clang  7.0.0svn
CodeGenFunction.h
Go to the documentation of this file.
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
33 #include "clang/Basic/TargetInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/MapVector.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Transforms/Utils/SanitizerStats.h"
42 
43 namespace llvm {
44 class BasicBlock;
45 class LLVMContext;
46 class MDNode;
47 class Module;
48 class SwitchInst;
49 class Twine;
50 class Value;
51 class CallSite;
52 }
53 
54 namespace clang {
55 class ASTContext;
56 class BlockDecl;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class EnumConstantDecl;
63 class FunctionDecl;
64 class FunctionProtoType;
65 class LabelStmt;
66 class ObjCContainerDecl;
67 class ObjCInterfaceDecl;
68 class ObjCIvarDecl;
69 class ObjCMethodDecl;
70 class ObjCImplementationDecl;
71 class ObjCPropertyImplDecl;
72 class TargetInfo;
73 class VarDecl;
74 class ObjCForCollectionStmt;
75 class ObjCAtTryStmt;
76 class ObjCAtThrowStmt;
77 class ObjCAtSynchronizedStmt;
78 class ObjCAutoreleasePoolStmt;
79 
80 namespace analyze_os_log {
81 class OSLogBufferLayout;
82 }
83 
84 namespace CodeGen {
85 class CodeGenTypes;
86 class CGCallee;
87 class CGFunctionInfo;
88 class CGRecordLayout;
89 class CGBlockInfo;
90 class CGCXXABI;
91 class BlockByrefHelpers;
92 class BlockByrefInfo;
93 class BlockFlags;
94 class BlockFieldFlags;
95 class RegionCodeGenTy;
96 class TargetCodeGenInfo;
97 struct OMPTaskDataTy;
98 struct CGCoroData;
99 
100 /// The kind of evaluation to perform on values of a particular
101 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or
102 /// CGExprAgg?
103 ///
104 /// TODO: should vectors maybe be split out into their own thing?
109 };
110 
111 #define LIST_SANITIZER_CHECKS \
112  SANITIZER_CHECK(AddOverflow, add_overflow, 0) \
113  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \
114  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \
115  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \
116  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \
117  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \
118  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \
119  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \
120  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \
121  SANITIZER_CHECK(MissingReturn, missing_return, 0) \
122  SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \
123  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \
124  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \
125  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \
126  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \
127  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \
128  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \
129  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \
130  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \
131  SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \
132  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \
133  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
134 
136 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
138 #undef SANITIZER_CHECK
139 };
140 
141 /// CodeGenFunction - This class organizes the per-function state that is used
142 /// while generating LLVM code.
144  CodeGenFunction(const CodeGenFunction &) = delete;
145  void operator=(const CodeGenFunction &) = delete;
146 
147  friend class CGCXXABI;
148 public:
149  /// A jump destination is an abstract label, branching to which may
150  /// require a jump out through normal cleanups.
151  struct JumpDest {
152  JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
153  JumpDest(llvm::BasicBlock *Block,
155  unsigned Index)
156  : Block(Block), ScopeDepth(Depth), Index(Index) {}
157 
158  bool isValid() const { return Block != nullptr; }
159  llvm::BasicBlock *getBlock() const { return Block; }
160  EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
161  unsigned getDestIndex() const { return Index; }
162 
163  // This should be used cautiously.
165  ScopeDepth = depth;
166  }
167 
168  private:
169  llvm::BasicBlock *Block;
171  unsigned Index;
172  };
173 
174  CodeGenModule &CGM; // Per-module state.
176 
177  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
180 
181  // Stores variables for which we can't generate correct lifetime markers
182  // because of jumps.
184 
185  // CodeGen lambda for loops and support for ordered clause
186  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
187  JumpDest)>
189  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
190  const unsigned, const bool)>
192 
193  // Codegen lambda for loop bounds in worksharing loop constructs
194  typedef llvm::function_ref<std::pair<LValue, LValue>(
197 
198  // Codegen lambda for loop bounds in dispatch-based loop implementation
199  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
200  CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
201  Address UB)>
203 
204  /// \brief CGBuilder insert helper. This function is called after an
205  /// instruction is created using Builder.
206  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
207  llvm::BasicBlock *BB,
208  llvm::BasicBlock::iterator InsertPt) const;
209 
210  /// CurFuncDecl - Holds the Decl for the current outermost
211  /// non-closure context.
213  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
217  llvm::Function *CurFn;
218 
219  // Holds coroutine data if the current function is a coroutine. We use a
220  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
221  // in this header.
222  struct CGCoroInfo {
223  std::unique_ptr<CGCoroData> Data;
224  CGCoroInfo();
225  ~CGCoroInfo();
226  };
228 
229  bool isCoroutine() const {
230  return CurCoro.Data != nullptr;
231  }
232 
233  /// CurGD - The GlobalDecl for the current function being compiled.
235 
236  /// PrologueCleanupDepth - The cleanup depth enclosing all the
237  /// cleanups associated with the parameters.
239 
240  /// ReturnBlock - Unified return block.
242 
243  /// ReturnValue - The temporary alloca to hold the return
244  /// value. This is invalid iff the function has no return value.
246 
247  /// Return true if a label was seen in the current scope.
249  if (CurLexicalScope)
250  return CurLexicalScope->hasLabels();
251  return !LabelMap.empty();
252  }
253 
254  /// AllocaInsertPoint - This is an instruction in the entry block before which
255  /// we prefer to insert allocas.
256  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
257 
258  /// \brief API for captured statement code generation.
260  public:
262  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
263  explicit CGCapturedStmtInfo(const CapturedStmt &S,
265  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
266 
270  E = S.capture_end();
271  I != E; ++I, ++Field) {
272  if (I->capturesThis())
273  CXXThisFieldDecl = *Field;
274  else if (I->capturesVariable())
275  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
276  else if (I->capturesVariableByCopy())
277  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
278  }
279  }
280 
281  virtual ~CGCapturedStmtInfo();
282 
283  CapturedRegionKind getKind() const { return Kind; }
284 
285  virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
286  // \brief Retrieve the value of the context parameter.
287  virtual llvm::Value *getContextValue() const { return ThisValue; }
288 
289  /// \brief Lookup the captured field decl for a variable.
290  virtual const FieldDecl *lookup(const VarDecl *VD) const {
291  return CaptureFields.lookup(VD->getCanonicalDecl());
292  }
293 
294  bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
295  virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
296 
297  static bool classof(const CGCapturedStmtInfo *) {
298  return true;
299  }
300 
301  /// \brief Emit the captured statement body.
302  virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
304  CGF.EmitStmt(S);
305  }
306 
307  /// \brief Get the name of the capture helper.
308  virtual StringRef getHelperName() const { return "__captured_stmt"; }
309 
310  private:
311  /// \brief The kind of captured statement being generated.
313 
314  /// \brief Keep the map between VarDecl and FieldDecl.
315  llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
316 
317  /// \brief The base address of the captured record, passed in as the first
318  /// argument of the parallel region function.
319  llvm::Value *ThisValue;
320 
321  /// \brief Captured 'this' type.
322  FieldDecl *CXXThisFieldDecl;
323  };
325 
326  /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
328  private:
329  CodeGenFunction &CGF;
330  CGCapturedStmtInfo *PrevCapturedStmtInfo;
331  public:
332  CGCapturedStmtRAII(CodeGenFunction &CGF,
333  CGCapturedStmtInfo *NewCapturedStmtInfo)
334  : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
335  CGF.CapturedStmtInfo = NewCapturedStmtInfo;
336  }
337  ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
338  };
339 
340  /// An abstract representation of regular/ObjC call/message targets.
342  /// The function declaration of the callee.
343  const Decl *CalleeDecl;
344 
345  public:
346  AbstractCallee() : CalleeDecl(nullptr) {}
347  AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
348  AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
349  bool hasFunctionDecl() const {
350  return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
351  }
352  const Decl *getDecl() const { return CalleeDecl; }
353  unsigned getNumParams() const {
354  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
355  return FD->getNumParams();
356  return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
357  }
358  const ParmVarDecl *getParamDecl(unsigned I) const {
359  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
360  return FD->getParamDecl(I);
361  return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
362  }
363  };
364 
365  /// \brief Sanitizers enabled for this function.
367 
368  /// \brief True if CodeGen currently emits code implementing sanitizer checks.
370 
371  /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
373  CodeGenFunction *CGF;
374  public:
375  SanitizerScope(CodeGenFunction *CGF);
376  ~SanitizerScope();
377  };
378 
379  /// In C++, whether we are code generating a thunk. This controls whether we
380  /// should emit cleanups.
382 
383  /// In ARC, whether we should autorelease the return value.
385 
386  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
387  /// potentially set the return value.
389 
390  const FunctionDecl *CurSEHParent = nullptr;
391 
392  /// True if the current function is an outlined SEH helper. This can be a
393  /// finally block or filter expression.
395 
398 
399  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
401 
402  /// \brief A mapping from NRVO variables to the flags used to indicate
403  /// when the NRVO has been applied to this variable.
404  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
405 
409 
410  llvm::Instruction *CurrentFuncletPad = nullptr;
411 
412  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
413  llvm::Value *Addr;
414  llvm::Value *Size;
415 
416  public:
418  : Addr(addr.getPointer()), Size(size) {}
419 
420  void Emit(CodeGenFunction &CGF, Flags flags) override {
421  CGF.EmitLifetimeEnd(Size, Addr);
422  }
423  };
424 
425  /// Header for data within LifetimeExtendedCleanupStack.
427  /// The size of the following cleanup object.
428  unsigned Size;
429  /// The kind of cleanup to push: a value from the CleanupKind enumeration.
431 
432  size_t getSize() const { return Size; }
433  CleanupKind getKind() const { return Kind; }
434  };
435 
436  /// i32s containing the indexes of the cleanup destinations.
438 
440 
441  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
443 
444  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
445  llvm::BasicBlock *EHResumeBlock;
446 
447  /// The exception slot. All landing pads write the current exception pointer
448  /// into this alloca.
450 
451  /// The selector slot. Under the MandatoryCleanup model, all landing pads
452  /// write the current selector value into this alloca.
453  llvm::AllocaInst *EHSelectorSlot;
454 
455  /// A stack of exception code slots. Entering an __except block pushes a slot
456  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
457  /// a value from the top of the stack.
459 
460  /// Value returned by __exception_info intrinsic.
461  llvm::Value *SEHInfo = nullptr;
462 
463  /// Emits a landing pad for the current EH stack.
464  llvm::BasicBlock *EmitLandingPad();
465 
466  llvm::BasicBlock *getInvokeDestImpl();
467 
468  template <class T>
470  return DominatingValue<T>::save(*this, value);
471  }
472 
473 public:
474  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
475  /// rethrows.
477 
478  /// A class controlling the emission of a finally block.
479  class FinallyInfo {
480  /// Where the catchall's edge through the cleanup should go.
481  JumpDest RethrowDest;
482 
483  /// A function to call to enter the catch.
484  llvm::Constant *BeginCatchFn;
485 
486  /// An i1 variable indicating whether or not the @finally is
487  /// running for an exception.
488  llvm::AllocaInst *ForEHVar;
489 
490  /// An i8* variable into which the exception pointer to rethrow
491  /// has been saved.
492  llvm::AllocaInst *SavedExnVar;
493 
494  public:
495  void enter(CodeGenFunction &CGF, const Stmt *Finally,
496  llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
497  llvm::Constant *rethrowFn);
498  void exit(CodeGenFunction &CGF);
499  };
500 
501  /// Returns true inside SEH __try blocks.
502  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
503 
504  /// Returns true while emitting a cleanuppad.
505  bool isCleanupPadScope() const {
506  return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
507  }
508 
509  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
510  /// current full-expression. Safe against the possibility that
511  /// we're currently inside a conditionally-evaluated expression.
512  template <class T, class... As>
514  // If we're not in a conditional branch, or if none of the
515  // arguments requires saving, then use the unconditional cleanup.
516  if (!isInConditionalBranch())
517  return EHStack.pushCleanup<T>(kind, A...);
518 
519  // Stash values in a tuple so we can guarantee the order of saves.
520  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
521  SavedTuple Saved{saveValueInCond(A)...};
522 
523  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
524  EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
525  initFullExprCleanup();
526  }
527 
528  /// \brief Queue a cleanup to be pushed after finishing the current
529  /// full-expression.
530  template <class T, class... As>
532  assert(!isInConditionalBranch() && "can't defer conditional cleanup");
533 
534  LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
535 
536  size_t OldSize = LifetimeExtendedCleanupStack.size();
537  LifetimeExtendedCleanupStack.resize(
538  LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
539 
540  static_assert(sizeof(Header) % alignof(T) == 0,
541  "Cleanup will be allocated on misaligned address");
542  char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
543  new (Buffer) LifetimeExtendedCleanupHeader(Header);
544  new (Buffer + sizeof(Header)) T(A...);
545  }
546 
547  /// Set up the last cleaup that was pushed as a conditional
548  /// full-expression cleanup.
549  void initFullExprCleanup();
550 
551  /// PushDestructorCleanup - Push a cleanup to call the
552  /// complete-object destructor of an object of the given type at the
553  /// given address. Does nothing if T is not a C++ class type with a
554  /// non-trivial destructor.
555  void PushDestructorCleanup(QualType T, Address Addr);
556 
557  /// PushDestructorCleanup - Push a cleanup to call the
558  /// complete-object variant of the given destructor on the object at
559  /// the given address.
560  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
561 
562  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
563  /// process all branch fixups.
564  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
565 
566  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
567  /// The block cannot be reactivated. Pops it if it's the top of the
568  /// stack.
569  ///
570  /// \param DominatingIP - An instruction which is known to
571  /// dominate the current IP (if set) and which lies along
572  /// all paths of execution between the current IP and the
573  /// the point at which the cleanup comes into scope.
574  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
575  llvm::Instruction *DominatingIP);
576 
577  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
578  /// Cannot be used to resurrect a deactivated cleanup.
579  ///
580  /// \param DominatingIP - An instruction which is known to
581  /// dominate the current IP (if set) and which lies along
582  /// all paths of execution between the current IP and the
583  /// the point at which the cleanup comes into scope.
584  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
585  llvm::Instruction *DominatingIP);
586 
587  /// \brief Enters a new scope for capturing cleanups, all of which
588  /// will be executed once the scope is exited.
590  EHScopeStack::stable_iterator CleanupStackDepth;
591  size_t LifetimeExtendedCleanupStackSize;
592  bool OldDidCallStackSave;
593  protected:
595  private:
596 
597  RunCleanupsScope(const RunCleanupsScope &) = delete;
598  void operator=(const RunCleanupsScope &) = delete;
599 
600  protected:
601  CodeGenFunction& CGF;
602 
603  public:
604  /// \brief Enter a new cleanup scope.
605  explicit RunCleanupsScope(CodeGenFunction &CGF)
606  : PerformCleanup(true), CGF(CGF)
607  {
608  CleanupStackDepth = CGF.EHStack.stable_begin();
609  LifetimeExtendedCleanupStackSize =
610  CGF.LifetimeExtendedCleanupStack.size();
611  OldDidCallStackSave = CGF.DidCallStackSave;
612  CGF.DidCallStackSave = false;
613  }
614 
615  /// \brief Exit this cleanup scope, emitting any accumulated cleanups.
617  if (PerformCleanup)
618  ForceCleanup();
619  }
620 
621  /// \brief Determine whether this scope requires any cleanups.
622  bool requiresCleanups() const {
623  return CGF.EHStack.stable_begin() != CleanupStackDepth;
624  }
625 
626  /// \brief Force the emission of cleanups now, instead of waiting
627  /// until this object is destroyed.
628  /// \param ValuesToReload - A list of values that need to be available at
629  /// the insertion point after cleanup emission. If cleanup emission created
630  /// a shared cleanup block, these value pointers will be rewritten.
631  /// Otherwise, they not will be modified.
632  void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
633  assert(PerformCleanup && "Already forced cleanup");
634  CGF.DidCallStackSave = OldDidCallStackSave;
635  CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
636  ValuesToReload);
637  PerformCleanup = false;
638  }
639  };
640 
642  SourceRange Range;
644  LexicalScope *ParentScope;
645 
646  LexicalScope(const LexicalScope &) = delete;
647  void operator=(const LexicalScope &) = delete;
648 
649  public:
650  /// \brief Enter a new cleanup scope.
651  explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
652  : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
653  CGF.CurLexicalScope = this;
654  if (CGDebugInfo *DI = CGF.getDebugInfo())
655  DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
656  }
657 
658  void addLabel(const LabelDecl *label) {
659  assert(PerformCleanup && "adding label to dead scope?");
660  Labels.push_back(label);
661  }
662 
663  /// \brief Exit this cleanup scope, emitting any accumulated
664  /// cleanups.
666  if (CGDebugInfo *DI = CGF.getDebugInfo())
667  DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
668 
669  // If we should perform a cleanup, force them now. Note that
670  // this ends the cleanup scope before rescoping any labels.
671  if (PerformCleanup) {
672  ApplyDebugLocation DL(CGF, Range.getEnd());
673  ForceCleanup();
674  }
675  }
676 
677  /// \brief Force the emission of cleanups now, instead of waiting
678  /// until this object is destroyed.
679  void ForceCleanup() {
680  CGF.CurLexicalScope = ParentScope;
681  RunCleanupsScope::ForceCleanup();
682 
683  if (!Labels.empty())
684  rescopeLabels();
685  }
686 
687  bool hasLabels() const {
688  return !Labels.empty();
689  }
690 
691  void rescopeLabels();
692  };
693 
694  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
695 
696  /// \brief The scope used to remap some variables as private in the OpenMP
697  /// loop body (or other captured region emitted without outlining), and to
698  /// restore old vars back on exit.
700  DeclMapTy SavedLocals;
701  DeclMapTy SavedPrivates;
702 
703  private:
704  OMPPrivateScope(const OMPPrivateScope &) = delete;
705  void operator=(const OMPPrivateScope &) = delete;
706 
707  public:
708  /// \brief Enter a new OpenMP private scope.
709  explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
710 
711  /// \brief Registers \a LocalVD variable as a private and apply \a
712  /// PrivateGen function for it to generate corresponding private variable.
713  /// \a PrivateGen returns an address of the generated private variable.
714  /// \return true if the variable is registered as private, false if it has
715  /// been privatized already.
716  bool
717  addPrivate(const VarDecl *LocalVD,
718  llvm::function_ref<Address()> PrivateGen) {
719  assert(PerformCleanup && "adding private to dead scope");
720 
721  LocalVD = LocalVD->getCanonicalDecl();
722  // Only save it once.
723  if (SavedLocals.count(LocalVD)) return false;
724 
725  // Copy the existing local entry to SavedLocals.
726  auto it = CGF.LocalDeclMap.find(LocalVD);
727  if (it != CGF.LocalDeclMap.end()) {
728  SavedLocals.insert({LocalVD, it->second});
729  } else {
730  SavedLocals.insert({LocalVD, Address::invalid()});
731  }
732 
733  // Generate the private entry.
