clang  6.0.0svn
CodeGenFunction.h
Go to the documentation of this file.
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
33 #include "clang/Basic/TargetInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 namespace llvm {
43 class BasicBlock;
44 class LLVMContext;
45 class MDNode;
46 class Module;
47 class SwitchInst;
48 class Twine;
49 class Value;
50 class CallSite;
51 }
52 
53 namespace clang {
54 class ASTContext;
55 class BlockDecl;
56 class CXXDestructorDecl;
57 class CXXForRangeStmt;
58 class CXXTryStmt;
59 class Decl;
60 class LabelDecl;
61 class EnumConstantDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 
79 namespace analyze_os_log {
80 class OSLogBufferLayout;
81 }
82 
83 namespace CodeGen {
84 class CodeGenTypes;
85 class CGCallee;
86 class CGFunctionInfo;
87 class CGRecordLayout;
88 class CGBlockInfo;
89 class CGCXXABI;
90 class BlockByrefHelpers;
91 class BlockByrefInfo;
92 class BlockFlags;
93 class BlockFieldFlags;
94 class RegionCodeGenTy;
95 class TargetCodeGenInfo;
96 struct OMPTaskDataTy;
97 struct CGCoroData;
98 
99 /// The kind of evaluation to perform on values of a particular
100 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or
101 /// CGExprAgg?
102 ///
103 /// TODO: should vectors maybe be split out into their own thing?
108 };
109 
110 #define LIST_SANITIZER_CHECKS \
111  SANITIZER_CHECK(AddOverflow, add_overflow, 0) \
112  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \
113  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \
114  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \
115  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \
116  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \
117  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \
118  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \
119  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \
120  SANITIZER_CHECK(MissingReturn, missing_return, 0) \
121  SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \
122  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \
123  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \
124  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \
125  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \
126  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \
127  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \
128  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \
129  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \
130  SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \
131  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \
132  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
133 
135 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
137 #undef SANITIZER_CHECK
138 };
139 
140 /// CodeGenFunction - This class organizes the per-function state that is used
141 /// while generating LLVM code.
143  CodeGenFunction(const CodeGenFunction &) = delete;
144  void operator=(const CodeGenFunction &) = delete;
145 
146  friend class CGCXXABI;
147 public:
148  /// A jump destination is an abstract label, branching to which may
149  /// require a jump out through normal cleanups.
150  struct JumpDest {
151  JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
152  JumpDest(llvm::BasicBlock *Block,
154  unsigned Index)
155  : Block(Block), ScopeDepth(Depth), Index(Index) {}
156 
157  bool isValid() const { return Block != nullptr; }
158  llvm::BasicBlock *getBlock() const { return Block; }
159  EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
160  unsigned getDestIndex() const { return Index; }
161 
162  // This should be used cautiously.
164  ScopeDepth = depth;
165  }
166 
167  private:
168  llvm::BasicBlock *Block;
170  unsigned Index;
171  };
172 
173  CodeGenModule &CGM; // Per-module state.
175 
176  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
179 
180  // Stores variables for which we can't generate correct lifetime markers
181  // because of jumps.
183 
184  // CodeGen lambda for loops and support for ordered clause
185  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
186  JumpDest)>
188  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
189  const unsigned, const bool)>
191 
192  // Codegen lambda for loop bounds in worksharing loop constructs
193  typedef llvm::function_ref<std::pair<LValue, LValue>(
196 
197  // Codegen lambda for loop bounds in dispatch-based loop implementation
198  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
199  CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
200  Address UB)>
202 
203  /// \brief CGBuilder insert helper. This function is called after an
204  /// instruction is created using Builder.
205  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
206  llvm::BasicBlock *BB,
207  llvm::BasicBlock::iterator InsertPt) const;
208 
209  /// CurFuncDecl - Holds the Decl for the current outermost
210  /// non-closure context.
212  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
216  llvm::Function *CurFn;
217 
218  // Holds coroutine data if the current function is a coroutine. We use a
219  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
220  // in this header.
221  struct CGCoroInfo {
222  std::unique_ptr<CGCoroData> Data;
223  CGCoroInfo();
224  ~CGCoroInfo();
225  };
227 
228  bool isCoroutine() const {
229  return CurCoro.Data != nullptr;
230  }
231 
232  /// CurGD - The GlobalDecl for the current function being compiled.
234 
235  /// PrologueCleanupDepth - The cleanup depth enclosing all the
236  /// cleanups associated with the parameters.
238 
239  /// ReturnBlock - Unified return block.
241 
242  /// ReturnValue - The temporary alloca to hold the return
243  /// value. This is invalid iff the function has no return value.
245 
246  /// Return true if a label was seen in the current scope.
248  if (CurLexicalScope)
249  return CurLexicalScope->hasLabels();
250  return !LabelMap.empty();
251  }
252 
253  /// AllocaInsertPoint - This is an instruction in the entry block before which
254  /// we prefer to insert allocas.
255  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
256 
257  /// \brief API for captured statement code generation.
259  public:
261  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
262  explicit CGCapturedStmtInfo(const CapturedStmt &S,
264  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
265 
269  E = S.capture_end();
270  I != E; ++I, ++Field) {
271  if (I->capturesThis())
272  CXXThisFieldDecl = *Field;
273  else if (I->capturesVariable())
274  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
275  else if (I->capturesVariableByCopy())
276  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
277  }
278  }
279 
280  virtual ~CGCapturedStmtInfo();
281 
282  CapturedRegionKind getKind() const { return Kind; }
283 
284  virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
285  // \brief Retrieve the value of the context parameter.
286  virtual llvm::Value *getContextValue() const { return ThisValue; }
287 
288  /// \brief Lookup the captured field decl for a variable.
289  virtual const FieldDecl *lookup(const VarDecl *VD) const {
290  return CaptureFields.lookup(VD->getCanonicalDecl());
291  }
292 
293  bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
294  virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
295 
296  static bool classof(const CGCapturedStmtInfo *) {
297  return true;
298  }
299 
300  /// \brief Emit the captured statement body.
301  virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
303  CGF.EmitStmt(S);
304  }
305 
306  /// \brief Get the name of the capture helper.
307  virtual StringRef getHelperName() const { return "__captured_stmt"; }
308 
309  private:
310  /// \brief The kind of captured statement being generated.
312 
313  /// \brief Keep the map between VarDecl and FieldDecl.
314  llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
315 
316  /// \brief The base address of the captured record, passed in as the first
317  /// argument of the parallel region function.
318  llvm::Value *ThisValue;
319 
320  /// \brief Captured 'this' type.
321  FieldDecl *CXXThisFieldDecl;
322  };
324 
325  /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
327  private:
328  CodeGenFunction &CGF;
329  CGCapturedStmtInfo *PrevCapturedStmtInfo;
330  public:
331  CGCapturedStmtRAII(CodeGenFunction &CGF,
332  CGCapturedStmtInfo *NewCapturedStmtInfo)
333  : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
334  CGF.CapturedStmtInfo = NewCapturedStmtInfo;
335  }
336  ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
337  };
338 
339  /// An abstract representation of regular/ObjC call/message targets.
341  /// The function declaration of the callee.
342  const Decl *CalleeDecl;
343 
344  public:
345  AbstractCallee() : CalleeDecl(nullptr) {}
346  AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
347  AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
348  bool hasFunctionDecl() const {
349  return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
350  }
351  const Decl *getDecl() const { return CalleeDecl; }
352  unsigned getNumParams() const {
353  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
354  return FD->getNumParams();
355  return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
356  }
357  const ParmVarDecl *getParamDecl(unsigned I) const {
358  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
359  return FD->getParamDecl(I);
360  return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
361  }
362  };
363 
364  /// \brief Sanitizers enabled for this function.
366 
367  /// \brief True if CodeGen currently emits code implementing sanitizer checks.
369 
370  /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
372  CodeGenFunction *CGF;
373  public:
374  SanitizerScope(CodeGenFunction *CGF);
375  ~SanitizerScope();
376  };
377 
378  /// In C++, whether we are code generating a thunk. This controls whether we
379  /// should emit cleanups.
381 
382  /// In ARC, whether we should autorelease the return value.
384 
385  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
386  /// potentially set the return value.
388 
389  const FunctionDecl *CurSEHParent = nullptr;
390 
391  /// True if the current function is an outlined SEH helper. This can be a
392  /// finally block or filter expression.
394 
397 
398  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
400 
401  /// \brief A mapping from NRVO variables to the flags used to indicate
402  /// when the NRVO has been applied to this variable.
403  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
404 
408 
409  llvm::Instruction *CurrentFuncletPad = nullptr;
410 
411  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
412  llvm::Value *Addr;
413  llvm::Value *Size;
414 
415  public:
417  : Addr(addr.getPointer()), Size(size) {}
418 
419  void Emit(CodeGenFunction &CGF, Flags flags) override {
420  CGF.EmitLifetimeEnd(Size, Addr);
421  }
422  };
423 
424  /// Header for data within LifetimeExtendedCleanupStack.
426  /// The size of the following cleanup object.
427  unsigned Size;
428  /// The kind of cleanup to push: a value from the CleanupKind enumeration.
430 
431  size_t getSize() const { return Size; }
432  CleanupKind getKind() const { return Kind; }
433  };
434 
435  /// i32s containing the indexes of the cleanup destinations.
436  llvm::AllocaInst *NormalCleanupDest;
437 
439 
440  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
442 
443  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
444  llvm::BasicBlock *EHResumeBlock;
445 
446  /// The exception slot. All landing pads write the current exception pointer
447  /// into this alloca.
449 
450  /// The selector slot. Under the MandatoryCleanup model, all landing pads
451  /// write the current selector value into this alloca.
452  llvm::AllocaInst *EHSelectorSlot;
453 
454  /// A stack of exception code slots. Entering an __except block pushes a slot
455  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
456  /// a value from the top of the stack.
458 
459  /// Value returned by __exception_info intrinsic.
460  llvm::Value *SEHInfo = nullptr;
461 
462  /// Emits a landing pad for the current EH stack.
463  llvm::BasicBlock *EmitLandingPad();
464 
465  llvm::BasicBlock *getInvokeDestImpl();
466 
467  template <class T>
469  return DominatingValue<T>::save(*this, value);
470  }
471 
472 public:
473  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
474  /// rethrows.
476 
477  /// A class controlling the emission of a finally block.
478  class FinallyInfo {
479  /// Where the catchall's edge through the cleanup should go.
480  JumpDest RethrowDest;
481 
482  /// A function to call to enter the catch.
483  llvm::Constant *BeginCatchFn;
484 
485  /// An i1 variable indicating whether or not the @finally is
486  /// running for an exception.
487  llvm::AllocaInst *ForEHVar;
488 
489  /// An i8* variable into which the exception pointer to rethrow
490  /// has been saved.
491  llvm::AllocaInst *SavedExnVar;
492 
493  public:
494  void enter(CodeGenFunction &CGF, const Stmt *Finally,
495  llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
496  llvm::Constant *rethrowFn);
497  void exit(CodeGenFunction &CGF);
498  };
499 
500  /// Returns true inside SEH __try blocks.
501  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
502 
503  /// Returns true while emitting a cleanuppad.
504  bool isCleanupPadScope() const {
505  return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
506  }
507 
508  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
509  /// current full-expression. Safe against the possibility that
510  /// we're currently inside a conditionally-evaluated expression.
511  template <class T, class... As>
513  // If we're not in a conditional branch, or if none of the
514  // arguments requires saving, then use the unconditional cleanup.
515  if (!isInConditionalBranch())
516  return EHStack.pushCleanup<T>(kind, A...);
517 
518  // Stash values in a tuple so we can guarantee the order of saves.
519  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
520  SavedTuple Saved{saveValueInCond(A)...};
521 
522  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
523  EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
524  initFullExprCleanup();
525  }
526 
527  /// \brief Queue a cleanup to be pushed after finishing the current
528  /// full-expression.
529  template <class T, class... As>
531  assert(!isInConditionalBranch() && "can't defer conditional cleanup");
532 
533  LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
534 
535  size_t OldSize = LifetimeExtendedCleanupStack.size();
536  LifetimeExtendedCleanupStack.resize(
537  LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
538 
539  static_assert(sizeof(Header) % alignof(T) == 0,
540  "Cleanup will be allocated on misaligned address");
541  char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
542  new (Buffer) LifetimeExtendedCleanupHeader(Header);
543  new (Buffer + sizeof(Header)) T(A...);
544  }
545 
546  /// Set up the last cleaup that was pushed as a conditional
547  /// full-expression cleanup.
548  void initFullExprCleanup();
549 
550  /// PushDestructorCleanup - Push a cleanup to call the
551  /// complete-object destructor of an object of the given type at the
552  /// given address. Does nothing if T is not a C++ class type with a
553  /// non-trivial destructor.
554  void PushDestructorCleanup(QualType T, Address Addr);
555 
556  /// PushDestructorCleanup - Push a cleanup to call the
557  /// complete-object variant of the given destructor on the object at
558  /// the given address.
559  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
560 
561  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
562  /// process all branch fixups.
563  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
564 
565  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
566  /// The block cannot be reactivated. Pops it if it's the top of the
567  /// stack.
568  ///
569  /// \param DominatingIP - An instruction which is known to
570  /// dominate the current IP (if set) and which lies along
571  /// all paths of execution between the current IP and the
572  /// the point at which the cleanup comes into scope.
573  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
574  llvm::Instruction *DominatingIP);
575 
576  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
577  /// Cannot be used to resurrect a deactivated cleanup.
578  ///
579  /// \param DominatingIP - An instruction which is known to
580  /// dominate the current IP (if set) and which lies along
581  /// all paths of execution between the current IP and the
582  /// the point at which the cleanup comes into scope.
583  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
584  llvm::Instruction *DominatingIP);
585 
586  /// \brief Enters a new scope for capturing cleanups, all of which
587  /// will be executed once the scope is exited.
589  EHScopeStack::stable_iterator CleanupStackDepth;
590  size_t LifetimeExtendedCleanupStackSize;
591  bool OldDidCallStackSave;
592  protected:
594  private:
595 
596  RunCleanupsScope(const RunCleanupsScope &) = delete;
597  void operator=(const RunCleanupsScope &) = delete;
598 
599  protected:
600  CodeGenFunction& CGF;
601 
602  public:
603  /// \brief Enter a new cleanup scope.
604  explicit RunCleanupsScope(CodeGenFunction &CGF)
605  : PerformCleanup(true), CGF(CGF)
606  {
607  CleanupStackDepth = CGF.EHStack.stable_begin();
608  LifetimeExtendedCleanupStackSize =
609  CGF.LifetimeExtendedCleanupStack.size();
610  OldDidCallStackSave = CGF.DidCallStackSave;
611  CGF.DidCallStackSave = false;
612  }
613 
614  /// \brief Exit this cleanup scope, emitting any accumulated cleanups.
616  if (PerformCleanup)
617  ForceCleanup();
618  }
619 
620  /// \brief Determine whether this scope requires any cleanups.
621  bool requiresCleanups() const {
622  return CGF.EHStack.stable_begin() != CleanupStackDepth;
623  }
624 
625  /// \brief Force the emission of cleanups now, instead of waiting
626  /// until this object is destroyed.
627  /// \param ValuesToReload - A list of values that need to be available at
628  /// the insertion point after cleanup emission. If cleanup emission created
629  /// a shared cleanup block, these value pointers will be rewritten.
630  /// Otherwise, they not will be modified.
631  void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
632  assert(PerformCleanup && "Already forced cleanup");
633  CGF.DidCallStackSave = OldDidCallStackSave;
634  CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
635  ValuesToReload);
636  PerformCleanup = false;
637  }
638  };
639 
641  SourceRange Range;
643  LexicalScope *ParentScope;
644 
645  LexicalScope(const LexicalScope &) = delete;
646  void operator=(const LexicalScope &) = delete;
647 
648  public:
649  /// \brief Enter a new cleanup scope.
650  explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
651  : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
652  CGF.CurLexicalScope = this;
653  if (CGDebugInfo *DI = CGF.getDebugInfo())
654  DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
655  }
656 
657  void addLabel(const LabelDecl *label) {
658  assert(PerformCleanup && "adding label to dead scope?");
659  Labels.push_back(label);
660  }
661 
662  /// \brief Exit this cleanup scope, emitting any accumulated
663  /// cleanups.
665  if (CGDebugInfo *DI = CGF.getDebugInfo())
666  DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
667 
668  // If we should perform a cleanup, force them now. Note that
669  // this ends the cleanup scope before rescoping any labels.
670  if (PerformCleanup) {
671  ApplyDebugLocation DL(CGF, Range.getEnd());
672  ForceCleanup();
673  }
674  }
675 
676  /// \brief Force the emission of cleanups now, instead of waiting
677  /// until this object is destroyed.
678  void ForceCleanup() {
679  CGF.CurLexicalScope = ParentScope;
680  RunCleanupsScope::ForceCleanup();
681 
682  if (!Labels.empty())
683  rescopeLabels();
684  }
685 
686  bool hasLabels() const {
687  return !Labels.empty();
688  }
689 
690  void rescopeLabels();
691  };
692 
693  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
694 
695  /// \brief The scope used to remap some variables as private in the OpenMP
696  /// loop body (or other captured region emitted without outlining), and to
697  /// restore old vars back on exit.
699  DeclMapTy SavedLocals;
700  DeclMapTy SavedPrivates;
701 
702  private:
703  OMPPrivateScope(const OMPPrivateScope &) = delete;
704  void operator=(const OMPPrivateScope &) = delete;
705 
706  public:
707  /// \brief Enter a new OpenMP private scope.
708  explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
709 
710  /// \brief Registers \a LocalVD variable as a private and apply \a
711  /// PrivateGen function for it to generate corresponding private variable.
712  /// \a PrivateGen returns an address of the generated private variable.
713  /// \return true if the variable is registered as private, false if it has
714  /// been privatized already.
715  bool
716  addPrivate(const VarDecl *LocalVD,
717  llvm::function_ref<Address()> PrivateGen) {
718  assert(PerformCleanup && "adding private to dead scope");
719 
720  LocalVD = LocalVD->getCanonicalDecl();
721  // Only save it once.
722  if (SavedLocals.count(LocalVD)) return false;
723 
724  // Copy the existing local entry to SavedLocals.
725  auto it = CGF.LocalDeclMap.find(LocalVD);
726  if (it != CGF.LocalDeclMap.end()) {
727  SavedLocals.insert({LocalVD, it->second});
728  } else {
729  SavedLocals.insert({LocalVD, Address::invalid()});
730  }
731 
732  // Generate the private entry.
733  Address Addr = PrivateGen();
734  QualType VarTy = LocalVD->getType();
735  if (VarTy->isReferenceType()) {
736  Address Temp = CGF.CreateMemTemp(VarTy);
737  CGF.Builder.CreateStore(Addr.getPointer(), Temp);
738  Addr = Temp;
739  }
740  SavedPrivates.insert({LocalVD, Addr});
741 
742  return true;
743  }
744 
745  /// \brief Privatizes local variables previously registered as private.
