clang-tools 18.0.0git
FindTarget.cpp
Go to the documentation of this file.
1//===--- FindTarget.cpp - What does an AST node refer to? -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "FindTarget.h"
10#include "AST.h"
11#include "HeuristicResolver.h"
12#include "support/Logger.h"
13#include "clang/AST/ASTConcept.h"
14#include "clang/AST/ASTTypeTraits.h"
15#include "clang/AST/Decl.h"
16#include "clang/AST/DeclBase.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/DeclVisitor.h"
20#include "clang/AST/DeclarationName.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprConcepts.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/NestedNameSpecifier.h"
26#include "clang/AST/PrettyPrinter.h"
27#include "clang/AST/RecursiveASTVisitor.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/AST/TemplateBase.h"
30#include "clang/AST/Type.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/TypeLocVisitor.h"
33#include "clang/AST/TypeVisitor.h"
34#include "clang/Basic/LangOptions.h"
35#include "clang/Basic/SourceLocation.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/Specifiers.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include "llvm/Support/Casting.h"
42#include "llvm/Support/Compiler.h"
43#include "llvm/Support/raw_ostream.h"
44#include <iterator>
45#include <string>
46#include <utility>
47#include <vector>
48
49namespace clang {
50namespace clangd {
51namespace {
52
53LLVM_ATTRIBUTE_UNUSED std::string nodeToString(const DynTypedNode &N) {
54 std::string S = std::string(N.getNodeKind().asStringRef());
55 {
56 llvm::raw_string_ostream OS(S);
57 OS << ": ";
58 N.print(OS, PrintingPolicy(LangOptions()));
59 }
60 std::replace(S.begin(), S.end(), '\n', ' ');
61 return S;
62}
63
64const NamedDecl *getTemplatePattern(const NamedDecl *D) {
65 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
66 if (const auto *Result = CRD->getTemplateInstantiationPattern())
67 return Result;
68 // getTemplateInstantiationPattern returns null if the Specialization is
69 // incomplete (e.g. the type didn't need to be complete), fall back to the
70 // primary template.
71 if (CRD->getTemplateSpecializationKind() == TSK_Undeclared)
72 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(CRD))
73 return Spec->getSpecializedTemplate()->getTemplatedDecl();
74 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75 return FD->getTemplateInstantiationPattern();
76 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
77 // Hmm: getTIP returns its arg if it's not an instantiation?!
78 VarDecl *T = VD->getTemplateInstantiationPattern();
79 return (T == D) ? nullptr : T;
80 } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
81 return ED->getInstantiatedFromMemberEnum();
82 } else if (isa<FieldDecl>(D) || isa<TypedefNameDecl>(D)) {
83 if (const auto *Parent = llvm::dyn_cast<NamedDecl>(D->getDeclContext()))
84 if (const DeclContext *ParentPat =
85 dyn_cast_or_null<DeclContext>(getTemplatePattern(Parent)))
86 for (const NamedDecl *BaseND : ParentPat->lookup(D->getDeclName()))
87 if (!BaseND->isImplicit() && BaseND->getKind() == D->getKind())
88 return BaseND;
89 } else if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
90 if (const auto *ED = dyn_cast<EnumDecl>(ECD->getDeclContext())) {
91 if (const EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
92 for (const NamedDecl *BaseECD : Pattern->lookup(ECD->getDeclName()))
93 return BaseECD;
94 }
95 }
96 }
97 return nullptr;
98}
99
100// Returns true if the `TypedefNameDecl` should not be reported.
101bool shouldSkipTypedef(const TypedefNameDecl *TD) {
102 // These should be treated as keywords rather than decls - the typedef is an
103 // odd implementation detail.
104 if (TD == TD->getASTContext().getObjCInstanceTypeDecl() ||
105 TD == TD->getASTContext().getObjCIdDecl())
106 return true;
107 return false;
108}
109
110// TargetFinder locates the entities that an AST node refers to.
111//
112// Typically this is (possibly) one declaration and (possibly) one type, but
113// may be more:
114// - for ambiguous nodes like OverloadExpr
115// - if we want to include e.g. both typedefs and the underlying type
116//
117// This is organized as a set of mutually recursive helpers for particular node
118// types, but for most nodes this is a short walk rather than a deep traversal.
119//
120// It's tempting to do e.g. typedef resolution as a second normalization step,
121// after finding the 'primary' decl etc. But we do this monolithically instead
122// because:
123// - normalization may require these traversals again (e.g. unwrapping a
124// typedef reveals a decltype which must be traversed)
125// - it doesn't simplify that much, e.g. the first stage must still be able
126// to yield multiple decls to handle OverloadExpr
127// - there are cases where it's required for correctness. e.g:
128// template<class X> using pvec = vector<x*>; pvec<int> x;
129// There's no Decl `pvec<int>`, we must choose `pvec<X>` or `vector<int*>`
130// and both are lossy. We must know upfront what the caller ultimately wants.
131struct TargetFinder {
132 using RelSet = DeclRelationSet;
133 using Rel = DeclRelation;
134
135private:
136 const HeuristicResolver *Resolver;
137 llvm::SmallDenseMap<const NamedDecl *,
138 std::pair<RelSet, /*InsertionOrder*/ size_t>>
139 Decls;
140 llvm::SmallDenseMap<const Decl *, RelSet> Seen;
141 RelSet Flags;
142
143 template <typename T> void debug(T &Node, RelSet Flags) {
144 dlog("visit [{0}] {1}", Flags, nodeToString(DynTypedNode::create(Node)));
145 }
146
147 void report(const NamedDecl *D, RelSet Flags) {
148 dlog("--> [{0}] {1}", Flags, nodeToString(DynTypedNode::create(*D)));
149 auto It = Decls.try_emplace(D, std::make_pair(Flags, Decls.size()));
150 // If already exists, update the flags.
151 if (!It.second)
152 It.first->second.first |= Flags;
153 }
154
155public:
156 TargetFinder(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
157
158 llvm::SmallVector<std::pair<const NamedDecl *, RelSet>, 1> takeDecls() const {
159 using ValTy = std::pair<const NamedDecl *, RelSet>;
160 llvm::SmallVector<ValTy, 1> Result;
161 Result.resize(Decls.size());
162 for (const auto &Elem : Decls)
163 Result[Elem.second.second] = {Elem.first, Elem.second.first};
164 return Result;
165 }
166
167 void add(const Decl *Dcl, RelSet Flags) {
168 const NamedDecl *D = llvm::dyn_cast_or_null<NamedDecl>(Dcl);
169 if (!D)
170 return;
171 debug(*D, Flags);
172
173 // Avoid recursion (which can arise in the presence of heuristic
174 // resolution of dependent names) by exiting early if we have
175 // already seen this decl with all flags in Flags.
