clang-tools 19.0.0git
FindTarget.cpp
Go to the documentation of this file.
1//===--- FindTarget.cpp - What does an AST node refer to? -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "FindTarget.h"
10#include "AST.h"
11#include "HeuristicResolver.h"
12#include "support/Logger.h"
13#include "clang/AST/ASTConcept.h"
14#include "clang/AST/ASTTypeTraits.h"
15#include "clang/AST/Decl.h"
16#include "clang/AST/DeclBase.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/DeclVisitor.h"
20#include "clang/AST/DeclarationName.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprConcepts.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/NestedNameSpecifier.h"
26#include "clang/AST/PrettyPrinter.h"
27#include "clang/AST/RecursiveASTVisitor.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/AST/TemplateBase.h"
30#include "clang/AST/Type.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/TypeLocVisitor.h"
33#include "clang/AST/TypeVisitor.h"
34#include "clang/Basic/LangOptions.h"
35#include "clang/Basic/SourceLocation.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/Specifiers.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include "llvm/Support/Casting.h"
42#include "llvm/Support/Compiler.h"
43#include "llvm/Support/raw_ostream.h"
44#include <iterator>
45#include <string>
46#include <utility>
47#include <vector>
48
49namespace clang {
50namespace clangd {
51namespace {
52
53LLVM_ATTRIBUTE_UNUSED std::string nodeToString(const DynTypedNode &N) {
54 std::string S = std::string(N.getNodeKind().asStringRef());
55 {
56 llvm::raw_string_ostream OS(S);
57 OS << ": ";
58 N.print(OS, PrintingPolicy(LangOptions()));
59 }
60 std::replace(S.begin(), S.end(), '\n', ' ');
61 return S;
62}
63
64const NamedDecl *getTemplatePattern(const NamedDecl *D) {
65 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
66 if (const auto *Result = CRD->getTemplateInstantiationPattern())
67 return Result;
68 // getTemplateInstantiationPattern returns null if the Specialization is
69 // incomplete (e.g. the type didn't need to be complete), fall back to the
70 // primary template.
71 if (CRD->getTemplateSpecializationKind() == TSK_Undeclared)
72 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(CRD))
73 return Spec->getSpecializedTemplate()->getTemplatedDecl();
74 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75 return FD->getTemplateInstantiationPattern();
76 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
77 // Hmm: getTIP returns its arg if it's not an instantiation?!
78 VarDecl *T = VD->getTemplateInstantiationPattern();
79 return (T == D) ? nullptr : T;
80 } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
81 return ED->getInstantiatedFromMemberEnum();
82 } else if (isa<FieldDecl>(D) || isa<TypedefNameDecl>(D)) {
83 if (const auto *Parent = llvm::dyn_cast<NamedDecl>(D->getDeclContext()))
84 if (const DeclContext *ParentPat =
85 dyn_cast_or_null<DeclContext>(getTemplatePattern(Parent)))
86 for (const NamedDecl *BaseND : ParentPat->lookup(D->getDeclName()))
87 if (!BaseND->isImplicit() && BaseND->getKind() == D->getKind())
88 return BaseND;
89 } else if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
90 if (const auto *ED = dyn_cast<EnumDecl>(ECD->getDeclContext())) {
91 if (const EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
92 for (const NamedDecl *BaseECD : Pattern->lookup(ECD->getDeclName()))
93 return BaseECD;
94 }
95 }
96 }
97 return nullptr;
98}
99
100// Returns true if the `TypedefNameDecl` should not be reported.
101bool shouldSkipTypedef(const TypedefNameDecl *TD) {
102 // These should be treated as keywords rather than decls - the typedef is an
103 // odd implementation detail.
104 if (TD == TD->getASTContext().getObjCInstanceTypeDecl() ||
105 TD == TD->getASTContext().getObjCIdDecl())
106 return true;
107 return false;
108}
109
110// TargetFinder locates the entities that an AST node refers to.
111//
112// Typically this is (possibly) one declaration and (possibly) one type, but
113// may be more:
114// - for ambiguous nodes like OverloadExpr
115// - if we want to include e.g. both typedefs and the underlying type
116//
117// This is organized as a set of mutually recursive helpers for particular node
118// types, but for most nodes this is a short walk rather than a deep traversal.
119//
120// It's tempting to do e.g. typedef resolution as a second normalization step,
121// after finding the 'primary' decl etc. But we do this monolithically instead
122// because:
123// - normalization may require these traversals again (e.g. unwrapping a
124// typedef reveals a decltype which must be traversed)
125// - it doesn't simplify that much, e.g. the first stage must still be able
126// to yield multiple decls to handle OverloadExpr
127// - there are cases where it's required for correctness. e.g:
128// template<class X> using pvec = vector<x*>; pvec<int> x;
129// There's no Decl `pvec<int>`, we must choose `pvec<X>` or `vector<int*>`
130// and both are lossy. We must know upfront what the caller ultimately wants.
131struct TargetFinder {
132 using RelSet = DeclRelationSet;
133 using Rel = DeclRelation;
134
135private:
136 const HeuristicResolver *Resolver;
137 llvm::SmallDenseMap<const NamedDecl *,
138 std::pair<RelSet, /*InsertionOrder*/ size_t>>
139 Decls;
140 llvm::SmallDenseMap<const Decl *, RelSet> Seen;
141 RelSet Flags;
142
143 template <typename T> void debug(T &Node, RelSet Flags) {
144 dlog("visit [{0}] {1}", Flags, nodeToString(DynTypedNode::create(Node)));
145 }
146
147 void report(const NamedDecl *D, RelSet Flags) {
148 dlog("--> [{0}] {1}", Flags, nodeToString(DynTypedNode::create(*D)));
149 auto It = Decls.try_emplace(D, std::make_pair(Flags, Decls.size()));
150 // If already exists, update the flags.
151 if (!It.second)
152 It.first->second.first |= Flags;
153 }
154
155public:
156 TargetFinder(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
157
158 llvm::SmallVector<std::pair<const NamedDecl *, RelSet>, 1> takeDecls() const {
159 using ValTy = std::pair<const NamedDecl *, RelSet>;
160 llvm::SmallVector<ValTy, 1> Result;
161 Result.resize(Decls.size());
162 for (const auto &Elem : Decls)
163 Result[Elem.second.second] = {Elem.first, Elem.second.first};
164 return Result;
165 }
166
167 void add(const Decl *Dcl, RelSet Flags) {
168 const NamedDecl *D = llvm::dyn_cast_or_null<NamedDecl>(Dcl);
169 if (!D)
170 return;
171 debug(*D, Flags);
172
173 // Avoid recursion (which can arise in the presence of heuristic
174 // resolution of dependent names) by exiting early if we have
175 // already seen this decl with all flags in Flags.
