
685 // The ElseIf is a different IfStmt that doesn't know about the outer one.
686 llvm::DenseSet<const IfStmt *> ElseIfs; // not eligible for names
687 bool VisitIfStmt(IfStmt *S) {
688 if (Cfg.InlayHints.BlockEnd) {
689 if (const auto *ElseIf = llvm::dyn_cast_or_null<IfStmt>(S->getElse()))
690 ElseIfs.insert(ElseIf);
691 // Don't use markBlockEnd: the relevant range is [then.begin, else.end].
692 if (const auto *EndCS = llvm::dyn_cast<CompoundStmt>(
693 S->getElse() ? S->getElse() : S->getThen())) {
694 addBlockEndHint(
695 {S->getThen()->getBeginLoc(), EndCS->getRBracLoc()}, "if",
696 ElseIfs.contains(S) ? "" : summarizeExpr(S->getCond()), "");
697 }
698 }
699 return true;
700 }
701
702 void markBlockEnd(const Stmt *Body, llvm::StringRef Label,
703 llvm::StringRef Name = "") {
704 if (const auto *CS = llvm::dyn_cast_or_null<CompoundStmt>(Body))
705 addBlockEndHint(CS->getSourceRange(), Label, Name, "");
706 }
707
708 bool VisitTagDecl(TagDecl *D) {
709 if (Cfg.InlayHints.BlockEnd && D->isThisDeclarationADefinition()) {
710 std::string DeclPrefix = D->getKindName().str();
711 if (const auto *ED = dyn_cast<EnumDecl>(D)) {
712 if (ED->isScoped())
713 DeclPrefix += ED->isScopedUsingClassTag() ? " class" : " struct";
714 };
715 addBlockEndHint(D->getBraceRange(), DeclPrefix, getSimpleName(*D), ";");
716 }
717 return true;
718 }
719
720 bool VisitNamespaceDecl(NamespaceDecl *D) {
721 if (Cfg.InlayHints.BlockEnd) {
722 // For namespace, the range actually starts at the namespace keyword. But
723 // it should be fine since it's usually very short.
724 addBlockEndHint(D->getSourceRange(), "namespace", getSimpleName(*D), "");
725 }
726 return true;
727 }
728
729 bool VisitLambdaExpr(LambdaExpr *E) {
730 FunctionDecl *D = E->getCallOperator();
731 if (!E->hasExplicitResultType())
732 addReturnTypeHint(D, E->hasExplicitParameters()
733 ? D->getFunctionTypeLoc().getRParenLoc()
734 : E->getIntroducerRange().getEnd());
735 return true;
736 }
737
738 void addReturnTypeHint(FunctionDecl *D, SourceRange Range) {
739 auto *AT = D->getReturnType()->getContainedAutoType();
740 if (!AT || AT->getDeducedType().isNull())
741 return;
742 addTypeHint(Range, D->getReturnType(), /*Prefix=*/"-> ");
743 }
744
745 bool VisitVarDecl(VarDecl *D) {
746 // Do not show hints for the aggregate in a structured binding,
747 // but show hints for the individual bindings.
748 if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
749 for (auto *Binding : DD->bindings()) {
750 // For structured bindings, print canonical types. This is important
751 // because for bindings that use the tuple_element protocol, the
752 // non-canonical types would be "tuple_element<I, A>::type".
753 if (auto Type = Binding->getType();
754 !Type.isNull() && !Type->isDependentType())
755 addTypeHint(Binding->getLocation(), Type.getCanonicalType(),
756 /*Prefix=*/": ");
757 }
758 return true;
759 }
760
761 if (auto *AT = D->getType()->getContainedAutoType()) {
762 if (AT->isDeduced() && !D->getType()->isDependentType()) {
763 // Our current approach is to place the hint on the variable
764 // and accordingly print the full type
765 // (e.g. for `const auto& x = 42`, print `const int&`).
766 // Alternatively, we could place the hint on the `auto`
767 // (and then just print the type deduced for the `auto`).
768 addTypeHint(D->getLocation(), D->getType(), /*Prefix=*/": ");
769 }
770 }
771
772 // Handle templates like `int foo(auto x)` with exactly one instantiation.
