clang  6.0.0svn
CGExprScalar.cpp
Go to the documentation of this file.
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCleanup.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/TargetInfo.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/Module.h"
37 #include <cstdarg>
38 
39 using namespace clang;
40 using namespace CodeGen;
41 using llvm::Value;
42 
43 //===----------------------------------------------------------------------===//
44 // Scalar Expression Emitter
45 //===----------------------------------------------------------------------===//
46 
47 namespace {
48 
49 /// Determine whether the given binary operation may overflow.
50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
52 /// the returned overflow check is precise. The returned value is 'true' for
53 /// all other opcodes, to be conservative.
54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
55  BinaryOperator::Opcode Opcode, bool Signed,
56  llvm::APInt &Result) {
57  // Assume overflow is possible, unless we can prove otherwise.
58  bool Overflow = true;
59  const auto &LHSAP = LHS->getValue();
60  const auto &RHSAP = RHS->getValue();
61  if (Opcode == BO_Add) {
62  if (Signed)
63  Result = LHSAP.sadd_ov(RHSAP, Overflow);
64  else
65  Result = LHSAP.uadd_ov(RHSAP, Overflow);
66  } else if (Opcode == BO_Sub) {
67  if (Signed)
68  Result = LHSAP.ssub_ov(RHSAP, Overflow);
69  else
70  Result = LHSAP.usub_ov(RHSAP, Overflow);
71  } else if (Opcode == BO_Mul) {
72  if (Signed)
73  Result = LHSAP.smul_ov(RHSAP, Overflow);
74  else
75  Result = LHSAP.umul_ov(RHSAP, Overflow);
76  } else if (Opcode == BO_Div || Opcode == BO_Rem) {
77  if (Signed && !RHS->isZero())
78  Result = LHSAP.sdiv_ov(RHSAP, Overflow);
79  else
80  return false;
81  }
82  return Overflow;
83 }
84 
85 struct BinOpInfo {
86  Value *LHS;
87  Value *RHS;
88  QualType Ty; // Computation Type.
89  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
90  FPOptions FPFeatures;
91  const Expr *E; // Entire expr, for error unsupported. May not be binop.
92 
93  /// Check if the binop can result in integer overflow.
94  bool mayHaveIntegerOverflow() const {
95  // Without constant input, we can't rule out overflow.
96  auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
97  auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
98  if (!LHSCI || !RHSCI)
99  return true;
100 
101  llvm::APInt Result;
102  return ::mayHaveIntegerOverflow(
103  LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
104  }
105 
106  /// Check if the binop computes a division or a remainder.
107  bool isDivremOp() const {
108  return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
109  Opcode == BO_RemAssign;
110  }
111 
112  /// Check if the binop can result in an integer division by zero.
113  bool mayHaveIntegerDivisionByZero() const {
114  if (isDivremOp())
115  if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
116  return CI->isZero();
117  return true;
118  }
119 
120  /// Check if the binop can result in a float division by zero.
121  bool mayHaveFloatDivisionByZero() const {
122  if (isDivremOp())
123  if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
124  return CFP->isZero();
125  return true;
126  }
127 };
128 
129 static bool MustVisitNullValue(const Expr *E) {
130  // If a null pointer expression's type is the C++0x nullptr_t, then
131  // it's not necessarily a simple constant and it must be evaluated
132  // for its potential side effects.
133  return E->getType()->isNullPtrType();
134 }
135 
136 /// If \p E is a widened promoted integer, get its base (unpromoted) type.
137 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
138  const Expr *E) {
139  const Expr *Base = E->IgnoreImpCasts();
140  if (E == Base)
141  return llvm::None;
142 
143  QualType BaseTy = Base->getType();
144  if (!BaseTy->isPromotableIntegerType() ||
145  Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
146  return llvm::None;
147 
148  return BaseTy;
149 }
150 
151 /// Check if \p E is a widened promoted integer.
152 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
153  return getUnwidenedIntegerType(Ctx, E).hasValue();
154 }
155 
156 /// Check if we can skip the overflow check for \p Op.
157 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
158  assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
159  "Expected a unary or binary operator");
160 
161  // If the binop has constant inputs and we can prove there is no overflow,
162  // we can elide the overflow check.
163  if (!Op.mayHaveIntegerOverflow())
164  return true;
165 
166  // If a unary op has a widened operand, the op cannot overflow.
167  if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
168  return IsWidenedIntegerOp(Ctx, UO->getSubExpr());
169 
170  // We usually don't need overflow checks for binops with widened operands.
171  // Multiplication with promoted unsigned operands is a special case.
172  const auto *BO = cast<BinaryOperator>(Op.E);
173  auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
174  if (!OptionalLHSTy)
175  return false;
176 
177  auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
178  if (!OptionalRHSTy)
179  return false;
180 
181  QualType LHSTy = *OptionalLHSTy;
182  QualType RHSTy = *OptionalRHSTy;
183 
184  // This is the simple case: binops without unsigned multiplication, and with
185  // widened operands. No overflow check is needed here.
186  if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
187  !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
188  return true;
189 
190  // For unsigned multiplication the overflow check can be elided if either one
191  // of the unpromoted types are less than half the size of the promoted type.
192  unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
193  return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
194  (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
195 }
196 
197 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
198 static void updateFastMathFlags(llvm::FastMathFlags &FMF,
199  FPOptions FPFeatures) {
200  FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
201 }
202 
203 /// Propagate fast-math flags from \p Op to the instruction in \p V.
204 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
205  if (auto *I = dyn_cast<llvm::Instruction>(V)) {
206  llvm::FastMathFlags FMF = I->getFastMathFlags();
207  updateFastMathFlags(FMF, Op.FPFeatures);
208  I->setFastMathFlags(FMF);
209  }
210  return V;
211 }
212 
213 class ScalarExprEmitter
214  : public StmtVisitor<ScalarExprEmitter, Value*> {
215  CodeGenFunction &CGF;
216  CGBuilderTy &Builder;
217  bool IgnoreResultAssign;
218  llvm::LLVMContext &VMContext;
219 public:
220 
221  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
222  : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
223  VMContext(cgf.getLLVMContext()) {
224  }
225 
226  //===--------------------------------------------------------------------===//
227  // Utilities
228  //===--------------------------------------------------------------------===//
229 
230  bool TestAndClearIgnoreResultAssign() {
231  bool I = IgnoreResultAssign;
232  IgnoreResultAssign = false;
233  return I;
234  }
235 
236  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
237  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
238  LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
239  return CGF.EmitCheckedLValue(E, TCK);
240  }
241 
242  void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
243  const BinOpInfo &Info);
244 
245  Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
246  return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
247  }
248 
249  void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
250  const AlignValueAttr *AVAttr = nullptr;
251  if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
252  const ValueDecl *VD = DRE->getDecl();
253 
254  if (VD->getType()->isReferenceType()) {
255  if (const auto *TTy =
256  dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
257  AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
258  } else {
259  // Assumptions for function parameters are emitted at the start of the
260  // function, so there is no need to repeat that here.
261  if (isa<ParmVarDecl>(VD))
262  return;
263 
264  AVAttr = VD->getAttr<AlignValueAttr>();
265  }
266  }
267 
268  if (!AVAttr)
269  if (const auto *TTy =
270  dyn_cast<TypedefType>(E->getType()))
271  AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
272 
273  if (!AVAttr)
274  return;
275 
276  Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
277  llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
278  CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
279  }
280 
281  /// EmitLoadOfLValue - Given an expression with complex type that represents a
282  /// value l-value, this method emits the address of the l-value, then loads
283  /// and returns the result.
284  Value *EmitLoadOfLValue(const Expr *E) {
285  Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
286  E->getExprLoc());
287 
288  EmitLValueAlignmentAssumption(E, V);
289  return V;
290  }
291 
292  /// EmitConversionToBool - Convert the specified expression value to a
293  /// boolean (i1) truth value. This is equivalent to "Val != 0".
294  Value *EmitConversionToBool(Value *Src, QualType DstTy);
295 
296  /// Emit a check that a conversion to or from a floating-point type does not
297  /// overflow.
298  void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
299  Value *Src, QualType SrcType, QualType DstType,
300  llvm::Type *DstTy, SourceLocation Loc);
301 
302  /// Emit a conversion from the specified type to the specified destination
303  /// type, both of which are LLVM scalar types.
304  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
305  SourceLocation Loc);
306 
307  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
308  SourceLocation Loc, bool TreatBooleanAsSigned);
309 
310  /// Emit a conversion from the specified complex type to the specified
311  /// destination type, where the destination type is an LLVM scalar type.
312  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
313  QualType SrcTy, QualType DstTy,
314  SourceLocation Loc);
315 
316  /// EmitNullValue - Emit a value that corresponds to null for the given type.
317  Value *EmitNullValue(QualType Ty);
318 
319  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
320  Value *EmitFloatToBoolConversion(Value *V) {
321  // Compare against 0.0 for fp scalars.
322  llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
323  return Builder.CreateFCmpUNE(V, Zero, "tobool");
324  }
325 
326  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
327  Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
328  Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
329 
330  return Builder.CreateICmpNE(V, Zero, "tobool");
331  }
332 
333  Value *EmitIntToBoolConversion(Value *V) {
334  // Because of the type rules of C, we often end up computing a
335  // logical value, then zero extending it to int, then wanting it
336  // as a logical value again. Optimize this common case.
337  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
338  if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
339  Value *Result = ZI->getOperand(0);
340  // If there aren't any more uses, zap the instruction to save space.
341  // Note that there can be more uses, for example if this
342  // is the result of an assignment.
343  if (ZI->use_empty())
344  ZI->eraseFromParent();
345  return Result;
346  }
347  }
348 
349  return Builder.CreateIsNotNull(V, "tobool");
350  }
351 
352  //===--------------------------------------------------------------------===//
353  // Visitor Methods
354  //===--------------------------------------------------------------------===//
355 
356  Value *Visit(Expr *E) {
357  ApplyDebugLocation DL(CGF, E);
359  }
360 
361  Value *VisitStmt(Stmt *S) {
362  S->dump(CGF.getContext().getSourceManager());
363  llvm_unreachable("Stmt can't have complex result type!");
364  }
365  Value *VisitExpr(Expr *S);
366 
367  Value *VisitParenExpr(ParenExpr *PE) {
368  return Visit(PE->getSubExpr());
369  }
370  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
371  return Visit(E->getReplacement());
372  }
373  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
374  return Visit(GE->getResultExpr());
375  }
376  Value *VisitCoawaitExpr(CoawaitExpr *S) {
377  return CGF.EmitCoawaitExpr(*S).getScalarVal();
378  }
379  Value *VisitCoyieldExpr(CoyieldExpr *S) {
380  return CGF.EmitCoyieldExpr(*S).getScalarVal();
381  }
382  Value *VisitUnaryCoawait(const UnaryOperator *E) {
383  return Visit(E->getSubExpr());
384  }
385 
386  // Leaves.
387  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
388  return Builder.getInt(E->getValue());
389  }
390  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
391  return llvm::ConstantFP::get(VMContext, E->getValue());
392  }
393  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
394  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
395  }
396  Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
397  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
398  }
399  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
400  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
401  }
402  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
403  return EmitNullValue(E->getType());
404  }
405  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
406  return EmitNullValue(E->getType());
407  }
408  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
409  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
410  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
411  llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
412  return Builder.CreateBitCast(V, ConvertType(E->getType()));
413  }
414 
415  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
416  return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
417  }
418 
419  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
420  return CGF.EmitPseudoObjectRValue(E).getScalarVal();
421  }
422 
423  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
424  if (E->isGLValue())
425  return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
426 
427  // Otherwise, assume the mapping is the scalar directly.
428  return CGF.getOpaqueRValueMapping(E).getScalarVal();
429  }
430 
431  Value *emitConstant(const CodeGenFunction::ConstantEmission &Constant,
432  Expr *E) {
433  assert(Constant && "not a constant");
434  if (Constant.isReference())
435  return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
436  E->getExprLoc());
437  return Constant.getValue();
438  }
439 
440  // l-values.
441  Value *VisitDeclRefExpr(DeclRefExpr *E) {
443  return emitConstant(Constant, E);
444  return EmitLoadOfLValue(E);
445  }
446 
447  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
448  return CGF.EmitObjCSelectorExpr(E);
449  }
450  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
451  return CGF.EmitObjCProtocolExpr(E);
452  }
453  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
454  return EmitLoadOfLValue(E);
455  }
456  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
457  if (E->getMethodDecl() &&
459  return EmitLoadOfLValue(E);
460  return CGF.EmitObjCMessageExpr(E).getScalarVal();
461  }
462 
463  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
464  LValue LV = CGF.EmitObjCIsaExpr(E);
465  Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
466  return V;
467  }
468 
469  Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
470  VersionTuple Version = E->getVersion();
471 
472  // If we're checking for a platform older than our minimum deployment
473  // target, we can fold the check away.
474  if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
475  return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
476 
477  Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
478  llvm::Value *Args[] = {
479  llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
480  llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
481  llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
482  };
483 
484  return CGF.EmitBuiltinAvailable(Args);
485  }
486 
487  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
488  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
489  Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
490  Value *VisitMemberExpr(MemberExpr *E);
491  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
492  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
493  return EmitLoadOfLValue(E);
494  }
495 
496  Value *VisitInitListExpr(InitListExpr *E);
497 
498  Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
499  assert(CGF.getArrayInitIndex() &&
500  "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
501  return CGF.getArrayInitIndex();
502  }
503 
504  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
505  return EmitNullValue(E->getType());
506  }
507  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
508  CGF.CGM.EmitExplicitCastExprType(E, &CGF);
509  return VisitCastExpr(E);
510  }
511  Value *VisitCastExpr(CastExpr *E);
512 
513  Value *VisitCallExpr(const CallExpr *E) {
514  if (E->getCallReturnType(CGF.getContext())->isReferenceType())
515  return EmitLoadOfLValue(E);
516 
517  Value *V = CGF.EmitCallExpr(E).getScalarVal();
518 
519  EmitLValueAlignmentAssumption(E, V);
520  return V;
521  }
522 
523  Value *VisitStmtExpr(const StmtExpr *E);
524 
525  // Unary Operators.
526  Value *VisitUnaryPostDec(const UnaryOperator *E) {
527  LValue LV = EmitLValue(E->getSubExpr());
528  return EmitScalarPrePostIncDec(E, LV, false, false);
529  }
530  Value *VisitUnaryPostInc(const UnaryOperator *E) {
531  LValue LV = EmitLValue(E->getSubExpr());
532  return EmitScalarPrePostIncDec(E, LV, true, false);
533  }
534  Value *VisitUnaryPreDec(const UnaryOperator *E) {
535  LValue LV = EmitLValue(E->getSubExpr());
536  return EmitScalarPrePostIncDec(E, LV, false, true);
537  }
538  Value *VisitUnaryPreInc(const UnaryOperator *E) {
539  LValue LV = EmitLValue(E->getSubExpr());
540  return EmitScalarPrePostIncDec(E, LV, true, true);
541  }
542 
543  llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
544  llvm::Value *InVal,
545  bool IsInc);
546 
547  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
548  bool isInc, bool isPre);
549 
550 
551  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
552  if (isa<MemberPointerType>(E->getType())) // never sugared
553  return CGF.CGM.getMemberPointerConstant(E);
554 
555  return EmitLValue(E->getSubExpr()).getPointer();
556  }
557  Value *VisitUnaryDeref(const UnaryOperator *E) {
558  if (E->getType()->isVoidType())
559  return Visit(E->getSubExpr()); // the actual value should be unused
560  return EmitLoadOfLValue(E);
561  }
562  Value *VisitUnaryPlus(const UnaryOperator *E) {
563  // This differs from gcc, though, most likely due to a bug in gcc.
564  TestAndClearIgnoreResultAssign();
565  return Visit(E->getSubExpr());
566  }
567  Value *VisitUnaryMinus (const UnaryOperator *E);
568  Value *VisitUnaryNot (const UnaryOperator *E);
569  Value *VisitUnaryLNot (const UnaryOperator *E);
570  Value *VisitUnaryReal (const UnaryOperator *E);
571  Value *VisitUnaryImag (const UnaryOperator *E);
572  Value *VisitUnaryExtension(const UnaryOperator *E) {
573  return Visit(E->getSubExpr());
574  }
575 
576  // C++
577  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
578  return EmitLoadOfLValue(E);
579  }
580 
581  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
582  return Visit(DAE->getExpr());
583  }
584  Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
586  return Visit(DIE->getExpr());
587  }
588  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
589  return CGF.LoadCXXThis();
590  }
591 
592  Value *VisitExprWithCleanups(ExprWithCleanups *E);
593  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
594  return CGF.EmitCXXNewExpr(E);
595  }
596  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
597  CGF.EmitCXXDeleteExpr(E);
598  return nullptr;
599  }
600 
601  Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
602  return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
603  }
604 
605  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
606  return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
607  }
608 
609  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
610  return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
611  }
612 
613  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
614  // C++ [expr.pseudo]p1:
615  // The result shall only be used as the operand for the function call
616  // operator (), and the result of such a call has type void. The only
617  // effect is the evaluation of the postfix-expression before the dot or
618  // arrow.
619  CGF.EmitScalarExpr(E->getBase());
620  return nullptr;
621  }
622 
623  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
624  return EmitNullValue(E->getType());
625  }
626 
627  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
628  CGF.EmitCXXThrowExpr(E);
629  return nullptr;
630  }
631 
632  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
633  return Builder.getInt1(E->getValue());
634  }
635 
636  // Binary Operators.
637  Value *EmitMul(const BinOpInfo &Ops) {
638  if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
639  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
641  return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
643  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
644  return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
645  // Fall through.
647  if (CanElideOverflowCheck(CGF.getContext(), Ops))
648  return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
649  return EmitOverflowCheckedBinOp(Ops);
650  }
651  }
652 
653  if (Ops.Ty->isUnsignedIntegerType() &&
654  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
655  !CanElideOverflowCheck(CGF.getContext(), Ops))
656  return EmitOverflowCheckedBinOp(Ops);
657 
658  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
659  Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
660  return propagateFMFlags(V, Ops);
661  }
662  return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
663  }
664  /// Create a binary op that checks for overflow.
665  /// Currently only supports +, - and *.
666  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
667 
668  // Check for undefined division and modulus behaviors.
669  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
670  llvm::Value *Zero,bool isDiv);
671  // Common helper for getting how wide LHS of shift is.
672  static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
673  Value *EmitDiv(const BinOpInfo &Ops);
674  Value *EmitRem(const BinOpInfo &Ops);
675  Value *EmitAdd(const BinOpInfo &Ops);
676  Value *EmitSub(const BinOpInfo &Ops);
677  Value *EmitShl(const BinOpInfo &Ops);
678  Value *EmitShr(const BinOpInfo &Ops);
679  Value *EmitAnd(const BinOpInfo &Ops) {
680  return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
681  }
682  Value *EmitXor(const BinOpInfo &Ops) {
683  return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
684  }
685  Value *EmitOr (const BinOpInfo &Ops) {
686  return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
687  }
688 
689  BinOpInfo EmitBinOps(const BinaryOperator *E);
690  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
691  Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
692  Value *&Result);
693 
694  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
695  Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
696 
697  // Binary operators and binary compound assignment operators.
698 #define HANDLEBINOP(OP) \
699  Value *VisitBin ## OP(const BinaryOperator *E) { \
700  return Emit ## OP(EmitBinOps(E)); \
701  } \
702  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
703  return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
704  }
705  HANDLEBINOP(Mul)
706  HANDLEBINOP(Div)
707  HANDLEBINOP(Rem)
708  HANDLEBINOP(Add)
709  HANDLEBINOP(Sub)
710  HANDLEBINOP(Shl)
711  HANDLEBINOP(Shr)
713  HANDLEBINOP(Xor)
714  HANDLEBINOP(Or)
715 #undef HANDLEBINOP
716 
717  // Comparisons.
