clang 19.0.0git
CGCleanup.cpp
Go to the documentation of this file.
1//===--- CGCleanup.cpp - Bookkeeping and code emission for cleanups -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains code dealing with the IR generation for cleanups
10// and related information.
11//
12// A "cleanup" is a piece of code which needs to be executed whenever
13// control transfers out of a particular scope. This can be
14// conditionalized to occur only on exceptional control flow, only on
15// normal control flow, or both.
16//
17//===----------------------------------------------------------------------===//
18
19#include "CGCleanup.h"
20#include "CodeGenFunction.h"
21#include "llvm/Support/SaveAndRestore.h"
22
23using namespace clang;
24using namespace CodeGen;
25
27 if (rv.isScalar())
29 if (rv.isAggregate())
31 return true;
32}
33
36 if (rv.isScalar()) {
37 llvm::Value *V = rv.getScalarVal();
38
39 // These automatically dominate and don't need to be saved.
41 return saved_type(V, nullptr, ScalarLiteral);
42
43 // Everything else needs an alloca.
44 Address addr =
45 CGF.CreateDefaultAlignTempAlloca(V->getType(), "saved-rvalue");
46 CGF.Builder.CreateStore(V, addr);
47 return saved_type(addr.getPointer(), nullptr, ScalarAddress);
48 }
49
50 if (rv.isComplex()) {
51 CodeGenFunction::ComplexPairTy V = rv.getComplexVal();
52 llvm::Type *ComplexTy =
53 llvm::StructType::get(V.first->getType(), V.second->getType());
54 Address addr = CGF.CreateDefaultAlignTempAlloca(ComplexTy, "saved-complex");
55 CGF.Builder.CreateStore(V.first, CGF.Builder.CreateStructGEP(addr, 0));
56 CGF.Builder.CreateStore(V.second, CGF.Builder.CreateStructGEP(addr, 1));
57 return saved_type(addr.getPointer(), nullptr, ComplexAddress);
58 }
59
60 assert(rv.isAggregate());
61 Address V = rv.getAggregateAddress(); // TODO: volatile?
62 if (!DominatingLLVMValue::needsSaving(V.getPointer()))
63 return saved_type(V.getPointer(), V.getElementType(), AggregateLiteral,
64 V.getAlignment().getQuantity());
65
66 Address addr =
67 CGF.CreateTempAlloca(V.getType(), CGF.getPointerAlign(), "saved-rvalue");
68 CGF.Builder.CreateStore(V.getPointer(), addr);
69 return saved_type(addr.getPointer(), V.getElementType(), AggregateAddress,
70 V.getAlignment().getQuantity());
71}
72
73/// Given a saved r-value produced by SaveRValue, perform the code
74/// necessary to restore it to usability at the current insertion
75/// point.
77 auto getSavingAddress = [&](llvm::Value *value) {
78 auto *AI = cast<llvm::AllocaInst>(value);
79 return Address(value, AI->getAllocatedType(),
80 CharUnits::fromQuantity(AI->getAlign().value()));
81 };
82 switch (K) {
83 case ScalarLiteral:
84 return RValue::get(Value);
85 case ScalarAddress:
86 return RValue::get(CGF.Builder.CreateLoad(getSavingAddress(Value)));
87 case AggregateLiteral:
89 Address(Value, ElementType, CharUnits::fromQuantity(Align)));
90 case AggregateAddress: {
91 auto addr = CGF.Builder.CreateLoad(getSavingAddress(Value));
93 Address(addr, ElementType, CharUnits::fromQuantity(Align)));
94 }
95 case ComplexAddress: {
96 Address address = getSavingAddress(Value);
97 llvm::Value *real =
98 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(address, 0));
99 llvm::Value *imag =
100 CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(address, 1));
101 return RValue::getComplex(real, imag);
102 }
103 }
104
105 llvm_unreachable("bad saved r-value kind");
106}
107
108/// Push an entry of the given size onto this protected-scope stack.
109char *EHScopeStack::allocate(size_t Size) {
110 Size = llvm::alignTo(Size, ScopeStackAlignment);
111 if (!StartOfBuffer) {
112 unsigned Capacity = 1024;
113 while (Capacity < Size) Capacity *= 2;
114 StartOfBuffer = new char[Capacity];
115 StartOfData = EndOfBuffer = StartOfBuffer + Capacity;
116 } else if (static_cast<size_t>(StartOfData - StartOfBuffer) < Size) {
117 unsigned CurrentCapacity = EndOfBuffer - StartOfBuffer;
118 unsigned UsedCapacity = CurrentCapacity - (StartOfData - StartOfBuffer);
119
120 unsigned NewCapacity = CurrentCapacity;
121 do {
122 NewCapacity *= 2;
123 } while (NewCapacity < UsedCapacity + Size);
124
125 char *NewStartOfBuffer = new char[NewCapacity];
126 char *NewEndOfBuffer = NewStartOfBuffer + NewCapacity;
127 char *NewStartOfData = NewEndOfBuffer - UsedCapacity;
128 memcpy(NewStartOfData, StartOfData, UsedCapacity);
129 delete [] StartOfBuffer;
130 StartOfBuffer = NewStartOfBuffer;
131 EndOfBuffer = NewEndOfBuffer;
132 StartOfData = NewStartOfData;
133 }
134
135 assert(StartOfBuffer + Size <= StartOfData);
136 StartOfData -= Size;
137 return StartOfData;
138}
139
140void EHScopeStack::deallocate(size_t Size) {
141 StartOfData += llvm::alignTo(Size, ScopeStackAlignment);
142}
143
146 for (EHScopeStack::iterator it = begin(); stabilize(it) != Old; it++) {
147 EHCleanupScope *cleanup = dyn_cast<EHCleanupScope>(&*it);
148 if (!cleanup || !cleanup->isLifetimeMarker())
149 return false;
150 }
151
152 return true;
153}
154
156 for (stable_iterator si = getInnermostEHScope(); si != stable_end(); ) {
157 // Skip lifetime markers.
158 if (auto *cleanup = dyn_cast<EHCleanupScope>(&*find(si)))
159 if (cleanup->isLifetimeMarker()) {
160 si = cleanup->getEnclosingEHScope();
161 continue;
162 }
163 return true;
164 }
165
166 return false;
167}
168
172 si != se; ) {
173 EHCleanupScope &cleanup = cast<EHCleanupScope>(*find(si));
174 if (cleanup.isActive()) return si;
175 si = cleanup.getEnclosingNormalCleanup();
176 }
177 return stable_end();
178}
179
180
181void *EHScopeStack::pushCleanup(CleanupKind Kind, size_t Size) {
182 char *Buffer = allocate(EHCleanupScope::getSizeForCleanupSize(Size));
183 bool IsNormalCleanup = Kind & NormalCleanup;
184 bool IsEHCleanup = Kind & EHCleanup;
185 bool IsLifetimeMarker = Kind & LifetimeMarker;
186
187 // Per C++ [except.terminate], it is implementation-defined whether none,
188 // some, or all cleanups are called before std::terminate. Thus, when
189 // terminate is the current EH scope, we may skip adding any EH cleanup
190 // scopes.
191 if (InnermostEHScope != stable_end() &&
192 find(InnermostEHScope)->getKind() == EHScope::Terminate)
193 IsEHCleanup = false;
194
196 new (Buffer) EHCleanupScope(IsNormalCleanup,
197 IsEHCleanup,
198 Size,
199 BranchFixups.size(),
200 InnermostNormalCleanup,
201 InnermostEHScope);
202 if (IsNormalCleanup)
203 InnermostNormalCleanup = stable_begin();
204 if (IsEHCleanup)
205 InnermostEHScope = stable_begin();
206 if (IsLifetimeMarker)
207 Scope->setLifetimeMarker();
208
209 // With Windows -EHa, Invoke llvm.seh.scope.begin() for EHCleanup
210 // If exceptions are disabled/ignored and SEH is not in use, then there is no
211 // invoke destination. SEH "works" even if exceptions are off. In practice,
212 // this means that C++ destructors and other EH cleanups don't run, which is
213 // consistent with MSVC's behavior, except in the presence of -EHa.
