clang  6.0.0svn
CGStmt.cpp
Go to the documentation of this file.
1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/Builtins.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/LoopHint.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/MDBuilder.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 //===----------------------------------------------------------------------===//
35 // Statement Emission
36 //===----------------------------------------------------------------------===//
37 
39  if (CGDebugInfo *DI = getDebugInfo()) {
40  SourceLocation Loc;
41  Loc = S->getLocStart();
42  DI->EmitLocation(Builder, Loc);
43 
44  LastStopPoint = Loc;
45  }
46 }
47 
49  assert(S && "Null statement?");
50  PGO.setCurrentStmt(S);
51 
52  // These statements have their own debug info handling.
53  if (EmitSimpleStmt(S))
54  return;
55 
56  // Check if we are generating unreachable code.
57  if (!HaveInsertPoint()) {
58  // If so, and the statement doesn't contain a label, then we do not need to
59  // generate actual code. This is safe because (1) the current point is
60  // unreachable, so we don't need to execute the code, and (2) we've already
61  // handled the statements which update internal data structures (like the
62  // local variable map) which could be used by subsequent statements.
63  if (!ContainsLabel(S)) {
64  // Verify that any decl statements were handled as simple, they may be in
65  // scope of subsequent reachable statements.
66  assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
67  return;
68  }
69 
70  // Otherwise, make a new block to hold the code.
72  }
73 
74  // Generate a stoppoint if we are emitting debug info.
75  EmitStopPoint(S);
76 
77  switch (S->getStmtClass()) {
78  case Stmt::NoStmtClass:
79  case Stmt::CXXCatchStmtClass:
80  case Stmt::SEHExceptStmtClass:
81  case Stmt::SEHFinallyStmtClass:
82  case Stmt::MSDependentExistsStmtClass:
83  llvm_unreachable("invalid statement class to emit generically");
84  case Stmt::NullStmtClass:
85  case Stmt::CompoundStmtClass:
86  case Stmt::DeclStmtClass:
87  case Stmt::LabelStmtClass:
88  case Stmt::AttributedStmtClass:
89  case Stmt::GotoStmtClass:
90  case Stmt::BreakStmtClass:
91  case Stmt::ContinueStmtClass:
92  case Stmt::DefaultStmtClass:
93  case Stmt::CaseStmtClass:
94  case Stmt::SEHLeaveStmtClass:
95  llvm_unreachable("should have emitted these statements as simple");
96 
97 #define STMT(Type, Base)
98 #define ABSTRACT_STMT(Op)
99 #define EXPR(Type, Base) \
100  case Stmt::Type##Class:
101 #include "clang/AST/StmtNodes.inc"
102  {
103  // Remember the block we came in on.
104  llvm::BasicBlock *incoming = Builder.GetInsertBlock();
105  assert(incoming && "expression emission must have an insertion point");
106 
107  EmitIgnoredExpr(cast<Expr>(S));
108 
109  llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
110  assert(outgoing && "expression emission cleared block!");
111 
112  // The expression emitters assume (reasonably!) that the insertion
113  // point is always set. To maintain that, the call-emission code
114  // for noreturn functions has to enter a new block with no
115  // predecessors. We want to kill that block and mark the current
116  // insertion point unreachable in the common case of a call like
117  // "exit();". Since expression emission doesn't otherwise create
118  // blocks with no predecessors, we can just test for that.
119  // However, we must be careful not to do this to our incoming
120  // block, because *statement* emission does sometimes create
121  // reachable blocks which will have no predecessors until later in
122  // the function. This occurs with, e.g., labels that are not
123  // reachable by fallthrough.
124  if (incoming != outgoing && outgoing->use_empty()) {
125  outgoing->eraseFromParent();
126  Builder.ClearInsertionPoint();
127  }
128  break;
129  }
130 
131  case Stmt::IndirectGotoStmtClass:
132  EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
133 
134  case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break;
135  case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
136  case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break;
137  case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break;
138 
139  case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break;
140 
141  case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break;
142  case Stmt::GCCAsmStmtClass: // Intentional fall-through.
143  case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break;
144  case Stmt::CoroutineBodyStmtClass:
145  EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
146  break;
147  case Stmt::CoreturnStmtClass:
148  EmitCoreturnStmt(cast<CoreturnStmt>(*S));
149  break;
150  case Stmt::CapturedStmtClass: {
151  const CapturedStmt *CS = cast<CapturedStmt>(S);
153  }
154  break;
155  case Stmt::ObjCAtTryStmtClass:
156  EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
157  break;
158  case Stmt::ObjCAtCatchStmtClass:
159  llvm_unreachable(
160  "@catch statements should be handled by EmitObjCAtTryStmt");
161  case Stmt::ObjCAtFinallyStmtClass:
162  llvm_unreachable(
163  "@finally statements should be handled by EmitObjCAtTryStmt");
164  case Stmt::ObjCAtThrowStmtClass:
165  EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
166  break;
167  case Stmt::ObjCAtSynchronizedStmtClass:
168  EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
169  break;
170  case Stmt::ObjCForCollectionStmtClass:
171  EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
172  break;
173  case Stmt::ObjCAutoreleasePoolStmtClass:
174  EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
175  break;
176 
177  case Stmt::CXXTryStmtClass:
178  EmitCXXTryStmt(cast<CXXTryStmt>(*S));
179  break;
180  case Stmt::CXXForRangeStmtClass:
181  EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
182  break;
183  case Stmt::SEHTryStmtClass:
184  EmitSEHTryStmt(cast<SEHTryStmt>(*S));
185  break;
186  case Stmt::OMPParallelDirectiveClass:
187  EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
188  break;
189  case Stmt::OMPSimdDirectiveClass:
190  EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
191  break;
192  case Stmt::OMPForDirectiveClass:
193  EmitOMPForDirective(cast<OMPForDirective>(*S));
194  break;
195  case Stmt::OMPForSimdDirectiveClass:
196  EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
197  break;
198  case Stmt::OMPSectionsDirectiveClass:
199  EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
200  break;
201  case Stmt::OMPSectionDirectiveClass:
202  EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
203  break;
204  case Stmt::OMPSingleDirectiveClass:
205  EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
206  break;
207  case Stmt::OMPMasterDirectiveClass:
208  EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
209  break;
210  case Stmt::OMPCriticalDirectiveClass:
211  EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
212  break;
213  case Stmt::OMPParallelForDirectiveClass:
214  EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
215  break;
216  case Stmt::OMPParallelForSimdDirectiveClass:
217  EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
218  break;
219  case Stmt::OMPParallelSectionsDirectiveClass:
220  EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
221  break;
222  case Stmt::OMPTaskDirectiveClass:
223  EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
224  break;
225  case Stmt::OMPTaskyieldDirectiveClass:
226  EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
227  break;
228  case Stmt::OMPBarrierDirectiveClass:
229  EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
230  break;
231  case Stmt::OMPTaskwaitDirectiveClass:
232  EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
233  break;
234  case Stmt::OMPTaskgroupDirectiveClass:
235  EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
236  break;
237  case Stmt::OMPFlushDirectiveClass:
238  EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
239  break;
240  case Stmt::OMPOrderedDirectiveClass:
241  EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
242  break;
243  case Stmt::OMPAtomicDirectiveClass:
244  EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
245  break;
246  case Stmt::OMPTargetDirectiveClass:
247  EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
248  break;
249  case Stmt::OMPTeamsDirectiveClass:
250  EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
251  break;
252  case Stmt::OMPCancellationPointDirectiveClass:
253  EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
254  break;
255  case Stmt::OMPCancelDirectiveClass:
256  EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
257  break;
258  case Stmt::OMPTargetDataDirectiveClass:
259  EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
260  break;
261  case Stmt::OMPTargetEnterDataDirectiveClass:
262  EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
263  break;
264  case Stmt::OMPTargetExitDataDirectiveClass:
265  EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
266  break;
267  case Stmt::OMPTargetParallelDirectiveClass:
268  EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
269  break;
270  case Stmt::OMPTargetParallelForDirectiveClass:
271  EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
272  break;
273  case Stmt::OMPTaskLoopDirectiveClass:
274  EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
275  break;
276  case Stmt::OMPTaskLoopSimdDirectiveClass:
277  EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
278  break;
279  case Stmt::OMPDistributeDirectiveClass:
280  EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
281  break;
282  case Stmt::OMPTargetUpdateDirectiveClass:
283  EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
284  break;
285  case Stmt::OMPDistributeParallelForDirectiveClass:
287  cast<OMPDistributeParallelForDirective>(*S));
288  break;
289  case Stmt::OMPDistributeParallelForSimdDirectiveClass:
291  cast<OMPDistributeParallelForSimdDirective>(*S));
292  break;
293  case Stmt::OMPDistributeSimdDirectiveClass:
294  EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
295  break;
296  case Stmt::OMPTargetParallelForSimdDirectiveClass:
298  cast<OMPTargetParallelForSimdDirective>(*S));
299  break;
300  case Stmt::OMPTargetSimdDirectiveClass:
301  EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
302  break;
303  case Stmt::OMPTeamsDistributeDirectiveClass:
304  EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
305  break;
306  case Stmt::OMPTeamsDistributeSimdDirectiveClass:
308  cast<OMPTeamsDistributeSimdDirective>(*S));
309  break;
310  case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
312  cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
313  break;
314  case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
316  cast<OMPTeamsDistributeParallelForDirective>(*S));
317  break;
318  case Stmt::OMPTargetTeamsDirectiveClass:
319  EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
320  break;
321  case Stmt::OMPTargetTeamsDistributeDirectiveClass:
323  cast<OMPTargetTeamsDistributeDirective>(*S));
324  break;
325  case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
327  cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
328  break;
329  case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
331  cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
332  break;
333  case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
335  cast<OMPTargetTeamsDistributeSimdDirective>(*S));
336  break;
337  }
338 }
339 
341  switch (S->getStmtClass()) {
342  default: return false;
343  case Stmt::NullStmtClass: break;
344  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
345  case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break;
346  case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break;
347  case Stmt::AttributedStmtClass:
348  EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
349  case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break;
350  case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break;
351  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
352  case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break;
353  case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break;
354  case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
355  }
356 
357  return true;
358 }
359 
360 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true,
361 /// this captures the expression result of the last sub-statement and returns it
362 /// (for use by the statement expression extension).
364  AggValueSlot AggSlot) {
365  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
366  "LLVM IR generation of compound statement ('{}')");
367 
368  // Keep track of the current cleanup stack depth, including debug scopes.
369  LexicalScope Scope(*this, S.getSourceRange());
370 
371  return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
372 }
373 
374 Address
376  bool GetLast,
377  AggValueSlot AggSlot) {
378 
380  E = S.body_end()-GetLast; I != E; ++I)
381  EmitStmt(*I);
382 
383  Address RetAlloca = Address::invalid();
384  if (GetLast) {
385  // We have to special case labels here. They are statements, but when put
386  // at the end of a statement expression, they yield the value of their
387  // subexpression. Handle this by walking through all labels we encounter,
388  // emitting them before we evaluate the subexpr.
389  const Stmt *LastStmt = S.body_back();
390  while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
391  EmitLabel(LS->getDecl());
392  LastStmt = LS->getSubStmt();
393  }
394 
396 
397  QualType ExprTy = cast<Expr>(LastStmt)->getType();
398  if (hasAggregateEvaluationKind(ExprTy)) {
399  EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
400  } else {
401  // We can't return an RValue here because there might be cleanups at
402  // the end of the StmtExpr. Because of that, we have to emit the result
403  // here into a temporary alloca.
404  RetAlloca = CreateMemTemp(ExprTy);
405  EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
406  /*IsInit*/false);
407  }
408 
409  }
410 
411  return RetAlloca;
412 }
413 
414 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
415  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
416 
417  // If there is a cleanup stack, then we it isn't worth trying to
418  // simplify this block (we would need to remove it from the scope map
419  // and cleanup entry).
420  if (!EHStack.empty())
421  return;
422 
423  // Can only simplify direct branches.
424  if (!BI || !BI->isUnconditional())
425  return;
426 
427  // Can only simplify empty blocks.
428  if (BI->getIterator() != BB->begin())
429  return;
430 
431  BB->replaceAllUsesWith(BI->getSuccessor(0));
432  BI->eraseFromParent();
433  BB->eraseFromParent();
434 }
435 
436 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
437  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
438 
439  // Fall out of the current block (if necessary).
440  EmitBranch(BB);
441 
442  if (IsFinished && BB->use_empty()) {
443  delete BB;
444  return;
445  }
446 
447  // Place the block after the current block, if possible, or else at
448  // the end of the function.
449  if (CurBB && CurBB->getParent())
450  CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
451  else
452  CurFn->getBasicBlockList().push_back(BB);
453  Builder.SetInsertPoint(BB);
454 }
455 
456 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
457  // Emit a branch from the current block to the target one if this
458  // was a real block. If this was just a fall-through block after a
459  // terminator, don't emit it.
460  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
461 
462  if (!CurBB || CurBB->getTerminator()) {
463  // If there is no insert point or the previous block is already
464  // terminated, don't touch it.
465  } else {
466  // Otherwise, create a fall-through branch.
