clang  14.0.0git
RangedConstraintManager.h
Go to the documentation of this file.
1 //== RangedConstraintManager.h ----------------------------------*- C++ -*--==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Ranged constraint manager, built on SimpleConstraintManager.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_RANGEDCONSTRAINTMANAGER_H
14 #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_RANGEDCONSTRAINTMANAGER_H
15 
19 #include "llvm/ADT/APSInt.h"
20 #include "llvm/Support/Allocator.h"
21 
22 namespace clang {
23 
24 namespace ento {
25 
26 /// A Range represents the closed range [from, to]. The caller must
27 /// guarantee that from <= to. Note that Range is immutable, so as not
28 /// to subvert RangeSet's immutability.
29 class Range {
30 public:
31  Range(const llvm::APSInt &From, const llvm::APSInt &To) : Impl(&From, &To) {
32  assert(From <= To);
33  }
34 
35  Range(const llvm::APSInt &Point) : Range(Point, Point) {}
36 
37  bool Includes(const llvm::APSInt &Point) const {
38  return From() <= Point && Point <= To();
39  }
40  const llvm::APSInt &From() const { return *Impl.first; }
41  const llvm::APSInt &To() const { return *Impl.second; }
42  const llvm::APSInt *getConcreteValue() const {
43  return &From() == &To() ? &From() : nullptr;
44  }
45 
46  void Profile(llvm::FoldingSetNodeID &ID) const {
47  ID.AddPointer(&From());
48  ID.AddPointer(&To());
49  }
50  void dump(raw_ostream &OS) const;
51  void dump() const;
52 
53  // In order to keep non-overlapping ranges sorted, we can compare only From
54  // points.
55  bool operator<(const Range &RHS) const { return From() < RHS.From(); }
56 
57  bool operator==(const Range &RHS) const { return Impl == RHS.Impl; }
58  bool operator!=(const Range &RHS) const { return !operator==(RHS); }
59 
60 private:
61  std::pair<const llvm::APSInt *, const llvm::APSInt *> Impl;
62 };
63 
64 /// @class RangeSet is a persistent set of non-overlapping ranges.
65 ///
66 /// New RangeSet objects can be ONLY produced by RangeSet::Factory object, which
67 /// also supports the most common operations performed on range sets.
68 ///
69 /// Empty set corresponds to an overly constrained symbol meaning that there
70 /// are no possible values for that symbol.
71 class RangeSet {
72 public:
73  class Factory;
74 
75 private:
76  // We use llvm::SmallVector as the underlying container for the following
77  // reasons:
78  //
79  // * Range sets are usually very simple, 1 or 2 ranges.
80  // That's why llvm::ImmutableSet is not perfect.
81  //
82  // * Ranges in sets are NOT overlapping, so it is natural to keep them
83  // sorted for efficient operations and queries. For this reason,
84  // llvm::SmallSet doesn't fit the requirements, it is not sorted when it
85  // is a vector.
86  //
87  // * Range set operations usually a bit harder than add/remove a range.
88  // Complex operations might do many of those for just one range set.
89  // Formerly it used to be llvm::ImmutableSet, which is inefficient for our
90  // purposes as we want to make these operations BOTH immutable AND
91  // efficient.
92  //
93  // * Iteration over ranges is widespread and a more cache-friendly
94  // structure is preferred.
96 
97  struct ContainerType : public ImplType, public llvm::FoldingSetNode {
98  void Profile(llvm::FoldingSetNodeID &ID) const {
99  for (const Range &It : *this) {
100  It.Profile(ID);
101  }
102  }
103  };
104  // This is a non-owning pointer to an actual container.
105  // The memory is fully managed by the factory and is alive as long as the
106  // factory itself is alive.
107  // It is a pointer as opposed to a reference, so we can easily reassign
108  // RangeSet objects.
109  using UnderlyingType = const ContainerType *;
110  UnderlyingType Impl;
111 
112 public:
113  using const_iterator = ImplType::const_iterator;
114 
115  const_iterator begin() const { return Impl->begin(); }
116  const_iterator end() const { return Impl->end(); }
117  size_t size() const { return Impl->size(); }
118 
119  bool isEmpty() const { return Impl->empty(); }
120 
121  class Factory {
122  public:
123  Factory(BasicValueFactory &BV) : ValueFactory(BV) {}
124 
125  /// Create a new set with all ranges from both LHS and RHS.