773 if (auto *PVD = llvm::dyn_cast<ParmVarDecl>(D)) {
774 if (D->getIdentifier() && PVD->getType()->isDependentType() &&
775 !getContainedAutoParamType(D->getTypeSourceInfo()->getTypeLoc())
776 .isNull()) {
777 if (auto *IPVD = getOnlyParamInstantiation(PVD))
778 addTypeHint(D->getLocation(), IPVD->getType(), /*Prefix=*/": ");
779 }
780 }
781
782 return true;
783 }
784
785 ParmVarDecl *getOnlyParamInstantiation(ParmVarDecl *D) {
786 auto *TemplateFunction = llvm::dyn_cast<FunctionDecl>(D->getDeclContext());
787 if (!TemplateFunction)
788 return nullptr;
789 auto *InstantiatedFunction = llvm::dyn_cast_or_null<FunctionDecl>(
790 getOnlyInstantiation(TemplateFunction));
791 if (!InstantiatedFunction)
792 return nullptr;
793
794 unsigned ParamIdx = 0;
795 for (auto *Param : TemplateFunction->parameters()) {
796 // Can't reason about param indexes in the presence of preceding packs.
797 // And if this param is a pack, it may expand to multiple params.
798 if (Param->isParameterPack())
799 return nullptr;
800 if (Param == D)
801 break;
802 ++ParamIdx;
803 }
804 assert(ParamIdx < TemplateFunction->getNumParams() &&
805 "Couldn't find param in list?");
806 assert(ParamIdx < InstantiatedFunction->getNumParams() &&
807 "Instantiated function has fewer (non-pack) parameters?");
808 return InstantiatedFunction->getParamDecl(ParamIdx);
809 }
810
811 bool VisitInitListExpr(InitListExpr *Syn) {
812 // We receive the syntactic form here (shouldVisitImplicitCode() is false).
813 // This is the one we will ultimately attach designators to.
814 // It may have subobject initializers inlined without braces. The *semantic*
815 // form of the init-list has nested init-lists for these.
816 // getDesignators will look at the semantic form to determine the labels.
817 assert(Syn->isSyntacticForm() && "RAV should not visit implicit code!");
818 if (!Cfg.InlayHints.Designators)
819 return true;
820 if (Syn->isIdiomaticZeroInitializer(AST.getLangOpts()))
821 return true;
822 llvm::DenseMap<SourceLocation, std::string> Designators =
823 getDesignators(Syn);
824 for (const Expr *Init : Syn->inits()) {
825 if (llvm::isa<DesignatedInitExpr>(Init))
826 continue;
827 auto It = Designators.find(Init->getBeginLoc());
828 if (It != Designators.end() &&
829 !isPrecededByParamNameComment(Init, It->second))
830 addDesignatorHint(Init->getSourceRange(), It->second);
831 }
832 return true;
833 }
834
835 // FIXME: Handle RecoveryExpr to try to hint some invalid calls.
836
837private:
838 using NameVec = SmallVector<StringRef, 8>;
839
840 void processCall(Callee Callee, llvm::ArrayRef<const Expr *> Args) {
841 assert(Callee.Decl || Callee.Loc);
842
843 if (!Cfg.InlayHints.Parameters || Args.size() == 0)
844 return;
845
846 // The parameter name of a move or copy constructor is not very interesting.
847 if (Callee.Decl)
848 if (auto *Ctor = dyn_cast<CXXConstructorDecl>(Callee.Decl))
849 if (Ctor->isCopyOrMoveConstructor())
850 return;
851
852 auto Params =
853 Callee.Decl ? Callee.Decl->parameters() : Callee.Loc.getParams();
854
855 // Resolve parameter packs to their forwarded parameter
856 SmallVector<const ParmVarDecl *> ForwardedParams;
857 if (Callee.Decl)
858 ForwardedParams = resolveForwardingParameters(Callee.Decl);
859 else
860 ForwardedParams = {Params.begin(), Params.end()};
861
862 NameVec ParameterNames = chooseParameterNames(ForwardedParams);
863
864 // Exclude setters (i.e. functions with one argument whose name begins with
865 // "set"), and builtins like std::move/forward/... as their parameter name
866 // is also not likely to be interesting.
