clang-tools 22.0.0git
FindTarget.cpp
Go to the documentation of this file.
1//===--- FindTarget.cpp - What does an AST node refer to? -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "FindTarget.h"
10#include "AST.h"
11#include "support/Logger.h"
12#include "clang/AST/ASTConcept.h"
13#include "clang/AST/ASTTypeTraits.h"
14#include "clang/AST/Decl.h"
15#include "clang/AST/DeclBase.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/DeclarationName.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprConcepts.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/NestedNameSpecifier.h"
25#include "clang/AST/PrettyPrinter.h"
26#include "clang/AST/RecursiveASTVisitor.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TemplateBase.h"
29#include "clang/AST/Type.h"
30#include "clang/AST/TypeLoc.h"
31#include "clang/AST/TypeLocVisitor.h"
32#include "clang/AST/TypeVisitor.h"
33#include "clang/Basic/LangOptions.h"
34#include "clang/Basic/SourceLocation.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/Specifiers.h"
37#include "clang/Sema/HeuristicResolver.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include "llvm/Support/Casting.h"
42#include "llvm/Support/Compiler.h"
43#include "llvm/Support/raw_ostream.h"
44#include <iterator>
45#include <string>
46#include <utility>
47#include <vector>
48
49namespace clang {
50namespace clangd {
51namespace {
52
53LLVM_ATTRIBUTE_UNUSED std::string nodeToString(const DynTypedNode &N) {
54 std::string S = std::string(N.getNodeKind().asStringRef());
55 {
56 llvm::raw_string_ostream OS(S);
57 OS << ": ";
58 N.print(OS, PrintingPolicy(LangOptions()));
59 }
60 llvm::replace(S, '\n', ' ');
61 return S;
62}
63
64const NamedDecl *getTemplatePattern(const NamedDecl *D) {
65 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
66 if (const auto *Result = CRD->getTemplateInstantiationPattern())
67 return Result;
68 // getTemplateInstantiationPattern returns null if the Specialization is
69 // incomplete (e.g. the type didn't need to be complete), fall back to the
70 // primary template.
71 if (CRD->getTemplateSpecializationKind() == TSK_Undeclared)
72 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(CRD))
73 return Spec->getSpecializedTemplate()->getTemplatedDecl();
74 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75 return FD->getTemplateInstantiationPattern();
76 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
77 // Hmm: getTIP returns its arg if it's not an instantiation?!
78 VarDecl *T = VD->getTemplateInstantiationPattern();
79 return (T == D) ? nullptr : T;
80 } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
81 return ED->getInstantiatedFromMemberEnum();
82 } else if (isa<FieldDecl>(D) || isa<TypedefNameDecl>(D)) {
83 if (const auto *Parent = llvm::dyn_cast<NamedDecl>(D->getDeclContext()))
84 if (const DeclContext *ParentPat =
85 dyn_cast_or_null<DeclContext>(getTemplatePattern(Parent)))
86 for (const NamedDecl *BaseND : ParentPat->lookup(D->getDeclName()))
87 if (!BaseND->isImplicit() && BaseND->getKind() == D->getKind())
88 return BaseND;
89 } else if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
90 if (const auto *ED = dyn_cast<EnumDecl>(ECD->getDeclContext())) {
91 if (const EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
92 for (const NamedDecl *BaseECD : Pattern->lookup(ECD->getDeclName()))
93 return BaseECD;
94 }
95 }
96 }
97 return nullptr;
98}
99
100// Returns true if the `TypedefNameDecl` should not be reported.
101bool shouldSkipTypedef(const TypedefNameDecl *TD) {
102 // These should be treated as keywords rather than decls - the typedef is an
103 // odd implementation detail.
104 if (TD == TD->getASTContext().getObjCInstanceTypeDecl() ||
105 TD == TD->getASTContext().getObjCIdDecl())
106 return true;
107 return false;
108}
109
110// TargetFinder locates the entities that an AST node refers to.
111//
112// Typically this is (possibly) one declaration and (possibly) one type, but
113// may be more:
114// - for ambiguous nodes like OverloadExpr
115// - if we want to include e.g. both typedefs and the underlying type
116//
117// This is organized as a set of mutually recursive helpers for particular node
118// types, but for most nodes this is a short walk rather than a deep traversal.
119//
120// It's tempting to do e.g. typedef resolution as a second normalization step,
121// after finding the 'primary' decl etc. But we do this monolithically instead
122// because:
123// - normalization may require these traversals again (e.g. unwrapping a
124// typedef reveals a decltype which must be traversed)
125// - it doesn't simplify that much, e.g. the first stage must still be able
126// to yield multiple decls to handle OverloadExpr
127// - there are cases where it's required for correctness. e.g:
128// template<class X> using pvec = vector<x*>; pvec<int> x;
129// There's no Decl `pvec<int>`, we must choose `pvec<X>` or `vector<int*>`
130// and both are lossy. We must know upfront what the caller ultimately wants.
131struct TargetFinder {
132 using RelSet = DeclRelationSet;
133 using Rel = DeclRelation;
134
135private:
136 const HeuristicResolver *Resolver;
137 llvm::SmallDenseMap<const NamedDecl *,
138 std::pair<RelSet, /*InsertionOrder*/ size_t>>
139 Decls;
140 llvm::SmallDenseMap<const Decl *, RelSet> Seen;
141 RelSet Flags;
142
143 template <typename T> void debug(T &Node, RelSet Flags) {
144 dlog("visit [{0}] {1}", Flags, nodeToString(DynTypedNode::create(Node)));
145 }
146
147 void report(const NamedDecl *D, RelSet Flags) {
148 dlog("--> [{0}] {1}", Flags, nodeToString(DynTypedNode::create(*D)));
149 auto It = Decls.try_emplace(D, std::make_pair(Flags, Decls.size()));
150 // If already exists, update the flags.
