clang  10.0.0svn
CGStmt.cpp
Go to the documentation of this file.
1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGDebugInfo.h"
15 #include "CodeGenModule.h"
16 #include "TargetInfo.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "clang/Basic/Builtins.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include "llvm/IR/MDBuilder.h"
26 
27 using namespace clang;
28 using namespace CodeGen;
29 
30 //===----------------------------------------------------------------------===//
31 // Statement Emission
32 //===----------------------------------------------------------------------===//
33 
35  if (CGDebugInfo *DI = getDebugInfo()) {
36  SourceLocation Loc;
37  Loc = S->getBeginLoc();
38  DI->EmitLocation(Builder, Loc);
39 
40  LastStopPoint = Loc;
41  }
42 }
43 
45  assert(S && "Null statement?");
46  PGO.setCurrentStmt(S);
47 
48  // These statements have their own debug info handling.
49  if (EmitSimpleStmt(S))
50  return;
51 
52  // Check if we are generating unreachable code.
53  if (!HaveInsertPoint()) {
54  // If so, and the statement doesn't contain a label, then we do not need to
55  // generate actual code. This is safe because (1) the current point is
56  // unreachable, so we don't need to execute the code, and (2) we've already
57  // handled the statements which update internal data structures (like the
58  // local variable map) which could be used by subsequent statements.
59  if (!ContainsLabel(S)) {
60  // Verify that any decl statements were handled as simple, they may be in
61  // scope of subsequent reachable statements.
62  assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
63  return;
64  }
65 
66  // Otherwise, make a new block to hold the code.
68  }
69 
70  // Generate a stoppoint if we are emitting debug info.
71  EmitStopPoint(S);
72 
73  // Ignore all OpenMP directives except for simd if OpenMP with Simd is
74  // enabled.
75  if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
76  if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
78  return;
79  }
80  }
81 
82  switch (S->getStmtClass()) {
83  case Stmt::NoStmtClass:
84  case Stmt::CXXCatchStmtClass:
85  case Stmt::SEHExceptStmtClass:
86  case Stmt::SEHFinallyStmtClass:
87  case Stmt::MSDependentExistsStmtClass:
88  llvm_unreachable("invalid statement class to emit generically");
89  case Stmt::NullStmtClass:
90  case Stmt::CompoundStmtClass:
91  case Stmt::DeclStmtClass:
92  case Stmt::LabelStmtClass:
93  case Stmt::AttributedStmtClass:
94  case Stmt::GotoStmtClass:
95  case Stmt::BreakStmtClass:
96  case Stmt::ContinueStmtClass:
97  case Stmt::DefaultStmtClass:
98  case Stmt::CaseStmtClass:
99  case Stmt::SEHLeaveStmtClass:
100  llvm_unreachable("should have emitted these statements as simple");
101 
102 #define STMT(Type, Base)
103 #define ABSTRACT_STMT(Op)
104 #define EXPR(Type, Base) \
105  case Stmt::Type##Class:
106 #include "clang/AST/StmtNodes.inc"
107  {
108  // Remember the block we came in on.
109  llvm::BasicBlock *incoming = Builder.GetInsertBlock();
110  assert(incoming && "expression emission must have an insertion point");
111 
112  EmitIgnoredExpr(cast<Expr>(S));
113 
114  llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
115  assert(outgoing && "expression emission cleared block!");
116 
117  // The expression emitters assume (reasonably!) that the insertion
118  // point is always set. To maintain that, the call-emission code
119  // for noreturn functions has to enter a new block with no
120  // predecessors. We want to kill that block and mark the current
121  // insertion point unreachable in the common case of a call like
122  // "exit();". Since expression emission doesn't otherwise create
123  // blocks with no predecessors, we can just test for that.
124  // However, we must be careful not to do this to our incoming
125  // block, because *statement* emission does sometimes create
126  // reachable blocks which will have no predecessors until later in
127  // the function. This occurs with, e.g., labels that are not
128  // reachable by fallthrough.
129  if (incoming != outgoing && outgoing->use_empty()) {
130  outgoing->eraseFromParent();
131  Builder.ClearInsertionPoint();
132  }
133  break;
134  }
135 
136  case Stmt::IndirectGotoStmtClass:
137  EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
138 
139  case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break;
140  case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
141  case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break;
142  case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break;
143 
144  case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break;
145 
146  case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break;
147  case Stmt::GCCAsmStmtClass: // Intentional fall-through.
148  case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break;
149  case Stmt::CoroutineBodyStmtClass:
150  EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
151  break;
152  case Stmt::CoreturnStmtClass:
153  EmitCoreturnStmt(cast<CoreturnStmt>(*S));
154  break;
155  case Stmt::CapturedStmtClass: {
156  const CapturedStmt *CS = cast<CapturedStmt>(S);
158  }
159  break;
160  case Stmt::ObjCAtTryStmtClass:
161  EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
162  break;
163  case Stmt::ObjCAtCatchStmtClass:
164  llvm_unreachable(
165  "@catch statements should be handled by EmitObjCAtTryStmt");
166  case Stmt::ObjCAtFinallyStmtClass:
167  llvm_unreachable(
168  "@finally statements should be handled by EmitObjCAtTryStmt");
169  case Stmt::ObjCAtThrowStmtClass:
170  EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
171  break;
172  case Stmt::ObjCAtSynchronizedStmtClass:
173  EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
174  break;
175  case Stmt::ObjCForCollectionStmtClass:
176  EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
177  break;
178  case Stmt::ObjCAutoreleasePoolStmtClass:
179  EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
180  break;
181 
182  case Stmt::CXXTryStmtClass:
183  EmitCXXTryStmt(cast<CXXTryStmt>(*S));
184  break;
185  case Stmt::CXXForRangeStmtClass:
186  EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
187  break;
188  case Stmt::SEHTryStmtClass:
189  EmitSEHTryStmt(cast<SEHTryStmt>(*S));
190  break;
191  case Stmt::OMPParallelDirectiveClass:
192  EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
193  break;
194  case Stmt::OMPSimdDirectiveClass:
195  EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
196  break;
197  case Stmt::OMPForDirectiveClass:
198  EmitOMPForDirective(cast<OMPForDirective>(*S));
199  break;
200  case Stmt::OMPForSimdDirectiveClass:
201  EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
202  break;
203  case Stmt::OMPSectionsDirectiveClass:
204  EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
205  break;
206  case Stmt::OMPSectionDirectiveClass:
207  EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
208  break;
209  case Stmt::OMPSingleDirectiveClass:
210  EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
211  break;
212  case Stmt::OMPMasterDirectiveClass:
213  EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
214  break;
215  case Stmt::OMPCriticalDirectiveClass:
216  EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
217  break;
218  case Stmt::OMPParallelForDirectiveClass:
219  EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
220  break;
221  case Stmt::OMPParallelForSimdDirectiveClass:
222  EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
223  break;
224  case Stmt::OMPParallelSectionsDirectiveClass:
225  EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
226  break;
227  case Stmt::OMPTaskDirectiveClass:
228  EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
229  break;
230  case Stmt::OMPTaskyieldDirectiveClass:
231  EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
232  break;
233  case Stmt::OMPBarrierDirectiveClass:
234  EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
235  break;
236  case Stmt::OMPTaskwaitDirectiveClass:
237  EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
238  break;
239  case Stmt::OMPTaskgroupDirectiveClass:
240  EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
241  break;
242  case Stmt::OMPFlushDirectiveClass:
243  EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
244  break;
245  case Stmt::OMPOrderedDirectiveClass:
246  EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
247  break;
248  case Stmt::OMPAtomicDirectiveClass:
249  EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
250  break;
251  case Stmt::OMPTargetDirectiveClass:
252  EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
253  break;
254  case Stmt::OMPTeamsDirectiveClass:
255  EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
256  break;
257  case Stmt::OMPCancellationPointDirectiveClass:
258  EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
259  break;
260  case Stmt::OMPCancelDirectiveClass:
261  EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
262  break;
263  case Stmt::OMPTargetDataDirectiveClass:
264  EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
265  break;
266  case Stmt::OMPTargetEnterDataDirectiveClass:
267  EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
268  break;
269  case Stmt::OMPTargetExitDataDirectiveClass:
270  EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
271  break;
272  case Stmt::OMPTargetParallelDirectiveClass:
273  EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
274  break;
275  case Stmt::OMPTargetParallelForDirectiveClass:
276  EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
277  break;
278  case Stmt::OMPTaskLoopDirectiveClass:
279  EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
280  break;
281  case Stmt::OMPTaskLoopSimdDirectiveClass:
282  EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
283  break;
284  case Stmt::OMPMasterTaskLoopDirectiveClass:
285  EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
286  break;
287  case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
289  cast<OMPMasterTaskLoopSimdDirective>(*S));
290  break;
291  case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
293  cast<OMPParallelMasterTaskLoopDirective>(*S));
294  break;
295  case Stmt::OMPDistributeDirectiveClass:
296  EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
297  break;
298  case Stmt::OMPTargetUpdateDirectiveClass:
299  EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
300  break;
301  case Stmt::OMPDistributeParallelForDirectiveClass:
303  cast<OMPDistributeParallelForDirective>(*S));
304  break;
305  case Stmt::OMPDistributeParallelForSimdDirectiveClass:
307  cast<OMPDistributeParallelForSimdDirective>(*S));
308  break;
309  case Stmt::OMPDistributeSimdDirectiveClass:
310  EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
311  break;
312  case Stmt::OMPTargetParallelForSimdDirectiveClass:
314  cast<OMPTargetParallelForSimdDirective>(*S));
315  break;
316  case Stmt::OMPTargetSimdDirectiveClass:
317  EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
318  break;
319  case Stmt::OMPTeamsDistributeDirectiveClass:
320  EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
321  break;
322  case Stmt::OMPTeamsDistributeSimdDirectiveClass:
324  cast<OMPTeamsDistributeSimdDirective>(*S));
325  break;
326  case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
328  cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
329  break;
330  case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
332  cast<OMPTeamsDistributeParallelForDirective>(*S));
333  break;
334  case Stmt::OMPTargetTeamsDirectiveClass:
335  EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
336  break;
337  case Stmt::OMPTargetTeamsDistributeDirectiveClass:
339  cast<OMPTargetTeamsDistributeDirective>(*S));
340  break;
341  case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
343  cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
344  break;
345  case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
347  cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
348  break;
349  case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
351  cast<OMPTargetTeamsDistributeSimdDirective>(*S));
352  break;
353  }
354 }
355 
357  switch (S->getStmtClass()) {
358  default: return false;
359  case Stmt::NullStmtClass: break;
360  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
361  case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break;
362  case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break;
363  case Stmt::AttributedStmtClass:
364  EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
365  case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break;
366  case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break;
367  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
368  case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break;
369  case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break;
370  case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
371  }
372 
373  return true;
374 }
375 
376 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true,
377 /// this captures the expression result of the last sub-statement and returns it
378 /// (for use by the statement expression extension).
380  AggValueSlot AggSlot) {
381  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
382  "LLVM IR generation of compound statement ('{}')");
383 
384  // Keep track of the current cleanup stack depth, including debug scopes.
385  LexicalScope Scope(*this, S.getSourceRange());
386 
387  return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
388 }
389 
390 Address
392  bool GetLast,
393  AggValueSlot AggSlot) {
394 
395  const Stmt *ExprResult = S.getStmtExprResult();
396  assert((!GetLast || (GetLast && ExprResult)) &&
397  "If GetLast is true then the CompoundStmt must have a StmtExprResult");
398 
399  Address RetAlloca = Address::invalid();
400 
401  for (auto *CurStmt : S.body()) {
402  if (GetLast && ExprResult == CurStmt) {
403  // We have to special case labels here. They are statements, but when put
404  // at the end of a statement expression, they yield the value of their
405  // subexpression. Handle this by walking through all labels we encounter,
406  // emitting them before we evaluate the subexpr.
407  // Similar issues arise for attributed statements.
408  while (!isa<Expr>(ExprResult)) {
409  if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
410  EmitLabel(LS->getDecl());
411  ExprResult = LS->getSubStmt();
412  } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
413  // FIXME: Update this if we ever have attributes that affect the
414  // semantics of an expression.
415  ExprResult = AS->getSubStmt();
416  } else {
417  llvm_unreachable("unknown value statement");
418  }
419  }
420 
422 
423  const Expr *E = cast<Expr>(ExprResult);
424  QualType ExprTy = E->getType();
425  if (hasAggregateEvaluationKind(ExprTy)) {
426  EmitAggExpr(E, AggSlot);
427  } else {
428  // We can't return an RValue here because there might be cleanups at
429  // the end of the StmtExpr. Because of that, we have to emit the result
430  // here into a temporary alloca.
431  RetAlloca = CreateMemTemp(ExprTy);
432  EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
433  /*IsInit*/ false);
434  }
435  } else {
436  EmitStmt(CurStmt);
437  }
438  }
439 
440  return RetAlloca;
441 }
442 
443 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
444  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
445 
446  // If there is a cleanup stack, then we it isn't worth trying to
447  // simplify this block (we would need to remove it from the scope map
448  // and cleanup entry).
449  if (!EHStack.empty())
450  return;
451 
452  // Can only simplify direct branches.
453  if (!BI || !BI->isUnconditional())
454  return;
455 
456  // Can only simplify empty blocks.
457  if (BI->getIterator() != BB->begin())
458  return;
459 
460  BB->replaceAllUsesWith(BI->getSuccessor(0));
461  BI->eraseFromParent();
462  BB->eraseFromParent();
463 }
464 
465 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
466  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
467 
468  // Fall out of the current block (if necessary).
469  EmitBranch(BB);
470 
471  if (IsFinished && BB->use_empty()) {
472  delete BB;
473  return;
474  }
475 
476  // Place the block after the current block, if possible, or else at
477  // the end of the function.
