clang  9.0.0svn
CodeGenFunction.h
Go to the documentation of this file.
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
34 #include "clang/Basic/TargetInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/MapVector.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Transforms/Utils/SanitizerStats.h"
42 
43 namespace llvm {
44 class BasicBlock;
45 class LLVMContext;
46 class MDNode;
47 class Module;
48 class SwitchInst;
49 class Twine;
50 class Value;
51 }
52 
53 namespace clang {
54 class ASTContext;
55 class BlockDecl;
56 class CXXDestructorDecl;
57 class CXXForRangeStmt;
58 class CXXTryStmt;
59 class Decl;
60 class LabelDecl;
61 class EnumConstantDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 
79 namespace analyze_os_log {
80 class OSLogBufferLayout;
81 }
82 
83 namespace CodeGen {
84 class CodeGenTypes;
85 class CGCallee;
86 class CGFunctionInfo;
87 class CGRecordLayout;
88 class CGBlockInfo;
89 class CGCXXABI;
90 class BlockByrefHelpers;
91 class BlockByrefInfo;
92 class BlockFlags;
93 class BlockFieldFlags;
94 class RegionCodeGenTy;
95 class TargetCodeGenInfo;
96 struct OMPTaskDataTy;
97 struct CGCoroData;
98 
99 /// The kind of evaluation to perform on values of a particular
100 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or
101 /// CGExprAgg?
102 ///
103 /// TODO: should vectors maybe be split out into their own thing?
108 };
109 
110 #define LIST_SANITIZER_CHECKS \
111  SANITIZER_CHECK(AddOverflow, add_overflow, 0) \
112  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \
113  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \
114  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \
115  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \
116  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \
117  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \
118  SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \
119  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \
120  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \
121  SANITIZER_CHECK(MissingReturn, missing_return, 0) \
122  SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \
123  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \
124  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \
125  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \
126  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \
127  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \
128  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \
129  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \
130  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \
131  SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \
132  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \
133  SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \
134  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
135 
137 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
139 #undef SANITIZER_CHECK
140 };
141 
142 /// Helper class with most of the code for saving a value for a
143 /// conditional expression cleanup.
145  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
146 
147  /// Answer whether the given value needs extra work to be saved.
148  static bool needsSaving(llvm::Value *value) {
149  // If it's not an instruction, we don't need to save.
150  if (!isa<llvm::Instruction>(value)) return false;
151 
152  // If it's an instruction in the entry block, we don't need to save.
153  llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
154  return (block != &block->getParent()->getEntryBlock());
155  }
156 
157  static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
158  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
159 };
160 
161 /// A partial specialization of DominatingValue for llvm::Values that
162 /// might be llvm::Instructions.
163 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
164  typedef T *type;
165  static type restore(CodeGenFunction &CGF, saved_type value) {
166  return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
167  }
168 };
169 
170 /// A specialization of DominatingValue for Address.
171 template <> struct DominatingValue<Address> {
172  typedef Address type;
173 
174  struct saved_type {
177  };
178 
179  static bool needsSaving(type value) {
180  return DominatingLLVMValue::needsSaving(value.getPointer());
181  }
182  static saved_type save(CodeGenFunction &CGF, type value) {
183  return { DominatingLLVMValue::save(CGF, value.getPointer()),
184  value.getAlignment() };
185  }
186  static type restore(CodeGenFunction &CGF, saved_type value) {
187  return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
188  value.Alignment);
189  }
190 };
191 
192 /// A specialization of DominatingValue for RValue.
193 template <> struct DominatingValue<RValue> {
194  typedef RValue type;
195  class saved_type {
196  enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
197  AggregateAddress, ComplexAddress };
198 
200  unsigned K : 3;
201  unsigned Align : 29;
202  saved_type(llvm::Value *v, Kind k, unsigned a = 0)
203  : Value(v), K(k), Align(a) {}
204 
205  public:
206  static bool needsSaving(RValue value);
207  static saved_type save(CodeGenFunction &CGF, RValue value);
208  RValue restore(CodeGenFunction &CGF);
209 
210  // implementations in CGCleanup.cpp
211  };
212 
213  static bool needsSaving(type value) {
214  return saved_type::needsSaving(value);
215  }
216  static saved_type save(CodeGenFunction &CGF, type value) {
217  return saved_type::save(CGF, value);
218  }
219  static type restore(CodeGenFunction &CGF, saved_type value) {
220  return value.restore(CGF);
221  }
222 };
223 
224 /// CodeGenFunction - This class organizes the per-function state that is used
225 /// while generating LLVM code.
227  CodeGenFunction(const CodeGenFunction &) = delete;
228  void operator=(const CodeGenFunction &) = delete;
229 
230  friend class CGCXXABI;
231 public:
232  /// A jump destination is an abstract label, branching to which may
233  /// require a jump out through normal cleanups.
234  struct JumpDest {
235  JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
236  JumpDest(llvm::BasicBlock *Block,
238  unsigned Index)
239  : Block(Block), ScopeDepth(Depth), Index(Index) {}
240 
241  bool isValid() const { return Block != nullptr; }
242  llvm::BasicBlock *getBlock() const { return Block; }
243  EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
244  unsigned getDestIndex() const { return Index; }
245 
246  // This should be used cautiously.
248  ScopeDepth = depth;
249  }
250 
251  private:
252  llvm::BasicBlock *Block;
254  unsigned Index;
255  };
256 
257  CodeGenModule &CGM; // Per-module state.
259 
260  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
263 
264  // Stores variables for which we can't generate correct lifetime markers
265  // because of jumps.
267 
268  // CodeGen lambda for loops and support for ordered clause
269  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
270  JumpDest)>
272  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
273  const unsigned, const bool)>
275 
276  // Codegen lambda for loop bounds in worksharing loop constructs
277  typedef llvm::function_ref<std::pair<LValue, LValue>(
280 
281  // Codegen lambda for loop bounds in dispatch-based loop implementation
282  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
283  CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
284  Address UB)>
286 
287  /// CGBuilder insert helper. This function is called after an
288  /// instruction is created using Builder.
289  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
290  llvm::BasicBlock *BB,
291  llvm::BasicBlock::iterator InsertPt) const;
292 
293  /// CurFuncDecl - Holds the Decl for the current outermost
294  /// non-closure context.
296  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
300  llvm::Function *CurFn = nullptr;
301 
302  // Holds coroutine data if the current function is a coroutine. We use a
303  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
304  // in this header.
305  struct CGCoroInfo {
306  std::unique_ptr<CGCoroData> Data;
307  CGCoroInfo();
308  ~CGCoroInfo();
309  };
311 
312  bool isCoroutine() const {
313  return CurCoro.Data != nullptr;
314  }
315 
316  /// CurGD - The GlobalDecl for the current function being compiled.
318 
319  /// PrologueCleanupDepth - The cleanup depth enclosing all the
320  /// cleanups associated with the parameters.
322 
323  /// ReturnBlock - Unified return block.
325 
326  /// ReturnValue - The temporary alloca to hold the return
327  /// value. This is invalid iff the function has no return value.
328  Address ReturnValue = Address::invalid();
329 
330  /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
331  /// This is invalid if sret is not in use.
332  Address ReturnValuePointer = Address::invalid();
333 
334  /// Return true if a label was seen in the current scope.
336  if (CurLexicalScope)
337  return CurLexicalScope->hasLabels();
338  return !LabelMap.empty();
339  }
340 
341  /// AllocaInsertPoint - This is an instruction in the entry block before which
342  /// we prefer to insert allocas.
343  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
344 
345  /// API for captured statement code generation.
347  public:
349  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
350  explicit CGCapturedStmtInfo(const CapturedStmt &S,
352  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
353 
357  E = S.capture_end();
358  I != E; ++I, ++Field) {
359  if (I->capturesThis())
360  CXXThisFieldDecl = *Field;
361  else if (I->capturesVariable())
362  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
363  else if (I->capturesVariableByCopy())
364  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
365  }
366  }
367 
368  virtual ~CGCapturedStmtInfo();
369 
370  CapturedRegionKind getKind() const { return Kind; }
371 
372  virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
373  // Retrieve the value of the context parameter.
374  virtual llvm::Value *getContextValue() const { return ThisValue; }
375 
376  /// Lookup the captured field decl for a variable.
377  virtual const FieldDecl *lookup(const VarDecl *VD) const {
378  return CaptureFields.lookup(VD->getCanonicalDecl());
379  }
380 
381  bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
382  virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
383 
384  static bool classof(const CGCapturedStmtInfo *) {
385  return true;
386  }
387 
388  /// Emit the captured statement body.
389  virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
391  CGF.EmitStmt(S);
392  }
393 
394  /// Get the name of the capture helper.
395  virtual StringRef getHelperName() const { return "__captured_stmt"; }
396 
397  private:
398  /// The kind of captured statement being generated.
400 
401  /// Keep the map between VarDecl and FieldDecl.
402  llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
403 
404  /// The base address of the captured record, passed in as the first
405  /// argument of the parallel region function.
406  llvm::Value *ThisValue;
407 
408  /// Captured 'this' type.
409  FieldDecl *CXXThisFieldDecl;
410  };
411  CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
412 
413  /// RAII for correct setting/restoring of CapturedStmtInfo.
415  private:
416  CodeGenFunction &CGF;
417  CGCapturedStmtInfo *PrevCapturedStmtInfo;
418  public:
419  CGCapturedStmtRAII(CodeGenFunction &CGF,
420  CGCapturedStmtInfo *NewCapturedStmtInfo)
421  : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
422  CGF.CapturedStmtInfo = NewCapturedStmtInfo;
423  }
424  ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
425  };
426 
427  /// An abstract representation of regular/ObjC call/message targets.
429  /// The function declaration of the callee.
430  const Decl *CalleeDecl;
431 
432  public:
433  AbstractCallee() : CalleeDecl(nullptr) {}
434  AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
435  AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
436  bool hasFunctionDecl() const {
437  return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
438  }
439  const Decl *getDecl() const { return CalleeDecl; }
440  unsigned getNumParams() const {
441  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
442  return FD->getNumParams();
443  return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
444  }
445  const ParmVarDecl *getParamDecl(unsigned I) const {
446  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
447  return FD->getParamDecl(I);
448  return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
449  }
450  };
451 
452  /// Sanitizers enabled for this function.
454 
455  /// True if CodeGen currently emits code implementing sanitizer checks.
456  bool IsSanitizerScope = false;
457 
458  /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
460  CodeGenFunction *CGF;
461  public:
462  SanitizerScope(CodeGenFunction *CGF);
463  ~SanitizerScope();
464  };
465 
466  /// In C++, whether we are code generating a thunk. This controls whether we
467  /// should emit cleanups.
468  bool CurFuncIsThunk = false;
469 
470  /// In ARC, whether we should autorelease the return value.
471  bool AutoreleaseResult = false;
472 
473  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
474  /// potentially set the return value.
475  bool SawAsmBlock = false;
476 
477  const NamedDecl *CurSEHParent = nullptr;
478 
479  /// True if the current function is an outlined SEH helper. This can be a
480  /// finally block or filter expression.
481  bool IsOutlinedSEHHelper = false;
482 
483  /// True if CodeGen currently emits code inside presereved access index
484  /// region.
485  bool IsInPreservedAIRegion = false;
486 
487  const CodeGen::CGBlockInfo *BlockInfo = nullptr;
488  llvm::Value *BlockPointer = nullptr;
489 
490  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
491  FieldDecl *LambdaThisCaptureField = nullptr;
492 
493  /// A mapping from NRVO variables to the flags used to indicate
494  /// when the NRVO has been applied to this variable.
495  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
496 
500 
501  llvm::Instruction *CurrentFuncletPad = nullptr;
502 
503  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
504  llvm::Value *Addr;
505  llvm::Value *Size;
506 
507  public:
509  : Addr(addr.getPointer()), Size(size) {}
510 
511  void Emit(CodeGenFunction &CGF, Flags flags) override {
512  CGF.EmitLifetimeEnd(Size, Addr);
513  }
514  };
515 
516  /// Header for data within LifetimeExtendedCleanupStack.
518  /// The size of the following cleanup object.
519  unsigned Size;
520  /// The kind of cleanup to push: a value from the CleanupKind enumeration.
521  unsigned Kind : 31;
522  /// Whether this is a conditional cleanup.
523  unsigned IsConditional : 1;
524 
525  size_t getSize() const { return Size; }
526  CleanupKind getKind() const { return (CleanupKind)Kind; }
527  bool isConditional() const { return IsConditional; }
528  };
529 
530  /// i32s containing the indexes of the cleanup destinations.
531  Address NormalCleanupDest = Address::invalid();
532 
533  unsigned NextCleanupDestIndex = 1;
534 
535  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
536  CGBlockInfo *FirstBlockInfo = nullptr;
537 
538  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
539  llvm::BasicBlock *EHResumeBlock = nullptr;
540 
541  /// The exception slot. All landing pads write the current exception pointer
542  /// into this alloca.
543  llvm::Value *ExceptionSlot = nullptr;
544 
545  /// The selector slot. Under the MandatoryCleanup model, all landing pads
546  /// write the current selector value into this alloca.
547  llvm::AllocaInst *EHSelectorSlot = nullptr;
548 
549  /// A stack of exception code slots. Entering an __except block pushes a slot
550  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
551  /// a value from the top of the stack.
553 
554  /// Value returned by __exception_info intrinsic.
555  llvm::Value *SEHInfo = nullptr;
556 
557  /// Emits a landing pad for the current EH stack.
558  llvm::BasicBlock *EmitLandingPad();
559 
560  llvm::BasicBlock *getInvokeDestImpl();
561 
562  template <class T>
564  return DominatingValue<T>::save(*this, value);
565  }
566 
567 public:
568  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
569  /// rethrows.
571 
572  /// A class controlling the emission of a finally block.
573  class FinallyInfo {
574  /// Where the catchall's edge through the cleanup should go.
575  JumpDest RethrowDest;
576 
577  /// A function to call to enter the catch.
578  llvm::FunctionCallee BeginCatchFn;
579 
580  /// An i1 variable indicating whether or not the @finally is
581  /// running for an exception.
582  llvm::AllocaInst *ForEHVar;
583 
584  /// An i8* variable into which the exception pointer to rethrow
585  /// has been saved.
586  llvm::AllocaInst *SavedExnVar;
587 
588  public:
589  void enter(CodeGenFunction &CGF, const Stmt *Finally,
590  llvm::FunctionCallee beginCatchFn,
591  llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
592  void exit(CodeGenFunction &CGF);
593  };
594 
595  /// Returns true inside SEH __try blocks.
596  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
597 
598  /// Returns true while emitting a cleanuppad.
599  bool isCleanupPadScope() const {
600  return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
601  }
602 
603  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
604  /// current full-expression. Safe against the possibility that
605  /// we're currently inside a conditionally-evaluated expression.
606  template <class T, class... As>
608  // If we're not in a conditional branch, or if none of the
609  // arguments requires saving, then use the unconditional cleanup.
610  if (!isInConditionalBranch())
611  return EHStack.pushCleanup<T>(kind, A...);
612 
613  // Stash values in a tuple so we can guarantee the order of saves.
614  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
615  SavedTuple Saved{saveValueInCond(A)...};
616 
617  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
618  EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
619  initFullExprCleanup();
620  }
621 
622  /// Queue a cleanup to be pushed after finishing the current
623  /// full-expression.
624  template <class T, class... As>
626  if (!isInConditionalBranch())
627  return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);
628 
629  Address ActiveFlag = createCleanupActiveFlag();
630  assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
631  "cleanup active flag should never need saving");
632 
633  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
634  SavedTuple Saved{saveValueInCond(A)...};
635 
636  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
637  pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
638  }
639 
640  template <class T, class... As>
642  As... A) {
643  LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
644  ActiveFlag.isValid()};
645 
646  size_t OldSize = LifetimeExtendedCleanupStack.size();
647  LifetimeExtendedCleanupStack.resize(
648  LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
649  (Header.IsConditional ? sizeof(ActiveFlag) : 0));
650 
651  static_assert(sizeof(Header) % alignof(T) == 0,
652  "Cleanup will be allocated on misaligned address");
653  char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
654  new (Buffer) LifetimeExtendedCleanupHeader(Header);
655  new (Buffer + sizeof(Header)) T(A...);
656  if (Header.IsConditional)
657  new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
658  }
659 
660  /// Set up the last cleanup that was pushed as a conditional
661  /// full-expression cleanup.
663  initFullExprCleanupWithFlag(createCleanupActiveFlag());
664  }
665 
666  void initFullExprCleanupWithFlag(Address ActiveFlag);
667  Address createCleanupActiveFlag();
668 
669  /// PushDestructorCleanup - Push a cleanup to call the
670  /// complete-object destructor of an object of the given type at the
671  /// given address. Does nothing if T is not a C++ class type with a
672  /// non-trivial destructor.
673  void PushDestructorCleanup(QualType T, Address Addr);
674 
675  /// PushDestructorCleanup - Push a cleanup to call the
676  /// complete-object variant of the given destructor on the object at
677  /// the given address.
678  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
679 
680  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
681  /// process all branch fixups.
682  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
683 
684  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
685  /// The block cannot be reactivated. Pops it if it's the top of the
686  /// stack.
687  ///
688  /// \param DominatingIP - An instruction which is known to
689  /// dominate the current IP (if set) and which lies along
690  /// all paths of execution between the current IP and the
691  /// the point at which the cleanup comes into scope.
692  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
693  llvm::Instruction *DominatingIP);
694 
695  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
696  /// Cannot be used to resurrect a deactivated cleanup.
697  ///
698  /// \param DominatingIP - An instruction which is known to
699  /// dominate the current IP (if set) and which lies along
700  /// all paths of execution between the current IP and the
701  /// the point at which the cleanup comes into scope.
702  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
703  llvm::Instruction *DominatingIP);
704 
705  /// Enters a new scope for capturing cleanups, all of which
706  /// will be executed once the scope is exited.
708  EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
709  size_t LifetimeExtendedCleanupStackSize;
710  bool OldDidCallStackSave;
711  protected:
713  private:
714 
715  RunCleanupsScope(const RunCleanupsScope &) = delete;
716  void operator=(const RunCleanupsScope &) = delete;
717 
718  protected:
719  CodeGenFunction& CGF;
720 
721  public:
722  /// Enter a new cleanup scope.
723  explicit RunCleanupsScope(CodeGenFunction &CGF)
724  : PerformCleanup(true), CGF(CGF)
725  {
726  CleanupStackDepth = CGF.EHStack.stable_begin();
727  LifetimeExtendedCleanupStackSize =
728  CGF.LifetimeExtendedCleanupStack.size();
729  OldDidCallStackSave = CGF.DidCallStackSave;
730  CGF.DidCallStackSave = false;
731  OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
732  CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
733  }
734 
735  /// Exit this cleanup scope, emitting any accumulated cleanups.
737  if (PerformCleanup)
738  ForceCleanup();
739  }
740 
741  /// Determine whether this scope requires any cleanups.
742  bool requiresCleanups() const {
743  return CGF.EHStack.stable_begin() != CleanupStackDepth;
744  }
745 
746  /// Force the emission of cleanups now, instead of waiting
747  /// until this object is destroyed.