746  /// Registration is separate from the actual privatization to allow
747  /// initializers use values of the original variables, not the private one.
748  /// This is important, for example, if the private variable is a class
749  /// variable initialized by a constructor that references other private
750  /// variables. But at initialization original variables must be used, not
751  /// private copies.
752  /// \return true if at least one variable was privatized, false otherwise.
753  bool Privatize() {
754  copyInto(SavedPrivates, CGF.LocalDeclMap);
755  SavedPrivates.clear();
756  return !SavedLocals.empty();
757  }
758 
759  void ForceCleanup() {
760  RunCleanupsScope::ForceCleanup();
761  copyInto(SavedLocals, CGF.LocalDeclMap);
762  SavedLocals.clear();
763  }
764 
765  /// \brief Exit scope - all the mapped variables are restored.
767  if (PerformCleanup)
768  ForceCleanup();
769  }
770 
771  /// Checks if the global variable is captured in current function.
772  bool isGlobalVarCaptured(const VarDecl *VD) const {
773  VD = VD->getCanonicalDecl();
774  return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
775  }
776 
777  private:
778  /// Copy all the entries in the source map over the corresponding
779  /// entries in the destination, which must exist.
780  static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
781  for (auto &pair : src) {
782  if (!pair.second.isValid()) {
783  dest.erase(pair.first);
784  continue;
785  }
786 
787  auto it = dest.find(pair.first);
788  if (it != dest.end()) {
789  it->second = pair.second;
790  } else {
791  dest.insert(pair);
792  }
793  }
794  }
795  };
796 
797  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
798  /// that have been added.
799  void
800  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
801  std::initializer_list<llvm::Value **> ValuesToReload = {});
802 
803  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
804  /// that have been added, then adds all lifetime-extended cleanups from
805  /// the given position to the stack.
806  void
807  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
808  size_t OldLifetimeExtendedStackSize,
809  std::initializer_list<llvm::Value **> ValuesToReload = {});
810 
811  void ResolveBranchFixups(llvm::BasicBlock *Target);
812 
813  /// The given basic block lies in the current EH scope, but may be a
814  /// target of a potentially scope-crossing jump; get a stable handle
815  /// to which we can perform this jump later.
816  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
817  return JumpDest(Target,
818  EHStack.getInnermostNormalCleanup(),
819  NextCleanupDestIndex++);
820  }
821 
822  /// The given basic block lies in the current EH scope, but may be a
823  /// target of a potentially scope-crossing jump; get a stable handle
824  /// to which we can perform this jump later.
825  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
826  return getJumpDestInCurrentScope(createBasicBlock(Name));
827  }
828 
829  /// EmitBranchThroughCleanup - Emit a branch from the current insert
830  /// block through the normal cleanup handling code (if any) and then
831  /// on to \arg Dest.
832  void EmitBranchThroughCleanup(JumpDest Dest);
833 
834  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
835  /// specified destination obviously has no cleanups to run. 'false' is always
836  /// a conservatively correct answer for this method.
837  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
838 
839  /// popCatchScope - Pops the catch scope at the top of the EHScope
840  /// stack, emitting any required code (other than the catch handlers
841  /// themselves).
842  void popCatchScope();
843 
844  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
845  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
846  llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
847 
848  /// An object to manage conditionally-evaluated expressions.
850  llvm::BasicBlock *StartBB;
851 
852  public:
853  ConditionalEvaluation(CodeGenFunction &CGF)
854  : StartBB(CGF.Builder.GetInsertBlock()) {}
855 
856  void begin(CodeGenFunction &CGF) {
857  assert(CGF.OutermostConditional != this);
858  if (!CGF.OutermostConditional)
859  CGF.OutermostConditional = this;
860  }
861 
862  void end(CodeGenFunction &CGF) {
863  assert(CGF.OutermostConditional != nullptr);
864  if (CGF.OutermostConditional == this)
865  CGF.OutermostConditional = nullptr;
866  }
867 
868  /// Returns a block which will be executed prior to each
869  /// evaluation of the conditional code.
870  llvm::BasicBlock *getStartingBlock() const {
871  return StartBB;
872  }
873  };
874 
875  /// isInConditionalBranch - Return true if we're currently emitting
876  /// one branch or the other of a conditional expression.
877  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
878 
880  assert(isInConditionalBranch());
881  llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
882  auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
883  store->setAlignment(addr.getAlignment().getQuantity());
884  }
885 
886  /// An RAII object to record that we're evaluating a statement
887  /// expression.
889  CodeGenFunction &CGF;
890 
891  /// We have to save the outermost conditional: cleanups in a
892  /// statement expression aren't conditional just because the
893  /// StmtExpr is.
894  ConditionalEvaluation *SavedOutermostConditional;
895 
896  public:
897  StmtExprEvaluation(CodeGenFunction &CGF)
898  : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
899  CGF.OutermostConditional = nullptr;
900  }
901 
903  CGF.OutermostConditional = SavedOutermostConditional;
904  CGF.EnsureInsertPoint();
905  }
906  };
907 
908  /// An object which temporarily prevents a value from being
909  /// destroyed by aggressive peephole optimizations that assume that
910  /// all uses of a value have been realized in the IR.
912  llvm::Instruction *Inst;
913  friend class CodeGenFunction;
914 
915  public:
916  PeepholeProtection() : Inst(nullptr) {}
917  };
918 
919  /// A non-RAII class containing all the information about a bound
920  /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
921  /// this which makes individual mappings very simple; using this
922  /// class directly is useful when you have a variable number of
923  /// opaque values or don't want the RAII functionality for some
924  /// reason.
926  const OpaqueValueExpr *OpaqueValue;
927  bool BoundLValue;
929 
931  bool boundLValue)
932  : OpaqueValue(ov), BoundLValue(boundLValue) {}
933  public:
934  OpaqueValueMappingData() : OpaqueValue(nullptr) {}
935 
936  static bool shouldBindAsLValue(const Expr *expr) {
937  // gl-values should be bound as l-values for obvious reasons.
938  // Records should be bound as l-values because IR generation
939  // always keeps them in memory. Expressions of function type
940  // act exactly like l-values but are formally required to be
941  // r-values in C.
942  return expr->isGLValue() ||
943  expr->getType()->isFunctionType() ||
944  hasAggregateEvaluationKind(expr->getType());
945  }
946 
947  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
948  const OpaqueValueExpr *ov,
949  const Expr *e) {
950  if (shouldBindAsLValue(ov))
951  return bind(CGF, ov, CGF.EmitLValue(e));
952  return bind(CGF, ov, CGF.EmitAnyExpr(e));
953  }
954 
955  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
956  const OpaqueValueExpr *ov,
957  const LValue &lv) {
958  assert(shouldBindAsLValue(ov));
959  CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
960  return OpaqueValueMappingData(ov, true);
961  }
962 
963  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
964  const OpaqueValueExpr *ov,
965  const RValue &rv) {
966  assert(!shouldBindAsLValue(ov));
967  CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
968 
969  OpaqueValueMappingData data(ov, false);
970 
971  // Work around an extremely aggressive peephole optimization in
972  // EmitScalarConversion which assumes that all other uses of a
973  // value are extant.
974  data.Protection = CGF.protectFromPeepholes(rv);
975 
976  return data;
977  }
978 
979  bool isValid() const { return OpaqueValue != nullptr; }
980  void clear() { OpaqueValue = nullptr; }
981 
982  void unbind(CodeGenFunction &CGF) {
983  assert(OpaqueValue && "no data to unbind!");
984 
985  if (BoundLValue) {
986  CGF.OpaqueLValues.erase(OpaqueValue);
987  } else {
988  CGF.OpaqueRValues.erase(OpaqueValue);
989  CGF.unprotectFromPeepholes(Protection);
990  }
991  }
992  };
993 
994  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
996  CodeGenFunction &CGF;
998 
999  public:
1000  static bool shouldBindAsLValue(const Expr *expr) {
1001  return OpaqueValueMappingData::shouldBindAsLValue(expr);
1002  }
1003 
1004  /// Build the opaque value mapping for the given conditional
1005  /// operator if it's the GNU ?: extension. This is a common
1006  /// enough pattern that the convenience operator is really
1007  /// helpful.
1008  ///
1009  OpaqueValueMapping(CodeGenFunction &CGF,
1010  const AbstractConditionalOperator *op) : CGF(CGF) {
1011  if (isa<ConditionalOperator>(op))
1012  // Leave Data empty.
1013  return;
1014 
1015  const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1016  Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1017  e->getCommon());
1018  }
1019 
1020  /// Build the opaque value mapping for an OpaqueValueExpr whose source
1021  /// expression is set to the expression the OVE represents.
1022  OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1023  : CGF(CGF) {
1024  if (OV) {
1025  assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1026  "for OVE with no source expression");
1027  Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1028  }
1029  }
1030 
1031  OpaqueValueMapping(CodeGenFunction &CGF,
1032  const OpaqueValueExpr *opaqueValue,
1033  LValue lvalue)
1034  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1035  }
1036 
1037  OpaqueValueMapping(CodeGenFunction &CGF,
1038  const OpaqueValueExpr *opaqueValue,
1039  RValue rvalue)
1040  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1041  }
1042 
1043  void pop() {
1044  Data.unbind(CGF);
1045  Data.clear();
1046  }
1047 
1049  if (Data.isValid()) Data.unbind(CGF);
1050  }
1051  };
1052 
1053 private:
1054  CGDebugInfo *DebugInfo;
1055  bool DisableDebugInfo;
1056 
1057  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1058  /// calling llvm.stacksave for multiple VLAs in the same scope.
1059  bool DidCallStackSave;
1060 
1061  /// IndirectBranch - The first time an indirect goto is seen we create a block
1062  /// with an indirect branch. Every time we see the address of a label taken,
1063  /// we add the label to the indirect goto. Every subsequent indirect goto is
1064  /// codegen'd as a jump to the IndirectBranch's basic block.
1065  llvm::IndirectBrInst *IndirectBranch;
1066 
1067  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1068  /// decls.
1069  DeclMapTy LocalDeclMap;
1070 
1071  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1072  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1073  /// parameter.
1074  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1075  SizeArguments;
1076 
1077  /// Track escaped local variables with auto storage. Used during SEH
1078  /// outlining to produce a call to llvm.localescape.
1079  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1080 
1081  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1082  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1083 
1084  // BreakContinueStack - This keeps track of where break and continue
1085  // statements should jump to.
1086  struct BreakContinue {
1087  BreakContinue(JumpDest Break, JumpDest Continue)
1088  : BreakBlock(Break), ContinueBlock(Continue) {}
1089 
1090  JumpDest BreakBlock;
1091  JumpDest ContinueBlock;
1092  };
1093  SmallVector<BreakContinue, 8> BreakContinueStack;
1094 
1095  /// Handles cancellation exit points in OpenMP-related constructs.
1096  class OpenMPCancelExitStack {
1097  /// Tracks cancellation exit point and join point for cancel-related exit
1098  /// and normal exit.
1099  struct CancelExit {
1100  CancelExit() = default;
1101  CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1102  JumpDest ContBlock)
1103  : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1105  /// true if the exit block has been emitted already by the special
1106  /// emitExit() call, false if the default codegen is used.
1107  bool HasBeenEmitted = false;
1108  JumpDest ExitBlock;
1109  JumpDest ContBlock;
1110  };
1111 
1113 
1114  public:
1115  OpenMPCancelExitStack() : Stack(1) {}
1116  ~OpenMPCancelExitStack() = default;
1117  /// Fetches the exit block for the current OpenMP construct.
1118  JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1119  /// Emits exit block with special codegen procedure specific for the related
1120  /// OpenMP construct + emits code for normal construct cleanup.
1121  void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1122  const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
1123  if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1124  assert(CGF.getOMPCancelDestination(Kind).isValid());
1125  assert(CGF.HaveInsertPoint());
1126  assert(!Stack.back().HasBeenEmitted);
1127  auto IP = CGF.Builder.saveAndClearIP();
1128  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1129  CodeGen(CGF);
1130  CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1131  CGF.Builder.restoreIP(IP);
1132  Stack.back().HasBeenEmitted = true;
1133  }
1134  CodeGen(CGF);
1135  }
1136  /// Enter the cancel supporting \a Kind construct.
1137  /// \param Kind OpenMP directive that supports cancel constructs.
1138  /// \param HasCancel true, if the construct has inner cancel directive,
1139  /// false otherwise.
1140  void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1141  Stack.push_back({Kind,
1142  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1143  : JumpDest(),
1144  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1145  : JumpDest()});
1146  }
1147  /// Emits default exit point for the cancel construct (if the special one
1148  /// has not be used) + join point for cancel/normal exits.
1149  void exit(CodeGenFunction &CGF) {
1150  if (getExitBlock().isValid()) {
1151  assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1152  bool HaveIP = CGF.HaveInsertPoint();
1153  if (!Stack.back().HasBeenEmitted) {
1154  if (HaveIP)
1155  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1156  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1157  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1158  }
1159  CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1160  if (!HaveIP) {
1161  CGF.Builder.CreateUnreachable();
1162  CGF.Builder.ClearInsertionPoint();
1163  }
1164  }
1165  Stack.pop_back();
1166  }
1167  };
1168  OpenMPCancelExitStack OMPCancelStack;
1169 
1170  CodeGenPGO PGO;
1171 
1172  /// Calculate branch weights appropriate for PGO data
1173  llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1174  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1175  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1176  uint64_t LoopCount);
1177 
1178 public:
1179  /// Increment the profiler's counter for the given statement by \p StepV.
1180  /// If \p StepV is null, the default increment is 1.
1181  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1183  PGO.emitCounterIncrement(Builder, S, StepV);
1184  PGO.setCurrentStmt(S);
1185  }
1186 
1187  /// Get the profiler's count for the given statement.
1188  uint64_t getProfileCount(const Stmt *S) {
1189  Optional<uint64_t> Count = PGO.getStmtCount(S);
1190  if (!Count.hasValue())
1191  return 0;
1192  return *Count;
1193  }
1194 
1195  /// Set the profiler's current count.
1196  void setCurrentProfileCount(uint64_t Count) {
1197  PGO.setCurrentRegionCount(Count);
1198  }
1199 
1200  /// Get the profiler's current count. This is generally the count for the most
1201  /// recently incremented counter.
1203  return PGO.getCurrentRegionCount();
1204  }
1205 
1206 private:
1207 
1208  /// SwitchInsn - This is nearest current switch instruction. It is null if
1209  /// current context is not in a switch.
1210  llvm::SwitchInst *SwitchInsn;
1211  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1212  SmallVector<uint64_t, 16> *SwitchWeights;
1213 
1214  /// CaseRangeBlock - This block holds if condition check for last case
1215  /// statement range in current switch instruction.
1216  llvm::BasicBlock *CaseRangeBlock;
1217 
1218  /// OpaqueLValues - Keeps track of the current set of opaque value
1219  /// expressions.
1220  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1221  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1222 
1223  // VLASizeMap - This keeps track of the associated size for each VLA type.
1224  // We track this by the size expression rather than the type itself because
1225  // in certain situations, like a const qualifier applied to an VLA typedef,
1226  // multiple VLA types can share the same size expression.
1227  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1228  // enter/leave scopes.
1229  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1230 
1231  /// A block containing a single 'unreachable' instruction. Created
1232  /// lazily by getUnreachableBlock().
1233  llvm::BasicBlock *UnreachableBlock;
1234 
1235  /// Counts of the number return expressions in the function.
1236  unsigned NumReturnExprs;
1237 
1238  /// Count the number of simple (constant) return expressions in the function.
1239  unsigned NumSimpleReturnExprs;
1240 
1241  /// The last regular (non-return) debug location (breakpoint) in the function.
1242  SourceLocation LastStopPoint;
1243 
1244 public:
1245  /// A scope within which we are constructing the fields of an object which
1246  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1247  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1249  public:
1250  FieldConstructionScope(CodeGenFunction &CGF, Address This)
1251  : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1252  CGF.CXXDefaultInitExprThis = This;
1253  }
1255  CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1256  }
1257 
1258  private:
1259  CodeGenFunction &CGF;
1260  Address OldCXXDefaultInitExprThis;
1261  };
1262 
1263  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1264  /// is overridden to be the object under construction.
1266  public:
1267  CXXDefaultInitExprScope(CodeGenFunction &CGF)
1268  : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1269  OldCXXThisAlignment(CGF.CXXThisAlignment) {
1270  CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1271  CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1272  }
1274  CGF.CXXThisValue = OldCXXThisValue;
1275  CGF.CXXThisAlignment = OldCXXThisAlignment;
1276  }
1277 
1278  public:
1279  CodeGenFunction &CGF;
1282  };
1283 
1284  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1285  /// current loop index is overridden.
1287  public:
1288  ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1289  : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1290  CGF.ArrayInitIndex = Index;
1291  }
1293  CGF.ArrayInitIndex = OldArrayInitIndex;
1294  }
1295 
1296  private:
1297  CodeGenFunction &CGF;
1298  llvm::Value *OldArrayInitIndex;
1299  };
1300 
1302  public:
1304  : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1305  OldCurCodeDecl(CGF.CurCodeDecl),
1306  OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1307  OldCXXABIThisValue(CGF.CXXABIThisValue),
1308  OldCXXThisValue(CGF.CXXThisValue),
1309  OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1310  OldCXXThisAlignment(CGF.CXXThisAlignment),
1311  OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1312  OldCXXInheritedCtorInitExprArgs(
1313  std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1314  CGF.CurGD = GD;
1315  CGF.CurFuncDecl = CGF.CurCodeDecl =
1316  cast<CXXConstructorDecl>(GD.getDecl());
1317  CGF.CXXABIThisDecl = nullptr;
1318  CGF.CXXABIThisValue = nullptr;
1319  CGF.CXXThisValue = nullptr;
1320  CGF.CXXABIThisAlignment = CharUnits();
1321  CGF.CXXThisAlignment = CharUnits();
1322  CGF.ReturnValue = Address::invalid();
1323  CGF.FnRetTy = QualType();
1324  CGF.CXXInheritedCtorInitExprArgs.clear();
1325  }
1327  CGF.CurGD = OldCurGD;
1328  CGF.CurFuncDecl = OldCurFuncDecl;
1329  CGF.CurCodeDecl = OldCurCodeDecl;
1330  CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1331  CGF.CXXABIThisValue = OldCXXABIThisValue;
1332  CGF.CXXThisValue = OldCXXThisValue;
1333  CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1334  CGF.CXXThisAlignment = OldCXXThisAlignment;
1335  CGF.ReturnValue = OldReturnValue;
1336  CGF.FnRetTy = OldFnRetTy;
1337  CGF.CXXInheritedCtorInitExprArgs =
1338  std::move(OldCXXInheritedCtorInitExprArgs);
1339  }
1340 
1341  private:
1342  CodeGenFunction &CGF;
1343  GlobalDecl OldCurGD;
1344  const Decl *OldCurFuncDecl;
1345  const Decl *OldCurCodeDecl;
1346  ImplicitParamDecl *OldCXXABIThisDecl;
1347  llvm::Value *OldCXXABIThisValue;
1348  llvm::Value *OldCXXThisValue;
1349  CharUnits OldCXXABIThisAlignment;
1350  CharUnits OldCXXThisAlignment;
1351  Address OldReturnValue;
1352  QualType OldFnRetTy;
1353  CallArgList OldCXXInheritedCtorInitExprArgs;
1354  };
1355 
1356 private:
1357  /// CXXThisDecl - When generating code for a C++ member function,
1358  /// this will hold the implicit 'this' declaration.