478  if (CurBB && CurBB->getParent())
479  CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
480  else
481  CurFn->getBasicBlockList().push_back(BB);
482  Builder.SetInsertPoint(BB);
483 }
484 
485 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
486  // Emit a branch from the current block to the target one if this
487  // was a real block. If this was just a fall-through block after a
488  // terminator, don't emit it.
489  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
490 
491  if (!CurBB || CurBB->getTerminator()) {
492  // If there is no insert point or the previous block is already
493  // terminated, don't touch it.
494  } else {
495  // Otherwise, create a fall-through branch.
496  Builder.CreateBr(Target);
497  }
498 
499  Builder.ClearInsertionPoint();
500 }
501 
502 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
503  bool inserted = false;
504  for (llvm::User *u : block->users()) {
505  if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
506  CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
507  block);
508  inserted = true;
509  break;
510  }
511  }
512 
513  if (!inserted)
514  CurFn->getBasicBlockList().push_back(block);
515 
516  Builder.SetInsertPoint(block);
517 }
518 
521  JumpDest &Dest = LabelMap[D];
522  if (Dest.isValid()) return Dest;
523 
524  // Create, but don't insert, the new block.
525  Dest = JumpDest(createBasicBlock(D->getName()),
528  return Dest;
529 }
530 
532  // Add this label to the current lexical scope if we're within any
533  // normal cleanups. Jumps "in" to this label --- when permitted by
534  // the language --- may need to be routed around such cleanups.
535  if (EHStack.hasNormalCleanups() && CurLexicalScope)
536  CurLexicalScope->addLabel(D);
537 
538  JumpDest &Dest = LabelMap[D];
539 
540  // If we didn't need a forward reference to this label, just go
541  // ahead and create a destination at the current scope.
542  if (!Dest.isValid()) {
543  Dest = getJumpDestInCurrentScope(D->getName());
544 
545  // Otherwise, we need to give this label a target depth and remove
546  // it from the branch-fixups list.
547  } else {
548  assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
551  }
552 
553  EmitBlock(Dest.getBlock());
554 
555  // Emit debug info for labels.
556  if (CGDebugInfo *DI = getDebugInfo()) {
557  if (CGM.getCodeGenOpts().getDebugInfo() >=
559  DI->setLocation(D->getLocation());
560  DI->EmitLabel(D, Builder);
561  }
562  }
563 
565 }
566 
567 /// Change the cleanup scope of the labels in this lexical scope to
568 /// match the scope of the enclosing context.
570  assert(!Labels.empty());
571  EHScopeStack::stable_iterator innermostScope
572  = CGF.EHStack.getInnermostNormalCleanup();
573 
574  // Change the scope depth of all the labels.
576  i = Labels.begin(), e = Labels.end(); i != e; ++i) {
577  assert(CGF.LabelMap.count(*i));
578  JumpDest &dest = CGF.LabelMap.find(*i)->second;
579  assert(dest.getScopeDepth().isValid());
580  assert(innermostScope.encloses(dest.getScopeDepth()));
581  dest.setScopeDepth(innermostScope);
582  }
583 
584  // Reparent the labels if the new scope also has cleanups.
585  if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
586  ParentScope->Labels.append(Labels.begin(), Labels.end());
587  }
588 }
589 
590 
592  EmitLabel(S.getDecl());
593  EmitStmt(S.getSubStmt());
594 }
595 
597  EmitStmt(S.getSubStmt(), S.getAttrs());
598 }
599 
601  // If this code is reachable then emit a stop point (if generating
602  // debug info). We have to do this ourselves because we are on the
603  // "simple" statement path.
604  if (HaveInsertPoint())
605  EmitStopPoint(&S);
606 
608 }
609 
610 
612  if (const LabelDecl *Target = S.getConstantTarget()) {
614  return;
615  }
616 
617  // Ensure that we have an i8* for our PHI node.
619  Int8PtrTy, "addr");
620  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
621 
622  // Get the basic block for the indirect goto.
623  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
624 
625  // The first instruction in the block has to be the PHI for the switch dest,
626  // add an entry for this branch.
627  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
628 
629  EmitBranch(IndGotoBB);
630 }
631 
633  // C99 6.8.4.1: The first substatement is executed if the expression compares
634  // unequal to 0. The condition must be a scalar type.
635  LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
636 
637  if (S.getInit())
638  EmitStmt(S.getInit());
639 
640  if (S.getConditionVariable())
642 
643  // If the condition constant folds and can be elided, try to avoid emitting
644  // the condition and the dead arm of the if/else.
645  bool CondConstant;
646  if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
647  S.isConstexpr())) {
648  // Figure out which block (then or else) is executed.
649  const Stmt *Executed = S.getThen();
650  const Stmt *Skipped = S.getElse();
651  if (!CondConstant) // Condition false?
652  std::swap(Executed, Skipped);
653 
654  // If the skipped block has no labels in it, just emit the executed block.
655  // This avoids emitting dead code and simplifies the CFG substantially.
656  if (S.isConstexpr() || !ContainsLabel(Skipped)) {
657  if (CondConstant)
659  if (Executed) {
660  RunCleanupsScope ExecutedScope(*this);
661  EmitStmt(Executed);
662  }
663  return;
664  }
665  }
666 
667  // Otherwise, the condition did not fold, or we couldn't elide it. Just emit
668  // the conditional branch.
669  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
670  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
671  llvm::BasicBlock *ElseBlock = ContBlock;
672  if (S.getElse())
673  ElseBlock = createBasicBlock("if.else");
674 
675  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
676  getProfileCount(S.getThen()));
677 
678  // Emit the 'then' code.
679  EmitBlock(ThenBlock);
681  {
682  RunCleanupsScope ThenScope(*this);
683  EmitStmt(S.getThen());
684  }
685  EmitBranch(ContBlock);
686 
687  // Emit the 'else' code if present.
688  if (const Stmt *Else = S.getElse()) {
689  {
690  // There is no need to emit line number for an unconditional branch.
691  auto NL = ApplyDebugLocation::CreateEmpty(*this);
692  EmitBlock(ElseBlock);
693  }
694  {
695  RunCleanupsScope ElseScope(*this);
696  EmitStmt(Else);
697  }
698  {
699  // There is no need to emit line number for an unconditional branch.
700  auto NL = ApplyDebugLocation::CreateEmpty(*this);
701  EmitBranch(ContBlock);
702  }
703  }
704 
705  // Emit the continuation block for code after the if.
706  EmitBlock(ContBlock, true);
707 }
708 
710  ArrayRef<const Attr *> WhileAttrs) {
711  // Emit the header for the loop, which will also become
712  // the continue target.
713  JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
714  EmitBlock(LoopHeader.getBlock());
715 
716  const SourceRange &R = S.getSourceRange();
717  LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs,
718  SourceLocToDebugLoc(R.getBegin()),
719  SourceLocToDebugLoc(R.getEnd()));
720 
721  // Create an exit block for when the condition fails, which will
722  // also become the break target.
724 
725  // Store the blocks to use for break and continue.
726  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
727 
728  // C++ [stmt.while]p2:
729  // When the condition of a while statement is a declaration, the
730  // scope of the variable that is declared extends from its point
731  // of declaration (3.3.2) to the end of the while statement.
732  // [...]
733  // The object created in a condition is destroyed and created
734  // with each iteration of the loop.
735  RunCleanupsScope ConditionScope(*this);
736 
737  if (S.getConditionVariable())
739 
740  // Evaluate the conditional in the while header. C99 6.8.5.1: The
741  // evaluation of the controlling expression takes place before each
742  // execution of the loop body.
743  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
744 
745  // while(1) is common, avoid extra exit blocks. Be sure
746  // to correctly handle break/continue though.
747  bool EmitBoolCondBranch = true;
748  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
749  if (C->isOne())
750  EmitBoolCondBranch = false;
751 
752  // As long as the condition is true, go to the loop body.
753  llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
754  if (EmitBoolCondBranch) {
755  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
756  if (ConditionScope.requiresCleanups())
757  ExitBlock = createBasicBlock("while.exit");
758  Builder.CreateCondBr(
759  BoolCondVal, LoopBody, ExitBlock,
760  createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
761 
762  if (ExitBlock != LoopExit.getBlock()) {
763  EmitBlock(ExitBlock);
764  EmitBranchThroughCleanup(LoopExit);
765  }
766  }
767 
768  // Emit the loop body. We have to emit this in a cleanup scope
769  // because it might be a singleton DeclStmt.
770  {
771  RunCleanupsScope BodyScope(*this);
772  EmitBlock(LoopBody);
774  EmitStmt(S.getBody());
775  }
776 
777  BreakContinueStack.pop_back();
778 
779  // Immediately force cleanup.
780  ConditionScope.ForceCleanup();
781 
782  EmitStopPoint(&S);
783  // Branch to the loop header again.
784  EmitBranch(LoopHeader.getBlock());
785 
786  LoopStack.pop();
787 
788  // Emit the exit block.
789  EmitBlock(LoopExit.getBlock(), true);
790 
791  // The LoopHeader typically is just a branch if we skipped emitting
792  // a branch, try to erase it.
793  if (!EmitBoolCondBranch)
794  SimplifyForwardingBlocks(LoopHeader.getBlock());
795 }
796 
798  ArrayRef<const Attr *> DoAttrs) {
800  JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
801 
802  uint64_t ParentCount = getCurrentProfileCount();
803 
804  // Store the blocks to use for break and continue.
805  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
806 
807  // Emit the body of the loop.
808  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
809 
810  EmitBlockWithFallThrough(LoopBody, &S);
811  {
812  RunCleanupsScope BodyScope(*this);
813  EmitStmt(S.getBody());
814  }
815 
816  EmitBlock(LoopCond.getBlock());
817 
818  const SourceRange &R = S.getSourceRange();
819  LoopStack.push(LoopBody, CGM.getContext(), DoAttrs,
820  SourceLocToDebugLoc(R.getBegin()),
821  SourceLocToDebugLoc(R.getEnd()));
822 
823  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
824  // after each execution of the loop body."
825 
826  // Evaluate the conditional in the while header.
827  // C99 6.8.5p2/p4: The first substatement is executed if the expression
828  // compares unequal to 0. The condition must be a scalar type.
829  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
830 
831  BreakContinueStack.pop_back();
832 
833  // "do {} while (0)" is common in macros, avoid extra blocks. Be sure
834  // to correctly handle break/continue though.
835  bool EmitBoolCondBranch = true;
836  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
837  if (C->isZero())
838  EmitBoolCondBranch = false;
839 
840  // As long as the condition is true, iterate the loop.
841  if (EmitBoolCondBranch) {
842  uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
843  Builder.CreateCondBr(
844  BoolCondVal, LoopBody, LoopExit.getBlock(),
845  createProfileWeightsForLoop(S.getCond(), BackedgeCount));
846  }
847 
848  LoopStack.pop();
849 
850  // Emit the exit block.
851  EmitBlock(LoopExit.getBlock());
852 
853  // The DoCond block typically is just a branch if we skipped
854  // emitting a branch, try to erase it.
855  if (!EmitBoolCondBranch)
857 }
858 
860  ArrayRef<const Attr *> ForAttrs) {
862 
863  LexicalScope ForScope(*this, S.getSourceRange());
864 
865  // Evaluate the first part before the loop.
866  if (S.getInit())
867  EmitStmt(S.getInit());
868 
869  // Start the loop with a block that tests the condition.
870  // If there's an increment, the continue scope will be overwritten
871  // later.
872  JumpDest Continue = getJumpDestInCurrentScope("for.cond");
873  llvm::BasicBlock *CondBlock = Continue.getBlock();
874  EmitBlock(CondBlock);
875 
876  const SourceRange &R = S.getSourceRange();
877  LoopStack.push(CondBlock, CGM.getContext(), ForAttrs,
880 
881  // If the for loop doesn't have an increment we can just use the
882  // condition as the continue block. Otherwise we'll need to create
883  // a block for it (in the current scope, i.e. in the scope of the
884  // condition), and that we will become our continue block.
885  if (S.getInc())
886  Continue = getJumpDestInCurrentScope("for.inc");
887 
888  // Store the blocks to use for break and continue.
889  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
890 
891  // Create a cleanup scope for the condition variable cleanups.
892  LexicalScope ConditionScope(*this, S.getSourceRange());
893 
894  if (S.getCond()) {
895  // If the for statement has a condition scope, emit the local variable
896  // declaration.
897  if (S.getConditionVariable()) {
899  }
900 
901  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
902  // If there are any cleanups between here and the loop-exit scope,
903  // create a block to stage a loop exit along.
904  if (ForScope.requiresCleanups())
905  ExitBlock = createBasicBlock("for.cond.cleanup");
906 
907  // As long as the condition is true, iterate the loop.
908  llvm::BasicBlock *ForBody = createBasicBlock("for.body");
909 
910  // C99 6.8.5p2/p4: The first substatement is executed if the expression
911  // compares unequal to 0. The condition must be a scalar type.
912  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
913  Builder.CreateCondBr(
914  BoolCondVal, ForBody, ExitBlock,
915  createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
916 
917  if (ExitBlock != LoopExit.getBlock()) {
918  EmitBlock(ExitBlock);
919  EmitBranchThroughCleanup(LoopExit);
920  }
921 
922  EmitBlock(ForBody);
923  } else {
924  // Treat it as a non-zero constant. Don't even create a new block for the
925  // body, just fall into it.
926  }
928 
929  {
930  // Create a separate cleanup scope for the body, in case it is not
931  // a compound statement.
932  RunCleanupsScope BodyScope(*this);
933  EmitStmt(S.getBody());
934  }
935 
936  // If there is an increment, emit it next.
937  if (S.getInc()) {
938  EmitBlock(Continue.getBlock());
939  EmitStmt(S.getInc());
940  }
941 
942  BreakContinueStack.pop_back();
943 
944  ConditionScope.ForceCleanup();
945 
946  EmitStopPoint(&S);
947  EmitBranch(CondBlock);
948 
949  ForScope.ForceCleanup();
950 
951  LoopStack.pop();
952 
953  // Emit the fall-through block.