126  /// Possible intersections are not checked here.
127  ///
128  /// Complexity: O(N + M)
129  /// where N = size(LHS), M = size(RHS)
130  RangeSet add(RangeSet LHS, RangeSet RHS);
131  /// Create a new set with all ranges from the original set plus the new one.
132  /// Possible intersections are not checked here.
133  ///
134  /// Complexity: O(N)
135  /// where N = size(Original)
136  RangeSet add(RangeSet Original, Range Element);
137  /// Create a new set with all ranges from the original set plus the point.
138  /// Possible intersections are not checked here.
139  ///
140  /// Complexity: O(N)
141  /// where N = size(Original)
142  RangeSet add(RangeSet Original, const llvm::APSInt &Point);
143  /// Create a new set which is a union of two given ranges.
144  /// Possible intersections are not checked here.
145  ///
146  /// Complexity: O(N + M)
147  /// where N = size(LHS), M = size(RHS)
148  RangeSet unite(RangeSet LHS, RangeSet RHS);
149  /// Create a new set by uniting given range set with the given range.
150  /// All intersections and adjacent ranges are handled here.
151  ///
152  /// Complexity: O(N)
153  /// where N = size(Original)
154  RangeSet unite(RangeSet Original, Range Element);
155  /// Create a new set by uniting given range set with the given point.
156  /// All intersections and adjacent ranges are handled here.
157  ///
158  /// Complexity: O(N)
159  /// where N = size(Original)
160  RangeSet unite(RangeSet Original, llvm::APSInt Point);
161  /// Create a new set by uniting given range set with the given range
162  /// between points. All intersections and adjacent ranges are handled here.
163  ///
164  /// Complexity: O(N)
165  /// where N = size(Original)
166  RangeSet unite(RangeSet Original, llvm::APSInt From, llvm::APSInt To);
167 
168  RangeSet getEmptySet() { return &EmptySet; }
169 
170  /// Create a new set with just one range.
171  /// @{
172  RangeSet getRangeSet(Range Origin);
173  RangeSet getRangeSet(const llvm::APSInt &From, const llvm::APSInt &To) {
174  return getRangeSet(Range(From, To));
175  }
177  return getRangeSet(Origin, Origin);
178  }
179  /// @}
180 
181  /// Intersect the given range sets.
182  ///
183  /// Complexity: O(N + M)
184  /// where N = size(LHS), M = size(RHS)
186  /// Intersect the given set with the closed range [Lower, Upper].
187  ///
188  /// Unlike the Range type, this range uses modular arithmetic, corresponding
189  /// to the common treatment of C integer overflow. Thus, if the Lower bound
190  /// is greater than the Upper bound, the range is taken to wrap around. This
191  /// is equivalent to taking the intersection with the two ranges [Min,
192  /// Upper] and [Lower, Max], or, alternatively, /removing/ all integers
193  /// between Upper and Lower.
194  ///
195  /// Complexity: O(N)
196  /// where N = size(What)
198  /// Intersect the given range with the given point.
199  ///
200  /// The result can be either an empty set or a set containing the given
201  /// point depending on whether the point is in the range set.
202  ///
203  /// Complexity: O(logN)
204  /// where N = size(What)
206 
207  /// Delete the given point from the range set.
208  ///
209  /// Complexity: O(N)
210  /// where N = size(From)
211  RangeSet deletePoint(RangeSet From, const llvm::APSInt &Point);
212  /// Negate the given range set.
213  ///
214  /// Turn all [A, B] ranges to [-B, -A], when "-" is a C-like unary minus
215  /// operation under the values of the type.
216  ///
217  /// We also handle MIN because applying unary minus to MIN does not change
218  /// it.
219  /// Example 1:
220  /// char x = -128; // -128 is a MIN value in a range of 'char'
221  /// char y = -x; // y: -128
222  ///
223  /// Example 2:
224  /// unsigned char x = 0; // 0 is a MIN value in a range of 'unsigned char'
225  /// unsigned char y = -x; // y: 0
226  ///
227  /// And it makes us to separate the range
228  /// like [MIN, N] to [MIN, MIN] U [-N, MAX].