467  Builder.CreateBr(Target);
468  }
469 
470  Builder.ClearInsertionPoint();
471 }
472 
473 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
474  bool inserted = false;
475  for (llvm::User *u : block->users()) {
476  if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
477  CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
478  block);
479  inserted = true;
480  break;
481  }
482  }
483 
484  if (!inserted)
485  CurFn->getBasicBlockList().push_back(block);
486 
487  Builder.SetInsertPoint(block);
488 }
489 
492  JumpDest &Dest = LabelMap[D];
493  if (Dest.isValid()) return Dest;
494 
495  // Create, but don't insert, the new block.
496  Dest = JumpDest(createBasicBlock(D->getName()),
499  return Dest;
500 }
501 
503  // Add this label to the current lexical scope if we're within any
504  // normal cleanups. Jumps "in" to this label --- when permitted by
505  // the language --- may need to be routed around such cleanups.
506  if (EHStack.hasNormalCleanups() && CurLexicalScope)
507  CurLexicalScope->addLabel(D);
508 
509  JumpDest &Dest = LabelMap[D];
510 
511  // If we didn't need a forward reference to this label, just go
512  // ahead and create a destination at the current scope.
513  if (!Dest.isValid()) {
514  Dest = getJumpDestInCurrentScope(D->getName());
515 
516  // Otherwise, we need to give this label a target depth and remove
517  // it from the branch-fixups list.
518  } else {
519  assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
522  }
523 
524  EmitBlock(Dest.getBlock());
526 }
527 
528 /// Change the cleanup scope of the labels in this lexical scope to
529 /// match the scope of the enclosing context.
531  assert(!Labels.empty());
532  EHScopeStack::stable_iterator innermostScope
533  = CGF.EHStack.getInnermostNormalCleanup();
534 
535  // Change the scope depth of all the labels.
537  i = Labels.begin(), e = Labels.end(); i != e; ++i) {
538  assert(CGF.LabelMap.count(*i));
539  JumpDest &dest = CGF.LabelMap.find(*i)->second;
540  assert(dest.getScopeDepth().isValid());
541  assert(innermostScope.encloses(dest.getScopeDepth()));
542  dest.setScopeDepth(innermostScope);
543  }
544 
545  // Reparent the labels if the new scope also has cleanups.
546  if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
547  ParentScope->Labels.append(Labels.begin(), Labels.end());
548  }
549 }
550 
551 
553  EmitLabel(S.getDecl());
554  EmitStmt(S.getSubStmt());
555 }
556 
558  EmitStmt(S.getSubStmt(), S.getAttrs());
559 }
560 
562  // If this code is reachable then emit a stop point (if generating
563  // debug info). We have to do this ourselves because we are on the
564  // "simple" statement path.
565  if (HaveInsertPoint())
566  EmitStopPoint(&S);
567 
569 }
570 
571 
573  if (const LabelDecl *Target = S.getConstantTarget()) {
575  return;
576  }
577 
578  // Ensure that we have an i8* for our PHI node.
580  Int8PtrTy, "addr");
581  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
582 
583  // Get the basic block for the indirect goto.
584  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
585 
586  // The first instruction in the block has to be the PHI for the switch dest,
587  // add an entry for this branch.
588  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
589 
590  EmitBranch(IndGotoBB);
591 }
592 
594  // C99 6.8.4.1: The first substatement is executed if the expression compares
595  // unequal to 0. The condition must be a scalar type.
596  LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
597 
598  if (S.getInit())
599  EmitStmt(S.getInit());
600 
601  if (S.getConditionVariable())
603 
604  // If the condition constant folds and can be elided, try to avoid emitting
605  // the condition and the dead arm of the if/else.
606  bool CondConstant;
607  if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
608  S.isConstexpr())) {
609  // Figure out which block (then or else) is executed.
610  const Stmt *Executed = S.getThen();
611  const Stmt *Skipped = S.getElse();
612  if (!CondConstant) // Condition false?
613  std::swap(Executed, Skipped);
614 
615  // If the skipped block has no labels in it, just emit the executed block.
616  // This avoids emitting dead code and simplifies the CFG substantially.
617  if (S.isConstexpr() || !ContainsLabel(Skipped)) {
618  if (CondConstant)
620  if (Executed) {
621  RunCleanupsScope ExecutedScope(*this);
622  EmitStmt(Executed);
623  }
624  return;
625  }
626  }
627 
628  // Otherwise, the condition did not fold, or we couldn't elide it. Just emit
629  // the conditional branch.
630  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
631  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
632  llvm::BasicBlock *ElseBlock = ContBlock;
633  if (S.getElse())
634  ElseBlock = createBasicBlock("if.else");
635 
636  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
637  getProfileCount(S.getThen()));
638 
639  // Emit the 'then' code.
640  EmitBlock(ThenBlock);
642  {
643  RunCleanupsScope ThenScope(*this);
644  EmitStmt(S.getThen());
645  }
646  EmitBranch(ContBlock);
647 
648  // Emit the 'else' code if present.
649  if (const Stmt *Else = S.getElse()) {
650  {
651  // There is no need to emit line number for an unconditional branch.
652  auto NL = ApplyDebugLocation::CreateEmpty(*this);
653  EmitBlock(ElseBlock);
654  }
655  {
656  RunCleanupsScope ElseScope(*this);
657  EmitStmt(Else);
658  }
659  {
660  // There is no need to emit line number for an unconditional branch.
661  auto NL = ApplyDebugLocation::CreateEmpty(*this);
662  EmitBranch(ContBlock);
663  }
664  }
665 
666  // Emit the continuation block for code after the if.
667  EmitBlock(ContBlock, true);
668 }
669 
671  ArrayRef<const Attr *> WhileAttrs) {
672  // Emit the header for the loop, which will also become
673  // the continue target.
674  JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
675  EmitBlock(LoopHeader.getBlock());
676 
677  const SourceRange &R = S.getSourceRange();
678  LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs,
679  SourceLocToDebugLoc(R.getBegin()),
680  SourceLocToDebugLoc(R.getEnd()));
681 
682  // Create an exit block for when the condition fails, which will
683  // also become the break target.
685 
686  // Store the blocks to use for break and continue.
687  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
688 
689  // C++ [stmt.while]p2:
690  // When the condition of a while statement is a declaration, the
691  // scope of the variable that is declared extends from its point
692  // of declaration (3.3.2) to the end of the while statement.
693  // [...]
694  // The object created in a condition is destroyed and created
695  // with each iteration of the loop.
696  RunCleanupsScope ConditionScope(*this);
697 
698  if (S.getConditionVariable())
700 
701  // Evaluate the conditional in the while header. C99 6.8.5.1: The
702  // evaluation of the controlling expression takes place before each
703  // execution of the loop body.
704  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
705 
706  // while(1) is common, avoid extra exit blocks. Be sure
707  // to correctly handle break/continue though.
708  bool EmitBoolCondBranch = true;
709  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
710  if (C->isOne())
711  EmitBoolCondBranch = false;
712 
713  // As long as the condition is true, go to the loop body.
714  llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
715  if (EmitBoolCondBranch) {
716  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
717  if (ConditionScope.requiresCleanups())
718  ExitBlock = createBasicBlock("while.exit");
719  Builder.CreateCondBr(
720  BoolCondVal, LoopBody, ExitBlock,
721  createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
722 
723  if (ExitBlock != LoopExit.getBlock()) {
724  EmitBlock(ExitBlock);
725  EmitBranchThroughCleanup(LoopExit);
726  }
727  }
728 
729  // Emit the loop body. We have to emit this in a cleanup scope
730  // because it might be a singleton DeclStmt.
731  {
732  RunCleanupsScope BodyScope(*this);
733  EmitBlock(LoopBody);
735  EmitStmt(S.getBody());
736  }
737 
738  BreakContinueStack.pop_back();
739 
740  // Immediately force cleanup.
741  ConditionScope.ForceCleanup();
742 
743  EmitStopPoint(&S);
744  // Branch to the loop header again.
745  EmitBranch(LoopHeader.getBlock());
746 
747  LoopStack.pop();
748 
749  // Emit the exit block.
750  EmitBlock(LoopExit.getBlock(), true);
751 
752  // The LoopHeader typically is just a branch if we skipped emitting
753  // a branch, try to erase it.
754  if (!EmitBoolCondBranch)
755  SimplifyForwardingBlocks(LoopHeader.getBlock());
756 }
757 
759  ArrayRef<const Attr *> DoAttrs) {
761  JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
762 
763  uint64_t ParentCount = getCurrentProfileCount();
764 
765  // Store the blocks to use for break and continue.
766  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
767 
768  // Emit the body of the loop.
769  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
770 
771  const SourceRange &R = S.getSourceRange();
772  LoopStack.push(LoopBody, CGM.getContext(), DoAttrs,
775 
776  EmitBlockWithFallThrough(LoopBody, &S);
777  {
778  RunCleanupsScope BodyScope(*this);
779  EmitStmt(S.getBody());
780  }
781 
782  EmitBlock(LoopCond.getBlock());
783 
784  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
785  // after each execution of the loop body."
786 
787  // Evaluate the conditional in the while header.
788  // C99 6.8.5p2/p4: The first substatement is executed if the expression
789  // compares unequal to 0. The condition must be a scalar type.
790  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
791 
792  BreakContinueStack.pop_back();
793 
794  // "do {} while (0)" is common in macros, avoid extra blocks. Be sure
795  // to correctly handle break/continue though.
796  bool EmitBoolCondBranch = true;
797  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
798  if (C->isZero())
799  EmitBoolCondBranch = false;
800 
801  // As long as the condition is true, iterate the loop.
802  if (EmitBoolCondBranch) {
803  uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
804  Builder.CreateCondBr(
805  BoolCondVal, LoopBody, LoopExit.getBlock(),
806  createProfileWeightsForLoop(S.getCond(), BackedgeCount));
807  }
808 
809  LoopStack.pop();
810 
811  // Emit the exit block.
812  EmitBlock(LoopExit.getBlock());
813 
814  // The DoCond block typically is just a branch if we skipped
815  // emitting a branch, try to erase it.
816  if (!EmitBoolCondBranch)
818 }
819 
821  ArrayRef<const Attr *> ForAttrs) {
823 
824  LexicalScope ForScope(*this, S.getSourceRange());
825 
826  // Evaluate the first part before the loop.
827  if (S.getInit())
828  EmitStmt(S.getInit());
829 
830  // Start the loop with a block that tests the condition.
831  // If there's an increment, the continue scope will be overwritten
832  // later.
833  JumpDest Continue = getJumpDestInCurrentScope("for.cond");
834  llvm::BasicBlock *CondBlock = Continue.getBlock();
835  EmitBlock(CondBlock);
836 
837  const SourceRange &R = S.getSourceRange();
838  LoopStack.push(CondBlock, CGM.getContext(), ForAttrs,
841 
842  // If the for loop doesn't have an increment we can just use the
843  // condition as the continue block. Otherwise we'll need to create
844  // a block for it (in the current scope, i.e. in the scope of the
845  // condition), and that we will become our continue block.
846  if (S.getInc())
847  Continue = getJumpDestInCurrentScope("for.inc");
848 
849  // Store the blocks to use for break and continue.
850  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
851 
852  // Create a cleanup scope for the condition variable cleanups.
853  LexicalScope ConditionScope(*this, S.getSourceRange());
854 
855  if (S.getCond()) {
856  // If the for statement has a condition scope, emit the local variable
857  // declaration.
858  if (S.getConditionVariable()) {
860  }
861 
862  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
863  // If there are any cleanups between here and the loop-exit scope,
864  // create a block to stage a loop exit along.
865  if (ForScope.requiresCleanups())
866  ExitBlock = createBasicBlock("for.cond.cleanup");
867 
868  // As long as the condition is true, iterate the loop.
869  llvm::BasicBlock *ForBody = createBasicBlock("for.body");
870 
871  // C99 6.8.5p2/p4: The first substatement is executed if the expression
872  // compares unequal to 0. The condition must be a scalar type.
873  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
874  Builder.CreateCondBr(
875  BoolCondVal, ForBody, ExitBlock,
876  createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
877 
878  if (ExitBlock != LoopExit.getBlock()) {
879  EmitBlock(ExitBlock);
880  EmitBranchThroughCleanup(LoopExit);
881  }
882 
883  EmitBlock(ForBody);
884  } else {
885  // Treat it as a non-zero constant. Don't even create a new block for the
886  // body, just fall into it.
887  }
889 
890  {
891  // Create a separate cleanup scope for the body, in case it is not
892  // a compound statement.
893  RunCleanupsScope BodyScope(*this);
894  EmitStmt(S.getBody());
895  }
896 
897  // If there is an increment, emit it next.
898  if (S.getInc()) {
899  EmitBlock(Continue.getBlock());
900  EmitStmt(S.getInc());
901  }
902 
903  BreakContinueStack.pop_back();
904 
905  ConditionScope.ForceCleanup();
906 
907  EmitStopPoint(&S);
908  EmitBranch(CondBlock);
909 
910  ForScope.ForceCleanup();
911 
912  LoopStack.pop();
913 
914  // Emit the fall-through block.