954  EmitBlock(LoopExit.getBlock(), true);
955 }
956 
957 void
959  ArrayRef<const Attr *> ForAttrs) {
961 
962  LexicalScope ForScope(*this, S.getSourceRange());
963 
964  // Evaluate the first pieces before the loop.
965  if (S.getInit())
966  EmitStmt(S.getInit());
967  EmitStmt(S.getRangeStmt());
968  EmitStmt(S.getBeginStmt());
969  EmitStmt(S.getEndStmt());
970 
971  // Start the loop with a block that tests the condition.
972  // If there's an increment, the continue scope will be overwritten
973  // later.
974  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
975  EmitBlock(CondBlock);
976 
977  const SourceRange &R = S.getSourceRange();
978  LoopStack.push(CondBlock, CGM.getContext(), ForAttrs,
981 
982  // If there are any cleanups between here and the loop-exit scope,
983  // create a block to stage a loop exit along.
984  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
985  if (ForScope.requiresCleanups())
986  ExitBlock = createBasicBlock("for.cond.cleanup");
987 
988  // The loop body, consisting of the specified body and the loop variable.
989  llvm::BasicBlock *ForBody = createBasicBlock("for.body");
990 
991  // The body is executed if the expression, contextually converted
992  // to bool, is true.
993  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
994  Builder.CreateCondBr(
995  BoolCondVal, ForBody, ExitBlock,
996  createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
997 
998  if (ExitBlock != LoopExit.getBlock()) {
999  EmitBlock(ExitBlock);
1000  EmitBranchThroughCleanup(LoopExit);
1001  }
1002 
1003  EmitBlock(ForBody);
1005 
1006  // Create a block for the increment. In case of a 'continue', we jump there.
1007  JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1008 
1009  // Store the blocks to use for break and continue.
1010  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1011 
1012  {
1013  // Create a separate cleanup scope for the loop variable and body.
1014  LexicalScope BodyScope(*this, S.getSourceRange());
1015  EmitStmt(S.getLoopVarStmt());
1016  EmitStmt(S.getBody());
1017  }
1018 
1019  EmitStopPoint(&S);
1020  // If there is an increment, emit it next.
1021  EmitBlock(Continue.getBlock());
1022  EmitStmt(S.getInc());
1023 
1024  BreakContinueStack.pop_back();
1025 
1026  EmitBranch(CondBlock);
1027 
1028  ForScope.ForceCleanup();
1029 
1030  LoopStack.pop();
1031 
1032  // Emit the fall-through block.
1033  EmitBlock(LoopExit.getBlock(), true);
1034 }
1035 
1036 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1037  if (RV.isScalar()) {
1039  } else if (RV.isAggregate()) {
1040  LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1041  LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1042  EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1043  } else {
1045  /*init*/ true);
1046  }
1048 }
1049 
1050 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1051 /// if the function returns void, or may be missing one if the function returns
1052 /// non-void. Fun stuff :).
1054  if (requiresReturnValueCheck()) {
1055  llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1056  auto *SLocPtr =
1057  new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1058  llvm::GlobalVariable::PrivateLinkage, SLoc);
1059  SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1061  assert(ReturnLocation.isValid() && "No valid return location");
1063  ReturnLocation);
1064  }
1065 
1066  // Returning from an outlined SEH helper is UB, and we already warn on it.
1067  if (IsOutlinedSEHHelper) {
1068  Builder.CreateUnreachable();
1069  Builder.ClearInsertionPoint();
1070  }
1071 
1072  // Emit the result value, even if unused, to evaluate the side effects.
1073  const Expr *RV = S.getRetValue();
1074 
1075  // Treat block literals in a return expression as if they appeared
1076  // in their own scope. This permits a small, easily-implemented
1077  // exception to our over-conservative rules about not jumping to
1078  // statements following block literals with non-trivial cleanups.
1079  RunCleanupsScope cleanupScope(*this);
1080  if (const FullExpr *fe = dyn_cast_or_null<FullExpr>(RV)) {
1081  enterFullExpression(fe);
1082  RV = fe->getSubExpr();
1083  }
1084 
1085  // FIXME: Clean this up by using an LValue for ReturnTemp,
1086  // EmitStoreThroughLValue, and EmitAnyExpr.
1087  if (getLangOpts().ElideConstructors &&
1089  // Apply the named return value optimization for this return statement,
1090  // which means doing nothing: the appropriate result has already been
1091  // constructed into the NRVO variable.
1092 
1093  // If there is an NRVO flag for this variable, set it to 1 into indicate
1094  // that the cleanup code should not destroy the variable.
1095  if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1096  Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1097  } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1098  // Make sure not to return anything, but evaluate the expression
1099  // for side effects.
1100  if (RV)
1101  EmitAnyExpr(RV);
1102  } else if (!RV) {
1103  // Do nothing (return value is left uninitialized)
1104  } else if (FnRetTy->isReferenceType()) {
1105  // If this function returns a reference, take the address of the expression
1106  // rather than the value.
1107  RValue Result = EmitReferenceBindingToExpr(RV);
1109  } else {
1110  switch (getEvaluationKind(RV->getType())) {
1111  case TEK_Scalar:
1113  break;
1114  case TEK_Complex:
1116  /*isInit*/ true);
1117  break;
1118  case TEK_Aggregate:
1125  break;
1126  }
1127  }
1128 
1129  ++NumReturnExprs;
1130  if (!RV || RV->isEvaluatable(getContext()))
1131  ++NumSimpleReturnExprs;
1132 
1133  cleanupScope.ForceCleanup();
1135 }
1136 
1138  // As long as debug info is modeled with instructions, we have to ensure we
1139  // have a place to insert here and write the stop point here.
1140  if (HaveInsertPoint())
1141  EmitStopPoint(&S);
1142 
1143  for (const auto *I : S.decls())
1144  EmitDecl(*I);
1145 }
1146 
1148  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1149 
1150  // If this code is reachable then emit a stop point (if generating
1151  // debug info). We have to do this ourselves because we are on the
1152  // "simple" statement path.
1153  if (HaveInsertPoint())
1154  EmitStopPoint(&S);
1155 
1156  EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1157 }
1158 
1160  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1161 
1162  // If this code is reachable then emit a stop point (if generating
1163  // debug info). We have to do this ourselves because we are on the
1164  // "simple" statement path.
1165  if (HaveInsertPoint())
1166  EmitStopPoint(&S);
1167 
1168  EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1169 }
1170 
1171 /// EmitCaseStmtRange - If case statement range is not too big then
1172 /// add multiple cases to switch instruction, one for each value within
1173 /// the range. If range is too big then emit "if" condition check.
1175  assert(S.getRHS() && "Expected RHS value in CaseStmt");
1176 
1179 
1180  // Emit the code for this case. We do this first to make sure it is
1181  // properly chained from our predecessor before generating the
1182  // switch machinery to enter this block.
1183  llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1184  EmitBlockWithFallThrough(CaseDest, &S);
1185  EmitStmt(S.getSubStmt());
1186 
1187  // If range is empty, do nothing.
1188  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1189  return;
1190 
1191  llvm::APInt Range = RHS - LHS;
1192  // FIXME: parameters such as this should not be hardcoded.
1193  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1194  // Range is small enough to add multiple switch instruction cases.
1195  uint64_t Total = getProfileCount(&S);
1196  unsigned NCases = Range.getZExtValue() + 1;
1197  // We only have one region counter for the entire set of cases here, so we
1198  // need to divide the weights evenly between the generated cases, ensuring
1199  // that the total weight is preserved. E.g., a weight of 5 over three cases
1200  // will be distributed as weights of 2, 2, and 1.
1201  uint64_t Weight = Total / NCases, Rem = Total % NCases;
1202  for (unsigned I = 0; I != NCases; ++I) {
1203  if (SwitchWeights)
1204  SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1205  if (Rem)
1206  Rem--;
1207  SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1208  ++LHS;
1209  }
1210  return;
1211  }
1212 
1213  // The range is too big. Emit "if" condition into a new block,
1214  // making sure to save and restore the current insertion point.
1215  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1216 
1217  // Push this test onto the chain of range checks (which terminates
1218  // in the default basic block). The switch's default will be changed
1219  // to the top of this chain after switch emission is complete.
1220  llvm::BasicBlock *FalseDest = CaseRangeBlock;
1221  CaseRangeBlock = createBasicBlock("sw.caserange");
1222 
1223  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1224  Builder.SetInsertPoint(CaseRangeBlock);
1225 
1226  // Emit range check.
1227  llvm::Value *Diff =
1228  Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1229  llvm::Value *Cond =
1230  Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1231 
1232  llvm::MDNode *Weights = nullptr;
1233  if (SwitchWeights) {
1234  uint64_t ThisCount = getProfileCount(&S);
1235  uint64_t DefaultCount = (*SwitchWeights)[0];
1236  Weights = createProfileWeights(ThisCount, DefaultCount);
1237 
1238  // Since we're chaining the switch default through each large case range, we
1239  // need to update the weight for the default, ie, the first case, to include
1240  // this case.
1241  (*SwitchWeights)[0] += ThisCount;
1242  }
1243  Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1244 
1245  // Restore the appropriate insertion point.
1246  if (RestoreBB)
1247  Builder.SetInsertPoint(RestoreBB);
1248  else
1249  Builder.ClearInsertionPoint();
1250 }
1251 
1253  // If there is no enclosing switch instance that we're aware of, then this
1254  // case statement and its block can be elided. This situation only happens
1255  // when we've constant-folded the switch, are emitting the constant case,
1256  // and part of the constant case includes another case statement. For
1257  // instance: switch (4) { case 4: do { case 5: } while (1); }
1258  if (!SwitchInsn) {
1259  EmitStmt(S.getSubStmt());
1260  return;
1261  }
1262 
1263  // Handle case ranges.
1264  if (S.getRHS()) {
1265  EmitCaseStmtRange(S);
1266  return;
1267  }
1268 
1269  llvm::ConstantInt *CaseVal =
1271 
1272  // If the body of the case is just a 'break', try to not emit an empty block.
1273  // If we're profiling or we're not optimizing, leave the block in for better
1274  // debug and coverage analysis.
1276  CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1277  isa<BreakStmt>(S.getSubStmt())) {
1278  JumpDest Block = BreakContinueStack.back().BreakBlock;
1279 
1280  // Only do this optimization if there are no cleanups that need emitting.
1281  if (isObviouslyBranchWithoutCleanups(Block)) {
1282  if (SwitchWeights)
1283  SwitchWeights->push_back(getProfileCount(&S));
1284  SwitchInsn->addCase(CaseVal, Block.getBlock());
1285 
1286  // If there was a fallthrough into this case, make sure to redirect it to
1287  // the end of the switch as well.
1288  if (Builder.GetInsertBlock()) {
1289  Builder.CreateBr(Block.getBlock());
1290  Builder.ClearInsertionPoint();
1291  }
1292  return;
1293  }
1294  }
1295 
1296  llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1297  EmitBlockWithFallThrough(CaseDest, &S);
1298  if (SwitchWeights)
1299  SwitchWeights->push_back(getProfileCount(&S));
1300  SwitchInsn->addCase(CaseVal, CaseDest);
1301 
1302  // Recursively emitting the statement is acceptable, but is not wonderful for
1303  // code where we have many case statements nested together, i.e.:
1304  // case 1:
1305  // case 2:
1306  // case 3: etc.
1307  // Handling this recursively will create a new block for each case statement
1308  // that falls through to the next case which is IR intensive. It also causes
1309  // deep recursion which can run into stack depth limitations. Handle
1310  // sequential non-range case statements specially.
1311  const CaseStmt *CurCase = &S;
1312  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1313 
1314  // Otherwise, iteratively add consecutive cases to this switch stmt.
1315  while (NextCase && NextCase->getRHS() == nullptr) {
1316  CurCase = NextCase;
1317  llvm::ConstantInt *CaseVal =
1318  Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1319 
1320  if (SwitchWeights)
1321  SwitchWeights->push_back(getProfileCount(NextCase));
1323  CaseDest = createBasicBlock("sw.bb");
1324  EmitBlockWithFallThrough(CaseDest, &S);
1325  }
1326 
1327  SwitchInsn->addCase(CaseVal, CaseDest);
1328  NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1329  }
1330 
1331  // Normal default recursion for non-cases.
1332  EmitStmt(CurCase->getSubStmt());
1333 }
1334 
1336  // If there is no enclosing switch instance that we're aware of, then this
1337  // default statement can be elided. This situation only happens when we've
1338  // constant-folded the switch.
1339  if (!SwitchInsn) {
1340  EmitStmt(S.getSubStmt());
1341  return;
1342  }
1343 
1344  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1345  assert(DefaultBlock->empty() &&
1346  "EmitDefaultStmt: Default block already defined?");
1347 
1348  EmitBlockWithFallThrough(DefaultBlock, &S);
1349 
1350  EmitStmt(S.getSubStmt());
1351 }
1352 
1353 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1354 /// constant value that is being switched on, see if we can dead code eliminate
1355 /// the body of the switch to a simple series of statements to emit. Basically,
1356 /// on a switch (5) we want to find these statements:
1357 /// case 5:
1358 /// printf(...); <--
1359 /// ++i; <--
1360 /// break;
1361 ///
1362 /// and add them to the ResultStmts vector. If it is unsafe to do this
1363 /// transformation (for example, one of the elided statements contains a label
1364 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S'
1365 /// should include statements after it (e.g. the printf() line is a substmt of
1366 /// the case) then return CSFC_FallThrough. If we handled it and found a break
1367 /// statement, then return CSFC_Success.
1368 ///
1369 /// If Case is non-null, then we are looking for the specified case, checking
1370 /// that nothing we jump over contains labels. If Case is null, then we found
1371 /// the case and are looking for the break.
1372 ///
1373 /// If the recursive walk actually finds our Case, then we set FoundCase to
1374 /// true.
1375 ///
1378  const SwitchCase *Case,
1379  bool &FoundCase,
1380  SmallVectorImpl<const Stmt*> &ResultStmts) {
1381  // If this is a null statement, just succeed.