734  Address Addr = PrivateGen();
735  QualType VarTy = LocalVD->getType();
736  if (VarTy->isReferenceType()) {
737  Address Temp = CGF.CreateMemTemp(VarTy);
738  CGF.Builder.CreateStore(Addr.getPointer(), Temp);
739  Addr = Temp;
740  }
741  SavedPrivates.insert({LocalVD, Addr});
742 
743  return true;
744  }
745 
746  /// \brief Privatizes local variables previously registered as private.
747  /// Registration is separate from the actual privatization to allow
748  /// initializers use values of the original variables, not the private one.
749  /// This is important, for example, if the private variable is a class
750  /// variable initialized by a constructor that references other private
751  /// variables. But at initialization original variables must be used, not
752  /// private copies.
753  /// \return true if at least one variable was privatized, false otherwise.
754  bool Privatize() {
755  copyInto(SavedPrivates, CGF.LocalDeclMap);
756  SavedPrivates.clear();
757  return !SavedLocals.empty();
758  }
759 
760  void ForceCleanup() {
761  RunCleanupsScope::ForceCleanup();
762  copyInto(SavedLocals, CGF.LocalDeclMap);
763  SavedLocals.clear();
764  }
765 
766  /// \brief Exit scope - all the mapped variables are restored.
768  if (PerformCleanup)
769  ForceCleanup();
770  }
771 
772  /// Checks if the global variable is captured in current function.
773  bool isGlobalVarCaptured(const VarDecl *VD) const {
774  VD = VD->getCanonicalDecl();
775  return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
776  }
777 
778  private:
779  /// Copy all the entries in the source map over the corresponding
780  /// entries in the destination, which must exist.
781  static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
782  for (auto &pair : src) {
783  if (!pair.second.isValid()) {
784  dest.erase(pair.first);
785  continue;
786  }
787 
788  auto it = dest.find(pair.first);
789  if (it != dest.end()) {
790  it->second = pair.second;
791  } else {
792  dest.insert(pair);
793  }
794  }
795  }
796  };
797 
798  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
799  /// that have been added.
800  void
801  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
802  std::initializer_list<llvm::Value **> ValuesToReload = {});
803 
804  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
805  /// that have been added, then adds all lifetime-extended cleanups from
806  /// the given position to the stack.
807  void
808  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
809  size_t OldLifetimeExtendedStackSize,
810  std::initializer_list<llvm::Value **> ValuesToReload = {});
811 
812  void ResolveBranchFixups(llvm::BasicBlock *Target);
813 
814  /// The given basic block lies in the current EH scope, but may be a
815  /// target of a potentially scope-crossing jump; get a stable handle
816  /// to which we can perform this jump later.
817  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
818  return JumpDest(Target,
819  EHStack.getInnermostNormalCleanup(),
820  NextCleanupDestIndex++);
821  }
822 
823  /// The given basic block lies in the current EH scope, but may be a
824  /// target of a potentially scope-crossing jump; get a stable handle
825  /// to which we can perform this jump later.
826  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
827  return getJumpDestInCurrentScope(createBasicBlock(Name));
828  }
829 
830  /// EmitBranchThroughCleanup - Emit a branch from the current insert
831  /// block through the normal cleanup handling code (if any) and then
832  /// on to \arg Dest.
833  void EmitBranchThroughCleanup(JumpDest Dest);
834 
835  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
836  /// specified destination obviously has no cleanups to run. 'false' is always
837  /// a conservatively correct answer for this method.
838  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
839 
840  /// popCatchScope - Pops the catch scope at the top of the EHScope
841  /// stack, emitting any required code (other than the catch handlers
842  /// themselves).
843  void popCatchScope();
844 
845  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
846  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
847  llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
848 
849  /// An object to manage conditionally-evaluated expressions.
851  llvm::BasicBlock *StartBB;
852 
853  public:
854  ConditionalEvaluation(CodeGenFunction &CGF)
855  : StartBB(CGF.Builder.GetInsertBlock()) {}
856 
857  void begin(CodeGenFunction &CGF) {
858  assert(CGF.OutermostConditional != this);
859  if (!CGF.OutermostConditional)
860  CGF.OutermostConditional = this;
861  }
862 
863  void end(CodeGenFunction &CGF) {
864  assert(CGF.OutermostConditional != nullptr);
865  if (CGF.OutermostConditional == this)
866  CGF.OutermostConditional = nullptr;
867  }
868 
869  /// Returns a block which will be executed prior to each
870  /// evaluation of the conditional code.
871  llvm::BasicBlock *getStartingBlock() const {
872  return StartBB;
873  }
874  };
875 
876  /// isInConditionalBranch - Return true if we're currently emitting
877  /// one branch or the other of a conditional expression.
878  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
879 
881  assert(isInConditionalBranch());
882  llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
883  auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
884  store->setAlignment(addr.getAlignment().getQuantity());
885  }
886 
887  /// An RAII object to record that we're evaluating a statement
888  /// expression.
890  CodeGenFunction &CGF;
891 
892  /// We have to save the outermost conditional: cleanups in a
893  /// statement expression aren't conditional just because the
894  /// StmtExpr is.
895  ConditionalEvaluation *SavedOutermostConditional;
896 
897  public:
898  StmtExprEvaluation(CodeGenFunction &CGF)
899  : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
900  CGF.OutermostConditional = nullptr;
901  }
902 
904  CGF.OutermostConditional = SavedOutermostConditional;
905  CGF.EnsureInsertPoint();
906  }
907  };
908 
909  /// An object which temporarily prevents a value from being
910  /// destroyed by aggressive peephole optimizations that assume that
911  /// all uses of a value have been realized in the IR.
913  llvm::Instruction *Inst;
914  friend class CodeGenFunction;
915 
916  public:
917  PeepholeProtection() : Inst(nullptr) {}
918  };
919 
920  /// A non-RAII class containing all the information about a bound
921  /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
922  /// this which makes individual mappings very simple; using this
923  /// class directly is useful when you have a variable number of
924  /// opaque values or don't want the RAII functionality for some
925  /// reason.
927  const OpaqueValueExpr *OpaqueValue;
928  bool BoundLValue;
930 
932  bool boundLValue)
933  : OpaqueValue(ov), BoundLValue(boundLValue) {}
934  public:
935  OpaqueValueMappingData() : OpaqueValue(nullptr) {}
936 
937  static bool shouldBindAsLValue(const Expr *expr) {
938  // gl-values should be bound as l-values for obvious reasons.
939  // Records should be bound as l-values because IR generation
940  // always keeps them in memory. Expressions of function type
941  // act exactly like l-values but are formally required to be
942  // r-values in C.
943  return expr->isGLValue() ||
944  expr->getType()->isFunctionType() ||
945  hasAggregateEvaluationKind(expr->getType());
946  }
947 
948  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
949  const OpaqueValueExpr *ov,
950  const Expr *e) {
951  if (shouldBindAsLValue(ov))
952  return bind(CGF, ov, CGF.EmitLValue(e));
953  return bind(CGF, ov, CGF.EmitAnyExpr(e));
954  }
955 
956  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
957  const OpaqueValueExpr *ov,
958  const LValue &lv) {
959  assert(shouldBindAsLValue(ov));
960  CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
961  return OpaqueValueMappingData(ov, true);
962  }
963 
964  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
965  const OpaqueValueExpr *ov,
966  const RValue &rv) {
967  assert(!shouldBindAsLValue(ov));
968  CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
969 
970  OpaqueValueMappingData data(ov, false);
971 
972  // Work around an extremely aggressive peephole optimization in
973  // EmitScalarConversion which assumes that all other uses of a
974  // value are extant.
975  data.Protection = CGF.protectFromPeepholes(rv);
976 
977  return data;
978  }
979 
980  bool isValid() const { return OpaqueValue != nullptr; }
981  void clear() { OpaqueValue = nullptr; }
982 
983  void unbind(CodeGenFunction &CGF) {
984  assert(OpaqueValue && "no data to unbind!");
985 
986  if (BoundLValue) {
987  CGF.OpaqueLValues.erase(OpaqueValue);
988  } else {
989  CGF.OpaqueRValues.erase(OpaqueValue);
990  CGF.unprotectFromPeepholes(Protection);
991  }
992  }
993  };
994 
995  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
997  CodeGenFunction &CGF;
999 
1000  public:
1001  static bool shouldBindAsLValue(const Expr *expr) {
1002  return OpaqueValueMappingData::shouldBindAsLValue(expr);
1003  }
1004 
1005  /// Build the opaque value mapping for the given conditional
1006  /// operator if it's the GNU ?: extension. This is a common
1007  /// enough pattern that the convenience operator is really
1008  /// helpful.
1009  ///
1010  OpaqueValueMapping(CodeGenFunction &CGF,
1011  const AbstractConditionalOperator *op) : CGF(CGF) {
1012  if (isa<ConditionalOperator>(op))
1013  // Leave Data empty.
1014  return;
1015 
1016  const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1017  Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1018  e->getCommon());
1019  }
1020 
1021  /// Build the opaque value mapping for an OpaqueValueExpr whose source
1022  /// expression is set to the expression the OVE represents.
1023  OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1024  : CGF(CGF) {
1025  if (OV) {
1026  assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1027  "for OVE with no source expression");
1028  Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1029  }
1030  }
1031 
1032  OpaqueValueMapping(CodeGenFunction &CGF,
1033  const OpaqueValueExpr *opaqueValue,
1034  LValue lvalue)
1035  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1036  }
1037 
1038  OpaqueValueMapping(CodeGenFunction &CGF,
1039  const OpaqueValueExpr *opaqueValue,
1040  RValue rvalue)
1041  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1042  }
1043 
1044  void pop() {
1045  Data.unbind(CGF);
1046  Data.clear();
1047  }
1048 
1050  if (Data.isValid()) Data.unbind(CGF);
1051  }
1052  };
1053 
1054 private:
1055  CGDebugInfo *DebugInfo;
1056  bool DisableDebugInfo;
1057 
1058  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1059  /// calling llvm.stacksave for multiple VLAs in the same scope.
1060  bool DidCallStackSave;
1061 
1062  /// IndirectBranch - The first time an indirect goto is seen we create a block
1063  /// with an indirect branch. Every time we see the address of a label taken,
1064  /// we add the label to the indirect goto. Every subsequent indirect goto is
1065  /// codegen'd as a jump to the IndirectBranch's basic block.
1066  llvm::IndirectBrInst *IndirectBranch;
1067 
1068  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1069  /// decls.
1070  DeclMapTy LocalDeclMap;
1071 
1072  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1073  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1074  /// parameter.
1075  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1076  SizeArguments;
1077 
1078  /// Track escaped local variables with auto storage. Used during SEH
1079  /// outlining to produce a call to llvm.localescape.
1080  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1081 
1082  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1083  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1084 
1085  // BreakContinueStack - This keeps track of where break and continue
1086  // statements should jump to.
1087  struct BreakContinue {
1088  BreakContinue(JumpDest Break, JumpDest Continue)
1089  : BreakBlock(Break), ContinueBlock(Continue) {}
1090 
1091  JumpDest BreakBlock;
1092  JumpDest ContinueBlock;
1093  };
1094  SmallVector<BreakContinue, 8> BreakContinueStack;
1095 
1096  /// Handles cancellation exit points in OpenMP-related constructs.
1097  class OpenMPCancelExitStack {
1098  /// Tracks cancellation exit point and join point for cancel-related exit
1099  /// and normal exit.
1100  struct CancelExit {
1101  CancelExit() = default;
1102  CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1103  JumpDest ContBlock)
1104  : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1106  /// true if the exit block has been emitted already by the special
1107  /// emitExit() call, false if the default codegen is used.
1108  bool HasBeenEmitted = false;
1109  JumpDest ExitBlock;
1110  JumpDest ContBlock;
1111  };
1112 
1114 
1115  public:
1116  OpenMPCancelExitStack() : Stack(1) {}
1117  ~OpenMPCancelExitStack() = default;
1118  /// Fetches the exit block for the current OpenMP construct.
1119  JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1120  /// Emits exit block with special codegen procedure specific for the related
1121  /// OpenMP construct + emits code for normal construct cleanup.
1122  void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1123  const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
1124  if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1125  assert(CGF.getOMPCancelDestination(Kind).isValid());
1126  assert(CGF.HaveInsertPoint());
1127  assert(!Stack.back().HasBeenEmitted);
1128  auto IP = CGF.Builder.saveAndClearIP();
1129  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1130  CodeGen(CGF);
1131  CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1132  CGF.Builder.restoreIP(IP);
1133  Stack.back().HasBeenEmitted = true;
1134  }
1135  CodeGen(CGF);
1136  }
1137  /// Enter the cancel supporting \a Kind construct.
1138  /// \param Kind OpenMP directive that supports cancel constructs.
1139  /// \param HasCancel true, if the construct has inner cancel directive,
1140  /// false otherwise.
1141  void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1142  Stack.push_back({Kind,
1143  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1144  : JumpDest(),
1145  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1146  : JumpDest()});
1147  }
1148  /// Emits default exit point for the cancel construct (if the special one
1149  /// has not be used) + join point for cancel/normal exits.
1150  void exit(CodeGenFunction &CGF) {
1151  if (getExitBlock().isValid()) {
1152  assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1153  bool HaveIP = CGF.HaveInsertPoint();
1154  if (!Stack.back().HasBeenEmitted) {
1155  if (HaveIP)
1156  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1157  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1158  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1159  }
1160  CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1161  if (!HaveIP) {
1162  CGF.Builder.CreateUnreachable();
1163  CGF.Builder.ClearInsertionPoint();
1164  }
1165  }
1166  Stack.pop_back();
1167  }
1168  };
1169  OpenMPCancelExitStack OMPCancelStack;
1170 
1171  CodeGenPGO PGO;
1172 
1173  /// Calculate branch weights appropriate for PGO data
1174  llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1175  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1176  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1177  uint64_t LoopCount);
1178 
1179 public:
1180  /// Increment the profiler's counter for the given statement by \p StepV.
1181  /// If \p StepV is null, the default increment is 1.
1182  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1184  PGO.emitCounterIncrement(Builder, S, StepV);
1185  PGO.setCurrentStmt(S);
1186  }
1187 
1188  /// Get the profiler's count for the given statement.
1189  uint64_t getProfileCount(const Stmt *S) {
1190  Optional<uint64_t> Count = PGO.getStmtCount(S);
1191  if (!Count.hasValue())
1192  return 0;
1193  return *Count;
1194  }
1195 
1196  /// Set the profiler's current count.
1197  void setCurrentProfileCount(uint64_t Count) {
1198  PGO.setCurrentRegionCount(Count);
1199  }
1200 
1201  /// Get the profiler's current count. This is generally the count for the most
1202  /// recently incremented counter.
1204  return PGO.getCurrentRegionCount();
1205  }
1206 
1207 private:
1208 
1209  /// SwitchInsn - This is nearest current switch instruction. It is null if
1210  /// current context is not in a switch.
1211  llvm::SwitchInst *SwitchInsn;
1212  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1213  SmallVector<uint64_t, 16> *SwitchWeights;
1214 
1215  /// CaseRangeBlock - This block holds if condition check for last case
1216  /// statement range in current switch instruction.
1217  llvm::BasicBlock *CaseRangeBlock;
1218 
1219  /// OpaqueLValues - Keeps track of the current set of opaque value
1220  /// expressions.
1221  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1222  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1223 
1224  // VLASizeMap - This keeps track of the associated size for each VLA type.
1225  // We track this by the size expression rather than the type itself because
1226  // in certain situations, like a const qualifier applied to an VLA typedef,
1227  // multiple VLA types can share the same size expression.
1228  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1229  // enter/leave scopes.
1230  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1231 
1232  /// A block containing a single 'unreachable' instruction. Created
1233  /// lazily by getUnreachableBlock().
1234  llvm::BasicBlock *UnreachableBlock;
1235 
1236  /// Counts of the number return expressions in the function.
1237  unsigned NumReturnExprs;
1238 
1239  /// Count the number of simple (constant) return expressions in the function.
1240  unsigned NumSimpleReturnExprs;
1241 
1242  /// The last regular (non-return) debug location (breakpoint) in the function.
1243  SourceLocation LastStopPoint;
1244 
1245 public:
1246  /// A scope within which we are constructing the fields of an object which
1247  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1248  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1250  public:
1251  FieldConstructionScope(CodeGenFunction &CGF, Address This)
1252  : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1253  CGF.CXXDefaultInitExprThis = This;
1254  }
1256  CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1257  }
1258 
1259  private:
1260  CodeGenFunction &CGF;
1261  Address OldCXXDefaultInitExprThis;
1262  };
1263 
1264  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1265  /// is overridden to be the object under construction.
1267  public:
1268  CXXDefaultInitExprScope(CodeGenFunction &CGF)
1269  : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1270  OldCXXThisAlignment(CGF.CXXThisAlignment) {
1271  CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1272  CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1273  }
1275  CGF.CXXThisValue = OldCXXThisValue;
1276  CGF.CXXThisAlignment = OldCXXThisAlignment;
1277  }
1278 
1279  public:
1280  CodeGenFunction &CGF;
1283  };
1284 
1285  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1286  /// current loop index is overridden.
1288  public:
1289  ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1290  : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1291  CGF.ArrayInitIndex = Index;
1292  }
1294  CGF.ArrayInitIndex = OldArrayInitIndex;
1295  }
1296 
1297  private:
1298  CodeGenFunction &CGF;
1299  llvm::Value *OldArrayInitIndex;
1300  };
1301 
1303  public:
1305  : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1306  OldCurCodeDecl(CGF.CurCodeDecl),
1307  OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1308  OldCXXABIThisValue(CGF.CXXABIThisValue),
1309  OldCXXThisValue(CGF.CXXThisValue),
1310  OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1311  OldCXXThisAlignment(CGF.CXXThisAlignment),
1312  OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1313  OldCXXInheritedCtorInitExprArgs(
1314  std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1315  CGF.CurGD = GD;
1316  CGF.CurFuncDecl = CGF.CurCodeDecl =
1317  cast<CXXConstructorDecl>(GD.getDecl());
1318  CGF.CXXABIThisDecl = nullptr;
1319  CGF.CXXABIThisValue = nullptr;
1320  CGF.CXXThisValue = nullptr;
1321  CGF.CXXABIThisAlignment = CharUnits();
1322  CGF.CXXThisAlignment = CharUnits();
1323  CGF.ReturnValue = Address::invalid();
1324  CGF.FnRetTy = QualType();
1325  CGF.CXXInheritedCtorInitExprArgs.clear();
1326  }
1328  CGF.CurGD = OldCurGD;
1329  CGF.CurFuncDecl = OldCurFuncDecl;
1330  CGF.CurCodeDecl = OldCurCodeDecl;
1331  CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1332  CGF.CXXABIThisValue = OldCXXABIThisValue;
1333  CGF.CXXThisValue = OldCXXThisValue;
1334  CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1335  CGF.CXXThisAlignment = OldCXXThisAlignment;
1336  CGF.ReturnValue = OldReturnValue;
1337  CGF.FnRetTy = OldFnRetTy;
1338  CGF.CXXInheritedCtorInitExprArgs =
1339  std::move(OldCXXInheritedCtorInitExprArgs);
1340  }
1341 
1342  private:
1343  CodeGenFunction &CGF;
1344  GlobalDecl OldCurGD;
1345  const Decl *OldCurFuncDecl;
1346  const Decl *OldCurCodeDecl;
1347  ImplicitParamDecl *OldCXXABIThisDecl;
1348  llvm::Value *OldCXXABIThisValue;
1349  llvm::Value *OldCXXThisValue;
1350  CharUnits OldCXXABIThisAlignment;
1351  CharUnits OldCXXThisAlignment;
1352  Address OldReturnValue;
1353  QualType OldFnRetTy;
1354  CallArgList OldCXXInheritedCtorInitExprArgs;
1355  };
1356 
1357 private:
1358  /// CXXThisDecl - When generating code for a C++ member function,
1359  /// this will hold the implicit 'this' declaration.