176 auto Res = Seen.try_emplace(D);
177 if (!Res.second && Res.first->second.contains(Flags))
178 return;
179 Res.first->second |= Flags;
180
181 if (const UsingDirectiveDecl *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
182 D = UDD->getNominatedNamespaceAsWritten();
183
184 if (const TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D)) {
185 add(TND->getUnderlyingType(), Flags | Rel::Underlying);
186 Flags |= Rel::Alias; // continue with the alias.
187 } else if (const UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
188 // no Underlying as this is a non-renaming alias.
189 for (const UsingShadowDecl *S : UD->shadows())
190 add(S->getUnderlyingDecl(), Flags);
191 Flags |= Rel::Alias; // continue with the alias.
192 } else if (const UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) {
193 // UsingEnumDecl is not an alias at all, just a reference.
194 D = UED->getEnumDecl();
195 } else if (const auto *NAD = dyn_cast<NamespaceAliasDecl>(D)) {
196 add(NAD->getUnderlyingDecl(), Flags | Rel::Underlying);
197 Flags |= Rel::Alias; // continue with the alias
198 } else if (const UnresolvedUsingValueDecl *UUVD =
199 dyn_cast<UnresolvedUsingValueDecl>(D)) {
200 if (Resolver) {
201 for (const NamedDecl *Target : Resolver->resolveUsingValueDecl(UUVD)) {
202 add(Target, Flags); // no Underlying as this is a non-renaming alias
203 }
204 }
205 Flags |= Rel::Alias; // continue with the alias
206 } else if (isa<UnresolvedUsingTypenameDecl>(D)) {
207 // FIXME: improve common dependent scope using name lookup in primary
208 // templates.
209 Flags |= Rel::Alias;
210 } else if (const UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) {
211 // Include the introducing UsingDecl, but don't traverse it. This may end
212 // up including *all* shadows, which we don't want.
213 // Don't apply this logic to UsingEnumDecl, which can't easily be
214 // conflated with the aliases it introduces.
215 if (llvm::isa<UsingDecl>(USD->getIntroducer()))
216 report(USD->getIntroducer(), Flags | Rel::Alias);
217 // Shadow decls are synthetic and not themselves interesting.
218 // Record the underlying decl instead, if allowed.
219 D = USD->getTargetDecl();
220 } else if (const auto *DG = dyn_cast<CXXDeductionGuideDecl>(D)) {
221 D = DG->getDeducedTemplate();
222 } else if (const ObjCImplementationDecl *IID =
223 dyn_cast<ObjCImplementationDecl>(D)) {
224 // Treat ObjC{Interface,Implementation}Decl as if they were a decl/def
225 // pair as long as the interface isn't implicit.
226 if (const auto *CID = IID->getClassInterface())
227 if (const auto *DD = CID->getDefinition())
228 if (!DD->isImplicitInterfaceDecl())
229 D = DD;
230 } else if (const ObjCCategoryImplDecl *CID =
231 dyn_cast<ObjCCategoryImplDecl>(D)) {
232 // Treat ObjC{Category,CategoryImpl}Decl as if they were a decl/def pair.
233 D = CID->getCategoryDecl();
234 }
235 if (!D)
236 return;
237
238 if (const Decl *Pat = getTemplatePattern(D)) {
239 assert(Pat != D);
240 add(Pat, Flags | Rel::TemplatePattern);
241 // Now continue with the instantiation.
242 Flags |= Rel::TemplateInstantiation;
243 }
244
245 report(D, Flags);
246 }
247
248 void add(const Stmt *S, RelSet Flags) {
249 if (!S)
250 return;
251 debug(*S, Flags);
252 struct Visitor : public ConstStmtVisitor<Visitor> {
253 TargetFinder &Outer;
254 RelSet Flags;
255 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
256
257 void VisitCallExpr(const CallExpr *CE) {
258 Outer.add(CE->getCalleeDecl(), Flags);
259 }
260 void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
261 Outer.add(E->getConceptReference(), Flags);
262 }
263 void VisitDeclRefExpr(const DeclRefExpr *DRE) {
264 const Decl *D = DRE->getDecl();
265 // UsingShadowDecl allows us to record the UsingDecl.
266 // getFoundDecl() returns the wrong thing in other cases (templates).
267 if (auto *USD = llvm::dyn_cast<UsingShadowDecl>(DRE->getFoundDecl()))
268 D = USD;
269 Outer.add(D, Flags);
270 }
271 void VisitMemberExpr(const MemberExpr *ME) {
272 const Decl *D = ME->getMemberDecl();
273 if (auto *USD =
274 llvm::dyn_cast<UsingShadowDecl>(ME->getFoundDecl().getDecl()))
275 D = USD;
276 Outer.add(D, Flags);
277 }
278 void VisitOverloadExpr(const OverloadExpr *OE) {
279 for (auto *D : OE->decls())
280 Outer.add(D, Flags);
281 }
282 void VisitSizeOfPackExpr(const SizeOfPackExpr *SE) {
283 Outer.add(SE->getPack(), Flags);
284 }
285 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
286 Outer.add(CCE->getConstructor(), Flags);
287 }
288 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
289 for (const DesignatedInitExpr::Designator &D :
290 llvm::reverse(DIE->designators()))
291 if (D.isFieldDesignator()) {
292 Outer.add(D.getFieldDecl(), Flags);
293 // We don't know which designator was intended, we assume the outer.