1382  if (!S)
1383  return Case ? CSFC_Success : CSFC_FallThrough;
1384 
1385  // If this is the switchcase (case 4: or default) that we're looking for, then
1386  // we're in business. Just add the substatement.
1387  if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1388  if (S == Case) {
1389  FoundCase = true;
1390  return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1391  ResultStmts);
1392  }
1393 
1394  // Otherwise, this is some other case or default statement, just ignore it.
1395  return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1396  ResultStmts);
1397  }
1398 
1399  // If we are in the live part of the code and we found our break statement,
1400  // return a success!
1401  if (!Case && isa<BreakStmt>(S))
1402  return CSFC_Success;
1403 
1404  // If this is a switch statement, then it might contain the SwitchCase, the
1405  // break, or neither.
1406  if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1407  // Handle this as two cases: we might be looking for the SwitchCase (if so
1408  // the skipped statements must be skippable) or we might already have it.
1409  CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1410  bool StartedInLiveCode = FoundCase;
1411  unsigned StartSize = ResultStmts.size();
1412 
1413  // If we've not found the case yet, scan through looking for it.
1414  if (Case) {
1415  // Keep track of whether we see a skipped declaration. The code could be
1416  // using the declaration even if it is skipped, so we can't optimize out
1417  // the decl if the kept statements might refer to it.
1418  bool HadSkippedDecl = false;
1419 
1420  // If we're looking for the case, just see if we can skip each of the
1421  // substatements.
1422  for (; Case && I != E; ++I) {
1423  HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1424 
1425  switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1426  case CSFC_Failure: return CSFC_Failure;
1427  case CSFC_Success:
1428  // A successful result means that either 1) that the statement doesn't
1429  // have the case and is skippable, or 2) does contain the case value
1430  // and also contains the break to exit the switch. In the later case,
1431  // we just verify the rest of the statements are elidable.
1432  if (FoundCase) {
1433  // If we found the case and skipped declarations, we can't do the
1434  // optimization.
1435  if (HadSkippedDecl)
1436  return CSFC_Failure;
1437 
1438  for (++I; I != E; ++I)
1439  if (CodeGenFunction::ContainsLabel(*I, true))
1440  return CSFC_Failure;
1441  return CSFC_Success;
1442  }
1443  break;
1444  case CSFC_FallThrough:
1445  // If we have a fallthrough condition, then we must have found the
1446  // case started to include statements. Consider the rest of the
1447  // statements in the compound statement as candidates for inclusion.
1448  assert(FoundCase && "Didn't find case but returned fallthrough?");
1449  // We recursively found Case, so we're not looking for it anymore.
1450  Case = nullptr;
1451 
1452  // If we found the case and skipped declarations, we can't do the
1453  // optimization.
1454  if (HadSkippedDecl)
1455  return CSFC_Failure;
1456  break;
1457  }
1458  }
1459 
1460  if (!FoundCase)
1461  return CSFC_Success;
1462 
1463  assert(!HadSkippedDecl && "fallthrough after skipping decl");
1464  }
1465 
1466  // If we have statements in our range, then we know that the statements are
1467  // live and need to be added to the set of statements we're tracking.
1468  bool AnyDecls = false;
1469  for (; I != E; ++I) {
1470  AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1471 
1472  switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1473  case CSFC_Failure: return CSFC_Failure;
1474  case CSFC_FallThrough:
1475  // A fallthrough result means that the statement was simple and just
1476  // included in ResultStmt, keep adding them afterwards.
1477  break;
1478  case CSFC_Success:
1479  // A successful result means that we found the break statement and
1480  // stopped statement inclusion. We just ensure that any leftover stmts
1481  // are skippable and return success ourselves.
1482  for (++I; I != E; ++I)
1483  if (CodeGenFunction::ContainsLabel(*I, true))
1484  return CSFC_Failure;
1485  return CSFC_Success;
1486  }
1487  }
1488 
1489  // If we're about to fall out of a scope without hitting a 'break;', we
1490  // can't perform the optimization if there were any decls in that scope
1491  // (we'd lose their end-of-lifetime).
1492  if (AnyDecls) {
1493  // If the entire compound statement was live, there's one more thing we
1494  // can try before giving up: emit the whole thing as a single statement.
1495  // We can do that unless the statement contains a 'break;'.
1496  // FIXME: Such a break must be at the end of a construct within this one.
1497  // We could emit this by just ignoring the BreakStmts entirely.
1498  if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1499  ResultStmts.resize(StartSize);
1500  ResultStmts.push_back(S);
1501  } else {
1502  return CSFC_Failure;
1503  }
1504  }
1505 
1506  return CSFC_FallThrough;
1507  }
1508 
1509  // Okay, this is some other statement that we don't handle explicitly, like a
1510  // for statement or increment etc. If we are skipping over this statement,
1511  // just verify it doesn't have labels, which would make it invalid to elide.
1512  if (Case) {
1513  if (CodeGenFunction::ContainsLabel(S, true))
1514  return CSFC_Failure;
1515  return CSFC_Success;
1516  }
1517 
1518  // Otherwise, we want to include this statement. Everything is cool with that
1519  // so long as it doesn't contain a break out of the switch we're in.
1521 
1522  // Otherwise, everything is great. Include the statement and tell the caller
1523  // that we fall through and include the next statement as well.
1524  ResultStmts.push_back(S);
1525  return CSFC_FallThrough;
1526 }
1527 
1528 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1529 /// then invoke CollectStatementsForCase to find the list of statements to emit
1530 /// for a switch on constant. See the comment above CollectStatementsForCase
1531 /// for more details.
1533  const llvm::APSInt &ConstantCondValue,
1534  SmallVectorImpl<const Stmt*> &ResultStmts,
1535  ASTContext &C,
1536  const SwitchCase *&ResultCase) {
1537  // First step, find the switch case that is being branched to. We can do this
1538  // efficiently by scanning the SwitchCase list.
1539  const SwitchCase *Case = S.getSwitchCaseList();
1540  const DefaultStmt *DefaultCase = nullptr;
1541 
1542  for (; Case; Case = Case->getNextSwitchCase()) {
1543  // It's either a default or case. Just remember the default statement in
1544  // case we're not jumping to any numbered cases.
1545  if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1546  DefaultCase = DS;
1547  continue;
1548  }
1549 
1550  // Check to see if this case is the one we're looking for.
1551  const CaseStmt *CS = cast<CaseStmt>(Case);
1552  // Don't handle case ranges yet.
1553  if (CS->getRHS()) return false;
1554 
1555  // If we found our case, remember it as 'case'.
1556  if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1557  break;
1558  }
1559 
1560  // If we didn't find a matching case, we use a default if it exists, or we
1561  // elide the whole switch body!
1562  if (!Case) {
1563  // It is safe to elide the body of the switch if it doesn't contain labels
1564  // etc. If it is safe, return successfully with an empty ResultStmts list.
1565  if (!DefaultCase)
1566  return !CodeGenFunction::ContainsLabel(&S);
1567  Case = DefaultCase;
1568  }
1569 
1570  // Ok, we know which case is being jumped to, try to collect all the
1571  // statements that follow it. This can fail for a variety of reasons. Also,
1572  // check to see that the recursive walk actually found our case statement.
1573  // Insane cases like this can fail to find it in the recursive walk since we
1574  // don't handle every stmt kind:
1575  // switch (4) {
1576  // while (1) {
1577  // case 4: ...
1578  bool FoundCase = false;
1579  ResultCase = Case;
1580  return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1581  ResultStmts) != CSFC_Failure &&
1582  FoundCase;
1583 }
1584 
1586  // Handle nested switch statements.
1587  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1588  SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1589  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1590 
1591  // See if we can constant fold the condition of the switch and therefore only
1592  // emit the live case statement (if any) of the switch.
1593  llvm::APSInt ConstantCondValue;
1594  if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1595  SmallVector<const Stmt*, 4> CaseStmts;
1596  const SwitchCase *Case = nullptr;
1597  if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1598  getContext(), Case)) {
1599  if (Case)
1601  RunCleanupsScope ExecutedScope(*this);
1602 
1603  if (S.getInit())
1604  EmitStmt(S.getInit());
1605 
1606  // Emit the condition variable if needed inside the entire cleanup scope
1607  // used by this special case for constant folded switches.
1608  if (S.getConditionVariable())
1610 
1611  // At this point, we are no longer "within" a switch instance, so
1612  // we can temporarily enforce this to ensure that any embedded case
1613  // statements are not emitted.
1614  SwitchInsn = nullptr;
1615 
1616  // Okay, we can dead code eliminate everything except this case. Emit the
1617  // specified series of statements and we're good.
1618  for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1619  EmitStmt(CaseStmts[i]);
1621 
1622  // Now we want to restore the saved switch instance so that nested
1623  // switches continue to function properly
1624  SwitchInsn = SavedSwitchInsn;
1625 
1626  return;
1627  }
1628  }
1629 
1630  JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1631 
1632  RunCleanupsScope ConditionScope(*this);
1633 
1634  if (S.getInit())
1635  EmitStmt(S.getInit());
1636 
1637  if (S.getConditionVariable())
1639  llvm::Value *CondV = EmitScalarExpr(S.getCond());
1640 
1641  // Create basic block to hold stuff that comes after switch
1642  // statement. We also need to create a default block now so that
1643  // explicit case ranges tests can have a place to jump to on
1644  // failure.
1645  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1646  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1647  if (PGO.haveRegionCounts()) {
1648  // Walk the SwitchCase list to find how many there are.
1649  uint64_t DefaultCount = 0;
1650  unsigned NumCases = 0;
1651  for (const SwitchCase *Case = S.getSwitchCaseList();
1652  Case;
1653  Case = Case->getNextSwitchCase()) {
1654  if (isa<DefaultStmt>(Case))
1655  DefaultCount = getProfileCount(Case);
1656  NumCases += 1;
1657  }
1658  SwitchWeights = new SmallVector<uint64_t, 16>();
1659  SwitchWeights->reserve(NumCases);
1660  // The default needs to be first. We store the edge count, so we already
1661  // know the right weight.
1662  SwitchWeights->push_back(DefaultCount);
1663  }
1664  CaseRangeBlock = DefaultBlock;
1665 
1666  // Clear the insertion point to indicate we are in unreachable code.
1667  Builder.ClearInsertionPoint();
1668 
1669  // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1670  // then reuse last ContinueBlock.
1671  JumpDest OuterContinue;
1672  if (!BreakContinueStack.empty())
1673  OuterContinue = BreakContinueStack.back().ContinueBlock;
1674 
1675  BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1676 
1677  // Emit switch body.
1678  EmitStmt(S.getBody());
1679 
1680  BreakContinueStack.pop_back();
1681 
1682  // Update the default block in case explicit case range tests have
1683  // been chained on top.
1684  SwitchInsn->setDefaultDest(CaseRangeBlock);
1685 
1686  // If a default was never emitted:
1687  if (!DefaultBlock->getParent()) {
1688  // If we have cleanups, emit the default block so that there's a
1689  // place to jump through the cleanups from.
1690  if (ConditionScope.requiresCleanups()) {
1691  EmitBlock(DefaultBlock);
1692 
1693  // Otherwise, just forward the default block to the switch end.
1694  } else {
1695  DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1696  delete DefaultBlock;
1697  }
1698  }
1699 
1700  ConditionScope.ForceCleanup();
1701 
1702  // Emit continuation.
1703  EmitBlock(SwitchExit.getBlock(), true);
1705 
1706  // If the switch has a condition wrapped by __builtin_unpredictable,
1707  // create metadata that specifies that the switch is unpredictable.
1708  // Don't bother if not optimizing because that metadata would not be used.
1709  auto *Call = dyn_cast<CallExpr>(S.getCond());
1710  if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1711  auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1712  if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1713  llvm::MDBuilder MDHelper(getLLVMContext());
1714  SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1715  MDHelper.createUnpredictable());
1716  }
1717  }
1718 
1719  if (SwitchWeights) {
1720  assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1721  "switch weights do not match switch cases");
1722  // If there's only one jump destination there's no sense weighting it.
1723  if (SwitchWeights->size() > 1)
1724  SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1725  createProfileWeights(*SwitchWeights));
1726  delete SwitchWeights;
1727  }
1728  SwitchInsn = SavedSwitchInsn;
1729  SwitchWeights = SavedSwitchWeights;
1730  CaseRangeBlock = SavedCRBlock;
1731 }
1732 
1733 static std::string
1734 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1736  std::string Result;
1737 
1738  while (*Constraint) {
1739  switch (*Constraint) {
1740  default:
1741  Result += Target.convertConstraint(Constraint);
1742  break;
1743  // Ignore these
1744  case '*':
1745  case '?':
1746  case '!':
1747  case '=': // Will see this and the following in mult-alt constraints.
1748  case '+':
1749  break;
1750  case '#': // Ignore the rest of the constraint alternative.
1751  while (Constraint[1] && Constraint[1] != ',')
1752  Constraint++;
1753  break;
1754  case '&':
1755  case '%':
1756  Result += *Constraint;
1757  while (Constraint[1] && Constraint[1] == *Constraint)
1758  Constraint++;
1759  break;
1760  case ',':
1761  Result += "|";
1762  break;
1763  case 'g':
1764  Result += "imr";
1765  break;
1766  case '[': {
1767  assert(OutCons &&
1768  "Must pass output names to constraints with a symbolic name");
1769  unsigned Index;
1770  bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1771  assert(result && "Could not resolve symbolic name"); (void)result;
1772  Result += llvm::utostr(Index);
1773  break;
1774  }
1775  }
1776 
1777  Constraint++;
1778  }
1779 
1780  return Result;
1781 }
1782 
1783 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1784 /// as using a particular register add that as a constraint that will be used
1785 /// in this asm stmt.