748  /// \param ValuesToReload - A list of values that need to be available at
749  /// the insertion point after cleanup emission. If cleanup emission created
750  /// a shared cleanup block, these value pointers will be rewritten.
751  /// Otherwise, they not will be modified.
752  void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
753  assert(PerformCleanup && "Already forced cleanup");
754  CGF.DidCallStackSave = OldDidCallStackSave;
755  CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
756  ValuesToReload);
757  PerformCleanup = false;
758  CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
759  }
760  };
761 
762  // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
763  EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
764  EHScopeStack::stable_end();
765 
767  SourceRange Range;
769  LexicalScope *ParentScope;
770 
771  LexicalScope(const LexicalScope &) = delete;
772  void operator=(const LexicalScope &) = delete;
773 
774  public:
775  /// Enter a new cleanup scope.
776  explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
777  : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
778  CGF.CurLexicalScope = this;
779  if (CGDebugInfo *DI = CGF.getDebugInfo())
780  DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
781  }
782 
783  void addLabel(const LabelDecl *label) {
784  assert(PerformCleanup && "adding label to dead scope?");
785  Labels.push_back(label);
786  }
787 
788  /// Exit this cleanup scope, emitting any accumulated
789  /// cleanups.
791  if (CGDebugInfo *DI = CGF.getDebugInfo())
792  DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
793 
794  // If we should perform a cleanup, force them now. Note that
795  // this ends the cleanup scope before rescoping any labels.
796  if (PerformCleanup) {
797  ApplyDebugLocation DL(CGF, Range.getEnd());
798  ForceCleanup();
799  }
800  }
801 
802  /// Force the emission of cleanups now, instead of waiting
803  /// until this object is destroyed.
804  void ForceCleanup() {
805  CGF.CurLexicalScope = ParentScope;
806  RunCleanupsScope::ForceCleanup();
807 
808  if (!Labels.empty())
809  rescopeLabels();
810  }
811 
812  bool hasLabels() const {
813  return !Labels.empty();
814  }
815 
816  void rescopeLabels();
817  };
818 
819  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
820 
821  /// The class used to assign some variables some temporarily addresses.
822  class OMPMapVars {
823  DeclMapTy SavedLocals;
824  DeclMapTy SavedTempAddresses;
825  OMPMapVars(const OMPMapVars &) = delete;
826  void operator=(const OMPMapVars &) = delete;
827 
828  public:
829  explicit OMPMapVars() = default;
831  assert(SavedLocals.empty() && "Did not restored original addresses.");
832  };
833 
834  /// Sets the address of the variable \p LocalVD to be \p TempAddr in
835  /// function \p CGF.
836  /// \return true if at least one variable was set already, false otherwise.
837  bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
838  Address TempAddr) {
839  LocalVD = LocalVD->getCanonicalDecl();
840  // Only save it once.
841  if (SavedLocals.count(LocalVD)) return false;
842 
843  // Copy the existing local entry to SavedLocals.
844  auto it = CGF.LocalDeclMap.find(LocalVD);
845  if (it != CGF.LocalDeclMap.end())
846  SavedLocals.try_emplace(LocalVD, it->second);
847  else
848  SavedLocals.try_emplace(LocalVD, Address::invalid());
849 
850  // Generate the private entry.
851  QualType VarTy = LocalVD->getType();
852  if (VarTy->isReferenceType()) {
853  Address Temp = CGF.CreateMemTemp(VarTy);
854  CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
855  TempAddr = Temp;
856  }
857  SavedTempAddresses.try_emplace(LocalVD, TempAddr);
858 
859  return true;
860  }
861 
862  /// Applies new addresses to the list of the variables.
863  /// \return true if at least one variable is using new address, false
864  /// otherwise.
865  bool apply(CodeGenFunction &CGF) {
866  copyInto(SavedTempAddresses, CGF.LocalDeclMap);
867  SavedTempAddresses.clear();
868  return !SavedLocals.empty();
869  }
870 
871  /// Restores original addresses of the variables.
872  void restore(CodeGenFunction &CGF) {
873  if (!SavedLocals.empty()) {
874  copyInto(SavedLocals, CGF.LocalDeclMap);
875  SavedLocals.clear();
876  }
877  }
878 
879  private:
880  /// Copy all the entries in the source map over the corresponding
881  /// entries in the destination, which must exist.
882  static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
883  for (auto &Pair : Src) {
884  if (!Pair.second.isValid()) {
885  Dest.erase(Pair.first);
886  continue;
887  }
888 
889  auto I = Dest.find(Pair.first);
890  if (I != Dest.end())
891  I->second = Pair.second;
892  else
893  Dest.insert(Pair);
894  }
895  }
896  };
897 
898  /// The scope used to remap some variables as private in the OpenMP loop body
899  /// (or other captured region emitted without outlining), and to restore old
900  /// vars back on exit.
902  OMPMapVars MappedVars;
903  OMPPrivateScope(const OMPPrivateScope &) = delete;
904  void operator=(const OMPPrivateScope &) = delete;
905 
906  public:
907  /// Enter a new OpenMP private scope.
908  explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
909 
910  /// Registers \p LocalVD variable as a private and apply \p PrivateGen
911  /// function for it to generate corresponding private variable. \p
912  /// PrivateGen returns an address of the generated private variable.
913  /// \return true if the variable is registered as private, false if it has
914  /// been privatized already.
915  bool addPrivate(const VarDecl *LocalVD,
916  const llvm::function_ref<Address()> PrivateGen) {
917  assert(PerformCleanup && "adding private to dead scope");
918  return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
919  }
920 
921  /// Privatizes local variables previously registered as private.
922  /// Registration is separate from the actual privatization to allow
923  /// initializers use values of the original variables, not the private one.
924  /// This is important, for example, if the private variable is a class
925  /// variable initialized by a constructor that references other private
926  /// variables. But at initialization original variables must be used, not
927  /// private copies.
928  /// \return true if at least one variable was privatized, false otherwise.
929  bool Privatize() { return MappedVars.apply(CGF); }
930 
931  void ForceCleanup() {
932  RunCleanupsScope::ForceCleanup();
933  MappedVars.restore(CGF);
934  }
935 
936  /// Exit scope - all the mapped variables are restored.
938  if (PerformCleanup)
939  ForceCleanup();
940  }
941 
942  /// Checks if the global variable is captured in current function.
943  bool isGlobalVarCaptured(const VarDecl *VD) const {
944  VD = VD->getCanonicalDecl();
945  return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
946  }
947  };
948 
949  /// Takes the old cleanup stack size and emits the cleanup blocks
950  /// that have been added.
951  void
952  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
953  std::initializer_list<llvm::Value **> ValuesToReload = {});
954 
955  /// Takes the old cleanup stack size and emits the cleanup blocks
956  /// that have been added, then adds all lifetime-extended cleanups from
957  /// the given position to the stack.
958  void
959  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
960  size_t OldLifetimeExtendedStackSize,
961  std::initializer_list<llvm::Value **> ValuesToReload = {});
962 
963  void ResolveBranchFixups(llvm::BasicBlock *Target);
964 
965  /// The given basic block lies in the current EH scope, but may be a
966  /// target of a potentially scope-crossing jump; get a stable handle
967  /// to which we can perform this jump later.
968  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
969  return JumpDest(Target,
970  EHStack.getInnermostNormalCleanup(),
971  NextCleanupDestIndex++);
972  }
973 
974  /// The given basic block lies in the current EH scope, but may be a
975  /// target of a potentially scope-crossing jump; get a stable handle
976  /// to which we can perform this jump later.
977  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
978  return getJumpDestInCurrentScope(createBasicBlock(Name));
979  }
980 
981  /// EmitBranchThroughCleanup - Emit a branch from the current insert
982  /// block through the normal cleanup handling code (if any) and then
983  /// on to \arg Dest.
984  void EmitBranchThroughCleanup(JumpDest Dest);
985 
986  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
987  /// specified destination obviously has no cleanups to run. 'false' is always
988  /// a conservatively correct answer for this method.
989  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
990 
991  /// popCatchScope - Pops the catch scope at the top of the EHScope
992  /// stack, emitting any required code (other than the catch handlers
993  /// themselves).
994  void popCatchScope();
995 
996  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
997  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
998  llvm::BasicBlock *
999  getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1000 
1001  /// An object to manage conditionally-evaluated expressions.
1003  llvm::BasicBlock *StartBB;
1004 
1005  public:
1006  ConditionalEvaluation(CodeGenFunction &CGF)
1007  : StartBB(CGF.Builder.GetInsertBlock()) {}
1008 
1009  void begin(CodeGenFunction &CGF) {
1010  assert(CGF.OutermostConditional != this);
1011  if (!CGF.OutermostConditional)
1012  CGF.OutermostConditional = this;
1013  }
1014 
1015  void end(CodeGenFunction &CGF) {
1016  assert(CGF.OutermostConditional != nullptr);
1017  if (CGF.OutermostConditional == this)
1018  CGF.OutermostConditional = nullptr;
1019  }
1020 
1021  /// Returns a block which will be executed prior to each
1022  /// evaluation of the conditional code.
1023  llvm::BasicBlock *getStartingBlock() const {
1024  return StartBB;
1025  }
1026  };
1027 
1028  /// isInConditionalBranch - Return true if we're currently emitting
1029  /// one branch or the other of a conditional expression.
1030  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1031 
1033  assert(isInConditionalBranch());
1034  llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1035  auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1036  store->setAlignment(addr.getAlignment().getQuantity());
1037  }
1038 
1039  /// An RAII object to record that we're evaluating a statement
1040  /// expression.
1042  CodeGenFunction &CGF;
1043 
1044  /// We have to save the outermost conditional: cleanups in a
1045  /// statement expression aren't conditional just because the
1046  /// StmtExpr is.
1047  ConditionalEvaluation *SavedOutermostConditional;
1048 
1049  public:
1050  StmtExprEvaluation(CodeGenFunction &CGF)
1051  : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1052  CGF.OutermostConditional = nullptr;
1053  }
1054 
1056  CGF.OutermostConditional = SavedOutermostConditional;
1057  CGF.EnsureInsertPoint();
1058  }
1059  };
1060 
1061  /// An object which temporarily prevents a value from being
1062  /// destroyed by aggressive peephole optimizations that assume that
1063  /// all uses of a value have been realized in the IR.
1065  llvm::Instruction *Inst;
1066  friend class CodeGenFunction;
1067 
1068  public:
1069  PeepholeProtection() : Inst(nullptr) {}
1070  };
1071 
1072  /// A non-RAII class containing all the information about a bound
1073  /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
1074  /// this which makes individual mappings very simple; using this
1075  /// class directly is useful when you have a variable number of
1076  /// opaque values or don't want the RAII functionality for some
1077  /// reason.
1079  const OpaqueValueExpr *OpaqueValue;
1080  bool BoundLValue;
1082 
1084  bool boundLValue)
1085  : OpaqueValue(ov), BoundLValue(boundLValue) {}
1086  public:
1087  OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1088 
1089  static bool shouldBindAsLValue(const Expr *expr) {
1090  // gl-values should be bound as l-values for obvious reasons.
1091  // Records should be bound as l-values because IR generation
1092  // always keeps them in memory. Expressions of function type
1093  // act exactly like l-values but are formally required to be
1094  // r-values in C.
1095  return expr->isGLValue() ||
1096  expr->getType()->isFunctionType() ||
1097  hasAggregateEvaluationKind(expr->getType());
1098  }
1099 
1100  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1101  const OpaqueValueExpr *ov,
1102  const Expr *e) {
1103  if (shouldBindAsLValue(ov))
1104  return bind(CGF, ov, CGF.EmitLValue(e));
1105  return bind(CGF, ov, CGF.EmitAnyExpr(e));
1106  }
1107 
1108  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1109  const OpaqueValueExpr *ov,
1110  const LValue &lv) {
1111  assert(shouldBindAsLValue(ov));
1112  CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1113  return OpaqueValueMappingData(ov, true);
1114  }
1115 
1116  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1117  const OpaqueValueExpr *ov,
1118  const RValue &rv) {
1119  assert(!shouldBindAsLValue(ov));
1120  CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1121 
1122  OpaqueValueMappingData data(ov, false);
1123 
1124  // Work around an extremely aggressive peephole optimization in
1125  // EmitScalarConversion which assumes that all other uses of a
1126  // value are extant.
1127  data.Protection = CGF.protectFromPeepholes(rv);
1128 
1129  return data;
1130  }
1131 
1132  bool isValid() const { return OpaqueValue != nullptr; }
1133  void clear() { OpaqueValue = nullptr; }
1134 
1135  void unbind(CodeGenFunction &CGF) {
1136  assert(OpaqueValue && "no data to unbind!");
1137 
1138  if (BoundLValue) {
1139  CGF.OpaqueLValues.erase(OpaqueValue);
1140  } else {
1141  CGF.OpaqueRValues.erase(OpaqueValue);
1142  CGF.unprotectFromPeepholes(Protection);
1143  }
1144  }
1145  };
1146 
1147  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1149  CodeGenFunction &CGF;
1151 
1152  public:
1153  static bool shouldBindAsLValue(const Expr *expr) {
1154  return OpaqueValueMappingData::shouldBindAsLValue(expr);
1155  }
1156 
1157  /// Build the opaque value mapping for the given conditional
1158  /// operator if it's the GNU ?: extension. This is a common
1159  /// enough pattern that the convenience operator is really
1160  /// helpful.
1161  ///
1162  OpaqueValueMapping(CodeGenFunction &CGF,
1163  const AbstractConditionalOperator *op) : CGF(CGF) {
1164  if (isa<ConditionalOperator>(op))
1165  // Leave Data empty.
1166  return;
1167 
1168  const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1169  Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1170  e->getCommon());
1171  }
1172 
1173  /// Build the opaque value mapping for an OpaqueValueExpr whose source
1174  /// expression is set to the expression the OVE represents.
1175  OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1176  : CGF(CGF) {
1177  if (OV) {
1178  assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1179  "for OVE with no source expression");
1180  Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1181  }
1182  }
1183 
1184  OpaqueValueMapping(CodeGenFunction &CGF,
1185  const OpaqueValueExpr *opaqueValue,
1186  LValue lvalue)
1187  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1188  }
1189 
1190  OpaqueValueMapping(CodeGenFunction &CGF,
1191  const OpaqueValueExpr *opaqueValue,
1192  RValue rvalue)
1193  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1194  }
1195 
1196  void pop() {
1197  Data.unbind(CGF);
1198  Data.clear();
1199  }
1200 
1202  if (Data.isValid()) Data.unbind(CGF);
1203  }
1204  };
1205 
1206 private:
1207  CGDebugInfo *DebugInfo;
1208  /// Used to create unique names for artificial VLA size debug info variables.
1209  unsigned VLAExprCounter = 0;
1210  bool DisableDebugInfo = false;
1211 
1212  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1213  /// calling llvm.stacksave for multiple VLAs in the same scope.
1214  bool DidCallStackSave = false;
1215 
1216  /// IndirectBranch - The first time an indirect goto is seen we create a block
1217  /// with an indirect branch. Every time we see the address of a label taken,
1218  /// we add the label to the indirect goto. Every subsequent indirect goto is
1219  /// codegen'd as a jump to the IndirectBranch's basic block.
1220  llvm::IndirectBrInst *IndirectBranch = nullptr;
1221 
1222  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1223  /// decls.
1224  DeclMapTy LocalDeclMap;
1225 
1226  // Keep track of the cleanups for callee-destructed parameters pushed to the
1227  // cleanup stack so that they can be deactivated later.
1228  llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1229  CalleeDestructedParamCleanups;
1230 
1231  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1232  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1233  /// parameter.
1234  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1235  SizeArguments;
1236 
1237  /// Track escaped local variables with auto storage. Used during SEH
1238  /// outlining to produce a call to llvm.localescape.
1239  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1240 
1241  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1242  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1243 
1244  // BreakContinueStack - This keeps track of where break and continue
1245  // statements should jump to.
1246  struct BreakContinue {
1247  BreakContinue(JumpDest Break, JumpDest Continue)
1248  : BreakBlock(Break), ContinueBlock(Continue) {}
1249 
1250  JumpDest BreakBlock;
1251  JumpDest ContinueBlock;
1252  };
1253  SmallVector<BreakContinue, 8> BreakContinueStack;
1254 
1255  /// Handles cancellation exit points in OpenMP-related constructs.
1256  class OpenMPCancelExitStack {
1257  /// Tracks cancellation exit point and join point for cancel-related exit
1258  /// and normal exit.
1259  struct CancelExit {
1260  CancelExit() = default;
1261  CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1262  JumpDest ContBlock)
1263  : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1265  /// true if the exit block has been emitted already by the special
1266  /// emitExit() call, false if the default codegen is used.
1267  bool HasBeenEmitted = false;
1268  JumpDest ExitBlock;
1269  JumpDest ContBlock;
1270  };
1271 
1273 
1274  public:
1275  OpenMPCancelExitStack() : Stack(1) {}
1276  ~OpenMPCancelExitStack() = default;
1277  /// Fetches the exit block for the current OpenMP construct.
1278  JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1279  /// Emits exit block with special codegen procedure specific for the related
1280  /// OpenMP construct + emits code for normal construct cleanup.
1281  void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1282  const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1283  if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1284  assert(CGF.getOMPCancelDestination(Kind).isValid());
1285  assert(CGF.HaveInsertPoint());
1286  assert(!Stack.back().HasBeenEmitted);
1287  auto IP = CGF.Builder.saveAndClearIP();
1288  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1289  CodeGen(CGF);
1290  CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1291  CGF.Builder.restoreIP(IP);
1292  Stack.back().HasBeenEmitted = true;
1293  }
1294  CodeGen(CGF);
1295  }
1296  /// Enter the cancel supporting \a Kind construct.
1297  /// \param Kind OpenMP directive that supports cancel constructs.
1298  /// \param HasCancel true, if the construct has inner cancel directive,
1299  /// false otherwise.
1300  void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1301  Stack.push_back({Kind,
1302  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1303  : JumpDest(),
1304  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1305  : JumpDest()});
1306  }
1307  /// Emits default exit point for the cancel construct (if the special one
1308  /// has not be used) + join point for cancel/normal exits.
1309  void exit(CodeGenFunction &CGF) {
1310  if (getExitBlock().isValid()) {
1311  assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1312  bool HaveIP = CGF.HaveInsertPoint();
1313  if (!Stack.back().HasBeenEmitted) {
1314  if (HaveIP)
1315  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1316  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1317  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1318  }
1319  CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1320  if (!HaveIP) {
1321  CGF.Builder.CreateUnreachable();
1322  CGF.Builder.ClearInsertionPoint();
1323  }
1324  }
1325  Stack.pop_back();
1326  }
1327  };
1328  OpenMPCancelExitStack OMPCancelStack;
1329 
1330  CodeGenPGO PGO;
1331 
1332  /// Calculate branch weights appropriate for PGO data
1333  llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1334  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1335  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1336  uint64_t LoopCount);
1337 
1338 public:
1339  /// Increment the profiler's counter for the given statement by \p StepV.
1340  /// If \p StepV is null, the default increment is 1.