1359  ImplicitParamDecl *CXXABIThisDecl;
1360  llvm::Value *CXXABIThisValue;
1361  llvm::Value *CXXThisValue;
1362  CharUnits CXXABIThisAlignment;
1363  CharUnits CXXThisAlignment;
1364 
1365  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1366  /// this expression.
1367  Address CXXDefaultInitExprThis = Address::invalid();
1368 
1369  /// The current array initialization index when evaluating an
1370  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1371  llvm::Value *ArrayInitIndex = nullptr;
1372 
1373  /// The values of function arguments to use when evaluating
1374  /// CXXInheritedCtorInitExprs within this context.
1375  CallArgList CXXInheritedCtorInitExprArgs;
1376 
1377  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1378  /// destructor, this will hold the implicit argument (e.g. VTT).
1379  ImplicitParamDecl *CXXStructorImplicitParamDecl;
1380  llvm::Value *CXXStructorImplicitParamValue;
1381 
1382  /// OutermostConditional - Points to the outermost active
1383  /// conditional control. This is used so that we know if a
1384  /// temporary should be destroyed conditionally.
1385  ConditionalEvaluation *OutermostConditional;
1386 
1387  /// The current lexical scope.
1388  LexicalScope *CurLexicalScope;
1389 
1390  /// The current source location that should be used for exception
1391  /// handling code.
1392  SourceLocation CurEHLocation;
1393 
1394  /// BlockByrefInfos - For each __block variable, contains
1395  /// information about the layout of the variable.
1396  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1397 
1398  /// Used by -fsanitize=nullability-return to determine whether the return
1399  /// value can be checked.
1400  llvm::Value *RetValNullabilityPrecondition = nullptr;
1401 
1402  /// Check if -fsanitize=nullability-return instrumentation is required for
1403  /// this function.
1404  bool requiresReturnValueNullabilityCheck() const {
1405  return RetValNullabilityPrecondition;
1406  }
1407 
1408  /// Used to store precise source locations for return statements by the
1409  /// runtime return value checks.
1410  Address ReturnLocation = Address::invalid();
1411 
1412  /// Check if the return value of this function requires sanitization.
1413  bool requiresReturnValueCheck() const {
1414  return requiresReturnValueNullabilityCheck() ||
1415  (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1416  CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1417  }
1418 
1419  llvm::BasicBlock *TerminateLandingPad;
1420  llvm::BasicBlock *TerminateHandler;
1421  llvm::BasicBlock *TrapBB;
1422 
1423  /// True if we need emit the life-time markers.
1424  const bool ShouldEmitLifetimeMarkers;
1425 
1426  /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to
1427  /// the function metadata.
1428  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1429  llvm::Function *Fn);
1430 
1431 public:
1432  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1433  ~CodeGenFunction();
1434 
1435  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1436  ASTContext &getContext() const { return CGM.getContext(); }
1438  if (DisableDebugInfo)
1439  return nullptr;
1440  return DebugInfo;
1441  }
1442  void disableDebugInfo() { DisableDebugInfo = true; }
1443  void enableDebugInfo() { DisableDebugInfo = false; }
1444 
1446  return CGM.getCodeGenOpts().OptimizationLevel == 0;
1447  }
1448 
1449  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1450 
1451  /// Returns a pointer to the function's exception object and selector slot,
1452  /// which is assigned in every landing pad.
1453  Address getExceptionSlot();
1454  Address getEHSelectorSlot();
1455 
1456  /// Returns the contents of the function's exception object and selector
1457  /// slots.
1458  llvm::Value *getExceptionFromSlot();
1459  llvm::Value *getSelectorFromSlot();
1460 
1461  Address getNormalCleanupDestSlot();
1462 
1463  llvm::BasicBlock *getUnreachableBlock() {
1464  if (!UnreachableBlock) {
1465  UnreachableBlock = createBasicBlock("unreachable");
1466  new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1467  }
1468  return UnreachableBlock;
1469  }
1470 
1471  llvm::BasicBlock *getInvokeDest() {
1472  if (!EHStack.requiresLandingPad()) return nullptr;
1473  return getInvokeDestImpl();
1474  }
1475 
1476  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1477 
1478  const TargetInfo &getTarget() const { return Target; }
1479  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1481  return CGM.getTargetCodeGenInfo();
1482  }
1483 
1484  //===--------------------------------------------------------------------===//
1485  // Cleanups
1486  //===--------------------------------------------------------------------===//
1487 
1488  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1489 
1490  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1491  Address arrayEndPointer,
1492  QualType elementType,
1493  CharUnits elementAlignment,
1494  Destroyer *destroyer);
1495  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1496  llvm::Value *arrayEnd,
1497  QualType elementType,
1498  CharUnits elementAlignment,
1499  Destroyer *destroyer);
1500 
1501  void pushDestroy(QualType::DestructionKind dtorKind,
1502  Address addr, QualType type);
1503  void pushEHDestroy(QualType::DestructionKind dtorKind,
1504  Address addr, QualType type);
1505  void pushDestroy(CleanupKind kind, Address addr, QualType type,
1506  Destroyer *destroyer, bool useEHCleanupForArray);
1507  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1508  QualType type, Destroyer *destroyer,
1509  bool useEHCleanupForArray);
1510  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1511  llvm::Value *CompletePtr,
1512  QualType ElementType);
1513  void pushStackRestore(CleanupKind kind, Address SPMem);
1514  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1515  bool useEHCleanupForArray);
1516  llvm::Function *generateDestroyHelper(Address addr, QualType type,
1517  Destroyer *destroyer,
1518  bool useEHCleanupForArray,
1519  const VarDecl *VD);
1520  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1521  QualType elementType, CharUnits elementAlign,
1522  Destroyer *destroyer,
1523  bool checkZeroLength, bool useEHCleanup);
1524 
1525  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1526 
1527  /// Determines whether an EH cleanup is required to destroy a type
1528  /// with the given destruction kind.
1530  switch (kind) {
1531  case QualType::DK_none:
1532  return false;
1533  case QualType::DK_cxx_destructor:
1534  case QualType::DK_objc_weak_lifetime:
1535  return getLangOpts().Exceptions;
1536  case QualType::DK_objc_strong_lifetime:
1537  return getLangOpts().Exceptions &&
1538  CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1539  }
1540  llvm_unreachable("bad destruction kind");
1541  }
1542 
1544  return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1545  }
1546 
1547  //===--------------------------------------------------------------------===//
1548  // Objective-C
1549  //===--------------------------------------------------------------------===//
1550 
1551  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1552 
1553  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1554 
1555  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1556  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1557  const ObjCPropertyImplDecl *PID);
1558  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1559  const ObjCPropertyImplDecl *propImpl,
1560  const ObjCMethodDecl *GetterMothodDecl,
1561  llvm::Constant *AtomicHelperFn);
1562 
1563  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1564  ObjCMethodDecl *MD, bool ctor);
1565 
1566  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1567  /// for the given property.
1568  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1569  const ObjCPropertyImplDecl *PID);
1570  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1571  const ObjCPropertyImplDecl *propImpl,
1572  llvm::Constant *AtomicHelperFn);
1573 
1574  //===--------------------------------------------------------------------===//
1575  // Block Bits
1576  //===--------------------------------------------------------------------===//
1577 
1578  /// Emit block literal.
1579  /// \return an LLVM value which is a pointer to a struct which contains
1580  /// information about the block, including the block invoke function, the
1581  /// captured variables, etc.
1582  /// \param InvokeF will contain the block invoke function if it is not
1583  /// nullptr.
1584  llvm::Value *EmitBlockLiteral(const BlockExpr *,
1585  llvm::Function **InvokeF = nullptr);
1586  static void destroyBlockInfos(CGBlockInfo *info);
1587 
1588  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1589  const CGBlockInfo &Info,
1590  const DeclMapTy &ldm,
1591  bool IsLambdaConversionToBlock,
1592  bool BuildGlobalBlock);
1593 
1594  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1595  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1596  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1597  const ObjCPropertyImplDecl *PID);
1598  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1599  const ObjCPropertyImplDecl *PID);
1600  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1601 
1602  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1603 
1604  class AutoVarEmission;
1605 
1606  void emitByrefStructureInit(const AutoVarEmission &emission);
1607  void enterByrefCleanup(const AutoVarEmission &emission);
1608 
1609  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1610  llvm::Value *ptr);
1611 
1612  Address LoadBlockStruct();
1613  Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1614 
1615  /// BuildBlockByrefAddress - Computes the location of the
1616  /// data in a variable which is declared as __block.
1617  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1618  bool followForward = true);
1619  Address emitBlockByrefAddress(Address baseAddr,
1620  const BlockByrefInfo &info,
1621  bool followForward,
1622  const llvm::Twine &name);
1623 
1624  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1625 
1626  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1627 
1628  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1629  const CGFunctionInfo &FnInfo);
1630  /// \brief Emit code for the start of a function.
1631  /// \param Loc The location to be associated with the function.
1632  /// \param StartLoc The location of the function body.
1633  void StartFunction(GlobalDecl GD,
1634  QualType RetTy,
1635  llvm::Function *Fn,
1636  const CGFunctionInfo &FnInfo,
1637  const FunctionArgList &Args,
1639  SourceLocation StartLoc = SourceLocation());
1640 
1641  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1642 
1643  void EmitConstructorBody(FunctionArgList &Args);
1644  void EmitDestructorBody(FunctionArgList &Args);
1645  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1646  void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1647  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1648 
1649  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1650  CallArgList &CallArgs);
1651  void EmitLambdaBlockInvokeBody();
1652  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1653  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1654  void EmitAsanPrologueOrEpilogue(bool Prologue);
1655 
1656  /// \brief Emit the unified return block, trying to avoid its emission when
1657  /// possible.
1658  /// \return The debug location of the user written return statement if the
1659  /// return block is is avoided.
1660  llvm::DebugLoc EmitReturnBlock();
1661 
1662  /// FinishFunction - Complete IR generation of the current function. It is
1663  /// legal to call this function even if there is no current insertion point.
1664  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1665 
1666  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1667  const CGFunctionInfo &FnInfo);
1668 
1669  void EmitCallAndReturnForThunk(llvm::Constant *Callee,
1670  const ThunkInfo *Thunk);
1671 
1672  void FinishThunk();
1673 
1674  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1675  void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1676  llvm::Value *Callee);
1677 
1678  /// Generate a thunk for the given method.
1679  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1680  GlobalDecl GD, const ThunkInfo &Thunk);
1681 
1682  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1683  const CGFunctionInfo &FnInfo,
1684  GlobalDecl GD, const ThunkInfo &Thunk);
1685 
1686  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1687  FunctionArgList &Args);
1688 
1689  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1690 
1691  /// Struct with all informations about dynamic [sub]class needed to set vptr.
1692  struct VPtr {
1697  };
1698 
1699  /// Initialize the vtable pointer of the given subobject.
1700  void InitializeVTablePointer(const VPtr &vptr);
1701 
1703 
1704  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1705  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1706 
1707  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1708  CharUnits OffsetFromNearestVBase,
1709  bool BaseIsNonVirtualPrimaryBase,
1710  const CXXRecordDecl *VTableClass,
1711  VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1712 
1713  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1714 
1715  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1716  /// to by This.
1717  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1718  const CXXRecordDecl *VTableClass);
1719 
1726  };
1727 
1728  /// \brief Derived is the presumed address of an object of type T after a
1729  /// cast. If T is a polymorphic class type, emit a check that the virtual
1730  /// table for Derived belongs to a class derived from T.
1731  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1732  bool MayBeNull, CFITypeCheckKind TCK,
1733  SourceLocation Loc);
1734 
1735  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1736  /// If vptr CFI is enabled, emit a check that VTable is valid.
1737  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1738  CFITypeCheckKind TCK, SourceLocation Loc);
1739 
1740  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1741  /// RD using llvm.type.test.
1742  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1743  CFITypeCheckKind TCK, SourceLocation Loc);
1744 
1745  /// If whole-program virtual table optimization is enabled, emit an assumption
1746  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1747  /// enabled, emit a check that VTable is a member of RD's type identifier.
1748  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1749  llvm::Value *VTable, SourceLocation Loc);
1750 
1751  /// Returns whether we should perform a type checked load when loading a
1752  /// virtual function for virtual calls to members of RD. This is generally
1753  /// true when both vcall CFI and whole-program-vtables are enabled.
1754  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1755 
1756  /// Emit a type checked load from the given vtable.
1757  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1758  uint64_t VTableByteOffset);
1759 
1760  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1761  /// given phase of destruction for a destructor. The end result
1762  /// should call destructors on members and base classes in reverse
1763  /// order of their construction.
1764  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1765 
1766  /// ShouldInstrumentFunction - Return true if the current function should be
1767  /// instrumented with __cyg_profile_func_* calls
1768  bool ShouldInstrumentFunction();
1769 
1770  /// ShouldXRayInstrument - Return true if the current function should be
1771  /// instrumented with XRay nop sleds.
1772  bool ShouldXRayInstrumentFunction() const;
1773 
1774  /// Encode an address into a form suitable for use in a function prologue.
1775  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1776  llvm::Constant *Addr);
1777 
1778  /// Decode an address used in a function prologue, encoded by \c
1779  /// EncodeAddrForUseInPrologue.
1780  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1781  llvm::Value *EncodedAddr);
1782 
1783  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1784  /// arguments for the given function. This is also responsible for naming the
1785  /// LLVM function arguments.
1786  void EmitFunctionProlog(const CGFunctionInfo &FI,
1787  llvm::Function *Fn,
1788  const FunctionArgList &Args);
1789 
1790  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1791  /// given temporary.
1792  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1793  SourceLocation EndLoc);
1794 
1795  /// Emit a test that checks if the return value \p RV is nonnull.
1796  void EmitReturnValueCheck(llvm::Value *RV);
1797 
1798  /// EmitStartEHSpec - Emit the start of the exception spec.
1799  void EmitStartEHSpec(const Decl *D);
1800 
1801  /// EmitEndEHSpec - Emit the end of the exception spec.
1802  void EmitEndEHSpec(const Decl *D);
1803 
1804  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1805  llvm::BasicBlock *getTerminateLandingPad();
1806 
1807  /// getTerminateHandler - Return a handler (not a landing pad, just
1808  /// a catch handler) that just calls terminate. This is used when
1809  /// a terminate scope encloses a try.
1810  llvm::BasicBlock *getTerminateHandler();
1811 
1812  llvm::Type *ConvertTypeForMem(QualType T);
1813  llvm::Type *ConvertType(QualType T);
1814  llvm::Type *ConvertType(const TypeDecl *T) {
1815  return ConvertType(getContext().getTypeDeclType(T));
1816  }
1817 
1818  /// LoadObjCSelf - Load the value of self. This function is only valid while
1819  /// generating code for an Objective-C method.
1820  llvm::Value *LoadObjCSelf();
1821 
1822  /// TypeOfSelfObject - Return type of object that this self represents.
1823  QualType TypeOfSelfObject();
1824 
1825  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
1826  static TypeEvaluationKind getEvaluationKind(QualType T);
1827 
1829  return getEvaluationKind(T) == TEK_Scalar;
1830  }
1831 
1833  return getEvaluationKind(T) == TEK_Aggregate;
1834  }
1835 
1836  /// createBasicBlock - Create an LLVM basic block.
1837  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1838  llvm::Function *parent = nullptr,
1839  llvm::BasicBlock *before = nullptr) {
1840 #ifdef NDEBUG
1841  return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1842 #else
1843  return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1844 #endif
1845  }
1846 
1847  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1848  /// label maps to.
1849  JumpDest getJumpDestForLabel(const LabelDecl *S);
1850 
1851  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1852  /// another basic block, simplify it. This assumes that no other code could
1853  /// potentially reference the basic block.
1854  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1855 
1856  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1857  /// adding a fall-through branch from the current insert block if
1858  /// necessary. It is legal to call this function even if there is no current
1859  /// insertion point.
1860  ///
1861  /// IsFinished - If true, indicates that the caller has finished emitting
1862  /// branches to the given block and does not expect to emit code into it. This
1863  /// means the block can be ignored if it is unreachable.
1864  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1865 
1866  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1867  /// near its uses, and leave the insertion point in it.
1868  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1869 
1870  /// EmitBranch - Emit a branch to the specified basic block from the current
1871  /// insert block, taking care to avoid creation of branches from dummy
1872  /// blocks. It is legal to call this function even if there is no current
1873  /// insertion point.
1874  ///
1875  /// This function clears the current insertion point. The caller should follow
1876  /// calls to this function with calls to Emit*Block prior to generation new
1877  /// code.
1878  void EmitBranch(llvm::BasicBlock *Block);
1879 
1880  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1881  /// indicates that the current code being emitted is unreachable.
1882  bool HaveInsertPoint() const {
1883  return Builder.GetInsertBlock() != nullptr;
1884  }
1885 
1886  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1887  /// emitted IR has a place to go. Note that by definition, if this function
1888  /// creates a block then that block is unreachable; callers may do better to
1889  /// detect when no insertion point is defined and simply skip IR generation.
1891  if (!HaveInsertPoint())
1892  EmitBlock(createBasicBlock());
1893  }
1894 
1895  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1896  /// specified stmt yet.