915  EmitBlock(LoopExit.getBlock(), true);
916 }
917 
918 void
920  ArrayRef<const Attr *> ForAttrs) {
922 
923  LexicalScope ForScope(*this, S.getSourceRange());
924 
925  // Evaluate the first pieces before the loop.
926  EmitStmt(S.getRangeStmt());
927  EmitStmt(S.getBeginStmt());
928  EmitStmt(S.getEndStmt());
929 
930  // Start the loop with a block that tests the condition.
931  // If there's an increment, the continue scope will be overwritten
932  // later.
933  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
934  EmitBlock(CondBlock);
935 
936  const SourceRange &R = S.getSourceRange();
937  LoopStack.push(CondBlock, CGM.getContext(), ForAttrs,
940 
941  // If there are any cleanups between here and the loop-exit scope,
942  // create a block to stage a loop exit along.
943  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
944  if (ForScope.requiresCleanups())
945  ExitBlock = createBasicBlock("for.cond.cleanup");
946 
947  // The loop body, consisting of the specified body and the loop variable.
948  llvm::BasicBlock *ForBody = createBasicBlock("for.body");
949 
950  // The body is executed if the expression, contextually converted
951  // to bool, is true.
952  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
953  Builder.CreateCondBr(
954  BoolCondVal, ForBody, ExitBlock,
955  createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
956 
957  if (ExitBlock != LoopExit.getBlock()) {
958  EmitBlock(ExitBlock);
959  EmitBranchThroughCleanup(LoopExit);
960  }
961 
962  EmitBlock(ForBody);
964 
965  // Create a block for the increment. In case of a 'continue', we jump there.
966  JumpDest Continue = getJumpDestInCurrentScope("for.inc");
967 
968  // Store the blocks to use for break and continue.
969  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
970 
971  {
972  // Create a separate cleanup scope for the loop variable and body.
973  LexicalScope BodyScope(*this, S.getSourceRange());
975  EmitStmt(S.getBody());
976  }
977 
978  EmitStopPoint(&S);
979  // If there is an increment, emit it next.
980  EmitBlock(Continue.getBlock());
981  EmitStmt(S.getInc());
982 
983  BreakContinueStack.pop_back();
984 
985  EmitBranch(CondBlock);
986 
987  ForScope.ForceCleanup();
988 
989  LoopStack.pop();
990 
991  // Emit the fall-through block.
992  EmitBlock(LoopExit.getBlock(), true);
993 }
994 
995 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
996  if (RV.isScalar()) {
998  } else if (RV.isAggregate()) {
1000  } else {
1002  /*init*/ true);
1003  }
1005 }
1006 
1007 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1008 /// if the function returns void, or may be missing one if the function returns
1009 /// non-void. Fun stuff :).
1011  if (requiresReturnValueCheck()) {
1012  llvm::Constant *SLoc = EmitCheckSourceLocation(S.getLocStart());
1013  auto *SLocPtr =
1014  new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1015  llvm::GlobalVariable::PrivateLinkage, SLoc);
1016  SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1018  assert(ReturnLocation.isValid() && "No valid return location");
1020  ReturnLocation);
1021  }
1022 
1023  // Returning from an outlined SEH helper is UB, and we already warn on it.
1024  if (IsOutlinedSEHHelper) {
1025  Builder.CreateUnreachable();
1026  Builder.ClearInsertionPoint();
1027  }
1028 
1029  // Emit the result value, even if unused, to evalute the side effects.
1030  const Expr *RV = S.getRetValue();
1031 
1032  // Treat block literals in a return expression as if they appeared
1033  // in their own scope. This permits a small, easily-implemented
1034  // exception to our over-conservative rules about not jumping to
1035  // statements following block literals with non-trivial cleanups.
1036  RunCleanupsScope cleanupScope(*this);
1037  if (const ExprWithCleanups *cleanups =
1038  dyn_cast_or_null<ExprWithCleanups>(RV)) {
1039  enterFullExpression(cleanups);
1040  RV = cleanups->getSubExpr();
1041  }
1042 
1043  // FIXME: Clean this up by using an LValue for ReturnTemp,
1044  // EmitStoreThroughLValue, and EmitAnyExpr.
1045  if (getLangOpts().ElideConstructors &&
1047  // Apply the named return value optimization for this return statement,
1048  // which means doing nothing: the appropriate result has already been
1049  // constructed into the NRVO variable.
1050 
1051  // If there is an NRVO flag for this variable, set it to 1 into indicate
1052  // that the cleanup code should not destroy the variable.
1053  if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1054  Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1055  } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1056  // Make sure not to return anything, but evaluate the expression
1057  // for side effects.
1058  if (RV)
1059  EmitAnyExpr(RV);
1060  } else if (!RV) {
1061  // Do nothing (return value is left uninitialized)
1062  } else if (FnRetTy->isReferenceType()) {
1063  // If this function returns a reference, take the address of the expression
1064  // rather than the value.
1065  RValue Result = EmitReferenceBindingToExpr(RV);
1067  } else {
1068  switch (getEvaluationKind(RV->getType())) {
1069  case TEK_Scalar:
1071  break;
1072  case TEK_Complex:
1074  /*isInit*/ true);
1075  break;
1076  case TEK_Aggregate:
1078  Qualifiers(),
1082  break;
1083  }
1084  }
1085 
1086  ++NumReturnExprs;
1087  if (!RV || RV->isEvaluatable(getContext()))
1088  ++NumSimpleReturnExprs;
1089 
1090  cleanupScope.ForceCleanup();
1092 }
1093 
1095  // As long as debug info is modeled with instructions, we have to ensure we
1096  // have a place to insert here and write the stop point here.
1097  if (HaveInsertPoint())
1098  EmitStopPoint(&S);
1099 
1100  for (const auto *I : S.decls())
1101  EmitDecl(*I);
1102 }
1103 
1105  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1106 
1107  // If this code is reachable then emit a stop point (if generating
1108  // debug info). We have to do this ourselves because we are on the
1109  // "simple" statement path.
1110  if (HaveInsertPoint())
1111  EmitStopPoint(&S);
1112 
1113  EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1114 }
1115 
1117  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1118 
1119  // If this code is reachable then emit a stop point (if generating
1120  // debug info). We have to do this ourselves because we are on the
1121  // "simple" statement path.
1122  if (HaveInsertPoint())
1123  EmitStopPoint(&S);
1124 
1125  EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1126 }
1127 
1128 /// EmitCaseStmtRange - If case statement range is not too big then
1129 /// add multiple cases to switch instruction, one for each value within
1130 /// the range. If range is too big then emit "if" condition check.
1132  assert(S.getRHS() && "Expected RHS value in CaseStmt");
1133 
1134  llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1135  llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1136 
1137  // Emit the code for this case. We do this first to make sure it is
1138  // properly chained from our predecessor before generating the
1139  // switch machinery to enter this block.
1140  llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1141  EmitBlockWithFallThrough(CaseDest, &S);
1142  EmitStmt(S.getSubStmt());
1143 
1144  // If range is empty, do nothing.
1145  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1146  return;
1147 
1148  llvm::APInt Range = RHS - LHS;
1149  // FIXME: parameters such as this should not be hardcoded.
1150  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1151  // Range is small enough to add multiple switch instruction cases.
1152  uint64_t Total = getProfileCount(&S);
1153  unsigned NCases = Range.getZExtValue() + 1;
1154  // We only have one region counter for the entire set of cases here, so we
1155  // need to divide the weights evenly between the generated cases, ensuring
1156  // that the total weight is preserved. E.g., a weight of 5 over three cases
1157  // will be distributed as weights of 2, 2, and 1.
1158  uint64_t Weight = Total / NCases, Rem = Total % NCases;
1159  for (unsigned I = 0; I != NCases; ++I) {
1160  if (SwitchWeights)
1161  SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1162  if (Rem)
1163  Rem--;
1164  SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1165  ++LHS;
1166  }
1167  return;
1168  }
1169 
1170  // The range is too big. Emit "if" condition into a new block,
1171  // making sure to save and restore the current insertion point.
1172  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1173 
1174  // Push this test onto the chain of range checks (which terminates
1175  // in the default basic block). The switch's default will be changed
1176  // to the top of this chain after switch emission is complete.
1177  llvm::BasicBlock *FalseDest = CaseRangeBlock;
1178  CaseRangeBlock = createBasicBlock("sw.caserange");
1179 
1180  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1181  Builder.SetInsertPoint(CaseRangeBlock);
1182 
1183  // Emit range check.
1184  llvm::Value *Diff =
1185  Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1186  llvm::Value *Cond =
1187  Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1188 
1189  llvm::MDNode *Weights = nullptr;
1190  if (SwitchWeights) {
1191  uint64_t ThisCount = getProfileCount(&S);
1192  uint64_t DefaultCount = (*SwitchWeights)[0];
1193  Weights = createProfileWeights(ThisCount, DefaultCount);
1194 
1195  // Since we're chaining the switch default through each large case range, we
1196  // need to update the weight for the default, ie, the first case, to include
1197  // this case.
1198  (*SwitchWeights)[0] += ThisCount;
1199  }
1200  Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1201 
1202  // Restore the appropriate insertion point.
1203  if (RestoreBB)
1204  Builder.SetInsertPoint(RestoreBB);
1205  else
1206  Builder.ClearInsertionPoint();
1207 }
1208 
1210  // If there is no enclosing switch instance that we're aware of, then this
1211  // case statement and its block can be elided. This situation only happens
1212  // when we've constant-folded the switch, are emitting the constant case,
1213  // and part of the constant case includes another case statement. For
1214  // instance: switch (4) { case 4: do { case 5: } while (1); }
1215  if (!SwitchInsn) {
1216  EmitStmt(S.getSubStmt());
1217  return;
1218  }
1219 
1220  // Handle case ranges.
1221  if (S.getRHS()) {
1222  EmitCaseStmtRange(S);
1223  return;
1224  }
1225 
1226  llvm::ConstantInt *CaseVal =
1228 
1229  // If the body of the case is just a 'break', try to not emit an empty block.
1230  // If we're profiling or we're not optimizing, leave the block in for better
1231  // debug and coverage analysis.
1233  CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1234  isa<BreakStmt>(S.getSubStmt())) {
1235  JumpDest Block = BreakContinueStack.back().BreakBlock;
1236 
1237  // Only do this optimization if there are no cleanups that need emitting.
1238  if (isObviouslyBranchWithoutCleanups(Block)) {
1239  if (SwitchWeights)
1240  SwitchWeights->push_back(getProfileCount(&S));
1241  SwitchInsn->addCase(CaseVal, Block.getBlock());
1242 
1243  // If there was a fallthrough into this case, make sure to redirect it to
1244  // the end of the switch as well.
1245  if (Builder.GetInsertBlock()) {
1246  Builder.CreateBr(Block.getBlock());
1247  Builder.ClearInsertionPoint();
1248  }
1249  return;
1250  }
1251  }
1252 
1253  llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1254  EmitBlockWithFallThrough(CaseDest, &S);
1255  if (SwitchWeights)
1256  SwitchWeights->push_back(getProfileCount(&S));
1257  SwitchInsn->addCase(CaseVal, CaseDest);
1258 
1259  // Recursively emitting the statement is acceptable, but is not wonderful for
1260  // code where we have many case statements nested together, i.e.:
1261  // case 1:
1262  // case 2:
1263  // case 3: etc.
1264  // Handling this recursively will create a new block for each case statement
1265  // that falls through to the next case which is IR intensive. It also causes
1266  // deep recursion which can run into stack depth limitations. Handle
1267  // sequential non-range case statements specially.
1268  const CaseStmt *CurCase = &S;
1269  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1270 
1271  // Otherwise, iteratively add consecutive cases to this switch stmt.
1272  while (NextCase && NextCase->getRHS() == nullptr) {
1273  CurCase = NextCase;
1274  llvm::ConstantInt *CaseVal =
1275  Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1276 
1277  if (SwitchWeights)
1278  SwitchWeights->push_back(getProfileCount(NextCase));
1280  CaseDest = createBasicBlock("sw.bb");
1281  EmitBlockWithFallThrough(CaseDest, &S);
1282  }
1283 
1284  SwitchInsn->addCase(CaseVal, CaseDest);
1285  NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1286  }
1287 
1288  // Normal default recursion for non-cases.
1289  EmitStmt(CurCase->getSubStmt());
1290 }
1291 
1293  // If there is no enclosing switch instance that we're aware of, then this
1294  // default statement can be elided. This situation only happens when we've
1295  // constant-folded the switch.
1296  if (!SwitchInsn) {
1297  EmitStmt(S.getSubStmt());
1298  return;
1299  }
1300 
1301  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1302  assert(DefaultBlock->empty() &&
1303  "EmitDefaultStmt: Default block already defined?");
1304 
1305  EmitBlockWithFallThrough(DefaultBlock, &S);
1306 
1307  EmitStmt(S.getSubStmt());
1308 }
1309 
1310 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1311 /// constant value that is being switched on, see if we can dead code eliminate
1312 /// the body of the switch to a simple series of statements to emit. Basically,
1313 /// on a switch (5) we want to find these statements:
1314 /// case 5:
1315 /// printf(...); <--
1316 /// ++i; <--
1317 /// break;
1318 ///
1319 /// and add them to the ResultStmts vector. If it is unsafe to do this
1320 /// transformation (for example, one of the elided statements contains a label
1321 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S'
1322 /// should include statements after it (e.g. the printf() line is a substmt of
1323 /// the case) then return CSFC_FallThrough. If we handled it and found a break
1324 /// statement, then return CSFC_Success.