229  /// For instance, whole range is {-128..127} and subrange is [-128,-126],
230  /// thus [-128,-127,-126,...] negates to [-128,...,126,127].
231  ///
232  /// Negate restores disrupted ranges on bounds,
233  /// e.g. [MIN, B] => [MIN, MIN] U [-B, MAX] => [MIN, B].
234  ///
235  /// Negate is a self-inverse function, i.e. negate(negate(R)) == R.
236  ///
237  /// Complexity: O(N)
238  /// where N = size(What)
239  RangeSet negate(RangeSet What);
240 
241  /// Return associated value factory.
242  BasicValueFactory &getValueFactory() const { return ValueFactory; }
243 
244  private:
245  /// Return a persistent version of the given container.
246  RangeSet makePersistent(ContainerType &&From);
247  /// Construct a new persistent version of the given container.
248  ContainerType *construct(ContainerType &&From);
249 
250  RangeSet intersect(const ContainerType &LHS, const ContainerType &RHS);
251  /// NOTE: This function relies on the fact that all values in the
252  /// containers are persistent (created via BasicValueFactory::getValue).
253  ContainerType unite(const ContainerType &LHS, const ContainerType &RHS);
254 
255  // Many operations include producing new APSInt values and that's why
256  // we need this factory.
257  BasicValueFactory &ValueFactory;
258  // Allocator for all the created containers.
259  // Containers might own their own memory and that's why it is specific
260  // for the type, so it calls container destructors upon deletion.
261  llvm::SpecificBumpPtrAllocator<ContainerType> Arena;
262  // Usually we deal with the same ranges and range sets over and over.
263  // Here we track all created containers and try not to repeat ourselves.
264  llvm::FoldingSet<ContainerType> Cache;
265  static ContainerType EmptySet;
266  };
267 
268  RangeSet(const RangeSet &) = default;
269  RangeSet &operator=(const RangeSet &) = default;
270  RangeSet(RangeSet &&) = default;
271  RangeSet &operator=(RangeSet &&) = default;
272  ~RangeSet() = default;
273 
274  /// Construct a new RangeSet representing '{ [From, To] }'.
275  RangeSet(Factory &F, const llvm::APSInt &From, const llvm::APSInt &To)
276  : RangeSet(F.getRangeSet(From, To)) {}
277 
278  /// Construct a new RangeSet representing the given point as a range.
279  RangeSet(Factory &F, const llvm::APSInt &Point)
280  : RangeSet(F.getRangeSet(Point)) {}
281 
282  static void Profile(llvm::FoldingSetNodeID &ID, const RangeSet &RS) {
283  ID.AddPointer(RS.Impl);
284  }
285 
286  /// Profile - Generates a hash profile of this RangeSet for use
287  /// by FoldingSet.
288  void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, *this); }
289 
290  /// getConcreteValue - If a symbol is constrained to equal a specific integer
291  /// constant then this method returns that value. Otherwise, it returns
292  /// NULL.
294  return Impl->size() == 1 ? begin()->getConcreteValue() : nullptr;
295  }
296 
297  /// Get the minimal value covered by the ranges in the set.
298  ///
299  /// Complexity: O(1)
300  const llvm::APSInt &getMinValue() const;
301  /// Get the maximal value covered by the ranges in the set.
302  ///
303  /// Complexity: O(1)
304  const llvm::APSInt &getMaxValue() const;
305 
306  /// Test whether the given point is contained by any of the ranges.
307  ///
308  /// Complexity: O(logN)
309  /// where N = size(this)
310  bool contains(llvm::APSInt Point) const { return containsImpl(Point); }
311 
312  bool containsZero() const {
313  APSIntType T{getMinValue()};
314  return contains(T.getZeroValue());
315  }
316 
317  /// Test if the range is the [0,0] range.
318  ///
319  /// Complexity: O(1)
320  bool encodesFalseRange() const {
321  const llvm::APSInt *Constant = getConcreteValue();
322  return Constant && Constant->isZero();
323  }
324 
325  /// Test if the range doesn't contain zero.