1897  void ErrorUnsupported(const Stmt *S, const char *Type);
1898 
1899  //===--------------------------------------------------------------------===//
1900  // Helpers
1901  //===--------------------------------------------------------------------===//
1902 
1904  AlignmentSource Source = AlignmentSource::Type) {
1905  return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
1906  CGM.getTBAAAccessInfo(T));
1907  }
1908 
1910  TBAAAccessInfo TBAAInfo) {
1911  return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
1912  }
1913 
1915  AlignmentSource Source = AlignmentSource::Type) {
1916  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1917  LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
1918  }
1919 
1921  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
1922  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1923  BaseInfo, TBAAInfo);
1924  }
1925 
1926  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1927  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1928  CharUnits getNaturalTypeAlignment(QualType T,
1929  LValueBaseInfo *BaseInfo = nullptr,
1930  TBAAAccessInfo *TBAAInfo = nullptr,
1931  bool forPointeeType = false);
1932  CharUnits getNaturalPointeeTypeAlignment(QualType T,
1933  LValueBaseInfo *BaseInfo = nullptr,
1934  TBAAAccessInfo *TBAAInfo = nullptr);
1935 
1936  Address EmitLoadOfReference(LValue RefLVal,
1937  LValueBaseInfo *PointeeBaseInfo = nullptr,
1938  TBAAAccessInfo *PointeeTBAAInfo = nullptr);
1939  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
1941  AlignmentSource Source =
1942  AlignmentSource::Type) {
1943  LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
1944  CGM.getTBAAAccessInfo(RefTy));
1945  return EmitLoadOfReferenceLValue(RefLVal);
1946  }
1947 
1948  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1949  LValueBaseInfo *BaseInfo = nullptr,
1950  TBAAAccessInfo *TBAAInfo = nullptr);
1951  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1952 
1953  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
1954  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
1955  /// insertion point of the builder. The caller is responsible for setting an
1956  /// appropriate alignment on
1957  /// the alloca.
1958  ///
1959  /// \p ArraySize is the number of array elements to be allocated if it
1960  /// is not nullptr.
1961  ///
1962  /// LangAS::Default is the address space of pointers to local variables and
1963  /// temporaries, as exposed in the source language. In certain
1964  /// configurations, this is not the same as the alloca address space, and a
1965  /// cast is needed to lift the pointer from the alloca AS into
1966  /// LangAS::Default. This can happen when the target uses a restricted
1967  /// address space for the stack but the source language requires
1968  /// LangAS::Default to be a generic address space. The latter condition is
1969  /// common for most programming languages; OpenCL is an exception in that
1970  /// LangAS::Default is the private address space, which naturally maps
1971  /// to the stack.
1972  ///
1973  /// Because the address of a temporary is often exposed to the program in
1974  /// various ways, this function will perform the cast by default. The cast
1975  /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is
1976  /// more efficient if the caller knows that the address will not be exposed.
1977  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
1978  llvm::Value *ArraySize = nullptr);
1979  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1980  const Twine &Name = "tmp",
1981  llvm::Value *ArraySize = nullptr,
1982  bool CastToDefaultAddrSpace = true);
1983 
1984  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1985  /// default ABI alignment of the given LLVM type.
1986  ///
1987  /// IMPORTANT NOTE: This is *not* generally the right alignment for
1988  /// any given AST type that happens to have been lowered to the
1989  /// given IR type. This should only ever be used for function-local,
1990  /// IR-driven manipulations like saving and restoring a value. Do
1991  /// not hand this address off to arbitrary IRGen routines, and especially
1992  /// do not pass it as an argument to a function that might expect a
1993  /// properly ABI-aligned value.
1994  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1995  const Twine &Name = "tmp");
1996 
1997  /// InitTempAlloca - Provide an initial value for the given alloca which
1998  /// will be observable at all locations in the function.
1999  ///
2000  /// The address should be something that was returned from one of
2001  /// the CreateTempAlloca or CreateMemTemp routines, and the
2002  /// initializer must be valid in the entry block (i.e. it must
2003  /// either be a constant or an argument value).
2004  void InitTempAlloca(Address Alloca, llvm::Value *Value);
2005 
2006  /// CreateIRTemp - Create a temporary IR object of the given type, with
2007  /// appropriate alignment. This routine should only be used when an temporary
2008  /// value needs to be stored into an alloca (for example, to avoid explicit
2009  /// PHI construction), but the type is the IR type, not the type appropriate
2010  /// for storing in memory.
2011  ///
2012  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2013  /// ConvertType instead of ConvertTypeForMem.
2014  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2015 
2016  /// CreateMemTemp - Create a temporary memory object of the given type, with
2017  /// appropriate alignment. Cast it to the default address space if
2018  /// \p CastToDefaultAddrSpace is true.
2019  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2020  bool CastToDefaultAddrSpace = true);
2021  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2022  bool CastToDefaultAddrSpace = true);
2023 
2024  /// CreateAggTemp - Create a temporary memory object for the given
2025  /// aggregate type.
2026  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2027  return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2028  T.getQualifiers(),
2029  AggValueSlot::IsNotDestructed,
2030  AggValueSlot::DoesNotNeedGCBarriers,
2031  AggValueSlot::IsNotAliased);
2032  }
2033 
2034  /// Emit a cast to void* in the appropriate address space.
2035  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2036 
2037  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2038  /// expression and compare the result against zero, returning an Int1Ty value.
2039  llvm::Value *EvaluateExprAsBool(const Expr *E);
2040 
2041  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2042  void EmitIgnoredExpr(const Expr *E);
2043 
2044  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2045  /// any type. The result is returned as an RValue struct. If this is an
2046  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2047  /// the result should be returned.
2048  ///
2049  /// \param ignoreResult True if the resulting value isn't used.
2050  RValue EmitAnyExpr(const Expr *E,
2051  AggValueSlot aggSlot = AggValueSlot::ignored(),
2052  bool ignoreResult = false);
2053 
2054  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2055  // or the value of the expression, depending on how va_list is defined.
2056  Address EmitVAListRef(const Expr *E);
2057 
2058  /// Emit a "reference" to a __builtin_ms_va_list; this is
2059  /// always the value of the expression, because a __builtin_ms_va_list is a
2060  /// pointer to a char.
2061  Address EmitMSVAListRef(const Expr *E);
2062 
2063  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2064  /// always be accessible even if no aggregate location is provided.
2065  RValue EmitAnyExprToTemp(const Expr *E);
2066 
2067  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2068  /// arbitrary expression into the given memory location.
2069  void EmitAnyExprToMem(const Expr *E, Address Location,
2070  Qualifiers Quals, bool IsInitializer);
2071 
2072  void EmitAnyExprToExn(const Expr *E, Address Addr);
2073 
2074  /// EmitExprAsInit - Emits the code necessary to initialize a
2075  /// location in memory with the given initializer.
2076  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2077  bool capturedByInit);
2078 
2079  /// hasVolatileMember - returns true if aggregate type has a volatile
2080  /// member.
2082  if (const RecordType *RT = T->getAs<RecordType>()) {
2083  const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2084  return RD->hasVolatileMember();
2085  }
2086  return false;
2087  }
2088  /// EmitAggregateCopy - Emit an aggregate assignment.
2089  ///
2090  /// The difference to EmitAggregateCopy is that tail padding is not copied.
2091  /// This is required for correctness when assigning non-POD structures in C++.
2092  void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
2093  QualType EltTy) {
2094  bool IsVolatile = hasVolatileMember(EltTy);
2095  EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
2096  }
2097 
2098  void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
2099  QualType DestTy, QualType SrcTy) {
2100  EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
2101  /*IsAssignment=*/false);
2102  }
2103 
2104  /// EmitAggregateCopy - Emit an aggregate copy.
2105  ///
2106  /// \param isVolatile - True iff either the source or the destination is
2107  /// volatile.
2108  /// \param isAssignment - If false, allow padding to be copied. This often
2109  /// yields more efficient.
2110  void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
2111  QualType EltTy, bool isVolatile=false,
2112  bool isAssignment = false);
2113 
2114  /// GetAddrOfLocalVar - Return the address of a local variable.
2116  auto it = LocalDeclMap.find(VD);
2117  assert(it != LocalDeclMap.end() &&
2118  "Invalid argument to GetAddrOfLocalVar(), no decl!");
2119  return it->second;
2120  }
2121 
2122  /// getOpaqueLValueMapping - Given an opaque value expression (which
2123  /// must be mapped to an l-value), return its mapping.
2125  assert(OpaqueValueMapping::shouldBindAsLValue(e));
2126 
2127  llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
2128  it = OpaqueLValues.find(e);
2129  assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
2130  return it->second;
2131  }
2132 
2133  /// getOpaqueRValueMapping - Given an opaque value expression (which
2134  /// must be mapped to an r-value), return its mapping.
2136  assert(!OpaqueValueMapping::shouldBindAsLValue(e));
2137 
2138  llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
2139  it = OpaqueRValues.find(e);
2140  assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
2141  return it->second;
2142  }
2143 
2144  /// Get the index of the current ArrayInitLoopExpr, if any.
2145  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2146 
2147  /// getAccessedFieldNo - Given an encoded value and a result number, return
2148  /// the input field number being accessed.
2149  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2150 
2151  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2152  llvm::BasicBlock *GetIndirectGotoBlock();
2153 
2154  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2155  static bool IsWrappedCXXThis(const Expr *E);
2156 
2157  /// EmitNullInitialization - Generate code to set a value of the given type to
2158  /// null, If the type contains data member pointers, they will be initialized
2159  /// to -1 in accordance with the Itanium C++ ABI.
2160  void EmitNullInitialization(Address DestPtr, QualType Ty);
2161 
2162  /// Emits a call to an LLVM variable-argument intrinsic, either
2163  /// \c llvm.va_start or \c llvm.va_end.
2164  /// \param ArgValue A reference to the \c va_list as emitted by either
2165  /// \c EmitVAListRef or \c EmitMSVAListRef.
2166  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2167  /// calls \c llvm.va_end.
2168  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2169 
2170  /// Generate code to get an argument from the passed in pointer
2171  /// and update it accordingly.
2172  /// \param VE The \c VAArgExpr for which to generate code.
2173  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2174  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2175  /// \returns A pointer to the argument.
2176  // FIXME: We should be able to get rid of this method and use the va_arg
2177  // instruction in LLVM instead once it works well enough.
2178  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2179 
2180  /// emitArrayLength - Compute the length of an array, even if it's a
2181  /// VLA, and drill down to the base element type.
2182  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2183  QualType &baseType,
2184  Address &addr);
2185 
2186  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2187  /// the given variably-modified type and store them in the VLASizeMap.
2188  ///
2189  /// This function can be called with a null (unreachable) insert point.
2190  void EmitVariablyModifiedType(QualType Ty);
2191 
2192  /// getVLASize - Returns an LLVM value that corresponds to the size,
2193  /// in non-variably-sized elements, of a variable length array type,
2194  /// plus that largest non-variably-sized element type. Assumes that
2195  /// the type has already been emitted with EmitVariablyModifiedType.
2196  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
2197  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
2198 
2199  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2200  /// generating code for an C++ member function.
2202  assert(CXXThisValue && "no 'this' value for this function");
2203  return CXXThisValue;
2204  }
2205  Address LoadCXXThisAddress();
2206 
2207  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2208  /// virtual bases.
2209  // FIXME: Every place that calls LoadCXXVTT is something
2210  // that needs to be abstracted properly.
2212  assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2213  return CXXStructorImplicitParamValue;
2214  }
2215 
2216  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2217  /// complete class to the given direct base.
2218  Address
2219  GetAddressOfDirectBaseInCompleteClass(Address Value,
2220  const CXXRecordDecl *Derived,
2221  const CXXRecordDecl *Base,
2222  bool BaseIsVirtual);
2223 
2224  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2225 
2226  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2227  /// load of 'this' and returns address of the base class.
2228  Address GetAddressOfBaseClass(Address Value,
2229  const CXXRecordDecl *Derived,
2232  bool NullCheckValue, SourceLocation Loc);
2233 
2234  Address GetAddressOfDerivedClass(Address Value,
2235  const CXXRecordDecl *Derived,
2238  bool NullCheckValue);
2239 
2240  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2241  /// base constructor/destructor with virtual bases.
2242  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2243  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2244  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2245  bool Delegating);
2246 
2247  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2248  CXXCtorType CtorType,
2249  const FunctionArgList &Args,
2250  SourceLocation Loc);
2251  // It's important not to confuse this and the previous function. Delegating
2252  // constructors are the C++0x feature. The constructor delegate optimization
2253  // is used to reduce duplication in the base and complete consturctors where
2254  // they are substantially the same.
2255  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2256  const FunctionArgList &Args);
2257 
2258  /// Emit a call to an inheriting constructor (that is, one that invokes a
2259  /// constructor inherited from a base class) by inlining its definition. This
2260  /// is necessary if the ABI does not support forwarding the arguments to the
2261  /// base class constructor (because they're variadic or similar).
2262  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2263  CXXCtorType CtorType,
2264  bool ForVirtualBase,
2265  bool Delegating,
2266  CallArgList &Args);
2267 
2268  /// Emit a call to a constructor inherited from a base class, passing the
2269  /// current constructor's arguments along unmodified (without even making
2270  /// a copy).
2271  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2272  bool ForVirtualBase, Address This,
2273  bool InheritedFromVBase,
2274  const CXXInheritedCtorInitExpr *E);
2275 
2276  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2277  bool ForVirtualBase, bool Delegating,
2278  Address This, const CXXConstructExpr *E);
2279 
2280  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2281  bool ForVirtualBase, bool Delegating,
2282  Address This, CallArgList &Args);
2283 
2284  /// Emit assumption load for all bases. Requires to be be called only on
2285  /// most-derived class and not under construction of the object.
2286  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2287 
2288  /// Emit assumption that vptr load == global vtable.
2289  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2290 
2291  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2292  Address This, Address Src,
2293  const CXXConstructExpr *E);
2294 
2295  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2296  const ArrayType *ArrayTy,
2297  Address ArrayPtr,
2298  const CXXConstructExpr *E,
2299  bool ZeroInitialization = false);
2300 
2301  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2302  llvm::Value *NumElements,
2303  Address ArrayPtr,
2304  const CXXConstructExpr *E,
2305  bool ZeroInitialization = false);
2306 
2307  static Destroyer destroyCXXObject;
2308 
2309  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2310  bool ForVirtualBase, bool Delegating,
2311  Address This);
2312 
2313  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2314  llvm::Type *ElementTy, Address NewPtr,
2315  llvm::Value *NumElements,
2316  llvm::Value *AllocSizeWithoutCookie);
2317 
2318  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2319  Address Ptr);
2320 
2321  llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2322  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2323 
2324  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2325  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2326 
2327  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2328  QualType DeleteTy, llvm::Value *NumElements = nullptr,
2329  CharUnits CookieSize = CharUnits());
2330 
2331  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2332  const Expr *Arg, bool IsDelete);
2333 
2334  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2335  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2336  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2337 
2338  /// \brief Situations in which we might emit a check for the suitability of a
2339  /// pointer or glvalue.
2341  /// Checking the operand of a load. Must be suitably sized and aligned.
2343  /// Checking the destination of a store. Must be suitably sized and aligned.
2345  /// Checking the bound value in a reference binding. Must be suitably sized
2346  /// and aligned, but is not required to refer to an object (until the
2347  /// reference is used), per core issue 453.
2349  /// Checking the object expression in a non-static data member access. Must
2350  /// be an object within its lifetime.
2352  /// Checking the 'this' pointer for a call to a non-static member function.
2353  /// Must be an object within its lifetime.
2355  /// Checking the 'this' pointer for a constructor call.
2357  /// Checking the operand of a static_cast to a derived pointer type. Must be
2358  /// null or an object within its lifetime.
2360  /// Checking the operand of a static_cast to a derived reference type. Must
2361  /// be an object within its lifetime.
2363  /// Checking the operand of a cast to a base object. Must be suitably sized
2364  /// and aligned.
2366  /// Checking the operand of a cast to a virtual base object. Must be an
2367  /// object within its lifetime.
2369  /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2370  TCK_NonnullAssign
2371  };
2372 
2373  /// Determine whether the pointer type check \p TCK permits null pointers.
2374  static bool isNullPointerAllowed(TypeCheckKind TCK);
2375 
2376  /// Determine whether the pointer type check \p TCK requires a vptr check.
2377  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2378 
2379  /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2380  /// calls to EmitTypeCheck can be skipped.
2381  bool sanitizePerformTypeCheck() const;
2382 
2383  /// \brief Emit a check that \p V is the address of storage of the
2384  /// appropriate size and alignment for an object of type \p Type.
2385  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2386  QualType Type, CharUnits Alignment = CharUnits::Zero(),
2387  SanitizerSet SkippedChecks = SanitizerSet());
2388 
2389  /// \brief Emit a check that \p Base points into an array object, which
2390  /// we can access at index \p Index. \p Accessed should be \c false if we
2391  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2392  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2393  QualType IndexType, bool Accessed);
2394 
2395  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2396  bool isInc, bool isPre);
2397  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2398  bool isInc, bool isPre);
2399 
2400  void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2401  llvm::Value *OffsetValue = nullptr) {
2402  Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2403  OffsetValue);
2404  }
2405 
2406  /// Converts Location to a DebugLoc, if debug information is enabled.
2407  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2408 
2409 
2410  //===--------------------------------------------------------------------===//
2411  // Declaration Emission
2412  //===--------------------------------------------------------------------===//
2413 
2414  /// EmitDecl - Emit a declaration.
2415  ///
2416  /// This function can be called with a null (unreachable) insert point.
2417  void EmitDecl(const Decl &D);
2418 
2419  /// EmitVarDecl - Emit a local variable declaration.
2420  ///
2421  /// This function can be called with a null (unreachable) insert point.
2422  void EmitVarDecl(const VarDecl &D);
2423 
2424  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2425  bool capturedByInit);
2426 
2427  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2428  llvm::Value *Address);
2429 
2430  /// \brief Determine whether the given initializer is trivial in the sense
2431  /// that it requires no code to be generated.
2432  bool isTrivialInitializer(const Expr *Init);
2433 
2434  /// EmitAutoVarDecl - Emit an auto variable declaration.
2435  ///
2436  /// This function can be called with a null (unreachable) insert point.
2437  void EmitAutoVarDecl(const VarDecl &D);
2438 
2440  friend class CodeGenFunction;
2441 
2442  const VarDecl *Variable;
2443 
2444  /// The address of the alloca. Invalid if the variable was emitted
2445  /// as a global constant.
2446  Address Addr;
2447 
2448  llvm::Value *NRVOFlag;
2449 
2450  /// True if the variable is a __block variable.
2451  bool IsByRef;
2452 
2453  /// True if the variable is of aggregate type and has a constant
2454  /// initializer.
2455  bool IsConstantAggregate;
2456 
2457  /// Non-null if we should use lifetime annotations.
2458  llvm::Value *SizeForLifetimeMarkers;
2459 
2460  struct Invalid {};
2461  AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2462 
2463  AutoVarEmission(const VarDecl &variable)
2464  : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2465  IsByRef(false), IsConstantAggregate(false),
2466  SizeForLifetimeMarkers(nullptr) {}
2467 
2468  bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2469 
2470  public:
2471  static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2472 
2473  bool useLifetimeMarkers() const {
2474  return SizeForLifetimeMarkers != nullptr;
2475  }
2477  assert(useLifetimeMarkers());
2478  return SizeForLifetimeMarkers;
2479  }
2480 
2481  /// Returns the raw, allocated address, which is not necessarily
2482  /// the address of the object itself.