151 if (!It.second)
152 It.first->second.first |= Flags;
153 }
154
155public:
156 TargetFinder(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
157
158 llvm::SmallVector<std::pair<const NamedDecl *, RelSet>, 1> takeDecls() const {
159 using ValTy = std::pair<const NamedDecl *, RelSet>;
160 llvm::SmallVector<ValTy, 1> Result;
161 Result.resize(Decls.size());
162 for (const auto &Elem : Decls)
163 Result[Elem.second.second] = {Elem.first, Elem.second.first};
164 return Result;
165 }
166
167 void add(const Decl *Dcl, RelSet Flags) {
168 const NamedDecl *D = llvm::dyn_cast_or_null<NamedDecl>(Dcl);
169 if (!D)
170 return;
171 debug(*D, Flags);
172
173 // Avoid recursion (which can arise in the presence of heuristic
174 // resolution of dependent names) by exiting early if we have
175 // already seen this decl with all flags in Flags.
176 auto Res = Seen.try_emplace(D);
177 if (!Res.second && Res.first->second.contains(Flags))
178 return;
179 Res.first->second |= Flags;
180
181 if (const UsingDirectiveDecl *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
182 D = UDD->getNominatedNamespaceAsWritten();
183
184 if (const TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D)) {
185 add(TND->getUnderlyingType(), Flags | Rel::Underlying);
186 Flags |= Rel::Alias; // continue with the alias.
187 } else if (const UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
188 // no Underlying as this is a non-renaming alias.
189 for (const UsingShadowDecl *S : UD->shadows())
190 add(S->getUnderlyingDecl(), Flags);
191 Flags |= Rel::Alias; // continue with the alias.
192 } else if (const UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) {
193 // UsingEnumDecl is not an alias at all, just a reference.
194 D = UED->getEnumDecl();
195 } else if (const auto *NAD = dyn_cast<NamespaceAliasDecl>(D)) {
196 add(NAD->getUnderlyingDecl(), Flags | Rel::Underlying);
197 Flags |= Rel::Alias; // continue with the alias
198 } else if (const UnresolvedUsingValueDecl *UUVD =
199 dyn_cast<UnresolvedUsingValueDecl>(D)) {
200 if (Resolver) {
201 for (const NamedDecl *Target : Resolver->resolveUsingValueDecl(UUVD)) {
202 add(Target, Flags); // no Underlying as this is a non-renaming alias
203 }
204 }
205 Flags |= Rel::Alias; // continue with the alias
206 } else if (isa<UnresolvedUsingTypenameDecl>(D)) {
207 // FIXME: improve common dependent scope using name lookup in primary
208 // templates.
209 Flags |= Rel::Alias;
210 } else if (const UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) {
211 // Include the introducing UsingDecl, but don't traverse it. This may end
212 // up including *all* shadows, which we don't want.
213 // Don't apply this logic to UsingEnumDecl, which can't easily be
214 // conflated with the aliases it introduces.
215 if (llvm::isa<UsingDecl>(USD->getIntroducer()))
216 report(USD->getIntroducer(), Flags | Rel::Alias);
217 // Shadow decls are synthetic and not themselves interesting.
218 // Record the underlying decl instead, if allowed.
219 D = USD->getTargetDecl();
220 } else if (const auto *DG = dyn_cast<CXXDeductionGuideDecl>(D)) {
221 D = DG->getDeducedTemplate();
222 } else if (const ObjCImplementationDecl *IID =
223 dyn_cast<ObjCImplementationDecl>(D)) {
224 // Treat ObjC{Interface,Implementation}Decl as if they were a decl/def
225 // pair as long as the interface isn't implicit.
226 if (const auto *CID = IID->getClassInterface())
227 if (const auto *DD = CID->getDefinition())
228 if (!DD->isImplicitInterfaceDecl())
229 D = DD;
230 } else if (const ObjCCategoryImplDecl *CID =
231 dyn_cast<ObjCCategoryImplDecl>(D)) {
232 // Treat ObjC{Category,CategoryImpl}Decl as if they were a decl/def pair.
233 D = CID->getCategoryDecl();
234 }
235 if (!D)
236 return;
237
238 if (const Decl *Pat = getTemplatePattern(D)) {
239 assert(Pat != D);
240 add(Pat, Flags | Rel::TemplatePattern);
241 // Now continue with the instantiation.
242 Flags |= Rel::TemplateInstantiation;
243 }
244
245 report(D, Flags);
246 }
247
248 void add(const Stmt *S, RelSet Flags) {
249 if (!S)
250 return;
251 debug(*S, Flags);
252 struct Visitor : public ConstStmtVisitor<Visitor> {
253 TargetFinder &Outer;
254 RelSet Flags;
255 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
256
257 void VisitCallExpr(const CallExpr *CE) {
258 Outer.add(CE->getCalleeDecl(), Flags);
259 }
260 void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
261 Outer.add(E->getConceptReference(), Flags);
262 }
263 void VisitDeclRefExpr(const DeclRefExpr *DRE) {
264 const Decl *D = DRE->getDecl();
265 // UsingShadowDecl allows us to record the UsingDecl.
266 // getFoundDecl() returns the wrong thing in other cases (templates).
267 if (auto *USD = llvm::dyn_cast<UsingShadowDecl>(DRE->getFoundDecl()))
268 D = USD;
269 Outer.add(D, Flags);
270 }
271 void VisitMemberExpr(const MemberExpr *ME) {
272 const Decl *D = ME->getMemberDecl();
273 if (auto *USD =
274 llvm::dyn_cast<UsingShadowDecl>(ME->getFoundDecl().getDecl()))
275 D = USD;
276 Outer.add(D, Flags);
277 }
278 void VisitOverloadExpr(const OverloadExpr *OE) {
279 for (auto *D : OE->decls())
280 Outer.add(D, Flags);
281 }
282 void VisitSizeOfPackExpr(const SizeOfPackExpr *SE) {
283 Outer.add(SE->getPack(), Flags);
284 }
285 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
286 Outer.add(CCE->getConstructor(), Flags);
287 }
288 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
289 for (const DesignatedInitExpr::Designator &D :
290 llvm::reverse(DIE->designators()))
291 if (D.isFieldDesignator()) {
292 Outer.add(D.getFieldDecl(), Flags);
293 // We don't know which designator was intended, we assume the outer.