326  ///
327  /// Complexity: O(logN)
328  /// where N = size(this)
329  bool encodesTrueRange() const { return !containsZero(); }
330 
331  void dump(raw_ostream &OS) const;
332  void dump() const;
333 
334  bool operator==(const RangeSet &Other) const { return *Impl == *Other.Impl; }
335  bool operator!=(const RangeSet &Other) const { return !(*this == Other); }
336 
337 private:
338  /* implicit */ RangeSet(ContainerType *RawContainer) : Impl(RawContainer) {}
339  /* implicit */ RangeSet(UnderlyingType Ptr) : Impl(Ptr) {}
340 
341  /// Pin given points to the type represented by the current range set.
342  ///
343  /// This makes parameter points to be in-out parameters.
344  /// In order to maintain consistent types across all of the ranges in the set
345  /// and to keep all the operations to compare ONLY points of the same type, we
346  /// need to pin every point before any operation.
347  ///
348  /// @Returns true if the given points can be converted to the target type
349  /// without changing the values (i.e. trivially) and false otherwise.
350  /// @{
351  bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const;
352  bool pin(llvm::APSInt &Point) const;
353  /// @}
354 
355  // This version of this function modifies its arguments (pins it).
356  bool containsImpl(llvm::APSInt &Point) const;
357 
358  friend class Factory;
359 };
360 
361 using ConstraintMap = llvm::ImmutableMap<SymbolRef, RangeSet>;
363 
365 public:
367  : SimpleConstraintManager(EE, SB) {}
368 
369  ~RangedConstraintManager() override;
370 
371  //===------------------------------------------------------------------===//
372  // Implementation for interface from SimpleConstraintManager.
373  //===------------------------------------------------------------------===//
374 
376  bool Assumption) override;
377 
379  const llvm::APSInt &From,
380  const llvm::APSInt &To,
381  bool InRange) override;
382 
384  bool Assumption) override;
385 
386 protected:
387  /// Assume a constraint between a symbolic expression and a concrete integer.
390  const llvm::APSInt &Int);
391 
392  //===------------------------------------------------------------------===//
393  // Interface that subclasses must implement.
394  //===------------------------------------------------------------------===//
395 
396  // Each of these is of the form "$Sym+Adj <> V", where "<>" is the comparison
397  // operation for the method being invoked.
398 
400  const llvm::APSInt &V,
401  const llvm::APSInt &Adjustment) = 0;
402 
404  const llvm::APSInt &V,
405  const llvm::APSInt &Adjustment) = 0;
406 
408  const llvm::APSInt &V,
409  const llvm::APSInt &Adjustment) = 0;
410 
412  const llvm::APSInt &V,
413  const llvm::APSInt &Adjustment) = 0;
414 
416  const llvm::APSInt &V,
417  const llvm::APSInt &Adjustment) = 0;
418 
420  const llvm::APSInt &V,
421  const llvm::APSInt &Adjustment) = 0;
422 
424  ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
425  const llvm::APSInt &To, const llvm::APSInt &Adjustment) = 0;
426 
428  ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
429  const llvm::APSInt &To, const llvm::APSInt &Adjustment) = 0;
430 
431  //===------------------------------------------------------------------===//
432  // Internal implementation.
433  //===------------------------------------------------------------------===//
434 private:
435  static void computeAdjustment(SymbolRef &Sym, llvm::APSInt &Adjustment);
436 };
437 
438 /// Try to simplify a given symbolic expression based on the constraints in
439 /// State. This is needed because the Environment bindings are not getting
440 /// updated when a new constraint is added to the State. If the symbol is
441 /// simplified to a non-symbol (e.g. to a constant) then the original symbol
442 /// is returned. We use this function in the family of assumeSymNE/EQ/LT/../GE
443 /// functions where we can work only with symbols. Use the other function
444 /// (simplifyToSVal) if you are interested in a simplification that may yield
445 /// a concrete constant value.
447 
448 /// Try to simplify a given symbolic expression's associated `SVal` based on the
449 /// constraints in State. This is very similar to `simplify`, but this function
450 /// always returns the simplified SVal. The simplified SVal might be a single
451 /// constant (i.e. `ConcreteInt`).