176 auto Res = Seen.try_emplace(D);
177 if (!Res.second && Res.first->second.contains(Flags))
178 return;
179 Res.first->second |= Flags;
180
181 if (const UsingDirectiveDecl *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
182 D = UDD->getNominatedNamespaceAsWritten();
183
184 if (const TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D)) {
185 add(TND->getUnderlyingType(), Flags | Rel::Underlying);
186 Flags |= Rel::Alias; // continue with the alias.
187 } else if (const UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
188 // no Underlying as this is a non-renaming alias.
189 for (const UsingShadowDecl *S : UD->shadows())
190 add(S->getUnderlyingDecl(), Flags);
191 Flags |= Rel::Alias; // continue with the alias.
192 } else if (const UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) {
193 // UsingEnumDecl is not an alias at all, just a reference.
194 D = UED->getEnumDecl();
195 } else if (const auto *NAD = dyn_cast<NamespaceAliasDecl>(D)) {
196 add(NAD->getUnderlyingDecl(), Flags | Rel::Underlying);
197 Flags |= Rel::Alias; // continue with the alias
198 } else if (const UnresolvedUsingValueDecl *UUVD =
199 dyn_cast<UnresolvedUsingValueDecl>(D)) {
200 if (Resolver) {
201 for (const NamedDecl *Target : Resolver->resolveUsingValueDecl(UUVD)) {
202 add(Target, Flags); // no Underlying as this is a non-renaming alias
203 }
204 }
205 Flags |= Rel::Alias; // continue with the alias
206 } else if (isa<UnresolvedUsingTypenameDecl>(D)) {
207 // FIXME: improve common dependent scope using name lookup in primary
208 // templates.
209 Flags |= Rel::Alias;
210 } else if (const UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) {
211 // Include the introducing UsingDecl, but don't traverse it. This may end
212 // up including *all* shadows, which we don't want.
213 // Don't apply this logic to UsingEnumDecl, which can't easily be
214 // conflated with the aliases it introduces.
215 if (llvm::isa<UsingDecl>(USD->getIntroducer()))
216 report(USD->getIntroducer(), Flags | Rel::Alias);
217 // Shadow decls are synthetic and not themselves interesting.
218 // Record the underlying decl instead, if allowed.
219 D = USD->getTargetDecl();
220 } else if (const auto *DG = dyn_cast<CXXDeductionGuideDecl>(D)) {
221 D = DG->getDeducedTemplate();
222 } else if (const ObjCImplementationDecl *IID =
223 dyn_cast<ObjCImplementationDecl>(D)) {
224 // Treat ObjC{Interface,Implementation}Decl as if they were a decl/def
225 // pair as long as the interface isn't implicit.
226 if (const auto *CID = IID->getClassInterface())
227 if (const auto *DD = CID->getDefinition())
228 if (!DD->isImplicitInterfaceDecl())
229 D = DD;
230 } else if (const ObjCCategoryImplDecl *CID =
231 dyn_cast<ObjCCategoryImplDecl>(D)) {
232 // Treat ObjC{Category,CategoryImpl}Decl as if they were a decl/def pair.
233 D = CID->getCategoryDecl();
234 }
235 if (!D)
236 return;
237
238 if (const Decl *Pat = getTemplatePattern(D)) {
239 assert(Pat != D);
240 add(Pat, Flags | Rel::TemplatePattern);
241 // Now continue with the instantiation.
242 Flags |= Rel::TemplateInstantiation;
243 }
244
245 report(D, Flags);
246 }
247
248 void add(const Stmt *S, RelSet Flags) {
249 if (!S)
250 return;
251 debug(*S, Flags);
252 struct Visitor : public ConstStmtVisitor<Visitor> {
253 TargetFinder &Outer;
254 RelSet Flags;
255 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
256
257 void VisitCallExpr(const CallExpr *CE) {
258 Outer.add(CE->getCalleeDecl(), Flags);
259 }
260 void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
261 Outer.add(E->getConceptReference(), Flags);
262 }
263 void VisitDeclRefExpr(const DeclRefExpr *DRE) {
264 const Decl *D = DRE->getDecl();
265 // UsingShadowDecl allows us to record the UsingDecl.
266 // getFoundDecl() returns the wrong thing in other cases (templates).
267 if (auto *USD = llvm::dyn_cast<UsingShadowDecl>(DRE->getFoundDecl()))
268 D = USD;
269 Outer.add(D, Flags);
270 }
271 void VisitMemberExpr(const MemberExpr *ME) {
272 const Decl *D = ME->getMemberDecl();
273 if (auto *USD =
274 llvm::dyn_cast<UsingShadowDecl>(ME->getFoundDecl().getDecl()))
275 D = USD;
276 Outer.add(D, Flags);
277 }
278 void VisitOverloadExpr(const OverloadExpr *OE) {
279 for (auto *D : OE->decls())
280 Outer.add(D, Flags);
281 }
282 void VisitSizeOfPackExpr(const SizeOfPackExpr *SE) {
283 Outer.add(SE->getPack(), Flags);
284 }
285 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
286 Outer.add(CCE->getConstructor(), Flags);
287 }
288 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
289 for (const DesignatedInitExpr::Designator &D :
290 llvm::reverse(DIE->designators()))
291 if (D.isFieldDesignator()) {
292 Outer.add(D.getFieldDecl(), Flags);
293 // We don't know which designator was intended, we assume the outer.