214 // Check getInvokeDest() to generate llvm.seh.scope.begin() as needed.
215 if (CGF->getLangOpts().EHAsynch && IsEHCleanup && !IsLifetimeMarker &&
216 CGF->getTarget().getCXXABI().isMicrosoft() && CGF->getInvokeDest())
218
219 return Scope->getCleanupBuffer();
220}
221
223 assert(!empty() && "popping exception stack when not empty");
224
225 assert(isa<EHCleanupScope>(*begin()));
226 EHCleanupScope &Cleanup = cast<EHCleanupScope>(*begin());
227 InnermostNormalCleanup = Cleanup.getEnclosingNormalCleanup();
228 InnermostEHScope = Cleanup.getEnclosingEHScope();
229 deallocate(Cleanup.getAllocatedSize());
230
231 // Destroy the cleanup.
232 Cleanup.Destroy();
233
234 // Check whether we can shrink the branch-fixups stack.
235 if (!BranchFixups.empty()) {
236 // If we no longer have any normal cleanups, all the fixups are
237 // complete.
238 if (!hasNormalCleanups())
239 BranchFixups.clear();
240
241 // Otherwise we can still trim out unnecessary nulls.
242 else
244 }
245}
246
248 assert(getInnermostEHScope() == stable_end());
249 char *buffer = allocate(EHFilterScope::getSizeForNumFilters(numFilters));
250 EHFilterScope *filter = new (buffer) EHFilterScope(numFilters);
251 InnermostEHScope = stable_begin();
252 return filter;
253}
254
256 assert(!empty() && "popping exception stack when not empty");
257
258 EHFilterScope &filter = cast<EHFilterScope>(*begin());
260
261 InnermostEHScope = filter.getEnclosingEHScope();
262}
263
264EHCatchScope *EHScopeStack::pushCatch(unsigned numHandlers) {
265 char *buffer = allocate(EHCatchScope::getSizeForNumHandlers(numHandlers));
266 EHCatchScope *scope =
267 new (buffer) EHCatchScope(numHandlers, InnermostEHScope);
268 InnermostEHScope = stable_begin();
269 return scope;
270}
271
273 char *Buffer = allocate(EHTerminateScope::getSize());
274 new (Buffer) EHTerminateScope(InnermostEHScope);
275 InnermostEHScope = stable_begin();
276}
277
278/// Remove any 'null' fixups on the stack. However, we can't pop more
279/// fixups than the fixup depth on the innermost normal cleanup, or
280/// else fixups that we try to add to that cleanup will end up in the
281/// wrong place. We *could* try to shrink fixup depths, but that's
282/// actually a lot of work for little benefit.
284 // We expect this to only be called when there's still an innermost
285 // normal cleanup; otherwise there really shouldn't be any fixups.
286 assert(hasNormalCleanups());
287
288 EHScopeStack::iterator it = find(InnermostNormalCleanup);
289 unsigned MinSize = cast<EHCleanupScope>(*it).getFixupDepth();
290 assert(BranchFixups.size() >= MinSize && "fixup stack out of order");
291
292 while (BranchFixups.size() > MinSize &&
293 BranchFixups.back().Destination == nullptr)
294 BranchFixups.pop_back();
295}
296
298 // Create a variable to decide whether the cleanup needs to be run.
300 Builder.getInt1Ty(), CharUnits::One(), "cleanup.cond");
301
302 // Initialize it to false at a site that's guaranteed to be run
303 // before each evaluation.
304 setBeforeOutermostConditional(Builder.getFalse(), active);
305
306 // Initialize it to true at the current location.
307 Builder.CreateStore(Builder.getTrue(), active);
308
309 return active;
310}
311
313 // Set that as the active flag in the cleanup.
314 EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin());
315 assert(!cleanup.hasActiveFlag() && "cleanup already has active flag?");
316 cleanup.setActiveFlag(ActiveFlag);
317
318 if (cleanup.isNormalCleanup()) cleanup.setTestFlagInNormalCleanup();
319 if (cleanup.isEHCleanup()) cleanup.setTestFlagInEHCleanup();
320}
321
322void EHScopeStack::Cleanup::anchor() {}
323
324static void createStoreInstBefore(llvm::Value *value, Address addr,
325 llvm::Instruction *beforeInst) {
326 auto store = new llvm::StoreInst(value, addr.getPointer(), beforeInst);
327 store->setAlignment(addr.getAlignment().getAsAlign());
328}
329
330static llvm::LoadInst *createLoadInstBefore(Address addr, const Twine &name,
331 llvm::Instruction *beforeInst) {
332 return new llvm::LoadInst(addr.getElementType(), addr.getPointer(), name,
333 false, addr.getAlignment().getAsAlign(),
334 beforeInst);
335}
336
337/// All the branch fixups on the EH stack have propagated out past the
338/// outermost normal cleanup; resolve them all by adding cases to the
339/// given switch instruction.
341 llvm::SwitchInst *Switch,
342 llvm::BasicBlock *CleanupEntry) {
344
345 for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) {
346 // Skip this fixup if its destination isn't set.
347 BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
348 if (Fixup.Destination == nullptr) continue;
349
350 // If there isn't an OptimisticBranchBlock, then InitialBranch is
351 // still pointing directly to its destination; forward it to the
352 // appropriate cleanup entry. This is required in the specific
353 // case of
354 // { std::string s; goto lbl; }
355 // lbl:
356 // i.e. where there's an unresolved fixup inside a single cleanup
357 // entry which we're currently popping.
358 if (Fixup.OptimisticBranchBlock == nullptr) {
361 Fixup.InitialBranch);
362 Fixup.InitialBranch->setSuccessor(0, CleanupEntry);
363 }
364
365 // Don't add this case to the switch statement twice.
366 if (!CasesAdded.insert(Fixup.Destination).second)
367 continue;
368
369 Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex),
370 Fixup.Destination);
371 }
372
373 CGF.EHStack.clearFixups();
374}
375
376/// Transitions the terminator of the given exit-block of a cleanup to
377/// be a cleanup switch.
378static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
379 llvm::BasicBlock *Block) {
380 // If it's a branch, turn it into a switch whose default
381 // destination is its original target.
382 llvm::Instruction *Term = Block->getTerminator();
383 assert(Term && "can't transition block without terminator");
384
385 if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
386 assert(Br->isUnconditional());
388 "cleanup.dest", Term);
389 llvm::SwitchInst *Switch =
390 llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
391 Br->eraseFromParent();
392 return Switch;
393 } else {
394 return cast<llvm::SwitchInst>(Term);
395 }
396}
397
398void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
399 assert(Block && "resolving a null target block");
400 if (!EHStack.getNumBranchFixups()) return;
401
402 assert(EHStack.hasNormalCleanups() &&
403 "branch fixups exist with no normal cleanups on stack");
404
405 llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
406 bool ResolvedAny = false;
407
408 for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
409 // Skip this fixup if its destination doesn't match.
410 BranchFixup &Fixup = EHStack.getBranchFixup(I);
411 if (Fixup.Destination != Block) continue;
412
413 Fixup.Destination = nullptr;
414 ResolvedAny = true;
415
416 // If it doesn't have an optimistic branch block, LatestBranch is
417 // already pointing to the right place.
418 llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
419 if (!BranchBB)
420 continue;
421
422 // Don't process the same optimistic branch block twice.
423 if (!ModifiedOptimisticBlocks.insert(BranchBB).second)
424 continue;
425
426 llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
427
428 // Add a case to the switch.
429 Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
430 }
431
432 if (ResolvedAny)
433 EHStack.popNullFixups();
434}
435
436/// Pops cleanup blocks until the given savepoint is reached.