1341  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1343  PGO.emitCounterIncrement(Builder, S, StepV);
1344  PGO.setCurrentStmt(S);
1345  }
1346 
1347  /// Get the profiler's count for the given statement.
1348  uint64_t getProfileCount(const Stmt *S) {
1349  Optional<uint64_t> Count = PGO.getStmtCount(S);
1350  if (!Count.hasValue())
1351  return 0;
1352  return *Count;
1353  }
1354 
1355  /// Set the profiler's current count.
1356  void setCurrentProfileCount(uint64_t Count) {
1357  PGO.setCurrentRegionCount(Count);
1358  }
1359 
1360  /// Get the profiler's current count. This is generally the count for the most
1361  /// recently incremented counter.
1363  return PGO.getCurrentRegionCount();
1364  }
1365 
1366 private:
1367 
1368  /// SwitchInsn - This is nearest current switch instruction. It is null if
1369  /// current context is not in a switch.
1370  llvm::SwitchInst *SwitchInsn = nullptr;
1371  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1372  SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1373 
1374  /// CaseRangeBlock - This block holds if condition check for last case
1375  /// statement range in current switch instruction.
1376  llvm::BasicBlock *CaseRangeBlock = nullptr;
1377 
1378  /// OpaqueLValues - Keeps track of the current set of opaque value
1379  /// expressions.
1380  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1381  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1382 
1383  // VLASizeMap - This keeps track of the associated size for each VLA type.
1384  // We track this by the size expression rather than the type itself because
1385  // in certain situations, like a const qualifier applied to an VLA typedef,
1386  // multiple VLA types can share the same size expression.
1387  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1388  // enter/leave scopes.
1389  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1390 
1391  /// A block containing a single 'unreachable' instruction. Created
1392  /// lazily by getUnreachableBlock().
1393  llvm::BasicBlock *UnreachableBlock = nullptr;
1394 
1395  /// Counts of the number return expressions in the function.
1396  unsigned NumReturnExprs = 0;
1397 
1398  /// Count the number of simple (constant) return expressions in the function.
1399  unsigned NumSimpleReturnExprs = 0;
1400 
1401  /// The last regular (non-return) debug location (breakpoint) in the function.
1402  SourceLocation LastStopPoint;
1403 
1404 public:
1405  /// Source location information about the default argument or member
1406  /// initializer expression we're evaluating, if any.
1408  using SourceLocExprScopeGuard =
1410 
1411  /// A scope within which we are constructing the fields of an object which
1412  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1413  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1415  public:
1416  FieldConstructionScope(CodeGenFunction &CGF, Address This)
1417  : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1418  CGF.CXXDefaultInitExprThis = This;
1419  }
1421  CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1422  }
1423 
1424  private:
1425  CodeGenFunction &CGF;
1426  Address OldCXXDefaultInitExprThis;
1427  };
1428 
1429  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1430  /// is overridden to be the object under construction.
1432  public:
1433  CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1434  : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1435  OldCXXThisAlignment(CGF.CXXThisAlignment),
1436  SourceLocScope(E, CGF.CurSourceLocExprScope) {
1437  CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1438  CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1439  }
1441  CGF.CXXThisValue = OldCXXThisValue;
1442  CGF.CXXThisAlignment = OldCXXThisAlignment;
1443  }
1444 
1445  public:
1446  CodeGenFunction &CGF;
1450  };
1451 
1453  CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1454  : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1455  };
1456 
1457  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1458  /// current loop index is overridden.
1460  public:
1461  ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1462  : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1463  CGF.ArrayInitIndex = Index;
1464  }
1466  CGF.ArrayInitIndex = OldArrayInitIndex;
1467  }
1468 
1469  private:
1470  CodeGenFunction &CGF;
1471  llvm::Value *OldArrayInitIndex;
1472  };
1473 
1475  public:
1477  : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1478  OldCurCodeDecl(CGF.CurCodeDecl),
1479  OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1480  OldCXXABIThisValue(CGF.CXXABIThisValue),
1481  OldCXXThisValue(CGF.CXXThisValue),
1482  OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1483  OldCXXThisAlignment(CGF.CXXThisAlignment),
1484  OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1485  OldCXXInheritedCtorInitExprArgs(
1486  std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1487  CGF.CurGD = GD;
1488  CGF.CurFuncDecl = CGF.CurCodeDecl =
1489  cast<CXXConstructorDecl>(GD.getDecl());
1490  CGF.CXXABIThisDecl = nullptr;
1491  CGF.CXXABIThisValue = nullptr;
1492  CGF.CXXThisValue = nullptr;
1493  CGF.CXXABIThisAlignment = CharUnits();
1494  CGF.CXXThisAlignment = CharUnits();
1495  CGF.ReturnValue = Address::invalid();
1496  CGF.FnRetTy = QualType();
1497  CGF.CXXInheritedCtorInitExprArgs.clear();
1498  }
1500  CGF.CurGD = OldCurGD;
1501  CGF.CurFuncDecl = OldCurFuncDecl;
1502  CGF.CurCodeDecl = OldCurCodeDecl;
1503  CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1504  CGF.CXXABIThisValue = OldCXXABIThisValue;
1505  CGF.CXXThisValue = OldCXXThisValue;
1506  CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1507  CGF.CXXThisAlignment = OldCXXThisAlignment;
1508  CGF.ReturnValue = OldReturnValue;
1509  CGF.FnRetTy = OldFnRetTy;
1510  CGF.CXXInheritedCtorInitExprArgs =
1511  std::move(OldCXXInheritedCtorInitExprArgs);
1512  }
1513 
1514  private:
1515  CodeGenFunction &CGF;
1516  GlobalDecl OldCurGD;
1517  const Decl *OldCurFuncDecl;
1518  const Decl *OldCurCodeDecl;
1519  ImplicitParamDecl *OldCXXABIThisDecl;
1520  llvm::Value *OldCXXABIThisValue;
1521  llvm::Value *OldCXXThisValue;
1522  CharUnits OldCXXABIThisAlignment;
1523  CharUnits OldCXXThisAlignment;
1524  Address OldReturnValue;
1525  QualType OldFnRetTy;
1526  CallArgList OldCXXInheritedCtorInitExprArgs;
1527  };
1528 
1529 private:
1530  /// CXXThisDecl - When generating code for a C++ member function,
1531  /// this will hold the implicit 'this' declaration.
1532  ImplicitParamDecl *CXXABIThisDecl = nullptr;
1533  llvm::Value *CXXABIThisValue = nullptr;
1534  llvm::Value *CXXThisValue = nullptr;
1535  CharUnits CXXABIThisAlignment;
1536  CharUnits CXXThisAlignment;
1537 
1538  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1539  /// this expression.
1540  Address CXXDefaultInitExprThis = Address::invalid();
1541 
1542  /// The current array initialization index when evaluating an
1543  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1544  llvm::Value *ArrayInitIndex = nullptr;
1545 
1546  /// The values of function arguments to use when evaluating
1547  /// CXXInheritedCtorInitExprs within this context.
1548  CallArgList CXXInheritedCtorInitExprArgs;
1549 
1550  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1551  /// destructor, this will hold the implicit argument (e.g. VTT).
1552  ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1553  llvm::Value *CXXStructorImplicitParamValue = nullptr;
1554 
1555  /// OutermostConditional - Points to the outermost active
1556  /// conditional control. This is used so that we know if a
1557  /// temporary should be destroyed conditionally.
1558  ConditionalEvaluation *OutermostConditional = nullptr;
1559 
1560  /// The current lexical scope.
1561  LexicalScope *CurLexicalScope = nullptr;
1562 
1563  /// The current source location that should be used for exception
1564  /// handling code.
1565  SourceLocation CurEHLocation;
1566 
1567  /// BlockByrefInfos - For each __block variable, contains
1568  /// information about the layout of the variable.
1569  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1570 
1571  /// Used by -fsanitize=nullability-return to determine whether the return
1572  /// value can be checked.
1573  llvm::Value *RetValNullabilityPrecondition = nullptr;
1574 
1575  /// Check if -fsanitize=nullability-return instrumentation is required for
1576  /// this function.
1577  bool requiresReturnValueNullabilityCheck() const {
1578  return RetValNullabilityPrecondition;
1579  }
1580 
1581  /// Used to store precise source locations for return statements by the
1582  /// runtime return value checks.
1583  Address ReturnLocation = Address::invalid();
1584 
1585  /// Check if the return value of this function requires sanitization.
1586  bool requiresReturnValueCheck() const {
1587  return requiresReturnValueNullabilityCheck() ||
1588  (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1589  CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1590  }
1591 
1592  llvm::BasicBlock *TerminateLandingPad = nullptr;
1593  llvm::BasicBlock *TerminateHandler = nullptr;
1594  llvm::BasicBlock *TrapBB = nullptr;
1595 
1596  /// Terminate funclets keyed by parent funclet pad.
1597  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1598 
1599  /// Largest vector width used in ths function. Will be used to create a
1600  /// function attribute.
1601  unsigned LargestVectorWidth = 0;
1602 
1603  /// True if we need emit the life-time markers.
1604  const bool ShouldEmitLifetimeMarkers;
1605 
1606  /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1607  /// the function metadata.
1608  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1609  llvm::Function *Fn);
1610 
1611 public:
1612  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1613  ~CodeGenFunction();
1614 
1615  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1616  ASTContext &getContext() const { return CGM.getContext(); }
1618  if (DisableDebugInfo)
1619  return nullptr;
1620  return DebugInfo;
1621  }
1622  void disableDebugInfo() { DisableDebugInfo = true; }
1623  void enableDebugInfo() { DisableDebugInfo = false; }
1624 
1626  return CGM.getCodeGenOpts().OptimizationLevel == 0;
1627  }
1628 
1629  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1630 
1631  /// Returns a pointer to the function's exception object and selector slot,
1632  /// which is assigned in every landing pad.
1633  Address getExceptionSlot();
1634  Address getEHSelectorSlot();
1635 
1636  /// Returns the contents of the function's exception object and selector
1637  /// slots.
1638  llvm::Value *getExceptionFromSlot();
1639  llvm::Value *getSelectorFromSlot();
1640 
1641  Address getNormalCleanupDestSlot();
1642 
1643  llvm::BasicBlock *getUnreachableBlock() {
1644  if (!UnreachableBlock) {
1645  UnreachableBlock = createBasicBlock("unreachable");
1646  new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1647  }
1648  return UnreachableBlock;
1649  }
1650 
1651  llvm::BasicBlock *getInvokeDest() {
1652  if (!EHStack.requiresLandingPad()) return nullptr;
1653  return getInvokeDestImpl();
1654  }
1655 
1656  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1657 
1658  const TargetInfo &getTarget() const { return Target; }
1659  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1661  return CGM.getTargetCodeGenInfo();
1662  }
1663 
1664  //===--------------------------------------------------------------------===//
1665  // Cleanups
1666  //===--------------------------------------------------------------------===//
1667 
1668  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1669 
1670  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1671  Address arrayEndPointer,
1672  QualType elementType,
1673  CharUnits elementAlignment,
1674  Destroyer *destroyer);
1675  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1676  llvm::Value *arrayEnd,
1677  QualType elementType,
1678  CharUnits elementAlignment,
1679  Destroyer *destroyer);
1680 
1681  void pushDestroy(QualType::DestructionKind dtorKind,
1682  Address addr, QualType type);
1683  void pushEHDestroy(QualType::DestructionKind dtorKind,
1684  Address addr, QualType type);
1685  void pushDestroy(CleanupKind kind, Address addr, QualType type,
1686  Destroyer *destroyer, bool useEHCleanupForArray);
1687  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1688  QualType type, Destroyer *destroyer,
1689  bool useEHCleanupForArray);
1690  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1691  llvm::Value *CompletePtr,
1692  QualType ElementType);
1693  void pushStackRestore(CleanupKind kind, Address SPMem);
1694  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1695  bool useEHCleanupForArray);
1696  llvm::Function *generateDestroyHelper(Address addr, QualType type,
1697  Destroyer *destroyer,
1698  bool useEHCleanupForArray,
1699  const VarDecl *VD);
1700  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1701  QualType elementType, CharUnits elementAlign,
1702  Destroyer *destroyer,
1703  bool checkZeroLength, bool useEHCleanup);
1704 
1705  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1706 
1707  /// Determines whether an EH cleanup is required to destroy a type
1708  /// with the given destruction kind.
1710  switch (kind) {
1711  case QualType::DK_none:
1712  return false;
1713  case QualType::DK_cxx_destructor:
1714  case QualType::DK_objc_weak_lifetime:
1715  case QualType::DK_nontrivial_c_struct:
1716  return getLangOpts().Exceptions;
1717  case QualType::DK_objc_strong_lifetime:
1718  return getLangOpts().Exceptions &&
1719  CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1720  }
1721  llvm_unreachable("bad destruction kind");
1722  }
1723 
1725  return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1726  }
1727 
1728  //===--------------------------------------------------------------------===//
1729  // Objective-C
1730  //===--------------------------------------------------------------------===//
1731 
1732  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1733 
1734  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1735 
1736  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1737  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1738  const ObjCPropertyImplDecl *PID);
1739  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1740  const ObjCPropertyImplDecl *propImpl,
1741  const ObjCMethodDecl *GetterMothodDecl,
1742  llvm::Constant *AtomicHelperFn);
1743 
1744  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1745  ObjCMethodDecl *MD, bool ctor);
1746 
1747  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1748  /// for the given property.
1749  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1750  const ObjCPropertyImplDecl *PID);
1751  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1752  const ObjCPropertyImplDecl *propImpl,
1753  llvm::Constant *AtomicHelperFn);
1754 
1755  //===--------------------------------------------------------------------===//
1756  // Block Bits
1757  //===--------------------------------------------------------------------===//
1758 
1759  /// Emit block literal.
1760  /// \return an LLVM value which is a pointer to a struct which contains
1761  /// information about the block, including the block invoke function, the
1762  /// captured variables, etc.
1763  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1764  static void destroyBlockInfos(CGBlockInfo *info);
1765 
1766  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1767  const CGBlockInfo &Info,
1768  const DeclMapTy &ldm,
1769  bool IsLambdaConversionToBlock,
1770  bool BuildGlobalBlock);
1771 
1772  /// Check if \p T is a C++ class that has a destructor that can throw.
1773  static bool cxxDestructorCanThrow(QualType T);
1774 
1775  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1776  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1777  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1778  const ObjCPropertyImplDecl *PID);
1779  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1780  const ObjCPropertyImplDecl *PID);
1781  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1782 
1783  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
1784  bool CanThrow);
1785 
1786  class AutoVarEmission;
1787 
1788  void emitByrefStructureInit(const AutoVarEmission &emission);
1789 
1790  /// Enter a cleanup to destroy a __block variable. Note that this
1791  /// cleanup should be a no-op if the variable hasn't left the stack
1792  /// yet; if a cleanup is required for the variable itself, that needs
1793  /// to be done externally.
1794  ///
1795  /// \param Kind Cleanup kind.
1796  ///
1797  /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
1798  /// structure that will be passed to _Block_object_dispose. When
1799  /// \p LoadBlockVarAddr is true, the address of the field of the block
1800  /// structure that holds the address of the __block structure.
1801  ///
1802  /// \param Flags The flag that will be passed to _Block_object_dispose.
1803  ///
1804  /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
1805  /// \p Addr to get the address of the __block structure.
1806  void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
1807  bool LoadBlockVarAddr, bool CanThrow);
1808 
1809  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1810  llvm::Value *ptr);
1811 
1812  Address LoadBlockStruct();
1813  Address GetAddrOfBlockDecl(const VarDecl *var);
1814 
1815  /// BuildBlockByrefAddress - Computes the location of the
1816  /// data in a variable which is declared as __block.
1817  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1818  bool followForward = true);
1819  Address emitBlockByrefAddress(Address baseAddr,
1820  const BlockByrefInfo &info,
1821  bool followForward,
1822  const llvm::Twine &name);
1823 
1824  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1825 
1826  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1827 
1828  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1829  const CGFunctionInfo &FnInfo);
1830 
1831  /// Annotate the function with an attribute that disables TSan checking at
1832  /// runtime.
1833  void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
1834 
1835  /// Emit code for the start of a function.
1836  /// \param Loc The location to be associated with the function.
1837  /// \param StartLoc The location of the function body.
1838  void StartFunction(GlobalDecl GD,
1839  QualType RetTy,
1840  llvm::Function *Fn,
1841  const CGFunctionInfo &FnInfo,
1842  const FunctionArgList &Args,
1844  SourceLocation StartLoc = SourceLocation());
1845 
1846  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1847 
1848  void EmitConstructorBody(FunctionArgList &Args);
1849  void EmitDestructorBody(FunctionArgList &Args);
1850  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1851  void EmitFunctionBody(const Stmt *Body);
1852  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1853 
1854  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1855  CallArgList &CallArgs);
1856  void EmitLambdaBlockInvokeBody();
1857  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1858  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1860  EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1861  }
1862  void EmitAsanPrologueOrEpilogue(bool Prologue);
1863 
1864  /// Emit the unified return block, trying to avoid its emission when
1865  /// possible.
1866  /// \return The debug location of the user written return statement if the
1867  /// return block is is avoided.
1868  llvm::DebugLoc EmitReturnBlock();
1869 
1870  /// FinishFunction - Complete IR generation of the current function. It is
1871  /// legal to call this function even if there is no current insertion point.
1872  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1873 
1874  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1875  const CGFunctionInfo &FnInfo, bool IsUnprototyped);
1876 
1877  void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
1878  const ThunkInfo *Thunk, bool IsUnprototyped);
1879 
1880  void FinishThunk();
1881 
1882  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1883  void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
1884  llvm::FunctionCallee Callee);
1885 
1886  /// Generate a thunk for the given method.
1887  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1888  GlobalDecl GD, const ThunkInfo &Thunk,
1889  bool IsUnprototyped);
1890 
1891  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1892  const CGFunctionInfo &FnInfo,
1893  GlobalDecl GD, const ThunkInfo &Thunk);
1894 
1895  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1896  FunctionArgList &Args);
1897 
1898  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1899 
1900  /// Struct with all information about dynamic [sub]class needed to set vptr.
1901  struct VPtr {
1906  };
1907 
1908  /// Initialize the vtable pointer of the given subobject.
1909  void InitializeVTablePointer(const VPtr &vptr);
1910 
1912 
1913  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1914  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1915 
1916  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1917  CharUnits OffsetFromNearestVBase,
1918  bool BaseIsNonVirtualPrimaryBase,
1919  const CXXRecordDecl *VTableClass,
1920  VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1921 
1922  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1923 
1924  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1925  /// to by This.
1926  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1927  const CXXRecordDecl *VTableClass);
1928 
1937  };
1938 
1939  /// Derived is the presumed address of an object of type T after a
1940  /// cast. If T is a polymorphic class type, emit a check that the virtual
1941  /// table for Derived belongs to a class derived from T.
1942  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1943  bool MayBeNull, CFITypeCheckKind TCK,
1944  SourceLocation Loc);
1945 
1946  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1947  /// If vptr CFI is enabled, emit a check that VTable is valid.
1948  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1949  CFITypeCheckKind TCK, SourceLocation Loc);
1950 
1951  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1952  /// RD using llvm.type.test.