2484  return Addr;
2485  }
2486 
2487  /// Returns the address of the object within this declaration.
2488  /// Note that this does not chase the forwarding pointer for
2489  /// __block decls.
2490  Address getObjectAddress(CodeGenFunction &CGF) const {
2491  if (!IsByRef) return Addr;
2492 
2493  return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2494  }
2495  };
2496  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2497  void EmitAutoVarInit(const AutoVarEmission &emission);
2498  void EmitAutoVarCleanups(const AutoVarEmission &emission);
2499  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2500  QualType::DestructionKind dtorKind);
2501 
2502  void EmitStaticVarDecl(const VarDecl &D,
2503  llvm::GlobalValue::LinkageTypes Linkage);
2504 
2505  class ParamValue {
2506  llvm::Value *Value;
2507  unsigned Alignment;
2508  ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2509  public:
2511  return ParamValue(value, 0);
2512  }
2514  assert(!addr.getAlignment().isZero());
2515  return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2516  }
2517 
2518  bool isIndirect() const { return Alignment != 0; }
2519  llvm::Value *getAnyValue() const { return Value; }
2520 
2522  assert(!isIndirect());
2523  return Value;
2524  }
2525 
2527  assert(isIndirect());
2528  return Address(Value, CharUnits::fromQuantity(Alignment));
2529  }
2530  };
2531 
2532  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2533  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2534 
2535  /// protectFromPeepholes - Protect a value that we're intending to
2536  /// store to the side, but which will probably be used later, from
2537  /// aggressive peepholing optimizations that might delete it.
2538  ///
2539  /// Pass the result to unprotectFromPeepholes to declare that
2540  /// protection is no longer required.
2541  ///
2542  /// There's no particular reason why this shouldn't apply to
2543  /// l-values, it's just that no existing peepholes work on pointers.
2544  PeepholeProtection protectFromPeepholes(RValue rvalue);
2545  void unprotectFromPeepholes(PeepholeProtection protection);
2546 
2548  llvm::Value *OffsetValue = nullptr) {
2549  Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2550  OffsetValue);
2551  }
2552 
2553  //===--------------------------------------------------------------------===//
2554  // Statement Emission
2555  //===--------------------------------------------------------------------===//
2556 
2557  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2558  void EmitStopPoint(const Stmt *S);
2559 
2560  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2561  /// this function even if there is no current insertion point.
2562  ///
2563  /// This function may clear the current insertion point; callers should use
2564  /// EnsureInsertPoint if they wish to subsequently generate code without first
2565  /// calling EmitBlock, EmitBranch, or EmitStmt.
2566  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2567 
2568  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2569  /// necessarily require an insertion point or debug information; typically
2570  /// because the statement amounts to a jump or a container of other
2571  /// statements.
2572  ///
2573  /// \return True if the statement was handled.
2574  bool EmitSimpleStmt(const Stmt *S);
2575 
2576  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2577  AggValueSlot AVS = AggValueSlot::ignored());
2578  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2579  bool GetLast = false,
2580  AggValueSlot AVS =
2581  AggValueSlot::ignored());
2582 
2583  /// EmitLabel - Emit the block for the given label. It is legal to call this
2584  /// function even if there is no current insertion point.
2585  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2586 
2587  void EmitLabelStmt(const LabelStmt &S);
2588  void EmitAttributedStmt(const AttributedStmt &S);
2589  void EmitGotoStmt(const GotoStmt &S);
2590  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2591  void EmitIfStmt(const IfStmt &S);
2592 
2593  void EmitWhileStmt(const WhileStmt &S,
2594  ArrayRef<const Attr *> Attrs = None);
2595  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2596  void EmitForStmt(const ForStmt &S,
2597  ArrayRef<const Attr *> Attrs = None);
2598  void EmitReturnStmt(const ReturnStmt &S);
2599  void EmitDeclStmt(const DeclStmt &S);
2600  void EmitBreakStmt(const BreakStmt &S);
2601  void EmitContinueStmt(const ContinueStmt &S);
2602  void EmitSwitchStmt(const SwitchStmt &S);
2603  void EmitDefaultStmt(const DefaultStmt &S);
2604  void EmitCaseStmt(const CaseStmt &S);
2605  void EmitCaseStmtRange(const CaseStmt &S);
2606  void EmitAsmStmt(const AsmStmt &S);
2607 
2608  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2609  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2610  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2611  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2612  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2613 
2614  void EmitCoroutineBody(const CoroutineBodyStmt &S);
2615  void EmitCoreturnStmt(const CoreturnStmt &S);
2616  RValue EmitCoawaitExpr(const CoawaitExpr &E,
2617  AggValueSlot aggSlot = AggValueSlot::ignored(),
2618  bool ignoreResult = false);
2619  LValue EmitCoawaitLValue(const CoawaitExpr *E);
2620  RValue EmitCoyieldExpr(const CoyieldExpr &E,
2621  AggValueSlot aggSlot = AggValueSlot::ignored(),
2622  bool ignoreResult = false);
2623  LValue EmitCoyieldLValue(const CoyieldExpr *E);
2624  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2625 
2626  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2627  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2628 
2629  void EmitCXXTryStmt(const CXXTryStmt &S);
2630  void EmitSEHTryStmt(const SEHTryStmt &S);
2631  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2632  void EnterSEHTryStmt(const SEHTryStmt &S);
2633  void ExitSEHTryStmt(const SEHTryStmt &S);
2634 
2635  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2636  const Stmt *OutlinedStmt);
2637 
2638  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2639  const SEHExceptStmt &Except);
2640 
2641  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2642  const SEHFinallyStmt &Finally);
2643 
2644  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2645  llvm::Value *ParentFP,
2646  llvm::Value *EntryEBP);
2647  llvm::Value *EmitSEHExceptionCode();
2648  llvm::Value *EmitSEHExceptionInfo();
2649  llvm::Value *EmitSEHAbnormalTermination();
2650 
2651  /// Scan the outlined statement for captures from the parent function. For
2652  /// each capture, mark the capture as escaped and emit a call to
2653  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2654  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2655  bool IsFilter);
2656 
2657  /// Recovers the address of a local in a parent function. ParentVar is the
2658  /// address of the variable used in the immediate parent function. It can
2659  /// either be an alloca or a call to llvm.localrecover if there are nested
2660  /// outlined functions. ParentFP is the frame pointer of the outermost parent
2661  /// frame.
2662  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2663  Address ParentVar,
2664  llvm::Value *ParentFP);
2665 
2666  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2667  ArrayRef<const Attr *> Attrs = None);
2668 
2669  /// Controls insertion of cancellation exit blocks in worksharing constructs.
2671  CodeGenFunction &CGF;
2672 
2673  public:
2675  bool HasCancel)
2676  : CGF(CGF) {
2677  CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2678  }
2679  ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2680  };
2681 
2682  /// Returns calculated size of the specified type.
2683  llvm::Value *getTypeSize(QualType Ty);
2684  LValue InitCapturedStruct(const CapturedStmt &S);
2685  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2686  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2687  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2688  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2689  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2690  SmallVectorImpl<llvm::Value *> &CapturedVars);
2691  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2692  SourceLocation Loc);
2693  /// \brief Perform element by element copying of arrays with type \a
2694  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2695  /// generated by \a CopyGen.
2696  ///
2697  /// \param DestAddr Address of the destination array.
2698  /// \param SrcAddr Address of the source array.
2699  /// \param OriginalType Type of destination and source arrays.
2700  /// \param CopyGen Copying procedure that copies value of single array element
2701  /// to another single array element.
2702  void EmitOMPAggregateAssign(
2703  Address DestAddr, Address SrcAddr, QualType OriginalType,
2704  const llvm::function_ref<void(Address, Address)> &CopyGen);
2705  /// \brief Emit proper copying of data from one variable to another.
2706  ///
2707  /// \param OriginalType Original type of the copied variables.
2708  /// \param DestAddr Destination address.
2709  /// \param SrcAddr Source address.
2710  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2711  /// type of the base array element).
2712  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2713  /// the base array element).
2714  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2715  /// DestVD.
2716  void EmitOMPCopy(QualType OriginalType,
2717  Address DestAddr, Address SrcAddr,
2718  const VarDecl *DestVD, const VarDecl *SrcVD,
2719  const Expr *Copy);
2720  /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2721  /// \a X = \a E \a BO \a E.
2722  ///
2723  /// \param X Value to be updated.
2724  /// \param E Update value.
2725  /// \param BO Binary operation for update operation.
2726  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2727  /// expression, false otherwise.
2728  /// \param AO Atomic ordering of the generated atomic instructions.
2729  /// \param CommonGen Code generator for complex expressions that cannot be
2730  /// expressed through atomicrmw instruction.
2731  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2732  /// generated, <false, RValue::get(nullptr)> otherwise.
2733  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2734  LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2735  llvm::AtomicOrdering AO, SourceLocation Loc,
2736  const llvm::function_ref<RValue(RValue)> &CommonGen);
2737  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2738  OMPPrivateScope &PrivateScope);
2739  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2740  OMPPrivateScope &PrivateScope);
2741  void EmitOMPUseDevicePtrClause(
2742  const OMPClause &C, OMPPrivateScope &PrivateScope,
2743  const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2744  /// \brief Emit code for copyin clause in \a D directive. The next code is
2745  /// generated at the start of outlined functions for directives:
2746  /// \code
2747  /// threadprivate_var1 = master_threadprivate_var1;
2748  /// operator=(threadprivate_var2, master_threadprivate_var2);
2749  /// ...
2750  /// __kmpc_barrier(&loc, global_tid);
2751  /// \endcode
2752  ///
2753  /// \param D OpenMP directive possibly with 'copyin' clause(s).
2754  /// \returns true if at least one copyin variable is found, false otherwise.
2755  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2756  /// \brief Emit initial code for lastprivate variables. If some variable is
2757  /// not also firstprivate, then the default initialization is used. Otherwise
2758  /// initialization of this variable is performed by EmitOMPFirstprivateClause
2759  /// method.
2760  ///
2761  /// \param D Directive that may have 'lastprivate' directives.
2762  /// \param PrivateScope Private scope for capturing lastprivate variables for
2763  /// proper codegen in internal captured statement.
2764  ///
2765  /// \returns true if there is at least one lastprivate variable, false
2766  /// otherwise.
2767  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2768  OMPPrivateScope &PrivateScope);
2769  /// \brief Emit final copying of lastprivate values to original variables at
2770  /// the end of the worksharing or simd directive.
2771  ///
2772  /// \param D Directive that has at least one 'lastprivate' directives.
2773  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2774  /// it is the last iteration of the loop code in associated directive, or to
2775  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2776  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2777  bool NoFinals,
2778  llvm::Value *IsLastIterCond = nullptr);
2779  /// Emit initial code for linear clauses.
2780  void EmitOMPLinearClause(const OMPLoopDirective &D,
2781  CodeGenFunction::OMPPrivateScope &PrivateScope);
2782  /// Emit final code for linear clauses.
2783  /// \param CondGen Optional conditional code for final part of codegen for
2784  /// linear clause.
2785  void EmitOMPLinearClauseFinal(
2786  const OMPLoopDirective &D,
2787  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2788  /// \brief Emit initial code for reduction variables. Creates reduction copies
2789  /// and initializes them with the values according to OpenMP standard.
2790  ///
2791  /// \param D Directive (possibly) with the 'reduction' clause.
2792  /// \param PrivateScope Private scope for capturing reduction variables for
2793  /// proper codegen in internal captured statement.
2794  ///
2795  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2796  OMPPrivateScope &PrivateScope);
2797  /// \brief Emit final update of reduction values to original variables at
2798  /// the end of the directive.
2799  ///
2800  /// \param D Directive that has at least one 'reduction' directives.
2801  /// \param ReductionKind The kind of reduction to perform.
2802  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
2803  const OpenMPDirectiveKind ReductionKind);
2804  /// \brief Emit initial code for linear variables. Creates private copies
2805  /// and initializes them with the values according to OpenMP standard.
2806  ///
2807  /// \param D Directive (possibly) with the 'linear' clause.
2808  /// \return true if at least one linear variable is found that should be
2809  /// initialized with the value of the original variable, false otherwise.
2810  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2811 
2812  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2813  llvm::Value * /*OutlinedFn*/,
2814  const OMPTaskDataTy & /*Data*/)>
2816  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2817  const RegionCodeGenTy &BodyGen,
2818  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2819 
2820  void EmitOMPParallelDirective(const OMPParallelDirective &S);
2821  void EmitOMPSimdDirective(const OMPSimdDirective &S);
2822  void EmitOMPForDirective(const OMPForDirective &S);
2823  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2824  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2825  void EmitOMPSectionDirective(const OMPSectionDirective &S);
2826  void EmitOMPSingleDirective(const OMPSingleDirective &S);
2827  void EmitOMPMasterDirective(const OMPMasterDirective &S);
2828  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2829  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2830  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2831  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2832  void EmitOMPTaskDirective(const OMPTaskDirective &S);
2833  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2834  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2835  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2836  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2837  void EmitOMPFlushDirective(const OMPFlushDirective &S);
2838  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2839  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2840  void EmitOMPTargetDirective(const OMPTargetDirective &S);
2841  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2842  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2843  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2844  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2845  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2846  void
2847  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2848  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2849  void
2850  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2851  void EmitOMPCancelDirective(const OMPCancelDirective &S);
2852  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2853  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2854  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2855  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2856  void EmitOMPDistributeParallelForDirective(
2858  void EmitOMPDistributeParallelForSimdDirective(
2860  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2861  void EmitOMPTargetParallelForSimdDirective(
2863  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2864  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2865  void
2866  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2867  void EmitOMPTeamsDistributeParallelForSimdDirective(
2869  void EmitOMPTeamsDistributeParallelForDirective(
2871  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2872  void EmitOMPTargetTeamsDistributeDirective(
2874  void EmitOMPTargetTeamsDistributeParallelForDirective(
2876  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2878  void EmitOMPTargetTeamsDistributeSimdDirective(
2880 
2881  /// Emit device code for the target directive.
2882  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
2883  StringRef ParentName,
2884  const OMPTargetDirective &S);
2885  static void
2886  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2887  const OMPTargetParallelDirective &S);
2888  /// Emit device code for the target parallel for directive.
2889  static void EmitOMPTargetParallelForDeviceFunction(
2890  CodeGenModule &CGM, StringRef ParentName,
2892  /// Emit device code for the target parallel for simd directive.
2893  static void EmitOMPTargetParallelForSimdDeviceFunction(
2894  CodeGenModule &CGM, StringRef ParentName,
2896  static void
2897  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2898  const OMPTargetTeamsDirective &S);
2899  /// Emit device code for the target simd directive.
2900  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
2901  StringRef ParentName,
2902  const OMPTargetSimdDirective &S);
2903  /// \brief Emit inner loop of the worksharing/simd construct.
2904  ///
2905  /// \param S Directive, for which the inner loop must be emitted.
2906  /// \param RequiresCleanup true, if directive has some associated private
2907  /// variables.
2908  /// \param LoopCond Bollean condition for loop continuation.
2909  /// \param IncExpr Increment expression for loop control variable.
2910  /// \param BodyGen Generator for the inner body of the inner loop.
2911  /// \param PostIncGen Genrator for post-increment code (required for ordered
2912  /// loop directvies).
2913  void EmitOMPInnerLoop(
2914  const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2915  const Expr *IncExpr,
2916  const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2917  const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2918 
2919  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2920  /// Emit initial code for loop counters of loop-based directives.
2921  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2922  OMPPrivateScope &LoopScope);
2923 
2924  /// Helper for the OpenMP loop directives.
2925  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2926 
2927  /// \brief Emit code for the worksharing loop-based directive.
2928  /// \return true, if this construct has any lastprivate clause, false -
2929  /// otherwise.
2930  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
2931  const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2932  const CodeGenDispatchBoundsTy &CGDispatchBounds);
2933 
2934  /// Helpers for the OpenMP loop directives.
2935  void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2936  void EmitOMPSimdFinal(
2937  const OMPLoopDirective &D,
2938  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2939 
2940  /// Emits the lvalue for the expression with possibly captured variable.
2941  LValue EmitOMPSharedLValue(const Expr *E);
2942 
2943 private:
2944  /// Helpers for blocks. Returns invoke function by \p InvokeF if it is not
2945  /// nullptr. It should be called without \p InvokeF if the caller does not
2946  /// need invoke function to be returned.
2947  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info,
2948  llvm::Function **InvokeF = nullptr);
2949 
2950  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
2951  const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
2952 
2953  /// struct with the values to be passed to the OpenMP loop-related functions
2954  struct OMPLoopArguments {
2955  /// loop lower bound
2956  Address LB = Address::invalid();
2957  /// loop upper bound
2958  Address UB = Address::invalid();
2959  /// loop stride
2960  Address ST = Address::invalid();
2961  /// isLastIteration argument for runtime functions
2962  Address IL = Address::invalid();
2963  /// Chunk value generated by sema
2964  llvm::Value *Chunk = nullptr;
2965  /// EnsureUpperBound
2966  Expr *EUB = nullptr;
2967  /// IncrementExpression
2968  Expr *IncExpr = nullptr;
2969  /// Loop initialization
2970  Expr *Init = nullptr;
2971  /// Loop exit condition
2972  Expr *Cond = nullptr;
2973  /// Update of LB after a whole chunk has been executed
2974  Expr *NextLB = nullptr;
2975  /// Update of UB after a whole chunk has been executed
2976  Expr *NextUB = nullptr;
2977  OMPLoopArguments() = default;
2978  OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
2979  llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
2980  Expr *IncExpr = nullptr, Expr *Init = nullptr,
2981  Expr *Cond = nullptr, Expr *NextLB = nullptr,
2982  Expr *NextUB = nullptr)
2983  : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
2984  IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
2985  NextUB(NextUB) {}
2986  };
2987  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
2988  const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
2989  const OMPLoopArguments &LoopArgs,
2990  const CodeGenLoopTy &CodeGenLoop,
2991  const CodeGenOrderedTy &CodeGenOrdered);
2992  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
2993  bool IsMonotonic, const OMPLoopDirective &S,
2994  OMPPrivateScope &LoopScope, bool Ordered,
2995  const OMPLoopArguments &LoopArgs,
2996  const CodeGenDispatchBoundsTy &CGDispatchBounds);
2997  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
2998  const OMPLoopDirective &S,
2999  OMPPrivateScope &LoopScope,
3000  const OMPLoopArguments &LoopArgs,
3001  const CodeGenLoopTy &CodeGenLoopContent);
3002  /// \brief Emit code for sections directive.
3003  void EmitSections(const OMPExecutableDirective &S);
3004 
3005 public:
3006 
3007  //===--------------------------------------------------------------------===//
3008  // LValue Expression Emission
3009  //===--------------------------------------------------------------------===//
3010 
3011  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3012  RValue GetUndefRValue(QualType Ty);
3013 
3014  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3015  /// and issue an ErrorUnsupported style diagnostic (using the
3016  /// provided Name).