294 break;
295 }
296 }
297 void VisitGotoStmt(const GotoStmt *Goto) {
298 if (auto *LabelDecl = Goto->getLabel())
299 Outer.add(LabelDecl, Flags);
300 }
301 void VisitLabelStmt(const LabelStmt *Label) {
302 if (auto *LabelDecl = Label->getDecl())
303 Outer.add(LabelDecl, Flags);
304 }
305 void
306 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
307 if (Outer.Resolver) {
308 for (const NamedDecl *D : Outer.Resolver->resolveMemberExpr(E)) {
309 Outer.add(D, Flags);
310 }
311 }
312 }
313 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
314 if (Outer.Resolver) {
315 for (const NamedDecl *D : Outer.Resolver->resolveDeclRefExpr(E)) {
316 Outer.add(D, Flags);
317 }
318 }
319 }
320 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
321 Outer.add(OIRE->getDecl(), Flags);
322 }
323 void VisitObjCMessageExpr(const ObjCMessageExpr *OME) {
324 Outer.add(OME->getMethodDecl(), Flags);
325 }
326 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *OPRE) {
327 if (OPRE->isExplicitProperty())
328 Outer.add(OPRE->getExplicitProperty(), Flags);
329 else {
330 if (OPRE->isMessagingGetter())
331 Outer.add(OPRE->getImplicitPropertyGetter(), Flags);
332 if (OPRE->isMessagingSetter())
333 Outer.add(OPRE->getImplicitPropertySetter(), Flags);
334 }
335 }
336 void VisitObjCProtocolExpr(const ObjCProtocolExpr *OPE) {
337 Outer.add(OPE->getProtocol(), Flags);
338 }
339 void VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
340 Outer.add(OVE->getSourceExpr(), Flags);
341 }
342 void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
343 Outer.add(POE->getSyntacticForm(), Flags);
344 }
345 void VisitCXXNewExpr(const CXXNewExpr *CNE) {
346 Outer.add(CNE->getOperatorNew(), Flags);
347 }
348 void VisitCXXDeleteExpr(const CXXDeleteExpr *CDE) {
349 Outer.add(CDE->getOperatorDelete(), Flags);
350 }
351 void
352 VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *RBO) {
353 Outer.add(RBO->getDecomposedForm().InnerBinOp, Flags);
354 }
355 };
356 Visitor(*this, Flags).Visit(S);
357 }
358
359 void add(QualType T, RelSet Flags) {
360 if (T.isNull())
361 return;
362 debug(T, Flags);
363 struct Visitor : public TypeVisitor<Visitor> {
364 TargetFinder &Outer;
365 RelSet Flags;
366 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
367
368 void VisitTagType(const TagType *TT) {
369 Outer.add(TT->getAsTagDecl(), Flags);
370 }
371
372 void VisitElaboratedType(const ElaboratedType *ET) {
373 Outer.add(ET->desugar(), Flags);
374 }
375
376 void VisitUsingType(const UsingType *ET) {
377 Outer.add(ET->getFoundDecl(), Flags);
378 }
379
380 void VisitInjectedClassNameType(const InjectedClassNameType *ICNT) {
381 Outer.add(ICNT->getDecl(), Flags);
382 }
383
384 void VisitDecltypeType(const DecltypeType *DTT) {
385 Outer.add(DTT->getUnderlyingType(), Flags | Rel::Underlying);
386 }
387 void VisitDeducedType(const DeducedType *DT) {
388 // FIXME: In practice this doesn't work: the AutoType you find inside
389 // TypeLoc never has a deduced type. https://llvm.org/PR42914
390 Outer.add(DT->getDeducedType(), Flags);
391 }
392 void VisitUnresolvedUsingType(const UnresolvedUsingType *UUT) {
393 Outer.add(UUT->getDecl(), Flags);
394 }
395 void VisitDeducedTemplateSpecializationType(
396 const DeducedTemplateSpecializationType *DTST) {
397 if (const auto *USD = DTST->getTemplateName().getAsUsingShadowDecl())
398 Outer.add(USD, Flags);
399
400 // FIXME: This is a workaround for https://llvm.org/PR42914,
401 // which is causing DTST->getDeducedType() to be empty. We
402 // fall back to the template pattern and miss the instantiation
403 // even when it's known in principle. Once that bug is fixed,
404 // the following code can be removed (the existing handling in
405 // VisitDeducedType() is sufficient).
406 if (auto *TD = DTST->getTemplateName().getAsTemplateDecl())
407 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
408 }
409 void VisitDependentNameType(const DependentNameType *DNT) {
410 if (Outer.Resolver) {
411 for (const NamedDecl *ND :
412 Outer.Resolver->resolveDependentNameType(DNT)) {
413 Outer.add(ND, Flags);
414 }
415 }
416 }
417 void VisitDependentTemplateSpecializationType(
418 const DependentTemplateSpecializationType *DTST) {
419 if (Outer.Resolver) {
420 for (const NamedDecl *ND :
421 Outer.Resolver->resolveTemplateSpecializationType(DTST)) {
422 Outer.add(ND, Flags);
423 }
424 }
425 }
426 void VisitTypedefType(const TypedefType *TT) {
427 if (shouldSkipTypedef(TT->getDecl()))
428 return;
429 Outer.add(TT->getDecl(), Flags);
430 }
431 void
432 VisitTemplateSpecializationType(const TemplateSpecializationType *TST) {
433 // Have to handle these case-by-case.
434
435 if (const auto *UTN = TST->getTemplateName().getAsUsingShadowDecl())
436 Outer.add(UTN, Flags);
437
438 // templated type aliases: there's no specialized/instantiated using
439 // decl to point to. So try to find a decl for the underlying type
440 // (after substitution), and failing that point to the (templated) using
441 // decl.
442 if (TST->isTypeAlias()) {
443 Outer.add(TST->getAliasedType(), Flags | Rel::Underlying);
444 // Don't *traverse* the alias, which would result in traversing the
445 // template of the underlying type.
446 Outer.report(
447 TST->getTemplateName().getAsTemplateDecl()->getTemplatedDecl(),
448 Flags | Rel::Alias | Rel::TemplatePattern);
449 }
450 // specializations of template template parameters aren't instantiated
451 // into decls, so they must refer to the parameter itself.
452 else if (const auto *Parm =
453 llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
454 TST->getTemplateName().getAsTemplateDecl()))
455 Outer.add(Parm, Flags);
456 // class template specializations have a (specialized) CXXRecordDecl.
457 else if (const CXXRecordDecl *RD = TST->getAsCXXRecordDecl())
458 Outer.add(RD, Flags); // add(Decl) will despecialize if needed.
459 else {
460 // fallback: the (un-specialized) declaration from primary template.