294 break;
295 }
296 }
297 void VisitGotoStmt(const GotoStmt *Goto) {
298 if (auto *LabelDecl = Goto->getLabel())
299 Outer.add(LabelDecl, Flags);
300 }
301 void VisitLabelStmt(const LabelStmt *Label) {
302 if (auto *LabelDecl = Label->getDecl())
303 Outer.add(LabelDecl, Flags);
304 }
305 void
306 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
307 if (Outer.Resolver) {
308 for (const NamedDecl *D : Outer.Resolver->resolveMemberExpr(E)) {
309 Outer.add(D, Flags);
310 }
311 }
312 }
313 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
314 if (Outer.Resolver) {
315 for (const NamedDecl *D : Outer.Resolver->resolveDeclRefExpr(E)) {
316 Outer.add(D, Flags);
317 }
318 }
319 }
320 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
321 Outer.add(OIRE->getDecl(), Flags);
322 }
323 void VisitObjCMessageExpr(const ObjCMessageExpr *OME) {
324 Outer.add(OME->getMethodDecl(), Flags);
325 }
326 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *OPRE) {
327 if (OPRE->isExplicitProperty())
328 Outer.add(OPRE->getExplicitProperty(), Flags);
329 else {
330 if (OPRE->isMessagingGetter())
331 Outer.add(OPRE->getImplicitPropertyGetter(), Flags);
332 if (OPRE->isMessagingSetter())
333 Outer.add(OPRE->getImplicitPropertySetter(), Flags);
334 }
335 }
336 void VisitObjCProtocolExpr(const ObjCProtocolExpr *OPE) {
337 Outer.add(OPE->getProtocol(), Flags);
338 }
339 void VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
340 Outer.add(OVE->getSourceExpr(), Flags);
341 }
342 void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
343 Outer.add(POE->getSyntacticForm(), Flags);
344 }
345 void VisitCXXNewExpr(const CXXNewExpr *CNE) {
346 Outer.add(CNE->getOperatorNew(), Flags);
347 }
348 void VisitCXXDeleteExpr(const CXXDeleteExpr *CDE) {
349 Outer.add(CDE->getOperatorDelete(), Flags);
350 }
351 void
352 VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *RBO) {
353 Outer.add(RBO->getDecomposedForm().InnerBinOp, Flags);
354 }
355 };
356 Visitor(*this, Flags).Visit(S);
357 }
358
359 void add(QualType T, RelSet Flags) {
360 if (T.isNull())
361 return;
362 debug(T, Flags);
363 struct Visitor : public TypeVisitor<Visitor> {
364 TargetFinder &Outer;
365 RelSet Flags;
366 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
367
368 void VisitTagType(const TagType *TT) {
369 Outer.add(cast<TagType>(TT)->getOriginalDecl(), Flags);
370 }
371
372 void VisitUsingType(const UsingType *ET) {
373 Outer.add(ET->getDecl(), Flags);
374 }
375
376 void VisitDecltypeType(const DecltypeType *DTT) {
377 Outer.add(DTT->getUnderlyingType(), Flags | Rel::Underlying);
378 }
379 void VisitDeducedType(const DeducedType *DT) {
380 // FIXME: In practice this doesn't work: the AutoType you find inside
381 // TypeLoc never has a deduced type. https://llvm.org/PR42914
382 Outer.add(DT->getDeducedType(), Flags);
383 }
384 void VisitUnresolvedUsingType(const UnresolvedUsingType *UUT) {
385 Outer.add(UUT->getDecl(), Flags);
386 }
387 void VisitDeducedTemplateSpecializationType(
388 const DeducedTemplateSpecializationType *DTST) {
389 if (const auto *USD = DTST->getTemplateName().getAsUsingShadowDecl())
390 Outer.add(USD, Flags);
391
392 // FIXME: This is a workaround for https://llvm.org/PR42914,
393 // which is causing DTST->getDeducedType() to be empty. We
394 // fall back to the template pattern and miss the instantiation
395 // even when it's known in principle. Once that bug is fixed,
396 // the following code can be removed (the existing handling in
397 // VisitDeducedType() is sufficient).
398 if (auto *TD = DTST->getTemplateName().getAsTemplateDecl())
399 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
400 }
401 void VisitDependentNameType(const DependentNameType *DNT) {
402 if (Outer.Resolver) {
403 for (const NamedDecl *ND :
404 Outer.Resolver->resolveDependentNameType(DNT)) {
405 Outer.add(ND, Flags);
406 }
407 }
408 }
409 void VisitTypedefType(const TypedefType *TT) {
410 if (shouldSkipTypedef(TT->getDecl()))
411 return;
412 Outer.add(TT->getDecl(), Flags);
413 }
414 void
415 VisitTemplateSpecializationType(const TemplateSpecializationType *TST) {
416 // Have to handle these case-by-case.
417
418 if (const auto *UTN = TST->getTemplateName().getAsUsingShadowDecl())
419 Outer.add(UTN, Flags);
420
421 // templated type aliases: there's no specialized/instantiated using
422 // decl to point to. So try to find a decl for the underlying type
423 // (after substitution), and failing that point to the (templated) using
424 // decl.
425 if (TST->isTypeAlias()) {
426 Outer.add(TST->getAliasedType(), Flags | Rel::Underlying);
427 // Don't *traverse* the alias, which would result in traversing the
428 // template of the underlying type.
429
430 TemplateDecl *TD = TST->getTemplateName().getAsTemplateDecl();
431 // Builtin templates e.g. __make_integer_seq, __type_pack_element
432 // are such that they don't have alias *decls*. Even then, we still
433 // traverse their desugared *types* so that instantiated decls are
434 // collected.
435 if (llvm::isa<BuiltinTemplateDecl>(TD))
436 return;
437 Outer.report(TD->getTemplatedDecl(),
438 Flags | Rel::Alias | Rel::TemplatePattern);
439 }
440 // specializations of template template parameters aren't instantiated
441 // into decls, so they must refer to the parameter itself.
442 else if (const auto *Parm =
443 llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
444 TST->getTemplateName().getAsTemplateDecl()))
445 Outer.add(Parm, Flags);
446 // class template specializations have a (specialized) CXXRecordDecl.