1325 ///
1326 /// If Case is non-null, then we are looking for the specified case, checking
1327 /// that nothing we jump over contains labels. If Case is null, then we found
1328 /// the case and are looking for the break.
1329 ///
1330 /// If the recursive walk actually finds our Case, then we set FoundCase to
1331 /// true.
1332 ///
1335  const SwitchCase *Case,
1336  bool &FoundCase,
1337  SmallVectorImpl<const Stmt*> &ResultStmts) {
1338  // If this is a null statement, just succeed.
1339  if (!S)
1340  return Case ? CSFC_Success : CSFC_FallThrough;
1341 
1342  // If this is the switchcase (case 4: or default) that we're looking for, then
1343  // we're in business. Just add the substatement.
1344  if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1345  if (S == Case) {
1346  FoundCase = true;
1347  return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1348  ResultStmts);
1349  }
1350 
1351  // Otherwise, this is some other case or default statement, just ignore it.
1352  return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1353  ResultStmts);
1354  }
1355 
1356  // If we are in the live part of the code and we found our break statement,
1357  // return a success!
1358  if (!Case && isa<BreakStmt>(S))
1359  return CSFC_Success;
1360 
1361  // If this is a switch statement, then it might contain the SwitchCase, the
1362  // break, or neither.
1363  if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1364  // Handle this as two cases: we might be looking for the SwitchCase (if so
1365  // the skipped statements must be skippable) or we might already have it.
1366  CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1367  bool StartedInLiveCode = FoundCase;
1368  unsigned StartSize = ResultStmts.size();
1369 
1370  // If we've not found the case yet, scan through looking for it.
1371  if (Case) {
1372  // Keep track of whether we see a skipped declaration. The code could be
1373  // using the declaration even if it is skipped, so we can't optimize out
1374  // the decl if the kept statements might refer to it.
1375  bool HadSkippedDecl = false;
1376 
1377  // If we're looking for the case, just see if we can skip each of the
1378  // substatements.
1379  for (; Case && I != E; ++I) {
1380  HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1381 
1382  switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1383  case CSFC_Failure: return CSFC_Failure;
1384  case CSFC_Success:
1385  // A successful result means that either 1) that the statement doesn't
1386  // have the case and is skippable, or 2) does contain the case value
1387  // and also contains the break to exit the switch. In the later case,
1388  // we just verify the rest of the statements are elidable.
1389  if (FoundCase) {
1390  // If we found the case and skipped declarations, we can't do the
1391  // optimization.
1392  if (HadSkippedDecl)
1393  return CSFC_Failure;
1394 
1395  for (++I; I != E; ++I)
1396  if (CodeGenFunction::ContainsLabel(*I, true))
1397  return CSFC_Failure;
1398  return CSFC_Success;
1399  }
1400  break;
1401  case CSFC_FallThrough:
1402  // If we have a fallthrough condition, then we must have found the
1403  // case started to include statements. Consider the rest of the
1404  // statements in the compound statement as candidates for inclusion.
1405  assert(FoundCase && "Didn't find case but returned fallthrough?");
1406  // We recursively found Case, so we're not looking for it anymore.
1407  Case = nullptr;
1408 
1409  // If we found the case and skipped declarations, we can't do the
1410  // optimization.
1411  if (HadSkippedDecl)
1412  return CSFC_Failure;
1413  break;
1414  }
1415  }
1416 
1417  if (!FoundCase)
1418  return CSFC_Success;
1419 
1420  assert(!HadSkippedDecl && "fallthrough after skipping decl");
1421  }
1422 
1423  // If we have statements in our range, then we know that the statements are
1424  // live and need to be added to the set of statements we're tracking.
1425  bool AnyDecls = false;
1426  for (; I != E; ++I) {
1427  AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1428 
1429  switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1430  case CSFC_Failure: return CSFC_Failure;
1431  case CSFC_FallThrough:
1432  // A fallthrough result means that the statement was simple and just
1433  // included in ResultStmt, keep adding them afterwards.
1434  break;
1435  case CSFC_Success:
1436  // A successful result means that we found the break statement and
1437  // stopped statement inclusion. We just ensure that any leftover stmts
1438  // are skippable and return success ourselves.
1439  for (++I; I != E; ++I)
1440  if (CodeGenFunction::ContainsLabel(*I, true))
1441  return CSFC_Failure;
1442  return CSFC_Success;
1443  }
1444  }
1445 
1446  // If we're about to fall out of a scope without hitting a 'break;', we
1447  // can't perform the optimization if there were any decls in that scope
1448  // (we'd lose their end-of-lifetime).
1449  if (AnyDecls) {
1450  // If the entire compound statement was live, there's one more thing we
1451  // can try before giving up: emit the whole thing as a single statement.
1452  // We can do that unless the statement contains a 'break;'.
1453  // FIXME: Such a break must be at the end of a construct within this one.
1454  // We could emit this by just ignoring the BreakStmts entirely.
1455  if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1456  ResultStmts.resize(StartSize);
1457  ResultStmts.push_back(S);
1458  } else {
1459  return CSFC_Failure;
1460  }
1461  }
1462 
1463  return CSFC_FallThrough;
1464  }
1465 
1466  // Okay, this is some other statement that we don't handle explicitly, like a
1467  // for statement or increment etc. If we are skipping over this statement,
1468  // just verify it doesn't have labels, which would make it invalid to elide.
1469  if (Case) {
1470  if (CodeGenFunction::ContainsLabel(S, true))
1471  return CSFC_Failure;
1472  return CSFC_Success;
1473  }
1474 
1475  // Otherwise, we want to include this statement. Everything is cool with that
1476  // so long as it doesn't contain a break out of the switch we're in.
1478 
1479  // Otherwise, everything is great. Include the statement and tell the caller
1480  // that we fall through and include the next statement as well.
1481  ResultStmts.push_back(S);
1482  return CSFC_FallThrough;
1483 }
1484 
1485 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1486 /// then invoke CollectStatementsForCase to find the list of statements to emit
1487 /// for a switch on constant. See the comment above CollectStatementsForCase
1488 /// for more details.
1490  const llvm::APSInt &ConstantCondValue,
1491  SmallVectorImpl<const Stmt*> &ResultStmts,
1492  ASTContext &C,
1493  const SwitchCase *&ResultCase) {
1494  // First step, find the switch case that is being branched to. We can do this
1495  // efficiently by scanning the SwitchCase list.
1496  const SwitchCase *Case = S.getSwitchCaseList();
1497  const DefaultStmt *DefaultCase = nullptr;
1498 
1499  for (; Case; Case = Case->getNextSwitchCase()) {
1500  // It's either a default or case. Just remember the default statement in
1501  // case we're not jumping to any numbered cases.
1502  if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1503  DefaultCase = DS;
1504  continue;
1505  }
1506 
1507  // Check to see if this case is the one we're looking for.
1508  const CaseStmt *CS = cast<CaseStmt>(Case);
1509  // Don't handle case ranges yet.
1510  if (CS->getRHS()) return false;
1511 
1512  // If we found our case, remember it as 'case'.
1513  if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1514  break;
1515  }
1516 
1517  // If we didn't find a matching case, we use a default if it exists, or we
1518  // elide the whole switch body!
1519  if (!Case) {
1520  // It is safe to elide the body of the switch if it doesn't contain labels
1521  // etc. If it is safe, return successfully with an empty ResultStmts list.
1522  if (!DefaultCase)
1523  return !CodeGenFunction::ContainsLabel(&S);
1524  Case = DefaultCase;
1525  }
1526 
1527  // Ok, we know which case is being jumped to, try to collect all the
1528  // statements that follow it. This can fail for a variety of reasons. Also,
1529  // check to see that the recursive walk actually found our case statement.
1530  // Insane cases like this can fail to find it in the recursive walk since we
1531  // don't handle every stmt kind:
1532  // switch (4) {
1533  // while (1) {
1534  // case 4: ...
1535  bool FoundCase = false;
1536  ResultCase = Case;
1537  return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1538  ResultStmts) != CSFC_Failure &&
1539  FoundCase;
1540 }
1541 
1543  // Handle nested switch statements.
1544  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1545  SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1546  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1547 
1548  // See if we can constant fold the condition of the switch and therefore only
1549  // emit the live case statement (if any) of the switch.
1550  llvm::APSInt ConstantCondValue;
1551  if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1552  SmallVector<const Stmt*, 4> CaseStmts;
1553  const SwitchCase *Case = nullptr;
1554  if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1555  getContext(), Case)) {
1556  if (Case)
1558  RunCleanupsScope ExecutedScope(*this);
1559 
1560  if (S.getInit())
1561  EmitStmt(S.getInit());
1562 
1563  // Emit the condition variable if needed inside the entire cleanup scope
1564  // used by this special case for constant folded switches.
1565  if (S.getConditionVariable())
1567 
1568  // At this point, we are no longer "within" a switch instance, so
1569  // we can temporarily enforce this to ensure that any embedded case
1570  // statements are not emitted.
1571  SwitchInsn = nullptr;
1572 
1573  // Okay, we can dead code eliminate everything except this case. Emit the
1574  // specified series of statements and we're good.
1575  for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1576  EmitStmt(CaseStmts[i]);
1578 
1579  // Now we want to restore the saved switch instance so that nested
1580  // switches continue to function properly
1581  SwitchInsn = SavedSwitchInsn;
1582 
1583  return;
1584  }
1585  }
1586 
1587  JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1588 
1589  RunCleanupsScope ConditionScope(*this);
1590 
1591  if (S.getInit())
1592  EmitStmt(S.getInit());
1593 
1594  if (S.getConditionVariable())
1596  llvm::Value *CondV = EmitScalarExpr(S.getCond());
1597 
1598  // Create basic block to hold stuff that comes after switch
1599  // statement. We also need to create a default block now so that
1600  // explicit case ranges tests can have a place to jump to on
1601  // failure.
1602  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1603  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1604  if (PGO.haveRegionCounts()) {
1605  // Walk the SwitchCase list to find how many there are.
1606  uint64_t DefaultCount = 0;
1607  unsigned NumCases = 0;
1608  for (const SwitchCase *Case = S.getSwitchCaseList();
1609  Case;
1610  Case = Case->getNextSwitchCase()) {
1611  if (isa<DefaultStmt>(Case))
1612  DefaultCount = getProfileCount(Case);
1613  NumCases += 1;
1614  }
1615  SwitchWeights = new SmallVector<uint64_t, 16>();
1616  SwitchWeights->reserve(NumCases);
1617  // The default needs to be first. We store the edge count, so we already
1618  // know the right weight.
1619  SwitchWeights->push_back(DefaultCount);
1620  }
1621  CaseRangeBlock = DefaultBlock;
1622 
1623  // Clear the insertion point to indicate we are in unreachable code.
1624  Builder.ClearInsertionPoint();
1625 
1626  // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1627  // then reuse last ContinueBlock.
1628  JumpDest OuterContinue;
1629  if (!BreakContinueStack.empty())
1630  OuterContinue = BreakContinueStack.back().ContinueBlock;
1631 
1632  BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1633 
1634  // Emit switch body.
1635  EmitStmt(S.getBody());
1636 
1637  BreakContinueStack.pop_back();
1638 
1639  // Update the default block in case explicit case range tests have
1640  // been chained on top.
1641  SwitchInsn->setDefaultDest(CaseRangeBlock);
1642 
1643  // If a default was never emitted:
1644  if (!DefaultBlock->getParent()) {
1645  // If we have cleanups, emit the default block so that there's a
1646  // place to jump through the cleanups from.
1647  if (ConditionScope.requiresCleanups()) {
1648  EmitBlock(DefaultBlock);
1649 
1650  // Otherwise, just forward the default block to the switch end.
1651  } else {
1652  DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1653  delete DefaultBlock;
1654  }
1655  }
1656 
1657  ConditionScope.ForceCleanup();
1658 
1659  // Emit continuation.
1660  EmitBlock(SwitchExit.getBlock(), true);
1662 
1663  // If the switch has a condition wrapped by __builtin_unpredictable,
1664  // create metadata that specifies that the switch is unpredictable.
1665  // Don't bother if not optimizing because that metadata would not be used.
1666  auto *Call = dyn_cast<CallExpr>(S.getCond());
1667  if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1668  auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1669  if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1670  llvm::MDBuilder MDHelper(getLLVMContext());
1671  SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1672  MDHelper.createUnpredictable());
1673  }
1674  }
1675 
1676  if (SwitchWeights) {
1677  assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1678  "switch weights do not match switch cases");
1679  // If there's only one jump destination there's no sense weighting it.