461 if (auto *TD = TST->getTemplateName().getAsTemplateDecl())
462 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
463 }
464 }
465 void
466 VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *STTPT) {
467 Outer.add(STTPT->getReplacementType(), Flags);
468 }
469 void VisitTemplateTypeParmType(const TemplateTypeParmType *TTPT) {
470 Outer.add(TTPT->getDecl(), Flags);
471 }
472 void VisitObjCInterfaceType(const ObjCInterfaceType *OIT) {
473 Outer.add(OIT->getDecl(), Flags);
474 }
475 };
476 Visitor(*this, Flags).Visit(T.getTypePtr());
477 }
478
479 void add(const NestedNameSpecifier *NNS, RelSet Flags) {
480 if (!NNS)
481 return;
482 debug(*NNS, Flags);
483 switch (NNS->getKind()) {
484 case NestedNameSpecifier::Namespace:
485 add(NNS->getAsNamespace(), Flags);
486 return;
487 case NestedNameSpecifier::NamespaceAlias:
488 add(NNS->getAsNamespaceAlias(), Flags);
489 return;
490 case NestedNameSpecifier::Identifier:
491 if (Resolver) {
492 add(QualType(Resolver->resolveNestedNameSpecifierToType(NNS), 0),
493 Flags);
494 }
495 return;
496 case NestedNameSpecifier::TypeSpec:
497 case NestedNameSpecifier::TypeSpecWithTemplate:
498 add(QualType(NNS->getAsType(), 0), Flags);
499 return;
500 case NestedNameSpecifier::Global:
501 // This should be TUDecl, but we can't get a pointer to it!
502 return;
503 case NestedNameSpecifier::Super:
504 add(NNS->getAsRecordDecl(), Flags);
505 return;
506 }
507 llvm_unreachable("unhandled NestedNameSpecifier::SpecifierKind");
508 }
509
510 void add(const CXXCtorInitializer *CCI, RelSet Flags) {
511 if (!CCI)
512 return;
513 debug(*CCI, Flags);
514
515 if (CCI->isAnyMemberInitializer())
516 add(CCI->getAnyMember(), Flags);
517 // Constructor calls contain a TypeLoc node, so we don't handle them here.
518 }
519
520 void add(const TemplateArgument &Arg, RelSet Flags) {
521 // Only used for template template arguments.
522 // For type and non-type template arguments, SelectionTree
523 // will hit a more specific node (e.g. a TypeLoc or a
524 // DeclRefExpr).
525 if (Arg.getKind() == TemplateArgument::Template ||
526 Arg.getKind() == TemplateArgument::TemplateExpansion) {
527 if (TemplateDecl *TD =
528 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) {
529 report(TD, Flags);
530 }
531 if (const auto *USD =
532 Arg.getAsTemplateOrTemplatePattern().getAsUsingShadowDecl())
533 add(USD, Flags);
534 }
535 }
536
537 void add(const ConceptReference *CR, RelSet Flags) {
538 add(CR->getNamedConcept(), Flags);
539 }
540};
541
542} // namespace
543
544llvm::SmallVector<std::pair<const NamedDecl *, DeclRelationSet>, 1>
545allTargetDecls(const DynTypedNode &N, const HeuristicResolver *Resolver) {
546 dlog("allTargetDecls({0})", nodeToString(N));
547 TargetFinder Finder(Resolver);
549 if (const Decl *D = N.get<Decl>())
550 Finder.add(D, Flags);
551 else if (const Stmt *S = N.get<Stmt>())
552 Finder.add(S, Flags);
553 else if (const NestedNameSpecifierLoc *NNSL = N.get<NestedNameSpecifierLoc>())
554 Finder.add(NNSL->getNestedNameSpecifier(), Flags);
555 else if (const NestedNameSpecifier *NNS = N.get<NestedNameSpecifier>())
556 Finder.add(NNS, Flags);
557 else if (const TypeLoc *TL = N.get<TypeLoc>())
558 Finder.add(TL->getType(), Flags);
559 else if (const QualType *QT = N.get<QualType>())
560 Finder.add(*QT, Flags);
561 else if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>())
562 Finder.add(CCI, Flags);
563 else if (const TemplateArgumentLoc *TAL = N.get<TemplateArgumentLoc>())
564 Finder.add(TAL->getArgument(), Flags);
565 else if (const CXXBaseSpecifier *CBS = N.get<CXXBaseSpecifier>())
566 Finder.add(CBS->getTypeSourceInfo()->getType(), Flags);
567 else if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
568 Finder.add(PL->getProtocol(), Flags);
569 else if (const ConceptReference *CR = N.get<ConceptReference>())
570 Finder.add(CR, Flags);
571 return Finder.takeDecls();
572}
573
574llvm::SmallVector<const NamedDecl *, 1>
575targetDecl(const DynTypedNode &N, DeclRelationSet Mask,
576 const HeuristicResolver *Resolver) {
577 llvm::SmallVector<const NamedDecl *, 1> Result;
578 for (const auto &Entry : allTargetDecls(N, Resolver)) {
579 if (!(Entry.second & ~Mask))
580 Result.push_back(Entry.first);
581 }
582 return Result;
583}
584
585llvm::SmallVector<const NamedDecl *, 1>
587 const HeuristicResolver *Resolver) {
588 assert(!(Mask & (DeclRelation::TemplatePattern |
590 "explicitReferenceTargets handles templates on its own");
591 auto Decls = allTargetDecls(N, Resolver);
592
593 // We prefer to return template instantiation, but fallback to template
594 // pattern if instantiation is not available.
596
597 llvm::SmallVector<const NamedDecl *, 1> TemplatePatterns;
598 llvm::SmallVector<const NamedDecl *, 1> Targets;
599 bool SeenTemplateInstantiations = false;
600 for (auto &D : Decls) {
601 if (D.second & ~Mask)
602 continue;
603 if (D.second & DeclRelation::TemplatePattern) {
604 TemplatePatterns.push_back(D.first);
605 continue;
606 }
608 SeenTemplateInstantiations = true;
609 Targets.push_back(D.first);
610 }
611 if (!SeenTemplateInstantiations)
612 Targets.insert(Targets.end(), TemplatePatterns.begin(),
613 TemplatePatterns.end());
614 return Targets;
615}
616
617namespace {
618llvm::SmallVector<ReferenceLoc> refInDecl(const Decl *D,
619 const HeuristicResolver *Resolver) {
620 struct Visitor : ConstDeclVisitor<Visitor> {
621 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
622
623 const HeuristicResolver *Resolver;
624 llvm::SmallVector<ReferenceLoc> Refs;
625
626 void VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
627 // We want to keep it as non-declaration references, as the
628 // "using namespace" declaration doesn't have a name.