439 std::initializer_list<llvm::Value **> ValuesToReload) {
440 assert(Old.isValid());
441
442 bool HadBranches = false;
443 while (EHStack.stable_begin() != Old) {
444 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
445 HadBranches |= Scope.hasBranches();
446
447 // As long as Old strictly encloses the scope's enclosing normal
448 // cleanup, we're going to emit another normal cleanup which
449 // fallthrough can propagate through.
450 bool FallThroughIsBranchThrough =
451 Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
452
453 PopCleanupBlock(FallThroughIsBranchThrough);
454 }
455
456 // If we didn't have any branches, the insertion point before cleanups must
457 // dominate the current insertion point and we don't need to reload any
458 // values.
459 if (!HadBranches)
460 return;
461
462 // Spill and reload all values that the caller wants to be live at the current
463 // insertion point.
464 for (llvm::Value **ReloadedValue : ValuesToReload) {
465 auto *Inst = dyn_cast_or_null<llvm::Instruction>(*ReloadedValue);
466 if (!Inst)
467 continue;
468
469 // Don't spill static allocas, they dominate all cleanups. These are created
470 // by binding a reference to a local variable or temporary.
471 auto *AI = dyn_cast<llvm::AllocaInst>(Inst);
472 if (AI && AI->isStaticAlloca())
473 continue;
474
475 Address Tmp =
476 CreateDefaultAlignTempAlloca(Inst->getType(), "tmp.exprcleanup");
477
478 // Find an insertion point after Inst and spill it to the temporary.
479 llvm::BasicBlock::iterator InsertBefore;
480 if (auto *Invoke = dyn_cast<llvm::InvokeInst>(Inst))
481 InsertBefore = Invoke->getNormalDest()->getFirstInsertionPt();
482 else
483 InsertBefore = std::next(Inst->getIterator());
484 CGBuilderTy(CGM, &*InsertBefore).CreateStore(Inst, Tmp);
485
486 // Reload the value at the current insertion point.
487 *ReloadedValue = Builder.CreateLoad(Tmp);
488 }
489}
490
491/// Pops cleanup blocks until the given savepoint is reached, then add the
492/// cleanups from the given savepoint in the lifetime-extended cleanups stack.
494 EHScopeStack::stable_iterator Old, size_t OldLifetimeExtendedSize,
495 std::initializer_list<llvm::Value **> ValuesToReload) {
496 PopCleanupBlocks(Old, ValuesToReload);
497
498 // Move our deferred cleanups onto the EH stack.
499 for (size_t I = OldLifetimeExtendedSize,
500 E = LifetimeExtendedCleanupStack.size(); I != E; /**/) {
501 // Alignment should be guaranteed by the vptrs in the individual cleanups.
502 assert((I % alignof(LifetimeExtendedCleanupHeader) == 0) &&
503 "misaligned cleanup stack entry");
504
505 LifetimeExtendedCleanupHeader &Header =
506 reinterpret_cast<LifetimeExtendedCleanupHeader&>(
507 LifetimeExtendedCleanupStack[I]);
508 I += sizeof(Header);
509
510 EHStack.pushCopyOfCleanup(Header.getKind(),
511 &LifetimeExtendedCleanupStack[I],
512 Header.getSize());
513 I += Header.getSize();
514
515 if (Header.isConditional()) {
516 Address ActiveFlag =
517 reinterpret_cast<Address &>(LifetimeExtendedCleanupStack[I]);
518 initFullExprCleanupWithFlag(ActiveFlag);
519 I += sizeof(ActiveFlag);
520 }
521 }
522 LifetimeExtendedCleanupStack.resize(OldLifetimeExtendedSize);
523}
524
525static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
527 assert(Scope.isNormalCleanup());
528 llvm::BasicBlock *Entry = Scope.getNormalBlock();
529 if (!Entry) {
530 Entry = CGF.createBasicBlock("cleanup");
531 Scope.setNormalBlock(Entry);
532 }
533 return Entry;
534}
535
536/// Attempts to reduce a cleanup's entry block to a fallthrough. This
537/// is basically llvm::MergeBlockIntoPredecessor, except
538/// simplified/optimized for the tighter constraints on cleanup blocks.
539///
540/// Returns the new block, whatever it is.
541static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
542 llvm::BasicBlock *Entry) {
543 llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
544 if (!Pred) return Entry;
545
546 llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
547 if (!Br || Br->isConditional()) return Entry;
548 assert(Br->getSuccessor(0) == Entry);
549
550 // If we were previously inserting at the end of the cleanup entry
551 // block, we'll need to continue inserting at the end of the
552 // predecessor.
553 bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
554 assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
555
556 // Kill the branch.
557 Br->eraseFromParent();
558
559 // Replace all uses of the entry with the predecessor, in case there
560 // are phis in the cleanup.
561 Entry->replaceAllUsesWith(Pred);
562
563 // Merge the blocks.
564 Pred->splice(Pred->end(), Entry);
565
566 // Kill the entry block.
567 Entry->eraseFromParent();
568
569 if (WasInsertBlock)
570 CGF.Builder.SetInsertPoint(Pred);
571
572 return Pred;
573}
574
578 Address ActiveFlag) {
579 // If there's an active flag, load it and skip the cleanup if it's
580 // false.
581 llvm::BasicBlock *ContBB = nullptr;
582 if (ActiveFlag.isValid()) {
583 ContBB = CGF.createBasicBlock("cleanup.done");
584 llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action");
585 llvm::Value *IsActive
586 = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active");
587 CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB);
588 CGF.EmitBlock(CleanupBB);
589 }
590
591 // Ask the cleanup to emit itself.
592 Fn->Emit(CGF, flags);
593 assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
594
595 // Emit the continuation block if there was an active flag.
596 if (ActiveFlag.isValid())
597 CGF.EmitBlock(ContBB);
598}
599
600static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit,
601 llvm::BasicBlock *From,
602 llvm::BasicBlock *To) {
603 // Exit is the exit block of a cleanup, so it always terminates in
604 // an unconditional branch or a switch.
605 llvm::Instruction *Term = Exit->getTerminator();
606
607 if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
608 assert(Br->isUnconditional() && Br->getSuccessor(0) == From);
609 Br->setSuccessor(0, To);
610 } else {
611 llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term);
612 for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I)
613 if (Switch->getSuccessor(I) == From)
614 Switch->setSuccessor(I, To);
615 }
616}
617
618/// We don't need a normal entry block for the given cleanup.
619/// Optimistic fixup branches can cause these blocks to come into
620/// existence anyway; if so, destroy it.
621///
622/// The validity of this transformation is very much specific to the
623/// exact ways in which we form branches to cleanup entries.
625 EHCleanupScope &scope) {
626 llvm::BasicBlock *entry = scope.getNormalBlock();
627 if (!entry) return;
628
629 // Replace all the uses with unreachable.
630 llvm::BasicBlock *unreachableBB = CGF.getUnreachableBlock();
631 for (llvm::BasicBlock::use_iterator
632 i = entry->use_begin(), e = entry->use_end(); i != e; ) {
633 llvm::Use &use = *i;
634 ++i;
635
636 use.set(unreachableBB);
637
638 // The only uses should be fixup switches.
639 llvm::SwitchInst *si = cast<llvm::SwitchInst>(use.getUser());
640 if (si->getNumCases() == 1 && si->getDefaultDest() == unreachableBB) {
641 // Replace the switch with a branch.
642 llvm::BranchInst::Create(si->case_begin()->getCaseSuccessor(), si);
643
644 // The switch operand is a load from the cleanup-dest alloca.
645 llvm::LoadInst *condition = cast<llvm::LoadInst>(si->getCondition());
646
647 // Destroy the switch.
648 si->eraseFromParent();
649
650 // Destroy the load.
651 assert(condition->getOperand(0) == CGF.NormalCleanupDest.getPointer());
652 assert(condition->use_empty());
653 condition->eraseFromParent();
654 }
655 }
656
657 assert(entry->use_empty());
658 delete entry;
659}
660
661/// Pops a cleanup block. If the block includes a normal cleanup, the
662/// current insertion point is threaded through the cleanup, as are
663/// any branch fixups on the cleanup.