1680  if (SwitchWeights->size() > 1)
1681  SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1682  createProfileWeights(*SwitchWeights));
1683  delete SwitchWeights;
1684  }
1685  SwitchInsn = SavedSwitchInsn;
1686  SwitchWeights = SavedSwitchWeights;
1687  CaseRangeBlock = SavedCRBlock;
1688 }
1689 
1690 static std::string
1691 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1693  std::string Result;
1694 
1695  while (*Constraint) {
1696  switch (*Constraint) {
1697  default:
1698  Result += Target.convertConstraint(Constraint);
1699  break;
1700  // Ignore these
1701  case '*':
1702  case '?':
1703  case '!':
1704  case '=': // Will see this and the following in mult-alt constraints.
1705  case '+':
1706  break;
1707  case '#': // Ignore the rest of the constraint alternative.
1708  while (Constraint[1] && Constraint[1] != ',')
1709  Constraint++;
1710  break;
1711  case '&':
1712  case '%':
1713  Result += *Constraint;
1714  while (Constraint[1] && Constraint[1] == *Constraint)
1715  Constraint++;
1716  break;
1717  case ',':
1718  Result += "|";
1719  break;
1720  case 'g':
1721  Result += "imr";
1722  break;
1723  case '[': {
1724  assert(OutCons &&
1725  "Must pass output names to constraints with a symbolic name");
1726  unsigned Index;
1727  bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1728  assert(result && "Could not resolve symbolic name"); (void)result;
1729  Result += llvm::utostr(Index);
1730  break;
1731  }
1732  }
1733 
1734  Constraint++;
1735  }
1736 
1737  return Result;
1738 }
1739 
1740 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1741 /// as using a particular register add that as a constraint that will be used
1742 /// in this asm stmt.
1743 static std::string
1744 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1746  const AsmStmt &Stmt, const bool EarlyClobber) {
1747  const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1748  if (!AsmDeclRef)
1749  return Constraint;
1750  const ValueDecl &Value = *AsmDeclRef->getDecl();
1751  const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1752  if (!Variable)
1753  return Constraint;
1754  if (Variable->getStorageClass() != SC_Register)
1755  return Constraint;
1756  AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1757  if (!Attr)
1758  return Constraint;
1759  StringRef Register = Attr->getLabel();
1760  assert(Target.isValidGCCRegisterName(Register));
1761  // We're using validateOutputConstraint here because we only care if
1762  // this is a register constraint.
1763  TargetInfo::ConstraintInfo Info(Constraint, "");
1764  if (Target.validateOutputConstraint(Info) &&
1765  !Info.allowsRegister()) {
1766  CGM.ErrorUnsupported(&Stmt, "__asm__");
1767  return Constraint;
1768  }
1769  // Canonicalize the register here before returning it.
1770  Register = Target.getNormalizedGCCRegisterName(Register);
1771  return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1772 }
1773 
1774 llvm::Value*
1775 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1776  LValue InputValue, QualType InputType,
1777  std::string &ConstraintStr,
1778  SourceLocation Loc) {
1779  llvm::Value *Arg;
1780  if (Info.allowsRegister() || !Info.allowsMemory()) {
1782  Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1783  } else {
1784  llvm::Type *Ty = ConvertType(InputType);
1785  uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1786  if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1787  Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1788  Ty = llvm::PointerType::getUnqual(Ty);
1789 
1790  Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1791  Ty));
1792  } else {
1793  Arg = InputValue.getPointer();
1794  ConstraintStr += '*';
1795  }
1796  }
1797  } else {
1798  Arg = InputValue.getPointer();
1799  ConstraintStr += '*';
1800  }
1801 
1802  return Arg;
1803 }
1804 
1805 llvm::Value* CodeGenFunction::EmitAsmInput(
1806  const TargetInfo::ConstraintInfo &Info,
1807  const Expr *InputExpr,
1808  std::string &ConstraintStr) {
1809  // If this can't be a register or memory, i.e., has to be a constant
1810  // (immediate or symbolic), try to emit it as such.
1811  if (!Info.allowsRegister() && !Info.allowsMemory()) {
1812  llvm::APSInt Result;
1813  if (InputExpr->EvaluateAsInt(Result, getContext()))
1814  return llvm::ConstantInt::get(getLLVMContext(), Result);
1815  assert(!Info.requiresImmediateConstant() &&
1816  "Required-immediate inlineasm arg isn't constant?");
1817  }
1818 
1819  if (Info.allowsRegister() || !Info.allowsMemory())
1821  return EmitScalarExpr(InputExpr);
1822  if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1823  return EmitScalarExpr(InputExpr);
1824  InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1825  LValue Dest = EmitLValue(InputExpr);
1826  return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1827  InputExpr->getExprLoc());
1828 }
1829 
1830 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1831 /// asm call instruction. The !srcloc MDNode contains a list of constant
1832 /// integers which are the source locations of the start of each line in the
1833 /// asm.
1834 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1835  CodeGenFunction &CGF) {
1837  // Add the location of the first line to the MDNode.
1838  Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1839  CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
1840  StringRef StrVal = Str->getString();
1841  if (!StrVal.empty()) {
1842  const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1843  const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1844  unsigned StartToken = 0;
1845  unsigned ByteOffset = 0;
1846 
1847  // Add the location of the start of each subsequent line of the asm to the
1848  // MDNode.
1849  for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1850  if (StrVal[i] != '\n') continue;
1851  SourceLocation LineLoc = Str->getLocationOfByte(
1852  i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1853  Locs.push_back(llvm::ConstantAsMetadata::get(
1854  llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1855  }
1856  }
1857 
1858  return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1859 }
1860 
1862  // Assemble the final asm string.
1863  std::string AsmString = S.generateAsmString(getContext());
1864 
1865  // Get all the output and input constraints together.
1866  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1867  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1868 
1869  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1870  StringRef Name;
1871  if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1872  Name = GAS->getOutputName(i);
1874  bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1875  assert(IsValid && "Failed to parse output constraint");
1876  OutputConstraintInfos.push_back(Info);
1877  }
1878 
1879  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1880  StringRef Name;
1881  if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1882  Name = GAS->getInputName(i);
1884  bool IsValid =
1885  getTarget().validateInputConstraint(OutputConstraintInfos, Info);
1886  assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1887  InputConstraintInfos.push_back(Info);
1888  }
1889 
1890  std::string Constraints;
1891 
1892  std::vector<LValue> ResultRegDests;
1893  std::vector<QualType> ResultRegQualTys;
1894  std::vector<llvm::Type *> ResultRegTypes;
1895  std::vector<llvm::Type *> ResultTruncRegTypes;
1896  std::vector<llvm::Type *> ArgTypes;
1897  std::vector<llvm::Value*> Args;
1898 
1899  // Keep track of inout constraints.
1900  std::string InOutConstraints;
1901  std::vector<llvm::Value*> InOutArgs;
1902  std::vector<llvm::Type*> InOutArgTypes;
1903 
1904  // An inline asm can be marked readonly if it meets the following conditions:
1905  // - it doesn't have any sideeffects
1906  // - it doesn't clobber memory
1907  // - it doesn't return a value by-reference
1908  // It can be marked readnone if it doesn't have any input memory constraints
1909  // in addition to meeting the conditions listed above.
1910  bool ReadOnly = true, ReadNone = true;
1911 
1912  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1913  TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1914 
1915  // Simplify the output constraint.
1916  std::string OutputConstraint(S.getOutputConstraint(i));
1917  OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1918  getTarget());
1919 
1920  const Expr *OutExpr = S.getOutputExpr(i);
1921  OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1922 
1923  OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1924  getTarget(), CGM, S,
1925  Info.earlyClobber());
1926 
1927  LValue Dest = EmitLValue(OutExpr);
1928  if (!Constraints.empty())
1929  Constraints += ',';
1930 
1931  // If this is a register output, then make the inline asm return it
1932  // by-value. If this is a memory result, return the value by-reference.
1933  if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1934  Constraints += "=" + OutputConstraint;
1935  ResultRegQualTys.push_back(OutExpr->getType());
1936  ResultRegDests.push_back(Dest);
1937  ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1938  ResultTruncRegTypes.push_back(ResultRegTypes.back());
1939 
1940  // If this output is tied to an input, and if the input is larger, then
1941  // we need to set the actual result type of the inline asm node to be the
1942  // same as the input type.
1943  if (Info.hasMatchingInput()) {
1944  unsigned InputNo;
1945  for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1946  TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1947  if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1948  break;
1949  }
1950  assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1951 
1952  QualType InputTy = S.getInputExpr(InputNo)->getType();
1953  QualType OutputType = OutExpr->getType();
1954 
1955  uint64_t InputSize = getContext().getTypeSize(InputTy);
1956  if (getContext().getTypeSize(OutputType) < InputSize) {
1957  // Form the asm to return the value as a larger integer or fp type.
1958  ResultRegTypes.back() = ConvertType(InputTy);
1959  }
1960  }
1961  if (llvm::Type* AdjTy =
1962  getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1963  ResultRegTypes.back()))
1964  ResultRegTypes.back() = AdjTy;
1965  else {
1966  CGM.getDiags().Report(S.getAsmLoc(),
1967  diag::err_asm_invalid_type_in_input)
1968  << OutExpr->getType() << OutputConstraint;
1969  }
1970  } else {
1971  ArgTypes.push_back(Dest.getAddress().getType());
1972  Args.push_back(Dest.getPointer());
1973  Constraints += "=*";
1974  Constraints += OutputConstraint;
1975  ReadOnly = ReadNone = false;
1976  }
1977 
1978  if (Info.isReadWrite()) {
1979  InOutConstraints += ',';
1980 
1981  const Expr *InputExpr = S.getOutputExpr(i);
1982  llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1983  InOutConstraints,
1984  InputExpr->getExprLoc());
1985 
1986  if (llvm::Type* AdjTy =
1987  getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1988  Arg->getType()))
1989  Arg = Builder.CreateBitCast(Arg, AdjTy);
1990 
1991  if (Info.allowsRegister())
1992  InOutConstraints += llvm::utostr(i);
1993  else
1994  InOutConstraints += OutputConstraint;
1995 
1996  InOutArgTypes.push_back(Arg->getType());
1997  InOutArgs.push_back(Arg);
1998  }
1999  }
2000 
2001  // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2002  // to the return value slot. Only do this when returning in registers.
2003  if (isa<MSAsmStmt>(&S)) {
2004  const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2005  if (RetAI.isDirect() || RetAI.isExtend()) {
2006  // Make a fake lvalue for the return value slot.
2007  LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2009  *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2010  ResultRegDests, AsmString, S.getNumOutputs());
2011  SawAsmBlock = true;
2012  }
2013  }
2014 
2015  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2016  const Expr *InputExpr = S.getInputExpr(i);
2017 
2018  TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2019 
2020  if (Info.allowsMemory())
2021  ReadNone = false;
2022 
2023  if (!Constraints.empty())
2024  Constraints += ',';
2025 
2026  // Simplify the input constraint.
2027  std::string InputConstraint(S.getInputConstraint(i));
2028  InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2029  &OutputConstraintInfos);
2030 
2031  InputConstraint = AddVariableConstraints(
2032  InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2033  getTarget(), CGM, S, false /* No EarlyClobber */);
2034 
2035  llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2036 
2037  // If this input argument is tied to a larger output result, extend the
2038  // input to be the same size as the output. The LLVM backend wants to see
2039  // the input and output of a matching constraint be the same size. Note
2040  // that GCC does not define what the top bits are here. We use zext because
2041  // that is usually cheaper, but LLVM IR should really get an anyext someday.
2042  if (Info.hasTiedOperand()) {
2043  unsigned Output = Info.getTiedOperand();
2044  QualType OutputType = S.getOutputExpr(Output)->getType();
2045  QualType InputTy = InputExpr->getType();
2046 
2047  if (getContext().getTypeSize(OutputType) >
2048  getContext().getTypeSize(InputTy)) {
2049  // Use ptrtoint as appropriate so that we can do our extension.
2050  if (isa<llvm::PointerType>(Arg->getType()))
2051  Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2052  llvm::Type *OutputTy = ConvertType(OutputType);
2053  if (isa<llvm::IntegerType>(OutputTy))
2054  Arg = Builder.CreateZExt(Arg, OutputTy);
2055  else if (isa<llvm::PointerType>(OutputTy))
2056  Arg = Builder.CreateZExt(Arg, IntPtrTy);
2057  else {
2058  assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2059  Arg = Builder.CreateFPExt(Arg, OutputTy);
2060  }
2061  }
2062  }
2063  if (llvm::Type* AdjTy =
2064  getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
2065  Arg->getType()))
2066  Arg = Builder.CreateBitCast(Arg, AdjTy);
2067  else
2068  CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2069  << InputExpr->getType() << InputConstraint;
2070 
2071  ArgTypes.push_back(Arg->getType());
2072  Args.push_back(Arg);
2073  Constraints += InputConstraint;
2074  }
2075 
2076  // Append the "input" part of inout constraints last.