718  Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
719  llvm::CmpInst::Predicate SICmpOpc,
720  llvm::CmpInst::Predicate FCmpOpc);
721 #define VISITCOMP(CODE, UI, SI, FP) \
722  Value *VisitBin##CODE(const BinaryOperator *E) { \
723  return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
724  llvm::FCmpInst::FP); }
725  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
726  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
727  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
728  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
729  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
730  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
731 #undef VISITCOMP
732 
733  Value *VisitBinAssign (const BinaryOperator *E);
734 
735  Value *VisitBinLAnd (const BinaryOperator *E);
736  Value *VisitBinLOr (const BinaryOperator *E);
737  Value *VisitBinComma (const BinaryOperator *E);
738 
739  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
740  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
741 
742  // Other Operators.
743  Value *VisitBlockExpr(const BlockExpr *BE);
744  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
745  Value *VisitChooseExpr(ChooseExpr *CE);
746  Value *VisitVAArgExpr(VAArgExpr *VE);
747  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
748  return CGF.EmitObjCStringLiteral(E);
749  }
750  Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
751  return CGF.EmitObjCBoxedExpr(E);
752  }
753  Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
754  return CGF.EmitObjCArrayLiteral(E);
755  }
756  Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
757  return CGF.EmitObjCDictionaryLiteral(E);
758  }
759  Value *VisitAsTypeExpr(AsTypeExpr *CE);
760  Value *VisitAtomicExpr(AtomicExpr *AE);
761 };
762 } // end anonymous namespace.
763 
764 //===----------------------------------------------------------------------===//
765 // Utilities
766 //===----------------------------------------------------------------------===//
767 
768 /// EmitConversionToBool - Convert the specified expression value to a
769 /// boolean (i1) truth value. This is equivalent to "Val != 0".
770 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
771  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
772 
773  if (SrcType->isRealFloatingType())
774  return EmitFloatToBoolConversion(Src);
775 
776  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
777  return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
778 
779  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
780  "Unknown scalar type to convert");
781 
782  if (isa<llvm::IntegerType>(Src->getType()))
783  return EmitIntToBoolConversion(Src);
784 
785  assert(isa<llvm::PointerType>(Src->getType()));
786  return EmitPointerToBoolConversion(Src, SrcType);
787 }
788 
789 void ScalarExprEmitter::EmitFloatConversionCheck(
790  Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
791  QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
792  CodeGenFunction::SanitizerScope SanScope(&CGF);
793  using llvm::APFloat;
794  using llvm::APSInt;
795 
796  llvm::Type *SrcTy = Src->getType();
797 
798  llvm::Value *Check = nullptr;
799  if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
800  // Integer to floating-point. This can fail for unsigned short -> __half
801  // or unsigned __int128 -> float.
802  assert(DstType->isFloatingType());
803  bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
804 
805  APFloat LargestFloat =
806  APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
807  APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
808 
809  bool IsExact;
810  if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
811  &IsExact) != APFloat::opOK)
812  // The range of representable values of this floating point type includes
813  // all values of this integer type. Don't need an overflow check.
814  return;
815 
816  llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
817  if (SrcIsUnsigned)
818  Check = Builder.CreateICmpULE(Src, Max);
819  else {
820  llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
821  llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
822  llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
823  Check = Builder.CreateAnd(GE, LE);
824  }
825  } else {
826  const llvm::fltSemantics &SrcSema =
827  CGF.getContext().getFloatTypeSemantics(OrigSrcType);
828  if (isa<llvm::IntegerType>(DstTy)) {
829  // Floating-point to integer. This has undefined behavior if the source is
830  // +-Inf, NaN, or doesn't fit into the destination type (after truncation
831  // to an integer).
832  unsigned Width = CGF.getContext().getIntWidth(DstType);
833  bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
834 
835  APSInt Min = APSInt::getMinValue(Width, Unsigned);
836  APFloat MinSrc(SrcSema, APFloat::uninitialized);
837  if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
838  APFloat::opOverflow)
839  // Don't need an overflow check for lower bound. Just check for
840  // -Inf/NaN.
841  MinSrc = APFloat::getInf(SrcSema, true);
842  else
843  // Find the largest value which is too small to represent (before
844  // truncation toward zero).
845  MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
846 
847  APSInt Max = APSInt::getMaxValue(Width, Unsigned);
848  APFloat MaxSrc(SrcSema, APFloat::uninitialized);
849  if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
850  APFloat::opOverflow)
851  // Don't need an overflow check for upper bound. Just check for
852  // +Inf/NaN.
853  MaxSrc = APFloat::getInf(SrcSema, false);
854  else
855  // Find the smallest value which is too large to represent (before
856  // truncation toward zero).
857  MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
858 
859  // If we're converting from __half, convert the range to float to match
860  // the type of src.
861  if (OrigSrcType->isHalfType()) {
862  const llvm::fltSemantics &Sema =
863  CGF.getContext().getFloatTypeSemantics(SrcType);
864  bool IsInexact;
865  MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
866  MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
867  }
868 
869  llvm::Value *GE =
870  Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
871  llvm::Value *LE =
872  Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
873  Check = Builder.CreateAnd(GE, LE);
874  } else {
875  // FIXME: Maybe split this sanitizer out from float-cast-overflow.
876  //
877  // Floating-point to floating-point. This has undefined behavior if the
878  // source is not in the range of representable values of the destination
879  // type. The C and C++ standards are spectacularly unclear here. We
880  // diagnose finite out-of-range conversions, but allow infinities and NaNs
881  // to convert to the corresponding value in the smaller type.
882  //
883  // C11 Annex F gives all such conversions defined behavior for IEC 60559
884  // conforming implementations. Unfortunately, LLVM's fptrunc instruction
885  // does not.
886 
887  // Converting from a lower rank to a higher rank can never have
888  // undefined behavior, since higher-rank types must have a superset
889  // of values of lower-rank types.
890  if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
891  return;
892 
893  assert(!OrigSrcType->isHalfType() &&
894  "should not check conversion from __half, it has the lowest rank");
895 
896  const llvm::fltSemantics &DstSema =
897  CGF.getContext().getFloatTypeSemantics(DstType);
898  APFloat MinBad = APFloat::getLargest(DstSema, false);
899  APFloat MaxBad = APFloat::getInf(DstSema, false);
900 
901  bool IsInexact;
902  MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
903  MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
904 
905  Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
906  CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
907  llvm::Value *GE =
908  Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
909  llvm::Value *LE =
910  Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
911  Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
912  }
913  }
914 
915  llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
916  CGF.EmitCheckTypeDescriptor(OrigSrcType),
917  CGF.EmitCheckTypeDescriptor(DstType)};
918  CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
919  SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
920 }
921 
922 /// Emit a conversion from the specified type to the specified destination type,
923 /// both of which are LLVM scalar types.
924 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
925  QualType DstType,
926  SourceLocation Loc) {
927  return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
928 }
929 
930 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
931  QualType DstType,
932  SourceLocation Loc,
933  bool TreatBooleanAsSigned) {
934  SrcType = CGF.getContext().getCanonicalType(SrcType);
935  DstType = CGF.getContext().getCanonicalType(DstType);
936  if (SrcType == DstType) return Src;
937 
938  if (DstType->isVoidType()) return nullptr;
939 
940  llvm::Value *OrigSrc = Src;
941  QualType OrigSrcType = SrcType;
942  llvm::Type *SrcTy = Src->getType();
943 
944  // Handle conversions to bool first, they are special: comparisons against 0.
945  if (DstType->isBooleanType())
946  return EmitConversionToBool(Src, SrcType);
947 
948  llvm::Type *DstTy = ConvertType(DstType);
949 
950  // Cast from half through float if half isn't a native type.
951  if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
952  // Cast to FP using the intrinsic if the half type itself isn't supported.
953  if (DstTy->isFloatingPointTy()) {
955  return Builder.CreateCall(
956  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
957  Src);
958  } else {
959  // Cast to other types through float, using either the intrinsic or FPExt,
960  // depending on whether the half type itself is supported
961  // (as opposed to operations on half, available with NativeHalfType).
963  Src = Builder.CreateCall(
964  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
965  CGF.CGM.FloatTy),
966  Src);
967  } else {
968  Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
969  }
970  SrcType = CGF.getContext().FloatTy;
971  SrcTy = CGF.FloatTy;
972  }
973  }
974 
975  // Ignore conversions like int -> uint.
976  if (SrcTy == DstTy)
977  return Src;
978 
979  // Handle pointer conversions next: pointers can only be converted to/from
980  // other pointers and integers. Check for pointer types in terms of LLVM, as
981  // some native types (like Obj-C id) may map to a pointer type.
982  if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
983  // The source value may be an integer, or a pointer.
984  if (isa<llvm::PointerType>(SrcTy))
985  return Builder.CreateBitCast(Src, DstTy, "conv");
986 
987  assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
988  // First, convert to the correct width so that we control the kind of
989  // extension.
990  llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
991  bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
992  llvm::Value* IntResult =
993  Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
994  // Then, cast to pointer.
995  return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
996  }
997 
998  if (isa<llvm::PointerType>(SrcTy)) {
999  // Must be an ptr to int cast.
1000  assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
1001  return Builder.CreatePtrToInt(Src, DstTy, "conv");
1002  }
1003 
1004  // A scalar can be splatted to an extended vector of the same element type
1005  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1006  // Sema should add casts to make sure that the source expression's type is
1007  // the same as the vector's element type (sans qualifiers)
1008  assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
1009  SrcType.getTypePtr() &&
1010  "Splatted expr doesn't match with vector element type?");
1011 
1012  // Splat the element across to all elements
1013  unsigned NumElements = DstTy->getVectorNumElements();
1014  return Builder.CreateVectorSplat(NumElements, Src, "splat");
1015  }
1016 
1017  if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1018  // Allow bitcast from vector to integer/fp of the same size.
1019  unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1020  unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1021  if (SrcSize == DstSize)
1022  return Builder.CreateBitCast(Src, DstTy, "conv");
1023 
1024  // Conversions between vectors of different sizes are not allowed except
1025  // when vectors of half are involved. Operations on storage-only half
1026  // vectors require promoting half vector operands to float vectors and
1027  // truncating the result, which is either an int or float vector, to a
1028  // short or half vector.
1029 
1030  // Source and destination are both expected to be vectors.
1031  llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1032  llvm::Type *DstElementTy = DstTy->getVectorElementType();
1033  (void)DstElementTy;
1034 
1035  assert(((SrcElementTy->isIntegerTy() &&
1036  DstElementTy->isIntegerTy()) ||
1037  (SrcElementTy->isFloatingPointTy() &&
1038  DstElementTy->isFloatingPointTy())) &&
1039  "unexpected conversion between a floating-point vector and an "
1040  "integer vector");
1041 
1042  // Truncate an i32 vector to an i16 vector.
1043  if (SrcElementTy->isIntegerTy())
1044  return Builder.CreateIntCast(Src, DstTy, false, "conv");
1045 
1046  // Truncate a float vector to a half vector.
1047  if (SrcSize > DstSize)
1048  return Builder.CreateFPTrunc(Src, DstTy, "conv");
1049 
1050  // Promote a half vector to a float vector.
1051  return Builder.CreateFPExt(Src, DstTy, "conv");
1052  }
1053 
1054  // Finally, we have the arithmetic types: real int/float.
1055  Value *Res = nullptr;
1056  llvm::Type *ResTy = DstTy;
1057 
1058  // An overflowing conversion has undefined behavior if either the source type
1059  // or the destination type is a floating-point type.
1060  if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1061  (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
1062  EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1063  Loc);
1064 
1065  // Cast to half through float if half isn't a native type.
1066  if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1067  // Make sure we cast in a single step if from another FP type.
1068  if (SrcTy->isFloatingPointTy()) {
1069  // Use the intrinsic if the half type itself isn't supported
1070  // (as opposed to operations on half, available with NativeHalfType).
1072  return Builder.CreateCall(
1073  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1074  // If the half type is supported, just use an fptrunc.
1075  return Builder.CreateFPTrunc(Src, DstTy);
1076  }
1077  DstTy = CGF.FloatTy;
1078  }
1079 
1080  if (isa<llvm::IntegerType>(SrcTy)) {
1081  bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1082  if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
1083  InputSigned = true;
1084  }
1085  if (isa<llvm::IntegerType>(DstTy))
1086  Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1087  else if (InputSigned)
1088  Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1089  else
1090  Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1091  } else if (isa<llvm::IntegerType>(DstTy)) {
1092  assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
1093  if (DstType->isSignedIntegerOrEnumerationType())
1094  Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1095  else
1096  Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1097  } else {
1098  assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
1099  "Unknown real conversion");
1100  if (DstTy->getTypeID() < SrcTy->getTypeID())
1101  Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1102  else
1103  Res = Builder.CreateFPExt(Src, DstTy, "conv");
1104  }
1105 
1106  if (DstTy != ResTy) {
1108  assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
1109  Res = Builder.CreateCall(
1110  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1111  Res);
1112  } else {
1113  Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1114  }
1115  }
1116 
1117  return Res;
1118 }
1119 
1120 /// Emit a conversion from the specified complex type to the specified
1121 /// destination type, where the destination type is an LLVM scalar type.
1122 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1124  SourceLocation Loc) {
1125  // Get the source element type.
1126  SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1127 
1128  // Handle conversions to bool first, they are special: comparisons against 0.
1129  if (DstTy->isBooleanType()) {
1130  // Complex != 0 -> (Real != 0) | (Imag != 0)
1131  Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1132  Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1133  return Builder.CreateOr(Src.first, Src.second, "tobool");
1134  }
1135 
1136  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1137  // the imaginary part of the complex value is discarded and the value of the
1138  // real part is converted according to the conversion rules for the
1139  // corresponding real type.
1140  return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1141 }
1142 
1143 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1144  return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1145 }
1146 
1147 /// \brief Emit a sanitization check for the given "binary" operation (which
1148 /// might actually be a unary increment which has been lowered to a binary
1149 /// operation). The check passes if all values in \p Checks (which are \c i1),
1150 /// are \c true.
1151 void ScalarExprEmitter::EmitBinOpCheck(
1152  ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1153  assert(CGF.IsSanitizerScope);
1154  SanitizerHandler Check;
1156  SmallVector<llvm::Value *, 2> DynamicData;
1157 
1158  BinaryOperatorKind Opcode = Info.Opcode;
1161 
1162  StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1163  const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1164  if (UO && UO->getOpcode() == UO_Minus) {
1165  Check = SanitizerHandler::NegateOverflow;
1166  StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1167  DynamicData.push_back(Info.RHS);
1168  } else {
1169  if (BinaryOperator::isShiftOp(Opcode)) {
1170  // Shift LHS negative or too large, or RHS out of bounds.
1171  Check = SanitizerHandler::ShiftOutOfBounds;
1172  const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1173  StaticData.push_back(
1174  CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1175  StaticData.push_back(
1176  CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1177  } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1178  // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1179  Check = SanitizerHandler::DivremOverflow;
1180  StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1181  } else {
1182  // Arithmetic overflow (+, -, *).
1183  switch (Opcode) {
1184  case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1185  case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1186  case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1187  default: llvm_unreachable("unexpected opcode for bin op check");
1188  }
1189  StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1190  }
1191  DynamicData.push_back(Info.LHS);
1192  DynamicData.push_back(Info.RHS);
1193  }
1194 
1195  CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1196 }
1197 
1198 //===----------------------------------------------------------------------===//
1199 // Visitor Methods
1200 //===----------------------------------------------------------------------===//
1201 
1202 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1203  CGF.ErrorUnsupported(E, "scalar expression");
1204  if (E->getType()->isVoidType())
1205  return nullptr;
1206  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1207 }
1208 
1209 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1210  // Vector Mask Case
1211  if (E->getNumSubExprs() == 2) {
1212  Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1213  Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1214  Value *Mask;
1215 
1216  llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1217  unsigned LHSElts = LTy->getNumElements();
1218 
1219  Mask = RHS;
1220 
1221  llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1222 
1223  // Mask off the high bits of each shuffle index.
1224  Value *MaskBits =
1225  llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1226  Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1227 
1228  // newv = undef
1229  // mask = mask & maskbits
1230  // for each elt
1231  // n = extract mask i
1232  // x = extract val n
1233  // newv = insert newv, x, i
1234  llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1235  MTy->getNumElements());
1236  Value* NewV = llvm::UndefValue::get(RTy);
1237  for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1238  Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1239  Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1240 
1241  Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1242  NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1243  }
1244  return NewV;
1245  }
1246 
1247  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1248  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1249 
1251  for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1252  llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1253  // Check for -1 and output it as undef in the IR.
1254  if (Idx.isSigned() && Idx.isAllOnesValue())
1255  indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1256  else
1257  indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1258  }
1259 
1260  Value *SV = llvm::ConstantVector::get(indices);
1261  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1262 }
1263 
1264 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1265  QualType SrcType = E->getSrcExpr()->getType(),
1266  DstType = E->getType();
1267 
1268  Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1269 
1270  SrcType = CGF.getContext().getCanonicalType(SrcType);
1271  DstType = CGF.getContext().getCanonicalType(DstType);
1272  if (SrcType == DstType) return Src;
1273 
1274  assert(SrcType->isVectorType() &&
1275  "ConvertVector source type must be a vector");
1276  assert(DstType->isVectorType() &&
1277  "ConvertVector destination type must be a vector");
1278 
1279  llvm::Type *SrcTy = Src->getType();
1280  llvm::Type *DstTy = ConvertType(DstType);
1281 
1282  // Ignore conversions like int -> uint.
1283  if (SrcTy == DstTy)
1284  return Src;
1285 
1286  QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1287  DstEltType = DstType->getAs<VectorType>()->getElementType();
1288 
1289  assert(SrcTy->isVectorTy() &&
1290  "ConvertVector source IR type must be a vector");
1291  assert(DstTy->isVectorTy() &&
1292  "ConvertVector destination IR type must be a vector");
1293 
1294  llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1295  *DstEltTy = DstTy->getVectorElementType();
1296 
1297  if (DstEltType->isBooleanType()) {
1298  assert((SrcEltTy->isFloatingPointTy() ||
1299  isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1300 
1301  llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1302  if (SrcEltTy->isFloatingPointTy()) {
1303  return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1304  } else {
1305  return Builder.CreateICmpNE(Src, Zero, "tobool");
1306  }
1307  }
1308 
1309  // We have the arithmetic types: real int/float.
1310  Value *Res = nullptr;
1311 
1312  if (isa<llvm::IntegerType>(SrcEltTy)) {
1313  bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1314  if (isa<llvm::IntegerType>(DstEltTy))
1315  Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1316  else if (InputSigned)
1317  Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1318  else
1319  Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1320  } else if (isa<llvm::IntegerType>(DstEltTy)) {
1321  assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1322  if (DstEltType->isSignedIntegerOrEnumerationType())
1323  Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1324  else
1325  Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1326  } else {
1327  assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1328  "Unknown real conversion");
1329  if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1330  Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1331  else
1332  Res = Builder.CreateFPExt(Src, DstTy, "conv");
1333  }
1334 
1335  return Res;
1336 }
1337 
1338 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1339  if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1340  CGF.EmitIgnoredExpr(E->getBase());
1341  return emitConstant(Constant, E);
1342  } else {
1343  llvm::APSInt Value;
1344  if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1345  CGF.EmitIgnoredExpr(E->getBase());
1346  return Builder.getInt(Value);
1347  }
1348  }
1349 
1350  return EmitLoadOfLValue(E);
1351 }
1352 
1353 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1354  TestAndClearIgnoreResultAssign();
1355 
1356  // Emit subscript expressions in rvalue context's. For most cases, this just
1357  // loads the lvalue formed by the subscript expr. However, we have to be
1358  // careful, because the base of a vector subscript is occasionally an rvalue,
1359  // so we can't get it as an lvalue.