664void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
665 assert(!EHStack.empty() && "cleanup stack is empty!");
666 assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
667 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
668 assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
669
670 // Remember activation information.
671 bool IsActive = Scope.isActive();
672 Address NormalActiveFlag =
673 Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag()
675 Address EHActiveFlag =
676 Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag()
678
679 // Check whether we need an EH cleanup. This is only true if we've
680 // generated a lazy EH cleanup block.
681 llvm::BasicBlock *EHEntry = Scope.getCachedEHDispatchBlock();
682 assert(Scope.hasEHBranches() == (EHEntry != nullptr));
683 bool RequiresEHCleanup = (EHEntry != nullptr);
684 EHScopeStack::stable_iterator EHParent = Scope.getEnclosingEHScope();
685
686 // Check the three conditions which might require a normal cleanup:
687
688 // - whether there are branch fix-ups through this cleanup
689 unsigned FixupDepth = Scope.getFixupDepth();
690 bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
691
692 // - whether there are branch-throughs or branch-afters
693 bool HasExistingBranches = Scope.hasBranches();
694
695 // - whether there's a fallthrough
696 llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
697 bool HasFallthrough = (FallthroughSource != nullptr && IsActive);
698
699 // Branch-through fall-throughs leave the insertion point set to the
700 // end of the last cleanup, which points to the current scope. The
701 // rest of IR gen doesn't need to worry about this; it only happens
702 // during the execution of PopCleanupBlocks().
703 bool HasPrebranchedFallthrough =
704 (FallthroughSource && FallthroughSource->getTerminator());
705
706 // If this is a normal cleanup, then having a prebranched
707 // fallthrough implies that the fallthrough source unconditionally
708 // jumps here.
709 assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough ||
710 (Scope.getNormalBlock() &&
711 FallthroughSource->getTerminator()->getSuccessor(0)
712 == Scope.getNormalBlock()));
713
714 bool RequiresNormalCleanup = false;
715 if (Scope.isNormalCleanup() &&
716 (HasFixups || HasExistingBranches || HasFallthrough)) {
717 RequiresNormalCleanup = true;
718 }
719
720 // If we have a prebranched fallthrough into an inactive normal
721 // cleanup, rewrite it so that it leads to the appropriate place.
722 if (Scope.isNormalCleanup() && HasPrebranchedFallthrough && !IsActive) {
723 llvm::BasicBlock *prebranchDest;
724
725 // If the prebranch is semantically branching through the next
726 // cleanup, just forward it to the next block, leaving the
727 // insertion point in the prebranched block.
728 if (FallthroughIsBranchThrough) {
729 EHScope &enclosing = *EHStack.find(Scope.getEnclosingNormalCleanup());
730 prebranchDest = CreateNormalEntry(*this, cast<EHCleanupScope>(enclosing));
731
732 // Otherwise, we need to make a new block. If the normal cleanup
733 // isn't being used at all, we could actually reuse the normal
734 // entry block, but this is simpler, and it avoids conflicts with
735 // dead optimistic fixup branches.
736 } else {
737 prebranchDest = createBasicBlock("forwarded-prebranch");
738 EmitBlock(prebranchDest);
739 }
740
741 llvm::BasicBlock *normalEntry = Scope.getNormalBlock();
742 assert(normalEntry && !normalEntry->use_empty());
743
744 ForwardPrebranchedFallthrough(FallthroughSource,
745 normalEntry, prebranchDest);
746 }
747
748 // If we don't need the cleanup at all, we're done.
749 if (!RequiresNormalCleanup && !RequiresEHCleanup) {
751 EHStack.popCleanup(); // safe because there are no fixups
752 assert(EHStack.getNumBranchFixups() == 0 ||
753 EHStack.hasNormalCleanups());
754 return;
755 }
756
757 // Copy the cleanup emission data out. This uses either a stack
758 // array or malloc'd memory, depending on the size, which is
759 // behavior that SmallVector would provide, if we could use it
760 // here. Unfortunately, if you ask for a SmallVector<char>, the
761 // alignment isn't sufficient.
762 auto *CleanupSource = reinterpret_cast<char *>(Scope.getCleanupBuffer());
764 CleanupBufferStack[8 * sizeof(void *)];
765 std::unique_ptr<char[]> CleanupBufferHeap;
766 size_t CleanupSize = Scope.getCleanupSize();
768
769 if (CleanupSize <= sizeof(CleanupBufferStack)) {
770 memcpy(CleanupBufferStack, CleanupSource, CleanupSize);
771 Fn = reinterpret_cast<EHScopeStack::Cleanup *>(CleanupBufferStack);
772 } else {
773 CleanupBufferHeap.reset(new char[CleanupSize]);
774 memcpy(CleanupBufferHeap.get(), CleanupSource, CleanupSize);
775 Fn = reinterpret_cast<EHScopeStack::Cleanup *>(CleanupBufferHeap.get());
776 }
777
778 EHScopeStack::Cleanup::Flags cleanupFlags;
779 if (Scope.isNormalCleanup())
780 cleanupFlags.setIsNormalCleanupKind();
781 if (Scope.isEHCleanup())
782 cleanupFlags.setIsEHCleanupKind();
783
784 // Under -EHa, invoke seh.scope.end() to mark scope end before dtor
785 bool IsEHa = getLangOpts().EHAsynch && !Scope.isLifetimeMarker();
786 const EHPersonality &Personality = EHPersonality::get(*this);
787 if (!RequiresNormalCleanup) {
788 // Mark CPP scope end for passed-by-value Arg temp
789 // per Windows ABI which is "normally" Cleanup in callee
790 if (IsEHa && getInvokeDest() && Builder.GetInsertBlock()) {
791 if (Personality.isMSVCXXPersonality())
792 EmitSehCppScopeEnd();
793 }
795 EHStack.popCleanup();
796 } else {
797 // If we have a fallthrough and no other need for the cleanup,
798 // emit it directly.
799 if (HasFallthrough && !HasPrebranchedFallthrough && !HasFixups &&
800 !HasExistingBranches) {
801
802 // mark SEH scope end for fall-through flow
803 if (IsEHa && getInvokeDest()) {
804 if (Personality.isMSVCXXPersonality())
805 EmitSehCppScopeEnd();
806 else
807 EmitSehTryScopeEnd();
808 }
809
811 EHStack.popCleanup();
812
813 EmitCleanup(*this, Fn, cleanupFlags, NormalActiveFlag);
814
815 // Otherwise, the best approach is to thread everything through
816 // the cleanup block and then try to clean up after ourselves.
817 } else {
818 // Force the entry block to exist.
819 llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
820
821 // I. Set up the fallthrough edge in.
822
823 CGBuilderTy::InsertPoint savedInactiveFallthroughIP;
824
825 // If there's a fallthrough, we need to store the cleanup
826 // destination index. For fall-throughs this is always zero.
827 if (HasFallthrough) {
828 if (!HasPrebranchedFallthrough)
829 Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
830
831 // Otherwise, save and clear the IP if we don't have fallthrough
832 // because the cleanup is inactive.
833 } else if (FallthroughSource) {
834 assert(!IsActive && "source without fallthrough for active cleanup");
835 savedInactiveFallthroughIP = Builder.saveAndClearIP();
836 }
837
838 // II. Emit the entry block. This implicitly branches to it if
839 // we have fallthrough. All the fixups and existing branches
840 // should already be branched to it.
841 EmitBlock(NormalEntry);
842
843 // intercept normal cleanup to mark SEH scope end
844 if (IsEHa && getInvokeDest()) {
845 if (Personality.isMSVCXXPersonality())
846 EmitSehCppScopeEnd();
847 else
848 EmitSehTryScopeEnd();
849 }
850
851 // III. Figure out where we're going and build the cleanup
852 // epilogue.