629 Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
630 D->getIdentLocation(),
631 /*IsDecl=*/false,
632 {D->getNominatedNamespaceAsWritten()}});
633 }
634
635 void VisitUsingDecl(const UsingDecl *D) {
636 // "using ns::identifier;" is a non-declaration reference.
637 Refs.push_back(ReferenceLoc{
638 D->getQualifierLoc(), D->getLocation(), /*IsDecl=*/false,
639 explicitReferenceTargets(DynTypedNode::create(*D),
640 DeclRelation::Underlying, Resolver)});
641 }
642
643 void VisitUsingEnumDecl(const UsingEnumDecl *D) {
644 // "using enum ns::E" is a non-declaration reference.
645 // The reference is covered by the embedded typeloc.
646 // Don't use the default VisitNamedDecl, which would report a declaration.
647 }
648
649 void VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
650 // For namespace alias, "namespace Foo = Target;", we add two references.
651 // Add a declaration reference for Foo.
652 VisitNamedDecl(D);
653 // Add a non-declaration reference for Target.
654 Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
655 D->getTargetNameLoc(),
656 /*IsDecl=*/false,
657 {D->getAliasedNamespace()}});
658 }
659
660 void VisitNamedDecl(const NamedDecl *ND) {
661 // We choose to ignore {Class, Function, Var, TypeAlias}TemplateDecls. As
662 // as their underlying decls, covering the same range, will be visited.
663 if (llvm::isa<ClassTemplateDecl>(ND) ||
664 llvm::isa<FunctionTemplateDecl>(ND) ||
665 llvm::isa<VarTemplateDecl>(ND) ||
666 llvm::isa<TypeAliasTemplateDecl>(ND))
667 return;
668 // FIXME: decide on how to surface destructors when we need them.
669 if (llvm::isa<CXXDestructorDecl>(ND))
670 return;
671 // Filter anonymous decls, name location will point outside the name token
672 // and the clients are not prepared to handle that.
673 if (ND->getDeclName().isIdentifier() &&
674 !ND->getDeclName().getAsIdentifierInfo())
675 return;
676 Refs.push_back(ReferenceLoc{getQualifierLoc(*ND),
677 ND->getLocation(),
678 /*IsDecl=*/true,
679 {ND}});
680 }
681
682 void VisitCXXDeductionGuideDecl(const CXXDeductionGuideDecl *DG) {
683 // The class template name in a deduction guide targets the class
684 // template.
685 Refs.push_back(ReferenceLoc{DG->getQualifierLoc(),
686 DG->getNameInfo().getLoc(),
687 /*IsDecl=*/false,
688 {DG->getDeducedTemplate()}});
689 }
690
691 void VisitObjCMethodDecl(const ObjCMethodDecl *OMD) {
692 // The name may have several tokens, we can only report the first.
693 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
694 OMD->getSelectorStartLoc(),
695 /*IsDecl=*/true,
696 {OMD}});
697 }
698
699 void VisitObjCCategoryDecl(const ObjCCategoryDecl *OCD) {
700 // getLocation is the extended class's location, not the category's.
701 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
702 OCD->getLocation(),
703 /*IsDecl=*/false,
704 {OCD->getClassInterface()}});
705 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
706 OCD->getCategoryNameLoc(),
707 /*IsDecl=*/true,
708 {OCD}});
709 }
710
711 void VisitObjCCategoryImplDecl(const ObjCCategoryImplDecl *OCID) {
712 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
713 OCID->getLocation(),
714 /*IsDecl=*/false,
715 {OCID->getClassInterface()}});
716 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
717 OCID->getCategoryNameLoc(),
718 /*IsDecl=*/false,
719 {OCID->getCategoryDecl()}});
720 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
721 OCID->getCategoryNameLoc(),
722 /*IsDecl=*/true,
723 {OCID}});
724 }
725
726 void VisitObjCImplementationDecl(const ObjCImplementationDecl *OIMD) {
727 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
728 OIMD->getLocation(),
729 /*IsDecl=*/false,
730 {OIMD->getClassInterface()}});
731 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
732 OIMD->getLocation(),
733 /*IsDecl=*/true,
734 {OIMD}});
735 }
736 };
737
738 Visitor V{Resolver};
739 V.Visit(D);
740 return V.Refs;
741}
742
743llvm::SmallVector<ReferenceLoc> refInStmt(const Stmt *S,
744 const HeuristicResolver *Resolver) {
745 struct Visitor : ConstStmtVisitor<Visitor> {
746 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
747
748 const HeuristicResolver *Resolver;
749 // FIXME: handle more complicated cases: more ObjC, designated initializers.
750 llvm::SmallVector<ReferenceLoc> Refs;
751
752 void VisitDeclRefExpr(const DeclRefExpr *E) {
753 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
754 E->getNameInfo().getLoc(),
755 /*IsDecl=*/false,
756 {E->getFoundDecl()}});
757 }
758
759 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
760 Refs.push_back(ReferenceLoc{
761 E->getQualifierLoc(), E->getNameInfo().getLoc(), /*IsDecl=*/false,
762 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
763 }
764
765 void VisitMemberExpr(const MemberExpr *E) {
766 // Skip destructor calls to avoid duplication: TypeLoc within will be
767 // visited separately.
768 if (llvm::isa<CXXDestructorDecl>(E->getFoundDecl().getDecl()))
769 return;
770 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
771 E->getMemberNameInfo().getLoc(),
772 /*IsDecl=*/false,
773 {E->getFoundDecl()}});
774 }
775
776 void
777 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
778 Refs.push_back(ReferenceLoc{
779 E->getQualifierLoc(), E->getMemberNameInfo().getLoc(),
780 /*IsDecl=*/false,
781 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
782 }
783
784 void VisitOverloadExpr(const OverloadExpr *E) {
785 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
786 E->getNameInfo().getLoc(),
787 /*IsDecl=*/false,
788 llvm::SmallVector<const NamedDecl *, 1>(
789 E->decls().begin(), E->decls().end())});
790 }
791
792 void VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
793 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
794 E->getPackLoc(),
795 /*IsDecl=*/false,
796 {E->getPack()}});
797 }
798
799 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
800 Refs.push_back(ReferenceLoc{
801 NestedNameSpecifierLoc(), E->getLocation(),
802 /*IsDecl=*/false,
803 // Select the getter, setter, or @property depending on the call.