447 else if (const CXXRecordDecl *RD = TST->getAsCXXRecordDecl())
448 Outer.add(RD, Flags); // add(Decl) will despecialize if needed.
449 else if (auto *TD = TST->getTemplateName().getAsTemplateDecl())
450 // fallback: the (un-specialized) declaration from primary template.
451 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
452 else if (Outer.Resolver)
453 for (const NamedDecl *ND :
454 Outer.Resolver->resolveTemplateSpecializationType(TST))
455 Outer.add(ND, Flags);
456 }
457 void
458 VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *STTPT) {
459 Outer.add(STTPT->getReplacementType(), Flags);
460 }
461 void VisitTemplateTypeParmType(const TemplateTypeParmType *TTPT) {
462 Outer.add(TTPT->getDecl(), Flags);
463 }
464 void VisitObjCInterfaceType(const ObjCInterfaceType *OIT) {
465 Outer.add(OIT->getDecl(), Flags);
466 }
467 };
468 Visitor(*this, Flags).Visit(T.getTypePtr());
469 }
470
471 void add(NestedNameSpecifier NNS, RelSet Flags) {
472 if (!NNS)
473 return;
474 debug(NNS, Flags);
475 switch (NNS.getKind()) {
476 case NestedNameSpecifier::Kind::Namespace:
477 add(NNS.getAsNamespaceAndPrefix().Namespace, Flags);
478 return;
479 case NestedNameSpecifier::Kind::Type:
480 add(QualType(NNS.getAsType(), 0), Flags);
481 return;
482 case NestedNameSpecifier::Kind::Global:
483 // This should be TUDecl, but we can't get a pointer to it!
484 return;
485 case NestedNameSpecifier::Kind::MicrosoftSuper:
486 add(NNS.getAsMicrosoftSuper(), Flags);
487 return;
488 case NestedNameSpecifier::Kind::Null:
489 llvm_unreachable("unexpected null nested name specifier");
490 }
491 llvm_unreachable("unhandled NestedNameSpecifier::Kind");
492 }
493
494 void add(const CXXCtorInitializer *CCI, RelSet Flags) {
495 if (!CCI)
496 return;
497 debug(*CCI, Flags);
498
499 if (CCI->isAnyMemberInitializer())
500 add(CCI->getAnyMember(), Flags);
501 // Constructor calls contain a TypeLoc node, so we don't handle them here.
502 }
503
504 void add(const TemplateArgument &Arg, RelSet Flags) {
505 // Only used for template template arguments.
506 // For type and non-type template arguments, SelectionTree
507 // will hit a more specific node (e.g. a TypeLoc or a
508 // DeclRefExpr).
509 if (Arg.getKind() == TemplateArgument::Template ||
510 Arg.getKind() == TemplateArgument::TemplateExpansion) {
511 if (TemplateDecl *TD =
512 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) {
513 report(TD, Flags);
514 }
515 if (const auto *USD =
516 Arg.getAsTemplateOrTemplatePattern().getAsUsingShadowDecl())
517 add(USD, Flags);
518 }
519 }
520
521 void add(const ConceptReference *CR, RelSet Flags) {
522 add(CR->getNamedConcept(), Flags);
523 }
524};
525
526} // namespace
527
528llvm::SmallVector<std::pair<const NamedDecl *, DeclRelationSet>, 1>
529allTargetDecls(const DynTypedNode &N, const HeuristicResolver *Resolver) {
530 dlog("allTargetDecls({0})", nodeToString(N));
531 TargetFinder Finder(Resolver);
532 DeclRelationSet Flags;
533 if (const Decl *D = N.get<Decl>())
534 Finder.add(D, Flags);
535 else if (const Stmt *S = N.get<Stmt>())
536 Finder.add(S, Flags);
537 else if (const NestedNameSpecifierLoc *NNSL = N.get<NestedNameSpecifierLoc>())
538 Finder.add(NNSL->getNestedNameSpecifier(), Flags);
539 else if (const NestedNameSpecifier *NNS = N.get<NestedNameSpecifier>())
540 Finder.add(*NNS, Flags);
541 else if (const TypeLoc *TL = N.get<TypeLoc>())
542 Finder.add(TL->getType(), Flags);
543 else if (const QualType *QT = N.get<QualType>())
544 Finder.add(*QT, Flags);
545 else if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>())
546 Finder.add(CCI, Flags);
547 else if (const TemplateArgumentLoc *TAL = N.get<TemplateArgumentLoc>())
548 Finder.add(TAL->getArgument(), Flags);
549 else if (const CXXBaseSpecifier *CBS = N.get<CXXBaseSpecifier>())
550 Finder.add(CBS->getTypeSourceInfo()->getType(), Flags);
551 else if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
552 Finder.add(PL->getProtocol(), Flags);
553 else if (const ConceptReference *CR = N.get<ConceptReference>())
554 Finder.add(CR, Flags);
555 return Finder.takeDecls();
556}
557
558llvm::SmallVector<const NamedDecl *, 1>
559targetDecl(const DynTypedNode &N, DeclRelationSet Mask,
560 const HeuristicResolver *Resolver) {
561 llvm::SmallVector<const NamedDecl *, 1> Result;
562 for (const auto &Entry : allTargetDecls(N, Resolver)) {
563 if (!(Entry.second & ~Mask))
564 Result.push_back(Entry.first);
565 }
566 return Result;
567}
568
569llvm::SmallVector<const NamedDecl *, 1>
571 const HeuristicResolver *Resolver) {
572 assert(!(Mask & (DeclRelation::TemplatePattern |
574 "explicitReferenceTargets handles templates on its own");
575 auto Decls = allTargetDecls(N, Resolver);
576
577 // We prefer to return template instantiation, but fallback to template
578 // pattern if instantiation is not available.