453 
454 } // namespace ento
455 } // namespace clang
456 
458 
459 #endif
clang::ento::RangeSet::Factory::unite
RangeSet unite(RangeSet LHS, RangeSet RHS)
Create a new set which is a union of two given ranges.
Definition: RangeConstraintManager.cpp:137
clang::ento::RangeSet::encodesTrueRange
bool encodesTrueRange() const
Test if the range doesn't contain zero.
Definition: RangedConstraintManager.h:329
clang::ento::RangeSet::contains
bool contains(llvm::APSInt Point) const
Test whether the given point is contained by any of the ranges.
Definition: RangedConstraintManager.h:310
clang::ento::BasicValueFactory
Definition: BasicValueFactory.h:107
clang::ento::RangeSet::size
size_t size() const
Definition: RangedConstraintManager.h:117
clang::ento::RangedConstraintManager::assumeSymGE
virtual ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment)=0
clang::ento::RangeSet::Factory::getEmptySet
RangeSet getEmptySet()
Definition: RangedConstraintManager.h:168
llvm::SmallVector
Definition: LLVM.h:38
clang::ento::RangeSet::~RangeSet
~RangeSet()=default
clang::ento::ProgramStateRef
IntrusiveRefCntPtr< const ProgramState > ProgramStateRef
Definition: ProgramState_Fwd.h:37
clang::ento::Range::Includes
bool Includes(const llvm::APSInt &Point) const
Definition: RangedConstraintManager.h:37
clang::ento::SymbolRef
const SymExpr * SymbolRef
Definition: SymExpr.h:110
clang::ento::RangeSet::dump
void dump() const
Definition: RangeConstraintManager.cpp:683
clang::ento::RangeSet::Factory::negate
RangeSet negate(RangeSet What)
Negate the given range set.
Definition: RangeConstraintManager.cpp:595
clang::ento::RangeSet::Factory::getValueFactory
BasicValueFactory & getValueFactory() const
Return associated value factory.
Definition: RangedConstraintManager.h:242
REGISTER_FACTORY_WITH_PROGRAMSTATE
#define REGISTER_FACTORY_WITH_PROGRAMSTATE(Type)
Declares a factory for objects of type Type in the program state manager.
Definition: ProgramStateTrait.h:52
APSInt
llvm::APSInt APSInt
Definition: ByteCodeEmitter.cpp:19
V
#define V(N, I)
Definition: ASTContext.h:3126
clang::ento::RangeSet::Factory::intersect
RangeSet intersect(RangeSet LHS, RangeSet RHS)
Intersect the given range sets.
Definition: RangeConstraintManager.cpp:579
clang::ento::Range
A Range represents the closed range [from, to].
Definition: RangedConstraintManager.h:29
clang::ento::ConstraintMap
llvm::ImmutableMap< SymbolRef, RangeSet > ConstraintMap
Definition: RangedConstraintManager.h:361
clang::ento::RangedConstraintManager
Definition: RangedConstraintManager.h:364
clang::ento::RangedConstraintManager::assumeSym
ProgramStateRef assumeSym(ProgramStateRef State, SymbolRef Sym, bool Assumption) override
Given a symbolic expression that can be reasoned about, assume that it is true/false and generate the...
Definition: RangedConstraintManager.cpp:23
clang::ento::RangeSet::operator=
RangeSet & operator=(const RangeSet &)=default
clang::ento::SymExpr
Symbolic value.
Definition: SymExpr.h:29
clang::ento::Range::Profile
void Profile(llvm::FoldingSetNodeID &ID) const
Definition: RangedConstraintManager.h:46
clang::ento::Range::To
const llvm::APSInt & To() const
Definition: RangedConstraintManager.h:41
clang::ento::RangeSet::Profile
void Profile(llvm::FoldingSetNodeID &ID) const
Profile - Generates a hash profile of this RangeSet for use by FoldingSet.