1360  if (!E->getBase()->getType()->isVectorType())
1361  return EmitLoadOfLValue(E);
1362 
1363  // Handle the vector case. The base must be a vector, the index must be an
1364  // integer value.
1365  Value *Base = Visit(E->getBase());
1366  Value *Idx = Visit(E->getIdx());
1367  QualType IdxTy = E->getIdx()->getType();
1368 
1369  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1370  CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1371 
1372  return Builder.CreateExtractElement(Base, Idx, "vecext");
1373 }
1374 
1375 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1376  unsigned Off, llvm::Type *I32Ty) {
1377  int MV = SVI->getMaskValue(Idx);
1378  if (MV == -1)
1379  return llvm::UndefValue::get(I32Ty);
1380  return llvm::ConstantInt::get(I32Ty, Off+MV);
1381 }
1382 
1383 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1384  if (C->getBitWidth() != 32) {
1385  assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1386  C->getZExtValue()) &&
1387  "Index operand too large for shufflevector mask!");
1388  return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1389  }
1390  return C;
1391 }
1392 
1393 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1394  bool Ignore = TestAndClearIgnoreResultAssign();
1395  (void)Ignore;
1396  assert (Ignore == false && "init list ignored");
1397  unsigned NumInitElements = E->getNumInits();
1398 
1399  if (E->hadArrayRangeDesignator())
1400  CGF.ErrorUnsupported(E, "GNU array range designator extension");
1401 
1402  llvm::VectorType *VType =
1403  dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1404 
1405  if (!VType) {
1406  if (NumInitElements == 0) {
1407  // C++11 value-initialization for the scalar.
1408  return EmitNullValue(E->getType());
1409  }
1410  // We have a scalar in braces. Just use the first element.
1411  return Visit(E->getInit(0));
1412  }
1413 
1414  unsigned ResElts = VType->getNumElements();
1415 
1416  // Loop over initializers collecting the Value for each, and remembering
1417  // whether the source was swizzle (ExtVectorElementExpr). This will allow
1418  // us to fold the shuffle for the swizzle into the shuffle for the vector
1419  // initializer, since LLVM optimizers generally do not want to touch
1420  // shuffles.
1421  unsigned CurIdx = 0;
1422  bool VIsUndefShuffle = false;
1423  llvm::Value *V = llvm::UndefValue::get(VType);
1424  for (unsigned i = 0; i != NumInitElements; ++i) {
1425  Expr *IE = E->getInit(i);
1426  Value *Init = Visit(IE);
1428 
1429  llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1430 
1431  // Handle scalar elements. If the scalar initializer is actually one
1432  // element of a different vector of the same width, use shuffle instead of
1433  // extract+insert.
1434  if (!VVT) {
1435  if (isa<ExtVectorElementExpr>(IE)) {
1436  llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1437 
1438  if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1439  llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1440  Value *LHS = nullptr, *RHS = nullptr;
1441  if (CurIdx == 0) {
1442  // insert into undef -> shuffle (src, undef)
1443  // shufflemask must use an i32
1444  Args.push_back(getAsInt32(C, CGF.Int32Ty));
1445  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1446 
1447  LHS = EI->getVectorOperand();
1448  RHS = V;
1449  VIsUndefShuffle = true;
1450  } else if (VIsUndefShuffle) {
1451  // insert into undefshuffle && size match -> shuffle (v, src)
1452  llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1453  for (unsigned j = 0; j != CurIdx; ++j)
1454  Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1455  Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1456  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1457 
1458  LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1459  RHS = EI->getVectorOperand();
1460  VIsUndefShuffle = false;
1461  }
1462  if (!Args.empty()) {
1463  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1464  V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1465  ++CurIdx;
1466  continue;
1467  }
1468  }
1469  }
1470  V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1471  "vecinit");
1472  VIsUndefShuffle = false;
1473  ++CurIdx;
1474  continue;
1475  }
1476 
1477  unsigned InitElts = VVT->getNumElements();
1478 
1479  // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1480  // input is the same width as the vector being constructed, generate an
1481  // optimized shuffle of the swizzle input into the result.
1482  unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1483  if (isa<ExtVectorElementExpr>(IE)) {
1484  llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1485  Value *SVOp = SVI->getOperand(0);
1486  llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1487 
1488  if (OpTy->getNumElements() == ResElts) {
1489  for (unsigned j = 0; j != CurIdx; ++j) {
1490  // If the current vector initializer is a shuffle with undef, merge
1491  // this shuffle directly into it.
1492  if (VIsUndefShuffle) {
1493  Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1494  CGF.Int32Ty));
1495  } else {
1496  Args.push_back(Builder.getInt32(j));
1497  }
1498  }
1499  for (unsigned j = 0, je = InitElts; j != je; ++j)
1500  Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1501  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1502 
1503  if (VIsUndefShuffle)
1504  V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1505 
1506  Init = SVOp;
1507  }
1508  }
1509 
1510  // Extend init to result vector length, and then shuffle its contribution
1511  // to the vector initializer into V.
1512  if (Args.empty()) {
1513  for (unsigned j = 0; j != InitElts; ++j)
1514  Args.push_back(Builder.getInt32(j));
1515  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1516  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1517  Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1518  Mask, "vext");
1519 
1520  Args.clear();
1521  for (unsigned j = 0; j != CurIdx; ++j)
1522  Args.push_back(Builder.getInt32(j));
1523  for (unsigned j = 0; j != InitElts; ++j)
1524  Args.push_back(Builder.getInt32(j+Offset));
1525  Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1526  }
1527 
1528  // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1529  // merging subsequent shuffles into this one.
1530  if (CurIdx == 0)
1531  std::swap(V, Init);
1532  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1533  V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1534  VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1535  CurIdx += InitElts;
1536  }
1537 
1538  // FIXME: evaluate codegen vs. shuffling against constant null vector.
1539  // Emit remaining default initializers.
1540  llvm::Type *EltTy = VType->getElementType();
1541 
1542  // Emit remaining default initializers
1543  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1544  Value *Idx = Builder.getInt32(CurIdx);
1545  llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1546  V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1547  }
1548  return V;
1549 }
1550 
1552  const Expr *E = CE->getSubExpr();
1553 
1554  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1555  return false;
1556 
1557  if (isa<CXXThisExpr>(E->IgnoreParens())) {
1558  // We always assume that 'this' is never null.
1559  return false;
1560  }
1561 
1562  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1563  // And that glvalue casts are never null.
1564  if (ICE->getValueKind() != VK_RValue)
1565  return false;
1566  }
1567 
1568  return true;
1569 }
1570 
1571 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1572 // have to handle a more broad range of conversions than explicit casts, as they
1573 // handle things like function to ptr-to-function decay etc.
1574 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1575  Expr *E = CE->getSubExpr();
1576  QualType DestTy = CE->getType();
1577  CastKind Kind = CE->getCastKind();
1578 
1579  // These cases are generally not written to ignore the result of
1580  // evaluating their sub-expressions, so we clear this now.
1581  bool Ignored = TestAndClearIgnoreResultAssign();
1582 
1583  // Since almost all cast kinds apply to scalars, this switch doesn't have
1584  // a default case, so the compiler will warn on a missing case. The cases
1585  // are in the same order as in the CastKind enum.
1586  switch (Kind) {
1587  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1588  case CK_BuiltinFnToFnPtr:
1589  llvm_unreachable("builtin functions are handled elsewhere");
1590 
1591  case CK_LValueBitCast:
1592  case CK_ObjCObjectLValueCast: {
1593  Address Addr = EmitLValue(E).getAddress();
1594  Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1595  LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1596  return EmitLoadOfLValue(LV, CE->getExprLoc());
1597  }
1598 
1599  case CK_CPointerToObjCPointerCast:
1600  case CK_BlockPointerToObjCPointerCast:
1601  case CK_AnyPointerToBlockPointerCast:
1602  case CK_BitCast: {
1603  Value *Src = Visit(const_cast<Expr*>(E));
1604  llvm::Type *SrcTy = Src->getType();
1605  llvm::Type *DstTy = ConvertType(DestTy);
1606  if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1607  SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1608  llvm_unreachable("wrong cast for pointers in different address spaces"
1609  "(must be an address space cast)!");
1610  }
1611 
1612  if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1613  if (auto PT = DestTy->getAs<PointerType>())
1614  CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1615  /*MayBeNull=*/true,
1617  CE->getLocStart());
1618  }
1619 
1620  return Builder.CreateBitCast(Src, DstTy);
1621  }
1622  case CK_AddressSpaceConversion: {
1623  Expr::EvalResult Result;
1624  if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
1625  Result.Val.isNullPointer()) {
1626  // If E has side effect, it is emitted even if its final result is a
1627  // null pointer. In that case, a DCE pass should be able to
1628  // eliminate the useless instructions emitted during translating E.
1629  if (Result.HasSideEffects)
1630  Visit(E);
1631  return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
1632  ConvertType(DestTy)), DestTy);
1633  }
1634  // Since target may map different address spaces in AST to the same address
1635  // space, an address space conversion may end up as a bitcast.
1637  CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
1638  DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
1639  }
1640  case CK_AtomicToNonAtomic:
1641  case CK_NonAtomicToAtomic:
1642  case CK_NoOp:
1643  case CK_UserDefinedConversion:
1644  return Visit(const_cast<Expr*>(E));
1645 
1646  case CK_BaseToDerived: {
1647  const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1648  assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1649 
1650  Address Base = CGF.EmitPointerWithAlignment(E);
1651  Address Derived =
1652  CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1653  CE->path_begin(), CE->path_end(),
1655 
1656  // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1657  // performed and the object is not of the derived type.
1658  if (CGF.sanitizePerformTypeCheck())
1660  Derived.getPointer(), DestTy->getPointeeType());
1661 
1662  if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1664  Derived.getPointer(),
1665  /*MayBeNull=*/true,
1667  CE->getLocStart());
1668 
1669  return Derived.getPointer();
1670  }
1671  case CK_UncheckedDerivedToBase:
1672  case CK_DerivedToBase: {
1673  // The EmitPointerWithAlignment path does this fine; just discard
1674  // the alignment.
1675  return CGF.EmitPointerWithAlignment(CE).getPointer();
1676  }
1677 
1678  case CK_Dynamic: {
1679  Address V = CGF.EmitPointerWithAlignment(E);
1680  const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1681  return CGF.EmitDynamicCast(V, DCE);
1682  }
1683 
1684  case CK_ArrayToPointerDecay:
1685  return CGF.EmitArrayToPointerDecay(E).getPointer();
1686  case CK_FunctionToPointerDecay:
1687  return EmitLValue(E).getPointer();
1688 
1689  case CK_NullToPointer:
1690  if (MustVisitNullValue(E))
1691  (void) Visit(E);
1692 
1693  return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
1694  DestTy);
1695 
1696  case CK_NullToMemberPointer: {
1697  if (MustVisitNullValue(E))
1698  (void) Visit(E);
1699 
1700  const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1701  return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1702  }
1703 
1704  case CK_ReinterpretMemberPointer:
1705  case CK_BaseToDerivedMemberPointer:
1706  case CK_DerivedToBaseMemberPointer: {
1707  Value *Src = Visit(E);
1708 
1709  // Note that the AST doesn't distinguish between checked and
1710  // unchecked member pointer conversions, so we always have to
1711  // implement checked conversions here. This is inefficient when
1712  // actual control flow may be required in order to perform the
1713  // check, which it is for data member pointers (but not member
1714  // function pointers on Itanium and ARM).
1715  return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1716  }
1717 
1718  case CK_ARCProduceObject:
1719  return CGF.EmitARCRetainScalarExpr(E);
1720  case CK_ARCConsumeObject:
1721  return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1722  case CK_ARCReclaimReturnedObject:
1723  return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1724  case CK_ARCExtendBlockObject:
1725  return CGF.EmitARCExtendBlockObject(E);
1726 
1727  case CK_CopyAndAutoreleaseBlockObject:
1728  return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1729 
1730  case CK_FloatingRealToComplex:
1731  case CK_FloatingComplexCast:
1732  case CK_IntegralRealToComplex:
1733  case CK_IntegralComplexCast:
1734  case CK_IntegralComplexToFloatingComplex:
1735  case CK_FloatingComplexToIntegralComplex:
1736  case CK_ConstructorConversion:
1737  case CK_ToUnion:
1738  llvm_unreachable("scalar cast to non-scalar value");
1739 
1740  case CK_LValueToRValue:
1741  assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1742  assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1743  return Visit(const_cast<Expr*>(E));
1744 
1745  case CK_IntegralToPointer: {
1746  Value *Src = Visit(const_cast<Expr*>(E));
1747 
1748  // First, convert to the correct width so that we control the kind of
1749  // extension.
1750  auto DestLLVMTy = ConvertType(DestTy);
1751  llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
1752  bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1753  llvm::Value* IntResult =
1754  Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1755 
1756  return Builder.CreateIntToPtr(IntResult, DestLLVMTy);
1757  }
1758  case CK_PointerToIntegral:
1759  assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1760  return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1761 
1762  case CK_ToVoid: {
1763  CGF.EmitIgnoredExpr(E);
1764  return nullptr;
1765  }
1766  case CK_VectorSplat: {
1767  llvm::Type *DstTy = ConvertType(DestTy);
1768  Value *Elt = Visit(const_cast<Expr*>(E));
1769  // Splat the element across to all elements
1770  unsigned NumElements = DstTy->getVectorNumElements();
1771  return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1772  }
1773 
1774  case CK_IntegralCast:
1775  case CK_IntegralToFloating:
1776  case CK_FloatingToIntegral:
1777  case CK_FloatingCast:
1778  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1779  CE->getExprLoc());
1780  case CK_BooleanToSignedIntegral:
1781  return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1782  CE->getExprLoc(),
1783  /*TreatBooleanAsSigned=*/true);
1784  case CK_IntegralToBoolean:
1785  return EmitIntToBoolConversion(Visit(E));
1786  case CK_PointerToBoolean:
1787  return EmitPointerToBoolConversion(Visit(E), E->getType());
1788  case CK_FloatingToBoolean:
1789  return EmitFloatToBoolConversion(Visit(E));
1790  case CK_MemberPointerToBoolean: {
1791  llvm::Value *MemPtr = Visit(E);
1792  const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1793  return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1794  }
1795 
1796  case CK_FloatingComplexToReal:
1797  case CK_IntegralComplexToReal:
1798  return CGF.EmitComplexExpr(E, false, true).first;
1799 
1800  case CK_FloatingComplexToBoolean:
1801  case CK_IntegralComplexToBoolean: {
1803 
1804  // TODO: kill this function off, inline appropriate case here
1805  return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1806  CE->getExprLoc());
1807  }
1808 
1809  case CK_ZeroToOCLEvent: {
1810  assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1811  return llvm::Constant::getNullValue(ConvertType(DestTy));
1812  }
1813 
1814  case CK_ZeroToOCLQueue: {
1815  assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type");
1816  return llvm::Constant::getNullValue(ConvertType(DestTy));
1817  }
1818 
1819  case CK_IntToOCLSampler:
1820  return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
1821 
1822  } // end of switch
1823 
1824  llvm_unreachable("unknown scalar cast");
1825 }
1826 
1827 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1829  Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1830  !E->getType()->isVoidType());
1831  if (!RetAlloca.isValid())
1832  return nullptr;
1833  return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1834  E->getExprLoc());
1835 }
1836 
1837 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1838  CGF.enterFullExpression(E);
1840  Value *V = Visit(E->getSubExpr());
1841  // Defend against dominance problems caused by jumps out of expression
1842  // evaluation through the shared cleanup block.
1843  Scope.ForceCleanup({&V});
1844  return V;
1845 }
1846 
1847 //===----------------------------------------------------------------------===//
1848 // Unary Operators
1849 //===----------------------------------------------------------------------===//
1850 
1851 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1852  llvm::Value *InVal, bool IsInc) {
1853  BinOpInfo BinOp;
1854  BinOp.LHS = InVal;
1855  BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1856  BinOp.Ty = E->getType();
1857  BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1858  // FIXME: once UnaryOperator carries FPFeatures, copy it here.
1859  BinOp.E = E;
1860  return BinOp;
1861 }
1862 
1863 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1864  const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1865  llvm::Value *Amount =
1866  llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1867  StringRef Name = IsInc ? "inc" : "dec";
1868  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1870  return Builder.CreateAdd(InVal, Amount, Name);
1872  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1873  return Builder.CreateNSWAdd(InVal, Amount, Name);
1874  // Fall through.
1876  if (IsWidenedIntegerOp(CGF.getContext(), E->getSubExpr()))
1877  return Builder.CreateNSWAdd(InVal, Amount, Name);
1878  return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1879  }
1880  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1881 }
1882 
1883 llvm::Value *
1884 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1885  bool isInc, bool isPre) {
1886 
1887  QualType type = E->getSubExpr()->getType();
1888  llvm::PHINode *atomicPHI = nullptr;
1889  llvm::Value *value;
1890  llvm::Value *input;
1891 
1892  int amount = (isInc ? 1 : -1);
1893  bool isSubtraction = !isInc;
1894 
1895  if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1896  type = atomicTy->getValueType();
1897  if (isInc && type->isBooleanType()) {
1898  llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1899  if (isPre) {
1900  Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1901  ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1902  return Builder.getTrue();
1903  }
1904  // For atomic bool increment, we just store true and return it for
1905  // preincrement, do an atomic swap with true for postincrement
1906  return Builder.CreateAtomicRMW(
1907  llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1908  llvm::AtomicOrdering::SequentiallyConsistent);
1909  }
1910  // Special case for atomic increment / decrement on integers, emit
1911  // atomicrmw instructions. We skip this if we want to be doing overflow
1912  // checking, and fall into the slow path with the atomic cmpxchg loop.
1913  if (!type->isBooleanType() && type->isIntegerType() &&
1914  !(type->isUnsignedIntegerType() &&
1915  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1916  CGF.getLangOpts().getSignedOverflowBehavior() !=
1918  llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1919  llvm::AtomicRMWInst::Sub;
1920  llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1921  llvm::Instruction::Sub;
1922  llvm::Value *amt = CGF.EmitToMemory(
1923  llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1924  llvm::Value *old = Builder.CreateAtomicRMW(aop,
1925  LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1926  return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1927  }
1928  value = EmitLoadOfLValue(LV, E->getExprLoc());
1929  input = value;
1930  // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1931  llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1932  llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1933  value = CGF.EmitToMemory(value, type);
1934  Builder.CreateBr(opBB);
1935  Builder.SetInsertPoint(opBB);
1936  atomicPHI = Builder.CreatePHI(value->getType(), 2);
1937  atomicPHI->addIncoming(value, startBB);
1938  value = atomicPHI;
1939  } else {
1940  value = EmitLoadOfLValue(LV, E->getExprLoc());
1941  input = value;
1942  }
1943 
1944  // Special case of integer increment that we have to check first: bool++.
1945  // Due to promotion rules, we get:
1946  // bool++ -> bool = bool + 1
1947  // -> bool = (int)bool + 1
1948  // -> bool = ((int)bool + 1 != 0)
1949  // An interesting aspect of this is that increment is always true.