580
581 llvm::SmallVector<const NamedDecl *, 1> TemplatePatterns;
582 llvm::SmallVector<const NamedDecl *, 1> Targets;
583 bool SeenTemplateInstantiations = false;
584 for (auto &D : Decls) {
585 if (D.second & ~Mask)
586 continue;
587 if (D.second & DeclRelation::TemplatePattern) {
588 TemplatePatterns.push_back(D.first);
589 continue;
590 }
592 SeenTemplateInstantiations = true;
593 Targets.push_back(D.first);
594 }
595 if (!SeenTemplateInstantiations)
596 Targets.insert(Targets.end(), TemplatePatterns.begin(),
597 TemplatePatterns.end());
598 return Targets;
599}
600
601namespace {
602llvm::SmallVector<ReferenceLoc> refInDecl(const Decl *D,
603 const HeuristicResolver *Resolver) {
604 struct Visitor : ConstDeclVisitor<Visitor> {
605 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
606
607 const HeuristicResolver *Resolver;
608 llvm::SmallVector<ReferenceLoc> Refs;
609
610 void VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
611 // We want to keep it as non-declaration references, as the
612 // "using namespace" declaration doesn't have a name.
613 Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
614 D->getIdentLocation(),
615 /*IsDecl=*/false,
616 {D->getNominatedNamespaceAsWritten()}});
617 }
618
619 void VisitUsingDecl(const UsingDecl *D) {
620 // "using ns::identifier;" is a non-declaration reference.
621 Refs.push_back(ReferenceLoc{
622 D->getQualifierLoc(), D->getLocation(), /*IsDecl=*/false,
623 explicitReferenceTargets(DynTypedNode::create(*D),
624 DeclRelation::Underlying, Resolver)});
625 }
626
627 void VisitUsingEnumDecl(const UsingEnumDecl *D) {
628 // "using enum ns::E" is a non-declaration reference.
629 // The reference is covered by the embedded typeloc.
630 // Don't use the default VisitNamedDecl, which would report a declaration.
631 }
632
633 void VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
634 // For namespace alias, "namespace Foo = Target;", we add two references.
635 // Add a declaration reference for Foo.
636 VisitNamedDecl(D);
637 // Add a non-declaration reference for Target.
638 Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
639 D->getTargetNameLoc(),
640 /*IsDecl=*/false,
641 {D->getAliasedNamespace()}});
642 }
643
644 void VisitNamedDecl(const NamedDecl *ND) {
645 // We choose to ignore {Class, Function, Var, TypeAlias}TemplateDecls. As
646 // as their underlying decls, covering the same range, will be visited.
647 if (llvm::isa<ClassTemplateDecl>(ND) ||
648 llvm::isa<FunctionTemplateDecl>(ND) ||
649 llvm::isa<VarTemplateDecl>(ND) ||
650 llvm::isa<TypeAliasTemplateDecl>(ND))
651 return;
652 // FIXME: decide on how to surface destructors when we need them.
653 if (llvm::isa<CXXDestructorDecl>(ND))
654 return;
655 // Filter anonymous decls, name location will point outside the name token
656 // and the clients are not prepared to handle that.
657 if (ND->getDeclName().isIdentifier() &&
658 !ND->getDeclName().getAsIdentifierInfo())
659 return;
660 Refs.push_back(ReferenceLoc{getQualifierLoc(*ND),
661 ND->getLocation(),
662 /*IsDecl=*/true,
663 {ND}});
664 }
665
666 void VisitCXXDeductionGuideDecl(const CXXDeductionGuideDecl *DG) {
667 // The class template name in a deduction guide targets the class
668 // template.
669 Refs.push_back(ReferenceLoc{DG->getQualifierLoc(),
670 DG->getNameInfo().getLoc(),
671 /*IsDecl=*/false,
672 {DG->getDeducedTemplate()}});
673 }
674
675 void VisitObjCMethodDecl(const ObjCMethodDecl *OMD) {
676 // The name may have several tokens, we can only report the first.
677 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
678 OMD->getSelectorStartLoc(),
679 /*IsDecl=*/true,
680 {OMD}});
681 }
682
683 void VisitObjCCategoryDecl(const ObjCCategoryDecl *OCD) {
684 // getLocation is the extended class's location, not the category's.
685 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
686 OCD->getLocation(),
687 /*IsDecl=*/false,
688 {OCD->getClassInterface()}});
689 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
690 OCD->getCategoryNameLoc(),
691 /*IsDecl=*/true,
692 {OCD}});
693 }
694
695 void VisitObjCCategoryImplDecl(const ObjCCategoryImplDecl *OCID) {
696 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
697 OCID->getLocation(),
698 /*IsDecl=*/false,
699 {OCID->getClassInterface()}});
700 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
701 OCID->getCategoryNameLoc(),
702 /*IsDecl=*/false,
703 {OCID->getCategoryDecl()}});
704 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
705 OCID->getCategoryNameLoc(),
706 /*IsDecl=*/true,
707 {OCID}});
708 }
709
710 void VisitObjCImplementationDecl(const ObjCImplementationDecl *OIMD) {
711 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
712 OIMD->getLocation(),
713 /*IsDecl=*/false,
714 {OIMD->getClassInterface()}});
715 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
716 OIMD->getLocation(),
717 /*IsDecl=*/true,
718 {OIMD}});
719 }
720 };
721
722 Visitor V{Resolver};
723 V.Visit(D);
724 return V.Refs;
725}
726
727llvm::SmallVector<ReferenceLoc> refInStmt(const Stmt *S,
728 const HeuristicResolver *Resolver) {
729 struct Visitor : ConstStmtVisitor<Visitor> {
730 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
731
732 const HeuristicResolver *Resolver;
733 // FIXME: handle more complicated cases: more ObjC, designated initializers.
734 llvm::SmallVector<ReferenceLoc> Refs;
735
736 void VisitDeclRefExpr(const DeclRefExpr *E) {
737 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
738 E->getNameInfo().getLoc(),
739 /*IsDecl=*/false,
740 {E->getFoundDecl()}});
741 }
742
743 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
744 Refs.push_back(ReferenceLoc{
745 E->getQualifierLoc(), E->getNameInfo().getLoc(), /*IsDecl=*/false,
746 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
747 }
748
749 void VisitMemberExpr(const MemberExpr *E) {
750 // Skip destructor calls to avoid duplication: TypeLoc within will be
751 // visited separately.