1360  ImplicitParamDecl *CXXABIThisDecl;
1361  llvm::Value *CXXABIThisValue;
1362  llvm::Value *CXXThisValue;
1363  CharUnits CXXABIThisAlignment;
1364  CharUnits CXXThisAlignment;
1365 
1366  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1367  /// this expression.
1368  Address CXXDefaultInitExprThis = Address::invalid();
1369 
1370  /// The current array initialization index when evaluating an
1371  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1372  llvm::Value *ArrayInitIndex = nullptr;
1373 
1374  /// The values of function arguments to use when evaluating
1375  /// CXXInheritedCtorInitExprs within this context.
1376  CallArgList CXXInheritedCtorInitExprArgs;
1377 
1378  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1379  /// destructor, this will hold the implicit argument (e.g. VTT).
1380  ImplicitParamDecl *CXXStructorImplicitParamDecl;
1381  llvm::Value *CXXStructorImplicitParamValue;
1382 
1383  /// OutermostConditional - Points to the outermost active
1384  /// conditional control. This is used so that we know if a
1385  /// temporary should be destroyed conditionally.
1386  ConditionalEvaluation *OutermostConditional;
1387 
1388  /// The current lexical scope.
1389  LexicalScope *CurLexicalScope;
1390 
1391  /// The current source location that should be used for exception
1392  /// handling code.
1393  SourceLocation CurEHLocation;
1394 
1395  /// BlockByrefInfos - For each __block variable, contains
1396  /// information about the layout of the variable.
1397  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1398 
1399  /// Used by -fsanitize=nullability-return to determine whether the return
1400  /// value can be checked.
1401  llvm::Value *RetValNullabilityPrecondition = nullptr;
1402 
1403  /// Check if -fsanitize=nullability-return instrumentation is required for
1404  /// this function.
1405  bool requiresReturnValueNullabilityCheck() const {
1406  return RetValNullabilityPrecondition;
1407  }
1408 
1409  /// Used to store precise source locations for return statements by the
1410  /// runtime return value checks.
1411  Address ReturnLocation = Address::invalid();
1412 
1413  /// Check if the return value of this function requires sanitization.
1414  bool requiresReturnValueCheck() const {
1415  return requiresReturnValueNullabilityCheck() ||
1416  (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1417  CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1418  }
1419 
1420  llvm::BasicBlock *TerminateLandingPad;
1421  llvm::BasicBlock *TerminateHandler;
1422  llvm::BasicBlock *TrapBB;
1423 
1424  /// Terminate funclets keyed by parent funclet pad.
1425  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1426 
1427  /// True if we need emit the life-time markers.
1428  const bool ShouldEmitLifetimeMarkers;
1429 
1430  /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to
1431  /// the function metadata.
1432  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1433  llvm::Function *Fn);
1434 
1435 public:
1436  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1437  ~CodeGenFunction();
1438 
1439  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1440  ASTContext &getContext() const { return CGM.getContext(); }
1442  if (DisableDebugInfo)
1443  return nullptr;
1444  return DebugInfo;
1445  }
1446  void disableDebugInfo() { DisableDebugInfo = true; }
1447  void enableDebugInfo() { DisableDebugInfo = false; }
1448 
1450  return CGM.getCodeGenOpts().OptimizationLevel == 0;
1451  }
1452 
1453  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1454 
1455  /// Returns a pointer to the function's exception object and selector slot,
1456  /// which is assigned in every landing pad.
1457  Address getExceptionSlot();
1458  Address getEHSelectorSlot();
1459 
1460  /// Returns the contents of the function's exception object and selector
1461  /// slots.
1462  llvm::Value *getExceptionFromSlot();
1463  llvm::Value *getSelectorFromSlot();
1464 
1465  Address getNormalCleanupDestSlot();
1466 
1467  llvm::BasicBlock *getUnreachableBlock() {
1468  if (!UnreachableBlock) {
1469  UnreachableBlock = createBasicBlock("unreachable");
1470  new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1471  }
1472  return UnreachableBlock;
1473  }
1474 
1475  llvm::BasicBlock *getInvokeDest() {
1476  if (!EHStack.requiresLandingPad()) return nullptr;
1477  return getInvokeDestImpl();
1478  }
1479 
1480  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1481 
1482  const TargetInfo &getTarget() const { return Target; }
1483  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1485  return CGM.getTargetCodeGenInfo();
1486  }
1487 
1488  //===--------------------------------------------------------------------===//
1489  // Cleanups
1490  //===--------------------------------------------------------------------===//
1491 
1492  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1493 
1494  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1495  Address arrayEndPointer,
1496  QualType elementType,
1497  CharUnits elementAlignment,
1498  Destroyer *destroyer);
1499  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1500  llvm::Value *arrayEnd,
1501  QualType elementType,
1502  CharUnits elementAlignment,
1503  Destroyer *destroyer);
1504 
1505  void pushDestroy(QualType::DestructionKind dtorKind,
1506  Address addr, QualType type);
1507  void pushEHDestroy(QualType::DestructionKind dtorKind,
1508  Address addr, QualType type);
1509  void pushDestroy(CleanupKind kind, Address addr, QualType type,
1510  Destroyer *destroyer, bool useEHCleanupForArray);
1511  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1512  QualType type, Destroyer *destroyer,
1513  bool useEHCleanupForArray);
1514  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1515  llvm::Value *CompletePtr,
1516  QualType ElementType);
1517  void pushStackRestore(CleanupKind kind, Address SPMem);
1518  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1519  bool useEHCleanupForArray);
1520  llvm::Function *generateDestroyHelper(Address addr, QualType type,
1521  Destroyer *destroyer,
1522  bool useEHCleanupForArray,
1523  const VarDecl *VD);
1524  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1525  QualType elementType, CharUnits elementAlign,
1526  Destroyer *destroyer,
1527  bool checkZeroLength, bool useEHCleanup);
1528 
1529  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1530 
1531  /// Determines whether an EH cleanup is required to destroy a type
1532  /// with the given destruction kind.
1534  switch (kind) {
1535  case QualType::DK_none:
1536  return false;
1537  case QualType::DK_cxx_destructor:
1538  case QualType::DK_objc_weak_lifetime:
1539  return getLangOpts().Exceptions;
1540  case QualType::DK_objc_strong_lifetime:
1541  return getLangOpts().Exceptions &&
1542  CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1543  }
1544  llvm_unreachable("bad destruction kind");
1545  }
1546 
1548  return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1549  }
1550 
1551  //===--------------------------------------------------------------------===//
1552  // Objective-C
1553  //===--------------------------------------------------------------------===//
1554 
1555  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1556 
1557  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1558 
1559  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1560  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1561  const ObjCPropertyImplDecl *PID);
1562  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1563  const ObjCPropertyImplDecl *propImpl,
1564  const ObjCMethodDecl *GetterMothodDecl,
1565  llvm::Constant *AtomicHelperFn);
1566 
1567  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1568  ObjCMethodDecl *MD, bool ctor);
1569 
1570  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1571  /// for the given property.
1572  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1573  const ObjCPropertyImplDecl *PID);
1574  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1575  const ObjCPropertyImplDecl *propImpl,
1576  llvm::Constant *AtomicHelperFn);
1577 
1578  //===--------------------------------------------------------------------===//
1579  // Block Bits
1580  //===--------------------------------------------------------------------===//
1581 
1582  /// Emit block literal.
1583  /// \return an LLVM value which is a pointer to a struct which contains
1584  /// information about the block, including the block invoke function, the
1585  /// captured variables, etc.
1586  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1587  static void destroyBlockInfos(CGBlockInfo *info);
1588 
1589  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1590  const CGBlockInfo &Info,
1591  const DeclMapTy &ldm,
1592  bool IsLambdaConversionToBlock,
1593  bool BuildGlobalBlock);
1594 
1595  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1596  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1597  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1598  const ObjCPropertyImplDecl *PID);
1599  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1600  const ObjCPropertyImplDecl *PID);
1601  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1602 
1603  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1604 
1605  class AutoVarEmission;
1606 
1607  void emitByrefStructureInit(const AutoVarEmission &emission);
1608  void enterByrefCleanup(const AutoVarEmission &emission);
1609 
1610  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1611  llvm::Value *ptr);
1612 
1613  Address LoadBlockStruct();
1614  Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1615 
1616  /// BuildBlockByrefAddress - Computes the location of the
1617  /// data in a variable which is declared as __block.
1618  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1619  bool followForward = true);
1620  Address emitBlockByrefAddress(Address baseAddr,
1621  const BlockByrefInfo &info,
1622  bool followForward,
1623  const llvm::Twine &name);
1624 
1625  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1626 
1627  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1628 
1629  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1630  const CGFunctionInfo &FnInfo);
1631  /// \brief Emit code for the start of a function.
1632  /// \param Loc The location to be associated with the function.
1633  /// \param StartLoc The location of the function body.
1634  void StartFunction(GlobalDecl GD,
1635  QualType RetTy,
1636  llvm::Function *Fn,
1637  const CGFunctionInfo &FnInfo,
1638  const FunctionArgList &Args,
1640  SourceLocation StartLoc = SourceLocation());
1641 
1642  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1643 
1644  void EmitConstructorBody(FunctionArgList &Args);
1645  void EmitDestructorBody(FunctionArgList &Args);
1646  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1647  void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1648  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1649 
1650  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1651  CallArgList &CallArgs);
1652  void EmitLambdaBlockInvokeBody();
1653  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1654  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1655  void EmitAsanPrologueOrEpilogue(bool Prologue);
1656 
1657  /// \brief Emit the unified return block, trying to avoid its emission when
1658  /// possible.
1659  /// \return The debug location of the user written return statement if the
1660  /// return block is is avoided.
1661  llvm::DebugLoc EmitReturnBlock();
1662 
1663  /// FinishFunction - Complete IR generation of the current function. It is
1664  /// legal to call this function even if there is no current insertion point.
1665  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1666 
1667  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1668  const CGFunctionInfo &FnInfo);
1669 
1670  void EmitCallAndReturnForThunk(llvm::Constant *Callee,
1671  const ThunkInfo *Thunk);
1672 
1673  void FinishThunk();
1674 
1675  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1676  void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1677  llvm::Value *Callee);
1678 
1679  /// Generate a thunk for the given method.
1680  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1681  GlobalDecl GD, const ThunkInfo &Thunk);
1682 
1683  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1684  const CGFunctionInfo &FnInfo,
1685  GlobalDecl GD, const ThunkInfo &Thunk);
1686 
1687  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1688  FunctionArgList &Args);
1689 
1690  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1691 
1692  /// Struct with all informations about dynamic [sub]class needed to set vptr.
1693  struct VPtr {
1698  };
1699 
1700  /// Initialize the vtable pointer of the given subobject.
1701  void InitializeVTablePointer(const VPtr &vptr);
1702 
1704 
1705  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1706  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1707 
1708  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1709  CharUnits OffsetFromNearestVBase,
1710  bool BaseIsNonVirtualPrimaryBase,
1711  const CXXRecordDecl *VTableClass,
1712  VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1713 
1714  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1715 
1716  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1717  /// to by This.
1718  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1719  const CXXRecordDecl *VTableClass);
1720 
1727  };
1728 
1729  /// \brief Derived is the presumed address of an object of type T after a
1730  /// cast. If T is a polymorphic class type, emit a check that the virtual
1731  /// table for Derived belongs to a class derived from T.
1732  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1733  bool MayBeNull, CFITypeCheckKind TCK,
1734  SourceLocation Loc);
1735 
1736  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1737  /// If vptr CFI is enabled, emit a check that VTable is valid.
1738  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1739  CFITypeCheckKind TCK, SourceLocation Loc);
1740 
1741  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1742  /// RD using llvm.type.test.
1743  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1744  CFITypeCheckKind TCK, SourceLocation Loc);
1745 
1746  /// If whole-program virtual table optimization is enabled, emit an assumption
1747  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1748  /// enabled, emit a check that VTable is a member of RD's type identifier.
1749  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1750  llvm::Value *VTable, SourceLocation Loc);
1751 
1752  /// Returns whether we should perform a type checked load when loading a
1753  /// virtual function for virtual calls to members of RD. This is generally
1754  /// true when both vcall CFI and whole-program-vtables are enabled.
1755  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1756 
1757  /// Emit a type checked load from the given vtable.
1758  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1759  uint64_t VTableByteOffset);
1760 
1761  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1762  /// given phase of destruction for a destructor. The end result
1763  /// should call destructors on members and base classes in reverse
1764  /// order of their construction.
1765  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1766 
1767  /// ShouldInstrumentFunction - Return true if the current function should be
1768  /// instrumented with __cyg_profile_func_* calls
1769  bool ShouldInstrumentFunction();
1770 
1771  /// ShouldXRayInstrument - Return true if the current function should be
1772  /// instrumented with XRay nop sleds.
1773  bool ShouldXRayInstrumentFunction() const;
1774 
1775  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
1776  /// XRay custom event handling calls.
1777  bool AlwaysEmitXRayCustomEvents() const;
1778 
1779  /// Encode an address into a form suitable for use in a function prologue.
1780  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1781  llvm::Constant *Addr);
1782 
1783  /// Decode an address used in a function prologue, encoded by \c
1784  /// EncodeAddrForUseInPrologue.
1785  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1786  llvm::Value *EncodedAddr);
1787 
1788  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1789  /// arguments for the given function. This is also responsible for naming the
1790  /// LLVM function arguments.
1791  void EmitFunctionProlog(const CGFunctionInfo &FI,
1792  llvm::Function *Fn,
1793  const FunctionArgList &Args);
1794 
1795  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1796  /// given temporary.
1797  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1798  SourceLocation EndLoc);
1799 
1800  /// Emit a test that checks if the return value \p RV is nonnull.
1801  void EmitReturnValueCheck(llvm::Value *RV);
1802 
1803  /// EmitStartEHSpec - Emit the start of the exception spec.
1804  void EmitStartEHSpec(const Decl *D);
1805 
1806  /// EmitEndEHSpec - Emit the end of the exception spec.
1807  void EmitEndEHSpec(const Decl *D);
1808 
1809  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1810  llvm::BasicBlock *getTerminateLandingPad();
1811 
1812  /// getTerminateLandingPad - Return a cleanup funclet that just calls
1813  /// terminate.
1814  llvm::BasicBlock *getTerminateFunclet();
1815 
1816  /// getTerminateHandler - Return a handler (not a landing pad, just
1817  /// a catch handler) that just calls terminate. This is used when
1818  /// a terminate scope encloses a try.
1819  llvm::BasicBlock *getTerminateHandler();
1820 
1821  llvm::Type *ConvertTypeForMem(QualType T);
1822  llvm::Type *ConvertType(QualType T);
1823  llvm::Type *ConvertType(const TypeDecl *T) {
1824  return ConvertType(getContext().getTypeDeclType(T));
1825  }
1826 
1827  /// LoadObjCSelf - Load the value of self. This function is only valid while
1828  /// generating code for an Objective-C method.
1829  llvm::Value *LoadObjCSelf();
1830 
1831  /// TypeOfSelfObject - Return type of object that this self represents.
1832  QualType TypeOfSelfObject();
1833 
1834  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
1835  static TypeEvaluationKind getEvaluationKind(QualType T);
1836 
1838  return getEvaluationKind(T) == TEK_Scalar;
1839  }
1840 
1842  return getEvaluationKind(T) == TEK_Aggregate;
1843  }
1844 
1845  /// createBasicBlock - Create an LLVM basic block.
1846  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1847  llvm::Function *parent = nullptr,
1848  llvm::BasicBlock *before = nullptr) {
1849  return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1850  }
1851 
1852  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1853  /// label maps to.
1854  JumpDest getJumpDestForLabel(const LabelDecl *S);
1855 
1856  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1857  /// another basic block, simplify it. This assumes that no other code could
1858  /// potentially reference the basic block.
1859  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1860 
1861  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1862  /// adding a fall-through branch from the current insert block if
1863  /// necessary. It is legal to call this function even if there is no current
1864  /// insertion point.
1865  ///
1866  /// IsFinished - If true, indicates that the caller has finished emitting
1867  /// branches to the given block and does not expect to emit code into it. This
1868  /// means the block can be ignored if it is unreachable.
1869  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1870 
1871  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1872  /// near its uses, and leave the insertion point in it.
1873  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1874 
1875  /// EmitBranch - Emit a branch to the specified basic block from the current
1876  /// insert block, taking care to avoid creation of branches from dummy
1877  /// blocks. It is legal to call this function even if there is no current
1878  /// insertion point.
1879  ///
1880  /// This function clears the current insertion point. The caller should follow
1881  /// calls to this function with calls to Emit*Block prior to generation new
1882  /// code.
1883  void EmitBranch(llvm::BasicBlock *Block);
1884 
1885  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1886  /// indicates that the current code being emitted is unreachable.
1887  bool HaveInsertPoint() const {
1888  return Builder.GetInsertBlock() != nullptr;
1889  }
1890 
1891  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1892  /// emitted IR has a place to go. Note that by definition, if this function
1893  /// creates a block then that block is unreachable; callers may do better to
1894  /// detect when no insertion point is defined and simply skip IR generation.
1896  if (!HaveInsertPoint())
1897  EmitBlock(createBasicBlock());
1898  }
1899 
1900  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1901  /// specified stmt yet.