3017  RValue EmitUnsupportedRValue(const Expr *E,
3018  const char *Name);
3019 
3020  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3021  /// an ErrorUnsupported style diagnostic (using the provided Name).
3022  LValue EmitUnsupportedLValue(const Expr *E,
3023  const char *Name);
3024 
3025  /// EmitLValue - Emit code to compute a designator that specifies the location
3026  /// of the expression.
3027  ///
3028  /// This can return one of two things: a simple address or a bitfield
3029  /// reference. In either case, the LLVM Value* in the LValue structure is
3030  /// guaranteed to be an LLVM pointer type.
3031  ///
3032  /// If this returns a bitfield reference, nothing about the pointee type of
3033  /// the LLVM value is known: For example, it may not be a pointer to an
3034  /// integer.
3035  ///
3036  /// If this returns a normal address, and if the lvalue's C type is fixed
3037  /// size, this method guarantees that the returned pointer type will point to
3038  /// an LLVM type of the same size of the lvalue's type. If the lvalue has a
3039  /// variable length type, this is not possible.
3040  ///
3041  LValue EmitLValue(const Expr *E);
3042 
3043  /// \brief Same as EmitLValue but additionally we generate checking code to
3044  /// guard against undefined behavior. This is only suitable when we know
3045  /// that the address will be used to access the object.
3046  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3047 
3048  RValue convertTempToRValue(Address addr, QualType type,
3049  SourceLocation Loc);
3050 
3051  void EmitAtomicInit(Expr *E, LValue lvalue);
3052 
3053  bool LValueIsSuitableForInlineAtomic(LValue Src);
3054 
3055  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3056  AggValueSlot Slot = AggValueSlot::ignored());
3057 
3058  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3059  llvm::AtomicOrdering AO, bool IsVolatile = false,
3060  AggValueSlot slot = AggValueSlot::ignored());
3061 
3062  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3063 
3064  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3065  bool IsVolatile, bool isInit);
3066 
3067  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3068  LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3069  llvm::AtomicOrdering Success =
3070  llvm::AtomicOrdering::SequentiallyConsistent,
3071  llvm::AtomicOrdering Failure =
3072  llvm::AtomicOrdering::SequentiallyConsistent,
3073  bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3074 
3075  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3076  const llvm::function_ref<RValue(RValue)> &UpdateOp,
3077  bool IsVolatile);
3078 
3079  /// EmitToMemory - Change a scalar value from its value
3080  /// representation to its in-memory representation.
3081  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3082 
3083  /// EmitFromMemory - Change a scalar value from its memory
3084  /// representation to its value representation.
3085  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3086 
3087  /// Check if the scalar \p Value is within the valid range for the given
3088  /// type \p Ty.
3089  ///
3090  /// Returns true if a check is needed (even if the range is unknown).
3091  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3092  SourceLocation Loc);
3093 
3094  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3095  /// care to appropriately convert from the memory representation to
3096  /// the LLVM value representation.
3097  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3098  SourceLocation Loc,
3099  AlignmentSource Source = AlignmentSource::Type,
3100  bool isNontemporal = false) {
3101  return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3102  CGM.getTBAAAccessInfo(Ty), isNontemporal);
3103  }
3104 
3105  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3106  SourceLocation Loc, LValueBaseInfo BaseInfo,
3107  TBAAAccessInfo TBAAInfo,
3108  bool isNontemporal = false);
3109 
3110  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3111  /// care to appropriately convert from the memory representation to
3112  /// the LLVM value representation. The l-value must be a simple
3113  /// l-value.
3114  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3115 
3116  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3117  /// care to appropriately convert from the memory representation to
3118  /// the LLVM value representation.
3120  bool Volatile, QualType Ty,
3121  AlignmentSource Source = AlignmentSource::Type,
3122  bool isInit = false, bool isNontemporal = false) {
3123  EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3124  CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3125  }
3126 
3127  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3128  bool Volatile, QualType Ty,
3129  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3130  bool isInit = false, bool isNontemporal = false);
3131 
3132  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3133  /// care to appropriately convert from the memory representation to
3134  /// the LLVM value representation. The l-value must be a simple
3135  /// l-value. The isInit flag indicates whether this is an initialization.
3136  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3137  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3138 
3139  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3140  /// this method emits the address of the lvalue, then loads the result as an
3141  /// rvalue, returning the rvalue.
3142  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3143  RValue EmitLoadOfExtVectorElementLValue(LValue V);
3144  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3145  RValue EmitLoadOfGlobalRegLValue(LValue LV);
3146 
3147  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3148  /// lvalue, where both are guaranteed to the have the same type, and that type
3149  /// is 'Ty'.
3150  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3151  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3152  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3153 
3154  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3155  /// as EmitStoreThroughLValue.
3156  ///
3157  /// \param Result [out] - If non-null, this will be set to a Value* for the
3158  /// bit-field contents after the store, appropriate for use as the result of
3159  /// an assignment to the bit-field.
3160  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3161  llvm::Value **Result=nullptr);
3162 
3163  /// Emit an l-value for an assignment (simple or compound) of complex type.
3164  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3165  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3166  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3167  llvm::Value *&Result);
3168 
3169  // Note: only available for agg return types
3170  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3171  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3172  // Note: only available for agg return types
3173  LValue EmitCallExprLValue(const CallExpr *E);
3174  // Note: only available for agg return types
3175  LValue EmitVAArgExprLValue(const VAArgExpr *E);
3176  LValue EmitDeclRefLValue(const DeclRefExpr *E);
3177  LValue EmitStringLiteralLValue(const StringLiteral *E);
3178  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3179  LValue EmitPredefinedLValue(const PredefinedExpr *E);
3180  LValue EmitUnaryOpLValue(const UnaryOperator *E);
3181  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3182  bool Accessed = false);
3183  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3184  bool IsLowerBound = true);
3185  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3186  LValue EmitMemberExpr(const MemberExpr *E);
3187  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3188  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3189  LValue EmitInitListLValue(const InitListExpr *E);
3190  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3191  LValue EmitCastLValue(const CastExpr *E);
3192  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3193  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3194 
3195  Address EmitExtVectorElementLValue(LValue V);
3196 
3197  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3198 
3199  Address EmitArrayToPointerDecay(const Expr *Array,
3200  LValueBaseInfo *BaseInfo = nullptr,
3201  TBAAAccessInfo *TBAAInfo = nullptr);
3202 
3204  llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3205  ConstantEmission(llvm::Constant *C, bool isReference)
3206  : ValueAndIsReference(C, isReference) {}
3207  public:
3209  static ConstantEmission forReference(llvm::Constant *C) {
3210  return ConstantEmission(C, true);
3211  }
3212  static ConstantEmission forValue(llvm::Constant *C) {
3213  return ConstantEmission(C, false);
3214  }
3215 
3216  explicit operator bool() const {
3217  return ValueAndIsReference.getOpaqueValue() != nullptr;
3218  }
3219 
3220  bool isReference() const { return ValueAndIsReference.getInt(); }
3221  LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3222  assert(isReference());
3223  return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3224  refExpr->getType());
3225  }
3226 
3227  llvm::Constant *getValue() const {
3228  assert(!isReference());
3229  return ValueAndIsReference.getPointer();
3230  }
3231  };
3232 
3233  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3234  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3235 
3236  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3237  AggValueSlot slot = AggValueSlot::ignored());
3238  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3239 
3240  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3241  const ObjCIvarDecl *Ivar);
3242  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3243  LValue EmitLValueForLambdaField(const FieldDecl *Field);
3244 
3245  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3246  /// if the Field is a reference, this will return the address of the reference
3247  /// and not the address of the value stored in the reference.
3248  LValue EmitLValueForFieldInitialization(LValue Base,
3249  const FieldDecl* Field);
3250 
3251  LValue EmitLValueForIvar(QualType ObjectTy,
3252  llvm::Value* Base, const ObjCIvarDecl *Ivar,
3253  unsigned CVRQualifiers);
3254 
3255  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3256  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3257  LValue EmitLambdaLValue(const LambdaExpr *E);
3258  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3259  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3260 
3261  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3262  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3263  LValue EmitStmtExprLValue(const StmtExpr *E);
3264  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3265  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3266  void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3267 
3268  //===--------------------------------------------------------------------===//
3269  // Scalar Expression Emission
3270  //===--------------------------------------------------------------------===//
3271 
3272  /// EmitCall - Generate a call of the given function, expecting the given
3273  /// result type, and using the given argument list which specifies both the
3274  /// LLVM arguments and the types they were derived from.
3275  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3276  ReturnValueSlot ReturnValue, const CallArgList &Args,
3277  llvm::Instruction **callOrInvoke = nullptr);
3278 
3279  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3280  ReturnValueSlot ReturnValue,
3281  llvm::Value *Chain = nullptr);
3282  RValue EmitCallExpr(const CallExpr *E,
3283  ReturnValueSlot ReturnValue = ReturnValueSlot());
3284  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3285  CGCallee EmitCallee(const Expr *E);
3286 
3287  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3288 
3289  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3290  const Twine &name = "");
3291  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3293  const Twine &name = "");
3294  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3295  const Twine &name = "");
3296  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3298  const Twine &name = "");
3299 
3300  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3302  const Twine &Name = "");
3303  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3305  const Twine &name = "");
3306  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3307  const Twine &name = "");
3308  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3309  ArrayRef<llvm::Value*> args);
3310 
3312  NestedNameSpecifier *Qual,
3313  llvm::Type *Ty);
3314 
3315  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3316  CXXDtorType Type,
3317  const CXXRecordDecl *RD);
3318 
3319  RValue
3320  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3321  const CGCallee &Callee,
3322  ReturnValueSlot ReturnValue, llvm::Value *This,
3323  llvm::Value *ImplicitParam,
3324  QualType ImplicitParamTy, const CallExpr *E,
3325  CallArgList *RtlArgs);
3326  RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3327  const CGCallee &Callee,
3328  llvm::Value *This, llvm::Value *ImplicitParam,
3329  QualType ImplicitParamTy, const CallExpr *E,
3330  StructorType Type);
3331  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3332  ReturnValueSlot ReturnValue);
3333  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3334  const CXXMethodDecl *MD,
3335  ReturnValueSlot ReturnValue,
3336  bool HasQualifier,
3337  NestedNameSpecifier *Qualifier,
3338  bool IsArrow, const Expr *Base);
3339  // Compute the object pointer.
3340  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3341  llvm::Value *memberPtr,
3342  const MemberPointerType *memberPtrType,
3343  LValueBaseInfo *BaseInfo = nullptr,
3344  TBAAAccessInfo *TBAAInfo = nullptr);
3345  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3346  ReturnValueSlot ReturnValue);
3347 
3348  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3349  const CXXMethodDecl *MD,
3350  ReturnValueSlot ReturnValue);
3351  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3352 
3353  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3354  ReturnValueSlot ReturnValue);
3355 
3356  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3357  ReturnValueSlot ReturnValue);
3358 
3359  RValue EmitBuiltinExpr(const FunctionDecl *FD,
3360  unsigned BuiltinID, const CallExpr *E,
3361  ReturnValueSlot ReturnValue);
3362 
3363  /// Emit IR for __builtin_os_log_format.
3364  RValue emitBuiltinOSLogFormat(const CallExpr &E);
3365 
3366  llvm::Function *generateBuiltinOSLogHelperFunction(
3367  const analyze_os_log::OSLogBufferLayout &Layout,
3368  CharUnits BufferAlignment);
3369 
3370  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3371 
3372  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3373  /// is unhandled by the current target.
3374  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3375 
3376  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3377  const llvm::CmpInst::Predicate Fp,
3378  const llvm::CmpInst::Predicate Ip,
3379  const llvm::Twine &Name = "");
3380  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3381 
3382  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3383  unsigned LLVMIntrinsic,
3384  unsigned AltLLVMIntrinsic,
3385  const char *NameHint,
3386  unsigned Modifier,
3387  const CallExpr *E,
3389  Address PtrOp0, Address PtrOp1);
3390  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3391  unsigned Modifier, llvm::Type *ArgTy,
3392  const CallExpr *E);
3393  llvm::Value *EmitNeonCall(llvm::Function *F,
3395  const char *name,
3396  unsigned shift = 0, bool rightshift = false);
3397  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3398  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3399  bool negateForRightShift);
3400  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3401  llvm::Type *Ty, bool usgn, const char *name);
3402  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3403  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3404 
3405  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3406  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3407  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3408  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3409  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3410  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3411  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3412  const CallExpr *E);
3413 
3414 private:
3415  enum class MSVCIntrin;
3416 
3417 public:
3418  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3419 
3420  llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3421 
3422  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3423  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3424  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3425  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3426  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3427  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3428  const ObjCMethodDecl *MethodWithObjects);
3429  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3430  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3431  ReturnValueSlot Return = ReturnValueSlot());
3432 
3433  /// Retrieves the default cleanup kind for an ARC cleanup.
3434  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3436  return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3438  }
3439 
3440  // ARC primitives.
3441  void EmitARCInitWeak(Address addr, llvm::Value *value);
3442  void EmitARCDestroyWeak(Address addr);
3443  llvm::Value *EmitARCLoadWeak(Address addr);
3444  llvm::Value *EmitARCLoadWeakRetained(Address addr);
3445  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3446  void EmitARCCopyWeak(Address dst, Address src);
3447  void EmitARCMoveWeak(Address dst, Address src);
3448  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3449  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3450  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3451  bool resultIgnored);
3452  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3453  bool resultIgnored);
3454  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3455  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3456  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3457  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3458  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3459  llvm::Value *EmitARCAutorelease(llvm::Value *value);
3460  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3461  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3462  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3463  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3464 
3465  std::pair<LValue,llvm::Value*>
3466  EmitARCStoreAutoreleasing(const BinaryOperator *e);
3467  std::pair<LValue,llvm::Value*>
3468  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3469  std::pair<LValue,llvm::Value*>
3470  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3471 
3472  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3473  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3474  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3475 
3476  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3477  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3478  bool allowUnsafeClaim);
3479  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3480  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3481  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3482 
3483  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3484 
3485  static Destroyer destroyARCStrongImprecise;
3486  static Destroyer destroyARCStrongPrecise;
3487  static Destroyer destroyARCWeak;
3488  static Destroyer emitARCIntrinsicUse;
3489 
3490  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3491  llvm::Value *EmitObjCAutoreleasePoolPush();
3492  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3493  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3494  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3495 
3496  /// \brief Emits a reference binding to the passed in expression.
3497  RValue EmitReferenceBindingToExpr(const Expr *E);
3498 
3499  //===--------------------------------------------------------------------===//
3500  // Expression Emission
3501  //===--------------------------------------------------------------------===//
3502 
3503  // Expressions are broken into three classes: scalar, complex, aggregate.
3504 
3505  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3506  /// scalar type, returning the result.
3507  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3508 
3509  /// Emit a conversion from the specified type to the specified destination
3510  /// type, both of which are LLVM scalar types.
3511  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3512  QualType DstTy, SourceLocation Loc);
3513 
3514  /// Emit a conversion from the specified complex type to the specified
3515  /// destination type, where the destination type is an LLVM scalar type.
3516  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3517  QualType DstTy,
3518  SourceLocation Loc);
3519 
3520  /// EmitAggExpr - Emit the computation of the specified expression
3521  /// of aggregate type. The result is computed into the given slot,
3522  /// which may be null to indicate that the value is not needed.
3523  void EmitAggExpr(const Expr *E, AggValueSlot AS);
3524 
3525  /// EmitAggExprToLValue - Emit the computation of the specified expression of
3526  /// aggregate type into a temporary LValue.
3527  LValue EmitAggExprToLValue(const Expr *E);
3528 
3529  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3530  /// make sure it survives garbage collection until this point.
3531  void EmitExtendGCLifetime(llvm::Value *object);
3532 
3533  /// EmitComplexExpr - Emit the computation of the specified expression of
3534  /// complex type, returning the result.
3535  ComplexPairTy EmitComplexExpr(const Expr *E,
3536  bool IgnoreReal = false,
3537  bool IgnoreImag = false);
3538 
3539  /// EmitComplexExprIntoLValue - Emit the given expression of complex
3540  /// type and place its result into the specified l-value.
3541  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3542 
3543  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3544  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3545 
3546  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3547  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3548 
3549  Address emitAddrOfRealComponent(Address complex, QualType complexType);
3550  Address emitAddrOfImagComponent(Address complex, QualType complexType);
3551 
3552  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3553  /// global variable that has already been created for it. If the initializer
3554  /// has a different type than GV does, this may free GV and return a different
3555  /// one. Otherwise it just returns GV.
3556  llvm::GlobalVariable *
3557  AddInitializerToStaticVarDecl(const VarDecl &D,
3558  llvm::GlobalVariable *GV);
3559 
3560 
3561  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3562  /// variable with global storage.
3563  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3564  bool PerformInit);
3565 
3566  llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3567  llvm::Constant *Addr);
3568 
3569  /// Call atexit() with a function that passes the given argument to
3570  /// the given function.
3571  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3572  llvm::Constant *addr);
3573 
3574  /// Emit code in this function to perform a guarded variable
3575  /// initialization. Guarded initializations are used when it's not
3576  /// possible to prove that an initialization will be done exactly
3577  /// once, e.g. with a static local variable or a static data member
3578  /// of a class template.
3579  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3580  bool PerformInit);
3581 
3582  enum class GuardKind { VariableGuard, TlsGuard };
3583 
3584  /// Emit a branch to select whether or not to perform guarded initialization.
3585  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3586  llvm::BasicBlock *InitBlock,
3587  llvm::BasicBlock *NoInitBlock,
3588  GuardKind Kind, const VarDecl *D);
3589 
3590  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3591  /// variables.
3592  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3593  ArrayRef<llvm::Function *> CXXThreadLocals,
3594  Address Guard = Address::invalid());
3595 
3596  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3597  /// variables.
3598  void GenerateCXXGlobalDtorsFunc(
3599  llvm::Function *Fn,
3600  const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3601  &DtorsAndObjects);
3602 
3603  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3604  const VarDecl *D,
3605  llvm::GlobalVariable *Addr,
3606  bool PerformInit);
3607 
3608  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3609 
3610  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3611 
3613  if (E->getNumObjects() == 0) return;
3614  enterNonTrivialFullExpression(E);
3615  }
3616  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3617 
3618  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3619 
3620  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3621 
3622  RValue EmitAtomicExpr(AtomicExpr *E);
3623 
3624  //===--------------------------------------------------------------------===//
3625  // Annotations Emission
3626  //===--------------------------------------------------------------------===//
3627 
3628  /// Emit an annotation call (intrinsic or builtin).
3629  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3630  llvm::Value *AnnotatedVal,
3631  StringRef AnnotationStr,
3632  SourceLocation Location);
3633 
3634  /// Emit local annotations for the local variable V, declared by D.