752 if (llvm::isa<CXXDestructorDecl>(E->getFoundDecl().getDecl()))
753 return;
754 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
755 E->getMemberNameInfo().getLoc(),
756 /*IsDecl=*/false,
757 {E->getFoundDecl()}});
758 }
759
760 void
761 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
762 Refs.push_back(ReferenceLoc{
763 E->getQualifierLoc(), E->getMemberNameInfo().getLoc(),
764 /*IsDecl=*/false,
765 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
766 }
767
768 void VisitOverloadExpr(const OverloadExpr *E) {
769 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
770 E->getNameInfo().getLoc(),
771 /*IsDecl=*/false,
772 llvm::SmallVector<const NamedDecl *, 1>(
773 E->decls().begin(), E->decls().end())});
774 }
775
776 void VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
777 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
778 E->getPackLoc(),
779 /*IsDecl=*/false,
780 {E->getPack()}});
781 }
782
783 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
784 Refs.push_back(ReferenceLoc{
785 NestedNameSpecifierLoc(), E->getLocation(),
786 /*IsDecl=*/false,
787 // Select the getter, setter, or @property depending on the call.
788 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
789 }
790
791 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
792 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
793 OIRE->getLocation(),
794 /*IsDecl=*/false,
795 {OIRE->getDecl()}});
796 }
797
798 void VisitObjCMessageExpr(const ObjCMessageExpr *E) {
799 // The name may have several tokens, we can only report the first.
800 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
801 E->getSelectorStartLoc(),
802 /*IsDecl=*/false,
803 {E->getMethodDecl()}});
804 }
805
806 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
807 for (const DesignatedInitExpr::Designator &D : DIE->designators()) {
808 if (!D.isFieldDesignator())
809 continue;
810
811 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
812 D.getFieldLoc(),
813 /*IsDecl=*/false,
814 {D.getFieldDecl()}});
815 }
816 }
817
818 void VisitGotoStmt(const GotoStmt *GS) {
819 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
820 GS->getLabelLoc(),
821 /*IsDecl=*/false,
822 {GS->getLabel()}});
823 }
824
825 void VisitLabelStmt(const LabelStmt *LS) {
826 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
827 LS->getIdentLoc(),
828 /*IsDecl=*/true,
829 {LS->getDecl()}});
830 }
831 };
832
833 Visitor V{Resolver};
834 V.Visit(S);
835 return V.Refs;
836}
837
838llvm::SmallVector<ReferenceLoc>
839refInTypeLoc(TypeLoc L, const HeuristicResolver *Resolver) {
840 struct Visitor : TypeLocVisitor<Visitor> {
841 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
842
843 const HeuristicResolver *Resolver;
844 llvm::SmallVector<ReferenceLoc> Refs;
845
846 void VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc L) {
847 Refs.push_back(ReferenceLoc{L.getQualifierLoc(),
848 L.getLocalSourceRange().getBegin(),
849 /*IsDecl=*/false,
850 {L.getDecl()}});
851 }
852
853 void VisitUsingTypeLoc(UsingTypeLoc L) {
854 Refs.push_back(ReferenceLoc{L.getQualifierLoc(),
855 L.getLocalSourceRange().getBegin(),
856 /*IsDecl=*/false,
857 {L.getDecl()}});
858 }
859
860 void VisitTagTypeLoc(TagTypeLoc L) {
861 Refs.push_back(ReferenceLoc{L.getQualifierLoc(),
862 L.getNameLoc(),
863 /*IsDecl=*/false,
864 {L.getOriginalDecl()}});
865 }
866
867 void VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc L) {
868 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
869 L.getNameLoc(),
870 /*IsDecl=*/false,
871 {L.getDecl()}});
872 }
873
874 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
875 // We must ensure template type aliases are included in results if they
876 // were written in the source code, e.g. in
877 // template <class T> using valias = vector<T>;
878 // ^valias<int> x;
879 // 'explicitReferenceTargets' will return:
880 // 1. valias with mask 'Alias'.
881 // 2. 'vector<int>' with mask 'Underlying'.
882 // we want to return only #1 in this case.
883 Refs.push_back(ReferenceLoc{
884 L.getQualifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
885 explicitReferenceTargets(DynTypedNode::create(L.getType()),
886 DeclRelation::Alias, Resolver)});
887 }
888 void VisitDeducedTemplateSpecializationTypeLoc(
889 DeducedTemplateSpecializationTypeLoc L) {
890 Refs.push_back(ReferenceLoc{
891 L.getQualifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
892 explicitReferenceTargets(DynTypedNode::create(L.getType()),
893 DeclRelation::Alias, Resolver)});
894 }
895
896 void VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
897 Refs.push_back(
898 ReferenceLoc{L.getQualifierLoc(), L.getNameLoc(),
899 /*IsDecl=*/false,
901 DynTypedNode::create(L.getType()), {}, Resolver)});
902 }
903
904 void VisitTypedefTypeLoc(TypedefTypeLoc L) {
905 if (shouldSkipTypedef(L.getDecl()))
906 return;
907 Refs.push_back(ReferenceLoc{L.getQualifierLoc(),
908 L.getNameLoc(),
909 /*IsDecl=*/false,
910 {L.getDecl()}});
911 }
912
913 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc L) {
914 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
915 L.getNameLoc(),
916 /*IsDecl=*/false,
917 {L.getIFaceDecl()}});
918 }
919 };
920
921 Visitor V{Resolver};
922 V.Visit(L.getUnqualifiedLoc());
923 return V.Refs;
924}
925
926class ExplicitReferenceCollector
927 : public RecursiveASTVisitor<ExplicitReferenceCollector> {
928public:
929 ExplicitReferenceCollector(llvm::function_ref<void(ReferenceLoc)> Out,
930 const HeuristicResolver *Resolver)
931 : Out(Out), Resolver(Resolver) {
932 assert(Out);
933 }
934
935 bool VisitTypeLoc(TypeLoc TTL) {
936 if (TypeLocsToSkip.count(TTL.getBeginLoc()))
937 return true;
938 visitNode(DynTypedNode::create(TTL));
939 return true;
940 }
941
942 bool VisitStmt(Stmt *S) {
943 visitNode(DynTypedNode::create(*S));
944 return true;
945 }
946
947 bool TraverseOpaqueValueExpr(OpaqueValueExpr *OVE) {
948 visitNode(DynTypedNode::create(*OVE));
949 // Not clear why the source expression is skipped by default...