2077  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2078  ArgTypes.push_back(InOutArgTypes[i]);
2079  Args.push_back(InOutArgs[i]);
2080  }
2081  Constraints += InOutConstraints;
2082 
2083  // Clobbers
2084  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2085  StringRef Clobber = S.getClobber(i);
2086 
2087  if (Clobber == "memory")
2088  ReadOnly = ReadNone = false;
2089  else if (Clobber != "cc")
2090  Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2091 
2092  if (!Constraints.empty())
2093  Constraints += ',';
2094 
2095  Constraints += "~{";
2096  Constraints += Clobber;
2097  Constraints += '}';
2098  }
2099 
2100  // Add machine specific clobbers
2101  std::string MachineClobbers = getTarget().getClobbers();
2102  if (!MachineClobbers.empty()) {
2103  if (!Constraints.empty())
2104  Constraints += ',';
2105  Constraints += MachineClobbers;
2106  }
2107 
2108  llvm::Type *ResultType;
2109  if (ResultRegTypes.empty())
2110  ResultType = VoidTy;
2111  else if (ResultRegTypes.size() == 1)
2112  ResultType = ResultRegTypes[0];
2113  else
2114  ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2115 
2116  llvm::FunctionType *FTy =
2117  llvm::FunctionType::get(ResultType, ArgTypes, false);
2118 
2119  bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2120  llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2121  llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2122  llvm::InlineAsm *IA =
2123  llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2124  /* IsAlignStack */ false, AsmDialect);
2125  llvm::CallInst *Result = Builder.CreateCall(IA, Args);
2126  Result->addAttribute(llvm::AttributeList::FunctionIndex,
2127  llvm::Attribute::NoUnwind);
2128 
2129  // Attach readnone and readonly attributes.
2130  if (!HasSideEffect) {
2131  if (ReadNone)
2132  Result->addAttribute(llvm::AttributeList::FunctionIndex,
2133  llvm::Attribute::ReadNone);
2134  else if (ReadOnly)
2135  Result->addAttribute(llvm::AttributeList::FunctionIndex,
2136  llvm::Attribute::ReadOnly);
2137  }
2138 
2139  // Slap the source location of the inline asm into a !srcloc metadata on the
2140  // call.
2141  if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2142  Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2143  *this));
2144  } else {
2145  // At least put the line number on MS inline asm blobs.
2146  auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2147  Result->setMetadata("srcloc",
2148  llvm::MDNode::get(getLLVMContext(),
2149  llvm::ConstantAsMetadata::get(Loc)));
2150  }
2151 
2152  if (getLangOpts().assumeFunctionsAreConvergent()) {
2153  // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2154  // convergent (meaning, they may call an intrinsically convergent op, such
2155  // as bar.sync, and so can't have certain optimizations applied around
2156  // them).
2157  Result->addAttribute(llvm::AttributeList::FunctionIndex,
2158  llvm::Attribute::Convergent);
2159  }
2160 
2161  // Extract all of the register value results from the asm.
2162  std::vector<llvm::Value*> RegResults;
2163  if (ResultRegTypes.size() == 1) {
2164  RegResults.push_back(Result);
2165  } else {
2166  for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2167  llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2168  RegResults.push_back(Tmp);
2169  }
2170  }
2171 
2172  assert(RegResults.size() == ResultRegTypes.size());
2173  assert(RegResults.size() == ResultTruncRegTypes.size());
2174  assert(RegResults.size() == ResultRegDests.size());
2175  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2176  llvm::Value *Tmp = RegResults[i];
2177 
2178  // If the result type of the LLVM IR asm doesn't match the result type of
2179  // the expression, do the conversion.
2180  if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2181  llvm::Type *TruncTy = ResultTruncRegTypes[i];
2182 
2183  // Truncate the integer result to the right size, note that TruncTy can be
2184  // a pointer.
2185  if (TruncTy->isFloatingPointTy())
2186  Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2187  else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2188  uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2189  Tmp = Builder.CreateTrunc(Tmp,
2190  llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2191  Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2192  } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2193  uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2194  Tmp = Builder.CreatePtrToInt(Tmp,
2195  llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2196  Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2197  } else if (TruncTy->isIntegerTy()) {
2198  Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2199  } else if (TruncTy->isVectorTy()) {
2200  Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2201  }
2202  }
2203 
2204  EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2205  }
2206 }
2207 
2209  const RecordDecl *RD = S.getCapturedRecordDecl();
2210  QualType RecordTy = getContext().getRecordType(RD);
2211 
2212  // Initialize the captured struct.
2213  LValue SlotLV =
2214  MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2215 
2216  RecordDecl::field_iterator CurField = RD->field_begin();
2218  E = S.capture_init_end();
2219  I != E; ++I, ++CurField) {
2220  LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2221  if (CurField->hasCapturedVLAType()) {
2222  auto VAT = CurField->getCapturedVLAType();
2223  EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2224  } else {
2225  EmitInitializerForField(*CurField, LV, *I);
2226  }
2227  }
2228 
2229  return SlotLV;
2230 }
2231 
2232 /// Generate an outlined function for the body of a CapturedStmt, store any
2233 /// captured variables into the captured struct, and call the outlined function.
2234 llvm::Function *
2236  LValue CapStruct = InitCapturedStruct(S);
2237 
2238  // Emit the CapturedDecl
2239  CodeGenFunction CGF(CGM, true);
2240  CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2241  llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2242  delete CGF.CapturedStmtInfo;
2243 
2244  // Emit call to the helper function.
2245  EmitCallOrInvoke(F, CapStruct.getPointer());
2246 
2247  return F;
2248 }
2249 
2251  LValue CapStruct = InitCapturedStruct(S);
2252  return CapStruct.getAddress();
2253 }
2254 
2255 /// Creates the outlined function for a CapturedStmt.
2256 llvm::Function *
2258  assert(CapturedStmtInfo &&
2259  "CapturedStmtInfo should be set when generating the captured function");
2260  const CapturedDecl *CD = S.getCapturedDecl();
2261  const RecordDecl *RD = S.getCapturedRecordDecl();
2262  SourceLocation Loc = S.getLocStart();
2263  assert(CD->hasBody() && "missing CapturedDecl body");
2264 
2265  // Build the argument list.
2266  ASTContext &Ctx = CGM.getContext();
2267  FunctionArgList Args;
2268  Args.append(CD->param_begin(), CD->param_end());
2269 
2270  // Create the function declaration.
2271  const CGFunctionInfo &FuncInfo =
2272  CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2273  llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2274 
2275  llvm::Function *F =
2278  CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2279  if (CD->isNothrow())
2280  F->addFnAttr(llvm::Attribute::NoUnwind);
2281 
2282  // Generate the function.
2283  StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2284  CD->getLocation(),
2285  CD->getBody()->getLocStart());
2286  // Set the context parameter in CapturedStmtInfo.
2287  Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2289 
2290  // Initialize variable-length arrays.
2292  Ctx.getTagDeclType(RD));
2293  for (auto *FD : RD->fields()) {
2294  if (FD->hasCapturedVLAType()) {
2295  auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
2296  S.getLocStart()).getScalarVal();
2297  auto VAT = FD->getCapturedVLAType();
2298  VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2299  }
2300  }
2301 
2302  // If 'this' is captured, load it into CXXThisValue.
2305  LValue ThisLValue = EmitLValueForField(Base, FD);
2306  CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2307  }
2308 
2309  PGO.assignRegionCounters(GlobalDecl(CD), F);
2310  CapturedStmtInfo->EmitBody(*this, CD->getBody());
2312 
2313  return F;
2314 }
const CGFunctionInfo & arrangeBuiltinFunctionDeclaration(QualType resultType, const FunctionArgList &args)
A builtin function is a freestanding function using the default C conventions.
Definition: CGCall.cpp:640
bool isAggregate() const
Definition: CGValue.h:54
const llvm::DataLayout & getDataLayout() const
Expr * getInc()
Definition: Stmt.h:1237
void EmitIndirectGotoStmt(const IndirectGotoStmt &S)
Definition: CGStmt.cpp:572
void EmitCoroutineBody(const CoroutineBodyStmt &S)
virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S)
Emit the captured statement body.
This represents a GCC inline-assembly statement extension.
Definition: Stmt.h:1616
Stmt * body_back()
Definition: Stmt.h:628
const Stmt * getElse() const
Definition: Stmt.h:969
body_iterator body_end()
Definition: Stmt.h:626
void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S)
unsigned getNumInputs() const
Definition: Stmt.h:1532
unsigned getRawEncoding() const
When a SourceLocation itself cannot be used, this returns an (opaque) 32-bit integer encoding for it...
A (possibly-)qualified type.
Definition: Type.h:653
capture_init_iterator capture_init_begin()
Retrieve the first initialization argument.
Definition: Stmt.h:2228
void EmitSEHLeaveStmt(const SEHLeaveStmt &S)
llvm::Type * ConvertTypeForMem(QualType T)
void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, uint64_t TrueCount)
EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g.
const CodeGenOptions & getCodeGenOpts() const
static CSFC_Result CollectStatementsForCase(const Stmt *S, const SwitchCase *Case, bool &FoundCase, SmallVectorImpl< const Stmt *> &ResultStmts)
Definition: CGStmt.cpp:1334
void EmitGotoStmt(const GotoStmt &S)
Definition: CGStmt.cpp:561
void EmitAttributedStmt(const AttributedStmt &S)
Definition: CGStmt.cpp:557
param_iterator param_begin() const
Retrieve an iterator pointing to the first parameter decl.
Definition: Decl.h:3940
Expr * getCond()
Definition: Stmt.h:1127
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
void EmitOMPDistributeDirective(const OMPDistributeDirective &S)
void EmitCXXTryStmt(const CXXTryStmt &S)
Stmt - This represents one statement.
Definition: Stmt.h:66
IfStmt - This represents an if/then/else.
Definition: Stmt.h:929
SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, const TargetInfo &Target, unsigned *StartToken=nullptr, unsigned *StartTokenByteOffset=nullptr) const
getLocationOfByte - Return a source location that points to the specified byte of this string literal...
Definition: Expr.cpp:1040
static stable_iterator stable_end()
Create a stable reference to the bottom of the EH stack.
Definition: EHScopeStack.h:384
bool requiresCleanups() const
Determine whether this scope requires any cleanups.
StorageClass getStorageClass() const
Returns the storage class as written in the source.
Definition: Decl.h:1010
void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S)
unsigned getNumOutputs() const
Definition: Stmt.h:1510
Defines the PrettyStackTraceEntry class, which is used to make crashes give more contextual informati...
bool isNothrow() const
Definition: Decl.cpp:4252
llvm::Value * getTypeSize(QualType Ty)
Returns calculated size of the specified type.
Represents an attribute applied to a statement.
Definition: Stmt.h:878
void EmitAutoVarDecl(const VarDecl &D)
EmitAutoVarDecl - Emit an auto variable declaration.
Definition: CGDecl.cpp:929
void EmitOMPOrderedDirective(const OMPOrderedDirective &S)
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
Definition: CGExpr.cpp:1836
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
Address GenerateCapturedStmtArgument(const CapturedStmt &S)
Definition: CGStmt.cpp:2250
bool validateInputConstraint(MutableArrayRef< ConstraintInfo > OutputConstraints, ConstraintInfo &info) const
Definition: TargetInfo.cpp:577
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1207
const RecordDecl * getCapturedRecordDecl() const
Retrieve the record declaration for captured variables.
Definition: Stmt.h:2172
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:379
llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, ArrayRef< llvm::Value *> Args, const Twine &Name="")
Emits a call or invoke instruction to the given function, depending on the current state of the EH st...
Definition: CGCall.cpp:3677
SourceLocation getLocStart() const LLVM_READONLY
Definition: Expr.h:1645
LValue EmitLValueForFieldInitialization(LValue Base, const FieldDecl *Field)
EmitLValueForFieldInitialization - Like EmitLValueForField, except that if the Field is a reference...
Definition: CGExpr.cpp:3847
SourceLocation getLocStart() const LLVM_READONLY
Definition: Stmt.h:1443
bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, bool AllowLabels=false)
ConstantFoldsToSimpleInteger - If the specified expression does not fold to a constant, or if it does but contains a label, return false.
Represents a point when we exit a loop.
Definition: ProgramPoint.h:664
VarDecl * getConditionVariable() const
Retrieve the variable declared in this "while" statement, if any.
Definition: Stmt.cpp:897
bool empty() const
Determines whether the exception-scopes stack is empty.
Definition: EHScopeStack.h:345
void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S)
Stmt * getSubStmt()
Definition: Stmt.h:811
bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
EvaluateAsInt - Return true if this is a constant which we can fold and convert to an integer...
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
VarDecl - An instance of this class is created to represent a variable declaration or definition...
Definition: Decl.h:807
void EmitOMPCriticalDirective(const OMPCriticalDirective &S)
const VarDecl * getNRVOCandidate() const
Retrieve the variable that might be used for the named return value optimization. ...
Definition: Stmt.h:1440
uint64_t getProfileCount(const Stmt *S)
Get the profiler&#39;s count for the given statement.
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:53
static bool mightAddDeclToScope(const Stmt *S)
Determine if the given statement might introduce a declaration into the current scope, by being a (possibly-labelled) DeclStmt.
DiagnosticsEngine & getDiags() const
void EmitLabel(const LabelDecl *D)
EmitLabel - Emit the block for the given label.