804 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
805 }
806
807 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
808 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
809 OIRE->getLocation(),
810 /*IsDecl=*/false,
811 {OIRE->getDecl()}});
812 }
813
814 void VisitObjCMessageExpr(const ObjCMessageExpr *E) {
815 // The name may have several tokens, we can only report the first.
816 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
817 E->getSelectorStartLoc(),
818 /*IsDecl=*/false,
819 {E->getMethodDecl()}});
820 }
821
822 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
823 for (const DesignatedInitExpr::Designator &D : DIE->designators()) {
824 if (!D.isFieldDesignator())
825 continue;
826
827 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
828 D.getFieldLoc(),
829 /*IsDecl=*/false,
830 {D.getFieldDecl()}});
831 }
832 }
833
834 void VisitGotoStmt(const GotoStmt *GS) {
835 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
836 GS->getLabelLoc(),
837 /*IsDecl=*/false,
838 {GS->getLabel()}});
839 }
840
841 void VisitLabelStmt(const LabelStmt *LS) {
842 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
843 LS->getIdentLoc(),
844 /*IsDecl=*/true,
845 {LS->getDecl()}});
846 }
847 };
848
849 Visitor V{Resolver};
850 V.Visit(S);
851 return V.Refs;
852}
853
854llvm::SmallVector<ReferenceLoc>
855refInTypeLoc(TypeLoc L, const HeuristicResolver *Resolver) {
856 struct Visitor : TypeLocVisitor<Visitor> {
857 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
858
859 const HeuristicResolver *Resolver;
860 llvm::SmallVector<ReferenceLoc> Refs;
861
862 void VisitElaboratedTypeLoc(ElaboratedTypeLoc L) {
863 // We only know about qualifier, rest if filled by inner locations.
864 size_t InitialSize = Refs.size();
865 Visit(L.getNamedTypeLoc().getUnqualifiedLoc());
866 size_t NewSize = Refs.size();
867 // Add qualifier for the newly-added refs.
868 for (unsigned I = InitialSize; I < NewSize; ++I) {
869 ReferenceLoc *Ref = &Refs[I];
870 // Fill in the qualifier.
871 assert(!Ref->Qualifier.hasQualifier() && "qualifier already set");
872 Ref->Qualifier = L.getQualifierLoc();
873 }
874 }
875
876 void VisitUsingTypeLoc(UsingTypeLoc L) {
877 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
878 L.getLocalSourceRange().getBegin(),
879 /*IsDecl=*/false,
880 {L.getFoundDecl()}});
881 }
882
883 void VisitTagTypeLoc(TagTypeLoc L) {
884 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
885 L.getNameLoc(),
886 /*IsDecl=*/false,
887 {L.getDecl()}});
888 }
889
890 void VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc L) {
891 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
892 L.getNameLoc(),
893 /*IsDecl=*/false,
894 {L.getDecl()}});
895 }
896
897 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
898 // We must ensure template type aliases are included in results if they
899 // were written in the source code, e.g. in
900 // template <class T> using valias = vector<T>;
901 // ^valias<int> x;
902 // 'explicitReferenceTargets' will return:
903 // 1. valias with mask 'Alias'.
904 // 2. 'vector<int>' with mask 'Underlying'.
905 // we want to return only #1 in this case.
906 Refs.push_back(ReferenceLoc{
907 NestedNameSpecifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
908 explicitReferenceTargets(DynTypedNode::create(L.getType()),
909 DeclRelation::Alias, Resolver)});
910 }
911 void VisitDeducedTemplateSpecializationTypeLoc(
912 DeducedTemplateSpecializationTypeLoc L) {
913 Refs.push_back(ReferenceLoc{
914 NestedNameSpecifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
915 explicitReferenceTargets(DynTypedNode::create(L.getType()),
916 DeclRelation::Alias, Resolver)});
917 }
918
919 void VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
920 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
921 TL.getNameLoc(),
922 /*IsDecl=*/false,
923 {TL.getDecl()}});
924 }
925
926 void VisitDependentTemplateSpecializationTypeLoc(
927 DependentTemplateSpecializationTypeLoc L) {
928 Refs.push_back(
929 ReferenceLoc{L.getQualifierLoc(), L.getTemplateNameLoc(),
930 /*IsDecl=*/false,
932 DynTypedNode::create(L.getType()), {}, Resolver)});
933 }
934
935 void VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
936 Refs.push_back(
937 ReferenceLoc{L.getQualifierLoc(), L.getNameLoc(),
938 /*IsDecl=*/false,
940 DynTypedNode::create(L.getType()), {}, Resolver)});
941 }
942
943 void VisitTypedefTypeLoc(TypedefTypeLoc L) {
944 if (shouldSkipTypedef(L.getTypedefNameDecl()))
945 return;
946 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
947 L.getNameLoc(),
948 /*IsDecl=*/false,
949 {L.getTypedefNameDecl()}});
950 }
951
952 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc L) {
953 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
954 L.getNameLoc(),
955 /*IsDecl=*/false,
956 {L.getIFaceDecl()}});
957 }
958 };
959
960 Visitor V{Resolver};
961 V.Visit(L.getUnqualifiedLoc());
962 return V.Refs;
963}
964
965class ExplicitReferenceCollector
966 : public RecursiveASTVisitor<ExplicitReferenceCollector> {
967public:
968 ExplicitReferenceCollector(llvm::function_ref<void(ReferenceLoc)> Out,
969 const HeuristicResolver *Resolver)
970 : Out(Out), Resolver(Resolver) {
971 assert(Out);
972 }
973
974 bool VisitTypeLoc(TypeLoc TTL) {
975 if (TypeLocsToSkip.count(TTL.getBeginLoc()))
976 return true;
977 visitNode(DynTypedNode::create(TTL));
978 return true;
979 }
980
981 bool TraverseElaboratedTypeLoc(ElaboratedTypeLoc L) {
982 // ElaboratedTypeLoc will reports information for its inner type loc.
983 // Otherwise we loose information about inner types loc's qualifier.