294 break;
295 }
296 }
297 void VisitGotoStmt(const GotoStmt *Goto) {
298 if (auto *LabelDecl = Goto->getLabel())
299 Outer.add(LabelDecl, Flags);
300 }
301 void VisitLabelStmt(const LabelStmt *Label) {
302 if (auto *LabelDecl = Label->getDecl())
303 Outer.add(LabelDecl, Flags);
304 }
305 void
306 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
307 if (Outer.Resolver) {
308 for (const NamedDecl *D : Outer.Resolver->resolveMemberExpr(E)) {
309 Outer.add(D, Flags);
310 }
311 }
312 }
313 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
314 if (Outer.Resolver) {
315 for (const NamedDecl *D : Outer.Resolver->resolveDeclRefExpr(E)) {
316 Outer.add(D, Flags);
317 }
318 }
319 }
320 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
321 Outer.add(OIRE->getDecl(), Flags);
322 }
323 void VisitObjCMessageExpr(const ObjCMessageExpr *OME) {
324 Outer.add(OME->getMethodDecl(), Flags);
325 }
326 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *OPRE) {
327 if (OPRE->isExplicitProperty())
328 Outer.add(OPRE->getExplicitProperty(), Flags);
329 else {
330 if (OPRE->isMessagingGetter())
331 Outer.add(OPRE->getImplicitPropertyGetter(), Flags);
332 if (OPRE->isMessagingSetter())
333 Outer.add(OPRE->getImplicitPropertySetter(), Flags);
334 }
335 }
336 void VisitObjCProtocolExpr(const ObjCProtocolExpr *OPE) {
337 Outer.add(OPE->getProtocol(), Flags);
338 }
339 void VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
340 Outer.add(OVE->getSourceExpr(), Flags);
341 }
342 void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
343 Outer.add(POE->getSyntacticForm(), Flags);
344 }
345 void VisitCXXNewExpr(const CXXNewExpr *CNE) {
346 Outer.add(CNE->getOperatorNew(), Flags);
347 }
348 void VisitCXXDeleteExpr(const CXXDeleteExpr *CDE) {
349 Outer.add(CDE->getOperatorDelete(), Flags);
350 }
351 void
352 VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *RBO) {
353 Outer.add(RBO->getDecomposedForm().InnerBinOp, Flags);
354 }
355 };
356 Visitor(*this, Flags).Visit(S);
357 }
358
359 void add(QualType T, RelSet Flags) {
360 if (T.isNull())
361 return;
362 debug(T, Flags);
363 struct Visitor : public TypeVisitor<Visitor> {
364 TargetFinder &Outer;
365 RelSet Flags;
366 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
367
368 void VisitTagType(const TagType *TT) {
369 Outer.add(TT->getAsTagDecl(), Flags);
370 }
371
372 void VisitElaboratedType(const ElaboratedType *ET) {
373 Outer.add(ET->desugar(), Flags);
374 }
375
376 void VisitUsingType(const UsingType *ET) {
377 Outer.add(ET->getFoundDecl(), Flags);
378 }
379
380 void VisitInjectedClassNameType(const InjectedClassNameType *ICNT) {
381 Outer.add(ICNT->getDecl(), Flags);
382 }
383
384 void VisitDecltypeType(const DecltypeType *DTT) {
385 Outer.add(DTT->getUnderlyingType(), Flags | Rel::Underlying);
386 }
387 void VisitDeducedType(const DeducedType *DT) {
388 // FIXME: In practice this doesn't work: the AutoType you find inside
389 // TypeLoc never has a deduced type. https://llvm.org/PR42914
390 Outer.add(DT->getDeducedType(), Flags);
391 }
392 void VisitUnresolvedUsingType(const UnresolvedUsingType *UUT) {
393 Outer.add(UUT->getDecl(), Flags);
394 }
395 void VisitDeducedTemplateSpecializationType(
396 const DeducedTemplateSpecializationType *DTST) {
397 if (const auto *USD = DTST->getTemplateName().getAsUsingShadowDecl())
398 Outer.add(USD, Flags);
399
400 // FIXME: This is a workaround for https://llvm.org/PR42914,
401 // which is causing DTST->getDeducedType() to be empty. We
402 // fall back to the template pattern and miss the instantiation
403 // even when it's known in principle. Once that bug is fixed,
404 // the following code can be removed (the existing handling in
405 // VisitDeducedType() is sufficient).
406 if (auto *TD = DTST->getTemplateName().getAsTemplateDecl())
407 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
408 }
409 void VisitDependentNameType(const DependentNameType *DNT) {
410 if (Outer.Resolver) {
411 for (const NamedDecl *ND :
412 Outer.Resolver->resolveDependentNameType(DNT)) {
413 Outer.add(ND, Flags);
414 }
415 }
416 }
417 void VisitDependentTemplateSpecializationType(
418 const DependentTemplateSpecializationType *DTST) {
419 if (Outer.Resolver) {
420 for (const NamedDecl *ND :
421 Outer.Resolver->resolveTemplateSpecializationType(DTST)) {
422 Outer.add(ND, Flags);
423 }
424 }
425 }
426 void VisitTypedefType(const TypedefType *TT) {
427 if (shouldSkipTypedef(TT->getDecl()))
428 return;
429 Outer.add(TT->getDecl(), Flags);
430 }
431 void
432 VisitTemplateSpecializationType(const TemplateSpecializationType *TST) {
433 // Have to handle these case-by-case.
434
435 if (const auto *UTN = TST->getTemplateName().getAsUsingShadowDecl())
436 Outer.add(UTN, Flags);
437
438 // templated type aliases: there's no specialized/instantiated using
439 // decl to point to. So try to find a decl for the underlying type
440 // (after substitution), and failing that point to the (templated) using
441 // decl.
442 if (TST->isTypeAlias()) {
443 Outer.add(TST->getAliasedType(), Flags | Rel::Underlying);
444 // Don't *traverse* the alias, which would result in traversing the
445 // template of the underlying type.
446
447 TemplateDecl *TD = TST->getTemplateName().getAsTemplateDecl();
448 // Builtin templates e.g. __make_integer_seq, __type_pack_element
449 // are such that they don't have alias *decls*. Even then, we still
450 // traverse their desugared *types* so that instantiated decls are
451 // collected.
452 if (llvm::isa<BuiltinTemplateDecl>(TD))
453 return;
454 Outer.report(TD->getTemplatedDecl(),
455 Flags | Rel::Alias | Rel::TemplatePattern);
456 }
457 // specializations of template template parameters aren't instantiated
458 // into decls, so they must refer to the parameter itself.
459 else if (const auto *Parm =
460 llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
461 TST->getTemplateName().getAsTemplateDecl()))
462 Outer.add(Parm, Flags);
463 // class template specializations have a (specialized) CXXRecordDecl.
464 else if (const CXXRecordDecl *RD = TST->getAsCXXRecordDecl())
465 Outer.add(RD, Flags); // add(Decl) will despecialize if needed.
466 else {
467 // fallback: the (un-specialized) declaration from primary template.