Definition: CGStmt.cpp:502
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3000
void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S)
VarDecl * getConditionVariable() const
Retrieve the variable declared in this "switch" statement, if any.
Definition: Stmt.cpp:863
void SimplifyForwardingBlocks(llvm::BasicBlock *BB)
SimplifyForwardingBlocks - If the given basic block is only a branch to another basic block...
Definition: CGStmt.cpp:414
The collection of all-type qualifiers we support.
Definition: Type.h:152
A jump destination is an abstract label, branching to which may require a jump out through normal cle...
void EmitOMPTargetTeamsDistributeParallelForSimdDirective(const OMPTargetTeamsDistributeParallelForSimdDirective &S)
bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const
isObviouslyBranchWithoutCleanups - Return true if a branch to the specified destination obviously has...
Definition: CGCleanup.cpp:1009
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:839
void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S)
JumpDest getJumpDestForLabel(const LabelDecl *S)
getBasicBlockForLabel - Return the LLVM basicblock that the specified label maps to.
Definition: CGStmt.cpp:491
RecordDecl - Represents a struct/union/class.
Definition: Decl.h:3482
const TargetInfo & getTarget() const
void EmitOMPSimdDirective(const OMPSimdDirective &S)
Stmt * getBody()
Definition: Stmt.h:1175
void setScopeDepth(EHScopeStack::stable_iterator depth)
Address getAddress() const
Definition: CGValue.h:324
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:149
StringRef getNormalizedGCCRegisterName(StringRef Name, bool ReturnCanonical=false) const
Returns the "normalized" GCC register name.
Definition: TargetInfo.cpp:439
RValue EmitReferenceBindingToExpr(const Expr *E)
Emits a reference binding to the passed in expression.
Definition: CGExpr.cpp:531
field_range fields() const
Definition: Decl.h:3613
FieldDecl - An instance of this class is created by Sema::ActOnField to represent a member of a struc...
Definition: Decl.h:2461
ImplicitParamDecl * getContextParam() const
Retrieve the parameter containing captured variables.
Definition: Decl.h:3925
void rescopeLabels()
Change the cleanup scope of the labels in this lexical scope to match the scope of the enclosing cont...
Definition: CGStmt.cpp:530
static bool FindCaseStatementsForValue(const SwitchStmt &S, const llvm::APSInt &ConstantCondValue, SmallVectorImpl< const Stmt *> &ResultStmts, ASTContext &C, const SwitchCase *&ResultCase)
FindCaseStatementsForValue - Find the case statement being jumped to and then invoke CollectStatement...
Definition: CGStmt.cpp:1489
const Expr * getRetValue() const
Definition: Stmt.cpp:925
bool isReferenceType() const
Definition: Type.h:5956
void EmitForStmt(const ForStmt &S, ArrayRef< const Attr *> Attrs=None)
Definition: CGStmt.cpp:820
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:48
void EmitOMPDistributeParallelForSimdDirective(const OMPDistributeParallelForSimdDirective &S)
void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init)
Definition: CGClass.cpp:657
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition: CGExpr.cpp:173
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:1308
Stmt * getBody() const override
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: Decl.cpp:4249
static bool hasScalarEvaluationKind(QualType T)
bool hasMatchingInput() const
Return true if this output operand has a matching (tied) input operand.
Definition: TargetInfo.h:668
Expr *const * const_capture_init_iterator
Const iterator that walks over the capture initialization arguments.
Definition: Stmt.h:2215
void EmitOMPTargetTeamsDistributeSimdDirective(const OMPTargetTeamsDistributeSimdDirective &S)
ForStmt - This represents a &#39;for (init;cond;inc)&#39; stmt.
Definition: Stmt.h:1203
void pop()
End the current loop.
Definition: CGLoopInfo.cpp:281
LabelDecl * getDecl() const
Definition: Stmt.h:856
SourceLocation getLBracLoc() const
Definition: Stmt.h:677
void EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S)
RAII for correct setting/restoring of CapturedStmtInfo.
const Expr * getOutputExpr(unsigned i) const
Definition: Stmt.cpp:366
param_iterator param_end() const
Retrieve an iterator one past the last parameter decl.
Definition: Decl.h:3942
Stmt * getBody()
Definition: Stmt.h:1238
void EmitOMPTeamsDistributeParallelForSimdDirective(const OMPTeamsDistributeParallelForSimdDirective &S)
void EmitContinueStmt(const ContinueStmt &S)
Definition: CGStmt.cpp:1116
void EmitOMPTargetDirective(const OMPTargetDirective &S)
bool hasNormalCleanups() const
Determines whether there are any normal cleanups on the stack.
Definition: EHScopeStack.h:350
Stmt * getInit()
Definition: Stmt.h:1217
CXXForRangeStmt - This represents C++0x [stmt.ranged]&#39;s ranged for statement, represented as &#39;for (ra...
Definition: StmtCXX.h:128
bool IsOutlinedSEHHelper
True if the current function is an outlined SEH helper.
ABIArgInfo - Helper class to encapsulate information about how a specific C type should be passed to ...
void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S)
void EmitSwitchStmt(const SwitchStmt &S)
Definition: CGStmt.cpp:1542
If a crash happens while one of these objects are live, the message is printed out along with the spe...
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:39
field_iterator field_begin() const
Definition: Decl.cpp:3937
Expr * getCond()
Definition: Stmt.h:1236
void EmitOMPParallelDirective(const OMPParallelDirective &S)
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
void EmitIgnoredExpr(const Expr *E)
EmitIgnoredExpr - Emit an expression in a context which ignores the result.
Definition: CGExpr.cpp:161
void assignRegionCounters(GlobalDecl GD, llvm::Function *Fn)
Assign counters to regions and configure them for PGO of a given function.
Definition: CodeGenPGO.cpp:753
llvm::Function * EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K)
Generate an outlined function for the body of a CapturedStmt, store any captured variables into the c...
Definition: CGStmt.cpp:2235
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
void EmitDefaultStmt(const DefaultStmt &S)
Definition: CGStmt.cpp:1292
static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts=false)
ContainsLabel - Return true if the statement contains a label in it.
void EmitCaseStmtRange(const CaseStmt &S)
EmitCaseStmtRange - If case statement range is not too big then add multiple cases to switch instruct...
Definition: CGStmt.cpp:1131
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler&#39;s counter for the given statement by StepV.
uint64_t getCurrentProfileCount()
Get the profiler&#39;s current count.
This represents the body of a CapturedStmt, and serves as its DeclContext.
Definition: Decl.h:3860
VarDecl * getConditionVariable() const
Retrieve the variable declared in this "for" statement, if any.
Definition: Stmt.cpp:835
Address getAggregateAddress() const
getAggregateAddr() - Return the Value* of the address of the aggregate.
Definition: CGValue.h:71
bool isValidGCCRegisterName(StringRef Name) const
Returns whether the passed in string is a valid register name according to GCC.
Definition: TargetInfo.cpp:394
Stmt * getInit()
Definition: Stmt.h:962
LValue EmitLValueForField(LValue Base, const FieldDecl *Field)
Definition: CGExpr.cpp:3733
bool isValid() const
Definition: Address.h:36
StringRef getString() const
Definition: Expr.h:1557
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:595
void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S)
const TargetCodeGenInfo & getTargetCodeGenInfo()
Expr * IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY
IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the value (including ptr->int ...
Definition: Expr.cpp:2583
void EmitAnyExprToMem(const Expr *E, Address Location, Qualifiers Quals, bool IsInitializer)
EmitAnyExprToMem - Emits the code necessary to evaluate an arbitrary expression into the given memory...
Definition: CGExpr.cpp:202
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
bool isConstexpr() const
Definition: Stmt.h:981
llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx, SmallVectorImpl< PartialDiagnosticAt > *Diag=nullptr) const
EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded integer.
std::string generateAsmString(const ASTContext &C) const
Assemble final IR asm string.
Definition: Stmt.cpp:350
Exposes information about the current target.
Definition: TargetInfo.h:54
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
EHScopeStack::stable_iterator getScopeDepth() const
ValueDecl - Represent the declaration of a variable (in which case it is an lvalue) a function (in wh...
Definition: Decl.h:628
Expr - This represents one expression.
Definition: Expr.h:106
DeclStmt * getEndStmt()
Definition: StmtCXX.h:158
static Address invalid()
Definition: Address.h:35
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
void EmitCaseStmt(const CaseStmt &S)
Definition: CGStmt.cpp:1209
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
Definition: CGValue.h:66
void EmitOMPTeamsDirective(const OMPTeamsDirective &S)
void SetInternalFunctionAttributes(const Decl *D, llvm::Function *F, const CGFunctionInfo &FI)
Set the attributes on the LLVM function for the given decl and function info.
const Stmt * getThen() const
Definition: Stmt.h:967
Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
EmitCompoundStmt - Emit a compound statement {..} node.
Definition: CGStmt.cpp:363
LabelDecl * getConstantTarget()
getConstantTarget - Returns the fixed target of this indirect goto, if one exists.
Definition: Stmt.cpp:917
Stmt * getBody()
Definition: Stmt.h:1130
void EmitSEHTryStmt(const SEHTryStmt &S)
Expr * getRHS()
Definition: Stmt.h:762
static llvm::MDNode * getAsmSrcLocInfo(const StringLiteral *Str, CodeGenFunction &CGF)
getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline asm call instruction...
Definition: CGStmt.cpp:1834
llvm::LLVMContext & getLLVMContext()
llvm::BasicBlock * GetIndirectGotoBlock()
QualType getType() const
Definition: Expr.h:128
void EmitOMPMasterDirective(const OMPMasterDirective &S)
LabelDecl * getLabel() const
Definition: Stmt.h:1286
llvm::Function * GenerateCapturedStmtFunction(const CapturedStmt &S)
Creates the outlined function for a CapturedStmt.
Definition: CGStmt.cpp:2257
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:1413
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T)
QualType getRecordType(const RecordDecl *Decl) const
void ResolveBranchFixups(llvm::BasicBlock *Target)
Definition: CGCleanup.cpp:381
SourceLocation getEnd() const
void EmitOMPBarrierDirective(const OMPBarrierDirective &S)
StringRef getClobber(unsigned i) const
Definition: Stmt.cpp:390
ValueDecl * getDecl()
Definition: Expr.h:1041
const LangOptions & getLangOpts() const
ASTContext & getContext() const
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, IsZeroed_t isZeroed=IsNotZeroed)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:495
Stmt *const * const_body_iterator
Definition: Stmt.h:635
llvm::StoreInst * CreateFlagStore(bool Value, llvm::Value *Addr)
Emit a store to an i1 flag variable.
Definition: CGBuilder.h:136
const SourceManager & SM
Definition: Format.cpp:1337
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:35
DoStmt - This represents a &#39;do/while&#39; stmt.
Definition: Stmt.h:1154
AsmStmt is the base class for GCCAsmStmt and MSAsmStmt.
Definition: Stmt.h:1461
void EmitDeclStmt(const DeclStmt &S)
Definition: CGStmt.cpp:1094
virtual bool hasBody() const
Returns true if this Decl represents a declaration for a body of code, such as a function or method d...
Definition: DeclBase.h:980
The l-value was considered opaque, so the alignment was determined from a type.
void EmitOMPFlushDirective(const OMPFlushDirective &S)
bool SawAsmBlock
Whether we processed a Microsoft-style asm block during CodeGen.
Address CreateBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Definition: CGBuilder.h:142
void disableSanitizerForGlobal(llvm::GlobalVariable *GV)
StringRef getInputConstraint(unsigned i) const
getInputConstraint - Return the specified input constraint.
Definition: Stmt.cpp:374
This captures a statement into a function.
Definition: Stmt.h:2054
StringRef getOutputConstraint(unsigned i) const
getOutputConstraint - Return the constraint string for the specified output operand.
Definition: Stmt.cpp:358
Encodes a location in the source.
void EmitDoStmt(const DoStmt &S, ArrayRef< const Attr *> Attrs=None)
Definition: CGStmt.cpp:758
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go...
void EmitOMPForDirective(const OMPForDirective &S)
A saved depth on the scope stack.
Definition: EHScopeStack.h:107
llvm::Value * EvaluateExprAsBool(const Expr *E)
EvaluateExprAsBool - Perform the usual unary conversions on the specified expression and compare the ...
Definition: CGExpr.cpp:143
const SwitchCase * getSwitchCaseList() const
Definition: Stmt.h:1047
Expr * getLHS()
Definition: Stmt.h:761
void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S)
Definition: CGObjC.cpp:1472
ArrayRef< const Attr * > getAttrs() const
Definition: Stmt.h:911
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:487
LabelDecl - Represents the declaration of a label.
Definition: Decl.h:460
An aggregate value slot.
Definition: CGValue.h:434
void EmitStmt(const Stmt *S, ArrayRef< const Attr *> Attrs=None)
EmitStmt - Emit the code for the statement.
Definition: CGStmt.cpp:48
void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S)
void EmitOMPTargetParallelForSimdDirective(const OMPTargetParallelForSimdDirective &S)
bool validateOutputConstraint(ConstraintInfo &Info) const
Definition: TargetInfo.cpp:480
void EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S)
void EmitOMPSingleDirective(const OMPSingleDirective &S)
An aligned address.