1953  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1954  CFITypeCheckKind TCK, SourceLocation Loc);
1955 
1956  /// If whole-program virtual table optimization is enabled, emit an assumption
1957  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1958  /// enabled, emit a check that VTable is a member of RD's type identifier.
1959  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1960  llvm::Value *VTable, SourceLocation Loc);
1961 
1962  /// Returns whether we should perform a type checked load when loading a
1963  /// virtual function for virtual calls to members of RD. This is generally
1964  /// true when both vcall CFI and whole-program-vtables are enabled.
1965  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1966 
1967  /// Emit a type checked load from the given vtable.
1968  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1969  uint64_t VTableByteOffset);
1970 
1971  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1972  /// given phase of destruction for a destructor. The end result
1973  /// should call destructors on members and base classes in reverse
1974  /// order of their construction.
1975  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1976 
1977  /// ShouldInstrumentFunction - Return true if the current function should be
1978  /// instrumented with __cyg_profile_func_* calls
1979  bool ShouldInstrumentFunction();
1980 
1981  /// ShouldXRayInstrument - Return true if the current function should be
1982  /// instrumented with XRay nop sleds.
1983  bool ShouldXRayInstrumentFunction() const;
1984 
1985  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
1986  /// XRay custom event handling calls.
1987  bool AlwaysEmitXRayCustomEvents() const;
1988 
1989  /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
1990  /// XRay typed event handling calls.
1991  bool AlwaysEmitXRayTypedEvents() const;
1992 
1993  /// Encode an address into a form suitable for use in a function prologue.
1994  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1995  llvm::Constant *Addr);
1996 
1997  /// Decode an address used in a function prologue, encoded by \c
1998  /// EncodeAddrForUseInPrologue.
1999  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2000  llvm::Value *EncodedAddr);
2001 
2002  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2003  /// arguments for the given function. This is also responsible for naming the
2004  /// LLVM function arguments.
2005  void EmitFunctionProlog(const CGFunctionInfo &FI,
2006  llvm::Function *Fn,
2007  const FunctionArgList &Args);
2008 
2009  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2010  /// given temporary.
2011  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2012  SourceLocation EndLoc);
2013 
2014  /// Emit a test that checks if the return value \p RV is nonnull.
2015  void EmitReturnValueCheck(llvm::Value *RV);
2016 
2017  /// EmitStartEHSpec - Emit the start of the exception spec.
2018  void EmitStartEHSpec(const Decl *D);
2019 
2020  /// EmitEndEHSpec - Emit the end of the exception spec.
2021  void EmitEndEHSpec(const Decl *D);
2022 
2023  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2024  llvm::BasicBlock *getTerminateLandingPad();
2025 
2026  /// getTerminateLandingPad - Return a cleanup funclet that just calls
2027  /// terminate.
2028  llvm::BasicBlock *getTerminateFunclet();
2029 
2030  /// getTerminateHandler - Return a handler (not a landing pad, just
2031  /// a catch handler) that just calls terminate. This is used when
2032  /// a terminate scope encloses a try.
2033  llvm::BasicBlock *getTerminateHandler();
2034 
2035  llvm::Type *ConvertTypeForMem(QualType T);
2036  llvm::Type *ConvertType(QualType T);
2037  llvm::Type *ConvertType(const TypeDecl *T) {
2038  return ConvertType(getContext().getTypeDeclType(T));
2039  }
2040 
2041  /// LoadObjCSelf - Load the value of self. This function is only valid while
2042  /// generating code for an Objective-C method.
2043  llvm::Value *LoadObjCSelf();
2044 
2045  /// TypeOfSelfObject - Return type of object that this self represents.
2046  QualType TypeOfSelfObject();
2047 
2048  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2049  static TypeEvaluationKind getEvaluationKind(QualType T);
2050 
2052  return getEvaluationKind(T) == TEK_Scalar;
2053  }
2054 
2056  return getEvaluationKind(T) == TEK_Aggregate;
2057  }
2058 
2059  /// createBasicBlock - Create an LLVM basic block.
2060  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2061  llvm::Function *parent = nullptr,
2062  llvm::BasicBlock *before = nullptr) {
2063  return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2064  }
2065 
2066  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2067  /// label maps to.
2068  JumpDest getJumpDestForLabel(const LabelDecl *S);
2069 
2070  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2071  /// another basic block, simplify it. This assumes that no other code could
2072  /// potentially reference the basic block.
2073  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2074 
2075  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2076  /// adding a fall-through branch from the current insert block if
2077  /// necessary. It is legal to call this function even if there is no current
2078  /// insertion point.
2079  ///
2080  /// IsFinished - If true, indicates that the caller has finished emitting
2081  /// branches to the given block and does not expect to emit code into it. This
2082  /// means the block can be ignored if it is unreachable.
2083  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2084 
2085  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2086  /// near its uses, and leave the insertion point in it.
2087  void EmitBlockAfterUses(llvm::BasicBlock *BB);
2088 
2089  /// EmitBranch - Emit a branch to the specified basic block from the current
2090  /// insert block, taking care to avoid creation of branches from dummy
2091  /// blocks. It is legal to call this function even if there is no current
2092  /// insertion point.
2093  ///
2094  /// This function clears the current insertion point. The caller should follow
2095  /// calls to this function with calls to Emit*Block prior to generation new
2096  /// code.
2097  void EmitBranch(llvm::BasicBlock *Block);
2098 
2099  /// HaveInsertPoint - True if an insertion point is defined. If not, this
2100  /// indicates that the current code being emitted is unreachable.
2101  bool HaveInsertPoint() const {
2102  return Builder.GetInsertBlock() != nullptr;
2103  }
2104 
2105  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2106  /// emitted IR has a place to go. Note that by definition, if this function
2107  /// creates a block then that block is unreachable; callers may do better to
2108  /// detect when no insertion point is defined and simply skip IR generation.
2110  if (!HaveInsertPoint())
2111  EmitBlock(createBasicBlock());
2112  }
2113 
2114  /// ErrorUnsupported - Print out an error that codegen doesn't support the
2115  /// specified stmt yet.
2116  void ErrorUnsupported(const Stmt *S, const char *Type);
2117 
2118  //===--------------------------------------------------------------------===//
2119  // Helpers
2120  //===--------------------------------------------------------------------===//
2121 
2124  return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2125  CGM.getTBAAAccessInfo(T));
2126  }
2127 
2129  TBAAAccessInfo TBAAInfo) {
2130  return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2131  }
2132 
2135  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2136  LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2137  }
2138 
2140  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2141  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2142  BaseInfo, TBAAInfo);
2143  }
2144 
2145  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2146  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2147  CharUnits getNaturalTypeAlignment(QualType T,
2148  LValueBaseInfo *BaseInfo = nullptr,
2149  TBAAAccessInfo *TBAAInfo = nullptr,
2150  bool forPointeeType = false);
2151  CharUnits getNaturalPointeeTypeAlignment(QualType T,
2152  LValueBaseInfo *BaseInfo = nullptr,
2153  TBAAAccessInfo *TBAAInfo = nullptr);
2154 
2155  Address EmitLoadOfReference(LValue RefLVal,
2156  LValueBaseInfo *PointeeBaseInfo = nullptr,
2157  TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2158  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2160  AlignmentSource Source =
2162  LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2163  CGM.getTBAAAccessInfo(RefTy));
2164  return EmitLoadOfReferenceLValue(RefLVal);
2165  }
2166 
2167  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2168  LValueBaseInfo *BaseInfo = nullptr,
2169  TBAAAccessInfo *TBAAInfo = nullptr);
2170  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2171 
2172  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2173  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2174  /// insertion point of the builder. The caller is responsible for setting an
2175  /// appropriate alignment on
2176  /// the alloca.
2177  ///
2178  /// \p ArraySize is the number of array elements to be allocated if it
2179  /// is not nullptr.
2180  ///
2181  /// LangAS::Default is the address space of pointers to local variables and
2182  /// temporaries, as exposed in the source language. In certain
2183  /// configurations, this is not the same as the alloca address space, and a
2184  /// cast is needed to lift the pointer from the alloca AS into
2185  /// LangAS::Default. This can happen when the target uses a restricted
2186  /// address space for the stack but the source language requires
2187  /// LangAS::Default to be a generic address space. The latter condition is
2188  /// common for most programming languages; OpenCL is an exception in that
2189  /// LangAS::Default is the private address space, which naturally maps
2190  /// to the stack.
2191  ///
2192  /// Because the address of a temporary is often exposed to the program in
2193  /// various ways, this function will perform the cast. The original alloca
2194  /// instruction is returned through \p Alloca if it is not nullptr.
2195  ///
2196  /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2197  /// more efficient if the caller knows that the address will not be exposed.
2198  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2199  llvm::Value *ArraySize = nullptr);
2200  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2201  const Twine &Name = "tmp",
2202  llvm::Value *ArraySize = nullptr,
2203  Address *Alloca = nullptr);
2204  Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2205  const Twine &Name = "tmp",
2206  llvm::Value *ArraySize = nullptr);
2207 
2208  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2209  /// default ABI alignment of the given LLVM type.
2210  ///
2211  /// IMPORTANT NOTE: This is *not* generally the right alignment for
2212  /// any given AST type that happens to have been lowered to the
2213  /// given IR type. This should only ever be used for function-local,
2214  /// IR-driven manipulations like saving and restoring a value. Do
2215  /// not hand this address off to arbitrary IRGen routines, and especially
2216  /// do not pass it as an argument to a function that might expect a
2217  /// properly ABI-aligned value.
2218  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2219  const Twine &Name = "tmp");
2220 
2221  /// InitTempAlloca - Provide an initial value for the given alloca which
2222  /// will be observable at all locations in the function.
2223  ///
2224  /// The address should be something that was returned from one of
2225  /// the CreateTempAlloca or CreateMemTemp routines, and the
2226  /// initializer must be valid in the entry block (i.e. it must
2227  /// either be a constant or an argument value).
2228  void InitTempAlloca(Address Alloca, llvm::Value *Value);
2229 
2230  /// CreateIRTemp - Create a temporary IR object of the given type, with
2231  /// appropriate alignment. This routine should only be used when an temporary
2232  /// value needs to be stored into an alloca (for example, to avoid explicit
2233  /// PHI construction), but the type is the IR type, not the type appropriate
2234  /// for storing in memory.
2235  ///
2236  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2237  /// ConvertType instead of ConvertTypeForMem.
2238  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2239 
2240  /// CreateMemTemp - Create a temporary memory object of the given type, with
2241  /// appropriate alignmen and cast it to the default address space. Returns
2242  /// the original alloca instruction by \p Alloca if it is not nullptr.
2243  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2244  Address *Alloca = nullptr);
2245  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2246  Address *Alloca = nullptr);
2247 
2248  /// CreateMemTemp - Create a temporary memory object of the given type, with
2249  /// appropriate alignmen without casting it to the default address space.
2250  Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2251  Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2252  const Twine &Name = "tmp");
2253 
2254  /// CreateAggTemp - Create a temporary memory object for the given
2255  /// aggregate type.
2256  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2257  return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2258  T.getQualifiers(),
2259  AggValueSlot::IsNotDestructed,
2260  AggValueSlot::DoesNotNeedGCBarriers,
2261  AggValueSlot::IsNotAliased,
2262  AggValueSlot::DoesNotOverlap);
2263  }
2264 
2265  /// Emit a cast to void* in the appropriate address space.
2266  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2267 
2268  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2269  /// expression and compare the result against zero, returning an Int1Ty value.
2270  llvm::Value *EvaluateExprAsBool(const Expr *E);
2271 
2272  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2273  void EmitIgnoredExpr(const Expr *E);
2274 
2275  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2276  /// any type. The result is returned as an RValue struct. If this is an
2277  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2278  /// the result should be returned.
2279  ///
2280  /// \param ignoreResult True if the resulting value isn't used.
2281  RValue EmitAnyExpr(const Expr *E,
2282  AggValueSlot aggSlot = AggValueSlot::ignored(),
2283  bool ignoreResult = false);
2284 
2285  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2286  // or the value of the expression, depending on how va_list is defined.
2287  Address EmitVAListRef(const Expr *E);
2288 
2289  /// Emit a "reference" to a __builtin_ms_va_list; this is
2290  /// always the value of the expression, because a __builtin_ms_va_list is a
2291  /// pointer to a char.
2292  Address EmitMSVAListRef(const Expr *E);
2293 
2294  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2295  /// always be accessible even if no aggregate location is provided.
2296  RValue EmitAnyExprToTemp(const Expr *E);
2297 
2298  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2299  /// arbitrary expression into the given memory location.
2300  void EmitAnyExprToMem(const Expr *E, Address Location,
2301  Qualifiers Quals, bool IsInitializer);
2302 
2303  void EmitAnyExprToExn(const Expr *E, Address Addr);
2304 
2305  /// EmitExprAsInit - Emits the code necessary to initialize a
2306  /// location in memory with the given initializer.
2307  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2308  bool capturedByInit);
2309 
2310  /// hasVolatileMember - returns true if aggregate type has a volatile
2311  /// member.
2313  if (const RecordType *RT = T->getAs<RecordType>()) {
2314  const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2315  return RD->hasVolatileMember();
2316  }
2317  return false;
2318  }
2319 
2320  /// Determine whether a return value slot may overlap some other object.
2322  // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2323  // class subobjects. These cases may need to be revisited depending on the
2324  // resolution of the relevant core issue.
2325  return AggValueSlot::DoesNotOverlap;
2326  }
2327 
2328  /// Determine whether a field initialization may overlap some other object.
2329  AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2330 
2331  /// Determine whether a base class initialization may overlap some other
2332  /// object.
2333  AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2334  const CXXRecordDecl *BaseRD,
2335  bool IsVirtual);
2336 
2337  /// Emit an aggregate assignment.
2338  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2339  bool IsVolatile = hasVolatileMember(EltTy);
2340  EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2341  }
2342 
2344  AggValueSlot::Overlap_t MayOverlap) {
2345  EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2346  }
2347 
2348  /// EmitAggregateCopy - Emit an aggregate copy.
2349  ///
2350  /// \param isVolatile \c true iff either the source or the destination is
2351  /// volatile.
2352  /// \param MayOverlap Whether the tail padding of the destination might be
2353  /// occupied by some other object. More efficient code can often be
2354  /// generated if not.
2355  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2356  AggValueSlot::Overlap_t MayOverlap,
2357  bool isVolatile = false);
2358 
2359  /// GetAddrOfLocalVar - Return the address of a local variable.
2361  auto it = LocalDeclMap.find(VD);
2362  assert(it != LocalDeclMap.end() &&
2363  "Invalid argument to GetAddrOfLocalVar(), no decl!");
2364  return it->second;
2365  }
2366 
2367  /// Given an opaque value expression, return its LValue mapping if it exists,
2368  /// otherwise create one.
2369  LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2370 
2371  /// Given an opaque value expression, return its RValue mapping if it exists,
2372  /// otherwise create one.
2373  RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2374 
2375  /// Get the index of the current ArrayInitLoopExpr, if any.
2376  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2377 
2378  /// getAccessedFieldNo - Given an encoded value and a result number, return
2379  /// the input field number being accessed.
2380  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2381 
2382  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2383  llvm::BasicBlock *GetIndirectGotoBlock();
2384 
2385  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2386  static bool IsWrappedCXXThis(const Expr *E);
2387 
2388  /// EmitNullInitialization - Generate code to set a value of the given type to
2389  /// null, If the type contains data member pointers, they will be initialized
2390  /// to -1 in accordance with the Itanium C++ ABI.
2391  void EmitNullInitialization(Address DestPtr, QualType Ty);
2392 
2393  /// Emits a call to an LLVM variable-argument intrinsic, either
2394  /// \c llvm.va_start or \c llvm.va_end.
2395  /// \param ArgValue A reference to the \c va_list as emitted by either
2396  /// \c EmitVAListRef or \c EmitMSVAListRef.
2397  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2398  /// calls \c llvm.va_end.
2399  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2400 
2401  /// Generate code to get an argument from the passed in pointer
2402  /// and update it accordingly.
2403  /// \param VE The \c VAArgExpr for which to generate code.
2404  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2405  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2406  /// \returns A pointer to the argument.
2407  // FIXME: We should be able to get rid of this method and use the va_arg
2408  // instruction in LLVM instead once it works well enough.
2409  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2410 
2411  /// emitArrayLength - Compute the length of an array, even if it's a
2412  /// VLA, and drill down to the base element type.
2413  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2414  QualType &baseType,
2415  Address &addr);
2416 
2417  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2418  /// the given variably-modified type and store them in the VLASizeMap.
2419  ///
2420  /// This function can be called with a null (unreachable) insert point.
2421  void EmitVariablyModifiedType(QualType Ty);
2422 
2423  struct VlaSizePair {
2426 
2427  VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2428  };
2429 
2430  /// Return the number of elements for a single dimension
2431  /// for the given array type.
2432  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2433  VlaSizePair getVLAElements1D(QualType vla);
2434 
2435  /// Returns an LLVM value that corresponds to the size,
2436  /// in non-variably-sized elements, of a variable length array type,
2437  /// plus that largest non-variably-sized element type. Assumes that
2438  /// the type has already been emitted with EmitVariablyModifiedType.
2439  VlaSizePair getVLASize(const VariableArrayType *vla);
2440  VlaSizePair getVLASize(QualType vla);
2441 
2442  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2443  /// generating code for an C++ member function.
2445  assert(CXXThisValue && "no 'this' value for this function");
2446  return CXXThisValue;
2447  }
2448  Address LoadCXXThisAddress();
2449 
2450  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2451  /// virtual bases.
2452  // FIXME: Every place that calls LoadCXXVTT is something
2453  // that needs to be abstracted properly.
2455  assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2456  return CXXStructorImplicitParamValue;
2457  }
2458 
2459  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2460  /// complete class to the given direct base.
2461  Address
2462  GetAddressOfDirectBaseInCompleteClass(Address Value,
2463  const CXXRecordDecl *Derived,
2464  const CXXRecordDecl *Base,
2465  bool BaseIsVirtual);
2466 
2467  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2468 
2469  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2470  /// load of 'this' and returns address of the base class.
2471  Address GetAddressOfBaseClass(Address Value,
2472  const CXXRecordDecl *Derived,
2475  bool NullCheckValue, SourceLocation Loc);
2476 
2477  Address GetAddressOfDerivedClass(Address Value,
2478  const CXXRecordDecl *Derived,
2481  bool NullCheckValue);
2482 
2483  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2484  /// base constructor/destructor with virtual bases.
2485  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2486  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2487  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2488  bool Delegating);
2489 
2490  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2491  CXXCtorType CtorType,
2492  const FunctionArgList &Args,
2493  SourceLocation Loc);
2494  // It's important not to confuse this and the previous function. Delegating
2495  // constructors are the C++0x feature. The constructor delegate optimization
2496  // is used to reduce duplication in the base and complete consturctors where
2497  // they are substantially the same.
2498  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2499  const FunctionArgList &Args);
2500 
2501  /// Emit a call to an inheriting constructor (that is, one that invokes a
2502  /// constructor inherited from a base class) by inlining its definition. This
2503  /// is necessary if the ABI does not support forwarding the arguments to the
2504  /// base class constructor (because they're variadic or similar).