1902  void ErrorUnsupported(const Stmt *S, const char *Type);
1903 
1904  //===--------------------------------------------------------------------===//
1905  // Helpers
1906  //===--------------------------------------------------------------------===//
1907 
1909  AlignmentSource Source = AlignmentSource::Type) {
1910  return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
1911  CGM.getTBAAAccessInfo(T));
1912  }
1913 
1915  TBAAAccessInfo TBAAInfo) {
1916  return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
1917  }
1918 
1920  AlignmentSource Source = AlignmentSource::Type) {
1921  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1922  LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
1923  }
1924 
1926  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
1927  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1928  BaseInfo, TBAAInfo);
1929  }
1930 
1931  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1932  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1933  CharUnits getNaturalTypeAlignment(QualType T,
1934  LValueBaseInfo *BaseInfo = nullptr,
1935  TBAAAccessInfo *TBAAInfo = nullptr,
1936  bool forPointeeType = false);
1937  CharUnits getNaturalPointeeTypeAlignment(QualType T,
1938  LValueBaseInfo *BaseInfo = nullptr,
1939  TBAAAccessInfo *TBAAInfo = nullptr);
1940 
1941  Address EmitLoadOfReference(LValue RefLVal,
1942  LValueBaseInfo *PointeeBaseInfo = nullptr,
1943  TBAAAccessInfo *PointeeTBAAInfo = nullptr);
1944  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
1946  AlignmentSource Source =
1947  AlignmentSource::Type) {
1948  LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
1949  CGM.getTBAAAccessInfo(RefTy));
1950  return EmitLoadOfReferenceLValue(RefLVal);
1951  }
1952 
1953  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1954  LValueBaseInfo *BaseInfo = nullptr,
1955  TBAAAccessInfo *TBAAInfo = nullptr);
1956  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1957 
1958  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
1959  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
1960  /// insertion point of the builder. The caller is responsible for setting an
1961  /// appropriate alignment on
1962  /// the alloca.
1963  ///
1964  /// \p ArraySize is the number of array elements to be allocated if it
1965  /// is not nullptr.
1966  ///
1967  /// LangAS::Default is the address space of pointers to local variables and
1968  /// temporaries, as exposed in the source language. In certain
1969  /// configurations, this is not the same as the alloca address space, and a
1970  /// cast is needed to lift the pointer from the alloca AS into
1971  /// LangAS::Default. This can happen when the target uses a restricted
1972  /// address space for the stack but the source language requires
1973  /// LangAS::Default to be a generic address space. The latter condition is
1974  /// common for most programming languages; OpenCL is an exception in that
1975  /// LangAS::Default is the private address space, which naturally maps
1976  /// to the stack.
1977  ///
1978  /// Because the address of a temporary is often exposed to the program in
1979  /// various ways, this function will perform the cast by default. The cast
1980  /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is
1981  /// more efficient if the caller knows that the address will not be exposed.
1982  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
1983  llvm::Value *ArraySize = nullptr);
1984  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1985  const Twine &Name = "tmp",
1986  llvm::Value *ArraySize = nullptr,
1987  bool CastToDefaultAddrSpace = true);
1988 
1989  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1990  /// default ABI alignment of the given LLVM type.
1991  ///
1992  /// IMPORTANT NOTE: This is *not* generally the right alignment for
1993  /// any given AST type that happens to have been lowered to the
1994  /// given IR type. This should only ever be used for function-local,
1995  /// IR-driven manipulations like saving and restoring a value. Do
1996  /// not hand this address off to arbitrary IRGen routines, and especially
1997  /// do not pass it as an argument to a function that might expect a
1998  /// properly ABI-aligned value.
1999  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2000  const Twine &Name = "tmp");
2001 
2002  /// InitTempAlloca - Provide an initial value for the given alloca which
2003  /// will be observable at all locations in the function.
2004  ///
2005  /// The address should be something that was returned from one of
2006  /// the CreateTempAlloca or CreateMemTemp routines, and the
2007  /// initializer must be valid in the entry block (i.e. it must
2008  /// either be a constant or an argument value).
2009  void InitTempAlloca(Address Alloca, llvm::Value *Value);
2010 
2011  /// CreateIRTemp - Create a temporary IR object of the given type, with
2012  /// appropriate alignment. This routine should only be used when an temporary
2013  /// value needs to be stored into an alloca (for example, to avoid explicit
2014  /// PHI construction), but the type is the IR type, not the type appropriate
2015  /// for storing in memory.
2016  ///
2017  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2018  /// ConvertType instead of ConvertTypeForMem.
2019  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2020 
2021  /// CreateMemTemp - Create a temporary memory object of the given type, with
2022  /// appropriate alignment. Cast it to the default address space if
2023  /// \p CastToDefaultAddrSpace is true.
2024  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2025  bool CastToDefaultAddrSpace = true);
2026  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2027  bool CastToDefaultAddrSpace = true);
2028 
2029  /// CreateAggTemp - Create a temporary memory object for the given
2030  /// aggregate type.
2031  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2032  return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2033  T.getQualifiers(),
2034  AggValueSlot::IsNotDestructed,
2035  AggValueSlot::DoesNotNeedGCBarriers,
2036  AggValueSlot::IsNotAliased);
2037  }
2038 
2039  /// Emit a cast to void* in the appropriate address space.
2040  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2041 
2042  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2043  /// expression and compare the result against zero, returning an Int1Ty value.
2044  llvm::Value *EvaluateExprAsBool(const Expr *E);
2045 
2046  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2047  void EmitIgnoredExpr(const Expr *E);
2048 
2049  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2050  /// any type. The result is returned as an RValue struct. If this is an
2051  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2052  /// the result should be returned.
2053  ///
2054  /// \param ignoreResult True if the resulting value isn't used.
2055  RValue EmitAnyExpr(const Expr *E,
2056  AggValueSlot aggSlot = AggValueSlot::ignored(),
2057  bool ignoreResult = false);
2058 
2059  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2060  // or the value of the expression, depending on how va_list is defined.
2061  Address EmitVAListRef(const Expr *E);
2062 
2063  /// Emit a "reference" to a __builtin_ms_va_list; this is
2064  /// always the value of the expression, because a __builtin_ms_va_list is a
2065  /// pointer to a char.
2066  Address EmitMSVAListRef(const Expr *E);
2067 
2068  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2069  /// always be accessible even if no aggregate location is provided.
2070  RValue EmitAnyExprToTemp(const Expr *E);
2071 
2072  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2073  /// arbitrary expression into the given memory location.
2074  void EmitAnyExprToMem(const Expr *E, Address Location,
2075  Qualifiers Quals, bool IsInitializer);
2076 
2077  void EmitAnyExprToExn(const Expr *E, Address Addr);
2078 
2079  /// EmitExprAsInit - Emits the code necessary to initialize a
2080  /// location in memory with the given initializer.
2081  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2082  bool capturedByInit);
2083 
2084  /// hasVolatileMember - returns true if aggregate type has a volatile
2085  /// member.
2087  if (const RecordType *RT = T->getAs<RecordType>()) {
2088  const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2089  return RD->hasVolatileMember();
2090  }
2091  return false;
2092  }
2093  /// EmitAggregateCopy - Emit an aggregate assignment.
2094  ///
2095  /// The difference to EmitAggregateCopy is that tail padding is not copied.
2096  /// This is required for correctness when assigning non-POD structures in C++.
2097  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2098  bool IsVolatile = hasVolatileMember(EltTy);
2099  EmitAggregateCopy(Dest, Src, EltTy, IsVolatile, /* isAssignment= */ true);
2100  }
2101 
2103  EmitAggregateCopy(Dest, Src, Src.getType(),
2104  /* IsVolatile= */ false, /* IsAssignment= */ false);
2105  }
2106 
2107  /// EmitAggregateCopy - Emit an aggregate copy.
2108  ///
2109  /// \param isVolatile - True iff either the source or the destination is
2110  /// volatile.
2111  /// \param isAssignment - If false, allow padding to be copied. This often
2112  /// yields more efficient.
2113  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2114  bool isVolatile = false, bool isAssignment = false);
2115 
2116  /// GetAddrOfLocalVar - Return the address of a local variable.
2118  auto it = LocalDeclMap.find(VD);
2119  assert(it != LocalDeclMap.end() &&
2120  "Invalid argument to GetAddrOfLocalVar(), no decl!");
2121  return it->second;
2122  }
2123 
2124  /// getOpaqueLValueMapping - Given an opaque value expression (which
2125  /// must be mapped to an l-value), return its mapping.
2127  assert(OpaqueValueMapping::shouldBindAsLValue(e));
2128 
2129  llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
2130  it = OpaqueLValues.find(e);
2131  assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
2132  return it->second;
2133  }
2134 
2135  /// getOpaqueRValueMapping - Given an opaque value expression (which
2136  /// must be mapped to an r-value), return its mapping.
2138  assert(!OpaqueValueMapping::shouldBindAsLValue(e));
2139 
2140  llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
2141  it = OpaqueRValues.find(e);
2142  assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
2143  return it->second;
2144  }
2145 
2146  /// Get the index of the current ArrayInitLoopExpr, if any.
2147  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2148 
2149  /// getAccessedFieldNo - Given an encoded value and a result number, return
2150  /// the input field number being accessed.
2151  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2152 
2153  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2154  llvm::BasicBlock *GetIndirectGotoBlock();
2155 
2156  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2157  static bool IsWrappedCXXThis(const Expr *E);
2158 
2159  /// EmitNullInitialization - Generate code to set a value of the given type to
2160  /// null, If the type contains data member pointers, they will be initialized
2161  /// to -1 in accordance with the Itanium C++ ABI.
2162  void EmitNullInitialization(Address DestPtr, QualType Ty);
2163 
2164  /// Emits a call to an LLVM variable-argument intrinsic, either
2165  /// \c llvm.va_start or \c llvm.va_end.
2166  /// \param ArgValue A reference to the \c va_list as emitted by either
2167  /// \c EmitVAListRef or \c EmitMSVAListRef.
2168  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2169  /// calls \c llvm.va_end.
2170  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2171 
2172  /// Generate code to get an argument from the passed in pointer
2173  /// and update it accordingly.
2174  /// \param VE The \c VAArgExpr for which to generate code.
2175  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2176  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2177  /// \returns A pointer to the argument.
2178  // FIXME: We should be able to get rid of this method and use the va_arg
2179  // instruction in LLVM instead once it works well enough.
2180  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2181 
2182  /// emitArrayLength - Compute the length of an array, even if it's a
2183  /// VLA, and drill down to the base element type.
2184  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2185  QualType &baseType,
2186  Address &addr);
2187 
2188  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2189  /// the given variably-modified type and store them in the VLASizeMap.
2190  ///
2191  /// This function can be called with a null (unreachable) insert point.
2192  void EmitVariablyModifiedType(QualType Ty);
2193 
2194  struct VlaSizePair {
2197 
2198  VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2199  };
2200 
2201  /// Return the number of elements for a single dimension
2202  /// for the given array type.
2203  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2204  VlaSizePair getVLAElements1D(QualType vla);
2205 
2206  /// Returns an LLVM value that corresponds to the size,
2207  /// in non-variably-sized elements, of a variable length array type,
2208  /// plus that largest non-variably-sized element type. Assumes that
2209  /// the type has already been emitted with EmitVariablyModifiedType.
2210  VlaSizePair getVLASize(const VariableArrayType *vla);
2211  VlaSizePair getVLASize(QualType vla);
2212 
2213  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2214  /// generating code for an C++ member function.
2216  assert(CXXThisValue && "no 'this' value for this function");
2217  return CXXThisValue;
2218  }
2219  Address LoadCXXThisAddress();
2220 
2221  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2222  /// virtual bases.
2223  // FIXME: Every place that calls LoadCXXVTT is something
2224  // that needs to be abstracted properly.
2226  assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2227  return CXXStructorImplicitParamValue;
2228  }
2229 
2230  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2231  /// complete class to the given direct base.
2232  Address
2233  GetAddressOfDirectBaseInCompleteClass(Address Value,
2234  const CXXRecordDecl *Derived,
2235  const CXXRecordDecl *Base,
2236  bool BaseIsVirtual);
2237 
2238  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2239 
2240  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2241  /// load of 'this' and returns address of the base class.
2242  Address GetAddressOfBaseClass(Address Value,
2243  const CXXRecordDecl *Derived,
2246  bool NullCheckValue, SourceLocation Loc);
2247 
2248  Address GetAddressOfDerivedClass(Address Value,
2249  const CXXRecordDecl *Derived,
2252  bool NullCheckValue);
2253 
2254  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2255  /// base constructor/destructor with virtual bases.
2256  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2257  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2258  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2259  bool Delegating);
2260 
2261  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2262  CXXCtorType CtorType,
2263  const FunctionArgList &Args,
2264  SourceLocation Loc);
2265  // It's important not to confuse this and the previous function. Delegating
2266  // constructors are the C++0x feature. The constructor delegate optimization
2267  // is used to reduce duplication in the base and complete consturctors where
2268  // they are substantially the same.
2269  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2270  const FunctionArgList &Args);
2271 
2272  /// Emit a call to an inheriting constructor (that is, one that invokes a
2273  /// constructor inherited from a base class) by inlining its definition. This
2274  /// is necessary if the ABI does not support forwarding the arguments to the
2275  /// base class constructor (because they're variadic or similar).
2276  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2277  CXXCtorType CtorType,
2278  bool ForVirtualBase,
2279  bool Delegating,
2280  CallArgList &Args);
2281 
2282  /// Emit a call to a constructor inherited from a base class, passing the
2283  /// current constructor's arguments along unmodified (without even making
2284  /// a copy).
2285  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2286  bool ForVirtualBase, Address This,
2287  bool InheritedFromVBase,
2288  const CXXInheritedCtorInitExpr *E);
2289 
2290  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2291  bool ForVirtualBase, bool Delegating,
2292  Address This, const CXXConstructExpr *E);
2293 
2294  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2295  bool ForVirtualBase, bool Delegating,
2296  Address This, CallArgList &Args);
2297 
2298  /// Emit assumption load for all bases. Requires to be be called only on
2299  /// most-derived class and not under construction of the object.
2300  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2301 
2302  /// Emit assumption that vptr load == global vtable.
2303  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2304 
2305  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2306  Address This, Address Src,
2307  const CXXConstructExpr *E);
2308 
2309  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2310  const ArrayType *ArrayTy,
2311  Address ArrayPtr,
2312  const CXXConstructExpr *E,
2313  bool ZeroInitialization = false);
2314 
2315  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2316  llvm::Value *NumElements,
2317  Address ArrayPtr,
2318  const CXXConstructExpr *E,
2319  bool ZeroInitialization = false);
2320 
2321  static Destroyer destroyCXXObject;
2322 
2323  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2324  bool ForVirtualBase, bool Delegating,
2325  Address This);
2326 
2327  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2328  llvm::Type *ElementTy, Address NewPtr,
2329  llvm::Value *NumElements,
2330  llvm::Value *AllocSizeWithoutCookie);
2331 
2332  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2333  Address Ptr);
2334 
2335  llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2336  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2337 
2338  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2339  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2340 
2341  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2342  QualType DeleteTy, llvm::Value *NumElements = nullptr,
2343  CharUnits CookieSize = CharUnits());
2344 
2345  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2346  const Expr *Arg, bool IsDelete);
2347 
2348  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2349  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2350  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2351 
2352  /// \brief Situations in which we might emit a check for the suitability of a
2353  /// pointer or glvalue.
2355  /// Checking the operand of a load. Must be suitably sized and aligned.
2357  /// Checking the destination of a store. Must be suitably sized and aligned.
2359  /// Checking the bound value in a reference binding. Must be suitably sized
2360  /// and aligned, but is not required to refer to an object (until the
2361  /// reference is used), per core issue 453.
2363  /// Checking the object expression in a non-static data member access. Must
2364  /// be an object within its lifetime.
2366  /// Checking the 'this' pointer for a call to a non-static member function.
2367  /// Must be an object within its lifetime.
2369  /// Checking the 'this' pointer for a constructor call.
2371  /// Checking the operand of a static_cast to a derived pointer type. Must be
2372  /// null or an object within its lifetime.
2374  /// Checking the operand of a static_cast to a derived reference type. Must
2375  /// be an object within its lifetime.
2377  /// Checking the operand of a cast to a base object. Must be suitably sized
2378  /// and aligned.
2380  /// Checking the operand of a cast to a virtual base object. Must be an
2381  /// object within its lifetime.
2383  /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2385  /// Checking the operand of a dynamic_cast or a typeid expression. Must be
2386  /// null or an object within its lifetime.
2387  TCK_DynamicOperation
2388  };
2389 
2390  /// Determine whether the pointer type check \p TCK permits null pointers.
2391  static bool isNullPointerAllowed(TypeCheckKind TCK);
2392 
2393  /// Determine whether the pointer type check \p TCK requires a vptr check.
2394  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2395 
2396  /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2397  /// calls to EmitTypeCheck can be skipped.
2398  bool sanitizePerformTypeCheck() const;
2399 
2400  /// \brief Emit a check that \p V is the address of storage of the
2401  /// appropriate size and alignment for an object of type \p Type.
2402  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2403  QualType Type, CharUnits Alignment = CharUnits::Zero(),
2404  SanitizerSet SkippedChecks = SanitizerSet());
2405 
2406  /// \brief Emit a check that \p Base points into an array object, which
2407  /// we can access at index \p Index. \p Accessed should be \c false if we
2408  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2409  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2410  QualType IndexType, bool Accessed);
2411 
2412  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2413  bool isInc, bool isPre);
2414  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2415  bool isInc, bool isPre);
2416 
2417  void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2418  llvm::Value *OffsetValue = nullptr) {
2419  Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2420  OffsetValue);
2421  }
2422 
2423  /// Converts Location to a DebugLoc, if debug information is enabled.
2424  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2425 
2426 
2427  //===--------------------------------------------------------------------===//
2428  // Declaration Emission
2429  //===--------------------------------------------------------------------===//
2430 
2431  /// EmitDecl - Emit a declaration.
2432  ///
2433  /// This function can be called with a null (unreachable) insert point.
2434  void EmitDecl(const Decl &D);
2435 
2436  /// EmitVarDecl - Emit a local variable declaration.
2437  ///
2438  /// This function can be called with a null (unreachable) insert point.
2439  void EmitVarDecl(const VarDecl &D);
2440 
2441  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2442  bool capturedByInit);
2443 
2444  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2445  llvm::Value *Address);
2446 
2447  /// \brief Determine whether the given initializer is trivial in the sense
2448  /// that it requires no code to be generated.
2449  bool isTrivialInitializer(const Expr *Init);
2450 
2451  /// EmitAutoVarDecl - Emit an auto variable declaration.
2452  ///
2453  /// This function can be called with a null (unreachable) insert point.
2454  void EmitAutoVarDecl(const VarDecl &D);
2455 
2457  friend class CodeGenFunction;
2458 
2459  const VarDecl *Variable;
2460 
2461  /// The address of the alloca. Invalid if the variable was emitted
2462  /// as a global constant.
2463  Address Addr;
2464 
2465  llvm::Value *NRVOFlag;
2466 
2467  /// True if the variable is a __block variable.
2468  bool IsByRef;
2469 
2470  /// True if the variable is of aggregate type and has a constant
2471  /// initializer.
2472  bool IsConstantAggregate;
2473 
2474  /// Non-null if we should use lifetime annotations.
