clang  7.0.0svn
CodeGenFunction.h
Go to the documentation of this file.
1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
33 #include "clang/Basic/TargetInfo.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/MapVector.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Transforms/Utils/SanitizerStats.h"
42 
43 namespace llvm {
44 class BasicBlock;
45 class LLVMContext;
46 class MDNode;
47 class Module;
48 class SwitchInst;
49 class Twine;
50 class Value;
51 class CallSite;
52 }
53 
54 namespace clang {
55 class ASTContext;
56 class BlockDecl;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class EnumConstantDecl;
63 class FunctionDecl;
64 class FunctionProtoType;
65 class LabelStmt;
66 class ObjCContainerDecl;
67 class ObjCInterfaceDecl;
68 class ObjCIvarDecl;
69 class ObjCMethodDecl;
70 class ObjCImplementationDecl;
71 class ObjCPropertyImplDecl;
72 class TargetInfo;
73 class VarDecl;
74 class ObjCForCollectionStmt;
75 class ObjCAtTryStmt;
76 class ObjCAtThrowStmt;
77 class ObjCAtSynchronizedStmt;
78 class ObjCAutoreleasePoolStmt;
79 
80 namespace analyze_os_log {
81 class OSLogBufferLayout;
82 }
83 
84 namespace CodeGen {
85 class CodeGenTypes;
86 class CGCallee;
87 class CGFunctionInfo;
88 class CGRecordLayout;
89 class CGBlockInfo;
90 class CGCXXABI;
91 class BlockByrefHelpers;
92 class BlockByrefInfo;
93 class BlockFlags;
94 class BlockFieldFlags;
95 class RegionCodeGenTy;
96 class TargetCodeGenInfo;
97 struct OMPTaskDataTy;
98 struct CGCoroData;
99 
100 /// The kind of evaluation to perform on values of a particular
101 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or
102 /// CGExprAgg?
103 ///
104 /// TODO: should vectors maybe be split out into their own thing?
109 };
110 
111 #define LIST_SANITIZER_CHECKS \
112  SANITIZER_CHECK(AddOverflow, add_overflow, 0) \
113  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \
114  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \
115  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \
116  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \
117  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \
118  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \
119  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \
120  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \
121  SANITIZER_CHECK(MissingReturn, missing_return, 0) \
122  SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \
123  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \
124  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \
125  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \
126  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \
127  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \
128  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \
129  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \
130  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \
131  SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \
132  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \
133  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
134 
136 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
138 #undef SANITIZER_CHECK
139 };
140 
141 /// CodeGenFunction - This class organizes the per-function state that is used
142 /// while generating LLVM code.
144  CodeGenFunction(const CodeGenFunction &) = delete;
145  void operator=(const CodeGenFunction &) = delete;
146 
147  friend class CGCXXABI;
148 public:
149  /// A jump destination is an abstract label, branching to which may
150  /// require a jump out through normal cleanups.
151  struct JumpDest {
152  JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
153  JumpDest(llvm::BasicBlock *Block,
155  unsigned Index)
156  : Block(Block), ScopeDepth(Depth), Index(Index) {}
157 
158  bool isValid() const { return Block != nullptr; }
159  llvm::BasicBlock *getBlock() const { return Block; }
160  EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
161  unsigned getDestIndex() const { return Index; }
162 
163  // This should be used cautiously.
165  ScopeDepth = depth;
166  }
167 
168  private:
169  llvm::BasicBlock *Block;
171  unsigned Index;
172  };
173 
174  CodeGenModule &CGM; // Per-module state.
176 
177  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
180 
181  // Stores variables for which we can't generate correct lifetime markers
182  // because of jumps.
184 
185  // CodeGen lambda for loops and support for ordered clause
186  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
187  JumpDest)>
189  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
190  const unsigned, const bool)>
192 
193  // Codegen lambda for loop bounds in worksharing loop constructs
194  typedef llvm::function_ref<std::pair<LValue, LValue>(
197 
198  // Codegen lambda for loop bounds in dispatch-based loop implementation
199  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
200  CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
201  Address UB)>
203 
204  /// \brief CGBuilder insert helper. This function is called after an
205  /// instruction is created using Builder.
206  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
207  llvm::BasicBlock *BB,
208  llvm::BasicBlock::iterator InsertPt) const;
209 
210  /// CurFuncDecl - Holds the Decl for the current outermost
211  /// non-closure context.
213  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
217  llvm::Function *CurFn;
218 
219  // Holds coroutine data if the current function is a coroutine. We use a
220  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
221  // in this header.
222  struct CGCoroInfo {
223  std::unique_ptr<CGCoroData> Data;
224  CGCoroInfo();
225  ~CGCoroInfo();
226  };
228 
229  bool isCoroutine() const {
230  return CurCoro.Data != nullptr;
231  }
232 
233  /// CurGD - The GlobalDecl for the current function being compiled.
235 
236  /// PrologueCleanupDepth - The cleanup depth enclosing all the
237  /// cleanups associated with the parameters.
239 
240  /// ReturnBlock - Unified return block.
242 
243  /// ReturnValue - The temporary alloca to hold the return
244  /// value. This is invalid iff the function has no return value.
246 
247  /// Return true if a label was seen in the current scope.
249  if (CurLexicalScope)
250  return CurLexicalScope->hasLabels();
251  return !LabelMap.empty();
252  }
253 
254  /// AllocaInsertPoint - This is an instruction in the entry block before which
255  /// we prefer to insert allocas.
256  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
257 
258  /// \brief API for captured statement code generation.
260  public:
262  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
263  explicit CGCapturedStmtInfo(const CapturedStmt &S,
265  : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
266 
270  E = S.capture_end();
271  I != E; ++I, ++Field) {
272  if (I->capturesThis())
273  CXXThisFieldDecl = *Field;
274  else if (I->capturesVariable())
275  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
276  else if (I->capturesVariableByCopy())
277  CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
278  }
279  }
280 
281  virtual ~CGCapturedStmtInfo();
282 
283  CapturedRegionKind getKind() const { return Kind; }
284 
285  virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
286  // \brief Retrieve the value of the context parameter.
287  virtual llvm::Value *getContextValue() const { return ThisValue; }
288 
289  /// \brief Lookup the captured field decl for a variable.
290  virtual const FieldDecl *lookup(const VarDecl *VD) const {
291  return CaptureFields.lookup(VD->getCanonicalDecl());
292  }
293 
294  bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
295  virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
296 
297  static bool classof(const CGCapturedStmtInfo *) {
298  return true;
299  }
300 
301  /// \brief Emit the captured statement body.
302  virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
304  CGF.EmitStmt(S);
305  }
306 
307  /// \brief Get the name of the capture helper.
308  virtual StringRef getHelperName() const { return "__captured_stmt"; }
309 
310  private:
311  /// \brief The kind of captured statement being generated.
313 
314  /// \brief Keep the map between VarDecl and FieldDecl.
315  llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
316 
317  /// \brief The base address of the captured record, passed in as the first
318  /// argument of the parallel region function.
319  llvm::Value *ThisValue;
320 
321  /// \brief Captured 'this' type.
322  FieldDecl *CXXThisFieldDecl;
323  };
325 
326  /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
328  private:
329  CodeGenFunction &CGF;
330  CGCapturedStmtInfo *PrevCapturedStmtInfo;
331  public:
332  CGCapturedStmtRAII(CodeGenFunction &CGF,
333  CGCapturedStmtInfo *NewCapturedStmtInfo)
334  : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
335  CGF.CapturedStmtInfo = NewCapturedStmtInfo;
336  }
337  ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
338  };
339 
340  /// An abstract representation of regular/ObjC call/message targets.
342  /// The function declaration of the callee.
343  const Decl *CalleeDecl;
344 
345  public:
346  AbstractCallee() : CalleeDecl(nullptr) {}
347  AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
348  AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
349  bool hasFunctionDecl() const {
350  return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
351  }
352  const Decl *getDecl() const { return CalleeDecl; }
353  unsigned getNumParams() const {
354  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
355  return FD->getNumParams();
356  return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
357  }
358  const ParmVarDecl *getParamDecl(unsigned I) const {
359  if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
360  return FD->getParamDecl(I);
361  return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
362  }
363  };
364 
365  /// \brief Sanitizers enabled for this function.
367 
368  /// \brief True if CodeGen currently emits code implementing sanitizer checks.
370 
371  /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
373  CodeGenFunction *CGF;
374  public:
375  SanitizerScope(CodeGenFunction *CGF);
376  ~SanitizerScope();
377  };
378 
379  /// In C++, whether we are code generating a thunk. This controls whether we
380  /// should emit cleanups.
382 
383  /// In ARC, whether we should autorelease the return value.
385 
386  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
387  /// potentially set the return value.
389 
390  const FunctionDecl *CurSEHParent = nullptr;
391 
392  /// True if the current function is an outlined SEH helper. This can be a
393  /// finally block or filter expression.
395 
398 
399  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
401 
402  /// \brief A mapping from NRVO variables to the flags used to indicate
403  /// when the NRVO has been applied to this variable.
404  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
405 
409 
410  llvm::Instruction *CurrentFuncletPad = nullptr;
411 
412  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
413  llvm::Value *Addr;
414  llvm::Value *Size;
415 
416  public:
418  : Addr(addr.getPointer()), Size(size) {}
419 
420  void Emit(CodeGenFunction &CGF, Flags flags) override {
421  CGF.EmitLifetimeEnd(Size, Addr);
422  }
423  };
424 
425  /// Header for data within LifetimeExtendedCleanupStack.
427  /// The size of the following cleanup object.
428  unsigned Size;
429  /// The kind of cleanup to push: a value from the CleanupKind enumeration.
431 
432  size_t getSize() const { return Size; }
433  CleanupKind getKind() const { return Kind; }
434  };
435 
436  /// i32s containing the indexes of the cleanup destinations.
438 
440 
441  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
443 
444  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
445  llvm::BasicBlock *EHResumeBlock;
446 
447  /// The exception slot. All landing pads write the current exception pointer
448  /// into this alloca.
450 
451  /// The selector slot. Under the MandatoryCleanup model, all landing pads
452  /// write the current selector value into this alloca.
453  llvm::AllocaInst *EHSelectorSlot;
454 
455  /// A stack of exception code slots. Entering an __except block pushes a slot
456  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
457  /// a value from the top of the stack.
459 
460  /// Value returned by __exception_info intrinsic.
461  llvm::Value *SEHInfo = nullptr;
462 
463  /// Emits a landing pad for the current EH stack.
464  llvm::BasicBlock *EmitLandingPad();
465 
466  llvm::BasicBlock *getInvokeDestImpl();
467 
468  template <class T>
470  return DominatingValue<T>::save(*this, value);
471  }
472 
473 public:
474  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
475  /// rethrows.
477 
478  /// A class controlling the emission of a finally block.
479  class FinallyInfo {
480  /// Where the catchall's edge through the cleanup should go.
481  JumpDest RethrowDest;
482 
483  /// A function to call to enter the catch.
484  llvm::Constant *BeginCatchFn;
485 
486  /// An i1 variable indicating whether or not the @finally is
487  /// running for an exception.
488  llvm::AllocaInst *ForEHVar;
489 
490  /// An i8* variable into which the exception pointer to rethrow
491  /// has been saved.
492  llvm::AllocaInst *SavedExnVar;
493 
494  public:
495  void enter(CodeGenFunction &CGF, const Stmt *Finally,
496  llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
497  llvm::Constant *rethrowFn);
498  void exit(CodeGenFunction &CGF);
499  };
500 
501  /// Returns true inside SEH __try blocks.
502  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
503 
504  /// Returns true while emitting a cleanuppad.
505  bool isCleanupPadScope() const {
506  return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
507  }
508 
509  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
510  /// current full-expression. Safe against the possibility that
511  /// we're currently inside a conditionally-evaluated expression.
512  template <class T, class... As>
514  // If we're not in a conditional branch, or if none of the
515  // arguments requires saving, then use the unconditional cleanup.
516  if (!isInConditionalBranch())
517  return EHStack.pushCleanup<T>(kind, A...);
518 
519  // Stash values in a tuple so we can guarantee the order of saves.
520  typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
521  SavedTuple Saved{saveValueInCond(A)...};
522 
523  typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
524  EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
525  initFullExprCleanup();
526  }
527 
528  /// \brief Queue a cleanup to be pushed after finishing the current
529  /// full-expression.
530  template <class T, class... As>
532  assert(!isInConditionalBranch() && "can't defer conditional cleanup");
533 
534  LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
535 
536  size_t OldSize = LifetimeExtendedCleanupStack.size();
537  LifetimeExtendedCleanupStack.resize(
538  LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
539 
540  static_assert(sizeof(Header) % alignof(T) == 0,
541  "Cleanup will be allocated on misaligned address");
542  char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
543  new (Buffer) LifetimeExtendedCleanupHeader(Header);
544  new (Buffer + sizeof(Header)) T(A...);
545  }
546 
547  /// Set up the last cleaup that was pushed as a conditional
548  /// full-expression cleanup.
549  void initFullExprCleanup();
550 
551  /// PushDestructorCleanup - Push a cleanup to call the
552  /// complete-object destructor of an object of the given type at the
553  /// given address. Does nothing if T is not a C++ class type with a
554  /// non-trivial destructor.
555  void PushDestructorCleanup(QualType T, Address Addr);
556 
557  /// PushDestructorCleanup - Push a cleanup to call the
558  /// complete-object variant of the given destructor on the object at
559  /// the given address.
560  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
561 
562  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
563  /// process all branch fixups.
564  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
565 
566  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
567  /// The block cannot be reactivated. Pops it if it's the top of the
568  /// stack.
569  ///
570  /// \param DominatingIP - An instruction which is known to
571  /// dominate the current IP (if set) and which lies along
572  /// all paths of execution between the current IP and the
573  /// the point at which the cleanup comes into scope.
574  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
575  llvm::Instruction *DominatingIP);
576 
577  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
578  /// Cannot be used to resurrect a deactivated cleanup.
579  ///
580  /// \param DominatingIP - An instruction which is known to
581  /// dominate the current IP (if set) and which lies along
582  /// all paths of execution between the current IP and the
583  /// the point at which the cleanup comes into scope.
584  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
585  llvm::Instruction *DominatingIP);
586 
587  /// \brief Enters a new scope for capturing cleanups, all of which
588  /// will be executed once the scope is exited.
590  EHScopeStack::stable_iterator CleanupStackDepth;
591  size_t LifetimeExtendedCleanupStackSize;
592  bool OldDidCallStackSave;
593  protected:
595  private:
596 
597  RunCleanupsScope(const RunCleanupsScope &) = delete;
598  void operator=(const RunCleanupsScope &) = delete;
599 
600  protected:
601  CodeGenFunction& CGF;
602 
603  public:
604  /// \brief Enter a new cleanup scope.
605  explicit RunCleanupsScope(CodeGenFunction &CGF)
606  : PerformCleanup(true), CGF(CGF)
607  {
608  CleanupStackDepth = CGF.EHStack.stable_begin();
609  LifetimeExtendedCleanupStackSize =
610  CGF.LifetimeExtendedCleanupStack.size();
611  OldDidCallStackSave = CGF.DidCallStackSave;
612  CGF.DidCallStackSave = false;
613  }
614 
615  /// \brief Exit this cleanup scope, emitting any accumulated cleanups.
617  if (PerformCleanup)
618  ForceCleanup();
619  }
620 
621  /// \brief Determine whether this scope requires any cleanups.
622  bool requiresCleanups() const {
623  return CGF.EHStack.stable_begin() != CleanupStackDepth;
624  }
625 
626  /// \brief Force the emission of cleanups now, instead of waiting
627  /// until this object is destroyed.
628  /// \param ValuesToReload - A list of values that need to be available at
629  /// the insertion point after cleanup emission. If cleanup emission created
630  /// a shared cleanup block, these value pointers will be rewritten.
631  /// Otherwise, they not will be modified.
632  void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
633  assert(PerformCleanup && "Already forced cleanup");
634  CGF.DidCallStackSave = OldDidCallStackSave;
635  CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
636  ValuesToReload);
637  PerformCleanup = false;
638  }
639  };
640 
642  SourceRange Range;
644  LexicalScope *ParentScope;
645 
646  LexicalScope(const LexicalScope &) = delete;
647  void operator=(const LexicalScope &) = delete;
648 
649  public:
650  /// \brief Enter a new cleanup scope.
651  explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
652  : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
653  CGF.CurLexicalScope = this;
654  if (CGDebugInfo *DI = CGF.getDebugInfo())
655  DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
656  }
657 
658  void addLabel(const LabelDecl *label) {
659  assert(PerformCleanup && "adding label to dead scope?");
660  Labels.push_back(label);
661  }
662 
663  /// \brief Exit this cleanup scope, emitting any accumulated
664  /// cleanups.
666  if (CGDebugInfo *DI = CGF.getDebugInfo())
667  DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
668 
669  // If we should perform a cleanup, force them now. Note that
670  // this ends the cleanup scope before rescoping any labels.
671  if (PerformCleanup) {
672  ApplyDebugLocation DL(CGF, Range.getEnd());
673  ForceCleanup();
674  }
675  }
676 
677  /// \brief Force the emission of cleanups now, instead of waiting
678  /// until this object is destroyed.
679  void ForceCleanup() {
680  CGF.CurLexicalScope = ParentScope;
681  RunCleanupsScope::ForceCleanup();
682 
683  if (!Labels.empty())
684  rescopeLabels();
685  }
686 
687  bool hasLabels() const {
688  return !Labels.empty();
689  }
690 
691  void rescopeLabels();
692  };
693 
694  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
695 
696  /// The class used to assign some variables some temporarily addresses.
697  class OMPMapVars {
698  DeclMapTy SavedLocals;
699  DeclMapTy SavedTempAddresses;
700  OMPMapVars(const OMPMapVars &) = delete;
701  void operator=(const OMPMapVars &) = delete;
702 
703  public:
704  explicit OMPMapVars() = default;
706  assert(SavedLocals.empty() && "Did not restored original addresses.");
707  };
708 
709  /// Sets the address of the variable \p LocalVD to be \p TempAddr in
710  /// function \p CGF.
711  /// \return true if at least one variable was set already, false otherwise.
712  bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
713  Address TempAddr) {
714  LocalVD = LocalVD->getCanonicalDecl();
715  // Only save it once.
716  if (SavedLocals.count(LocalVD)) return false;
717 
718  // Copy the existing local entry to SavedLocals.
719  auto it = CGF.LocalDeclMap.find(LocalVD);
720  if (it != CGF.LocalDeclMap.end())
721  SavedLocals.try_emplace(LocalVD, it->second);
722  else
723  SavedLocals.try_emplace(LocalVD, Address::invalid());
724 
725  // Generate the private entry.
726  QualType VarTy = LocalVD->getType();
727  if (VarTy->isReferenceType()) {
728  Address Temp = CGF.CreateMemTemp(VarTy);
729  CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
730  TempAddr = Temp;
731  }
732  SavedTempAddresses.try_emplace(LocalVD, TempAddr);
733 
734  return true;
735  }
736 
737  /// Applies new addresses to the list of the variables.