2505  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2506  CXXCtorType CtorType,
2507  bool ForVirtualBase,
2508  bool Delegating,
2509  CallArgList &Args);
2510 
2511  /// Emit a call to a constructor inherited from a base class, passing the
2512  /// current constructor's arguments along unmodified (without even making
2513  /// a copy).
2514  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2515  bool ForVirtualBase, Address This,
2516  bool InheritedFromVBase,
2517  const CXXInheritedCtorInitExpr *E);
2518 
2519  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2520  bool ForVirtualBase, bool Delegating,
2521  AggValueSlot ThisAVS, const CXXConstructExpr *E);
2522 
2523  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2524  bool ForVirtualBase, bool Delegating,
2525  Address This, CallArgList &Args,
2526  AggValueSlot::Overlap_t Overlap,
2527  SourceLocation Loc, bool NewPointerIsChecked);
2528 
2529  /// Emit assumption load for all bases. Requires to be be called only on
2530  /// most-derived class and not under construction of the object.
2531  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2532 
2533  /// Emit assumption that vptr load == global vtable.
2534  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2535 
2536  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2537  Address This, Address Src,
2538  const CXXConstructExpr *E);
2539 
2540  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2541  const ArrayType *ArrayTy,
2542  Address ArrayPtr,
2543  const CXXConstructExpr *E,
2544  bool NewPointerIsChecked,
2545  bool ZeroInitialization = false);
2546 
2547  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2548  llvm::Value *NumElements,
2549  Address ArrayPtr,
2550  const CXXConstructExpr *E,
2551  bool NewPointerIsChecked,
2552  bool ZeroInitialization = false);
2553 
2554  static Destroyer destroyCXXObject;
2555 
2556  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2557  bool ForVirtualBase, bool Delegating,
2558  Address This);
2559 
2560  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2561  llvm::Type *ElementTy, Address NewPtr,
2562  llvm::Value *NumElements,
2563  llvm::Value *AllocSizeWithoutCookie);
2564 
2565  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2566  Address Ptr);
2567 
2568  llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2569  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2570 
2571  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2572  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2573 
2574  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2575  QualType DeleteTy, llvm::Value *NumElements = nullptr,
2576  CharUnits CookieSize = CharUnits());
2577 
2578  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2579  const CallExpr *TheCallExpr, bool IsDelete);
2580 
2581  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2582  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2583  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2584 
2585  /// Situations in which we might emit a check for the suitability of a
2586  /// pointer or glvalue.
2588  /// Checking the operand of a load. Must be suitably sized and aligned.
2590  /// Checking the destination of a store. Must be suitably sized and aligned.
2592  /// Checking the bound value in a reference binding. Must be suitably sized
2593  /// and aligned, but is not required to refer to an object (until the
2594  /// reference is used), per core issue 453.
2596  /// Checking the object expression in a non-static data member access. Must
2597  /// be an object within its lifetime.
2599  /// Checking the 'this' pointer for a call to a non-static member function.
2600  /// Must be an object within its lifetime.
2602  /// Checking the 'this' pointer for a constructor call.
2604  /// Checking the operand of a static_cast to a derived pointer type. Must be
2605  /// null or an object within its lifetime.
2607  /// Checking the operand of a static_cast to a derived reference type. Must
2608  /// be an object within its lifetime.
2610  /// Checking the operand of a cast to a base object. Must be suitably sized
2611  /// and aligned.
2613  /// Checking the operand of a cast to a virtual base object. Must be an
2614  /// object within its lifetime.
2616  /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2618  /// Checking the operand of a dynamic_cast or a typeid expression. Must be
2619  /// null or an object within its lifetime.
2620  TCK_DynamicOperation
2621  };
2622 
2623  /// Determine whether the pointer type check \p TCK permits null pointers.
2624  static bool isNullPointerAllowed(TypeCheckKind TCK);
2625 
2626  /// Determine whether the pointer type check \p TCK requires a vptr check.
2627  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2628 
2629  /// Whether any type-checking sanitizers are enabled. If \c false,
2630  /// calls to EmitTypeCheck can be skipped.
2631  bool sanitizePerformTypeCheck() const;
2632 
2633  /// Emit a check that \p V is the address of storage of the
2634  /// appropriate size and alignment for an object of type \p Type
2635  /// (or if ArraySize is provided, for an array of that bound).
2636  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2637  QualType Type, CharUnits Alignment = CharUnits::Zero(),
2638  SanitizerSet SkippedChecks = SanitizerSet(),
2639  llvm::Value *ArraySize = nullptr);
2640 
2641  /// Emit a check that \p Base points into an array object, which
2642  /// we can access at index \p Index. \p Accessed should be \c false if we
2643  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2644  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2645  QualType IndexType, bool Accessed);
2646 
2647  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2648  bool isInc, bool isPre);
2649  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2650  bool isInc, bool isPre);
2651 
2652  /// Converts Location to a DebugLoc, if debug information is enabled.
2653  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2654 
2655 
2656  //===--------------------------------------------------------------------===//
2657  // Declaration Emission
2658  //===--------------------------------------------------------------------===//
2659 
2660  /// EmitDecl - Emit a declaration.
2661  ///
2662  /// This function can be called with a null (unreachable) insert point.
2663  void EmitDecl(const Decl &D);
2664 
2665  /// EmitVarDecl - Emit a local variable declaration.
2666  ///
2667  /// This function can be called with a null (unreachable) insert point.
2668  void EmitVarDecl(const VarDecl &D);
2669 
2670  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2671  bool capturedByInit);
2672 
2673  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2674  llvm::Value *Address);
2675 
2676  /// Determine whether the given initializer is trivial in the sense
2677  /// that it requires no code to be generated.
2678  bool isTrivialInitializer(const Expr *Init);
2679 
2680  /// EmitAutoVarDecl - Emit an auto variable declaration.
2681  ///
2682  /// This function can be called with a null (unreachable) insert point.
2683  void EmitAutoVarDecl(const VarDecl &D);
2684 
2686  friend class CodeGenFunction;
2687 
2688  const VarDecl *Variable;
2689 
2690  /// The address of the alloca for languages with explicit address space
2691  /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2692  /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2693  /// as a global constant.
2694  Address Addr;
2695 
2696  llvm::Value *NRVOFlag;
2697 
2698  /// True if the variable is a __block variable that is captured by an
2699  /// escaping block.
2700  bool IsEscapingByRef;
2701 
2702  /// True if the variable is of aggregate type and has a constant
2703  /// initializer.
2704  bool IsConstantAggregate;
2705 
2706  /// Non-null if we should use lifetime annotations.
2707  llvm::Value *SizeForLifetimeMarkers;
2708 
2709  /// Address with original alloca instruction. Invalid if the variable was
2710  /// emitted as a global constant.
2711  Address AllocaAddr;
2712 
2713  struct Invalid {};
2714  AutoVarEmission(Invalid)
2715  : Variable(nullptr), Addr(Address::invalid()),
2716  AllocaAddr(Address::invalid()) {}
2717 
2718  AutoVarEmission(const VarDecl &variable)
2719  : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2720  IsEscapingByRef(false), IsConstantAggregate(false),
2721  SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2722 
2723  bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2724 
2725  public:
2726  static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2727 
2728  bool useLifetimeMarkers() const {
2729  return SizeForLifetimeMarkers != nullptr;
2730  }
2732  assert(useLifetimeMarkers());
2733  return SizeForLifetimeMarkers;
2734  }
2735 
2736  /// Returns the raw, allocated address, which is not necessarily
2737  /// the address of the object itself. It is casted to default
2738  /// address space for address space agnostic languages.
2740  return Addr;
2741  }
2742 
2743  /// Returns the address for the original alloca instruction.
2744  Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2745 
2746  /// Returns the address of the object within this declaration.
2747  /// Note that this does not chase the forwarding pointer for
2748  /// __block decls.
2749  Address getObjectAddress(CodeGenFunction &CGF) const {
2750  if (!IsEscapingByRef) return Addr;
2751 
2752  return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2753  }
2754  };
2755  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2756  void EmitAutoVarInit(const AutoVarEmission &emission);
2757  void EmitAutoVarCleanups(const AutoVarEmission &emission);
2758  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2759  QualType::DestructionKind dtorKind);
2760 
2761  /// Emits the alloca and debug information for the size expressions for each
2762  /// dimension of an array. It registers the association of its (1-dimensional)
2763  /// QualTypes and size expression's debug node, so that CGDebugInfo can
2764  /// reference this node when creating the DISubrange object to describe the
2765  /// array types.
2766  void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2767  const VarDecl &D,
2768  bool EmitDebugInfo);
2769 
2770  void EmitStaticVarDecl(const VarDecl &D,
2771  llvm::GlobalValue::LinkageTypes Linkage);
2772 
2773  class ParamValue {
2774  llvm::Value *Value;
2775  unsigned Alignment;
2776  ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2777  public:
2779  return ParamValue(value, 0);
2780  }
2782  assert(!addr.getAlignment().isZero());
2783  return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2784  }
2785 
2786  bool isIndirect() const { return Alignment != 0; }
2787  llvm::Value *getAnyValue() const { return Value; }
2788 
2790  assert(!isIndirect());
2791  return Value;
2792  }
2793 
2795  assert(isIndirect());
2796  return Address(Value, CharUnits::fromQuantity(Alignment));
2797  }
2798  };
2799 
2800  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2801  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2802 
2803  /// protectFromPeepholes - Protect a value that we're intending to
2804  /// store to the side, but which will probably be used later, from
2805  /// aggressive peepholing optimizations that might delete it.
2806  ///
2807  /// Pass the result to unprotectFromPeepholes to declare that
2808  /// protection is no longer required.
2809  ///
2810  /// There's no particular reason why this shouldn't apply to
2811  /// l-values, it's just that no existing peepholes work on pointers.
2812  PeepholeProtection protectFromPeepholes(RValue rvalue);
2813  void unprotectFromPeepholes(PeepholeProtection protection);
2814 
2815  void EmitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
2816  SourceLocation Loc,
2817  SourceLocation AssumptionLoc,
2818  llvm::Value *Alignment,
2819  llvm::Value *OffsetValue,
2820  llvm::Value *TheCheck,
2821  llvm::Instruction *Assumption);
2822 
2823  void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
2824  SourceLocation Loc, SourceLocation AssumptionLoc,
2825  llvm::Value *Alignment,
2826  llvm::Value *OffsetValue = nullptr);
2827 
2828  void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
2829  SourceLocation Loc, SourceLocation AssumptionLoc,
2830  unsigned Alignment,
2831  llvm::Value *OffsetValue = nullptr);
2832 
2833  void EmitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
2834  SourceLocation AssumptionLoc, unsigned Alignment,
2835  llvm::Value *OffsetValue = nullptr);
2836 
2837  //===--------------------------------------------------------------------===//
2838  // Statement Emission
2839  //===--------------------------------------------------------------------===//
2840 
2841  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2842  void EmitStopPoint(const Stmt *S);
2843 
2844  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2845  /// this function even if there is no current insertion point.
2846  ///
2847  /// This function may clear the current insertion point; callers should use
2848  /// EnsureInsertPoint if they wish to subsequently generate code without first
2849  /// calling EmitBlock, EmitBranch, or EmitStmt.
2850  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2851 
2852  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2853  /// necessarily require an insertion point or debug information; typically
2854  /// because the statement amounts to a jump or a container of other
2855  /// statements.
2856  ///
2857  /// \return True if the statement was handled.
2858  bool EmitSimpleStmt(const Stmt *S);
2859 
2860  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2861  AggValueSlot AVS = AggValueSlot::ignored());
2862  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2863  bool GetLast = false,
2864  AggValueSlot AVS =
2865  AggValueSlot::ignored());
2866 
2867  /// EmitLabel - Emit the block for the given label. It is legal to call this
2868  /// function even if there is no current insertion point.
2869  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2870 
2871  void EmitLabelStmt(const LabelStmt &S);
2872  void EmitAttributedStmt(const AttributedStmt &S);
2873  void EmitGotoStmt(const GotoStmt &S);
2874  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2875  void EmitIfStmt(const IfStmt &S);
2876 
2877  void EmitWhileStmt(const WhileStmt &S,
2878  ArrayRef<const Attr *> Attrs = None);
2879  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2880  void EmitForStmt(const ForStmt &S,
2881  ArrayRef<const Attr *> Attrs = None);
2882  void EmitReturnStmt(const ReturnStmt &S);
2883  void EmitDeclStmt(const DeclStmt &S);
2884  void EmitBreakStmt(const BreakStmt &S);
2885  void EmitContinueStmt(const ContinueStmt &S);
2886  void EmitSwitchStmt(const SwitchStmt &S);
2887  void EmitDefaultStmt(const DefaultStmt &S);
2888  void EmitCaseStmt(const CaseStmt &S);
2889  void EmitCaseStmtRange(const CaseStmt &S);
2890  void EmitAsmStmt(const AsmStmt &S);
2891 
2892  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2893  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2894  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2895  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2896  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2897 
2898  void EmitCoroutineBody(const CoroutineBodyStmt &S);
2899  void EmitCoreturnStmt(const CoreturnStmt &S);
2900  RValue EmitCoawaitExpr(const CoawaitExpr &E,
2901  AggValueSlot aggSlot = AggValueSlot::ignored(),
2902  bool ignoreResult = false);
2903  LValue EmitCoawaitLValue(const CoawaitExpr *E);
2904  RValue EmitCoyieldExpr(const CoyieldExpr &E,
2905  AggValueSlot aggSlot = AggValueSlot::ignored(),
2906  bool ignoreResult = false);
2907  LValue EmitCoyieldLValue(const CoyieldExpr *E);
2908  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2909 
2910  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2911  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2912 
2913  void EmitCXXTryStmt(const CXXTryStmt &S);
2914  void EmitSEHTryStmt(const SEHTryStmt &S);
2915  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2916  void EnterSEHTryStmt(const SEHTryStmt &S);
2917  void ExitSEHTryStmt(const SEHTryStmt &S);
2918 
2919  void pushSEHCleanup(CleanupKind kind,
2920  llvm::Function *FinallyFunc);
2921  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2922  const Stmt *OutlinedStmt);
2923 
2924  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2925  const SEHExceptStmt &Except);
2926 
2927  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2928  const SEHFinallyStmt &Finally);
2929 
2930  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2931  llvm::Value *ParentFP,
2932  llvm::Value *EntryEBP);
2933  llvm::Value *EmitSEHExceptionCode();
2934  llvm::Value *EmitSEHExceptionInfo();
2935  llvm::Value *EmitSEHAbnormalTermination();
2936 
2937  /// Emit simple code for OpenMP directives in Simd-only mode.
2938  void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
2939 
2940  /// Scan the outlined statement for captures from the parent function. For
2941  /// each capture, mark the capture as escaped and emit a call to
2942  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2943  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2944  bool IsFilter);
2945 
2946  /// Recovers the address of a local in a parent function. ParentVar is the
2947  /// address of the variable used in the immediate parent function. It can
2948  /// either be an alloca or a call to llvm.localrecover if there are nested
2949  /// outlined functions. ParentFP is the frame pointer of the outermost parent
2950  /// frame.
2951  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2952  Address ParentVar,
2953  llvm::Value *ParentFP);
2954 
2955  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2956  ArrayRef<const Attr *> Attrs = None);
2957 
2958  /// Controls insertion of cancellation exit blocks in worksharing constructs.
2960  CodeGenFunction &CGF;
2961 
2962  public:
2963  OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
2964  bool HasCancel)
2965  : CGF(CGF) {
2966  CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2967  }
2968  ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2969  };
2970 
2971  /// Returns calculated size of the specified type.
2972  llvm::Value *getTypeSize(QualType Ty);
2973  LValue InitCapturedStruct(const CapturedStmt &S);
2974  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2975  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2976  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2977  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2978  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2979  SmallVectorImpl<llvm::Value *> &CapturedVars);
2980  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2981  SourceLocation Loc);
2982  /// Perform element by element copying of arrays with type \a
2983  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2984  /// generated by \a CopyGen.
2985  ///
2986  /// \param DestAddr Address of the destination array.
2987  /// \param SrcAddr Address of the source array.
2988  /// \param OriginalType Type of destination and source arrays.
2989  /// \param CopyGen Copying procedure that copies value of single array element
2990  /// to another single array element.
2991  void EmitOMPAggregateAssign(
2992  Address DestAddr, Address SrcAddr, QualType OriginalType,
2993  const llvm::function_ref<void(Address, Address)> CopyGen);
2994  /// Emit proper copying of data from one variable to another.
2995  ///
2996  /// \param OriginalType Original type of the copied variables.
2997  /// \param DestAddr Destination address.
2998  /// \param SrcAddr Source address.
2999  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3000  /// type of the base array element).
3001  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3002  /// the base array element).
3003  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3004  /// DestVD.
3005  void EmitOMPCopy(QualType OriginalType,
3006  Address DestAddr, Address SrcAddr,
3007  const VarDecl *DestVD, const VarDecl *SrcVD,
3008  const Expr *Copy);
3009  /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3010  /// \a X = \a E \a BO \a E.
3011  ///
3012  /// \param X Value to be updated.
3013  /// \param E Update value.
3014  /// \param BO Binary operation for update operation.
3015  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3016  /// expression, false otherwise.
3017  /// \param AO Atomic ordering of the generated atomic instructions.
3018  /// \param CommonGen Code generator for complex expressions that cannot be
3019  /// expressed through atomicrmw instruction.
3020  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3021  /// generated, <false, RValue::get(nullptr)> otherwise.
3022  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3023  LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3024  llvm::AtomicOrdering AO, SourceLocation Loc,
3025  const llvm::function_ref<RValue(RValue)> CommonGen);
3026  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3027  OMPPrivateScope &PrivateScope);
3028  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3029  OMPPrivateScope &PrivateScope);
3030  void EmitOMPUseDevicePtrClause(
3031  const OMPClause &C, OMPPrivateScope &PrivateScope,
3032  const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3033  /// Emit code for copyin clause in \a D directive. The next code is
3034  /// generated at the start of outlined functions for directives:
3035  /// \code
3036  /// threadprivate_var1 = master_threadprivate_var1;
3037  /// operator=(threadprivate_var2, master_threadprivate_var2);
3038  /// ...
3039  /// __kmpc_barrier(&loc, global_tid);
3040  /// \endcode
3041  ///
3042  /// \param D OpenMP directive possibly with 'copyin' clause(s).
3043  /// \returns true if at least one copyin variable is found, false otherwise.
3044  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3045  /// Emit initial code for lastprivate variables. If some variable is
3046  /// not also firstprivate, then the default initialization is used. Otherwise
3047  /// initialization of this variable is performed by EmitOMPFirstprivateClause
3048  /// method.
3049  ///
3050  /// \param D Directive that may have 'lastprivate' directives.
3051  /// \param PrivateScope Private scope for capturing lastprivate variables for
3052  /// proper codegen in internal captured statement.
3053  ///
3054  /// \returns true if there is at least one lastprivate variable, false
3055  /// otherwise.
3056  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3057  OMPPrivateScope &PrivateScope);
3058  /// Emit final copying of lastprivate values to original variables at
3059  /// the end of the worksharing or simd directive.