984 TypeLoc Inner = L.getNamedTypeLoc().getUnqualifiedLoc();
985 if (L.getBeginLoc() == Inner.getBeginLoc())
986 return RecursiveASTVisitor::TraverseTypeLoc(Inner);
987 else
988 TypeLocsToSkip.insert(Inner.getBeginLoc());
989 return RecursiveASTVisitor::TraverseElaboratedTypeLoc(L);
990 }
991
992 bool VisitStmt(Stmt *S) {
993 visitNode(DynTypedNode::create(*S));
994 return true;
995 }
996
997 bool TraverseOpaqueValueExpr(OpaqueValueExpr *OVE) {
998 visitNode(DynTypedNode::create(*OVE));
999 // Not clear why the source expression is skipped by default...
1000 // FIXME: can we just make RecursiveASTVisitor do this?
1001 return RecursiveASTVisitor::TraverseStmt(OVE->getSourceExpr());
1002 }
1003
1004 bool TraversePseudoObjectExpr(PseudoObjectExpr *POE) {
1005 visitNode(DynTypedNode::create(*POE));
1006 // Traverse only the syntactic form to find the *written* references.
1007 // (The semantic form also contains lots of duplication)
1008 return RecursiveASTVisitor::TraverseStmt(POE->getSyntacticForm());
1009 }
1010
1011 // We re-define Traverse*, since there's no corresponding Visit*.
1012 // TemplateArgumentLoc is the only way to get locations for references to
1013 // template template parameters.
1014 bool TraverseTemplateArgumentLoc(TemplateArgumentLoc A) {
1015 switch (A.getArgument().getKind()) {
1016 case TemplateArgument::Template:
1017 case TemplateArgument::TemplateExpansion:
1018 reportReference(ReferenceLoc{A.getTemplateQualifierLoc(),
1019 A.getTemplateNameLoc(),
1020 /*IsDecl=*/false,
1021 {A.getArgument()
1022 .getAsTemplateOrTemplatePattern()
1023 .getAsTemplateDecl()}},
1024 DynTypedNode::create(A.getArgument()));
1025 break;
1026 case TemplateArgument::Declaration:
1027 break; // FIXME: can this actually happen in TemplateArgumentLoc?
1028 case TemplateArgument::Integral:
1029 case TemplateArgument::Null:
1030 case TemplateArgument::NullPtr:
1031 break; // no references.
1032 case TemplateArgument::Pack:
1033 case TemplateArgument::Type:
1034 case TemplateArgument::Expression:
1035 break; // Handled by VisitType and VisitExpression.
1036 };
1037 return RecursiveASTVisitor::TraverseTemplateArgumentLoc(A);
1038 }
1039
1040 bool VisitDecl(Decl *D) {
1041 visitNode(DynTypedNode::create(*D));
1042 return true;
1043 }
1044
1045 // We have to use Traverse* because there is no corresponding Visit*.
1046 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc L) {
1047 if (!L.getNestedNameSpecifier())
1048 return true;
1049 visitNode(DynTypedNode::create(L));
1050 // Inner type is missing information about its qualifier, skip it.
1051 if (auto TL = L.getTypeLoc())
1052 TypeLocsToSkip.insert(TL.getBeginLoc());
1053 return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(L);
1054 }
1055
1056 bool TraverseObjCProtocolLoc(ObjCProtocolLoc ProtocolLoc) {
1057 visitNode(DynTypedNode::create(ProtocolLoc));
1058 return true;
1059 }
1060
1061 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
1062 visitNode(DynTypedNode::create(*Init));
1063 return RecursiveASTVisitor::TraverseConstructorInitializer(Init);
1064 }
1065
1066 bool VisitConceptReference(const ConceptReference *CR) {
1067 visitNode(DynTypedNode::create(*CR));
1068 return true;
1069 }
1070
1071private:
1072 /// Obtain information about a reference directly defined in \p N. Does not
1073 /// recurse into child nodes, e.g. do not expect references for constructor
1074 /// initializers
1075 ///
1076 /// Any of the fields in the returned structure can be empty, but not all of
1077 /// them, e.g.
1078 /// - for implicitly generated nodes (e.g. MemberExpr from range-based-for),
1079 /// source location information may be missing,
1080 /// - for dependent code, targets may be empty.
1081 ///
1082 /// (!) For the purposes of this function declarations are not considered to
1083 /// be references. However, declarations can have references inside them,
1084 /// e.g. 'namespace foo = std' references namespace 'std' and this
1085 /// function will return the corresponding reference.
1086 llvm::SmallVector<ReferenceLoc> explicitReference(DynTypedNode N) {
1087 if (auto *D = N.get<Decl>())
1088 return refInDecl(D, Resolver);
1089 if (auto *S = N.get<Stmt>())
1090 return refInStmt(S, Resolver);
1091 if (auto *NNSL = N.get<NestedNameSpecifierLoc>()) {
1092 // (!) 'DeclRelation::Alias' ensures we do not loose namespace aliases.
1093 return {ReferenceLoc{
1094 NNSL->getPrefix(), NNSL->getLocalBeginLoc(), false,
1096 DynTypedNode::create(*NNSL->getNestedNameSpecifier()),
1097 DeclRelation::Alias, Resolver)}};
1098 }
1099 if (const TypeLoc *TL = N.get<TypeLoc>())
1100 return refInTypeLoc(*TL, Resolver);
1101 if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>()) {
1102 // Other type initializers (e.g. base initializer) are handled by visiting
1103 // the typeLoc.
1104 if (CCI->isAnyMemberInitializer()) {
1105 return {ReferenceLoc{NestedNameSpecifierLoc(),
1106 CCI->getMemberLocation(),
1107 /*IsDecl=*/false,
1108 {CCI->getAnyMember()}}};
1109 }
1110 }
1111 if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
1112 return {ReferenceLoc{NestedNameSpecifierLoc(),
1113 PL->getLocation(),
1114 /*IsDecl=*/false,
1115 {PL->getProtocol()}}};
1116 if (const ConceptReference *CR = N.get<ConceptReference>())
1117 return {ReferenceLoc{CR->getNestedNameSpecifierLoc(),
1118 CR->getConceptNameLoc(),
1119 /*IsDecl=*/false,
1120 {CR->getNamedConcept()}}};
1121
1122 // We do not have location information for other nodes (QualType, etc)
1123 return {};
1124 }
1125
1126 void visitNode(DynTypedNode N) {
1127 for (auto &R : explicitReference(N))
1128 reportReference(std::move(R), N);
1129 }
1130
1131 void reportReference(ReferenceLoc &&Ref, DynTypedNode N) {
1132 // Strip null targets that can arise from invalid code.