1786 static std::string
1787 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1789  const AsmStmt &Stmt, const bool EarlyClobber) {
1790  const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1791  if (!AsmDeclRef)
1792  return Constraint;
1793  const ValueDecl &Value = *AsmDeclRef->getDecl();
1794  const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1795  if (!Variable)
1796  return Constraint;
1797  if (Variable->getStorageClass() != SC_Register)
1798  return Constraint;
1799  AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1800  if (!Attr)
1801  return Constraint;
1802  StringRef Register = Attr->getLabel();
1803  assert(Target.isValidGCCRegisterName(Register));
1804  // We're using validateOutputConstraint here because we only care if
1805  // this is a register constraint.
1806  TargetInfo::ConstraintInfo Info(Constraint, "");
1807  if (Target.validateOutputConstraint(Info) &&
1808  !Info.allowsRegister()) {
1809  CGM.ErrorUnsupported(&Stmt, "__asm__");
1810  return Constraint;
1811  }
1812  // Canonicalize the register here before returning it.
1813  Register = Target.getNormalizedGCCRegisterName(Register);
1814  return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1815 }
1816 
1817 llvm::Value*
1818 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1819  LValue InputValue, QualType InputType,
1820  std::string &ConstraintStr,
1821  SourceLocation Loc) {
1822  llvm::Value *Arg;
1823  if (Info.allowsRegister() || !Info.allowsMemory()) {
1825  Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1826  } else {
1827  llvm::Type *Ty = ConvertType(InputType);
1828  uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1829  if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1830  Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1831  Ty = llvm::PointerType::getUnqual(Ty);
1832 
1833  Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1834  Ty));
1835  } else {
1836  Arg = InputValue.getPointer();
1837  ConstraintStr += '*';
1838  }
1839  }
1840  } else {
1841  Arg = InputValue.getPointer();
1842  ConstraintStr += '*';
1843  }
1844 
1845  return Arg;
1846 }
1847 
1848 llvm::Value* CodeGenFunction::EmitAsmInput(
1849  const TargetInfo::ConstraintInfo &Info,
1850  const Expr *InputExpr,
1851  std::string &ConstraintStr) {
1852  // If this can't be a register or memory, i.e., has to be a constant
1853  // (immediate or symbolic), try to emit it as such.
1854  if (!Info.allowsRegister() && !Info.allowsMemory()) {
1855  if (Info.requiresImmediateConstant()) {
1856  Expr::EvalResult EVResult;
1857  InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
1858 
1859  llvm::APSInt IntResult;
1860  if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
1861  getContext()))
1862  return llvm::ConstantInt::get(getLLVMContext(), IntResult);
1863  }
1864 
1865  Expr::EvalResult Result;
1866  if (InputExpr->EvaluateAsInt(Result, getContext()))
1867  return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt());
1868  }
1869 
1870  if (Info.allowsRegister() || !Info.allowsMemory())
1872  return EmitScalarExpr(InputExpr);
1873  if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1874  return EmitScalarExpr(InputExpr);
1875  InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1876  LValue Dest = EmitLValue(InputExpr);
1877  return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1878  InputExpr->getExprLoc());
1879 }
1880 
1881 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1882 /// asm call instruction. The !srcloc MDNode contains a list of constant
1883 /// integers which are the source locations of the start of each line in the
1884 /// asm.
1885 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1886  CodeGenFunction &CGF) {
1888  // Add the location of the first line to the MDNode.
1889  Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1890  CGF.Int32Ty, Str->getBeginLoc().getRawEncoding())));
1891  StringRef StrVal = Str->getString();
1892  if (!StrVal.empty()) {
1893  const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1894  const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1895  unsigned StartToken = 0;
1896  unsigned ByteOffset = 0;
1897 
1898  // Add the location of the start of each subsequent line of the asm to the
1899  // MDNode.
1900  for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1901  if (StrVal[i] != '\n') continue;
1902  SourceLocation LineLoc = Str->getLocationOfByte(
1903  i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1904  Locs.push_back(llvm::ConstantAsMetadata::get(
1905  llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1906  }
1907  }
1908 
1909  return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1910 }
1911 
1912 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
1913  bool ReadOnly, bool ReadNone, const AsmStmt &S,
1914  const std::vector<llvm::Type *> &ResultRegTypes,
1915  CodeGenFunction &CGF,
1916  std::vector<llvm::Value *> &RegResults) {
1917  Result.addAttribute(llvm::AttributeList::FunctionIndex,
1918  llvm::Attribute::NoUnwind);
1919  // Attach readnone and readonly attributes.
1920  if (!HasSideEffect) {
1921  if (ReadNone)
1922  Result.addAttribute(llvm::AttributeList::FunctionIndex,
1923  llvm::Attribute::ReadNone);
1924  else if (ReadOnly)
1925  Result.addAttribute(llvm::AttributeList::FunctionIndex,
1926  llvm::Attribute::ReadOnly);
1927  }
1928 
1929  // Slap the source location of the inline asm into a !srcloc metadata on the
1930  // call.
1931  if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
1932  Result.setMetadata("srcloc",
1933  getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
1934  else {
1935  // At least put the line number on MS inline asm blobs.
1936  llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty,
1937  S.getAsmLoc().getRawEncoding());
1938  Result.setMetadata("srcloc",
1939  llvm::MDNode::get(CGF.getLLVMContext(),
1940  llvm::ConstantAsMetadata::get(Loc)));
1941  }
1942 
1944  // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
1945  // convergent (meaning, they may call an intrinsically convergent op, such
1946  // as bar.sync, and so can't have certain optimizations applied around
1947  // them).
1948  Result.addAttribute(llvm::AttributeList::FunctionIndex,
1949  llvm::Attribute::Convergent);
1950  // Extract all of the register value results from the asm.
1951  if (ResultRegTypes.size() == 1) {
1952  RegResults.push_back(&Result);
1953  } else {
1954  for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1955  llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
1956  RegResults.push_back(Tmp);
1957  }
1958  }
1959 }
1960 
1962  // Assemble the final asm string.
1963  std::string AsmString = S.generateAsmString(getContext());
1964 
1965  // Get all the output and input constraints together.
1966  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1967  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1968 
1969  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1970  StringRef Name;
1971  if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1972  Name = GAS->getOutputName(i);
1974  bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1975  assert(IsValid && "Failed to parse output constraint");
1976  OutputConstraintInfos.push_back(Info);
1977  }
1978 
1979  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1980  StringRef Name;
1981  if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1982  Name = GAS->getInputName(i);
1984  bool IsValid =
1985  getTarget().validateInputConstraint(OutputConstraintInfos, Info);
1986  assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1987  InputConstraintInfos.push_back(Info);
1988  }
1989 
1990  std::string Constraints;
1991 
1992  std::vector<LValue> ResultRegDests;
1993  std::vector<QualType> ResultRegQualTys;
1994  std::vector<llvm::Type *> ResultRegTypes;
1995  std::vector<llvm::Type *> ResultTruncRegTypes;
1996  std::vector<llvm::Type *> ArgTypes;
1997  std::vector<llvm::Value*> Args;
1998  llvm::BitVector ResultTypeRequiresCast;
1999 
2000  // Keep track of inout constraints.
2001  std::string InOutConstraints;
2002  std::vector<llvm::Value*> InOutArgs;
2003  std::vector<llvm::Type*> InOutArgTypes;
2004 
2005  // Keep track of out constraints for tied input operand.
2006  std::vector<std::string> OutputConstraints;
2007 
2008  // An inline asm can be marked readonly if it meets the following conditions:
2009  // - it doesn't have any sideeffects
2010  // - it doesn't clobber memory
2011  // - it doesn't return a value by-reference
2012  // It can be marked readnone if it doesn't have any input memory constraints
2013  // in addition to meeting the conditions listed above.
2014  bool ReadOnly = true, ReadNone = true;
2015 
2016  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2017  TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2018 
2019  // Simplify the output constraint.
2020  std::string OutputConstraint(S.getOutputConstraint(i));
2021  OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2022  getTarget(), &OutputConstraintInfos);
2023 
2024  const Expr *OutExpr = S.getOutputExpr(i);
2025  OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2026 
2027  OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2028  getTarget(), CGM, S,
2029  Info.earlyClobber());
2030  OutputConstraints.push_back(OutputConstraint);
2031  LValue Dest = EmitLValue(OutExpr);
2032  if (!Constraints.empty())
2033  Constraints += ',';
2034 
2035  // If this is a register output, then make the inline asm return it
2036  // by-value. If this is a memory result, return the value by-reference.
2037  bool isScalarizableAggregate =
2038  hasAggregateEvaluationKind(OutExpr->getType());
2039  if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) ||
2040  isScalarizableAggregate)) {
2041  Constraints += "=" + OutputConstraint;
2042  ResultRegQualTys.push_back(OutExpr->getType());
2043  ResultRegDests.push_back(Dest);
2044  ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
2045  if (Info.allowsRegister() && isScalarizableAggregate) {
2046  ResultTypeRequiresCast.push_back(true);
2047  unsigned Size = getContext().getTypeSize(OutExpr->getType());
2048  llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size);
2049  ResultRegTypes.push_back(ConvTy);
2050  } else {
2051  ResultTypeRequiresCast.push_back(false);
2052  ResultRegTypes.push_back(ResultTruncRegTypes.back());
2053  }
2054  // If this output is tied to an input, and if the input is larger, then
2055  // we need to set the actual result type of the inline asm node to be the
2056  // same as the input type.
2057  if (Info.hasMatchingInput()) {
2058  unsigned InputNo;
2059  for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2060  TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2061  if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2062  break;
2063  }
2064  assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2065 
2066  QualType InputTy = S.getInputExpr(InputNo)->getType();
2067  QualType OutputType = OutExpr->getType();
2068 
2069  uint64_t InputSize = getContext().getTypeSize(InputTy);
2070  if (getContext().getTypeSize(OutputType) < InputSize) {
2071  // Form the asm to return the value as a larger integer or fp type.
2072  ResultRegTypes.back() = ConvertType(InputTy);
2073  }
2074  }
2075  if (llvm::Type* AdjTy =
2076  getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2077  ResultRegTypes.back()))
2078  ResultRegTypes.back() = AdjTy;
2079  else {
2080  CGM.getDiags().Report(S.getAsmLoc(),
2081  diag::err_asm_invalid_type_in_input)
2082  << OutExpr->getType() << OutputConstraint;
2083  }
2084 
2085  // Update largest vector width for any vector types.
2086  if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2087  LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
2088  VT->getPrimitiveSizeInBits().getFixedSize());
2089  } else {
2090  ArgTypes.push_back(Dest.getAddress().getType());
2091  Args.push_back(Dest.getPointer());
2092  Constraints += "=*";
2093  Constraints += OutputConstraint;
2094  ReadOnly = ReadNone = false;
2095  }
2096 
2097  if (Info.isReadWrite()) {
2098  InOutConstraints += ',';
2099 
2100  const Expr *InputExpr = S.getOutputExpr(i);
2101  llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
2102  InOutConstraints,
2103  InputExpr->getExprLoc());
2104 
2105  if (llvm::Type* AdjTy =
2106  getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2107  Arg->getType()))
2108  Arg = Builder.CreateBitCast(Arg, AdjTy);
2109 
2110  // Update largest vector width for any vector types.
2111  if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2112  LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
2113  VT->getPrimitiveSizeInBits().getFixedSize());
2114  if (Info.allowsRegister())
2115  InOutConstraints += llvm::utostr(i);
2116  else
2117  InOutConstraints += OutputConstraint;
2118 
2119  InOutArgTypes.push_back(Arg->getType());
2120  InOutArgs.push_back(Arg);
2121  }
2122  }
2123 
2124  // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2125  // to the return value slot. Only do this when returning in registers.
2126  if (isa<MSAsmStmt>(&S)) {
2127  const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2128  if (RetAI.isDirect() || RetAI.isExtend()) {
2129  // Make a fake lvalue for the return value slot.
2130  LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2132  *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2133  ResultRegDests, AsmString, S.getNumOutputs());
2134  SawAsmBlock = true;
2135  }
2136  }
2137 
2138  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2139  const Expr *InputExpr = S.getInputExpr(i);
2140 
2141  TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2142 
2143  if (Info.allowsMemory())
2144  ReadNone = false;
2145 
2146  if (!Constraints.empty())
2147  Constraints += ',';
2148 
2149  // Simplify the input constraint.
2150  std::string InputConstraint(S.getInputConstraint(i));
2151  InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2152  &OutputConstraintInfos);
2153 
2154  InputConstraint = AddVariableConstraints(
2155  InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2156  getTarget(), CGM, S, false /* No EarlyClobber */);
2157 
2158  std::string ReplaceConstraint (InputConstraint);
2159  llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2160 
2161  // If this input argument is tied to a larger output result, extend the
2162  // input to be the same size as the output. The LLVM backend wants to see
2163  // the input and output of a matching constraint be the same size. Note
2164  // that GCC does not define what the top bits are here. We use zext because
2165  // that is usually cheaper, but LLVM IR should really get an anyext someday.
2166  if (Info.hasTiedOperand()) {
2167  unsigned Output = Info.getTiedOperand();
2168  QualType OutputType = S.getOutputExpr(Output)->getType();
2169  QualType InputTy = InputExpr->getType();
2170 
2171  if (getContext().getTypeSize(OutputType) >
2172  getContext().getTypeSize(InputTy)) {
2173  // Use ptrtoint as appropriate so that we can do our extension.
2174  if (isa<llvm::PointerType>(Arg->getType()))
2175  Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2176  llvm::Type *OutputTy = ConvertType(OutputType);
2177  if (isa<llvm::IntegerType>(OutputTy))
2178  Arg = Builder.CreateZExt(Arg, OutputTy);
2179  else if (isa<llvm::PointerType>(OutputTy))
2180  Arg = Builder.CreateZExt(Arg, IntPtrTy);
2181  else {
2182  assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2183  Arg = Builder.CreateFPExt(Arg, OutputTy);
2184  }
2185  }
2186  // Deal with the tied operands' constraint code in adjustInlineAsmType.