2475  llvm::Value *SizeForLifetimeMarkers;
2476 
2477  struct Invalid {};
2478  AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2479 
2480  AutoVarEmission(const VarDecl &variable)
2481  : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2482  IsByRef(false), IsConstantAggregate(false),
2483  SizeForLifetimeMarkers(nullptr) {}
2484 
2485  bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2486 
2487  public:
2488  static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2489 
2490  bool useLifetimeMarkers() const {
2491  return SizeForLifetimeMarkers != nullptr;
2492  }
2494  assert(useLifetimeMarkers());
2495  return SizeForLifetimeMarkers;
2496  }
2497 
2498  /// Returns the raw, allocated address, which is not necessarily
2499  /// the address of the object itself.
2501  return Addr;
2502  }
2503 
2504  /// Returns the address of the object within this declaration.
2505  /// Note that this does not chase the forwarding pointer for
2506  /// __block decls.
2507  Address getObjectAddress(CodeGenFunction &CGF) const {
2508  if (!IsByRef) return Addr;
2509 
2510  return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2511  }
2512  };
2513  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2514  void EmitAutoVarInit(const AutoVarEmission &emission);
2515  void EmitAutoVarCleanups(const AutoVarEmission &emission);
2516  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2517  QualType::DestructionKind dtorKind);
2518 
2519  /// Emits the alloca and debug information for the size expressions for each
2520  /// dimension of an array. It registers the association of its (1-dimensional)
2521  /// QualTypes and size expression's debug node, so that CGDebugInfo can
2522  /// reference this node when creating the DISubrange object to describe the
2523  /// array types.
2524  void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2525  const VarDecl &D,
2526  bool EmitDebugInfo);
2527 
2528  void EmitStaticVarDecl(const VarDecl &D,
2529  llvm::GlobalValue::LinkageTypes Linkage);
2530 
2531  class ParamValue {
2532  llvm::Value *Value;
2533  unsigned Alignment;
2534  ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2535  public:
2537  return ParamValue(value, 0);
2538  }
2540  assert(!addr.getAlignment().isZero());
2541  return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2542  }
2543 
2544  bool isIndirect() const { return Alignment != 0; }
2545  llvm::Value *getAnyValue() const { return Value; }
2546 
2548  assert(!isIndirect());
2549  return Value;
2550  }
2551 
2553  assert(isIndirect());
2554  return Address(Value, CharUnits::fromQuantity(Alignment));
2555  }
2556  };
2557 
2558  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2559  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2560 
2561  /// protectFromPeepholes - Protect a value that we're intending to
2562  /// store to the side, but which will probably be used later, from
2563  /// aggressive peepholing optimizations that might delete it.
2564  ///
2565  /// Pass the result to unprotectFromPeepholes to declare that
2566  /// protection is no longer required.
2567  ///
2568  /// There's no particular reason why this shouldn't apply to
2569  /// l-values, it's just that no existing peepholes work on pointers.
2570  PeepholeProtection protectFromPeepholes(RValue rvalue);
2571  void unprotectFromPeepholes(PeepholeProtection protection);
2572 
2574  llvm::Value *OffsetValue = nullptr) {
2575  Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2576  OffsetValue);
2577  }
2578 
2579  //===--------------------------------------------------------------------===//
2580  // Statement Emission
2581  //===--------------------------------------------------------------------===//
2582 
2583  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2584  void EmitStopPoint(const Stmt *S);
2585 
2586  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2587  /// this function even if there is no current insertion point.
2588  ///
2589  /// This function may clear the current insertion point; callers should use
2590  /// EnsureInsertPoint if they wish to subsequently generate code without first
2591  /// calling EmitBlock, EmitBranch, or EmitStmt.
2592  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2593 
2594  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2595  /// necessarily require an insertion point or debug information; typically
2596  /// because the statement amounts to a jump or a container of other
2597  /// statements.
2598  ///
2599  /// \return True if the statement was handled.
2600  bool EmitSimpleStmt(const Stmt *S);
2601 
2602  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2603  AggValueSlot AVS = AggValueSlot::ignored());
2604  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2605  bool GetLast = false,
2606  AggValueSlot AVS =
2607  AggValueSlot::ignored());
2608 
2609  /// EmitLabel - Emit the block for the given label. It is legal to call this
2610  /// function even if there is no current insertion point.
2611  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2612 
2613  void EmitLabelStmt(const LabelStmt &S);
2614  void EmitAttributedStmt(const AttributedStmt &S);
2615  void EmitGotoStmt(const GotoStmt &S);
2616  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2617  void EmitIfStmt(const IfStmt &S);
2618 
2619  void EmitWhileStmt(const WhileStmt &S,
2620  ArrayRef<const Attr *> Attrs = None);
2621  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2622  void EmitForStmt(const ForStmt &S,
2623  ArrayRef<const Attr *> Attrs = None);
2624  void EmitReturnStmt(const ReturnStmt &S);
2625  void EmitDeclStmt(const DeclStmt &S);
2626  void EmitBreakStmt(const BreakStmt &S);
2627  void EmitContinueStmt(const ContinueStmt &S);
2628  void EmitSwitchStmt(const SwitchStmt &S);
2629  void EmitDefaultStmt(const DefaultStmt &S);
2630  void EmitCaseStmt(const CaseStmt &S);
2631  void EmitCaseStmtRange(const CaseStmt &S);
2632  void EmitAsmStmt(const AsmStmt &S);
2633 
2634  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2635  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2636  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2637  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2638  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2639 
2640  void EmitCoroutineBody(const CoroutineBodyStmt &S);
2641  void EmitCoreturnStmt(const CoreturnStmt &S);
2642  RValue EmitCoawaitExpr(const CoawaitExpr &E,
2643  AggValueSlot aggSlot = AggValueSlot::ignored(),
2644  bool ignoreResult = false);
2645  LValue EmitCoawaitLValue(const CoawaitExpr *E);
2646  RValue EmitCoyieldExpr(const CoyieldExpr &E,
2647  AggValueSlot aggSlot = AggValueSlot::ignored(),
2648  bool ignoreResult = false);
2649  LValue EmitCoyieldLValue(const CoyieldExpr *E);
2650  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2651 
2652  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2653  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2654 
2655  void EmitCXXTryStmt(const CXXTryStmt &S);
2656  void EmitSEHTryStmt(const SEHTryStmt &S);
2657  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2658  void EnterSEHTryStmt(const SEHTryStmt &S);
2659  void ExitSEHTryStmt(const SEHTryStmt &S);
2660 
2661  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2662  const Stmt *OutlinedStmt);
2663 
2664  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2665  const SEHExceptStmt &Except);
2666 
2667  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2668  const SEHFinallyStmt &Finally);
2669 
2670  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2671  llvm::Value *ParentFP,
2672  llvm::Value *EntryEBP);
2673  llvm::Value *EmitSEHExceptionCode();
2674  llvm::Value *EmitSEHExceptionInfo();
2675  llvm::Value *EmitSEHAbnormalTermination();
2676 
2677  /// Emit simple code for OpenMP directives in Simd-only mode.
2678  void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
2679 
2680  /// Scan the outlined statement for captures from the parent function. For
2681  /// each capture, mark the capture as escaped and emit a call to
2682  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2683  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2684  bool IsFilter);
2685 
2686  /// Recovers the address of a local in a parent function. ParentVar is the
2687  /// address of the variable used in the immediate parent function. It can
2688  /// either be an alloca or a call to llvm.localrecover if there are nested
2689  /// outlined functions. ParentFP is the frame pointer of the outermost parent
2690  /// frame.
2691  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2692  Address ParentVar,
2693  llvm::Value *ParentFP);
2694 
2695  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2696  ArrayRef<const Attr *> Attrs = None);
2697 
2698  /// Controls insertion of cancellation exit blocks in worksharing constructs.
2700  CodeGenFunction &CGF;
2701 
2702  public:
2704  bool HasCancel)
2705  : CGF(CGF) {
2706  CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2707  }
2708  ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2709  };
2710 
2711  /// Returns calculated size of the specified type.
2712  llvm::Value *getTypeSize(QualType Ty);
2713  LValue InitCapturedStruct(const CapturedStmt &S);
2714  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2715  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2716  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2717  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2718  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2719  SmallVectorImpl<llvm::Value *> &CapturedVars);
2720  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2721  SourceLocation Loc);
2722  /// \brief Perform element by element copying of arrays with type \a
2723  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2724  /// generated by \a CopyGen.
2725  ///
2726  /// \param DestAddr Address of the destination array.
2727  /// \param SrcAddr Address of the source array.
2728  /// \param OriginalType Type of destination and source arrays.
2729  /// \param CopyGen Copying procedure that copies value of single array element
2730  /// to another single array element.
2731  void EmitOMPAggregateAssign(
2732  Address DestAddr, Address SrcAddr, QualType OriginalType,
2733  const llvm::function_ref<void(Address, Address)> &CopyGen);
2734  /// \brief Emit proper copying of data from one variable to another.
2735  ///
2736  /// \param OriginalType Original type of the copied variables.
2737  /// \param DestAddr Destination address.
2738  /// \param SrcAddr Source address.
2739  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2740  /// type of the base array element).
2741  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2742  /// the base array element).
2743  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2744  /// DestVD.
2745  void EmitOMPCopy(QualType OriginalType,
2746  Address DestAddr, Address SrcAddr,
2747  const VarDecl *DestVD, const VarDecl *SrcVD,
2748  const Expr *Copy);
2749  /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2750  /// \a X = \a E \a BO \a E.
2751  ///
2752  /// \param X Value to be updated.
2753  /// \param E Update value.
2754  /// \param BO Binary operation for update operation.
2755  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2756  /// expression, false otherwise.
2757  /// \param AO Atomic ordering of the generated atomic instructions.
2758  /// \param CommonGen Code generator for complex expressions that cannot be
2759  /// expressed through atomicrmw instruction.
2760  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2761  /// generated, <false, RValue::get(nullptr)> otherwise.
2762  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2763  LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2764  llvm::AtomicOrdering AO, SourceLocation Loc,
2765  const llvm::function_ref<RValue(RValue)> &CommonGen);
2766  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2767  OMPPrivateScope &PrivateScope);
2768  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2769  OMPPrivateScope &PrivateScope);
2770  void EmitOMPUseDevicePtrClause(
2771  const OMPClause &C, OMPPrivateScope &PrivateScope,
2772  const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2773  /// \brief Emit code for copyin clause in \a D directive. The next code is
2774  /// generated at the start of outlined functions for directives:
2775  /// \code
2776  /// threadprivate_var1 = master_threadprivate_var1;
2777  /// operator=(threadprivate_var2, master_threadprivate_var2);
2778  /// ...
2779  /// __kmpc_barrier(&loc, global_tid);
2780  /// \endcode
2781  ///
2782  /// \param D OpenMP directive possibly with 'copyin' clause(s).
2783  /// \returns true if at least one copyin variable is found, false otherwise.
2784  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2785  /// \brief Emit initial code for lastprivate variables. If some variable is
2786  /// not also firstprivate, then the default initialization is used. Otherwise
2787  /// initialization of this variable is performed by EmitOMPFirstprivateClause
2788  /// method.
2789  ///
2790  /// \param D Directive that may have 'lastprivate' directives.
2791  /// \param PrivateScope Private scope for capturing lastprivate variables for
2792  /// proper codegen in internal captured statement.
2793  ///
2794  /// \returns true if there is at least one lastprivate variable, false
2795  /// otherwise.
2796  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2797  OMPPrivateScope &PrivateScope);
2798  /// \brief Emit final copying of lastprivate values to original variables at
2799  /// the end of the worksharing or simd directive.
2800  ///
2801  /// \param D Directive that has at least one 'lastprivate' directives.
2802  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2803  /// it is the last iteration of the loop code in associated directive, or to
2804  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2805  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2806  bool NoFinals,
2807  llvm::Value *IsLastIterCond = nullptr);
2808  /// Emit initial code for linear clauses.
2809  void EmitOMPLinearClause(const OMPLoopDirective &D,
2810  CodeGenFunction::OMPPrivateScope &PrivateScope);
2811  /// Emit final code for linear clauses.
2812  /// \param CondGen Optional conditional code for final part of codegen for
2813  /// linear clause.
2814  void EmitOMPLinearClauseFinal(
2815  const OMPLoopDirective &D,
2816  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2817  /// \brief Emit initial code for reduction variables. Creates reduction copies
2818  /// and initializes them with the values according to OpenMP standard.
2819  ///
2820  /// \param D Directive (possibly) with the 'reduction' clause.
2821  /// \param PrivateScope Private scope for capturing reduction variables for
2822  /// proper codegen in internal captured statement.
2823  ///
2824  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2825  OMPPrivateScope &PrivateScope);
2826  /// \brief Emit final update of reduction values to original variables at
2827  /// the end of the directive.
2828  ///
2829  /// \param D Directive that has at least one 'reduction' directives.
2830  /// \param ReductionKind The kind of reduction to perform.
2831  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
2832  const OpenMPDirectiveKind ReductionKind);
2833  /// \brief Emit initial code for linear variables. Creates private copies
2834  /// and initializes them with the values according to OpenMP standard.
2835  ///
2836  /// \param D Directive (possibly) with the 'linear' clause.
2837  /// \return true if at least one linear variable is found that should be
2838  /// initialized with the value of the original variable, false otherwise.
2839  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2840 
2841  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2842  llvm::Value * /*OutlinedFn*/,
2843  const OMPTaskDataTy & /*Data*/)>
2845  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2846  const OpenMPDirectiveKind CapturedRegion,
2847  const RegionCodeGenTy &BodyGen,
2848  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2850  Address BasePointersArray = Address::invalid();
2851  Address PointersArray = Address::invalid();
2852  Address SizesArray = Address::invalid();
2853  unsigned NumberOfTargetItems = 0;
2854  explicit OMPTargetDataInfo() = default;
2855  OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
2856  Address SizesArray, unsigned NumberOfTargetItems)
2857  : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
2858  SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
2859  };
2860  void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
2861  const RegionCodeGenTy &BodyGen,
2862  OMPTargetDataInfo &InputInfo);
2863 
2864  void EmitOMPParallelDirective(const OMPParallelDirective &S);
2865  void EmitOMPSimdDirective(const OMPSimdDirective &S);
2866  void EmitOMPForDirective(const OMPForDirective &S);
2867  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2868  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2869  void EmitOMPSectionDirective(const OMPSectionDirective &S);
2870  void EmitOMPSingleDirective(const OMPSingleDirective &S);
2871  void EmitOMPMasterDirective(const OMPMasterDirective &S);
2872  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2873  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2874  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2875  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2876  void EmitOMPTaskDirective(const OMPTaskDirective &S);
2877  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2878  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2879  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2880  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2881  void EmitOMPFlushDirective(const OMPFlushDirective &S);
2882  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2883  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2884  void EmitOMPTargetDirective(const OMPTargetDirective &S);
2885  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2886  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2887  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2888  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2889  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2890  void
2891  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2892  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2893  void
2894  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2895  void EmitOMPCancelDirective(const OMPCancelDirective &S);
2896  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2897  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2898  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2899  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2900  void EmitOMPDistributeParallelForDirective(
2902  void EmitOMPDistributeParallelForSimdDirective(
2904  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2905  void EmitOMPTargetParallelForSimdDirective(
2907  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2908  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2909  void
2910  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2911  void EmitOMPTeamsDistributeParallelForSimdDirective(
2913  void EmitOMPTeamsDistributeParallelForDirective(
2915  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2916  void EmitOMPTargetTeamsDistributeDirective(
2918  void EmitOMPTargetTeamsDistributeParallelForDirective(
2920  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2922  void EmitOMPTargetTeamsDistributeSimdDirective(
2924 
2925  /// Emit device code for the target directive.
2926  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
2927  StringRef ParentName,
2928  const OMPTargetDirective &S);
2929  static void
2930  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2931  const OMPTargetParallelDirective &S);
2932  /// Emit device code for the target parallel for directive.
2933  static void EmitOMPTargetParallelForDeviceFunction(
2934  CodeGenModule &CGM, StringRef ParentName,
2936  /// Emit device code for the target parallel for simd directive.
2937  static void EmitOMPTargetParallelForSimdDeviceFunction(
2938  CodeGenModule &CGM, StringRef ParentName,
2940  /// Emit device code for the target teams directive.
2941  static void
2942  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2943  const OMPTargetTeamsDirective &S);
2944  /// Emit device code for the target teams distribute directive.
2945  static void EmitOMPTargetTeamsDistributeDeviceFunction(
2946  CodeGenModule &CGM, StringRef ParentName,
2948  /// Emit device code for the target teams distribute simd directive.
2949  static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
2950  CodeGenModule &CGM, StringRef ParentName,
2952  /// Emit device code for the target simd directive.
2953  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
2954  StringRef ParentName,
2955  const OMPTargetSimdDirective &S);
2956  /// Emit device code for the target teams distribute parallel for simd
2957  /// directive.
2958  static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
2959  CodeGenModule &CGM, StringRef ParentName,
2961 
2962  static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
2963  CodeGenModule &CGM, StringRef ParentName,
2965  /// \brief Emit inner loop of the worksharing/simd construct.
2966  ///
2967  /// \param S Directive, for which the inner loop must be emitted.
2968  /// \param RequiresCleanup true, if directive has some associated private
2969  /// variables.
2970  /// \param LoopCond Bollean condition for loop continuation.
2971  /// \param IncExpr Increment expression for loop control variable.
2972  /// \param BodyGen Generator for the inner body of the inner loop.
2973  /// \param PostIncGen Genrator for post-increment code (required for ordered
2974  /// loop directvies).
2975  void EmitOMPInnerLoop(
2976  const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2977  const Expr *IncExpr,
2978  const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2979  const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2980 
2981  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2982  /// Emit initial code for loop counters of loop-based directives.
2983  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2984  OMPPrivateScope &LoopScope);
2985 
2986  /// Helper for the OpenMP loop directives.
2987  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2988 
2989  /// \brief Emit code for the worksharing loop-based directive.
2990  /// \return true, if this construct has any lastprivate clause, false -
2991  /// otherwise.
2992  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
2993  const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2994  const CodeGenDispatchBoundsTy &CGDispatchBounds);
2995 
2996  /// Emit code for the distribute loop-based directive.
2997  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
2998  const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
2999 
3000  /// Helpers for the OpenMP loop directives.
3001  void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3002  void EmitOMPSimdFinal(
3003  const OMPLoopDirective &D,
3004  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
3005 
3006  /// Emits the lvalue for the expression with possibly captured variable.
3007  LValue EmitOMPSharedLValue(const Expr *E);
3008 
3009 private:
3010  /// Helpers for blocks.