468 if (auto *TD = TST->getTemplateName().getAsTemplateDecl())
469 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
470 }
471 }
472 void
473 VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *STTPT) {
474 Outer.add(STTPT->getReplacementType(), Flags);
475 }
476 void VisitTemplateTypeParmType(const TemplateTypeParmType *TTPT) {
477 Outer.add(TTPT->getDecl(), Flags);
478 }
479 void VisitObjCInterfaceType(const ObjCInterfaceType *OIT) {
480 Outer.add(OIT->getDecl(), Flags);
481 }
482 };
483 Visitor(*this, Flags).Visit(T.getTypePtr());
484 }
485
486 void add(const NestedNameSpecifier *NNS, RelSet Flags) {
487 if (!NNS)
488 return;
489 debug(*NNS, Flags);
490 switch (NNS->getKind()) {
491 case NestedNameSpecifier::Namespace:
492 add(NNS->getAsNamespace(), Flags);
493 return;
494 case NestedNameSpecifier::NamespaceAlias:
495 add(NNS->getAsNamespaceAlias(), Flags);
496 return;
497 case NestedNameSpecifier::Identifier:
498 if (Resolver) {
499 add(QualType(Resolver->resolveNestedNameSpecifierToType(NNS), 0),
500 Flags);
501 }
502 return;
503 case NestedNameSpecifier::TypeSpec:
504 case NestedNameSpecifier::TypeSpecWithTemplate:
505 add(QualType(NNS->getAsType(), 0), Flags);
506 return;
507 case NestedNameSpecifier::Global:
508 // This should be TUDecl, but we can't get a pointer to it!
509 return;
510 case NestedNameSpecifier::Super:
511 add(NNS->getAsRecordDecl(), Flags);
512 return;
513 }
514 llvm_unreachable("unhandled NestedNameSpecifier::SpecifierKind");
515 }
516
517 void add(const CXXCtorInitializer *CCI, RelSet Flags) {
518 if (!CCI)
519 return;
520 debug(*CCI, Flags);
521
522 if (CCI->isAnyMemberInitializer())
523 add(CCI->getAnyMember(), Flags);
524 // Constructor calls contain a TypeLoc node, so we don't handle them here.
525 }
526
527 void add(const TemplateArgument &Arg, RelSet Flags) {
528 // Only used for template template arguments.
529 // For type and non-type template arguments, SelectionTree
530 // will hit a more specific node (e.g. a TypeLoc or a
531 // DeclRefExpr).
532 if (Arg.getKind() == TemplateArgument::Template ||
533 Arg.getKind() == TemplateArgument::TemplateExpansion) {
534 if (TemplateDecl *TD =
535 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) {
536 report(TD, Flags);
537 }
538 if (const auto *USD =
539 Arg.getAsTemplateOrTemplatePattern().getAsUsingShadowDecl())
540 add(USD, Flags);
541 }
542 }
543
544 void add(const ConceptReference *CR, RelSet Flags) {
545 add(CR->getNamedConcept(), Flags);
546 }
547};
548
549} // namespace
550
551llvm::SmallVector<std::pair<const NamedDecl *, DeclRelationSet>, 1>
552allTargetDecls(const DynTypedNode &N, const HeuristicResolver *Resolver) {
553 dlog("allTargetDecls({0})", nodeToString(N));
554 TargetFinder Finder(Resolver);
556 if (const Decl *D = N.get<Decl>())
557 Finder.add(D, Flags);
558 else if (const Stmt *S = N.get<Stmt>())
559 Finder.add(S, Flags);
560 else if (const NestedNameSpecifierLoc *NNSL = N.get<NestedNameSpecifierLoc>())
561 Finder.add(NNSL->getNestedNameSpecifier(), Flags);
562 else if (const NestedNameSpecifier *NNS = N.get<NestedNameSpecifier>())
563 Finder.add(NNS, Flags);
564 else if (const TypeLoc *TL = N.get<TypeLoc>())
565 Finder.add(TL->getType(), Flags);
566 else if (const QualType *QT = N.get<QualType>())
567 Finder.add(*QT, Flags);
568 else if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>())
569 Finder.add(CCI, Flags);
570 else if (const TemplateArgumentLoc *TAL = N.get<TemplateArgumentLoc>())
571 Finder.add(TAL->getArgument(), Flags);
572 else if (const CXXBaseSpecifier *CBS = N.get<CXXBaseSpecifier>())
573 Finder.add(CBS->getTypeSourceInfo()->getType(), Flags);
574 else if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
575 Finder.add(PL->getProtocol(), Flags);
576 else if (const ConceptReference *CR = N.get<ConceptReference>())
577 Finder.add(CR, Flags);
578 return Finder.takeDecls();
579}
580
581llvm::SmallVector<const NamedDecl *, 1>
582targetDecl(const DynTypedNode &N, DeclRelationSet Mask,
583 const HeuristicResolver *Resolver) {
584 llvm::SmallVector<const NamedDecl *, 1> Result;
585 for (const auto &Entry : allTargetDecls(N, Resolver)) {
586 if (!(Entry.second & ~Mask))
587 Result.push_back(Entry.first);
588 }
589 return Result;
590}
591
592llvm::SmallVector<const NamedDecl *, 1>
594 const HeuristicResolver *Resolver) {
595 assert(!(Mask & (DeclRelation::TemplatePattern |
597 "explicitReferenceTargets handles templates on its own");
598 auto Decls = allTargetDecls(N, Resolver);
599
600 // We prefer to return template instantiation, but fallback to template
601 // pattern if instantiation is not available.
603
604 llvm::SmallVector<const NamedDecl *, 1> TemplatePatterns;
605 llvm::SmallVector<const NamedDecl *, 1> Targets;
606 bool SeenTemplateInstantiations = false;
607 for (auto &D : Decls) {
608 if (D.second & ~Mask)
609 continue;
610 if (D.second & DeclRelation::TemplatePattern) {
611 TemplatePatterns.push_back(D.first);
612 continue;
613 }
615 SeenTemplateInstantiations = true;
616 Targets.push_back(D.first);
617 }
618 if (!SeenTemplateInstantiations)
619 Targets.insert(Targets.end(), TemplatePatterns.begin(),
620 TemplatePatterns.end());
621 return Targets;
622}
623
624namespace {
625llvm::SmallVector<ReferenceLoc> refInDecl(const Decl *D,
626 const HeuristicResolver *Resolver) {
627 struct Visitor : ConstDeclVisitor<Visitor> {
628 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
629
630 const HeuristicResolver *Resolver;
631 llvm::SmallVector<ReferenceLoc> Refs;
632
633 void VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
634 // We want to keep it as non-declaration references, as the
635 // "using namespace" declaration doesn't have a name.