853
854 bool HasEnclosingCleanups =
855 (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
856
857 // Compute the branch-through dest if we need it:
858 // - if there are branch-throughs threaded through the scope
859 // - if fall-through is a branch-through
860 // - if there are fixups that will be optimistically forwarded
861 // to the enclosing cleanup
862 llvm::BasicBlock *BranchThroughDest = nullptr;
863 if (Scope.hasBranchThroughs() ||
864 (FallthroughSource && FallthroughIsBranchThrough) ||
865 (HasFixups && HasEnclosingCleanups)) {
866 assert(HasEnclosingCleanups);
867 EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
868 BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
869 }
870
871 llvm::BasicBlock *FallthroughDest = nullptr;
873
874 // If there's exactly one branch-after and no other threads,
875 // we can route it without a switch.
876 // Skip for SEH, since ExitSwitch is used to generate code to indicate
877 // abnormal termination. (SEH: Except _leave and fall-through at
878 // the end, all other exits in a _try (return/goto/continue/break)
879 // are considered as abnormal terminations, using NormalCleanupDestSlot
880 // to indicate abnormal termination)
881 if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
882 !currentFunctionUsesSEHTry() && Scope.getNumBranchAfters() == 1) {
883 assert(!BranchThroughDest || !IsActive);
884
885 // Clean up the possibly dead store to the cleanup dest slot.
886 llvm::Instruction *NormalCleanupDestSlot =
887 cast<llvm::Instruction>(getNormalCleanupDestSlot().getPointer());
888 if (NormalCleanupDestSlot->hasOneUse()) {
889 NormalCleanupDestSlot->user_back()->eraseFromParent();
890 NormalCleanupDestSlot->eraseFromParent();
891 NormalCleanupDest = Address::invalid();
892 }
893
894 llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
895 InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
896
897 // Build a switch-out if we need it:
898 // - if there are branch-afters threaded through the scope
899 // - if fall-through is a branch-after
900 // - if there are fixups that have nowhere left to go and
901 // so must be immediately resolved
902 } else if (Scope.getNumBranchAfters() ||
903 (HasFallthrough && !FallthroughIsBranchThrough) ||
904 (HasFixups && !HasEnclosingCleanups)) {
905
906 llvm::BasicBlock *Default =
907 (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
908
909 // TODO: base this on the number of branch-afters and fixups
910 const unsigned SwitchCapacity = 10;
911
912 // pass the abnormal exit flag to Fn (SEH cleanup)
913 cleanupFlags.setHasExitSwitch();
914
915 llvm::LoadInst *Load =
916 createLoadInstBefore(getNormalCleanupDestSlot(), "cleanup.dest",
917 nullptr);
918 llvm::SwitchInst *Switch =
919 llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
920
921 InstsToAppend.push_back(Load);
922 InstsToAppend.push_back(Switch);
923
924 // Branch-after fallthrough.
925 if (FallthroughSource && !FallthroughIsBranchThrough) {
926 FallthroughDest = createBasicBlock("cleanup.cont");
927 if (HasFallthrough)
928 Switch->addCase(Builder.getInt32(0), FallthroughDest);
929 }
930
931 for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
932 Switch->addCase(Scope.getBranchAfterIndex(I),
933 Scope.getBranchAfterBlock(I));
934 }
935
936 // If there aren't any enclosing cleanups, we can resolve all
937 // the fixups now.
938 if (HasFixups && !HasEnclosingCleanups)
939 ResolveAllBranchFixups(*this, Switch, NormalEntry);
940 } else {
941 // We should always have a branch-through destination in this case.
942 assert(BranchThroughDest);
943 InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
944 }
945
946 // IV. Pop the cleanup and emit it.
947 EHStack.popCleanup();
948 assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
949
950 EmitCleanup(*this, Fn, cleanupFlags, NormalActiveFlag);
951
952 // Append the prepared cleanup prologue from above.
953 llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
954 for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
955 InstsToAppend[I]->insertInto(NormalExit, NormalExit->end());
956
957 // Optimistically hope that any fixups will continue falling through.
958 for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
959 I < E; ++I) {
960 BranchFixup &Fixup = EHStack.getBranchFixup(I);
961 if (!Fixup.Destination) continue;
962 if (!Fixup.OptimisticBranchBlock) {
963 createStoreInstBefore(Builder.getInt32(Fixup.DestinationIndex),
964 getNormalCleanupDestSlot(),
965 Fixup.InitialBranch);
966 Fixup.InitialBranch->setSuccessor(0, NormalEntry);
967 }
968 Fixup.OptimisticBranchBlock = NormalExit;
969 }
970
971 // V. Set up the fallthrough edge out.
972
973 // Case 1: a fallthrough source exists but doesn't branch to the
974 // cleanup because the cleanup is inactive.
975 if (!HasFallthrough && FallthroughSource) {
976 // Prebranched fallthrough was forwarded earlier.
977 // Non-prebranched fallthrough doesn't need to be forwarded.
978 // Either way, all we need to do is restore the IP we cleared before.
979 assert(!IsActive);
980 Builder.restoreIP(savedInactiveFallthroughIP);
981
982 // Case 2: a fallthrough source exists and should branch to the
983 // cleanup, but we're not supposed to branch through to the next
984 // cleanup.
985 } else if (HasFallthrough && FallthroughDest) {
986 assert(!FallthroughIsBranchThrough);
987 EmitBlock(FallthroughDest);
988
989 // Case 3: a fallthrough source exists and should branch to the
990 // cleanup and then through to the next.
991 } else if (HasFallthrough) {
992 // Everything is already set up for this.
993
994 // Case 4: no fallthrough source exists.
995 } else {
996 Builder.ClearInsertionPoint();
997 }
998
999 // VI. Assorted cleaning.
1000
1001 // Check whether we can merge NormalEntry into a single predecessor.
1002 // This might invalidate (non-IR) pointers to NormalEntry.
1003 llvm::BasicBlock *NewNormalEntry =
1004 SimplifyCleanupEntry(*this, NormalEntry);
1005
1006 // If it did invalidate those pointers, and NormalEntry was the same
1007 // as NormalExit, go back and patch up the fixups.
1008 if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
1009 for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1010 I < E; ++I)
1011 EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
1012 }
1013 }
1014
1015 assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
1016
1017 // Emit the EH cleanup if required.
1018 if (RequiresEHCleanup) {
1019 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1020
1021 EmitBlock(EHEntry);
1022
1023 llvm::BasicBlock *NextAction = getEHDispatchBlock(EHParent);
1024
1025 // Push a terminate scope or cleanupendpad scope around the potentially
1026 // throwing cleanups. For funclet EH personalities, the cleanupendpad models
1027 // program termination when cleanups throw.
1028 bool PushedTerminate = false;
1029 SaveAndRestore RestoreCurrentFuncletPad(CurrentFuncletPad);
1030 llvm::CleanupPadInst *CPI = nullptr;
1031
1032 const EHPersonality &Personality = EHPersonality::get(*this);
1033 if (Personality.usesFuncletPads()) {
1034 llvm::Value *ParentPad = CurrentFuncletPad;
1035 if (!ParentPad)
1036 ParentPad = llvm::ConstantTokenNone::get(CGM.getLLVMContext());
1037 CurrentFuncletPad = CPI = Builder.CreateCleanupPad(ParentPad);
1038 }
1039
1040 // Non-MSVC personalities need to terminate when an EH cleanup throws.
1041 if (!Personality.isMSVCPersonality()) {
1042 EHStack.pushTerminate();
1043 PushedTerminate = true;
1044 } else if (IsEHa && getInvokeDest()) {
1045 EmitSehCppScopeEnd();
1046 }
1047
1048 // We only actually emit the cleanup code if the cleanup is either
1049 // active or was used before it was deactivated.