2187  ReplaceConstraint = OutputConstraints[Output];
2188  }
2189  if (llvm::Type* AdjTy =
2190  getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2191  Arg->getType()))
2192  Arg = Builder.CreateBitCast(Arg, AdjTy);
2193  else
2194  CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2195  << InputExpr->getType() << InputConstraint;
2196 
2197  // Update largest vector width for any vector types.
2198  if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2199  LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
2200  VT->getPrimitiveSizeInBits().getFixedSize());
2201 
2202  ArgTypes.push_back(Arg->getType());
2203  Args.push_back(Arg);
2204  Constraints += InputConstraint;
2205  }
2206 
2207  // Append the "input" part of inout constraints last.
2208  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2209  ArgTypes.push_back(InOutArgTypes[i]);
2210  Args.push_back(InOutArgs[i]);
2211  }
2212  Constraints += InOutConstraints;
2213 
2214  // Labels
2216  llvm::BasicBlock *Fallthrough = nullptr;
2217  bool IsGCCAsmGoto = false;
2218  if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) {
2219  IsGCCAsmGoto = GS->isAsmGoto();
2220  if (IsGCCAsmGoto) {
2221  for (auto *E : GS->labels()) {
2222  JumpDest Dest = getJumpDestForLabel(E->getLabel());
2223  Transfer.push_back(Dest.getBlock());
2224  llvm::BlockAddress *BA =
2225  llvm::BlockAddress::get(CurFn, Dest.getBlock());
2226  Args.push_back(BA);
2227  ArgTypes.push_back(BA->getType());
2228  if (!Constraints.empty())
2229  Constraints += ',';
2230  Constraints += 'X';
2231  }
2232  StringRef Name = "asm.fallthrough";
2233  Fallthrough = createBasicBlock(Name);
2234  }
2235  }
2236 
2237  // Clobbers
2238  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2239  StringRef Clobber = S.getClobber(i);
2240 
2241  if (Clobber == "memory")
2242  ReadOnly = ReadNone = false;
2243  else if (Clobber != "cc")
2244  Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2245 
2246  if (!Constraints.empty())
2247  Constraints += ',';
2248 
2249  Constraints += "~{";
2250  Constraints += Clobber;
2251  Constraints += '}';
2252  }
2253 
2254  // Add machine specific clobbers
2255  std::string MachineClobbers = getTarget().getClobbers();
2256  if (!MachineClobbers.empty()) {
2257  if (!Constraints.empty())
2258  Constraints += ',';
2259  Constraints += MachineClobbers;
2260  }
2261 
2262  llvm::Type *ResultType;
2263  if (ResultRegTypes.empty())
2264  ResultType = VoidTy;
2265  else if (ResultRegTypes.size() == 1)
2266  ResultType = ResultRegTypes[0];
2267  else
2268  ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2269 
2270  llvm::FunctionType *FTy =
2271  llvm::FunctionType::get(ResultType, ArgTypes, false);
2272 
2273  bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2274  llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2275  llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2276  llvm::InlineAsm *IA =
2277  llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2278  /* IsAlignStack */ false, AsmDialect);
2279  std::vector<llvm::Value*> RegResults;
2280  if (IsGCCAsmGoto) {
2281  llvm::CallBrInst *Result =
2282  Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2283  UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2284  ReadNone, S, ResultRegTypes, *this, RegResults);
2285  EmitBlock(Fallthrough);
2286  } else {
2287  llvm::CallInst *Result =
2288  Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2289  UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2290  ReadNone, S, ResultRegTypes, *this, RegResults);
2291  }
2292 
2293  assert(RegResults.size() == ResultRegTypes.size());
2294  assert(RegResults.size() == ResultTruncRegTypes.size());
2295  assert(RegResults.size() == ResultRegDests.size());
2296  // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2297  // in which case its size may grow.
2298  assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2299  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2300  llvm::Value *Tmp = RegResults[i];
2301 
2302  // If the result type of the LLVM IR asm doesn't match the result type of
2303  // the expression, do the conversion.
2304  if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2305  llvm::Type *TruncTy = ResultTruncRegTypes[i];
2306 
2307  // Truncate the integer result to the right size, note that TruncTy can be
2308  // a pointer.
2309  if (TruncTy->isFloatingPointTy())
2310  Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2311  else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2312  uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2313  Tmp = Builder.CreateTrunc(Tmp,
2314  llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2315  Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2316  } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2317  uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2318  Tmp = Builder.CreatePtrToInt(Tmp,
2319  llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2320  Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2321  } else if (TruncTy->isIntegerTy()) {
2322  Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2323  } else if (TruncTy->isVectorTy()) {
2324  Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2325  }
2326  }
2327 
2328  LValue Dest = ResultRegDests[i];
2329  // ResultTypeRequiresCast elements correspond to the first
2330  // ResultTypeRequiresCast.size() elements of RegResults.
2331  if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2332  unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2334  ResultRegTypes[i]->getPointerTo());
2335  QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2336  if (Ty.isNull()) {
2337  const Expr *OutExpr = S.getOutputExpr(i);
2338  CGM.Error(
2339  OutExpr->getExprLoc(),
2340  "impossible constraint in asm: can't store value into a register");
2341  return;
2342  }
2343  Dest = MakeAddrLValue(A, Ty);
2344  }
2345  EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2346  }
2347 }
2348 
2350  const RecordDecl *RD = S.getCapturedRecordDecl();
2351  QualType RecordTy = getContext().getRecordType(RD);
2352 
2353  // Initialize the captured struct.
2354  LValue SlotLV =
2355  MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2356 
2357  RecordDecl::field_iterator CurField = RD->field_begin();
2359  E = S.capture_init_end();
2360  I != E; ++I, ++CurField) {
2361  LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2362  if (CurField->hasCapturedVLAType()) {
2363  auto VAT = CurField->getCapturedVLAType();
2364  EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2365  } else {
2366  EmitInitializerForField(*CurField, LV, *I);
2367  }
2368  }
2369 
2370  return SlotLV;
2371 }
2372 
2373 /// Generate an outlined function for the body of a CapturedStmt, store any
2374 /// captured variables into the captured struct, and call the outlined function.
2375 llvm::Function *
2377  LValue CapStruct = InitCapturedStruct(S);
2378 
2379  // Emit the CapturedDecl
2380  CodeGenFunction CGF(CGM, true);
2381  CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2382  llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2383  delete CGF.CapturedStmtInfo;
2384 
2385  // Emit call to the helper function.
2386  EmitCallOrInvoke(F, CapStruct.getPointer());
2387 
2388  return F;
2389 }
2390 
2392  LValue CapStruct = InitCapturedStruct(S);
2393  return CapStruct.getAddress();
2394 }
2395 
2396 /// Creates the outlined function for a CapturedStmt.
2397 llvm::Function *
2399  assert(CapturedStmtInfo &&
2400  "CapturedStmtInfo should be set when generating the captured function");
2401  const CapturedDecl *CD = S.getCapturedDecl();
2402  const RecordDecl *RD = S.getCapturedRecordDecl();
2403  SourceLocation Loc = S.getBeginLoc();
2404  assert(CD->hasBody() && "missing CapturedDecl body");
2405 
2406  // Build the argument list.
2407  ASTContext &Ctx = CGM.getContext();
2408  FunctionArgList Args;
2409  Args.append(CD->param_begin(), CD->param_end());
2410 
2411  // Create the function declaration.
2412  const CGFunctionInfo &FuncInfo =
2413  CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2414  llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2415 
2416  llvm::Function *F =
2419  CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2420  if (CD->isNothrow())
2421  F->addFnAttr(llvm::Attribute::NoUnwind);
2422 
2423  // Generate the function.
2424  StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2425  CD->getBody()->getBeginLoc());
2426  // Set the context parameter in CapturedStmtInfo.
2427  Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2429 
2430  // Initialize variable-length arrays.
2432  Ctx.getTagDeclType(RD));
2433  for (auto *FD : RD->fields()) {
2434  if (FD->hasCapturedVLAType()) {
2435  auto *ExprArg =
2437  .getScalarVal();
2438  auto VAT = FD->getCapturedVLAType();
2439  VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2440  }
2441  }
2442 
2443  // If 'this' is captured, load it into CXXThisValue.
2446  LValue ThisLValue = EmitLValueForField(Base, FD);
2447  CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2448  }
2449 
2450  PGO.assignRegionCounters(GlobalDecl(CD), F);
2451  CapturedStmtInfo->EmitBody(*this, CD->getBody());
2453 
2454  return F;
2455 }
const CGFunctionInfo & arrangeBuiltinFunctionDeclaration(QualType resultType, const FunctionArgList &args)
A builtin function is a freestanding function using the default C conventions.
Definition: CGCall.cpp:652
bool isAggregate() const
Definition: CGValue.h:53
const llvm::DataLayout & getDataLayout() const
Expr * getInc()
Definition: Stmt.h:2427
void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S)
void EmitIndirectGotoStmt(const IndirectGotoStmt &S)
Definition: CGStmt.cpp:611
void EmitCoroutineBody(const CoroutineBodyStmt &S)
virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S)
Emit the captured statement body.
This represents a GCC inline-assembly statement extension.
Definition: Stmt.h:2862
void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S)
unsigned getNumInputs() const
Definition: Stmt.h:2774
SourceLocation getBeginLoc() const
Definition: Stmt.h:2679
unsigned getRawEncoding() const
When a SourceLocation itself cannot be used, this returns an (opaque) 32-bit integer encoding for it...
A (possibly-)qualified type.
Definition: Type.h:643
capture_init_iterator capture_init_begin()
Retrieve the first initialization argument.
Definition: Stmt.h:3534
void EmitSEHLeaveStmt(const SEHLeaveStmt &S)
llvm::Type * ConvertTypeForMem(QualType T)
void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, uint64_t TrueCount)
EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g.
const CodeGenOptions & getCodeGenOpts() const
static CSFC_Result CollectStatementsForCase(const Stmt *S, const SwitchCase *Case, bool &FoundCase, SmallVectorImpl< const Stmt *> &ResultStmts)
Definition: CGStmt.cpp:1377
void EmitGotoStmt(const GotoStmt &S)
Definition: CGStmt.cpp:600
void EmitAttributedStmt(const AttributedStmt &S)
Definition: CGStmt.cpp:596
param_iterator param_begin() const
Retrieve an iterator pointing to the first parameter decl.
Definition: Decl.h:4220
Address CreateMemTemp(QualType T, const Twine &Name="tmp", Address *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
Definition: CGExpr.cpp:139
void enterFullExpression(const FullExpr *E)
Expr * getCond()
Definition: Stmt.h:2259
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
void EmitOMPDistributeDirective(const OMPDistributeDirective &S)
void EmitCXXTryStmt(const CXXTryStmt &S)
Stmt - This represents one statement.
Definition: Stmt.h:66
IfStmt - This represents an if/then/else.
Definition: Stmt.h:1822
SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, const TargetInfo &Target, unsigned *StartToken=nullptr, unsigned *StartTokenByteOffset=nullptr) const
getLocationOfByte - Return a source location that points to the specified byte of this string literal...
Definition: Expr.cpp:1216
static stable_iterator stable_end()
Create a stable reference to the bottom of the EH stack.
Definition: EHScopeStack.h:383
bool requiresCleanups() const
Determine whether this scope requires any cleanups.
StorageClass getStorageClass() const
Returns the storage class as written in the source.
Definition: Decl.h:1034
void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S)
unsigned getNumOutputs() const
Definition: Stmt.h:2752
Defines the PrettyStackTraceEntry class, which is used to make crashes give more contextual informati...
bool isNothrow() const
Definition: Decl.cpp:4667
llvm::Value * getTypeSize(QualType Ty)
Returns calculated size of the specified type.
Represents an attribute applied to a statement.
Definition: Stmt.h:1764
void EmitOMPOrderedDirective(const OMPOrderedDirective &S)
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
Definition: CGExpr.cpp:1927
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
Address GenerateCapturedStmtArgument(const CapturedStmt &S)
Definition: CGStmt.cpp:2391
bool validateInputConstraint(MutableArrayRef< ConstraintInfo > OutputConstraints, ConstraintInfo &info) const
Definition: TargetInfo.cpp:640
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1290
const RecordDecl * getCapturedRecordDecl() const
Retrieve the record declaration for captured variables.
Definition: Stmt.h:3478
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:378
LValue EmitLValueForFieldInitialization(LValue Base, const FieldDecl *Field)
EmitLValueForFieldInitialization - Like EmitLValueForField, except that if the Field is a reference...
Definition: CGExpr.cpp:4139
bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, bool AllowLabels=false)
ConstantFoldsToSimpleInteger - If the specified expression does not fold to a constant, or if it does but contains a label, return false.
Represents a point when we exit a loop.
Definition: ProgramPoint.h:713
bool empty() const
Determines whether the exception-scopes stack is empty.
Definition: EHScopeStack.h:344
void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S)
Stmt * getSubStmt()
Definition: Stmt.h:1655
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
Represents a variable declaration or definition.
Definition: Decl.h:827
void EmitOMPCriticalDirective(const OMPCriticalDirective &S)
const VarDecl * getNRVOCandidate() const
Retrieve the variable that might be used for the named return value optimization. ...
Definition: Stmt.h:2662
uint64_t getProfileCount(const Stmt *S)
Get the profiler&#39;s count for the given statement.
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:54
static bool mightAddDeclToScope(const Stmt *S)
Determine if the given statement might introduce a declaration into the current scope, by being a (possibly-labelled) DeclStmt.
DiagnosticsEngine & getDiags() const
void EmitLabel(const LabelDecl *D)
EmitLabel - Emit the block for the given label.
Definition: CGStmt.cpp:531
Stmt * getThen()
Definition: Stmt.h:1909
void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S)
void SimplifyForwardingBlocks(llvm::BasicBlock *BB)
SimplifyForwardingBlocks - If the given basic block is only a branch to another basic block...
Definition: CGStmt.cpp:443
The collection of all-type qualifiers we support.