Definition: RangedConstraintManager.h:288
clang::ento::Range::Range
Range(const llvm::APSInt &From, const llvm::APSInt &To)
Definition: RangedConstraintManager.h:31
clang::ento::RangedConstraintManager::assumeSymLT
virtual ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment)=0
clang::ento::RangedConstraintManager::assumeSymLE
virtual ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment)=0
clang::ento::RangedConstraintManager::RangedConstraintManager
RangedConstraintManager(ExprEngine *EE, SValBuilder &SB)
Definition: RangedConstraintManager.h:366
clang::ento::RangeSet::operator!=
bool operator!=(const RangeSet &Other) const
Definition: RangedConstraintManager.h:335
clang::ento::RangeSet::getMinValue
const llvm::APSInt & getMinValue() const
Get the minimal value covered by the ranges in the set.
Definition: RangeConstraintManager.cpp:346
clang::ento::simplifyToSVal
SVal simplifyToSVal(ProgramStateRef State, SymbolRef Sym)
Try to simplify a given symbolic expression's associated SVal based on the constraints in State.
Definition: RangedConstraintManager.cpp:234
clang::ento::RangeSet::const_iterator
ImplType::const_iterator const_iterator
Definition: RangedConstraintManager.h:113
clang::ento::RangeSet::isEmpty
bool isEmpty() const
Definition: RangedConstraintManager.h:119
clang::ento::RangeSet::encodesFalseRange
bool encodesFalseRange() const
Test if the range is the [0,0] range.
Definition: RangedConstraintManager.h:320
clang::ento::RangeSet::containsZero
bool containsZero() const
Definition: RangedConstraintManager.h:312
SimpleConstraintManager.h
clang::ento::APSIntType
A record of the "type" of an APSInt, used for conversions.
Definition: APSIntType.h:19
clang::interp::InRange
bool InRange(InterpState &S, CodePtr OpPC)
Definition: Interp.h:266
clang::ento::SValBuilder
Definition: SValBuilder.h:53
clang::ento::RangeSet::getMaxValue
const llvm::APSInt & getMaxValue() const
Get the maximal value covered by the ranges in the set.
Definition: RangeConstraintManager.cpp:351
clang::ento::RangeSet::Factory::deletePoint
RangeSet deletePoint(RangeSet From, const llvm::APSInt &Point)
Delete the given point from the range set.
Definition: RangeConstraintManager.cpp:658
clang::ento::RangeSet::Profile
static void Profile(llvm::FoldingSetNodeID &ID, const RangeSet &RS)
Definition: RangedConstraintManager.h:282
clang::ento::RangedConstraintManager::assumeSymGT
virtual ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment)=0
clang::ento::RangedConstraintManager::assumeSymRel
virtual ProgramStateRef assumeSymRel(ProgramStateRef State, SymbolRef Sym, BinaryOperator::Opcode op, const llvm::APSInt &Int)
Assume a constraint between a symbolic expression and a concrete integer.
Definition: RangedConstraintManager.cpp:151
clang::ento::RangedConstraintManager::assumeSymOutsideInclusiveRange
virtual ProgramStateRef assumeSymOutsideInclusiveRange(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, const llvm::APSInt &To, const llvm::APSInt &Adjustment)=0
Cache
TypePropertyCache< Private > Cache
Definition: Type.cpp:3846
clang::ento::Range::operator==
bool operator==(const Range &RHS) const
Definition: RangedConstraintManager.h:57
clang::ento::RangeSet::begin
const_iterator begin() const
Definition: RangedConstraintManager.h:115
clang::ento::RangeSet::Factory
Definition: RangedConstraintManager.h:121
clang::ento::Range::From
const llvm::APSInt & From() const
Definition: RangedConstraintManager.h:40
clang::ento::Range::dump
void dump() const
Definition: RangeConstraintManager.cpp:676
State
LineState State
Definition: UnwrappedLineFormatter.cpp:1052
clang::ento::RangedConstraintManager::assumeSymUnsupported
ProgramStateRef assumeSymUnsupported(ProgramStateRef State, SymbolRef Sym, bool Assumption) override
Given a symbolic expression that cannot be reasoned about, assume that it is zero/nonzero and add it ...