Definition: Address.h:25
void StartFunction(GlobalDecl GD, QualType RetTy, llvm::Function *Fn, const CGFunctionInfo &FnInfo, const FunctionArgList &Args, SourceLocation Loc=SourceLocation(), SourceLocation StartLoc=SourceLocation())
Emit code for the start of a function.
void EmitOMPForSimdDirective(const OMPForSimdDirective &S)
void EmitOMPAtomicDirective(const OMPAtomicDirective &S)
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target)
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
void EmitOMPSectionDirective(const OMPSectionDirective &S)
void EmitOMPSectionsDirective(const OMPSectionsDirective &S)
void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S)
const CGFunctionInfo * CurFnInfo
void enterFullExpression(const ExprWithCleanups *E)
void EmitDecl(const Decl &D)
EmitDecl - Emit a declaration.
Definition: CGDecl.cpp:41
const TargetCodeGenInfo & getTargetHooks() const
void FinishFunction(SourceLocation EndLoc=SourceLocation())
FinishFunction - Complete IR generation of the current function.
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
void EmitWhileStmt(const WhileStmt &S, ArrayRef< const Attr *> Attrs=None)
Definition: CGStmt.cpp:670
FunctionArgList - Type for representing both the decl and type of parameters to a function...
Definition: CGCall.h:276
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition: CGValue.h:59
LabelStmt * getStmt() const
Definition: Decl.h:484
void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S)
Definition: CGObjC.cpp:1769
void ErrorUnsupported(const Stmt *S, const char *Type)
Print out an error that codegen doesn&#39;t support the specified stmt yet.
VarDecl * getConditionVariable() const
Retrieve the variable declared in this "if" statement, if any.
Definition: Stmt.cpp:800
CGFunctionInfo - Class to encapsulate the information about a function definition.
This class organizes the cross-function state that is used while generating LLVM code.
void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S)
Dataflow Directional Tag Classes.
bool isVolatile() const
Definition: Stmt.h:1497
void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S)
LValue InitCapturedStruct(const CapturedStmt &S)
Definition: CGStmt.cpp:2208
void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S)
void EmitOMPParallelForDirective(const OMPParallelForDirective &S)
CSFC_Result
CollectStatementsForCase - Given the body of a &#39;switch&#39; statement and a constant value that is being ...
Definition: CGStmt.cpp:1333
void push(llvm::BasicBlock *Header, const llvm::DebugLoc &StartLoc, const llvm::DebugLoc &EndLoc)
Begin a new structured loop.
void EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S)
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:70
StmtClass getStmtClass() const
Definition: Stmt.h:378
void EmitOMPTeamsDistributeParallelForDirective(const OMPTeamsDistributeParallelForDirective &S)
void EmitAggregateCopy(Address DestPtr, Address SrcPtr, QualType EltTy, bool isVolatile=false, bool isAssignment=false)
EmitAggregateCopy - Emit an aggregate copy.
Definition: CGExprAgg.cpp:1544
void EmitOMPCancelDirective(const OMPCancelDirective &S)
bool hasTiedOperand() const
Return true if this input operand is a matching constraint that ties it to an output operand...
Definition: TargetInfo.h:675
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:108
llvm::Module & getModule() const
void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S)
Definition: CGObjC.cpp:1765
body_iterator body_begin()
Definition: Stmt.h:625
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
bool hasProfileClangInstr() const
Check if Clang profile instrumenation is on.
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:1596
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type. ...
Definition: CGExprAgg.cpp:1522
void EmitCoreturnStmt(const CoreturnStmt &S)
const Stmt * getBody() const
Definition: Stmt.h:1046
JumpDest ReturnBlock
ReturnBlock - Unified return block.
virtual StringRef getHelperName() const
Get the name of the capture helper.
static bool hasAggregateEvaluationKind(QualType T)
SwitchStmt - This represents a &#39;switch&#39; stmt.
Definition: Stmt.h:1007
API for captured statement code generation.
static std::string SimplifyConstraint(const char *Constraint, const TargetInfo &Target, SmallVectorImpl< TargetInfo::ConstraintInfo > *OutCons=nullptr)
Definition: CGStmt.cpp:1691
void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S)
When instrumenting to collect profile data, the counts for some blocks such as switch cases need to n...
bool resolveSymbolicName(const char *&Name, ArrayRef< ConstraintInfo > OutputConstraints, unsigned &Index) const
Definition: TargetInfo.cpp:554
llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location)
Converts Location to a DebugLoc, if debug information is enabled.
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
T * getAttr() const
Definition: DeclBase.h:531
void EmitAsmStmt(const AsmStmt &S)
Definition: CGStmt.cpp:1861
static std::string AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, const TargetInfo &Target, CodeGenModule &CGM, const AsmStmt &Stmt, const bool EarlyClobber)
AddVariableConstraints - Look at AsmExpr and if it is a variable declared as using a particular regis...
Definition: CGStmt.cpp:1744
Stmt * getInit()
Definition: Stmt.h:1042
decl_range decls()
Definition: Stmt.h:534
const Expr * getInputExpr(unsigned i) const
Definition: Stmt.cpp:382
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition: Linkage.h:33
SourceLocation getLocStart() const LLVM_READONLY
Definition: Stmt.h:2246
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:436
void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S)
unsigned getNumClobbers() const
Definition: Stmt.h:1542
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2007
SourceManager & getSourceManager()
Definition: ASTContext.h:643
void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S)
DeclStmt * getRangeStmt()
Definition: StmtCXX.h:154
void EmitStopPoint(const Stmt *S)
EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
Definition: CGStmt.cpp:38
SourceLocation getAsmLoc() const
Definition: Stmt.h:1491
GotoStmt - This represents a direct goto.
Definition: Stmt.h:1274
Expr * getTarget()
Definition: Stmt.h:1328
const SwitchCase * getNextSwitchCase() const
Definition: Stmt.h:710
CapturedDecl * getCapturedDecl()
Retrieve the outlined function declaration.
Definition: Stmt.cpp:1097
void setCurrentStmt(const Stmt *S)
If the execution count for the current statement is known, record that as the current count...
Definition: CodeGenPGO.h:75
Expr * getCond()
Definition: Stmt.h:1172
llvm::DenseMap< const VarDecl *, llvm::Value * > NRVOFlags
A mapping from NRVO variables to the flags used to indicate when the NRVO has been applied to this va...
void EmitOMPTargetTeamsDistributeDirective(const OMPTargetTeamsDistributeDirective &S)
void EmitIfStmt(const IfStmt &S)
Definition: CGStmt.cpp:593
ContinueStmt - This represents a continue.
Definition: Stmt.h:1351
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block, taking care to avoid creation of branches from dummy blocks.
Definition: CGStmt.cpp:456
bool isNRVOVariable() const
Determine whether this local variable can be used with the named return value optimization (NRVO)...
Definition: Decl.h:1318
bool isVoidType() const
Definition: Type.h:6171
void EmitReturnStmt(const ReturnStmt &S)
EmitReturnStmt - Note that due to GCC extensions, this can have an operand if the function returns vo...
Definition: CGStmt.cpp:1010
llvm::Type * ConvertType(QualType T)
virtual llvm::Type * adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type *Ty) const
Corrects the low-level LLVM type for a given constraint and "usual" type.
Definition: TargetInfo.h:129
WhileStmt - This represents a &#39;while&#39; stmt.
Definition: Stmt.h:1098
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1170
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
void EmitLabelStmt(const LabelStmt &S)
Definition: CGStmt.cpp:552
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:265
RValue EmitLoadOfLValue(LValue V, SourceLocation Loc)
EmitLoadOfLValue - Given an expression that represents a value lvalue, this method emits the address ...
Definition: CGExpr.cpp:1682
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1509
Defines the clang::TargetInfo interface.
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2209
StringRef getName() const
getName - Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:270
virtual void addReturnRegisterOutputs(CodeGen::CodeGenFunction &CGF, CodeGen::LValue ReturnValue, std::string &Constraints, std::vector< llvm::Type *> &ResultRegTypes, std::vector< llvm::Type *> &ResultTruncRegTypes, std::vector< CodeGen::LValue > &ResultRegDests, std::string &AsmString, unsigned NumOutputs) const
Adds constraints and types for result registers.
Definition: TargetInfo.h:136
CGCapturedStmtInfo * CapturedStmtInfo
void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S)
bool isEvaluatable(const ASTContext &Ctx, SideEffectsKind AllowSideEffects=SE_NoSideEffects) const
isEvaluatable - Call EvaluateAsRValue to see if this expression can be constant folded without side-e...
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:956
static RValue get(llvm::Value *V)
Definition: CGValue.h:86
bool EmitSimpleStmt(const Stmt *S)
EmitSimpleStmt - Try to emit a "simple" statement which does not necessarily require an insertion poi...
Definition: CGStmt.cpp:340
BreakStmt - This represents a break.
Definition: Stmt.h:1377
void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S)
CapturedRegionKind
The different kinds of captured statement.
Definition: CapturedStmt.h:17
void EmitBranchThroughCleanup(JumpDest Dest)
EmitBranchThroughCleanup - Emit a branch from the current insert block through the normal cleanup han...
Definition: CGCleanup.cpp:1034
static ApplyDebugLocation CreateEmpty(CodeGenFunction &CGF)
Set the IRBuilder to not attach debug locations.
Definition: CGDebugInfo.h:668
llvm::Constant * EmitCheckSourceLocation(SourceLocation Loc)
Emit a description of a source location in a format suitable for passing to a runtime sanitizer handl...
Definition: CGExpr.cpp:2690
Stmt * getSubStmt()
Definition: Stmt.h:859
void EmitCXXForRangeStmt(const CXXForRangeStmt &S, ArrayRef< const Attr *> Attrs=None)
Definition: CGStmt.cpp:919
Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
Definition: CGStmt.cpp:375
void EmitOMPDistributeParallelForDirective(const OMPDistributeParallelForDirective &S)
DeclStmt * getLoopVarStmt()
Definition: StmtCXX.h:161
const Expr * getCond() const
Definition: Stmt.h:965
A trivial tuple used to represent a source range.
void EmitObjCAtTryStmt(const ObjCAtTryStmt &S)
Definition: CGObjC.cpp:1761
LValue - This represents an lvalue references.
Definition: CGValue.h:167
SanitizerMetadata * getSanitizerMetadata()
void EmitBlockAfterUses(llvm::BasicBlock *BB)
EmitBlockAfterUses - Emit the given block somewhere hopefully near its uses, and leave the insertion ...
Definition: CGStmt.cpp:473
const LangOptions & getLangOpts() const
DeclStmt * getBeginStmt()
Definition: StmtCXX.h:155
void EmitBreakStmt(const BreakStmt &S)
Definition: CGStmt.cpp:1104
const Expr * getCond() const
Definition: Stmt.h:1045
void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S)
Definition: CGObjC.cpp:3165
static bool containsBreak(const Stmt *S)
containsBreak - Return true if the statement contains a break out of it.
SourceLocation getLocStart() const LLVM_READONLY
Definition: Stmt.cpp:277
SourceLocation getBegin() const
capture_init_iterator capture_init_end()
Retrieve the iterator pointing one past the last initialization argument.
Definition: Stmt.h:2238
Address CreateMemTemp(QualType T, const Twine &Name="tmp", bool CastToDefaultAddrSpace=true)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignment...
Definition: CGExpr.cpp:127
llvm::Value * getPointer() const
Definition: CGValue.h:320
This class handles loading and caching of source files into memory.
Stmt * getSubStmt()
Definition: Stmt.h:915
bool haveRegionCounts() const
Whether or not we have PGO region data for the current function.
Definition: CodeGenPGO.h:52
Defines enum values for all the target-independent builtin functions.
void EmitOMPTaskDirective(const OMPTaskDirective &S)
SourceLocation getBodyRBrace() const
getBodyRBrace - Gets the right brace of the body, if a body exists.
Definition: DeclBase.cpp:869
CapturedRegionKind getCapturedRegionKind() const
Retrieve the captured region kind.
Definition: Stmt.cpp:1112
bool isScalar() const
Definition: CGValue.h:52
Attr - This represents one attribute.
Definition: Attr.h:43
SourceLocation getLocation() const
Definition: DeclBase.h:416
virtual std::string convertConstraint(const char *&Constraint) const
Definition: TargetInfo.h:773
void EmitOMPTargetTeamsDistributeParallelForDirective(const OMPTargetTeamsDistributeParallelForDirective &S)
static OMPLinearClause * Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef< Expr *> VL, ArrayRef< Expr *> PL, ArrayRef< Expr *> IL, Expr *Step, Expr *CalcStep, Stmt *PreInit, Expr *PostUpdate)
Creates clause with a list of variables VL and a linear step Step.
virtual const char * getClobbers() const =0
Returns a string of target-specific clobbers, in LLVM format.
Stmt * getSubStmt()
Definition: Stmt.h:763
llvm::FunctionType * GetFunctionType(const CGFunctionInfo &Info)
GetFunctionType - Get the LLVM function type for.
Definition: CGCall.cpp:1524