1050 if (EHActiveFlag.isValid() || IsActive) {
1051 cleanupFlags.setIsForEHCleanup();
1052 EmitCleanup(*this, Fn, cleanupFlags, EHActiveFlag);
1053 }
1054
1055 if (CPI)
1056 Builder.CreateCleanupRet(CPI, NextAction);
1057 else
1058 Builder.CreateBr(NextAction);
1059
1060 // Leave the terminate scope.
1061 if (PushedTerminate)
1062 EHStack.popTerminate();
1063
1064 Builder.restoreIP(SavedIP);
1065
1066 SimplifyCleanupEntry(*this, EHEntry);
1067 }
1068}
1069
1070/// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1071/// specified destination obviously has no cleanups to run. 'false' is always
1072/// a conservatively correct answer for this method.
1073bool CodeGenFunction::isObviouslyBranchWithoutCleanups(JumpDest Dest) const {
1074 assert(Dest.getScopeDepth().encloses(EHStack.stable_begin())
1075 && "stale jump destination");
1076
1077 // Calculate the innermost active normal cleanup.
1079 EHStack.getInnermostActiveNormalCleanup();
1080
1081 // If we're not in an active normal cleanup scope, or if the
1082 // destination scope is within the innermost active normal cleanup
1083 // scope, we don't need to worry about fixups.
1084 if (TopCleanup == EHStack.stable_end() ||
1085 TopCleanup.encloses(Dest.getScopeDepth())) // works for invalid
1086 return true;
1087
1088 // Otherwise, we might need some cleanups.
1089 return false;
1090}
1091
1092
1093/// Terminate the current block by emitting a branch which might leave
1094/// the current cleanup-protected scope. The target scope may not yet
1095/// be known, in which case this will require a fixup.
1096///
1097/// As a side-effect, this method clears the insertion point.
1099 assert(Dest.getScopeDepth().encloses(EHStack.stable_begin())
1100 && "stale jump destination");
1101
1102 if (!HaveInsertPoint())
1103 return;
1104
1105 // Create the branch.
1106 llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1107
1108 // Calculate the innermost active normal cleanup.
1110 TopCleanup = EHStack.getInnermostActiveNormalCleanup();
1111
1112 // If we're not in an active normal cleanup scope, or if the
1113 // destination scope is within the innermost active normal cleanup
1114 // scope, we don't need to worry about fixups.
1115 if (TopCleanup == EHStack.stable_end() ||
1116 TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid
1117 Builder.ClearInsertionPoint();
1118 return;
1119 }
1120
1121 // If we can't resolve the destination cleanup scope, just add this
1122 // to the current cleanup scope as a branch fixup.
1123 if (!Dest.getScopeDepth().isValid()) {
1124 BranchFixup &Fixup = EHStack.addBranchFixup();
1125 Fixup.Destination = Dest.getBlock();
1126 Fixup.DestinationIndex = Dest.getDestIndex();
1127 Fixup.InitialBranch = BI;
1128 Fixup.OptimisticBranchBlock = nullptr;
1129
1130 Builder.ClearInsertionPoint();
1131 return;
1132 }
1133
1134 // Otherwise, thread through all the normal cleanups in scope.
1135
1136 // Store the index at the start.
1137 llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1138 createStoreInstBefore(Index, getNormalCleanupDestSlot(), BI);
1139
1140 // Adjust BI to point to the first cleanup block.
1141 {
1143 cast<EHCleanupScope>(*EHStack.find(TopCleanup));
1144 BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
1145 }
1146
1147 // Add this destination to all the scopes involved.
1148 EHScopeStack::stable_iterator I = TopCleanup;
1149 EHScopeStack::stable_iterator E = Dest.getScopeDepth();
1150 if (E.strictlyEncloses(I)) {
1151 while (true) {
1152 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1153 assert(Scope.isNormalCleanup());
1154 I = Scope.getEnclosingNormalCleanup();
1155
1156 // If this is the last cleanup we're propagating through, tell it
1157 // that there's a resolved jump moving through it.
1158 if (!E.strictlyEncloses(I)) {
1159 Scope.addBranchAfter(Index, Dest.getBlock());
1160 break;
1161 }
1162
1163 // Otherwise, tell the scope that there's a jump propagating
1164 // through it. If this isn't new information, all the rest of
1165 // the work has been done before.
1166 if (!Scope.addBranchThrough(Dest.getBlock()))
1167 break;
1168 }
1169 }
1170
1171 Builder.ClearInsertionPoint();
1172}
1173
1176 // If we needed a normal block for any reason, that counts.
1177 if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock())
1178 return true;
1179
1180 // Check whether any enclosed cleanups were needed.
1182 I = EHStack.getInnermostNormalCleanup();
1183 I != C; ) {
1184 assert(C.strictlyEncloses(I));
1185 EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1186 if (S.getNormalBlock()) return true;
1187 I = S.getEnclosingNormalCleanup();
1188 }
1189
1190 return false;
1191}
1192
1193static bool IsUsedAsEHCleanup(EHScopeStack &EHStack,
1195 // If we needed an EH block for any reason, that counts.
1196 if (EHStack.find(cleanup)->hasEHBranches())
1197 return true;
1198
1199 // Check whether any enclosed cleanups were needed.
1201 i = EHStack.getInnermostEHScope(); i != cleanup; ) {
1202 assert(cleanup.strictlyEncloses(i));
1203
1204 EHScope &scope = *EHStack.find(i);
1205 if (scope.hasEHBranches())
1206 return true;
1207
1208 i = scope.getEnclosingEHScope();
1209 }
1210
1211 return false;
1212}
1213
1218
1219/// The given cleanup block is changing activation state. Configure a
1220/// cleanup variable if necessary.
1221///
1222/// It would be good if we had some way of determining if there were
1223/// extra uses *after* the change-over point.
1226 ForActivation_t kind,
1227 llvm::Instruction *dominatingIP) {
1228 EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C));
1229
1230 // We always need the flag if we're activating the cleanup in a
1231 // conditional context, because we have to assume that the current
1232 // location doesn't necessarily dominate the cleanup's code.
1233 bool isActivatedInConditional =
1234 (kind == ForActivation && CGF.isInConditionalBranch());
1235
1236 bool needFlag = false;
1237
1238 // Calculate whether the cleanup was used:
1239
1240 // - as a normal cleanup
1241 if (Scope.isNormalCleanup() &&
1242 (isActivatedInConditional || IsUsedAsNormalCleanup(CGF.EHStack, C))) {
1243 Scope.setTestFlagInNormalCleanup();
1244 needFlag = true;
1245 }
1246
1247 // - as an EH cleanup
1248 if (Scope.isEHCleanup() &&
1249 (isActivatedInConditional || IsUsedAsEHCleanup(CGF.EHStack, C))) {
1250 Scope.setTestFlagInEHCleanup();
1251 needFlag = true;
1252 }
1253
1254 // If it hasn't yet been used as either, we're done.
1255 if (!needFlag) return;
1256
1257 Address var = Scope.getActiveFlag();
1258 if (!var.isValid()) {
1259 var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), CharUnits::One(),
1260 "cleanup.isactive");
1261 Scope.setActiveFlag(var);
1262
1263 assert(dominatingIP && "no existing variable and no dominating IP!");
1264
1265 // Initialize to true or false depending on whether it was
1266 // active up to this point.
1267 llvm::Constant *value = CGF.Builder.getInt1(kind == ForDeactivation);
1268
1269 // If we're in a conditional block, ignore the dominating IP and
1270 // use the outermost conditional branch.
1271 if (CGF.isInConditionalBranch()) {
1272 CGF.setBeforeOutermostConditional(value, var);
1273 } else {
1274 createStoreInstBefore(value, var, dominatingIP);
1275 }
1276 }
1277
1278 CGF.Builder.CreateStore(CGF.Builder.getInt1(kind == ForActivation), var);
1279}
1280
1281/// Activate a cleanup that was created in an inactivated state.