1950  // Decrement does not have this property.
1951  if (isInc && type->isBooleanType()) {
1952  value = Builder.getTrue();
1953 
1954  // Most common case by far: integer increment.
1955  } else if (type->isIntegerType()) {
1956  // Note that signed integer inc/dec with width less than int can't
1957  // overflow because of promotion rules; we're just eliding a few steps here.
1958  bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1959  CGF.IntTy->getIntegerBitWidth();
1960  if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1961  value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1962  } else if (CanOverflow && type->isUnsignedIntegerType() &&
1963  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1964  value =
1965  EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1966  } else {
1967  llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1968  value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1969  }
1970 
1971  // Next most common: pointer increment.
1972  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1973  QualType type = ptr->getPointeeType();
1974 
1975  // VLA types don't have constant size.
1976  if (const VariableArrayType *vla
1977  = CGF.getContext().getAsVariableArrayType(type)) {
1978  llvm::Value *numElts = CGF.getVLASize(vla).first;
1979  if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1981  value = Builder.CreateGEP(value, numElts, "vla.inc");
1982  else
1983  value = CGF.EmitCheckedInBoundsGEP(
1984  value, numElts, /*SignedIndices=*/false, isSubtraction,
1985  E->getExprLoc(), "vla.inc");
1986 
1987  // Arithmetic on function pointers (!) is just +-1.
1988  } else if (type->isFunctionType()) {
1989  llvm::Value *amt = Builder.getInt32(amount);
1990 
1991  value = CGF.EmitCastToVoidPtr(value);
1993  value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1994  else
1995  value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
1996  isSubtraction, E->getExprLoc(),
1997  "incdec.funcptr");
1998  value = Builder.CreateBitCast(value, input->getType());
1999 
2000  // For everything else, we can just do a simple increment.
2001  } else {
2002  llvm::Value *amt = Builder.getInt32(amount);
2004  value = Builder.CreateGEP(value, amt, "incdec.ptr");
2005  else
2006  value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2007  isSubtraction, E->getExprLoc(),
2008  "incdec.ptr");
2009  }
2010 
2011  // Vector increment/decrement.
2012  } else if (type->isVectorType()) {
2013  if (type->hasIntegerRepresentation()) {
2014  llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2015 
2016  value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2017  } else {
2018  value = Builder.CreateFAdd(
2019  value,
2020  llvm::ConstantFP::get(value->getType(), amount),
2021  isInc ? "inc" : "dec");
2022  }
2023 
2024  // Floating point.
2025  } else if (type->isRealFloatingType()) {
2026  // Add the inc/dec to the real part.
2027  llvm::Value *amt;
2028 
2029  if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2030  // Another special case: half FP increment should be done via float
2032  value = Builder.CreateCall(
2033  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2034  CGF.CGM.FloatTy),
2035  input, "incdec.conv");
2036  } else {
2037  value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2038  }
2039  }
2040 
2041  if (value->getType()->isFloatTy())
2042  amt = llvm::ConstantFP::get(VMContext,
2043  llvm::APFloat(static_cast<float>(amount)));
2044  else if (value->getType()->isDoubleTy())
2045  amt = llvm::ConstantFP::get(VMContext,
2046  llvm::APFloat(static_cast<double>(amount)));
2047  else {
2048  // Remaining types are Half, LongDouble or __float128. Convert from float.
2049  llvm::APFloat F(static_cast<float>(amount));
2050  bool ignored;
2051  const llvm::fltSemantics *FS;
2052  // Don't use getFloatTypeSemantics because Half isn't
2053  // necessarily represented using the "half" LLVM type.
2054  if (value->getType()->isFP128Ty())
2055  FS = &CGF.getTarget().getFloat128Format();
2056  else if (value->getType()->isHalfTy())
2057  FS = &CGF.getTarget().getHalfFormat();
2058  else
2059  FS = &CGF.getTarget().getLongDoubleFormat();
2060  F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2061  amt = llvm::ConstantFP::get(VMContext, F);
2062  }
2063  value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2064 
2065  if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2067  value = Builder.CreateCall(
2068  CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2069  CGF.CGM.FloatTy),
2070  value, "incdec.conv");
2071  } else {
2072  value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2073  }
2074  }
2075 
2076  // Objective-C pointer types.
2077  } else {
2078  const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2079  value = CGF.EmitCastToVoidPtr(value);
2080 
2082  if (!isInc) size = -size;
2083  llvm::Value *sizeValue =
2084  llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2085 
2087  value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2088  else
2089  value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2090  /*SignedIndices=*/false, isSubtraction,
2091  E->getExprLoc(), "incdec.objptr");
2092  value = Builder.CreateBitCast(value, input->getType());
2093  }
2094 
2095  if (atomicPHI) {
2096  llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2097  llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2098  auto Pair = CGF.EmitAtomicCompareExchange(
2099  LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2100  llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2101  llvm::Value *success = Pair.second;
2102  atomicPHI->addIncoming(old, opBB);
2103  Builder.CreateCondBr(success, contBB, opBB);
2104  Builder.SetInsertPoint(contBB);
2105  return isPre ? value : input;
2106  }
2107 
2108  // Store the updated result through the lvalue.
2109  if (LV.isBitField())
2110  CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2111  else
2112  CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2113 
2114  // If this is a postinc, return the value read from memory, otherwise use the
2115  // updated value.
2116  return isPre ? value : input;
2117 }
2118 
2119 
2120 
2121 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2122  TestAndClearIgnoreResultAssign();
2123  // Emit unary minus with EmitSub so we handle overflow cases etc.
2124  BinOpInfo BinOp;
2125  BinOp.RHS = Visit(E->getSubExpr());
2126 
2127  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
2128  BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2129  else
2130  BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2131  BinOp.Ty = E->getType();
2132  BinOp.Opcode = BO_Sub;
2133  // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2134  BinOp.E = E;
2135  return EmitSub(BinOp);
2136 }
2137 
2138 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2139  TestAndClearIgnoreResultAssign();
2140  Value *Op = Visit(E->getSubExpr());
2141  return Builder.CreateNot(Op, "neg");
2142 }
2143 
2144 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2145  // Perform vector logical not on comparison with zero vector.
2146  if (E->getType()->isExtVectorType()) {
2147  Value *Oper = Visit(E->getSubExpr());
2148  Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2149  Value *Result;
2150  if (Oper->getType()->isFPOrFPVectorTy())
2151  Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2152  else
2153  Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2154  return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2155  }
2156 
2157  // Compare operand to zero.
2158  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2159 
2160  // Invert value.
2161  // TODO: Could dynamically modify easy computations here. For example, if
2162  // the operand is an icmp ne, turn into icmp eq.
2163  BoolVal = Builder.CreateNot(BoolVal, "lnot");
2164 
2165  // ZExt result to the expr type.
2166  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2167 }
2168 
2169 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2170  // Try folding the offsetof to a constant.
2171  llvm::APSInt Value;
2172  if (E->EvaluateAsInt(Value, CGF.getContext()))
2173  return Builder.getInt(Value);
2174 
2175  // Loop over the components of the offsetof to compute the value.
2176  unsigned n = E->getNumComponents();
2177  llvm::Type* ResultType = ConvertType(E->getType());
2178  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2179  QualType CurrentType = E->getTypeSourceInfo()->getType();
2180  for (unsigned i = 0; i != n; ++i) {
2181  OffsetOfNode ON = E->getComponent(i);
2182  llvm::Value *Offset = nullptr;
2183  switch (ON.getKind()) {
2184  case OffsetOfNode::Array: {
2185  // Compute the index
2186  Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2187  llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2188  bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2189  Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2190 
2191  // Save the element type
2192  CurrentType =
2193  CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2194 
2195  // Compute the element size
2196  llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2197  CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2198 
2199  // Multiply out to compute the result
2200  Offset = Builder.CreateMul(Idx, ElemSize);
2201  break;
2202  }
2203 
2204  case OffsetOfNode::Field: {
2205  FieldDecl *MemberDecl = ON.getField();
2206  RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2207  const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2208 
2209  // Compute the index of the field in its parent.
2210  unsigned i = 0;
2211  // FIXME: It would be nice if we didn't have to loop here!
2212  for (RecordDecl::field_iterator Field = RD->field_begin(),
2213  FieldEnd = RD->field_end();
2214  Field != FieldEnd; ++Field, ++i) {
2215  if (*Field == MemberDecl)
2216  break;
2217  }
2218  assert(i < RL.getFieldCount() && "offsetof field in wrong type");
2219 
2220  // Compute the offset to the field
2221  int64_t OffsetInt = RL.getFieldOffset(i) /
2222  CGF.getContext().getCharWidth();
2223  Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2224 
2225  // Save the element type.
2226  CurrentType = MemberDecl->getType();
2227  break;
2228  }
2229 
2231  llvm_unreachable("dependent __builtin_offsetof");
2232 
2233  case OffsetOfNode::Base: {
2234  if (ON.getBase()->isVirtual()) {
2235  CGF.ErrorUnsupported(E, "virtual base in offsetof");
2236  continue;
2237  }
2238 
2239  RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2240  const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2241 
2242  // Save the element type.
2243  CurrentType = ON.getBase()->getType();
2244 
2245  // Compute the offset to the base.
2246  const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2247  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2248  CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2249  Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2250  break;
2251  }
2252  }
2253  Result = Builder.CreateAdd(Result, Offset);
2254  }
2255  return Result;
2256 }
2257 
2258 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2259 /// argument of the sizeof expression as an integer.
2260 Value *
2261 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2262  const UnaryExprOrTypeTraitExpr *E) {
2263  QualType TypeToSize = E->getTypeOfArgument();
2264  if (E->getKind() == UETT_SizeOf) {
2265  if (const VariableArrayType *VAT =
2266  CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2267  if (E->isArgumentType()) {
2268  // sizeof(type) - make sure to emit the VLA size.
2269  CGF.EmitVariablyModifiedType(TypeToSize);
2270  } else {
2271  // C99 6.5.3.4p2: If the argument is an expression of type
2272  // VLA, it is evaluated.
2273  CGF.EmitIgnoredExpr(E->getArgumentExpr());
2274  }
2275 
2276  QualType eltType;
2277  llvm::Value *numElts;
2278  std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2279 
2280  llvm::Value *size = numElts;
2281 
2282  // Scale the number of non-VLA elements by the non-VLA element size.
2283  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2284  if (!eltSize.isOne())
2285  size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2286 
2287  return size;
2288  }
2289  } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2290  auto Alignment =
2291  CGF.getContext()
2294  .getQuantity();
2295  return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2296  }
2297 
2298  // If this isn't sizeof(vla), the result must be constant; use the constant
2299  // folding logic so we don't have to duplicate it here.
2300  return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2301 }
2302 
2303 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2304  Expr *Op = E->getSubExpr();
2305  if (Op->getType()->isAnyComplexType()) {
2306  // If it's an l-value, load through the appropriate subobject l-value.
2307  // Note that we have to ask E because Op might be an l-value that
2308  // this won't work for, e.g. an Obj-C property.
2309  if (E->isGLValue())
2310  return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2311  E->getExprLoc()).getScalarVal();
2312 
2313  // Otherwise, calculate and project.
2314  return CGF.EmitComplexExpr(Op, false, true).first;
2315  }
2316 
2317  return Visit(Op);
2318 }
2319 
2320 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2321  Expr *Op = E->getSubExpr();
2322  if (Op->getType()->isAnyComplexType()) {
2323  // If it's an l-value, load through the appropriate subobject l-value.
2324  // Note that we have to ask E because Op might be an l-value that
2325  // this won't work for, e.g. an Obj-C property.
2326  if (Op->isGLValue())
2327  return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2328  E->getExprLoc()).getScalarVal();
2329 
2330  // Otherwise, calculate and project.
2331  return CGF.EmitComplexExpr(Op, true, false).second;
2332  }
2333 
2334  // __imag on a scalar returns zero. Emit the subexpr to ensure side
2335  // effects are evaluated, but not the actual value.
2336  if (Op->isGLValue())
2337  CGF.EmitLValue(Op);
2338  else
2339  CGF.EmitScalarExpr(Op, true);
2340  return llvm::Constant::getNullValue(ConvertType(E->getType()));
2341 }
2342 
2343 //===----------------------------------------------------------------------===//
2344 // Binary Operators
2345 //===----------------------------------------------------------------------===//
2346 
2347 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2348  TestAndClearIgnoreResultAssign();
2349  BinOpInfo Result;
2350  Result.LHS = Visit(E->getLHS());
2351  Result.RHS = Visit(E->getRHS());
2352  Result.Ty = E->getType();
2353  Result.Opcode = E->getOpcode();
2354  Result.FPFeatures = E->getFPFeatures();
2355  Result.E = E;
2356  return Result;
2357 }
2358 
2359 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2360  const CompoundAssignOperator *E,
2361  Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2362  Value *&Result) {
2363  QualType LHSTy = E->getLHS()->getType();
2364  BinOpInfo OpInfo;
2365 
2367  return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2368 
2369  // Emit the RHS first. __block variables need to have the rhs evaluated
2370  // first, plus this should improve codegen a little.
2371  OpInfo.RHS = Visit(E->getRHS());
2372  OpInfo.Ty = E->getComputationResultType();
2373  OpInfo.Opcode = E->getOpcode();
2374  OpInfo.FPFeatures = E->getFPFeatures();
2375  OpInfo.E = E;
2376  // Load/convert the LHS.
2377  LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2378 
2379  llvm::PHINode *atomicPHI = nullptr;
2380  if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2381  QualType type = atomicTy->getValueType();
2382  if (!type->isBooleanType() && type->isIntegerType() &&
2383  !(type->isUnsignedIntegerType() &&
2384  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2385  CGF.getLangOpts().getSignedOverflowBehavior() !=
2387  llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2388  switch (OpInfo.Opcode) {
2389  // We don't have atomicrmw operands for *, %, /, <<, >>
2390  case BO_MulAssign: case BO_DivAssign:
2391  case BO_RemAssign:
2392  case BO_ShlAssign:
2393  case BO_ShrAssign:
2394  break;
2395  case BO_AddAssign:
2396  aop = llvm::AtomicRMWInst::Add;
2397  break;
2398  case BO_SubAssign:
2399  aop = llvm::AtomicRMWInst::Sub;
2400  break;
2401  case BO_AndAssign:
2403  break;
2404  case BO_XorAssign:
2405  aop = llvm::AtomicRMWInst::Xor;
2406  break;
2407  case BO_OrAssign:
2408  aop = llvm::AtomicRMWInst::Or;
2409  break;
2410  default:
2411  llvm_unreachable("Invalid compound assignment type");
2412  }
2413  if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2414  llvm::Value *amt = CGF.EmitToMemory(
2415  EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2416  E->getExprLoc()),
2417  LHSTy);
2418  Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2419  llvm::AtomicOrdering::SequentiallyConsistent);
2420  return LHSLV;
2421  }
2422  }
2423  // FIXME: For floating point types, we should be saving and restoring the
2424  // floating point environment in the loop.
2425  llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2426  llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2427  OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2428  OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2429  Builder.CreateBr(opBB);
2430  Builder.SetInsertPoint(opBB);
2431  atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2432  atomicPHI->addIncoming(OpInfo.LHS, startBB);
2433  OpInfo.LHS = atomicPHI;
2434  }
2435  else
2436  OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2437 
2438  SourceLocation Loc = E->getExprLoc();
2439  OpInfo.LHS =
2440  EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2441 
2442  // Expand the binary operator.
2443  Result = (this->*Func)(OpInfo);
2444 
2445  // Convert the result back to the LHS type.
2446  Result =
2447  EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2448 
2449  if (atomicPHI) {
2450  llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2451  llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2452  auto Pair = CGF.EmitAtomicCompareExchange(
2453  LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2454  llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2455  llvm::Value *success = Pair.second;
2456  atomicPHI->addIncoming(old, opBB);
2457  Builder.CreateCondBr(success, contBB, opBB);
2458  Builder.SetInsertPoint(contBB);
2459  return LHSLV;
2460  }
2461 
2462  // Store the result value into the LHS lvalue. Bit-fields are handled
2463  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2464  // 'An assignment expression has the value of the left operand after the
2465  // assignment...'.
2466  if (LHSLV.isBitField())
2467  CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2468  else
2469  CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2470 
2471  return LHSLV;
2472 }
2473 
2474 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2475  Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2476  bool Ignore = TestAndClearIgnoreResultAssign();
2477  Value *RHS;
2478  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2479 
2480  // If the result is clearly ignored, return now.
2481  if (Ignore)
2482  return nullptr;
2483 
2484  // The result of an assignment in C is the assigned r-value.
2485  if (!CGF.getLangOpts().CPlusPlus)
2486  return RHS;
2487 
2488  // If the lvalue is non-volatile, return the computed value of the assignment.
2489  if (!LHS.isVolatileQualified())
2490  return RHS;
2491 
2492  // Otherwise, reload the value.
2493  return EmitLoadOfLValue(LHS, E->getExprLoc());
2494 }
2495 
2496 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2497  const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2499 
2500  if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2501  Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2502  SanitizerKind::IntegerDivideByZero));
2503  }
2504 
2505  const auto *BO = cast<BinaryOperator>(Ops.E);
2506  if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2507  Ops.Ty->hasSignedIntegerRepresentation() &&
2508  !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
2509  Ops.mayHaveIntegerOverflow()) {
2510  llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2511 
2512  llvm::Value *IntMin =
2513  Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2514  llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2515 
2516  llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2517  llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2518  llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2519  Checks.push_back(
2520  std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2521  }
2522 
2523  if (Checks.size() > 0)
2524  EmitBinOpCheck(Checks, Ops);
2525 }
2526 
2527 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2528  {
2529  CodeGenFunction::SanitizerScope SanScope(&CGF);
2530  if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2531  CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2532  Ops.Ty->isIntegerType() &&
2533  (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2534  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2535  EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2536  } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2537  Ops.Ty->isRealFloatingType() &&
2538  Ops.mayHaveFloatDivisionByZero()) {
2539  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2540  llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2541  EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2542  Ops);
2543  }
2544  }
2545 
2546  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2547  llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2548  if (CGF.getLangOpts().OpenCL &&
2549  !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2550  // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2551  // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2552  // build option allows an application to specify that single precision
2553  // floating-point divide (x/y and 1/x) and sqrt used in the program
2554  // source are correctly rounded.
2555  llvm::Type *ValTy = Val->getType();
2556  if (ValTy->isFloatTy() ||
2557  (isa<llvm::VectorType>(ValTy) &&
2558  cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2559  CGF.SetFPAccuracy(Val, 2.5);
2560  }
2561  return Val;
2562  }
2563  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2564  return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2565  else
2566  return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2567 }
2568 
2569 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2570  // Rem in C can't be a floating point type: C99 6.5.5p2.
2571  if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2572  CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2573  Ops.Ty->isIntegerType() &&
2574  (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2575  CodeGenFunction::SanitizerScope SanScope(&CGF);
2576  llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2577  EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2578  }
2579 
2580  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2581  return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2582  else
2583  return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2584 }
2585 
2586 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2587  unsigned IID;
2588  unsigned OpID = 0;
2589 
2590  bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2591  switch (Ops.Opcode) {
2592  case BO_Add:
2593  case BO_AddAssign:
2594  OpID = 1;
2595  IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2596  llvm::Intrinsic::uadd_with_overflow;
2597  break;
2598  case BO_Sub:
2599  case BO_SubAssign:
2600  OpID = 2;
2601  IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2602  llvm::Intrinsic::usub_with_overflow;
2603  break;
2604  case BO_Mul:
2605  case BO_MulAssign:
2606  OpID = 3;
2607  IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2608  llvm::Intrinsic::umul_with_overflow;
2609  break;
2610  default:
2611  llvm_unreachable("Unsupported operation for overflow detection");
2612  }
2613  OpID <<= 1;
2614  if (isSigned)
2615  OpID |= 1;
2616 
2617  CodeGenFunction::SanitizerScope SanScope(&CGF);
2618  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2619 
2620  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2621 
2622  Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2623  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2624  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2625 
2626  // Handle overflow with llvm.trap if no custom handler has been specified.