3060  ///
3061  /// \param D Directive that has at least one 'lastprivate' directives.
3062  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3063  /// it is the last iteration of the loop code in associated directive, or to
3064  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3065  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3066  bool NoFinals,
3067  llvm::Value *IsLastIterCond = nullptr);
3068  /// Emit initial code for linear clauses.
3069  void EmitOMPLinearClause(const OMPLoopDirective &D,
3070  CodeGenFunction::OMPPrivateScope &PrivateScope);
3071  /// Emit final code for linear clauses.
3072  /// \param CondGen Optional conditional code for final part of codegen for
3073  /// linear clause.
3074  void EmitOMPLinearClauseFinal(
3075  const OMPLoopDirective &D,
3076  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3077  /// Emit initial code for reduction variables. Creates reduction copies
3078  /// and initializes them with the values according to OpenMP standard.
3079  ///
3080  /// \param D Directive (possibly) with the 'reduction' clause.
3081  /// \param PrivateScope Private scope for capturing reduction variables for
3082  /// proper codegen in internal captured statement.
3083  ///
3084  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3085  OMPPrivateScope &PrivateScope);
3086  /// Emit final update of reduction values to original variables at
3087  /// the end of the directive.
3088  ///
3089  /// \param D Directive that has at least one 'reduction' directives.
3090  /// \param ReductionKind The kind of reduction to perform.
3091  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3092  const OpenMPDirectiveKind ReductionKind);
3093  /// Emit initial code for linear variables. Creates private copies
3094  /// and initializes them with the values according to OpenMP standard.
3095  ///
3096  /// \param D Directive (possibly) with the 'linear' clause.
3097  /// \return true if at least one linear variable is found that should be
3098  /// initialized with the value of the original variable, false otherwise.
3099  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3100 
3101  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3102  llvm::Function * /*OutlinedFn*/,
3103  const OMPTaskDataTy & /*Data*/)>
3105  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3106  const OpenMPDirectiveKind CapturedRegion,
3107  const RegionCodeGenTy &BodyGen,
3108  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3110  Address BasePointersArray = Address::invalid();
3111  Address PointersArray = Address::invalid();
3112  Address SizesArray = Address::invalid();
3113  unsigned NumberOfTargetItems = 0;
3114  explicit OMPTargetDataInfo() = default;
3115  OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3116  Address SizesArray, unsigned NumberOfTargetItems)
3117  : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3118  SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
3119  };
3120  void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3121  const RegionCodeGenTy &BodyGen,
3122  OMPTargetDataInfo &InputInfo);
3123 
3124  void EmitOMPParallelDirective(const OMPParallelDirective &S);
3125  void EmitOMPSimdDirective(const OMPSimdDirective &S);
3126  void EmitOMPForDirective(const OMPForDirective &S);
3127  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3128  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3129  void EmitOMPSectionDirective(const OMPSectionDirective &S);
3130  void EmitOMPSingleDirective(const OMPSingleDirective &S);
3131  void EmitOMPMasterDirective(const OMPMasterDirective &S);
3132  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3133  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3134  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3135  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3136  void EmitOMPTaskDirective(const OMPTaskDirective &S);
3137  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3138  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3139  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3140  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3141  void EmitOMPFlushDirective(const OMPFlushDirective &S);
3142  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3143  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3144  void EmitOMPTargetDirective(const OMPTargetDirective &S);
3145  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3146  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3147  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3148  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3149  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3150  void
3151  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3152  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3153  void
3154  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3155  void EmitOMPCancelDirective(const OMPCancelDirective &S);
3156  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3157  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3158  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3159  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3160  void EmitOMPDistributeParallelForDirective(
3162  void EmitOMPDistributeParallelForSimdDirective(
3164  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3165  void EmitOMPTargetParallelForSimdDirective(
3167  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3168  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3169  void
3170  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3171  void EmitOMPTeamsDistributeParallelForSimdDirective(
3173  void EmitOMPTeamsDistributeParallelForDirective(
3175  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3176  void EmitOMPTargetTeamsDistributeDirective(
3178  void EmitOMPTargetTeamsDistributeParallelForDirective(
3180  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3182  void EmitOMPTargetTeamsDistributeSimdDirective(
3184 
3185  /// Emit device code for the target directive.
3186  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3187  StringRef ParentName,
3188  const OMPTargetDirective &S);
3189  static void
3190  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3191  const OMPTargetParallelDirective &S);
3192  /// Emit device code for the target parallel for directive.
3193  static void EmitOMPTargetParallelForDeviceFunction(
3194  CodeGenModule &CGM, StringRef ParentName,
3196  /// Emit device code for the target parallel for simd directive.
3197  static void EmitOMPTargetParallelForSimdDeviceFunction(
3198  CodeGenModule &CGM, StringRef ParentName,
3200  /// Emit device code for the target teams directive.
3201  static void
3202  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3203  const OMPTargetTeamsDirective &S);
3204  /// Emit device code for the target teams distribute directive.
3205  static void EmitOMPTargetTeamsDistributeDeviceFunction(
3206  CodeGenModule &CGM, StringRef ParentName,
3208  /// Emit device code for the target teams distribute simd directive.
3209  static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3210  CodeGenModule &CGM, StringRef ParentName,
3212  /// Emit device code for the target simd directive.
3213  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3214  StringRef ParentName,
3215  const OMPTargetSimdDirective &S);
3216  /// Emit device code for the target teams distribute parallel for simd
3217  /// directive.
3218  static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3219  CodeGenModule &CGM, StringRef ParentName,
3221 
3222  static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3223  CodeGenModule &CGM, StringRef ParentName,
3225  /// Emit inner loop of the worksharing/simd construct.
3226  ///
3227  /// \param S Directive, for which the inner loop must be emitted.
3228  /// \param RequiresCleanup true, if directive has some associated private
3229  /// variables.
3230  /// \param LoopCond Bollean condition for loop continuation.
3231  /// \param IncExpr Increment expression for loop control variable.
3232  /// \param BodyGen Generator for the inner body of the inner loop.
3233  /// \param PostIncGen Genrator for post-increment code (required for ordered
3234  /// loop directvies).
3235  void EmitOMPInnerLoop(
3236  const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
3237  const Expr *IncExpr,
3238  const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3239  const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3240 
3241  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3242  /// Emit initial code for loop counters of loop-based directives.
3243  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3244  OMPPrivateScope &LoopScope);
3245 
3246  /// Helper for the OpenMP loop directives.
3247  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3248 
3249  /// Emit code for the worksharing loop-based directive.
3250  /// \return true, if this construct has any lastprivate clause, false -
3251  /// otherwise.
3252  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3253  const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3254  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3255 
3256  /// Emit code for the distribute loop-based directive.
3257  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3258  const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3259 
3260  /// Helpers for the OpenMP loop directives.
3261  void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3262  void EmitOMPSimdFinal(
3263  const OMPLoopDirective &D,
3264  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3265 
3266  /// Emits the lvalue for the expression with possibly captured variable.
3267  LValue EmitOMPSharedLValue(const Expr *E);
3268 
3269 private:
3270  /// Helpers for blocks.
3271  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3272 
3273  /// struct with the values to be passed to the OpenMP loop-related functions
3274  struct OMPLoopArguments {
3275  /// loop lower bound
3276  Address LB = Address::invalid();
3277  /// loop upper bound
3278  Address UB = Address::invalid();
3279  /// loop stride
3280  Address ST = Address::invalid();
3281  /// isLastIteration argument for runtime functions
3282  Address IL = Address::invalid();
3283  /// Chunk value generated by sema
3284  llvm::Value *Chunk = nullptr;
3285  /// EnsureUpperBound
3286  Expr *EUB = nullptr;
3287  /// IncrementExpression
3288  Expr *IncExpr = nullptr;
3289  /// Loop initialization
3290  Expr *Init = nullptr;
3291  /// Loop exit condition
3292  Expr *Cond = nullptr;
3293  /// Update of LB after a whole chunk has been executed
3294  Expr *NextLB = nullptr;
3295  /// Update of UB after a whole chunk has been executed
3296  Expr *NextUB = nullptr;
3297  OMPLoopArguments() = default;
3298  OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3299  llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3300  Expr *IncExpr = nullptr, Expr *Init = nullptr,
3301  Expr *Cond = nullptr, Expr *NextLB = nullptr,
3302  Expr *NextUB = nullptr)
3303  : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3304  IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3305  NextUB(NextUB) {}
3306  };
3307  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3308  const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3309  const OMPLoopArguments &LoopArgs,
3310  const CodeGenLoopTy &CodeGenLoop,
3311  const CodeGenOrderedTy &CodeGenOrdered);
3312  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3313  bool IsMonotonic, const OMPLoopDirective &S,
3314  OMPPrivateScope &LoopScope, bool Ordered,
3315  const OMPLoopArguments &LoopArgs,
3316  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3317  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3318  const OMPLoopDirective &S,
3319  OMPPrivateScope &LoopScope,
3320  const OMPLoopArguments &LoopArgs,
3321  const CodeGenLoopTy &CodeGenLoopContent);
3322  /// Emit code for sections directive.
3323  void EmitSections(const OMPExecutableDirective &S);
3324 
3325 public:
3326 
3327  //===--------------------------------------------------------------------===//
3328  // LValue Expression Emission
3329  //===--------------------------------------------------------------------===//
3330 
3331  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3332  RValue GetUndefRValue(QualType Ty);
3333 
3334  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3335  /// and issue an ErrorUnsupported style diagnostic (using the
3336  /// provided Name).
3337  RValue EmitUnsupportedRValue(const Expr *E,
3338  const char *Name);
3339 
3340  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3341  /// an ErrorUnsupported style diagnostic (using the provided Name).
3342  LValue EmitUnsupportedLValue(const Expr *E,
3343  const char *Name);
3344 
3345  /// EmitLValue - Emit code to compute a designator that specifies the location
3346  /// of the expression.
3347  ///
3348  /// This can return one of two things: a simple address or a bitfield
3349  /// reference. In either case, the LLVM Value* in the LValue structure is
3350  /// guaranteed to be an LLVM pointer type.
3351  ///
3352  /// If this returns a bitfield reference, nothing about the pointee type of
3353  /// the LLVM value is known: For example, it may not be a pointer to an
3354  /// integer.
3355  ///
3356  /// If this returns a normal address, and if the lvalue's C type is fixed
3357  /// size, this method guarantees that the returned pointer type will point to
3358  /// an LLVM type of the same size of the lvalue's type. If the lvalue has a
3359  /// variable length type, this is not possible.
3360  ///
3361  LValue EmitLValue(const Expr *E);
3362 
3363  /// Same as EmitLValue but additionally we generate checking code to
3364  /// guard against undefined behavior. This is only suitable when we know
3365  /// that the address will be used to access the object.
3366  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3367 
3368  RValue convertTempToRValue(Address addr, QualType type,
3369  SourceLocation Loc);
3370 
3371  void EmitAtomicInit(Expr *E, LValue lvalue);
3372 
3373  bool LValueIsSuitableForInlineAtomic(LValue Src);
3374 
3375  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3376  AggValueSlot Slot = AggValueSlot::ignored());
3377 
3378  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3379  llvm::AtomicOrdering AO, bool IsVolatile = false,
3380  AggValueSlot slot = AggValueSlot::ignored());
3381 
3382  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3383 
3384  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3385  bool IsVolatile, bool isInit);
3386 
3387  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3388  LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3389  llvm::AtomicOrdering Success =
3390  llvm::AtomicOrdering::SequentiallyConsistent,
3391  llvm::AtomicOrdering Failure =
3392  llvm::AtomicOrdering::SequentiallyConsistent,
3393  bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3394 
3395  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3396  const llvm::function_ref<RValue(RValue)> &UpdateOp,
3397  bool IsVolatile);
3398 
3399  /// EmitToMemory - Change a scalar value from its value
3400  /// representation to its in-memory representation.
3401  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3402 
3403  /// EmitFromMemory - Change a scalar value from its memory
3404  /// representation to its value representation.
3405  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3406 
3407  /// Check if the scalar \p Value is within the valid range for the given
3408  /// type \p Ty.
3409  ///
3410  /// Returns true if a check is needed (even if the range is unknown).
3411  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3412  SourceLocation Loc);
3413 
3414  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3415  /// care to appropriately convert from the memory representation to
3416  /// the LLVM value representation.
3417  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3418  SourceLocation Loc,
3420  bool isNontemporal = false) {
3421  return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3422  CGM.getTBAAAccessInfo(Ty), isNontemporal);
3423  }
3424 
3425  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3426  SourceLocation Loc, LValueBaseInfo BaseInfo,
3427  TBAAAccessInfo TBAAInfo,
3428  bool isNontemporal = false);
3429 
3430  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3431  /// care to appropriately convert from the memory representation to
3432  /// the LLVM value representation. The l-value must be a simple
3433  /// l-value.
3434  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3435 
3436  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3437  /// care to appropriately convert from the memory representation to
3438  /// the LLVM value representation.
3440  bool Volatile, QualType Ty,
3442  bool isInit = false, bool isNontemporal = false) {
3443  EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3444  CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3445  }
3446 
3447  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3448  bool Volatile, QualType Ty,
3449  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3450  bool isInit = false, bool isNontemporal = false);
3451 
3452  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3453  /// care to appropriately convert from the memory representation to
3454  /// the LLVM value representation. The l-value must be a simple
3455  /// l-value. The isInit flag indicates whether this is an initialization.
3456  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3457  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3458 
3459  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3460  /// this method emits the address of the lvalue, then loads the result as an
3461  /// rvalue, returning the rvalue.
3462  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3463  RValue EmitLoadOfExtVectorElementLValue(LValue V);
3464  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3465  RValue EmitLoadOfGlobalRegLValue(LValue LV);
3466 
3467  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3468  /// lvalue, where both are guaranteed to the have the same type, and that type
3469  /// is 'Ty'.
3470  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3471  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3472  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3473 
3474  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3475  /// as EmitStoreThroughLValue.
3476  ///
3477  /// \param Result [out] - If non-null, this will be set to a Value* for the
3478  /// bit-field contents after the store, appropriate for use as the result of
3479  /// an assignment to the bit-field.
3480  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3481  llvm::Value **Result=nullptr);
3482 
3483  /// Emit an l-value for an assignment (simple or compound) of complex type.
3484  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3485  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3486  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3487  llvm::Value *&Result);
3488 
3489  // Note: only available for agg return types
3490  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3491  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3492  // Note: only available for agg return types
3493  LValue EmitCallExprLValue(const CallExpr *E);
3494  // Note: only available for agg return types
3495  LValue EmitVAArgExprLValue(const VAArgExpr *E);
3496  LValue EmitDeclRefLValue(const DeclRefExpr *E);
3497  LValue EmitStringLiteralLValue(const StringLiteral *E);
3498  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3499  LValue EmitPredefinedLValue(const PredefinedExpr *E);
3500  LValue EmitUnaryOpLValue(const UnaryOperator *E);
3501  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3502  bool Accessed = false);
3503  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3504  bool IsLowerBound = true);
3505  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3506  LValue EmitMemberExpr(const MemberExpr *E);
3507  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3508  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3509  LValue EmitInitListLValue(const InitListExpr *E);
3510  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3511  LValue EmitCastLValue(const CastExpr *E);
3512  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3513  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3514 
3515  Address EmitExtVectorElementLValue(LValue V);
3516 
3517  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3518 
3519  Address EmitArrayToPointerDecay(const Expr *Array,
3520  LValueBaseInfo *BaseInfo = nullptr,
3521  TBAAAccessInfo *TBAAInfo = nullptr);
3522 
3524  llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3525  ConstantEmission(llvm::Constant *C, bool isReference)
3526  : ValueAndIsReference(C, isReference) {}
3527  public:
3529  static ConstantEmission forReference(llvm::Constant *C) {
3530  return ConstantEmission(C, true);
3531  }
3532  static ConstantEmission forValue(llvm::Constant *C) {
3533  return ConstantEmission(C, false);
3534  }
3535 
3536  explicit operator bool() const {
3537  return ValueAndIsReference.getOpaqueValue() != nullptr;
3538  }
3539 
3540  bool isReference() const { return ValueAndIsReference.getInt(); }
3541  LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3542  assert(isReference());
3543  return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3544  refExpr->getType());
3545  }
3546 
3547  llvm::Constant *getValue() const {
3548  assert(!isReference());
3549  return ValueAndIsReference.getPointer();
3550  }
3551  };
3552 
3553  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3554  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3555  llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3556 
3557  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3558  AggValueSlot slot = AggValueSlot::ignored());
3559  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3560 
3561  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3562  const ObjCIvarDecl *Ivar);
3563  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3564  LValue EmitLValueForLambdaField(const FieldDecl *Field);
3565 
3566  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3567  /// if the Field is a reference, this will return the address of the reference
3568  /// and not the address of the value stored in the reference.
3569  LValue EmitLValueForFieldInitialization(LValue Base,
3570  const FieldDecl* Field);
3571 
3572  LValue EmitLValueForIvar(QualType ObjectTy,
3573  llvm::Value* Base, const ObjCIvarDecl *Ivar,
3574  unsigned CVRQualifiers);
3575 
3576  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3577  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3578  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3579  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3580 
3581  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3582  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3583  LValue EmitStmtExprLValue(const StmtExpr *E);
3584  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3585  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3586  void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3587 
3588  //===--------------------------------------------------------------------===//
3589  // Scalar Expression Emission
3590  //===--------------------------------------------------------------------===//
3591 
3592  /// EmitCall - Generate a call of the given function, expecting the given
3593  /// result type, and using the given argument list which specifies both the
3594  /// LLVM arguments and the types they were derived from.
3595  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3596  ReturnValueSlot ReturnValue, const CallArgList &Args,
3597  llvm::CallBase **callOrInvoke, SourceLocation Loc);
3598  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3599  ReturnValueSlot ReturnValue, const CallArgList &Args,
3600  llvm::CallBase **callOrInvoke = nullptr) {
3601  return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3602  SourceLocation());
3603  }
3604  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3605  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3606  RValue EmitCallExpr(const CallExpr *E,
3607  ReturnValueSlot ReturnValue = ReturnValueSlot());
3608  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3609  CGCallee EmitCallee(const Expr *E);
3610 
3611  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3612  void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
3613 
3614  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3615  const Twine &name = "");
3616  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3618  const Twine &name = "");
3619  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3620  const Twine &name = "");
3621  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3623  const Twine &name = "");
3624 
3626  getBundlesForFunclet(llvm::Value *Callee);
3627 
3628  llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3630  const Twine &Name = "");
3631  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3633  const Twine &name = "");
3634  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3635  const Twine &name = "");
3636  void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3638 
3640  NestedNameSpecifier *Qual,
3641  llvm::Type *Ty);
3642 
3643  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3644  CXXDtorType Type,
3645  const CXXRecordDecl *RD);
3646 
3647  // Return the copy constructor name with the prefix "__copy_constructor_"
3648  // removed.
3649  static std::string getNonTrivialCopyConstructorStr(QualType QT,
3650  CharUnits Alignment,
3651  bool IsVolatile,
3652  ASTContext &Ctx);
3653 
3654  // Return the destructor name with the prefix "__destructor_" removed.