738  /// \return true if at least one variable is using new address, false
739  /// otherwise.
740  bool apply(CodeGenFunction &CGF) {
741  copyInto(SavedTempAddresses, CGF.LocalDeclMap);
742  SavedTempAddresses.clear();
743  return !SavedLocals.empty();
744  }
745 
746  /// Restores original addresses of the variables.
747  void restore(CodeGenFunction &CGF) {
748  if (!SavedLocals.empty()) {
749  copyInto(SavedLocals, CGF.LocalDeclMap);
750  SavedLocals.clear();
751  }
752  }
753 
754  private:
755  /// Copy all the entries in the source map over the corresponding
756  /// entries in the destination, which must exist.
757  static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
758  for (auto &Pair : Src) {
759  if (!Pair.second.isValid()) {
760  Dest.erase(Pair.first);
761  continue;
762  }
763 
764  auto I = Dest.find(Pair.first);
765  if (I != Dest.end())
766  I->second = Pair.second;
767  else
768  Dest.insert(Pair);
769  }
770  }
771  };
772 
773  /// The scope used to remap some variables as private in the OpenMP loop body
774  /// (or other captured region emitted without outlining), and to restore old
775  /// vars back on exit.
777  OMPMapVars MappedVars;
778  OMPPrivateScope(const OMPPrivateScope &) = delete;
779  void operator=(const OMPPrivateScope &) = delete;
780 
781  public:
782  /// Enter a new OpenMP private scope.
783  explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
784 
785  /// Registers \p LocalVD variable as a private and apply \p PrivateGen
786  /// function for it to generate corresponding private variable. \p
787  /// PrivateGen returns an address of the generated private variable.
788  /// \return true if the variable is registered as private, false if it has
789  /// been privatized already.
790  bool addPrivate(const VarDecl *LocalVD,
791  const llvm::function_ref<Address()> PrivateGen) {
792  assert(PerformCleanup && "adding private to dead scope");
793  return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
794  }
795 
796  /// Privatizes local variables previously registered as private.
797  /// Registration is separate from the actual privatization to allow
798  /// initializers use values of the original variables, not the private one.
799  /// This is important, for example, if the private variable is a class
800  /// variable initialized by a constructor that references other private
801  /// variables. But at initialization original variables must be used, not
802  /// private copies.
803  /// \return true if at least one variable was privatized, false otherwise.
804  bool Privatize() { return MappedVars.apply(CGF); }
805 
806  void ForceCleanup() {
807  RunCleanupsScope::ForceCleanup();
808  MappedVars.restore(CGF);
809  }
810 
811  /// Exit scope - all the mapped variables are restored.
813  if (PerformCleanup)
814  ForceCleanup();
815  }
816 
817  /// Checks if the global variable is captured in current function.
818  bool isGlobalVarCaptured(const VarDecl *VD) const {
819  VD = VD->getCanonicalDecl();
820  return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
821  }
822  };
823 
824  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
825  /// that have been added.
826  void
827  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
828  std::initializer_list<llvm::Value **> ValuesToReload = {});
829 
830  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
831  /// that have been added, then adds all lifetime-extended cleanups from
832  /// the given position to the stack.
833  void
834  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
835  size_t OldLifetimeExtendedStackSize,
836  std::initializer_list<llvm::Value **> ValuesToReload = {});
837 
838  void ResolveBranchFixups(llvm::BasicBlock *Target);
839 
840  /// The given basic block lies in the current EH scope, but may be a
841  /// target of a potentially scope-crossing jump; get a stable handle
842  /// to which we can perform this jump later.
843  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
844  return JumpDest(Target,
845  EHStack.getInnermostNormalCleanup(),
846  NextCleanupDestIndex++);
847  }
848 
849  /// The given basic block lies in the current EH scope, but may be a
850  /// target of a potentially scope-crossing jump; get a stable handle
851  /// to which we can perform this jump later.
852  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
853  return getJumpDestInCurrentScope(createBasicBlock(Name));
854  }
855 
856  /// EmitBranchThroughCleanup - Emit a branch from the current insert
857  /// block through the normal cleanup handling code (if any) and then
858  /// on to \arg Dest.
859  void EmitBranchThroughCleanup(JumpDest Dest);
860 
861  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
862  /// specified destination obviously has no cleanups to run. 'false' is always
863  /// a conservatively correct answer for this method.
864  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
865 
866  /// popCatchScope - Pops the catch scope at the top of the EHScope
867  /// stack, emitting any required code (other than the catch handlers
868  /// themselves).
869  void popCatchScope();
870 
871  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
872  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
873  llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
874 
875  /// An object to manage conditionally-evaluated expressions.
877  llvm::BasicBlock *StartBB;
878 
879  public:
880  ConditionalEvaluation(CodeGenFunction &CGF)
881  : StartBB(CGF.Builder.GetInsertBlock()) {}
882 
883  void begin(CodeGenFunction &CGF) {
884  assert(CGF.OutermostConditional != this);
885  if (!CGF.OutermostConditional)
886  CGF.OutermostConditional = this;
887  }
888 
889  void end(CodeGenFunction &CGF) {
890  assert(CGF.OutermostConditional != nullptr);
891  if (CGF.OutermostConditional == this)
892  CGF.OutermostConditional = nullptr;
893  }
894 
895  /// Returns a block which will be executed prior to each
896  /// evaluation of the conditional code.
897  llvm::BasicBlock *getStartingBlock() const {
898  return StartBB;
899  }
900  };
901 
902  /// isInConditionalBranch - Return true if we're currently emitting
903  /// one branch or the other of a conditional expression.
904  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
905 
907  assert(isInConditionalBranch());
908  llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
909  auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
910  store->setAlignment(addr.getAlignment().getQuantity());
911  }
912 
913  /// An RAII object to record that we're evaluating a statement
914  /// expression.
916  CodeGenFunction &CGF;
917 
918  /// We have to save the outermost conditional: cleanups in a
919  /// statement expression aren't conditional just because the
920  /// StmtExpr is.
921  ConditionalEvaluation *SavedOutermostConditional;
922 
923  public:
924  StmtExprEvaluation(CodeGenFunction &CGF)
925  : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
926  CGF.OutermostConditional = nullptr;
927  }
928 
930  CGF.OutermostConditional = SavedOutermostConditional;
931  CGF.EnsureInsertPoint();
932  }
933  };
934 
935  /// An object which temporarily prevents a value from being
936  /// destroyed by aggressive peephole optimizations that assume that
937  /// all uses of a value have been realized in the IR.
939  llvm::Instruction *Inst;
940  friend class CodeGenFunction;
941 
942  public:
943  PeepholeProtection() : Inst(nullptr) {}
944  };
945 
946  /// A non-RAII class containing all the information about a bound
947  /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for
948  /// this which makes individual mappings very simple; using this
949  /// class directly is useful when you have a variable number of
950  /// opaque values or don't want the RAII functionality for some
951  /// reason.
953  const OpaqueValueExpr *OpaqueValue;
954  bool BoundLValue;
956 
958  bool boundLValue)
959  : OpaqueValue(ov), BoundLValue(boundLValue) {}
960  public:
961  OpaqueValueMappingData() : OpaqueValue(nullptr) {}
962 
963  static bool shouldBindAsLValue(const Expr *expr) {
964  // gl-values should be bound as l-values for obvious reasons.
965  // Records should be bound as l-values because IR generation
966  // always keeps them in memory. Expressions of function type
967  // act exactly like l-values but are formally required to be
968  // r-values in C.
969  return expr->isGLValue() ||
970  expr->getType()->isFunctionType() ||
971  hasAggregateEvaluationKind(expr->getType());
972  }
973 
974  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
975  const OpaqueValueExpr *ov,
976  const Expr *e) {
977  if (shouldBindAsLValue(ov))
978  return bind(CGF, ov, CGF.EmitLValue(e));
979  return bind(CGF, ov, CGF.EmitAnyExpr(e));
980  }
981 
982  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
983  const OpaqueValueExpr *ov,
984  const LValue &lv) {
985  assert(shouldBindAsLValue(ov));
986  CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
987  return OpaqueValueMappingData(ov, true);
988  }
989 
990  static OpaqueValueMappingData bind(CodeGenFunction &CGF,
991  const OpaqueValueExpr *ov,
992  const RValue &rv) {
993  assert(!shouldBindAsLValue(ov));
994  CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
995 
996  OpaqueValueMappingData data(ov, false);
997 
998  // Work around an extremely aggressive peephole optimization in
999  // EmitScalarConversion which assumes that all other uses of a
1000  // value are extant.
1001  data.Protection = CGF.protectFromPeepholes(rv);
1002 
1003  return data;
1004  }
1005 
1006  bool isValid() const { return OpaqueValue != nullptr; }
1007  void clear() { OpaqueValue = nullptr; }
1008 
1009  void unbind(CodeGenFunction &CGF) {
1010  assert(OpaqueValue && "no data to unbind!");
1011 
1012  if (BoundLValue) {
1013  CGF.OpaqueLValues.erase(OpaqueValue);
1014  } else {
1015  CGF.OpaqueRValues.erase(OpaqueValue);
1016  CGF.unprotectFromPeepholes(Protection);
1017  }
1018  }
1019  };
1020 
1021  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1023  CodeGenFunction &CGF;
1025 
1026  public:
1027  static bool shouldBindAsLValue(const Expr *expr) {
1028  return OpaqueValueMappingData::shouldBindAsLValue(expr);
1029  }
1030 
1031  /// Build the opaque value mapping for the given conditional
1032  /// operator if it's the GNU ?: extension. This is a common
1033  /// enough pattern that the convenience operator is really
1034  /// helpful.
1035  ///
1036  OpaqueValueMapping(CodeGenFunction &CGF,
1037  const AbstractConditionalOperator *op) : CGF(CGF) {
1038  if (isa<ConditionalOperator>(op))
1039  // Leave Data empty.
1040  return;
1041 
1042  const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1043  Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1044  e->getCommon());
1045  }
1046 
1047  /// Build the opaque value mapping for an OpaqueValueExpr whose source
1048  /// expression is set to the expression the OVE represents.
1049  OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1050  : CGF(CGF) {
1051  if (OV) {
1052  assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1053  "for OVE with no source expression");
1054  Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1055  }
1056  }
1057 
1058  OpaqueValueMapping(CodeGenFunction &CGF,
1059  const OpaqueValueExpr *opaqueValue,
1060  LValue lvalue)
1061  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1062  }
1063 
1064  OpaqueValueMapping(CodeGenFunction &CGF,
1065  const OpaqueValueExpr *opaqueValue,
1066  RValue rvalue)
1067  : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1068  }
1069 
1070  void pop() {
1071  Data.unbind(CGF);
1072  Data.clear();
1073  }
1074 
1076  if (Data.isValid()) Data.unbind(CGF);
1077  }
1078  };
1079 
1080 private:
1081  CGDebugInfo *DebugInfo;
1082  bool DisableDebugInfo;
1083 
1084  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1085  /// calling llvm.stacksave for multiple VLAs in the same scope.
1086  bool DidCallStackSave;
1087 
1088  /// IndirectBranch - The first time an indirect goto is seen we create a block
1089  /// with an indirect branch. Every time we see the address of a label taken,
1090  /// we add the label to the indirect goto. Every subsequent indirect goto is
1091  /// codegen'd as a jump to the IndirectBranch's basic block.
1092  llvm::IndirectBrInst *IndirectBranch;
1093 
1094  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1095  /// decls.
1096  DeclMapTy LocalDeclMap;
1097 
1098  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1099  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1100  /// parameter.
1101  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1102  SizeArguments;
1103 
1104  /// Track escaped local variables with auto storage. Used during SEH
1105  /// outlining to produce a call to llvm.localescape.
1106  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1107 
1108  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1109  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1110 
1111  // BreakContinueStack - This keeps track of where break and continue
1112  // statements should jump to.
1113  struct BreakContinue {
1114  BreakContinue(JumpDest Break, JumpDest Continue)
1115  : BreakBlock(Break), ContinueBlock(Continue) {}
1116 
1117  JumpDest BreakBlock;
1118  JumpDest ContinueBlock;
1119  };
1120  SmallVector<BreakContinue, 8> BreakContinueStack;
1121 
1122  /// Handles cancellation exit points in OpenMP-related constructs.
1123  class OpenMPCancelExitStack {
1124  /// Tracks cancellation exit point and join point for cancel-related exit
1125  /// and normal exit.
1126  struct CancelExit {
1127  CancelExit() = default;
1128  CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1129  JumpDest ContBlock)
1130  : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1132  /// true if the exit block has been emitted already by the special
1133  /// emitExit() call, false if the default codegen is used.
1134  bool HasBeenEmitted = false;
1135  JumpDest ExitBlock;
1136  JumpDest ContBlock;
1137  };
1138 
1140 
1141  public:
1142  OpenMPCancelExitStack() : Stack(1) {}
1143  ~OpenMPCancelExitStack() = default;
1144  /// Fetches the exit block for the current OpenMP construct.
1145  JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1146  /// Emits exit block with special codegen procedure specific for the related
1147  /// OpenMP construct + emits code for normal construct cleanup.
1148  void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1149  const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1150  if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1151  assert(CGF.getOMPCancelDestination(Kind).isValid());
1152  assert(CGF.HaveInsertPoint());
1153  assert(!Stack.back().HasBeenEmitted);
1154  auto IP = CGF.Builder.saveAndClearIP();
1155  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1156  CodeGen(CGF);
1157  CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1158  CGF.Builder.restoreIP(IP);
1159  Stack.back().HasBeenEmitted = true;
1160  }
1161  CodeGen(CGF);
1162  }
1163  /// Enter the cancel supporting \a Kind construct.
1164  /// \param Kind OpenMP directive that supports cancel constructs.
1165  /// \param HasCancel true, if the construct has inner cancel directive,
1166  /// false otherwise.
1167  void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1168  Stack.push_back({Kind,
1169  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1170  : JumpDest(),
1171  HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1172  : JumpDest()});
1173  }
1174  /// Emits default exit point for the cancel construct (if the special one
1175  /// has not be used) + join point for cancel/normal exits.
1176  void exit(CodeGenFunction &CGF) {
1177  if (getExitBlock().isValid()) {
1178  assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1179  bool HaveIP = CGF.HaveInsertPoint();
1180  if (!Stack.back().HasBeenEmitted) {
1181  if (HaveIP)
1182  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1183  CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1184  CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1185  }
1186  CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1187  if (!HaveIP) {
1188  CGF.Builder.CreateUnreachable();
1189  CGF.Builder.ClearInsertionPoint();
1190  }
1191  }
1192  Stack.pop_back();
1193  }
1194  };
1195  OpenMPCancelExitStack OMPCancelStack;
1196 
1197  CodeGenPGO PGO;
1198 
1199  /// Calculate branch weights appropriate for PGO data
1200  llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1201  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1202  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1203  uint64_t LoopCount);
1204 
1205 public:
1206  /// Increment the profiler's counter for the given statement by \p StepV.
1207  /// If \p StepV is null, the default increment is 1.
1208  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1210  PGO.emitCounterIncrement(Builder, S, StepV);
1211  PGO.setCurrentStmt(S);
1212  }
1213 
1214  /// Get the profiler's count for the given statement.
1215  uint64_t getProfileCount(const Stmt *S) {
1216  Optional<uint64_t> Count = PGO.getStmtCount(S);
1217  if (!Count.hasValue())
1218  return 0;
1219  return *Count;
1220  }
1221 
1222  /// Set the profiler's current count.
1223  void setCurrentProfileCount(uint64_t Count) {
1224  PGO.setCurrentRegionCount(Count);
1225  }
1226 
1227  /// Get the profiler's current count. This is generally the count for the most
1228  /// recently incremented counter.
1230  return PGO.getCurrentRegionCount();
1231  }
1232 
1233 private:
1234 
1235  /// SwitchInsn - This is nearest current switch instruction. It is null if
1236  /// current context is not in a switch.
1237  llvm::SwitchInst *SwitchInsn;
1238  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1239  SmallVector<uint64_t, 16> *SwitchWeights;
1240 
1241  /// CaseRangeBlock - This block holds if condition check for last case
1242  /// statement range in current switch instruction.
1243  llvm::BasicBlock *CaseRangeBlock;
1244 
1245  /// OpaqueLValues - Keeps track of the current set of opaque value
1246  /// expressions.
1247  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1248  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1249 
1250  // VLASizeMap - This keeps track of the associated size for each VLA type.
1251  // We track this by the size expression rather than the type itself because
1252  // in certain situations, like a const qualifier applied to an VLA typedef,
1253  // multiple VLA types can share the same size expression.
1254  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1255  // enter/leave scopes.
1256  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1257 
1258  /// A block containing a single 'unreachable' instruction. Created
1259  /// lazily by getUnreachableBlock().
1260  llvm::BasicBlock *UnreachableBlock;
1261 
1262  /// Counts of the number return expressions in the function.
1263  unsigned NumReturnExprs;
1264 
1265  /// Count the number of simple (constant) return expressions in the function.
1266  unsigned NumSimpleReturnExprs;
1267 
1268  /// The last regular (non-return) debug location (breakpoint) in the function.
1269  SourceLocation LastStopPoint;
1270 
1271 public:
1272  /// A scope within which we are constructing the fields of an object which
1273  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1274  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1276  public:
1277  FieldConstructionScope(CodeGenFunction &CGF, Address This)
1278  : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1279  CGF.CXXDefaultInitExprThis = This;
1280  }
1282  CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1283  }
1284 
1285  private:
1286  CodeGenFunction &CGF;
1287  Address OldCXXDefaultInitExprThis;
1288  };
1289 
1290  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1291  /// is overridden to be the object under construction.
1293  public:
1294  CXXDefaultInitExprScope(CodeGenFunction &CGF)
1295  : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1296  OldCXXThisAlignment(CGF.CXXThisAlignment) {
1297  CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1298  CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1299  }
1301  CGF.CXXThisValue = OldCXXThisValue;
1302  CGF.CXXThisAlignment = OldCXXThisAlignment;
1303  }
1304 
1305  public:
1306  CodeGenFunction &CGF;
1309  };
1310 
1311  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1312  /// current loop index is overridden.