Definition: Type.h:137
A jump destination is an abstract label, branching to which may require a jump out through normal cle...
void EmitOMPTargetTeamsDistributeParallelForSimdDirective(const OMPTargetTeamsDistributeParallelForSimdDirective &S)
bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const
isObviouslyBranchWithoutCleanups - Return true if a branch to the specified destination obviously has...
Definition: CGCleanup.cpp:1019
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:1720
void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S)
JumpDest getJumpDestForLabel(const LabelDecl *S)
getBasicBlockForLabel - Return the LLVM basicblock that the specified label maps to.
Definition: CGStmt.cpp:520
Represents a struct/union/class.
Definition: Decl.h:3662
const TargetInfo & getTarget() const
void EmitOMPSimdDirective(const OMPSimdDirective &S)
Stmt * getBody()
Definition: Stmt.h:2363
void setScopeDepth(EHScopeStack::stable_iterator depth)
Address getAddress() const
Definition: CGValue.h:326
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
void EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S)
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:160
StringRef getNormalizedGCCRegisterName(StringRef Name, bool ReturnCanonical=false) const
Returns the "normalized" GCC register name.
Definition: TargetInfo.cpp:502
RValue EmitReferenceBindingToExpr(const Expr *E)
Emits a reference binding to the passed in expression.
Definition: CGExpr.cpp:593
FullExpr - Represents a "full-expression" node.
Definition: Expr.h:925
field_range fields() const
Definition: Decl.h:3877
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:274
Represents a member of a struct/union/class.
Definition: Decl.h:2643
ImplicitParamDecl * getContextParam() const
Retrieve the parameter containing captured variables.
Definition: Decl.h:4205
void rescopeLabels()
Change the cleanup scope of the labels in this lexical scope to match the scope of the enclosing cont...
Definition: CGStmt.cpp:569
static bool FindCaseStatementsForValue(const SwitchStmt &S, const llvm::APSInt &ConstantCondValue, SmallVectorImpl< const Stmt *> &ResultStmts, ASTContext &C, const SwitchCase *&ResultCase)
FindCaseStatementsForValue - Find the case statement being jumped to and then invoke CollectStatement...
Definition: CGStmt.cpp:1532
Stmt * getStmtExprResult()
Definition: Stmt.h:1412
bool isReferenceType() const
Definition: Type.h:6403
Stmt *const * const_body_iterator
Definition: Stmt.h:1362
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:513
void EmitForStmt(const ForStmt &S, ArrayRef< const Attr *> Attrs=None)
Definition: CGStmt.cpp:859
__DEVICE__ int max(int __a, int __b)
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:49
void EmitOMPDistributeParallelForSimdDirective(const OMPDistributeParallelForSimdDirective &S)
void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init)
Definition: CGClass.cpp:668
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition: CGExpr.cpp:194
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:2504
Stmt * getBody() const override
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: Decl.cpp:4664
static bool hasScalarEvaluationKind(QualType T)
bool hasMatchingInput() const
Return true if this output operand has a matching (tied) input operand.
Definition: TargetInfo.h:867
Expr *const * const_capture_init_iterator
Const iterator that walks over the capture initialization arguments.
Definition: Stmt.h:3521
void EmitOMPTargetTeamsDistributeSimdDirective(const OMPTargetTeamsDistributeSimdDirective &S)
ForStmt - This represents a &#39;for (init;cond;inc)&#39; stmt.
Definition: Stmt.h:2394
bool assumeFunctionsAreConvergent() const
Definition: LangOptions.h:314
APValue Val
Val - This is the value the expression can be folded to.
Definition: Expr.h:582
void pop()
End the current loop.
Definition: CGLoopInfo.cpp:766
LabelDecl * getDecl() const
Definition: Stmt.h:1737
SourceLocation getLBracLoc() const
Definition: Stmt.h:1427
void EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S)
RAII for correct setting/restoring of CapturedStmtInfo.
const Expr * getOutputExpr(unsigned i) const
Definition: Stmt.cpp:388
param_iterator param_end() const
Retrieve an iterator one past the last parameter decl.
Definition: Decl.h:4222
Stmt * getBody()
Definition: Stmt.h:2428
void EmitOMPTeamsDistributeParallelForSimdDirective(const OMPTeamsDistributeParallelForSimdDirective &S)
void EmitContinueStmt(const ContinueStmt &S)
Definition: CGStmt.cpp:1159
void EmitOMPTargetDirective(const OMPTargetDirective &S)
bool hasNormalCleanups() const
Determines whether there are any normal cleanups on the stack.
Definition: EHScopeStack.h:349
Stmt * getInit()
Definition: Stmt.h:2407
CXXForRangeStmt - This represents C++0x [stmt.ranged]&#39;s ranged for statement, represented as &#39;for (ra...
Definition: StmtCXX.h:134
bool IsOutlinedSEHHelper
True if the current function is an outlined SEH helper.
ABIArgInfo - Helper class to encapsulate information about how a specific C type should be passed to ...
void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S)
void EmitSwitchStmt(const SwitchStmt &S)
Definition: CGStmt.cpp:1585
If a crash happens while one of these objects are live, the message is printed out along with the spe...
static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, bool ReadOnly, bool ReadNone, const AsmStmt &S, const std::vector< llvm::Type *> &ResultRegTypes, CodeGenFunction &CGF, std::vector< llvm::Value *> &RegResults)
Definition: CGStmt.cpp:1912
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
field_iterator field_begin() const
Definition: Decl.cpp:4343
CaseStmt - Represent a case statement.
Definition: Stmt.h:1488
Expr * getCond()
Definition: Stmt.h:2426
void EmitOMPParallelDirective(const OMPParallelDirective &S)
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
void EmitIgnoredExpr(const Expr *E)
EmitIgnoredExpr - Emit an expression in a context which ignores the result.
Definition: CGExpr.cpp:182
void assignRegionCounters(GlobalDecl GD, llvm::Function *Fn)
Assign counters to regions and configure them for PGO of a given function.
Definition: CodeGenPGO.cpp:759
llvm::Function * EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K)
Generate an outlined function for the body of a CapturedStmt, store any captured variables into the c...
Definition: CGStmt.cpp:2376
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
void EmitDefaultStmt(const DefaultStmt &S)
Definition: CGStmt.cpp:1335
static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts=false)
ContainsLabel - Return true if the statement contains a label in it.
void EmitCaseStmtRange(const CaseStmt &S)
EmitCaseStmtRange - If case statement range is not too big then add multiple cases to switch instruct...
Definition: CGStmt.cpp:1174
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler&#39;s counter for the given statement by StepV.
uint64_t getCurrentProfileCount()
Get the profiler&#39;s current count.
Represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:4140
VarDecl * getConditionVariable() const
Retrieve the variable declared in this "for" statement, if any.
Definition: Stmt.cpp:924
Address getAggregateAddress() const
getAggregateAddr() - Return the Value* of the address of the aggregate.
Definition: CGValue.h:70
Stmt * getBody()
Definition: Stmt.h:2099
virtual bool isValidGCCRegisterName(StringRef Name) const
Returns whether the passed in string is a valid register name according to GCC.
Definition: TargetInfo.cpp:457
Stmt * getInit()
Definition: Stmt.h:1965
LValue EmitLValueForField(LValue Base, const FieldDecl *Field)
Definition: CGExpr.cpp:3985
bool isValid() const
Definition: Address.h:35
StringRef getString() const
Definition: Expr.h:1769
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1320
void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S)
const TargetCodeGenInfo & getTargetCodeGenInfo()
void EmitAnyExprToMem(const Expr *E, Address Location, Qualifiers Quals, bool IsInitializer)
EmitAnyExprToMem - Emits the code necessary to evaluate an arbitrary expression into the given memory...
Definition: CGExpr.cpp:223
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:38
AggValueSlot::Overlap_t getOverlapForReturnValue()
Determine whether a return value slot may overlap some other object.
bool isConstexpr() const
Definition: Stmt.h:1995
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
std::string generateAsmString(const ASTContext &C) const
Assemble final IR asm string.
Definition: Stmt.cpp:372
Exposes information about the current target.
Definition: TargetInfo.h:163
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
EHScopeStack::stable_iterator getScopeDepth() const
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:644
This represents one expression.
Definition: Expr.h:108
DeclStmt * getEndStmt()
Definition: StmtCXX.h:165
Emit only debug info necessary for generating line number tables (-gline-tables-only).
static Address invalid()
Definition: Address.h:34
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
void EmitCaseStmt(const CaseStmt &S)
Definition: CGStmt.cpp:1252
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
Definition: CGValue.h:65
void EmitOMPTeamsDirective(const OMPTeamsDirective &S)
#define V(N, I)
Definition: ASTContext.h:2921
Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
EmitCompoundStmt - Emit a compound statement {..} node.
Definition: CGStmt.cpp:379
LabelDecl * getConstantTarget()
getConstantTarget - Returns the fixed target of this indirect goto, if one exists.
Definition: Stmt.cpp:1065
Stmt * getBody()
Definition: Stmt.h:2271
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:43
void EmitSEHTryStmt(const SEHTryStmt &S)
Expr * getRHS()
Definition: Stmt.h:1589
static llvm::MDNode * getAsmSrcLocInfo(const StringLiteral *Str, CodeGenFunction &CGF)
getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline asm call instruction...
Definition: CGStmt.cpp:1885
llvm::LLVMContext & getLLVMContext()
SmallVector< llvm::OperandBundleDef, 1 > getBundlesForFunclet(llvm::Value *Callee)
Definition: CGCall.cpp:3681
llvm::BasicBlock * GetIndirectGotoBlock()
QualType getType() const
Definition: Expr.h:137
void EmitOMPMasterDirective(const OMPMasterDirective &S)
LabelDecl * getLabel() const
Definition: Stmt.h:2478
llvm::Function * GenerateCapturedStmtFunction(const CapturedStmt &S)
Creates the outlined function for a CapturedStmt.
Definition: CGStmt.cpp:2398
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:2620
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T)
QualType getRecordType(const RecordDecl *Decl) const
SwitchCase * getSwitchCaseList()
Definition: Stmt.h:2156
void ResolveBranchFixups(llvm::BasicBlock *Target)
Definition: CGCleanup.cpp:378
SourceLocation getEnd() const
void EmitOMPBarrierDirective(const OMPBarrierDirective &S)
StringRef getClobber(unsigned i) const
Definition: Stmt.cpp:412
Expr * getCond()
Definition: Stmt.h:1897
ValueDecl * getDecl()
Definition: Expr.h:1222
const LangOptions & getLangOpts() const
ASTContext & getContext() const
bool isNull() const
Return true if this QualType doesn&#39;t point to a type yet.
Definition: Type.h:708
llvm::StoreInst * CreateFlagStore(bool Value, llvm::Value *Addr)
Emit a store to an i1 flag variable.
Definition: CGBuilder.h:135
const SourceManager & SM
Definition: Format.cpp:1667
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:40
void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D)
Emit simple code for OpenMP directives in Simd-only mode.
DoStmt - This represents a &#39;do/while&#39; stmt.
Definition: Stmt.h:2338
AsmStmt is the base class for GCCAsmStmt and MSAsmStmt.
Definition: Stmt.h:2703
void EmitDeclStmt(const DeclStmt &S)
Definition: CGStmt.cpp:1137
virtual bool hasBody() const
Returns true if this Decl represents a declaration for a body of code, such as a function or method d...
Definition: DeclBase.h:992
The l-value was considered opaque, so the alignment was determined from a type.
void EmitOMPFlushDirective(const OMPFlushDirective &S)
bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx, bool InConstantContext=false) const
EvaluateAsRValue - Return true if this is a constant which we can fold to an rvalue using any crazy t...
bool SawAsmBlock
Whether we processed a Microsoft-style asm block during CodeGen.
Address CreateBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Definition: CGBuilder.h:141
void disableSanitizerForGlobal(llvm::GlobalVariable *GV)
StringRef getInputConstraint(unsigned i) const
getInputConstraint - Return the specified input constraint.
Definition: Stmt.cpp:396
This captures a statement into a function.
Definition: Stmt.h:3360
ActionResult - This structure is used while parsing/acting on expressions, stmts, etc...
Definition: Ownership.h:153
StringRef getOutputConstraint(unsigned i) const
getOutputConstraint - Return the constraint string for the specified output operand.
Definition: Stmt.cpp:380
Encodes a location in the source.
void EmitDoStmt(const DoStmt &S, ArrayRef< const Attr *> Attrs=None)
Definition: CGStmt.cpp:797
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go...
body_range body()
Definition: Stmt.h:1353
Expr * getRetValue()
Definition: Stmt.h:2653
void EmitOMPForDirective(const OMPForDirective &S)
llvm::APSInt APSInt
A saved depth on the scope stack.
Definition: EHScopeStack.h:106
llvm::Value * EvaluateExprAsBool(const Expr *E)
EvaluateExprAsBool - Perform the usual unary conversions on the specified expression and compare the ...
Definition: CGExpr.cpp:164
Expr * getLHS()
Definition: Stmt.h:1577
void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S)
Definition: CGObjC.cpp:1622
Stmt * getElse()
Definition: Stmt.h:1918
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:1213
Represents the declaration of a label.
Definition: Decl.h:476
An aggregate value slot.
Definition: CGValue.h:436
Expr * getCond()
Definition: Stmt.h:2087
void EmitStmt(const Stmt *S, ArrayRef< const Attr *> Attrs=None)
EmitStmt - Emit the code for the statement.
Definition: CGStmt.cpp:44
void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S)
void EmitOMPTargetParallelForSimdDirective(const OMPTargetParallelForSimdDirective &S)
bool validateOutputConstraint(ConstraintInfo &Info) const
Definition: TargetInfo.cpp:543
void EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S)
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:1861
void EmitOMPSingleDirective(const OMPSingleDirective &S)
An aligned address.