3655  static std::string getNonTrivialDestructorStr(QualType QT,
3656  CharUnits Alignment,
3657  bool IsVolatile,
3658  ASTContext &Ctx);
3659 
3660  // These functions emit calls to the special functions of non-trivial C
3661  // structs.
3662  void defaultInitNonTrivialCStructVar(LValue Dst);
3663  void callCStructDefaultConstructor(LValue Dst);
3664  void callCStructDestructor(LValue Dst);
3665  void callCStructCopyConstructor(LValue Dst, LValue Src);
3666  void callCStructMoveConstructor(LValue Dst, LValue Src);
3667  void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3668  void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3669 
3670  RValue
3671  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3672  const CGCallee &Callee,
3673  ReturnValueSlot ReturnValue, llvm::Value *This,
3674  llvm::Value *ImplicitParam,
3675  QualType ImplicitParamTy, const CallExpr *E,
3676  CallArgList *RtlArgs);
3677  RValue EmitCXXDestructorCall(GlobalDecl Dtor,
3678  const CGCallee &Callee,
3679  llvm::Value *This, llvm::Value *ImplicitParam,
3680  QualType ImplicitParamTy, const CallExpr *E);
3681  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3682  ReturnValueSlot ReturnValue);
3683  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3684  const CXXMethodDecl *MD,
3685  ReturnValueSlot ReturnValue,
3686  bool HasQualifier,
3687  NestedNameSpecifier *Qualifier,
3688  bool IsArrow, const Expr *Base);
3689  // Compute the object pointer.
3690  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3691  llvm::Value *memberPtr,
3692  const MemberPointerType *memberPtrType,
3693  LValueBaseInfo *BaseInfo = nullptr,
3694  TBAAAccessInfo *TBAAInfo = nullptr);
3695  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3696  ReturnValueSlot ReturnValue);
3697 
3698  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3699  const CXXMethodDecl *MD,
3700  ReturnValueSlot ReturnValue);
3701  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3702 
3703  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3704  ReturnValueSlot ReturnValue);
3705 
3706  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3707  ReturnValueSlot ReturnValue);
3708 
3709  RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
3710  const CallExpr *E, ReturnValueSlot ReturnValue);
3711 
3712  RValue emitRotate(const CallExpr *E, bool IsRotateRight);
3713 
3714  /// Emit IR for __builtin_os_log_format.
3715  RValue emitBuiltinOSLogFormat(const CallExpr &E);
3716 
3717  llvm::Function *generateBuiltinOSLogHelperFunction(
3718  const analyze_os_log::OSLogBufferLayout &Layout,
3719  CharUnits BufferAlignment);
3720 
3721  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3722 
3723  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3724  /// is unhandled by the current target.
3725  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3726 
3727  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3728  const llvm::CmpInst::Predicate Fp,
3729  const llvm::CmpInst::Predicate Ip,
3730  const llvm::Twine &Name = "");
3731  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3732  llvm::Triple::ArchType Arch);
3733 
3734  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3735  unsigned LLVMIntrinsic,
3736  unsigned AltLLVMIntrinsic,
3737  const char *NameHint,
3738  unsigned Modifier,
3739  const CallExpr *E,
3741  Address PtrOp0, Address PtrOp1,
3742  llvm::Triple::ArchType Arch);
3743 
3744  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3745  unsigned Modifier, llvm::Type *ArgTy,
3746  const CallExpr *E);
3747  llvm::Value *EmitNeonCall(llvm::Function *F,
3749  const char *name,
3750  unsigned shift = 0, bool rightshift = false);
3751  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3752  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3753  bool negateForRightShift);
3754  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3755  llvm::Type *Ty, bool usgn, const char *name);
3756  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3757  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3758  llvm::Triple::ArchType Arch);
3759 
3760  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3761  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3762  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3763  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3764  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3765  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3766  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3767  const CallExpr *E);
3768  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3769 
3770 private:
3771  enum class MSVCIntrin;
3772 
3773 public:
3774  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3775 
3776  llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3777 
3778  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3779  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3780  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3781  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3782  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3783  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3784  const ObjCMethodDecl *MethodWithObjects);
3785  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3786  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3787  ReturnValueSlot Return = ReturnValueSlot());
3788 
3789  /// Retrieves the default cleanup kind for an ARC cleanup.
3790  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3792  return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3794  }
3795 
3796  // ARC primitives.
3797  void EmitARCInitWeak(Address addr, llvm::Value *value);
3798  void EmitARCDestroyWeak(Address addr);
3799  llvm::Value *EmitARCLoadWeak(Address addr);
3800  llvm::Value *EmitARCLoadWeakRetained(Address addr);
3801  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3802  void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3803  void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3804  void EmitARCCopyWeak(Address dst, Address src);
3805  void EmitARCMoveWeak(Address dst, Address src);
3806  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3807  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3808  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3809  bool resultIgnored);
3810  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3811  bool resultIgnored);
3812  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3813  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3814  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3815  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3816  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3817  llvm::Value *EmitARCAutorelease(llvm::Value *value);
3818  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3819  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3820  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3821  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3822 
3823  llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
3824  llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
3825  llvm::Type *returnType);
3826  void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3827 
3828  std::pair<LValue,llvm::Value*>
3829  EmitARCStoreAutoreleasing(const BinaryOperator *e);
3830  std::pair<LValue,llvm::Value*>
3831  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3832  std::pair<LValue,llvm::Value*>
3833  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3834 
3835  llvm::Value *EmitObjCAlloc(llvm::Value *value,
3836  llvm::Type *returnType);
3837  llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
3838  llvm::Type *returnType);
3839  llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
3840 
3841  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3842  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3843  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3844 
3845  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3846  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3847  bool allowUnsafeClaim);
3848  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3849  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3850  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3851 
3852  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3853 
3854  static Destroyer destroyARCStrongImprecise;
3855  static Destroyer destroyARCStrongPrecise;
3856  static Destroyer destroyARCWeak;
3857  static Destroyer emitARCIntrinsicUse;
3858  static Destroyer destroyNonTrivialCStruct;
3859 
3860  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3861  llvm::Value *EmitObjCAutoreleasePoolPush();
3862  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3863  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3864  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3865 
3866  /// Emits a reference binding to the passed in expression.
3867  RValue EmitReferenceBindingToExpr(const Expr *E);
3868 
3869  //===--------------------------------------------------------------------===//
3870  // Expression Emission
3871  //===--------------------------------------------------------------------===//
3872 
3873  // Expressions are broken into three classes: scalar, complex, aggregate.
3874 
3875  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3876  /// scalar type, returning the result.
3877  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3878 
3879  /// Emit a conversion from the specified type to the specified destination
3880  /// type, both of which are LLVM scalar types.
3881  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3882  QualType DstTy, SourceLocation Loc);
3883 
3884  /// Emit a conversion from the specified complex type to the specified
3885  /// destination type, where the destination type is an LLVM scalar type.
3886  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3887  QualType DstTy,
3888  SourceLocation Loc);
3889 
3890  /// EmitAggExpr - Emit the computation of the specified expression
3891  /// of aggregate type. The result is computed into the given slot,
3892  /// which may be null to indicate that the value is not needed.
3893  void EmitAggExpr(const Expr *E, AggValueSlot AS);
3894 
3895  /// EmitAggExprToLValue - Emit the computation of the specified expression of
3896  /// aggregate type into a temporary LValue.
3897  LValue EmitAggExprToLValue(const Expr *E);
3898 
3899  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3900  /// make sure it survives garbage collection until this point.
3901  void EmitExtendGCLifetime(llvm::Value *object);
3902 
3903  /// EmitComplexExpr - Emit the computation of the specified expression of
3904  /// complex type, returning the result.
3905  ComplexPairTy EmitComplexExpr(const Expr *E,
3906  bool IgnoreReal = false,
3907  bool IgnoreImag = false);
3908 
3909  /// EmitComplexExprIntoLValue - Emit the given expression of complex
3910  /// type and place its result into the specified l-value.
3911  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3912 
3913  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3914  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3915 
3916  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3917  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3918 
3919  Address emitAddrOfRealComponent(Address complex, QualType complexType);
3920  Address emitAddrOfImagComponent(Address complex, QualType complexType);
3921 
3922  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3923  /// global variable that has already been created for it. If the initializer
3924  /// has a different type than GV does, this may free GV and return a different
3925  /// one. Otherwise it just returns GV.
3926  llvm::GlobalVariable *
3927  AddInitializerToStaticVarDecl(const VarDecl &D,
3928  llvm::GlobalVariable *GV);
3929 
3930  // Emit an @llvm.invariant.start call for the given memory region.
3931  void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
3932 
3933  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3934  /// variable with global storage.
3935  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3936  bool PerformInit);
3937 
3938  llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
3939  llvm::Constant *Addr);
3940 
3941  /// Call atexit() with a function that passes the given argument to
3942  /// the given function.
3943  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
3944  llvm::Constant *addr);
3945 
3946  /// Call atexit() with function dtorStub.
3947  void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
3948 
3949  /// Emit code in this function to perform a guarded variable
3950  /// initialization. Guarded initializations are used when it's not
3951  /// possible to prove that an initialization will be done exactly
3952  /// once, e.g. with a static local variable or a static data member
3953  /// of a class template.
3954  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3955  bool PerformInit);
3956 
3957  enum class GuardKind { VariableGuard, TlsGuard };
3958 
3959  /// Emit a branch to select whether or not to perform guarded initialization.
3960  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3961  llvm::BasicBlock *InitBlock,
3962  llvm::BasicBlock *NoInitBlock,
3963  GuardKind Kind, const VarDecl *D);
3964 
3965  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3966  /// variables.
3967  void
3968  GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3969  ArrayRef<llvm::Function *> CXXThreadLocals,
3970  ConstantAddress Guard = ConstantAddress::invalid());
3971 
3972  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3973  /// variables.
3974  void GenerateCXXGlobalDtorsFunc(
3975  llvm::Function *Fn,
3976  const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
3977  llvm::Constant *>> &DtorsAndObjects);
3978 
3979  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3980  const VarDecl *D,
3981  llvm::GlobalVariable *Addr,
3982  bool PerformInit);
3983 
3984  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3985 
3986  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3987 
3989  if (const auto *EWC = dyn_cast<ExprWithCleanups>(E))
3990  if (EWC->getNumObjects() == 0)
3991  return;
3992  enterNonTrivialFullExpression(E);
3993  }
3994  void enterNonTrivialFullExpression(const FullExpr *E);
3995 
3996  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3997 
3998  RValue EmitAtomicExpr(AtomicExpr *E);
3999 
4000  //===--------------------------------------------------------------------===//
4001  // Annotations Emission
4002  //===--------------------------------------------------------------------===//
4003 
4004  /// Emit an annotation call (intrinsic).
4005  llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4006  llvm::Value *AnnotatedVal,
4007  StringRef AnnotationStr,
4008  SourceLocation Location);
4009 
4010  /// Emit local annotations for the local variable V, declared by D.
4011  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4012 
4013  /// Emit field annotations for the given field & value. Returns the
4014  /// annotation result.
4015  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4016 
4017  //===--------------------------------------------------------------------===//
4018  // Internal Helpers
4019  //===--------------------------------------------------------------------===//
4020 
4021  /// ContainsLabel - Return true if the statement contains a label in it. If
4022  /// this statement is not executed normally, it not containing a label means
4023  /// that we can just remove the code.
4024  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4025 
4026  /// containsBreak - Return true if the statement contains a break out of it.
4027  /// If the statement (recursively) contains a switch or loop with a break
4028  /// inside of it, this is fine.
4029  static bool containsBreak(const Stmt *S);
4030 
4031  /// Determine if the given statement might introduce a declaration into the
4032  /// current scope, by being a (possibly-labelled) DeclStmt.
4033  static bool mightAddDeclToScope(const Stmt *S);
4034 
4035  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4036  /// to a constant, or if it does but contains a label, return false. If it
4037  /// constant folds return true and set the boolean result in Result.
4038  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4039  bool AllowLabels = false);
4040 
4041  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4042  /// to a constant, or if it does but contains a label, return false. If it
4043  /// constant folds return true and set the folded value.
4044  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4045  bool AllowLabels = false);
4046 
4047  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4048  /// if statement) to the specified blocks. Based on the condition, this might
4049  /// try to simplify the codegen of the conditional based on the branch.
4050  /// TrueCount should be the number of times we expect the condition to
4051  /// evaluate to true based on PGO data.
4052  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4053  llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
4054 
4055  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4056  /// nonnull, if \p LHS is marked _Nonnull.
4057  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4058 
4059  /// An enumeration which makes it easier to specify whether or not an
4060  /// operation is a subtraction.
4061  enum { NotSubtraction = false, IsSubtraction = true };
4062 
4063  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4064  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4065  /// \p SignedIndices indicates whether any of the GEP indices are signed.
4066  /// \p IsSubtraction indicates whether the expression used to form the GEP
4067  /// is a subtraction.
4068  llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4069  ArrayRef<llvm::Value *> IdxList,
4070  bool SignedIndices,
4071  bool IsSubtraction,
4072  SourceLocation Loc,
4073  const Twine &Name = "");
4074 
4075  /// Specifies which type of sanitizer check to apply when handling a
4076  /// particular builtin.
4080  };
4081 
4082  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4083  /// enabled, a runtime check specified by \p Kind is also emitted.
4084  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4085 
4086  /// Emit a description of a type in a format suitable for passing to
4087  /// a runtime sanitizer handler.
4088  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4089 
4090  /// Convert a value into a format suitable for passing to a runtime
4091  /// sanitizer handler.
4092  llvm::Value *EmitCheckValue(llvm::Value *V);
4093 
4094  /// Emit a description of a source location in a format suitable for
4095  /// passing to a runtime sanitizer handler.
4096  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4097 
4098  /// Create a basic block that will either trap or call a handler function in
4099  /// the UBSan runtime with the provided arguments, and create a conditional
4100  /// branch to it.
4101  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4102  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4103  ArrayRef<llvm::Value *> DynamicArgs);
4104 
4105  /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4106  /// if Cond if false.
4107  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4108  llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4109  ArrayRef<llvm::Constant *> StaticArgs);
4110 
4111  /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4112  /// checking is enabled. Otherwise, just emit an unreachable instruction.
4113  void EmitUnreachable(SourceLocation Loc);
4114 
4115  /// Create a basic block that will call the trap intrinsic, and emit a
4116  /// conditional branch to it, for the -ftrapv checks.
4117  void EmitTrapCheck(llvm::Value *Checked);
4118 
4119  /// Emit a call to trap or debugtrap and attach function attribute
4120  /// "trap-func-name" if specified.
4121  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4122 
4123  /// Emit a stub for the cross-DSO CFI check function.
4124  void EmitCfiCheckStub();
4125 
4126  /// Emit a cross-DSO CFI failure handling function.
4127  void EmitCfiCheckFail();
4128 
4129  /// Create a check for a function parameter that may potentially be
4130  /// declared as non-null.
4131  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4132  AbstractCallee AC, unsigned ParmNum);
4133 
4134  /// EmitCallArg - Emit a single call argument.
4135  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4136 
4137  /// EmitDelegateCallArg - We are performing a delegate call; that
4138  /// is, the current function is delegating to another one. Produce
4139  /// a r-value suitable for passing the given parameter.
4140  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4141  SourceLocation loc);
4142 
4143  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4144  /// point operation, expressed as the maximum relative error in ulp.
4145  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4146 
4147 private:
4148  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4149  void EmitReturnOfRValue(RValue RV, QualType Ty);
4150 
4151  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4152 
4154  DeferredReplacements;
4155 
4156  /// Set the address of a local variable.
4157  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4158  assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4159  LocalDeclMap.insert({VD, Addr});
4160  }
4161 
4162  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4163  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4164  ///
4165  /// \param AI - The first function argument of the expansion.
4166  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4168 
4169  /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4170  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4171  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4172  void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4173  SmallVectorImpl<llvm::Value *> &IRCallArgs,
4174  unsigned &IRCallArgPos);
4175 
4176  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4177  const Expr *InputExpr, std::string &ConstraintStr);
4178 
4179  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4180  LValue InputValue, QualType InputType,
4181  std::string &ConstraintStr,
4182  SourceLocation Loc);
4183 
4184  /// Attempts to statically evaluate the object size of E. If that
4185  /// fails, emits code to figure the size of E out for us. This is
4186  /// pass_object_size aware.
4187  ///
4188  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4189  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4190  llvm::IntegerType *ResType,
4191  llvm::Value *EmittedE,
4192  bool IsDynamic);
4193 
4194  /// Emits the size of E, as required by __builtin_object_size. This
4195  /// function is aware of pass_object_size parameters, and will act accordingly
4196  /// if E is a parameter with the pass_object_size attribute.
4197  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4198  llvm::IntegerType *ResType,
4199  llvm::Value *EmittedE,
4200  bool IsDynamic);
4201 
4202  void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4203  Address Loc);
4204 
4205 public:
4206 #ifndef NDEBUG
4207  // Determine whether the given argument is an Objective-C method
4208  // that may have type parameters in its signature.
4209  static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4210  const DeclContext *dc = method->getDeclContext();
4211  if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
4212  return classDecl->getTypeParamListAsWritten();
4213  }
4214 
4215  if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4216  return catDecl->getTypeParamList();
4217  }
4218 
4219  return false;
4220  }
4221 
4222  template<typename T>
4223  static bool isObjCMethodWithTypeParams(const T *) { return false; }
4224 #endif
4225 
4226  enum class EvaluationOrder {
4227  ///! No language constraints on evaluation order.
4228  Default,
4229  ///! Language semantics require left-to-right evaluation.
4230  ForceLeftToRight,
4231  ///! Language semantics require right-to-left evaluation.
4232  ForceRightToLeft
4233  };
4234 
4235  /// EmitCallArgs - Emit call arguments for a function.
4236  template <typename T>
4237  void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4238  llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4240  unsigned ParamsToSkip = 0,
4241  EvaluationOrder Order = EvaluationOrder::Default) {
4242  SmallVector<QualType, 16> ArgTypes;
4243  CallExpr::const_arg_iterator Arg = ArgRange.begin();
4244 
4245  assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4246  "Can't skip parameters if type info is not provided");
4247  if (CallArgTypeInfo) {
4248 #ifndef NDEBUG
4249  bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4250 #endif
4251 
4252  // First, use the argument types that the type info knows about
4253  for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4254  E = CallArgTypeInfo->param_type_end();
4255  I != E; ++I, ++Arg) {
4256  assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4257  assert((isGenericMethod ||
4258  ((*I)->isVariablyModifiedType() ||
4259  (*I).getNonReferenceType()->isObjCRetainableType() ||
4260  getContext()
4261  .getCanonicalType((*I).getNonReferenceType())
4262  .getTypePtr() ==
4263  getContext()
4264  .getCanonicalType((*Arg)->getType())
4265  .getTypePtr())) &&
4266  "type mismatch in call argument!");
4267  ArgTypes.push_back(*I);
4268  }
4269  }
4270 
4271  // Either we've emitted all the call args, or we have a call to variadic
4272  // function.