3635  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3636 
3637  /// Emit field annotations for the given field & value. Returns the
3638  /// annotation result.
3639  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3640 
3641  //===--------------------------------------------------------------------===//
3642  // Internal Helpers
3643  //===--------------------------------------------------------------------===//
3644 
3645  /// ContainsLabel - Return true if the statement contains a label in it. If
3646  /// this statement is not executed normally, it not containing a label means
3647  /// that we can just remove the code.
3648  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3649 
3650  /// containsBreak - Return true if the statement contains a break out of it.
3651  /// If the statement (recursively) contains a switch or loop with a break
3652  /// inside of it, this is fine.
3653  static bool containsBreak(const Stmt *S);
3654 
3655  /// Determine if the given statement might introduce a declaration into the
3656  /// current scope, by being a (possibly-labelled) DeclStmt.
3657  static bool mightAddDeclToScope(const Stmt *S);
3658 
3659  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3660  /// to a constant, or if it does but contains a label, return false. If it
3661  /// constant folds return true and set the boolean result in Result.
3662  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3663  bool AllowLabels = false);
3664 
3665  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3666  /// to a constant, or if it does but contains a label, return false. If it
3667  /// constant folds return true and set the folded value.
3668  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3669  bool AllowLabels = false);
3670 
3671  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3672  /// if statement) to the specified blocks. Based on the condition, this might
3673  /// try to simplify the codegen of the conditional based on the branch.
3674  /// TrueCount should be the number of times we expect the condition to
3675  /// evaluate to true based on PGO data.
3676  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3677  llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3678 
3679  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
3680  /// nonnull, if \p LHS is marked _Nonnull.
3681  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
3682 
3683  /// An enumeration which makes it easier to specify whether or not an
3684  /// operation is a subtraction.
3685  enum { NotSubtraction = false, IsSubtraction = true };
3686 
3687  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
3688  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
3689  /// \p SignedIndices indicates whether any of the GEP indices are signed.
3690  /// \p IsSubtraction indicates whether the expression used to form the GEP
3691  /// is a subtraction.
3692  llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
3693  ArrayRef<llvm::Value *> IdxList,
3694  bool SignedIndices,
3695  bool IsSubtraction,
3696  SourceLocation Loc,
3697  const Twine &Name = "");
3698 
3699  /// Specifies which type of sanitizer check to apply when handling a
3700  /// particular builtin.
3704  };
3705 
3706  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
3707  /// enabled, a runtime check specified by \p Kind is also emitted.
3708  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
3709 
3710  /// \brief Emit a description of a type in a format suitable for passing to
3711  /// a runtime sanitizer handler.
3712  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3713 
3714  /// \brief Convert a value into a format suitable for passing to a runtime
3715  /// sanitizer handler.
3716  llvm::Value *EmitCheckValue(llvm::Value *V);
3717 
3718  /// \brief Emit a description of a source location in a format suitable for
3719  /// passing to a runtime sanitizer handler.
3720  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3721 
3722  /// \brief Create a basic block that will call a handler function in a
3723  /// sanitizer runtime with the provided arguments, and create a conditional
3724  /// branch to it.
3725  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3726  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3727  ArrayRef<llvm::Value *> DynamicArgs);
3728 
3729  /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3730  /// if Cond if false.
3731  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3732  llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3733  ArrayRef<llvm::Constant *> StaticArgs);
3734 
3735  /// \brief Create a basic block that will call the trap intrinsic, and emit a
3736  /// conditional branch to it, for the -ftrapv checks.
3737  void EmitTrapCheck(llvm::Value *Checked);
3738 
3739  /// \brief Emit a call to trap or debugtrap and attach function attribute
3740  /// "trap-func-name" if specified.
3741  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3742 
3743  /// \brief Emit a stub for the cross-DSO CFI check function.
3744  void EmitCfiCheckStub();
3745 
3746  /// \brief Emit a cross-DSO CFI failure handling function.
3747  void EmitCfiCheckFail();
3748 
3749  /// \brief Create a check for a function parameter that may potentially be
3750  /// declared as non-null.
3751  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3752  AbstractCallee AC, unsigned ParmNum);
3753 
3754  /// EmitCallArg - Emit a single call argument.
3755  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3756 
3757  /// EmitDelegateCallArg - We are performing a delegate call; that
3758  /// is, the current function is delegating to another one. Produce
3759  /// a r-value suitable for passing the given parameter.
3760  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3761  SourceLocation loc);
3762 
3763  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3764  /// point operation, expressed as the maximum relative error in ulp.
3765  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3766 
3767 private:
3768  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3769  void EmitReturnOfRValue(RValue RV, QualType Ty);
3770 
3771  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3772 
3774  DeferredReplacements;
3775 
3776  /// Set the address of a local variable.
3777  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3778  assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3779  LocalDeclMap.insert({VD, Addr});
3780  }
3781 
3782  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3783  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3784  ///
3785  /// \param AI - The first function argument of the expansion.
3786  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3788 
3789  /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3790  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3791  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3792  void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3793  SmallVectorImpl<llvm::Value *> &IRCallArgs,
3794  unsigned &IRCallArgPos);
3795 
3796  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3797  const Expr *InputExpr, std::string &ConstraintStr);
3798 
3799  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3800  LValue InputValue, QualType InputType,
3801  std::string &ConstraintStr,
3802  SourceLocation Loc);
3803 
3804  /// \brief Attempts to statically evaluate the object size of E. If that
3805  /// fails, emits code to figure the size of E out for us. This is
3806  /// pass_object_size aware.
3807  ///
3808  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
3809  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3810  llvm::IntegerType *ResType,
3811  llvm::Value *EmittedE);
3812 
3813  /// \brief Emits the size of E, as required by __builtin_object_size. This
3814  /// function is aware of pass_object_size parameters, and will act accordingly
3815  /// if E is a parameter with the pass_object_size attribute.
3816  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3817  llvm::IntegerType *ResType,
3818  llvm::Value *EmittedE);
3819 
3820 public:
3821 #ifndef NDEBUG
3822  // Determine whether the given argument is an Objective-C method
3823  // that may have type parameters in its signature.
3824  static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3825  const DeclContext *dc = method->getDeclContext();
3826  if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3827  return classDecl->getTypeParamListAsWritten();
3828  }
3829 
3830  if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3831  return catDecl->getTypeParamList();
3832  }
3833 
3834  return false;
3835  }
3836 
3837  template<typename T>
3838  static bool isObjCMethodWithTypeParams(const T *) { return false; }
3839 #endif
3840 
3841  enum class EvaluationOrder {
3842  ///! No language constraints on evaluation order.
3843  Default,
3844  ///! Language semantics require left-to-right evaluation.
3845  ForceLeftToRight,
3846  ///! Language semantics require right-to-left evaluation.
3847  ForceRightToLeft
3848  };
3849 
3850  /// EmitCallArgs - Emit call arguments for a function.
3851  template <typename T>
3852  void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3853  llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3855  unsigned ParamsToSkip = 0,
3856  EvaluationOrder Order = EvaluationOrder::Default) {
3857  SmallVector<QualType, 16> ArgTypes;
3858  CallExpr::const_arg_iterator Arg = ArgRange.begin();
3859 
3860  assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3861  "Can't skip parameters if type info is not provided");
3862  if (CallArgTypeInfo) {
3863 #ifndef NDEBUG
3864  bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3865 #endif
3866 
3867  // First, use the argument types that the type info knows about
3868  for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3869  E = CallArgTypeInfo->param_type_end();
3870  I != E; ++I, ++Arg) {
3871  assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3872  assert((isGenericMethod ||
3873  ((*I)->isVariablyModifiedType() ||
3874  (*I).getNonReferenceType()->isObjCRetainableType() ||
3875  getContext()
3876  .getCanonicalType((*I).getNonReferenceType())
3877  .getTypePtr() ==
3878  getContext()
3879  .getCanonicalType((*Arg)->getType())
3880  .getTypePtr())) &&
3881  "type mismatch in call argument!");
3882  ArgTypes.push_back(*I);
3883  }
3884  }
3885 
3886  // Either we've emitted all the call args, or we have a call to variadic
3887  // function.
3888  assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3889  CallArgTypeInfo->isVariadic()) &&
3890  "Extra arguments in non-variadic function!");
3891 
3892  // If we still have any arguments, emit them using the type of the argument.
3893  for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3894  ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
3895 
3896  EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
3897  }
3898 
3899  void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3900  llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3902  unsigned ParamsToSkip = 0,
3903  EvaluationOrder Order = EvaluationOrder::Default);
3904 
3905  /// EmitPointerWithAlignment - Given an expression with a pointer type,
3906  /// emit the value and compute our best estimate of the alignment of the
3907  /// pointee.
3908  ///
3909  /// \param BaseInfo - If non-null, this will be initialized with
3910  /// information about the source of the alignment and the may-alias
3911  /// attribute. Note that this function will conservatively fall back on
3912  /// the type when it doesn't recognize the expression and may-alias will
3913  /// be set to false.
3914  ///
3915  /// One reasonable way to use this information is when there's a language
3916  /// guarantee that the pointer must be aligned to some stricter value, and
3917  /// we're simply trying to ensure that sufficiently obvious uses of under-
3918  /// aligned objects don't get miscompiled; for example, a placement new
3919  /// into the address of a local variable. In such a case, it's quite
3920  /// reasonable to just ignore the returned alignment when it isn't from an
3921  /// explicit source.
3922  Address EmitPointerWithAlignment(const Expr *Addr,
3923  LValueBaseInfo *BaseInfo = nullptr,
3924  TBAAAccessInfo *TBAAInfo = nullptr);
3925 
3926  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
3927 
3928 private:
3929  QualType getVarArgType(const Expr *Arg);
3930 
3931  void EmitDeclMetadata();
3932 
3933  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3934  const AutoVarEmission &emission);
3935 
3936  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3937 
3938  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3939  llvm::Value *EmitX86CpuIs(const CallExpr *E);
3940  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
3941  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
3942  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
3943  llvm::Value *EmitX86CpuInit();
3944 };
3945 
3946 /// Helper class with most of the code for saving a value for a
3947 /// conditional expression cleanup.
3949  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3950 
3951  /// Answer whether the given value needs extra work to be saved.
3952  static bool needsSaving(llvm::Value *value) {
3953  // If it's not an instruction, we don't need to save.
3954  if (!isa<llvm::Instruction>(value)) return false;
3955 
3956  // If it's an instruction in the entry block, we don't need to save.
3957  llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3958  return (block != &block->getParent()->getEntryBlock());
3959  }
3960 
3961  /// Try to save the given value.
3962  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3963  if (!needsSaving(value)) return saved_type(value, false);
3964 
3965  // Otherwise, we need an alloca.
3966  auto align = CharUnits::fromQuantity(
3967  CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3968  Address alloca =
3969  CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3970  CGF.Builder.CreateStore(value, alloca);
3971 
3972  return saved_type(alloca.getPointer(), true);
3973  }
3974 
3975  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3976  // If the value says it wasn't saved, trust that it's still dominating.
3977  if (!value.getInt()) return value.getPointer();
3978 
3979  // Otherwise, it should be an alloca instruction, as set up in save().
3980  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3981  return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3982  }
3983 };
3984 
3985 /// A partial specialization of DominatingValue for llvm::Values that
3986 /// might be llvm::Instructions.
3987 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3988  typedef T *type;
3989  static type restore(CodeGenFunction &CGF, saved_type value) {
3990  return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3991  }
3992 };
3993 
3994 /// A specialization of DominatingValue for Address.
3995 template <> struct DominatingValue<Address> {
3996  typedef Address type;
3997 
3998  struct saved_type {
4001  };
4002 
4003  static bool needsSaving(type value) {
4004  return DominatingLLVMValue::needsSaving(value.getPointer());
4005  }
4006  static saved_type save(CodeGenFunction &CGF, type value) {
4007  return { DominatingLLVMValue::save(CGF, value.getPointer()),
4008  value.getAlignment() };
4009  }
4010  static type restore(CodeGenFunction &CGF, saved_type value) {
4011  return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
4012  value.Alignment);
4013  }
4014 };
4015 
4016 /// A specialization of DominatingValue for RValue.
4017 template <> struct DominatingValue<RValue> {
4018  typedef RValue type;
4019  class saved_type {
4020  enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
4021  AggregateAddress, ComplexAddress };
4022 
4023  llvm::Value *Value;
4024  unsigned K : 3;
4025  unsigned Align : 29;
4026  saved_type(llvm::Value *v, Kind k, unsigned a = 0)
4027  : Value(v), K(k), Align(a) {}
4028 
4029  public:
4030  static bool needsSaving(RValue value);
4031  static saved_type save(CodeGenFunction &CGF, RValue value);
4032  RValue restore(CodeGenFunction &CGF);
4033 
4034  // implementations in CGCleanup.cpp
4035  };
4036 
4037  static bool needsSaving(type value) {
4038  return saved_type::needsSaving(value);
4039  }
4040  static saved_type save(CodeGenFunction &CGF, type value) {
4041  return saved_type::save(CGF, value);
4042  }
4043  static type restore(CodeGenFunction &CGF, saved_type value) {
4044  return value.restore(CGF);
4045  }
4046 };
4047 
4048 } // end namespace CodeGen
4049 } // end namespace clang
4050 
4051 #endif
const llvm::DataLayout & getDataLayout() const
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:281
llvm::Value * getArrayInitIndex()
Get the index of the current ArrayInitLoopExpr, if any.
Optional< uint64_t > getStmtCount(const Stmt *S)
Check if an execution count is known for a given statement.
Definition: CodeGenPGO.h:64
This represents &#39;#pragma omp distribute simd&#39; composite directive.
Definition: StmtOpenMP.h:3173
Information about the layout of a __block variable.
Definition: CGBlocks.h:140
This represents &#39;#pragma omp master&#39; directive.
Definition: StmtOpenMP.h:1366
virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S)
Emit the captured statement body.
This represents &#39;#pragma omp task&#39; directive.
Definition: StmtOpenMP.h:1706
FunctionDecl - An instance of this class is created to represent a function declaration or definition...
Definition: Decl.h:1698
LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2292
Scheduling data for loop-based OpenMP directives.
Definition: OpenMPKinds.h:124
A (possibly-)qualified type.
Definition: Type.h:653
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:260
const CodeGenOptions & getCodeGenOpts() const
The class detects jumps which bypass local variables declaration: goto L; int a; L: ...
AlignmentSource
The source of the alignment of an l-value; an expression of confidence in the alignment actually matc...
Definition: CGValue.h:126
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
bool isSEHTryScope() const
Returns true inside SEH __try blocks.
llvm::LLVMContext & getLLVMContext()
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:26
FieldConstructionScope(CodeGenFunction &CGF, Address This)
Represents a &#39;co_return&#39; statement in the C++ Coroutines TS.
Definition: StmtCXX.h:432
Stmt - This represents one statement.
Definition: Stmt.h:66
IfStmt - This represents an if/then/else.
Definition: Stmt.h:929
static T * buildByrefHelpers(CodeGenModule &CGM, const BlockByrefInfo &byrefInfo, T &&generator)
Lazily build the copy and dispose helpers for a __block variable with the given information.
Definition: CGBlocks.cpp:2164
bool requiresCleanups() const
Determine whether this scope requires any cleanups.
C Language Family Type Representation.
OpaqueValueMapping(CodeGenFunction &CGF, const AbstractConditionalOperator *op)
Build the opaque value mapping for the given conditional operator if it&#39;s the GNU ...
This represents &#39;#pragma omp for simd&#39; directive.
Definition: StmtOpenMP.h:1116
Checking the &#39;this&#39; pointer for a constructor call.
bool hasVolatileMember() const
Definition: Decl.h:3558
bool hasLabelBeenSeenInCurrentScope() const
Return true if a label was seen in the current scope.
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
This represents &#39;#pragma omp teams distribute parallel for&#39; composite directive.
Definition: StmtOpenMP.h:3584
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
static saved_type save(CodeGenFunction &CGF, llvm::Value *value)
Try to save the given value.
static bool classof(const CGCapturedStmtInfo *)
Represents an attribute applied to a statement.
Definition: Stmt.h:878
static Destroyer destroyARCStrongPrecise
llvm::Value * LoadCXXThis()
LoadCXXThis - Load the value of &#39;this&#39;.
The base class of the type hierarchy.
Definition: Type.h:1360
This represents &#39;#pragma omp target teams distribute&#39; combined directive.
Definition: StmtOpenMP.h:3711
Represents Objective-C&#39;s @throw statement.
Definition: StmtObjC.h:313
CGCapturedStmtInfo(const CapturedStmt &S, CapturedRegionKind K=CR_Default)
const RecordDecl * getCapturedRecordDecl() const
Retrieve the record declaration for captured variables.
Definition: Stmt.h:2172
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2567
void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, llvm::Value *Address)
virtual const FieldDecl * lookup(const VarDecl *VD) const
Lookup the captured field decl for a variable.
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1239
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:116
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:379
DominatingValue< T >::saved_type saveValueInCond(T value)
CGCapturedStmtInfo(CapturedRegionKind K=CR_Default)
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
const ParmVarDecl * getParamDecl(unsigned I) const
This represents &#39;#pragma omp parallel for&#39; directive.
Definition: StmtOpenMP.h:1487
void emitCounterIncrement(CGBuilderTy &Builder, const Stmt *S, llvm::Value *StepV)
Definition: CodeGenPGO.cpp:885
This represents &#39;#pragma omp target teams distribute parallel for&#39; combined directive.
Definition: StmtOpenMP.h:3779
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2397
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4035
static bool needsSaving(llvm::Value *value)
Answer whether the given value needs extra work to be saved.
static type restore(CodeGenFunction &CGF, saved_type value)
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const RValue &rv)
Represents a point when we exit a loop.
Definition: ProgramPoint.h:664
const CXXBaseSpecifier *const * path_const_iterator
Definition: Expr.h:2775
This represents &#39;#pragma omp target exit data&#39; directive.
Definition: StmtOpenMP.h:2398
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
TypeEvaluationKind
The kind of evaluation to perform on values of a particular type.
VarDecl - An instance of this class is created to represent a variable declaration or definition...
Definition: Decl.h:807
Address getObjectAddress(CodeGenFunction &CGF) const
Returns the address of the object within this declaration.
ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC &#39;id&#39; type.
Definition: ExprObjC.h:1383
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2637
RAII object to set/unset CodeGenFunction::IsSanitizerScope.
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6315
uint64_t getProfileCount(const Stmt *S)
Get the profiler&#39;s count for the given statement.
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:53
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:113
void setCurrentProfileCount(uint64_t Count)
Set the profiler&#39;s current count.
llvm::Value * getPointer() const
Definition: Address.h:38
static ConstantEmission forValue(llvm::Constant *C)
bool IsSanitizerScope
True if CodeGen currently emits code implementing sanitizer checks.
capture_iterator capture_begin()
Retrieve an iterator pointing to the first capture.