1314  public:
1315  ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1316  : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1317  CGF.ArrayInitIndex = Index;
1318  }
1320  CGF.ArrayInitIndex = OldArrayInitIndex;
1321  }
1322 
1323  private:
1324  CodeGenFunction &CGF;
1325  llvm::Value *OldArrayInitIndex;
1326  };
1327 
1329  public:
1331  : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1332  OldCurCodeDecl(CGF.CurCodeDecl),
1333  OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1334  OldCXXABIThisValue(CGF.CXXABIThisValue),
1335  OldCXXThisValue(CGF.CXXThisValue),
1336  OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1337  OldCXXThisAlignment(CGF.CXXThisAlignment),
1338  OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1339  OldCXXInheritedCtorInitExprArgs(
1340  std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1341  CGF.CurGD = GD;
1342  CGF.CurFuncDecl = CGF.CurCodeDecl =
1343  cast<CXXConstructorDecl>(GD.getDecl());
1344  CGF.CXXABIThisDecl = nullptr;
1345  CGF.CXXABIThisValue = nullptr;
1346  CGF.CXXThisValue = nullptr;
1347  CGF.CXXABIThisAlignment = CharUnits();
1348  CGF.CXXThisAlignment = CharUnits();
1349  CGF.ReturnValue = Address::invalid();
1350  CGF.FnRetTy = QualType();
1351  CGF.CXXInheritedCtorInitExprArgs.clear();
1352  }
1354  CGF.CurGD = OldCurGD;
1355  CGF.CurFuncDecl = OldCurFuncDecl;
1356  CGF.CurCodeDecl = OldCurCodeDecl;
1357  CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1358  CGF.CXXABIThisValue = OldCXXABIThisValue;
1359  CGF.CXXThisValue = OldCXXThisValue;
1360  CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1361  CGF.CXXThisAlignment = OldCXXThisAlignment;
1362  CGF.ReturnValue = OldReturnValue;
1363  CGF.FnRetTy = OldFnRetTy;
1364  CGF.CXXInheritedCtorInitExprArgs =
1365  std::move(OldCXXInheritedCtorInitExprArgs);
1366  }
1367 
1368  private:
1369  CodeGenFunction &CGF;
1370  GlobalDecl OldCurGD;
1371  const Decl *OldCurFuncDecl;
1372  const Decl *OldCurCodeDecl;
1373  ImplicitParamDecl *OldCXXABIThisDecl;
1374  llvm::Value *OldCXXABIThisValue;
1375  llvm::Value *OldCXXThisValue;
1376  CharUnits OldCXXABIThisAlignment;
1377  CharUnits OldCXXThisAlignment;
1378  Address OldReturnValue;
1379  QualType OldFnRetTy;
1380  CallArgList OldCXXInheritedCtorInitExprArgs;
1381  };
1382 
1383 private:
1384  /// CXXThisDecl - When generating code for a C++ member function,
1385  /// this will hold the implicit 'this' declaration.
1386  ImplicitParamDecl *CXXABIThisDecl;
1387  llvm::Value *CXXABIThisValue;
1388  llvm::Value *CXXThisValue;
1389  CharUnits CXXABIThisAlignment;
1390  CharUnits CXXThisAlignment;
1391 
1392  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1393  /// this expression.
1394  Address CXXDefaultInitExprThis = Address::invalid();
1395 
1396  /// The current array initialization index when evaluating an
1397  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1398  llvm::Value *ArrayInitIndex = nullptr;
1399 
1400  /// The values of function arguments to use when evaluating
1401  /// CXXInheritedCtorInitExprs within this context.
1402  CallArgList CXXInheritedCtorInitExprArgs;
1403 
1404  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1405  /// destructor, this will hold the implicit argument (e.g. VTT).
1406  ImplicitParamDecl *CXXStructorImplicitParamDecl;
1407  llvm::Value *CXXStructorImplicitParamValue;
1408 
1409  /// OutermostConditional - Points to the outermost active
1410  /// conditional control. This is used so that we know if a
1411  /// temporary should be destroyed conditionally.
1412  ConditionalEvaluation *OutermostConditional;
1413 
1414  /// The current lexical scope.
1415  LexicalScope *CurLexicalScope;
1416 
1417  /// The current source location that should be used for exception
1418  /// handling code.
1419  SourceLocation CurEHLocation;
1420 
1421  /// BlockByrefInfos - For each __block variable, contains
1422  /// information about the layout of the variable.
1423  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1424 
1425  /// Used by -fsanitize=nullability-return to determine whether the return
1426  /// value can be checked.
1427  llvm::Value *RetValNullabilityPrecondition = nullptr;
1428 
1429  /// Check if -fsanitize=nullability-return instrumentation is required for
1430  /// this function.
1431  bool requiresReturnValueNullabilityCheck() const {
1432  return RetValNullabilityPrecondition;
1433  }
1434 
1435  /// Used to store precise source locations for return statements by the
1436  /// runtime return value checks.
1437  Address ReturnLocation = Address::invalid();
1438 
1439  /// Check if the return value of this function requires sanitization.
1440  bool requiresReturnValueCheck() const {
1441  return requiresReturnValueNullabilityCheck() ||
1442  (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1443  CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1444  }
1445 
1446  llvm::BasicBlock *TerminateLandingPad;
1447  llvm::BasicBlock *TerminateHandler;
1448  llvm::BasicBlock *TrapBB;
1449 
1450  /// Terminate funclets keyed by parent funclet pad.
1451  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1452 
1453  /// True if we need emit the life-time markers.
1454  const bool ShouldEmitLifetimeMarkers;
1455 
1456  /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1457  /// the function metadata.
1458  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1459  llvm::Function *Fn);
1460 
1461 public:
1462  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1463  ~CodeGenFunction();
1464 
1465  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1466  ASTContext &getContext() const { return CGM.getContext(); }
1468  if (DisableDebugInfo)
1469  return nullptr;
1470  return DebugInfo;
1471  }
1472  void disableDebugInfo() { DisableDebugInfo = true; }
1473  void enableDebugInfo() { DisableDebugInfo = false; }
1474 
1476  return CGM.getCodeGenOpts().OptimizationLevel == 0;
1477  }
1478 
1479  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1480 
1481  /// Returns a pointer to the function's exception object and selector slot,
1482  /// which is assigned in every landing pad.
1483  Address getExceptionSlot();
1484  Address getEHSelectorSlot();
1485 
1486  /// Returns the contents of the function's exception object and selector
1487  /// slots.
1488  llvm::Value *getExceptionFromSlot();
1489  llvm::Value *getSelectorFromSlot();
1490 
1491  Address getNormalCleanupDestSlot();
1492 
1493  llvm::BasicBlock *getUnreachableBlock() {
1494  if (!UnreachableBlock) {
1495  UnreachableBlock = createBasicBlock("unreachable");
1496  new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1497  }
1498  return UnreachableBlock;
1499  }
1500 
1501  llvm::BasicBlock *getInvokeDest() {
1502  if (!EHStack.requiresLandingPad()) return nullptr;
1503  return getInvokeDestImpl();
1504  }
1505 
1506  bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1507 
1508  const TargetInfo &getTarget() const { return Target; }
1509  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1511  return CGM.getTargetCodeGenInfo();
1512  }
1513 
1514  //===--------------------------------------------------------------------===//
1515  // Cleanups
1516  //===--------------------------------------------------------------------===//
1517 
1518  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1519 
1520  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1521  Address arrayEndPointer,
1522  QualType elementType,
1523  CharUnits elementAlignment,
1524  Destroyer *destroyer);
1525  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1526  llvm::Value *arrayEnd,
1527  QualType elementType,
1528  CharUnits elementAlignment,
1529  Destroyer *destroyer);
1530 
1531  void pushDestroy(QualType::DestructionKind dtorKind,
1532  Address addr, QualType type);
1533  void pushEHDestroy(QualType::DestructionKind dtorKind,
1534  Address addr, QualType type);
1535  void pushDestroy(CleanupKind kind, Address addr, QualType type,
1536  Destroyer *destroyer, bool useEHCleanupForArray);
1537  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1538  QualType type, Destroyer *destroyer,
1539  bool useEHCleanupForArray);
1540  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1541  llvm::Value *CompletePtr,
1542  QualType ElementType);
1543  void pushStackRestore(CleanupKind kind, Address SPMem);
1544  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1545  bool useEHCleanupForArray);
1546  llvm::Function *generateDestroyHelper(Address addr, QualType type,
1547  Destroyer *destroyer,
1548  bool useEHCleanupForArray,
1549  const VarDecl *VD);
1550  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1551  QualType elementType, CharUnits elementAlign,
1552  Destroyer *destroyer,
1553  bool checkZeroLength, bool useEHCleanup);
1554 
1555  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1556 
1557  /// Determines whether an EH cleanup is required to destroy a type
1558  /// with the given destruction kind.
1560  switch (kind) {
1561  case QualType::DK_none:
1562  return false;
1563  case QualType::DK_cxx_destructor:
1564  case QualType::DK_objc_weak_lifetime:
1565  case QualType::DK_nontrivial_c_struct:
1566  return getLangOpts().Exceptions;
1567  case QualType::DK_objc_strong_lifetime:
1568  return getLangOpts().Exceptions &&
1569  CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1570  }
1571  llvm_unreachable("bad destruction kind");
1572  }
1573 
1575  return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1576  }
1577 
1578  //===--------------------------------------------------------------------===//
1579  // Objective-C
1580  //===--------------------------------------------------------------------===//
1581 
1582  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1583 
1584  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1585 
1586  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1587  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1588  const ObjCPropertyImplDecl *PID);
1589  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1590  const ObjCPropertyImplDecl *propImpl,
1591  const ObjCMethodDecl *GetterMothodDecl,
1592  llvm::Constant *AtomicHelperFn);
1593 
1594  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1595  ObjCMethodDecl *MD, bool ctor);
1596 
1597  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1598  /// for the given property.
1599  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1600  const ObjCPropertyImplDecl *PID);
1601  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1602  const ObjCPropertyImplDecl *propImpl,
1603  llvm::Constant *AtomicHelperFn);
1604 
1605  //===--------------------------------------------------------------------===//
1606  // Block Bits
1607  //===--------------------------------------------------------------------===//
1608 
1609  /// Emit block literal.
1610  /// \return an LLVM value which is a pointer to a struct which contains
1611  /// information about the block, including the block invoke function, the
1612  /// captured variables, etc.
1613  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1614  static void destroyBlockInfos(CGBlockInfo *info);
1615 
1616  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1617  const CGBlockInfo &Info,
1618  const DeclMapTy &ldm,
1619  bool IsLambdaConversionToBlock,
1620  bool BuildGlobalBlock);
1621 
1622  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1623  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1624  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1625  const ObjCPropertyImplDecl *PID);
1626  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1627  const ObjCPropertyImplDecl *PID);
1628  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1629 
1630  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1631 
1632  class AutoVarEmission;
1633 
1634  void emitByrefStructureInit(const AutoVarEmission &emission);
1635  void enterByrefCleanup(const AutoVarEmission &emission);
1636 
1637  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1638  llvm::Value *ptr);
1639 
1640  Address LoadBlockStruct();
1641  Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1642 
1643  /// BuildBlockByrefAddress - Computes the location of the
1644  /// data in a variable which is declared as __block.
1645  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1646  bool followForward = true);
1647  Address emitBlockByrefAddress(Address baseAddr,
1648  const BlockByrefInfo &info,
1649  bool followForward,
1650  const llvm::Twine &name);
1651 
1652  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1653 
1654  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1655 
1656  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1657  const CGFunctionInfo &FnInfo);
1658  /// \brief Emit code for the start of a function.
1659  /// \param Loc The location to be associated with the function.
1660  /// \param StartLoc The location of the function body.
1661  void StartFunction(GlobalDecl GD,
1662  QualType RetTy,
1663  llvm::Function *Fn,
1664  const CGFunctionInfo &FnInfo,
1665  const FunctionArgList &Args,
1667  SourceLocation StartLoc = SourceLocation());
1668 
1669  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1670 
1671  void EmitConstructorBody(FunctionArgList &Args);
1672  void EmitDestructorBody(FunctionArgList &Args);
1673  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1674  void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1675  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1676 
1677  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1678  CallArgList &CallArgs);
1679  void EmitLambdaBlockInvokeBody();
1680  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1681  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1682  void EmitAsanPrologueOrEpilogue(bool Prologue);
1683 
1684  /// \brief Emit the unified return block, trying to avoid its emission when
1685  /// possible.
1686  /// \return The debug location of the user written return statement if the
1687  /// return block is is avoided.
1688  llvm::DebugLoc EmitReturnBlock();
1689 
1690  /// FinishFunction - Complete IR generation of the current function. It is
1691  /// legal to call this function even if there is no current insertion point.
1692  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1693 
1694  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1695  const CGFunctionInfo &FnInfo, bool IsUnprototyped);
1696 
1697  void EmitCallAndReturnForThunk(llvm::Constant *Callee, const ThunkInfo *Thunk,
1698  bool IsUnprototyped);
1699 
1700  void FinishThunk();
1701 
1702  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1703  void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1704  llvm::Value *Callee);
1705 
1706  /// Generate a thunk for the given method.
1707  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1708  GlobalDecl GD, const ThunkInfo &Thunk,
1709  bool IsUnprototyped);
1710 
1711  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1712  const CGFunctionInfo &FnInfo,
1713  GlobalDecl GD, const ThunkInfo &Thunk);
1714 
1715  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1716  FunctionArgList &Args);
1717 
1718  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1719 
1720  /// Struct with all information about dynamic [sub]class needed to set vptr.
1721  struct VPtr {
1726  };
1727 
1728  /// Initialize the vtable pointer of the given subobject.
1729  void InitializeVTablePointer(const VPtr &vptr);
1730 
1732 
1733  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1734  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1735 
1736  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1737  CharUnits OffsetFromNearestVBase,
1738  bool BaseIsNonVirtualPrimaryBase,
1739  const CXXRecordDecl *VTableClass,
1740  VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1741 
1742  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1743 
1744  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1745  /// to by This.
1746  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1747  const CXXRecordDecl *VTableClass);
1748 
1755  };
1756 
1757  /// \brief Derived is the presumed address of an object of type T after a
1758  /// cast. If T is a polymorphic class type, emit a check that the virtual
1759  /// table for Derived belongs to a class derived from T.
1760  void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1761  bool MayBeNull, CFITypeCheckKind TCK,
1762  SourceLocation Loc);
1763 
1764  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1765  /// If vptr CFI is enabled, emit a check that VTable is valid.
1766  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1767  CFITypeCheckKind TCK, SourceLocation Loc);
1768 
1769  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1770  /// RD using llvm.type.test.
1771  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1772  CFITypeCheckKind TCK, SourceLocation Loc);
1773 
1774  /// If whole-program virtual table optimization is enabled, emit an assumption
1775  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1776  /// enabled, emit a check that VTable is a member of RD's type identifier.
1777  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1778  llvm::Value *VTable, SourceLocation Loc);
1779 
1780  /// Returns whether we should perform a type checked load when loading a
1781  /// virtual function for virtual calls to members of RD. This is generally
1782  /// true when both vcall CFI and whole-program-vtables are enabled.
1783  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1784 
1785  /// Emit a type checked load from the given vtable.
1786  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1787  uint64_t VTableByteOffset);
1788 
1789  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1790  /// given phase of destruction for a destructor. The end result
1791  /// should call destructors on members and base classes in reverse
1792  /// order of their construction.
1793  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1794 
1795  /// ShouldInstrumentFunction - Return true if the current function should be
1796  /// instrumented with __cyg_profile_func_* calls
1797  bool ShouldInstrumentFunction();
1798 
1799  /// ShouldXRayInstrument - Return true if the current function should be
1800  /// instrumented with XRay nop sleds.
1801  bool ShouldXRayInstrumentFunction() const;
1802 
1803  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
1804  /// XRay custom event handling calls.
1805  bool AlwaysEmitXRayCustomEvents() const;
1806 
1807  /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
1808  /// XRay typed event handling calls.
1809  bool AlwaysEmitXRayTypedEvents() const;
1810 
1811  /// Encode an address into a form suitable for use in a function prologue.
1812  llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1813  llvm::Constant *Addr);
1814 
1815  /// Decode an address used in a function prologue, encoded by \c
1816  /// EncodeAddrForUseInPrologue.
1817  llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1818  llvm::Value *EncodedAddr);
1819 
1820  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1821  /// arguments for the given function. This is also responsible for naming the
1822  /// LLVM function arguments.
1823  void EmitFunctionProlog(const CGFunctionInfo &FI,
1824  llvm::Function *Fn,
1825  const FunctionArgList &Args);
1826 
1827  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1828  /// given temporary.
1829  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1830  SourceLocation EndLoc);
1831 
1832  /// Emit a test that checks if the return value \p RV is nonnull.
1833  void EmitReturnValueCheck(llvm::Value *RV);
1834 
1835  /// EmitStartEHSpec - Emit the start of the exception spec.
1836  void EmitStartEHSpec(const Decl *D);
1837 
1838  /// EmitEndEHSpec - Emit the end of the exception spec.
1839  void EmitEndEHSpec(const Decl *D);
1840 
1841  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1842  llvm::BasicBlock *getTerminateLandingPad();
1843 
1844  /// getTerminateLandingPad - Return a cleanup funclet that just calls
1845  /// terminate.
1846  llvm::BasicBlock *getTerminateFunclet();
1847 
1848  /// getTerminateHandler - Return a handler (not a landing pad, just
1849  /// a catch handler) that just calls terminate. This is used when
1850  /// a terminate scope encloses a try.
1851  llvm::BasicBlock *getTerminateHandler();
1852 
1853  llvm::Type *ConvertTypeForMem(QualType T);
1854  llvm::Type *ConvertType(QualType T);
1855  llvm::Type *ConvertType(const TypeDecl *T) {
1856  return ConvertType(getContext().getTypeDeclType(T));
1857  }
1858 
1859  /// LoadObjCSelf - Load the value of self. This function is only valid while
1860  /// generating code for an Objective-C method.
1861  llvm::Value *LoadObjCSelf();
1862 
1863  /// TypeOfSelfObject - Return type of object that this self represents.
1864  QualType TypeOfSelfObject();
1865 
1866  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
1867  static TypeEvaluationKind getEvaluationKind(QualType T);
1868 
1870  return getEvaluationKind(T) == TEK_Scalar;
1871  }
1872 
1874  return getEvaluationKind(T) == TEK_Aggregate;
1875  }
1876 
1877  /// createBasicBlock - Create an LLVM basic block.
1878  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1879  llvm::Function *parent = nullptr,
1880  llvm::BasicBlock *before = nullptr) {
1881  return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1882  }
1883 
1884  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1885  /// label maps to.
1886  JumpDest getJumpDestForLabel(const LabelDecl *S);
1887 
1888  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1889  /// another basic block, simplify it. This assumes that no other code could
1890  /// potentially reference the basic block.
1891  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1892 
1893  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1894  /// adding a fall-through branch from the current insert block if
1895  /// necessary. It is legal to call this function even if there is no current
1896  /// insertion point.
1897  ///
1898  /// IsFinished - If true, indicates that the caller has finished emitting
1899  /// branches to the given block and does not expect to emit code into it. This
1900  /// means the block can be ignored if it is unreachable.
1901  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1902 
1903  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1904  /// near its uses, and leave the insertion point in it.
1905  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1906 
1907  /// EmitBranch - Emit a branch to the specified basic block from the current
1908  /// insert block, taking care to avoid creation of branches from dummy
1909  /// blocks. It is legal to call this function even if there is no current
1910  /// insertion point.
1911  ///
1912  /// This function clears the current insertion point. The caller should follow
1913  /// calls to this function with calls to Emit*Block prior to generation new
1914  /// code.