4273  assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4274  CallArgTypeInfo->isVariadic()) &&
4275  "Extra arguments in non-variadic function!");
4276 
4277  // If we still have any arguments, emit them using the type of the argument.
4278  for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4279  ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4280 
4281  EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4282  }
4283 
4284  void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4285  llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4287  unsigned ParamsToSkip = 0,
4288  EvaluationOrder Order = EvaluationOrder::Default);
4289 
4290  /// EmitPointerWithAlignment - Given an expression with a pointer type,
4291  /// emit the value and compute our best estimate of the alignment of the
4292  /// pointee.
4293  ///
4294  /// \param BaseInfo - If non-null, this will be initialized with
4295  /// information about the source of the alignment and the may-alias
4296  /// attribute. Note that this function will conservatively fall back on
4297  /// the type when it doesn't recognize the expression and may-alias will
4298  /// be set to false.
4299  ///
4300  /// One reasonable way to use this information is when there's a language
4301  /// guarantee that the pointer must be aligned to some stricter value, and
4302  /// we're simply trying to ensure that sufficiently obvious uses of under-
4303  /// aligned objects don't get miscompiled; for example, a placement new
4304  /// into the address of a local variable. In such a case, it's quite
4305  /// reasonable to just ignore the returned alignment when it isn't from an
4306  /// explicit source.
4307  Address EmitPointerWithAlignment(const Expr *Addr,
4308  LValueBaseInfo *BaseInfo = nullptr,
4309  TBAAAccessInfo *TBAAInfo = nullptr);
4310 
4311  /// If \p E references a parameter with pass_object_size info or a constant
4312  /// array size modifier, emit the object size divided by the size of \p EltTy.
4313  /// Otherwise return null.
4314  llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4315 
4316  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4317 
4319  llvm::Function *Function;
4321  struct Conds {
4322  StringRef Architecture;
4324 
4325  Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4326  : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4327  } Conditions;
4328 
4329  MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4330  ArrayRef<StringRef> Feats)
4331  : Function(F), Conditions(Arch, Feats) {}
4332  };
4333 
4334  // Emits the body of a multiversion function's resolver. Assumes that the
4335  // options are already sorted in the proper order, with the 'default' option
4336  // last (if it exists).
4337  void EmitMultiVersionResolver(llvm::Function *Resolver,
4339 
4340  static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4341 
4342 private:
4343  QualType getVarArgType(const Expr *Arg);
4344 
4345  void EmitDeclMetadata();
4346 
4347  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4348  const AutoVarEmission &emission);
4349 
4350  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4351 
4352  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4353  llvm::Value *EmitX86CpuIs(const CallExpr *E);
4354  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4355  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4356  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4357  llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4358  llvm::Value *EmitX86CpuInit();
4359  llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4360 };
4361 
4363 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4364  if (!needsSaving(value)) return saved_type(value, false);
4365 
4366  // Otherwise, we need an alloca.
4367  auto align = CharUnits::fromQuantity(
4368  CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4369  Address alloca =
4370  CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4371  CGF.Builder.CreateStore(value, alloca);
4372 
4373  return saved_type(alloca.getPointer(), true);
4374 }
4375 
4376 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4377  saved_type value) {
4378  // If the value says it wasn't saved, trust that it's still dominating.
4379  if (!value.getInt()) return value.getPointer();
4380 
4381  // Otherwise, it should be an alloca instruction, as set up in save().
4382  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4383  return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
4384 }
4385 
4386 } // end namespace CodeGen
4387 } // end namespace clang
4388 
4389 #endif
const llvm::DataLayout & getDataLayout() const
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:77
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:363
llvm::Value * getArrayInitIndex()
Get the index of the current ArrayInitLoopExpr, if any.
Optional< uint64_t > getStmtCount(const Stmt *S)
Check if an execution count is known for a given statement.
Definition: CodeGenPGO.h:62
This represents &#39;#pragma omp distribute simd&#39; composite directive.
Definition: StmtOpenMP.h:3328
Information about the layout of a __block variable.
Definition: CGBlocks.h:143
This represents &#39;#pragma omp master&#39; directive.
Definition: StmtOpenMP.h:1511
virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S)
Emit the captured statement body.
This represents &#39;#pragma omp task&#39; directive.
Definition: StmtOpenMP.h:1851
Represents a function declaration or definition.
Definition: Decl.h:1748
LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2569
Scheduling data for loop-based OpenMP directives.
Definition: OpenMPKinds.h:156
A (possibly-)qualified type.
Definition: Type.h:643
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:246
const CodeGenOptions & getCodeGenOpts() const
The class detects jumps which bypass local variables declaration: goto L; int a; L: ...
Address CreateMemTemp(QualType T, const Twine &Name="tmp", Address *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
Definition: CGExpr.cpp:139
void enterFullExpression(const FullExpr *E)
AlignmentSource
The source of the alignment of an l-value; an expression of confidence in the alignment actually matc...
Definition: CGValue.h:125
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
bool isSEHTryScope() const
Returns true inside SEH __try blocks.
llvm::LLVMContext & getLLVMContext()
Specialize PointerLikeTypeTraits to allow LazyGenerationalUpdatePtr to be placed into a PointerUnion...
Definition: Dominators.h:30
CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
FieldConstructionScope(CodeGenFunction &CGF, Address This)
Represents a &#39;co_return&#39; statement in the C++ Coroutines TS.
Definition: StmtCXX.h:456
Stmt - This represents one statement.
Definition: Stmt.h:66
IfStmt - This represents an if/then/else.
Definition: Stmt.h:1812
static T * buildByrefHelpers(CodeGenModule &CGM, const BlockByrefInfo &byrefInfo, T &&generator)
Lazily build the copy and dispose helpers for a __block variable with the given information.
Definition: CGBlocks.cpp:2586
bool requiresCleanups() const
Determine whether this scope requires any cleanups.
C Language Family Type Representation.
OpaqueValueMapping(CodeGenFunction &CGF, const AbstractConditionalOperator *op)
Build the opaque value mapping for the given conditional operator if it&#39;s the GNU ...
This represents &#39;#pragma omp for simd&#39; directive.
Definition: StmtOpenMP.h:1261
Checking the &#39;this&#39; pointer for a constructor call.
bool hasVolatileMember() const
Definition: Decl.h:3710
bool hasLabelBeenSeenInCurrentScope() const
Return true if a label was seen in the current scope.
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
This represents &#39;#pragma omp teams distribute parallel for&#39; composite directive.
Definition: StmtOpenMP.h:3739
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
static bool classof(const CGCapturedStmtInfo *)
Represents an attribute applied to a statement.
Definition: Stmt.h:1754
static Destroyer destroyARCStrongPrecise
llvm::Value * LoadCXXThis()
LoadCXXThis - Load the value of &#39;this&#39;.
The base class of the type hierarchy.
Definition: Type.h:1433
This represents &#39;#pragma omp target teams distribute&#39; combined directive.
Definition: StmtOpenMP.h:3876
Represents Objective-C&#39;s @throw statement.
Definition: StmtObjC.h:332
CGCapturedStmtInfo(const CapturedStmt &S, CapturedRegionKind K=CR_Default)
const RecordDecl * getCapturedRecordDecl() const
Retrieve the record declaration for captured variables.
Definition: Stmt.h:3468
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2844
void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, llvm::Value *Address)
virtual const FieldDecl * lookup(const VarDecl *VD) const
Lookup the captured field decl for a variable.
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1326
RangeSelector before(RangeSelector Selector)
Selects the (empty) range [B,B) when Selector selects the range [B,E).
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:115
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:378
DominatingValue< T >::saved_type saveValueInCond(T value)
CGCapturedStmtInfo(CapturedRegionKind K=CR_Default)
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
const ParmVarDecl * getParamDecl(unsigned I) const
const llvm::function_ref< void(CodeGenFunction &, llvm::Function *, const OMPTaskDataTy &)> TaskGenTy
This represents &#39;#pragma omp parallel for&#39; directive.
Definition: StmtOpenMP.h:1632
RangeSelector name(std::string ID)
Given a node with a "name", (like NamedDecl, DeclRefExpr or CxxCtorInitializer) selects the name&#39;s to...
void emitCounterIncrement(CGBuilderTy &Builder, const Stmt *S, llvm::Value *StepV)
Definition: CodeGenPGO.cpp:892
This represents &#39;#pragma omp target teams distribute parallel for&#39; combined directive.
Definition: StmtOpenMP.h:3944
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2566
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4320
static bool needsSaving(llvm::Value *value)
Answer whether the given value needs extra work to be saved.
static type restore(CodeGenFunction &CGF, saved_type value)
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const RValue &rv)
Represents a point when we exit a loop.
Definition: ProgramPoint.h:713
const CXXBaseSpecifier *const * path_const_iterator
Definition: Expr.h:3190
This represents &#39;#pragma omp target exit data&#39; directive.
Definition: StmtOpenMP.h:2543
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
TypeEvaluationKind
The kind of evaluation to perform on values of a particular type.
Represents a variable declaration or definition.
Definition: Decl.h:812
Address getObjectAddress(CodeGenFunction &CGF) const
Returns the address of the object within this declaration.
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **callOrInvoke=nullptr)
ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC &#39;id&#39; type.
Definition: ExprObjC.h:1492
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:3048
RAII object to set/unset CodeGenFunction::IsSanitizerScope.
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6851
uint64_t getProfileCount(const Stmt *S)
Get the profiler&#39;s count for the given statement.
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:54
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:138
void setCurrentProfileCount(uint64_t Count)
Set the profiler&#39;s current count.
llvm::Value * getPointer() const
Definition: Address.h:37
static ConstantEmission forValue(llvm::Constant *C)
capture_iterator capture_begin()
Retrieve an iterator pointing to the first capture.
Definition: Stmt.h:3493
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:1044
Represents a parameter to a function.
Definition: Decl.h:1564
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:23
Defines the clang::Expr interface and subclasses for C++ expressions.
The collection of all-type qualifiers we support.
Definition: Type.h:137
EHScopeStack::stable_iterator PrologueCleanupDepth
PrologueCleanupDepth - The cleanup depth enclosing all the cleanups associated with the parameters...
A jump destination is an abstract label, branching to which may require a jump out through normal cle...
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:1710
Represents a struct/union/class.
Definition: Decl.h:3626
llvm::DenseMap< const VarDecl *, FieldDecl * > LambdaCaptureFields
LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
const TargetInfo & getTarget() const
An object to manage conditionally-evaluated expressions.
PeepholeProtection protectFromPeepholes(RValue rvalue)
protectFromPeepholes - Protect a value that we&#39;re intending to store to the side, but which will prob...
ConditionalCleanup stores the saved form of its parameters, then restores them and performs the clean...
Definition: EHScopeStack.h:197
ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
void setScopeDepth(EHScopeStack::stable_iterator depth)
This represents &#39;#pragma omp parallel&#39; directive.
Definition: StmtOpenMP.h:356
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
FullExpr - Represents a "full-expression" node.
Definition: Expr.h:920
llvm::SmallPtrSet< const CXXRecordDecl *, 4 > VisitedVirtualBasesSetTy
The scope used to remap some variables as private in the OpenMP loop body (or other captured region e...
SmallVector< Address, 1 > SEHCodeSlotStack
A stack of exception code slots.
Represents a member of a struct/union/class.
Definition: Decl.h:2607
Definition: Format.h:2274
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
bool isReferenceType() const
Definition: Type.h:6396
Helper class with most of the code for saving a value for a conditional expression cleanup...
llvm::BasicBlock * getStartingBlock() const
Returns a block which will be executed prior to each evaluation of the conditional code...
This represents &#39;#pragma omp target simd&#39; directive.
Definition: StmtOpenMP.h:3464
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:1103
Defines some OpenMP-specific enums and functions.
ExtVectorElementExpr - This represents access to specific elements of a vector, and may occur on the ...
Definition: Expr.h:5480
Address getAllocatedAddress() const
Returns the raw, allocated address, which is not necessarily the address of the object itself...
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:65
This represents &#39;#pragma omp barrier&#39; directive.
Definition: StmtOpenMP.h:1963
CleanupKind getCleanupKind(QualType::DestructionKind kind)
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:49
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp, [NSNumber numberWithInt:42]];.
Definition: ExprObjC.h:188
The this pointer adjustment as well as an optional return adjustment for a thunk. ...
Definition: ABI.h:178
This is a common base class for loop directives (&#39;omp simd&#39;, &#39;omp for&#39;, &#39;omp for simd&#39; etc...
Definition: StmtOpenMP.h:418
This represents &#39;#pragma omp critical&#39; directive.
Definition: StmtOpenMP.h:1558
const AstTypeMatcher< ComplexType > complexType
Matches C99 complex types.
bool isCleanupPadScope() const
Returns true while emitting a cleanuppad.
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition: CGExpr.cpp:194
void pushFullExprCleanup(CleanupKind kind, As... A)
pushFullExprCleanup - Push a cleanup to be run at the end of the current full-expression.
OpenMPDistScheduleClauseKind
OpenMP attributes for &#39;dist_schedule&#39; clause.
Definition: OpenMPKinds.h:124
bool isGLValue() const
Definition: Expr.h:261
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:2494
Describes an C or C++ initializer list.
Definition: Expr.h:4371
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:668
This represents &#39;#pragma omp distribute parallel for&#39; composite directive.
Definition: StmtOpenMP.h:3179
void setCurrentRegionCount(uint64_t Count)
Set the counter value for the current region.
Definition: CodeGenPGO.h:58
A class controlling the emission of a finally block.
This represents &#39;#pragma omp teams distribute parallel for simd&#39; composite directive.
Definition: StmtOpenMP.h:3668
BinaryOperatorKind
static bool hasScalarEvaluationKind(QualType T)
ForStmt - This represents a &#39;for (init;cond;inc)&#39; stmt.
Definition: Stmt.h:2384
InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
MultiVersionResolverOption(llvm::Function *F, StringRef Arch, ArrayRef< StringRef > Feats)
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:968
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:37
llvm::function_ref< std::pair< LValue, LValue > CodeGenFunction &, const OMPExecutableDirective &S)> CodeGenLoopBoundsTy
CGCapturedStmtRAII(CodeGenFunction &CGF, CGCapturedStmtInfo *NewCapturedStmtInfo)
LexicalScope(CodeGenFunction &CGF, SourceRange Range)
Enter a new cleanup scope.
RAII for correct setting/restoring of CapturedStmtInfo.
TBAAAccessInfo getTBAAAccessInfo(QualType AccessType)
getTBAAAccessInfo - Get TBAA information that describes an access to an object of the given type...
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:66
EHScopeStack::stable_iterator CurrentCleanupScopeDepth
Represents a declaration of a type.
Definition: Decl.h:2907
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3405
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const LValue &lv)
void restore(CodeGenFunction &CGF)
Restores original addresses of the variables.
CXXForRangeStmt - This represents C++0x [stmt.ranged]&#39;s ranged for statement, represented as &#39;for (ra...
Definition: StmtCXX.h:134
#define LIST_SANITIZER_CHECKS
void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV)
This represents &#39;#pragma omp cancellation point&#39; directive.
Definition: StmtOpenMP.h:2798
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:50
Expr * getSizeExpr() const
Definition: Type.h:3023
field_iterator field_begin() const
Definition: Decl.cpp:4300
CaseStmt - Represent a case statement.
Definition: Stmt.h:1478
A stack of scopes which respond to exceptions, including cleanups and catch blocks.
Definition: EHScopeStack.h:99
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
This represents &#39;#pragma omp teams&#39; directive.
Definition: StmtOpenMP.h:2741
Denotes a cleanup that should run when a scope is exited using normal control flow (falling off the e...
Definition: EHScopeStack.h:84
Enums/classes describing ABI related information about constructors, destructors and thunks...
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3121
This represents &#39;#pragma omp teams distribute simd&#39; combined directive.
Definition: StmtOpenMP.h:3598
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1277
GlobalDecl CurGD
CurGD - The GlobalDecl for the current function being compiled.
Controls insertion of cancellation exit blocks in worksharing constructs.
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler&#39;s counter for the given statement by StepV.
uint64_t getCurrentProfileCount()
Get the profiler&#39;s current count.
CallLifetimeEnd(Address addr, llvm::Value *size)
llvm::function_ref< std::pair< llvm::Value *, llvm::Value * > CodeGenFunction &, const OMPExecutableDirective &S, Address LB, Address UB)> CodeGenDispatchBoundsTy
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
Definition: CGExpr.cpp:106
Represents an ObjC class declaration.
Definition: DeclObjC.h:1171
Checking the operand of a cast to a virtual base object.
JumpDest getJumpDestInCurrentScope(StringRef Name=StringRef())
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
A default argument (C++ [dcl.fct.default]).
Definition: ExprCXX.h:1106
Checking the operand of a load. Must be suitably sized and aligned.
~LexicalScope()
Exit this cleanup scope, emitting any accumulated cleanups.
Checking the &#39;this&#39; pointer for a call to a non-static member function.
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
ObjCPropertyImplDecl - Represents implementation declaration of a property in a class or category imp...
Definition: DeclObjC.h:2758
This represents &#39;#pragma omp target parallel for simd&#39; directive.
Definition: StmtOpenMP.h:3396
OpenMP 4.0 [2.4, Array Sections].
Definition: ExprOpenMP.h:44
bool isValid() const
Definition: Address.h:35
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2380
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1310
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3719
Describes the capture of either a variable, or &#39;this&#39;, or variable-length array type.
Definition: Stmt.h:3363
This represents &#39;#pragma omp taskgroup&#39; directive.
Definition: StmtOpenMP.h:2051
const TargetCodeGenInfo & getTargetCodeGenInfo()
CGBlockInfo - Information to generate a block literal.
Definition: CGBlocks.h:152
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:38
AggValueSlot::Overlap_t getOverlapForReturnValue()
Determine whether a return value slot may overlap some other object.
CleanupKind getARCCleanupKind()
Retrieves the default cleanup kind for an ARC cleanup.
bool isGlobalVarCaptured(const VarDecl *VD) const
Checks if the global variable is captured in current function.
The class used to assign some variables some temporarily addresses.
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:178
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:4212
void pushCleanupAfterFullExpr(CleanupKind Kind, As... A)
Queue a cleanup to be pushed after finishing the current full-expression.
LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
This represents &#39;#pragma omp distribute&#39; directive.
Definition: StmtOpenMP.h:3052
Exposes information about the current target.
Definition: TargetInfo.h:161
CXXDtorType
C++ destructor types.
Definition: ABI.h:33
bool addPrivate(const VarDecl *LocalVD, const llvm::function_ref< Address()> PrivateGen)
Registers LocalVD variable as a private and apply PrivateGen function for it to generate correspondin...
EHScopeStack::stable_iterator getScopeDepth() const
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:636
This represents one expression.
Definition: Expr.h:108
Address getOriginalAllocatedAddress() const
Returns the address for the original alloca instruction.
stable_iterator getInnermostNormalCleanup() const
Returns the innermost normal cleanup on the stack, or stable_end() if there are no normal cleanups...
Definition: EHScopeStack.h:355
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
llvm::function_ref< void(CodeGenFunction &, SourceLocation, const unsigned, const bool)> CodeGenOrderedTy
static ParamValue forIndirect(Address addr)
OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, RValue rvalue)
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned Pa