Definition: RangedConstraintManager.cpp:132
clang::ento::RangeSet
Definition: RangedConstraintManager.h:71
clang::BinaryOperatorKind
BinaryOperatorKind
Definition: OperationKinds.h:25
clang::ento::RangeSet::RangeSet
RangeSet(Factory &F, const llvm::APSInt &From, const llvm::APSInt &To)
Construct a new RangeSet representing '{ [From, To] }'.
Definition: RangedConstraintManager.h:275
clang::ento::Range::getConcreteValue
const llvm::APSInt * getConcreteValue() const
Definition: RangedConstraintManager.h:42
clang::ento::ExprEngine
Definition: ExprEngine.h:123
ProgramState.h
clang::ento::Range::operator!=
bool operator!=(const Range &RHS) const
Definition: RangedConstraintManager.h:58
clang::ento::RangedConstraintManager::assumeSymWithinInclusiveRange
virtual ProgramStateRef assumeSymWithinInclusiveRange(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, const llvm::APSInt &To, const llvm::APSInt &Adjustment)=0
clang::Builtin::ID
ID
Definition: Builtins.h:48
clang
Definition: CalledOnceCheck.h:17
clang::ento::RangedConstraintManager::~RangedConstraintManager
~RangedConstraintManager() override
Definition: RangedConstraintManager.cpp:21
clang::ento::RangeSet::Factory::Factory
Factory(BasicValueFactory &BV)
Definition: RangedConstraintManager.h:123
clang::ento::RangedConstraintManager::assumeSymInclusiveRange
ProgramStateRef assumeSymInclusiveRange(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, const llvm::APSInt &To, bool InRange) override
Given a symbolic expression within the range [From, To], assume that it is true/false and generate th...
Definition: RangedConstraintManager.cpp:100
clang::ento::Range::operator<
bool operator<(const Range &RHS) const
Definition: RangedConstraintManager.h:55
clang::ento::RangeSet::RangeSet
RangeSet(const RangeSet &)=default
clang::ento::RangedConstraintManager::assumeSymEQ
virtual ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment)=0
clang::ento::RangeSet::RangeSet
RangeSet(Factory &F, const llvm::APSInt &Point)
Construct a new RangeSet representing the given point as a range.
Definition: RangedConstraintManager.h:279
clang::ento::SimpleConstraintManager
Definition: SimpleConstraintManager.h:23
clang::ento::Range::Range
Range(const llvm::APSInt &Point)
Definition: RangedConstraintManager.h:35
clang::ento::RangeSet::operator==
bool operator==(const RangeSet &Other) const
Definition: RangedConstraintManager.h:334
clang::ento::RangeSet::Factory::getRangeSet
RangeSet getRangeSet(Range Origin)
Create a new set with just one range.
ProgramStateTrait.h
clang::ento::RangeSet::end
const_iterator end() const
Definition: RangedConstraintManager.h:116
clang::ento::RangeSet::Factory::add
RangeSet add(RangeSet LHS, RangeSet RHS)
Create a new set with all ranges from both LHS and RHS.
Definition: RangeConstraintManager.cpp:113
clang::ento::RangeSet::getConcreteValue
const llvm::APSInt * getConcreteValue() const
getConcreteValue - If a symbol is constrained to equal a specific integer constant then this method r...
Definition: RangedConstraintManager.h:293
clang::ento::RangedConstraintManager::assumeSymNE
virtual ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &V, const llvm::APSInt &Adjustment)=0
clang::ento::RangeSet::Factory::getRangeSet
RangeSet getRangeSet(const llvm::APSInt &Origin)
Definition: RangedConstraintManager.h:176
clang::ento::getConstraintMap
ConstraintMap getConstraintMap(ProgramStateRef State)
Definition: RangeConstraintManager.cpp:1983
llvm::IntrusiveRefCntPtr
Definition: LLVM.h:47
clang::ento::RangeSet::Factory::getRangeSet
RangeSet getRangeSet(const llvm::APSInt &From, const llvm::APSInt &To)
Definition: RangedConstraintManager.h:173
clang::ento::simplify
SymbolRef simplify(ProgramStateRef State, SymbolRef Sym)
Try to simplify a given symbolic expression based on the constraints in State.
Definition: RangedConstraintManager.cpp:239