1915  void EmitBranch(llvm::BasicBlock *Block);
1916 
1917  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1918  /// indicates that the current code being emitted is unreachable.
1919  bool HaveInsertPoint() const {
1920  return Builder.GetInsertBlock() != nullptr;
1921  }
1922 
1923  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1924  /// emitted IR has a place to go. Note that by definition, if this function
1925  /// creates a block then that block is unreachable; callers may do better to
1926  /// detect when no insertion point is defined and simply skip IR generation.
1928  if (!HaveInsertPoint())
1929  EmitBlock(createBasicBlock());
1930  }
1931 
1932  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1933  /// specified stmt yet.
1934  void ErrorUnsupported(const Stmt *S, const char *Type);
1935 
1936  //===--------------------------------------------------------------------===//
1937  // Helpers
1938  //===--------------------------------------------------------------------===//
1939 
1942  return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
1943  CGM.getTBAAAccessInfo(T));
1944  }
1945 
1947  TBAAAccessInfo TBAAInfo) {
1948  return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
1949  }
1950 
1953  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1954  LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
1955  }
1956 
1958  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
1959  return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1960  BaseInfo, TBAAInfo);
1961  }
1962 
1963  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1964  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1965  CharUnits getNaturalTypeAlignment(QualType T,
1966  LValueBaseInfo *BaseInfo = nullptr,
1967  TBAAAccessInfo *TBAAInfo = nullptr,
1968  bool forPointeeType = false);
1969  CharUnits getNaturalPointeeTypeAlignment(QualType T,
1970  LValueBaseInfo *BaseInfo = nullptr,
1971  TBAAAccessInfo *TBAAInfo = nullptr);
1972 
1973  Address EmitLoadOfReference(LValue RefLVal,
1974  LValueBaseInfo *PointeeBaseInfo = nullptr,
1975  TBAAAccessInfo *PointeeTBAAInfo = nullptr);
1976  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
1978  AlignmentSource Source =
1980  LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
1981  CGM.getTBAAAccessInfo(RefTy));
1982  return EmitLoadOfReferenceLValue(RefLVal);
1983  }
1984 
1985  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1986  LValueBaseInfo *BaseInfo = nullptr,
1987  TBAAAccessInfo *TBAAInfo = nullptr);
1988  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1989 
1990  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
1991  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
1992  /// insertion point of the builder. The caller is responsible for setting an
1993  /// appropriate alignment on
1994  /// the alloca.
1995  ///
1996  /// \p ArraySize is the number of array elements to be allocated if it
1997  /// is not nullptr.
1998  ///
1999  /// LangAS::Default is the address space of pointers to local variables and
2000  /// temporaries, as exposed in the source language. In certain
2001  /// configurations, this is not the same as the alloca address space, and a
2002  /// cast is needed to lift the pointer from the alloca AS into
2003  /// LangAS::Default. This can happen when the target uses a restricted
2004  /// address space for the stack but the source language requires
2005  /// LangAS::Default to be a generic address space. The latter condition is
2006  /// common for most programming languages; OpenCL is an exception in that
2007  /// LangAS::Default is the private address space, which naturally maps
2008  /// to the stack.
2009  ///
2010  /// Because the address of a temporary is often exposed to the program in
2011  /// various ways, this function will perform the cast by default. The cast
2012  /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is
2013  /// more efficient if the caller knows that the address will not be exposed.
2014  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2015  llvm::Value *ArraySize = nullptr);
2016  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2017  const Twine &Name = "tmp",
2018  llvm::Value *ArraySize = nullptr,
2019  bool CastToDefaultAddrSpace = true);
2020 
2021  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2022  /// default ABI alignment of the given LLVM type.
2023  ///
2024  /// IMPORTANT NOTE: This is *not* generally the right alignment for
2025  /// any given AST type that happens to have been lowered to the
2026  /// given IR type. This should only ever be used for function-local,
2027  /// IR-driven manipulations like saving and restoring a value. Do
2028  /// not hand this address off to arbitrary IRGen routines, and especially
2029  /// do not pass it as an argument to a function that might expect a
2030  /// properly ABI-aligned value.
2031  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2032  const Twine &Name = "tmp");
2033 
2034  /// InitTempAlloca - Provide an initial value for the given alloca which
2035  /// will be observable at all locations in the function.
2036  ///
2037  /// The address should be something that was returned from one of
2038  /// the CreateTempAlloca or CreateMemTemp routines, and the
2039  /// initializer must be valid in the entry block (i.e. it must
2040  /// either be a constant or an argument value).
2041  void InitTempAlloca(Address Alloca, llvm::Value *Value);
2042 
2043  /// CreateIRTemp - Create a temporary IR object of the given type, with
2044  /// appropriate alignment. This routine should only be used when an temporary
2045  /// value needs to be stored into an alloca (for example, to avoid explicit
2046  /// PHI construction), but the type is the IR type, not the type appropriate
2047  /// for storing in memory.
2048  ///
2049  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2050  /// ConvertType instead of ConvertTypeForMem.
2051  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2052 
2053  /// CreateMemTemp - Create a temporary memory object of the given type, with
2054  /// appropriate alignment. Cast it to the default address space if
2055  /// \p CastToDefaultAddrSpace is true.
2056  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2057  bool CastToDefaultAddrSpace = true);
2058  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2059  bool CastToDefaultAddrSpace = true);
2060 
2061  /// CreateAggTemp - Create a temporary memory object for the given
2062  /// aggregate type.
2063  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2064  return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2065  T.getQualifiers(),
2066  AggValueSlot::IsNotDestructed,
2067  AggValueSlot::DoesNotNeedGCBarriers,
2068  AggValueSlot::IsNotAliased,
2069  AggValueSlot::DoesNotOverlap);
2070  }
2071 
2072  /// Emit a cast to void* in the appropriate address space.
2073  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2074 
2075  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2076  /// expression and compare the result against zero, returning an Int1Ty value.
2077  llvm::Value *EvaluateExprAsBool(const Expr *E);
2078 
2079  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2080  void EmitIgnoredExpr(const Expr *E);
2081 
2082  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2083  /// any type. The result is returned as an RValue struct. If this is an
2084  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2085  /// the result should be returned.
2086  ///
2087  /// \param ignoreResult True if the resulting value isn't used.
2088  RValue EmitAnyExpr(const Expr *E,
2089  AggValueSlot aggSlot = AggValueSlot::ignored(),
2090  bool ignoreResult = false);
2091 
2092  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2093  // or the value of the expression, depending on how va_list is defined.
2094  Address EmitVAListRef(const Expr *E);
2095 
2096  /// Emit a "reference" to a __builtin_ms_va_list; this is
2097  /// always the value of the expression, because a __builtin_ms_va_list is a
2098  /// pointer to a char.
2099  Address EmitMSVAListRef(const Expr *E);
2100 
2101  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2102  /// always be accessible even if no aggregate location is provided.
2103  RValue EmitAnyExprToTemp(const Expr *E);
2104 
2105  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2106  /// arbitrary expression into the given memory location.
2107  void EmitAnyExprToMem(const Expr *E, Address Location,
2108  Qualifiers Quals, bool IsInitializer);
2109 
2110  void EmitAnyExprToExn(const Expr *E, Address Addr);
2111 
2112  /// EmitExprAsInit - Emits the code necessary to initialize a
2113  /// location in memory with the given initializer.
2114  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2115  bool capturedByInit);
2116 
2117  /// hasVolatileMember - returns true if aggregate type has a volatile
2118  /// member.
2120  if (const RecordType *RT = T->getAs<RecordType>()) {
2121  const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2122  return RD->hasVolatileMember();
2123  }
2124  return false;
2125  }
2126 
2127  /// Determine whether a return value slot may overlap some other object.
2129  // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2130  // class subobjects. These cases may need to be revisited depending on the
2131  // resolution of the relevant core issue.
2132  return AggValueSlot::DoesNotOverlap;
2133  }
2134 
2135  /// Determine whether a field initialization may overlap some other object.
2137  // FIXME: These cases can result in overlap as a result of P0840R0's
2138  // [[no_unique_address]] attribute. We can still infer NoOverlap in the
2139  // presence of that attribute if the field is within the nvsize of its
2140  // containing class, because non-virtual subobjects are initialized in
2141  // address order.
2142  return AggValueSlot::DoesNotOverlap;
2143  }
2144 
2145  /// Determine whether a base class initialization may overlap some other
2146  /// object.
2147  AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD,
2148  const CXXRecordDecl *BaseRD,
2149  bool IsVirtual);
2150 
2151  /// Emit an aggregate assignment.
2152  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2153  bool IsVolatile = hasVolatileMember(EltTy);
2154  EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2155  }
2156 
2158  AggValueSlot::Overlap_t MayOverlap) {
2159  EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2160  }
2161 
2162  /// EmitAggregateCopy - Emit an aggregate copy.
2163  ///
2164  /// \param isVolatile \c true iff either the source or the destination is
2165  /// volatile.
2166  /// \param MayOverlap Whether the tail padding of the destination might be
2167  /// occupied by some other object. More efficient code can often be
2168  /// generated if not.
2169  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2170  AggValueSlot::Overlap_t MayOverlap,
2171  bool isVolatile = false);
2172 
2173  /// GetAddrOfLocalVar - Return the address of a local variable.
2175  auto it = LocalDeclMap.find(VD);
2176  assert(it != LocalDeclMap.end() &&
2177  "Invalid argument to GetAddrOfLocalVar(), no decl!");
2178  return it->second;
2179  }
2180 
2181  /// Given an opaque value expression, return its LValue mapping if it exists,
2182  /// otherwise create one.
2183  LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2184 
2185  /// Given an opaque value expression, return its RValue mapping if it exists,
2186  /// otherwise create one.
2187  RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2188 
2189  /// Get the index of the current ArrayInitLoopExpr, if any.
2190  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2191 
2192  /// getAccessedFieldNo - Given an encoded value and a result number, return
2193  /// the input field number being accessed.
2194  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2195 
2196  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2197  llvm::BasicBlock *GetIndirectGotoBlock();
2198 
2199  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2200  static bool IsWrappedCXXThis(const Expr *E);
2201 
2202  /// EmitNullInitialization - Generate code to set a value of the given type to
2203  /// null, If the type contains data member pointers, they will be initialized
2204  /// to -1 in accordance with the Itanium C++ ABI.
2205  void EmitNullInitialization(Address DestPtr, QualType Ty);
2206 
2207  /// Emits a call to an LLVM variable-argument intrinsic, either
2208  /// \c llvm.va_start or \c llvm.va_end.
2209  /// \param ArgValue A reference to the \c va_list as emitted by either
2210  /// \c EmitVAListRef or \c EmitMSVAListRef.
2211  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2212  /// calls \c llvm.va_end.
2213  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2214 
2215  /// Generate code to get an argument from the passed in pointer
2216  /// and update it accordingly.
2217  /// \param VE The \c VAArgExpr for which to generate code.
2218  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2219  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2220  /// \returns A pointer to the argument.
2221  // FIXME: We should be able to get rid of this method and use the va_arg
2222  // instruction in LLVM instead once it works well enough.
2223  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2224 
2225  /// emitArrayLength - Compute the length of an array, even if it's a
2226  /// VLA, and drill down to the base element type.
2227  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2228  QualType &baseType,
2229  Address &addr);
2230 
2231  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2232  /// the given variably-modified type and store them in the VLASizeMap.
2233  ///
2234  /// This function can be called with a null (unreachable) insert point.
2235  void EmitVariablyModifiedType(QualType Ty);
2236 
2237  struct VlaSizePair {
2240 
2241  VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2242  };
2243 
2244  /// Return the number of elements for a single dimension
2245  /// for the given array type.
2246  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2247  VlaSizePair getVLAElements1D(QualType vla);
2248 
2249  /// Returns an LLVM value that corresponds to the size,
2250  /// in non-variably-sized elements, of a variable length array type,
2251  /// plus that largest non-variably-sized element type. Assumes that
2252  /// the type has already been emitted with EmitVariablyModifiedType.
2253  VlaSizePair getVLASize(const VariableArrayType *vla);
2254  VlaSizePair getVLASize(QualType vla);
2255 
2256  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2257  /// generating code for an C++ member function.
2259  assert(CXXThisValue && "no 'this' value for this function");
2260  return CXXThisValue;
2261  }
2262  Address LoadCXXThisAddress();
2263 
2264  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2265  /// virtual bases.
2266  // FIXME: Every place that calls LoadCXXVTT is something
2267  // that needs to be abstracted properly.
2269  assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2270  return CXXStructorImplicitParamValue;
2271  }
2272 
2273  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2274  /// complete class to the given direct base.
2275  Address
2276  GetAddressOfDirectBaseInCompleteClass(Address Value,
2277  const CXXRecordDecl *Derived,
2278  const CXXRecordDecl *Base,
2279  bool BaseIsVirtual);
2280 
2281  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2282 
2283  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2284  /// load of 'this' and returns address of the base class.
2285  Address GetAddressOfBaseClass(Address Value,
2286  const CXXRecordDecl *Derived,
2289  bool NullCheckValue, SourceLocation Loc);
2290 
2291  Address GetAddressOfDerivedClass(Address Value,
2292  const CXXRecordDecl *Derived,
2295  bool NullCheckValue);
2296 
2297  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2298  /// base constructor/destructor with virtual bases.
2299  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2300  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2301  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2302  bool Delegating);
2303 
2304  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2305  CXXCtorType CtorType,
2306  const FunctionArgList &Args,
2307  SourceLocation Loc);
2308  // It's important not to confuse this and the previous function. Delegating
2309  // constructors are the C++0x feature. The constructor delegate optimization
2310  // is used to reduce duplication in the base and complete consturctors where
2311  // they are substantially the same.
2312  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2313  const FunctionArgList &Args);
2314 
2315  /// Emit a call to an inheriting constructor (that is, one that invokes a
2316  /// constructor inherited from a base class) by inlining its definition. This
2317  /// is necessary if the ABI does not support forwarding the arguments to the
2318  /// base class constructor (because they're variadic or similar).
2319  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2320  CXXCtorType CtorType,
2321  bool ForVirtualBase,
2322  bool Delegating,
2323  CallArgList &Args);
2324 
2325  /// Emit a call to a constructor inherited from a base class, passing the
2326  /// current constructor's arguments along unmodified (without even making
2327  /// a copy).
2328  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2329  bool ForVirtualBase, Address This,
2330  bool InheritedFromVBase,
2331  const CXXInheritedCtorInitExpr *E);
2332 
2333  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2334  bool ForVirtualBase, bool Delegating,
2335  Address This, const CXXConstructExpr *E,
2336  AggValueSlot::Overlap_t Overlap);
2337 
2338  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2339  bool ForVirtualBase, bool Delegating,
2340  Address This, CallArgList &Args,
2341  AggValueSlot::Overlap_t Overlap);
2342 
2343  /// Emit assumption load for all bases. Requires to be be called only on
2344  /// most-derived class and not under construction of the object.
2345  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2346 
2347  /// Emit assumption that vptr load == global vtable.
2348  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2349 
2350  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2351  Address This, Address Src,
2352  const CXXConstructExpr *E);
2353 
2354  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2355  const ArrayType *ArrayTy,
2356  Address ArrayPtr,
2357  const CXXConstructExpr *E,
2358  bool ZeroInitialization = false);
2359 
2360  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2361  llvm::Value *NumElements,
2362  Address ArrayPtr,
2363  const CXXConstructExpr *E,
2364  bool ZeroInitialization = false);
2365 
2366  static Destroyer destroyCXXObject;
2367 
2368  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2369  bool ForVirtualBase, bool Delegating,
2370  Address This);
2371 
2372  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2373  llvm::Type *ElementTy, Address NewPtr,
2374  llvm::Value *NumElements,
2375  llvm::Value *AllocSizeWithoutCookie);
2376 
2377  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2378  Address Ptr);
2379 
2380  llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2381  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2382 
2383  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2384  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2385 
2386  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2387  QualType DeleteTy, llvm::Value *NumElements = nullptr,
2388  CharUnits CookieSize = CharUnits());
2389 
2390  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2391  const CallExpr *TheCallExpr, bool IsDelete);
2392 
2393  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2394  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2395  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2396 
2397  /// \brief Situations in which we might emit a check for the suitability of a
2398  /// pointer or glvalue.
2400  /// Checking the operand of a load. Must be suitably sized and aligned.
2402  /// Checking the destination of a store. Must be suitably sized and aligned.
2404  /// Checking the bound value in a reference binding. Must be suitably sized
2405  /// and aligned, but is not required to refer to an object (until the
2406  /// reference is used), per core issue 453.
2408  /// Checking the object expression in a non-static data member access. Must
2409  /// be an object within its lifetime.
2411  /// Checking the 'this' pointer for a call to a non-static member function.
2412  /// Must be an object within its lifetime.
2414  /// Checking the 'this' pointer for a constructor call.
2416  /// Checking the operand of a static_cast to a derived pointer type. Must be
2417  /// null or an object within its lifetime.
2419  /// Checking the operand of a static_cast to a derived reference type. Must
2420  /// be an object within its lifetime.
2422  /// Checking the operand of a cast to a base object. Must be suitably sized
2423  /// and aligned.
2425  /// Checking the operand of a cast to a virtual base object. Must be an
2426  /// object within its lifetime.
2428  /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2430  /// Checking the operand of a dynamic_cast or a typeid expression. Must be
2431  /// null or an object within its lifetime.
2432  TCK_DynamicOperation
2433  };
2434 
2435  /// Determine whether the pointer type check \p TCK permits null pointers.
2436  static bool isNullPointerAllowed(TypeCheckKind TCK);
2437 
2438  /// Determine whether the pointer type check \p TCK requires a vptr check.
2439  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2440 
2441  /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2442  /// calls to EmitTypeCheck can be skipped.
2443  bool sanitizePerformTypeCheck() const;
2444 
2445  /// \brief Emit a check that \p V is the address of storage of the
2446  /// appropriate size and alignment for an object of type \p Type.
2447  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2448  QualType Type, CharUnits Alignment = CharUnits::Zero(),
2449  SanitizerSet SkippedChecks = SanitizerSet());
2450 
2451  /// \brief Emit a check that \p Base points into an array object, which
2452  /// we can access at index \p Index. \p Accessed should be \c false if we
2453  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2454  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2455  QualType IndexType, bool Accessed);
2456 
2457  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2458  bool isInc, bool isPre);
2459  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2460  bool isInc, bool isPre);
2461 
2462  void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2463  llvm::Value *OffsetValue = nullptr) {
2464  Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2465  OffsetValue);
2466  }
2467 
2468  /// Converts Location to a DebugLoc, if debug information is enabled.
2469  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2470 
2471 
2472  //===--------------------------------------------------------------------===//
2473  // Declaration Emission
2474  //===--------------------------------------------------------------------===//
2475 
2476  /// EmitDecl - Emit a declaration.
2477  ///
2478  /// This function can be called with a null (unreachable) insert point.
2479  void EmitDecl(const Decl &D);
2480 
2481  /// EmitVarDecl - Emit a local variable declaration.