867 if (Callee.Decl &&
868 (isSetter(Callee.Decl, ParameterNames) || isSimpleBuiltin(Callee.Decl)))
869 return;
870
871 for (size_t I = 0; I < ParameterNames.size() && I < Args.size(); ++I) {
872 // Pack expansion expressions cause the 1:1 mapping between arguments and
873 // parameters to break down, so we don't add further inlay hints if we
874 // encounter one.
875 if (isa<PackExpansionExpr>(Args[I])) {
876 break;
877 }
878
879 StringRef Name = ParameterNames[I];
880 bool NameHint = shouldHintName(Args[I], Name);
881 bool ReferenceHint = shouldHintReference(Params[I], ForwardedParams[I]);
882
883 if (NameHint || ReferenceHint) {
884 addInlayHint(Args[I]->getSourceRange(), HintSide::Left,
885 InlayHintKind::Parameter, ReferenceHint ? "&" : "",
886 NameHint ? Name : "", ": ");
887 }
888 }
889 }
890
891 static bool isSetter(const FunctionDecl *Callee, const NameVec &ParamNames) {
892 if (ParamNames.size() != 1)
893 return false;
894
895 StringRef Name = getSimpleName(*Callee);
896 if (!Name.starts_with_insensitive("set"))
897 return false;
898
899 // In addition to checking that the function has one parameter and its
900 // name starts with "set", also check that the part after "set" matches
901 // the name of the parameter (ignoring case). The idea here is that if
902 // the parameter name differs, it may contain extra information that
903 // may be useful to show in a hint, as in:
904 // void setTimeout(int timeoutMillis);
905 // This currently doesn't handle cases where params use snake_case
906 // and functions don't, e.g.
907 // void setExceptionHandler(EHFunc exception_handler);
908 // We could improve this by replacing `equals_insensitive` with some
909 // `sloppy_equals` which ignores case and also skips underscores.
910 StringRef WhatItIsSetting = Name.substr(3).ltrim("_");
911 return WhatItIsSetting.equals_insensitive(ParamNames[0]);
912 }
913
914 // Checks if the callee is one of the builtins
915 // addressof, as_const, forward, move(_if_noexcept)
916 static bool isSimpleBuiltin(const FunctionDecl *Callee) {
917 switch (Callee->getBuiltinID()) {
918 case Builtin::BIaddressof:
919 case Builtin::BIas_const:
920 case Builtin::BIforward:
921 case Builtin::BImove:
922 case Builtin::BImove_if_noexcept:
923 return true;
924 default:
925 return false;
926 }
927 }
928
929 bool shouldHintName(const Expr *Arg, StringRef ParamName) {
930 if (ParamName.empty())
931 return false;
932
933 // If the argument expression is a single name and it matches the
934 // parameter name exactly, omit the name hint.
935 if (ParamName == getSpelledIdentifier(Arg))
936 return false;
937
938 // Exclude argument expressions preceded by a /*paramName*/.
939 if (isPrecededByParamNameComment(Arg, ParamName))
940 return false;
941
942 return true;
943 }
944
945 bool shouldHintReference(const ParmVarDecl *Param,
946 const ParmVarDecl *ForwardedParam) {
947 // We add a & hint only when the argument is passed as mutable reference.
948 // For parameters that are not part of an expanded pack, this is
949 // straightforward. For expanded pack parameters, it's likely that they will
950 // be forwarded to another function. In this situation, we only want to add
951 // the reference hint if the argument is actually being used via mutable
952 // reference. This means we need to check
953 // 1. whether the value category of the argument is preserved, i.e. each
954 // pack expansion uses std::forward correctly.
955 // 2. whether the argument is ever copied/cast instead of passed
956 // by-reference
957 // Instead of checking this explicitly, we use the following proxy:
958 // 1. the value category can only change from rvalue to lvalue during
959 // forwarding, so checking whether both the parameter of the forwarding
960 // function and the forwarded function are lvalue references detects such
961 // a conversion.
962 // 2. if the argument is copied/cast somewhere in the chain of forwarding
963 // calls, it can only be passed on to an rvalue reference or const lvalue
964 // reference parameter. Thus if the forwarded parameter is a mutable
965 // lvalue reference, it cannot have been copied/cast to on the way.
966 // Additionally, we should not add a reference hint if the forwarded
967 // parameter was only partially resolved, i.e. points to an expanded pack
968 // parameter, since we do not know how it will be used eventually.