1283 llvm::Instruction *dominatingIP) {
1284 assert(C != EHStack.stable_end() && "activating bottom of stack?");
1285 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1286 assert(!Scope.isActive() && "double activation");
1287
1288 SetupCleanupBlockActivation(*this, C, ForActivation, dominatingIP);
1289
1290 Scope.setActive(true);
1291}
1292
1293/// Deactive a cleanup that was created in an active state.
1295 llvm::Instruction *dominatingIP) {
1296 assert(C != EHStack.stable_end() && "deactivating bottom of stack?");
1297 EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1298 assert(Scope.isActive() && "double deactivation");
1299
1300 // If it's the top of the stack, just pop it, but do so only if it belongs
1301 // to the current RunCleanupsScope.
1302 if (C == EHStack.stable_begin() &&
1303 CurrentCleanupScopeDepth.strictlyEncloses(C)) {
1304 // Per comment below, checking EHAsynch is not really necessary
1305 // it's there to assure zero-impact w/o EHAsynch option
1306 if (!Scope.isNormalCleanup() && getLangOpts().EHAsynch) {
1307 PopCleanupBlock();
1308 } else {
1309 // If it's a normal cleanup, we need to pretend that the
1310 // fallthrough is unreachable.
1311 CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1312 PopCleanupBlock();
1313 Builder.restoreIP(SavedIP);
1314 }
1315 return;
1316 }
1317
1318 // Otherwise, follow the general case.
1319 SetupCleanupBlockActivation(*this, C, ForDeactivation, dominatingIP);
1320
1321 Scope.setActive(false);
1322}
1323
1325 if (!NormalCleanupDest.isValid())
1326 NormalCleanupDest =
1327 CreateDefaultAlignTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
1328 return NormalCleanupDest;
1329}
1330
1331/// Emits all the code to cause the given temporary to be cleaned up.
1333 QualType TempType,
1334 Address Ptr) {
1335 pushDestroy(NormalAndEHCleanup, Ptr, TempType, destroyCXXObject,
1336 /*useEHCleanup*/ true);
1337}
1338
1339// Need to set "funclet" in OperandBundle properly for noThrow
1340// intrinsic (see CGCall.cpp)
1342 llvm::FunctionCallee &SehCppScope) {
1343 llvm::BasicBlock *InvokeDest = CGF.getInvokeDest();
1344 assert(CGF.Builder.GetInsertBlock() && InvokeDest);
1345 llvm::BasicBlock *Cont = CGF.createBasicBlock("invoke.cont");
1347 CGF.getBundlesForFunclet(SehCppScope.getCallee());
1348 if (CGF.CurrentFuncletPad)
1349 BundleList.emplace_back("funclet", CGF.CurrentFuncletPad);
1350 CGF.Builder.CreateInvoke(SehCppScope, Cont, InvokeDest, std::nullopt,
1351 BundleList);
1352 CGF.EmitBlock(Cont);
1353}
1354
1355// Invoke a llvm.seh.scope.begin at the beginning of a CPP scope for -EHa
1357 assert(getLangOpts().EHAsynch);
1358 llvm::FunctionType *FTy =
1359 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
1360 llvm::FunctionCallee SehCppScope =
1361 CGM.CreateRuntimeFunction(FTy, "llvm.seh.scope.begin");
1362 EmitSehScope(*this, SehCppScope);
1363}
1364
1365// Invoke a llvm.seh.scope.end at the end of a CPP scope for -EHa
1366// llvm.seh.scope.end is emitted before popCleanup, so it's "invoked"
1368 assert(getLangOpts().EHAsynch);
1369 llvm::FunctionType *FTy =
1370 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
1371 llvm::FunctionCallee SehCppScope =
1372 CGM.CreateRuntimeFunction(FTy, "llvm.seh.scope.end");
1373 EmitSehScope(*this, SehCppScope);
1374}
1375
1376// Invoke a llvm.seh.try.begin at the beginning of a SEH scope for -EHa
1378 assert(getLangOpts().EHAsynch);
1379 llvm::FunctionType *FTy =
1380 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
1381 llvm::FunctionCallee SehCppScope =
1382 CGM.CreateRuntimeFunction(FTy, "llvm.seh.try.begin");
1383 EmitSehScope(*this, SehCppScope);
1384}
1385
1386// Invoke a llvm.seh.try.end at the end of a SEH scope for -EHa
1388 assert(getLangOpts().EHAsynch);
1389 llvm::FunctionType *FTy =
1390 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
1391 llvm::FunctionCallee SehCppScope =
1392 CGM.CreateRuntimeFunction(FTy, "llvm.seh.try.end");
1393 EmitSehScope(*this, SehCppScope);
1394}
#define V(N, I)
Definition: ASTContext.h:3259
static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack, EHScopeStack::stable_iterator C)
Definition: CGCleanup.cpp:1174
static void EmitSehScope(CodeGenFunction &CGF, llvm::FunctionCallee &SehCppScope)
Definition: CGCleanup.cpp:1341
static llvm::BasicBlock * CreateNormalEntry(CodeGenFunction &CGF, EHCleanupScope &Scope)
Definition: CGCleanup.cpp:525
ForActivation_t
Definition: CGCleanup.cpp:1214
@ ForActivation
Definition: CGCleanup.cpp:1215
@ ForDeactivation
Definition: CGCleanup.cpp:1216
static void createStoreInstBefore(llvm::Value *value, Address addr, llvm::Instruction *beforeInst)
Definition: CGCleanup.cpp:324
static void EmitCleanup(CodeGenFunction &CGF, EHScopeStack::Cleanup *Fn, EHScopeStack::Cleanup::Flags flags, Address ActiveFlag)
Definition: CGCleanup.cpp:575
static llvm::LoadInst * createLoadInstBefore(Address addr, const Twine &name, llvm::Instruction *beforeInst)
Definition: CGCleanup.cpp:330
static void destroyOptimisticNormalEntry(CodeGenFunction &CGF, EHCleanupScope &scope)
We don't need a normal entry block for the given cleanup.
Definition: CGCleanup.cpp:624
static void SetupCleanupBlockActivation(CodeGenFunction &CGF, EHScopeStack::stable_iterator C, ForActivation_t kind, llvm::Instruction *dominatingIP)
The given cleanup block is changing activation state.
Definition: CGCleanup.cpp:1224
static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit, llvm::BasicBlock *From, llvm::BasicBlock *To)
Definition: CGCleanup.cpp:600
static void ResolveAllBranchFixups(CodeGenFunction &CGF, llvm::SwitchInst *Switch, llvm::BasicBlock *CleanupEntry)
All the branch fixups on the EH stack have propagated out past the outermost normal cleanup; resolve ...
Definition: CGCleanup.cpp:340
static bool IsUsedAsEHCleanup(EHScopeStack &EHStack, EHScopeStack::stable_iterator cleanup)
Definition: CGCleanup.cpp:1193
static llvm::BasicBlock * SimplifyCleanupEntry(CodeGenFunction &CGF, llvm::BasicBlock *Entry)
Attempts to reduce a cleanup's entry block to a fallthrough.
Definition: CGCleanup.cpp:541
static llvm::SwitchInst * TransitionToCleanupSwitch(CodeGenFunction &CGF, llvm::BasicBlock *Block)
Transitions the terminator of the given exit-block of a cleanup to be a cleanup switch.
Definition: CGCleanup.cpp:378
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:1110
__DEVICE__ void * memcpy(void *__a, const void *__b, size_t __c)
Represents a C++ temporary.
Definition: ExprCXX.h:1443
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition: CharUnits.h:189
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition: CharUnits.h:58
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
An aligned address.
Definition: Address.h:29
static Address invalid()
Definition: Address.h:46
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:78
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:62
llvm::Value * getPointer() const
Definition: Address.h:51
bool isValid() const
Definition: Address.h:47
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:97
Address CreateStructGEP(Address Addr, unsigned Index, const llvm::Twine &Name="")
Definition: CGBuilder.h:172
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:71
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, llvm::Instruction *DominatingIP)
DeactivateCleanupBlock - Deactivates the given cleanup block.
void PopCleanupBlock(bool FallThroughIsBranchThrough=false)
PopCleanupBlock - Will pop the cleanup entry on the stack and process all branch fixups.