3011  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3012 
3013  /// struct with the values to be passed to the OpenMP loop-related functions
3014  struct OMPLoopArguments {
3015  /// loop lower bound
3016  Address LB = Address::invalid();
3017  /// loop upper bound
3018  Address UB = Address::invalid();
3019  /// loop stride
3020  Address ST = Address::invalid();
3021  /// isLastIteration argument for runtime functions
3022  Address IL = Address::invalid();
3023  /// Chunk value generated by sema
3024  llvm::Value *Chunk = nullptr;
3025  /// EnsureUpperBound
3026  Expr *EUB = nullptr;
3027  /// IncrementExpression
3028  Expr *IncExpr = nullptr;
3029  /// Loop initialization
3030  Expr *Init = nullptr;
3031  /// Loop exit condition
3032  Expr *Cond = nullptr;
3033  /// Update of LB after a whole chunk has been executed
3034  Expr *NextLB = nullptr;
3035  /// Update of UB after a whole chunk has been executed
3036  Expr *NextUB = nullptr;
3037  OMPLoopArguments() = default;
3038  OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3039  llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3040  Expr *IncExpr = nullptr, Expr *Init = nullptr,
3041  Expr *Cond = nullptr, Expr *NextLB = nullptr,
3042  Expr *NextUB = nullptr)
3043  : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3044  IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3045  NextUB(NextUB) {}
3046  };
3047  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3048  const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3049  const OMPLoopArguments &LoopArgs,
3050  const CodeGenLoopTy &CodeGenLoop,
3051  const CodeGenOrderedTy &CodeGenOrdered);
3052  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3053  bool IsMonotonic, const OMPLoopDirective &S,
3054  OMPPrivateScope &LoopScope, bool Ordered,
3055  const OMPLoopArguments &LoopArgs,
3056  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3057  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3058  const OMPLoopDirective &S,
3059  OMPPrivateScope &LoopScope,
3060  const OMPLoopArguments &LoopArgs,
3061  const CodeGenLoopTy &CodeGenLoopContent);
3062  /// \brief Emit code for sections directive.
3063  void EmitSections(const OMPExecutableDirective &S);
3064 
3065 public:
3066 
3067  //===--------------------------------------------------------------------===//
3068  // LValue Expression Emission
3069  //===--------------------------------------------------------------------===//
3070 
3071  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3072  RValue GetUndefRValue(QualType Ty);
3073 
3074  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3075  /// and issue an ErrorUnsupported style diagnostic (using the
3076  /// provided Name).
3077  RValue EmitUnsupportedRValue(const Expr *E,
3078  const char *Name);
3079 
3080  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3081  /// an ErrorUnsupported style diagnostic (using the provided Name).
3082  LValue EmitUnsupportedLValue(const Expr *E,
3083  const char *Name);
3084 
3085  /// EmitLValue - Emit code to compute a designator that specifies the location
3086  /// of the expression.
3087  ///
3088  /// This can return one of two things: a simple address or a bitfield
3089  /// reference. In either case, the LLVM Value* in the LValue structure is
3090  /// guaranteed to be an LLVM pointer type.
3091  ///
3092  /// If this returns a bitfield reference, nothing about the pointee type of
3093  /// the LLVM value is known: For example, it may not be a pointer to an
3094  /// integer.
3095  ///
3096  /// If this returns a normal address, and if the lvalue's C type is fixed
3097  /// size, this method guarantees that the returned pointer type will point to
3098  /// an LLVM type of the same size of the lvalue's type. If the lvalue has a
3099  /// variable length type, this is not possible.
3100  ///
3101  LValue EmitLValue(const Expr *E);
3102 
3103  /// \brief Same as EmitLValue but additionally we generate checking code to
3104  /// guard against undefined behavior. This is only suitable when we know
3105  /// that the address will be used to access the object.
3106  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3107 
3108  RValue convertTempToRValue(Address addr, QualType type,
3109  SourceLocation Loc);
3110 
3111  void EmitAtomicInit(Expr *E, LValue lvalue);
3112 
3113  bool LValueIsSuitableForInlineAtomic(LValue Src);
3114 
3115  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3116  AggValueSlot Slot = AggValueSlot::ignored());
3117 
3118  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3119  llvm::AtomicOrdering AO, bool IsVolatile = false,
3120  AggValueSlot slot = AggValueSlot::ignored());
3121 
3122  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3123 
3124  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3125  bool IsVolatile, bool isInit);
3126 
3127  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3128  LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3129  llvm::AtomicOrdering Success =
3130  llvm::AtomicOrdering::SequentiallyConsistent,
3131  llvm::AtomicOrdering Failure =
3132  llvm::AtomicOrdering::SequentiallyConsistent,
3133  bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3134 
3135  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3136  const llvm::function_ref<RValue(RValue)> &UpdateOp,
3137  bool IsVolatile);
3138 
3139  /// EmitToMemory - Change a scalar value from its value
3140  /// representation to its in-memory representation.
3141  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3142 
3143  /// EmitFromMemory - Change a scalar value from its memory
3144  /// representation to its value representation.
3145  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3146 
3147  /// Check if the scalar \p Value is within the valid range for the given
3148  /// type \p Ty.
3149  ///
3150  /// Returns true if a check is needed (even if the range is unknown).
3151  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3152  SourceLocation Loc);
3153 
3154  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3155  /// care to appropriately convert from the memory representation to
3156  /// the LLVM value representation.
3157  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3158  SourceLocation Loc,
3159  AlignmentSource Source = AlignmentSource::Type,
3160  bool isNontemporal = false) {
3161  return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3162  CGM.getTBAAAccessInfo(Ty), isNontemporal);
3163  }
3164 
3165  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3166  SourceLocation Loc, LValueBaseInfo BaseInfo,
3167  TBAAAccessInfo TBAAInfo,
3168  bool isNontemporal = false);
3169 
3170  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3171  /// care to appropriately convert from the memory representation to
3172  /// the LLVM value representation. The l-value must be a simple
3173  /// l-value.
3174  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3175 
3176  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3177  /// care to appropriately convert from the memory representation to
3178  /// the LLVM value representation.
3180  bool Volatile, QualType Ty,
3181  AlignmentSource Source = AlignmentSource::Type,
3182  bool isInit = false, bool isNontemporal = false) {
3183  EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3184  CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3185  }
3186 
3187  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3188  bool Volatile, QualType Ty,
3189  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3190  bool isInit = false, bool isNontemporal = false);
3191 
3192  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3193  /// care to appropriately convert from the memory representation to
3194  /// the LLVM value representation. The l-value must be a simple
3195  /// l-value. The isInit flag indicates whether this is an initialization.
3196  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3197  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3198 
3199  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3200  /// this method emits the address of the lvalue, then loads the result as an
3201  /// rvalue, returning the rvalue.
3202  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3203  RValue EmitLoadOfExtVectorElementLValue(LValue V);
3204  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3205  RValue EmitLoadOfGlobalRegLValue(LValue LV);
3206 
3207  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3208  /// lvalue, where both are guaranteed to the have the same type, and that type
3209  /// is 'Ty'.
3210  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3211  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3212  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3213 
3214  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3215  /// as EmitStoreThroughLValue.
3216  ///
3217  /// \param Result [out] - If non-null, this will be set to a Value* for the
3218  /// bit-field contents after the store, appropriate for use as the result of
3219  /// an assignment to the bit-field.
3220  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3221  llvm::Value **Result=nullptr);
3222 
3223  /// Emit an l-value for an assignment (simple or compound) of complex type.
3224  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3225  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3226  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3227  llvm::Value *&Result);
3228 
3229  // Note: only available for agg return types
3230  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3231  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3232  // Note: only available for agg return types
3233  LValue EmitCallExprLValue(const CallExpr *E);
3234  // Note: only available for agg return types
3235  LValue EmitVAArgExprLValue(const VAArgExpr *E);
3236  LValue EmitDeclRefLValue(const DeclRefExpr *E);
3237  LValue EmitStringLiteralLValue(const StringLiteral *E);
3238  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3239  LValue EmitPredefinedLValue(const PredefinedExpr *E);
3240  LValue EmitUnaryOpLValue(const UnaryOperator *E);
3241  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3242  bool Accessed = false);
3243  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3244  bool IsLowerBound = true);
3245  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3246  LValue EmitMemberExpr(const MemberExpr *E);
3247  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3248  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3249  LValue EmitInitListLValue(const InitListExpr *E);
3250  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3251  LValue EmitCastLValue(const CastExpr *E);
3252  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3253  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3254 
3255  Address EmitExtVectorElementLValue(LValue V);
3256 
3257  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3258 
3259  Address EmitArrayToPointerDecay(const Expr *Array,
3260  LValueBaseInfo *BaseInfo = nullptr,
3261  TBAAAccessInfo *TBAAInfo = nullptr);
3262 
3264  llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3265  ConstantEmission(llvm::Constant *C, bool isReference)
3266  : ValueAndIsReference(C, isReference) {}
3267  public:
3269  static ConstantEmission forReference(llvm::Constant *C) {
3270  return ConstantEmission(C, true);
3271  }
3272  static ConstantEmission forValue(llvm::Constant *C) {
3273  return ConstantEmission(C, false);
3274  }
3275 
3276  explicit operator bool() const {
3277  return ValueAndIsReference.getOpaqueValue() != nullptr;
3278  }
3279 
3280  bool isReference() const { return ValueAndIsReference.getInt(); }
3281  LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3282  assert(isReference());
3283  return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3284  refExpr->getType());
3285  }
3286 
3287  llvm::Constant *getValue() const {
3288  assert(!isReference());
3289  return ValueAndIsReference.getPointer();
3290  }
3291  };
3292 
3293  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3294  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3295 
3296  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3297  AggValueSlot slot = AggValueSlot::ignored());
3298  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3299 
3300  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3301  const ObjCIvarDecl *Ivar);
3302  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3303  LValue EmitLValueForLambdaField(const FieldDecl *Field);
3304 
3305  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3306  /// if the Field is a reference, this will return the address of the reference
3307  /// and not the address of the value stored in the reference.
3308  LValue EmitLValueForFieldInitialization(LValue Base,
3309  const FieldDecl* Field);
3310 
3311  LValue EmitLValueForIvar(QualType ObjectTy,
3312  llvm::Value* Base, const ObjCIvarDecl *Ivar,
3313  unsigned CVRQualifiers);
3314 
3315  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3316  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3317  LValue EmitLambdaLValue(const LambdaExpr *E);
3318  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3319  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3320 
3321  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3322  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3323  LValue EmitStmtExprLValue(const StmtExpr *E);
3324  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3325  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3326  void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3327 
3328  //===--------------------------------------------------------------------===//
3329  // Scalar Expression Emission
3330  //===--------------------------------------------------------------------===//
3331 
3332  /// EmitCall - Generate a call of the given function, expecting the given
3333  /// result type, and using the given argument list which specifies both the
3334  /// LLVM arguments and the types they were derived from.
3335  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3336  ReturnValueSlot ReturnValue, const CallArgList &Args,
3337  llvm::Instruction **callOrInvoke, SourceLocation Loc);
3338  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3339  ReturnValueSlot ReturnValue, const CallArgList &Args,
3340  llvm::Instruction **callOrInvoke = nullptr) {
3341  return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3342  SourceLocation());
3343  }
3344  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3345  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3346  RValue EmitCallExpr(const CallExpr *E,
3347  ReturnValueSlot ReturnValue = ReturnValueSlot());
3348  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3349  CGCallee EmitCallee(const Expr *E);
3350 
3351  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3352 
3353  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3354  const Twine &name = "");
3355  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3357  const Twine &name = "");
3358  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3359  const Twine &name = "");
3360  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3362  const Twine &name = "");
3363 
3365  getBundlesForFunclet(llvm::Value *Callee);
3366 
3367  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3369  const Twine &Name = "");
3370  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3372  const Twine &name = "");
3373  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3374  const Twine &name = "");
3375  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3376  ArrayRef<llvm::Value*> args);
3377 
3379  NestedNameSpecifier *Qual,
3380  llvm::Type *Ty);
3381 
3382  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3383  CXXDtorType Type,
3384  const CXXRecordDecl *RD);
3385 
3386  RValue
3387  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3388  const CGCallee &Callee,
3389  ReturnValueSlot ReturnValue, llvm::Value *This,
3390  llvm::Value *ImplicitParam,
3391  QualType ImplicitParamTy, const CallExpr *E,
3392  CallArgList *RtlArgs);
3393  RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3394  const CGCallee &Callee,
3395  llvm::Value *This, llvm::Value *ImplicitParam,
3396  QualType ImplicitParamTy, const CallExpr *E,
3397  StructorType Type);
3398  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3399  ReturnValueSlot ReturnValue);
3400  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3401  const CXXMethodDecl *MD,
3402  ReturnValueSlot ReturnValue,
3403  bool HasQualifier,
3404  NestedNameSpecifier *Qualifier,
3405  bool IsArrow, const Expr *Base);
3406  // Compute the object pointer.
3407  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3408  llvm::Value *memberPtr,
3409  const MemberPointerType *memberPtrType,
3410  LValueBaseInfo *BaseInfo = nullptr,
3411  TBAAAccessInfo *TBAAInfo = nullptr);
3412  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3413  ReturnValueSlot ReturnValue);
3414 
3415  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3416  const CXXMethodDecl *MD,
3417  ReturnValueSlot ReturnValue);
3418  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3419 
3420  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3421  ReturnValueSlot ReturnValue);
3422 
3423  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3424  ReturnValueSlot ReturnValue);
3425 
3426  RValue EmitBuiltinExpr(const FunctionDecl *FD,
3427  unsigned BuiltinID, const CallExpr *E,
3428  ReturnValueSlot ReturnValue);
3429 
3430  /// Emit IR for __builtin_os_log_format.
3431  RValue emitBuiltinOSLogFormat(const CallExpr &E);
3432 
3433  llvm::Function *generateBuiltinOSLogHelperFunction(
3434  const analyze_os_log::OSLogBufferLayout &Layout,
3435  CharUnits BufferAlignment);
3436 
3437  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3438 
3439  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3440  /// is unhandled by the current target.
3441  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3442 
3443  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3444  const llvm::CmpInst::Predicate Fp,
3445  const llvm::CmpInst::Predicate Ip,
3446  const llvm::Twine &Name = "");
3447  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3448  llvm::Triple::ArchType Arch);
3449 
3450  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3451  unsigned LLVMIntrinsic,
3452  unsigned AltLLVMIntrinsic,
3453  const char *NameHint,
3454  unsigned Modifier,
3455  const CallExpr *E,
3457  Address PtrOp0, Address PtrOp1,
3458  llvm::Triple::ArchType Arch);
3459  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3460  unsigned Modifier, llvm::Type *ArgTy,
3461  const CallExpr *E);
3462  llvm::Value *EmitNeonCall(llvm::Function *F,
3464  const char *name,
3465  unsigned shift = 0, bool rightshift = false);
3466  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3467  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3468  bool negateForRightShift);
3469  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3470  llvm::Type *Ty, bool usgn, const char *name);
3471  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3472  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3473  llvm::Triple::ArchType Arch);
3474 
3475  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3476  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3477  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3478  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3479  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3480  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3481  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3482  const CallExpr *E);
3483  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3484 
3485 private:
3486  enum class MSVCIntrin;
3487 
3488 public:
3489  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3490 
3491  llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3492 
3493  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3494  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3495  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3496  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3497  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3498  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3499  const ObjCMethodDecl *MethodWithObjects);
3500  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3501  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3502  ReturnValueSlot Return = ReturnValueSlot());
3503 
3504  /// Retrieves the default cleanup kind for an ARC cleanup.
3505  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3507  return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3509  }
3510 
3511  // ARC primitives.
3512  void EmitARCInitWeak(Address addr, llvm::Value *value);
3513  void EmitARCDestroyWeak(Address addr);
3514  llvm::Value *EmitARCLoadWeak(Address addr);
3515  llvm::Value *EmitARCLoadWeakRetained(Address addr);
3516  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3517  void EmitARCCopyWeak(Address dst, Address src);
3518  void EmitARCMoveWeak(Address dst, Address src);
3519  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3520  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3521  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3522  bool resultIgnored);
3523  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3524  bool resultIgnored);
3525  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3526  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3527  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3528  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3529  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3530  llvm::Value *EmitARCAutorelease(llvm::Value *value);
3531  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3532  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3533  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3534  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3535 
3536  std::pair<LValue,llvm::Value*>
3537  EmitARCStoreAutoreleasing(const BinaryOperator *e);
3538  std::pair<LValue,llvm::Value*>
3539  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3540  std::pair<LValue,llvm::Value*>
3541  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3542 
3543  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3544  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3545  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3546 
3547  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3548  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3549  bool allowUnsafeClaim);
3550  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3551  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3552  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3553 
3554  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3555 
3556  static Destroyer destroyARCStrongImprecise;
3557  static Destroyer destroyARCStrongPrecise;
3558  static Destroyer destroyARCWeak;
3559  static Destroyer emitARCIntrinsicUse;
3560 
3561  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3562  llvm::Value *EmitObjCAutoreleasePoolPush();
3563  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3564  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3565  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3566 
3567  /// \brief Emits a reference binding to the passed in expression.
3568  RValue EmitReferenceBindingToExpr(const Expr *E);
3569 
3570  //===--------------------------------------------------------------------===//
3571  // Expression Emission
3572  //===--------------------------------------------------------------------===//
3573 
3574  // Expressions are broken into three classes: scalar, complex, aggregate.
3575 
3576  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3577  /// scalar type, returning the result.
3578  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3579 
3580  /// Emit a conversion from the specified type to the specified destination
3581  /// type, both of which are LLVM scalar types.
3582  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3583  QualType DstTy, SourceLocation Loc);
3584 
3585  /// Emit a conversion from the specified complex type to the specified
3586  /// destination type, where the destination type is an LLVM scalar type.
3587  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3588  QualType DstTy,
3589  SourceLocation Loc);
3590 
3591  /// EmitAggExpr - Emit the computation of the specified expression
3592  /// of aggregate type. The result is computed into the given slot,
3593  /// which may be null to indicate that the value is not needed.
3594  void EmitAggExpr(const Expr *E, AggValueSlot AS);
3595 
3596  /// EmitAggExprToLValue - Emit the computation of the specified expression of
3597  /// aggregate type into a temporary LValue.
3598  LValue EmitAggExprToLValue(const Expr *E);
3599 
3600  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3601  /// make sure it survives garbage collection until this point.
3602  void EmitExtendGCLifetime(llvm::Value *object);
3603 
3604  /// EmitComplexExpr - Emit the computation of the specified expression of
3605  /// complex type, returning the result.
3606  ComplexPairTy EmitComplexExpr(const Expr *E,
3607  bool IgnoreReal = false,
3608  bool IgnoreImag = false);
3609 
3610  /// EmitComplexExprIntoLValue - Emit the given expression of complex
3611  /// type and place its result into the specified l-value.
3612  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3613 
3614  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3615  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3616 
3617  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3618  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3619 
3620  Address emitAddrOfRealComponent(Address complex, QualType complexType);
3621  Address emitAddrOfImagComponent(Address complex, QualType complexType);
3622 
3623  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3624  /// global variable that has already been created for it. If the initializer
3625  /// has a different type than GV does, this may free GV and return a different
3626  /// one. Otherwise it just returns GV.