950 // FIXME: can we just make RecursiveASTVisitor do this?
951 return RecursiveASTVisitor::TraverseStmt(OVE->getSourceExpr());
952 }
953
954 bool TraversePseudoObjectExpr(PseudoObjectExpr *POE) {
955 visitNode(DynTypedNode::create(*POE));
956 // Traverse only the syntactic form to find the *written* references.
957 // (The semantic form also contains lots of duplication)
958 return RecursiveASTVisitor::TraverseStmt(POE->getSyntacticForm());
959 }
960
961 // We re-define Traverse*, since there's no corresponding Visit*.
962 // TemplateArgumentLoc is the only way to get locations for references to
963 // template template parameters.
964 bool TraverseTemplateArgumentLoc(TemplateArgumentLoc A) {
965 switch (A.getArgument().getKind()) {
966 case TemplateArgument::Template:
967 case TemplateArgument::TemplateExpansion:
968 reportReference(ReferenceLoc{A.getTemplateQualifierLoc(),
969 A.getTemplateNameLoc(),
970 /*IsDecl=*/false,
971 {A.getArgument()
972 .getAsTemplateOrTemplatePattern()
973 .getAsTemplateDecl()}},
974 DynTypedNode::create(A.getArgument()));
975 break;
976 case TemplateArgument::Declaration:
977 break; // FIXME: can this actually happen in TemplateArgumentLoc?
978 case TemplateArgument::Integral:
979 case TemplateArgument::Null:
980 case TemplateArgument::NullPtr:
981 break; // no references.
982 case TemplateArgument::Pack:
983 case TemplateArgument::Type:
984 case TemplateArgument::Expression:
985 case TemplateArgument::StructuralValue:
986 break; // Handled by VisitType and VisitExpression.
987 };
988 return RecursiveASTVisitor::TraverseTemplateArgumentLoc(A);
989 }
990
991 bool VisitDecl(Decl *D) {
992 visitNode(DynTypedNode::create(*D));
993 return true;
994 }
995
996 // We have to use Traverse* because there is no corresponding Visit*.
997 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc L) {
998 if (!L.getNestedNameSpecifier())
999 return true;
1000 visitNode(DynTypedNode::create(L));
1001 // Inner type is missing information about its qualifier, skip it.
1002 if (auto TL = L.getAsTypeLoc())
1003 TypeLocsToSkip.insert(TL.getBeginLoc());
1004 return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(L);
1005 }
1006
1007 bool TraverseObjCProtocolLoc(ObjCProtocolLoc ProtocolLoc) {
1008 visitNode(DynTypedNode::create(ProtocolLoc));
1009 return true;
1010 }
1011
1012 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
1013 visitNode(DynTypedNode::create(*Init));
1014 return RecursiveASTVisitor::TraverseConstructorInitializer(Init);
1015 }
1016
1017 bool VisitConceptReference(const ConceptReference *CR) {
1018 visitNode(DynTypedNode::create(*CR));
1019 return true;
1020 }
1021
1022private:
1023 /// Obtain information about a reference directly defined in \p N. Does not
1024 /// recurse into child nodes, e.g. do not expect references for constructor
1025 /// initializers
1026 ///
1027 /// Any of the fields in the returned structure can be empty, but not all of
1028 /// them, e.g.
1029 /// - for implicitly generated nodes (e.g. MemberExpr from range-based-for),
1030 /// source location information may be missing,
1031 /// - for dependent code, targets may be empty.
1032 ///
1033 /// (!) For the purposes of this function declarations are not considered to
1034 /// be references. However, declarations can have references inside them,
1035 /// e.g. 'namespace foo = std' references namespace 'std' and this
1036 /// function will return the corresponding reference.
1037 llvm::SmallVector<ReferenceLoc> explicitReference(DynTypedNode N) {
1038 if (auto *D = N.get<Decl>())
1039 return refInDecl(D, Resolver);
1040 if (auto *S = N.get<Stmt>())
1041 return refInStmt(S, Resolver);
1042 if (auto *NNSL = N.get<NestedNameSpecifierLoc>()) {
1043 // (!) 'DeclRelation::Alias' ensures we do not lose namespace aliases.
1044 NestedNameSpecifierLoc Qualifier;
1045 SourceLocation NameLoc;
1046 if (auto TL = NNSL->getAsTypeLoc()) {
1047 Qualifier = TL.getPrefix();
1048 NameLoc = TL.getNonPrefixBeginLoc();
1049 } else {
1050 Qualifier = NNSL->getAsNamespaceAndPrefix().Prefix;
1051 NameLoc = NNSL->getLocalBeginLoc();
1052 }
1053 return {
1054 ReferenceLoc{Qualifier, NameLoc, false,
1056 DynTypedNode::create(NNSL->getNestedNameSpecifier()),
1057 DeclRelation::Alias, Resolver)}};
1058 }
1059 if (const TypeLoc *TL = N.get<TypeLoc>())
1060 return refInTypeLoc(*TL, Resolver);
1061 if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>()) {
1062 // Other type initializers (e.g. base initializer) are handled by visiting
1063 // the typeLoc.
1064 if (CCI->isAnyMemberInitializer()) {
1065 return {ReferenceLoc{NestedNameSpecifierLoc(),
1066 CCI->getMemberLocation(),
1067 /*IsDecl=*/false,
1068 {CCI->getAnyMember()}}};
1069 }
1070 }
1071 if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
1072 return {ReferenceLoc{NestedNameSpecifierLoc(),
1073 PL->getLocation(),
1074 /*IsDecl=*/false,
1075 {PL->getProtocol()}}};
1076 if (const ConceptReference *CR = N.get<ConceptReference>())
1077 return {ReferenceLoc{CR->getNestedNameSpecifierLoc(),
1078 CR->getConceptNameLoc(),
1079 /*IsDecl=*/false,
1080 {CR->getNamedConcept()}}};
1081
1082 // We do not have location information for other nodes (QualType, etc)
1083 return {};
1084 }
1085
1086 void visitNode(DynTypedNode N) {
1087 for (auto &R : explicitReference(N))
1088 reportReference(std::move(R), N);
1089 }
1090
1091 void reportReference(ReferenceLoc &&Ref, DynTypedNode N) {
1092 // Strip null targets that can arise from invalid code.