Definition: Stmt.h:2197
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:985
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3000
ParmVarDecl - Represents a parameter to a function.
Definition: Decl.h:1514
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:25
Defines the clang::Expr interface and subclasses for C++ expressions.
The collection of all-type qualifiers we support.
Definition: Type.h:152
EHScopeStack::stable_iterator PrologueCleanupDepth
PrologueCleanupDepth - The cleanup depth enclosing all the cleanups associated with the parameters...
A jump destination is an abstract label, branching to which may require a jump out through normal cle...
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:839
RecordDecl - Represents a struct/union/class.
Definition: Decl.h:3482
llvm::DenseMap< const VarDecl *, FieldDecl * > LambdaCaptureFields
LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
const TargetInfo & getTarget() const
An object to manage conditionally-evaluated expressions.
PeepholeProtection protectFromPeepholes(RValue rvalue)
protectFromPeepholes - Protect a value that we&#39;re intending to store to the side, but which will prob...
ConditionalCleanup stores the saved form of its parameters, then restores them and performs the clean...
Definition: EHScopeStack.h:198
ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
CGBlockInfo * FirstBlockInfo
FirstBlockInfo - The head of a singly-linked-list of block layouts.
void setScopeDepth(EHScopeStack::stable_iterator depth)
This represents &#39;#pragma omp parallel&#39; directive.
Definition: StmtOpenMP.h:251
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:128
llvm::SmallPtrSet< const CXXRecordDecl *, 4 > VisitedVirtualBasesSetTy
The scope used to remap some variables as private in the OpenMP loop body (or other captured region e...
SmallVector< Address, 1 > SEHCodeSlotStack
A stack of exception code slots.
FieldDecl - An instance of this class is created by Sema::ActOnField to represent a member of a struc...
Definition: Decl.h:2461
Definition: Format.h:1865
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
bool isReferenceType() const
Definition: Type.h:5964
Helper class with most of the code for saving a value for a conditional expression cleanup...
llvm::BasicBlock * getStartingBlock() const
Returns a block which will be executed prior to each evaluation of the conditional code...
This represents &#39;#pragma omp target simd&#39; directive.
Definition: StmtOpenMP.h:3309
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:926
Defines some OpenMP-specific enums and functions.
ExtVectorElementExpr - This represents access to specific elements of a vector, and may occur on the ...
Definition: Expr.h:4791
Address getAllocatedAddress() const
Returns the raw, allocated address, which is not necessarily the address of the object itself...
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:66
This represents &#39;#pragma omp barrier&#39; directive.
Definition: StmtOpenMP.h:1818
CleanupKind getCleanupKind(QualType::DestructionKind kind)
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:48
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp, [NSNumber numberWithInt:42]];.
Definition: ExprObjC.h:144
The this pointer adjustment as well as an optional return adjustment for a thunk. ...
Definition: ABI.h:179
This is a common base class for loop directives (&#39;omp simd&#39;, &#39;omp for&#39;, &#39;omp for simd&#39; etc...
Definition: StmtOpenMP.h:313
This represents &#39;#pragma omp critical&#39; directive.
Definition: StmtOpenMP.h:1413
const AstTypeMatcher< ComplexType > complexType
Matches C99 complex types.
bool isCleanupPadScope() const
Returns true while emitting a cleanuppad.
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition: CGExpr.cpp:173
const RValue & getOpaqueRValueMapping(const OpaqueValueExpr *e)
getOpaqueRValueMapping - Given an opaque value expression (which must be mapped to an r-value)...
void pushFullExprCleanup(CleanupKind kind, As... A)
pushFullExprCleanup - Push a cleanup to be run at the end of the current full-expression.
OpenMPDistScheduleClauseKind
OpenMP attributes for &#39;dist_schedule&#39; clause.
Definition: OpenMPKinds.h:100
bool isGLValue() const
Definition: Expr.h:252
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:1308
Describes an C or C++ initializer list.
Definition: Expr.h:3873
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:638
This represents &#39;#pragma omp distribute parallel for&#39; composite directive.
Definition: StmtOpenMP.h:3034
void setCurrentRegionCount(uint64_t Count)
Set the counter value for the current region.
Definition: CodeGenPGO.h:60
A class controlling the emission of a finally block.
This represents &#39;#pragma omp teams distribute parallel for simd&#39; composite directive.
Definition: StmtOpenMP.h:3513
BinaryOperatorKind
static bool hasScalarEvaluationKind(QualType T)
ForStmt - This represents a &#39;for (init;cond;inc)&#39; stmt.
Definition: Stmt.h:1203
InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:919
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
llvm::function_ref< std::pair< LValue, LValue > CodeGenFunction &, const OMPExecutableDirective &S)> CodeGenLoopBoundsTy
CGCapturedStmtRAII(CodeGenFunction &CGF, CGCapturedStmtInfo *NewCapturedStmtInfo)
LexicalScope(CodeGenFunction &CGF, SourceRange Range)
Enter a new cleanup scope.
RAII for correct setting/restoring of CapturedStmtInfo.
TBAAAccessInfo getTBAAAccessInfo(QualType AccessType)
getTBAAAccessInfo - Get TBAA information that describes an access to an object of the given type...
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:67
TypeDecl - Represents a declaration of a type.
Definition: Decl.h:2754
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2986
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const LValue &lv)
CXXForRangeStmt - This represents C++0x [stmt.ranged]&#39;s ranged for statement, represented as &#39;for (ra...
Definition: StmtCXX.h:128
bool IsOutlinedSEHHelper
True if the current function is an outlined SEH helper.
#define LIST_SANITIZER_CHECKS
This represents &#39;#pragma omp cancellation point&#39; directive.
Definition: StmtOpenMP.h:2653
void EmitAggregateAssign(Address DestPtr, Address SrcPtr, QualType EltTy)
EmitAggregateCopy - Emit an aggregate assignment.
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:29
field_iterator field_begin() const
Definition: Decl.cpp:3924
A stack of scopes which respond to exceptions, including cleanups and catch blocks.
Definition: EHScopeStack.h:100
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
This represents &#39;#pragma omp teams&#39; directive.
Definition: StmtOpenMP.h:2596
Denotes a cleanup that should run when a scope is exited using normal control flow (falling off the e...
Definition: EHScopeStack.h:85
Enums/classes describing ABI related information about constructors, destructors and thunks...
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2710
This represents &#39;#pragma omp teams distribute simd&#39; combined directive.
Definition: StmtOpenMP.h:3443
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1196
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1580
GlobalDecl CurGD
CurGD - The GlobalDecl for the current function being compiled.
Controls insertion of cancellation exit blocks in worksharing constructs.
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler&#39;s counter for the given statement by StepV.
uint64_t getCurrentProfileCount()
Get the profiler&#39;s current count.
CallLifetimeEnd(Address addr, llvm::Value *size)
llvm::function_ref< std::pair< llvm::Value *, llvm::Value * > CodeGenFunction &, const OMPExecutableDirective &S, Address LB, Address UB)> CodeGenDispatchBoundsTy
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
Definition: CGExpr.cpp:94
Represents an ObjC class declaration.
Definition: DeclObjC.h:1108
Checking the operand of a cast to a virtual base object.
JumpDest getJumpDestInCurrentScope(StringRef Name=StringRef())
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
llvm::AllocaInst * EHSelectorSlot
The selector slot.
Checking the operand of a load. Must be suitably sized and aligned.
~LexicalScope()
Exit this cleanup scope, emitting any accumulated cleanups.
Checking the &#39;this&#39; pointer for a call to a non-static member function.
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
ObjCPropertyImplDecl - Represents implementation declaration of a property in a class or category imp...
Definition: DeclObjC.h:2645
This represents &#39;#pragma omp target parallel for simd&#39; directive.
Definition: StmtOpenMP.h:3241
OpenMP 4.0 [2.4, Array Sections].
Definition: ExprOpenMP.h:45
Const iterator for iterating over Stmt * arrays that contain only Expr *.
Definition: Stmt.h:346
bool isValid() const
Definition: Address.h:36
CleanupKind Kind
The kind of cleanup to push: a value from the CleanupKind enumeration.
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2197
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:595
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3277
Describes the capture of either a variable, or &#39;this&#39;, or variable-length array type.
Definition: Stmt.h:2067
void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, llvm::Value *OffsetValue=nullptr)
const CodeGen::CGBlockInfo * BlockInfo
This represents &#39;#pragma omp taskgroup&#39; directive.
Definition: StmtOpenMP.h:1906
const TargetCodeGenInfo & getTargetCodeGenInfo()
CGBlockInfo - Information to generate a block literal.
Definition: CGBlocks.h:149
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
bool addPrivate(const VarDecl *LocalVD, llvm::function_ref< Address()> PrivateGen)
Registers LocalVD variable as a private and apply PrivateGen function for it to generate correspondin...
CleanupKind getARCCleanupKind()
Retrieves the default cleanup kind for an ARC cleanup.
bool isGlobalVarCaptured(const VarDecl *VD) const
Checks if the global variable is captured in current function.
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:3779
llvm::Value * ExceptionSlot
The exception slot.
void pushCleanupAfterFullExpr(CleanupKind Kind, As... A)
Queue a cleanup to be pushed after finishing the current full-expression.
LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
This represents &#39;#pragma omp distribute&#39; directive.
Definition: StmtOpenMP.h:2907
Exposes information about the current target.
Definition: TargetInfo.h:55
CXXDtorType
C++ destructor types.
Definition: ABI.h:34
llvm::BasicBlock * EHResumeBlock
EHResumeBlock - Unified block containing a call to llvm.eh.resume.
EHScopeStack::stable_iterator getScopeDepth() const
ValueDecl - Represent the declaration of a variable (in which case it is an lvalue) a function (in wh...
Definition: Decl.h:628
Expr - This represents one expression.
Definition: Expr.h:106
stable_iterator getInnermostNormalCleanup() const
Returns the innermost normal cleanup on the stack, or stable_end() if there are no normal cleanups...
Definition: EHScopeStack.h:356
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
const FunctionProtoType * T
llvm::function_ref< void(CodeGenFunction &, SourceLocation, const unsigned, const bool)> CodeGenOrderedTy
static ParamValue forIndirect(Address addr)
OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, RValue rvalue)
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
void ForceCleanup()
Force the emission of cleanups now, instead of waiting until this object is destroyed.
static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method)
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:4852
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2620
This represents &#39;#pragma omp target teams distribute parallel for simd&#39; combined directive.
Definition: StmtOpenMP.h:3852
static saved_type save(CodeGenFunction &CGF, type value)
AggValueSlot CreateAggTemp(QualType T, const Twine &Name="tmp")
CreateAggTemp - Create a temporary memory object for the given aggregate type.
llvm::AllocaInst * NormalCleanupDest
i32s containing the indexes of the cleanup destinations.
#define bool
Definition: stdbool.h:31
unsigned Size
The size of the following cleanup object.
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:257
DeclContext * getDeclContext()
Definition: DeclBase.h:425
Represents Objective-C&#39;s @synchronized statement.
Definition: StmtObjC.h:262
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:397
CXXTryStmt - A C++ try block, including all handlers.
Definition: StmtCXX.h:65
~OMPPrivateScope()
Exit scope - all the mapped variables are restored.
This represents &#39;#pragma omp target teams distribute simd&#39; combined directive.
Definition: StmtOpenMP.h:3925
int Depth
Definition: ASTDiff.cpp:191
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
llvm::LLVMContext & getLLVMContext()
QualType getType() const
Definition: Expr.h:128
An RAII object to record that we&#39;re evaluating a statement expression.
This represents &#39;#pragma omp for&#39; directive.
Definition: StmtOpenMP.h:1039
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:1413
This represents &#39;#pragma omp target teams&#39; directive.
Definition: StmtOpenMP.h:3652
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T)
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:860
JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, unsigned Index)
void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, QualType DestTy, QualType SrcTy)
SourceLocation getEnd() const
An object which temporarily prevents a value from being destroyed by aggressive peephole optimization...
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1717
This represents &#39;#pragma omp cancel&#39; directive.
Definition: StmtOpenMP.h:2711
RunCleanupsScope(CodeGenFunction &CGF)
Enter a new cleanup scope.
const LangOptions & getLangOpts() const
ASTContext & getContext() const
do v
Definition: arm_acle.h:78
VarDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:1974
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:29
This represents &#39;#pragma omp flush&#39; directive.
Definition: StmtOpenMP.h:1979
This represents &#39;#pragma omp parallel for simd&#39; directive.
Definition: StmtOpenMP.h:1567
DoStmt - This represents a &#39;do/while&#39; stmt.
Definition: Stmt.h:1154
AsmStmt is the base class for GCCAsmStmt and MSAsmStmt.
Definition: Stmt.h:1461
void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, llvm::Value *OffsetValue=nullptr)
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, std::initializer_list< llvm::Value **> ValuesToReload={})
Takes the old cleanup stack size and emits the cleanup blocks that have been added.
Definition: CGCleanup.cpp:420
llvm::function_ref< void(CodeGenFunction &, const OMPLoopDirective &, JumpDest)> CodeGenLoopTy
This represents &#39;#pragma omp target enter data&#39; directive.
Definition: StmtOpenMP.h:2339
OMPPrivateScope(CodeGenFunction &CGF)
Enter a new OpenMP private scope.
llvm::SmallVector< VPtr, 4 > VPtrsVector
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:338
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:868
bool SawAsmBlock
Whether we processed a Microsoft-style asm block during CodeGen.
#define false
Definition: stdbool.h:33
MSVCIntrin
Definition: CGBuiltin.cpp:488
Kind
This captures a statement into a function.
Definition: Stmt.h:2054
Represents a call to an inherited base class constructor from an inheriting constructor.
Definition: ExprCXX.h:1400
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:4970
This represents &#39;#pragma omp single&#39; directive.
Definition: StmtOpenMP.h:1311
Encodes a location in the source.
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go...
A saved depth on the scope stack.
Definition: EHScopeStack.h:107
Represents a C++ temporary.
Definition: ExprCXX.h:1164
~RunCleanupsScope()
Exit this cleanup scope, emitting any accumulated cleanups.
llvm::BasicBlock * getUnreachableBlock()
void setBeforeOutermostConditional(llvm::Value *value, Address addr)
This is a basic class for representing single OpenMP executable directive.
Definition: StmtOpenMP.h:33
SmallVector< llvm::Value *, 8 > ObjCEHValueStack
ObjCEHValueStack - Stack of Objective-C exception values, used for rethrows.
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1842
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:164
const Decl * getDecl() const
Definition: GlobalDecl.h:62
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:487
Checking the operand of a cast to a base object.
OpenMPDirectiveKind
OpenMP directives.
Definition: OpenMPKinds.h:23
LabelDecl - Represents the declaration of a label.
Definition: Decl.h:460
An aggregate value slot.
Definition: CGValue.h:434
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:620
Per-function PGO state.
Definition: CodeGenPGO.h:29
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1964
void EmitStmt(const Stmt *S, ArrayRef< const Attr *> Attrs=None)
EmitStmt - Emit the code for the statement.
Definition: CGStmt.cpp:48
static type restore(CodeGenFunction &CGF, saved_type value)
OpenMPLinearClauseKind Modifier
Modifier of &#39;linear&#39; clause.
Definition: OpenMPClause.h:86
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
This represents &#39;#pragma omp taskwait&#39; directive.
Definition: StmtOpenMP.h:1862
SanitizerSet SanOpts
Sanitizers enabled for this function.
ObjCCategoryDecl - Represents a category declaration.
Definition: DeclObjC.h:2189
This is a basic class for representing single OpenMP clause.
Definition: OpenMPClause.h:33
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>, and corresponding __opencl_atomic_* for OpenCL 2.0.
Definition: Expr.h:5104
ObjCProtocolExpr used for protocol expression in Objective-C.
Definition: ExprObjC.h:441
TypeCheckKind
Situations in which we might emit a check for the suitability of a pointer or glvalue.
An aligned address.
Definition: Address.h:25
This represents &#39;#pragma omp target&#39; directive.
Definition: StmtOpenMP.h:2223
All available information about a concrete callee.
Definition: CGCall.h:66
LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, AlignmentSource Source=AlignmentSource::Type)
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target)
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
TargetCodeGenInfo - This class organizes various target-specific codegeneration issues, like target-specific attributes, builtins and so on.
Definition: TargetInfo.h:46
Checking the object expression in a non-static data member access.
This represents &#39;#pragma omp ordered&#39; directive.
Definition: StmtOpenMP.h:2034
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:3489
static ParamValue forDirect(llvm::Value *value)
static llvm::Value * restore(CodeGenFunction &CGF, saved_type value)
This represents &#39;#pragma omp target update&#39; directive.
Definition: StmtOpenMP.h:2975
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:94
uint64_t getCurrentRegionCount() const
Return the counter value of the current region.
Definition: CodeGenPGO.h:55
const CGFunctionInfo * CurFnInfo
void Emit(CodeGenFunction &CGF, Flags flags) override
Emit the cleanup.
static ConstantEmission forReference(llvm::Constant *C)
void enterFullExpression(const ExprWithCleanups *E)
const TargetCodeGenInfo & getTargetHooks() const
static Destroyer destroyARCStrongImprecise
CXXCtorType
C++ constructor types.
Definition: ABI.h:25
CompoundAssignOperator - For compound assignments (e.g.
Definition: Expr.h:3192
JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind)
FunctionArgList - Type for representing both the decl and type of parameters to a function...
Definition: CGCall.h:276
OpaqueValueExpr * getOpaqueValue() const
getOpaqueValue - Return the opaque value placeholder.
Definition: Expr.h:3386
CGFunctionInfo - Class to encapsulate the information about a function definition.
This class organizes the cross-function state that is used while generating LLVM code.
Dataflow Directional Tag Classes.
Class provides a way to call simple version of codegen for OpenMP region, or an advanced with possibl...
uint64_t SanitizerMask
Definition: Sanitizers.h:24
[C99 6.4.2.2] - A predefined identifier such as func.
Definition: Expr.h:1188
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1252
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2071
This represents &#39;#pragma omp section&#39; directive.
Definition: StmtOpenMP.h:1249
This represents &#39;#pragma omp teams distribute&#39; directive.
Definition: StmtOpenMP.h:3375
A scope within which we are constructing the fields of an object which might use a CXXDefaultInitExpr...
llvm::LoadInst * CreateAlignedLoad(llvm::Value *Addr, CharUnits Align, const llvm::Twine &Name="")
Definition: CGBuilder.h:91
Checking the bound value in a reference binding.
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we&#39;re currently emitting one branch or the other of a conditio...
This represents &#39;#pragma omp simd&#39; directive.
Definition: StmtOpenMP.h:974
Represents a &#39;co_yield&#39; expression.
Definition: ExprCXX.h:4387