636 Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
637 D->getIdentLocation(),
638 /*IsDecl=*/false,
639 {D->getNominatedNamespaceAsWritten()}});
640 }
641
642 void VisitUsingDecl(const UsingDecl *D) {
643 // "using ns::identifier;" is a non-declaration reference.
644 Refs.push_back(ReferenceLoc{
645 D->getQualifierLoc(), D->getLocation(), /*IsDecl=*/false,
646 explicitReferenceTargets(DynTypedNode::create(*D),
647 DeclRelation::Underlying, Resolver)});
648 }
649
650 void VisitUsingEnumDecl(const UsingEnumDecl *D) {
651 // "using enum ns::E" is a non-declaration reference.
652 // The reference is covered by the embedded typeloc.
653 // Don't use the default VisitNamedDecl, which would report a declaration.
654 }
655
656 void VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
657 // For namespace alias, "namespace Foo = Target;", we add two references.
658 // Add a declaration reference for Foo.
659 VisitNamedDecl(D);
660 // Add a non-declaration reference for Target.
661 Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
662 D->getTargetNameLoc(),
663 /*IsDecl=*/false,
664 {D->getAliasedNamespace()}});
665 }
666
667 void VisitNamedDecl(const NamedDecl *ND) {
668 // We choose to ignore {Class, Function, Var, TypeAlias}TemplateDecls. As
669 // as their underlying decls, covering the same range, will be visited.
670 if (llvm::isa<ClassTemplateDecl>(ND) ||
671 llvm::isa<FunctionTemplateDecl>(ND) ||
672 llvm::isa<VarTemplateDecl>(ND) ||
673 llvm::isa<TypeAliasTemplateDecl>(ND))
674 return;
675 // FIXME: decide on how to surface destructors when we need them.
676 if (llvm::isa<CXXDestructorDecl>(ND))
677 return;
678 // Filter anonymous decls, name location will point outside the name token
679 // and the clients are not prepared to handle that.
680 if (ND->getDeclName().isIdentifier() &&
681 !ND->getDeclName().getAsIdentifierInfo())
682 return;
683 Refs.push_back(ReferenceLoc{getQualifierLoc(*ND),
684 ND->getLocation(),
685 /*IsDecl=*/true,
686 {ND}});
687 }
688
689 void VisitCXXDeductionGuideDecl(const CXXDeductionGuideDecl *DG) {
690 // The class template name in a deduction guide targets the class
691 // template.
692 Refs.push_back(ReferenceLoc{DG->getQualifierLoc(),
693 DG->getNameInfo().getLoc(),
694 /*IsDecl=*/false,
695 {DG->getDeducedTemplate()}});
696 }
697
698 void VisitObjCMethodDecl(const ObjCMethodDecl *OMD) {
699 // The name may have several tokens, we can only report the first.
700 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
701 OMD->getSelectorStartLoc(),
702 /*IsDecl=*/true,
703 {OMD}});
704 }
705
706 void VisitObjCCategoryDecl(const ObjCCategoryDecl *OCD) {
707 // getLocation is the extended class's location, not the category's.
708 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
709 OCD->getLocation(),
710 /*IsDecl=*/false,
711 {OCD->getClassInterface()}});
712 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
713 OCD->getCategoryNameLoc(),
714 /*IsDecl=*/true,
715 {OCD}});
716 }
717
718 void VisitObjCCategoryImplDecl(const ObjCCategoryImplDecl *OCID) {
719 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
720 OCID->getLocation(),
721 /*IsDecl=*/false,
722 {OCID->getClassInterface()}});
723 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
724 OCID->getCategoryNameLoc(),
725 /*IsDecl=*/false,
726 {OCID->getCategoryDecl()}});
727 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
728 OCID->getCategoryNameLoc(),
729 /*IsDecl=*/true,
730 {OCID}});
731 }
732
733 void VisitObjCImplementationDecl(const ObjCImplementationDecl *OIMD) {
734 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
735 OIMD->getLocation(),
736 /*IsDecl=*/false,
737 {OIMD->getClassInterface()}});
738 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
739 OIMD->getLocation(),
740 /*IsDecl=*/true,
741 {OIMD}});
742 }
743 };
744
745 Visitor V{Resolver};
746 V.Visit(D);
747 return V.Refs;
748}
749
750llvm::SmallVector<ReferenceLoc> refInStmt(const Stmt *S,
751 const HeuristicResolver *Resolver) {
752 struct Visitor : ConstStmtVisitor<Visitor> {
753 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
754
755 const HeuristicResolver *Resolver;
756 // FIXME: handle more complicated cases: more ObjC, designated initializers.
757 llvm::SmallVector<ReferenceLoc> Refs;
758
759 void VisitDeclRefExpr(const DeclRefExpr *E) {
760 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
761 E->getNameInfo().getLoc(),
762 /*IsDecl=*/false,
763 {E->getFoundDecl()}});
764 }
765
766 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
767 Refs.push_back(ReferenceLoc{
768 E->getQualifierLoc(), E->getNameInfo().getLoc(), /*IsDecl=*/false,
769 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
770 }
771
772 void VisitMemberExpr(const MemberExpr *E) {
773 // Skip destructor calls to avoid duplication: TypeLoc within will be
774 // visited separately.
775 if (llvm::isa<CXXDestructorDecl>(E->getFoundDecl().getDecl()))
776 return;
777 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
778 E->getMemberNameInfo().getLoc(),
779 /*IsDecl=*/false,
780 {E->getFoundDecl()}});
781 }
782
783 void
784 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
785 Refs.push_back(ReferenceLoc{
786 E->getQualifierLoc(), E->getMemberNameInfo().getLoc(),
787 /*IsDecl=*/false,
788 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
789 }
790
791 void VisitOverloadExpr(const OverloadExpr *E) {
792 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
793 E->getNameInfo().getLoc(),
794 /*IsDecl=*/false,
795 llvm::SmallVector<const NamedDecl *, 1>(
796 E->decls().begin(), E->decls().end())});
797 }
798
799 void VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
800 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
801 E->getPackLoc(),
802 /*IsDecl=*/false,
803 {E->getPack()}});
804 }
805
806 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
807 Refs.push_back(ReferenceLoc{
808 NestedNameSpecifierLoc(), E->getLocation(),
809 /*IsDecl=*/false,
810 // Select the getter, setter, or @property depending on the call.