2482  ///
2483  /// This function can be called with a null (unreachable) insert point.
2484  void EmitVarDecl(const VarDecl &D);
2485 
2486  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2487  bool capturedByInit);
2488 
2489  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2490  llvm::Value *Address);
2491 
2492  /// \brief Determine whether the given initializer is trivial in the sense
2493  /// that it requires no code to be generated.
2494  bool isTrivialInitializer(const Expr *Init);
2495 
2496  /// EmitAutoVarDecl - Emit an auto variable declaration.
2497  ///
2498  /// This function can be called with a null (unreachable) insert point.
2499  void EmitAutoVarDecl(const VarDecl &D);
2500 
2502  friend class CodeGenFunction;
2503 
2504  const VarDecl *Variable;
2505 
2506  /// The address of the alloca. Invalid if the variable was emitted
2507  /// as a global constant.
2508  Address Addr;
2509 
2510  llvm::Value *NRVOFlag;
2511 
2512  /// True if the variable is a __block variable.
2513  bool IsByRef;
2514 
2515  /// True if the variable is of aggregate type and has a constant
2516  /// initializer.
2517  bool IsConstantAggregate;
2518 
2519  /// Non-null if we should use lifetime annotations.
2520  llvm::Value *SizeForLifetimeMarkers;
2521 
2522  struct Invalid {};
2523  AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2524 
2525  AutoVarEmission(const VarDecl &variable)
2526  : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2527  IsByRef(false), IsConstantAggregate(false),
2528  SizeForLifetimeMarkers(nullptr) {}
2529 
2530  bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2531 
2532  public:
2533  static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2534 
2535  bool useLifetimeMarkers() const {
2536  return SizeForLifetimeMarkers != nullptr;
2537  }
2539  assert(useLifetimeMarkers());
2540  return SizeForLifetimeMarkers;
2541  }
2542 
2543  /// Returns the raw, allocated address, which is not necessarily
2544  /// the address of the object itself.
2546  return Addr;
2547  }
2548 
2549  /// Returns the address of the object within this declaration.
2550  /// Note that this does not chase the forwarding pointer for
2551  /// __block decls.
2552  Address getObjectAddress(CodeGenFunction &CGF) const {
2553  if (!IsByRef) return Addr;
2554 
2555  return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2556  }
2557  };
2558  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2559  void EmitAutoVarInit(const AutoVarEmission &emission);
2560  void EmitAutoVarCleanups(const AutoVarEmission &emission);
2561  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2562  QualType::DestructionKind dtorKind);
2563 
2564  /// Emits the alloca and debug information for the size expressions for each
2565  /// dimension of an array. It registers the association of its (1-dimensional)
2566  /// QualTypes and size expression's debug node, so that CGDebugInfo can
2567  /// reference this node when creating the DISubrange object to describe the
2568  /// array types.
2569  void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2570  const VarDecl &D,
2571  bool EmitDebugInfo);
2572 
2573  void EmitStaticVarDecl(const VarDecl &D,
2574  llvm::GlobalValue::LinkageTypes Linkage);
2575 
2576  class ParamValue {
2577  llvm::Value *Value;
2578  unsigned Alignment;
2579  ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2580  public:
2582  return ParamValue(value, 0);
2583  }
2585  assert(!addr.getAlignment().isZero());
2586  return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2587  }
2588 
2589  bool isIndirect() const { return Alignment != 0; }
2590  llvm::Value *getAnyValue() const { return Value; }
2591 
2593  assert(!isIndirect());
2594  return Value;
2595  }
2596 
2598  assert(isIndirect());
2599  return Address(Value, CharUnits::fromQuantity(Alignment));
2600  }
2601  };
2602 
2603  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2604  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2605 
2606  /// protectFromPeepholes - Protect a value that we're intending to
2607  /// store to the side, but which will probably be used later, from
2608  /// aggressive peepholing optimizations that might delete it.
2609  ///
2610  /// Pass the result to unprotectFromPeepholes to declare that
2611  /// protection is no longer required.
2612  ///
2613  /// There's no particular reason why this shouldn't apply to
2614  /// l-values, it's just that no existing peepholes work on pointers.
2615  PeepholeProtection protectFromPeepholes(RValue rvalue);
2616  void unprotectFromPeepholes(PeepholeProtection protection);
2617 
2619  llvm::Value *OffsetValue = nullptr) {
2620  Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2621  OffsetValue);
2622  }
2623 
2624  //===--------------------------------------------------------------------===//
2625  // Statement Emission
2626  //===--------------------------------------------------------------------===//
2627 
2628  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2629  void EmitStopPoint(const Stmt *S);
2630 
2631  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2632  /// this function even if there is no current insertion point.
2633  ///
2634  /// This function may clear the current insertion point; callers should use
2635  /// EnsureInsertPoint if they wish to subsequently generate code without first
2636  /// calling EmitBlock, EmitBranch, or EmitStmt.
2637  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2638 
2639  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2640  /// necessarily require an insertion point or debug information; typically
2641  /// because the statement amounts to a jump or a container of other
2642  /// statements.
2643  ///
2644  /// \return True if the statement was handled.
2645  bool EmitSimpleStmt(const Stmt *S);
2646 
2647  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2648  AggValueSlot AVS = AggValueSlot::ignored());
2649  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2650  bool GetLast = false,
2651  AggValueSlot AVS =
2652  AggValueSlot::ignored());
2653 
2654  /// EmitLabel - Emit the block for the given label. It is legal to call this
2655  /// function even if there is no current insertion point.
2656  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2657 
2658  void EmitLabelStmt(const LabelStmt &S);
2659  void EmitAttributedStmt(const AttributedStmt &S);
2660  void EmitGotoStmt(const GotoStmt &S);
2661  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2662  void EmitIfStmt(const IfStmt &S);
2663 
2664  void EmitWhileStmt(const WhileStmt &S,
2665  ArrayRef<const Attr *> Attrs = None);
2666  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2667  void EmitForStmt(const ForStmt &S,
2668  ArrayRef<const Attr *> Attrs = None);
2669  void EmitReturnStmt(const ReturnStmt &S);
2670  void EmitDeclStmt(const DeclStmt &S);
2671  void EmitBreakStmt(const BreakStmt &S);
2672  void EmitContinueStmt(const ContinueStmt &S);
2673  void EmitSwitchStmt(const SwitchStmt &S);
2674  void EmitDefaultStmt(const DefaultStmt &S);
2675  void EmitCaseStmt(const CaseStmt &S);
2676  void EmitCaseStmtRange(const CaseStmt &S);
2677  void EmitAsmStmt(const AsmStmt &S);
2678 
2679  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2680  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2681  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2682  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2683  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2684 
2685  void EmitCoroutineBody(const CoroutineBodyStmt &S);
2686  void EmitCoreturnStmt(const CoreturnStmt &S);
2687  RValue EmitCoawaitExpr(const CoawaitExpr &E,
2688  AggValueSlot aggSlot = AggValueSlot::ignored(),
2689  bool ignoreResult = false);
2690  LValue EmitCoawaitLValue(const CoawaitExpr *E);
2691  RValue EmitCoyieldExpr(const CoyieldExpr &E,
2692  AggValueSlot aggSlot = AggValueSlot::ignored(),
2693  bool ignoreResult = false);
2694  LValue EmitCoyieldLValue(const CoyieldExpr *E);
2695  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2696 
2697  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2698  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2699 
2700  void EmitCXXTryStmt(const CXXTryStmt &S);
2701  void EmitSEHTryStmt(const SEHTryStmt &S);
2702  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2703  void EnterSEHTryStmt(const SEHTryStmt &S);
2704  void ExitSEHTryStmt(const SEHTryStmt &S);
2705 
2706  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2707  const Stmt *OutlinedStmt);
2708 
2709  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2710  const SEHExceptStmt &Except);
2711 
2712  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2713  const SEHFinallyStmt &Finally);
2714 
2715  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2716  llvm::Value *ParentFP,
2717  llvm::Value *EntryEBP);
2718  llvm::Value *EmitSEHExceptionCode();
2719  llvm::Value *EmitSEHExceptionInfo();
2720  llvm::Value *EmitSEHAbnormalTermination();
2721 
2722  /// Emit simple code for OpenMP directives in Simd-only mode.
2723  void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
2724 
2725  /// Scan the outlined statement for captures from the parent function. For
2726  /// each capture, mark the capture as escaped and emit a call to
2727  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2728  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2729  bool IsFilter);
2730 
2731  /// Recovers the address of a local in a parent function. ParentVar is the
2732  /// address of the variable used in the immediate parent function. It can
2733  /// either be an alloca or a call to llvm.localrecover if there are nested
2734  /// outlined functions. ParentFP is the frame pointer of the outermost parent
2735  /// frame.
2736  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2737  Address ParentVar,
2738  llvm::Value *ParentFP);
2739 
2740  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2741  ArrayRef<const Attr *> Attrs = None);
2742 
2743  /// Controls insertion of cancellation exit blocks in worksharing constructs.
2745  CodeGenFunction &CGF;
2746 
2747  public:
2749  bool HasCancel)
2750  : CGF(CGF) {
2751  CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2752  }
2753  ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2754  };
2755 
2756  /// Returns calculated size of the specified type.
2757  llvm::Value *getTypeSize(QualType Ty);
2758  LValue InitCapturedStruct(const CapturedStmt &S);
2759  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2760  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2761  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2762  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2763  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2764  SmallVectorImpl<llvm::Value *> &CapturedVars);
2765  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2766  SourceLocation Loc);
2767  /// \brief Perform element by element copying of arrays with type \a
2768  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2769  /// generated by \a CopyGen.
2770  ///
2771  /// \param DestAddr Address of the destination array.
2772  /// \param SrcAddr Address of the source array.
2773  /// \param OriginalType Type of destination and source arrays.
2774  /// \param CopyGen Copying procedure that copies value of single array element
2775  /// to another single array element.
2776  void EmitOMPAggregateAssign(
2777  Address DestAddr, Address SrcAddr, QualType OriginalType,
2778  const llvm::function_ref<void(Address, Address)> CopyGen);
2779  /// \brief Emit proper copying of data from one variable to another.
2780  ///
2781  /// \param OriginalType Original type of the copied variables.
2782  /// \param DestAddr Destination address.
2783  /// \param SrcAddr Source address.
2784  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2785  /// type of the base array element).
2786  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2787  /// the base array element).
2788  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2789  /// DestVD.
2790  void EmitOMPCopy(QualType OriginalType,
2791  Address DestAddr, Address SrcAddr,
2792  const VarDecl *DestVD, const VarDecl *SrcVD,
2793  const Expr *Copy);
2794  /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2795  /// \a X = \a E \a BO \a E.
2796  ///
2797  /// \param X Value to be updated.
2798  /// \param E Update value.
2799  /// \param BO Binary operation for update operation.
2800  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2801  /// expression, false otherwise.
2802  /// \param AO Atomic ordering of the generated atomic instructions.
2803  /// \param CommonGen Code generator for complex expressions that cannot be
2804  /// expressed through atomicrmw instruction.
2805  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2806  /// generated, <false, RValue::get(nullptr)> otherwise.
2807  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2808  LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2809  llvm::AtomicOrdering AO, SourceLocation Loc,
2810  const llvm::function_ref<RValue(RValue)> CommonGen);
2811  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2812  OMPPrivateScope &PrivateScope);
2813  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2814  OMPPrivateScope &PrivateScope);
2815  void EmitOMPUseDevicePtrClause(
2816  const OMPClause &C, OMPPrivateScope &PrivateScope,
2817  const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2818  /// \brief Emit code for copyin clause in \a D directive. The next code is
2819  /// generated at the start of outlined functions for directives:
2820  /// \code
2821  /// threadprivate_var1 = master_threadprivate_var1;
2822  /// operator=(threadprivate_var2, master_threadprivate_var2);
2823  /// ...
2824  /// __kmpc_barrier(&loc, global_tid);
2825  /// \endcode
2826  ///
2827  /// \param D OpenMP directive possibly with 'copyin' clause(s).
2828  /// \returns true if at least one copyin variable is found, false otherwise.
2829  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2830  /// \brief Emit initial code for lastprivate variables. If some variable is
2831  /// not also firstprivate, then the default initialization is used. Otherwise
2832  /// initialization of this variable is performed by EmitOMPFirstprivateClause
2833  /// method.
2834  ///
2835  /// \param D Directive that may have 'lastprivate' directives.
2836  /// \param PrivateScope Private scope for capturing lastprivate variables for
2837  /// proper codegen in internal captured statement.
2838  ///
2839  /// \returns true if there is at least one lastprivate variable, false
2840  /// otherwise.
2841  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2842  OMPPrivateScope &PrivateScope);
2843  /// \brief Emit final copying of lastprivate values to original variables at
2844  /// the end of the worksharing or simd directive.
2845  ///
2846  /// \param D Directive that has at least one 'lastprivate' directives.
2847  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2848  /// it is the last iteration of the loop code in associated directive, or to
2849  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2850  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2851  bool NoFinals,
2852  llvm::Value *IsLastIterCond = nullptr);
2853  /// Emit initial code for linear clauses.
2854  void EmitOMPLinearClause(const OMPLoopDirective &D,
2855  CodeGenFunction::OMPPrivateScope &PrivateScope);
2856  /// Emit final code for linear clauses.
2857  /// \param CondGen Optional conditional code for final part of codegen for
2858  /// linear clause.
2859  void EmitOMPLinearClauseFinal(
2860  const OMPLoopDirective &D,
2861  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
2862  /// \brief Emit initial code for reduction variables. Creates reduction copies
2863  /// and initializes them with the values according to OpenMP standard.
2864  ///
2865  /// \param D Directive (possibly) with the 'reduction' clause.
2866  /// \param PrivateScope Private scope for capturing reduction variables for
2867  /// proper codegen in internal captured statement.
2868  ///
2869  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2870  OMPPrivateScope &PrivateScope);
2871  /// \brief Emit final update of reduction values to original variables at
2872  /// the end of the directive.
2873  ///
2874  /// \param D Directive that has at least one 'reduction' directives.
2875  /// \param ReductionKind The kind of reduction to perform.
2876  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
2877  const OpenMPDirectiveKind ReductionKind);
2878  /// \brief Emit initial code for linear variables. Creates private copies
2879  /// and initializes them with the values according to OpenMP standard.
2880  ///
2881  /// \param D Directive (possibly) with the 'linear' clause.
2882  /// \return true if at least one linear variable is found that should be
2883  /// initialized with the value of the original variable, false otherwise.
2884  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2885 
2886  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2887  llvm::Value * /*OutlinedFn*/,
2888  const OMPTaskDataTy & /*Data*/)>
2890  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2891  const OpenMPDirectiveKind CapturedRegion,
2892  const RegionCodeGenTy &BodyGen,
2893  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2895  Address BasePointersArray = Address::invalid();
2896  Address PointersArray = Address::invalid();
2897  Address SizesArray = Address::invalid();
2898  unsigned NumberOfTargetItems = 0;
2899  explicit OMPTargetDataInfo() = default;
2900  OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
2901  Address SizesArray, unsigned NumberOfTargetItems)
2902  : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
2903  SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
2904  };
2905  void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
2906  const RegionCodeGenTy &BodyGen,
2907  OMPTargetDataInfo &InputInfo);
2908 
2909  void EmitOMPParallelDirective(const OMPParallelDirective &S);
2910  void EmitOMPSimdDirective(const OMPSimdDirective &S);
2911  void EmitOMPForDirective(const OMPForDirective &S);
2912  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2913  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2914  void EmitOMPSectionDirective(const OMPSectionDirective &S);
2915  void EmitOMPSingleDirective(const OMPSingleDirective &S);
2916  void EmitOMPMasterDirective(const OMPMasterDirective &S);
2917  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2918  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2919  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2920  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2921  void EmitOMPTaskDirective(const OMPTaskDirective &S);
2922  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2923  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2924  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2925  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2926  void EmitOMPFlushDirective(const OMPFlushDirective &S);
2927  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2928  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2929  void EmitOMPTargetDirective(const OMPTargetDirective &S);
2930  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2931  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2932  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2933  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2934  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2935  void
2936  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2937  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2938  void
2939  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2940  void EmitOMPCancelDirective(const OMPCancelDirective &S);
2941  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2942  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2943  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2944  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2945  void EmitOMPDistributeParallelForDirective(
2947  void EmitOMPDistributeParallelForSimdDirective(
2949  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2950  void EmitOMPTargetParallelForSimdDirective(
2952  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2953  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2954  void
2955  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2956  void EmitOMPTeamsDistributeParallelForSimdDirective(
2958  void EmitOMPTeamsDistributeParallelForDirective(
2960  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2961  void EmitOMPTargetTeamsDistributeDirective(
2963  void EmitOMPTargetTeamsDistributeParallelForDirective(
2965  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2967  void EmitOMPTargetTeamsDistributeSimdDirective(
2969 
2970  /// Emit device code for the target directive.
2971  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
2972  StringRef ParentName,
2973  const OMPTargetDirective &S);
2974  static void
2975  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2976  const OMPTargetParallelDirective &S);
2977  /// Emit device code for the target parallel for directive.
2978  static void EmitOMPTargetParallelForDeviceFunction(
2979  CodeGenModule &CGM, StringRef ParentName,
2981  /// Emit device code for the target parallel for simd directive.
2982  static void EmitOMPTargetParallelForSimdDeviceFunction(
2983  CodeGenModule &CGM, StringRef ParentName,
2985  /// Emit device code for the target teams directive.
2986  static void
2987  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2988  const OMPTargetTeamsDirective &S);
2989  /// Emit device code for the target teams distribute directive.
2990  static void EmitOMPTargetTeamsDistributeDeviceFunction(
2991  CodeGenModule &CGM, StringRef ParentName,
2993  /// Emit device code for the target teams distribute simd directive.
2994  static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
2995  CodeGenModule &CGM, StringRef ParentName,
2997  /// Emit device code for the target simd directive.
2998  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
2999  StringRef ParentName,
3000  const OMPTargetSimdDirective &S);
3001  /// Emit device code for the target teams distribute parallel for simd
3002  /// directive.
3003  static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3004  CodeGenModule &CGM, StringRef ParentName,
3006 
3007  static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3008  CodeGenModule &CGM, StringRef ParentName,
3010  /// \brief Emit inner loop of the worksharing/simd construct.
3011  ///
3012  /// \param S Directive, for which the inner loop must be emitted.
3013  /// \param RequiresCleanup true, if directive has some associated private
3014  /// variables.
3015  /// \param LoopCond Bollean condition for loop continuation.
3016  /// \param IncExpr Increment expression for loop control variable.
3017  /// \param BodyGen Generator for the inner body of the inner loop.
3018  /// \param PostIncGen Genrator for post-increment code (required for ordered
3019  /// loop directvies).
3020  void EmitOMPInnerLoop(
3021  const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
3022  const Expr *IncExpr,
3023  const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3024  const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3025 
3026  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3027  /// Emit initial code for loop counters of loop-based directives.