969 auto Type = Param->getType();
970 auto ForwardedType = ForwardedParam->getType();
971 return Type->isLValueReferenceType() &&
972 ForwardedType->isLValueReferenceType() &&
973 !ForwardedType.getNonReferenceType().isConstQualified() &&
974 !isExpandedFromParameterPack(ForwardedParam);
975 }
976
977 // Checks if "E" is spelled in the main file and preceded by a C-style comment
978 // whose contents match ParamName (allowing for whitespace and an optional "="
979 // at the end.
980 bool isPrecededByParamNameComment(const Expr *E, StringRef ParamName) {
981 auto &SM = AST.getSourceManager();
982 auto FileLoc = SM.getFileLoc(E->getBeginLoc());
983 auto Decomposed = SM.getDecomposedLoc(FileLoc);
984 if (Decomposed.first != MainFileID)
985 return false;
986
987 StringRef SourcePrefix = MainFileBuf.substr(0, Decomposed.second);
988 // Allow whitespace between comment and expression.
989 SourcePrefix = SourcePrefix.rtrim();
990 // Check for comment ending.
991 if (!SourcePrefix.consume_back("*/"))
992 return false;
993 // Ignore some punctuation and whitespace around comment.
994 // In particular this allows designators to match nicely.
995 llvm::StringLiteral IgnoreChars = " =.";
996 SourcePrefix = SourcePrefix.rtrim(IgnoreChars);
997 ParamName = ParamName.trim(IgnoreChars);
998 // Other than that, the comment must contain exactly ParamName.
999 if (!SourcePrefix.consume_back(ParamName))
1000 return false;
1001 SourcePrefix = SourcePrefix.rtrim(IgnoreChars);
1002 return SourcePrefix.endswith("/*");
1003 }
1004
1005 // If "E" spells a single unqualified identifier, return that name.
1006 // Otherwise, return an empty string.
1007 static StringRef getSpelledIdentifier(const Expr *E) {
1008 E = E->IgnoreUnlessSpelledInSource();
1009
1010 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
1011 if (!DRE->getQualifier())
1012 return getSimpleName(*DRE->getDecl());
1013
1014 if (auto *ME = dyn_cast<MemberExpr>(E))
1015 if (!ME->getQualifier() && ME->isImplicitAccess())
1016 return getSimpleName(*ME->getMemberDecl());
1017
1018 return {};
1019 }
1020
1021 NameVec chooseParameterNames(SmallVector<const ParmVarDecl *> Parameters) {
1022 NameVec ParameterNames;
1023 for (const auto *P : Parameters) {
1025 // If we haven't resolved a pack paramater (e.g. foo(Args... args)) to a
1026 // non-pack parameter, then hinting as foo(args: 1, args: 2, args: 3) is
1027 // unlikely to be useful.
1028 ParameterNames.emplace_back();
1029 } else {
1030 auto SimpleName = getSimpleName(*P);
1031 // If the parameter is unnamed in the declaration:
1032 // attempt to get its name from the definition
1033 if (SimpleName.empty()) {
1034 if (const auto *PD = getParamDefinition(P)) {
1035 SimpleName = getSimpleName(*PD);
1036 }
1037 }
1038 ParameterNames.emplace_back(SimpleName);
1039 }
1040 }
1041
1042 // Standard library functions often have parameter names that start
1043 // with underscores, which makes the hints noisy, so strip them out.
1044 for (auto &Name : ParameterNames)
1045 stripLeadingUnderscores(Name);
1046
1047 return ParameterNames;
1048 }
1049
1050 // for a ParmVarDecl from a function declaration, returns the corresponding
1051 // ParmVarDecl from the definition if possible, nullptr otherwise.
1052 static const ParmVarDecl *getParamDefinition(const ParmVarDecl *P) {
1053 if (auto *Callee = dyn_cast<FunctionDecl>(P->getDeclContext())) {
1054 if (auto *Def = Callee->getDefinition()) {
1055 auto I = std::distance(Callee->param_begin(),
1056 llvm::find(Callee->parameters(), P));
1057 if (I < Callee->getNumParams()) {
1058 return Def->getParamDecl(I);
1059 }
1060 }
1061 }
1062 return nullptr;
1063 }
1064
1065 // We pass HintSide rather than SourceLocation because we want to ensure
1066 // it is in the same file as the common file range.