1133 // (This avoids having to check for null everywhere we insert)
1134 llvm::erase(Ref.Targets, nullptr);
1135 // Our promise is to return only references from the source code. If we lack
1136 // location information, skip these nodes.
1137 // Normally this should not happen in practice, unless there are bugs in the
1138 // traversals or users started the traversal at an implicit node.
1139 if (Ref.NameLoc.isInvalid()) {
1140 dlog("invalid location at node {0}", nodeToString(N));
1141 return;
1142 }
1143 Out(Ref);
1144 }
1145
1146 llvm::function_ref<void(ReferenceLoc)> Out;
1147 const HeuristicResolver *Resolver;
1148 /// TypeLocs starting at these locations must be skipped, see
1149 /// TraverseElaboratedTypeSpecifierLoc for details.
1150 llvm::DenseSet<SourceLocation> TypeLocsToSkip;
1151};
1152} // namespace
1153
1154void findExplicitReferences(const Stmt *S,
1155 llvm::function_ref<void(ReferenceLoc)> Out,
1156 const HeuristicResolver *Resolver) {
1157 assert(S);
1158 ExplicitReferenceCollector(Out, Resolver).TraverseStmt(const_cast<Stmt *>(S));
1159}
1161 llvm::function_ref<void(ReferenceLoc)> Out,
1162 const HeuristicResolver *Resolver) {
1163 assert(D);
1164 ExplicitReferenceCollector(Out, Resolver).TraverseDecl(const_cast<Decl *>(D));
1165}
1166void findExplicitReferences(const ASTContext &AST,
1167 llvm::function_ref<void(ReferenceLoc)> Out,
1168 const HeuristicResolver *Resolver) {
1169 ExplicitReferenceCollector(Out, Resolver)
1170 .TraverseAST(const_cast<ASTContext &>(AST));
1171}
1172
1173llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelation R) {
1174 switch (R) {
1175#define REL_CASE(X) \
1176 case DeclRelation::X: \
1177 return OS << #X;
1178 REL_CASE(Alias);
1182#undef REL_CASE
1183 }
1184 llvm_unreachable("Unhandled DeclRelation enum");
1185}
1186llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelationSet RS) {
1187 const char *Sep = "";
1188 for (unsigned I = 0; I < RS.S.size(); ++I) {
1189 if (RS.S.test(I)) {
1190 OS << Sep << static_cast<DeclRelation>(I);
1191 Sep = "|";
1192 }
1193 }
1194 return OS;
1195}
1196
1197llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, ReferenceLoc R) {
1198 // note we cannot print R.NameLoc without a source manager.
1199 OS << "targets = {";
1200 llvm::SmallVector<std::string> Targets;
1201 for (const NamedDecl *T : R.Targets) {
1202 llvm::raw_string_ostream Target(Targets.emplace_back());
1204 }
1205 llvm::sort(Targets);
1206 OS << llvm::join(Targets, ", ");
1207 OS << "}";
1208 if (R.Qualifier) {
1209 OS << ", qualifier = '";
1210 R.Qualifier.getNestedNameSpecifier()->print(OS,
1211 PrintingPolicy(LangOptions()));
1212 OS << "'";
1213 }
1214 if (R.IsDecl)
1215 OS << ", decl";
1216 return OS;
1217}
1218
1219} // namespace clangd
1220} // namespace clang
QualType DeducedType
Definition: AST.cpp:598
const Expr * E
const FunctionDecl * Decl
CaptureExpr CE
std::pair< Context, Canceler > Inner
Params Parm
CompiledFragmentImpl & Out
const Node * Parent
#define REL_CASE(X)
std::string Label
#define dlog(...)
Definition: Logger.h:101
llvm::raw_string_ostream OS
Definition: TraceTests.cpp:160
std::string printTemplateSpecializationArgs(const NamedDecl &ND)
Prints template arguments of a decl as written in the source code, including enclosing '<' and '>',...
Definition: AST.cpp:265
llvm::SmallVector< std::pair< const NamedDecl *, DeclRelationSet >, 1 > allTargetDecls(const DynTypedNode &N, const HeuristicResolver *Resolver)
Similar to targetDecl(), however instead of applying a filter, all possible decls are returned along ...
Definition: FindTarget.cpp:545
llvm::SmallVector< const NamedDecl *, 1 > explicitReferenceTargets(DynTypedNode N, DeclRelationSet Mask, const HeuristicResolver *Resolver)
Find declarations explicitly referenced in the source code defined by N.
Definition: FindTarget.cpp:586
void findExplicitReferences(const Stmt *S, llvm::function_ref< void(ReferenceLoc)> Out, const HeuristicResolver *Resolver)
Recursively traverse S and report all references explicitly written in the code.
NestedNameSpecifierLoc getQualifierLoc(const NamedDecl &ND)
Returns a nested name specifier loc of ND if it was present in the source, e.g.
Definition: AST.cpp:204
llvm::SmallVector< const NamedDecl *, 1 > targetDecl(const DynTypedNode &N, DeclRelationSet Mask, const HeuristicResolver *Resolver)
targetDecl() finds the declaration referred to by an AST node.
Definition: FindTarget.cpp:575
llvm::raw_ostream & operator<<(llvm::raw_ostream &OS, const CodeCompletion &C)
std::string printQualifiedName(const NamedDecl &ND)
Returns the qualified name of ND.
Definition: AST.cpp:182
@ Underlying
This is the underlying declaration for a renaming-alias, decltype etc.
@ TemplatePattern
This is the pattern the template specialization was instantiated from.
@ TemplateInstantiation
This is the template instantiation that was referred to.
@ Alias
This declaration is an alias that was referred to.
===– Representation.cpp - ClangDoc Representation --------—*- C++ -*-===//
Information about a reference written in the source code, independent of the actual AST node that thi...
Definition: FindTarget.h:126
NestedNameSpecifierLoc Qualifier
Contains qualifier written in the code, if any, e.g. 'ns::' for 'ns::foo'.
Definition: FindTarget.h:128
bool IsDecl
True if the reference is a declaration or definition;.
Definition: FindTarget.h:132
llvm::SmallVector< const NamedDecl *, 1 > Targets
A list of targets referenced by this name.
Definition: FindTarget.h:138