2627  const std::string *handlerName =
2629  if (handlerName->empty()) {
2630  // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2631  // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2632  if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2633  llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2634  SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2635  : SanitizerKind::UnsignedIntegerOverflow;
2636  EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2637  } else
2638  CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2639  return result;
2640  }
2641 
2642  // Branch in case of overflow.
2643  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2644  llvm::BasicBlock *continueBB =
2645  CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
2646  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2647 
2648  Builder.CreateCondBr(overflow, overflowBB, continueBB);
2649 
2650  // If an overflow handler is set, then we want to call it and then use its
2651  // result, if it returns.
2652  Builder.SetInsertPoint(overflowBB);
2653 
2654  // Get the overflow handler.
2655  llvm::Type *Int8Ty = CGF.Int8Ty;
2656  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2657  llvm::FunctionType *handlerTy =
2658  llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2659  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2660 
2661  // Sign extend the args to 64-bit, so that we can use the same handler for
2662  // all types of overflow.
2663  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2664  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2665 
2666  // Call the handler with the two arguments, the operation, and the size of
2667  // the result.
2668  llvm::Value *handlerArgs[] = {
2669  lhs,
2670  rhs,
2671  Builder.getInt8(OpID),
2672  Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2673  };
2674  llvm::Value *handlerResult =
2675  CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2676 
2677  // Truncate the result back to the desired size.
2678  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2679  Builder.CreateBr(continueBB);
2680 
2681  Builder.SetInsertPoint(continueBB);
2682  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2683  phi->addIncoming(result, initialBB);
2684  phi->addIncoming(handlerResult, overflowBB);
2685 
2686  return phi;
2687 }
2688 
2689 /// Emit pointer + index arithmetic.
2691  const BinOpInfo &op,
2692  bool isSubtraction) {
2693  // Must have binary (not unary) expr here. Unary pointer
2694  // increment/decrement doesn't use this path.
2695  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2696 
2697  Value *pointer = op.LHS;
2698  Expr *pointerOperand = expr->getLHS();
2699  Value *index = op.RHS;
2700  Expr *indexOperand = expr->getRHS();
2701 
2702  // In a subtraction, the LHS is always the pointer.
2703  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2704  std::swap(pointer, index);
2705  std::swap(pointerOperand, indexOperand);
2706  }
2707 
2708  bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2709 
2710  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2711  auto &DL = CGF.CGM.getDataLayout();
2712  auto PtrTy = cast<llvm::PointerType>(pointer->getType());
2713 
2714  // Some versions of glibc and gcc use idioms (particularly in their malloc
2715  // routines) that add a pointer-sized integer (known to be a pointer value)
2716  // to a null pointer in order to cast the value back to an integer or as
2717  // part of a pointer alignment algorithm. This is undefined behavior, but
2718  // we'd like to be able to compile programs that use it.
2719  //
2720  // Normally, we'd generate a GEP with a null-pointer base here in response
2721  // to that code, but it's also UB to dereference a pointer created that
2722  // way. Instead (as an acknowledged hack to tolerate the idiom) we will
2723  // generate a direct cast of the integer value to a pointer.
2724  //
2725  // The idiom (p = nullptr + N) is not met if any of the following are true:
2726  //
2727  // The operation is subtraction.
2728  // The index is not pointer-sized.
2729  // The pointer type is not byte-sized.
2730  //
2732  op.Opcode,
2733  expr->getLHS(),
2734  expr->getRHS()))
2735  return CGF.Builder.CreateIntToPtr(index, pointer->getType());
2736 
2737  if (width != DL.getTypeSizeInBits(PtrTy)) {
2738  // Zero-extend or sign-extend the pointer value according to
2739  // whether the index is signed or not.
2740  index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
2741  "idx.ext");
2742  }
2743 
2744  // If this is subtraction, negate the index.
2745  if (isSubtraction)
2746  index = CGF.Builder.CreateNeg(index, "idx.neg");
2747 
2748  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2749  CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2750  /*Accessed*/ false);
2751 
2752  const PointerType *pointerType
2753  = pointerOperand->getType()->getAs<PointerType>();
2754  if (!pointerType) {
2755  QualType objectType = pointerOperand->getType()
2757  ->getPointeeType();
2758  llvm::Value *objectSize
2759  = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2760 
2761  index = CGF.Builder.CreateMul(index, objectSize);
2762 
2763  Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2764  result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2765  return CGF.Builder.CreateBitCast(result, pointer->getType());
2766  }
2767 
2768  QualType elementType = pointerType->getPointeeType();
2769  if (const VariableArrayType *vla
2770  = CGF.getContext().getAsVariableArrayType(elementType)) {
2771  // The element count here is the total number of non-VLA elements.
2772  llvm::Value *numElements = CGF.getVLASize(vla).first;
2773 
2774  // Effectively, the multiply by the VLA size is part of the GEP.
2775  // GEP indexes are signed, and scaling an index isn't permitted to
2776  // signed-overflow, so we use the same semantics for our explicit
2777  // multiply. We suppress this if overflow is not undefined behavior.
2778  if (CGF.getLangOpts().isSignedOverflowDefined()) {
2779  index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2780  pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2781  } else {
2782  index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2783  pointer =
2784  CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
2785  op.E->getExprLoc(), "add.ptr");
2786  }
2787  return pointer;
2788  }
2789 
2790  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2791  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2792  // future proof.
2793  if (elementType->isVoidType() || elementType->isFunctionType()) {
2794  Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2795  result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2796  return CGF.Builder.CreateBitCast(result, pointer->getType());
2797  }
2798 
2800  return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2801 
2802  return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
2803  op.E->getExprLoc(), "add.ptr");
2804 }
2805 
2806 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2807 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2808 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2809 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2810 // efficient operations.
2811 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2812  const CodeGenFunction &CGF, CGBuilderTy &Builder,
2813  bool negMul, bool negAdd) {
2814  assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2815 
2816  Value *MulOp0 = MulOp->getOperand(0);
2817  Value *MulOp1 = MulOp->getOperand(1);
2818  if (negMul) {
2819  MulOp0 =
2820  Builder.CreateFSub(
2821  llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2822  "neg");
2823  } else if (negAdd) {
2824  Addend =
2825  Builder.CreateFSub(
2826  llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2827  "neg");
2828  }
2829 
2830  Value *FMulAdd = Builder.CreateCall(
2831  CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2832  {MulOp0, MulOp1, Addend});
2833  MulOp->eraseFromParent();
2834 
2835  return FMulAdd;
2836 }
2837 
2838 // Check whether it would be legal to emit an fmuladd intrinsic call to
2839 // represent op and if so, build the fmuladd.
2840 //
2841 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2842 // Does NOT check the type of the operation - it's assumed that this function
2843 // will be called from contexts where it's known that the type is contractable.
2844 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2845  const CodeGenFunction &CGF, CGBuilderTy &Builder,
2846  bool isSub=false) {
2847 
2848  assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2849  op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2850  "Only fadd/fsub can be the root of an fmuladd.");
2851 
2852  // Check whether this op is marked as fusable.
2853  if (!op.FPFeatures.allowFPContractWithinStatement())
2854  return nullptr;
2855 
2856  // We have a potentially fusable op. Look for a mul on one of the operands.
2857  // Also, make sure that the mul result isn't used directly. In that case,
2858  // there's no point creating a muladd operation.
2859  if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2860  if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2861  LHSBinOp->use_empty())
2862  return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2863  }
2864  if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2865  if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2866  RHSBinOp->use_empty())
2867  return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2868  }
2869 
2870  return nullptr;
2871 }
2872 
2873 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2874  if (op.LHS->getType()->isPointerTy() ||
2875  op.RHS->getType()->isPointerTy())
2877 
2878  if (op.Ty->isSignedIntegerOrEnumerationType()) {
2879  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2881  return Builder.CreateAdd(op.LHS, op.RHS, "add");
2883  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2884  return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2885  // Fall through.
2887  if (CanElideOverflowCheck(CGF.getContext(), op))
2888  return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2889  return EmitOverflowCheckedBinOp(op);
2890  }
2891  }
2892 
2893  if (op.Ty->isUnsignedIntegerType() &&
2894  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2895  !CanElideOverflowCheck(CGF.getContext(), op))
2896  return EmitOverflowCheckedBinOp(op);
2897 
2898  if (op.LHS->getType()->isFPOrFPVectorTy()) {
2899  // Try to form an fmuladd.
2900  if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2901  return FMulAdd;
2902 
2903  Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
2904  return propagateFMFlags(V, op);
2905  }
2906 
2907  return Builder.CreateAdd(op.LHS, op.RHS, "add");
2908 }
2909 
2910 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2911  // The LHS is always a pointer if either side is.
2912  if (!op.LHS->getType()->isPointerTy()) {
2913  if (op.Ty->isSignedIntegerOrEnumerationType()) {
2914  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2916  return Builder.CreateSub(op.LHS, op.RHS, "sub");
2918  if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2919  return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2920  // Fall through.
2922  if (CanElideOverflowCheck(CGF.getContext(), op))
2923  return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2924  return EmitOverflowCheckedBinOp(op);
2925  }
2926  }
2927 
2928  if (op.Ty->isUnsignedIntegerType() &&
2929  CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2930  !CanElideOverflowCheck(CGF.getContext(), op))
2931  return EmitOverflowCheckedBinOp(op);
2932 
2933  if (op.LHS->getType()->isFPOrFPVectorTy()) {
2934  // Try to form an fmuladd.
2935  if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2936  return FMulAdd;
2937  Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
2938  return propagateFMFlags(V, op);
2939  }
2940 
2941  return Builder.CreateSub(op.LHS, op.RHS, "sub");
2942  }
2943 
2944  // If the RHS is not a pointer, then we have normal pointer
2945  // arithmetic.
2946  if (!op.RHS->getType()->isPointerTy())
2948 
2949  // Otherwise, this is a pointer subtraction.
2950 
2951  // Do the raw subtraction part.
2952  llvm::Value *LHS
2953  = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2954  llvm::Value *RHS
2955  = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2956  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2957 
2958  // Okay, figure out the element size.
2959  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2960  QualType elementType = expr->getLHS()->getType()->getPointeeType();
2961 
2962  llvm::Value *divisor = nullptr;
2963 
2964  // For a variable-length array, this is going to be non-constant.
2965  if (const VariableArrayType *vla
2966  = CGF.getContext().getAsVariableArrayType(elementType)) {
2967  llvm::Value *numElements;
2968  std::tie(numElements, elementType) = CGF.getVLASize(vla);
2969 
2970  divisor = numElements;
2971 
2972  // Scale the number of non-VLA elements by the non-VLA element size.
2973  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2974  if (!eltSize.isOne())
2975  divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2976 
2977  // For everything elese, we can just compute it, safe in the
2978  // assumption that Sema won't let anything through that we can't
2979  // safely compute the size of.
2980  } else {
2981  CharUnits elementSize;
2982  // Handle GCC extension for pointer arithmetic on void* and
2983  // function pointer types.
2984  if (elementType->isVoidType() || elementType->isFunctionType())
2985  elementSize = CharUnits::One();
2986  else
2987  elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2988 
2989  // Don't even emit the divide for element size of 1.
2990  if (elementSize.isOne())
2991  return diffInChars;
2992 
2993  divisor = CGF.CGM.getSize(elementSize);
2994  }
2995 
2996  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2997  // pointer difference in C is only defined in the case where both operands
2998  // are pointing to elements of an array.
2999  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3000 }
3001 
3002 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3003  llvm::IntegerType *Ty;
3004  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3005  Ty = cast<llvm::IntegerType>(VT->getElementType());
3006  else
3007  Ty = cast<llvm::IntegerType>(LHS->getType());
3008  return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3009 }
3010 
3011 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3012  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3013  // RHS to the same size as the LHS.
3014  Value *RHS = Ops.RHS;
3015  if (Ops.LHS->getType() != RHS->getType())
3016  RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3017 
3018  bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3019  Ops.Ty->hasSignedIntegerRepresentation() &&
3021  bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3022  // OpenCL 6.3j: shift values are effectively % word size of LHS.
3023  if (CGF.getLangOpts().OpenCL)
3024  RHS =
3025  Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3026  else if ((SanitizeBase || SanitizeExponent) &&
3027  isa<llvm::IntegerType>(Ops.LHS->getType())) {
3028  CodeGenFunction::SanitizerScope SanScope(&CGF);
3030  llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3031  llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3032 
3033  if (SanitizeExponent) {
3034  Checks.push_back(
3035  std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3036  }
3037 
3038  if (SanitizeBase) {
3039  // Check whether we are shifting any non-zero bits off the top of the
3040  // integer. We only emit this check if exponent is valid - otherwise
3041  // instructions below will have undefined behavior themselves.
3042  llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3043  llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3044  llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3045  Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3046  llvm::Value *PromotedWidthMinusOne =
3047  (RHS == Ops.RHS) ? WidthMinusOne
3048  : GetWidthMinusOneValue(Ops.LHS, RHS);
3049  CGF.EmitBlock(CheckShiftBase);
3050  llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3051  Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3052  /*NUW*/ true, /*NSW*/ true),
3053  "shl.check");
3054  if (CGF.getLangOpts().CPlusPlus) {
3055  // In C99, we are not permitted to shift a 1 bit into the sign bit.
3056  // Under C++11's rules, shifting a 1 bit into the sign bit is
3057  // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3058  // define signed left shifts, so we use the C99 and C++11 rules there).
3059  llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3060  BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3061  }
3062  llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3063  llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3064  CGF.EmitBlock(Cont);
3065  llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3066  BaseCheck->addIncoming(Builder.getTrue(), Orig);
3067  BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3068  Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3069  }
3070 
3071  assert(!Checks.empty());
3072  EmitBinOpCheck(Checks, Ops);
3073  }
3074 
3075  return Builder.CreateShl(Ops.LHS, RHS, "shl");
3076 }
3077 
3078 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3079  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3080  // RHS to the same size as the LHS.
3081  Value *RHS = Ops.RHS;
3082  if (Ops.LHS->getType() != RHS->getType())
3083  RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3084 
3085  // OpenCL 6.3j: shift values are effectively % word size of LHS.
3086  if (CGF.getLangOpts().OpenCL)
3087  RHS =
3088  Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3089  else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3090  isa<llvm::IntegerType>(Ops.LHS->getType())) {
3091  CodeGenFunction::SanitizerScope SanScope(&CGF);
3092  llvm::Value *Valid =
3093  Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3094  EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3095  }
3096 
3097  if (Ops.Ty->hasUnsignedIntegerRepresentation())
3098  return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3099  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3100 }
3101 
3103 // return corresponding comparison intrinsic for given vector type
3105  BuiltinType::Kind ElemKind) {
3106  switch (ElemKind) {
3107  default: llvm_unreachable("unexpected element type");
3108  case BuiltinType::Char_U:
3109  case BuiltinType::UChar:
3110  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3111  llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3112  case BuiltinType::Char_S:
3113  case BuiltinType::SChar:
3114  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3115  llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3116  case BuiltinType::UShort:
3117  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3118  llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3119  case BuiltinType::Short:
3120  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3121  llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3122  case BuiltinType::UInt:
3123  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3124  llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3125  case BuiltinType::Int:
3126  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3127  llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3128  case BuiltinType::ULong:
3129  case BuiltinType::ULongLong:
3130  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3131  llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3132  case BuiltinType::Long:
3133  case BuiltinType::LongLong:
3134  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3135  llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3136  case BuiltinType::Float:
3137  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3138  llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3139  case BuiltinType::Double:
3140  return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3141  llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3142  }
3143 }
3144 
3145 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3146  llvm::CmpInst::Predicate UICmpOpc,
3147  llvm::CmpInst::Predicate SICmpOpc,
3148  llvm::CmpInst::Predicate FCmpOpc) {
3149  TestAndClearIgnoreResultAssign();
3150  Value *Result;
3151  QualType LHSTy = E->getLHS()->getType();
3152  QualType RHSTy = E->getRHS()->getType();
3153  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3154  assert(E->getOpcode() == BO_EQ ||
3155  E->getOpcode() == BO_NE);
3156  Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3157  Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3158  Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3159  CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3160  } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3161  Value *LHS = Visit(E->getLHS());
3162  Value *RHS = Visit(E->getRHS());
3163 
3164  // If AltiVec, the comparison results in a numeric type, so we use
3165  // intrinsics comparing vectors and giving 0 or 1 as a result
3166  if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3167  // constants for mapping CR6 register bits to predicate result
3168  enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3169 
3170  llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3171 
3172  // in several cases vector arguments order will be reversed
3173  Value *FirstVecArg = LHS,
3174  *SecondVecArg = RHS;
3175 
3176  QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3177  const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3178  BuiltinType::Kind ElementKind = BTy->getKind();
3179 
3180  switch(E->getOpcode()) {
3181  default: llvm_unreachable("is not a comparison operation");
3182  case BO_EQ:
3183  CR6 = CR6_LT;
3184  ID = GetIntrinsic(VCMPEQ, ElementKind);
3185  break;
3186  case BO_NE:
3187  CR6 = CR6_EQ;
3188  ID = GetIntrinsic(VCMPEQ, ElementKind);
3189  break;
3190  case BO_LT:
3191  CR6 = CR6_LT;
3192  ID = GetIntrinsic(VCMPGT, ElementKind);
3193  std::swap(FirstVecArg, SecondVecArg);
3194  break;
3195  case BO_GT:
3196  CR6 = CR6_LT;
3197  ID = GetIntrinsic(VCMPGT, ElementKind);
3198  break;
3199  case BO_LE:
3200  if (ElementKind == BuiltinType::Float) {
3201  CR6 = CR6_LT;
3202  ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3203  std::swap(FirstVecArg, SecondVecArg);
3204  }
3205  else {
3206  CR6 = CR6_EQ;
3207  ID = GetIntrinsic(VCMPGT, ElementKind);
3208  }
3209  break;
3210  case BO_GE:
3211  if (ElementKind == BuiltinType::Float) {
3212  CR6 = CR6_LT;
3213  ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3214  }
3215  else {
3216  CR6 = CR6_EQ;
3217  ID = GetIntrinsic(VCMPGT, ElementKind);
3218  std::swap(FirstVecArg, SecondVecArg);
3219  }
3220  break;
3221  }
3222 
3223  Value *CR6Param = Builder.getInt32(CR6);
3224  llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3225  Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3226 
3227  // The result type of intrinsic may not be same as E->getType().
3228  // If E->getType() is not BoolTy, EmitScalarConversion will do the
3229  // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3230  // do nothing, if ResultTy is not i1 at the same time, it will cause
3231  // crash later.
3232  llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3233  if (ResultTy->getBitWidth() > 1 &&
3234  E->getType() == CGF.getContext().BoolTy)
3235  Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3236  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3237  E->getExprLoc());
3238  }
3239 
3240  if (LHS->getType()->isFPOrFPVectorTy()) {
3241  Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3242  } else if (LHSTy->hasSignedIntegerRepresentation()) {
3243  Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3244  } else {
3245  // Unsigned integers and pointers.