1067 void addInlayHint(SourceRange R, HintSide Side, InlayHintKind Kind,
1068 llvm::StringRef Prefix, llvm::StringRef Label,
1069 llvm::StringRef Suffix) {
1070 auto LSPRange = getHintRange(R);
1071 if (!LSPRange)
1072 return;
1073
1074 addInlayHint(*LSPRange, Side, Kind, Prefix, Label, Suffix);
1075 }
1076
1077 void addInlayHint(Range LSPRange, HintSide Side, InlayHintKind Kind,
1078 llvm::StringRef Prefix, llvm::StringRef Label,
1079 llvm::StringRef Suffix) {
1080 // We shouldn't get as far as adding a hint if the category is disabled.
1081 // We'd like to disable as much of the analysis as possible above instead.
1082 // Assert in debug mode but add a dynamic check in production.
1083 assert(Cfg.InlayHints.Enabled && "Shouldn't get here if disabled!");
1084 switch (Kind) {
1085#define CHECK_KIND(Enumerator, ConfigProperty) \
1086 case InlayHintKind::Enumerator: \
1087 assert(Cfg.InlayHints.ConfigProperty && \
1088 "Shouldn't get here if kind is disabled!"); \
1089 if (!Cfg.InlayHints.ConfigProperty) \
1090 return; \
1091 break
1093 CHECK_KIND(Type, DeducedTypes);
1094 CHECK_KIND(Designator, Designators);
1096#undef CHECK_KIND
1097 }
1098
1099 Position LSPPos = Side == HintSide::Left ? LSPRange.start : LSPRange.end;
1100 if (RestrictRange &&
1101 (LSPPos < RestrictRange->start || !(LSPPos < RestrictRange->end)))
1102 return;
1103 bool PadLeft = Prefix.consume_front(" ");
1104 bool PadRight = Suffix.consume_back(" ");
1105 Results.push_back(InlayHint{LSPPos, (Prefix + Label + Suffix).str(), Kind,
1106 PadLeft, PadRight, LSPRange});
1107 }
1108
1109 // Get the range of the main file that *exactly* corresponds to R.
1110 std::optional<Range> getHintRange(SourceRange R) {
1111 const auto &SM = AST.getSourceManager();
1112 auto Spelled = Tokens.spelledForExpanded(Tokens.expandedTokens(R));
1113 // TokenBuffer will return null if e.g. R corresponds to only part of a
1114 // macro expansion.
1115 if (!Spelled || Spelled->empty())
1116 return std::nullopt;
1117 // Hint must be within the main file, not e.g. a non-preamble include.
1118 if (SM.getFileID(Spelled->front().location()) != SM.getMainFileID() ||
1119 SM.getFileID(Spelled->back().location()) != SM.getMainFileID())
1120 return std::nullopt;
1121 return Range{sourceLocToPosition(SM, Spelled->front().location()),
1122 sourceLocToPosition(SM, Spelled->back().endLocation())};
1123 }
1124
1125 void addTypeHint(SourceRange R, QualType T, llvm::StringRef Prefix) {
1126 if (!Cfg.InlayHints.DeducedTypes || T.isNull())
1127 return;
1128
1129 // The sugared type is more useful in some cases, and the canonical
1130 // type in other cases.
1131 auto Desugared = maybeDesugar(AST, T);
1132 std::string TypeName = Desugared.getAsString(TypeHintPolicy);
1133 if (T != Desugared && !shouldPrintTypeHint(TypeName)) {
1134 // If the desugared type is too long to display, fallback to the sugared
1135 // type.