811 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
812 }
813
814 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
815 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
816 OIRE->getLocation(),
817 /*IsDecl=*/false,
818 {OIRE->getDecl()}});
819 }
820
821 void VisitObjCMessageExpr(const ObjCMessageExpr *E) {
822 // The name may have several tokens, we can only report the first.
823 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
824 E->getSelectorStartLoc(),
825 /*IsDecl=*/false,
826 {E->getMethodDecl()}});
827 }
828
829 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
830 for (const DesignatedInitExpr::Designator &D : DIE->designators()) {
831 if (!D.isFieldDesignator())
832 continue;
833
834 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
835 D.getFieldLoc(),
836 /*IsDecl=*/false,
837 {D.getFieldDecl()}});
838 }
839 }
840
841 void VisitGotoStmt(const GotoStmt *GS) {
842 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
843 GS->getLabelLoc(),
844 /*IsDecl=*/false,
845 {GS->getLabel()}});
846 }
847
848 void VisitLabelStmt(const LabelStmt *LS) {
849 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
850 LS->getIdentLoc(),
851 /*IsDecl=*/true,
852 {LS->getDecl()}});
853 }
854 };
855
856 Visitor V{Resolver};
857 V.Visit(S);
858 return V.Refs;
859}
860
861llvm::SmallVector<ReferenceLoc>
862refInTypeLoc(TypeLoc L, const HeuristicResolver *Resolver) {
863 struct Visitor : TypeLocVisitor<Visitor> {
864 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
865
866 const HeuristicResolver *Resolver;
867 llvm::SmallVector<ReferenceLoc> Refs;
868
869 void VisitElaboratedTypeLoc(ElaboratedTypeLoc L) {
870 // We only know about qualifier, rest if filled by inner locations.
871 size_t InitialSize = Refs.size();
872 Visit(L.getNamedTypeLoc().getUnqualifiedLoc());
873 size_t NewSize = Refs.size();
874 // Add qualifier for the newly-added refs.
875 for (unsigned I = InitialSize; I < NewSize; ++I) {
876 ReferenceLoc *Ref = &Refs[I];
877 // Fill in the qualifier.
878 assert(!Ref->Qualifier.hasQualifier() && "qualifier already set");
879 Ref->Qualifier = L.getQualifierLoc();
880 }
881 }
882
883 void VisitUsingTypeLoc(UsingTypeLoc L) {
884 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
885 L.getLocalSourceRange().getBegin(),
886 /*IsDecl=*/false,
887 {L.getFoundDecl()}});
888 }
889
890 void VisitTagTypeLoc(TagTypeLoc L) {
891 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
892 L.getNameLoc(),
893 /*IsDecl=*/false,
894 {L.getDecl()}});
895 }
896
897 void VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc L) {
898 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
899 L.getNameLoc(),
900 /*IsDecl=*/false,
901 {L.getDecl()}});
902 }
903
904 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
905 // We must ensure template type aliases are included in results if they
906 // were written in the source code, e.g. in
907 // template <class T> using valias = vector<T>;
908 // ^valias<int> x;
909 // 'explicitReferenceTargets' will return:
910 // 1. valias with mask 'Alias'.
911 // 2. 'vector<int>' with mask 'Underlying'.
912 // we want to return only #1 in this case.
913 Refs.push_back(ReferenceLoc{
914 NestedNameSpecifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
915 explicitReferenceTargets(DynTypedNode::create(L.getType()),
916 DeclRelation::Alias, Resolver)});
917 }
918 void VisitDeducedTemplateSpecializationTypeLoc(
919 DeducedTemplateSpecializationTypeLoc L) {
920 Refs.push_back(ReferenceLoc{
921 NestedNameSpecifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
922 explicitReferenceTargets(DynTypedNode::create(L.getType()),
923 DeclRelation::Alias, Resolver)});
924 }
925
926 void VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
927 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
928 TL.getNameLoc(),
929 /*IsDecl=*/false,
930 {TL.getDecl()}});
931 }
932
933 void VisitDependentTemplateSpecializationTypeLoc(
934 DependentTemplateSpecializationTypeLoc L) {
935 Refs.push_back(
936 ReferenceLoc{L.getQualifierLoc(), L.getTemplateNameLoc(),
937 /*IsDecl=*/false,
939 DynTypedNode::create(L.getType()), {}, Resolver)});
940 }
941
942 void VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
943 Refs.push_back(
944 ReferenceLoc{L.getQualifierLoc(), L.getNameLoc(),
945 /*IsDecl=*/false,
947 DynTypedNode::create(L.getType()), {}, Resolver)});
948 }
949
950 void VisitTypedefTypeLoc(TypedefTypeLoc L) {
951 if (shouldSkipTypedef(L.getTypedefNameDecl()))
952 return;
953 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
954 L.getNameLoc(),
955 /*IsDecl=*/false,
956 {L.getTypedefNameDecl()}});
957 }
958
959 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc L) {
960 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
961 L.getNameLoc(),
962 /*IsDecl=*/false,
963 {L.getIFaceDecl()}});
964 }
965 };
966
967 Visitor V{Resolver};
968 V.Visit(L.getUnqualifiedLoc());
969 return V.Refs;
970}
971
972class ExplicitReferenceCollector
973 : public RecursiveASTVisitor<ExplicitReferenceCollector> {
974public:
975 ExplicitReferenceCollector(llvm::function_ref<void(ReferenceLoc)> Out,
976 const HeuristicResolver *Resolver)
977 : Out(Out), Resolver(Resolver) {
978 assert(Out);
979 }
980
981 bool VisitTypeLoc(TypeLoc TTL) {
982 if (TypeLocsToSkip.count(TTL.getBeginLoc()))
983 return true;
984 visitNode(DynTypedNode::create(TTL));
985 return true;
986 }
987
988 bool TraverseElaboratedTypeLoc(ElaboratedTypeLoc L) {
989 // ElaboratedTypeLoc will reports information for its inner type loc.
990 // Otherwise we loose information about inner types loc's qualifier.