Definition: Address.h:24
llvm::APInt APInt
Definition: Integral.h:27
void StartFunction(GlobalDecl GD, QualType RetTy, llvm::Function *Fn, const CGFunctionInfo &FnInfo, const FunctionArgList &Args, SourceLocation Loc=SourceLocation(), SourceLocation StartLoc=SourceLocation())
Emit code for the start of a function.
void EmitOMPForSimdDirective(const OMPForSimdDirective &S)
void EmitOMPAtomicDirective(const OMPAtomicDirective &S)
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target)
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
void EmitOMPSectionDirective(const OMPSectionDirective &S)
void EmitOMPSectionsDirective(const OMPSectionsDirective &S)
VarDecl * getConditionVariable()
Retrieve the variable declared in this "switch" statement, if any.
Definition: Stmt.cpp:987
void Error(SourceLocation loc, StringRef error)
Emit a general error that something can&#39;t be done.
void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S)
const CGFunctionInfo * CurFnInfo
void EmitDecl(const Decl &D)
EmitDecl - Emit a declaration.
Definition: CGDecl.cpp:42
const TargetCodeGenInfo & getTargetHooks() const
void FinishFunction(SourceLocation EndLoc=SourceLocation())
FinishFunction - Complete IR generation of the current function.
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:221
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
void EmitWhileStmt(const WhileStmt &S, ArrayRef< const Attr *> Attrs=None)
Definition: CGStmt.cpp:709
FunctionArgList - Type for representing both the decl and type of parameters to a function...
Definition: CGCall.h:358
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition: CGValue.h:58
LabelStmt * getStmt() const
Definition: Decl.h:500
llvm::CallBase * EmitCallOrInvoke(llvm::FunctionCallee Callee, ArrayRef< llvm::Value *> Args, const Twine &Name="")
Emits a call or invoke instruction to the given function, depending on the current state of the EH st...
Definition: CGCall.cpp:3749
void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S)
Definition: CGObjC.cpp:1919
void ErrorUnsupported(const Stmt *S, const char *Type)
Print out an error that codegen doesn&#39;t support the specified stmt yet.
CGFunctionInfo - Class to encapsulate the information about a function definition.
This class organizes the cross-function state that is used while generating LLVM code.
void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S)
Dataflow Directional Tag Classes.
bool isVolatile() const
Definition: Stmt.h:2739
void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S)
LValue InitCapturedStruct(const CapturedStmt &S)
Definition: CGStmt.cpp:2349
VarDecl * getConditionVariable()
Retrieve the variable declared in this "while" statement, if any.
Definition: Stmt.cpp:1043
EvalResult is a struct with detailed info about an evaluated expression.
Definition: Expr.h:580
void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S)
void EmitOMPParallelForDirective(const OMPParallelForDirective &S)
ArrayRef< const Attr * > getAttrs() const
Definition: Stmt.h:1800
CSFC_Result
CollectStatementsForCase - Given the body of a &#39;switch&#39; statement and a constant value that is being ...
Definition: CGStmt.cpp:1376
void push(llvm::BasicBlock *Header, const llvm::DebugLoc &StartLoc, const llvm::DebugLoc &EndLoc)
Begin a new structured loop.
void EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S)
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:69
StmtClass getStmtClass() const
Definition: Stmt.h:1097
void EmitOMPTeamsDistributeParallelForDirective(const OMPTeamsDistributeParallelForDirective &S)
void EmitOMPCancelDirective(const OMPCancelDirective &S)
bool hasTiedOperand() const
Return true if this input operand is a matching constraint that ties it to an output operand...
Definition: TargetInfo.h:874
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:107
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.h:3552
llvm::Module & getModule() const
bool toIntegralConstant(APSInt &Result, QualType SrcTy, const ASTContext &Ctx) const
Try to convert this value to an integral constant.
Definition: APValue.cpp:713
void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S)
Definition: CGObjC.cpp:1915
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
bool hasProfileClangInstr() const
Check if Clang profile instrumenation is on.
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:2048
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type. ...
Definition: CGExprAgg.cpp:1851
void EmitCoreturnStmt(const CoreturnStmt &S)
JumpDest ReturnBlock
ReturnBlock - Unified return block.
virtual StringRef getHelperName() const
Get the name of the capture helper.
static bool hasAggregateEvaluationKind(QualType T)
SwitchStmt - This represents a &#39;switch&#39; stmt.
Definition: Stmt.h:2027
API for captured statement code generation.
static std::string SimplifyConstraint(const char *Constraint, const TargetInfo &Target, SmallVectorImpl< TargetInfo::ConstraintInfo > *OutCons=nullptr)
Definition: CGStmt.cpp:1734
void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S)
When instrumenting to collect profile data, the counts for some blocks such as switch cases need to n...
bool resolveSymbolicName(const char *&Name, ArrayRef< ConstraintInfo > OutputConstraints, unsigned &Index) const
Definition: TargetInfo.cpp:617
llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location)
Converts Location to a DebugLoc, if debug information is enabled.
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
T * getAttr() const
Definition: DeclBase.h:538
void EmitAsmStmt(const AsmStmt &S)
Definition: CGStmt.cpp:1961
static std::string AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, const TargetInfo &Target, CodeGenModule &CGM, const AsmStmt &Stmt, const bool EarlyClobber)
AddVariableConstraints - Look at AsmExpr and if it is a variable declared as using a particular regis...
Definition: CGStmt.cpp:1787
Stmt * getInit()
Definition: Stmt.h:2108
void EmitOMPParallelMasterTaskLoopDirective(const OMPParallelMasterTaskLoopDirective &S)
decl_range decls()
Definition: Stmt.h:1261
void SetInternalFunctionAttributes(GlobalDecl GD, llvm::Function *F, const CGFunctionInfo &FI)
Set the attributes on the LLVM function for the given decl and function info.
const Expr * getInputExpr(unsigned i) const
Definition: Stmt.cpp:404
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition: Linkage.h:31
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:465
void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S)
unsigned getNumClobbers() const
Definition: Stmt.h:2784
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2088
SourceManager & getSourceManager()
Definition: ASTContext.h:678
void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S)
DeclStmt * getRangeStmt()
Definition: StmtCXX.h:161
void EmitStopPoint(const Stmt *S)
EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
Definition: CGStmt.cpp:34
SourceLocation getAsmLoc() const
Definition: Stmt.h:2733
GotoStmt - This represents a direct goto.
Definition: Stmt.h:2465
Expr * getTarget()
Definition: Stmt.h:2524
const SwitchCase * getNextSwitchCase() const
Definition: Stmt.h:1463
CapturedDecl * getCapturedDecl()
Retrieve the outlined function declaration.
Definition: Stmt.cpp:1291
void setCurrentStmt(const Stmt *S)
If the execution count for the current statement is known, record that as the current count...
Definition: CodeGenPGO.h:73
Expr * getCond()
Definition: Stmt.h:2356
llvm::DenseMap< const VarDecl *, llvm::Value * > NRVOFlags
A mapping from NRVO variables to the flags used to indicate when the NRVO has been applied to this va...
bool EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects, bool InConstantContext=false) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
VarDecl * getConditionVariable()
Retrieve the variable declared in this "if" statement, if any.
Definition: Stmt.cpp:886
ActionResult< Expr * > ExprResult
Definition: Ownership.h:263
void EmitOMPTargetTeamsDistributeDirective(const OMPTargetTeamsDistributeDirective &S)
void EmitIfStmt(const IfStmt &S)
Definition: CGStmt.cpp:632
ContinueStmt - This represents a continue.
Definition: Stmt.h:2553
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block, taking care to avoid creation of branches from dummy blocks.
Definition: CGStmt.cpp:485
bool isNRVOVariable() const
Determine whether this local variable can be used with the named return value optimization (NRVO)...
Definition: Decl.h:1360
bool isVoidType() const
Definition: Type.h:6650
void EmitReturnStmt(const ReturnStmt &S)
EmitReturnStmt - Note that due to GCC extensions, this can have an operand if the function returns vo...
Definition: CGStmt.cpp:1053
llvm::Type * ConvertType(QualType T)
virtual llvm::Type * adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type *Ty) const
Corrects the low-level LLVM type for a given constraint and "usual" type.
Definition: TargetInfo.h:127
WhileStmt - This represents a &#39;while&#39; stmt.
Definition: Stmt.h:2210
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1243
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
void EmitLabelStmt(const LabelStmt &S)
Definition: CGStmt.cpp:591
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:262
RValue EmitLoadOfLValue(LValue V, SourceLocation Loc)
EmitLoadOfLValue - Given an expression that represents a value lvalue, this method emits the address ...
Definition: CGExpr.cpp:1774
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1686
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2521
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:275
virtual void addReturnRegisterOutputs(CodeGen::CodeGenFunction &CGF, CodeGen::LValue ReturnValue, std::string &Constraints, std::vector< llvm::Type *> &ResultRegTypes, std::vector< llvm::Type *> &ResultTruncRegTypes, std::vector< CodeGen::LValue > &ResultRegDests, std::string &AsmString, unsigned NumOutputs) const
Adds constraints and types for result registers.
Definition: TargetInfo.h:134
CGCapturedStmtInfo * CapturedStmtInfo
void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S)
bool isEvaluatable(const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
isEvaluatable - Call EvaluateAsRValue to see if this expression can be constant folded without side-e...
void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, AggValueSlot::Overlap_t MayOverlap, bool isVolatile=false)
EmitAggregateCopy - Emit an aggregate copy.
Definition: CGExprAgg.cpp:1914
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1146
static RValue get(llvm::Value *V)
Definition: CGValue.h:85
bool EmitSimpleStmt(const Stmt *S)
EmitSimpleStmt - Try to emit a "simple" statement which does not necessarily require an insertion poi...
Definition: CGStmt.cpp:356
BreakStmt - This represents a break.
Definition: Stmt.h:2583
void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S)
CapturedRegionKind
The different kinds of captured statement.
Definition: CapturedStmt.h:16
void EmitBranchThroughCleanup(JumpDest Dest)
EmitBranchThroughCleanup - Emit a branch from the current insert block through the normal cleanup han...
Definition: CGCleanup.cpp:1044
static ApplyDebugLocation CreateEmpty(CodeGenFunction &CGF)
Set the IRBuilder to not attach debug locations.
Definition: CGDebugInfo.h:759
llvm::Constant * EmitCheckSourceLocation(SourceLocation Loc)
Emit a description of a source location in a format suitable for passing to a runtime sanitizer handl...
Definition: CGExpr.cpp:2872
Stmt * getSubStmt()
Definition: Stmt.h:1741
void EmitCXXForRangeStmt(const CXXForRangeStmt &S, ArrayRef< const Attr *> Attrs=None)
Definition: CGStmt.cpp:958
Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
Definition: CGStmt.cpp:391
void EmitOMPDistributeParallelForDirective(const OMPDistributeParallelForDirective &S)
DeclStmt * getLoopVarStmt()
Definition: StmtCXX.h:168
A trivial tuple used to represent a source range.
void EmitObjCAtTryStmt(const ObjCAtTryStmt &S)
Definition: CGObjC.cpp:1911
LValue - This represents an lvalue references.
Definition: CGValue.h:166
SanitizerMetadata * getSanitizerMetadata()
void EmitBlockAfterUses(llvm::BasicBlock *BB)
EmitBlockAfterUses - Emit the given block somewhere hopefully near its uses, and leave the insertion ...
Definition: CGStmt.cpp:502
APSInt & getInt()
Definition: APValue.h:380
const LangOptions & getLangOpts() const
Expr * IgnoreParenNoopCasts(const ASTContext &Ctx) LLVM_READONLY
Skip past any parenthese and casts which do not change the value (including ptr->int casts of the sam...
Definition: Expr.cpp:2993
DeclStmt * getBeginStmt()
Definition: StmtCXX.h:162
void EmitBreakStmt(const BreakStmt &S)
Definition: CGStmt.cpp:1147
void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S)
Definition: CGObjC.cpp:3438
static bool containsBreak(const Stmt *S)
containsBreak - Return true if the statement contains a break out of it.
SourceLocation getBegin() const
capture_init_iterator capture_init_end()
Retrieve the iterator pointing one past the last initialization argument.
Definition: Stmt.h:3544
llvm::Value * getPointer() const
Definition: CGValue.h:322
This class handles loading and caching of source files into memory.
Stmt * getSubStmt()
Definition: Stmt.h:1804
bool haveRegionCounts() const
Whether or not we have PGO region data for the current function.
Definition: CodeGenPGO.h:50
Defines enum values for all the target-independent builtin functions.
void EmitOMPTaskDirective(const OMPTaskDirective &S)
SourceLocation getBodyRBrace() const
getBodyRBrace - Gets the right brace of the body, if a body exists.
Definition: DeclBase.cpp:896
CapturedRegionKind getCapturedRegionKind() const
Retrieve the captured region kind.
Definition: Stmt.cpp:1306
bool isScalar() const
Definition: CGValue.h:51
Attr - This represents one attribute.
Definition: Attr.h:45
SourceLocation getLocation() const
Definition: DeclBase.h:429
virtual std::string convertConstraint(const char *&Constraint) const
Definition: TargetInfo.h:974
QualType getIntTypeForBitwidth(unsigned DestWidth, unsigned Signed) const
getIntTypeForBitwidth - sets integer QualTy according to specified details: bitwidth, signed/unsigned.
void EmitOMPTargetTeamsDistributeParallelForDirective(const OMPTargetTeamsDistributeParallelForDirective &S)
static OMPLinearClause * Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef< Expr *> VL, ArrayRef< Expr *> PL, ArrayRef< Expr *> IL, Expr *Step, Expr *CalcStep, Stmt *PreInit, Expr *PostUpdate)
Creates clause with a list of variables VL and a linear step Step.
virtual const char * getClobbers() const =0
Returns a string of target-specific clobbers, in LLVM format.
Stmt * getSubStmt()
Definition: Stmt.h:1607
llvm::FunctionType * GetFunctionType(const CGFunctionInfo &Info)
GetFunctionType - Get the LLVM function type for.
Definition: CGCall.cpp:1541