1136 TypeName = T.getAsString(TypeHintPolicy);
1137 }
1138 if (shouldPrintTypeHint(TypeName))
1139 addInlayHint(R, HintSide::Right, InlayHintKind::Type, Prefix, TypeName,
1140 /*Suffix=*/"");
1141 }
1142
1143 void addDesignatorHint(SourceRange R, llvm::StringRef Text) {
1144 addInlayHint(R, HintSide::Left, InlayHintKind::Designator,
1145 /*Prefix=*/"", Text, /*Suffix=*/"=");
1146 }
1147
1148 bool shouldPrintTypeHint(llvm::StringRef TypeName) const noexcept {
1149 return Cfg.InlayHints.TypeNameLimit == 0 ||
1150 TypeName.size() < Cfg.InlayHints.TypeNameLimit;
1151 }
1152
1153 void addBlockEndHint(SourceRange BraceRange, StringRef DeclPrefix,
1154 StringRef Name, StringRef OptionalPunctuation) {
1155 auto HintRange = computeBlockEndHintRange(BraceRange, OptionalPunctuation);
1156 if (!HintRange)
1157 return;
1158
1159 std::string Label = DeclPrefix.str();
1160 if (!Label.empty() && !Name.empty())
1161 Label += ' ';
1162 Label += Name;
1163
1164 constexpr unsigned HintMaxLengthLimit = 60;
1165 if (Label.length() > HintMaxLengthLimit)
1166 return;
1167
1168 addInlayHint(*HintRange, HintSide::Right, InlayHintKind::BlockEnd, " // ",
1169 Label, "");
1170 }
1171
1172 // Compute the LSP range to attach the block end hint to, if any allowed.
1173 // 1. "}" is the last non-whitespace character on the line. The range of "}"
1174 // is returned.
1175 // 2. After "}", if the trimmed trailing text is exactly
1176 // `OptionalPunctuation`, say ";". The range of "} ... ;" is returned.
1177 // Otherwise, the hint shouldn't be shown.
1178 std::optional<Range> computeBlockEndHintRange(SourceRange BraceRange,
1179 StringRef OptionalPunctuation) {
1180 constexpr unsigned HintMinLineLimit = 2;
1181
1182 auto &SM = AST.getSourceManager();
1183 auto [BlockBeginFileId, BlockBeginOffset] =
1184 SM.getDecomposedLoc(SM.getFileLoc(BraceRange.getBegin()));
1185 auto RBraceLoc = SM.getFileLoc(BraceRange.getEnd());
1186 auto [RBraceFileId, RBraceOffset] = SM.getDecomposedLoc(RBraceLoc);
1187
1188 // Because we need to check the block satisfies the minimum line limit, we
1189 // require both source location to be in the main file. This prevents hint
1190 // to be shown in weird cases like '{' is actually in a "#include", but it's
1191 // rare anyway.
1192 if (BlockBeginFileId != MainFileID || RBraceFileId != MainFileID)
1193 return std::nullopt;
1194
1195 StringRef RestOfLine = MainFileBuf.substr(RBraceOffset).split('\n').first;
1196 if (!RestOfLine.starts_with("}"))
1197 return std::nullopt;
1198
1199 StringRef TrimmedTrailingText = RestOfLine.drop_front().trim();
1200 if (!TrimmedTrailingText.empty() &&
1201 TrimmedTrailingText != OptionalPunctuation)
1202 return std::nullopt;
1203
1204 auto BlockBeginLine = SM.getLineNumber(BlockBeginFileId, BlockBeginOffset);
1205 auto RBraceLine = SM.getLineNumber(RBraceFileId, RBraceOffset);
1206
1207 // Don't show hint on trivial blocks like `class X {};`
1208 if (BlockBeginLine + HintMinLineLimit - 1 > RBraceLine)
1209 return std::nullopt;
1210
1211 // This is what we attach the hint to, usually "}" or "};".