3246  Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3247  }
3248 
3249  // If this is a vector comparison, sign extend the result to the appropriate
3250  // vector integer type and return it (don't convert to bool).
3251  if (LHSTy->isVectorType())
3252  return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3253 
3254  } else {
3255  // Complex Comparison: can only be an equality comparison.
3257  QualType CETy;
3258  if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3259  LHS = CGF.EmitComplexExpr(E->getLHS());
3260  CETy = CTy->getElementType();
3261  } else {
3262  LHS.first = Visit(E->getLHS());
3263  LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3264  CETy = LHSTy;
3265  }
3266  if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3267  RHS = CGF.EmitComplexExpr(E->getRHS());
3268  assert(CGF.getContext().hasSameUnqualifiedType(CETy,
3269  CTy->getElementType()) &&
3270  "The element types must always match.");
3271  (void)CTy;
3272  } else {
3273  RHS.first = Visit(E->getRHS());
3274  RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3275  assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
3276  "The element types must always match.");
3277  }
3278 
3279  Value *ResultR, *ResultI;
3280  if (CETy->isRealFloatingType()) {
3281  ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3282  ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3283  } else {
3284  // Complex comparisons can only be equality comparisons. As such, signed
3285  // and unsigned opcodes are the same.
3286  ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3287  ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3288  }
3289 
3290  if (E->getOpcode() == BO_EQ) {
3291  Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3292  } else {
3293  assert(E->getOpcode() == BO_NE &&
3294  "Complex comparison other than == or != ?");
3295  Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3296  }
3297  }
3298 
3299  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3300  E->getExprLoc());
3301 }
3302 
3303 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3304  bool Ignore = TestAndClearIgnoreResultAssign();
3305 
3306  Value *RHS;
3307  LValue LHS;
3308 
3309  switch (E->getLHS()->getType().getObjCLifetime()) {
3311  std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3312  break;
3313 
3315  std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3316  break;
3317 
3319  std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3320  break;
3321 
3322  case Qualifiers::OCL_Weak:
3323  RHS = Visit(E->getRHS());
3324  LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3325  RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3326  break;
3327 
3328  case Qualifiers::OCL_None:
3329  // __block variables need to have the rhs evaluated first, plus
3330  // this should improve codegen just a little.
3331  RHS = Visit(E->getRHS());
3332  LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3333 
3334  // Store the value into the LHS. Bit-fields are handled specially
3335  // because the result is altered by the store, i.e., [C99 6.5.16p1]
3336  // 'An assignment expression has the value of the left operand after
3337  // the assignment...'.
3338  if (LHS.isBitField()) {
3339  CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3340  } else {
3341  CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3342  CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3343  }
3344  }
3345 
3346  // If the result is clearly ignored, return now.
3347  if (Ignore)
3348  return nullptr;
3349 
3350  // The result of an assignment in C is the assigned r-value.
3351  if (!CGF.getLangOpts().CPlusPlus)
3352  return RHS;
3353 
3354  // If the lvalue is non-volatile, return the computed value of the assignment.
3355  if (!LHS.isVolatileQualified())
3356  return RHS;
3357 
3358  // Otherwise, reload the value.
3359  return EmitLoadOfLValue(LHS, E->getExprLoc());
3360 }
3361 
3362 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3363  // Perform vector logical and on comparisons with zero vectors.
3364  if (E->getType()->isVectorType()) {
3365  CGF.incrementProfileCounter(E);
3366 
3367  Value *LHS = Visit(E->getLHS());
3368  Value *RHS = Visit(E->getRHS());
3369  Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3370  if (LHS->getType()->isFPOrFPVectorTy()) {
3371  LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3372  RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3373  } else {
3374  LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3375  RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3376  }
3377  Value *And = Builder.CreateAnd(LHS, RHS);
3378  return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3379  }
3380 
3381  llvm::Type *ResTy = ConvertType(E->getType());
3382 
3383  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3384  // If we have 1 && X, just emit X without inserting the control flow.
3385  bool LHSCondVal;
3386  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3387  if (LHSCondVal) { // If we have 1 && X, just emit X.
3388  CGF.incrementProfileCounter(E);
3389 
3390  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3391  // ZExt result to int or bool.
3392  return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3393  }
3394 
3395  // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3396  if (!CGF.ContainsLabel(E->getRHS()))
3397  return llvm::Constant::getNullValue(ResTy);
3398  }
3399 
3400  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3401  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
3402 
3404 
3405  // Branch on the LHS first. If it is false, go to the failure (cont) block.
3406  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3407  CGF.getProfileCount(E->getRHS()));
3408 
3409  // Any edges into the ContBlock are now from an (indeterminate number of)
3410  // edges from this first condition. All of these values will be false. Start
3411  // setting up the PHI node in the Cont Block for this.
3412  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3413  "", ContBlock);
3414  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3415  PI != PE; ++PI)
3416  PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3417 
3418  eval.begin(CGF);
3419  CGF.EmitBlock(RHSBlock);
3420  CGF.incrementProfileCounter(E);
3421  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3422  eval.end(CGF);
3423 
3424  // Reaquire the RHS block, as there may be subblocks inserted.
3425  RHSBlock = Builder.GetInsertBlock();
3426 
3427  // Emit an unconditional branch from this block to ContBlock.
3428  {
3429  // There is no need to emit line number for unconditional branch.
3430  auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3431  CGF.EmitBlock(ContBlock);
3432  }
3433  // Insert an entry into the phi node for the edge with the value of RHSCond.
3434  PN->addIncoming(RHSCond, RHSBlock);
3435 
3436  // ZExt result to int.
3437  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3438 }
3439 
3440 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3441  // Perform vector logical or on comparisons with zero vectors.
3442  if (E->getType()->isVectorType()) {
3443  CGF.incrementProfileCounter(E);
3444 
3445  Value *LHS = Visit(E->getLHS());
3446  Value *RHS = Visit(E->getRHS());
3447  Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3448  if (LHS->getType()->isFPOrFPVectorTy()) {
3449  LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3450  RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3451  } else {
3452  LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3453  RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3454  }
3455  Value *Or = Builder.CreateOr(LHS, RHS);
3456  return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3457  }
3458 
3459  llvm::Type *ResTy = ConvertType(E->getType());
3460 
3461  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3462  // If we have 0 || X, just emit X without inserting the control flow.
3463  bool LHSCondVal;
3464  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3465  if (!LHSCondVal) { // If we have 0 || X, just emit X.
3466  CGF.incrementProfileCounter(E);
3467 
3468  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3469  // ZExt result to int or bool.
3470  return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3471  }
3472 
3473  // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3474  if (!CGF.ContainsLabel(E->getRHS()))
3475  return llvm::ConstantInt::get(ResTy, 1);
3476  }
3477 
3478  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3479  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3480 
3482 
3483  // Branch on the LHS first. If it is true, go to the success (cont) block.
3484  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3485  CGF.getCurrentProfileCount() -
3486  CGF.getProfileCount(E->getRHS()));
3487 
3488  // Any edges into the ContBlock are now from an (indeterminate number of)
3489  // edges from this first condition. All of these values will be true. Start
3490  // setting up the PHI node in the Cont Block for this.
3491  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3492  "", ContBlock);
3493  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3494  PI != PE; ++PI)
3495  PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3496 
3497  eval.begin(CGF);
3498 
3499  // Emit the RHS condition as a bool value.
3500  CGF.EmitBlock(RHSBlock);
3501  CGF.incrementProfileCounter(E);
3502  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3503 
3504  eval.end(CGF);
3505 
3506  // Reaquire the RHS block, as there may be subblocks inserted.
3507  RHSBlock = Builder.GetInsertBlock();
3508 
3509  // Emit an unconditional branch from this block to ContBlock. Insert an entry
3510  // into the phi node for the edge with the value of RHSCond.
3511  CGF.EmitBlock(ContBlock);
3512  PN->addIncoming(RHSCond, RHSBlock);
3513 
3514  // ZExt result to int.
3515  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3516 }
3517 
3518 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3519  CGF.EmitIgnoredExpr(E->getLHS());
3520  CGF.EnsureInsertPoint();
3521  return Visit(E->getRHS());
3522 }
3523 
3524 //===----------------------------------------------------------------------===//
3525 // Other Operators
3526 //===----------------------------------------------------------------------===//
3527 
3528 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3529 /// expression is cheap enough and side-effect-free enough to evaluate
3530 /// unconditionally instead of conditionally. This is used to convert control
3531 /// flow into selects in some cases.
3533  CodeGenFunction &CGF) {
3534  // Anything that is an integer or floating point constant is fine.
3535  return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3536 
3537  // Even non-volatile automatic variables can't be evaluated unconditionally.
3538  // Referencing a thread_local may cause non-trivial initialization work to
3539  // occur. If we're inside a lambda and one of the variables is from the scope
3540  // outside the lambda, that function may have returned already. Reading its
3541  // locals is a bad idea. Also, these reads may introduce races there didn't
3542  // exist in the source-level program.
3543 }
3544 
3545 
3546 Value *ScalarExprEmitter::
3547 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3548  TestAndClearIgnoreResultAssign();
3549 
3550  // Bind the common expression if necessary.
3551  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3552 
3553  Expr *condExpr = E->getCond();
3554  Expr *lhsExpr = E->getTrueExpr();
3555  Expr *rhsExpr = E->getFalseExpr();
3556 
3557  // If the condition constant folds and can be elided, try to avoid emitting
3558  // the condition and the dead arm.
3559  bool CondExprBool;
3560  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3561  Expr *live = lhsExpr, *dead = rhsExpr;
3562  if (!CondExprBool) std::swap(live, dead);
3563 
3564  // If the dead side doesn't have labels we need, just emit the Live part.
3565  if (!CGF.ContainsLabel(dead)) {
3566  if (CondExprBool)
3567  CGF.incrementProfileCounter(E);
3568  Value *Result = Visit(live);
3569 
3570  // If the live part is a throw expression, it acts like it has a void
3571  // type, so evaluating it returns a null Value*. However, a conditional
3572  // with non-void type must return a non-null Value*.
3573  if (!Result && !E->getType()->isVoidType())
3574  Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3575 
3576  return Result;
3577  }
3578  }
3579 
3580  // OpenCL: If the condition is a vector, we can treat this condition like
3581  // the select function.
3582  if (CGF.getLangOpts().OpenCL
3583  && condExpr->getType()->isVectorType()) {
3584  CGF.incrementProfileCounter(E);
3585 
3586  llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3587  llvm::Value *LHS = Visit(lhsExpr);
3588  llvm::Value *RHS = Visit(rhsExpr);
3589 
3590  llvm::Type *condType = ConvertType(condExpr->getType());
3591  llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3592 
3593  unsigned numElem = vecTy->getNumElements();
3594  llvm::Type *elemType = vecTy->getElementType();
3595 
3596  llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3597  llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3598  llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3599  llvm::VectorType::get(elemType,
3600  numElem),
3601  "sext");
3602  llvm::Value *tmp2 = Builder.CreateNot(tmp);
3603 
3604  // Cast float to int to perform ANDs if necessary.
3605  llvm::Value *RHSTmp = RHS;
3606  llvm::Value *LHSTmp = LHS;
3607  bool wasCast = false;
3608  llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3609  if (rhsVTy->getElementType()->isFloatingPointTy()) {
3610  RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3611  LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3612  wasCast = true;
3613  }
3614 
3615  llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3616  llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3617  llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3618  if (wasCast)
3619  tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3620 
3621  return tmp5;
3622  }
3623 
3624  // If this is a really simple expression (like x ? 4 : 5), emit this as a
3625  // select instead of as control flow. We can only do this if it is cheap and
3626  // safe to evaluate the LHS and RHS unconditionally.
3627  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3629  llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3630  llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
3631 
3632  CGF.incrementProfileCounter(E, StepV);
3633 
3634  llvm::Value *LHS = Visit(lhsExpr);
3635  llvm::Value *RHS = Visit(rhsExpr);
3636  if (!LHS) {
3637  // If the conditional has void type, make sure we return a null Value*.
3638  assert(!RHS && "LHS and RHS types must match");
3639  return nullptr;
3640  }
3641  return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3642  }
3643 
3644  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3645  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3646  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3647 
3649  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3650  CGF.getProfileCount(lhsExpr));
3651 
3652  CGF.EmitBlock(LHSBlock);
3653  CGF.incrementProfileCounter(E);
3654  eval.begin(CGF);
3655  Value *LHS = Visit(lhsExpr);
3656  eval.end(CGF);
3657 
3658  LHSBlock = Builder.GetInsertBlock();
3659  Builder.CreateBr(ContBlock);
3660 
3661  CGF.EmitBlock(RHSBlock);
3662  eval.begin(CGF);
3663  Value *RHS = Visit(rhsExpr);
3664  eval.end(CGF);
3665 
3666  RHSBlock = Builder.GetInsertBlock();
3667  CGF.EmitBlock(ContBlock);
3668 
3669  // If the LHS or RHS is a throw expression, it will be legitimately null.
3670  if (!LHS)
3671  return RHS;
3672  if (!RHS)
3673  return LHS;
3674 
3675  // Create a PHI node for the real part.
3676  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3677  PN->addIncoming(LHS, LHSBlock);
3678  PN->addIncoming(RHS, RHSBlock);
3679  return PN;
3680 }
3681 
3682 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3683  return Visit(E->getChosenSubExpr());
3684 }
3685 
3686 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3687  QualType Ty = VE->getType();
3688 
3689  if (Ty->isVariablyModifiedType())
3690  CGF.EmitVariablyModifiedType(Ty);
3691 
3692  Address ArgValue = Address::invalid();
3693  Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3694 
3695  llvm::Type *ArgTy = ConvertType(VE->getType());
3696 
3697  // If EmitVAArg fails, emit an error.
3698  if (!ArgPtr.isValid()) {
3699  CGF.ErrorUnsupported(VE, "va_arg expression");
3700  return llvm::UndefValue::get(ArgTy);
3701  }
3702 
3703  // FIXME Volatility.
3704  llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3705 
3706  // If EmitVAArg promoted the type, we must truncate it.
3707  if (ArgTy != Val->getType()) {
3708  if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3709  Val = Builder.CreateIntToPtr(Val, ArgTy);
3710  else
3711  Val = Builder.CreateTrunc(Val, ArgTy);
3712  }
3713 
3714  return Val;
3715 }
3716 
3717 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3718  return CGF.EmitBlockLiteral(block);
3719 }
3720 
3721 // Convert a vec3 to vec4, or vice versa.
3722 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
3723  Value *Src, unsigned NumElementsDst) {
3724  llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3726  Args.push_back(Builder.getInt32(0));
3727  Args.push_back(Builder.getInt32(1));
3728  Args.push_back(Builder.getInt32(2));
3729  if (NumElementsDst == 4)
3730  Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3731  llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3732  return Builder.CreateShuffleVector(Src, UnV, Mask);
3733 }
3734 
3735 // Create cast instructions for converting LLVM value \p Src to LLVM type \p
3736 // DstTy. \p Src has the same size as \p DstTy. Both are single value types
3737 // but could be scalar or vectors of different lengths, and either can be
3738 // pointer.
3739 // There are 4 cases:
3740 // 1. non-pointer -> non-pointer : needs 1 bitcast
3741 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast
3742 // 3. pointer -> non-pointer
3743 // a) pointer -> intptr_t : needs 1 ptrtoint
3744 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
3745 // 4. non-pointer -> pointer
3746 // a) intptr_t -> pointer : needs 1 inttoptr
3747 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
3748 // Note: for cases 3b and 4b two casts are required since LLVM casts do not
3749 // allow casting directly between pointer types and non-integer non-pointer
3750 // types.
3752  const llvm::DataLayout &DL,
3753  Value *Src, llvm::Type *DstTy,
3754  StringRef Name = "") {
3755  auto SrcTy = Src->getType();
3756 
3757  // Case 1.
3758  if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
3759  return Builder.CreateBitCast(Src, DstTy, Name);
3760 
3761  // Case 2.
3762  if (SrcTy->isPointerTy() && DstTy->isPointerTy())
3763  return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
3764 
3765  // Case 3.
3766  if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
3767  // Case 3b.
3768  if (!DstTy->isIntegerTy())
3769  Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
3770  // Cases 3a and 3b.
3771  return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
3772  }
3773 
3774  // Case 4b.
3775  if (!SrcTy->isIntegerTy())
3776  Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
3777  // Cases 4a and 4b.
3778  return Builder.CreateIntToPtr(Src, DstTy, Name);
3779 }
3780 
3781 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3782  Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
3783  llvm::Type *DstTy = ConvertType(E->getType());
3784 
3785  llvm::Type *SrcTy = Src->getType();
3786  unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3787  cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3788  unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3789  cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3790 
3791  // Going from vec3 to non-vec3 is a special case and requires a shuffle
3792  // vector to get a vec4, then a bitcast if the target type is different.
3793  if (NumElementsSrc == 3 && NumElementsDst != 3) {
3794  Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3795 
3796  if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
3797  Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3798  DstTy);
3799  }
3800 
3801  Src->setName("astype");
3802  return Src;
3803  }
3804 
3805  // Going from non-vec3 to vec3 is a special case and requires a bitcast
3806  // to vec4 if the original type is not vec4, then a shuffle vector to
3807  // get a vec3.
3808  if (NumElementsSrc != 3 && NumElementsDst == 3) {
3809  if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
3810  auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3811  Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3812  Vec4Ty);
3813  }
3814 
3815  Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3816  Src->setName("astype");
3817  return Src;
3818  }
3819 
3820  return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
3821  Src, DstTy, "astype");
3822 }
3823 
3824 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3825  return CGF.EmitAtomicExpr(E).getScalarVal();
3826 }
3827 
3828 //===----------------------------------------------------------------------===//
3829 // Entry Point into this File
3830 //===----------------------------------------------------------------------===//
3831 
3832 /// Emit the computation of the specified expression of scalar type, ignoring
3833 /// the result.
3834 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3835  assert(E && hasScalarEvaluationKind(E->getType()) &&
3836  "Invalid scalar expression to emit");
3837 
3838  return ScalarExprEmitter(*this, IgnoreResultAssign)
3839  .Visit(const_cast<Expr *>(E));
3840 }
3841 
3842 /// Emit a conversion from the specified type to the specified destination type,
3843 /// both of which are LLVM scalar types.
3845  QualType DstTy,
3846  SourceLocation Loc) {
3847  assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3848  "Invalid scalar expression to emit");
3849  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3850 }
3851 
3852 /// Emit a conversion from the specified complex type to the specified
3853 /// destination type, where the destination type is an LLVM scalar type.
3855  QualType SrcTy,
3856  QualType DstTy,
3857  SourceLocation Loc) {
3858  assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3859  "Invalid complex -> scalar conversion");
3860  return ScalarExprEmitter(*this)
3861  .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3862 }
3863 
3864 
3867  bool isInc, bool isPre) {
3868  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3869 }
3870 
3872  // object->isa or (*object).isa
3873  // Generate code as for: *(Class*)object
3874 
3875  Expr *BaseExpr = E->getBase();
3876  Address Addr = Address::invalid();
3877  if (BaseExpr->isRValue()) {
3878  Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3879  } else {
3880  Addr = EmitLValue(BaseExpr).getAddress();
3881  }
3882 
3883  // Cast the address to Class*.