1093 // (This avoids having to check for null everywhere we insert)
1094 llvm::erase(Ref.Targets, nullptr);
1095 // Our promise is to return only references from the source code. If we lack
1096 // location information, skip these nodes.
1097 // Normally this should not happen in practice, unless there are bugs in the
1098 // traversals or users started the traversal at an implicit node.
1099 if (Ref.NameLoc.isInvalid()) {
1100 dlog("invalid location at node {0}", nodeToString(N));
1101 return;
1102 }
1103 Out(Ref);
1104 }
1105
1106 llvm::function_ref<void(ReferenceLoc)> Out;
1107 const HeuristicResolver *Resolver;
1108 /// TypeLocs starting at these locations must be skipped, see
1109 /// TraverseElaboratedTypeSpecifierLoc for details.
1110 llvm::DenseSet<SourceLocation> TypeLocsToSkip;
1111};
1112} // namespace
1113
1114void findExplicitReferences(const Stmt *S,
1115 llvm::function_ref<void(ReferenceLoc)> Out,
1116 const HeuristicResolver *Resolver) {
1117 assert(S);
1118 ExplicitReferenceCollector(Out, Resolver).TraverseStmt(const_cast<Stmt *>(S));
1119}
1120void findExplicitReferences(const Decl *D,
1121 llvm::function_ref<void(ReferenceLoc)> Out,
1122 const HeuristicResolver *Resolver) {
1123 assert(D);
1124 ExplicitReferenceCollector(Out, Resolver).TraverseDecl(const_cast<Decl *>(D));
1125}
1126void findExplicitReferences(const ASTContext &AST,
1127 llvm::function_ref<void(ReferenceLoc)> Out,
1128 const HeuristicResolver *Resolver) {
1129 ExplicitReferenceCollector(Out, Resolver)
1130 .TraverseAST(const_cast<ASTContext &>(AST));
1131}
1132
1133llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelation R) {
1134 switch (R) {
1135#define REL_CASE(X) \
1136 case DeclRelation::X: \
1137 return OS << #X;
1138 REL_CASE(Alias);
1142#undef REL_CASE
1143 }
1144 llvm_unreachable("Unhandled DeclRelation enum");
1145}
1146llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelationSet RS) {
1147 const char *Sep = "";
1148 for (unsigned I = 0; I < RS.S.size(); ++I) {
1149 if (RS.S.test(I)) {
1150 OS << Sep << static_cast<DeclRelation>(I);
1151 Sep = "|";
1152 }
1153 }
1154 return OS;
1155}
1156
1157llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, ReferenceLoc R) {
1158 // note we cannot print R.NameLoc without a source manager.
1159 OS << "targets = {";
1160 llvm::SmallVector<std::string> Targets;
1161 for (const NamedDecl *T : R.Targets) {
1162 llvm::raw_string_ostream Target(Targets.emplace_back());
1164 }
1165 llvm::sort(Targets);
1166 OS << llvm::join(Targets, ", ");
1167 OS << "}";
1168 if (R.Qualifier) {
1169 OS << ", qualifier = '";
1170 R.Qualifier.getNestedNameSpecifier().print(OS,
1171 PrintingPolicy(LangOptions()));
1172 OS << "'";
1173 }
1174 if (R.IsDecl)
1175 OS << ", decl";
1176 return OS;
1177}
1178
1179} // namespace clangd
1180} // namespace clang
#define REL_CASE(X)
#define dlog(...)
Definition Logger.h:101
FIXME: Skip testing on windows temporarily due to the different escaping code mode.
Definition AST.cpp:45
std::string printTemplateSpecializationArgs(const NamedDecl &ND)
Prints template arguments of a decl as written in the source code, including enclosing '<' and '>',...
Definition AST.cpp:287
llvm::SmallVector< std::pair< const NamedDecl *, DeclRelationSet >, 1 > allTargetDecls(const DynTypedNode &N, const HeuristicResolver *Resolver)
Similar to targetDecl(), however instead of applying a filter, all possible decls are returned along ...
llvm::SmallVector< const NamedDecl *, 1 > explicitReferenceTargets(DynTypedNode N, DeclRelationSet Mask, const HeuristicResolver *Resolver)
Find declarations explicitly referenced in the source code defined by N.
void findExplicitReferences(const Stmt *S, llvm::function_ref< void(ReferenceLoc)> Out, const HeuristicResolver *Resolver)
Recursively traverse S and report all references explicitly written in the code.
NestedNameSpecifierLoc getQualifierLoc(const NamedDecl &ND)
Returns a nested name specifier loc of ND if it was present in the source, e.g.
Definition AST.cpp:229
llvm::SmallVector< const NamedDecl *, 1 > targetDecl(const DynTypedNode &N, DeclRelationSet Mask, const HeuristicResolver *Resolver)
targetDecl() finds the declaration referred to by an AST node.
llvm::raw_ostream & operator<<(llvm::raw_ostream &OS, const CodeCompletion &C)
std::string printQualifiedName(const NamedDecl &ND)
Returns the qualified name of ND.
Definition AST.cpp:207
@ Underlying
This is the underlying declaration for a renaming-alias, decltype etc.
Definition FindTarget.h:121
@ TemplatePattern
This is the pattern the template specialization was instantiated from.
Definition FindTarget.h:104
@ TemplateInstantiation
This is the template instantiation that was referred to.
Definition FindTarget.h:101
@ Alias
This declaration is an alias that was referred to.
Definition FindTarget.h:112
===– Representation.cpp - ClangDoc Representation --------—*- C++ -*-===//
Information about a reference written in the source code, independent of the actual AST node that thi...
Definition FindTarget.h:128
NestedNameSpecifierLoc Qualifier
Contains qualifier written in the code, if any, e.g. 'ns::' for 'ns::foo'.
Definition FindTarget.h:130
bool IsDecl
True if the reference is a declaration or definition;.
Definition FindTarget.h:134
llvm::SmallVector< const NamedDecl *, 1 > Targets
A list of targets referenced by this name.
Definition FindTarget.h:140