1212 StringRef HintRangeText = RestOfLine.take_front(
1213 TrimmedTrailingText.empty()
1214 ? 1
1215 : TrimmedTrailingText.bytes_end() - RestOfLine.bytes_begin());
1216
1217 Position HintStart = sourceLocToPosition(SM, RBraceLoc);
1218 Position HintEnd = sourceLocToPosition(
1219 SM, RBraceLoc.getLocWithOffset(HintRangeText.size()));
1220 return Range{HintStart, HintEnd};
1221 }
1222
1223 static bool isFunctionObjectCallExpr(CallExpr *E) noexcept {
1224 if (auto *CallExpr = dyn_cast<CXXOperatorCallExpr>(E))
1225 return CallExpr->getOperator() == OverloadedOperatorKind::OO_Call;
1226 return false;
1227 }
1228
1229 std::vector<InlayHint> &Results;
1230 ASTContext &AST;
1231 const syntax::TokenBuffer &Tokens;
1232 const Config &Cfg;
1233 std::optional<Range> RestrictRange;
1234 FileID MainFileID;
1235 StringRef MainFileBuf;
1236 const HeuristicResolver *Resolver;
1237 PrintingPolicy TypeHintPolicy;
1238};
1239
1240} // namespace
1241
1242std::vector<InlayHint> inlayHints(ParsedAST &AST,
1243 std::optional<Range> RestrictRange) {
1244 std::vector<InlayHint> Results;
1245 const auto &Cfg = Config::current();
1246 if (!Cfg.InlayHints.Enabled)
1247 return Results;
1248 InlayHintVisitor Visitor(Results, AST, Cfg, std::move(RestrictRange));
1249 Visitor.TraverseAST(AST.getASTContext());
1250
1251 // De-duplicate hints. Duplicates can sometimes occur due to e.g. explicit
1252 // template instantiations.
1253 llvm::sort(Results);
1254 Results.erase(std::unique(Results.begin(), Results.end()), Results.end());
1255
1256 return Results;
1257}
1258
1259} // namespace clangd
1260} // namespace clang
ArrayRef< const ParmVarDecl * > Parameters
Definition: AST.cpp:816
std::string Suffix
Definition: AddUsing.cpp:132
const Expr * E
const FunctionDecl * Decl
BindArgumentKind Kind
std::vector< CodeCompletionResult > Results
CompiledFragmentImpl & Out
llvm::StringRef Name
CharSourceRange Range
SourceRange for the file name.
HintSide Side
llvm::DenseSet< const IfStmt * > ElseIfs
Definition: InlayHints.cpp:686
#define CHECK_KIND(Enumerator, ConfigProperty)
SourceLocation Loc
llvm::raw_string_ostream OS
Definition: TraceTests.cpp:160
llvm::json::Object Args
Definition: Trace.cpp:138
std::vector< const NamedDecl * > resolveCalleeOfCallExpr(const CallExpr *CE) const
Stores and provides access to parsed AST.
Definition: ParsedAST.h:46
SmallVector< const ParmVarDecl * > resolveForwardingParameters(const FunctionDecl *D, unsigned MaxDepth)
Recursively resolves the parameters of a FunctionDecl that forwards its parameters to another functio...
Definition: AST.cpp:961
std::string printName(const ASTContext &Ctx, const NamedDecl &ND)
Prints unqualified name of the decl for the purpose of displaying it to the user.
Definition: AST.cpp:224
bool isReservedName(llvm::StringRef Name)
Returns true if Name is reserved, like _Foo or __Vector_base.
Definition: SourceCode.h:330
NamedDecl * getOnlyInstantiation(NamedDecl *TemplatedDecl)
Definition: AST.cpp:639
Position sourceLocToPosition(const SourceManager &SM, SourceLocation Loc)
Turn a SourceLocation into a [line, column] pair.
Definition: SourceCode.cpp:214
bool isExpandedFromParameterPack(const ParmVarDecl *D)
Checks whether D is instantiated from a function parameter pack whose type is a bare type parameter p...
Definition: AST.cpp:1018
InlayHintKind
Inlay hint kinds.
Definition: Protocol.h:1643
@ BlockEnd
A hint after function, type or namespace definition, indicating the defined symbol name of the defini...
@ Parameter
An inlay hint that is for a parameter.
@ Type
An inlay hint that for a type annotation.
@ Designator
A hint before an element of an aggregate braced initializer list, indicating what it is initializing.
std::vector< InlayHint > inlayHints(ParsedAST &AST, std::optional< Range > RestrictRange)
Compute and return inlay hints for a file.
TemplateTypeParmTypeLoc getContainedAutoParamType(TypeLoc TL)
Definition: AST.cpp:612
@ Invalid
Sentinel bit pattern. DO NOT USE!
===– Representation.cpp - ClangDoc Representation --------—*- C++ -*-===//
static const Config & current()
Returns the Config of the current Context, or an empty configuration.
Definition: Config.cpp:17
uint32_t TypeNameLimit
Definition: Config.h:149
bool Enabled
If false, inlay hints are completely disabled.
Definition: Config.h:141
struct clang::clangd::Config::@8 InlayHints