3884  Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3885  return MakeAddrLValue(Addr, E->getType());
3886 }
3887 
3888 
3890  const CompoundAssignOperator *E) {
3891  ScalarExprEmitter Scalar(*this);
3892  Value *Result = nullptr;
3893  switch (E->getOpcode()) {
3894 #define COMPOUND_OP(Op) \
3895  case BO_##Op##Assign: \
3896  return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3897  Result)
3898  COMPOUND_OP(Mul);
3899  COMPOUND_OP(Div);
3900  COMPOUND_OP(Rem);
3901  COMPOUND_OP(Add);
3902  COMPOUND_OP(Sub);
3903  COMPOUND_OP(Shl);
3904  COMPOUND_OP(Shr);
3905  COMPOUND_OP(And);
3906  COMPOUND_OP(Xor);
3907  COMPOUND_OP(Or);
3908 #undef COMPOUND_OP
3909 
3910  case BO_PtrMemD:
3911  case BO_PtrMemI:
3912  case BO_Mul:
3913  case BO_Div:
3914  case BO_Rem:
3915  case BO_Add:
3916  case BO_Sub:
3917  case BO_Shl:
3918  case BO_Shr:
3919  case BO_LT:
3920  case BO_GT:
3921  case BO_LE:
3922  case BO_GE:
3923  case BO_EQ:
3924  case BO_NE:
3925  case BO_Cmp:
3926  case BO_And:
3927  case BO_Xor:
3928  case BO_Or:
3929  case BO_LAnd:
3930  case BO_LOr:
3931  case BO_Assign:
3932  case BO_Comma:
3933  llvm_unreachable("Not valid compound assignment operators");
3934  }
3935 
3936  llvm_unreachable("Unhandled compound assignment operator");
3937 }
3938 
3940  ArrayRef<Value *> IdxList,
3941  bool SignedIndices,
3942  bool IsSubtraction,
3943  SourceLocation Loc,
3944  const Twine &Name) {
3945  Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
3946 
3947  // If the pointer overflow sanitizer isn't enabled, do nothing.
3948  if (!SanOpts.has(SanitizerKind::PointerOverflow))
3949  return GEPVal;
3950 
3951  // If the GEP has already been reduced to a constant, leave it be.
3952  if (isa<llvm::Constant>(GEPVal))
3953  return GEPVal;
3954 
3955  // Only check for overflows in the default address space.
3956  if (GEPVal->getType()->getPointerAddressSpace())
3957  return GEPVal;
3958 
3959  auto *GEP = cast<llvm::GEPOperator>(GEPVal);
3960  assert(GEP->isInBounds() && "Expected inbounds GEP");
3961 
3962  SanitizerScope SanScope(this);
3963  auto &VMContext = getLLVMContext();
3964  const auto &DL = CGM.getDataLayout();
3965  auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
3966 
3967  // Grab references to the signed add/mul overflow intrinsics for intptr_t.
3968  auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
3969  auto *SAddIntrinsic =
3970  CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
3971  auto *SMulIntrinsic =
3972  CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
3973 
3974  // The total (signed) byte offset for the GEP.
3975  llvm::Value *TotalOffset = nullptr;
3976  // The offset overflow flag - true if the total offset overflows.
3977  llvm::Value *OffsetOverflows = Builder.getFalse();
3978 
3979  /// Return the result of the given binary operation.
3980  auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
3981  llvm::Value *RHS) -> llvm::Value * {
3982  assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");
3983 
3984  // If the operands are constants, return a constant result.
3985  if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
3986  if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
3987  llvm::APInt N;
3988  bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
3989  /*Signed=*/true, N);
3990  if (HasOverflow)
3991  OffsetOverflows = Builder.getTrue();
3992  return llvm::ConstantInt::get(VMContext, N);
3993  }
3994  }
3995 
3996  // Otherwise, compute the result with checked arithmetic.
3997  auto *ResultAndOverflow = Builder.CreateCall(
3998  (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
3999  OffsetOverflows = Builder.CreateOr(
4000  Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4001  return Builder.CreateExtractValue(ResultAndOverflow, 0);
4002  };
4003 
4004  // Determine the total byte offset by looking at each GEP operand.
4005  for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4006  GTI != GTE; ++GTI) {
4007  llvm::Value *LocalOffset;
4008  auto *Index = GTI.getOperand();
4009  // Compute the local offset contributed by this indexing step:
4010  if (auto *STy = GTI.getStructTypeOrNull()) {
4011  // For struct indexing, the local offset is the byte position of the
4012  // specified field.
4013  unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4014  LocalOffset = llvm::ConstantInt::get(
4015  IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4016  } else {
4017  // Otherwise this is array-like indexing. The local offset is the index
4018  // multiplied by the element size.
4019  auto *ElementSize = llvm::ConstantInt::get(
4020  IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4021  auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4022  LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4023  }
4024 
4025  // If this is the first offset, set it as the total offset. Otherwise, add
4026  // the local offset into the running total.
4027  if (!TotalOffset || TotalOffset == Zero)
4028  TotalOffset = LocalOffset;
4029  else
4030  TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4031  }
4032 
4033  // Common case: if the total offset is zero, don't emit a check.
4034  if (TotalOffset == Zero)
4035  return GEPVal;
4036 
4037  // Now that we've computed the total offset, add it to the base pointer (with
4038  // wrapping semantics).
4039  auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
4040  auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
4041 
4042  // The GEP is valid if:
4043  // 1) The total offset doesn't overflow, and
4044  // 2) The sign of the difference between the computed address and the base
4045  // pointer matches the sign of the total offset.
4046  llvm::Value *ValidGEP;
4047  auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
4048  if (SignedIndices) {
4049  auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4050  auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
4051  llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4052  ValidGEP = Builder.CreateAnd(
4053  Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
4054  NoOffsetOverflow);
4055  } else if (!SignedIndices && !IsSubtraction) {
4056  auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4057  ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
4058  } else {
4059  auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4060  ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
4061  }
4062 
4063  llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4064  // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4065  llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4066  EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
4067  SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4068 
4069  return GEPVal;
4070 }
const llvm::DataLayout & getDataLayout() const
llvm::Value * getArrayInitIndex()
Get the index of the current ArrayInitLoopExpr, if any.
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
Defines the clang::ASTContext interface.
std::pair< RValue, llvm::Value * > EmitAtomicCompareExchange(LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, llvm::AtomicOrdering Success=llvm::AtomicOrdering::SequentiallyConsistent, llvm::AtomicOrdering Failure=llvm::AtomicOrdering::SequentiallyConsistent, bool IsWeak=false, AggValueSlot Slot=AggValueSlot::ignored())
Emit a compare-and-exchange op for atomic type.
Definition: CGAtomic.cpp:1955
The null pointer literal (C++11 [lex.nullptr])
Definition: ExprCXX.h:565
Expr * getChosenSubExpr() const
getChosenSubExpr - Return the subexpression chosen according to the condition.
Definition: Expr.h:3705
llvm::Value * EmitARCStoreStrong(LValue lvalue, llvm::Value *value, bool resultIgnored)
Store into a strong object.
Definition: CGObjC.cpp:2160
llvm::IntegerType * IntTy
int
bool getValue() const
Definition: ExprObjC.h:94
bool getValue() const
Definition: ExprCXX.h:2382
llvm::Value * EmitARCReclaimReturnedObject(const Expr *e, bool allowUnsafeClaim)
Definition: CGObjC.cpp:2581
static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, llvm::Value *InVal, bool IsInc)
VersionTuple getPlatformMinVersion() const
Retrieve the minimum desired version of the platform, to which the program should be compiled...
Definition: TargetInfo.h:999
LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const
bool isSignedOverflowDefined() const
Definition: LangOptions.h:176
bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const
EvaluateAsRValue - Return true if this is a constant which we can fold to an rvalue using any crazy t...
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2285
QualType getPointeeType() const
Definition: Type.h:2298
A (possibly-)qualified type.
Definition: Type.h:653
uint64_t getValue() const
Definition: ExprCXX.h:2472
bool sanitizePerformTypeCheck() const
Whether any type-checking sanitizers are enabled.
Definition: CGExpr.cpp:584
llvm::Type * ConvertTypeForMem(QualType T)
void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, uint64_t TrueCount)
EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g.
static Opcode getOpForCompoundAssignment(Opcode Opc)
Definition: Expr.h:3119
Represents a version number in the form major[.minor[.subminor[.build]]].
Definition: VersionTuple.h:26
const CodeGenOptions & getCodeGenOpts() const
llvm::Value * EmitARCExtendBlockObject(const Expr *expr)
Definition: CGObjC.cpp:3000
bool isUnsignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is unsigned or an enumeration types whose underlying ...
Definition: Type.cpp:1856
RValue EmitCoyieldExpr(const CoyieldExpr &E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
llvm::Constant * EmitCheckTypeDescriptor(QualType T)
Emit a description of a type in a format suitable for passing to a runtime sanitizer handler...
Definition: CGExpr.cpp:2609
Expr * getExpr(unsigned Index)
getExpr - Return the Expr at the specified index.
Definition: Expr.h:3573
unsigned getNumSubExprs() const
getNumSubExprs - Return the size of the SubExprs array.
Definition: Expr.h:3567
A type trait used in the implementation of various C++11 and Library TR1 trait templates.
Definition: ExprCXX.h:2339
llvm::Constant * getMemberPointerConstant(const UnaryOperator *e)
CompoundStmt * getSubStmt()
Definition: Expr.h:3504
LValue EmitObjCIsaExpr(const ObjCIsaExpr *E)
const Expr * getInit(unsigned Init) const
Definition: Expr.h:3920
static llvm::Constant * getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty)
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D...
Stmt - This represents one statement.
Definition: Stmt.h:66
Kind getKind() const
Definition: Type.h:2166
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:456
CharUnits getBaseClassOffset(const CXXRecordDecl *Base) const
getBaseClassOffset - Get the offset, in chars, for the given base class.
Definition: RecordLayout.h:223
bool isRealFloatingType() const
Floating point categories.
Definition: Type.cpp:1893
Address GetAddressOfDerivedClass(Address Value, const CXXRecordDecl *Derived, CastExpr::path_const_iterator PathBegin, CastExpr::path_const_iterator PathEnd, bool NullCheckValue)
Definition: CGClass.cpp:374
Address EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr)
EmitPointerWithAlignment - Given an expression with a pointer type, emit the value and compute our be...
Definition: CGExpr.cpp:967
Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr)
Generate code to get an argument from the passed in pointer and update it accordingly.
Definition: CGCall.cpp:4393
Expr * getBase() const
Definition: Expr.h:2477
RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, AggValueSlot slot=AggValueSlot::ignored())
Definition: CGExpr.cpp:4746
llvm::APFloat getValue() const
Definition: Expr.h:1405
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, QualType Type, CharUnits Alignment=CharUnits::Zero(), SanitizerSet SkippedChecks=SanitizerSet())
Emit a check that V is the address of storage of the appropriate size and alignment for an object of ...
Definition: CGExpr.cpp:591
Represents the index of the current element of an array being initialized by an ArrayInitLoopExpr.
Definition: Expr.h:4545
bool isExtVectorType() const
Definition: Type.h:6033
bool isVirtual() const
Determines whether the base class is a virtual base class (or not).
Definition: DeclCXX.h:244
RValue EmitCoawaitExpr(const CoawaitExpr &E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
Opcode getOpcode() const
Definition: Expr.h:3026
llvm::Type * FloatTy
float, double
void EmitCheck(ArrayRef< std::pair< llvm::Value *, SanitizerMask >> Checked, SanitizerHandler Check, ArrayRef< llvm::Constant *> StaticArgs, ArrayRef< llvm::Value *> DynamicArgs)
Create a basic block that will call a handler function in a sanitizer runtime with the provided argum...
Definition: CGExpr.cpp:2821
ParenExpr - This represents a parethesized expression, e.g.
Definition: Expr.h:1665
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:5893
llvm::Value * LoadCXXThis()
LoadCXXThis - Load the value of &#39;this&#39;.
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
Definition: CGExpr.cpp:1836
FPOptions getFPFeatures() const
Definition: Expr.h:3157
An Embarcadero array type trait, as used in the implementation of __array_rank and __array_extent...
Definition: ExprCXX.h:2423
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:671
Floating point control options.
Definition: LangOptions.h:208
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4035
const Expr * getResultExpr() const
The generic selection&#39;s result expression.
Definition: Expr.h:4760
static Value * buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, const CodeGenFunction &CGF, CGBuilderTy &Builder, bool negMul, bool negAdd)
bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, bool AllowLabels=false)
ConstantFoldsToSimpleInteger - If the specified expression does not fold to a constant, or if it does but contains a label, return false.
QualType getElementType() const
Definition: Type.h:2595
#define COMPOUND_OP(Op)
Expr * getIndexExpr(unsigned Idx)
Definition: Expr.h:1989
bool isUnsignedIntegerType() const
Return true if this is an integer type that is unsigned, according to C99 6.2.5p6 [which returns true...
Definition: Type.cpp:1840
bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC &#39;id&#39; type.
Definition: ExprObjC.h:1436
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2637
RAII object to set/unset CodeGenFunction::IsSanitizerScope.
const AstTypeMatcher< PointerType > pointerType
Matches pointer types, but does not match Objective-C object pointer types.
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6307
uint64_t getProfileCount(const Stmt *S)
Get the profiler&#39;s count for the given statement.
const llvm::fltSemantics & getHalfFormat() const
Definition: TargetInfo.h:406
llvm::Value * EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty)
Definition: CGObjC.cpp:3396
void EmitVariablyModifiedType(QualType Ty)
EmitVLASize - Capture all the sizes for the VLA expressions in the given variably-modified type and s...
llvm::Value * getPointer() const
Definition: Address.h:38
bool IsSanitizerScope
True if CodeGen currently emits code implementing sanitizer checks.
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:985
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3000
llvm::Value * EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E)
Definition: CGObjC.cpp:243
void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, llvm::Value **Result=nullptr)
EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints as EmitStoreThroughLValue.
Definition: CGExpr.cpp:1933
Expr * IgnoreImpCasts() LLVM_READONLY
IgnoreImpCasts - Skip past any implicit casts which might surround this expression.
Definition: Expr.h:2865
void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, QualType IndexType, bool Accessed)
Emit a check that Base points into an array object, which we can access at index Index.
Definition: CGExpr.cpp:890
RecordDecl - Represents a struct/union/class.
Definition: Decl.h:3482
const TargetInfo & getTarget() const
An object to manage conditionally-evaluated expressions.
llvm::Value * EmitCXXNewExpr(const CXXNewExpr *E)
Definition: CGExprCXX.cpp:1521
FieldDecl * getField() const
For a field offsetof node, returns the field.
Definition: Expr.h:1886
llvm::Value * EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, bool isInc, bool isPre)
LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, llvm::Value *&Result)
ShuffleVectorExpr - clang-specific builtin-in function __builtin_shufflevector.
Definition: Expr.h:3533
Address getAddress() const
Definition: CGValue.h:324
QualType getComputationResultType() const
Definition: Expr.h:3217
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:149
std::pair< LValue, llvm::Value * > EmitARCStoreAutoreleasing(const BinaryOperator *e)
Definition: CGObjC.cpp:3156
llvm::Value * EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE)
Definition: CGExprCXX.cpp:2124
bool isVolatileQualified() const
Definition: CGValue.h:255
FieldDecl - An instance of this class is created by Sema::ActOnField to represent a member of a struc...
Definition: Decl.h:2461
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
unsigned getArrayExprIndex() const
For an array element node, returns the index into the array of expressions.
Definition: Expr.h:1880
GNUNullExpr - Implements the GNU __null extension, which is a name for a null pointer constant that h...
Definition: Expr.h:3744
bool isReferenceType() const
Definition: Type.h:5956
Expr * getSubExpr()
Definition: Expr.h:2761
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp, [NSNumber numberWithInt:42]];.
Definition: ExprObjC.h:171
llvm::Value * EmitObjCBoxedExpr(const ObjCBoxedExpr *E)
EmitObjCBoxedExpr - This routine generates code to call the appropriate expression boxing method...
Definition: CGObjC.cpp:60
bool hadArrayRangeDesignator() const
Definition: Expr.h:4040
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:107
const RValue & getOpaqueRValueMapping(const OpaqueValueExpr *e)
getOpaqueRValueMapping - Given an opaque value expression (which must be mapped to an r-value)...
bool isGLValue() const
Definition: Expr.h:252
Describes an C or C++ initializer list.
Definition: Expr.h:3872
BinaryOperatorKind
llvm::Value * EmitObjCStringLiteral(const ObjCStringLiteral *E)
Emits an instance of NSConstantString representing the object.
Definition: CGObjC.cpp:46
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:157
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
APValue Val
Val - This is the value the expression can be folded to.
Definition: Expr.h:573
uint32_t Offset
Definition: CacheTokens.cpp:43
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:119
path_iterator path_begin()
Definition: Expr.h:2777
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2985
Optional< unsigned > getMinor() const
Retrieve the minor version number, if provided.
Definition: VersionTuple.h:77
virtual llvm::Value * EmitMemberPointerIsNotNull(CodeGenFunction &CGF, llvm::Value *MemPtr, const MemberPointerType *MPT)
Determine if a member pointer is non-null. Returns an i1.
Definition: CGCXXABI.cpp:97
static Value * tryEmitFMulAdd(const BinOpInfo &op, const CodeGenFunction &CGF, CGBuilderTy &Builder, bool isSub=false)
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:51
static llvm::Constant * getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, unsigned Off, llvm::Type *I32Ty)
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:39
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:5720
field_iterator field_begin() const
Definition: Decl.cpp:3937
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
llvm::Value * EmitARCRetainScalarExpr(const Expr *expr)
EmitARCRetainScalarExpr - Semantically equivalent to EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a best-effort attempt to peephole expressions that naturally produce retained objects.
Definition: CGObjC.cpp:2967
void EmitIgnoredExpr(const Expr *E)
EmitIgnoredExpr - Emit an expression in a context which ignores the result.
Definition: CGExpr.cpp:161
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2710
Helper class for OffsetOfExpr.
Definition: Expr.h:1822
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
RValue EmitAtomicExpr(AtomicExpr *E)
Definition: CGAtomic.cpp:742
static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts=false)
ContainsLabel - Return true if the statement contains a label in it.
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler&#39;s counter for the given statement by StepV.
uint64_t getCurrentProfileCount()
Get the profiler&#39;s current count.
QualType getReturnType() const
Definition: DeclObjC.h:361
llvm::Value * EmitBlockLiteral(const BlockExpr *, llvm::Function **InvokeF=nullptr)
Emit block literal.
Definition: CGBlocks.cpp:743
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:1042
static bool ShouldNullCheckClassCastValue(const CastExpr *Cast)
Checking the operand of a load. Must be suitably sized and aligned.
This object can be modified without requiring retains or releases.
Definition: Type.h:173
Represents the this expression in C++.
Definition: ExprCXX.h:945
virtual llvm::Value * performAddrSpaceCast(CodeGen::CodeGenFunction &CGF, llvm::Value *V, LangAS SrcAddr, LangAS DestAddr, llvm::Type *DestTy, bool IsNonNull=false) const
Perform address space cast of an expression of pointer type.
Definition: TargetInfo.cpp:434
llvm::Constant * CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false)
Create a new runtime function with the specified type and name.
static bool isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc, Expr *LHS, Expr *RHS)
Definition: Expr.cpp:1834
const Expr * getExpr() const
Get the initialization expression that will be used.
Definition: ExprCXX.h:1141
#define HANDLEBINOP(OP)
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
bool isHalfType() const
Definition: Type.h:6177
RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, ReturnValueSlot Return=ReturnValueSlot())
Definition: CGObjC.cpp:355
bool isValid() const
Definition: Address.h:36
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:274
bool isPromotableIntegerType() const
More type predicates useful for type checking/promotion.