3028  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3029  OMPPrivateScope &LoopScope);
3030 
3031  /// Helper for the OpenMP loop directives.
3032  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3033 
3034  /// \brief Emit code for the worksharing loop-based directive.
3035  /// \return true, if this construct has any lastprivate clause, false -
3036  /// otherwise.
3037  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3038  const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3039  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3040 
3041  /// Emit code for the distribute loop-based directive.
3042  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3043  const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3044 
3045  /// Helpers for the OpenMP loop directives.
3046  void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3047  void EmitOMPSimdFinal(
3048  const OMPLoopDirective &D,
3049  const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3050 
3051  /// Emits the lvalue for the expression with possibly captured variable.
3052  LValue EmitOMPSharedLValue(const Expr *E);
3053 
3054 private:
3055  /// Helpers for blocks.
3056  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3057 
3058  /// struct with the values to be passed to the OpenMP loop-related functions
3059  struct OMPLoopArguments {
3060  /// loop lower bound
3061  Address LB = Address::invalid();
3062  /// loop upper bound
3063  Address UB = Address::invalid();
3064  /// loop stride
3065  Address ST = Address::invalid();
3066  /// isLastIteration argument for runtime functions
3067  Address IL = Address::invalid();
3068  /// Chunk value generated by sema
3069  llvm::Value *Chunk = nullptr;
3070  /// EnsureUpperBound
3071  Expr *EUB = nullptr;
3072  /// IncrementExpression
3073  Expr *IncExpr = nullptr;
3074  /// Loop initialization
3075  Expr *Init = nullptr;
3076  /// Loop exit condition
3077  Expr *Cond = nullptr;
3078  /// Update of LB after a whole chunk has been executed
3079  Expr *NextLB = nullptr;
3080  /// Update of UB after a whole chunk has been executed
3081  Expr *NextUB = nullptr;
3082  OMPLoopArguments() = default;
3083  OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3084  llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3085  Expr *IncExpr = nullptr, Expr *Init = nullptr,
3086  Expr *Cond = nullptr, Expr *NextLB = nullptr,
3087  Expr *NextUB = nullptr)
3088  : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3089  IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3090  NextUB(NextUB) {}
3091  };
3092  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3093  const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3094  const OMPLoopArguments &LoopArgs,
3095  const CodeGenLoopTy &CodeGenLoop,
3096  const CodeGenOrderedTy &CodeGenOrdered);
3097  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3098  bool IsMonotonic, const OMPLoopDirective &S,
3099  OMPPrivateScope &LoopScope, bool Ordered,
3100  const OMPLoopArguments &LoopArgs,
3101  const CodeGenDispatchBoundsTy &CGDispatchBounds);
3102  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3103  const OMPLoopDirective &S,
3104  OMPPrivateScope &LoopScope,
3105  const OMPLoopArguments &LoopArgs,
3106  const CodeGenLoopTy &CodeGenLoopContent);
3107  /// \brief Emit code for sections directive.
3108  void EmitSections(const OMPExecutableDirective &S);
3109 
3110 public:
3111 
3112  //===--------------------------------------------------------------------===//
3113  // LValue Expression Emission
3114  //===--------------------------------------------------------------------===//
3115 
3116  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3117  RValue GetUndefRValue(QualType Ty);
3118 
3119  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3120  /// and issue an ErrorUnsupported style diagnostic (using the
3121  /// provided Name).
3122  RValue EmitUnsupportedRValue(const Expr *E,
3123  const char *Name);
3124 
3125  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3126  /// an ErrorUnsupported style diagnostic (using the provided Name).
3127  LValue EmitUnsupportedLValue(const Expr *E,
3128  const char *Name);
3129 
3130  /// EmitLValue - Emit code to compute a designator that specifies the location
3131  /// of the expression.
3132  ///
3133  /// This can return one of two things: a simple address or a bitfield
3134  /// reference. In either case, the LLVM Value* in the LValue structure is
3135  /// guaranteed to be an LLVM pointer type.
3136  ///
3137  /// If this returns a bitfield reference, nothing about the pointee type of
3138  /// the LLVM value is known: For example, it may not be a pointer to an
3139  /// integer.
3140  ///
3141  /// If this returns a normal address, and if the lvalue's C type is fixed
3142  /// size, this method guarantees that the returned pointer type will point to
3143  /// an LLVM type of the same size of the lvalue's type. If the lvalue has a
3144  /// variable length type, this is not possible.
3145  ///
3146  LValue EmitLValue(const Expr *E);
3147 
3148  /// \brief Same as EmitLValue but additionally we generate checking code to
3149  /// guard against undefined behavior. This is only suitable when we know
3150  /// that the address will be used to access the object.
3151  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3152 
3153  RValue convertTempToRValue(Address addr, QualType type,
3154  SourceLocation Loc);
3155 
3156  void EmitAtomicInit(Expr *E, LValue lvalue);
3157 
3158  bool LValueIsSuitableForInlineAtomic(LValue Src);
3159 
3160  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3161  AggValueSlot Slot = AggValueSlot::ignored());
3162 
3163  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3164  llvm::AtomicOrdering AO, bool IsVolatile = false,
3165  AggValueSlot slot = AggValueSlot::ignored());
3166 
3167  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3168 
3169  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3170  bool IsVolatile, bool isInit);
3171 
3172  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3173  LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3174  llvm::AtomicOrdering Success =
3175  llvm::AtomicOrdering::SequentiallyConsistent,
3176  llvm::AtomicOrdering Failure =
3177  llvm::AtomicOrdering::SequentiallyConsistent,
3178  bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3179 
3180  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3181  const llvm::function_ref<RValue(RValue)> &UpdateOp,
3182  bool IsVolatile);
3183 
3184  /// EmitToMemory - Change a scalar value from its value
3185  /// representation to its in-memory representation.
3186  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3187 
3188  /// EmitFromMemory - Change a scalar value from its memory
3189  /// representation to its value representation.
3190  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3191 
3192  /// Check if the scalar \p Value is within the valid range for the given
3193  /// type \p Ty.
3194  ///
3195  /// Returns true if a check is needed (even if the range is unknown).
3196  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3197  SourceLocation Loc);
3198 
3199  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3200  /// care to appropriately convert from the memory representation to
3201  /// the LLVM value representation.
3202  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3203  SourceLocation Loc,
3205  bool isNontemporal = false) {
3206  return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3207  CGM.getTBAAAccessInfo(Ty), isNontemporal);
3208  }
3209 
3210  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3211  SourceLocation Loc, LValueBaseInfo BaseInfo,
3212  TBAAAccessInfo TBAAInfo,
3213  bool isNontemporal = false);
3214 
3215  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3216  /// care to appropriately convert from the memory representation to
3217  /// the LLVM value representation. The l-value must be a simple
3218  /// l-value.
3219  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3220 
3221  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3222  /// care to appropriately convert from the memory representation to
3223  /// the LLVM value representation.
3225  bool Volatile, QualType Ty,
3227  bool isInit = false, bool isNontemporal = false) {
3228  EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3229  CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3230  }
3231 
3232  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3233  bool Volatile, QualType Ty,
3234  LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3235  bool isInit = false, bool isNontemporal = false);
3236 
3237  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3238  /// care to appropriately convert from the memory representation to
3239  /// the LLVM value representation. The l-value must be a simple
3240  /// l-value. The isInit flag indicates whether this is an initialization.
3241  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3242  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3243 
3244  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3245  /// this method emits the address of the lvalue, then loads the result as an
3246  /// rvalue, returning the rvalue.
3247  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3248  RValue EmitLoadOfExtVectorElementLValue(LValue V);
3249  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3250  RValue EmitLoadOfGlobalRegLValue(LValue LV);
3251 
3252  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3253  /// lvalue, where both are guaranteed to the have the same type, and that type
3254  /// is 'Ty'.
3255  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3256  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3257  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3258 
3259  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3260  /// as EmitStoreThroughLValue.
3261  ///
3262  /// \param Result [out] - If non-null, this will be set to a Value* for the
3263  /// bit-field contents after the store, appropriate for use as the result of
3264  /// an assignment to the bit-field.
3265  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3266  llvm::Value **Result=nullptr);
3267 
3268  /// Emit an l-value for an assignment (simple or compound) of complex type.
3269  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3270  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3271  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3272  llvm::Value *&Result);
3273 
3274  // Note: only available for agg return types
3275  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3276  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3277  // Note: only available for agg return types
3278  LValue EmitCallExprLValue(const CallExpr *E);
3279  // Note: only available for agg return types
3280  LValue EmitVAArgExprLValue(const VAArgExpr *E);
3281  LValue EmitDeclRefLValue(const DeclRefExpr *E);
3282  LValue EmitStringLiteralLValue(const StringLiteral *E);
3283  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3284  LValue EmitPredefinedLValue(const PredefinedExpr *E);
3285  LValue EmitUnaryOpLValue(const UnaryOperator *E);
3286  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3287  bool Accessed = false);
3288  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3289  bool IsLowerBound = true);
3290  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3291  LValue EmitMemberExpr(const MemberExpr *E);
3292  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3293  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3294  LValue EmitInitListLValue(const InitListExpr *E);
3295  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3296  LValue EmitCastLValue(const CastExpr *E);
3297  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3298  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3299 
3300  Address EmitExtVectorElementLValue(LValue V);
3301 
3302  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3303 
3304  Address EmitArrayToPointerDecay(const Expr *Array,
3305  LValueBaseInfo *BaseInfo = nullptr,
3306  TBAAAccessInfo *TBAAInfo = nullptr);
3307 
3309  llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3310  ConstantEmission(llvm::Constant *C, bool isReference)
3311  : ValueAndIsReference(C, isReference) {}
3312  public:
3314  static ConstantEmission forReference(llvm::Constant *C) {
3315  return ConstantEmission(C, true);
3316  }
3317  static ConstantEmission forValue(llvm::Constant *C) {
3318  return ConstantEmission(C, false);
3319  }
3320 
3321  explicit operator bool() const {
3322  return ValueAndIsReference.getOpaqueValue() != nullptr;
3323  }
3324 
3325  bool isReference() const { return ValueAndIsReference.getInt(); }
3326  LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3327  assert(isReference());
3328  return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3329  refExpr->getType());
3330  }
3331 
3332  llvm::Constant *getValue() const {
3333  assert(!isReference());
3334  return ValueAndIsReference.getPointer();
3335  }
3336  };
3337 
3338  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3339  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3340 
3341  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3342  AggValueSlot slot = AggValueSlot::ignored());
3343  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3344 
3345  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3346  const ObjCIvarDecl *Ivar);
3347  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3348  LValue EmitLValueForLambdaField(const FieldDecl *Field);
3349 
3350  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3351  /// if the Field is a reference, this will return the address of the reference
3352  /// and not the address of the value stored in the reference.
3353  LValue EmitLValueForFieldInitialization(LValue Base,
3354  const FieldDecl* Field);
3355 
3356  LValue EmitLValueForIvar(QualType ObjectTy,
3357  llvm::Value* Base, const ObjCIvarDecl *Ivar,
3358  unsigned CVRQualifiers);
3359 
3360  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3361  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3362  LValue EmitLambdaLValue(const LambdaExpr *E);
3363  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3364  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3365 
3366  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3367  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3368  LValue EmitStmtExprLValue(const StmtExpr *E);
3369  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3370  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3371  void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3372 
3373  //===--------------------------------------------------------------------===//
3374  // Scalar Expression Emission
3375  //===--------------------------------------------------------------------===//
3376 
3377  /// EmitCall - Generate a call of the given function, expecting the given
3378  /// result type, and using the given argument list which specifies both the
3379  /// LLVM arguments and the types they were derived from.
3380  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3381  ReturnValueSlot ReturnValue, const CallArgList &Args,
3382  llvm::Instruction **callOrInvoke, SourceLocation Loc);
3383  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3384  ReturnValueSlot ReturnValue, const CallArgList &Args,
3385  llvm::Instruction **callOrInvoke = nullptr) {
3386  return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3387  SourceLocation());
3388  }
3389  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3390  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3391  RValue EmitCallExpr(const CallExpr *E,
3392  ReturnValueSlot ReturnValue = ReturnValueSlot());
3393  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3394  CGCallee EmitCallee(const Expr *E);
3395 
3396  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3397 
3398  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3399  const Twine &name = "");
3400  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3402  const Twine &name = "");
3403  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3404  const Twine &name = "");
3405  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3407  const Twine &name = "");
3408 
3410  getBundlesForFunclet(llvm::Value *Callee);
3411 
3412  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3414  const Twine &Name = "");
3415  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3417  const Twine &name = "");
3418  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3419  const Twine &name = "");
3420  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3421  ArrayRef<llvm::Value*> args);
3422 
3424  NestedNameSpecifier *Qual,
3425  llvm::Type *Ty);
3426 
3427  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3428  CXXDtorType Type,
3429  const CXXRecordDecl *RD);
3430 
3431  // These functions emit calls to the special functions of non-trivial C
3432  // structs.
3433  void defaultInitNonTrivialCStructVar(LValue Dst);
3434  void callCStructDefaultConstructor(LValue Dst);
3435  void callCStructDestructor(LValue Dst);
3436  void callCStructCopyConstructor(LValue Dst, LValue Src);
3437  void callCStructMoveConstructor(LValue Dst, LValue Src);
3438  void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3439  void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3440 
3441  RValue
3442  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3443  const CGCallee &Callee,
3444  ReturnValueSlot ReturnValue, llvm::Value *This,
3445  llvm::Value *ImplicitParam,
3446  QualType ImplicitParamTy, const CallExpr *E,
3447  CallArgList *RtlArgs);
3448  RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3449  const CGCallee &Callee,
3450  llvm::Value *This, llvm::Value *ImplicitParam,
3451  QualType ImplicitParamTy, const CallExpr *E,
3452  StructorType Type);
3453  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3454  ReturnValueSlot ReturnValue);
3455  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3456  const CXXMethodDecl *MD,
3457  ReturnValueSlot ReturnValue,
3458  bool HasQualifier,
3459  NestedNameSpecifier *Qualifier,
3460  bool IsArrow, const Expr *Base);
3461  // Compute the object pointer.
3462  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3463  llvm::Value *memberPtr,
3464  const MemberPointerType *memberPtrType,
3465  LValueBaseInfo *BaseInfo = nullptr,
3466  TBAAAccessInfo *TBAAInfo = nullptr);
3467  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3468  ReturnValueSlot ReturnValue);
3469 
3470  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3471  const CXXMethodDecl *MD,
3472  ReturnValueSlot ReturnValue);
3473  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3474 
3475  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3476  ReturnValueSlot ReturnValue);
3477 
3478  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3479  ReturnValueSlot ReturnValue);
3480 
3481  RValue EmitBuiltinExpr(const FunctionDecl *FD,
3482  unsigned BuiltinID, const CallExpr *E,
3483  ReturnValueSlot ReturnValue);
3484 
3485  /// Emit IR for __builtin_os_log_format.
3486  RValue emitBuiltinOSLogFormat(const CallExpr &E);
3487 
3488  llvm::Function *generateBuiltinOSLogHelperFunction(
3489  const analyze_os_log::OSLogBufferLayout &Layout,
3490  CharUnits BufferAlignment);
3491 
3492  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3493 
3494  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3495  /// is unhandled by the current target.
3496  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3497 
3498  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3499  const llvm::CmpInst::Predicate Fp,
3500  const llvm::CmpInst::Predicate Ip,
3501  const llvm::Twine &Name = "");
3502  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3503  llvm::Triple::ArchType Arch);
3504 
3505  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3506  unsigned LLVMIntrinsic,
3507  unsigned AltLLVMIntrinsic,
3508  const char *NameHint,
3509  unsigned Modifier,
3510  const CallExpr *E,
3512  Address PtrOp0, Address PtrOp1,
3513  llvm::Triple::ArchType Arch);
3514  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3515  unsigned Modifier, llvm::Type *ArgTy,
3516  const CallExpr *E);
3517  llvm::Value *EmitNeonCall(llvm::Function *F,
3519  const char *name,
3520  unsigned shift = 0, bool rightshift = false);
3521  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3522  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3523  bool negateForRightShift);
3524  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3525  llvm::Type *Ty, bool usgn, const char *name);
3526  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3527  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3528  llvm::Triple::ArchType Arch);
3529 
3530  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3531  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3532  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3533  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3534  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3535  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3536  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3537  const CallExpr *E);
3538  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3539 
3540 private:
3541  enum class MSVCIntrin;
3542 
3543 public:
3544  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3545 
3546  llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3547 
3548  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3549  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3550  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3551  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3552  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3553  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3554  const ObjCMethodDecl *MethodWithObjects);
3555  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3556  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3557  ReturnValueSlot Return = ReturnValueSlot());
3558 
3559  /// Retrieves the default cleanup kind for an ARC cleanup.
3560  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3562  return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3564  }
3565 
3566  // ARC primitives.
3567  void EmitARCInitWeak(Address addr, llvm::Value *value);
3568  void EmitARCDestroyWeak(Address addr);
3569  llvm::Value *EmitARCLoadWeak(Address addr);
3570  llvm::Value *EmitARCLoadWeakRetained(Address addr);
3571  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3572  void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3573  void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3574  void EmitARCCopyWeak(Address dst, Address src);
3575  void EmitARCMoveWeak(Address dst, Address src);
3576  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3577  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3578  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3579  bool resultIgnored);
3580  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3581  bool resultIgnored);
3582  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3583  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3584  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3585  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3586  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3587  llvm::Value *EmitARCAutorelease(llvm::Value *value);
3588  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3589  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3590  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3591  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3592 
3593  std::pair<LValue,llvm::Value*>
3594  EmitARCStoreAutoreleasing(const BinaryOperator *e);
3595  std::pair<LValue,llvm::Value*>
3596  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3597  std::pair<LValue,llvm::Value*>
3598  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3599 
3600  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3601  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3602  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3603 
3604  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3605  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3606  bool allowUnsafeClaim);
3607  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3608  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3609  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3610 
3611  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3612 
3613  static Destroyer destroyARCStrongImprecise;
3614  static Destroyer destroyARCStrongPrecise;
3615  static Destroyer destroyARCWeak;
3616  static Destroyer emitARCIntrinsicUse;
3617  static Destroyer destroyNonTrivialCStruct;
3618 
3619  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3620  llvm::Value *EmitObjCAutoreleasePoolPush();
3621  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3622  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3623  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3624 
3625  /// \brief Emits a reference binding to the passed in expression.
3626  RValue EmitReferenceBindingToExpr(const Expr *E);
3627 
3628  //===--------------------------------------------------------------------===//
3629  // Expression Emission
3630  //===--------------------------------------------------------------------===//
3631 
3632  // Expressions are broken into three classes: scalar, complex, aggregate.
3633 
3634  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3635  /// scalar type, returning the result.
3636  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3637 
3638  /// Emit a conversion from the specified type to the specified destination
3639  /// type, both of which are LLVM scalar types.
3640  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3641  QualType DstTy, SourceLocation Loc);
3642 
3643  /// Emit a conversion from the specified complex type to the specified
3644  /// destination type, where the destination type is an LLVM scalar type.