3627  llvm::GlobalVariable *
3628  AddInitializerToStaticVarDecl(const VarDecl &D,
3629  llvm::GlobalVariable *GV);
3630 
3631 
3632  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3633  /// variable with global storage.
3634  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3635  bool PerformInit);
3636 
3637  llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3638  llvm::Constant *Addr);
3639 
3640  /// Call atexit() with a function that passes the given argument to
3641  /// the given function.
3642  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3643  llvm::Constant *addr);
3644 
3645  /// Emit code in this function to perform a guarded variable
3646  /// initialization. Guarded initializations are used when it's not
3647  /// possible to prove that an initialization will be done exactly
3648  /// once, e.g. with a static local variable or a static data member
3649  /// of a class template.
3650  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3651  bool PerformInit);
3652 
3653  enum class GuardKind { VariableGuard, TlsGuard };
3654 
3655  /// Emit a branch to select whether or not to perform guarded initialization.
3656  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3657  llvm::BasicBlock *InitBlock,
3658  llvm::BasicBlock *NoInitBlock,
3659  GuardKind Kind, const VarDecl *D);
3660 
3661  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3662  /// variables.
3663  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3664  ArrayRef<llvm::Function *> CXXThreadLocals,
3665  Address Guard = Address::invalid());
3666 
3667  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3668  /// variables.
3669  void GenerateCXXGlobalDtorsFunc(
3670  llvm::Function *Fn,
3671  const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3672  &DtorsAndObjects);
3673 
3674  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3675  const VarDecl *D,
3676  llvm::GlobalVariable *Addr,
3677  bool PerformInit);
3678 
3679  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3680 
3681  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3682 
3684  if (E->getNumObjects() == 0) return;
3685  enterNonTrivialFullExpression(E);
3686  }
3687  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3688 
3689  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3690 
3691  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3692 
3693  RValue EmitAtomicExpr(AtomicExpr *E);
3694 
3695  //===--------------------------------------------------------------------===//
3696  // Annotations Emission
3697  //===--------------------------------------------------------------------===//
3698 
3699  /// Emit an annotation call (intrinsic or builtin).
3700  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3701  llvm::Value *AnnotatedVal,
3702  StringRef AnnotationStr,
3703  SourceLocation Location);
3704 
3705  /// Emit local annotations for the local variable V, declared by D.
3706  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3707 
3708  /// Emit field annotations for the given field & value. Returns the
3709  /// annotation result.
3710  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3711 
3712  //===--------------------------------------------------------------------===//
3713  // Internal Helpers
3714  //===--------------------------------------------------------------------===//
3715 
3716  /// ContainsLabel - Return true if the statement contains a label in it. If
3717  /// this statement is not executed normally, it not containing a label means
3718  /// that we can just remove the code.
3719  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3720 
3721  /// containsBreak - Return true if the statement contains a break out of it.
3722  /// If the statement (recursively) contains a switch or loop with a break
3723  /// inside of it, this is fine.
3724  static bool containsBreak(const Stmt *S);
3725 
3726  /// Determine if the given statement might introduce a declaration into the
3727  /// current scope, by being a (possibly-labelled) DeclStmt.
3728  static bool mightAddDeclToScope(const Stmt *S);
3729 
3730  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3731  /// to a constant, or if it does but contains a label, return false. If it
3732  /// constant folds return true and set the boolean result in Result.
3733  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3734  bool AllowLabels = false);
3735 
3736  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3737  /// to a constant, or if it does but contains a label, return false. If it
3738  /// constant folds return true and set the folded value.
3739  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3740  bool AllowLabels = false);
3741 
3742  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3743  /// if statement) to the specified blocks. Based on the condition, this might
3744  /// try to simplify the codegen of the conditional based on the branch.
3745  /// TrueCount should be the number of times we expect the condition to
3746  /// evaluate to true based on PGO data.
3747  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3748  llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3749 
3750  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
3751  /// nonnull, if \p LHS is marked _Nonnull.
3752  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
3753 
3754  /// An enumeration which makes it easier to specify whether or not an
3755  /// operation is a subtraction.
3756  enum { NotSubtraction = false, IsSubtraction = true };
3757 
3758  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
3759  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
3760  /// \p SignedIndices indicates whether any of the GEP indices are signed.
3761  /// \p IsSubtraction indicates whether the expression used to form the GEP
3762  /// is a subtraction.
3763  llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
3764  ArrayRef<llvm::Value *> IdxList,
3765  bool SignedIndices,
3766  bool IsSubtraction,
3767  SourceLocation Loc,
3768  const Twine &Name = "");
3769 
3770  /// Specifies which type of sanitizer check to apply when handling a
3771  /// particular builtin.
3775  };
3776 
3777  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
3778  /// enabled, a runtime check specified by \p Kind is also emitted.
3779  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
3780 
3781  /// \brief Emit a description of a type in a format suitable for passing to
3782  /// a runtime sanitizer handler.
3783  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3784 
3785  /// \brief Convert a value into a format suitable for passing to a runtime
3786  /// sanitizer handler.
3787  llvm::Value *EmitCheckValue(llvm::Value *V);
3788 
3789  /// \brief Emit a description of a source location in a format suitable for
3790  /// passing to a runtime sanitizer handler.
3791  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3792 
3793  /// \brief Create a basic block that will call a handler function in a
3794  /// sanitizer runtime with the provided arguments, and create a conditional
3795  /// branch to it.
3796  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3797  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3798  ArrayRef<llvm::Value *> DynamicArgs);
3799 
3800  /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3801  /// if Cond if false.
3802  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3803  llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3804  ArrayRef<llvm::Constant *> StaticArgs);
3805 
3806  /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
3807  /// checking is enabled. Otherwise, just emit an unreachable instruction.
3808  void EmitUnreachable(SourceLocation Loc);
3809 
3810  /// \brief Create a basic block that will call the trap intrinsic, and emit a
3811  /// conditional branch to it, for the -ftrapv checks.
3812  void EmitTrapCheck(llvm::Value *Checked);
3813 
3814  /// \brief Emit a call to trap or debugtrap and attach function attribute
3815  /// "trap-func-name" if specified.
3816  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3817 
3818  /// \brief Emit a stub for the cross-DSO CFI check function.
3819  void EmitCfiCheckStub();
3820 
3821  /// \brief Emit a cross-DSO CFI failure handling function.
3822  void EmitCfiCheckFail();
3823 
3824  /// \brief Create a check for a function parameter that may potentially be
3825  /// declared as non-null.
3826  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3827  AbstractCallee AC, unsigned ParmNum);
3828 
3829  /// EmitCallArg - Emit a single call argument.
3830  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3831 
3832  /// EmitDelegateCallArg - We are performing a delegate call; that
3833  /// is, the current function is delegating to another one. Produce
3834  /// a r-value suitable for passing the given parameter.
3835  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3836  SourceLocation loc);
3837 
3838  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3839  /// point operation, expressed as the maximum relative error in ulp.
3840  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3841 
3842 private:
3843  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3844  void EmitReturnOfRValue(RValue RV, QualType Ty);
3845 
3846  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3847 
3849  DeferredReplacements;
3850 
3851  /// Set the address of a local variable.
3852  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3853  assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3854  LocalDeclMap.insert({VD, Addr});
3855  }
3856 
3857  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3858  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3859  ///
3860  /// \param AI - The first function argument of the expansion.
3861  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3863 
3864  /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3865  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3866  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3867  void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3868  SmallVectorImpl<llvm::Value *> &IRCallArgs,
3869  unsigned &IRCallArgPos);
3870 
3871  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3872  const Expr *InputExpr, std::string &ConstraintStr);
3873 
3874  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3875  LValue InputValue, QualType InputType,
3876  std::string &ConstraintStr,
3877  SourceLocation Loc);
3878 
3879  /// \brief Attempts to statically evaluate the object size of E. If that
3880  /// fails, emits code to figure the size of E out for us. This is
3881  /// pass_object_size aware.
3882  ///
3883  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
3884  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3885  llvm::IntegerType *ResType,
3886  llvm::Value *EmittedE);
3887 
3888  /// \brief Emits the size of E, as required by __builtin_object_size. This
3889  /// function is aware of pass_object_size parameters, and will act accordingly
3890  /// if E is a parameter with the pass_object_size attribute.
3891  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3892  llvm::IntegerType *ResType,
3893  llvm::Value *EmittedE);
3894 
3895 public:
3896 #ifndef NDEBUG
3897  // Determine whether the given argument is an Objective-C method
3898  // that may have type parameters in its signature.
3899  static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3900  const DeclContext *dc = method->getDeclContext();
3901  if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3902  return classDecl->getTypeParamListAsWritten();
3903  }
3904 
3905  if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3906  return catDecl->getTypeParamList();
3907  }
3908 
3909  return false;
3910  }
3911 
3912  template<typename T>
3913  static bool isObjCMethodWithTypeParams(const T *) { return false; }
3914 #endif
3915 
3916  enum class EvaluationOrder {
3917  ///! No language constraints on evaluation order.
3918  Default,
3919  ///! Language semantics require left-to-right evaluation.
3920  ForceLeftToRight,
3921  ///! Language semantics require right-to-left evaluation.
3922  ForceRightToLeft
3923  };
3924 
3925  /// EmitCallArgs - Emit call arguments for a function.
3926  template <typename T>
3927  void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3928  llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3930  unsigned ParamsToSkip = 0,
3931  EvaluationOrder Order = EvaluationOrder::Default) {
3932  SmallVector<QualType, 16> ArgTypes;
3933  CallExpr::const_arg_iterator Arg = ArgRange.begin();
3934 
3935  assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3936  "Can't skip parameters if type info is not provided");
3937  if (CallArgTypeInfo) {
3938 #ifndef NDEBUG
3939  bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3940 #endif
3941 
3942  // First, use the argument types that the type info knows about
3943  for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3944  E = CallArgTypeInfo->param_type_end();
3945  I != E; ++I, ++Arg) {
3946  assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3947  assert((isGenericMethod ||
3948  ((*I)->isVariablyModifiedType() ||
3949  (*I).getNonReferenceType()->isObjCRetainableType() ||
3950  getContext()
3951  .getCanonicalType((*I).getNonReferenceType())
3952  .getTypePtr() ==
3953  getContext()
3954  .getCanonicalType((*Arg)->getType())
3955  .getTypePtr())) &&
3956  "type mismatch in call argument!");
3957  ArgTypes.push_back(*I);
3958  }
3959  }
3960 
3961  // Either we've emitted all the call args, or we have a call to variadic
3962  // function.
3963  assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3964  CallArgTypeInfo->isVariadic()) &&
3965  "Extra arguments in non-variadic function!");
3966 
3967  // If we still have any arguments, emit them using the type of the argument.
3968  for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3969  ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
3970 
3971  EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
3972  }
3973 
3974  void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3975  llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3977  unsigned ParamsToSkip = 0,
3978  EvaluationOrder Order = EvaluationOrder::Default);
3979 
3980  /// EmitPointerWithAlignment - Given an expression with a pointer type,
3981  /// emit the value and compute our best estimate of the alignment of the
3982  /// pointee.
3983  ///
3984  /// \param BaseInfo - If non-null, this will be initialized with
3985  /// information about the source of the alignment and the may-alias
3986  /// attribute. Note that this function will conservatively fall back on
3987  /// the type when it doesn't recognize the expression and may-alias will
3988  /// be set to false.
3989  ///
3990  /// One reasonable way to use this information is when there's a language
3991  /// guarantee that the pointer must be aligned to some stricter value, and
3992  /// we're simply trying to ensure that sufficiently obvious uses of under-
3993  /// aligned objects don't get miscompiled; for example, a placement new
3994  /// into the address of a local variable. In such a case, it's quite
3995  /// reasonable to just ignore the returned alignment when it isn't from an
3996  /// explicit source.
3997  Address EmitPointerWithAlignment(const Expr *Addr,
3998  LValueBaseInfo *BaseInfo = nullptr,
3999  TBAAAccessInfo *TBAAInfo = nullptr);
4000 
4001  /// If \p E references a parameter with pass_object_size info or a constant
4002  /// array size modifier, emit the object size divided by the size of \p EltTy.
4003  /// Otherwise return null.
4004  llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4005 
4006  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4007 
4009  llvm::Function *Function;
4010  TargetAttr::ParsedTargetAttr ParsedAttribute;
4011  unsigned Priority;
4012  MultiVersionResolverOption(const TargetInfo &TargInfo, llvm::Function *F,
4013  const clang::TargetAttr::ParsedTargetAttr &PT)
4014  : Function(F), ParsedAttribute(PT), Priority(0u) {
4015  for (StringRef Feat : PT.Features)
4016  Priority = std::max(Priority,
4017  TargInfo.multiVersionSortPriority(Feat.substr(1)));
4018 
4019  if (!PT.Architecture.empty())
4020  Priority = std::max(Priority,
4021  TargInfo.multiVersionSortPriority(PT.Architecture));
4022  }
4023 
4024  bool operator>(const MultiVersionResolverOption &Other) const {
4025  return Priority > Other.Priority;
4026  }
4027  };
4028  void EmitMultiVersionResolver(llvm::Function *Resolver,
4030 
4031 private:
4032  QualType getVarArgType(const Expr *Arg);
4033 
4034  void EmitDeclMetadata();
4035 
4036  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4037  const AutoVarEmission &emission);
4038 
4039  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4040 
4041  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4042  llvm::Value *EmitX86CpuIs(const CallExpr *E);
4043  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4044  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4045  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4046  llvm::Value *EmitX86CpuInit();
4047  llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4048 };
4049 
4050 /// Helper class with most of the code for saving a value for a
4051 /// conditional expression cleanup.
4053  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
4054 
4055  /// Answer whether the given value needs extra work to be saved.
4056  static bool needsSaving(llvm::Value *value) {
4057  // If it's not an instruction, we don't need to save.
4058  if (!isa<llvm::Instruction>(value)) return false;
4059 
4060  // If it's an instruction in the entry block, we don't need to save.
4061  llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
4062  return (block != &block->getParent()->getEntryBlock());
4063  }
4064 
4065  /// Try to save the given value.
4066  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
4067  if (!needsSaving(value)) return saved_type(value, false);
4068 
4069  // Otherwise, we need an alloca.
4070  auto align = CharUnits::fromQuantity(
4071  CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4072  Address alloca =
4073  CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4074  CGF.Builder.CreateStore(value, alloca);
4075 
4076  return saved_type(alloca.getPointer(), true);
4077  }
4078 
4079  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
4080  // If the value says it wasn't saved, trust that it's still dominating.
4081  if (!value.getInt()) return value.getPointer();
4082 
4083  // Otherwise, it should be an alloca instruction, as set up in save().
4084  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4085  return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
4086  }
4087 };
4088 
4089 /// A partial specialization of DominatingValue for llvm::Values that
4090 /// might be llvm::Instructions.
4091 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
4092  typedef T *type;
4093  static type restore(CodeGenFunction &CGF, saved_type value) {
4094  return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
4095  }
4096 };
4097 
4098 /// A specialization of DominatingValue for Address.
4099 template <> struct DominatingValue<Address> {
4100  typedef Address type;
4101 
4102  struct saved_type {
4105  };
4106 
4107  static bool needsSaving(type value) {
4108  return DominatingLLVMValue::needsSaving(value.getPointer());
4109  }
4110  static saved_type save(CodeGenFunction &CGF, type value) {
4111  return { DominatingLLVMValue::save(CGF, value.getPointer()),
4112  value.getAlignment() };
4113  }
4114  static type restore(CodeGenFunction &CGF, saved_type value) {
4115  return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
4116  value.Alignment);
4117  }
4118 };
4119 
4120 /// A specialization of DominatingValue for RValue.
4121 template <> struct DominatingValue<RValue> {
4122  typedef RValue type;
4123  class saved_type {
4124  enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
4125  AggregateAddress, ComplexAddress };
4126 
4127  llvm::Value *Value;
4128  unsigned K : 3;
4129  unsigned Align : 29;
4130  saved_type(llvm::Value *v, Kind k, unsigned a = 0)
4131  : Value(v), K(k), Align(a) {}
4132 
4133  public:
4134  static bool needsSaving(RValue value);
4135  static saved_type save(CodeGenFunction &CGF, RValue value);
4136  RValue restore(CodeGenFunction &CGF);
4137 
4138  // implementations in CGCleanup.cpp
4139  };
4140 
4141  static bool needsSaving(type value) {
4142  return saved_type::needsSaving(value);
4143  }
4144  static saved_type save(CodeGenFunction &CGF, type value) {
4145  return saved_type::save(CGF, value);
4146  }
4147  static type restore(CodeGenFunction &CGF, saved_type value) {
4148  return value.restore(CGF);
4149  }
4150 };
4151 
4152 } // end namespace CodeGen
4153 } // end namespace clang
4154 
4155 #endif
const llvm::DataLayout & getDataLayout() const
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:325
llvm::Value * getArrayInitIndex()
Get the index of the current ArrayInitLoopExpr, if any.
Optional< uint64_t > getStmtCount(const Stmt *S)
Check if an execution count is known for a given statement.
Definition: CodeGenPGO.h:64
This represents &#39;#pragma omp distribute simd&#39; composite directive.
Definition: StmtOpenMP.h:3212
Information about the layout of a __block variable.
Definition: CGBlocks.h:140
This represents &#39;#pragma omp master&#39; directive.
Definition: StmtOpenMP.h:1395
virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S)
Emit the captured statement body.
This represents &#39;#pragma omp task&#39; directive.
Definition: StmtOpenMP.h:1735
Represents a function declaration or definition.
Definition: Decl.h:1696
LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2289
Scheduling data for loop-based OpenMP directives.
Definition: OpenMPKinds.h:124
A (possibly-)qualified type.
Definition: Type.h:653
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:260
const CodeGenOptions & getCodeGenOpts() const
The class detects jumps which bypass local variables declaration: goto L; int a; L: ...
AlignmentSource
The source of the alignment of an l-value; an expression of confidence in the alignment actually matc...
Definition: CGValue.h:126
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
bool isSEHTryScope() const
Returns true inside SEH __try blocks.
llvm::LLVMContext & getLLVMContext()
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:26
FieldConstructionScope(CodeGenFunction &CGF, Address This)
Represents a &#39;co_return&#39; statement in the C++ Coroutines TS.
Definition: StmtCXX.h:432
Stmt - This represents one statement.
Definition: Stmt.h:66
IfStmt - This represents an if/then/else.
Definition: Stmt.h:933
static T * buildByrefHelpers(CodeGenModule &CGM, const BlockByrefInfo &byrefInfo, T &&generator)
Lazily build the copy and dispose helpers for a __block variable with the given information.
Definition: CGBlocks.cpp:2164
bool requiresCleanups() const
Determine whether this scope requires any cleanups.