Definition: Type.cpp:2381
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition: CharUnits.h:58
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2197
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
llvm::CallInst * EmitNounwindRuntimeCall(llvm::Value *callee, const Twine &name="")
const TargetCodeGenInfo & getTargetCodeGenInfo()
QualType getComputationLHSType() const
Definition: Expr.h:3214
CastKind
CastKind - The kind of operation required for a conversion.
UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated) expression operand...
Definition: Expr.h:2031
llvm::Constant * getNullPointer(llvm::PointerType *T, QualType QT)
Get target specific null pointer.
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:3778
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:39
const llvm::fltSemantics & getLongDoubleFormat() const
Definition: TargetInfo.h:422
unsigned getValue() const
Definition: Expr.h:1372
llvm::Value * EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored)
i8* @objc_storeWeak(i8** addr, i8* value) Returns value.
Definition: CGObjC.cpp:2266
Expr * getSrcExpr() const
getSrcExpr - Return the Expr to be converted.
Definition: Expr.h:4919
llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const
Definition: Expr.h:3584
An expression "T()" which creates a value-initialized rvalue of type T, which is a non-class type...
Definition: ExprCXX.h:1802
bool isEventT() const
Definition: Type.h:6102
ValueDecl - Represent the declaration of a variable (in which case it is an lvalue) a function (in wh...
Definition: Decl.h:628
Expr - This represents one expression.
Definition: Expr.h:106
Allow any unmodeled side effect.
Definition: Expr.h:598
static Address invalid()
Definition: Address.h:35
CXXBaseSpecifier * getBase() const
For a base class node, returns the base specifier.
Definition: Expr.h:1896
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
const FunctionProtoType * T
llvm::Value * EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified complex type to the specified destination type, where the destination type is an LLVM scalar type.
SourceLocation getExprLoc() const LLVM_READONLY
Definition: ExprObjC.h:1485
const CXXRecordDecl * getPointeeCXXRecordDecl() const
If this is a pointer or reference to a RecordType, return the CXXRecordDecl that that type refers to...
Definition: Type.cpp:1575
unsigned getPackLength() const
Retrieve the length of the parameter pack.
Definition: ExprCXX.h:3801
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6370
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:4851
Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
EmitCompoundStmt - Emit a compound statement {..} node.
Definition: CGStmt.cpp:363
unsigned getNumInits() const
Definition: Expr.h:3902
bool isNullPtrType() const
Definition: Type.h:6184
void SetFPAccuracy(llvm::Value *Val, float Accuracy)
SetFPAccuracy - Set the minimum required accuracy of the given floating point operation, expressed as the maximum relative error in ulp.
Definition: CGExpr.cpp:4662
field_iterator field_end() const
Definition: Decl.h:3616
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:288
llvm::Value * EmitToMemory(llvm::Value *Value, QualType Ty)
EmitToMemory - Change a scalar value from its value representation to its in-memory representation...
Definition: CGExpr.cpp:1599
bool isAnyComplexType() const
Definition: Type.h:6025
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:429
TypeSourceInfo * getTypeSourceInfo() const
Definition: Expr.h:1968
Represents an expression that computes the length of a parameter pack.
Definition: ExprCXX.h:3724
AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2] This AST node provides support ...
Definition: Expr.h:4896
unsigned getFieldCount() const
getFieldCount - Get the number of fields in the layout.
Definition: RecordLayout.h:177
Kind getKind() const
Determine what kind of offsetof node this is.
Definition: Expr.h:1876
QualType getType() const
Definition: Expr.h:128
void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc)
Given an assignment *LHS = RHS, emit a test that checks if RHS is nonnull, if LHS is marked _Nonnull...
Definition: CGDecl.cpp:692
An RAII object to record that we&#39;re evaluating a statement expression.
QualType getTypeOfArgument() const
Gets the argument type, or the type of the argument expression, whichever is appropriate.
Definition: Expr.h:2094
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:903
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1717
Represents a GCC generic vector type.
Definition: Type.h:2916
bool isNullPointer() const
Definition: APValue.cpp:584
llvm::Value * EmitCastToVoidPtr(llvm::Value *value)
Emit a cast to void* in the appropriate address space.
Definition: CGExpr.cpp:50
ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr)
Try to emit a reference to the given value without producing it as an l-value.
Definition: CGExpr.cpp:1351
Represents a reference to a non-type template parameter that has been substituted with a template arg...
Definition: ExprCXX.h:3838
const OffsetOfNode & getComponent(unsigned Idx) const
Definition: Expr.h:1975
const TargetInfo & getTarget() const
const Expr * getSubExpr() const
Definition: Expr.h:1681
bool getValue() const
Definition: ExprCXX.h:543
The l-value was considered opaque, so the alignment was determined from a type.
RecordDecl * getDecl() const
Definition: Type.h:3988
void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, llvm::Value *OffsetValue=nullptr)
virtual bool useFP16ConversionIntrinsics() const
Check whether llvm intrinsics such as llvm.convert.to.fp16 should be used to convert to and from __fp...
Definition: TargetInfo.h:566
uint64_t getFieldOffset(unsigned FieldNo) const
getFieldOffset - Get the offset of the given field index, in bits.
Definition: RecordLayout.h:181
There is no lifetime qualification on this type.
Definition: Type.h:169
bool getValue() const
Definition: ExprCXX.h:3625
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:338
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:868
Address CreateBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Definition: CGBuilder.h:142
ConvertVectorExpr - Clang builtin function __builtin_convertvector This AST node provides support for...
Definition: Expr.h:3601
virtual llvm::Value * EmitMemberPointerConversion(CodeGenFunction &CGF, const CastExpr *E, llvm::Value *Src)
Perform a derived-to-base, base-to-derived, or bitcast member pointer conversion. ...
Definition: CGCXXABI.cpp:74
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:180
Kind
A field in a dependent type, known only by its name.
Definition: Expr.h:1831
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:4969
Encodes a location in the source.
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go...
llvm::Value * EmitObjCArrayLiteral(const ObjCArrayLiteral *E)
Definition: CGObjC.cpp:239
std::pair< LValue, llvm::Value * > EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored)
Definition: CGObjC.cpp:3106
LangAS getAddressSpace() const
Return the address space of this type.
Definition: Type.h:5836
bool allowFPContractAcrossStatement() const
Definition: LangOptions.h:222
unsigned getOpenMPDefaultSimdAlign(QualType T) const
Get default simd alignment of the specified complete type in bits.
Expr * getSubExpr() const
Definition: Expr.h:1744
llvm::Value * EvaluateExprAsBool(const Expr *E)
EvaluateExprAsBool - Perform the usual unary conversions on the specified expression and compare the ...
Definition: CGExpr.cpp:143
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:1806
LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK)
Same as EmitLValue but additionally we generate checking code to guard against undefined behavior...
Definition: CGExpr.cpp:1134
bool isVariablyModifiedType() const
Whether this type is a variably-modified type (C99 6.7.5).
Definition: Type.h:1876
llvm::Value * EmitFromMemory(llvm::Value *Value, QualType Ty)
EmitFromMemory - Change a scalar value from its memory representation to its value representation...
Definition: CGExpr.cpp:1613
CastKind getCastKind() const
Definition: Expr.h:2757
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1842
QualType getElementType() const
Definition: Type.h:2951
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:620
StmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:186
CanQualType FloatTy
Definition: ASTContext.h:1007
SanitizerSet SanOpts
Sanitizers enabled for this function.
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1816
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>, and corresponding __opencl_atomic_* for OpenCL 2.0.
Definition: Expr.h:5103
UnaryExprOrTypeTrait getKind() const
Definition: Expr.h:2062
ObjCProtocolExpr used for protocol expression in Objective-C.
Definition: ExprObjC.h:474
TypeCheckKind
Situations in which we might emit a check for the suitability of a pointer or glvalue.
An aligned address.
Definition: Address.h:25
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:2822
Address EmitArrayToPointerDecay(const Expr *Array, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr)
Definition: CGExpr.cpp:3111
An expression trait intrinsic.
Definition: ExprCXX.h:2493
const ObjCMethodDecl * getMethodDecl() const
Definition: ExprObjC.h:1302
bool isVectorType() const
Definition: Type.h:6029
Assigning into this object requires a lifetime extension.
Definition: Type.h:186
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3488
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:117
virtual llvm::Constant * EmitNullMemberPointer(const MemberPointerType *MPT)
Create a null member pointer of the given type.
Definition: CGCXXABI.cpp:105
bool isArgumentType() const
Definition: Expr.h:2067
RValue EmitCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue=ReturnValueSlot())
Definition: CGExpr.cpp:4177
bool isCanonical() const
Definition: Type.h:5764
void enterFullExpression(const ExprWithCleanups *E)
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2214
static Value * createCastsForTypeOfSameSize(CGBuilderTy &Builder, const llvm::DataLayout &DL, Value *Src, llvm::Type *DstTy, StringRef Name="")
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
const llvm::fltSemantics & getFloatTypeSemantics(QualType T) const
Return the APFloat &#39;semantics&#39; for the specified scalar floating point type.
Expr * getLHS() const
Definition: Expr.h:3029
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:3191
const llvm::fltSemantics & getFloat128Format() const
Definition: TargetInfo.h:430
Represents a C11 generic selection.
Definition: Expr.h:4684
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
virtual llvm::Value * EmitMemberPointerComparison(CodeGenFunction &CGF, llvm::Value *L, llvm::Value *R, const MemberPointerType *MPT, bool Inequality)
Emit a comparison between two member pointers. Returns an i1.
Definition: CGCXXABI.cpp:87
AddrLabelExpr - The GNU address of label extension, representing &&label.
Definition: Expr.h:3444
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition: CGValue.h:59
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:905
Dataflow Directional Tag Classes.
int getFloatingTypeOrder(QualType LHS, QualType RHS) const
Compare the rank of the two specified floating point types, ignoring the domain of the type (i...
uint64_t SanitizerMask
Definition: Sanitizers.h:24
Optional< unsigned > getSubminor() const
Retrieve the subminor version number, if provided.
Definition: VersionTuple.h:84
void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, bool MayBeNull, CFITypeCheckKind TCK, SourceLocation Loc)
Derived is the presumed address of an object of type T after a cast.
Definition: CGClass.cpp:2596
std::string OverflowHandler
The name of the handler function to be called when -ftrapv is specified.
Definition: LangOptions.h:125
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:571
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2071
bool isShiftOp() const
Definition: Expr.h:3064
A runtime availability query.
Definition: ExprObjC.h:1633
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:70
Represents a &#39;co_yield&#39; expression.
Definition: ExprCXX.h:4387
unsigned getMajor() const
Retrieve the major version number.
Definition: VersionTuple.h:74
static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, BuiltinType::Kind ElemKind)
static Value * emitPointerArithmetic(CodeGenFunction &CGF, const BinOpInfo &op, bool isSubtraction)
Emit pointer + index arithmetic.
bool isBooleanType() const
Definition: Type.h:6234
const Expr * getExpr() const
Definition: ExprCXX.h:1077
llvm::Constant * EmitNullConstant(QualType T)
Return the result of value-initializing the given type, i.e.
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5483
Checking the destination of a store. Must be suitably sized and aligned.
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type *> Tys=None)
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2504
bool isBitField() const
Definition: CGValue.h:251
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:108
QualType getCallReturnType(const ASTContext &Ctx) const
getCallReturnType - Get the return type of the call expr.
Definition: Expr.cpp:1307
ExplicitCastExpr - An explicit cast written in the source code.
Definition: Expr.h:2888
static Value * ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, Value *Src, unsigned NumElementsDst)
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:1596
llvm::APInt getValue() const
Definition: Expr.h:1279
LabelDecl * getLabel() const
Definition: Expr.h:3466
#define VISITCOMP(CODE, UI, SI, FP)
Represents a pointer to an Objective C object.
Definition: Type.h:5442
path_iterator path_end()
Definition: Expr.h:2778
Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
Definition: ExprCXX.h:3600
unsigned getIntWidth(QualType T) const
void EmitExplicitCastExprType(const ExplicitCastExpr *E, CodeGenFunction *CGF=nullptr)
Emit type info if type of an expression is a variably modified type.
Definition: CGExpr.cpp:951
bool HasSideEffects
Whether the evaluated expression has side effects.
Definition: Expr.h:544
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:3978
Complex values, per C99 6.2.5p11.
Definition: Type.h:2225
Expr * getBase() const
Definition: ExprObjC.h:1462
const LValue & getOpaqueLValueMapping(const OpaqueValueExpr *e)
getOpaqueLValueMapping - Given an opaque value expression (which must be mapped to an l-value)...
void dump() const
Dumps the specified AST fragment and all subtrees to llvm::errs().
Definition: ASTDumper.cpp:2732
Checking the operand of a static_cast to a derived pointer type.
ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
Definition: Expr.h:2121
AbstractConditionalOperator - An abstract base class for ConditionalOperator and BinaryConditionalOpe...
Definition: Expr.h:3227
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6193
T * getAttr() const
Definition: DeclBase.h:531
An implicit indirection through a C++ base class, when the field found is in a base class...
Definition: Expr.h:1834
uint64_t getCharWidth() const
Return the size of the character type, in bits.
Definition: ASTContext.h:2011
bool isFunctionType() const
Definition: Type.h:5940
llvm::Value * EmitCheckedInBoundsGEP(llvm::Value *Ptr, ArrayRef< llvm::Value *> IdxList, bool SignedIndices, bool IsSubtraction, SourceLocation Loc, const Twine &Name="")
Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to detect undefined behavior whe...
Represents a &#39;co_await&#39; expression.
Definition: ExprCXX.h:4304
ExtVectorType - Extended vector type.
Definition: Type.h:2990
Opcode getOpcode() const
Definition: Expr.h:1741
llvm::Value * createOpenCLIntToSamplerConversion(const Expr *E, CodeGenFunction &CGF)
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:436
SourceLocation getExprLoc() const LLVM_READONLY
Definition: Expr.h:3022
ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal=false, bool IgnoreImag=false)
EmitComplexExpr - Emit the computation of the specified expression of complex type, returning the result.
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2007
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:513
SourceManager & getSourceManager()
Definition: ASTContext.h:643
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2174
A use of a default initializer in a constructor or in aggregate initialization.
Definition: ExprCXX.h:1113
Expr * getSrcExpr() const
getSrcExpr - Return the Expr to be converted.
Definition: Expr.h:3625
CharUnits toCharUnitsFromBits(int64_t BitSize) const
Convert a size in bits to a size in characters.
Reading or writing from this object requires a barrier call.
Definition: Type.h:183
bool isQueueT() const
Definition: Type.h:6110
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2387
void ErrorUnsupported(const Stmt *S, const char *Type)
ErrorUnsupported - Print out an error that codegen doesn&#39;t support the specified stmt yet...
bool hasSignedIntegerRepresentation() const
Determine whether this type has an signed integer representation of some sort, e.g., it is an signed integer type or a vector.
Definition: Type.cpp:1830
Represents a C++ struct/union/class.
Definition: DeclCXX.h:299
bool isVoidType() const
Definition: Type.h:6171
ChooseExpr - GNU builtin-in function __builtin_choose_expr.
Definition: Expr.h:3664
An index into an array.
Definition: Expr.h:1827
llvm::Type * ConvertType(QualType T)
bool hasIntegerRepresentation() const
Determine whether this type has an integer representation of some sort, e.g., it is an integer type o...
Definition: Type.cpp:1696
void EmitCXXDeleteExpr(const CXXDeleteExpr *E)
Definition: CGExprCXX.cpp:1964
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1170
void EmitTrapCheck(llvm::Value *Checked)
Create a basic block that will call the trap intrinsic, and emit a conditional branch to it...
Definition: CGExpr.cpp:3079
bool isRValue() const
Definition: Expr.h:250
This class is used for builtin types like &#39;int&#39;.
Definition: Type.h:2145
RValue EmitLoadOfLValue(LValue V, SourceLocation Loc)
EmitLoadOfLValue - Given an expression that represents a value lvalue, this method emits the address ...
Definition: CGExpr.cpp:1682
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:50
#define fabs(__x)
Definition: tgmath.h:565
std::pair< llvm::Value *, QualType > getVLASize(const VariableArrayType *vla)
getVLASize - Returns an LLVM value that corresponds to the size, in non-variably-sized elements...
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2209
LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E)
llvm::Value * EmitScalarConversion(llvm::Value *Src, QualType SrcTy, QualType DstTy, SourceLocation Loc)
Emit a conversion from the specified type to the specified destination type, both of which are LLVM s...
CGCXXABI & getCXXABI() const
const VariableArrayType * getAsVariableArrayType(QualType T) const
Definition: ASTContext.h:2324
ObjCBoolLiteralExpr - Objective-C Boolean Literal.
Definition: ExprObjC.h:82
unsigned getNumComponents() const
Definition: Expr.h:1985
bool isEvaluatable(const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
isEvaluatable - Call EvaluateAsRValue to see if this expression can be constant folded without side-e...
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:956
static RValue get(llvm::Value *V)
Definition: CGValue.h:86
Expr * getRHS() const
Definition: Expr.h:3031
IntrinsicType
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
static ApplyDebugLocation CreateEmpty(CodeGenFunction &CGF)
Set the IRBuilder to not attach debug locations.
Definition: CGDebugInfo.h:668
llvm::Constant * EmitCheckSourceLocation(SourceLocation Loc)
Emit a description of a source location in a format suitable for passing to a runtime sanitizer handl...
Definition: CGExpr.cpp:2690
QualType getType() const
Definition: Decl.h:639
bool isFloatingType() const
Definition: Type.cpp:1877
LValue - This represents an lvalue references.
Definition: CGValue.h:167
llvm::BlockAddress * GetAddrOfLabel(const LabelDecl *L)
A boolean literal, per ([C++ lex.bool] Boolean literals).
Definition: ExprCXX.h:530
OffsetOfExpr - [C99 7.17] - This represents an expression of the form offsetof(record-type, member-designator).
Definition: Expr.h:1926
llvm::Value * EmitObjCConsumeObject(QualType T, llvm::Value *Ptr)
Produce the code for a CK_ARCConsumeObject.
Definition: CGObjC.cpp:1788
CanQualType BoolTy
Definition: ASTContext.h:997
Represents a C array with a specified size that is not an integer-constant-expression.
Definition: Type.h:2719
const LangOptions & getLangOpts() const
Address CreatePointerBitCastOrAddrSpaceCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Definition: CGBuilder.h:164
SourceLocation getLocStart() const LLVM_READONLY
Definition: Stmt.cpp:277
static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, CodeGenFunction &CGF)
isCheapEnoughToEvaluateUnconditionally - Return true if the specified expression is cheap enough and ...
const LangOptions & getLangOpts() const
Definition: ASTContext.h:688
llvm::Value * getPointer() const
Definition: CGValue.h:320
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:4580
void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint=true)
QualType getType() const
Return the type wrapped by this type source info.
Definition: Decl.h:97
llvm::Value * EmitBuiltinAvailable(ArrayRef< llvm::Value *> Args)
Definition: CGObjC.cpp:3421
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2434
static OMPLinearClause * Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef< Expr *> VL, ArrayRef< Expr *> PL, ArrayRef< Expr *> IL, Expr *Step, Expr *CalcStep, Stmt *PreInit, Expr *PostUpdate)
Creates clause with a list of variables VL and a linear step Step.
llvm::Value * EmitObjCSelectorExpr(const ObjCSelectorExpr *E)
Emit a selector.
Definition: CGObjC.cpp:249
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1072
bool isCompoundAssignmentOp() const
Definition: Expr.h:3116
llvm::Value * EmitObjCProtocolExpr(const ObjCProtocolExpr *E)
Definition: CGObjC.cpp:257
QualType getType() const
Retrieves the type of the base class.
Definition: DeclCXX.h:290