3645  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3646  QualType DstTy,
3647  SourceLocation Loc);
3648 
3649  /// EmitAggExpr - Emit the computation of the specified expression
3650  /// of aggregate type. The result is computed into the given slot,
3651  /// which may be null to indicate that the value is not needed.
3652  void EmitAggExpr(const Expr *E, AggValueSlot AS);
3653 
3654  /// EmitAggExprToLValue - Emit the computation of the specified expression of
3655  /// aggregate type into a temporary LValue.
3656  LValue EmitAggExprToLValue(const Expr *E);
3657 
3658  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3659  /// make sure it survives garbage collection until this point.
3660  void EmitExtendGCLifetime(llvm::Value *object);
3661 
3662  /// EmitComplexExpr - Emit the computation of the specified expression of
3663  /// complex type, returning the result.
3664  ComplexPairTy EmitComplexExpr(const Expr *E,
3665  bool IgnoreReal = false,
3666  bool IgnoreImag = false);
3667 
3668  /// EmitComplexExprIntoLValue - Emit the given expression of complex
3669  /// type and place its result into the specified l-value.
3670  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3671 
3672  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3673  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3674 
3675  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3676  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3677 
3678  Address emitAddrOfRealComponent(Address complex, QualType complexType);
3679  Address emitAddrOfImagComponent(Address complex, QualType complexType);
3680 
3681  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3682  /// global variable that has already been created for it. If the initializer
3683  /// has a different type than GV does, this may free GV and return a different
3684  /// one. Otherwise it just returns GV.
3685  llvm::GlobalVariable *
3686  AddInitializerToStaticVarDecl(const VarDecl &D,
3687  llvm::GlobalVariable *GV);
3688 
3689 
3690  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3691  /// variable with global storage.
3692  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3693  bool PerformInit);
3694 
3695  llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3696  llvm::Constant *Addr);
3697 
3698  /// Call atexit() with a function that passes the given argument to
3699  /// the given function.
3700  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3701  llvm::Constant *addr);
3702 
3703  /// Call atexit() with function dtorStub.
3704  void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
3705 
3706  /// Emit code in this function to perform a guarded variable
3707  /// initialization. Guarded initializations are used when it's not
3708  /// possible to prove that an initialization will be done exactly
3709  /// once, e.g. with a static local variable or a static data member
3710  /// of a class template.
3711  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3712  bool PerformInit);
3713 
3714  enum class GuardKind { VariableGuard, TlsGuard };
3715 
3716  /// Emit a branch to select whether or not to perform guarded initialization.
3717  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3718  llvm::BasicBlock *InitBlock,
3719  llvm::BasicBlock *NoInitBlock,
3720  GuardKind Kind, const VarDecl *D);
3721 
3722  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3723  /// variables.
3724  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3725  ArrayRef<llvm::Function *> CXXThreadLocals,
3726  Address Guard = Address::invalid());
3727 
3728  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3729  /// variables.
3730  void GenerateCXXGlobalDtorsFunc(
3731  llvm::Function *Fn,
3732  const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3733  &DtorsAndObjects);
3734 
3735  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3736  const VarDecl *D,
3737  llvm::GlobalVariable *Addr,
3738  bool PerformInit);
3739 
3740  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3741 
3742  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3743 
3745  if (E->getNumObjects() == 0) return;
3746  enterNonTrivialFullExpression(E);
3747  }
3748  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3749 
3750  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3751 
3752  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3753 
3754  RValue EmitAtomicExpr(AtomicExpr *E);
3755 
3756  //===--------------------------------------------------------------------===//
3757  // Annotations Emission
3758  //===--------------------------------------------------------------------===//
3759 
3760  /// Emit an annotation call (intrinsic or builtin).
3761  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3762  llvm::Value *AnnotatedVal,
3763  StringRef AnnotationStr,
3764  SourceLocation Location);
3765 
3766  /// Emit local annotations for the local variable V, declared by D.
3767  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3768 
3769  /// Emit field annotations for the given field & value. Returns the
3770  /// annotation result.
3771  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3772 
3773  //===--------------------------------------------------------------------===//
3774  // Internal Helpers
3775  //===--------------------------------------------------------------------===//
3776 
3777  /// ContainsLabel - Return true if the statement contains a label in it. If
3778  /// this statement is not executed normally, it not containing a label means
3779  /// that we can just remove the code.
3780  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3781 
3782  /// containsBreak - Return true if the statement contains a break out of it.
3783  /// If the statement (recursively) contains a switch or loop with a break
3784  /// inside of it, this is fine.
3785  static bool containsBreak(const Stmt *S);
3786 
3787  /// Determine if the given statement might introduce a declaration into the
3788  /// current scope, by being a (possibly-labelled) DeclStmt.
3789  static bool mightAddDeclToScope(const Stmt *S);
3790 
3791  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3792  /// to a constant, or if it does but contains a label, return false. If it
3793  /// constant folds return true and set the boolean result in Result.
3794  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3795  bool AllowLabels = false);
3796 
3797  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3798  /// to a constant, or if it does but contains a label, return false. If it
3799  /// constant folds return true and set the folded value.
3800  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3801  bool AllowLabels = false);
3802 
3803  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3804  /// if statement) to the specified blocks. Based on the condition, this might
3805  /// try to simplify the codegen of the conditional based on the branch.
3806  /// TrueCount should be the number of times we expect the condition to
3807  /// evaluate to true based on PGO data.
3808  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3809  llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3810 
3811  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
3812  /// nonnull, if \p LHS is marked _Nonnull.
3813  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
3814 
3815  /// An enumeration which makes it easier to specify whether or not an
3816  /// operation is a subtraction.
3817  enum { NotSubtraction = false, IsSubtraction = true };
3818 
3819  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
3820  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
3821  /// \p SignedIndices indicates whether any of the GEP indices are signed.
3822  /// \p IsSubtraction indicates whether the expression used to form the GEP
3823  /// is a subtraction.
3824  llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
3825  ArrayRef<llvm::Value *> IdxList,
3826  bool SignedIndices,
3827  bool IsSubtraction,
3828  SourceLocation Loc,
3829  const Twine &Name = "");
3830 
3831  /// Specifies which type of sanitizer check to apply when handling a
3832  /// particular builtin.
3836  };
3837 
3838  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
3839  /// enabled, a runtime check specified by \p Kind is also emitted.
3840  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
3841 
3842  /// \brief Emit a description of a type in a format suitable for passing to
3843  /// a runtime sanitizer handler.
3844  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3845 
3846  /// \brief Convert a value into a format suitable for passing to a runtime
3847  /// sanitizer handler.
3848  llvm::Value *EmitCheckValue(llvm::Value *V);
3849 
3850  /// \brief Emit a description of a source location in a format suitable for
3851  /// passing to a runtime sanitizer handler.
3852  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3853 
3854  /// \brief Create a basic block that will call a handler function in a
3855  /// sanitizer runtime with the provided arguments, and create a conditional
3856  /// branch to it.
3857  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3858  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3859  ArrayRef<llvm::Value *> DynamicArgs);
3860 
3861  /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3862  /// if Cond if false.
3863  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3864  llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3865  ArrayRef<llvm::Constant *> StaticArgs);
3866 
3867  /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
3868  /// checking is enabled. Otherwise, just emit an unreachable instruction.
3869  void EmitUnreachable(SourceLocation Loc);
3870 
3871  /// \brief Create a basic block that will call the trap intrinsic, and emit a
3872  /// conditional branch to it, for the -ftrapv checks.
3873  void EmitTrapCheck(llvm::Value *Checked);
3874 
3875  /// \brief Emit a call to trap or debugtrap and attach function attribute
3876  /// "trap-func-name" if specified.
3877  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3878 
3879  /// \brief Emit a stub for the cross-DSO CFI check function.
3880  void EmitCfiCheckStub();
3881 
3882  /// \brief Emit a cross-DSO CFI failure handling function.
3883  void EmitCfiCheckFail();
3884 
3885  /// \brief Create a check for a function parameter that may potentially be
3886  /// declared as non-null.
3887  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3888  AbstractCallee AC, unsigned ParmNum);
3889 
3890  /// EmitCallArg - Emit a single call argument.
3891  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3892 
3893  /// EmitDelegateCallArg - We are performing a delegate call; that
3894  /// is, the current function is delegating to another one. Produce
3895  /// a r-value suitable for passing the given parameter.
3896  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3897  SourceLocation loc);
3898 
3899  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3900  /// point operation, expressed as the maximum relative error in ulp.
3901  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3902 
3903 private:
3904  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3905  void EmitReturnOfRValue(RValue RV, QualType Ty);
3906 
3907  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3908 
3910  DeferredReplacements;
3911 
3912  /// Set the address of a local variable.
3913  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3914  assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3915  LocalDeclMap.insert({VD, Addr});
3916  }
3917 
3918  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3919  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3920  ///
3921  /// \param AI - The first function argument of the expansion.
3922  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3924 
3925  /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
3926  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3927  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3928  void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
3929  SmallVectorImpl<llvm::Value *> &IRCallArgs,
3930  unsigned &IRCallArgPos);
3931 
3932  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3933  const Expr *InputExpr, std::string &ConstraintStr);
3934 
3935  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3936  LValue InputValue, QualType InputType,
3937  std::string &ConstraintStr,
3938  SourceLocation Loc);
3939 
3940  /// \brief Attempts to statically evaluate the object size of E. If that
3941  /// fails, emits code to figure the size of E out for us. This is
3942  /// pass_object_size aware.
3943  ///
3944  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
3945  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3946  llvm::IntegerType *ResType,
3947  llvm::Value *EmittedE);
3948 
3949  /// \brief Emits the size of E, as required by __builtin_object_size. This
3950  /// function is aware of pass_object_size parameters, and will act accordingly
3951  /// if E is a parameter with the pass_object_size attribute.
3952  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3953  llvm::IntegerType *ResType,
3954  llvm::Value *EmittedE);
3955 
3956 public:
3957 #ifndef NDEBUG
3958  // Determine whether the given argument is an Objective-C method
3959  // that may have type parameters in its signature.
3960  static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3961  const DeclContext *dc = method->getDeclContext();
3962  if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3963  return classDecl->getTypeParamListAsWritten();
3964  }
3965 
3966  if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3967  return catDecl->getTypeParamList();
3968  }
3969 
3970  return false;
3971  }
3972 
3973  template<typename T>
3974  static bool isObjCMethodWithTypeParams(const T *) { return false; }
3975 #endif
3976 
3977  enum class EvaluationOrder {
3978  ///! No language constraints on evaluation order.
3979  Default,
3980  ///! Language semantics require left-to-right evaluation.
3981  ForceLeftToRight,
3982  ///! Language semantics require right-to-left evaluation.
3983  ForceRightToLeft
3984  };
3985 
3986  /// EmitCallArgs - Emit call arguments for a function.
3987  template <typename T>
3988  void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3989  llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3991  unsigned ParamsToSkip = 0,
3992  EvaluationOrder Order = EvaluationOrder::Default) {
3993  SmallVector<QualType, 16> ArgTypes;
3994  CallExpr::const_arg_iterator Arg = ArgRange.begin();
3995 
3996  assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3997  "Can't skip parameters if type info is not provided");
3998  if (CallArgTypeInfo) {
3999 #ifndef NDEBUG
4000  bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4001 #endif
4002 
4003  // First, use the argument types that the type info knows about
4004  for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4005  E = CallArgTypeInfo->param_type_end();
4006  I != E; ++I, ++Arg) {
4007  assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4008  assert((isGenericMethod ||
4009  ((*I)->isVariablyModifiedType() ||
4010  (*I).getNonReferenceType()->isObjCRetainableType() ||
4011  getContext()
4012  .getCanonicalType((*I).getNonReferenceType())
4013  .getTypePtr() ==
4014  getContext()
4015  .getCanonicalType((*Arg)->getType())
4016  .getTypePtr())) &&
4017  "type mismatch in call argument!");
4018  ArgTypes.push_back(*I);
4019  }
4020  }
4021 
4022  // Either we've emitted all the call args, or we have a call to variadic
4023  // function.
4024  assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4025  CallArgTypeInfo->isVariadic()) &&
4026  "Extra arguments in non-variadic function!");
4027 
4028  // If we still have any arguments, emit them using the type of the argument.
4029  for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4030  ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4031 
4032  EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4033  }
4034 
4035  void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4036  llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4038  unsigned ParamsToSkip = 0,
4039  EvaluationOrder Order = EvaluationOrder::Default);
4040 
4041  /// EmitPointerWithAlignment - Given an expression with a pointer type,
4042  /// emit the value and compute our best estimate of the alignment of the
4043  /// pointee.
4044  ///
4045  /// \param BaseInfo - If non-null, this will be initialized with
4046  /// information about the source of the alignment and the may-alias
4047  /// attribute. Note that this function will conservatively fall back on
4048  /// the type when it doesn't recognize the expression and may-alias will
4049  /// be set to false.
4050  ///
4051  /// One reasonable way to use this information is when there's a language
4052  /// guarantee that the pointer must be aligned to some stricter value, and
4053  /// we're simply trying to ensure that sufficiently obvious uses of under-
4054  /// aligned objects don't get miscompiled; for example, a placement new
4055  /// into the address of a local variable. In such a case, it's quite
4056  /// reasonable to just ignore the returned alignment when it isn't from an
4057  /// explicit source.
4058  Address EmitPointerWithAlignment(const Expr *Addr,
4059  LValueBaseInfo *BaseInfo = nullptr,
4060  TBAAAccessInfo *TBAAInfo = nullptr);
4061 
4062  /// If \p E references a parameter with pass_object_size info or a constant
4063  /// array size modifier, emit the object size divided by the size of \p EltTy.
4064  /// Otherwise return null.
4065  llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4066 
4067  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4068 
4070  llvm::Function *Function;
4071  TargetAttr::ParsedTargetAttr ParsedAttribute;
4072  unsigned Priority;
4073  MultiVersionResolverOption(const TargetInfo &TargInfo, llvm::Function *F,
4074  const clang::TargetAttr::ParsedTargetAttr &PT)
4075  : Function(F), ParsedAttribute(PT), Priority(0u) {
4076  for (StringRef Feat : PT.Features)
4077  Priority = std::max(Priority,
4078  TargInfo.multiVersionSortPriority(Feat.substr(1)));
4079 
4080  if (!PT.Architecture.empty())
4081  Priority = std::max(Priority,
4082  TargInfo.multiVersionSortPriority(PT.Architecture));
4083  }
4084 
4085  bool operator>(const MultiVersionResolverOption &Other) const {
4086  return Priority > Other.Priority;
4087  }
4088  };
4089  void EmitMultiVersionResolver(llvm::Function *Resolver,
4091 
4092 private:
4093  QualType getVarArgType(const Expr *Arg);
4094 
4095  void EmitDeclMetadata();
4096 
4097  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4098  const AutoVarEmission &emission);
4099 
4100  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4101 
4102  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4103  llvm::Value *EmitX86CpuIs(const CallExpr *E);
4104  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4105  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4106  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4107  llvm::Value *EmitX86CpuInit();
4108  llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4109 };
4110 
4111 /// Helper class with most of the code for saving a value for a
4112 /// conditional expression cleanup.
4114  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
4115 
4116  /// Answer whether the given value needs extra work to be saved.
4117  static bool needsSaving(llvm::Value *value) {
4118  // If it's not an instruction, we don't need to save.
4119  if (!isa<llvm::Instruction>(value)) return false;
4120 
4121  // If it's an instruction in the entry block, we don't need to save.
4122  llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
4123  return (block != &block->getParent()->getEntryBlock());
4124  }
4125 
4126  /// Try to save the given value.
4127  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
4128  if (!needsSaving(value)) return saved_type(value, false);
4129 
4130  // Otherwise, we need an alloca.
4131  auto align = CharUnits::fromQuantity(
4132  CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4133  Address alloca =
4134  CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4135  CGF.Builder.CreateStore(value, alloca);
4136 
4137  return saved_type(alloca.getPointer(), true);
4138  }
4139 
4140  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
4141  // If the value says it wasn't saved, trust that it's still dominating.
4142  if (!value.getInt()) return value.getPointer();
4143 
4144  // Otherwise, it should be an alloca instruction, as set up in save().
4145  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4146  return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
4147  }
4148 };
4149 
4150 /// A partial specialization of DominatingValue for llvm::Values that
4151 /// might be llvm::Instructions.
4152 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
4153  typedef T *type;
4154  static type restore(CodeGenFunction &CGF, saved_type value) {
4155  return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
4156  }
4157 };
4158 
4159 /// A specialization of DominatingValue for Address.
4160 template <> struct DominatingValue<Address> {
4161  typedef Address type;
4162 
4163  struct saved_type {
4166  };
4167 
4168  static bool needsSaving(type value) {
4169  return DominatingLLVMValue::needsSaving(value.getPointer());
4170  }
4171  static saved_type save(CodeGenFunction &CGF, type value) {
4172  return { DominatingLLVMValue::save(CGF, value.getPointer()),
4173  value.getAlignment() };
4174  }
4175  static type restore(CodeGenFunction &CGF, saved_type value) {
4176  return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
4177  value.Alignment);
4178  }
4179 };
4180 
4181 /// A specialization of DominatingValue for RValue.
4182 template <> struct DominatingValue<RValue> {
4183  typedef RValue type;
4184  class saved_type {
4185  enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
4186  AggregateAddress, ComplexAddress };
4187 
4188  llvm::Value *Value;
4189  unsigned K : 3;
4190  unsigned Align : 29;
4191  saved_type(llvm::Value *v, Kind k, unsigned a = 0)
4192  : Value(v), K(k), Align(a) {}
4193 
4194  public:
4195  static bool needsSaving(RValue value);
4196  static saved_type save(CodeGenFunction &CGF, RValue value);
4197  RValue restore(CodeGenFunction &CGF);
4198 
4199  // implementations in CGCleanup.cpp
4200  };
4201 
4202  static bool needsSaving(type value) {
4203  return saved_type::needsSaving(value);
4204  }
4205  static saved_type save(CodeGenFunction &CGF, type value) {
4206  return saved_type::save(CGF, value);
4207  }
4208  static type restore(CodeGenFunction &CGF, saved_type value) {
4209  return value.restore(CGF);
4210  }
4211 };
4212 
4213 } // end namespace CodeGen
4214 } // end namespace clang
4215 
4216 #endif
const llvm::DataLayout & getDataLayout() const
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:361
llvm::Value * getArrayInitIndex()
Get the index of the current ArrayInitLoopExpr, if any.
Optional< uint64_t > getStmtCount(const Stmt *S)
Check if an execution count is known for a given statement.
Definition: CodeGenPGO.h:64
This represents &#39;#pragma omp distribute simd&#39; composite directive.
Definition: StmtOpenMP.h:3212
Information about the layout of a __block variable.
Definition: CGBlocks.h:140
This represents &#39;#pragma omp master&#39; directive.
Definition: StmtOpenMP.h:1395
virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S)
Emit the captured statement body.