C Language Family Type Representation.
OpaqueValueMapping(CodeGenFunction &CGF, const AbstractConditionalOperator *op)
Build the opaque value mapping for the given conditional operator if it&#39;s the GNU ...
This represents &#39;#pragma omp for simd&#39; directive.
Definition: StmtOpenMP.h:1145
Checking the &#39;this&#39; pointer for a constructor call.
bool hasVolatileMember() const
Definition: Decl.h:3584
bool hasLabelBeenSeenInCurrentScope() const
Return true if a label was seen in the current scope.
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
This represents &#39;#pragma omp teams distribute parallel for&#39; composite directive.
Definition: StmtOpenMP.h:3623
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
static saved_type save(CodeGenFunction &CGF, llvm::Value *value)
Try to save the given value.
static bool classof(const CGCapturedStmtInfo *)
Represents an attribute applied to a statement.
Definition: Stmt.h:881
static Destroyer destroyARCStrongPrecise
llvm::Value * LoadCXXThis()
LoadCXXThis - Load the value of &#39;this&#39;.
The base class of the type hierarchy.
Definition: Type.h:1356
This represents &#39;#pragma omp target teams distribute&#39; combined directive.
Definition: StmtOpenMP.h:3760
Represents Objective-C&#39;s @throw statement.
Definition: StmtObjC.h:313
CGCapturedStmtInfo(const CapturedStmt &S, CapturedRegionKind K=CR_Default)
const RecordDecl * getCapturedRecordDecl() const
Retrieve the record declaration for captured variables.
Definition: Stmt.h:2176
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2564
void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, llvm::Value *Address)
virtual const FieldDecl * lookup(const VarDecl *VD) const
Lookup the captured field decl for a variable.
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1239
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:116
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:379
DominatingValue< T >::saved_type saveValueInCond(T value)
CGCapturedStmtInfo(CapturedRegionKind K=CR_Default)
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
const ParmVarDecl * getParamDecl(unsigned I) const
This represents &#39;#pragma omp parallel for&#39; directive.
Definition: StmtOpenMP.h:1516
void emitCounterIncrement(CGBuilderTy &Builder, const Stmt *S, llvm::Value *StepV)
Definition: CodeGenPGO.cpp:886
This represents &#39;#pragma omp target teams distribute parallel for&#39; combined directive.
Definition: StmtOpenMP.h:3828
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2452
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4039
static bool needsSaving(llvm::Value *value)
Answer whether the given value needs extra work to be saved.
static type restore(CodeGenFunction &CGF, saved_type value)
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const RValue &rv)
Represents a point when we exit a loop.
Definition: ProgramPoint.h:683
const CXXBaseSpecifier *const * path_const_iterator
Definition: Expr.h:2787
This represents &#39;#pragma omp target exit data&#39; directive.
Definition: StmtOpenMP.h:2427
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
TypeEvaluationKind
The kind of evaluation to perform on values of a particular type.
Represents a variable declaration or definition.
Definition: Decl.h:812
Address getObjectAddress(CodeGenFunction &CGF) const
Returns the address of the object within this declaration.
ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC &#39;id&#39; type.
Definition: ExprObjC.h:1436
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2650
RAII object to set/unset CodeGenFunction::IsSanitizerScope.
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6317
void EmitAggregateCopyCtor(LValue Dest, LValue Src)
uint64_t getProfileCount(const Stmt *S)
Get the profiler&#39;s count for the given statement.
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:54
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
void setCurrentProfileCount(uint64_t Count)
Set the profiler&#39;s current count.
llvm::Value * getPointer() const
Definition: Address.h:38
static ConstantEmission forValue(llvm::Constant *C)
bool IsSanitizerScope
True if CodeGen currently emits code implementing sanitizer checks.
capture_iterator capture_begin()
Retrieve an iterator pointing to the first capture.
Definition: Stmt.h:2201
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:985
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3003
Represents a parameter to a function.
Definition: Decl.h:1515
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:25
Defines the clang::Expr interface and subclasses for C++ expressions.
The collection of all-type qualifiers we support.
Definition: Type.h:152
EHScopeStack::stable_iterator PrologueCleanupDepth
PrologueCleanupDepth - The cleanup depth enclosing all the cleanups associated with the parameters...
A jump destination is an abstract label, branching to which may require a jump out through normal cle...
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:842
Represents a struct/union/class.
Definition: Decl.h:3510
llvm::DenseMap< const VarDecl *, FieldDecl * > LambdaCaptureFields
LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
const TargetInfo & getTarget() const
An object to manage conditionally-evaluated expressions.
PeepholeProtection protectFromPeepholes(RValue rvalue)
protectFromPeepholes - Protect a value that we&#39;re intending to store to the side, but which will prob...
ConditionalCleanup stores the saved form of its parameters, then restores them and performs the clean...
Definition: EHScopeStack.h:198
ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
CGBlockInfo * FirstBlockInfo
FirstBlockInfo - The head of a singly-linked-list of block layouts.
void setScopeDepth(EHScopeStack::stable_iterator depth)
This represents &#39;#pragma omp parallel&#39; directive.
Definition: StmtOpenMP.h:274
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:149
llvm::SmallPtrSet< const CXXRecordDecl *, 4 > VisitedVirtualBasesSetTy
The scope used to remap some variables as private in the OpenMP loop body (or other captured region e...
SmallVector< Address, 1 > SEHCodeSlotStack
A stack of exception code slots.
Represents a member of a struct/union/class.
Definition: Decl.h:2488
Definition: Format.h:2011
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
bool isReferenceType() const
Definition: Type.h:5960
Helper class with most of the code for saving a value for a conditional expression cleanup...
llvm::BasicBlock * getStartingBlock() const
Returns a block which will be executed prior to each evaluation of the conditional code...
This represents &#39;#pragma omp target simd&#39; directive.
Definition: StmtOpenMP.h:3348
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:926
Defines some OpenMP-specific enums and functions.
ExtVectorElementExpr - This represents access to specific elements of a vector, and may occur on the ...
Definition: Expr.h:4803
Address getAllocatedAddress() const
Returns the raw, allocated address, which is not necessarily the address of the object itself...
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:66
This represents &#39;#pragma omp barrier&#39; directive.
Definition: StmtOpenMP.h:1847
CleanupKind getCleanupKind(QualType::DestructionKind kind)
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp, [NSNumber numberWithInt:42]];.
Definition: ExprObjC.h:171
The this pointer adjustment as well as an optional return adjustment for a thunk. ...
Definition: ABI.h:179
This is a common base class for loop directives (&#39;omp simd&#39;, &#39;omp for&#39;, &#39;omp for simd&#39; etc...
Definition: StmtOpenMP.h:336
This represents &#39;#pragma omp critical&#39; directive.
Definition: StmtOpenMP.h:1442
const AstTypeMatcher< ComplexType > complexType
Matches C99 complex types.
bool isCleanupPadScope() const
Returns true while emitting a cleanuppad.
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition: CGExpr.cpp:173
const RValue & getOpaqueRValueMapping(const OpaqueValueExpr *e)
getOpaqueRValueMapping - Given an opaque value expression (which must be mapped to an r-value)...
void pushFullExprCleanup(CleanupKind kind, As... A)
pushFullExprCleanup - Push a cleanup to be run at the end of the current full-expression.
OpenMPDistScheduleClauseKind
OpenMP attributes for &#39;dist_schedule&#39; clause.
Definition: OpenMPKinds.h:100
bool isGLValue() const
Definition: Expr.h:252
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:1312
Describes an C or C++ initializer list.
Definition: Expr.h:3885
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:638
This represents &#39;#pragma omp distribute parallel for&#39; composite directive.
Definition: StmtOpenMP.h:3063
void setCurrentRegionCount(uint64_t Count)
Set the counter value for the current region.
Definition: CodeGenPGO.h:60
A class controlling the emission of a finally block.
This represents &#39;#pragma omp teams distribute parallel for simd&#39; composite directive.
Definition: StmtOpenMP.h:3552
BinaryOperatorKind
static bool hasScalarEvaluationKind(QualType T)
ForStmt - This represents a &#39;for (init;cond;inc)&#39; stmt.
Definition: Stmt.h:1207
InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:986
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
llvm::function_ref< std::pair< LValue, LValue > CodeGenFunction &, const OMPExecutableDirective &S)> CodeGenLoopBoundsTy
CGCapturedStmtRAII(CodeGenFunction &CGF, CGCapturedStmtInfo *NewCapturedStmtInfo)
LexicalScope(CodeGenFunction &CGF, SourceRange Range)
Enter a new cleanup scope.
RAII for correct setting/restoring of CapturedStmtInfo.
TBAAAccessInfo getTBAAAccessInfo(QualType AccessType)
getTBAAAccessInfo - Get TBAA information that describes an access to an object of the given type...
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:67
Represents a declaration of a type.
Definition: Decl.h:2778
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2998
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const LValue &lv)
CXXForRangeStmt - This represents C++0x [stmt.ranged]&#39;s ranged for statement, represented as &#39;for (ra...
Definition: StmtCXX.h:128
bool IsOutlinedSEHHelper
True if the current function is an outlined SEH helper.
#define LIST_SANITIZER_CHECKS
This represents &#39;#pragma omp cancellation point&#39; directive.
Definition: StmtOpenMP.h:2682
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:51
field_iterator field_begin() const
Definition: Decl.cpp:3974
A stack of scopes which respond to exceptions, including cleanups and catch blocks.
Definition: EHScopeStack.h:100
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
This represents &#39;#pragma omp teams&#39; directive.
Definition: StmtOpenMP.h:2625
Denotes a cleanup that should run when a scope is exited using normal control flow (falling off the e...
Definition: EHScopeStack.h:85
Enums/classes describing ABI related information about constructors, destructors and thunks...
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2723
This represents &#39;#pragma omp teams distribute simd&#39; combined directive.
Definition: StmtOpenMP.h:3482
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1196
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1583
GlobalDecl CurGD
CurGD - The GlobalDecl for the current function being compiled.
Controls insertion of cancellation exit blocks in worksharing constructs.
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler&#39;s counter for the given statement by StepV.
uint64_t getCurrentProfileCount()
Get the profiler&#39;s current count.
CallLifetimeEnd(Address addr, llvm::Value *size)
llvm::function_ref< std::pair< llvm::Value *, llvm::Value * > CodeGenFunction &, const OMPExecutableDirective &S, Address LB, Address UB)> CodeGenDispatchBoundsTy
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
Definition: CGExpr.cpp:94
Represents an ObjC class declaration.
Definition: DeclObjC.h:1191
Checking the operand of a cast to a virtual base object.
JumpDest getJumpDestInCurrentScope(StringRef Name=StringRef())
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
Address NormalCleanupDest
i32s containing the indexes of the cleanup destinations.
llvm::AllocaInst * EHSelectorSlot
The selector slot.
Checking the operand of a load. Must be suitably sized and aligned.
~LexicalScope()
Exit this cleanup scope, emitting any accumulated cleanups.
Checking the &#39;this&#39; pointer for a call to a non-static member function.
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
ObjCPropertyImplDecl - Represents implementation declaration of a property in a class or category imp...
Definition: DeclObjC.h:2778
This represents &#39;#pragma omp target parallel for simd&#39; directive.
Definition: StmtOpenMP.h:3280
OpenMP 4.0 [2.4, Array Sections].
Definition: ExprOpenMP.h:45
Const iterator for iterating over Stmt * arrays that contain only Expr *.
Definition: Stmt.h:346
bool isValid() const
Definition: Address.h:36
CleanupKind Kind
The kind of cleanup to push: a value from the CleanupKind enumeration.
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2200
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:595
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3274
Describes the capture of either a variable, or &#39;this&#39;, or variable-length array type.
Definition: Stmt.h:2071
void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, llvm::Value *OffsetValue=nullptr)
const CodeGen::CGBlockInfo * BlockInfo
This represents &#39;#pragma omp taskgroup&#39; directive.
Definition: StmtOpenMP.h:1935
const TargetCodeGenInfo & getTargetCodeGenInfo()
CGBlockInfo - Information to generate a block literal.
Definition: CGBlocks.h:149
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
bool addPrivate(const VarDecl *LocalVD, llvm::function_ref< Address()> PrivateGen)
Registers LocalVD variable as a private and apply PrivateGen function for it to generate correspondin...
CleanupKind getARCCleanupKind()
Retrieves the default cleanup kind for an ARC cleanup.
bool isGlobalVarCaptured(const VarDecl *VD) const
Checks if the global variable is captured in current function.
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:3791
llvm::Value * ExceptionSlot
The exception slot.
void pushCleanupAfterFullExpr(CleanupKind Kind, As... A)
Queue a cleanup to be pushed after finishing the current full-expression.
LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
This represents &#39;#pragma omp distribute&#39; directive.
Definition: StmtOpenMP.h:2936
Exposes information about the current target.
Definition: TargetInfo.h:54
CXXDtorType
C++ destructor types.
Definition: ABI.h:34
llvm::BasicBlock * EHResumeBlock
EHResumeBlock - Unified block containing a call to llvm.eh.resume.
EHScopeStack::stable_iterator getScopeDepth() const
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:636
Expr - This represents one expression.
Definition: Expr.h:106
stable_iterator getInnermostNormalCleanup() const
Returns the innermost normal cleanup on the stack, or stable_end() if there are no normal cleanups...
Definition: EHScopeStack.h:356
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
const FunctionProtoType * T
llvm::function_ref< void(CodeGenFunction &, SourceLocation, const unsigned, const bool)> CodeGenOrderedTy
static ParamValue forIndirect(Address addr)
OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, RValue rvalue)
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
void ForceCleanup()
Force the emission of cleanups now, instead of waiting until this object is destroyed.
static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method)
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:4864
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2675
This represents &#39;#pragma omp target teams distribute parallel for simd&#39; combined directive.
Definition: StmtOpenMP.h:3912
static saved_type save(CodeGenFunction &CGF, type value)
AggValueSlot CreateAggTemp(QualType T, const Twine &Name="tmp")
CreateAggTemp - Create a temporary memory object for the given aggregate type.
#define bool
Definition: stdbool.h:31
unsigned Size
The size of the following cleanup object.
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:288
DeclContext * getDeclContext()
Definition: DeclBase.h:425
Represents Objective-C&#39;s @synchronized statement.
Definition: StmtObjC.h:262
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:429
CXXTryStmt - A C++ try block, including all handlers.
Definition: StmtCXX.h:65
~OMPPrivateScope()
Exit scope - all the mapped variables are restored.
This represents &#39;#pragma omp target teams distribute simd&#39; combined directive.
Definition: StmtOpenMP.h:3985
int Depth
Definition: ASTDiff.cpp:191
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
llvm::LLVMContext & getLLVMContext()
QualType getType() const
Definition: Expr.h:128
Checking the value assigned to a _Nonnull pointer. Must not be null.
An RAII object to record that we&#39;re evaluating a statement expression.
This represents &#39;#pragma omp for&#39; directive.
Definition: StmtOpenMP.h:1068
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:1417
This represents &#39;#pragma omp target teams&#39; directive.
Definition: StmtOpenMP.h:3701
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T)
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:903
JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, unsigned Index)
SourceLocation getEnd() const
An object which temporarily prevents a value from being destroyed by aggressive peephole optimization...
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1717
OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, Address SizesArray, unsigned NumberOfTargetItems)
This represents &#39;#pragma omp cancel&#39; directive.
Definition: StmtOpenMP.h:2740
RunCleanupsScope(CodeGenFunction &CGF)
Enter a new cleanup scope.
const LangOptions & getLangOpts() const
ASTContext & getContext() const
do v
Definition: arm_acle.h:78
VarDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:1978
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:35
This represents &#39;#pragma omp flush&#39; directive.
Definition: StmtOpenMP.h:2008
This represents &#39;#pragma omp parallel for simd&#39; directive.
Definition: StmtOpenMP.h:1596
DoStmt - This represents a &#39;do/while&#39; stmt.
Definition: Stmt.h:1158
AsmStmt is the base class for GCCAsmStmt and MSAsmStmt.
Definition: Stmt.h:1465
void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, llvm::Value *OffsetValue=nullptr)
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, std::initializer_list< llvm::Value **> ValuesToReload={})
Takes the old cleanup stack size and emits the cleanup blocks that have been added.
Definition: CGCleanup.cpp:420
llvm::function_ref< void(CodeGenFunction &, const OMPLoopDirective &, JumpDest)> CodeGenLoopTy
This represents &#39;#pragma omp target enter data&#39; directive.
Definition: StmtOpenMP.h:2368
OMPPrivateScope(CodeGenFunction &CGF)
Enter a new OpenMP private scope.
llvm::SmallVector< VPtr, 4 > VPtrsVector
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:338
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:868
bool SawAsmBlock
Whether we processed a Microsoft-style asm block during CodeGen.
#define false
Definition: stdbool.h:33
MSVCIntrin
Definition: CGBuiltin.cpp:488
Kind
This captures a statement into a function.
Definition: Stmt.h:2058
Represents a call to an inherited base class constructor from an inheriting constructor.
Definition: ExprCXX.h:1400
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:4982
This represents &#39;#pragma omp single&#39; directive.
Definition: StmtOpenMP.h:1340
Encodes a location in the source.
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go...
A saved depth on the scope stack.
Definition: EHScopeStack.h:107
Represents a C++ temporary.
Definition: ExprCXX.h:1164
~RunCleanupsScope()
Exit this cleanup scope, emitting any accumulated cleanups.
llvm::BasicBlock * getUnreachableBlock()
void setBeforeOutermostConditional(llvm::Value *value, Address addr)
This is a basic class for representing single OpenMP executable directive.
Definition: StmtOpenMP.h:33
SmallVector< llvm::Value *, 8 > ObjCEHValueStack
ObjCEHValueStack - Stack of Objective-C exception values, used for rethrows.
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1845
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:164
const Decl * getDecl() const
Definition: GlobalDecl.h:64
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:487
Checking the operand of a cast to a base object.
OpenMPDirectiveKind
OpenMP directives.
Definition: OpenMPKinds.h:23
Represents the declaration of a label.
Definition: Decl.h:468
An aggregate value slot.
Definition: CGValue.h:434
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:637
Per-function PGO state.
Definition: CodeGenPGO.h:29
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2019
void EmitStmt(const Stmt *S, ArrayRef< const Attr *> Attrs=None)
EmitStmt - Emit the code for the statement.
Definition: CGStmt.cpp:48
static type restore(CodeGenFunction &CGF, saved_type value)
OpenMPLinearClauseKind Modifier
Modifier of &#39;linear&#39; clause.
Definition: OpenMPClause.h:92
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
This represents &#39;#pragma omp taskwait&#39; directive.
Definition: StmtOpenMP.h:1891
SanitizerSet SanOpts
Sanitizers enabled for this function.
ObjCCategoryDecl - Represents a category declaration.
Definition: DeclObjC.h:2299
This is a basic class for representing single OpenMP clause.