991 TypeLoc Inner = L.getNamedTypeLoc().getUnqualifiedLoc();
992 if (L.getBeginLoc() == Inner.getBeginLoc())
993 return RecursiveASTVisitor::TraverseTypeLoc(Inner);
994 else
995 TypeLocsToSkip.insert(Inner.getBeginLoc());
996 return RecursiveASTVisitor::TraverseElaboratedTypeLoc(L);
997 }
998
999 bool VisitStmt(Stmt *S) {
1000 visitNode(DynTypedNode::create(*S));
1001 return true;
1002 }
1003
1004 bool TraverseOpaqueValueExpr(OpaqueValueExpr *OVE) {
1005 visitNode(DynTypedNode::create(*OVE));
1006 // Not clear why the source expression is skipped by default...
1007 // FIXME: can we just make RecursiveASTVisitor do this?
1008 return RecursiveASTVisitor::TraverseStmt(OVE->getSourceExpr());
1009 }
1010
1011 bool TraversePseudoObjectExpr(PseudoObjectExpr *POE) {
1012 visitNode(DynTypedNode::create(*POE));
1013 // Traverse only the syntactic form to find the *written* references.
1014 // (The semantic form also contains lots of duplication)
1015 return RecursiveASTVisitor::TraverseStmt(POE->getSyntacticForm());
1016 }
1017
1018 // We re-define Traverse*, since there's no corresponding Visit*.
1019 // TemplateArgumentLoc is the only way to get locations for references to
1020 // template template parameters.
1021 bool TraverseTemplateArgumentLoc(TemplateArgumentLoc A) {
1022 switch (A.getArgument().getKind()) {
1023 case TemplateArgument::Template:
1024 case TemplateArgument::TemplateExpansion:
1025 reportReference(ReferenceLoc{A.getTemplateQualifierLoc(),
1026 A.getTemplateNameLoc(),
1027 /*IsDecl=*/false,
1028 {A.getArgument()
1029 .getAsTemplateOrTemplatePattern()
1030 .getAsTemplateDecl()}},
1031 DynTypedNode::create(A.getArgument()));
1032 break;
1033 case TemplateArgument::Declaration:
1034 break; // FIXME: can this actually happen in TemplateArgumentLoc?
1035 case TemplateArgument::Integral:
1036 case TemplateArgument::Null:
1037 case TemplateArgument::NullPtr:
1038 break; // no references.
1039 case TemplateArgument::Pack:
1040 case TemplateArgument::Type:
1041 case TemplateArgument::Expression:
1042 case TemplateArgument::StructuralValue:
1043 break; // Handled by VisitType and VisitExpression.
1044 };
1045 return RecursiveASTVisitor::TraverseTemplateArgumentLoc(A);
1046 }
1047
1048 bool VisitDecl(Decl *D) {
1049 visitNode(DynTypedNode::create(*D));
1050 return true;
1051 }
1052
1053 // We have to use Traverse* because there is no corresponding Visit*.
1054 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc L) {
1055 if (!L.getNestedNameSpecifier())
1056 return true;
1057 visitNode(DynTypedNode::create(L));
1058 // Inner type is missing information about its qualifier, skip it.
1059 if (auto TL = L.getTypeLoc())
1060 TypeLocsToSkip.insert(TL.getBeginLoc());
1061 return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(L);
1062 }
1063
1064 bool TraverseObjCProtocolLoc(ObjCProtocolLoc ProtocolLoc) {
1065 visitNode(DynTypedNode::create(ProtocolLoc));
1066 return true;
1067 }
1068
1069 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
1070 visitNode(DynTypedNode::create(*Init));
1071 return RecursiveASTVisitor::TraverseConstructorInitializer(Init);
1072 }
1073
1074 bool VisitConceptReference(const ConceptReference *CR) {
1075 visitNode(DynTypedNode::create(*CR));
1076 return true;
1077 }
1078
1079private:
1080 /// Obtain information about a reference directly defined in \p N. Does not
1081 /// recurse into child nodes, e.g. do not expect references for constructor
1082 /// initializers
1083 ///
1084 /// Any of the fields in the returned structure can be empty, but not all of
1085 /// them, e.g.
1086 /// - for implicitly generated nodes (e.g. MemberExpr from range-based-for),
1087 /// source location information may be missing,
1088 /// - for dependent code, targets may be empty.
1089 ///
1090 /// (!) For the purposes of this function declarations are not considered to
1091 /// be references. However, declarations can have references inside them,
1092 /// e.g. 'namespace foo = std' references namespace 'std' and this
1093 /// function will return the corresponding reference.
1094 llvm::SmallVector<ReferenceLoc> explicitReference(DynTypedNode N) {
1095 if (auto *D = N.get<Decl>())
1096 return refInDecl(D, Resolver);
1097 if (auto *S = N.get<Stmt>())
1098 return refInStmt(S, Resolver);
1099 if (auto *NNSL = N.get<NestedNameSpecifierLoc>()) {
1100 // (!) 'DeclRelation::Alias' ensures we do not loose namespace aliases.
1101 return {ReferenceLoc{
1102 NNSL->getPrefix(), NNSL->getLocalBeginLoc(), false,
1104 DynTypedNode::create(*NNSL->getNestedNameSpecifier()),
1105 DeclRelation::Alias, Resolver)}};
1106 }
1107 if (const TypeLoc *TL = N.get<TypeLoc>())
1108 return refInTypeLoc(*TL, Resolver);
1109 if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>()) {
1110 // Other type initializers (e.g. base initializer) are handled by visiting
1111 // the typeLoc.
1112 if (CCI->isAnyMemberInitializer()) {
1113 return {ReferenceLoc{NestedNameSpecifierLoc(),
1114 CCI->getMemberLocation(),
1115 /*IsDecl=*/false,
1116 {CCI->getAnyMember()}}};
1117 }
1118 }
1119 if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
1120 return {ReferenceLoc{NestedNameSpecifierLoc(),
1121 PL->getLocation(),
1122 /*IsDecl=*/false,
1123 {PL->getProtocol()}}};
1124 if (const ConceptReference *CR = N.get<ConceptReference>())
1125 return {ReferenceLoc{CR->getNestedNameSpecifierLoc(),
1126 CR->getConceptNameLoc(),
1127 /*IsDecl=*/false,
1128 {CR->getNamedConcept()}}};
1129
1130 // We do not have location information for other nodes (QualType, etc)
1131 return {};
1132 }
1133
1134 void visitNode(DynTypedNode N) {
1135 for (auto &R : explicitReference(N))
1136 reportReference(std::move(R), N);
1137 }
1138
1139 void reportReference(ReferenceLoc &&Ref, DynTypedNode N) {
1140 // Strip null targets that can arise from invalid code.