This represents &#39;#pragma omp task&#39; directive.
Definition: StmtOpenMP.h:1735
Represents a function declaration or definition.
Definition: Decl.h:1709
LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2352
Scheduling data for loop-based OpenMP directives.
Definition: OpenMPKinds.h:124
A (possibly-)qualified type.
Definition: Type.h:653
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:264
const CodeGenOptions & getCodeGenOpts() const
The class detects jumps which bypass local variables declaration: goto L; int a; L: ...
AlignmentSource
The source of the alignment of an l-value; an expression of confidence in the alignment actually matc...
Definition: CGValue.h:126
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
bool isSEHTryScope() const
Returns true inside SEH __try blocks.
llvm::LLVMContext & getLLVMContext()
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:30
FieldConstructionScope(CodeGenFunction &CGF, Address This)
Represents a &#39;co_return&#39; statement in the C++ Coroutines TS.
Definition: StmtCXX.h:432
Stmt - This represents one statement.
Definition: Stmt.h:66
IfStmt - This represents an if/then/else.
Definition: Stmt.h:949
static T * buildByrefHelpers(CodeGenModule &CGM, const BlockByrefInfo &byrefInfo, T &&generator)
Lazily build the copy and dispose helpers for a __block variable with the given information.
Definition: CGBlocks.cpp:2186
bool requiresCleanups() const
Determine whether this scope requires any cleanups.
C Language Family Type Representation.
OpaqueValueMapping(CodeGenFunction &CGF, const AbstractConditionalOperator *op)
Build the opaque value mapping for the given conditional operator if it&#39;s the GNU ...
This represents &#39;#pragma omp for simd&#39; directive.
Definition: StmtOpenMP.h:1145
Checking the &#39;this&#39; pointer for a constructor call.
bool hasVolatileMember() const
Definition: Decl.h:3658
bool hasLabelBeenSeenInCurrentScope() const
Return true if a label was seen in the current scope.
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
This represents &#39;#pragma omp teams distribute parallel for&#39; composite directive.
Definition: StmtOpenMP.h:3623
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
static saved_type save(CodeGenFunction &CGF, llvm::Value *value)
Try to save the given value.
static bool classof(const CGCapturedStmtInfo *)
Represents an attribute applied to a statement.
Definition: Stmt.h:897
static Destroyer destroyARCStrongPrecise
llvm::Value * LoadCXXThis()
LoadCXXThis - Load the value of &#39;this&#39;.
The base class of the type hierarchy.
Definition: Type.h:1419
This represents &#39;#pragma omp target teams distribute&#39; combined directive.
Definition: StmtOpenMP.h:3760
Represents Objective-C&#39;s @throw statement.
Definition: StmtObjC.h:313
CGCapturedStmtInfo(const CapturedStmt &S, CapturedRegionKind K=CR_Default)
const RecordDecl * getCapturedRecordDecl() const
Retrieve the record declaration for captured variables.
Definition: Stmt.h:2188
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2627
void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, llvm::Value *Address)
virtual const FieldDecl * lookup(const VarDecl *VD) const
Lookup the captured field decl for a variable.
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1239
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:116
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:379
DominatingValue< T >::saved_type saveValueInCond(T value)
CGCapturedStmtInfo(CapturedRegionKind K=CR_Default)
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
const ParmVarDecl * getParamDecl(unsigned I) const
This represents &#39;#pragma omp parallel for&#39; directive.
Definition: StmtOpenMP.h:1516
void emitCounterIncrement(CGBuilderTy &Builder, const Stmt *S, llvm::Value *StepV)
Definition: CodeGenPGO.cpp:886
This represents &#39;#pragma omp target teams distribute parallel for&#39; combined directive.
Definition: StmtOpenMP.h:3828
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2448
Represents a prvalue temporary that is written into memory so that a reference can bind to it...
Definition: ExprCXX.h:4039
static bool needsSaving(llvm::Value *value)
Answer whether the given value needs extra work to be saved.
static type restore(CodeGenFunction &CGF, saved_type value)
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const RValue &rv)
Represents a point when we exit a loop.
Definition: ProgramPoint.h:683
const CXXBaseSpecifier *const * path_const_iterator
Definition: Expr.h:2796
This represents &#39;#pragma omp target exit data&#39; directive.
Definition: StmtOpenMP.h:2427
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
TypeEvaluationKind
The kind of evaluation to perform on values of a particular type.
Represents a variable declaration or definition.
Definition: Decl.h:812
Address getObjectAddress(CodeGenFunction &CGF) const
Returns the address of the object within this declaration.
ObjCIsaExpr - Represent X->isa and X.isa when X is an ObjC &#39;id&#39; type.
Definition: ExprObjC.h:1436
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:2659
RAII object to set/unset CodeGenFunction::IsSanitizerScope.
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6390
uint64_t getProfileCount(const Stmt *S)
Get the profiler&#39;s count for the given statement.
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:54
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
void setCurrentProfileCount(uint64_t Count)
Set the profiler&#39;s current count.
llvm::Value * getPointer() const
Definition: Address.h:38
static ConstantEmission forValue(llvm::Constant *C)
bool IsSanitizerScope
True if CodeGen currently emits code implementing sanitizer checks.
capture_iterator capture_begin()
Retrieve an iterator pointing to the first capture.
Definition: Stmt.h:2213
A C++ throw-expression (C++ [except.throw]).
Definition: ExprCXX.h:985
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3003
Represents a parameter to a function.
Definition: Decl.h:1528
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have...
Definition: Linkage.h:24
Defines the clang::Expr interface and subclasses for C++ expressions.
The collection of all-type qualifiers we support.
Definition: Type.h:152
EHScopeStack::stable_iterator PrologueCleanupDepth
PrologueCleanupDepth - The cleanup depth enclosing all the cleanups associated with the parameters...
A jump destination is an abstract label, branching to which may require a jump out through normal cle...
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:858
Represents a struct/union/class.
Definition: Decl.h:3543
llvm::DenseMap< const VarDecl *, FieldDecl * > LambdaCaptureFields
LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
const TargetInfo & getTarget() const
An object to manage conditionally-evaluated expressions.
PeepholeProtection protectFromPeepholes(RValue rvalue)
protectFromPeepholes - Protect a value that we&#39;re intending to store to the side, but which will prob...
ConditionalCleanup stores the saved form of its parameters, then restores them and performs the clean...
Definition: EHScopeStack.h:198
ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
CGBlockInfo * FirstBlockInfo
FirstBlockInfo - The head of a singly-linked-list of block layouts.
void setScopeDepth(EHScopeStack::stable_iterator depth)
This represents &#39;#pragma omp parallel&#39; directive.
Definition: StmtOpenMP.h:274
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:149
llvm::SmallPtrSet< const CXXRecordDecl *, 4 > VisitedVirtualBasesSetTy
The scope used to remap some variables as private in the OpenMP loop body (or other captured region e...
SmallVector< Address, 1 > SEHCodeSlotStack
A stack of exception code slots.
Represents a member of a struct/union/class.
Definition: Decl.h:2516
Definition: Format.h:2041
An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
bool isReferenceType() const
Definition: Type.h:6033
Helper class with most of the code for saving a value for a conditional expression cleanup...
llvm::BasicBlock * getStartingBlock() const
Returns a block which will be executed prior to each evaluation of the conditional code...
This represents &#39;#pragma omp target simd&#39; directive.
Definition: StmtOpenMP.h:3348
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:927
Defines some OpenMP-specific enums and functions.
ExtVectorElementExpr - This represents access to specific elements of a vector, and may occur on the ...
Definition: Expr.h:4812
Address getAllocatedAddress() const
Returns the raw, allocated address, which is not necessarily the address of the object itself...
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:66
This represents &#39;#pragma omp barrier&#39; directive.
Definition: StmtOpenMP.h:1847
CleanupKind getCleanupKind(QualType::DestructionKind kind)
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp, [NSNumber numberWithInt:42]];.
Definition: ExprObjC.h:171
The this pointer adjustment as well as an optional return adjustment for a thunk. ...
Definition: ABI.h:179
This is a common base class for loop directives (&#39;omp simd&#39;, &#39;omp for&#39;, &#39;omp for simd&#39; etc...
Definition: StmtOpenMP.h:336
This represents &#39;#pragma omp critical&#39; directive.
Definition: StmtOpenMP.h:1442
const AstTypeMatcher< ComplexType > complexType
Matches C99 complex types.
bool isCleanupPadScope() const
Returns true while emitting a cleanuppad.
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition: CGExpr.cpp:173
void pushFullExprCleanup(CleanupKind kind, As... A)
pushFullExprCleanup - Push a cleanup to be run at the end of the current full-expression.
OpenMPDistScheduleClauseKind
OpenMP attributes for &#39;dist_schedule&#39; clause.
Definition: OpenMPKinds.h:100
bool isGLValue() const
Definition: Expr.h:252
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:1328
Describes an C or C++ initializer list.
Definition: Expr.h:3894
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:638
This represents &#39;#pragma omp distribute parallel for&#39; composite directive.
Definition: StmtOpenMP.h:3063
void setCurrentRegionCount(uint64_t Count)
Set the counter value for the current region.
Definition: CodeGenPGO.h:60
A class controlling the emission of a finally block.
This represents &#39;#pragma omp teams distribute parallel for simd&#39; composite directive.
Definition: StmtOpenMP.h:3552
BinaryOperatorKind
static bool hasScalarEvaluationKind(QualType T)
ForStmt - This represents a &#39;for (init;cond;inc)&#39; stmt.
Definition: Stmt.h:1223
InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:986
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
llvm::function_ref< std::pair< LValue, LValue > CodeGenFunction &, const OMPExecutableDirective &S)> CodeGenLoopBoundsTy
CGCapturedStmtRAII(CodeGenFunction &CGF, CGCapturedStmtInfo *NewCapturedStmtInfo)
LexicalScope(CodeGenFunction &CGF, SourceRange Range)
Enter a new cleanup scope.
RAII for correct setting/restoring of CapturedStmtInfo.
TBAAAccessInfo getTBAAAccessInfo(QualType AccessType)
getTBAAAccessInfo - Get TBAA information that describes an access to an object of the given type...
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:67
Represents a declaration of a type.
Definition: Decl.h:2811
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3007
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
static OpaqueValueMappingData bind(CodeGenFunction &CGF, const OpaqueValueExpr *ov, const LValue &lv)
void restore(CodeGenFunction &CGF)
Restores original addresses of the variables.
CXXForRangeStmt - This represents C++0x [stmt.ranged]&#39;s ranged for statement, represented as &#39;for (ra...
Definition: StmtCXX.h:128
bool IsOutlinedSEHHelper
True if the current function is an outlined SEH helper.
#define LIST_SANITIZER_CHECKS
This represents &#39;#pragma omp cancellation point&#39; directive.
Definition: StmtOpenMP.h:2682
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:51
field_iterator field_begin() const
Definition: Decl.cpp:4010
A stack of scopes which respond to exceptions, including cleanups and catch blocks.
Definition: EHScopeStack.h:100
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
This represents &#39;#pragma omp teams&#39; directive.
Definition: StmtOpenMP.h:2625
Denotes a cleanup that should run when a scope is exited using normal control flow (falling off the e...
Definition: EHScopeStack.h:85
Enums/classes describing ABI related information about constructors, destructors and thunks...
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2732
This represents &#39;#pragma omp teams distribute simd&#39; combined directive.
Definition: StmtOpenMP.h:3482
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
Represents binding an expression to a temporary.
Definition: ExprCXX.h:1196
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1583
GlobalDecl CurGD
CurGD - The GlobalDecl for the current function being compiled.
Controls insertion of cancellation exit blocks in worksharing constructs.
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler&#39;s counter for the given statement by StepV.
uint64_t getCurrentProfileCount()
Get the profiler&#39;s current count.
CallLifetimeEnd(Address addr, llvm::Value *size)
llvm::function_ref< std::pair< llvm::Value *, llvm::Value * > CodeGenFunction &, const OMPExecutableDirective &S, Address LB, Address UB)> CodeGenDispatchBoundsTy
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
Definition: CGExpr.cpp:94
Represents an ObjC class declaration.
Definition: DeclObjC.h:1191
Checking the operand of a cast to a virtual base object.
JumpDest getJumpDestInCurrentScope(StringRef Name=StringRef())
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
Address NormalCleanupDest
i32s containing the indexes of the cleanup destinations.
llvm::AllocaInst * EHSelectorSlot
The selector slot.
Checking the operand of a load. Must be suitably sized and aligned.
~LexicalScope()
Exit this cleanup scope, emitting any accumulated cleanups.
Checking the &#39;this&#39; pointer for a call to a non-static member function.
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
ObjCPropertyImplDecl - Represents implementation declaration of a property in a class or category imp...
Definition: DeclObjC.h:2778
This represents &#39;#pragma omp target parallel for simd&#39; directive.
Definition: StmtOpenMP.h:3280
OpenMP 4.0 [2.4, Array Sections].
Definition: ExprOpenMP.h:45
Const iterator for iterating over Stmt * arrays that contain only Expr *.
Definition: Stmt.h:357
bool isValid() const
Definition: Address.h:36
CleanupKind Kind
The kind of cleanup to push: a value from the CleanupKind enumeration.
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2200
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:609
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3346
Describes the capture of either a variable, or &#39;this&#39;, or variable-length array type.
Definition: Stmt.h:2083
void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, llvm::Value *OffsetValue=nullptr)
const CodeGen::CGBlockInfo * BlockInfo
This represents &#39;#pragma omp taskgroup&#39; directive.
Definition: StmtOpenMP.h:1935
const TargetCodeGenInfo & getTargetCodeGenInfo()
CGBlockInfo - Information to generate a block literal.
Definition: CGBlocks.h:149
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
CleanupKind getARCCleanupKind()
Retrieves the default cleanup kind for an ARC cleanup.
bool isGlobalVarCaptured(const VarDecl *VD) const
Checks if the global variable is captured in current function.
The class used to assign some variables some temporarily addresses.
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
Represents a call to the builtin function __builtin_va_arg.
Definition: Expr.h:3800
AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD)
Determine whether a field initialization may overlap some other object.
llvm::Value * ExceptionSlot
The exception slot.
void pushCleanupAfterFullExpr(CleanupKind Kind, As... A)
Queue a cleanup to be pushed after finishing the current full-expression.
LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
This represents &#39;#pragma omp distribute&#39; directive.
Definition: StmtOpenMP.h:2936
Exposes information about the current target.
Definition: TargetInfo.h:54
CXXDtorType
C++ destructor types.
Definition: ABI.h:34
llvm::BasicBlock * EHResumeBlock
EHResumeBlock - Unified block containing a call to llvm.eh.resume.
bool addPrivate(const VarDecl *LocalVD, const llvm::function_ref< Address()> PrivateGen)
Registers LocalVD variable as a private and apply PrivateGen function for it to generate correspondin...
EHScopeStack::stable_iterator getScopeDepth() const
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:636
Expr - This represents one expression.
Definition: Expr.h:106
stable_iterator getInnermostNormalCleanup() const
Returns the innermost normal cleanup on the stack, or stable_end() if there are no normal cleanups...
Definition: EHScopeStack.h:356
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
const FunctionProtoType * T
llvm::function_ref< void(CodeGenFunction &, SourceLocation, const unsigned, const bool)> CodeGenOrderedTy
static ParamValue forIndirect(Address addr)
OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *opaqueValue, RValue rvalue)
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
void ForceCleanup()
Force the emission of cleanups now, instead of waiting until this object is destroyed.
static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method)
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:4873
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2671
This represents &#39;#pragma omp target teams distribute parallel for simd&#39; combined directive.
Definition: StmtOpenMP.h:3912
static saved_type save(CodeGenFunction &CGF, type value)
AggValueSlot CreateAggTemp(QualType T, const Twine &Name="tmp")
CreateAggTemp - Create a temporary memory object for the given aggregate type.
#define bool
Definition: stdbool.h:31
unsigned Size
The size of the following cleanup object.
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:288
DeclContext * getDeclContext()
Definition: DeclBase.h:425
Represents Objective-C&#39;s @synchronized statement.
Definition: StmtObjC.h:262
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:429
CXXTryStmt - A C++ try block, including all handlers.
Definition: StmtCXX.h:65
~OMPPrivateScope()
Exit scope - all the mapped variables are restored.
This represents &#39;#pragma omp target teams distribute simd&#39; combined directive.
Definition: StmtOpenMP.h:3985
int Depth
Definition: ASTDiff.cpp:191
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
llvm::LLVMContext & getLLVMContext()
QualType getType() const
Definition: Expr.h:128
Checking the value assigned to a _Nonnull pointer. Must not be null.
An RAII object to record that we&#39;re evaluating a statement expression.
This represents &#39;#pragma omp for&#39; directive.
Definition: StmtOpenMP.h:1068
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:1433
This represents &#39;#pragma omp target teams&#39; directive.
Definition: StmtOpenMP.h:3701
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T)
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:903
JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, unsigned Index)
SourceLocation getEnd() const
An object which temporarily prevents a value from being destroyed by aggressive peephole optimization...
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1726
OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, Address SizesArray, unsigned NumberOfTargetItems)
This represents &#39;#pragma omp cancel&#39; directive.
Definition: StmtOpenMP.h:2740
RunCleanupsScope(CodeGenFunction &CGF)
Enter a new cleanup scope.
const LangOptions & getLangOpts() const
ASTContext & getContext() const
do v
Definition: arm_acle.h:78
VarDecl * getCanonicalDecl() override
Retrieves the "canonical" declaration of the given declaration.
Definition: Decl.cpp:2006
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:35
This represents &#39;#pragma omp flush&#39; directive.
Definition: StmtOpenMP.h:2008
This represents &#39;#pragma omp parallel for simd&#39; directive.
Definition: StmtOpenMP.h:1596
DoStmt - This represents a &#39;do/while&#39; stmt.
Definition: Stmt.h:1174
AsmStmt is the base class for GCCAsmStmt and MSAsmStmt.
Definition: Stmt.h:1481
void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, llvm::Value *OffsetValue=nullptr)
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, std::initializer_list< llvm::Value **> ValuesToReload={})
Takes the old cleanup stack size and emits the cleanup blocks that have been added.
Definition: CGCleanup.cpp:420
llvm::function_ref< void(CodeGenFunction &, const OMPLoopDirective &, JumpDest)> CodeGenLoopTy
This represents &#39;#pragma omp target enter data&#39; directive.
Definition: StmtOpenMP.h:2368
OMPPrivateScope(CodeGenFunction &CGF)
Enter a new OpenMP private scope.
llvm::SmallVector< VPtr, 4 > VPtrsVector
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:338
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:868
bool SawAsmBlock
Whether we processed a Microsoft-style asm block during CodeGen.
#define false
Definition: stdbool.h:33
MSVCIntrin
Definition: CGBuiltin.cpp:489
Kind
This captures a statement into a function.
Definition: Stmt.h:2070
Represents a call to an inherited base class constructor from an inheriting constructor.
Definition: ExprCXX.h:1400
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:4991