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
const LangOptions & getLangOpts() const
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
SmallVector< llvm::OperandBundleDef, 1 > getBundlesForFunclet(llvm::Value *Callee)
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, std::initializer_list< llvm::Value ** > ValuesToReload={})
Takes the old cleanup stack size and emits the cleanup blocks that have been added.
llvm::BasicBlock * getUnreachableBlock()
const TargetInfo & getTarget() const
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we're currently emitting one branch or the other of a conditio...
void setBeforeOutermostConditional(llvm::Value *value, Address addr)
llvm::BasicBlock * getInvokeDest()
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, const Twine &Name="tmp")
CreateDefaultAlignedTempAlloca - This creates an alloca with the default ABI alignment of the given L...
Address NormalCleanupDest
i32s containing the indexes of the cleanup destinations.
void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, Address Ptr)
void EmitBranchThroughCleanup(JumpDest Dest)
EmitBranchThroughCleanup - Emit a branch from the current insert block through the normal cleanup han...
void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, llvm::Instruction *DominatingIP)
ActivateCleanupBlock - Activates an initially-inactive cleanup.
void initFullExprCleanupWithFlag(Address ActiveFlag)
bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const
isObviouslyBranchWithoutCleanups - Return true if a branch to the specified destination obviously has...
llvm::Instruction * CurrentFuncletPad
void ResolveBranchFixups(llvm::BasicBlock *Target)
A scope which attempts to handle some, possibly all, types of exceptions.
Definition: CGCleanup.h:155
static size_t getSizeForNumHandlers(unsigned N)
Definition: CGCleanup.h:185
A cleanup scope which generates the cleanup blocks lazily.
Definition: CGCleanup.h:240
static size_t getSizeForCleanupSize(size_t Size)
Gets the size required for a lazy cleanup scope with the given cleanup-data requirements.
Definition: CGCleanup.h:287
llvm::BasicBlock * getNormalBlock() const
Definition: CGCleanup.h:321
An exceptions scope which filters exceptions thrown through it.
Definition: CGCleanup.h:446
static size_t getSizeForNumFilters(unsigned numFilters)
Definition: CGCleanup.h:465
unsigned getNumFilters() const
Definition: CGCleanup.h:469
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:141
virtual void Emit(CodeGenFunction &CGF, Flags flags)=0
Emit the cleanup.
A non-stable pointer into the scope stack.
Definition: CGCleanup.h:500
A saved depth on the scope stack.
Definition: EHScopeStack.h:101
bool encloses(stable_iterator I) const
Returns true if this scope encloses I.
Definition: EHScopeStack.h:118
bool strictlyEncloses(stable_iterator I) const
Returns true if this scope strictly encloses I: that is, if it encloses I and is not I.
Definition: EHScopeStack.h:124
A stack of scopes which respond to exceptions, including cleanups and catch blocks.
Definition: EHScopeStack.h:94
class EHFilterScope * pushFilter(unsigned NumFilters)
Push an exceptions filter on the stack.
Definition: CGCleanup.cpp:247
BranchFixup & getBranchFixup(unsigned I)
Definition: EHScopeStack.h:417
stable_iterator getInnermostNormalCleanup() const
Returns the innermost normal cleanup on the stack, or stable_end() if there are no normal cleanups.
Definition: EHScopeStack.h:370
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:393
unsigned getNumBranchFixups() const
Definition: EHScopeStack.h:416
void popCleanup()
Pops a cleanup scope off the stack. This is private to CGCleanup.cpp.
Definition: CGCleanup.cpp:222
stable_iterator getInnermostEHScope() const
Definition: EHScopeStack.h:375
bool containsOnlyLifetimeMarkers(stable_iterator Old) const
Definition: CGCleanup.cpp:144
bool empty() const
Determines whether the exception-scopes stack is empty.
Definition: EHScopeStack.h:359
void popFilter()
Pops an exceptions filter off the stack.
Definition: CGCleanup.cpp:255
iterator begin() const
Returns an iterator pointing to the innermost EH scope.
Definition: CGCleanup.h:560
class EHCatchScope * pushCatch(unsigned NumHandlers)
Push a set of catch handlers on the stack.
Definition: CGCleanup.cpp:264
iterator find(stable_iterator save) const
Turn a stable reference to a scope depth into a unstable pointer to the EH stack.
Definition: CGCleanup.h:584
void popNullFixups()
Pops lazily-removed fixups from the end of the list.
Definition: CGCleanup.cpp:283
bool hasNormalCleanups() const
Determines whether there are any normal cleanups on the stack.
Definition: EHScopeStack.h:364
stable_iterator getInnermostActiveNormalCleanup() const
Definition: CGCleanup.cpp:170
stable_iterator stabilize(iterator it) const
Translates an iterator into a stable_iterator.
Definition: CGCleanup.h:591
static stable_iterator stable_end()
Create a stable reference to the bottom of the EH stack.
Definition: EHScopeStack.h:398
void clearFixups()
Clears the branch-fixups list.
Definition: EHScopeStack.h:429
void pushTerminate()
Push a terminate handler on the stack.
Definition: CGCleanup.cpp:272
A protected scope for zero-cost EH handling.
Definition: CGCleanup.h:42
EHScopeStack::stable_iterator getEnclosingEHScope() const
Definition: CGCleanup.h:145
bool hasEHBranches() const
Definition: CGCleanup.h:139
An exceptions scope which calls std::terminate if any exception reaches it.
Definition: CGCleanup.h:488
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition: CGValue.h:39
bool isScalar() const
Definition: CGValue.h:54
static RValue get(llvm::Value *V)
Definition: CGValue.h:89
llvm::Value * getAggregatePointer() const
Definition: CGValue.h:79
static RValue getAggregate(Address addr, bool isVolatile=false)
Definition: CGValue.h:110
static RValue getComplex(llvm::Value *V1, llvm::Value *V2)
Definition: CGValue.h:96
bool isAggregate() const
Definition: CGValue.h:56
Address getAggregateAddress() const
getAggregateAddr() - Return the Value* of the address of the aggregate.
Definition: CGValue.h:73
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition: CGValue.h:61
bool isComplex() const
Definition: CGValue.h:55
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
Definition: CGValue.h:68
A (possibly-)qualified type.
Definition: Type.h:737
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:41
bool isMicrosoft() const
Is this ABI an MSVC-compatible ABI?
Definition: TargetCXXABI.h:136
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1291
@ NormalCleanup
Denotes a cleanup that should run when a scope is exited using normal control flow (falling off the e...
Definition: EHScopeStack.h:84
@ EHCleanup
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:80
bool Load(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1369
The JSON file list parser is used to communicate input to InstallAPI.
unsigned DestinationIndex
The destination index value.
Definition: EHScopeStack.h:49
llvm::BasicBlock * Destination
The ultimate destination of the branch.
Definition: EHScopeStack.h:46
llvm::BasicBlock * OptimisticBranchBlock
The block containing the terminator which needs to be modified into a switch if this fixup is resolve...
Definition: EHScopeStack.h:40
llvm::BranchInst * InitialBranch
The initial branch of the fixup.
Definition: EHScopeStack.h:52
static bool needsSaving(llvm::Value *value)
Answer whether the given value needs extra work to be saved.
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function.
Definition: EHScopeStack.h:65
The exceptions personality for a function.
Definition: CGCleanup.h:597
bool isMSVCXXPersonality() const
Definition: CGCleanup.h:640
static const EHPersonality & get(CodeGenModule &CGM, const FunctionDecl *FD)
bool usesFuncletPads() const
Does this personality use landingpads or the family of pad instructions designed to form funclets?
Definition: CGCleanup.h:629
bool isMSVCPersonality() const
Definition: CGCleanup.h:633