1141 // (This avoids having to check for null everywhere we insert)
1142 llvm::erase(Ref.Targets, nullptr);
1143 // Our promise is to return only references from the source code. If we lack
1144 // location information, skip these nodes.
1145 // Normally this should not happen in practice, unless there are bugs in the
1146 // traversals or users started the traversal at an implicit node.
1147 if (Ref.NameLoc.isInvalid()) {
1148 dlog("invalid location at node {0}", nodeToString(N));
1149 return;
1150 }
1151 Out(Ref);
1152 }
1153
1154 llvm::function_ref<void(ReferenceLoc)> Out;
1155 const HeuristicResolver *Resolver;
1156 /// TypeLocs starting at these locations must be skipped, see
1157 /// TraverseElaboratedTypeSpecifierLoc for details.
1158 llvm::DenseSet<SourceLocation> TypeLocsToSkip;
1159};
1160} // namespace
1161
1162void findExplicitReferences(const Stmt *S,
1163 llvm::function_ref<void(ReferenceLoc)> Out,
1164 const HeuristicResolver *Resolver) {
1165 assert(S);
1166 ExplicitReferenceCollector(Out, Resolver).TraverseStmt(const_cast<Stmt *>(S));
1167}
1169 llvm::function_ref<void(ReferenceLoc)> Out,
1170 const HeuristicResolver *Resolver) {
1171 assert(D);
1172 ExplicitReferenceCollector(Out, Resolver).TraverseDecl(const_cast<Decl *>(D));
1173}
1174void findExplicitReferences(const ASTContext &AST,
1175 llvm::function_ref<void(ReferenceLoc)> Out,
1176 const HeuristicResolver *Resolver) {
1177 ExplicitReferenceCollector(Out, Resolver)
1178 .TraverseAST(const_cast<ASTContext &>(AST));
1179}
1180
1181llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelation R) {
1182 switch (R) {
1183#define REL_CASE(X) \
1184 case DeclRelation::X: \
1185 return OS << #X;
1186 REL_CASE(Alias);
1190#undef REL_CASE
1191 }
1192 llvm_unreachable("Unhandled DeclRelation enum");
1193}
1194llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelationSet RS) {
1195 const char *Sep = "";
1196 for (unsigned I = 0; I < RS.S.size(); ++I) {
1197 if (RS.S.test(I)) {
1198 OS << Sep << static_cast<DeclRelation>(I);
1199 Sep = "|";
1200 }
1201 }
1202 return OS;
1203}
1204
1205llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, ReferenceLoc R) {
1206 // note we cannot print R.NameLoc without a source manager.
1207 OS << "targets = {";
1208 llvm::SmallVector<std::string> Targets;
1209 for (const NamedDecl *T : R.Targets) {
1210 llvm::raw_string_ostream Target(Targets.emplace_back());
1212 }
1213 llvm::sort(Targets);
1214 OS << llvm::join(Targets, ", ");
1215 OS << "}";
1216 if (R.Qualifier) {
1217 OS << ", qualifier = '";
1218 R.Qualifier.getNestedNameSpecifier()->print(OS,
1219 PrintingPolicy(LangOptions()));
1220 OS << "'";
1221 }
1222 if (R.IsDecl)
1223 OS << ", decl";
1224 return OS;
1225}
1226
1227} // namespace clangd
1228} // namespace clang
QualType DeducedType
Definition: AST.cpp:583
const Expr * E
const FunctionDecl * Decl
CaptureExpr CE
std::pair< Context, Canceler > Inner
Params Parm
CompiledFragmentImpl & Out
const Node * Parent
#define REL_CASE(X)
std::string Label
#define dlog(...)
Definition: Logger.h:101
llvm::raw_string_ostream OS
Definition: TraceTests.cpp:160
std::string printTemplateSpecializationArgs(const NamedDecl &ND)
Prints template arguments of a decl as written in the source code, including enclosing '<' and '>',...
Definition: AST.cpp:260
llvm::SmallVector< std::pair< const NamedDecl *, DeclRelationSet >, 1 > allTargetDecls(const DynTypedNode &N, const HeuristicResolver *Resolver)
Similar to targetDecl(), however instead of applying a filter, all possible decls are returned along ...
Definition: FindTarget.cpp:552
llvm::SmallVector< const NamedDecl *, 1 > explicitReferenceTargets(DynTypedNode N, DeclRelationSet Mask, const HeuristicResolver *Resolver)
Find declarations explicitly referenced in the source code defined by N.
Definition: FindTarget.cpp:593
void findExplicitReferences(const Stmt *S, llvm::function_ref< void(ReferenceLoc)> Out, const HeuristicResolver *Resolver)
Recursively traverse S and report all references explicitly written in the code.
NestedNameSpecifierLoc getQualifierLoc(const NamedDecl &ND)
Returns a nested name specifier loc of ND if it was present in the source, e.g.
Definition: AST.cpp:199
llvm::SmallVector< const NamedDecl *, 1 > targetDecl(const DynTypedNode &N, DeclRelationSet Mask, const HeuristicResolver *Resolver)
targetDecl() finds the declaration referred to by an AST node.
Definition: FindTarget.cpp:582
llvm::raw_ostream & operator<<(llvm::raw_ostream &OS, const CodeCompletion &C)
std::string printQualifiedName(const NamedDecl &ND)
Returns the qualified name of ND.
Definition: AST.cpp:177
@ Underlying
This is the underlying declaration for a renaming-alias, decltype etc.
@ TemplatePattern
This is the pattern the template specialization was instantiated from.
@ TemplateInstantiation
This is the template instantiation that was referred to.
@ Alias
This declaration is an alias that was referred to.
===– Representation.cpp - ClangDoc Representation --------—*- C++ -*-===//
Information about a reference written in the source code, independent of the actual AST node that thi...
Definition: FindTarget.h:126
NestedNameSpecifierLoc Qualifier
Contains qualifier written in the code, if any, e.g. 'ns::' for 'ns::foo'.
Definition: FindTarget.h:128
bool IsDecl
True if the reference is a declaration or definition;.
Definition: FindTarget.h:132
llvm::SmallVector< const NamedDecl *, 1 > Targets
A list of targets referenced by this name.
Definition: FindTarget.h:138